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ABSTRACT 

 

Engineered Inks for Environment-Friendly Additive Manufacturing of 

Hierarchical Microstructures 

 

Maria Alejandra Torres Arango 

 

Novel material synthesis and green engineering innovations in manufacturing are important 

enablers of new technologies. Here, a range of functional materials systems and their processing 

through additive manufacturing are investigated. The materials studied consist of Ag, ZnO and 

TiO2 based inks for additive manufacturing with potential application across multiple 

technological fields.  

In particular, the synthesis of multi-functional emulsion inks, and their deposition through 

continuous-flow direct writing are investigated. Highlights of this work include the study of the 

curing/sintering conditions of such ink systems aiming for fundamental insights in their synthesis 

at low-temperatures (below 150°C), compatible with flexible polymeric substrates. Also, the 

investigation of texturing and microstructural control via ink composition, direct writing 

conditions and curing/sintering treatments is reported. In addition, the design and investigation of 

hybrid (organic/inorganic) multiphase composite ink systems for the realization of planar and 3D 

printable cellular structures, is discussed. Furthermore, the nucleation or decoration of the latter, 

via encapsulation of the decorative material and/or their precursors in one of the phases of the 

synthesized ink is investigated. 

Special emphasis is placed on an environmentally-friendly approach for the realization of 

sustainable inks, aiming for industry-transferable developments. Such approach provides the 

potential to further additive manufacturing and its utilization in a plethora of technological 

applications; ranging from energy, to waste management and water cleaning, to biomedical. 
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Introduction 

 

Additive manufacturing (AM) brings the advantages of highly controllable fabrication of printed features 

while allowing for the convergence of low-waste, lithography-free, tailorable microstructuring, potential 

for vertically-integrated device architectures fabrication, and large-scale manufacturability.  

There is currently a great need to expand the library of available functional materials for use in additive 

manufacturing technologies.  Therefore, AM of novel device architectures, relies on the development of 

materials with suitable processing and functional properties. Also, the understanding of the chemical and 

physical dynamics present in the solution synthesis of materials is of paramount importance when 

designing functional ink systems for printing. The inks undergo many processes that affect their 

properties. As these fluid systems are printed, dried, and cured/annealed/sintered their microstructure 

and composition change, favoring the crystallization of otherwise amorphous compounds, and the 

nucleation of secondary phase materials. 

By studying the chemical and physical interactions, different ink systems can be designed to take 

advantage of such interactions and obtain specific microstructures, secondary phase features and or 

functional properties. 

Therefore, control of the materials’ microstructure using processing, becomes important for specific 

applications. Here, the strategies to control the microstructure using AM are explored for different metal 

and metal-oxide ink systems – namely, Ag, ZnO, and TiO2 based inks – from particle based, sol-gel based, 

and hybrid (particle/organic sol) inks, respectively. These materials find application across diverse 

technological fields including energy, environmental, and biomedical. Moreover, the choice of these 

particular materials, for studying the specific processing approaches, considers the ample literature 

available for their study; and is expected to be transferable to similar metal and metal-oxide material 

systems. 

From such base materials, different ink systems are proposed and realized with fundamental studies of 

chemical and physical interactions. The control of the printed microstructures ranges from their particle 

size, porosity, texturing, and morphology to composite heterostructures’ realization. This work, rather 

than being exhaustive about the possible chemical and physical material interactions, focuses on the main 

properties relevant to AM for potential device applications. Special emphasis is placed on sustainability, 

aiming for scalable and industry transferable manufacturing.  
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Materials Systems 

Ag Ink (Particle Based) 

The Ag ink system is a highly concentrated mixture of Ag particles dispersed in a cellulose solution.  These 

particles are capped with polyacrylic acid (PAA), which serves as stabilization agent for the dispersion. 

Once the material is applied to a substrate, a mild heat treatment will induce further crystallization and 

coalescence of neighboring particles. 

 

 
Figure 1. Ag particle ink system. 

 

Al-doped ZnO Ink (Solution Based) 

The Al-doped ZnO (AZO) sol-gel based ink, consists of a mixture of a Zn and Al organic precursors in 

solution using 2-methoxy ethanol as solvent, ethanolamine as stabilizer, and polyvinyl pyrrolidone (PVP) 

as rheology enhancer. This system is used to investigate relevant processing – properties relationships, 

particularly the microstructural evolution and texturing degree.  

 

TiO2 Hybrid Inks and Foams (Particle/Organic Sol Based) 

The TiO2-based materials proposed here implements a hybrid TiO2/Ti-organic ink system. This 

combination includes the advantages of adding TiO2 in the desired crystalline phase for specific 

functionality (greatly reducing the energy input for post-processing), and the bottom-up characteristics 

by inducing and controlling the ink compounds’ interactions during preparation, deposition and 

treatment. 
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TiO2-TALH Ink 

The TiO2-TALH ink system consists of a crystalline phase and an amorphous phase. Ti(IV) bis(ammonium 

lactato) dihydroxide (TALH), is a water-compatible Ti-organic complex used as precursor for TiO2. After 

the ink deposition, such amorphous phase is transformed to a more ordered structure through mild heat 

treatments or by UV exposure utilizing the photocatalytic properties of TiO2.  

 
Figure 2.TiO2 - TALH ink system. 

 

TiO2-TALH Foam  

This material system, starts from the TiO2-TALH colloidal suspension as the aqueous phase in a multi-

phase emulsion system. An oil phase serves as a stabilization and emulsifier agent and, for the decorated 

structures, as encapsulating and dispersion agent for such molecules/materials. A third phase is included 

as air bubbles though frothing of the aqueous/oil emulsion rendering the desired foam systems.  

 
Figure 3.  TiO2-TALH foams systems 
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Aims and Objectives 

 

Based on the potential of AM and the need for research on ink systems suitable for such processing, the 

following aims are set for this thesis: 

Aims 

1. To design metal (Ag) and metal-oxide (Al-doped ZnO, and TiO2) material ink systems using a 

sustainability focused approach, to enable their industry transferability. 

 

2. To establish and investigate fundamental relationships influencing the processing and properties 

of particle based, sol-gel and hybrid inks; exploring their potential for microstructure engineering.  

 

3. To realize printable device components using the designed inks. Specifically, to design, synthesize 

and characterize Ag inks with potential application as electrically conducting structures and/or 

electro-mechanical sensors.  

 

4. To design and study a composite TiO2 material controlling its surface area, porosity and crystallite 

interconnectivity. Furthermore, to study the relationships between the materials synthesis and 

the degree of crystallinity attained, and their electrical and surface chemistry properties.  

 

5. To propose alternative means for the synthesis of secondary-phase decorated TiO2 composite 

heterostructures by incorporating the decorative materials and/or precursors as ink constituents, 

studying their transformation and allowing for one-step fabrication. This approach has the 

potential to produce novel microstructures, and to reduce the time associated to the decoration 

of metal-oxide scaffolds in applications such as sensitized solar cells, H2 generation, small 

molecule detection, and growth of biological tissues. 

The objectives for the specific ink systems are outlined below: 

Objectives 

Ag (Particle) Based Inks 

• To formulate Ag inks to be patterned though continuous-flow direct writing on flexible substrates 

and to study the relationships between synthesis, processing, and properties. 

• To study the role and effects of different sol-gel constituents involved in the nucleation and 

growth of the Ag nanoparticles. 

• To investigate the role and transformations of the different constituents of the formulated inks, 

such as primary materials (nanoparticles and crystallized materials), additives and thickening 

agents on the printing and upon energy input. 

• To characterize the microstructure, optical and electrical properties of the printed systems. 



5 
 

Al-doped ZnO (Sol-Gel) Based Inks 

• To investigate the crystallization mechanisms of Al-doped ZnO (AZO) inks printed using 

continuous-flow direct writing, upon different post-printing energy inputs. 

• To study the effects of different amounts of polymer additives as rheology enhancing agents on 

the processing and microstructure tuning of metal-oxide structures from sol-gel inks.  

TiO2 (Hybrid) and decorated Inks and Foams 

• To explore the viscosity ranges of the TiO2/Ti-organic complex for their application using 

continuous-flow direct writing. 

• To study the crystallization of TiO2 from the hybrid inks in contact with TiO2 crystals.  

• To investigate the microstructure and functional properties of the proposed systems, and the 

effect of different UV and heat treatments. 

• To study the role and transformations of different constituents of the formulated inks; i.e. primary 

materials (nanoparticles and crystallized materials), additives, thickening agents, surfactants 

(emulsifiers, stabilizers, etc.), and catalysts on the printing and upon energy input. 

• To explore and propose alternative methods to introduce metal secondary-phase materials to the 

TiO2 scaffolds, and demonstrate their feasibility. 

• To investigate the changes induced upon energy input on the Ag-decorated TiO2 colloidal 

materials. 
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Chapter 1: State of the Art 

 

1.1. Metal and Metal-Oxide Materials 

Metals and metal-oxides, represent an important group of materials with application across multiple 

technological fields[1–3]. These materials are commonly used in devices because of their functional 

properties; and specific mechanical, thermal, and chemical stability. Metals, are important as high 

electrical and thermally conductive contact materials[4–6], allowing for efficient electron and phonon 

transport, respectively. Additionally, metals and metal-oxides are often used in applications requiring 

relatively high mechanical stresses [7–12], as light scattering materials for reflective coatings[1], magnetic 

material applications[13,14], as catalysts[3,13,15–18], bactericidal agents[19,20], and many more. 

Specifically, metal-oxides are important due to their tunable optical and electrical properties[4,21], and 

high thermal and chemical stability[17,22]. They are generally non-toxic, abundant materials, which 

makes them good candidates for large scale applications.  

These materials, can be synthesized in the nanoscale using top-down or bottom-up approaches, rendering 

outstanding properties that deviate from the typical behavior exhibited when in bulk[6,13,23–28]. Top-

down methods are generally considered cost-effective and highly scalable; however, their compositional 

control and homogeneity may be compromised. Bottom-up approaches are preferred for high control of 

the chemical composition and microstructure[1]. Usually, a combination of manufacturing methods is 

used for the fabrication of devices incorporating techniques from both approaches[29]. Among the 

multiple bottom-up techniques, sol-gel is of interest because of its low cost, scalability, and wide range of 

precursors; leading to an equally broad range of materials' microstructures and morphologies[1,30–33]. 

Bottom-up synthesis, enables the fabrication of hierarchically structured mesoporous materials and 

device components[33–35]. Hierarchical structures are interesting material systems, because they 

combine features with dimensions spanning several orders of magnitude. Thus, they can be viewed as 

synergistic architectures that take advantage of the properties associated with materials at the nano, 

micro, meso and macro-scale[1,11,36–39]. Particularly, metal-oxide mesostructures of TiO2 have been 

prepared using hydrothermal processing [40–44], resembling hierarchically structured shapes such as 

flowers, trees, hollow spheres, etc.; chemical and physical vapor deposition of films [41,45], and 

electrospinning of TiO2 fibers in mat-like configurations[46]. Similarly, examples of mesostructured metal-

oxides materials using sol-gel synthesis include TiO2[33,47], MnO2[32], V2O5[32], Co3O4[48], ZnO[32,49], 

ZrO2[47], Al2O3[47], WO3[32] and SiO2[47,50]. Moreover, composite materials consisting of metal/metal-

oxide structures exploit the interfacial effects for improved properties. These, can be prepared using a 

combination of processes; particularly, photoreduction of metal particles has been extensively used for 

the decoration of ceramic scaffolds and for studying the photocatalytic active sites/facets of the ceramic 

scaffold. Relevant material systems include Ag on ZnO[51,52], Pt on WO3[53] and on TiO2, Ag on 

TiO2[54,55] and multimetallic particles on TiO2[56]. 

Generally, when using the sol-gel method, post-processing heat treatments are applied to induce the 

transformation of the amorphous materials into crystalline structures, and/or to promote their bonding, 

ensuring appropriate contact between the different materials and/or device layers. Importantly, low-

temperature based alternative routes have enabled the fabrication of devices from metal-oxides on heat 
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sensitive substrates[1,7] towards large-area roll-to-roll manufacturing. These include solution based 

biomimetic synthesis[57–59], ultraviolet light curing[60,61], cold isostatic pressure sintering[62], 

combustion processing[63] and electrophoretic synthesis[45]. Remarkably, the use of hybrid approaches 

involving the combination of sol-gel metal-organic precursors and crystalline metal or metal-oxide 

particles have opened alternative routes for low temperature fabrication by reducing the thermal budget 

associated with the films transformation into higher crystallinity structures [60,64–66]. Less explored 

sintering/curing treatments include photonic sintering (provided that targeted light trapping materials are 

also included in the formulation and illumination matches their absorption spectrum); and electrical 

sintering, which has been demonstrated for conducting inks, namely Ag and indium tin oxide (ITO)[67,68]. 

Currently, conventional micro-device manufacturing, relays in vacuum-based techniques such as e-beam 

evaporation and sputter coating[1]. The limitations associated to these techniques include large-scale 

manufacturing incompatibility, relatively high-cost and multi-step lithography patterning[69–72]. 

Traditional manufacturing methods associated to sol-gel processing such as spin coating, doctor blading 

(DB), and casting are not fully suited for large-scale pattern manufacturing[1,73]. Spin coating for example, 

may result in significantly different thick regions and film defects depending on the radial distance to the 

spinning center and the inks formulation. DB and casting on the other hand, still require the use of masks 

to produce the patterns. Direct patterning methods represent a novel and low-cost solution to overcome 

these challenges while enabling large-area substrate coverage, at the expense of surface finish quality and 

reduced electrical conductivity [4,74–82]. Other common manufacturing methods based on printing, such 

as screen-printing, are suitable for large-area processing; however some key challenges remain, including 

significant materials waste and yield of relatively large printed film thicknesses, potentially causing 

difficulty in controlling the final material thickness and morphology[71,83]. Additionally, the use of masks 

is often regarded as challenging since premature drying of the ink on the masks usually results in printing 

defects and loss of printing definition [83]. Maskless DW printing methods aid in mitigating the 

aforementioned issues with ink-jet printing being the most representative method [84–87]. Nevertheless, 

the exclusive utilization of low-viscosity inks used for ink-jet processes (usually ranging from ~ 3 - 60 

cPoise)[73,84,88], limits its one-step 3D printability and may result in uneven distribution of dried solute, 

also known as the coffee ring effect[89]. 

1.2. Additive Manufacturing using Metal and Metal-Oxide Inks  

AM is a comprehensive set of fabrication techniques that involve adding material to build up a component 

/ device on a layer-by-layer basis. Briefly, these include stereo lithography (SLA), powder/slurry based 3D 

printing and laser sintering, laminated object modelling (LOM), fused deposition modelling (FDM), and 

direct writing ink based techniques: ink-jet printing, aerosol-jet writing, dip-pen nanolithography, and 

continuous-flow direct writing (CDW)[85,90–92]. AM techniques have gained interest from industry and 

academia due to their versatility and reduced waste capabilities by utilizing specific amounts of material 

where necessary[90]. Building a component layer-by-layer, allows controlling its structural properties by 

incorporating differential material properties based on the part’s design and operational requirements, 

while reducing the component weight[85,92,93]. Direct writing (also known as additive printing), 

implements materials formulated as inks to pattern the desired device/component architectures[85,91]. 

Dip-pen nanolithography is used to pattern materials using a quill-based approach in which the inks are 

transferred to a substrate using an AFM tip, this technique enables features in the nanoscale and 
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manipulation of materials with high precision. Aerosol-jet printing deposits inks that are suspended as an 

aerosol mist, which is delivered to the desired substrate utilizing a carrier gas, this technique allows 

features as small as 5 µm. Ink-jet printing utilizes a piezo-electric controller to generate droplets of a low 

viscosity ink that are deposited building a pattern by the coalescence of the droplets with resolution 

features as small as ~ 20 µm; while CDW utilizes an extrusion system to pattern the ink as a continuous 

filament, with feature sizes spanning from ~ 5 µm to a few millimeters[85,94]. The latter is of great interest 

because of its versatility allowing for the fabrication of material structures with unprecedented 

characteristics[93,95–99] such as lightweight architectures, complex microstructures, high aspect ratio 

walls and spanning features, by combining the patterning/manufacturing with bottom-up material 

synthesis[85]. 

In CDW (Figure 4), the precursor material consists of functional flowable inks that are extruded to form 

features by patterning them at specific, digitally predefined, substrate locations[100]. This method, allows 

for 2D and 3D patterning on planar and arbitrary shaped surfaces, with lateral dimensions of up to two 

orders of magnitude lower than those achieved by ink-jet printing[94,101,102]. CDW employs a PC-

controlled x-y-z stage that moves relative to a device (i.e. a dispensing nozzle) to pattern the ink[103]. This 

method has been introduced a few years ago[95] and has recently re-emerged due to its inherent ability 

to extrude a wide range of viscosities from ~ 102 to 106 mPa·s [93,104,105], thus enabling significant ink 

design freedom and fabrication of planar and 3D film/pattern architectures[93,106]. Depending on the 

ink initial properties, different post-printing treatments may be necessary to provide the part with better 

mechanical and chemical stability characteristics, and to promote specific material crystalline structures 

and surface properties. Therefore for CDW, the material being extruded imparts a strong dependence on 

the printed components, and together with the changes induced by the post-printing processing, are 

considered as being essential aspects for the successful fabrication of the component[107,108]. For 

example, alignment of the colloidal materials may be induced; and porosity, surface finish and 

dimensional changes will depend on ink properties, and curing/sintering treatments[93]. 

Table 1. Summary of ink-based AM direct printing techniques. 

Technique 

Dip-Pen 

Nanolithography 

(DPN) 

Aerosol-Jetting Inkjet Printing 

Continuous-Flow 

Direct Writing 

(CDW) / 

Robocasting 

Deposition 

Method 
Quill-based Stream jetting Droplet jetting Filament extrusion 

Ink Viscosity 
101-102 mPa·s 

[109] 

100-103 mPa·s 

[110] 

101-102 mPa·s 

[65,73,88] 

102-106 mPa·s 

[85,93] 

Printing 

Resolution 

~ 5 – 14 nm 

[85,98] 

~ 5 – 10 µm  

[85] 

~ 10 – 30 µm  

[93] 

~ 5 µm – 2-3 mm 

[93,94] 

Printing 

Capability 
0D – 1D 1D – 2D 2D – 3D (limited) 2D – 3D 
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Figure 4. Continuous-flow direct writing technique schematic. Distance to substrate is enlarged for visualization 
purposes. 

Device fabrication often requires the combination of different printing techniques including CDW and 

others such as ink-jet or screen printing[29,111,112]; with the latter exhibiting  comparatively large 

material waste during the process[72].  Other relevant printing techniques used for the AM of devices 

include gravure printing, slot-die coating, and DB. The choice of printing technique is generally based on 

the inks viscosities[71–73,113,114], the different resolution capabilities, and the specific device 

architectures[29,71,73,83]. Studies integrating the different manufacturing techniques are important 

because of their industry-transferable character, and because they serve as pioneering pathways towards 

fully printable devices using AM. To date, examples of fully CDW fabricated device prototypes are Li-ion 

microbatteries[115,116], a light emitting diode[117], a bionic ear[118], and thick-film carbon based 

supercapacitors[119,120]. 

The functional inks may involve the exclusive use of particle-free sol-gel formulations, or include 

particulate materials dispersed as colloidal systems. Inks of different materials have been investigated, 

producing microstructured materials. Relevant metal and metal-oxide systems include Ag[94,121–123], 

TiO2[124–128], ZnO[129–131], ITO [132], Al2O3 [133–135], SiO2 blends[107], PZT[136] and C-based 

materials[137–139]. 

Among the most relevant properties for successful CDW are the rheological, viscoelastic and drying 

properties of the inks[140,141]. These determine the printing ranges and the characteristic feature 

dimensions [107]. Tuning of the viscosity may be accomplished by using polymeric agents and by 

modifying the solids amount in the inks[101,108,142]. Additionally, the use of polymeric additives as 

rheology enhancers can be used to reduce nozzle clogging issues common to nozzle-based printing 

methods due to ink solids sedimentation[128]. The dimensions of the final CDW features are also 

dependent on the nozzle shape[143] and diameter, applied extrusion pressure, and printing 

speed[121,131,132,139,144]. 

When using CDW, the inks should display a shear-thinning behavior, that allows them to be extruded at 

relatively low pressures[145]. At the same time, they should recover upon stress release to retain their 
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printed shape. This may be accomplished by engineering the inks using colloidal dispersions[101,146] and 

viscosity enhancer agents[107,121,124,128]; and/or fast solvent evaporation, coagulating or hydrolyzing 

sol-gel formulations[124,147]. 

Such viscous ink formulations exhibit rheological characteristics that can be approximated to the Herschel-

Bulkley model as indicated in Eq. 1 

𝜏 = 𝜏𝑦 + 𝑘𝛾̇𝑛 (1) 

Where,  is the total shear stress and y the fluid yield-stress; k denotes the fluid consistency, and n is the 

power law index accounting for the flow characteristics [148]. For Newtonian fluids n=1 and ty=0; if τy > 0 

then the fluid is known as Bingham plastic. When 0 < n < 1, then the fluid is classified as shear-thinning; 

and for n > 1, it is classified as shear thickening.[149–151] Yield stress fluids, also known as Bingham fluids, 

exhibits solid-like behavior when no external stress is applied, and liquid-like characteristics when 

subjected to shear stresses above the yield stress, therefore they are ideal for CDW. The yield stress τy 

can be calculated from the extrapolation of the linear fit of the shear-stress vs. shear-rate curves, at the 

intercept of such fit with the shear-stress axis[150,151].  

1.3. Printing Cellular Architectures using CDW 

Additional to the different levels of structuring of CDW solid bodies that can be realized by the design of 

2D and 3D patterns[93,152], highly mesoporous ceramics  and cellular architectures are currently at the 

spotlight of research using CDW[10,99,152–156]. Ceramic based foams are highly desirable material 

systems because of their ability to mimic hierarchical organization widely existing in biological 

organisms[145]. Such organization is beneficial in numerous applications from catalysis[36,157–159] to 

energy harvesting[39,160–162] and storage[163], to biomedical[164–166]. 

Despite the early studies demonstration of advantageous mechanical properties of Al2O3 cellular 

structures[10,154] produced using CDW, the employed ink synthesis methods utilize relatively large 

amounts of acid reagents to stabilize the particles and concomitantly gas bubbles forming the pores of 

the system, which represents challenges for their safe manipulation and large-scale implementation. 

Furthermore, such studies report exclusively closed-cell foam architectures, limiting the range of 

synthesized materials. Direct foaming[167] is considered the most promising fabrication route for ceramic 

foam 3D printing (among the established synthesis methods: replica, sacrificial template and direct-

foaming)[168], because of the ability to control viscosity and prepare the foam as a patternable extrudate, 

while producing different microstructure and porosity configurations (i.e. open- or closed-cell 

architectures)[2].  

Some of the challenges associated to the conventional synthesis of ceramic foams include the repetitive 

impregnation (or incorporation) and calcination removal of organic templates[11,157]; or the time 

sensitive handling of rapid-hydrolyzing of liquid-liquid[169,170] and gas-liquid[171] emulsions systems. 

More recent methods, include the decomposition reaction of TiCl4 within aqueous-organic solvent 

mixtures, in which the pores are generated by HCl toxic fumes as a by-product of the hydrolysis of the Ti-

precursor[162]. Developments on the colloidal processing of hierarchical mesoporous cellular ceramics 

are of great interest because of the versatility that colloidal science brings to manufacturing. 



11 
 

Thus, CDW of metal and metal-oxide materials, offers new opportunities for device manufacturing; as well 

as new routes for the engineering of materials, and the study of their fundamentals, by enabling new 

material architectures and by providing new models for their processing. 

1.4. Sustainability Based Additive Manufacturing 

With greater consciousness of a growing global population and the limited resources, the concepts of 

“Green Chemistry” and “Green Engineering” are becoming increasingly important for the realization and 

adoption of new technologies[172]. Sustainability is therefore, a central issue that can be addressed from 

various ends regarding additive manufacturing[173]. Specifically, the observation of the 12 principles of 

green chemistry[174] and green engineering[175], and the life cycle analysis of products and precursors 

constitutes a primary step towards responsible and industry transferable engineering[176,177]. 

Therefore, the adoption of metrics and assessment applied to the specific processes, should be specially 

considered due to their high impact in emerging manufacturing fields[173]; since the incorporation of 

such concepts in the assessment of novel manufacturing developments ensures their feasibility, and the 

health and safety of the environment and the individuals involved. 

Additive manufacturing, starts its sustainability focus by pursuing the optimization of the materials and 

energy involved in the fabrication of components fulfilling the first and second principles of green 

chemistry: waste-prevention, and maximization of the use of precursor materials into the final products, 

respectively. The third principle refers to the use of innocuous materials and substances whenever 

possible; AM using aqueous based formulations, helps preventing the massive use of organic solvents, 

commonly associated with harmful effects to human health and to the environment. Along the same line, 

the fourth principle, seeks for the designing of safer chemicals and materials. The fifth principle, is the 

reduction in the use of solvents and auxiliary substances in the processing, and the use of innocuous ones 

when necessary. AM is also advantageous from this perspective, since it reduces their use by preventing 

the need of etching and cleaning between processing steps. The sixth and seventh principles are the 

implementation of processing methods at ambient temperature and pressure, and the use of renewable 

rather than depleting resources, respectively. This principle not only aims for the better use of the 

available resources, but it also pushes for new advances in the realization of materials and devices using 

soft materials and offering unexplored applications. Next, the eight principle focuses on the minimization 

of derivatization, as this is likely to result in extra sources of waste. Because AM offers new routes for the 

microstructuring of materials, this principle may also be applied. The preferential use of catalytic reagents 

when compared to stoichiometric ones, constitutes the ninth principle, which applied to AM is expected 

to be of clear benefit by enabling more efficient post-printing processes. Finally, principles tenth to 

twelfth, refer to the design of materials considering their degradation, the assessment of the 

environmental impact and potential risks, and the use of the safest substances and substance forms as to 

minimize their harmful effects in case of chemical accidents, such as release to the environment, fires and 

explosions; taking into account the central safety aspects, AM being highly automated, may be considered 

as an inherently safer approach than traditionally fabrication processes. Thus, research on new materials 

incorporating these principles for AM in general, and CDW in particular, is imperative for furthering of the 

progress of large-scale device manufacturing.  
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Chapter 2: Experimental Details 

 

2.1. Inks Synthesis 

 

2.1.1. Ag Ink  

For the synthesis of Ag nanoparticles, a base-aided reduction of AgNO3 was used for the metallic Ag 

nucleation. A modification of a previously reported solution-based method[121] including AgNO3, PAA 

and mono-ethanolamine (MEA) mixed in water is implemented, in an aim to increase the Ag yield. See 

Figure 5.    

 
Figure 5. Ag- Ink synthesis process and precursor chemicals. 

Briefly, PAA is dissolved in half the amount of water and magnetically stirred until homogeneous, and the 

MEA is added dropwise to the stirring PAA-water solution. In parallel, the AgNO3 is dissolved in the 

remaining water and dropwise incorporated to the PAA solution. The amounts of reducing agent (MEA) 

with respect to the solvent, Ag precursor and capping agent (PAA), affect the nucleation and growth 

process as is discussed in chapter 3. For the nucleation of the Ag nanoparticles and formulation of inks 

used in the patterned structures, investigated in such chapter, final precursor amounts are: 0.57 g PAA, 

10.19 g AgNO3, 8.9 g MEA and 35.9 g DI water. This solution is then stirred for a few hours (~14 – 24 h) to 
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allow for particle nucleation and growth. Temperature (~60°C) may accompany the process to accelerate 

it. The resulting colloidal suspension is brown-black in color. Once the solution is at room temperature 

ethanol is added to help the coagulation of the Ag particles. Since it is a poor solvent for the PAA, the 

supernatant is removed and some more ethanol is added to transfer the sediment-rich solution to a 

centrifuge tube. After centrifugation at 4400 rpm for 30 minutes, the Ag nanoparticles are collected and 

the inks are formulated. The Ag solids are re-dispersed in half the final amount of solvent (water) by 

ultrasonication, and latter a water-cellulose solution is added, further sonicated, and mixed until a 

homogenous ink is obtained. 

2.1.2. Al-Doped ZnO (AZO) Ink 

The Al-doped ZnO sol-gel system is a variation of the sol-gel ink used by O’Brien et.al.[178]. For its 

synthesis, a precursor mixture containing 3 wt% of aluminum nitrate (Al (NO3)3) and 97 wt% zinc acetate 

dehydrate (Zn (CH3COO)2 2H2O) is prepared in 16 mL of 2-methoxy ethanol, and 2 g of ethanolamine 

(stabilizer), yielding a stabilizer to precursor molar ratio of 2. This mixture is vigorously stirred for 2 hours 

with a magnetic stirrer (Fisher Scientific Isotemp) at 60 °C to aid dissolution of the solid reagents. The 

solution is, thereafter allowed to age at room temperature for 24 hours. PVP Mw 1,300,000 is added as 

ink-thickening agent in 10, 15 and 20 wt% of the AZO-precursor solution. Further stirring for 24 hours at 

60°C is performed to ensure the homogenization of the PVP added mixtures, and to induce gelation of 

the inks. Degassing of the sol-gels is achieved by allowing the inks to settle for at least 24 hours. 

2.1.2. TiO2 – TIAA Ink 

Investigation of hybrid TiO2/Ti-organic formulations using Ti diisopropoxide bis(acetylacetonate) (TIAA) 

was performed as preliminary studies to assess their feasibility, such discussion is included as Appendix 

B. 

For the TiO2-TIAA ink system, a variation of a solution based TIAA ink system[124,125] was implemented 

by the incorporation of TiO2 crystalline nanoparticles to obtain a hybrid (organic-inorganic) Ti-based 

system. PVP Mw 8000 – Acros Organics, or PAA Product #323667 – Sigma Aldrich, and a third of the total 

ethanol are mixed in a glovebox in N2 atmosphere. Once solubilized, the Titanium IV diisopropoxide 

bis(acetyl acetonate) (TIAA) is added and stirred until homogenous. Separately, ~10% of the remaining 

ethanol, the DI water and ammonium hydroxide are vortex-mixed. In parallel, the TiO2 particles (Titanium 

(IV) oxide TiO2 nanopowder (~21 nm diameter) Aeroxide® P25 (70% Anatase, 30% Rutile) – Sigma Aldrich 

(when adding crystalline TiO2 phase), and the rest of ethanol are mixed by sonicating (for ~ 1 min) and 

stirring (for 5 min) twice in an alternating pattern, to thoroughly disperse the particles. The TiO2 mixture 

is dropwise incorporated to the TIAA solution while stirring until homogeneous. Then, the 

ethanol/water/ammonia solution is also incorporated in a dropwise manner and kept closed until 

homogeneous. The temperature is raised to ~60°C and left stirring for ~17 hours in an open vial to allow 

for the solvent to evaporate thickening the ink. The different precursor ratios are (TiO2 variable : Polymer 

1 : Ethanol 48.6 : DI water 18.5 : Ammonium hydroxide 1.8 : TIAA 4.6) in mol. 

2.1.3. TiO2-TALH Ink 

The use of water-compatible Ti-organic precursors such as TALH, allows better manipulation of the inks, 

and aids preventing undesired issues such as clogging of the printing systems, as discussed in chapter 5, 6 

and Appendix B.  
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For the synthesis of this ink system, appropriate amounts of TAHL solution (50 wt% in H2O) – Sigma 

Aldrich, DI water and TiO2 nanoparticles (Aeroxide® P25)– Sigma Aldrich, were mixed and set to stir for 

about 10 min. Then, the inks were sonicated in a water/ice bath for 15 minutes while occasionally stirring 

to prevent sedimentation.  

 
Figure 6. Schematic of the synthesis process for the TALH:TiO2 inks and picture of a vial containing one of the 
formulated inks. 

The TALH concentration was kept to 0.4M for all formulations, whereas the crystalline TiO2 phase was 

varied in TALH:TiO2 molar ratios of (1:1, 1:3, 1:6 and 1:12). In parallel, DI water and PAA Product #323667 

– Sigma Aldrich or PVP Mw 8000 – Acros Organics, were mixed and stirred until becoming homogeneous 

with a magnetic stirrer. The TAHL:Polymer molar ratio was kept equal to 1. The polymer solutions were 

dropwise added to the titania solutions while stirring and set for sonication for 15 more minutes. The 

obtained inks were stored in the same vials used for preparation and were magnetically stirred right 

before deposition. 

2.1.4. TiO2-TALH – Foam 

To synthesize the foam, the crystalline TiO2 particles are incorporated to the TALH and water solution to 

form the aqueous phase, then the PAA solution is incorporated, and the mixture is sonicated and stirred 

to ensure good dispersion. In parallel, the oil phase constituents: stearic acid (SA), polyoxoethylene 

sorbitan monostearate (P-60) and lanolin are mixed in the appropriate ratios and allowed to homogenize 

at ~70°C. Once homogeneous, the aqueous colloidal system is dropwise added to the oil phase while 

stirring. The temperature is kept to 70°C while blending these two systems, that are slowly allowed to 

cool by continuously stirring after the heat is stopped once the mixture is homogeneous. Finally, the 

ethanolamine is dropwise added to the resulting emulsion and allowed to stir until homogeneous. At this 

point the air bubbles are incorporated by frothing the mixture with an electric mixer. 
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Figure 7. Schematic synthesis process for the TALH:TiO2 foams. 

The resulting emulsion increases its volume and flows readily through different diameter nozzles. After 

the foam structures have dried by allowing them to evacuate the solvent while left undisturbed and 

without additional heat of ventilation sources, thermal annealing and/or UV treatments are performed in 

order to transform the TALH into TiO2 around the existing TiO2 particles forming the TiO2 open-cell foam, 

and to decompose the oil phase constituents.  

 

The nominal composition of the foams is: aqueous phase (in mol ratio): (TALH 1 : TiO2 variable : PAA 1 : DI 

water variable); oil phase ratios (including MEA or TEA, in wt%): (SA 33.44 : P60 33.39 : Lanolin 27.84 : 

MEA/TEA 8.34); the mole ratio of SA to TALH is 2 and 1 for the L75-S3-O22 and L75-S5.5-O19.5 

formulations, respectively. The L-S-O notation is used to indicate the foams liquid-solid-oil volume ratio, 

these may be varied.  

 

 

 

 

 

 

 

 

 



16 
 

Table 2. TALH Foam precursors. 

 

Precursor Function 
Chemical 

Formula 
Chemical Structure 

Molecular 

Weight 

(g/mol) 

Concentration 

(mol) 

DI Water Solvent H2O 
 

18.015 Variable 

Titanium 

bis(ammonium 

lactato) 

dihydroxide – 

TALH 

Ti-organic 

(precursor for TiO2 

bridging 

structures) 

[CH3CH(O-

)CO2NH4]2Ti(OH)2 
 

294.08 1 

Titanium 

Dioxide 

Nanoparticles 

(20 nm 

diameter) – 

Aeroxide® 

Primary particles 

(target material 

composition) 

TiO2 
 

79.865 Variable 

Polyacrylic Acid 

– PAA 

Adhesion 

promoting 

Nozzle-clogging 

preventing 

(C3H4O2)n 

 

72.033 1 

Stearic Acid 
Oil phase 

constituent 
CH3(CH2)16COOH 

 

284.304 

1-2 mol / 

Oil-phase 

(33.44 wt%) 

Lanolin 

Oil phase 

constituent 

Emulsifier 

---- ---- ---- 
Oil-phase 

(27.84 wt%) 

Polyoxoethylene 

Sorbitan 

Monostearate 

Oil phase 

constituent 

Surfactant 

Emulsifier 

C64H126O26 

x+y+z+w=20 

 

1311.046 
Oil-phase 

(33.39 wt%) 

Ethanolamine Oil phase 

constituent 

Surfactant 

Emulsifier 

NH2CH2CH2OH 
 

61.064 

Oil-phase 

(8.34 wt%) 
Triethanolamine C6H15NO3 

 
149.130 
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2.1.5. Ag-decorated TiO2 Inks and Foams 

The synthesis of the Ag-decorated TiO2 inks/foams uses the TiO2:TALH system as mixture precursor. The 

incorporation of Ag is performed via the encapsulation of solubilized Ag-acetate in a second phase liquid 

solution and its subsequent blend with the TiO2:TALH mixture. Two systems are described based on the 

kind of encapsulation medium used (i.e., oil-based vs. xanthan gum (XG) aqueous-based). These different 

encapsulation media are used because to assess their potential used, and since their intrinsic differences 

are expected to affect the decorative materials formation. 

Ag-Decorated TiO2 Foam (Oil-based) 

To prepare the oil-based Ag-decorated foams, the oil phase constituents (SA, P-60 and lanolin) are mixed 

and stirred until homogeneous at ~70°C. The Ag-acetate solution (Ag-acetate in ethanol, and the 

corresponding ethanolamine or triethanolamine) is added to this mixture and allowed to homogenize, 

afterwards the solvent is allowed to evaporate while stirring. In parallel, the TiO2 particles and TAHL 

aqueous solution are mixed and sonicated, and the PAA is dropwise added to the TiO2 mixture and further 

mixed and sonicated until becoming homogeneous. The latter, is dropwise added to the oil phase Ag-rich 

solution and complete homogenization is allowed at ~70°C. Once homogeneous, the mixture is cooled 

down by stopping the heat while magnetically stirring. The air bubbles are then introduced with the aid 

of an electric wisk-like frother for ~ 6-8 min. The Ag precursor added, is calculated to yield 1.2 wt% of 

metallic Ag from the total TiO2-Ag final composite (i.e. excluding organic molecules). 

Table 3. Ag-rich oil phase constituents. 

Precursor Function 
Chemical 
Formula 

Chemical Structure 
Molecular 

Weight 
(g/mol) 

Concentration 
(wt%) 

Stearic Acid Oil phase constituent CH3(CH2)16COOH 
 

284.304 33.44 

Lanolin 
Oil phase constituent 

Emulsifier 
---- ---- ---- 27.84 

Polyoxoethylene 
Sorbitan 
Monostearate 

Oil phase constituent 
Surfactant 
Emulsifier 

C64H126O26 

x+y+z+w=20 

 

1311.046 33.39 

Ethanolamine 
Oil phase constituent 

Surfactant 
Emulsifier 

NH2CH2CH2OH  61.064 

8.34 

Triethanolamine C6H15NO3 
 

149.130 

Ethanol 
Solvent for  

Ag-precursor 
CH3CH2OH 

 
46.07 1 mL 

Ag-acetate Ag precursor CH3COOAg 

 

166.892 

1.2  wt%  
(0.3 at%) 
of target  
TiO2-Ag 

composite 
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Ag-Decorated XG TiO2 Inks (Hydrocolloid-based) 

For the synthesis of the oil-free Ag-decorated foams, xanthan gum is used as viscosity enhancer. To 

prepare the inks, appropriate amounts of TiO2 nanoparticles are mixed with TALH and DI water. This 

mixture is stirred for 15 min, and sonicated in a water/ice bath for 15 min to ensure thorough dispersion 

(while occasionally stirring to prevent sedimentation). In parallel a PAA - Xanthan gum (XG) aqueous 

solution is prepared and added dropwise to the titania mixture while stirring. The resulting mixture is 

sonicated for 15 min and set to stir for 15 more minutes before frothing. For the encapsulation of the Ag 

ions, Ag-acetate is mixed in ethanol and solubilized by adding ammonium hydroxide aqueous solution. 

The Ag-acetate:NH4OH ratio is (1:9) in mol. This Ag-rich solution is added to the PAA-XG solution and 

allowed to homogenize before being added to the titania mixture. Aluminum foil is wrapped around all 

vials containing Ag to prevent light induced reactions or degradation. The inks are frothed for ~ 8-20 min 

using a wisk-like attachment and a mechanical mixer to incorporate air bubbles. The Ag content is kept 

identical, and equivalent to 1.2 wt% of the final TiO2-Ag composite. 

Table 4. Ag-decorated XG TiO2 inks constituents. 

Precursor Function 
Chemical 
Formula 

Chemical Structure 
Molecular 

Weight 
(g/mol) 

Concentration 
(mol) 

DI Water Solvent H2O 
 

18.015 128.4 

Titanium 
bis(ammonium 
lactato) dihydroxide 
– TALH 

Ti-organic 
(precursor for TiO2 

bridging structures) 

[CH3CH(O-
)CO2NH4]2Ti(OH)2 

 

294.08 1 

Titanium Dioxide 
Nanoparticles (20 
nm diameter) – 
Aeroxide® 

Primary particles 
(target material 

composition) 
TiO2 

 
79.865 12 

Polyacrylic Acid – 
PAA 

Adhesion promoting 
Nozzle-clogging 

preventing 
(C3H4O2)n 

 
72.033 1 

Xanthan Gum – 
XG 

Rheology 
enhancer 

(C35H49O29)n 

 

933.398 7.72 × 10-5 

Ethanol 
Solvent for 

Ag precursor 
CH3CH2OH 

 
46.07 1.71 × 10-2 

Ammonium 
Hydroxide 

Solubilizing agent 
for Ag precursor 

NH4OH 
 

35.046 3.16 × 10-3 

Ag-acetate Ag precursor CH3COOAg 

 

166.892 

3.52 × 10-4 

 

(1.2 wt % of 
target TiO2-Ag 

composite) 
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2.2. Inks Characterization 

The viscosity of the formulated inks was measured with a Brookfield DV-II+ Pro rotational viscometer at 

various shear rates ranging from 0 to 1000 s-1. Contact angle measurements of the ink and of DI water (as 

a control fluid) were obtained by image analysis of side-view pictures of 2 µL droplets on various 

substrates (glass, polyethylene naphthalate (PEN), ITO coated polyethylene terephthalate (ITO/PET), and 

ITO/glass). Thermogravimetric analysis (TGA) of the inks was performed with a Pyris 1 TGA PerkinElmer 

thermogravimetric analyzer from room temperature to 900°C and a heating rate of 5°C/min or 10°C/min. 

For the foams, TGA was performed using a TA instruments analyzer from room temperature to 600°C and 

a heating rate of 10°C/min. Particle size was determined by dynamic light scattering (DLS) using a Zetasizer 

Nano – ZS DSC machine; as well as through electron microscopy observations. 

2.3. Inks Deposition 

Doctor blading (DB) of the films was performed using Scotch tape 3M 600 (58.4 m thickness) as spacer, 

on cleaned glass slides, ITO/glass, and/or on ITO/PET OC300/ST504/7mil Solutia TM substrates. CDW of 

films and patterns was performed using a commercially available Nordson JR2300N robotic arm, or a lab-

built robotic deposition system with pressure and movement controlling systems in x-y-z  directions, 

equipped with a Performus V pneumatic pressure ink dispenser system. The directly written samples were 

prepared on various substrates (glass, PEN, ITO/glass, ITO/PET, and flexible Willow® glass CORNING). The 

direct writing parameters (writing speed and extrusion pressure) were varied to investigate the printing 

ranges of the formulated inks keeping a distance to substrate of around 1 3⁄   to  2 3⁄   × nozzle diameter 

for the Ag and titania inks. The distance was kept to 1 nozzle diameter for the ZnO and the TiO2 foams. 

Appropriate values for this distance are highly dependent on the ink viscosity. Stainless steel and 

polymeric nozzles with inner diameters of 100, 150, 200 and 840 m, were used for the ink/foam 

depositions depending on their rheological and chemistry properties.   

UV treatments were performed on the deposited films with a SpectroLINKERTM XL-1500 Spectroline® UV 

crosslinker machine with G15T8 bulbs of 15 watt – 254 nm radiation wavelength. High-temperature 

annealing was performed in a box furnace KSL 1100X, MIT Corporation, or a muffle furnace equipped with 

a SMART-3 fuzzy logic temperature controller Temp,Inc.®; and low-temperature annealing in a Lindberg 

Blue M3057 oven; all annealing processes were held for 30 min with heating and cooling rates of 5 °C/min, 

unless otherwise indicated. For the titania foams, the cooling rate was 1°C/min. For the ZnO structures, 

drying of the structures was induced by placing the samples on a hotplate at 200 °C for 10 min. Sintering 

of these samples was performed at 250, 450, 500 and 525 °C, respectively. 

Spanning features of TiO2 foams were fabricated on regular and hydrophobized glass slides,  using a 

variation of the method developed by Banerjee et al.[179] Briefly, tetraethoxysilane (TEOS), and 

perfluoropolyether-alkoxysilane (PFPE) were mixed until homogeneous using a mole ratio of 1:0.005 

TEOS:PFPE. In parallel, a HCl aqueous solution (1:0.025 water:HCl mole ratio) was added dropwise to the 

TEOS-PFPE mixture while stirring. The solution was left under stirring for 24 h, after which ethanol was 

added to match a mole ratio of 1:3.75 water:ethanol. The substrates were dip-coated using a KSV 

Instruments dip-coater with a withdrawal speed of 50 mm/min and allowed to dry for approximately 30 

min before curing at 200 °C for 4 h; the heating and cooling rates are kept to 5 °C/min. 
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2.4. Films/Patterns Characterization 

Optical images of the printed patterns were taken with a Dino Edge-Digital programmable optical 

microscope, and a Leica optical microscope (magnifications of 10, 20, 50X) equipped with a Guppy Allied 

Vision Technology frame grabber. Scanning electron microscope (SEM) images were obtained with a 

Hitachi S-4700 SEM; SEM and energy dispersive x-ray spectroscopy (EDS) data were taken with a JEOL 

JSM-7600F SEM. No sample preparation was necessary for imaging of the Ag-patterns or the titania 

films/patterns on conductive substrates. However, (~6-8 nm) Au/Pd coatings were deposited for imaging 

the titania foams prepared on glass. The Ag-decorated TiO2 samples were prepared on ITO glass substrates 

to avoid further coatings for SEM imaging. Particle size analysis of the Ag surfaces was conducted from 

image analysis of the SEM pictures with ImageJ NIH software. X-ray diffraction (XRD) patterns were 

obtained with a Bruker D8 Discovery XRD machine in 1D mode and 40 kV – 40 mA configuration, and a 

PANalytical X’Pert Pro X-ray diffractometer with power settings of 45 kV and 40 mA. The data were 

analyzed with the aid of the X-Pert Highscore Plus PANalytical software. 

Electrical resistivity measurements of the Ag-patterns were taken by Hall Effect with an Ecopia HMS-3000 

measurement system with a magnetic field of 1.02 T. Light transmittance measurements of the Ag-

patterns were taken between 500 – 900 nm wavelengths with a JAZ UV-Vis Spectrometer OceanOptics. 

Mechanical tensile testing was performed using an ADMET MTESTQuattro mechanical testing unit under 

monotonic, and cyclic-load testing conditions; for the cyclic testing, a tensile sawthooth profile up to 2% 

strain with a servo control displacement rate of 2 mm/min was applied. Electrical resistance variation was 

monitored in-situ using a digital multimeter Agilent 34970A along with a Dino Edge-Digital optical 

microscope to monitor potential failure mechanisms on the sample surface. 

Mechanical flexibility assessment of the ZnO structures was performed with an ADMET MTESTQuattro 

mechanical testing unit, using a servo control displacement rate of 2mm/min up to 58.8 mm bending 

radius. 

For the titania samples, Raman spectra were obtained with a Reinshaw INVIA Raman spectrometer with 

a 532nm wavelength excitation source at 5% power and 50X magnification. The acquired spectra were 

analyzed with the WiRE 3.4 Renishaw software. X-ray photoelectron spectroscopy (XPS) was conducted 

with a PHI 5000 VERSAPROBE 5700 XPS/UPS machine with 284.8 eV C1s (C-C binding energy) internal 

calibration standard. A monochromated 25 W, 15 kV Al Kα x-ray source (photon energy of 1486.6 eV) and 

a hemispherical analyzer were used, at ~ 5x10-10 Torr pressure in the main chamber; the acquired spectra 

were analyzed using the MultiPak v9 software. Transmission electron microscope (TEM) images and 

selected area electron-diffraction (SAED) patterns were acquired using a JEOL JEM-2100 TEM machine at 

200 kV acceleration voltage equipped with a Gatan Erlangshen ES500W digital camera and a Gatan Orius 

SC600 high-resolution digital camera. Thickness measurements for the directly written samples were 

performed with a Bruker Dektak XT Profilometer, with a 2 m stainless steel tip. Thickness measurements 

for the directly written foam films and 3D structures before and after sintering, were obtained though 

image analysis of optical micrographs using ImageJ software (NIH). Roughness measurements of the 

samples were performed by profilometry and atomic-force microscopy (AFM). The roughness 

measurements from profilometry were obtained with the aid of the Vision64 profilometer controller 

software. AFM images were obtained with an Agilent 5500 SPM atomic force microscope using tapping 
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mode. The AFM tip has a radius of ~2-5 nm and a resonant frequency of ~300 kHz, the tip is made of Si 

with a 100 nm Al coating on the back side. AFM image analysis was conducted using Gwyddion 2.45 

Software. 

Microporosity analysis (by monitoring nitrogen gas absorption) of the TiO2 foams, was performed with an 

ASAP2020 accelerated surface area and porosity system Micromeritics®; degassing of samples for 

microporosity measurements was performed using a Micromeritics vac-prep system for 24 hours (no 

heat) and 3 h at 110°C. 

Heterogeneous photocatalysis degradation of a 10 M methylene blue (MB) aqueous solution was 

performed by placing samples of 2 cm X 1 cm active area on ITO/PET substrates, from TALH:TiO2 (1:6) and 

(1:12) inks in identical beakers, each containing 20 ml of solution. A control solution was also placed in 

identical conditions and was labeled as Blank. Once immersed in the solution, the samples were left to 

stabilize for 30 minutes in the dark to allow for dye adsorption on the TiO2. The UV irradiation, in 15 min 

steps, was performed in the SpectroLINKERTM XL-1500 Spectroline® UV crosslinker machine at 254 nm 

radiation wavelength. The samples were placed at 9.5 cm distance from the bulbs, which deliver an 

average intensity of ~6000W/cm2. Light absorbance of MB solutions was measured through UV-Visible 

spectroscopy with a Lambda35TM UV-Vis spectrometer PerkinElmer, or a JAZ UV-Vis spectrometer 

OceanOptics. The spectra were taken from 196 nm to 1100 nm wavelength in polystyrene disposable 

cuvettes 

UV-Vis measurements of Ag-TiO2 composite films were taken using a Shimadzu UV-2600 

spectrophotometer with an integrating sphere, and equipped with a D2 deuterium lamp and a WI halogen 

lamp for the ultra-violet and visible/near-infrared spectrum ranges, respectively. 

Films and devices IV-characterization was executed with an Agilent 4155C semiconductor parameter 

analyzer station. Variation of the light conditions was achieved with the aid of an Acton SP-150 

monochromator, equipped with a TS-428 tungsten/halogen lamp, interfaced with the SpectraSense 

software – Princeton Instruments. The ambient (dark) and specific wavelength light intensities were 

measured with a PM100D compact power and energy meter console – Thorlabs. 
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Chapter 3: Ag System 

The increasing demand for conducting, yet optically transparent/translucent materials for opto-electronic 

applications [94,113], makes metallic thin-films and patterns on flexible substrates alternative candidates 

to replace transparent conducting oxides (TCOs). This is due to their broad utilization as contact and 

interconnect materials for device integration in modules and large-area panels[71,73,112]. Therefore, 

investigations on the synthesis, printing, processing and performance of metal nanoparticle conductive 

inks, is of paramount importance for the additive manufacturing of such components. 

The investigated Ag ink system, consists of Ag nanoparticles stabilized with PAA as capping layer, and 

dispersed in a cellulose aqueous solution. The use of different reducing agents and the Ag-particle 

synthesis conditions are investigated to control the particle size and product yield. Also, the rheological 

and printing parameters for robotic deposition of the synthesized inks are explored. Finally, 

characterization of the microstructural, optical, electrical and mechanical properties, is performed to 

establish relationships with the materials printing and processing conditions. 

 
Figure 8. Ag particle ink system. 

 

3.1. Ag Particle Nucleation Process: Influence of pH, Viscosity and Temperature 

The nucleation of Ag nanoparticles from ionic solutions in the presence of a reducing agent is a rather 

widespread synthesis route. Basically, a Ag-precursor is solubilized and mixed with a polymeric capping 

agent, which prevents the uncontrolled aggregation and growth of the particles[6,19].  The reducing agent 

on the other hand, triggers the particle nucleation and growth[19].  

The initial synthesis route adopted from Ahn et al.[121], used DEA as reducing agent at room temperature 

~25°C, yielding approximately 10% of the targeted Ag yield (100%). The main challenge in the process is 

the great kinetic and electrostatic stability of the obtained Ag nanoparticles (~ 5 to 10 nm as measured 

using DLS) in the precursor solution impairing their extraction, see Figure 9. The substitution of DEA for 

ethanolamine, also known as mono-ethanolamine (MEA) exhibiting lower boiling temperature than 

diethanolamine[180], signified the potential elimination of the particle extraction stage from the 

precursor solution (at early stages of the ink design, for this investigation) enabling low-temperature 

fabrication and maximizing the Ag particle yield.  
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Figure 9. SEM image of the as prepared silver nanoparticles from DEA solutions. 

The exchange of DEA for MEA in the synthesis route, resulted in very slow nucleation of the particles (the 

process which customary took ~24 hours, resulted in nucleation times of ~1 week to yield a solution with 

similar coloration), which is mainly attributed to the higher pH of MEA when compared to DEA. 

Accordingly, a decrease in the amount of reducing agent (MEA) was implemented, implying a more 

economical fabrication route, and potentially facilitating the particle extraction by centrifugation due to 

the lower viscosity exhibited by MEA when compared to DEA (16.2 and 380 cP, respectively at 30°C[180]). 

The particle nucleation, monitored by Ag/PAA solids yield, was found to be approximately equivalent for 

equivalent pH conditions of MEA and DEA, yielding ~11% of Ag/PAA solids. Increasing the temperature 

during nucleation (using MEA) resulted in increased particle size to ~280 nm, see Figure 10. The remaining 

precursor solution, a Ag-concentrated fluid, was kept undisturbed in the dark to allow for particle 

sedimentation and further extraction. After 15 days, the sediments from the precursor solution were 

recovered by centrifugation with a Ag/PAA yield of ~61% and an average particle size of ~300nm, 

suggesting a particle growth of ~7.41%. This particle growth behavior provides information about the 

critical factors involved in the process, i.e. time and temperature; the latter exhibiting a more pronounced 

effect. 

 
Figure 10. SEM image of the 15 days aged particles. 
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3.2. Ink Properties and Robotic Deposition 

The formulated Ag ink, with an approximate composition of Ag/PAA particles 70 wt%, 29.4 wt% water and 

0.6 wt% methyl cellulose, exhibits a shear-thinning behavior as indicated by the viscosity measurements 

(see Figure 11).  

 
Figure 11. Viscosity as a function of shear rate for the prepared Ag ink. 

The concomitant relation between the printing parameters and the ink properties is of great importance 

when utilizing robotic deposition. Based on the viscosity ranges of the prepared Ag ink, and using a nozzle 

to substrate clearance of ~ 1 3⁄  of the inner nozzle diameter, printing speeds between 3 and 10 mm/s and 

ink extrusion pressures of 69 to 140 kPa, led to patterns with line width in the μm range. Speed/pressure 

combinations, such as 7 mm/s and 138 kPa, result in well-defined patterns. The ink spreading for this 

working combination is ~ 2 times the initial ink-filament diameter (the same as the nozzle inner diameter). 

Controlling of the spreading can be realized by using lower pressure, or by increasing the writing speed as 

shown in Figure 12. Depending on the application, anchoring of the inks to the substrate as a critical 

adhesive characteristic, may benefit from relatively good wetting/spreading of the inks. 

 
Figure 12. Ag-printed patterns on PEN. Effect of printing speed and pressure. 
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Consequently, the pattern feature sizes influence other properties such amount of transmitted light 

through the sample pattern, see Figure 13.  An inverse relation between the area covered by the printed 

Ag-patterns and the transmitted light (measured from UV-Vis spectrometry) is observed for all the 

fabricated designs. Higher light transmission is measured for patterns with smaller Ag-covered area 

(parallel lines with average width of 300 μm and variable center-to-center spacing of 500 μm and 1000 

μm). Conversely, for the grid patterns, and wider feature sized patterns, the area covered by Ag is larger, 

and their optical transmittance is compromised. The UV-Vis spectra show oscillating lines which are 

characteristic of Fabry-Pérot fringes resulting from the different materials refractive indexes (Ag and PEN) 

and the interference of partially transmitted and reflected light at their interfaces (Ag surface/air, Ag/PEN 

and PEN/air) [181,182]. 

 

Figure 13. Transmitted light (UV-Vis measurements) and corresponding patterns with line width of 300 μm. 

 

3.3. Patterns Microstructure and Electromechanical Properties 

Lower electrical resistivity values of the printed patterns are obtained as the annealing temperatures are 

increased (see Figure 14). The measured values are comparable to those obtained for similar Ag-particle 

based systems[122] (involving higher temperature post-treatments); and to the highest reported value 

(1.46 × 10-4 Ω cm) of electrical resistivity for annealed ITO on glass[21]. The resistivity values for bulk silver, 

in the order of 10-6 Ω cm, indicate the potential for better performance from this material system. In 

particular, further understanding of the inter-particle surface binding phenomena and the interactions 

with the polymeric capping and stabilizing compound, may lead to better electrical conducting properties; 
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particularly it has been demonstrated  that the stabilization effects of PAA may be tuned after printing by 

applying ionic salt solutions that are able to trigger the coalescence of Ag nanoparticles[6]. Additional 

means to mitigate the counterproductive effects of remnant organic species include the use of alternative 

hydrocolloids such as xanthan gum or guar gum replacing cellulose, which may be beneficial by reducing 

the amount of organics in the ink formulation. 

 
Figure 14. Electrical resistivity of the Ag patterns as measured by Hall Effect. 

 

SEM observations of the annealed Ag patterns show surface morphologies with spherical particles of ~300 

nm, as calculated from image analysis. A slight increase in particle size is observed as annealing 

temperature increases; in agreement with the electrical resistivity trend, decreasing for increasing 

annealing temperature.  

 
Figure 15. SEM images of the patterns surface after different heat treatments. 

 

The obtained XRD patterns, confirm the crystalline nature of the CDW Ag features to be metallic-Ag in 

accordance with PDF 00-004-0783; and the grain size increasing trend with increasing annealing 

temperature (calculated using Scherrer’s formula[183]).  The broad peaks around 2θ values of 49° and 

55.5° correspond to the PEN substrate. Additionally, slight shifting of the (111) peak position (at 38.2°) is 

noted which may suggest the presence of residual tensile stress in the directly written Ag planar structures 

(see Figure 16 (b). 
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Figure 16. (a)  XRD patterns of the CDW Ag arrays after different annealing treatments and (b) Gaussian fit of the 
(111) reflection. 

Table 5. Surface particle size, and Ag grain size dependence on annealing temperature. 

Temperature (°C) *Average Particle Size (nm) **Grain Size (nm) 

25 299.0 ± 188.6 34.853  

90 288.2 ± 178.0 46.934 

120 309.6 ± 160.9 47.313 

150 341.0 ± 182.2 50.989 

 

* From SEM image analysis 

** From XRD data using Scherrer's approximation 

 

The monotonic uniaxial tensile characterization of Ag micro-patterned lines, suggests that the Ag film does 

not fail for up to 10% applied strain; while the acrylic-based layer (~2-4 nm, coated on the PEN surface to 

promote adhesion [184]) fails by forming cracks perpendicular to the applied stress direction (observed 

using in-situ optical microscopy, see Figure 17).  

 
Figure 17.  Optical images of the printed line pattern under monotonic tensile stress. 

Investigation of the printed Ag patterns performance under cyclic tensile loading conditions using 2% 

strain (the failure threshold for most TCO’s on polymeric substrates [8,9,185]), show that the Ag patterns 

remain intact at significantly higher strains than those TCOs can sustain [186]. An arbitrary 20% increase 

in electrical resistance is taken as the onset for potential device failure. Additionally, an electrical recovery 
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behavior upon release of the tensile load is observed, this behavior may be attributed to the organic-

inorganic nature of the ink and the low-temperature annealing treatment restricting the Ag particle 

coalescence and necking [187]. During stress application, the distance between the particles increases 

along the applied stress direction, resulting in a slight increase of the pattern’s electrical resistance due 

to the fewer conducting paths available; upon stress release, the distance between the particles in the 

film is restored leading to electrical resistance recovery by re-establishment of the electron-conduction 

paths. Consequently, these printed structures may be considered for alternative applications such as 

printed strain sensors, electrically conductive printed structures, etc.  

 

Figure 18. Change in electrical resistance of the printed line pattern as a function of cyclic tensile stress loading. 

From the SEM images (se Figure 19), no evidence of structural damage of the Ag film or the PEN substrate 

is identified. Upon tensile stress application, the sample (substrate and printed Ag pattern) deforms; due 

ductile nature of metallic Ag and to its elastic properties, the patterned Ag-film is capable to withstand 

the load within its elastic region [188]. The cumulative increase in electrical resistance upon cyclic loading 

(under the failure limit), may be attributed to slight neighboring particle relative displacements where the 

polymeric material acts as a binding and damping medium. The absence of delamination suggests that 

the applied stress is transferred from the substrate to the film and not arrested at the film/substrate 

interface; and moreover, not generating dislocation multiplication within the film. The film’s porous 

microstructure, allows for dislocation annihilation[189], in turn leading to reliable performance under 

cyclic stress conditions[187].  
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Figure 19. Optical microscope and SEM images of the printed line pattern (a) before and (b) after cyclic tensile stress 
characterization. 

3.4. Concluding Remarks 

Through the investigation of this ink system, important information about the nucleation/growth – time/ 

temperature relationships were established, allowing the manipulation of the processing parameters to 

increase the Ag particle yield with a controlled particle size increment. The studies of the printed 

conductive patterns on plastics from the formulated ink system, indicate that the electrical resistivity 

values obtained at lower annealing temperature conditions are comparable to similar Ag printed systems, 

and are susceptible to improvement, highlighting the potential for controlling the optical transmittance 

properties by varying the Ag area coverage and the resolution of the printed features via the CDW printing 

parameters; for instance, Ag structures with resolution of ~ 5 µm have been reported using solution-based 

low viscosity inks[94]. The electro-mechanical characterization of the printed samples indicates that the 

fabricated electrodes (substrate-Ag printed assembly) are relatively robust systems, displaying failure of 

the substrate before the silver pattern at ~10% strain (monotonic loading). Uniaxial tensile cyclic testing 

at 2% strain, exhibits electrical conductivity recovery behavior upon stress release, highlighting this 

material system potential for alternative applications such as strain sensors, with a cumulative electrical 

resistivity increase of ~16.5% after 1000 cycles which is lower than the threshold for onset of failure of 

conducting films (arbitrarily set at 20%). No evidence of structural damage as cracking or delamination of 

the porous Ag microstructure is observed, resembling relatively reliable structures for cyclic stress 

conditions, at low strains. This is thought to be related to the microstructural properties of the films that 

allow for dislocation annihilation at the particle-particle interfaces. Further characterization of the stress 

threshold values and higher number of stress cycles are proposed. 

  



30 
 

Chapter 4: ZnO System 

The Al-doped ZnO (AZO) sol-gel ink system, consisting of Zn-acetate and Al-nitrate dissolved in 2-methoxy 

ethanol, and using ethanolamine as stabilizer, and PVP as viscosity enhancer; is used to investigate 

important interactions between the AZO structures’ processing and microstructural properties. As 

highlighted in the work of Abidakun [190], the CDW printing conditions affect the morphology and 

crystalline structure of the AZO patterns. For this system, the variation of the printing parameters and 

viscosity properties of the inks resulted in variation of the preferential crystalline orientation of the 

patterned films. However, further investigation of the texturing mechanism was still necessary, since 

there was uncertainty about the evolution of the microstructure during sintering.  

4.1. Rheology and Ink Substrate Interactions 

The measured viscosity values for the 15 and 20 wt% PVP are presented Figure 20 (a), a shear-thinning 

behavior is observed for all the prepared ink systems, that is more significant as the polymer content is 

increased. Such shear-thinning profile is observed to deviate form a linear decreasing pattern for the lower 

range of shear-rates up to ~20 s-1. 

 
Figure 20. (a) Dynamic viscosity versus shear rate, and (b) shear-stress variation with shear-rate for the AZO inks with 
different PVP content. 

Analysis of the shear-stress variation with shear-rate – Figure 20 (b) – using the Herschel-Bulkley fluids 

model (see Eq. 1), yields the k and n parameters as summarized in Table 6. It is observed that the power 

law index n is smaller than the unity, which indicates a shear-thinning behavior. This index is however very 

close to the unity, so that the inks could approximately be treated as Bingham-plastic fluids [149]. Thus, 

the inks will exhibit an initial opposition to flow equivalent to the yield stress, and once surpassed will 

exhibit a shear-stress that increases nearly linearly with the shear rate. The shear-stress dependence on 

shear-rate is shown in Figure 20, from which only a slight shear-thinning trend can be observed. 

Table 6. Yield stress and Herschel-Bulkley parameters for the studied AZO sol-gel inks. 

Ink Yield Stress (y) k n R2 (fit) 

AZO 10 wt% PVP 4.7373 1.2647 0.9897 0.9961 

AZO 15 wt% PVP 17.3980 3.7213 0.9071 0.9942 

AZO 20 wt% PVP 31.3380 9.3951 0.9274 0.9927 
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For CDW, the ink/substrate interactions are of paramount importance influencing the adhesion and 

spreading of the inks onto the substrates. The viscosity [107] and surface energy [191] of the inks are 

determining factors that affect the geometry and resolution of printed features. The contact angles 

formed by the inks on cleaned glass substrates provide an indication of their surface energies, and account 

for the substrate surface wettability by the ink. The higher the contact angle, the lower the wettability of 

the substrate surface by the ink. Measured contact angles are observed to increase as the PVP content 

increases from 10 to 20 wt%, with average values of 51.6o, 64.2o and 73.4o for the inks with 10, 15 and 20-

wt% PVP, respectively[131].  

The work of adhesion (Wa) for the ink/substrate system (see Eq. 2), can be calculated from the contact 

angle (θ) measurements[192], and gives values of 69.42, 61.50 and 55.14 mJ/m2, for the 10, 15 and 20 

wt% PVP content inks, respectively. The correspondence between the increasing contact angle and the 

increasing polymer content, explains the better wetting properties of the lower content PVP formulations. 

The surface tension (γL) value used for such estimations is 42.8 mJ/m2 , which is based on the independent 

solvent and polymer surface tension values[193,194], and considers the rather small variability in the 

surface tension[195] values for the polymer concentration ranges used in the formulations.  

𝑊𝑎 = 𝛾𝐿(𝑐𝑜𝑠𝜃 + 1)                (2) 

An additional compositional factor influencing the ink/substrate interactions is the pK of the different 

inks, as it decreases slightly when the amount of PVP is increased (i.e. increasing the polymer to stabilizer 

(ethanolamine) ratio). Generally, the larger the difference between the ink and the substrate pK 

properties, the better is their anchoring (i.e. adhesion of ink to the substrate). The later observation is in 

agreement with the contact angle measurements, which exhibit better wetting as PVP concentration is 

decreased.  

4.2. Texturing Microstructure Through Printing 

Figure 21 shows the effect of different printing parameter combinations on line width, increasing as the 

volumetric flow-rate increases (i.e. more material is deposited on the substrate). This relationship 

between the printing parameters, ink viscosity and final AZO dimensions has also significant effects on 

the resulting microstructure[131,190]; as can be seen from the XRD patterns, Figure 22. Briefly, the larger 

the printed feature width is, resulting from specific combinations of printing parameters and ink 

viscosities, the more random is the crystalline orientation of the AZO films.  

 
Figure 21.Dependence of printed feature’s width (a), and spreading (b) on writing speed and volumetric flow rate.  
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Figure 22. XRD patterns of films printed from (a – b)15 wt% PVP inks at (a) 150 µm nozzle, 3 mm/s speed, and variable 
pressure; and (b) 200 µm nozzle, 103 kPa pressure, and variable speed; and of films printed at various speeds with 
150 μm nozzles and 103 kPa from (c) 10 wt% PVP and (d) 20 wt% PVP inks. 

 

Figure 23 shows the corresponding Lotgering factor (LF), indicating the texturing degree along the 0002 

direction, as calculated from the XRD patterns of AZO prints with different widths. JCPDS 36-1451 for 

undoped polycrystalline powdered ZnO is taken as reference for the calculation of p0. The Lotgering factor 

accounts for the texturing degree of the crystallized films[196], and is defined for a specific family of 

planes {hkil} as: 

𝐿𝐹 =
𝑝{ℎ𝑘𝑖𝑙}−𝑝0

1−𝑝0
                (3) 

𝑝{ℎ𝑘𝑖𝑙} =
∑ 𝐼{ℎ𝑘𝑖𝑙}

∑ 𝐼 (𝑎𝑙𝑙  𝑟𝑒𝑓𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠)
                (4) 

Where, p{hkil} is the intensity factor for the family of peaks {hkil} of particular texturing, p0 is equivalent to 

p{hkil} from a randomly oriented powder specimen, and I is the x-ray diffraction peak intensity[196]; peak 

area ratios can also be used to calculate LF values[197]. 
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Figure 23. Lotgering factor for (0002) reflections dependence on the width of the directly written AZO structures as 
indication of their texturing degree. 

Thus, it is observed that the texturing of the samples is related to their width, in turn highly dependent 

on the CDW printing parameters. 

The lattice parameters a and c, calculated from the XRD patterns of samples with different PVP content, 

and printed using 3 mm/s writing speed and 103 kPa dispensing pressure, using 150 µm nozzles; and 

treated at 500°C for 2 hours, are summarized in Table 7. These, show no significant variation between the 

different PVP content formulations, which demonstrates that the rheological control agent does not 

induce changes of the crystal unit cell. The calculated lattice parameters are generally smaller than those 

reported for undoped ZnO (JCPDS 36-1451). Such difference corresponds to 1.25 and 1.43% for c and a 

respectively, and may be expected due to the smaller size of the Al atoms when compared to Zn atoms in 

this n-type semiconductor[198]. 

Table 7. lattice parameters for the AZO (Al0.016Zn0.984O) structures, from inks with different PVP content in wt% 

Sample c (Å) a (Å) c/a Ratio 

AZO 10 wt% PVP 5.1375 3.2016 1.6047 

AZO 15 wt% PVP 5.1328 3.2000 1.6055 

AZO 20 wt% PVP 5.1375 3.2000 1.6055 

ZnO JCPDS 36-1451 5.2009 3.2471 1.6017 

 

4.3. Morphology Tuning and Texturing Mechanism 

The microstructural evolution of the printed AZO films (from the ink to the crystallized films), is of interest 

due to the anisotropic properties of ZnO[199], which could be targeted for specific applications. Thus, 

from the reported TGA profiles of the AZO inks (Figure 24) [190], the inflection points At ~225, 420 and 

500 °C indicate the temperatures at which the materials’ most significant transformations occur. The 

inflection at 225°C may be attributed to the evaporation of organic species, whereas those at 420 and 500 

°C correspond to the onset and end of ZnO crystallization, respectively[200]. Accordingly, samples were 
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prepared and sintered at slightly higher temperatures to study their microstructural evolution as the 

sintering temperature was increased. 

 
Figure 24.TGA profiles of Al-doped ZnO inks with 10, 15, and 20 wt% PVP content. 

XRD and SEM studies of such samples (see Figure 25), reveal important mechanistic information that 

further clarifies the microstructural evolution of the AZO structures. Starting at 250°C, intensity for the 

(101̅0) and (101̅1) reflections can be observed. At this temperature, the broad peaks indicate the 

formation of the initial ZnO nuclei. Diffraction from additional planes is observed to become more 

significant than the initially observed for the seed crystallites at higher temperatures (i.e. 450 and 525°C), 

as in the case of the (0002) peak. The microstructural evolution suggests the favoring of the re-

arrangement of the crystals in the (0002) direction as more energy is available to the system, as observed 

from the strengthening of the (0002) reflection intensity with increasing temperature. The morphological 

changes accompanying the crystallographic evolution of the AZO structures, indicate increase in the 

wrinkling of the films as the processing temperature is increased. The arrows in Figure 25, indicate some 

of the wrinkle features formed at 450°C; such wrinkling is more pronounced for the samples treated at 

525°C. These observations, together with those from the XRD studies, suggest the wrinkling to be 

characteristic of further (0002) crystalline oriented films. 

 
Figure 25. XRD patterns and SEM images of the AZO 15wt% structures printed on glass at 3 mm/s and 103 kPa, and 
annealed for 20 min at different temperatures. Arrows indicate wrinkle features; scale bars correspond to 1 µm. 
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The changes in the crystal structure upon different annealing conditions suggest that the wrinkling of the 

films results from the combination of the stress release from the lattice structure, and from the 

macroscopic volumetric change of the film, as the organics in the inks are removed. Wrinkling 

morphologies found in diamond-like films[201] suggest that internal stresses during film formation play 

important roles in the final morphology. The calculated lattice parameters from the XRD data taken at the 

different annealing stages, show a systematic decrease in c of 5.78 % from 250 to 450 °C, and of 6.10 % 

from 250 to 525 °C; while parameter a, exhibits increase of 0.30 % from 250 to 450 °C, and of 0.27 % from 

250 to 525 °C. See Table 8. 

Table 8. Lattice parameters for the AZO (Al0.016Zn0.984O) structures from 15 wt% PVP inks at different annealing 
temperatures. 

15 wt% PVP c (Å) a (Å) c/a Ratio 

250 °C 5.5554 3.2770 1.6953 

450 °C 5.2345 3.2866 1.5927 

525 °C 5.2165 3.2857 1.5876 

 

The proposed film formation mechanism is shown in Figure 26. The formation of nuclei initiates during 

sintering, at the films’ surface - forming a ‘crust’- where the heat and mass exchange rate are maximum; 

and subsequently grow into crystals (Stage A). Additionally, the high molecular weight PVP chains may 

serve as matrix for nuclei formation, as it has been reported that polymers may be used as organic 

interface matrices for the heterogeneous crystallization of ZnO[202]. The growth initiates in the (101̅0) 

and (101̅1) directions (Stage B). The accompanying increase in volumetric contraction as sintering 

continues, induces the wrinkling of the formed “ZnO crust” (Stages C-D), yielding different “wrinkle-

densities” (number of wrinkle features per unit area) depending on the overall volumetric change. Later, 

the contacts among the grains (as crystal growth progresses and more energy is available) favor the 

growth in the (0002) direction, and the next available low energy directions (Stage D). Thus, the direct 

writing of AZO structures using high volumetric rates (resulting in widths larger than ~250 µm), results in 

large volumetric contraction of the films during sintering inducing the “wrinkling” of the deposited films, 

and favoring the stabilization of crystalline orientations different than the expected low surface energy 

(0002). 
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Figure 26 Morphological and crystalline evolution schematic of the directly written Al-doped ZnO films. 

From the conducted microstructural studies, it is observed that as less material is printed, more texturing 

along the (0002) direction is induced; the latter occurring due to the rearrangement of the crystalline 

planes of the densifying film from (101̅0) and (101̅1) directions, and triggered by temperature during the 

sintering process. In simpler terms, when less material is printed, the organic molecules are heated and 

decomposed more efficiently than for bulky prints (transforming a higher amount of ink with the same 

amount of energy). Correspondingly for finer prints, more energy is available for the crystal 

rearrangement in the (0002) direction, once the organic decomposition is finished. Therefore, it is 

postulated that further control of the microstructure is achievable, by controlling the sintering conditions 

to realize highly wrinkled morphologies (from structures printed using high volumetric flow rates), and 

exhibiting highly (0002) textured microstructures. To illustrate the potential of this point, one could 

consider possible the fabrication of highly (0002) textured materials by controlling the sintering conditions 

to induce the rearrangement of the crystalline planes along such direction. This implies that, the complete 

rearrangement of the crystals forming the film is possible, provided that there is sufficient energy; and 

that the wrinkled morphology of the films (dependent on the printing conditions), will thereafter be 

independent of the heat treatment – having reached the maximum volumetric contraction (i.e. minimum 

sintered volume). Studies of the heat treatments to define energetic threshold values for attaining fully 

(0002) textured films, will provide further information about the morphology-texturing relationships. 

Additionally, the work by Abidakun proposes that the crystallite size in these structures, is inversely 

proportional to the amount of printed material, hypothesizing that more nuclei are formed for samples 

printed with larger amounts of the inks; such films were also demonstrated to exhibit higher wrinkling. 

From the observations drawn from the analysis of the microstructural evolution (Figure 25), and 

considering that further wrinkling may lead to higher porosity, a different explanation is proposed; which 

adding to the observations about more efficient organics decomposition for prints with less amount of 

material, takes into account the favoring of the grain growth for films with higher packing (less wrinkling). 

It is, the crystallite size is inversely proportional to the amount of printed material for the sintering 
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conditions studied, since the energy provided for such conditions is used to transform different amounts 

of materials in each case. 

4.4. Illustration of Films Mechanical Flexibility  

Assessment of the mechanical flexibility of these printed systems is interesting from the manufacturing 

perspective, since materials are often subjected to bending and tensile stresses in the manufacture of 

devices. Therefore, AZO structures were printed on flexible glass from the 15wt% PVP formulation and 

subjected to bending as shown in Figure 27. At an approximate radius of curvature of 69.6 mm, cracks are 

observed to initiate on the surface of the printed films, upon the application of external bending stress. 

These cracks propagate perpendicular to the printed structures writing direction, that coincides with the 

films’ longitudinal axis. The AZO structures are subjected to tension by being on the convex side of the 

glass substrate. Figure 27 (f) indicates delamination at the edges of the crack which may have initiated 

brittle film cracking. The lower and upper edges of the crack shown in Figure 27, may suggest that the 

crack propagation occurs from the top surface of the films towards the AZO film/substrate interface and 

across the width of the printed features.  

 

Figure 27. Mechanical testing and optical microscopy images of a typical AZO structure from 15 wt% PVP ink. (a) 
Side-view of film during bending; scale bar is 10 mm. (b) Top-view of the film surface showing the appearance of a 
crack perpendicular to the printing direction (and applied bending stress) at 69.6 mm radius; scale bar corresponds 
to 200 µm.  (c-i) Higher resolution images of the region showing the crack. Images (d) and (h) exhibit the lower end; 
and images (e) and (i) the upper end of the crack. Scale bars (c-e) and (f-i), are 100 µm and 20 µm respectively. Arrows 
in (f) indicate delamination sites. 
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4.5. Concluding Remarks 

A systematic study of the main factors influencing the texturing of Al-doped ZnO structures from sol-gel 

inks using additive manufacturing (printing) has been performed; unveiling their texturing and 

accompanying morphological evolution mechanisms. From such studies, it is observed that as less 

material is printed, more texturing along the (0002) direction is induced; the latter occurring due to the 

more pronounced rearrangement of the crystalline planes of the densifying film with initial (101̅0) and 

(101̅1) nuclei, and triggered by temperature during the sintering process. Additional aspects of the 

investigated metal-oxide sol-gel ink system include rheological behavior, ink-substrate interactions, and 

flexibility assessment.  

Further studies relating the surface wrinkling with the different flexibility degrees and /or the wear of 

these structures, may be of interest for their application in electronic devices subjected to mechanical 

stresses. Along the same line, the effects of the films’ wrinkling on their optical properties is also identified 

as an interesting research area. In particular, the refractive index of the films may change depending on 

the wrinkling density and periodicity; nevertheless, it is out of the scope of this thesis and is left as future 

work.  
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Chapter 5: TiO2: TALH System 

Mesoporous TiO2 films that combine high surface area and efficient electron transport are desired to 

maximize their performance, allowing more efficient photoexcitation/mass-transport dynamics as device’ 

components such as dye-sensitized solar cells, H2 generation anodes, or photocatalytic reactors. The use 

of hybrid organic/inorganic systems as for these type of materials synthesis gains interest mainly due to 

their effect on increasing the electron transport properties [60,64,203,204]. Hybrid systems are thought 

to form continuous-mesoporous architectures by forming semi-crystalline structures that bridge 

neighboring crystals with the Ti-organics in between, as shown in Figure 28 where the TALH (organic Ti-

precursor) forms bridging structures that connect the primary TiO2 particles.  

Different polymer agents are included for stabilization of these colloidal systems and control/modification 

of the ink-substrate interactions. The inks’ primary constituents include inorganic TiO2 nanoparticles 

(main phase), a Ti-organic precursor for TiO2 bridge formation, polymeric agents, and a solvent. The 

presence of polymeric agents serves different purposes, as rheological properties modulators by 

modifying the ink’s viscosity, and also by influencing the ink substrate interactions. The use of polymer 

additives has also been reported to prevent clogging of the printing heads when using ink-jet printing, to 

control the evaporation rate and to reduce cracking of the printed material[88].  

Preliminary attempts for formulation of hybrid systems using a TIAA-based sol-gel formulation[124,125] 

in combination with TiO2 particles, bring up important thermodynamics of mixing issues occurring when 

utilizing this fast-hydrolyzing compound, and underline the need for water compatible and stable 

materials systems. See Appendix B.  

From the different formulations prepared varying the TiO2 particle amount (TIAA:TiO2, 1:1 and 1:2 mol 

ratio), and polymer agents (PAA and PVP), the main challenge encountered was the rapid sedimentation 

of organic TiO2 crystals restricting their manipulation in open-air conditions, the different polymers affect 

the hydrolysis rate of the TIAA to a greater or lesser extent; however, the inks’ rheological properties 

changed within minutes from opening the vials (where the inks were prepared), resulting in spontaneous 

solidification and clogging of the nozzles for CDW.  For the TIAA-PVP formulation without TiO2 primary 

particles (the most stable amongst the TIAA-based systems), spontaneous crystallization occurred 

approximately within 6-24 hours after the inks were prepared. Additionally, it was observed that the 

hydrolyzation behavior was accelerated as larger amounts of TiO2 particles were introduced, suggesting 

potential relationships with the system surface area (TiO2 particles surface area), and potentially 

physisorbed water at the TiO2 particles’ surface.  

5.1. TiO2-TALH Ink 

Titanium (IV) bis(ammonium lactato) dihydroxide (TALH), is a water stable Ti-organic precursor that 

hydrolyses at slow rates in pH neutral solutions[57,205], avoiding the rapid crystallization issues 

experienced with Ti-alkoxides when exposed to water in trace amounts or ambient conditions. Previous 

use of TALH-TiO2 formulations for dye-sensitized solar cells [60,65,206] suggest alternative routes for low-

temperature polycrystalline TiO2 film fabrication. Nevertheless, the utilization of the TALH-TiO2 system 

has been limited to more traditional deposition / printing methods such as DB[60] and ink-jet printing[65]. 
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The implementation of this material system with non-traditional additive manufacturing techniques, such 

as CDW, serves as motivation to explore these environmentally friendly formulations in different viscosity 

and printing regimes. Table 9 summarizes the TiO2-TALH ink components. 

 

Figure 28. TiO2 - TALH ink system. 

 

Table 9. TiO2-TALH inks precursor table. 

Precursor Function Chemical Formula Chemical Structure 

Molecular 

Weight 

(g/mol) 

DI Water Solvent H2O 
 

18.015 

Titanium 

bis(ammonium 

lactato) dihydroxide 

– TALH 

Ti-organic 

(precursor for TiO2 

bridging structures) 

[CH3CH(O-

)CO2NH4]2Ti(OH)2 

 

294.08 

Titanium Dioxide 

Nanoparticles (20 

nm diameter) – 

Aeroxide® 

Primary particles 

(target material 

composition) 

TiO2 

 

79.865 

Polyacrylic Acid – 

PAA 
Rheology enhancer 

Nozzle-clogging 

preventing 

(C3H4O2)n 

 

72.033 

Polyvinylpyrrolidone 

– PVP 

(C6H9NO)n 

 
 

111.084 

 

5.2. Ink Rheology and Thermal Decomposition 

The different TALH:TiO2 ratio inks studied, consisting of a TALH 0.4M aqueous solution and variable 

amounts of TiO2 nanoparticles as (1:1), (1:3), (1:6) and (1:12) in mol:mol, can also be considered as 
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formulations with variable solvent content. Thus, for the lower TiO2 formulations, more solvent is present 

in proportion to the amount of solids, directly influencing the viscosity of the systems as observed from 

the viscosity measurements (see Figure 29). 

Table 10. TiO2-TAHL inks solids and liquid contents. 

Ink TAHL:TiO
2 

(mol:mol) 

TALH  

(wt%) 

TiO
2
 Solids 

(wt%) 

Polymer  

(wt%) 

Water  

(wt%) 

TAHL:TiO2 

(wt%:wt%) 

(1:1) 10.950 2.970  --- 86.080 3.687 

(1:3) 10.330 8.420  --- 81.250 1.227 

(1:6) 9.530 15.530  --- 74.940 0.614 

(1:6) PAA 9.310 15.170 2.280 73.240 0.614 

(1:6) PVP 9.200 14.990 3.470 72.340 0.614 

(1:12) 8.250 26.880  --- 64.870 0.307 

(1:12) PAA 8.090 26.350 1.980 63.580 0.307 

(1:12) PVP 8.000 26.070 3.020 62.910 0.307 

 

 
Figure 29. Viscosity of TALH:TiO2 systems (a) without polymers and (b) with polymers; open symbols correspond to 
(1:6), and filled symbols to (1:12) formulations respectively. 

The formulated colloidal systems exhibit a strong particle aggregation tendency which is evident from the 

sedimentation of the inks with lower viscosity and TiO2 content (1:1), (1:3) and (1:6). As polymer additives 

are incorporated, more stable formulations are obtained reducing clogging of the nozzles when utilizing 

robotic deposition (1:6 and 1:12 inks). The lower viscosity inks are especially suitable for ink-jet 

printing[84,88]; whereas the consistency of the 1:12 formulation resembles that of a slurry, and is suitable 

for CDW and screen printing.  

A slight viscosity decreasing effect of the viscosity of the 1:6 inks as polymers are added to the system, in 

contrast to the increasing effect exhibited for the 1:12 polymer formulations, and is attributed to the 

combination of a reduction of the viscous forces between the TiO2 particles, and the swelling of the added 

polymers in the liquid phase of the inks.  
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The drying characteristics of these ink systems are strongly affected by the amount of solids present; i.e. 

more TiO2 particles imply larger surface area for the solvent to adsorb and to evaporate. As the inks are 

deposited onto the substrates, the aggregation of the particles at the center, characteristic of Marangoni 

flow[207], is more pronounced for the lower viscosity inks with more free volume for the colloids to move. 

This in turn, leads to non-uniform films (thicker and rougher at the center, and thinner and smother 

towards their periphery). This drying behavior is common to the two deposition techniques utilized (DB 

and CDW); as the substrate area wetted by the ink is reduced, the evaporation rate increases (since there 

are more drying fronts) and the mobility of the particles in the inks is resulting in less noticeable 

differences between the inner and outer regions. In Figure 30, the average roughness (measured through 

profilometry) for the thinner and thicker regions are 6.9 μm and 9.6 μm, respectively. 

 
Figure 30. Photograph of a doctor bladed TiO2 film from a low viscosity ink formulation (TALH:TiO2 1:4.5 no-polymer) 
exhibiting strong particle aggregation. 

Thermo-gravimetric analysis (TGA) of representative formulations, show how the different components 

in the inks evacuate the system through evaporation or thermal degradation, and also where the material 

phase transitions may occur. Around ~120 °C, evaporation of the majority of the solvent is observed; the 

inflection points at ~150°C, ~325°C and ~425°C, are attributed to the onset for TALH degradation and TiO2 

initial formation, TALH transformation into amorphous TiO2, and amorphous TiO2 transformation into 

anatase phase, respectively. This typical TGA profile (for all the inks) could be analyzed as the 

superposition of the TGA curves for the main constituents of the inks. For the TALH 2.08M precursor 

aqueous solution these inflections are the most pronounced (being an organic compound in solution); 

whereas the TGA profile for the crystalline phase (TiO2 only – Aeroxide ®) shows very small weight 

changes as thermal energy is added to the system. The formulated inks, with a TALH concentration of 

0.4M, exhibit less pronounced transitions; and due to the presence of already crystalline material (TiO2 

nanoparticles) further dampening of the magnitude of their change in weight is observed as temperature 

is increased.   
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Figure 31. TGA of TALH:TiO2 systems (a) without polymers and for (b) 1:6 different polymer formulations. 

A transition at ~400°C, characteristic of amorphous TiO2 into anatase phase [208] is identified for the bare 

TiO2 nanoparticles, suggesting the presence of trace amorphous TiO2, since the precursor TiO2 is already 

in a thermodynamically stable phase (anatase or rutile). As reported in literature, depending on  the flame 

conditions [209,210] used in the Aerosil® (synthesis) process, different amounts of amorphous TiO2 can 

be expected. 

5.3. CDW of TiO2-TALH Inks 

The viscosity ranges from the studied TALH:TiO2 formulations, see Figure 29, allow printing of 2D film and 

pattern structures. The use of polymeric additives reduces significantly the clogging issues when robotic-

printing 1:6 and 1:12 TALH:TiO2 formulations, consequently yielding prints with less defects such as 

discontinuities or uneven coverage. Additional uses for polymeric agents in inks reported in literature 

include control of the evaporation rate and nozzle clogging prevention [88]; and films’ crack reduction 

and substrate wetting modification [60,107,211]. Nozzle clogging is also caused by particle aggregation in 

the colloidal systems; among the investigated inks, the 1:12 formulations exhibited the most kinetically 

stable behavior, resulting in better printability. Inks with lower initial TiO2 content exhibit strong 

sedimentation and are not suitable for robotic deposition without the use of stabilizing agents. The 

viscosity of these ink systems plays an additional role in the printing mechanism, as capillary effects are 

more significant for lower viscosity inks. Consequently, printing of inks with low viscosities (bellow those 

measured for 1:6 TALH:TiO2), may resemble the ink-flow dynamics of slot-die coating[212] – with the 

differentiation of CDW allowing the patterning of the inks by having a stage-movement in the x-y-z 

directions. 

The direct writing parameters include ink extrusion pressure, printing nozzle inner diameter, dispensing 

height (i.e., the nozzle-substrate clearance), and writing speed (speed at which the printing nozzle 

traverses the substrate surface)[93]. The direct writing ranges found to yield the best quality (i.e. 

continuous and uniform) and most reproducible films for the 1:12 no-polymer ink, are 55 kPa to 70 kPa 

pneumatic pressure, 5 mm/s to 10 mm/s writing-speed, and ~60 μm to 80 μm dispensing height using a 

100 μm – nozzle size. As polymers are added to the formulations, the robotic printing spaces broaden into 

larger printing regions (see Figure 32).  
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Figure 32. Direct writing parameter maps for the different TALH:TiO2 polymer added inks on ITO/PET substrates. 

The writing speed is observed to be a determining parameter for obtaining relatively uniform and 

reproducible films and patterns. A relatively slow (~ 5 mm/s) deposition causes the drying front of the 

films to match the deposition speed yielding uniform printed features. However, if the writing speed is 

further decreased, the drying front of the deposited material traveling faster than the ink being deposited, 

results in clogging of the nozzles and discontinuous prints. The concomitant relation between writing 

speed and applied pressure is also of great importance, since too much pressure at low speed results in 

overflow of material and thick films and conversely, high speeds at a given pressure result in thinner films 

and eventually uncovered regions. Additionally, strong TiO2 particle aggregation results in cracking of the 

films (as they dry) if too much material is extruded over a small area. The pressure-speed printing ranges 

for 1:6 inks, are smaller because of the lower viscosity and lower kinetic stability of these inks, when 

compared to their higher initial TiO2 content counterparts.  

The nozzle-substrate clearance is another important parameter in consideration; an excessively large 

distance (at a 90° angle position between the nozzle axis and the substrate surface), may cause the inks 

to climb up the nozzle outer walls due to the inks’ surface tension. On the other hand, if the nozzle is too 

close to the substrate, the profile of the deposited material is mechanically altered by the nozzle and may 

present a “valley-like” shape depending on the ink’s elastic properties; furthermore, it will cause larger 

spreading of the inks and thus reduced printing resolution. The latter may be desirable for the fabrication 

of films. 
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The assessment of the ink-substrate interactions is crucial to address potential problems of new materials 

systems, such as ink-substrate incompatibility (non-stickiness) and/or material delamination.  The 

spreading of the inks and the thickness and micron-scale roughness of the printed films are found to be 

strongly related. Increase in the material being deposited (from increase in pressure at a fixed writing 

speed), results in larger spreading, thicker and rougher prints. Spreading, highly dependent on the ink-

substrate interactions as observed from the contact angle results, exhibits larger values for the lower 

initial TiO2 particle concentration inks (higher solvent content) than for the 1:12 formulations. Typically, 

1:12 TALH:TiO2 thick films of ~70 μm to 80 μm thickness and of ~10 μm to 19 μm roughness; and thinner 

films of ~20 μm to 30 μm thickness and of ~4.5 μm to 6.5 μm roughness are obtained using CDW. Similarly, 

1:6 TALH:TiO2 films of ~ 50 μm and ~20 μm thickness, exhibit ~20 μm and ~5 μm roughness, respectively. 

Additionally, it is found that the different polymers’ chemistries greatly influence the inks’ 

spreading/wetting of the substrates. Moreover, the direct writing parameters are observed to be affected 

by the choice of the polymers included in the formulation; generally, larger successful printing ranges are 

obtained for the more acidic (PAA) formulations on ITO/PET substrates, in agreement with the contact 

angle measurements. 

 

 
Figure 33. Contact angle of (a) different particle concentration inks on glass and PEN substrates; and of (b) polymer 
added formulations on ITO/PET substrates. 

 

The microstructure of the prepared samples (Figure 34) show porous particle-aggregate films from all ink 

formulations regardless of the initial TiO2 particle concentration or the material deposition method (DB 

or CDW). Though slight reduction of the films’ cracking is observed for the polymer formulations, the 

similarity of the films’ surface microstructure is mainly attributed to the strong particle aggregation in the 

colloidal systems. Electrostatic stabilization of the TiO2 particles may be induced by changing the pH of 

the inks. The isoelectric point of TiO2 is ~ 6.25 [213]; thus, the acidic character of the PAA may favor the 

stabilization of the dispersions compared to PVP (being less acidic).  Investigation of the surface charging 

using z-potential measurements of the primary particles in different pH suspensions will provide further 

routes for controlling the aggregation. 
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Figure 34. SEM images of the surface of (a) directly written TiO2 films, from TALH: TiO2 (1:12) precursor inks; and (b) 
of doctor bladed (DB) films, from (1:6) and (1:12) TALH: TiO2 formulations on Ag/PEN after 6h UV exposure. 

 

5.4. Microstructure and Surface Chemistry 

XRD of the obtained films show characteristic diffraction patterns of polycrystalline TiO2 in anatase and 

rutile phase as expected from the TiO2 particles used for the inks’ preparation. Comparative studies of 

the XRD exhibited by the films with different post-printing energy-treatments, provide insight about the 

effect of such treatments on the films microstructure. The calculated grain size of the different TALH:TiO2 

films, with and without polymers, suggests important mechanisms of TiO2 nucleation and growth. A 

systematic peak broadening of the peaks corresponding to (011) Anatase and (110) Rutile as energy is 

supplied to the system (as heat or UV light) is observed. This broadening indicates smaller crystallite sizes 

as more energy is delivered to the system, as calculated using Scherrer’s equation[183].  
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Figure 35. XRD of (a) TiO2 Aeroxide ® and the different particle concentration films and (b) of the TALH:TiO2 (1:6) 
films with various polymers, after different UV treatments: No Treatment (thin-bottom line), 2h UV (medium) and 
4hUV (dark-top line). (c) Crystallite size change upon different energy input conditions, variation calculated with 
respect to non-treated samples. 

Given the stable nature of the crystalline TiO2, it is hypothesized that the experimentally observed 

decrease in crystallite size for the polycrystalline films corresponds to new TiO2 crystallites formed from 

TALH. XRD of the calcined TALH powder sample shows diffraction typical of anatase phase in accordance 

with PDF-00-021-1272. 

 
Figure 36. XRD spectrum of the 500°C calcined TALH powder sample. 

Except for the 1:6 No-Polymer formulations, all the other analyzed films exhibit TiO2 crystallite size 

decrease upon energy treatments. It is proposed that the reason for such behavior is that the amount of 

TALH to TiO2 is optimum for particle growth from the existing TiO2 crystals initially added to the system. 

In contrast, as polymers are added to the (1:6) formulation, this trend is reversed and smaller crystallite 

sizes are obtained.  

Two possible sites for TiO2 nucleation are, either at high Ti and O concentration regions within the liquid 

phase (in solution), or by self-assembling onto the already ordered TiO2 surfaces from the initially added 

TiO2 particles. As UV exposure is increased from 0 to 4 hours, the diffraction peaks corresponding to the 

anatase and rutile phases broaden, suggesting that the former crystallization mechanism dominates. On 
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the other hand, when thermal energy is supplied to the system (1:6 case), a maximum for the TiO2 

crystallite size at ~ 150°C is observed which may be indicative of growth on existing TiO2 surfaces. Further 

thermal energy input to the system results in crystallization of the remaining Ti and O from the solution 

as individual TiO2 particles, as suggested by the systematic decrease in crystallite size from 150°C to 420°C 

heat treatment.  

During deposition and treatment of the TAHL:TiO2 films produced in the current investigation, there are 

not direct removal mechanisms for the ammonium lactate present (other than thermal or UV-light 

decomposition), therefore small TiO2 crystallites from TALH can be expected; since the ammonium 

lactate ions present, as by-product of TALH hydrolysis, act as a capping layer hindering TiO2 crystallite 

growth.  Neutralization or removal of the ammonium lactate during the synthesis of TiO2 form TALH 

under hydrothermal conditions, indicates that Oswald ripening is prevented by ammonium lactate[205].  

Raman spectroscopy (Figure 37) shows the typical mixed phase TiO2 (anatase/rutile) pattern with energy 

bands in the inorganic region [214–216]. Also in the organic region, ~700 cm-1 to 200 cm-1 Raman shift,  

the ammonium lactate characteristic spectrum is observed [217]; Table 11 contains the detailed Raman 

band – vibrational modes assignment for the prepared films. The anatase to rutile ratio, as calculated 

from the ratio of the integrated areas of the 395 – Anatase and 445 – Rutile peaks[218], is indicative of 

the transformation of the films when treated with UV-light or temperature. All the obtained spectra were 

slightly displaced towards higher energy shift values from 1 to 3cm-1, due to the experimental error 

associated with the equipment and temperature fluctuations, and the presence of organic molecules 

adsorbed onto the TiO2 surface[219].  

 

Figure 37. Visible Raman λ=532nm for the as dried (No treatment) TALH:TiO2 inks (a) inorganic region (b) organic 
region, as dried (No treatment) different polymer formulated inks (d) inorganic region and (e) organic region.  
Integrated Raman Intensity ratios for (c) different particle loading inks and (f) different polymer formulated inks as 
dried and after 2h UV treatment. Open Symbols (No Treatment), filled symbols (2hUV). Inset in (c) depicts the 
integration areas: Anatase (395 cm-1) and Rutile (445 cm-1) peaks. 
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Table 11. Experimental (average) Raman band positions obtained for the different TALH:TiO2 films. 

Vibrational Mode 
Experimental Average Peak 

Position (cm
-1

) 
Reference 

B
1g

-Rutile  or E
g
-Anatase  145.8 [214,215] 

E
g
-Anatase 199.6 [214,215] 

O-O interactions 267.6 [216] 

O-O interactions 297.2 [216] 

B
1g

-Anatase 398.1 [214,215] 

E
g
-Anatase 449.1 [214,215] 

B
1g

-Anatase ([214]); A1g-Anatase ([215]) 518.7 [214,215] 

E
g
-Anatase ([214]); B1g-Anatase ([215]) 639.2 [214,215] 

Anatase Combination band 794.2 [214] 

The calculated amount of anatase and rutile phase from XRD[208] and Raman[218], see Table 12,  show 

differences that can be attributed to several factors involved in the data collection and analysis, including 

the resolution from the XRD patterns and Raman spectra, the experimental set-up and the precision of 

the fitting (when integrating the peak areas). Nevertheless, the results obtained from these two 

techniques agree by showing an increasing (or decreasing) trend that holds for both technique results, 

qualitatively validating the changes induced to the TiO2-TAHL system. Because XRD consists of a statistical 

technique that averages the collected signal over a larger amount of material, when compared to the 

actual sample region (~50 µm diameter) probed for Raman acquisition, XRD would give a better 

quantitative analysis of the phase ratios. 
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Table 12. Calculated amount of anatase and rutile (wt.%) from the Raman and XRD data for the different deposited 
films. 

 Raman XRD 

Film TALH:TiO2 ratio Anatase wt% Rutile wt% Anatase wt% Rutile wt% 

(1:3) No Treatment 90.08 9.92 79.76 20.24 

(1:3) 2hUV 90.94 9.06 87.36 12.64 

(1:3) 4h UV  ----  ----  79.83 20.17 

(1:6) No Treatment 91.08 8.92 82.69 17.31 

(1:6) 2hUV 91.19 8.81 89.13 10.87 

(1:6) 4h UV  ----  ---- 86.42 13.58 

(1:6) PAA No Treatment 91.11 8.89 85.44 14.56 

(1:6) PAA 2h UV  ----  ---- 86.67 13.33 

(1:6) PAA 4hUV  ----  ---- 84.89 15.11 

(1:6) PAA 6hUV 91.47 8.53  ----  ---- 

(1:6) PAA 150°C -30min 90.84 9.16  ----  ---- 

(1:6) PVP No Treatment  ----  ---- 90.85 9.15 

(1:6) PVP 2h UV  ----  ---- 85.17 14.83 

(1:6) PVP 4h UV  ----  ---- 87.21 12.79 

(1:12) No Treatment 89.68 10.32 88.31 11.69 

(1:12) 2hUV 91.03 8.97 89.87 10.13 

(1:12) 4hUV     87.78 12.22 

TiO2 Aeroxide ®  ----  ---- 79.07 20.93 

 

The TiO2 phase transitions are strongly influenced by the crystallite size. For TiO2 crystallites of up to 2.8 

nm size, anatase is a more thermodynamically stable phase than rutile because of their respective surface 

energies; later as the crystallites grow, the Gibbs free energy associated to the crystal volume for rutile 

is smaller than that for the anatase phase and therefore the rutile structure is ultimately the most stable 

of the TiO2 phases[208]. This is very likely to be the reason for anatase to be the first of the phases to 

form as Ti-organic precursors transform into TiO2. In addition to this, the anatase to rutile phase 

transformation is highly dependent on the crystallite size of the TiO2 primary particles; initiating at the 

interfaces between neighboring-in contact anatase particles[218]. Therefore, for a finer anatase 

nanoparticle system, less energy will be required to transform into rutile than for a coarser anatase 

system. 

The strong self-assembling aggregating behavior of TiO2 particles is observed from the SEM and optical 

imaging. Aggregation of the TiO2 particles is necessary to promote continuous structures; however, 

controlling aggregation in colloidal systems is a key aspect for the inks’ deposition. The use of polymers 

and co-solvents is a common way for controlling the viscosity and dispersion properties of such systems. 

In the case of the co-solvents, the different vapor pressure exhibited by these enables the tuning of the 

drying characteristics of the films/patterns; thus reducing the macroscopic defects in the deposited 

material[84]. 
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Figure 38. Optical and SEM images of the directly written TALH:TiO2 films and patterns from different polymer 
formulated (a) 1:6 PAA and (b) (1:12) inks on Ag-PEN substrates. With CDW speed of 5 mm/s and pressure of 20 KPa 
and 150 μm inner diameter nozzles. 

The addition of polymers (PAA or PVP) reduces the cracking the TiO2 films / patterned. TiO2 discontinuous 

regions can be observed for the pattern made from (1:6) PAA ink. In contrast, for the 1:12 formulations, 

full coverage of the patterned regions is observed; however, crack formation results from the strong 

aggregation of the TiO2 particles when the solvent evaporates. Close examination of the surface and self-

assembly of the TiO2 particles in the uniform regions shows similar aggregation behavior regardless of 

the formulation (1:6 or 1:12, with/without polymers) or the deposition technique used, DB or CDW, see 

Figure 34. 

Transmission electron microscope (TEM) images and selected area electron diffraction (SAED) patterns 

of representative samples were taken to further investigate the TiO2 formations from TALH after different 

treatments. The as received TiO2 particles can be observed in Figure 39 (a), overlapping of the aggregated 

particles is observed, as well as their single crystalline nature. Regarding the samples prepared from 

TALH:TiO2 films, Figure 39(c) and (d), additional crystalline formations are noted.  For the sample from 

TAHL:TiO2 (1:6) PAA 6hUV, the high resolution TEM image shows a meniscus-like formation with well 

defined lattice fringes, characteristic of materials with crystalline structures; for the TALH:TiO2 (1:6) 

150°C-30 min treated film, Figure 39 (c), a polycrystalline structure is observed between two TiO2 

particles. SAED patterns confirm the polycrystalline character of such formation to be anatase phase. 
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Figure 39. TEM images of the (a) as received TiO2 Aeroxide particles, (b) TALH:TiO2 (1:6) - PAA film after 4h UV 
exposure, and (c) TALH:TiO2 (1:6) film after 150°C-30 min treatment. HR-TEM images of the enclosed regions show 
the lattice fringes of the crystals and the bridging formations from TAHL in (b) and (c). Diffraction pattern taken for 
the enclosed region in (c). 
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XPS shows a systematic decrease in the O:Ti ratio towards the stoichiometric value 2, as the UV energy 

and TiO2 initial content are increased; this ratio, greater than 2 for all the fabricated films, also exhibits a 

dependence on the type of energy treatment employed for curing of the film when polymers are 

incorporated. For PAA, the O:Ti ratio values are closer to 2 when utilizing UV energy. On the other hand, 

for the PVP this value was closer to 2 when using 150°C -30 min as energy treatment. The differences in 

these polymer structures may be associated to such trends; however further studies about the 

fundamental reasons behind such stoichiometric variation may provide further insight. 

 
Figure 40. X-ray photoelectron spectroscopy of the films exposed to different UV conditions (a) O1s detailed scan for 
(1:12) no-polymer films; (b) C1s and (c) Ti2p detailed scans. The cyan line in (c) corresponds to the experimental XPS 
data. 

Detailed scan for the O1s peak shows a shoulder feature at ~531.5eV, characteristic of a hydrated state 

of TiO2, which diminishes as UV exposure is increased. Similar decrease of this oxygen energetic state has 

been reported for TiO2(H2O) upon thermal annealing[57].The Ti2p peak, is observed to have a fixed 

position for all no-polymer cases, with the characteristic Eb of ~5.75 eV. However, the intensity ratio 

between the Ti2p spin-orbit splitting peaks Ti2p1/2 at 464.5 eV and Ti2p3/2 at 458.75 eV deviates from the 

theoretical 1:2 area ratio as the initial TiO2 crystalline phase and UV exposure time are increased (Figure 

40 (c)) This result is attributed to the increased energy state induced by the photocatalytic nature of the 

TiO2 system upon UV exposure. For the polymer added systems, a slight shifting (of ~ 0.5eV) of the Ti2p 

peak towards lower binding energy values is observed (Figure 41). Interestingly, the intensity ratio 

between the Ti2p spin-orbit splitting peaks Ti2p1/2 and Ti2p3/2 is very close to the theoretical 1:2 area ratio 

for the PAA formulation, regardless of the energy treatment employed, and in contrast to the deviation 

trend displayed for all the other formulations. 
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Figure 41. Detailed scan of Ti2p peak for the 1:12 TALH:TiO2 films from No polymer, PAA and PVP formulations. The 
cyan line indicates corresponds to the raw XPS data. 

 

5.5. Photocatalytic Properties 

The photocatalytic performance of the films from lower initial crystalline TiO2 content inks is observed to 

be more pronounced than for the higher concentration (1:12) counterparts (in turn influenced by the 

incorporation of polymer additives), as indicated by the apparent first-order degradation constant (kapp) 

values, see Table 13. The addition of polymers to the ink formulations has an increasing effect on the kapp 

values for the films with low initial particle concentration (1:6). Particularly, for films from PAA 

formulations, an important increment of the kapp (nearly two times) is observed for the (1:12) films. 

Remarkably, the PAA films showed no visible deterioration after the photocatalysis experiments, in 

contrast to the PVP film which were almost completely fragmented and delaminated from the substrates. 

Damage of the 1:6 films was more evident than that of 1:12 films after photocatalytic degradation of MB. 

The photocatalytic performance also shows a strong dependence on the energy treatment used for the 

films synthesis; generally, the UV treatment led to better photocatalytic performance than the mild heat 

treatment (see Figure 42). The films’ photocatalytic performance is comparable to similar TiO2 

mesostructured films[38,220]. 

AFM results, indicate higher roughness values (from AFM measurements) for the best photocatalytically 

performing films. This characteristic behavior, related to the TiO2 crystallite size, favors the degradation 



55 
 

of MB on films with larger amount of nano-structured features. An opposite trend is observed between 

the roughness values from profilometry and AFM, this difference is attributed to the mesoscopic structure 

of the films and the different techniques’ resolution. The AFM scans, probed areas of 1 m X 1 m, 

detecting surface details in the nano-scale (in the crystallites formed from TALH range); whereas the 

profilometry measurements provide information from larger structures (in the micron-scale), such as the 

aggregates formed by the initially added TiO2 nanoparticles at the ink formulation stage.  

 

Table 13. Apparent first-order degradation rate constant kapp and time for 50% MB degradation from different TiO2 
films. AFM and Profilometry roughness measurements for the films. 

Sample 
kapp x 10-2 

(min-1) 

Time for 

Degradation > 

50% (min) 

Roughness 

AFM (nm) 

(2-5 nm tip 

radius) 

Profilometry (μm) 

 (2 μm tip radius) 

Blank 0.11  *   ---   ---  

1:6 6hUV 0.80 90 2.90 3.87 

1:6 150°C 0.62 105 1.97 5.01 

1:12 6hUV 0.52 120 1.53 3.46 

1:12 150°C 0.39  ---  0.98 2.47 

PAA 1:6 6hUV 1.19 75 12.27 1.73 

PAA 1:6 150°C 0.73 105 17.42 1.82 

PAA 1:12 6hUV 1.12 75 11.63 1.43 

PAA 1:12 150°C 0.60 150   ---  12.66 

PVP 1:6 6hUV 1.55 45 11.71 2.49 

PVP 1:6 150°C 0.89 75 10.22 6.61 

PVP 1:12 6hUV 0.56 120 8.18 2.47 

PVP 1:12 150°C 0.37  --- 9.53 3.53 

* The maximum degradation for the Blank (control) solution was 12% after 150 min UV exposure.  
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Figure 42. (a) Methylene blue (MB) degradation (%) and (b) linearized MB concentration change in time, with 
different TALH:TiO2 films. Open and filled symbols represent (1:6) and (1:12) TALH:TiO2 formulations respectively. 
Star symbols represent 6h UV treatment and square symbols represent 150 °C -30 min annealing. (c) Image of the 
MB initial and aliquots of the decomposed MB solutions after 150 min UV irradiation. 

 

5.6. Ink Precursors’ Chemistry Influence 

In the TiO2 – TAHL system, the different ink constituent chemistries have been identified to affect the 

resulting materials’ (as films or patterns) crystallinity, microstructure, mechanical stability and 

photocatalytic activity. 

When depositing the material onto the substrates, the acidity or basicity of the ink and the substrate 

dictates the compatibility of these two, allowing for the adsorption of the inks’ anchoring groups onto the 

substrate surface. In the TiO2 – TALH system, the primary groups available for such interactions are 

carbonyl and hydroxyl groups. The presence of ammonia ions stabilizes such groups making TALH almost 

non-reactive in neutral solutions. When TiO2 and TALH are mixed together, the TALH is adsorbed onto the 

TiO2 surface through the available Ti atoms on the particles’ surface and the hydroxyl groups from TALH, 

in a similarly way to that of carboxylic groups attaching to rutile[221]. The high compatibility of these two 

components is indicated by their behavior in solution, where the homogeneity of the dispersions is 

evident and no further phase separation is observed (other than the initial solid/liquid differentiation 

system).  
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Figure 43. Chemical structure of the Titanium(IV) bis(ammonium lactato) dihydroxide (TALH) compound. 

As more constituents are added to the system, different reactions may occur. A one-to-one relation 

between the acidic H+ or basic OH- groups and the ammonium lactate ions present in the TALH molecule 

has been reported to be necessary to neutralize the ammonium lactate and allow the TiO2 nucleation at 

low temperatures[57]. However, from the current investigation of the TALH system, such acid/base 

conditions are far too strong and may lead to the substrate’s (ITO) deterioration once it comes to contact 

with such a strong ink. The polymeric agents (added to tailor the inks rheological properties), having 

different polymer chemistries, also participate in the TiO2 – TALH interactions, and moreover in the ink 

(TiO2+TALH) interactions with the substrates. The contact angle measurements indicate that the relative 

surface energy between the substrate and the ink changes as the different polymers are incorporated to 

the system. Diethylene glycol (DEG) was also incorporated to the TiO2-TALH formulations (at the 

preliminary stages of the ink formulation) to explore its effect on the adhesion to the ITO substrates; 

however instead of improving the ink’s wetting onto the substrates it made the formulations to “bulge 

up” not retaining the film or pattern shape when applying the materials through DB or CDW, respectively. 

From the contact angle measurements of water on the ITO/PET substrates, a rather hydrophobic 

character of the ITO coating is observed (with a contact angle of ~106°). Nevertheless, it has been reported 

that the surface of ITO contains mainly OH groups[222–225]; therefore, the acidic inks are more likely to 

be adsorbed than the more neutral counterparts.  

The PVP side-groups available for interaction with TALH and / or TiO2, are carbonyl type; whereas PAA has 

carboxylic groups, which with the extra OH ends, promotes stronger binding to the TiO2 surface. Also, as 

the inks are brought in contact to the substrates, their bonding is again facilitated through the carboxylic 

groups. A final remark about this is that the substrate’s pH should necessarily be considered in relation to 

the ink’s pH for the design of the ink-substrate system. Because of the carboxylic groups’ tendency to 

attach to the Ti atoms in TiO2, it is proposed that the PAA chains serve as scaffold structures for the TiO2 

crystallites, forming from TALH, to form bridging structures that connect the initially added TiO2 particles. 

From the photocatalysis perspective, it is found that the films made from inks with polymeric agents 

resulted in more efficient photocatalytic decomposition of organic dyes (MB) than when using no-polymer 

TiO2-TALH films mediated photocatalysis. Moreover, from the samples used for the photocatalysis 

experiments, it was observed that, the deterioration of the PVP films was much greater than that of the 

PAA films. 

Additionally, through the assessment of the different inks’ chemistries and various substrate material 

interactions, it is observed that they not only influence the materials final properties but also their printing 

by preventing or promoting clogging of the nozzles depending on their material. Generally, the more 

dissimilar the pK values for the inks and the nozzle materials, the higher tendency of having clogging 

issues when printing due to the better wetting of the inks onto the nozzle surfaces. 
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5.7. Electrical Properties 

The electrical resistivity of the synthesized films from the no-polymer and PAA 1:12 formulations were 

investigated by means of the IV characteristics. No significant variation was observed on the IV curves, 

when probing on the metal contacts and directly on the TiO2 surface. The thickness of the sputtered Ag is 

~100 nm; the topography of the film exhibits high roughness (~ 5 μm as measured using profilometry). 

Therefore, the resistivity calculations are done considering the probe area, calculated from the distorted 

area of the samples from plan-view images to be ~ 0.008 mm2. The sputtered Ag-contacts’ area is ~ 0.9 

mm2. 

 
Figure 44. IV Characteristics of the no-polymer and PAA TALH:TiO2 films treated under 150°C-30min and 6h UV light 
(λ=254 nm); and (b) schematic of the samples and the probing sites used for IV characterization. 

The calculated resistivity values for the different films (summarized in Table 14), are comparable to those 

obtained for TiO2 polycrystalline thin films [76,77,226]. Generally, the electrical properties of the TiO2 

polycrystalline films depend on the films microstructure and purity of the TiO2 phases. The investigated 

films contain relatively high quality TiO2 nanoparticles (Aeroxide®, purity > 99.5%) and a mixture of 

organic compounds (TALH and PAA) which may be responsible for the variation of the experimental 

resistivity values. It is also observed that the calculated resistivity values for the films fabricated using 

CDW are one order of magnitude higher than the DB counterparts. The former samples exhibiting larger 

thickness and roughness values. Further investigation of the electrical characteristics of titania films 

prepared from these formulations, and their dependence on the deposition technique is proposed as 

future work. 

Table 14. Film thickness measured by profilometry and electrical resistivity of the films as calculated from the IV 
characteristics. 

Film Thickness (μm) Roughness (μm) Resistivity (Ω cm) 
1:12 NoPoly 150°C 30min - DB  8.093 2.495 9.50×107 
1:12 NoPoly 6hUV - DB 12.113 2.122 5.72×107 
1:12 PAA 150°C 30min - DB 12.01 3.122 6.01×107 
1:12 PAA 6hUV - DB 21.429 3.964 3.43×107 
1:12 PAA 150°C 30min - DW 37.249 9.156 8.07×108 
1:12 PAA 6hUV - DW 38.919 8.747 2.45×108 
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5.8. Concluding Remarks 

The investigated hybrid Ti-organic/TiO2 ink systems, exhibit great potential for their use in additive 

manufacturing using CDW. The viscosity and printing properties of the TiO2–TALH inks are shown to be 

tailored through solvent amount and polymer addition and TALH:TiO2 ratio and meet the requirements 

of specific printing techniques beyond direct writing. The mild temperature and UV irradiation treatments 

used to transform the amorphous/crystalline formulations to semi-crystalline/crystalline films allow the 

application of these materials on flexible substrates. From the energy treatments explored, it is observed 

that the upper limit for crystallite size is comparable to the initial TiO2 particle size while smaller particles 

nucleate from TALH. The crystalline TiO2 initial concentration in the system is used as (a) a provider of TiO2 

nucleation and photocatalytic active sites for organics decomposition; and (b) a control parameter for ink 

rheology and solvent evaporation. The use of polymers as stabilizing and ink thickening agents, is also 

found to affect the formation of TiO2 crystallites from TALH. In the system, the energy supplied via the 

energy treatments is necessarily used for polymer decomposition as well as for the TiO2 nucleation from 

TALH. Moreover, the different polymer chemistries greatly influence the ink/substrate interactions, and 

affect the crystallite formation by partial reaction with the ammonium lactate groups present in TALH. 

Finally, the presence of carboxylic groups in the polymer additives may favor the bridging of neighboring 

TiO2 particles.  

The microstructure of the direct written and doctor bladed films are observed to be porous and show 

negligible variation depending on the deposition technique; the assembling of the colloidal system upon 

drying and curing is dominated by strong TiO2 particle aggregation forces. The microstructures obtained 

are suitable for applications where high surface area is important. Relationships between the different 

robotic printing parameters and obtained macro/micro-structures were established. Additionally, the 

electrical resistivity of the polycrystalline TiO2 films is in the order of 107 to 108 Ω*cm, and comparable to 

that of TiO2 films obtained from high-energy intensive conditions reported in literature. Further work on 

direct writing of patterns from the proposed ink system, and the effect of the curing (heat/UV exposure) 

treatments with respect to the patterns’ final dimensions, residual stress[227], and electrical properties 

will provide additional means for the implementation of these ink systems in flexible electronics. 

Photocatalysis degradation of methylene blue highlights the potential of the investigated material system 

for organic chemicals decomposition. The TALH:TiO2 ratio and the type of energy treatment employed for 

the film synthesis, i.e. UV exposure or mild annealing, are found to have great influence on the 

photocatalytic degradation rate, which is concomitantly related to the roughness of the films and their 

mesoporosity.  
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Chapter 6: Multiphase Materials Systems I: Microstructuring and Enabling 3D Printing of 

TiO2 Foams 

3-D printing of hierarchically ordered cellular materials with tunable microstructures is a major challenge 

from both synthesis and scalable manufacturing perspectives. A simple, environment-friendly, and 

scalable concept to realize morphologically and microstructurally engineered cellular ceramics is herein 

proposed and realized, by combining direct foam writing with colloidal processing. These cellular 

structures are widely applicable across multiple technological fields including energy harvesting, waste 

management / water purification, and biomedical. TiO2 is used as a metal-oxide model system, having 

important applications due to its interesting semiconducting properties, tunable band gap, photocatalytic 

properties, bio-compatibility and abundance.  

The concept marries sacrificial templating with direct foaming to synthesize multi-scale porous TiO2 foams 

that can be 3D printed into planar, free-standing, and spanning hierarchical structures. The latter being 

reported for the first time. This approach represents clear progress in the fabrication of TiO2 foams, 

traditionally fabricated using laborious multi-step methods[157,162,169–171]. Special emphasis is placed 

in investigating the relationships between the foams’ composition, processing, microstructure, surface 

area properties, and photocatalytic performance. The proposed synthesis and scalable manufacturing 

method can be extended to fabricate similar structures from alternative ceramic foam systems, where 

control of the porosity and surface properties is crucial, demonstrating the great potential of this synthesis 

approach.  

6.1. TAHL:TiO2 Foam – Design  

The TALH Foam Ink is a multiple-phase system consisting of solid, liquid and gaseous phases, as a hybrid 

synergistic approach that combines the direct foaming and sacrificial template mechanisms, to produce 

porous structures with features in the micro-, meso- and macro pore range, using environment – friendly 

and abundant material precursors. The emulsion is designed to be an oil-in-water system, in which the 

aqueous phase is a TiO2 inorganic (solid) / Ti-organic complex colloidal suspension, and the oil phase 

serves as dispersion and stabilizing agent[228,229] for the gas-liquid mixture. The gas phase consists of 

air bubbles that are trapped in the liquid matrix. See Figure 45. Once the foam-ink is prepared, it can be 

shaped into the desired dimensions using continuous-flow direct writing and allowed to dry.  Next, upon 

heat post-processing treatments, the TALH (in contact with the TiO2 primary particles) is transformed into 

TiO2 aiding the bridging between neighboring particles [60,128] and providing mechanical and chemical 

stability to the structures. Such foam walls exhibit additional levels of porosity realized from the primary 

particle aggregation, and the removal of the oil phase and other organic additives used for the ink 

formulation. Also, for this foam system, additional stabilizing effects can be attributed to the TiO2 

particles, aiding to maintain the trapped air bubbles, a characteristic of multiple emulsion 

systems.[230,231] 
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Figure 45. Schematic synthesis route, and microstructure (photograph), of mesoporous TiO2 foams. 

Being a multi-phase material system, there are significant interactions between the different foam 

constituents, resulting in complex relationships affecting the foams’ morphology, microstructure, 

rheological properties, and surface and porosity properties to name a few. Thus, the foams’ morphologies 

are tailored by varying their composition and frothing conditions, thus affecting their viscosity and their 

printing parameters and space, i.e. planar vs. 3D structures, as show in this chapter.  

6.2. Sustainability Considerations 

This synthesis approach, aims for the development of sustainable and relatively simple synthesis methods 

and formulations, to produce hierarchically ordered mesoporous cellular ceramics with tunable cell 

configurations (i.e. closed-/open-cell ceramic foams) and surface area properties. In particular this 

investigation addresses 8 of the 12 principles of green chemistry[174], for the developed materials and 

synthesis approach. Waste prevention is accomplished by incorporating additive manufacturing (i.e. 3D 

printing), since all the prepared foam batches can be printed in the exact amounts, geometries and 

substrate locations. The atom economy (AE) is estimated from the foam-ink design calculations and 

thermogravimetric analysis (TGA). The synthesis method and resulting materials implement the least 

hazardous chemical synthesis principle, by involving non-toxic, renewable and bio-compatible ink 

precursors. The oil phase of the foams consists of fatty acids compounds commonly used in the cosmetic 

industry [232]. Similarly, the use of ethanolamine and triethanolamine as emulsifiers is kept to minimum 

amounts, also comparable to those encountered in cosmetic products [233].  In addition, the utilization 

of TALH as Ti-organic precursor, allows the formulation of aqueous based systems, exhibiting very slow 

hydrolyzation rates in neutral pH conditions [57]; hence avoiding the need to use organic solvents, and 

allowing ample time for their printing in ambient conditions. These conceptual considerations, make this 

ink system inherently safe and therefore transferable to industry. Finally, the synthesized foams can be 

recycled/regenerated[234]; and are generally safer than the primary TiO2 nanoparticles for applications 

such as water purification[235], being larger in size for easier recovery in case of accidental release to the 

environment. 
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6.3. Foam Rheology and Microstructure 

Different mixtures of the foam were prepared by varying the amount of aqueous solution (water+TALH), 

TiO2 primary particles, and oil phase, see Table 15. It is observed that the incorporation of gas phase was 

achieved in various extents depending on their composition, i.e. the different water/oil ratios resulted in 

foams with a varying degree of stability (retention of the gas bubbles and/or avoidance of their 

coalescence). This can be partially assessed through viscosity measurements at different time intervals 

after the initial frothing, and through image analysis of the wet-foams’ microstructural evolution, see 

Figure 46. Typically, the gas bubbles will coalesce and grow over time (as indicated with arrows for the 

L75-S5.5-O19.5 MEA  foam after 4 days). Also, the foam volume will decrease as indicated by dashed ovals 

from Figure 46 (a) and (b), and some drainage will also be characteristic of foam relaxation – see dashed 

ovals in Figure 46 (c) and (d). 

 
Figure 46. Optical images of the 1:12 TALH:TiO2 L75-S5.5-O19.5 MEA foam inside a polystyrene cuvette for stability 
assessment. (a) top and (c) bottom sections as placed in the cuvette, and (b) top and (d) bottom sections after 4 days. 
The cuvette width is of 10 mm. 

 

 

 



63 
 

Table 15. Phase amounts in the different TiO2 Foams. 

Foam Ink Name Liquid 

(Water + TALH) 

(vol%) 

TiO2 Solids (vol%) Oil (vol%) Aqueous-Sln:Oil 

Ratio L75-S3-O22 75 3 22 3.42 

L75-S5.5-O19.5 75 5.5 19.5 3.86 

L82-S4-O14 82 4 14 5.87 

L86-S3-O11 86 3 11 7.80 

The microstructure of the prepared foams, is also visible affected by the choice of liquid-solid-oil amounts, 

and can be tailored to exhibit open- or closed-cell structures with varying macro-pore sizes, as is discussed 

later in this chapter. As an example, the macropores obtained for foam L75-S3-O22 are much smaller – 

roughly 39% – than those obtained for foam L86-S3-O11 (with half the amount of oil phase). Also, the 

thickness of the walls is observed to decrease as the oil phase is increased, see Figure 47. 

 
Figure 47. Optical microscope images of the foams surface and inner sections obtained from formulations (a) L75-S3-
O22 and (b) L86-S3-O11, and treated at 150 °C – 30 min. 

Accordingly, the viscosity displays variation depending on the water/oil ratio, exhibiting higher values for 

lower water/oil ratios, see Figure 48 (a). The stabilization role of the oil phase, is attributed to the 

reduction of the gas-slurry surface tension and to the modification of the foams’ viscoelastic 

properties[236], i.e. it provides the emulsion with yield-stress fluid properties, highly desirable for CDW. 
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The gas retention (foam stability) is also visible from the viscosity measurement at different points in time 

after the foams preparation. From Figure 48 (b), a decrease in the viscosity is observed after 1 day of 

prepared; re-frothing of the foams can be used to partially restore it. 

 
Figure 48. Viscosity of the 1:12 TALH:TiO2 MEA foams (a) with varying liquid-solid-oil L-S-O amounts in vol%; and (b) 
L75-S3-O22 foam as prepared and after 1 day of preparation with and without re-frothing. Frothing time of 4 min. 

The frothing time is also an important parameter to consider when targeting for specific viscosities; these 

are observed to increase by one order of magnitude when the frothing time is increased from 4 to 8 min, 

(see Figure 48 and Figure 49). This frothing time range was determined empirically as it led to foams with 

appropriate yield-stress characteristics, in preliminary experiments of the foam preparation route.  

Similarly, the use of different surfactants (MEA vs. TEA), and TALH:TiO2 ratio is also observed to modify 

the viscous properties of the foams, as shown in Figure 49. 

 
Figure 49. (a) Viscosity and (b) shear-stress as a function of shear-rate for the TALH:TiO2 1:12 foams after 8 min 
frothing time from different liquid-solid-oil content (vol%) formulations. 
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Analysis of the shear stress – shear rate relationships of the foams (Figure 49), using the Herschel-Bulkley 

model (see eq. 1), gives k and n coefficients as indicated in Table 16Table 16, and are indicative of shear-

thinning behavior, since the flow index n takes values between 0 and 1.  

Table 16. Herschel-Bulkley coefficients for the 8 min frothed foams. 

Foam Ink* y k n 

L75-S3-O22 MEA 41.5050 0.5528 0.9241 

L75-S5.5-O19.5 MEA 62.9610 0.6741 0.9503 

L75-S5.5-O19.5 TEA 100.9900 9.5214 0.6232 

L75-S5.5-O19.5 TEA (1:6) 59.5970 2.5206 0.7454 

*Amount of liquid-solid-oil (L-S-O) in vol%; (1:6) refers to TALH:TiO2 mole ratio.  

In the investigated foams systems, lower shear-stress values (y) are observed for the foams with lower 

TiO2 primary particles content. Foam flow exhibiting both solid-like and liquid-like behavior, relates the 

yield stress with the foam’s morphology, especially for dry foams; and to typically decrease as the liquid 

volume fraction is increased[237]. Additionally, it is observed that the type of surfactant used (i.e., MEA 

or TEA) also affects the foams’ rheology, leading to higher yield stress values. Other aspects of solid-like 

behavior are a finite shear modulus and slip[238] at solid surfaces. Liquid-like aspects are a shear-thinning 

viscosity and time-dependent properties. Unless stabilized, the bubbles can collapse[239], reducing the 

volume of the initially frothed system as time elapses[237]. The compressibility of the foams is also an 

important factor that influences its rheology and is mostly responsible for the foam’s elastic properties 

upon compression stress application – such as that exerted during CDW (while in the cartridge and while 

being extruded trough the nozzle). Theories of foam flow predict that, in shear flow, the foam viscosity η 

is generally given by an elastic and a plastic component. The latter arises due to dissipation in the liquid 

film, and its value is proportional to the viscosity of the liquid phase. This term is significant only for wet 

foams or those formulated with extremely viscous liquids. The elastic component typically increases as 

the gas volume fraction is increased [237]. 

6.4. Foam Printing 

Among the possible foam compositions, CDW of those with lower water:oil ratios (i.e. 3.42 and 3.86) were 

investigated and are summarized in Figure 50 (a). The fabrication of planar, 3D free-standing and spanning 

structures is demonstrated, see Figure 50 (b). Spanning structures for a distance up to 5 mm are observed 

to retain their shape, while slightly adhering to the hydrophilic glass edges. Printing of spanning structures 

on hydrophilic and pre-treated substrates with hydrophobic coatings show a difference on their substrate-

wetting, being greater for hydrophilic substrates.  This difference is expected because of the large amount 

of aqueous phase in the foam formulation, and proves useful for controlling the ink/substrate 

interactions. Despite of the surface treatment, adhesion of the foams to the substrates was favorable, 

and is attributed to the amphiphilic nature of the foam.  
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Figure 50. (a) Printing space for the investigated TiO2 foam systems using 580 µm nozzles inner diameter at 500 µm 
dispensing height. Printing 3-dimensional layered hollow columns (b) and (d), and spanning foam structures (c), at 
9.6 kPa and 5mm/s on hydrophobically treated glass. Scale bars are 1 mm long. 

Generally, for CDW, the ink formulations should display shear-thinning yield-stress behavior which allows 

for the structures to be formed/extruded, and retain their shape once printed. The yield stress values for 

the investigated foam systems range from ~40 to 100 Pa (see Table 16), allowing their extrusion and 

shaping at relatively low pressures. These values are comparable to those obtained for ink systems used 

to fabricate mullite spanning structures[22], and lay around the lower limit of the values range  reported 

as necessary for inks to withstand their own weight across a spanning distance without collapsing, typically 

ranging from 1 to 1000 Pa[22,91,133,134,145]. The differences in the value ranges reported in literature 

and the studied foams are viewed with respect to the differences between the foam system and those 

reported for gel systems [134]. Furthermore, fundamental differences exist between the porous structure 

of the foam ink and those reported for degassed slurries. 

The printing fidelity is mainly affected by the speed and pressure (for a given dispensing nozzle size and 

dispensing height). From the printing ranges studied for the investigated foams systems, three main 

regions are obtained: (1) overflow, at relatively high dispensing pressures and lower speeds, due to the 

high volumetric flow rate of the foams; (2) the printable region, confined between ~ 6 kPa and ~ 20 to 28 

kPa of dispensing pressure; and (3) the poor-edge definition region, at pressures below ~ 6 kPa, where 

the fidelity of printing is compromised yielding wavy-shape features. The latter are attributed to 

inconsistent flow and dimensional filament changes as the printing progresses. Spanning structures can 

be fabricated at the lower speed range of the printable region (i.e. ~ 1 – 7 mm/s), while maintaining 

intermediate levels of dispensing pressure. The spanning structures’ integrity at such ranges, may be 

attributed to the extrudate being structurally coherent and tensile stressed to a relatively small extent. 

When printing at higher speeds, the extrudate is elongated enough for the gas and oil phases to 

significantly deform and eventually collapse. Nevertheless, printing of planar foam structures can be 

realized for a significantly wider range of printing conditions. Accordingly, the printing resolution (i.e. line 

width) generally increases as speed is increasing and pressure is decreasing within the planar printing 

space. The resolution of the printed features is typically improved up to a nozzle diameter in width. 
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6.5. Composition, Microstructure and Curing Treatments 

Different means of control of the foams’ pore size, configuration (as open- or closed-cell), and surface 

area properties have been identified via the emulsions’ composition. The viscosity and therefore, the 

mobility of the emulsion’s liquid phase as the frothing progresses, is affected by the amounts of solids 

(TiO2 primary particles) and solvent present in the foams. This is yielding open-cell foam structures as the 

solvent amount is increased with respect to the amount of TiO2 primary particles, i.e. larger L:S ratio; and 

conversely closed-cell foams as this ratio is decreased, see Figure 51 (a-c) open-cell vs. (d-i) closed-cell, 

respectively. Similarly, the choice of surfactant (i.e. MEA or TEA), exhibiting different viscosities and pK 

properties, affects the foam’s viscosity and mobility, resulting in slightly different foam microstructures 

(Figure 51, d-i). For instance, while keeping the L:S ratio constant slightly larger macropores can be 

distinguished when using MEA, compared to TEA. The latter in particular, aids towards higher ink 

viscosities (see Figure 49), highly desirable for 3D printing. Additionally, the larger macro-pores of the 

foams – corresponding to trapped air bubbles – are observed to be dependent on the amount of TiO2 

primary solids, see Figure 47 and Figure 51, where the macropore sizes are larger for the foams with lower 

TiO2 primary solids. The later result, suggests that such formation is strongly influenced by the particle 

aggregation behavior, observed in previous studies of the TiO2:TALH system [128]. Specifically, it may be 

the case that the TiO2 nanoparticles tend to aggregate at the periphery of the gas bubbles, and when high 

in concentration, lead to macro-pore size suppression as the solvent is evacuated. Similar relationships 

between viscosity and foam pore size distribution have been reported for pH-particle stabilized Al2O3 

foam systems [168,240,241] with the pH values up to 5.5[10,154]; our foams on the other hand exhibit 

pH values ranging from 6 to 7. The foam prepared from the (1:6) TALH:TiO2 ratio aqueous suspension, is 

also leading to rather open-cell configurations, strengthening the latter observation since there is more 

Ti-organic with respect to TiO2 primary particles, and therefore the inter-particle interactions are affected.  
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Figure 51. Low-magnification optical microscope and SEM images of the open-cell (a-c) and (j-l); and closed-cell 
foams (d-i). Printing direction is from right to left. Scale bars correspond to 200 µm for optical microscope images, 
and to 100 µm for SEM images (c, f, i, and l). 

The formation of a crust in the printed foams, common to all foams prepared, exhibits smaller pore sizes 

when compared to the inner regions of the foams. Such crust is characteristic of solvent drainage within 

the foam[236], coupled with rapid solvent evaporation at the printed structures’ outer surface. A slight 

elongation of the pores along the printing direction can be distinguished at the crust surface for the foams 

with higher TiO2 content (Figure 51. d, g, and j), which is attributed to the effects of the shear stress 

exerted on the foams while printing. This is ultimately providing further means to induce some degree of 

ordering in these mesoporous structures, as it is known that paste-like systems exhibit plastic memory 

when subjected to externally applied stresses[242]. In particular, alignment of dispersed nanomaterials 

using CDW has been reported as to occur when their characteristic size is comparable to the dispensing 

nozzle diameter [243]. It is then proposed, that the investigated foams being colloidal suspensions, can 

be considered as similar systems, where the “nanomaterials” are replaced by gas bubbles or micellar 

formations of the oil-aqueous/TiO2 mixture. Nevertheless, at the inner regions of the foams, the drained 

solvent contributes to the relaxation and coalescence of inner gas bubbles, after the shear stress is applied 

during printing. SEM observation of the inner surface of the foams’ pores show similar TiO2 particle 

assembly characteristics irrespectively of the foam morphology, i.e. open- or closed-cell. However, slightly 

rougher inner macro-pore surfaces are observed for the L75-S5.5-O19.5 MEA foam (see Figure 52), which 

correlates with the difference in the measured BET surface area (Table 18). This can be used to further 

control the microstructure of these foams systems based on choice of emulsifiers among others. 
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Figure 52. Scanning electron microscope images of the macro-pores inner surfaces for the different foams systems 
studied and sintered at 500°C. 
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The effects of tuning the microstructure and morphology of the foams can also be observed in their post-

processing (i.e. sintering), surface properties and functional performance (e.g. heterogeneous 

photocatalysis, see Figure 55).  TGA curves of the different foams (Figure 53.) exhibit inflection points at 

~ 150°C, 350°C and 450°C. These correspond in order to: end of solvent evaporation, organics 

decomposition (i.e. TALH to TiO2 transformation and oil phase decomposition), and amorphous TiO2 to 

anatase phase transformation, in agreement with previous observations for similar TiO2-TALH 

systems.[128] The studied formulations yield different amounts of TiO2 depending on their constituents.  

 
Figure 53. Thermo-gravimetric analysis profiles for the different foam formulations. 

The atom economy (AE), defined as the % mass ratio between the target compound (material) and its 

precursors[244,245], can be estimated from the materials design and the TGA results, see Table 17.  Thus, 

the foams formulated with higher amounts of primary TiO2 particles (5.5 vol%) – corresponding to 18.17% 

of the total weight of the initial wet-foams, yield ~ 21.95 % of TiO2 after sintering as measured using TGA, 

(19.68 wt% theoretical, also AE). Similarly, the foams with smaller amounts of primary TiO2 particles (3 

vol%), corresponding to 9.91 wt% of the initial wet-foams, yield ~ 13.31 wt% of TiO2 solids after sintering 

(TGA measured); with a theoretical AE of 10.74 wt%. The increase in TiO2 after sintering is expected 

because the TALH (Ti-organic complex), is also transformed into TiO2. Here, the choice of TAHL:TiO2 ratio 

significantly affects the yield of TiO2 solids, increasing to ~23.13% (TGA measured) when using 1:6 

TALH:TiO2 mol ratio (theoretical AE of 24.23%). The sintered foams correspond to 92.3 wt% TiO2 primary 

particles and 7.7 wt% TiO2 from TALH for the 1:12 TAHL:TiO2 mol ratio formulations; and to 75 wt% TiO2 

primary particles and 25 wt% TiO2 from TALH, for the 1:6 TALH:TiO2 mol ratio formulations, respectively. 

Therefore, it is found that the TALH:TiO2 ratio has a great effect in changing the foams’ surface properties 

as observed from the BET measurements (see Table 18). Additional sources of variability between the 

expected TiO2 solids yield and the experimentally obtained, may be attributed to the loss of weight due 

to solvent volatilization during frothing.  
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Table 17. TiO2 sources in wt% present in the wet foams, the targeted sintered structures (theoretical), and the 
experimental yield as calculated from TGA. 

  Wet Foam  Sintered Foam (theoretical) Sintered Foam  

Foam 

Primary 

TiO2  

(wt%) 

TALH  

(wt%) 
 TiO2 

% of 

composite  

(Primary) 

TiO2  

From TALH 

% of 

composite 

(TALH) 

TiO2 from 

combined 

sources 

TGA yield 

(wt%) 

L75-S3-O22 MEA 9.91 3.04 9.91 92.3 0.83 7.7 10.74 13.32 

L75-S5.5-O19.5 MEA 18.17 5.58 18.17 92.3 1.51 7.7 19.68 22.66 

L75-S5.5-O19.5 TEA 18.17 5.58 18.17 92.3 1.51 7.7 19.68 21.24 

(1:6) L75-S5.5-O19.5 TEA 18.17 11.15 18.17 75.0 6.06 25.0 24.23 23.13 

Dimensional changes associated with sintering of ceramics are usually expected to occur and still need 

further understanding on a fundamental level[145]. Here it is believed, that by dispersing the oil phase to 

an already continuous aqueous phase – containing the TiO2 primary particles and TALH – the aqueous 

network remains coherent. During frothing, the oil droplets become smaller and aid in the stabilization of 

the gas bubbles; which in turn may serve as pressure reservoirs influencing the volatilization of the solvent 

in the foam cell walls. Then, as the solvent is evacuated, the oil-stabilized primary particles tend to 

agglomerate and remain suspended in the predominantly oil scaffold. The melting temperature of the oil 

phase may play an additional role, the higher the melting temperature of the oil phase, the stronger the 

oily scaffold it forms as it becomes solid at room temperature. Here the cells – when open – serve as 

solvent evacuation pathways, which can diffuse towards the outer surface of the printed object (crust), 

or towards the inner cell cavities. The extra surface for solvent evaporation, provided by the open-cell 

microstructures, helps to equilibrate rates of solvent diffusion (within the colloidal suspension towards 

the evaporation front), and the evaporation rate at the liquid-gas interface, which has been reported as a 

key mechanism to prevent cracking of ceramic colloidal films.[246] Next, upon sintering, further shrinkage 

occurs when the oil phase is eliminated. However, the aggregation forces between the particles prevent 

the collapse of the foam structure by self-locking the primary particles thus limiting their relative 

displacement as sintering progresses. Printed hollow open-cell column shrinkage is found to lay around 

16% in all directions (x-y-z); whereas closed-cell foam configurations exhibited a greater shrinkage in the 

z-direction of ~25%. In the case of planar structures (printed films of 2 cm × 1 cm), anisotropic shrinkage 

is observed due to the constrained x and y bonding of the printed layer to the substrate, this change is 

approximately 25% in the z-direction for open-cell structures and 37% for closed-cell structures, 

respectively. The greater dimensional change experienced by the foams with closed-cell structures is 

attributed to the effects of the inter-particle forces, being larger for higher particle concentration 

formulations. These are weaker for open-cell architectures, as opposed to closed-cell foams, where the 

TiO2 primary content is higher, since the compressive yield-stress associated to volumetric changes is 

known to be strongly dependent on the particle-particle interactions.[246] Additionally, it is postulated 

that the inner surfaces of the open-cell foams, being larger in relation to the TiO2 wall thickness, as 

observed using SEM, provide larger stress-release surfaces. Finally, the correlation of the volumetric 

contraction and the weight decrease after sintering is also indicative of the strong particle-particle 

interactions influence in the microstructural evolution of these foams. Since it is observed that such 
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contraction is minimum for those foams experiencing larger weight decrease with sintering (i.e. L75-S3-

O22 foams), as observed from TGA. 

To explore the microstructural evolution of the printed foams under mild temperature and UV conditions, 

SEM images of the L86-S3-O11 MEA foam (the one with the least amount of oil phase), after thermal and 

UV exposure treatments were taken – see Figure 54. The SEM images show the typical assembling 

morphologies of the TiO2 foams, and the combination of the remaining organic materials with the primary 

TiO2 particles. It is observed that the transformation of the foams upon different energy sources, results 

in significant differences in the materials microstructure. Organic-like platelets are observed at the 

periphery of the macro-pores’ openings, at the surface of the samples treated at 150°C for 30 min Figure 

54 (a). These formations were not observed at the surface of the samples treated under UV light, Figure 

54 (b). At the inner regions of the foams, these platelet formations are also observed, and again exhibited 

significant differences depending on the curing treatment. For the 150°C – 30 min treatment, small 

clusters of platelet formations can be distinguished. However, for the samples treated using UV light, 

these formations are present along all the inner pore surfaces. This can be expected because of the UV 

absorption properties of TiO2; at the foams’ surface, the UV light is blocked impairing the light penetration 

to the inner regions of the foam and making it difficult to decompose the organics in such locations. 

 
Figure 54. Microstructure of the surface and inner regions of the L86-S3-O11 MEA foam, treated at (a) 150°C-30 min 
and (b) 6h UV (λ=254 nm). 

As will be latter discussed in this chapter, the differences in the foam cell morphologies greatly affect the 

photocatalytic behavior of the foams which, when using UV light curing treatments may have significantly 
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different results depending on the foam morphology – light diffusion interactions. Therefore, the studied 

TiO2 foams are also susceptible of use as UV-light protective coatings, which are expected to become 

stronger upon further UV light exposure, due to the transformation of TALH into TiO2. 

 

6.6. Microstructural, Compositional and Photocatalytic Relationships 

Photocatalysis results indicate that the foam films with open-cell structures, perform better than their 

closed-cell counterparts in degrading MB, see Table 18; where the apparent first-order degradation rate 

constant kapp values are greater (with respect to the respective solids content and surfactant type). This 

result can be attributed to the inherent ability of open-cell structures to facilitate better circulation of the 

MB solution, and their availability for decomposition at TiO2 photoactive surfaces.  

Table 18. Apparent first-order degradation rate constant kapp and Brunauer-Emmett-Teller (BET) surface 
area.*Amount of liquid-solid-oil (L-S-O) in vol%.  

 
kapp BET Surface Area 

Foam* ×10-2 min-1 m2/g 

Blank 0.103 --- 
L75-S3-O22 MEA 0.418 46.094 

L75-S5.5-O19.5 MEA 0.262 49.556 

L75-S5.5-O19.5 TEA 0.205 46.766 

L75-S5.5-O19.5 TEA (1:6) 0.269 37.218 

Primary TiO2 Particles --- 46.171 

The heterogeneous photocatalytic degradation of MB over time, is included in Figure 55. In the case of 

closed-cell structures, the TiO2 network is more compact, thus inhibiting the diffusion of UV light through 

inner regions of the film. On the other hand, the open-cell structures allow a greater depth of UV light 

diffusion. In addition, it is observed that the films with closed-cell structures (i.e. L75-S5.5-O19.5 MEA and 

TEA), exhibit similar performance, suggesting no significant effects from the use of MEA or TEA as 

surfactants, but rather stronger dependence on the macropore size – light interactions.  

 
Figure 55. (a) Linearized methylene blue concentration change in time, undergoing heterogeneous photocatalytic 
degradation in the presence of the different TiO2 foams under UV light exposure at λ=254nm. (b) Photograph of 
cuvettes with degraded methylene blue solutions after 200 min of UV exposure. 
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A slight improvement is noticed for the 1:6 TALH:TiO2 TEA formulation with respect to its 1:12 counterpart; 

again suggesting a stronger photocatalytic activity dependence on the circulation properties than on the 

amount of measured Brunauer-Emmet-Teller (BET) surface area. Specifically, a correlation between the 

photocatalytic performance and cell configuration can be established, since such performance is 

maximized for open-cell architectures, despite exhibiting generally lower surface area. Figure 56 (a), 

includes the Barrett-Joyner-Halenda (BJH) cumulative surface area and pore area distributions, which 

support this observation. The photocatalytic activity of the foams is comparable to similar mesoporous 

TiO2 films[38] and TiO2:TALH systems [128]. The latter exhibiting remarkably good performance due to 

the low specific energy treatments, which prevent their surface coarsening. 

 
Figure 56. (a) Barrett-Joyner-Halenda (BJH) cumulative micro-pore area (black) and micro-pore area distribution 
(blue); and (b) Horvath-Kawazoe micro-pore volume (black) and micro-pore volume distribution (green), for the 
primary TiO2 nanoparticles and studied foam systems. The amount of liquid-solid-oil (L-S-O) is in vol%. 

Additionally, roughening or smoothening of the surface of the TiO2 primary particles (and consequently 

foam walls), can be induced based on the nucleation and crystallization of secondary TiO2 from TALH[128]. 

Porosimetry measurements (see Figure 56(b)), show no significant difference in the overall pore size 

distribution for all the foams studied (when keeping the same TALH:TiO2 ratio) and the primary TiO2 

nanoparticles. The rather invariable character of these distributions, suggest that the microporosity of the 

foams is driven by the primary nanoparticles’ concentration, size and surface properties. The pores’ 

diameters span from ~ 1 to 250 nm, comprising micro- meso- and macro-porosity regimes. Nevertheless, 

the variation of the TALH:TiO2 ratio may be used to modify such distributions; for the 1:6 TALH:TiO2 L75-

S5.5-O19.5 TEA foam, the surface area decreased with respect to all previous foam systems (with 1:12 

TAHL:TiO2 mole ratio) and to the TiO2 primary particles; while reducing the porosity in the micro- and 

meso-pore regimes.  

XRD studies, confirm the primary particles’ properties to drive the microstructural characteristics of the 

foams, where the TiO2 crystallite size show no significant coarsening even after the 500°C sintering 

process (see Table 19). The broadening of the XRD characteristic peaks with respect to those of the 

primary TiO2 particles, is attributed to the formation of nanocrystallites from the TALH transformation 

into TiO2 which lowers their average size, as reported previously[128]. The change in crystallite size for 

the 1:6 TALH:TiO2 foam formulation, shows an increase of about 11.4 and 3.4 % for the rutile and anatase 

crystallites, respectively. The latter result, contrasts those for the TALH:TiO2 1:12 systems which exhibited 
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a general decrease up to ~ 6.8 %, see Table 19. This trend corresponds with the observations from the 

studies of the aqueous TALH:TiO2 suspensions (chapter 5), where the 1:6 systems favor the growth of 

crystallites, whereas for all the other studied concentrations the crystallite size exhibited a general 

decrease. 

 
Figure 57. X-ray diffraction patterns of the studied foams and primary TiO2 nanoparticles; (b) main diffraction peaks 
corresponding to anatase and rutile crystalline structures. The amount of liquid-solid-oil (L-S-O) is in vol%. (1:6) refers 
to TALH:TiO2 mole ratio. 

 

Table 19. Amount of anatase and rutile phases, and crystallite size estimations from XRD data using Gaussian peak 
fits. The amount of liquid-solid-oil (L-S-O) is in vol%. (1:6) refers to TALH:TiO2 mole ratio.*Calculated using the model 
by Gribb et al[208]. 

  Crystalline Phase 

Amount* (wt.%) 

Grain Size (nm)  

Scherrer's formula 

Δ Grain Size (%) 

w.r.t. TiO2 Aeroxide 
Foam Rutile Anatase Rutile Anatase Rutile Anatase 

L75-S3-O22 MEA 10.999 89.001 55.727 17.863 -0.498 -4.840 

L75-S5.5-O19.5 MEA 11.303 88.697 52.220 18.077 -6.759 -3.698 

L75-S5.5-O19.5 TEA 11.089 88.911 55.714 17.596 -0.520 -6.262 

L75-S5.5-O19.5 TEA 1:6 11.068 88.932 62.391 19.401 11.401 3.356 

TiO2 Aeroxide ® 11.415 88.585 56.005 18.771 0.000 0.000 

 

Furthermore, the calculated lattice parameters a and c, with a standard deviation below 0.0118 Å with 

respect to those reported in literature[18],  display a general decrease – with respect to that calculated 

for the primary TiO2 particles – that accentuates more as the TALH amount is increased. Such decrease is 

maximum for the 1:6 formulation and it is attributed to the larger amount of N available (from TALH). This 

excess amount of N may result in interstitial or substitutional doping [247] of the TiO2 in place of O, due 

to their similar atomic size and electronegativity. The calculated lattice parameters are summarized in 

Table 20. 



76 
 

Table 20. Calculated lattice parameters for the TiO2 primary particles, and the resulting TiO2 in the studied foam 
systems. The amounts of liquid-solid-oil (L-S-O) are given in vol%; (1:6) refers to TALH:TiO2 mole ratio. 

Foam Crystalline Phase Lattice Parameter (Å) 

a c 

L75-S3-O22 MEA Anatase 3.7936 9.5179 

 Rutile 4.6007 2.9612 

L75-S5.5-O19.5 MEA Anatase 3.7970 9.5274 

 Rutile 4.6059 2.9632 

L75-S5.5-O19.5 TEA Anatase 3.7921 9.5115 

 Rutile 4.6007 2.9579 

L75-S5.5-O19.5 TEA 1:6 Anatase 3.7861 9.5140 

 Rutile 4.5960 2.9581 

TiO2 Aeroxide ® Anatase 3.8010 9.5380 

  Rutile 4.6106 2.9633 

 

6.7. Concluding Remarks 

As can be observed through the analysis of the proposed foam systems, the different compounds utilized 

for their synthesis are bio-compatible, non-toxic and water-stable. This signifies that the foams’ 

processing does not require special humidity or vacuum conditions, and that there is ample time for these 

materials’ manipulation. Moreover, because of the excellent bio-compatibility of all the foam precursors 

(besides TiO2), the synthesized cellular structures are natural candidates for their bio-functionalization or 

implementation as biocomponents. This investigation shows how, the developed ceramic foam synthesis 

approach offers fine tailoring of the morphology, surface area and pore-size distributions; and mass/light 

transport interactions (photocatalytic performance) based on the careful selection of the TALH:TiO2 ratio, 

L:S:O ratio, and primary TiO2 particle properties. Moreover, this method enables the 3D printing of these 

hierarchically ordered mesoporous structures as free-standing and spanning architectures by tuning the 

rheological properties of the yield-stress fluid formulations.  

In need of pioneering approaches for responsibly engineered materials and manufacturing, this work 

demonstrates a practical and relatively simple route to synthesize TiO2 foams (that could be extended to 

other ceramic materials systems), using colloidal emulsions consisting of a Ti-organic complex – TiO2 

particle’s suspension as the aqueous phase, and controlling their morphology as printable open- or 

closed-cell foam architectures. Investigation of their printing space using continuous-flow direct writing is 

performed, indicating that spanning structures can be fabricated at relatively low writing speeds and 

intermediate dispensing pressures due to minimum-to-moderate stretching of the printed foam filament. 

In addition, a potential mechanism for the dimensional change, as the printed foam-inks are transformed 

into sintered solids, when using heat treatments up to 500°C is proposed. Studies of low thermal-energy 

curing treatments (mild heat and UV) administered to transform the dried foams into higher-degree 

crystalline structures, show differences in the foam’s microstructure, arising from the inherent nature of 

such energy treatments and the morphology of the treated materials. The differences in photocatalytic 

performance between open- and closed-cell printed foams are illustrated, and are believed to arise from 

the electron-photon interactions and macropore size dependence, i.e., from the more efficient circulation 
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of the dye solution to the photocatalytically-active sites of the foam, and the improved diffusion of light 

within the larger macropore open-cell foam structures.  Further work on the characterization of these 

differences, and light – structures’ interaction will provide further fundamental insights. The use of 

inexpensive, innocuous, and bio-compatible materials implemented in these foams, may hold the key for 

their implementation and scalable 3D printing, enabling a plethora of advanced technological 

applications. 
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Chapter 7: Multiphase Materials Systems II: Encapsulating Materials and Controlling the 

Nucleation of Ag on TiO2 Structures 

The investigated Ti-organic/TiO2 foam emulsion system, can be further used for the synthesis and 

selective positioning of a secondary phase material on the ceramic scaffold, to realize hierarchical 

mesoporous cellular heterostructures such as metal-ceramic composites. The concept is to use the oil 

phase of the oil-in-water emulsion system, to encapsulate the secondary phase material or their 

precursors, and induce their formation by using an external energy source or by using a chemical catalyst. 

Alternatively, in order to reduce the thermal budget associated to the composites’ transformation from 

the emulsion state to the final functionalized ceramic, the use of hydrocolloids as foam 

stabilizers[248,249], and as secondary phase materials dispersion medium is proposed. Food 

hydrocolloids, being widely studied and abundant rheology control compounds[250,251], highly 

compatible with living organisms, are great substitutional candidates for the realization of environment-

friendly materials. Remarkably, the stabilization role of chitosan polysaccharide hydrocolloids has been 

reported previously for the fabrication of cellular Si-based soft materials[155].  

In the currently proposed multiphase system, two composite groups are envisioned: metal-oxide/metal 

and metal-oxide/organic-molecule materials; additionally, different metal-oxide-I/metal-oxide-II are also 

possible. The former (i.e. metal-oxide/metal composites) are widely used for enhanced light harvesting 

applications including H2 generation[252–257], small molecule detection[16],   

catalysis[15,52,213,253,255,258–263] and photovoltaics[55,264–266]; as well as for biomedical and 

antibacterial coatings [267–269]. Similarly, metal-oxide/organic-molecule composites are commonly used 

in optoelectronic systems such as dye-sensitized solar cells[270], catalysts[34] and biocompatible systems 

such as scaffolds for tissue engineering [271].  

7.1. Design, Synthesis and Rheology Observations 

To illustrate the proposed concept, metal-oxide/metal composites (i.e. Ag-decorated TiO2 foams) are 

synthesized.  In doing so, alternative methods to fabricate such composites with multiple applications are 

realized, based on the fundamental insights gathered from investigating these different material systems 

processing-properties relationships. This work serves as preliminary study for the realization of the more 

complex ceramic composites. In the described method, the Ag decorations could be included as prepared 

particles dispersed within the phase complementary to the titania suspension, or they can be formed 

within such complementary phase from a solution including a Ag-precursor. The complementary phase 

(oil-based or hydrocolloid-based) serves as controlling agent of the secondary phase (decorative) material 

nucleation sites (i.e. the Ag particles will nucleate where the encapsulating phase reaches onto the metal-

oxide structure), and to control the nucleation and growth rate (depending on the viscosity, pK 

properties, and thermal decomposition of such complementary phase). Nucleation of inorganic 

nanoparticles in oil-in-water emulsions has been demonstrated previously[14]. However, its simultaneous 

synthesis, with that of mesostructured metal-oxide cellular architectures is herein proposed for the first 

time. 

For the synthesis of Ag-decorated TiO2 foam, the previously studied metal-organic/metal-oxide 

(TALH:TiO2) suspension and a Ag ion-rich oil phase are emulsified, and frothed to incorporate the gas 

bubbles that lead to macropore features. The only deviation from the plain TALH:TiO2 foams synthesis 
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procedure, is the triethanolamine (TEA) addition to the Ag acetate ethanol solution to induce the Ag-

precursor solvation, instead of at the last mixing step before frothing. Once the Ag precursor is solubilized 

in ethanol, it is added to the oil phase. The ethanol solution mixes readily with the oil phase constituents 

at ~ 70 °C, and the blend remains clear and does not change its color. The Ag oil phase is stirred 

continuously to evaporate the ethanol, and once no volumetric changes are observed, the TiO2 suspension 

is added and allowed to homogenize by continuous stirring while closed. Once the oil-phase and the 

titania suspension are visibly blended, frothing with a wisk-like mechanical mixer is performed. The 

viscosity of the decorated foam systems is comparable with the plain (non-decorated) foams as indicated 

by the dynamic viscosity measurements (see Figure 58 (a)). 

For the hydrocolloid-based complementary phase, xanthan gum (XG) is used aiming to reduce the amount 

of organic species used in the synthesis of Ag-TiO2 structures, when compared to the oil-based 

formulations. This formulation uses the same TALH:TiO2 suspension as base, but instead of dispersing the 

Ag precursor in an oil-phase, it is mixed in the PAA-XG solution and incorporated to the titania mixture. 

Since very small amounts of XG are required to significantly increase the viscosity of aqueous 

solutions[272–274], a more efficient transformation of TALH into TiO2 and the nucleation of the 

decorative secondary phase (Ag(0)) could be expected upon energy treatments such as UV or thermal-

annealing. For this formulation, the Ag precursor was first solubilized in ethanol. A minimum amount of 

ammonium hydroxide was used to ensure its solvation. This solution was completely clear before mixing 

with the XG-PAA solution, upon mixing with such solution it became slightly turbid which is indicative of 

sedimentation / reduction of Ag in similar solutions[19]. Particularly, this reaction is characteristic of 

metallic Ag nucleation from a Tollens’ reagent in contact with a polysaccharide compound like xanthan 

gum[275]. Then, the solution was immediately added to the TiO2-TALH suspension and frothed as 

customary. All the processing steps were performed in the dark to avoid light-induced uncontrolled 

changes of the ink. 

 
Figure 58. Viscosity of (a) representative TEA (no-Ag ●) and Ag-decorated TiO2 (★) oil-based foam-ink; and (b) Ag-

decorated TiO2 (★) oil-based foam-ink, Xanthan Gum baseline (■), and Xanthan Gum-based Ag-decorated TiO2 (□) 
precursor inks. 



80 
 

Characterization of the viscosity of the XG-baseline (without Ag), and Ag-decorated XG formulation is 

presented in Figure 58 (b). It can be observed that the obtained viscosity for the xanthan gum based 

formulations is significantly lower than that for the oil based foams. This in turn, results in the de-

stabilization of the foam as it is sheared during the application to the substrates using doctor blading. 

7.2. Microstructure 

The difference in the morphology of the Ag-decorated composites (oil-based) and (XG-based) is apparent 

from the SEM and optical microscope images, where the foams stabilized using hydrocolloids rapidly 

allowed the solvent (water) to evaporate, resulting in the collapse of the gas macropores and the re-

arrangement of the structure as films. See Figure 59, Figure 60 and Figure 61.  

Ambient light exposure of the films results in their staining, indicative of reactive systems. The dried films 

are observed to be more stable to light exposure (against staining), than when exposed while wet; with 

the oil based foam system exhibiting the highest stability as observed from the optical microscope images, 

see Figure 59. Such staining is observed to be blocked at the films’ surface, as the collapsed pores of the 

XG-based Ag-TiO2 non-sheared sample do not exhibit such staining, having collapsed while in the dark, 

after initial sample surface exposure to light (Figure 59 (c)). This drying/light exposure dynamics may be 

further investigated for their use in controlled photoreduction processes as drying causes the exposure of 

inner regions of the pores. This could be viewed as a potential mechanism to control “healing” of the film 

cracks as drying progresses, and its detailed study is left as future work. 

 
Figure 59. Optical microscope images of the Ag-decorated TiO2 samples from (a) oil-based, and xanthan gum-based 
formulations (b) and (c). Scale bars are 200 µm long. Samples (a) and (b) were doctor bladed; sample (c) as scooped 
and allowed to relax as it dried. 

SEM images of the Ag-decorated TiO2 foams are shown in Figure 60. The broad porosity size distribution 

is apparent, featuring macropores as large as 80 µm and smaller features of ~5 µm (from trapped gas).  

Additionally, meso- and micro-porous structures resulting from the aggregation of the primary particles 

and their micro-porous features are observed. From these images, the role of the oily-scaffold is once 

more elucidated – see Figure 60 (high-magnification of “As Doctor Bladed” sample) – which shows that 

the oil phase serves as scaffold structure for the assembly of the titania suspension, maintaining the 

macropore structure as the solvent is evaporated during drying of the films. 
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Figure 60. SEM images of the L75-S3-O22 Ag-decorated TiO2 foam composites treated at different temperature and 

UV light (=254 nm) conditions for 20 min. 

For the XG-based Ag-TiO2 film, mud-cracking is observed (see Figure 61), forming as the solvent evacuation 

progresses, due to relatively high localized tensile stresses [246]. At this point, it becomes necessary to 

highlight the structural role of the oil phase which prevents the structure from cracking upon drying. 

However, during sintering, its cracking behavior will depend on additional aspects such as open- or closed-

cell configurations, and relative L:S:O and TALH:TiO2 ratios[276]; as discussed in the previous chapter. 

 
Figure 61. SEM images of the Xanthan gum-based Ag-decorated TiO2 composites treated at different temperature 

and UV light (=254 nm) conditions for 20 min. 



82 
 

Both XG-stabilized inks, (Ag-decorated and baseline) result in similar film morphologies as observed from  

Figure 61 and Figure 62. The particle aggregation and mud cracking observed is characteristic of the 

TALH:TiO2 ink systems as depicted in chapter 5. 

 
Figure 62. SEM images of the Xanthan gum-based TiO2 baseline composites, treated at 150°C and UV-light (=254 
nm) for 20 min. 

XRD patterns for the Ag-decorated TiO2 oil-based foam (see Figure 63), exhibit rutile and anatase phases 

as expected from the primary TiO2 particles. The signal intensity is observed to be relatively similar to that 

of the ITO substrate, and is associated to the thin and porous character of the fabricated films, so that the 

collected signal resulted mainly from the substrate. Furthermore, from the XRD patterns, no clear 

evidence of Ag in metallic phase is obtained, which is mainly due to the low amount of Ag used for the 

decoration of the TiO2 surfaces, ~1.2 wt% (~0.3 atomic%) of the total sintered composite (no remaining 

organic compounds); and to the small size of the formed Ag nanoparticles, with characteristic peaks 

significantly broader and lower in intensity when compared to those of TiO2. Therefore, the peaks from 

metallic Ag may be confused with the background signal. Additionally, the diffraction peak with 100% 

relative intensity for metallic Ag should be located at ~38.5° 2θ angle, which may coincide with those for 

anatase at ~38.01° and 38.84° (with expected larger intensity from the higher TiO2 content), see Figure 

63 (b). 
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Figure 63. XRD patterns of the L75-S3-O22 Ag-TiO2 foam composites treated at different temperature and UV light 
conditions. (b) Detailed XRD regions where the metallic Ag peak would show. 

The XRD patterns for the XG-based inks (see Figure 64 (a) and (b)) show significantly higher intensity for 

the TiO2 compared to the substrate signal, which is attributed to thicker films and more coverage of the 

substrate surface as can be inferred from the respective SEM images. Nevertheless, similarly to the Ag-

TiO2 oil-based foam, no conclusive evidence of Ag in metallic phase is observed from XRD, see Figure 64 

(c) and (d). The Ag content is kept identical for both oil-based and XG-based Ag-TiO2 composites. 

 
Figure 64. XRD patterns of the xanthan gum based TiO2 inks (a and c) Ag-decorated and (b and d) without Ag (baseline 
xanthan gum-TiO2). (c and d) Detailed XRD regions where the metallic Ag peak would show. 
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EDS information for the Ag-TiO2 composite systems were collected – see Appendix A – and show gradual 

removal of the organic species as more energy is supplied in the post-processing treatments. Table 21 

summarizes the different C:Ti and Ag:Ti atomic % ratios for the samples treated under such conditions. It 

is observed that almost no signal from Ag is obtained for the oil based samples, and may be explained by 

the small volume of sample (thin and porous); and the large amount of organics present, hindering the 

detection of Ag (in minimum concentration compared to the other elements detected). Nevertheless, Ag 

is detected for the 300°C-20 min treatment, which significantly removes the organic species associated to 

the oil phase of the foam. The latter is evident from the C:Ti ratio, that decreases as more energy is 

provided. In contrast, the lower organics content in the XG Ag-decorated TiO2 composites shows readily 

the Ag content even for the lower energy treatments, and exhibits a less pronounced decrease of the C:Ti 

ratio. 

 

Table 21. C:Ti and Ag:Ti atomic % ratios from the EDS spectra for the different energy treated Ag-decorated TiO2 
composites. 

EDS - Films Treatment C:Ti Ratio Ag:Ti Ratio 

Oil-based As Doctor Bladed 5.840 0.000 

Ag-TiO2 Foam 20min UV  6.503 0.000 

 150°C 20min  7.537 0.000 

  300°C 20min  1.828 0.010 

XG-based As Doctor Bladed 0.192 0.010 

Ag-TiO2 Ink 20min UV  0.147 0.016 

 150°C 20min  0.145 0.019 

  300°C 20min  0.175 0.010 

 

EDS mapping of the XG- and oil-based Ag-TiO2 composites (see Figure 65 and Figure 66), show uniform 

distribution of the Ag on the TiO2, since no particularly high contrast spots of Ag are identified. The 

spectroscopic information from the mapped regions is labelled as “Selected Area” and is depicted in the 

magenta box for the XG-based Ag-TiO2 composite (Figure 66). The selected area for the oil-based sample 

constitutes the entire imaged area in Figure 65. By design, the target compounds should only consist of 

Ti, O and Ag species. However, the utilization of organic precursor compounds and their incomplete 

removal is responsible for the C and N content, while all other species information originates from the 

substrate (ITO on glass). 
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Figure 65. EDS point analysis and mapping of the oil-based Ag-decorated TiO2 foam treated at 300°C for 20 min. 

 
Figure 66. EDS point analysis and mapping of the xanthan gum-based Ag-decorated TiO2 composite treated with UV-
light (λ=254nm) for 20 min. 
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7.3. Opto-electronic Properties and Microstructure 

Despite the challenges encountered to obtain quantitative information about the Ag decorations from 

EDS and XRD (especially for the oil-based foam), the Ag-TiO2 composites exhibit interesting coloration 

changes suggesting the presence of nanoparticles on the surface of TiO2[277] as is characteristic from the 

plasmonic effects, see Figure 67. 

 
Figure 67. Photograph of the doctor bladed Ag-decorated TiO2 samples treated under different energy conditions. 

The optical bandgap of the studied samples, as calculated using the Tauc’s relationship (eq. 5)[278], is 

observed to vary slightly according to the energy treatment administered, see Table 22. All the obtained 

values are characteristic of TiO2 (3.1 eV – rutile; 3.3 eV anatase)[18].  Tauc plots and UV-Vis spectra of the 

different Ag-TiO2 oil-based and XG-based TiO2 films are presented in Figure 68 and Figure 69, respectively. 

For the oil-based Ag-TiO2 foams, a general increase in the Eg values is observed with increasing energy of 

the treatments. The lower energy treatments (i.e. UV and 150°C, for 20 min) exhibit Eg values closer to 

that of rutile TiO2, and as the treatment temperature is increased, the obtained Eg values increase 

gradually to values close to that for anatase TiO2. On the other hand, for the XG-based Ag-decorated TiO2 

films, the Eg values are observed to decrease systematically as the post-deposition energy treatments is 

increased. Also, the values for the plain (no Ag) TiO2 XG-based films show Eg values with no significant 

variation.  
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Table 22. Optical band gap (Eg) of Ag-decorated TiO2 composites, and conduction band edge (Ecb) of decorating Ag 
particles. *Calculated from Tauc plots (linear region extrapolation). **Calculated using the Einstein’s photon energy 
equation. 

Sample Eg (eV)*  max Ecb (eV)** 

Ag-TiO2 Foam As Doctor Bladed 3.2000 453 2.7373 

Ag-TiO2 Foam UV 20min 3.1205 440 2.8214 

Ag-TiO2 Foam 150°C 20min 3.1719 432 2.8704 

Ag-TiO2 Foam 300°C20min 3.2103 437 2.8375 

Ag-TiO2 Foam 500°C 20min 3.2793 491 2.5255 

Ag-TiO2 XG-Film As Doctor Bladed 3.2760 456 2.7193 

Ag-TiO2 XG-Film UV 20min 3.2603 440 2.8182 

Ag-TiO2 XG-Film 150°C 20min 3.2323 440 2.8182 

Ag-TiO2 XG-Film 300°C 20min 3.1290 469 2.6439 

Ag-TiO2 XG-Film 500°C 20min 3.1229 523 2.3709 

XG-based TiO2 Film As Doctor Bladed 3.2521 --- --- 

XG-based TiO2 Film UV 20min 3.2662 --- --- 

XG-based TiO2 Film 150°C20min 3.2790 --- --- 

 

In the Tauc plots (Figure 68 (a) and Figure 69 (a) and (c)), the intercept of the line fitting the linear region 

of the end tail of the (hν)2 vs. hν with the abscissa[278], is used to determine the bandgap of the prepared 

samples.  

(𝛼ℎ𝜈)2 = 𝐴(ℎ𝜈 − 𝐸𝑔)𝑛          (5) 

Where n = ½ for direct band gap semiconductors, A is a constant, hν is the photon energy, and  is the 

absorption coefficient of the semiconductor. The latter in turn, can be calculated from Eq. 6, where k is 

the absorbance as measured using UV-Vis spectroscopy. 

𝛼 =
4𝜋𝑘

𝜆
                (6) 

The conduction band energy (Ecb) of the decorating Ag nanoparticles has been calculated based on the 

UV-Vis information using the Einstein photon energy equation (Eq. 7) and is also included in Table 22.  

𝐸𝑐𝑏 =
ℎ𝑐

𝜆𝑚𝑎𝑥
                (7) 

Where h is the Plank constant, c is the speed of light, and max the wavelength of maximum absorbance 

for the Ag peaks form the UV-Vis spectra. Our results for the Ecb of these nanoparticles are comparable 

with those obtained for spherical Ag nanoparticles of similar diameter[26]. The Ag nanoparticles sizes for 

the representative Ag-TiO2 composite systems has been determined from TEM as is discussed later in this 

chapter.  
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Figure 68.(a) Tauc plots for the determination of the optical bandgap, (b) normalized UV-Vis spectra of the differently 
treated oil-based Ag-TiO2 foams. 

 
Figure 69.Tauc plots for the determination of the optical bandgap (a) – XG-based Ag-TiO2 films, (c) – XG-based TiO2 
films; and normalized UV-Vis spectra (b) – XG-based Ag-TiO2 films, (d) – XG-based TiO2 films, treated under different 
energy conditions. 
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It is therefore of great interest to understand the nature of such changes in the Eg, since they may originate 

from localized effects of the Ag nanoparticles on the TiO2 surface (also known as band edge bending)[279]; 

as well as from the effect of the Ag nanoparticles on the crystallization of TiO2 favoring the rutile phase 

formation at remarkably low temperatures [280,281]. In these multiphase systems, where some of the 

TiO2 is crystallizing from TAHL, the Ag nanoparticles may induce such crystallization to take the rutile phase 

instead of the anatase polymorph, as has been reported for TiO2-Ag nanocomposites prepared from TiCl4 

using photodeposition and annealed at 600°C [280]. Typically, for the temperature ranges explored in this 

work (up to 500 °C), the crystallization of TALH into TiO2 from suspension formulations without Ag, occurs 

in the anatase phase[128]. However, the influence of the Ag nanoparticles (nucleating and growing in the 

proposed composite systems), may cause a deviation of such behavior. Such influence is expected to be 

significantly higher when using the XG-based Ag-TiO2 formulations, than when using the oil-based Ag-TiO2 

route. The reason being, that in the oil-based Ag-TiO2 foams, the nucleation and growth of the Ag 

nanoparticles is expected to be generally smaller than in the oil-free XG systems, for equivalent energy 

treatments, due to the lower viscosity of the XG-based formulations. Also, since less energy is required to 

decompose the added XG, than the oil phase used as gas stabilizer of the TiO2-TALH aqueous suspension, 

the available energy is expected to nucleate the Ag nanoparticles more efficiently in the XG case. 

Additionally, since the Ag precursor is solubilized in an aqueous solution (for the XG case), the TiO2 

surfaces are readily available for the Ag ions to nucleate. In contrast, during the synthesis of the Ag-TiO2 

foams from the oil-based formulations, a significant amount of energy is used for the removal of the 

organics composing such phase (in which the Ag-precursor is solubilized). Therefore, for the Ag 

nanoparticles to induce the anatase to rutile phase transition, such particles would need to reach the sites 

where TALH is transforming. For such system (oil-based), the possible Ag nucleation sites are within the 

oil phase (where enough Ag+ ions cluster), and/or at the boundaries between the oil phase and the 

aqueous titania suspension. The latter being the preferred case as TiO2 surfaces in the suspension would 

provide ordered nucleation sites, as well as photoreduction centers[282] leading to Ag nuclei, in the case 

of the samples subjected to UV light treatments. 

In order to confirm the nucleation of Ag nanoparticles from the investigated systems, representative 

samples, with presumably larger Ag nanoparticles were imaged using TEM. Figure 70 shows images of the 

Ag-decorated TiO2 foams from the oil-based system treated at 500°C (a) and (b); and from the xanthan 

gum-based system, treated at 300°C (c)-(e), and 500°C (f) and (g). TEM imaging of the primary TiO2 

nanoparticles was also performed for comparison purposes, see Figure 71. 

In the TEM images of the Ag-TiO2 composites, large TiO2 formations can be distinguished. Scattered 

around such formations, smaller Ag nanoparticles are observed as highlighted with the dashed ovals and 

arrows. In contrast, the images taken from the primary TiO2 particles, exhibit overall smaller and more 

uniform sized TiO2 particles that aggregate forming clusters. The difference in particle aggregation for the 

latter, contrasting the Ag-TiO2 systems can clearly be observed from Figure 70 (b), (d) and (g), where the 

large TiO2 formations show necking between neighboring TiO2 particles; whereas Figure 71 (b) shows 

overlapping of primary TiO2 particles. Additionally, the oil-based and XG-based Ag-TiO2 composites show 

differences in the sample morphology at the nanoscale. For the oil-based system, a more continuous TiO2 

structure is observed when compared to the XG-based sample structures, regardless of the temperature 

conditions utilized. The latter result highlights the advantages of using immiscible phases for the 
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dispersion of the decorating material precursor as in the case of the oil-based system, ensuring high 

connectivity of the metal-oxide scaffold. 

The formed Ag particles, exhibit spherical shape with diameter sizes ranging from ~ 2 – 4 nm for the 500°C 

treated oil-based Ag-TiO2 foams; and from ~ 2 – 3 nm and ~ 3 – 10 nm, for the XG-based Ag-TiO2 

composites treated at 300°C and 500°C, respectively. Inset (e) shows one of the spherical Ag nanoparticles 

on the TiO2 surface. Since the nucleated Ag particles are observed to grow when increasing the energy 

treatment from 300 to 500°C (for the XG-based Ag-TiO2 composites), it may be inferred that the size of 

the nucleated Ag particles for the samples treated using lower energy conditions exhibit smaller sizes.  

The coloration of the samples, is indicative of different nanoparticle sizes. Also, the Ecb of metal 

nanoparticles is dependent on their size[24–26]; thus, a correlation between the Ag-decorating 

nanofeatures and the calculated Ecb can be established. 



91 
 

 
Figure 70. TEM images of the oil-based 500°C treated Ag-TiO2 foams (a) and (b); and xanthan gum-based Ag-TiO2 
composites treated at 300°C (c-e), and 500°C (f) and (g). Scale bars are 20 nm for (a), (c) and (f); 10 nm for (b), (d) 
and (g); and 5 nm for (e). Arrows indicate some of the Ag nanoparticles. Dashed ovals depict Ag nanoparticle rich 
areas. Dashed squares indicate enlarged regions in (e), and (g)). 
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Figure 71. TEM images of the primary TiO2 particles. Scale bars in (a) and (b) correspond to 20 and 10 nm respectively. 

 

7.4. Chemical State of Nucleated Secondary-Phase Nanoparticles  

X-ray photoelectron spectroscopy (XPS) was used to investigate the oxidation state of the nucleated Ag 

nanoparticles and confirm their metallic state, as well as to assess the transformation of the samples with 

the respective energy treatments. For the oil-based Ag-decorated TiO2 foam composites, the intensity of 

the Ag3d, Ti2p and O1s peaks is observed to increase as more energy is supplied, see Figure 72. In contrast, 

the intensity of the C1s peak decreases as expected from the organics decomposition with increasing 

energy. Accordingly, the O band at ~ 530 eV, corresponding to the Ti-O bond, is observed to increase at 

the expense of the O band at ~ 532.5 eV, characteristic of the C-O bond. 



93 
 

 
Figure 72. X-ray photoelectron spectroscopy detailed peaks Ag 3d, Ti 2p, C 1s and O 1s, for the oil-based Ag-decorated 
TiO2 foam composites. 

The XPS data collected for the XG-based Ag-decorated TiO2 composites displays a general decrease of the 

C1s peak, which is associated to the organics removal with increasing energy (see Figure 73). No significant 

peak shape change is observed for the O1s and C1s peaks, indicative of the reduced amount of organics 

in the XG-based formulation, when compared to the oil-based foams. However a slight shift is observed 

for the 500°C treated samples, which is more pronounced for the Ti2p and O1s peaks with a ~0.4 eV 

difference. This shift may be partially attributed to error in the calibration, since it is also observed in the 

C1s peak centered at 284.9 eV – displaced ~0.15 eV compared to the other samples centered ~ 284.7 – 

284.8 eV – in turn coinciding with that obtained for TiO2 primary particles, see Appendix A. Additionally, 

diminishing of the shoulder at ~531.5 eV for the O1s peak can be observed as the temperature is 

increased. The intensity of the Ag3d peak for the 500°C treated specimen, is significantly higher than that 

for the other samples; whereas the intensity for all the other peaks, is observed to be similar regardless 

of the energy treatment employed. These results agree with those from XRD and EDS, exhibiting stronger 
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signal from the inorganic species for the XG thickened composites when compared to the oil-based 

counterparts.  

 
Figure 73. X-ray photoelectron spectroscopy detailed peaks Ag 3d, Ti 2p, C 1s and O 1s, for the xanthan gum-based 
Ag-decorated TiO2 ink composites. 

Due to the incomplete removal of the organic species from the foams/inks studied when using low energy 

treatments (UV and 150°C), it may be argued that the nucleated secondary phase materials correspond 

to mixtures of the Ag(0) with AgO, Ag2O; and possibly Ag2CO3. Calculation of the modified Auger 

parameters (AP)[283–285] from the XPS data, indicate values ~ 726 eV (see Table 23), which are 

characteristic of the Ag(0), i.e. metallic Ag[286,287]. Additionally, the non-significant change observed in 

the binding energy for the Ag3d5/2 peak among different energy treatments, it can be taken as strong 

suggestion of the metallic character of the particles forming within the system. 
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Table 23. X-ray photoelectron spectroscopy binding energy and modified Auger parameters AP for the Ag3d5/2 peak 
from the Ag-decorated TiO2 composites. 

Sample Treatment 

Binding 

Energy  

Ag3d5/2 (eV) 

Kinetic Energy 

Ag M4N45N45 

(eV) 

AP-3d5/2 

M4N45N45 (eV) 

AP-3d5/2 

M5N45N45 (eV) 

Oil-based As Doctor bladed 367.60 358.60 726.20 719.20 

Ag-TiO2 

foams 

UV 20min 367.54 358.60 726.14 719.14 

150°C 20min 367.44 358.60 726.04 719.04 

 300°C 20min 367.52 358.60 726.12 719.12 

  500°C 20min 367.27 359.30 726.57 723.87 

XG-based As Doctor bladed 367.62 358.60 726.22 719.22 

Ag-TiO2 films 

UV 20min 367.52 359.30 726.82 721.32 

150°C 20min 367.62 358.80 726.42 719.92 

 300°C 20min 367.37 359.30 726.67 719.67 

  500°C 20min 367.77 358.80 726.57 721.57 

 

Quantitative information on the XPS composition of the investigated samples is included in the Table 24. 

The O:Ti ratio obtained is in all cases higher than 2 (the stoichiometric value for TiO2); this ratio is observed 

to decrease as more energy is supplied to the oil-based Ag-TiO2 foam systems, whereas it is kept relatively 

constant for the XG-based Ag-TiO2 films. The Ag content is generally found to be higher than that 

measured from EDS (see Table 21). Because of the higher vacuum conditions met by the XPS equipment 

compared to the vacuum in the EDS instrument, the XPS values could be considered more accurate.  

Table 24. Quantitative analysis of the sample composition, as calculated from the XPS peak fittings. 

    Atomic %     

Ink Treatment C O Ti Ag N O : Ti Ratio Ag : Ti Ratio 

TiO2 Aeroxide (Primary Particles) 30.43 51.06 18.51  ---   ---  2.76  ---  

MTDF-03 As Doctor bladed 91.13 6.56 0.90 0.11 1.30 7.29 0.12 

Oil-based 

Ag-

decorated 

TiO2 foam 

UV 20min 85.92 11.50 0.75 0.07 1.75 15.33 0.09 

150°C 20min 86.27 10.81 1.64 0.07 1.20 6.59 0.04 

300°C 20min 68.32 25.94 4.84 0.37 0.52 5.36 0.08 

500°C 20min 16.96 59.20 23.04 0.63 0.18 2.57 0.03 

MTDF-04 As Doctor bladed 28.74 51.26 17.90 1.14 0.97 2.86 0.06 

Xanthan 

gum-based 

Ag-

decorated 

TiO2 ink 

UV 20min 29.24 49.55 18.55 1.19 1.46 2.67 0.06 

150°C 20min 28.23 51.12 18.41 1.04 1.20 2.78 0.06 

300°C 20min 23.75 52.72 21.78 0.76 0.99 2.42 0.03 

500°C 20min 11.10 61.20 25.02 1.87 0.81 2.45 0.07 

 

XPS survey and detailed scans for the different Ag-TiO2 systems and the primary TiO2 particles are included 

in Appendix A. 
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7.5. Concluding Remarks 

Using the proposed and investigated multiphase emulsion material systems, secondary phase 

functionalizing features can be produced within the emulsion system, by dispersing/encapsulating their 

precursors in a complimentary phase of the emulsion and inducing their nucleation using energy 

treatments such as UV-light exposure or sintering. This method enables a novel, sustainable and relatively 

simple route, for the fabrication of hierarchically ordered cellular mesoporous ceramics with embedded 

functional nanofeatures. A distinction between the oil-based Ag-TiO2 foams and the xanthan gum-based 

Ag-TiO2 composites should be made, since the latter do not yield cellular macropore structures for the XG 

concentrations used in this investigation. The xanthan gum concentrations utilized are relatively low thus 

not providing enough stabilization for the macropores (i.e. gas bubbles), observed to collapse upon drying 

of the film and/or application of shearing stress. Characterization of the Ag-TiO2 composites subjected to 

the different energy treatments was successfully done through XRD, EDS, SEM, XPS, UV-Vis spectroscopy 

and TEM. The nucleated nanoparticles are found to be in the metallic state as highlighted from the XPS 

results, and exhibit spherical shape with sizes below 10 nm. The distribution of the Ag nanoparticles is 

observed to be rather uniform on the TiO2 surface. This investigation using Ag on TiO2 structures, provides 

an alternative approach for the nucleation of secondary phase materials on metal-oxide structures with 

controllable microstructures, useful across multiple applications from energy to biomedical, including H2 

production though enhanced light-harvesting devices, photovoltaics, small molecule detection, catalyst, 

water cleaning and regeneration systems, and bio-compatible materials. 
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Conclusions 

Through the investigation of the different ink systems for additive manufacturing, important relationships 

were established regarding their design, processing, and materials properties. These relationships are 

expected to be useful for the synthesis of similar ink-material systems and their implementation in 

devices, using CDW and alternative printing techniques.  

Relevant aspects addressed in the processing include the stabilization and rheology control of colloidal 

ink systems; and the consideration of the inks’ pK properties influencing the processing requirements 

and resulting materials microstructure.  

The understanding of the interactions of the different material precursors and processing conditions 

involved in the synthesis of Ag nanoparticles from the investigated solution system, serves as the basis for 

the design of processing protocols for their sustainable production.  

Similarly, the influence of the printing parameters on the materials morphology and crystalline orientation 

of Al-doped ZnO structures has been investigated through microstructural evolution studies, suggesting 

additional routes for their control. 

The studies of hybrid TiO2-based inks consisting of inorganic primary particles and organic metal-oxide 

precursors, contribute to the understanding of fundamental aspects and issues of hybrid inks design, 

printing and processing. This investigation provided the preliminary information necessary for the 

implementation of such hybrid titania systems in more complex ink formulations, that allowed for their 

3D printing, and morphology tuning as open- or closed-cell cellular mesoporous structures, and controlling 

of their surface area properties. Moreover, such investigations (TALH:TiO2 system and Ag nucleation) 

allow the realization of composite metal/metal-oxide systems through the incorporation of secondary 

phase decorative materials and/or their precursors by their encapsulation in one of the phases of such 

multi-phase systems. 

The use of hydrocolloids (i.e. methyl-cellulose and xanthan gum) as rheology enhancers and colloidal 

stabilization agents, was implemented for the Ag and TiO2 based systems. XG in particular showed 

significant increase in viscosity with minimum amounts shows promise towards reducing the thermal 

budget associated to these materials curing/sintering.  

Finally, assessment of the ink designs and processing methods from a sustainable perspective has been 

performed. This assessment may be considered as a pioneering approach towards important paradigm 

changes in ink development; and, constitute efforts for bridging the gap between lab practice and 

industrially adopted synthesis methods. The central issue being the inherent materials and precursors 

innocuous character, which makes them safe (throughout their life) and highly compatible for biomedical 

applications. 

Some specific contributions of this work include: 

a.) The investigation of the nucleation of Ag nanoparticles and the effect of the reducing agent (MEA vs. DEA) 

viscosity and pH, the nucleation temperature and time, in increasing the yield of the Ag solids from ~11 % 

to ~61%. 
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b.) The investigation of the electrical properties of the printed Ag patterns, processed at low temperatures 

(up to 150°C), and the correlation of their microstructure with the electrical resistance recovery behavior 

upon mechanical stress release during cyclic tensile stress loading conditions. Specifically, the Ag patterns 

exhibit resistivity values in the order of 10-4 Ω·cm when processed at 150°C; and their microstructure, 

allows for the dislocation annihilation at the interfaces the Ag structures, thus preventing their failure. 

c.) The study of the main factors influencing the texturing of Al-doped ZnO structures from sol-gel inks when 

using CDW, unveiling the texturing mechanism and accompanying morphological evolution. Particularly, it 

can be concluded that more texturing along the (0002) direction is induced due to the more efficient 

rearrangement of the (101̅0) and (101̅1) crystalline planes of the densifying film as induced by sintering 

when less material is printed (i.e. when tuning the printing parameters to yield finer features).  

d.) The investigation of the effects of the relative amounts of Ti-organic (TALH) to TiO2 primary particles, and 

different polymeric agents (PAA and PVP), on the crystallization of TiO2 from TALH forming bridging 

structures that connect neighboring primary particles, using low thermal-energy treatments compatible 

with polymeric substrates. Indicating that 1:6 TALH:TiO2 ratios maximize the crystallite growth, and that 

PAA further aids for the bridging of neighboring TiO2 particles and for anchoring of the inks onto the 

investigated substrates (Ag/PEN, ITO/PEN and Glass).  

e.) The investigation of the relationships between the ink constituents, the inks’ viscous properties, printing 

parameters, and ink/substrate interactions, that allowed progressively the transition from printing planar 

features, to printing 3D free-standing and spanning structures. 

f.) The correlation between the compositional and processing parameters with the photocatalytic properties 

of the investigated TALH:TiO2 systems, which take into account the roughness and mesoporous character 

of the films. Moreover, it is demonstrated that the photocatalytic performance of the fabricated 

hierarchically ordered mesoporous cellular titania structures depends not only on the surface roughness 

properties, but also on the cellular architectures’ configuration (i.e. open- vs. closed-cell foams). Open-

cellular TiO2 samples exhibit higher performance which is thought to be related to the combinatory effects 

of the MB solution circulation and the scattering of light towards inner regions of the cellular structure.  

g.) The proposal and realization of a relatively simple one-step approach for the synthesis of 3D printable 

hierarchically ordered mesoporous cellular ceramics, based on environment-friendly precursors making 

them sustainable and industry transferable; and controlling the pore size, open- vs. closed-cell 

configuration and surface area properties by tuning the liquid:solid:oil and TALH:TiO2 ratios. 

h.) Insight on the differences from the post-processing (i.e. heat treatment vs. UV-light curing) of the 

investigated ceramic foams, and the mechanism of elimination of the oil phase. 

i.) The proposal and demonstration of a single-step, alternative route for the synthesis of Ag-decorated TiO2 

nanocomposites, by dispersing the decorative materials and/or their precursors in one of the phases of 

the multiphase inks (i.e. oil- or XG-based solutions), and inducing their nucleation and growth through heat 

and UV-treatments. The decorating materials exhibit spherical shape and diameter ranging from ~ 2 to 10 

nm, and consist of metallic Ag, as suggested by TEM and XPS studies. 
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Future Work 

The results from the investigation of the synthesis of Ag nanoparticles and the influence of the reducing 

agents type and concentration, and temperature-time processing relationships may be used for further 

improving the particle yield. Also, refining of the ink composition and the potential use of hydrocolloids 

other than cellulose may aid towards attaining printed features of ~ 5 – 10 µm and higher electrical 

conductivity values. This may be used in combination with different patterning geometries to further 

assess the optical, electrical and mechanical properties of such conductive patterns. Moreover, the 

implementation of these inks in strain sensors and the characterization of the resulting materials and 

device performance is proposed as future research. Interesting perspectives from such investigations may 

include degradation studies of the devices, when subjected to humid and/or acidic operation conditions 

resembling wearable devices. 

Regarding the fabrication of textured Al-doped ZnO patterned films using solution based inks and additive 

printing, the exploration of such a method using alternative metal-oxide materials systems is proposed as 

future work. Furthermore, the systematic investigation of the proposed wrinkling-texturing additional 

tuning pathway, through the administration of more or less energy during the sintering process should be 

conducted to characterize the heat-treatment routes, and establish the energy thresholds for attaining 

specific texturing degrees. Also, further investigation of the mechanical, optical and electrical properties 

of such films with different texturing and wrinkling degrees, may provide complementary information 

regarding the potential of CDW of sol-gel ink systems for microstructure engineering of metal-oxide 

systems. Specifically, the relationships between the films’ wrinkle morphologies and their refractive 

index, mechanical flexibility and wear-resistant properties. 

Higher resolution printing (~ 5 – 100 µm) of the hybrid low viscosity (~10 – 100 mPa·s) TALH:TiO2 inks may 

be enabled by using co-solvent based formulations with different vapor pressure solvent combinations, 

as well as using hydrocolloids for their formulation. The expected outcomes from such approach are more 

control of the drying behavior of the printed microstructures (potentially reducing cracking), and the 

prevention of nozzle clogging due to sedimentation of the TiO2 primary particles. Z-potential 

measurements and pH tuning of the formulations is also expected to aid towards more kinetically stable 

inks. 

Further experimental and simulation investigations on the hybrid TiO2-TALH foams’ stability, 

characterizing the solvent drainage and bubble coalescence while printing and at rest after being extruded 

are proposed. Moreover, further studies on the use of xanthan gum, and similar hydrocolloids as gas 

stabilization agents of foams from hybrid titania suspensions is proposed. Specifically, the optimization of 

the amounts of such hydrocolloids for the gas stabilization and cellular shape retention even upon shear-

stress application, and the assessment of the stabilization effects when using different hydrocolloid 

blends, constitutes further work necessary for the transition from oil-based foam-ink formulations 

towards oil-free foams.  

Additionally, the assessment of the mechanical properties of the “green” and sintered 3D printed TiO2 

foams, and their dependence on the TALH:TiO2 ratios, as well as their reinforcement with nanofibers 
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and/or fillers such as carbon nanotubes and graphene flakes will provide further information about these 

systems towards their application as device components, and as UV-shielding coatings. 

Simulation and experimental investigations of the light interactions with the mesostructured cellular 

titania scaffolds are proposed to provide further insights about the interesting relationships observed 

between the photocatalytic activity, surface area, macropore size and cellular configuration of the titania 

foams. 

Additional research exploring the potential secondary-phase decorated/metal-oxide composites 

synthesis method, to demonstrate further control of the nucleated decorative materials shape, size and 

distribution; and plasmonic effects characterization, is also proposed as future work; including the 

demonstration of organic-molecule/metal-oxide composites from the proposed synthesis. Moreover, the 

use of this synthesis approach for the realization of alternative ceramic-metal mesoporous materials, such 

as those used in solid-oxide fuel cells is envisioned. Along this line, the exploration of high-temperature 

synthesis and operational regimes is required. 

Lowering the resolution of the printed features, enabling more complex architectures, and investigating 

their curing/sintering, and release/accommodation of residual stress, under mild temperature conditions 

compatible with polymeric substrates is also an area of future work that may significantly contribute to 

the realization of novel applications. 

Diverse applications demonstration, and device fabrication, characterization and optimization using the 

developed ink systems, is an interesting area of future research. Specifically, the use of optimized ink 

formulations and processing conditions for the realization of fully printable dye-sensitized solar cells, small 

molecule detection sensors, and bio-compatible scaffolds for growth of biological tissues is envisioned; 

taking advantage of the ample microstructuring potential of the investigated TiO2 material systems. Along 

this line, the study of interfacial phenomena between dissimilar materials, at the different stages 

(fabrication, operation, recycling-disposal) of such devices is proposed 
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Appendix A. Additional Characterization Data for the Ag-decorated TiO2 Composites: EDS, 

XPS. 

 
Figure A 1. EDS map of the "as doctor bladed" oil-based Ag-TiO2 foam. 

Table A 1. EDS quantitative information for the "as doctor bladed" oil-based Ag-TiO2 foam. 

Element (atomic %) C N O Na Si Ca Ti Ag In 

EDS Selected Area 59.45 --- 26.58 0.22 2.2 0.36 8.06 0 3.14 

 

 
Figure A 2. EDS map of the oil-based Ag-TiO2 foam treated under UV-light (λ=254 nm) for 20 min. 

Table A 2. EDS quantitative information for the oil-based Ag-TiO2 foam treated under UV-light (λ=254 nm) for 20 min. 

Element (atomic %) C O Na Si Ca Ti In 

EDS Selected Area 62.04 25.32 0 1.05 0.22 9.54 1.84 
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Figure A 3. EDS map of the oil-based Ag-TiO2 foam treated at 150 °C for 20 min. 

 

Table A 3. EDS quantitative information for the oil-based Ag-TiO2 foam treated at 150 °C for 20 min. 

Element (atomic %) C O Na Si Ca Ti In 

EDS Selected Area 50.97 31.42 0.58 4.21 0.58 7.47 4.56 
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Figure A 4. EDS map of the oil-based Ag-TiO2 foam treated at 300 °C for 20 min. 

 

Table A 4. EDS quantitative information for the oil-based Ag-TiO2 foam treated at 300 °C for 20 min. 

Element 

(atomic %) 

EDS 

1 2 3 4 5 6 Selected 
Area 

C 28.6 28.45 29.31 4.31 9.72 15.77 22.80 
N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

O 55.56 55.18 55 58.83 19.29 25.38 51.73 

Na --- --- --- 2.27 1.69 --- 0.86 

Mg --- --- --- 0.87 1.07 --- 0.29 
Si --- --- --- 17.97 32.98 22.57 5.48 

Ca --- --- --- 1.87 5 3.99 0.77 

Ti 15.69 16.37 15.69 0.71 0 3.74 12.10 

Ag 0.15 0 0 0 0 0 0.13 

In --- --- --- 13.17 30.26 28.54 5.85 
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Figure A 5. SEM image showing the points for EDS analysis of the “as doctor bladed” XG-based Ag-TiO2 film. 

 

Table A 5. EDS quantitative information for the “as doctor bladed” XG-based Ag-TiO2 film. 

Element 

(atomic %) 

EDS 
1 2 3 4 

C 5.52 6.19 5.43 0 
N 0 --- --- 9.42 

O 67.61 63.09 61.55 80.33 

Ti 26.6 33.44 32.71 10.26 

Ag 0.27 0.29 0.31 0 
 

 
Figure A 6. EDS point analysis quantitative information and elemental map of the XG-based Ag-TiO2 film treated 
under UV-light (λ=254 nm) for 20 min. 
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Figure A 7. EDS quantitative information and elemental map of the XG-based Ag-TiO2 film treated at 150 °C for 20 
min. 

 

 
Figure A 8. EDS elemental map of the XG-based Ag-TiO2 film treated at 300 °C for 20 min. 
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Table A 6. EDS quantitative information for the XG-based Ag-TiO2 film treated at 300 °C for 20 min. 

Element 

(atomic 

%) 

EDS 

1 2 3 4 5 6 7 8 
Selected 

Area 

C 4.77 5.19 5.58 6.34 6.03 5.7 4.34 3.9 7.96 

N 0 0 0 0 0 0 0 0 --- 

O 62.82 71.19 68.72 72.54 67.69 65.44 35.26 39.12 61.36 

Si --- --- --- --- --- --- 9.93 1.05 --- 

Ca --- --- --- --- --- --- 5.07 6.35 --- 

Ti 32.17 23.31 25.51 21.12 26.03 28.52 14.45 18.28 30.68 

Ag 0.24 0.31 0.19 0 0.25 0.34 0 0 --- 

In --- --- --- --- --- --- 30.95 31.29 --- 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



124 
 

 

 
Figure A 9.X-ray photoelectron survey spectra of the Ag-TiO2 composites from (a) oil-based, and (b) xanthan gum-
based formulations. 
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Figure A 10. XPS detailed peaks for the Ag-decorated TiO2 oil-based foams treated under different energy conditions. 
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Figure A 11. XPS detailed peaks for the Ag-decorated TiO2 xanthan gum-based films treated under different energy conditions. 
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Figure A 12. X-ray photoelectron spectra for the TiO2 Aeroxide® primary particles, survey and detailed scans. 
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Appendix B. TiO2-TIAA Studies 

Important findings about the crystallization of TiO2 though hydrolysis from sol-gel reactions at room 

temperature from Ti n-alkoxides, suggest that the Cl cations play a pivotal role for the transformation of 

amorphous TiO2 into anatase phase TiO2 [288].  Other works [289] suggest that anatase phase is also 

possible if the alkoxide to water volume ratio is 1:2. Recently, the synthesis of TiO2 foams from TiCl4 in the 

presence of an ionic liquid was demonstrated where crystalline TiO2 is obtained from solution reactions 

without the need of calcination processes [290].   

TiO2 emulsions from non-aqueous Titanium 

diisopropoxide bis(acetyl acetonate) and 

nanocrystalline TiO2 (Aeroxide® P25) were 

attempted, and a series of formulations of 

TiO2:TIAA (1:0), (1:1) and (1:3) in the oil phase, 

and of dimethyl-sulfoxide as the apolar phase 

were prepared. For all of these systems, rapid 

crystallization occurred (within 24 hours), 

possibly from residual water physisorbed onto 

the added crystalline TiO2 particles, difficulting 

the printing process due to clogging of the 

dispensing nozzles. Filtration of the inks using a 

5 μm mesh filter was also attempted with 

unsuccessful results, the added TiO2 particles 

were greatly stopped by the filter reducing the 

particle load in the system, followed by severe 

clogging of the filters half-way in the filtration process due to the large TiO2 crystals forming from the TIAA 

hydrolyzation and the accumulation of the added TiO2 

TiO2 – TIAA Ink 

The titanium(IV) diisopropoxide bis(acetylacetonate) (TIAA), is a Ti-organic precursor that hydrolyses 

rapidly in the presence of water to form amorphous TiO2. A TIAA-based sol-gel ink to produce TiO2 at high 

temperatures (starting at ~450°C)[124], is used as  Ti-organic phase for the hybrid ink formulation, 

combined with crystalline TiO2 (Aeroxide®, Sigma-Aldrich) nanoparticles, see precursors Table B 1. 

 

 

 

 

 

 

 

Figure B 1. Pictures of the crystal-like formations from 
titanium diisopropoxide bis(acetyl acetonate) (TIAA) when 
exposed to ambient water (a)  formed during the viscosity 
measurement of the ink, and (b) crystals formed after 5 days 
from a TIAA solution in decane, DMSO and Pluronic 123. 
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Table B 1. TIAA Inks precursor table. 

Precursor Chemical Formula Chemical Structure 
Molecular 

Weight (g/mol) 

DI Water 
H2O 

 
18.015 

Titanium (IV) Diisopropoxide 

Bis(acetylacetonate) 

C16H28O6Ti 

 

364.101 

Titanium Dioxide Nanoparticles 

(20 nm diameter) – Aeroxide® 
TiO2 

 
79.865 

Polyvinylpyrrolidone 
(C6H9NO)n 

 

 

111.084 

Polyacrylic Acid – PAA 

(C3H4O2)n 

 

72.033 

Ethanol 

CH3CH2OH 

 

46.07 

Ammonium Hydroxide 
NH4OH 

 

35.046 

 

 

Ink Rheology and Thermal Decomposition 

The viscosity and thermal decomposition of different TIAA based formulations was studied to explore the 

potential of this solution-based ink system.  The viscosity of the formulated sol-gel organic inks greatly 

changes as polymer is added to the system as thickening agent. A Newtonian fluid behavior is observed, 

for both of the polymers studied. However, for the PAA added formulation the viscosity exhibits larger 

values. A particular deviation from such Newtonian behavior is observed as TiO2 particles are incorporated 
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to the inks, where a shear-thinning behavior becomes more relevant as larger amounts of TiO2 particles 

are added. 

 

The thermo-gravimetric analysis (TGA) of the 

representative TIAA-based formulations show approximate 

yields of 20% TiO2 upon thermal annealing, the 

transformation from amorphous TiO2 to anatase phase, 

occurs around ~550°C, as observed from the final inflection 

point of the TGA curves. As it is expected, for the TiO2-TIAA-

PVP based system, larger amounts of TiO2 solids are 

obtained at upon thermal annealing as more TiO2 particles 

are incorporated to the system. Additionally, the inflection 

point observed for the amorphous to anatase TiO2 

transition, exhibits a shift towards lower temperatures with 

increasing TiO2 content, suggesting a lowering in the 

thermal-budget required to crystallize the ink systems as 

TiO2 nanoparticles are incorporated. Because the TiO2 

particles’ surface consists of ordered arrangements of TiO2 

lattices, it is hypothesized that such ordered structure 

serves as nucleating sites for the crystallizing TiO2 from the 

TIAA precursor; thus, larger amounts of nucleation sites 

become available as more particles are added to the 

system. It is worth mentioning that, due to the hygroscopic 

nature of TiO2, physisorbed water at the surface of the 

added TiO2 particles, may in turn promote hydrolysis of the 

metal-oxide precursor, favoring the transition as more TiO2 

particles are incorporated. 

Figure B 3. Viscosity of the TIAA ink formulations (a) with different polymers and (b) for the PVP formulation with 
different amount of TiO2 particles. 

Figure B 2. TGA of the TIAA based formulations (a) 
with different polymers and (b) for the PVP 
formulations with different TiO2 particle content. 



131 
 

Microstructure 

The microstructure of the films produced 

through spin-coating from the baseline (TIAA-

PVP formulation - no particles added) treated 

at high temperatures, are shown in Figure B 4, 

Figure B 5 and Figure B 6. Cracking of the films 

is evidenced for all the films obtained. These 

cracks arise from the high surface tension that 

develops as the ink is dried and the titanium 

dioxide particles crystallize. The heating rate 

used for the sintering processes, kept constant 

to 5 °C/min; is expected to have direct 

influence on the crack appearance and 

density, lower heating rates may result in 

lowering the crack density of the films. The use 

of Polyvinylpyrrolidone (PVP) expected to act 

as thickening agent and to avoid cracking[124] of the TiO2 structures during thermal annealing, is observed 

not to be the primary solution for avoiding cracking of such structures. Further review of the work 

reported by Lewis et. al.[124,125] indicates the 

use of a sacrificial polymeric film between the 

substrate and the printed TiO2 structures, 

which from our experience with the system in 

scrutiny, is what ultimately relieves the stress 

generated. Additionally, different shape, and 

dimensions – width and height of the patterns 

(films, straight lines, zig-zag lines, etc…) are 

expected to result in different surface finishes. 

The structure of the spin-coated films, consists 

of cracked surface films with TiO2 grains 

underneath. Figure B 5.d shows the surface for 

the 450°C sintered film, with highly aligned 

whisker like layers, clearly different from the 

rounded grains below the surface. 

Figure B 4. SEM images of the surface of the spin coated TiO2 – 
Sol films after sintering at 400°C (a), 450°C (b), 500°C (c) and 
550°C (d). 

Figure B 5. TiO2 – Sol ink, SEM images of titanium dioxide grains 
underneath the film surface after sintering at 400°C (a), 450°C 
(b) and 500°C (c). Surface of the film after sintering at 450°C 
(d). 
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A thin feature found in the sample sintered at 

550°C is shown in Figure B 6. The surface inside 

this feature (enlarged in Figure B 6 (b), (c) and 

(d)) is significantly different from that of the 

thicker films produced. Its formation is 

attributed to trapped air or other gases as 

(bubbles) in the ink due to its rapid 

solidification. This thinner region also exhibits 

cracking, forming TiO2 islands. 

 

 

 

The XRD patterns for the titanium solution films 

sintered at different temperatures from 400°C to 

550°C are shown in Figure B 7. Diffraction from TiO2 

anatase phase is observed. As the sintering 

temperature is increased, narrowing of the diffraction 

peak for the (011) planes is appreciated, suggesting 

preferential orientation accommodation of the crystal 

planes in the titanium dioxide particles with higher 

temperatures during sintering. Stronger anatase 

peaks with increasing temperature indicates that it is 

the dominating phase. The peak identified as R* can 

be assigned to TiO2 rutile phase and is observed to 

become more pronounced as the annealing 

temperature increases; however, the absence of the 

main rutile peak at ~ 27.4° 2θ angle, suggests that 

preferential orientation of such TiO2 phase may occur. 

Challenges from the TIAA Systems 

For all the TIAA based formulations, rapid sedimentation of amorphous TiO2 crystals occurs. The different 

polymers affect the hydrolysis rate of the TIAA to a greater or lesser extent; nevertheless, the instability 

of this TiO2 precursor make the inks’ rheological properties to change within minutes, difficulting their 

manipulation in open-air conditions. The clear TIAA inks (no particles added) would turn cloudy as soon 

as the vials were opened; whereas for the TiO2 particle added formulations, spontaneous solidification of 

the inks and clogging of the nozzles was almost immediate when robotic printing was attempted. For the 

PVP formulations (the most stable), spontaneous crystallization occurred approximately within 6-24 hours 

after the inks were prepared. Alternatively, the synthesis of the TIAA inks in a water-free environment 

may solve for this issue allowing the implementation of these systems.  

Figure B 6. SEM images of special feature in the TiO2 - Sol ink 
spin coated film after sintering at 550°C. 
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Figure B 7. XRD patterns of the spin coated TiO2-Sol films 
after different sintering temperatures. 
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Concluding Remarks – TiO2–TIAA System  

The crystallization of TiO2 films from sol-gel formulations of TIAA was investigated by varying the annealing 

temperature administered to spin-coated films. The treatments lead to different crystallinity grades as 

observed from the diffraction studies. The incorporation of TiO2 nanoparticles to the sol-gel TIAA 

formulation causes rapid crystal formations, attributed to forming TiO2 structures from hydrolysis of the 

TIAA.  

The synthesis, rheological and thermal decomposition studies of the different TiO2-TIAA formulations, 

confirm the importance of the different polymers used as well as the TiO2 nanoparticle concentration. The 

large increase in surface area, provided by the TiO2 nanoparticles, is considered to be the main reason for 

having such an accelerated hydrolysis of the TIAA precursor in the inks. Synthesis of these in controlled 

atmospheres, in the absence of water molecules, is identified as a potential solution for the realization of 

stable hybrid ink formulations. 
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