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ABSTRACT

SCALE AND TEXTURE IN DIGITAL IMAGE CLASSIFICATION

Christopher John Sebastian Ferro

(ABSTRACT)

This thesis is a theoretical and empirical study on textural properties of digital images.

Spatial information exists at a hierarchy of scales and texture is a consequence of the objects in

that hierarchy. Within-class texture results from the spatial arrangement of objects at the next

finer level in the hierarchy than the informational class. Between-class texture results from

spectral differences between adjacent classes and is most obvious near class edges, especially

for smooth classes. In rough classes between-class variance may not differ much from within-

class variance. Errors in classifications using texture, therefore, are most likely associated with

class edges; however, investigators often avoid edges in evaluating texture or classification.

The window sizes needed to produce a stable texture measure are often large.

Experiments with ADAR 1-meter data suggest that windows of 50 to 300 meters are necessary.

Small windows are required to minimize edge effects. This is inherently contradictory as

windows used to produce stable texture measures also produce a large edge effect.

Experiments with simulated data showed that separability of classes increased when

texture was used in addition to spectral information. Separability of texture also improved with

larger scale windows. This improvement was over-estimated when pixels were chosen away

from class edges. The ADAR data showed that separability of the interiors of classes improved

with the addition of texture, but for the class as a whole, the class separability actually fell.

Maximum Likelihood classification of the ADAR data demonstrated the effect of edges and

multiple scales in reducing the accuracy of classification incorporating texture.
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I. INTRODUCTION

Remote sensing incorporates both the processes by which information is gathered

about an object through reflected or emitted electromagnetic radiation and the acquisition and

analysis of images that are derived from that information.  Remotely sensed images can be

analog (as in a photograph) or digital (as in electro-optical or digital camera data). This thesis

is an investigation of the textural properties of digital images and how those properties affect

spectral classification.

A. Types of Information

There are four primary types of information in digital images: radiometric, temporal,

spectral, and spatial.  Radiometric properties are partly determined by the number of gray

levels, whereas temporal properties are related to the timing of the imagery (Lilesand and

Kiefer, 1994).  Spectral information is derived from measurements at specific wavelengths of

the light reflected from objects on the ground back to the sensor.  The width of the wavelength

bands, the number of those bands, and their extent is known as spectral resolution.  Spectral

resolution of current satellite and aircraft-borne sensor data has a broad range. Low resolution

Satellite Pour l'Observation de la Terre (SPOT) panchromatic data is acquired in one broad

band extending from 0.51 µm to 0.73 µm (Begni, 1982).  Medium spectral resolution Landsat

Thematic Mapper (TM) data is acquired in seven bands from 0.45 µm through 2.35µm in the

optical wavelengths and 10.4 µm through 12.5µm in the thermal band (Markham and Barker,

1985).  Some aircraft-borne hyperspectral sensors, such as NASA’s Airborne Visible/InfraRed

Imaging Spectrometer (AVIRIS) and the Hyperspectral Digital Image Collection Experiment

(HYDICE), collect data in hundreds of narrow bands and at very high spectral resolution (Vane,

et al., 1993; Basedow, et al., 1994).

Spatial Resolution can be described by the smallest angular or linear separation

between two objects of a specific contrast ratio that can be resolved, or imaged, by the sensor.

For non-photography based imaging systems, a common measure is the linear distance of the

ground projected instantaneous field of view (IFOV).  For example, the French SPOT sensor

has an IFOV of 20×20 meters with the multi-spectral scanner and 10×10 meters with the

panchromatic scanner.  The IFOV of the Landsat Thematic Mapper scanner is approximately

30×30 meters for the optical bands and 120×120 meters for the thermal band (Kramer, 1996).

As a general rule, for an object to be detected by the imaging system, it needs to be twice the
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length of the IFOV of the sensor and have contrasting spectral or spatial properties when

compared to the background.  An important property of any image is the spatial structure, or

arrangement, of bright and dark tones. Spatial information can be expressed in terms of spatial

autocorrelation, a measure of the similarity between a pixel and its neighbors.  The degree of

spatial autocorrelation is determined by the size and shape of the objects in the scene and the

spatial resolution of the image (Woodcock, Strahler and Jupp, 1988a; 1988b).  Without some

kind of spatial structure, digital images would appear to be nothing more than random

collections of pixels, or noise.

B.  Image Texture

Texture is another expression of the local spatial structure in digital images.  Wang and

He (1990) have defined texture as the tonal or gray level variation of an image.  Hsu (1978)

defined it as the spatial distribution of tones of the pixels in remotely sensed images.  Haralick

(1979) described texture as a scale dependent phenomenon that arises from the spatial

interrelationship between tonal primitives that comprise the scene.  The term tone describes a

specific brightness level along a continuum of gray levels from black to white.  Tonal primitives

are regions that may comprise a pixel, or group of adjacent pixels that have similar tonal

properties (Haralick 1979).  Texture is most often measured from the local spectral variation

within a window of interest, such as a 3×3 or 5×5 pixel matrix, or window.  This window is a

grid of weighted values that is “passed” across the image to assign the central pixel a value

based on the spectral variability of its neighbors.  Central to this thesis is the idea that although

the spatial resolution of the sensor is important in determining image properties (Woodcock

and Strahler, 1987), it is the size of the window over which texture is calculated that

determines the usefulness of texture measures.  A further complication is that texture may

exist at different scales in an image, with the finest scale depending on the size of an object in

relation to the spatial resolution of the sensor instrument.

C. Texture versus Pattern

Texture is often confused with or used synonymously with pattern.  For this thesis the

term pattern is used to describe some spatial regularity within an area of interest.  By contrast,

texture is a measure of spatial variability, random or non-random, within an area of interest.

Many computerized texture measures can not distinguish patterns from other textures since

the technique is aspatial at the scale of measurement.  The figure below (Figure 1) shows how

some measures of texture can not distinguish pattern.  The grid on the left contains twenty-five
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numbers with the values 5, 10 and 20 in a specific pattern.  The grid on the right contains the

same numbers in random sequence.

5 5

5

5

5 5

5 5

5

5
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10 5 5
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5
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10 10 5
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5
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Σ= 240 Σ= 240

Figure 1: Different patterns with the same first
order statistical value.

If the numbers are simply added in each grid, the sum for both grids is 240.  Any further

processing of this number is independent of the order in which the values occur in the matrix.

This is true of texture measures using simple, or first order, statistics (i.e., mean, variance etc.).

Texture measures that use higher order statistics, such as the Gray-Level Co-occurrence

Matrix, are explicitly spatial and the ordering of number is significant.  Texture measures will be

discussed further in the next chapter.  For this thesis first order statistics were employed in

texture calculation.

D. The Edge Effect

One significant artifact in texture analysis is the so-called “edge effect,” a domination of

the texture image by bright pixels along the interfaces of spectrally different regions.  Edges

are bright because spectral differences between classes are usually greater than the

differences within classes.   Since the texture algorithm is simply assigning a value to a pixel

based on variability of the values of its neighbors, texture estimates for locations near the

edges of spectral classes will often therefore be greater than those within the interior of

classes.  For a texture image to be useful in standard spectral classification, each class should

have a relatively distinct and homogeneous calculated texture value. Adaptive filters have

been proposed to overcome this problem, but the results have been mixed.  For example, the

adaptive filter of Ryherd and Woodcock (1996) tends to produce a rather blocky output.

E. The Issue of Scale

The scale dependent aspects of texture have largely been ignored by previous studies,

which have generally focused instead on the algorithms of texture calculation (Haralick, et al.,
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1973; Weszka, et al., 1976; Haralick, 1979; Connors and Harlow, 1980; Dutra and

Mascarenhas, 1984; Marceau, et al., 1990; Gong, et al., 1992). This study will focus on scale

through the development of a theoretical framework to facilitate understanding the relationship

of scale and texture and an empirical study of texture in simulated and real image data. The

theoretical framework will develop terms and concepts related to remote sensing models, scale

and texture.  The framework will also improve understanding about the nature of texture and

draws on the terminology and ideas of Strahler et al. (1986) and Woodcock and Strahler

(1987).  The empirical study will then develop of a method for determining the appropriate

scale (i.e., window size) for texture analysis using image plots of local variability of variance

against window size.
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II.  LITERATURE REVIEW

Early texture analysis carried out in the 1970s with black and white (panchromatic) and

multispectral images yielded promising results.  Haralick, et al. (1973) achieved a classification

accuracy of 74 to 77 percent using only spectral information.  Identification accuracies of 83.5

percent were obtained with a combination of spectral and textural features.  Hsu (1978) found

that with data derived from texture alone, hit-rate analysis for test sites yielded accuracies of

85 to 90 percent.  Numerous experiments in texture feature extraction and analysis from the

1970s to the present have included performance evaluations of, and comparisons between,

various texture measures  (Weszka, et al., 1976; Conners and Harlow, 1980; Dutra and

Mascarenhas, 1984; Latty, et al., 1985; Marceau et al., 1990; Gong, et al., 1992).   An example

of a more recent study is that by Agbu and Nizeyimana (1991), in which it was suggested that

texture features had a potential for assisting with the initial stages of detailed soil survey

programs and land-use planning.  The use of texture derived from radar images has shown to

be particularly beneficial in the discrimination of sea ice types (Barber and LeDrew, 1991).

Ryherd and Woodcock (1996) used texture and spectral data in image segmentation of

simulated forests, as well as real data including mixed urban and suburban land cover types.

A. Measures of Texture

As discussed in the last paragraph, the evaluation and development of new

approaches to calculating texture has been a particular focus in the remote sensing literature.

One class of image characteristics used for determining texture is first-order statistics of local

areas.  These include mean, entropy, and variance, shown in Table 1 (Jensen, 1996):

Table 1: First-order statistics as texture measures.

Texture Measure Equation

Mean
AVE

W
i f

i

quant

i

k

= ×
=
∑1

0

Entropy
ENT

f

W

f

W
i

i

quant
i

k

=
=
∑ ln

0

Variance
VAR

W
i AVE f

i

quant

i

k

= − ×
=
∑1 2

0

( )

Where
 fi =frequency of gray level i occurring in a pixel window
quantk =quantization level of band k (e.g., 28=0 to 255)
W =total number of pixels in a window.
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The variance filter provides a measure of local homogeneity in an image and can also

be regarded as a non-linear non-directional edge detector (Wilson, 1997), because it

emphasizes sudden changes in surface images brightness without any directional bias.  For

this reason it is useful for capturing within-class variability by detecting edges of scene objects.

Other ways of calculating texture include second-order statistical measures such as the

gray-level co-occurrence matrix (GLCM).  Haralick and Shanmugam (1974) define 32 GLCM

texture measures. Weszka, et al. (1976) and also Marceau, et al. (1990) have evaluated the

GLCM.  Weszka, et al. (1976) found that the GLCM and other measures of texture using

second order statistics resulted in poorer classification results compared to texture calculated

from simple statistics. Fourier transform features, an approach borrowed from geophysics, had

the lowest performance.

A method employed by Wang and He (1990) entails calculating texture units as

elements of a texture spectrum.  Jensen (1996) explains this method as “...computed texture

based on an analysis of the eight possible clockwise ways of ordering the 3×3 matrix of pixel

values”.  This is a set of nine elements representing the brightness value of the central pixel

and the intensity of the neighboring pixels.  The result is a texture unit, containing eight

elements.  There are 6561 possible texture units, with higher numbers representing “coarser”

textures.  The frequency of occurrence for each texture unit in an image or sub-image is the

texture spectrum.  Although this method could theoretically be extended to larger window

sizes, the possible permutations of the texture spectrum would be impracticably large.

Cushnie (1987) took a different approach to texture by considering intraclass variability

as “scene noise.”  A two step experiment was employed by first simulating satellite data at

progressively coarser spatial resolutions and comparing classification accuracies.  Secondly,

an averaging filter was used before classification reducing intraclass variability, enhancing

classification accuracy.  The effect of averaging on pixels near class edges was not evaluated.

B. Scale and Texture

According to Marceau et al. (1990), ninety percent of the variability in classification

accuracy using texture is accounted for by the size of the window used to calculate texture

while the particular texture algorithm determines only ten percent.  This is a particularly

significant finding because the majority of texture studies focus on algorithm development  and

evaluation without addressing the effect of window size.



7

Hodgson (1998) presents a good overview of window size as it relates to texture.

Hodgson’s (1998) research focused on cognitive (i.e., visual) classification, not automated

classification.  In his work, classification accuracy was related to window size in ground area

units.  It was found that a minimum size window was needed for accurate cognitive

classification, and that the window size needed increased as spatial resolution increased.

Once the accuracy reached a maximum, no further increase or decrease in accuracy occurred.

Hay, Niemann and Goodenough (1997) also provide an excellent overview of scale and the

methods for estimating image properties at new scales.

The subject of window size as it relates to texture analysis for computerized image

classification has been mentioned by Hsu (1978), Chavez and Bauer (1982), Dutra et al.

(1984), Marceau et al. (1990), and Briggs and Nellis (1991).  Texture and scale were

investigated in a systematic manner by Franklin and McDermid (1993) using image

semivariograms calculated over forest stands to determine appropriate window sizes for

texture calculation. Franklin, et al. (1996) also developed a technique for determining the

optimal window size for digital image processing based on semivariograms.  Chavez and

Bauer (1982) developed technique for automatic window size selection for edge enhancement

using the horizontal first difference, or derivative, of an image.  This approach was solely

concerned with a two-pixel difference as a measure of the scale rather than the influence of all

pixels in a neighborhood from which texture might be calculated. Curran (1988) has

demonstrated the use of semivariograms in determining image scale.   Hsu (1978) and Dutra

et al. (1984) suggest that small window sizes are a better choice due to the contaminating

effect of edge pixels in classification.  Dutra, et al. (1984) also suggest that smaller window

sizes preserve “microtextures”.  Marceau, et al. (1990), on the other hand, found that maximum

classification accuracy was achieved with window sizes that were class specific.  Relatively

large windows (17×17 and 25×25) worked well for most cover types. Marceau, et al. (1994)

used graphs of local variance plotted against spatial resolution to derive optimal spatial

resolutions for forested environments.  Profiles of spectral separability were also graphed to

determine the optimal spatial resolution for separating forest classes.  Nellis and Briggs (1989)

applied texture analysis to various scales of remotely sensed data and related them to

tallgrass prairie landscape units.  In addition to spatial scale, the sizes of the features in an

image were found to influence texture measures.  Larger window sizes were suggested for

homogeneous landscapes.
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Woodcock and Strahler (1987) provide a framework that graphically relates local

variance to pixel size (spatial resolution).  Their use of plots (see Figure 2) is conceptually

similar to this project’s second objective of developing a method to determine the appropriate

scale for texture analysis using image plots of texture variability against window size.
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Figure 2: Local variance plotted against spatial
resolution (pixel size).

Woodcock and Strahler (1987) related the shape of these plots to the scale of

elements in the image.  The peak of the local variance was found to occur when the pixel size

reached approximately one-third to three-quarters the size of the objects, depending on object

spacing,  in the scene for both the simulated and observed images.

This thesis extends Woodcock and Strahler’s work in two important ways.  Firstly, their

work dealt with a fixed window size of 3×3 pixels with varying spatial resolution.  Secondly,

Woodcock and Strahler’s (1987) graphs were based on images which were considered a

single class.  Thus between class variability and its effect on texture was not considered.  This

project will therefore investigate the effects of varying both image resolution and window size.

Furthermore, the effect of class edges will be a special focus of this work.

C. Models

A model that helps provide a framework for the analysis of remotely sensed images,

and particularly texture, is the discrete model (Strahler, et al., 1986).  In this model, the scene

is conceived as a background with discrete objects existing on it.  These ground objects are

abstracted as elements that have uniform parameters or properties. Elements may be unique,

but often belong to classes.  Elements of a single class are assumed to have the same set of

parameters or properties.  The background, in this case, is often regarded as spatially

continuous with uniform properties or parameters, and is usually partially obscured by the
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elements in the scene (Strahler, et al., 1987). Strahler, et al. (1987) define two resolution

models: the H-resolution model and the L-resolution model.  When the spatial arrangement of

ground features can be detected directly by the sensor as individual elements, the scene is

said to conform to the H-resolution model.  When the sensor is unable to distinguish individual

elements, because the IFOV is larger than the elements, the scene is said to have an L-

resolution.
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III. THEORETICAL FRAMEWORK

In order to perform an evaluation of image texture for use in digital image classification,

it is important to have an understanding of what controls texture in an image.  The fact that

there is no standard terminology for the concepts and processes involved in texture analysis

adds to the difficulty of doing so.  This chapter, therefore, is an attempt to provide greater

clarity regarding terminology and the concepts of scale and texture which should, in turn,

promote better use of texture measures in digital image processing.

A. Scenes and Images

The terms scene and image are often used interchangeably though the two are

fundamentally distinct (Figure 3).  The real scene is defined by the physical objects of which it

is comprised.  The image is an abstraction of the scene with scene objects manifested as

image elements.  These elements are analogous to the tonal primitives defined by Haralick

(1979).  The relationship between scene and image is two-way; the scene is defined by the

extent of the image and the image is made of abstractions of scene objects.

One of the most important controls on the relationship between the scene and the

image is the scale of capture, as defined by the sensor’s effective resolution, normally

approximated by the IFOV.  It is this scale that determines whether a scene object is resolved

in the image as a discernable element.  The interface of the scale of capture and the scene

results in the digital image (Figure 3).  The sensor predetermines this scale, the equivalent of

the spatial resolution of the image, and the investigator generally has no control over it.

Sensor
IFOV

  Scene

= Object

= Element

ABSTRACTION

Scale of
Capture

= L-resolution
= H-resolution

L
H

REAL

Image
L

L

H

Figure 3: Abstraction from real objects to image elements.
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Real scenes have objects that exist at various scales and consequently the image will

have both H-resolution elements and L-resolution elements.  L-resolution elements are often

referred to as “mixed pixels.”  While Woodcock and Strahler (1987) state that H- and L-

resolutions are image properties, it is the elements themselves that represent H- through L-

resolution manifestations of real scene objects.  Therefore, in this thesis, it is the image

elements that will be referred to as having H- through L-resolution characteristics and it is

expected that all images have both H- and L-resolution elements.  Furthermore, in a single

image the H- through L-resolution elements may vary in size along a continuum; however,

generally image elements will cluster at specific scales.  For example, real objects, such as

leaves, are H-resolution elements at centimeter scales of capture, and give rise to an image

that exhibits local spatial autocorrelation.  Spatial autocorrelation is high with H-resolution

elements because the scene objects are resolved and thus like pixel values are clustered.  The

objects become L-resolution elements at meter scales of capture where images tend to show

spatial autocorrelation due to the spatial groupings at the next hierarchical scale; in this case

trees.

Informational classes, determined by the investigator, exist at one of the various

hierarchical scales in an image and thus there is an optimal scale of capture.  For example, if

‘Residential’ is an informational class, scales of capture that resolve both ‘Rooftops’ and ‘Lawn’

as spectral classes will provide unwanted spectral variability.  An optimal scale of capture

(ignoring image collection costs) for identification and mapping the boundaries of an object is

one that has an IFOV smaller than the informational class, but larger than the size of objects at

the next finest hierarchical scale.  This idea of optimal scale of capture differs from the well-

known concept of efficient sampling, where the aim is to avoid spatial autocorrelation in

samples.

B. Textures

Image textures result from an interface between the scale of capture and the scale of

image elements.  Because there is a hierarchy of scales of image elements, therefore there

must exist a hierarchy of texture scales.  Investigators are generally interested only with those

texture scales within the informational class of interest.

For example, if an image includes houses captured at an H-resolution scale and

“Residential” is the class of interest, the texture will be relatively coarse for that class.

However, if “Rooftop” is the class of interest, the texture will be relatively smooth for that class.
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While textures exist in the abstract, it is only by applying textures to images containing

informational classes determined by the investigator that texture can be made useful for image

classification.  Texture is present if the class statistics are influenced by varying proportions of

image elements at the next finer scale in the hierarchy.  In conventional aspatial classification,

using standard classifiers such as Maximum Likelihood, texture that is not smooth degrades

classification accuracy by increasing the class variance.

The intersection of image texture and predetermined informational classes results in

both a between-class texture and a within-class texture.  The latter arises from the finer scale

elements in relation to the class of interest.  In order for image texture measures to be useful in

spectral classification the within-class texture must be of a constant value and distinct from the

texture measures of the other classes.  This is obtained through window sizes that are

sufficiently large to encompass texture elements; however, between-class texture should not

overwhelm the image due to excessive window sizes.

One possible approach to drawing on texture to improve classification is to use local

variance over an appropriate window size.  The window size must be large enough to span the

texture elements and should be at least twice the size of the spacing between them. Window

sizes larger than this are desirable since object sizes and spacing are not typically uniform.

The need for a large window size results in a trade-off between large window sizes that

give stable texture measures and the increasing proportion of between-class variance texture

pixels such large windows produce.  Figure 4 shows the relationship between window size, the

percentage of pixels not influenced by between-class variance and the size of the class

polygon.  As window size increases the proportion of within-class texture pixels to total pixels

generally decreases.  For small polygons the rate of decline is most rapid.  With a window size

of 5×5 pixels a 10×10-pixel polygon has only 35% of its pixels unaffected by between-class

variance.  These unaffected pixels are referred to as interior pixels.  Relatively large class

polygons can have a sizable number of pixels that incorporate within-class variance with large

window sizes.  A 600×600-pixel polygon, for example, has its percentage of with-class

variance pixels reduced by five percent at a window size of 31×31 pixels.
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Proportion of Within-Class Texture Pixels to Total Pixels
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Figure 4: Proportion of Within-Class Texture Pixels to Total Pixels.

The effect of high between-class variance is illustrated in Figures 5a and 5b, which

show a cross-section of a hypothetical image.  In these figures, Class I is a relatively dark

class.  It has a smooth texture in that its pixels’ values are relatively uniform.  Class II is a

relatively bright class, with highly variable pixel values and thus a coarse texture (Figure 5a).
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Figure 5a: Cross-section pixel values at a class interface.
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Figure 5b: Cross section of texture values at a class interface.

The curves on the graph in Figure 5b indicate a trade-off between different scales of

window sizes used in calculating texture along the cross-section.  With textures calculated over

a small window the texture values of Class I remain low until right near the edge of Class II.

This small window, however, produces a very unstable measure of within-class variability of

Class II.  Thus the texture measure will provide poor discrimination of Class II in that it has

some texture values similar to those of Class I.  With large window sizes the effect of the

between-class variance is significant much further away.  Many pixels in Class I are classified

as the rough class, since some texture values are high inside the Class I region.  The effect of

the edges is not important for Class II, which has a relatively homogeneous calculated texture

value.

By contrast the large window size gives a distinctive higher texture value for Class II.

This comes at the cost of a broad “edge effect” for Class I, which would tend to cause those

pixels to be mis-classified as Class II.  It is interesting to note that there is no equivalent edge

effect for Class II, because the within-class variability of this class is similar to that of the

between-class variability of the two classes.  In summary, when texture is used in a standard

automated classification, the scale of the window size will determine the relative location of

mis-classified pixels.  Specifically, coarse classes have errors distributed throughout the class,

but these will progressively be eliminated with larger window sizes.  Little edge effect will be

noticed.  Smooth classes will give high accuracies for relatively small window sizes; however,

even at the small window size there will be an edge effect, and thus errors will be most

common on the edge of the class.  As the window size increases, this edge effect will increase

commeasurately.
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There are two important implications from this discussion.  Firstly, it is standard

practice, though generally unstated, to avoid edges in selecting both training and testing

pixels.  Edges of classes may be poorly defined and pixels near edges are often contaminated

by other classes; however, evaluations of classification using texture will significantly

underestimate the errors, particularly for relatively smooth classes.  Secondly, this theoretical

framework leads to relatively precise definitions for the extremes of “smooth” and “coarse”

textures.  “Smooth” is where the within-class variability is much lower than the between-class

variability.  By contrast, “coarse” is where the within-class variability is similar to the between

class variability.
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IV.  RESEARCH OBJECTIVES

The previous chapter provided an extended discussion of how image texture arises

from the spatial distribution of scene objects.  It was shown that due to the hierarchy of scales

in imagery, there are two types of texture – between-class and within-class.  Consequently, the

edges of classes are of particular importance for evaluating texture in digital image

classification.  This theoretical discussion provides the framework for the remaining part of this

work, which consists of an empirical analysis of simulated and real image data.  Simulated

data was used because it consists of known and specified spectral and spatial parameters.

The real data consists of ADAR aerial imagery of Morgantown, WV.  Actual image data is often

much more variable and of course the investigator does not have 100 percent a priori

knowledge of the scene.  The objective of the empirical analysis was to investigate the

appropriate window size for texture analysis.  Following the theoretical discussion of Chapter

III, it was expected that the results would be class-dependent, and influenced by the spatial

dimensions of class polygons.  In order to facilitate multi-scale comparisons, window sizes

were to be defined by real-world units (meters) rather than pixels.  Although the main objective

was to describe the relationships found, a subsidiary aim was to quantify the scale

relationships, for example, through spectral class discrimination measures.
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V. METHODS

The objective of investigating appropriate window sizes for texture analysis involves

experiments on both simulated and real data sets with a wide range of window sizes.  The

variability of the resulting texture was plotted against window size.  The texture measure was a

variance filter algorithm on a pixel matrix at ten window sizes ranging from 3×3 pixels to 21×21

pixels.  The variance measure is defined in Table 1 and compared to other measures in

Chapter II, Section A.

Two sets of data were used for this study: a simulated scene and a scene of

Morgantown, WV.  Both simulated and real data were resampled to give a total of six spatial

resolutions

A. Simulated Data

The simulated data consisted of a scene model with two sub-images pasted onto a

larger background image (Figure 6). This image was constructed with raster GIS software and

given the attributes shown in Table 2. The texture of each sub-image was initially defined by

random pixel generation with specified means and standard deviations.  The classes and

background were then re-classed so that each consisted of groups of three distinct digital

number values corresponding to three distinct objects within each class.

Table 2: Characteristics of the simulated data set.

Class Size of Objects
 Within the Class

Mean
Pixel Value

Standard
Deviation

Narrowest Dimension
Of Class

Background 1 meter 158.9 4.7 600 meters

Class A 5 meter 162.4 28.3 600 meters

Class B 10 meter 106.4 5.3 600 meters
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background

class A

class B

Figure 6: The sub-images are pasted onto the background.

The simulated scene was assumed to represent an image with a 1-meter pixel size.

The scene model was then used to create a set of five additional simulated images by

aggregation of pixels to coarser resolutions of 2, 5, 10, 20 and 30 meters as shown in Figure 7

(Hay, et al.1997).  A small random noise element with a mean of 15 and a standard deviation

of 1 was added to each image.

scene model

Figure 7: The scene model is resampled.

Since the object sizes of the background and the two classes were 1, 5 and 10 meters,

respectively, this produced simulated images with elements ranging from H- through L-

resolution.  An example of the simulated 10-meter data is shown in Figure 8.  Class A is the on

the left and Class B is on the right.
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Figure 8: Simulated 10-meter image.

Texture analysis was performed on each re-sampled image at ten window sizes.  The

window sizes used in this study were 3×3 to 21×21 pixels.  The entire process is summarized

in Figure 9.

Scene
Model

6 images at a range of scales

Texture calculated at a range of 10
window sizes on each image

10 texture
images

10 texture
images

H-resolution L-resolution

Figure 9: Simulated data experiment.



20

The variability of the scene texture and class texture was plotted against window size

for each re-sampled image on one graph.  Furthermore, to illustrate the effects of pixels that

incorporate between-class variance, variability of these pixels were compared to pixels that

were not effected by the between-class variance.  To facilitate the application of these

experiments to actual image data, separation between classes was expressed by a general

separability index.  The Jefferies-Matusita (J-M) Distance is one such index that takes into

account both the measure of distance between class means and the differences between the

covariance matrices of the classes (Richards, 1993; Warner and Shank, 1997).  For each

texture image the J-M Distance was calculated and plotted for selected classes.

B. Real Data

To demonstrate the practical value of these concepts the approach was tested on

actual remotely sensed image data. This second data set consists of 1-meter ADAR data of

the Morgantown, WV area.

The ADAR 5500 digital camera system was used to collect the data used for this thesis.

ADAR images are captured directly with four digital cameras (Stow, et al., 1996).  The charge

coupled device (CCD) on each camera produces an image of 1500 by 1000 pixels.  ADAR

image data can be acquired from any fixed wing aircraft with a conventional aerial camera

mount.

The ADAR data were captured on four dates in late March and early April 1997.  The

sensor characteristics are listed in Table 3.  Flight altitude was approximately 8,600 feet (2,620

meters) above mean seal level.  This altitude resulted in a spatial resolution of approximately

1-meter.  Each frame covered a rectangular area of approximately 1.5 by 1.0 kilometers.

Image brightness is controlled in flight by adjusting the shutter speed of each camera (Stow et

al., 1996).

Table 3: The ADAR sensor characteristics.

Band  Color Bandwidth (µµm) Aperture Exposure (sec.)

1 Blue 0.45 – 0.54 f 2.8 1/500

2 Green 0.52 – 0.60 f 2.8 1/800

3 Red 0.61 – 0.69 f 4.0 1/640

4 Near Infrared 0.78 – 1.00 f 5.6 1/2500
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A GPS receiver simultaneously captured aircraft latitude, longitude and elevation data

with each image frame.  The coordinates were projected to UTM Zone 17 using NAD27 datum.

Each waveband image was automatically registered to create a four band digital frame (Stow,

et al., 1996). Multiple frames were digitally mosaicked to create a coverage equivalent to the

United States Geologic Survey (USGS) 7½-minute Morgantown North topographic quadrangle.

Figure 10 is a false-color composite of the ADAR data for the Morgantown, WV area.

Figure 10: False-color composite of the Morgantown, WV area.

Errors in band registration and sensor performance necessitated the exclusion of band

1 (blue) from the analysis without significantly deleterious effects to the analysis.  This band is

susceptible to atmospheric haze and is often highly correlated to the two other visible bands

(Stow, et al., 1996).  It therefore was not essential for the analysis.  Edgematching errors also

existed, but they did not pose a significant problem for the image processing undertaken in this

project.  Illumination differences between panels in the mosaic were also present due to

atmospheric differences and time of image acquisition.  The images for the mosaic were taken

over a period of time in which trees were beginning to show buds and agricultural fields were

being modified.  There were subtle texture differences between panels in the mosaic, which

had budding trees and those that did not.  The texture differences did not significantly affect

the classification or separability analyses.
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For texture calculation band 2 (green) was chosen because of its relatively superior

spectral response and contrast properties.  Also, differences in shadows, because of time of

day and the illumination differences between panels in the mosaic are minimized at shorter

wavelengths.  Pilot tests of texture feature extraction and visual analysis showed that band 2

was least affected by the illumination differences between panels.  The data was then

resampled to five spatial resolutions ranging from 2 meters to 30 meters. This yielded a total of

six images at 1, 2, 5, 10, 20, and 30-meter resolutions.  The vicinity of Morgantown includes

land cover classes that exhibit a variety of textures and scales:

• Water • Low Density Residential

• Agriculture/Grass • High Density Residential

• Barren/Bare Soil • Commercial/Industrial

• Forest • Surface Mining

Texture was calculated on each image at ten window sizes ranging from 3×3 to 21×21

pixels.  The variability of image texture was plotted against window size for all images on one

graph.

In addition to the calculation of J-M distances for evaluating class separability these

data combinations were classified using Maximum Likelihood.  After image classification an

error analysis was performed on each classification to test for accuracy against ground

reference data.  Training data were extracted from both the interior of classes, away from the

edges, and entire class polygons that therefore included the pixels adjacent to class

boundaries.

C. Ground Reference Data

Ground reference data included a National High Altitude Photography (NHAP) program

color infrared photograph enlarged to a scale of 1:14,500, a priori knowledge of local

landscape and land cover features.
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VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. SIMULATED DATA

1.  Texture Variability

Many studies that have evaluated the usefulness of texture for image classification

have done so on an image basis.  Figure 11 demonstrates the change in texture variability for

the entire simulated image.  The window size in pixels has been converted to meters so that

window sizes can be compared between image resolutions on the same graph.  Figure 11

shows that as data is aggregated to a coarser spatial resolution the texture variability generally

decreases for a window of a specified size in real world units (meters).   Exceptions to this are

the 5-meter resolution data and, to a certain extent, the 30-meter resolution data.  The

anomalous data for the 5-meter resolution data may result from the fact that this window size

corresponds with that of class elements in the simulated scene model.
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Figure 11: Texture variability for the entire simulated scene.

Texture variability tends to increase with an increase in window size because a greater

proportion of the texture calculation window includes between-class texture.  The effects of the

between-class texture can be seen in the images of Figure 12, which shows examples of

texture images of the simulated data.  The image on the right is 15-meter texture data derived

from 5-meter data with a 3×3 pixel window while the image on the left is 105-meter texture

derived from 5-meter data with a 21×21pixel window.  The edge effect can clearly be seen in

the right-hand image, particularly for Class B.
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Figure 12: Sample texture images.

The graph in Figure 11 might be interpreted to imply that the smallest possible window

size is preferable because it produces the lowest variability in texture.  However, since the

texture image is not uniform across the scene, or even within a single class, plots of texture

variability against window size for each class individually provide more useful information than

averages for the entire scene.

The graph for Class A (Figure 13) shows a pattern very different from that of the entire

scene.  Variability declines rapidly as window size increases, leveling off in the 50 to 150 meter

range.  Again, the variability for the 5-meter resolution data is higher than the other resolutions.
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Figure 13: Texture variability of Class A.

Class A is spectrally similar to the background, thus the between class-variance is

similar to the within-class variance.  This is shown in the graph by the similarity in the curves

for texture variability of the interior of the class and texture variability for the entire class, which
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includes between-class variance.  The influence of the pixels in the background in creating an

edge effect is negligible in this case.  The initial high texture variability at relatively small

window sizes occurs when the elements in the class are transitioning from H-resolution to L-

resolution.  When the curves reach the texture variability minimum the elements are at L-

resolution.  The class remains at H-resolution throughout the graph.

Compared to Class A, Class B has larger within-class objects (10 meters versus 5

meters), but a much smaller spectral variability (standard deviation of 5.3 versus 28.3).

Furthermore, Class B has a mean DN value that contrasts strongly with that of the

background.  Consequently, the texture variability for the interior of Class B is very different

from the variability for the entire class.  In the graph of Class B (Figure 14) variability of the

texture for the entire class (including edges) increases due to the high proportion of pixels of

between-class texture dominated pixels as window size increases.  At the largest window sizes

there is a slight decline as texture becomes increasingly dominated by between-class texture.

Without the effect of the high-variance between-class texture pixels, the texture variability for

pixels from the class interior is very low.  The curve shows a decline as window size increases

and begins to flatten out after the 50-meter scale. Variability continues to slowly decline but

does not reach a minimum even at the largest scale that was evaluated (350 meters).  The

extremely low variability is only achieved at relatively large window sizes where a significant

percentage of the class polygon is influenced by between-class texture.
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Figure 14: Texture variability of Class B.

The results on this graph are of vital importance to investigators who wish to use

texture-derived data in classification schemes. The effect of window size is class dependent.
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The value of the texture variability appears to remain fairly constant from image resolution to

resolution; thus the choice of resolution does not affect the value at which the texture

variability minimum occurs.  While an evaluation of pixels in the interior of the class might

indicate a useful scale for calculating texture, the effect of the surrounding classes is large.

Such a significant portion of the class polygon is affected by between-class variance that the

incorporation of texture data might not produce fruitful results in classification.  This also

suggests that evaluations of classifier accuracy should always include data from class edges,

otherwise an overly optimistic result may be obtained.

2. Class Separability

The results to this point illustrate the trade-offs associated with window size.  However,

in order to quantify how these effects influence classification, a separability index is needed

which can relate to classification accuracy.  The Jefferies-Matusita distance was used to

calculate the general separability of classes with combination of spectral and textural data.

The range of J-M distances is from 0, which indicates no separability, to 1.414, which indicates

complete separability (Richards, 1993).  The J-M distances were plotted for simulated 10-meter

data and the texture calculated on it at ten window sizes (Figures 15 and 16).  Ten-meter

texture was chosen because, as is seen in Figures 13 and 14, this provides a good range in

spatial properties for these images.

Figure 15 shows that texture in addition to the single simulated 10-meter band greatly

enhances the separability of the two classes.  Without the confusing effect of between-class

variance pixels, the two classes are completely separable with the addition of texture at all

scales.  While the inclusion of ‘edge effected’ pixels results in a less significant increase in

separability, there is nonetheless a marked improvement over the spectral data alone.  Larger

window sizes result in an improved accuracy over the range of 30 to 110 meters.  Accuracy did

not change significantly for window sizes greater than 100 meters.
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Jefferies-Matusita Separability:
Class A vs. Class B
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Figure 15: Jefferies-Matusita Separability for Class A vs. Class B.

The texture variability minimum for Class A, as seen in Figure 13 occurs at

approximately 50 to 200 meters in scale.  The texture variability for Class B, as shown in

Figure 14, drops sharply until about the 50-meter scale and beings to flatten out after 150

meters. However, window sizes in the range of 150 meters for these images are not practical

since there are so few interior pixels.  Furthermore, it is interesting that these window sizes are

5 to 40 times the size objects in the classes.  These figures are large because the texture

window must span the spacing of elements to capture texture effectively.  The elements are of

irregular spacing and randomly distributed within the classes; thus a large window is necessary

to cover a large enough sample of elements.

The values shown on the graph in Figure 16 suggest an optimal texture scale of

approximately 50 meters in combination with the 10-meter simulated data in terms of class

separability.  When the separability of Class A versus the background is plotted, texture again

provides a valuable discriminant, increasing separability from 0.880 to 1.250.  As window size

increases further, separability falls steadily.  If only interior pixels are evaluated, Class A and

the background are completely separable over the scale range of 50 to 170 meters.  Whether

the entire class or only interior pixels are included in the analysis, the addition of textural data

greatly enhances the separability of the classes. The J-M distances between the background

and Class A show an increase in separability from texture scales of 30 to 50 meters.



28

Jefferies-Matusita Separability:
Class A vs. Background
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Figure 16: Jefferies-Matusita Separability for Class A vs. background.

The J-M distance between Class B and the background was 1.414 in all instances,

meaning that with or without the inclusion of the textural data they are completely separable.

The analysis so far has focused on simulated data, with simple, known spatial

parameters.  In the next section the evaluations of scale and texture are applied to real data to

evaluate how well these methods and results can be applied to real data.

B.  REAL DATA

1. Texture Variability

The graphs of texture variability against window size for the Morgantown, WV data

generally follow the pattern shown by the simulated data graphs (Figures 13 and 14).  For the

Central Business District (CBD), which is an example of the Commercial/Industrial class,

shown in Figure 17, texture variability is very similar for the entire class and the interior of the

class for all window sizes (Figure 18).  The differences in collection dates for the mosaic

panels had little effect on the Commercial/Industrial classes because the objects found in

those classes are generally unaffected by seasonal variation.
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Top row:
Band 2 (0.52 – 0.60 µm)
3-meter texture
15-meter texture

Bottom row:
90-meter texture
220-meter texture

Figure 17: Sub-images of the CBD.
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Figure 18: Texture variability for Commercial/Industrial class (CBD), Morgantown, WV.

The results of Figure 18 matched well with the trends found with Class A in the

simulated data experiment (Figure 13), except with the CBD there is a pronounced increase in

variability of texture with increasing window size over the smallest window sizes.  Spectral

differences between the (CBD) and the surrounding Residential class are similar to the

spectral differences found within the CBD; thus, the graphs for the entire class and the interior

plot closely together.  The effect of between-class variance texture pixels is therefore small.
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Texture variability seems to reach a minimum level near the 400-meter scale.  The

relatively low texture variability minimum at the 3 meter scale occurs because the texture

measure widow is falling within the elements of the next finest scale in the hierarchy (in this

case, the individual buildings and urban structures in the CBD).  The elements within the CBD

are therefore also at H-resolution at this texture scale and scale of capture.  This is important

because although the average texture variability is quite low, the texture data gathered at that

scale might not be useful for classification of elements at the next level of the hierarchy.  The

peak in texture variability occurs at the 15-meter scale.  This is due to the texture window

consistently falling on the edges of objects in the next finer class in the hierarchy, in this case

buildings, roads, and other urban structures.  This is similar to Woodcock and Strahler’s (1987)

finding that when pixel size reached one-third to three-quarters the size of the scene objects, a

peak in local variance occurred.

Texture analysis on the Agricultural/Grass (Figure 19) class yielded some important and

interesting results (Figure 20).  The texture variability of the interior pixels is much different

from the variability of the entire class (including edges).  The peak for texture variability occurs

at approximately 15 meters for the interior pixels and at approximately 45 meters for the entire

class.

Top row:
Band 2 (0.52 – 0.60 µm)
3-meter texture
15-meter texture

Bottom row:
45-meter texture
90-meter texture

Figure 19: Sub-images of the Agricultural/Grass class.
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Agricultural/Grass Class
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Figure 20: Texture variability for agricultural/grass class, Morgantown, WV.

As with the CBD, at the 3-meter texture measure scale a level of low texture variability

occurs.  Thus, at this scale, the texture elements for this class are also H-resolution.  This

scale includes local variation of the land cover, such as soil and topographic variations, and

accounts for the low variability observed.  For the interior pixels the elements at the finer scale

cause the graph to peak at approximately 15 meters, as the elements are transitioning from H-

resolution to L-resolution.  The peak at 45 meters for the entire class is probably related to the

changing properties of interior and edge pixels. It seems that for this particular

agriculture/grass class polygon, though the elements are small, surprisingly large window sizes

are needed to capture the appropriate texture scale. The texture variability minimum for the

interior pixels occurs near the 90-meter scale.

2. Class Separability

J-M separability graphs for the real data differ from those of the simulated data in that

with the inclusion of the ‘edge-effected’ pixels, separability was less than that of the spectral

data alone.  Forest and Commercial/Industrial classes are completely separable without the

inclusion of texture data (Figure 21) due to their highly different spectral characteristics.  The

inclusion of texture results in only a very small degradation in separability in this instance.
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Jefferies-Matusita Separability:
Forest vs. Commercial/Industrial
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Figure 21: Jefferies-Matusita separability of Forest vs. Commercial/Industrial classes.

Potentially confusing spectral classes such as “Residential” and “Commercial/Industrial”

(Figure 22) which both include roads, driveways, parking areas, buildings, and vegetation, are

generally found to be more separable with the inclusion of texture when evaluated based on

pixels from the interior of classes only.  In the analysis, increasing the size of the window

produced a near linear increase in accuracy over the 30-meter to 210-meter range studied for

class interiors and entire classes.  However, even at the largest window sizes, the accuracy of

the entire class only improves to approximately the same level as can be obtained from the

spectral data alone.  When pixels that incorporate between-class texture are included

separability is relatively low.
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Jefferies-Matusita Separability:
Residential vs. Commercial/Industrial
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Figure 22: Jefferies-Matusita separability of Residential vs. Commercial/Industrial.

An even stronger example of the potentially deleterious effects of texture is illustrated

by the ‘Residential’ and ‘Agricultural/Grass’ class separability graph (Figure 23).  Without

textural data, a J-M distance of 1.288 is obtained; however, the excluding the problematic

between-class variance pixels on the edges of classes, separability increases immediately to

1.360 and continues to improve to total separability of 1.414.  These classes are in fact less

separable because of the between-class variance pixels in the textural data.  Thus for

separability evaluated on the entire class, the J-M distances never exceed 1.114, even at the

largest scale.
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Jefferies-Matusita Separability:
Residential vs. Agricultural/Grass

1.014

1.064

1.114

1.164

1.214

1.264

1.314

1.364

1.414

n/a 30 50 70 90 110 130 150 170 190 210
Texture Measure Scale in Meters

J-
M

 D
is

ta
n

ce

Spectral  

Spectral & Texture [Entire Class]

Spectral & Texture [Interior]

Figure 23: Jefferies-Matusita separability for Residential vs. Agriculture/Grass.

3. Classification Results

Classification was performed to provide a more comprehensive evaluation of the effect

of scale on texture for this data.  Six combinations of spectral and textural data were used.

Pixels were assigned to one of six classes using a maximum likelihood classifier (Table 4).

Table 4: Classes and their representative land cover types.

Class Range of cover types

Water (WTR) Rivers, ponds

Forest (FOR) Deciduous forest, evergreen forest

Agricultural/Grass (AGR) Crops, pasture, fields

Residential (RES) Homes, lawns, trees, roads, trailer parks

Commercial/Industrial (COM) Businesses, factories, roads, parking lots

Surface Mining Related (MIN) Strip mines, coal piles/storage

The test reference data was compared to the classified images on a pixel-by-pixel

basis.  Agreement and disagreement were summarized in the cells of error matrices (Jensen,

1996).  An example of an error matrix for test pixels is shown in Table 5.  Overall accuracy is

computed by dividing the number of correct pixels by the total number of pixels in the error

matrix.  Classification accuracy was evaluated using the Kappa statistic.  The Kappa statistic is

a measure of the difference between the observed accuracy and the random possibility of
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chance agreement between the reference data and the classification (Lillesand and Kiefer,

1994).  Conceptually, Kappa can be defined as:

$k =
observed accuracy -  chance agreement

1 -  chance agreement

Table 5: Example of an error matrix.

WTR FOR AGR RES COM MIN Total Commission

WTR 19553 0 0 0 0 0 19553 0.0000

FOR 0 87905 518 3765 165 0 92353 0.0482

AGR 0 1647 26655 13148 68 6 41524 0.3581

RES 707 7487 6025 56622 10199 99 81139 0.3022

COM 63 698 32 15893 66884 465 84035 0.2041

MIN 12 99 0 178 2331 16647 19267 0.1360

Total 20335 97836 33230 89606 79647 17217 337871

Omission 0.0385 0.1015 0.1979 0.3681 0.1602 0.0331 0.1883

Image classification of various spectral and textural combinations were evaluated and

graphed.  The classification was performed on combinations of 2, 5, and 10-meter spectral

data, because they fall within the range of resolutions used by current remote sensing

platforms, and a range of texture scales from 10 meters through 220 meters. These were also

the scales used in the spectral separability evaluations.

For the overall accuracy, it was found that if the accuracy is evaluated with pixels from

the edge of classes that are influenced by between-class variance, there is a general

degradation of classification accuracy (Figure 24).



36

Entire Image - Overall Kappa
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Figure 24: Comparison of Kappa statistics on an image basis.

Kappa increases significantly (at the 99% confidence level) with the addition of texture

information. In general band combinations which included texture resulted in higher

classification accuracies than those which did not.  The exception to this is band combination

4, 3, 2 and 110-meter texture.  The slight reduction in classification accuracy at the 110-meter

scale can be accounted for by the multiple texture scales present in the image.  Any class that

has a low accuracy at the 110-meter scale influences the overall accuracy at that scale.  As

the texture scale changes, the effects of the variability of the six classes have different effects

on the classification results.  The greatest level of accuracy including pixels near the edges of

classes was found with bands 4, 3 and 2 with 210-meter texture data.  Classes that achieved

their highest accuracy at the 210-meter scale (Residential and Commercial/Industrial) comprise

a significant proportion of the total pixels in the image.  However, an increase in just ten meters

in window size resulted in a decrease in Kappa to 0.7895 for class interiors and 0.7151 for

interior and edge pixels.  It is interesting to note that this scale is twice that of the scale at

which an accuracy minimum was found (110 meters).  This decrease in accuracy at 220

meters suggests that the scale at which texture is calculated should be chosen very carefully,

as even with large windows a small change in window size can result in large differences in

classification accuracy.

Though useful for understanding how texture scale relates to the error assessment of

an entire image, a comparison of selected classes at various texture scales should provide

added insight when determining optimal texture scales for image classification.  Computing the
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accuracy of individual classes is more complex than that of an entire image and involves two

types of accuracy: producer’s accuracy and user’s accuracy.  When the total number of

correctly classified pixels in a class is divided by the total number of pixels that should have

been classified in that class, it is known as producer’s accuracy (Jensen, 1996).  This term is

given because the producer of the classification is interested in how well a certain area can be

classified.  The producer’s accuracy is related to omission error by the equation 1 - producer’s

accuracy.  The omission error indicates how often pixels were left out of the class of interest.

If the total number of correctly classified pixels in a class is divided by the total number of

pixels that were actually classified in that class, (both incorrectly and correctly), the result is a

measure of user’s accuracy.  User’s accuracy is also related to commission error by the

equation 1 - user’s accuracy.  Commission error is an indication of how often pixels were

assigned to a class other than the correct one, as determined by the reference data (Jensen,

1996).

4. User’s Accuracy

As suggested by the texture variability plots, classes that have a between-class

variance higher than the within-class variance, and thus a relatively smooth within-class

texture, should show degradation in classification accuracy when the test pixels include areas

near the edges of the class.  The class interiors, consisting of pixels unaffected by between-

class variance shrink as the window size increases.  The rate at which this occurs is a function

of the dimensions of the class polygon (Figure 4).  For the Morgantown ADAR data at window

sizes greater than 110 meters there were an insufficient number of interior pixels to evaluate

classification accuracy for pixels unaffected by between-class variance because the texture

calculation window approached the size of class the polygons.  Figure 25 is a graph of user’s

accuracy for the Agricultural/Grass class for both interior pixels and pixels that include the

edges of the test class.  User’s accuracy increases from the 10-meter to the 50-meter texture

scales and then decreases at 110 meters.  For the interior of the class this is somewhat

surprising given the texture variability minimum at 90 meters in Figure 18.  The accuracy then

increases at 210 meters before declining again at 220 meters. The scale of maximum

classification accuracy is 210 meters.  This scale is large, considering the relative smoothness

of this land cover type and the size of the class dimensions.  At these large scales most of the

measured texture arises from the between-class variance.  The pattern of peaks and troughs in
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this graph might be an indication of the complexity of multiple scales in real land cover classes

and the changing effects of within- and between-class variance.

Agricultural/Grass - User's Accuracy
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Figure 25: User’s accuracy of Agriculture/Grass class.

Classes that have a relatively rough texture with high within-class variability that is similar

to the between class variability, for example the Commercial/Industrial class, show little change

in Kappa with the inclusion of pixels near the edges of the test polygon (Figure 26).  At window

sizes greater than 110 meters there is an insufficient number of pixels that are unaffected by

between-class variance to evaluate the class interiors.  Classification accuracy generally

increases as window size increases across the entire graph, though the increased accuracy

from the inclusion of texture is small.  The 220-meter texture scale is the maximum scale used

for evaluating classification accuracy; thus it is unknown if accuracy would improve further with

the addition of texture at larger scales.  All band combinations that include texture resulted in

higher Kappa statistics than those with spectral data alone.  In fact for very large window sizes

(210 and 220-meter scales) the between-class texture seems to be more valuable than within-

class texture.
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Commercial/Industrial - User's Accuracy
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Figure 26: User’s accuracy of the Commercial/Industrial class.

5. Producer’s Accuracy

The producer’s accuracy graphs more clearly illustrate the effect of edge pixels on the

Kappa statistic because it provides a measure of the pixels missed due to the edge effect.  As

with the graphs of user’s accuracy, there were insufficient pixels unaffected by between-class

variance to evaluate class interiors at window sizes greater than 110 meters.

For the Agricultural/Grass class (Figure 27) the inclusion of texture data improved

classification results at the 10, 50 and 110-meter scales for the interior of classes.  A sharp

reduction in Kappa can be seen at the 210 and 220 meter scales.  The effect of edge pixels is

clearly evident in that when accuracy is evaluated on the entire class, larger window sizes

generally cause a decline in accuracy.  The between-class texture pixel values overlap with the

values of other classes, confusing the classifier, and are not classified as Agriculture/Grass.
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Agricultural/Grass - Producer's Accuracy
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Figure 27: Producer’s accuracy for the Agricultural/Grass class.

As the window size becomes increasingly larger than 110 meters and is dominated by

between-class variance, the influence of the between-class texture confused the classification

and resulted in Kappa statistics below .6000.

The graph for the Commercial/Industrial class is more complex (Figure 28).  As was

found for the user’s accuracy (Figure 26), the inclusion of edge pixels has no significant effect

on the Kappa statistic for any band combination or textural scale.  Kappa increases with the

addition of texture at the 10-meter scale then drops before reaching a minimum at the 110-

meter scale before increasing again at 210 meters.  At 220 meters accuracy was found to be

lower.
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Commercial/Industrial - Producer's Accuracy
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Figure 28: Producer’s accuracy of the Commercial/Industrial class.

It is surprising that the interior pixels show a decline in accuracy with larger scales of

texture, because Figure 18 suggests that texture variability for the CBD is at its greatest at the

10-meter scale.  The multiple-scale objects found in the Commercial/Industrial class might

explain the apparent trough in Kappa at the 110-meter textural scale.  Buildings and other

structures are of a variety of sizes and shapes, creating a complex arrangement of image

elements.
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VII. CONCLUSIONS

The theoretical framework presented here provides a basis for discussion and

explanation of the concepts and relationships involved in image texture.  Through these

concepts it is possible to clarify the role of scale in digital image classification and evaluate the

usefulness of texture. In conceptualizing scene objects as H- and L-resolution elements

representing those objects, the multi-scale aspects of images can be more adequately

investigated and analyzed.  Because the use of image texture for classification depends on the

informational classes chosen by the investigator, special emphasis must be given to

hierarchies of scales and how the image elements relate to the classes.  The concepts in this

framework were used in developing the simulated and real image data experiments.

The results of the simulated data experiment show that per class data is often more

useful for texture investigation than averages for an entire scene.  A clear relationship was

seen between window size for texture calculation and class separability.  Class A had a coarse

texture with a high within-class variance compared to the background; thus, the variability of

texture dropped to a minimum value for both interior pixels and the entire class polygon.  This

is contrasted by Class B which had a smooth texture with a high between-class variance.

When pixels near the edges were included in the analysis the texture variability remained high

and only dropped as the number of edge affected pixels dominated the class statistic.

While plots of texture variability and tests on simulated data show the promise of

finding appropriate window size for texture feature extraction, the results of the real data

experiment reveal the inherent complexities involved in interpreting and analyzing actual image

data.  Multiple peaks in classification accuracy help to illustrate this complexity.  Although

objects within classes exist at multiple scales, shapes and orientations it is possible to make

some general statements about the role scale plays in image texture.

The window sizes necessary to achieve a stable, relatively homogeneous measure of

texture are often quite large even for relatively “smooth” informational classes such as

Agricultural/Grass.  For “coarse” classes, such as Commercial/Industrial, the window size might

well measure larger than the dimensions of the class polygon.  While classification often

results in a large increase in accuracy for pixels far from class edges, the accuracy tends to fall

for pixels near the edges of classes due to between-class variance.  Since a useful application

of textural information requires the inclusion of these edge pixels, the large window sizes

necessary for achieving the stable texture measures result in a large number of pixel values
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being influenced by between-class variance.  The investigator must weigh the potential

usefulness of texture against the added confusion of the between-class variance pixels.  The

size of the image elements, the class polygon dimensions (Figure 4) and the spectral

properties of the classes and elements adjacent to the class of interest must be considered.

Measures of producer’s accuracy and user’s accuracy showed the effect of high

between-class variability in image classification.  Large window sizes for some classes resulted

in improved user’s accuracy, since no pixels were omitted from the class.  The same windows

resulted in lower producer’s accuracy since the effect of between-class variance on the edge

pixels caused many of these pixels to be placed in an incorrect category due to their high

calculated texture values.  In this case the Agricultural/Grass class is analogous to Class I in

Figure 5a and the Commercial/Industrial class is analogous to Class II.

This thesis is an important step in applying the concepts of scale and texture to digital

image classification.  Further analysis is needed to fully determine the impact of class edges at

various texture scales on image classification.
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IX.   APPENDIX A  – ERROR MATRICIES

A. Spectral bands only

Interior Pixels
WTR FOR AGR RES COM MIN Total Commission

WTR 346 0 0 0 0 0 346 0.0000
FOR 0 1688 2 76 12 0 1778 0.0506
AGR 0 2 504 383 3 0 892 0.4350
RES 2 5 81 1494 202 0 1784 0.1626
COM 0 0 0 515 1715 0 2230 0.2309
MIN 0 0 0 7 394 392 793 0.5057

Total 348 1695 587 2475 2326 392 7823
Omission 0.0057 0.0041 0.1414 0.3964 0.2627 0.0000 0.2153

Kappa Index of Agreement (KIA)
Class Commission Omission

WTR 1.0000 0.9940
FOR 0.9354 0.9947
AGR 0.5297 0.8404 Overall Kappa = 0.7234
RES 0.7622 0.4865
COM 0.6713 0.6326
MIN 0.4676 1.0000

Entire Class
WTR FOR AGR RES COM MIN Total Commission

WTR 798 0 0 0 0 0 798 0.0000
FOR 0 3612 18 165 21 0 3816 0.0535
AGR 0 120 1051 718 12 0 1901 0.4471
RES 16 148 249 2000 361 3 2777 0.2798
COM 0 40 1 694 2336 15 3086 0.2430
MIN 0 3 0 13 450 673 1139 0.4091

Total 814 3923 1319 3590 3180 691 13517
Omission 0.0197 0.0793 0.2032 0.4429 0.2654 0.0260 0.2254

Kappa Index of Agreement (KIA)
Class Commission Omission

WTR 1.0000 0.9791
FOR 0.9247 0.8895
AGR 0.5045 0.7636 Overall Kappa = 0.7140
RES 0.6190 0.4426
COM 0.6822 0.6561
MIN 0.5688 0.9716
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B. Spectral bands and 10 meter texture

Interior Pixels
WTR FOR AGR RES COM MIN Total Commission

WTR 8444 0 0 0 0 0 8444 0.0000
FOR 0 42007 69 1665 79 0 43820 0.4140
AGR 0 30 13279 6308 23 0 19640 0.3239
RES 166 291 1362 42072 5864 0 49755 0.1544
COM 0 0 0 11857 50324 0 62181 0.1907
MIN 0 0 0 66 2112 9768 11946 0.1823

Total 8610 42328 14710 61968 58402 9768 195786
Omission 0.0193 0.0076 0.0973 0.3211 0.1383 0 0.1527

Kappa Index of Agreement (KIA)
Class Commission Omission

WTR 1.0000 0.9799
FOR 0.9472 0.9902
AGR 0.6498 0.8919 Overall Kappa = 0.8002
RES 0.7741 0.5695
COM 0.7283 0.7973
MIN 0.8081 1.0000

Entire Class
WTR FOR AGR RES COM MIN Total Commission

WTR 19553 0 0 0 0 0 19553 0.0000
FOR 0 87905 518 3765 165 0 92353 0.0482
AGR 0 1647 26655 13148 68 6 41524 0.3581
RES 707 7487 6025 56622 10199 99 81139 0.3022
COM 63 698 32 15893 66884 465 84035 0.2041
MIN 12 99 0 178 2331 16647 19267 0.136

Total 20335 97836 33230 89606 79647 17217 337871
Omission 0.0385 0.1015 0.1979 0.3681 0.1602 0.0331 0.1883

Class Commission Omission
WTR 1.0000 0.9592
FOR 0.9322 0.8603
AGR 0.6029 0.7744 Overall Kappa = 0.7587
RES 0.5888 0.5156
COM 0.7330 0.7867
MIN 0.8567 0.9649
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C. Spectral bands and 50 meter texture

Interior Pixels
WTR FOR AGR RES COM MIN Total Commission

WTR 347 0 0 0 0 0 347 0.0000
FOR 0 1691 4 76 13 0 1784 0.0521
AGR 0 4 569 236 10 0 819 0.3053
RES 1 0 14 1727 235 0 1977 0.1265
COM 0 0 0 430 1783 0 2213 0.1943
MIN 0 0 0 6 285 392 683 0.4261

Total 348 1695 587 2475 2326 392 7823
Omission 0.0029 0.0024 0.0307 0.3022 0.2334 0.0000 0.1680

Kappa Index of Agreement (KIA)
Class Commission Omission

WTR 1.0000 0.9970
FOR 0.9335 0.9969
AGR 0.6700 0.9657 Overall Kappa = 0.7825
RES 0.8150 0.5956
COM 0.7235 0.6745
MIN 0.5515 1.0000

Entire Class
WTR FOR AGR RES COM MIN Total Commission

WTR 799 0 0 0 0 0 799 0.0000
FOR 0 3590 33 179 23 0 3825 0.0614
AGR 0 48 1045 555 12 0 1660 0.3705
RES 15 229 240 2256 445 0 3185 0.2917
COM 0 52 1 583 2375 24 3035 0.2175
MIN 0 4 0 17 325 667 1013 0.3416

Total 814 3923 1319 3590 3180 691 13517
Omission 0.0184 0.0849 0.2077 0.3716 0.2531 0.0347 0.2060

Kappa Index of Agreement (KIA)
Class Commission Omission
WTR 1.0000 0.9804
FOR 0.9134 0.8816
AGR 0.5895 0.7632 Overall Kappa = 0.7369
RES 0.6028 0.5139
COM 0.7156 0.6736
MIN 0.6400 0.9625
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D. Spectral bands and 110 meter texture

Interior Pixels
WTR FOR AGR RES COM MIN Total Commission

WTR 347 0 0 0 0 0 347 0.0000
FOR 0 1692 6 80 14 0 1792 0.0558
AGR 0 3 571 385 20 0 979 0.4168
RES 1 0 10 1661 502 0 2174 0.2360
COM 0 0 0 331 1440 0 1771 0.1869
MIN 0 0 0 18 350 392 760 0.4842

Total 348 1695 587 2475 2326 392 7823
Omission 0.0029 0.0018 0.0273 0.3289 0.3809 0.0000 0.2199

Kappa Index of Agreement (KIA)
Class Commission Omission

WTR 1.0000 0.9970
FOR 0.9288 0.9977
AGR 0.5494 0.9688 Overall Kappa = 0.7177
RES 0.6548 0.5445
COM 0.7340 0.5076
MIN 0.4902 1.0000

Entire Class
WTR FOR AGR RES COM MIN Total Commission

WTR 801 0 0 0 0 0 801 0.0000
FOR 0 3612 58 183 26 0 3879 0.0688
AGR 0 84 1112 763 32 0 1991 0.4415
RES 13 192 148 2156 814 2 3325 0.3516
COM 0 28 1 457 1896 17 2399 0.2097
MIN 0 7 0 31 412 672 1122 0.4011

Total 814 3923 1319 3590 3180 691 13517
Omission 0.0160 0.0793 0.1569 0.3994 0.4038 0.0275 0.2418

Kappa Index of Agreement (KIA)
Class Commission Omission

WTR 1.0000 0.9830
FOR 0.9030 0.8888
AGR 0.5108 0.8160 Overall Kappa = 0.6930
RES 0.5213 0.4702
COM 0.7258 0.5091
MIN 0.5773 0.9700
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E. Spectral bands and 210 meter texture

Interior Pixels
WTR FOR AGR RES COM MIN Total Commission

WTR 347 0 0 0 0 0 347 0.0000
FOR 0 1669 2 66 6 0 1743 0.0425
AGR 0 0 488 145 2 0 635 0.2315
RES 1 26 97 2022 271 0 2417 0.1634
COM 0 0 0 240 1987 0 2227 0.1078
MIN 0 0 0 2 60 392 454 0.1366

Total 348 1695 587 2475 2326 392 7823
Omission 0.0029 0.0153 0.1687 0.1830 0.1457 0.0000 0.1173

Kappa Index of Agreement (KIA)
Class Commission Omission

WTR 1.0000 0.9970
FOR 0.9458 0.9803
AGR 0.7497 0.8164 Overall Kappa = 0.8453
RES 0.7609 0.7351
COM 0.8466 0.7963
MIN 0.8562 1.0000

Entire Class
WTR FOR AGR RES COM MIN Total Commission

WTR 800 0 0 0 0 0 800 0.0000
FOR 0 3412 10 158 12 0 3592 0.0501
AGR 0 21 825 376 5 0 1227 0.3276
RES 14 425 484 2772 477 13 4185 0.3376
COM 0 62 0 273 2611 20 2966 0.1197
MIN 0 3 0 11 75 658 747 0.1191

Total 814 3923 1319 3590 3180 691 13517
Omission 0.0172 0.1303 0.3745 0.2279 0.1789 0.0478 0.1804

Kappa Index of Agreement (KIA)
Class Commission Omission

WTR 1.0000 0.9817
FOR 0.9294 0.8226
AGR 0.6369 0.5881 Overall Kappa = 0.7668
RES 0.5403 0.6700
COM 0.8435 0.7708
MIN 0.8744 0.9494
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F. Spectral bands and 220 meter  texture

Interior Pixels
WTR FOR AGR RES COM MIN Total Commission

WTR 346 0 0 0 0 0 346 0.0000
FOR 0 1684 2 66 10 0 1762 0.0443
AGR 0 0 447 261 3 0 711 0.3713
RES 2 11 138 1901 296 0 2348 0.1904
COM 0 0 0 242 1791 0 2033 0.1190
MIN 0 0 0 5 226 392 623 0.3708

Total 348 1695 587 2475 2326 392 7823
Omission 0.0057 0.0065 0.2385 0.2319 0.2300 0.0000 0.1613

Kappa Index of Agreement (KIA)
Class Commission Omission

WTR 1.0000 0.9940
FOR 0.9435 0.9916
AGR 0.5986 0.7377 Overall Kappa = 0.7895
RES 0.7215 0.6686
COM 0.8306 0.6892
MIN 0.6097 1.0000

Entire Class
WTR FOR AGR RES COM MIN Total Commission

WTR 797 0 0 0 0 0 797 0.0000
FOR 0 3570 20 149 19 0 3758 0.0500
AGR 0 22 751 497 7 0 1277 0.4119
RES 17 225 547 2636 474 1 3900 0.3241
COM 0 103 1 296 2422 25 2847 0.1493
MIN 0 3 0 12 258 665 938 0.2910

Total 814 3923 1319 3590 3180 691 13517
Omission 0.0209 0.0900 0.4306 0.2657 0.2384 0.0376 0.1980

Kappa Index of Agreement (KIA)
Class Commission Omission

WTR 1.0000 0.9778
FOR 0.9295 0.8754
AGR 0.5436 0.5244 Overall Kappa = 0.7451
RES 0.5587 0.6265
COM 0.8048 0.6980
MIN 0.6933 0.9596
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