
Graduate Theses, Dissertations, and Problem Reports

2015

A Parallel Programmer for Non-Volatile Analog Memory Arrays A Parallel Programmer for Non-Volatile Analog Memory Arrays

Spencer L. Clites

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Clites, Spencer L., "A Parallel Programmer for Non-Volatile Analog Memory Arrays" (2015). Graduate
Theses, Dissertations, and Problem Reports. 5375.
https://researchrepository.wvu.edu/etd/5375

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F5375&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/5375?utm_source=researchrepository.wvu.edu%2Fetd%2F5375&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

A Parallel Programmer for Non-Volatile Analog

Memory Arrays

by

Spencer L. Clites

Thesis submitted to the
Benjamin M. Statler College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Electrical Engineering

David W. Graham, Ph.D., Chair
Vinod Kulathumani, Ph.D.
Dimitris Korakakis, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2015

Keywords: Analog, Integrated Circuits, Floating Gate, Hot Electron Injection,
Field-Programmable Analog Arrays

Copyright c⃝ 2015 Spencer L. Clites

Abstract

A Parallel Programmer for Non-Volatile Analog Memory Arrays

by

Spencer L. Clites
Master of Science in Electrical Engineering

West Virginia University

David W. Graham, Ph.D., Chair

Since their introduction in 1967, floating-gate transistors have enjoyed widespread success as
non-volatile digital memory elements in EEPROM and flash memory. In recent decades, however,
a renewed interest in floating-gate transistors has focused on their viability as non-volatile analog
memory, as well as programmable voltage and current sources. They have been used extensively
in this capacity to solve traditional problems associated with analog circuit design, such as to
correct for fabrication mismatch, to reduce comparator offset, and for amplifier auto-zeroing. They
have also been used to implement adaptive circuits, learning systems, and reconfigurable systems.
Despite these applications, their proliferation has been limited by complex programming procedures,
which typically require high-precision test equipment and intimate knowledge of the programmer
circuit to perform.

This work strives to alleviate this limitation by presenting an improved method for fast and
accurate programming of floating-gate transistors. This novel programming circuit uses a digital-
to-analog converter and an array of sample-and-hold circuits to facilitate fast parallel programming
of floating-gate memory arrays and eliminate the need for high accuracy voltage sources. Addition-
ally, this circuit employs a serial peripheral interface which digitizes control of the programmer,
simplifying the programming procedure and enabling the implementation of software applications
that obscure programming complexity from the end user. The efficient and simple parallel program-
ming system was fabricated in a 0.5µm standard CMOS process and will be used to demonstrate
the effectiveness of this new method.

A Parallel Programmer for Non-Volatile Analog

Memory Arrays

by

Spencer L. Clites

Approved by:

Dr. David W. Graham, Chair
Associate Professor, LCSEE
West Virginia University

Dr. Vinod Kulathumani
Associate Professor, LCSEE
West Virginia University

Dr. Dimitris Korakakis
Professor, LCSEE

West Virginia University

Date Approved: April 29, 2015

iii

Dedication

This work is dedicated to Betty M. Clites.

She would be proud.

iv

Acknowledgments

First, I would like to express my gratitude to my adviser, Dr. David Graham, for his knowledge,

guidance, and enthusiasm. I would also like to thank my labmates, Brandon Kelly, Alex Dilello, Mir

Mohammad Navidi, and Stephen Andryzcik, for their assistance, suggestions, and useful discussion.

I would especially like to thank Dr. Brandon Rumberg, whose work formed the foundation for my

own and whose help proved invaluable.

Lastly, I would like to thank my friends and family. Thanks to my parents, Jeff and Jeanne,

for their love and support. Thanks to my grandfather, Gary, for rewarding me with $1.50 each

semester I earned straight A’s. Thanks to my brother, Ben, for humoring me when I wanted to

talk about electronics. Also, thanks to my sister and brother-in-law, Nicole and Matt, for their

encouragement. Thanks to my girlfriend, Keri, for her love and adoration, and for making sure I

got home safely after sleepless nights spent in the lab. A final thanks goes to all those that remain

unnamed, who provided me with a life fulfilled, outside of my studies.

v

Contents

Abstract ii

Dedication iii

Acknowledgments iv

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Outline . 3

2 Introduction to Floating-Gate Transistors 4
2.1 Floating-Gate MOSFET Operation . 4
2.2 Modifying the Floating-Gate Charge . 6

2.2.1 Fowler-Nordheim Tunneling . 6
2.2.2 Hot-Electron Injection . 7

2.3 Programming Methodologies . 7
2.3.1 Pulsed Programming . 7
2.3.2 Continuous Programming . 9
2.3.3 Serial vs Parallel Programming . 10

2.4 Chapter Summary . 11

3 An Improved Parallel Programmer for Floating-Gate Transistor Arrays 13
3.1 Floating-Gate Memory Cell Array . 15

3.1.1 Measured Performance . 17
3.2 Serial Peripheral Interface . 19
3.3 Digital-to-Analog Converter . 21

3.3.1 DAC Metrics . 21
3.3.2 Design Considerations . 21
3.3.3 Measured Performance . 23
3.3.4 Output Buffer Pull-Down Transistor . 23

3.4 Sample-and-Hold Array . 25
3.4.1 Design Considerations . 25
3.4.2 S/H Topology . 29
3.4.3 Miller’s Theorem . 31
3.4.4 Measured Performance . 34

3.5 Programming Methodology . 37
3.6 Chapter Summary . 38

CONTENTS vi

4 A Parallel-Programmable Bandpass Filter Array 40
4.1 Parallel Programmer Accuracy . 42
4.2 The C4 Bandpass Filter . 44

4.2.1 C4 Programming . 46
4.3 Chapter Summary . 46

5 Broader Applications, Conclusions and Future Work 49
5.1 Field-Programmable Analog Arrays . 49
5.2 Conclusions and Future Work . 51

References 53

vii

List of Figures

2.1 Comparison of a typical MOSFET and a floating-gate MOSFET 5
2.2 Comparison of pulsed and continuous programming techniques 8
2.3 Comparison of serial, parallel, and this work’s continuous programming techniques . 11

3.1 Signal flow diagram of the presented programming architecture 14
3.2 Overview of floating-gate memory cell . 15
3.3 Transient response of floating-gate memory cell during programming 17
3.4 Programming accuracy of the floating-gate memory cell out of 25 trials 18
3.5 Block diagram of the serial peripheral interface . 20
3.6 Overview of the digital-to-analog converter topology 22
3.7 Static characteristics of the DAC . 24
3.8 Basic sample-and-hold operation and associated errors 25
3.9 Origin and cancellation of charge injection errors in a S/H 27
3.10 Overview of a transmission-gate switch . 28
3.11 Overview of sample-and-hold with Miller hold capacitance 30
3.12 Finding an analytical equivalent circuit using Miller’s theorem 32
3.13 Small-signal model of S/H in hold-mode . 33
3.14 Sample-and-hold droop rate dependence on Vref . 35
3.15 Dependence of S/H droop and pedestal errors on Vin, while Vref is fixed at 4.1V . . 36
3.16 Timing diagram of programming an array of n floating-gates in parallel 38

4.1 Die photograph of the programmable bandpass array chip 41
4.2 Transient response of the parallel programmer . 42
4.3 Accuracy of the parallel programmer out of 25 trials 43
4.4 Overview of the OTA-based C4 bandpass filter . 45
4.5 Programmed C4 array frequency responses . 47

5.1 Wheatstone bridge using non-volatile analog memory in an FPAA 50

viii

List of Tables

3.1 SPI Bit Assignments . 20

4.1 Active Area per Block . 40
4.2 C4 Device Sizes . 46

1

Chapter 1

Introduction

Floating-gate (FG) transistors—also known as floating-gate metal-oxide semiconductor (FG-

MOS) transistors or, simply, floating gates (FGs)—were first introduced by Kahng and Sze in 1967

as a method for non-volatile charge storage [1]. Since their inception, they have achieved great

success in the form of non-volatile digital storage in erasable programmable read only memory

(EPROM), electrically erasable programmable read only memory (EEPROM), and flash memories

[2, 3, 4]. In recent years, floating-gate flash has become so well established that, in 2007, NAND

flash bits began to overtake dynamic random access memory (DRAM) bits in sales for the first

time in history [3]. They have continued to become even more popular through their expansion

from mobile computing to replace disk storage in personal computers as solid-state drives (SSDs)

[5].

Although much of the limelight is cast on digital applications, floating gates are not innately

digital devices. Rather, it is the method used to perform the read and write operations that

determines whether a digital or analog value is stored on the floating gate. It was not until the late

1980s, however, that an interest in floating-gate research emerged which explored their viability as

non-volatile analog storage.

According to [6], some early innovations that helped establish the field of analog floating-gate

research are Mead’s adaptive retina circuit presented in [7], Shibata and Ohmi’s neuron metal-oxide

semiconductor field effect transistor (MOSFET) presented in [8], and Intel’s electrically trainable

artificial neural network (ETANN) presented in [9]. Many of these early FGMOS applications

required ultra-violet (UV) light to modify the charge on the floating gates which proved cumbersome

for real-time adaptations. Then, in 1991, a work presented by Thomsen and Brooke showed that

electron tunneling could be performed using a standard complementary metal-oxide semiconductor

Spencer L. Clites Chapter 1. Introduction 2

(CMOS) process, proving that real-time adaptation could be performed without needing access to

specialized flash fabrication techniques [10]. This advancement made floating-gate research more

easily accessible to a wider range of scientists.

Throughout the rest of the 1990s, much of the floating-gate research was aimed at applications

in artificial neural networks and learning systems, due to the fact that the topology of floating-

gate transistors naturally lends itself to these types of computations [11, 12, 13, 14, 15]. By the

early-to-mid 2000s, floating-gate research started to branch out into more general reconfigurable

systems. For instance in [16], the authors implemented a flash analog-to-digital converter (ADC)

that autonomously adapted its internal reference voltages to match the characteristics of the input

signal. This allowed the ADC to take full advantage of its 10-bits of resolution when converting

signals with a multitude of different amplitude distributions such as linear, Gaussian, or exponential.

In a similar capacity, floating gates have been used extensively as programmable voltage and current

references [17, 18, 19].

Another facet of reconfigurable analog electronics are field-programmable analog arrays (FPAAs),

which are the analog counterpart to digital field-programmable gate arrays (FPGAs). FPAAs con-

tain a variety of common analog building blocks which can be configured to form analog systems.

They facilitate rapid product prototyping by allowing a design to be tested on integrated hardware

without having to adhere to a traditional analog integrated circuit (IC) design flow, which some-

times requires multiple product iterations to arrive at the final design. Floating gates have been

used to a great extent in FPAAs to perform biasing, as non-volatile switches, and as programmable

references [20, 21, 22]. In fact, our own reconfigurable analog/mixed-signal platform (RAMP) pre-

sented in [23] employs floating gates as tunable current references, which can be used for biasing

or to modify various circuit parameters, such as transconductance.

Floating gates have also been used to solve more traditional problems associated with analog

circuit design such as circuit trimming, offset correction, and auto-zeroing. In [24], [25], and [26],

FGs were used to trim current sources. In [27] an FGMOS transistor was used to replace one of the

differential input transistors in a two-stage Miller compensated op-amp in order to independently

trim the input offset. Likewise, FGs were used for auto-zeroing of amplifiers in [28] and [29].

With such an extensive list of proven applications, why is it that analog implementations of

floating gates are still largely confined to academia? We posit that it is due to the high com-

plexity associated with accurately programming floating-gate analog memories. Programming such

Spencer L. Clites Chapter 1. Introduction 3

memories usually requires high-resolution off-chip voltage or current references, high-resolution

ammeters/voltmeters, data acquisition systems with multiple inputs/outputs, and, in most cases,

intimate knowledge of the programming circuit. All these requirements make programming costly,

complicated to perform, and cause analog FGMOS ICs to be prohibitive to use.

The objective of this work is to alleviate these concerns by presenting a novel floating-gate

parallel programming circuit. This new circuit places an emphasis on digitizing the control of

programming in order to greatly reduce programming requirements. This technique facilitates the

communication between digital systems, such as microcontrollers, and a reconfigurable analog FG

array. Furthermore, this work seeks to improve upon current programming techniques by presenting

a new method for fast parallel programming.

1.1 Outline

The remainder of this work is organized as follows. Chapter 2 will provide an overview of

floating-gate transistors, charge modification techniques, and some typical programming methodolo-

gies. Chapter 3 will introduce our novel programming circuit and each of its comprising functional

blocks. Chapter 4 will present a programmable filter array employing our parallel programmer

that has been fabricated as a proof-of-concept. Finally, Chapter 5 will expound upon broader

applications of this programmer, draw conclusions, and propose the direction of future work.

4

Chapter 2

Introduction to Floating-Gate

Transistors

Floating-gate analog memories have been shown to be useful in many applications. However,

their proliferation has been hindered by the complex programming procedures required to use

them. In the context of analog memory, the term programming refers to the process by which an

accurate amount of charge is placed on the floating gate. In order to understand the limitations

imposed by programming, it is necessary to understand how floating-gate transistors operate and

how programming can be performed. Therefore, this chapter presents an introduction to FGMOS

transistors, their operation, and typical programming procedures, as well as the respective benefits

and drawbacks associated with these various programming techniques.

2.1 Floating-Gate MOSFET Operation

In addition to the bulk connection, a traditional metal-oxide semiconductor field effect transistor

(MOSFET) has three terminals: the gate, the source, and the drain (Fig. 2.1 (a)). A Floating-

gate (FG) MOSFET differs from this topology in that the gate electrode is electrically isolated

by oxide through the addition of a capacitor in series with the gate, as shown in Fig. 2.1 (b).

In this configuration, the input signal is applied to the control gate (CG) which couples onto the

FG through capacitor, Cg, in order to modulate the current through the channel. This makes the

channel current, Id, a function of both Vcg and the amount of charge present on the floating-gate

node, Qfg. Given this relationship, and assuming all other nodes are fixed, it is apparent that the

channel current can be modulated solely by modifying the amount of charge on the FG.

To quantify this relationship, first recall the expression for channel current of a typical MOS-

Spencer L. Clites Chapter 2. Floating-Gate Transistors 5

1.8 2.1 2.4 2.7 3.0 3.3
10

-10

10
-8

10
-6

10
-4

I d
 (

A
)

Id

Vs

Vd

Vg
IdVcg

Vs

Vd

Vfg

Vtun

Cg

Ctun

(a) (b)

After

Tunneling

After

Injection

(c)

Vcg (V)

Figure 2.1: Comparison of a typical MOSFET and a floating-gate MOSFET. (a) Schematic symbol
for a traditional p-channel MOS transistor. (b) Schematic symbol for a p-channel FGMOS transistor.
(c) Gate sweep of FGMOS transistor illustrating the shift in threshold voltage due to programming.
Injection adds electrons to the floating gate which decreases the threshold while the opposite effect
is achieved by removing electrons through tunneling.

FET, such as in Fig. 2.1 (a). In low-power applications, FGMOS transistors are often biased in the

sub-threshold regime (Vsg < VTH); therefore, the following analysis assumes this operating regime.

Id = I0
W

L
exp

(
κVg

UT

)[
exp

(
− Vs

UT

)
− exp

(
− Vd

UT

)]
(2.1)

where I0 is the pre-exponential current scaler, κ is the subthreshold slope, and UT is the thermal

voltage. For an FGMOS transistor, the Vg term in (2.1) is replaced by the effective floating-gate

voltage given node voltages Vcg, Vd, Vs, Vtun, Vw, capacitances Cg, Cd, Cs, Ctun, Cw, and the

floating-gate charge, Qfg, yielding

Vfg =
Qfg + CgVcg + CdVd + CsVs + CtunVtun + CwVw

Ctotal
(2.2)

where Ctotal is the total capacitance present on node Vfg. Substituting (2.2) into (2.1) results in

Id = I0
W

L
exp

(
κ(Qfg + CgVcg + CdVd + CsVs + CtunVtun)

CtotalUT

)[
exp

(
− Vs

UT

)
− exp

(
− Vd

UT

)]
(2.3)

However, Cg is typically drawn such that it dominates Ctotal in order to make Vcg dominate the

coupling term [30], allowing the expression for Vfg to be simplified to

Vfg ≈
Qfg + CgVcg

Ctotal
(2.4)

Therefore, a simplified expression for drain current in an FGMOS transistor can be obtained by

Spencer L. Clites Chapter 2. Floating-Gate Transistors 6

substituting (2.4) into (2.1) to get

Id = I0
W

L
exp

(
κ(Qfg + CgVcg)

CtotalUT

)[
exp

(
− Vs

UT

)
− exp

(
− Vd

UT

)]
(2.5)

Since the drain is typically connected to a low voltage, the Vd term becomes negligible and the

expression can be simplified even further, resulting in

Id = I0
W

L
exp

(
κ(Qfg + CgVcg)

CtotalUT

)
exp

(
− Vs

UT

)
(2.6)

Comparing (2.1) to (2.6), it can be shown that a change in Qfg results in an effective shift of the

threshold voltage of the FGMOS from the perspective of the control gate. Figure 2.1 (c) illustrates

this effect by showing a gate sweep performed on an FGMOS transistor fabricated in a 0.5µm

process, programmed to three different values for Qfg.

2.2 Modifying the Floating-Gate Charge

In order to use FGMOS transistors in reconfigurable systems, some means of modifying Qfg

is required. Typically, charge modification of an FG is performed using two techniques: Fowler-

Nordheim (FN) tunneling and hot-election injection. Hot-electron injection involves placing a high

potential across the channel and is used to accurately place charge on the FG. This accurate place-

ment of charge is henceforth referred to as programming. Fowler-Nordheim tunneling is typically

reserved for global erasure of all programmed FGs across a chip, due to the difficulty of selecting

individual devices when using the high voltages required for tunneling.

2.2.1 Fowler-Nordheim Tunneling

Fowler-Nordheim tunneling is the phenomenon in which electrons are placed under the influence

of a large electric field, allowing them to tunnel through an oxide [31]. In this process, a high voltage

is placed across a capacitor which reduces the effective thickness of the oxide. When the potential

across the capacitor is sufficiently high, electrons are able to overcome the barrier and tunnel

through the oxide. In an FGMOS, this tunneling capacitor, Ctun in Fig. 2.1 (b), is implemented

using a simple MOS capacitor due to its thinner oxide when compared to a typical poly-insulated-

poly capacitor, which lowers the voltage required to achieve FN tunneling and avoids catastrophic

dielectric breakdown of the oxide [30]. Still, these voltages are high enough (Vtun > 14V for 0.5µm

Spencer L. Clites Chapter 2. Floating-Gate Transistors 7

CMOS process [17]) that they are difficult to isolate on-chip, so FN tunneling is typically used to

globally remove charge from all FGs at a single time1.

2.2.2 Hot-Electron Injection

Hot-electron injection occurs when electrons entering the drain collide with other electrons,

generating impact-ionized hot electron-hole pairs. A portion of these resulting ionized electrons

become elevated to sufficiently high energy levels allowing them to travel through the oxide onto

the gate electrode. In non-FGMOS applications, hot-electron injection is an undesirable effect, so

processing steps are added to mitigate it. In addition to this, the direction of the field lines in

nFETs makes injection even more difficult to control, making pFETS a more suitable candidate

for non-volatile analog memory in standard CMOS processes.

Injection current in PMOS floating-gate transistors can be expressed as

Iinj ≈ βIαd e
Vsd/Vinj (2.7)

where Id is the drain current, and β, α, and Vinj are device-dependent fits [33]. Thus, programming

speed is a function of Vsd and Id, as well as Vgd, which is lumped into the fit parameters of (2.7).

For a 0.5µm CMOS process, injection requires Vsd ≥ 4.2V [17], which is significantly lower than

Vtun. It is much easier to isolate these more moderate voltages to single-transistors on chip, making

injection the preferred method for accurate programming of individual FGs.

2.3 Programming Methodologies

There is no standard way to program FGMOS analog memories. The charge modification

technique tends to vary from designer-to-designer; however, some trends have emerged and will be

discussed here. In general, one of two schemes is employed no matter the topology of the specific

programmer circuit: pulsed programming or continuous programming.

2.3.1 Pulsed Programming

Pulsed programming is conceptually the simplest method for programming FGMOS transistors.

In this method, short programming pulses, wherein a large Vsd is placed across the channel, are

1There are exceptions where FN tunneling is used for programming, such as in [32]. However, these are not the
majority so this work reserves tunneling for global erasure.

Spencer L. Clites Chapter 2. Floating-Gate Transistors 8

Vd

Vs

Vtun

Vcg

Vfg

Vsd

Program

Read

−A

Vfg
Vcg

Vtun

Vd

Vs

Id
Id

Pulsed
Programming

Continuous
Programming

(a) (b)

Figure 2.2: Comparison of pulsed and continuous programming techniques. (a) Pulsed programming
(b) Continuous-time programming.

punctuated by read intervals during which the output current or voltage is measured (Fig. 2.2 (a)).

When the desired current or voltage is observed during one of the reads, programming is ended,

and the FG can be placed in its run-mode configuration, where it is connected to its circuit.

To make this method robust, accurate, and repeatable, some type of feedback is typically em-

ployed to ensure that the same amount of charge is injected onto the FG during each programming

cycle [17]. As one might expect, this method requires large amounts of peripheral circuitry to switch

between read and program modes. Moreover, the speed at which a single FG can be programmed

is limited by the length of the program and read periods. Thus, larger targets greatly increase

the amount of time it takes to finish programming. This is especially true when high accuracy is

desired because each pulse must inject a finer amount of charge, requiring the number of program-

ming pulses for a given target to be increased. This speed limitation is further compounded when

an entire array of FGs must be programmed.

Some attempts have been made to mitigate the programming speed bottleneck associated with

pulsed programming. For instance, in [34] the authors implemented a two-phased approach to

programming that separates programming into a preliminary course-programming phase, and a

primary fine-programming phase. This method is really a hybrid between pulsed and continuous

programming since the course programming phase is one continuous programming period (no read

intervals); this coarse phase works much like the self-convergent synapse transistor from [33] in that

the drain raises as the FG is injected. A comparator is used to end the coarse programming phase

when the drain of the FGMOS raises past a pre-defined point, indicating that Id is approaching

the target current. The fine programming phase employs the traditional pulse-based programming

technique to accurately converge the rest of the way onto the target value. Another improved

Spencer L. Clites Chapter 2. Floating-Gate Transistors 9

pulsed programming technique was presented in [35] that uses a low number of fixed-width pulses

of varying Vsd to quickly program an array of FGs to their targets.

Although these techniques reduce the overall programming time, they still have some significant

drawbacks. In order to use the technique presented in [34], a voltage source with > 12-bit precision

is required along with some means of accurately measuring current. Complicating this method even

further is the fact that it requires a priori knowledge of the floating gate transfer characteristic

(Id = f(Vcg)) in order to achieve high accuracy. Similarly, the technique presented in [35] requires

a characterization of Iinj = f(Vsd) to extract six parameters for each FG on chip in order to

accurately determine the appropriate Vsd that will be used for each pulse. Obviously, these methods

are extremely prohibitive as they require in-depth knowledge of the injection characteristics as well

as high-precision hardware in order to use them.

Pulsed-based programming is not without its benefits, though. One benefit that pulsed pro-

gramming has over continuous programming is that the FG memory cell is measured in a state

similar to its run-time condition. Also, high programming accuracy has been reported, in some

cases up to 13-bits of resolution over a 4V range of output voltages [17]. Still, the high program-

ming overhead associated with pulsed programming techniques proves too high for dense analog

memory arrays. Thus, this work posits that continuous programming provides a more accessible

option for ease of programming.

2.3.2 Continuous Programming

The second method generally used to program FGs is continuous programming. Unlike in

pulsed programming, continuous programming is performed in a single programming cycle after

which the FG is placed back into a low-Vsd run-time condition in which its programmed value

can be observed. Feedback is typically used to stop programming when a FG reaches its target.

A number of continuous programming methods have been developed from simple single-transistor

implementations with self-convergent memory writes [33] to more sophisticated implementations

that achieve high speed and high accuracy.

In these more sophisticated designs, feedback is employed to maintain a constant Vfg throughout

programming. For example, in [36], the authors presented a 3-transistor programming cell that

employs a current-mirror to maintain a constant Id through the channel of the FGMOS being

programmed. A comparator monitors the drain voltage of the diode-connected pFET in the current

Spencer L. Clites Chapter 2. Floating-Gate Transistors 10

mirror and stops the programming when Vd exceeds the target value. The drawback in this approach

is that the programming accuracy is related to programming speed such that lower speeds provide

higher accuracy, since error is related to the input offset of the amplifier; in short, a large trade-off

exists between programming speed and accuracy.

Therefore, an alternative linearization technique similar to that used in [17] is suggested. This

is done by connecting an inverting amplifier between the source and control gate, which raises Vcg to

compensate for Qfg increasing due to injection (Fig. 2.2 (b)). In this programming scheme, Vcg can

be monitored, and Id is gently lowered as Vcg approaches the target value. A compact FG memory

cell employing this technique has been previously reported in [37] that uses only 4-transistors: the

FGMOS, two transistors operating as current sources, and a pFET common source amplifier in

place of the inverting amplifier of Fig. 2.2 (b). This memory cell will be discussed in detail in the

next chapter since it constitutes the analog storage element of the programmer circuit presented in

this work.

2.3.3 Serial vs Parallel Programming

Another distinction in programming methodology that must be made is between serial and

parallel programming. Pulsed programmers require much overhead, so they are usually confined

to serial programming techniques [38]. Likewise, FGs rarely appear on chip as a single element, so

the remainder of this subsection’s discussion will focus on the trade-offs associated with continuous

programming of FG arrays.

As their names imply, serial programming involves programming one floating gate at a time

while parallel programming involves programming a number of floating gates simultaneously. Serial

programming requires only one programmer circuit per chip since only one FG is selected at any

moment in time. Likewise, only one external pin is required to supply the programming circuit

with its target voltage. These characteristics are illustrated in Fig. 2.3 (a) for an example array of

N FGs. As shown in the figure, this method is generally slow due to the high number of required

programming cycles.

Conversely, parallel programming only requires one programming cycle to program all FGs in

an array. However, in order to program N FGs in parallel, there must be N programmer circuits

available, one for each FG. In order to program each FG to an independent target, this also requires

N pins from the pad frame, supplying each Vtarg to its programmer. This trade-off is shown in Fig.

Spencer L. Clites Chapter 2. Floating-Gate Transistors 11

Pin 1 FG FG FG1 2 3

t

t

Pin 1

Pin 2

Pin 3

FG 1

FG

FG 2

3

t

FG

FG

FG 1

2

3

Serial Programming

Parallel Programming

This Work

Programming Type Transient

FGN

FGNPin N

FGN

(b)

(c)

(a)

Pin 2

Pin 1

Pin 3

Pin 4

Figure 2.3: Comparison of serial, parallel, and this work’s continuous programming techniques, when
programming an array of FGMOS transistors. (a) Serial programming requires only one off-chip pin
but suffers from long programming times. (b) Parallel programming requires an individual pin for
each FGMOS in the array, however programming time is greatly reduced from serial method. (c) The
programming method presented in this work requires only one off-chip pin and programming time is
reduced through staggered parallel programming methodology.

2.3 (b) for an example array of N FGs.

Thus, serial programming requires less area on chip and less pins from the pad frame; however, it

takes (N−1) more programming cycles than a parallel implementation. On the other hand, parallel

programming consumes more die area and more pins but only requires one programming cycle for

an entire array. The programming method presented in this work, which will be introduced in the

next chapter, presents a quazi-parallel programmer that requires only four pins, no matter the size

of the array, and reduces the overall programming time by staggering the parallel programming

through time as shown in Fig. 2.3 (c). More importantly, these four pins require only digital inputs,

as opposed to the high precision analog inputs in figures 2.3 (a) and (b). This method still requires

N programmers per N FGs, as with other continuous parallel programming techniques.

2.4 Chapter Summary

Floating-gate MOS transistors are formed by placing a capacitor in series with the gate of a

MOSFET to leave the gate floating. The drain current of the resulting device becomes a function of

Spencer L. Clites Chapter 2. Floating-Gate Transistors 12

Vd, Vs, Vcg, and Qfg. The charge stored on the FG can be modified using two techniques: Fowler-

Nordheim tunneling, which is used as a technique for global charge erasure, and impact-ionized hot

electron injection, which is used to accurately place charge on the FG. FN tunneling distorts the

energy band of the tunneling capacitor to allow electrons to tunnel through the oxide off of the FG,

while hot-electron injection elevates the electrons entering the drain to higher energy levels allowing

them to travel onto the floating gate. Two main techniques are used for performing injection: pulsed

programming and continuous programming. Pulsed programming entails periodically injecting and

reading the FG value until a target is reached, whereas continuous programming requires only one

programming period in which negative feedback is used to force Qfg to converge to a target.

Also of importance are serial and parallel programming. Serial programming allows all FGs to

share a single pin and programming circuit but requires more overall time to complete programming

an entire array (Fig. 2.3 (a)). Parallel programming requires more pins and more die area but allows

all FGs to be programmed more quickly since they are all done at one time (Fig. 2.3 (b)). In the

next chapter, our parallel programmer will be introduced which achieves a compromise between

these two by allowing the FGs to be programmed in parallel and also staggered through time, as

shown in Fig. 2.3 (c). This achieves the approximate speed of parallel programming, a reduced pin

count similar to serial programming, yet still requires the area of parallel programming. Thus the

compromise still exists between speed and area.

13

Chapter 3

An Improved Parallel Programmer for

Floating-Gate Transistor Arrays

In this chapter, a novel floating gate programming circuit is presented which addresses and

mitigates the drawbacks of the traditional programming circuits discussed in the previous chapter.

A block diagram of the circuit is shown in Fig. 3.1. In this topology, only digital input signals

are required to program the full array of FG memory cells through the use of a serial peripheral

interface (SPI). This minimizes the number of pins required to interface with the chip, reduces

programming overhead, and removes some of the programming details from the end user. The

digital outputs from the SPI are applied to a digital-to-analog converter (DAC) to generate analog

target voltages which are then sampled by an array of sample-and-hold (S/H) circuits and applied

to an array of FG memory cell circuits to perform programming. During programming, a DONE

circuit monitors the control-gate voltages of each floating-gate and outputs a digital HIGH when

all FGs in the array have finished programming. This allows for an entire array of FGs to be

programmed in parallel without the need for a separate pin dedicated to each memory cell.

The circuit operates using two supply voltages: Vdd and Vdd,fg. As discussed in the previous

chapter, injection requires source-to-drain voltages greater than 4.2V for a 0.5µm process. In this

work, the high Vsd value is generated by raising the supply voltage of the programming circuit, in

this case from Vdd,fg = Vdd = 3.3V during run-time operation to Vdd,fg = 6.5V during programming.

Other circuit blocks are also required to operate from this elevated supply during programming,

mainly inter-stage buffers since target voltages are above Vdd. The other high-voltage signal required

is the tunneling voltage, Vtun. This work uses a tunneling pulse of 17V applied for 300ms in order

to erase all FGs on chip.

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 14

S
P
I D

A
C

S
&

H
 A

rr
a

y

P
ro

g
ra

m
m

e
r
A

rr
a

y

F
G

M
O

S
 A

rr
a

y

C
ir
c
u

it
 A

rr
a

y

Address Bus

DATA

CLK

CS

LATCH

Figure 3.1: Signal flow diagram of the presented programming architecture. From left to right: The
DATA, CLK, CS, and LATCH signals are used to load bits into the SPI to choose a DAC output
voltage and select a S/H, programmer, FG, and circuit. The DAC output voltage is fed into the S/H
whose output is connected to the programmer. The programmer injects the selected FG until it has
reached its target. The programmed FG is connected to its circuit in run-time operation.

FGs are arranged in an N ×M array so that each row can be programmed in parallel. In this

configuration, selecting a different row only affects which FG is connected to a column’s program-

ming circuit. The programming circuit is arranged such that it is addressable by both row and

column. Each column is comprised of a programming transconductor, its corresponding S/H, and

an FG from the array. The programming process for this scheme operates as follows:

1. Erase all floating-gates using FN tunneling.

2. Raise programming power supply Vdd,fg to its elevated level capable of causing injection.

3. Shift digital bits into the SPI to set the DAC output voltage and to select a specific row/column

combination.

4. Sample target voltage from the DAC to set Vtarg.

5. Start programming the selected FG memory cell.

6. Repeat steps 3-5 for each subsequent FG memory cell in the array.

7. When the DONE circuit outputs HIGH, lower Vdd,fg to its run-time level and connect the

FGs to their circuits for biasing.

Throughout the rest of this chapter, each block shown in Fig. 3.1 will be discussed individually

along with measured data from a chip fabricated in a 0.5µm CMOS process. In Chapter 4, the

blocks will be connected and overall performance will be measured.

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 15

M1

Vcg

Vtun

I1

I2

Vtarg

M2 M3

Mfg

Vs

Istart

Vstart

Vdd,fg

M4

(c)

Iout

M3

M1

M4

M2V+

Iout

Vb2

Mb1

Mb2

Vb1

Vdd,fg

Mb3Vb3

V-

Ib

M1

Vcg

Vtun

I2

Mfg

Vs

I1

Vfg

Vcg

Vtun

Mfg Iout

Vfg

(b)

M1 M2

(d)

(a)

Figure 3.2: Overview of floating-gate memory cell. (a) Current conveyor FG memory cell in voltage
output mode where Vcg is the output set by I1, I2, and Vfg. (b) Memory cell in current output mode
where Iout is the output set by Vcg and Qfg. (c) Continuous-time programming mode of the current
conveyor. The CS amp formed by M1 linearly raises Vcg as Qfg is decreased through injection. When
Vcg converges to Vtarg the OTA shuts off current I1 through Mfg to stop programming. (d) OTA used
in programmer circuit. The tail is double-cascoded to maintain a constant Ib as Vdd,fg is raised and
lowered for programming.

3.1 Floating-Gate Memory Cell Array

The floating gate memory cell forms the basis of the programming circuit; therefore, it is

apropos to begin the discussion with this block, as the performance of subsequent blocks will be

designed around it. The FG memory cell chosen for this work is based on the one presented in [37]

and is shown in Fig. 3.2. This topology is compact, requiring only 4 transistors, which allows for

more dense scaling in large arrays, and is low overhead since only a target voltage is required to

program Vfg to a specific value.

The memory cell has three configurations, the first of which is shown in Fig. 3.2 (a). This

is the “voltage output” mode in which the memory cell is operating as a voltage reference, where

Vcg is taken as the output. In this configuration, transistor M1 forms a common-source amplifier

providing negative feedback from Vs to Vcg, which forces Vfg so that the drain current Id = I1.

Thus, if I1 and I2 are fixed, as the charge on the floating-gate is modified Vcg will be adjusted to

maintain a constant drain current, Id = I1. Figure 3.2 (c) shows the memory cell in its programming

configuration which operates using this same basic principle. During programming, the supply rail

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 16

is elevated to Vdd,fg and as electrons are injected onto the floating-gate, the feedback from M1

raises Vcg to keep Vfg constant. I1 is set by the tail current of the programming operational

transconductance amplifier (OTA) which cuts off I1 as Vcg converges to Vtarg to end programming.

The third configuration is shown in Fig. 3.2 (b) which is the “current output” mode, in which it is

operating as a current reference. In this configuration, Vcg is a fixed voltage bias (e.g. midrail) and

Iout is the output current. Thus, Iout is modified by changing the charge stored on the floating-

gate. Figure 3.2 shows the transistor-level schematic for the programmer OTA which is based on

a 5-transistor OTA with an additional two transistors added to cascode the tail. This cascoding

greatly increases the common-mode rejection ratio (CMRR), preventing the OTA from amplifying

any changes in the common-mode voltage. This feature was added due to the fact that Vdd,fg is

raised and lowered throughout the programming process, so the OTA must be resistant to changes

in the common-mode.

For the programming configuration in Fig. 3.2 (c), the injection current has been shown to be

Iinj ≈ βIα1

(
I2
I0

)− UT
κVinj

eVdd,fg/Vinj (3.1)

where I0 is the pre-exponential current scaler for M1, κ is the subthreshold slope for M1, UT is the

thermal voltage, and β and Vinj are device-dependent fits for M1. The floating-gate transistors in

this work were fabricated in a 0.5µm CMOS process and have dimensions W
L = 3µm

1.2µm , Cg = 80fF ,

and Ctun = 2fF which was implemented as a MOS capacitor with W
L = 1.5µm

0.6µm .

The other notable feature of the programming circuit of Fig. 3.2 (c) is the addition of M4 and

Istart. In [37], programming is performed by first setting Vtarg then raising Vdd,fg from its run-

mode voltage to an elevated level capable of injection. If the floating gate is sufficiently tunneled,

then at the moment Vdd,fg is raised, Vcg < Vtarg. The output current of the OTA will be I1 =

Gm(Vcg − Vtarg), where Gm is the transconductance of the OTA. Since Vcg < Vtarg, Iout will be

negative so the OTA will sink current, mirroring I1 into Mfg, and the memory cell will immediately

begin programming.

However, in our parallel programmer Vdd,fg has to be raised before Vtarg is set, since the DAC

buffer and the S/H buffer are operated from the elevated supply during programming. When the

circuit is operated in this order, the memory cell enters a zero-current stable state and requires a

start-up circuit to force current into the programming loop. The solution implemented in this work

was the addition of transistor M4 which, when Vstart is pulsed high, pulls the drain/gate of M3

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 17

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Time (s)

O
u

tp
u

t
(V

)

V
cg

V
targ

Figure 3.3: Transient response of node Vcg of the memory cell during programming, for Vtarg = 6V.
Vstart is pulsed at t = 0s, immediately after which programming starts. During programming, Vcg

raises as Qfg is raised by injection, until Vcg ≈ Vtarg and programming is ended.

down to force a non-zero I1 into Mfg to initiate the loop. As an added precaution, current limiter

Istart was added to prevent the start-up circuit from causing too much charge to be injected onto

the floating gate during the Vstart pulse. The circuit was designed such that Istart in Fig. 3.2 (c) is

equal to Ib in Fig. 3.2 (d).

3.1.1 Measured Performance

The programming accuracy of the memory cell was tested using target voltages 4V < Vtarg <

6V , Vdd,fg = 6.5V , Ib = 250nA, I1 = 100nA, and I2 = 2nA, which were empirically determined

to provide good operation using a previously-fabricated test chip. These same values are used

throughout the rest of this work. Figure 3.3 shows Vcg during programming for Vtarg = 6V . Vstart

is pulsed at t = 0s to begin programming, then Vcg increases as Qfg is increased due to injection,

until Vcg ≈ Vtarg and programmng is ended.

To measure the programming accuracy, the voltage output configuration of Fig. 3.2 (a) was used

since this configuration has a linear Vtarg to Vcg,out relationship. Figure 3.4 (a) shows the average

Vcg,run vs Vtarg for Vtarg = 4V to 6V out of 25 trials per target. A line of best fit was determined

for this data set and the average deviation from this curve was determined and is presented in Fig.

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 18

4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0
0.5

1.0

1.5

2.0

2.5

A
v
g
e

ra
g
e

 V
c
g
,r

u
n
 (

V
)

V
targ

 (V)

4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0
-3

-2

-1

0

1

2

3

A
v
e

ra
g
e

 E
rr

o
r

(m
V

)

V
targ

 (V)

(a)

(b)

Figure 3.4: Programming accuracy of floating-gate memory cell. (a) Average Vcg,run vs Vtarg out of
25 programming trials per target. (b) Average deviation of Vcg,run from linear response vs Vtarg out
of 25 programming trials per target. The error bars represent the range of measured values.

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 19

3.4 (b). The maximum overall error was determined to be 2.5mV which corresponds to an effective

number of bits, or ENOB, equal to 9.63-bits for a 2V range of targets according to

ENOB = log2

(
FSR

error

)
= log2

(
2V

2.5mV

)
= 9.63-bits (3.2)

where FSR is the full scale range equal to 2V . The origin of this term will be discussed in further

detail when the DAC is presented. Additionally, a gain error of −0.17% was measured, which is

presumed to be due to the finite gain of the common source amplifier, M1 in Fig. 3.2 (c), which

provides feedback from the source to the control gate. The Vcg,run vs Vtarg plot should ideally have

unity gain, meaning that a 1mV increase in Vtarg corresponds to a 1mV increase in Vcg,out. In the

measured circuit a gain error of −0.17% means that a 1mV increase in Vtarg corresponds to only a

998.3µV increase in Vcg,out.

3.2 Serial Peripheral Interface

The serial peripheral interface (SPI) constitutes the front end of the programming circuit. This

essential circuit block allows the user to interface with the chip using only digital signals, which

greatly simplifies the programming process and also lends itself to automated programming routines

through the creation of custom software programs. The SPI consists of 18 D-flip-flops (DFFs) that

make up the shift register as well as 18 DFFs that comprise the static random access memory

(SRAM) for each bit (Fig. 3.5). Control signals for this SPI are as follows: CLK, CS, LATCH, and

DIN. CLK is the clock signal that is used to shift the data, DIN, into the shift register. LATCH

is the clock signal that latches the bits held in the shift register into the SRAM. Lastly, CS (Chip

Select) is used to either enable or disable the SPI. Additionally, DOUT is an output signal that is

used to observe the bits being shifted out of the shift register for debugging purposes.

The purpose of the SRAM is to buffer the rest of the chip from the shift register. This allows

the shift register to be operated without the bits being applied to the chip (DAC, address bus, etc.),

until all 18 bits have been loaded. Once all the bits have been set, they get applied to the chip

upon clocking the LATCH signal to latch the bits into the SRAM. The CS signal is used to ease the

process of sending control signals to the chip. CS simplifies the requirements of the programming

software routine since it removes the need to maintain a global bitmask variable to keep track of

the state of any static digital outputs from the data acquisition system that was used for testing.

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 20

18-bit Shift Register

18-bit SRAM

DOUT
DIN

CLK

CS

LATCH

to chip

Figure 3.5: Block diagram of the serial peripheral interface. The SPI is comprised of two main blocks:
an 18-bit shift register and 18-bits of SRAM. The shift register can be enabled/disabled using the Chip
Select (CS) signal which passes/blocks the CLK signal from operating the shift register, respectively.
The LATCH signal is used to latch the bits in the shift register into the SRAM which is used to buffer
the SPI from the DAC and address lines while new data bits are being shifted into the SPI.

This allows the CS signal to select between using the SPI and sending the digital signals to the

chip’s circuitry (i.e. sample pulse of the sample-and-hold and Vstart to the memory cell).

The 18-bits of the SPI are allocated as shown in Table 3.1, where bit 0 is the LSB and bit

17 is the MSB. The bits of data get shifted into the SPI serially from LSB to MSB. Bits 0 and

1 together configure the selected memory cell in one of the three configurations discussed in the

previous section, as well as determine whether or not it gets connected to the circuit which it is

biasing. Bit 2 is the enable pin for a multiplexer that allows the Vtarg voltage to the programmer

to be applied from an external pin. This is only used for testing and debugging purposes. Bit 3 is

the 1-bit row address and bits 4 through 6 are the 3-bit column address. Bit 7 is the enable signal

for the pull-down switch connected to the output of the DAC buffer, which will be discussed in the

next section. Finally, bits 8 through 17 form the 10-bit input codeword that is sent to the DAC to

select an analog target voltage.

Table 3.1: SPI Bit Assignments

Bit(s) Function

0 enable voltage output mode

1 enable circuit connection

2 Vtarg pin select

3 1-bit row address

4-6 3-bit column address

7 DAC Vout pulldown enable

8-17 10-bit DAC input word

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 21

3.3 Digital-to-Analog Converter

A digital-to-analog converter (DAC) is a mixed-signal circuit that converts a series of digital

bits, called a codeword, into a corresponding analog output voltage. It does this by dividing a

reference voltage, Vref , into a number of equidistant voltages and passing one of these voltages to

the output, according to the applied codeword.

3.3.1 DAC Metrics

To better understand the design requirements of the DAC, some metrics commonly used to

characterize the performance of data converters will first be introduced. The resolution, N , of

a DAC is equal to the number of bits in the codeword. For an N -bit DAC, there are 2N unique

output voltages. One least-significant bit (LSB) of a DAC is equal to the increase in output voltage

yielded by increasing the input codeword by one least-significant bit. The expression for 1 LSB is

given by

1 LSB =
Vref

2N
(V) (3.3)

Another useful quantity to mention is the full scale (FS) voltage, which is equal to the highest

possible output voltage, corresponding to the all-ones codeword. In DACs, the lowest output

voltage is usually equal to ground, meaning that the highest output voltage is equal to

FS = Vref −
Vref

2N
= Vref − 1 LSB (V) (3.4)

Not to be confused with the FS, the full-scale range (FSR) is equal to the maximum output voltage

of an ideal infinite-resolution DAC, which is simply equal to Vref . A DAC is considered monotonic

if an increase in the input codeword always results in an increase in Vout.

3.3.2 Design Considerations

The DAC topology was chosen to be a simple voltage-scaling resistive divider in order to mini-

mize design complexity, since this was a proof-of-concept chip. Other DAC topologies (e.g. charge

redistribution, pipeline, etc.) can offer advantages such as smaller die area, higher resolution, and

higher conversion speed; however, resistive divider DACs have the benefit of guaranteed monotonic-

ity, as well as being simple to design and operate. The DAC was implemented as a series string

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 22

M3

M1

M4

M2V+ V-

Vout

Vb2

Vb1 Mb1

Mb2

Vdd,fg

(b)

b0

b0

b0

b0

b0

b0

b0

b0

b1

b1

b1

b1

b2

b2

+Vref

-Vref

R

R

R

R

R

R

R

R

1 Vout

Buffer

DAC

Vlow

Vout

Buffer

(a) (c)

M1

Figure 3.6: Overview of the DAC topology. (a) A 3-bit DAC illustrating the voltage-scaling resistive
topology used in this work. The actual fabricated DAC is 10-bits but for brevity an example 3-bit
one is shown here. (b) DAC buffer includes a pull-down switch which allows the DAC output to reach
near-ground when Vlow is held high. (c) Transistor schematic of OTA used in DAC buffer.

of equal-valued resistors, where each resistor is referred to as a segment. This string of resistor

segments performs voltage division so that the voltage drop across each resistor is the same. A

“tap” is made between each segment and a decoder selects the appropriate tap according to the

applied input codeword. The DAC was designed to have a resolution of 10-bits, which exceeds the

9.63-bit programming accuracy of our FG memory cell across the required 2V FSR, yielding an

LSB equal to ∼ 1.953mV . The decoder was implemented as a simple switch tree which reduces

overall area compared to a 10-to-1024 digital decoder that could otherwise be used. The area con-

sumption was further reduced by implementing each switch as a single pFET transistor, as opposed

to a transmission-gate switch, which was possible because only high voltages are passed through

the switches, so transmission-gates are not required. The fabricated DAC contains 1024 resistors

and 2046 transistors so a full schematic cannot be shown, thus an example 3-bit DAC of the same

topology is shown in Fig. 3.6 (a). Each segment was implemented as a 5kΩ n-diffusion resistor

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 23

and each switch has a
(
W
L

)
= 0.6µm

0.6µm . For our programmer, the DAC’s output is required to operate

across a 2V FSR between 4 to 6 volts so Vref is equal to 2V and is applied differentially, so that

+Vref = 6V and −Vref = 4V .

3.3.3 Measured Performance

The output transfer characteristics of the fabricated DAC were measured with 2V across ±Vref

and are shown in Fig. 3.7 (a), for every 32nd input word. Since the application requires solely

DC output voltages, only static operating characteristics were measured. Thus, only the differen-

tial non-linearity (DNL) and integral non-linearity (INL) errors were measured. The DNL is the

difference between the non-ideal and ideal voltage steps between input codewords while the INL

is the difference between the absolute output voltage for a given codeword and its ideal response

[39]. The DNL is calculated using Eq. (3.5) where Vout,n is the output voltage corresponding to

codeword n and Vout,n+1 is the voltage output corresponding to one step up in the LSB.

DNL =

(
Vout,n

Vout,n+1
− 1

)
(LSBs) (3.5)

As shown in (3.5), the DNL is typically expressed in terms of the LSBs. The INL, also expressed

in LSBs, is calculated as the cumulative sum of the DNL.

The measured output voltage of the fabricated DAC is shown in Fig. 3.7 (a) for input codewords

in steps of 32, normalized to the FSR. The markers denote the measured values while the solid

line denotes the ideal response. The calculated DNL and INL are shown in Fig. 3.7 (b) and (c),

respectively. For these measurements, the DAC was placed under the same conditions as when it is

used in the programming circuit. These conditions are Vdd = 6.5V , +Vref = 6V , and −Vref = 4V .

3.3.4 Output Buffer Pull-Down Transistor

Another important feature of the DAC that should be mentioned is its ability to output voltages

close to ground through the addition of the pull-down switch, M1, at the output of its buffer, as

shown in Fig. 3.6 (b). This feature was necessary in order to provide near-ground inputs to the

S/H array which could be sampled before raising Vdd,fg to prevent the FG array from immediately

programming. Recall that with our memory cell in programming mode, when Vdd,fg is raised and

Vcg < Vtarg, programming automatically initiates. Sampling near-ground voltages on the S/H

before raising Vdd,fg ensures that Vcg > Vtarg, preventing the FGs from programming until Vtarg is

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 24

0 128 256 384 512 640 768 896 1024
-6

-4

-2

0

2

Digital Input Code

IN
L

 (
L

S
B

)

0 128 256 384 512 640 768 896 1024
-0.150

-0.075

 0

 0.075

 0.150

Digital Input Code

D
N

L
 (

L
S

B
)

0 128 256 384 512 640 768 896 1024
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Digital Input Code

A
n

a
lo

g
 O

u
tp

u
t

(V
)

Measured

Ideal

(a)

(b)

(c)

Figure 3.7: Static characteristics of the resistive DAC. (a) Vout vs DIN, normalized to the FSR. (b)
DNL vs DIN. (c) INL vs DIN.

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 25

Vin
Vout

Chold

Φ

(a) (b)

Time

V
o
lt
a
g
e

V
in

V
out

pedestal

droop

Φ

Figure 3.8: Basic S/H operation and associated errors. (a) A basic S/H circuit consisting of a switch,
a capacitor, and a unity-gain buffer. (b) During sample-phase, Φ, the switch is closed and the S/H
output tracks the input. When the switch is opened the S/H transitions to hold-mode. The pedestal
and droop errors introduce uncertainty associated with the sampled value.

sampled on the S/H and Vstart is pulsed. Figure 3.6 (c) shows the transistor-level schematic of the

OTA used in the DAC buffer. It is a simple 5-transistor OTA topology with an added transistor,

Mb2, to cascode the tail transistor, Mb1, to increase the CMRR since it is powered using Vdd,fg

during programming. This OTA is biased using the same current bias of the memory cell OTA,

Ib = 250nA.

3.4 Sample-and-Hold Array

A sample-and-hold (S/H) is a circuit which samples its input at an instance in time and holds

that value constant at its output until a new sample is gathered. A simple S/H implementation is

shown in Fig. 3.8 (a) which consists of a switch, a capacitor, and a buffer. When clock Φ is high,

the switch closes and Chold is charged to Vin. At the moment the switch opens, Vin = V ′
in and the

top plate of Chold is floating so Vout will ideally equal V ′
in until Φ closes the switch again.

S/Hs are ubiquitous in data conversion systems where they are used to hold the input to a

system constant for the duration of the conversion. Similarly, our parallel programming procedure

also requires a constant input, Vtarg, for the length of time that an FG is being programmed. Thus,

the S/H seemed a natural choice to implement this functionality. In our programmer, the S/H

circuits are configured in an array and each one passes its output to the memory cell circuits that

follow them. The S/H selection is accomplished through the column selection bits in the SPI, which

allows the DAC word, S/H, and memory cell to be selected simultaneously.

3.4.1 Design Considerations

The role of the S/H in the programming system is to apply a constant target voltage to the

input of the memory cell OTA. The S/H must accomplish this by sampling a voltage from the DAC

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 26

and maintaining that voltage as constantly as possible throughout the duration of programming.

The first consideration that affects the ability of the S/H to perform this task is the droop error

(Fig. 3.8 (b)). In a S/H, the droop error is defined as the rate at which the voltage on the hold

node, Vhold, decreases through time. The droop rate is caused by charge leaking off of the hold

node and is defined as:

rdroop =
∆Q

∆t
· 1

Chold
(3.6)

where ∆Q/∆t is the leakage current and Chold is the total capacitance on the hold node. Assuming

the leakage current has been minimized, this expression implies that in order to minimize the droop

rate the capacitance of the hold node must be maximized. However, this increases the footprint on

the die and also increases aperture time, the time it takes for the S/H to charge Chold to the same

voltage as the Vin.

The second consideration that must be taken into account is the pedestal error (Fig. 3.8 (b)).

A natural consequence of a S/H transitioning from sample mode to hold mode is the injection of

charge on the hold node, causing a finite step in the output voltage at the moment the switch opens.

This occurs through a process called charge injection, wherein the charge carriers in a MOSFET

switch are expelled from the channel as the switch is turned off during the transition to hold mode.

Figure 3.9 illustrates how charge injection occurs when using an n-type MOSFET as a switch.

When the switch is closed, the MOSFET is conducting, and it can be assumed that Vin ≈ Vout. In

this case, the charge in the channel of an NMOS switch is equal to

Qch = WLCox(Vdd − Vin − VTH) (3.7)

As the switch is turned off, charge Qch gets expelled from the source and drain terminals onto

nodes Vin and Vout (Fig. 3.9 (a)). Assuming the charge exits equally on either side, the change in

output voltage can be expressed as

∆Vout =
WLCox(Vdd − Vin − VTH)

2Chold
(3.8)

Rearranging (3.8) yields

∆Vout = Vin

(
1 +

WLCox

2Chold

)
− (Vdd − VTH)

(
WLCox

2Chold

)
(3.9)

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 27

Vin Vout

Chold

CLK

q

2

q

2

Vin Vout

Chold

electrons

holesCLK

CLK

q2

q1

M2

M1
Vin Vout

Chold

CLK CLK

M1 M2

q1

q2

(a) (c)(b)

Figure 3.9: Origin and mitigation of charge injection errors in a S/H. (a) Charge injection from
an nFET sampling switch. (b) Cancellation of nFET charge injection using a dummy switch. (c)
Cancellation of charge injection using complementary MOS transistors.

As shown in (3.9), the charge injection onto the output node results in both a gain error of (1 +

WLCox/2Chold) and an offset error of (WLCox/2Chold)(Vdd − VTH).

The above derivation relies on the assumption that VTH is constant across all input levels,

which we know from transistor theory is not the case, since the source and bulk do not remain at

the same potential. If the body effect is taken into account, then VTH is expressed as

VTH = VTH0 + γ
(√

2ΦF + Vsb −
√

2ΦF

)
(3.10)

where Vsb is the magnitude of the source-to-bulk potential, VTH0 is the threshold voltage when

Vsb = 0V , ΦF is the Fermi level in the substrate, and γ is the bulk-threshold parameter [40].

This expression indicates that there are non-linearities in (3.9) due to the body effect. These non-

linearities must be minimized in order to maintain high resolution in the S/H. To minimize these

non-linearities, the overall charge injection error must be mitigated.

There are four typical ways to reduce the pedestal error. (1) Minimize the channel size of the

MOSFET switch, (W · L). This ensures that less charge, Qch (Eq. (3.7)), is conducting in the

channel so when the switch is turned off less charge is transferred to the hold node. Equation (3.9)

illustrates this effect, noting that ∆Vout is directly proportional to (W ·L); thus, minimizing (W ·L)

reduces ∆Vout.

(2) Use a “dummy switch”. Figure 3.9 (b) shows how a dummy switch is connected to the hold

node in order to reduce the charge injection error. At the moment switch M1 closes, M2 is turned

on so that q2 enters its channel. Charges q1 and q2 can be expressed by

q1 =
W1L1Cox

2
(VCLK − Vin − VTH1), q2 =

W2L2Cox

2
(VCLK − Vin − VTH2) (3.11)

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 28

VoutVin

EN

EN

EN

EN
0 0.5 1.0 1.5 2.0 2.5 3.0

0

5

10

15

20

25

30

 Vin (V)

R
o
n

(k
Ω

)
transmission-gate

NMOSPMOS

VoutVin

(c)

(b)

(a)

Figure 3.10: Overview of a transmission gate switch. (a) Transistor-level schematic of a transmission
gate. (b) Circuit symbol of a transmission gate. (c) Simulated on-resistances of NMOS, PMOS, and
transmission-gate switches with transistors sized according to Eq. (3.12). Note that for higher inputs,
the on-resistance of an nFET increases as it enters cut-off and stops conducting, and vice versa for a
pFET. When both operate in parallel they form a switch capable of passing rail-to-rail inputs.

where VCLK is the voltage on the gate of the switch. Again, assuming half the charge of M1 exits

its channel, q1 = Qch1/2, the transistor sizes can be chosen so that L1 = L2 and W1 = 2W2 in order

to make q1 = q2. This cancels charge injection as long as the assumption holds true that half of

Qch1 exits onto the hold node. Unfortunately, that is not always an accurate assumption, so other

steps must be taken to further reduce charge injection errors.

(3) Use transmission-gate switches (Fig. 3.9 (c)). A transmission gate is a type of switch made

up of both an n-type and a p-type MOSFET operating in parallel, as shown in Fig. 3.10 (a). The

circuit symbol for a transmission gate is given in Fig. 3.10 (b). This configuration has multiple

advantages over a single-FET switch. A MOSFET switch operates in the above-threshold, linear

region. In this operating region, an NFET switch is adept at passing low (near-ground) voltages

due to the fact that, when enabled, its gate is connected to Vdd and its source and drain will ideally

be at the same potential (Vin = Vout). The switch will conduct as long as Vgs ≥ VTH ; however,

for sufficiently high voltages, Vin > Vdd − VTH , the nFET will enter cut-off where Vgs < VTH ,

and the switch will no longer conduct. Likewise, a PFET is only able to pass voltages where

|VTH | < Vin < Vdd. However, when the two types of MOSFETs are placed in parallel, the resulting

transmission gate is able to pass rail-to-rail voltages. Another emergent advantage is that the

parallel connection of the two MOSFETs reduces the overall switch resistance as shown in Fig.

3.10 (c).

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 29

In regard to reducing charge injection error, the transmission gate is advantageous due to

the fact that NFETs and PFETs conduct using opposite charge carriers—electrons and holes,

respectively. If the MOSFETs are sized according to (3.12), then the two transistors will contribute

equal but opposite charge onto the hold node, cancelling out any effects due to charge injection.(
W
L

)
n(

W
L

)
p

=
µp

µn
(3.12)

where µn and µp are the mobility of electrons and holes, respectively. Generally, it is assumed that

the mobility of electrons is roughly three-times that of holes, so the PFET width is drawn to be 3×

the width of the NFET and both transistors’ lengths are minimized in order to satisfy condition

(1).

Lastly, method (4) is to increase the size of the capacitance on the hold node which decreases

the magnitude of the pedestal error. According to (3.9), ∆Vout is inversely proportional to Chold,

so increasing Chold reduces the pedestal error.

3.4.2 S/H Topology

To fulfill these design requirements, a S/H topology based on [41] was chosen. This S/H

employs Miller feedback in its hold-mode configuration to increase the effective hold capacitance,

Chold, without requiring larger drawn capacitors. A simplified version of the S/H schematic is

shown in Fig. 3.11 (a). In the fabricated circuit, the two switches, S1 and S2, are comprised of

transmission gates with half-sized dummy transmission-gate switches on each node except for Vin,

since this charge injection error gets absorbed by the input source and does not affect Vout. Also,

note that switch S1 is clocked using Φ1d, a delayed version of Φ1. This opens S2 slightly before S1

when transitioning to hold mode, further reducing charge injection [42].

Figures 3.11 (b) and (c) show the S/H in its sample- and hold-mode configurations, respectively.

In sample mode, the S/H OTA is connected as a unity-gain buffer, forcing VA = Vref as C1

and C2 are charged to Vin. In hold mode, S1 and S2 are opened, leaving Vout floating. In this

configuration, Miller feedback from VB to VA through C1 and C2 forces the capacitance on the hold

node Chold ≈ C2(1 + A), where A is the open-loop gain of the S/H OTA, Gm1. This effect will

be derived in the next section. Figures 3.11 (d) and (e) show the transistor-level schematics for

OTAs Gm1 and Gm2, respectively. Note that just as the programmer OTA employed a cascoded

tail, so does the buffer OTA in the S/H, since it also operates using the elevated supply rail Vdd,fg

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 30

Vin

Vref

Vdd Vdd,fg

Vout

C1 C2

Sample & Hold Buffer

Gm1 Gm2

Φφ1d

F 1

(a)

Vdd,fg

Buffer

Gm2

S1

S2

Vin

Vref

VddC1 C2

Sample & Hold

Gm1

Φ1d

Φ1

S1

S2

(d)

M3

M1

M4

M2

Mb

V+ V-

Vout

Vb

M3

M1

M4

M2V+ V-

Vout

Vb2

Mb1

Mb2

Vb1

Vdd,fg

(e)

Vdd

Vin Vout

Vref

C1 C2

Vin Vout

Vref

C1 C2

(b) (c)

VA VA VB

(f)

0 1 2 3 4 5 6 7 8 9 10

4.0

4.5

5.0

5.5

6.0

S
/H

In
p

u
t

&
O

u
tp

u
t

(V
)

Time (s)
0 1 2 3 4 5 6 7 8 9 10

0

1

S
a

m
p

le
C

L
K

(B
it
s
)Vin

Vout

CLK

Figure 3.11: Overview of sample-and-hold with Miller hold capacitance. (a) Simplified schematic
diagram of S/H. Both switches operate on the same clock phase, Φ1; switches are closed during the
sample period and are opened during the hold period. (b) S/H in sample-mode configuration. (c)
S/H in hold-mode configuration. (d) Transistor-level schematic of S/H OTA, Gm1. (e) Transistor-level
schematic of buffer OTA, Gm2. (f) Transient response of S/H sampling a sinusoidal input.

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 31

during programming. Interestingly enough, the OTA in the S/H does not require being powered

from the high voltage rail since the hold node is isolated from the OTA through C1 and C2; thus,

Gm1 is left connected to Vdd. Gm1 could have been connected to Vdd,fg without issue, but using

a lower rail allows for reduced power consumption of the array during programming. Figure 3.11

(f) demonstrates the S/H’s operation by showing a transient plot of the S/H sampling a sine wave.

The time scale is large because the transconductors are biased in the sub-threshold region in order

to yield higher gain and lower power consumption. This sub-threshold operation severely increases

the slew rate and, thus, acquisition time of the S/H, requiring the transient input signals to be very

low frequency. However, this does not affect the operation of the S/H in our programming scheme

due to the fact that it is only used to sample DC voltages from the DAC.

This topology was chosen for a number of reasons. Firstly, since programming takes a finite

amount of time, it was important to have a S/H that had very little droop error, ensuring Vtarg

remained constant over the entire programming period. As discussed in the previous section, to

reduce the droop rate of a S/H, the hold capacitance must be maximized. Likewise, the pedestal

error ∆Vout is inversely proportional to Chold. Thus, this topology is useful for reducing both errors

that were of importance since it employs Miller feedback to achieve a higher effective Chold, while

also reducing die area.

3.4.3 Miller’s Theorem

The main reason this S/H was chosen is due to its increased hold-mode capacitance. Therefore,

it is of interest to discuss this effect in detail. Recall from electronics theory, Miller’s theorem, which

presents a means of generating equivalent circuits as an analytical tool to simplify circuit analysis

and to gain insight into how a feedback network affects a circuit’s operation. Using Miller’s theorem,

a circuit of the configuration shown in Fig. 3.12 (a) can be rearranged to obtain the equivalent

circuit shown in Fig. 3.12 (b). The equivalent impedances have values Z1 = Z
1+A and Z2 = Z

1+1/A

where A = Vout
Vin

is the gain of the inverting amplifier. The series impedance, Z, of Fig. 3.12 (a)

can be separated into two equivalent impedances connected in parallel to the input and output,

and whose magnitudes are dependent upon the gain, A, of the inverting amplifier. This simplifies

circuit analysis by removing the feedback network and replacing it with impedances to ground, as

shown in Fig. 3.12 (b). Thus, it can be noted that, since the complex impedance of capacitance is

equal to 1/sC, capacitances are amplified at the input, Z1, and attenuated at the output, Z2.

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 32

Z

Vin

+

-

Vout

+

-

(b)

-A

Z1 Z2
Vin

+

-

Vout

+

-

(a)

-A

Figure 3.12: Finding an analytical equivalent circuit using Miller’s theorem. (a) An inverting amplifier
that has an impedance connected between its input and output. (b) The Miller equivalent circuit
where Z1 = Z

1+A
and Z2 = Z

1+1/A
, where A is the open loop-gain of the inverting amplifier.

A proof for Miller’s theorem as outlined in [43] is as follows: Assuming no current enters the

inverting amplifier, all current flowing from Vin to Vout passes through the impedance Z. For the

two circuits to be equivalent, the current passing through Z must be the same as the current

through Z1.

Iin =
Vin − Vout

Z
=

Vin

Z1
(3.13)

Z1 =
Z

1− Vout
Vin

(3.14)

Likewise,

Z2 =
Z

1− Vin
Vout

(3.15)

This same effect can be applied to the S/H circuit in hold mode (Fig. 3.11 (c)). During the

sample mode, the total capacitance that needs to be charged can be easily derived as the parallel

combination of C1 and C2, which is equal to C1 + C2 (Fig. 3.11 (b)). However, when the circuit

is in its hold mode, Miller feedback from VB to VA increases the capacitance of the hold node to

≈ C2(1 +A), where A is the open-loop gain of the OTA. Since capacitance on the node of interest

is not the input or output node of the amplifier, the derivation for Chold cannot be performed by

directly applying the Miller theorem as shown above. Instead, the derivation of this equivalent

capacitance must be obtained by analyzing the small-signal output impedance of the S/H in its

hold-mode configuration. Figure 3.13 shows the small-signal model of the S/H in hold mode, where

Vref is an AC ground and C1B and C2B are the bottom-plate parasitic capacitances of C1 and

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 33

vtest
C1 C2 +-

itest

vA
C1B C2B

vB

Figure 3.13: Small-signal model of S/H in hold-mode. C1B and C2B represent the bottom-plate
parasitic capacitance of C1 and C2, respectively. A test voltage and current are applied to the output
node in order to find the effective output impedance.

C2, respectively. If a test voltage is applied to the output node and the resulting output current

is measured, then Chold can be found by solving for Zhold = Vtest/Itest. First, apply KCL at the

output node to get

itest =sC1(vtest − vA) + sC2(vtest − vB) (3.16)

=s(C1 + C2)vtest − sC1vA − sC2vB (3.17)

Next, vA and vB can be related using the open-loop relationship of the OTA. At low frequencies

Vout = A(V + − V −) and V + is connected to ground, giving

vB = −AvA (3.18)

Substituting (3.18) into (3.17) yields

itest =s(C1 + C2)vtest − sC1vA + sC2AvA (3.19)

=s(C1 + C2)vtest + s(AC2 − C1)vA (3.20)

Note that vtest and vA can be related by the capacitive divider formed by C1 and its parasitic

component C1B as follows

vA = vtest

(
C1

C1 + C1B

)
(3.21)

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 34

Equation (3.21) can then be substituted into (3.20) to obtain

itest =s(C1 + C2)vtest +
C1

C1 + C1B
(sAC2 − sC1)vtest (3.22)

=

[
s(C1 + C2) +

C1

C1 + C1B
(sAC2 − sC1)

]
vtest (3.23)

vtest
itest

=
1

s(C1 + C2) + s(AC2 − C1)
C1

C1+C1B

(3.24)

=
1

s
[
C1 + C2 + (AC2 − C1)

C1
C1+C1B

] (3.25)

Equation (3.25) represents Zhold, thus we can infer that Chold

Chold =C1 + C2 + (AC2 − C1)
C1

C1 + C1B
(3.26)

=
(C1 + C2)(C1 + C1B) + C1(AC2 − C1)

C1 + C1B
(3.27)

=
C2
1 + C1C2 + C1C1B + C2C1B +AC1C2 − C2

1

C1 + C1B
(3.28)

=
C1C2(1 +A) + C1B(C1 + C2)

C1 + C1B
(3.29)

Since C1B ≪ C1, C2 (3.29) further reduces to

Chold ≈ C2(1 +A) (3.30)

The S/H used in this work was designed using C1 = C2 = 1pF , corresponding to a sample-mode

capacitance of 2pF . The 5-transistor OTA used in this work is biased using Vb = 400mV which,

according to simulation, yields an open-loop gain of ∼ 70. Thus, the Miller feedback through

capacitors C1 and C2 acts upon the circuit to create an effective hold-mode capacitance that is

∼ 35× that of the sample-mode capacitance.

3.4.4 Measured Performance

When the prototype was received from fabrication, an undesirable characteristic of the S/H

was discovered that was not indicated in simulations. During initial testing, an unusually high

droop rate was measured. Through troubleshooting, it was determined that the droop was likely

caused by reverse-biased pn-junction leakage through the pFET switches on the V − terminal of

the OTA, caused by the high well-to-source voltage of the MOSFET switches since the wells were

connected to Vdd,fg = 6.5V . This effect was likely exacerbated by the larger switch area from the

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 35

2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2
-1

0

1

2

3

4

5

6

A
v
e

ra
g
e

 D
ro

o
p

 R
a

te
 (

m
V

/s
)

S/H V
ref

 (V)

Figure 3.14: Sample-and-hold droop rate dependence on Vref . The plot shows the average droop rate
for each value of Vref while sampling voltages between 4V and 6V. The error bars indicate the range
of measured values, denoting the dependence on Vin. The droop error is nearly eliminated when Vref

is equal to 4.1V.

inclusion of dummy switches and a 2× scaling of the main switch size to accommodate the dummy

switches. This effect can be mitigated by raising the value of Vref in Fig. 3.11 (a) which reduces

the well-to-source potential to lower the leakage. The relationship between Vref and droop rate

was measured for Vdd = 4.5V and Vdd,fg = 6.5V and is shown if Fig. 3.15.

As shown in Fig. 3.15, an inverse relationship exists between the droop rate and Vref . These

measurements were taken for values of Vin spanning the FSR of the DAC output (4V to 6V). Also,

note that the droop rate is ostensibly eliminated for Vref = 4.1V , thus this was chosen to be the

value of Vref used throughout the rest of this work. Note that this also requires raising the low

power supply, Vdd, to 4.5V during programming to accommodate the increased value of Vref . The

droop rate also depends on the value of Vin being sampled which is indicated in Fig. 3.15 by the

error bars. Larger values of Vin result in more significant droop rates while lower droop rates are

had for lower Vin. This dependency on Vin was measured for Vref = 4.1V and is shown in Fig. 3.15

(a). The pedestal error was also measured for Vref = 4.1V and is shown in Fig. 3.15 (b). The solid

line in Fig. 3.15 (b) indicates the overall average pedestal, which was measured to be 3.405mV .

This average pedestal results in a constant offset at the output, which does not contribute to error

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 36

4.0 4.5 5.0 5.5 6.0
-0.05

0

0.05

0.10

0.15

0.20

0.25

0.30

A
v
e

ra
g
e

 D
ro

o
p

 R
a

te
 (

m
V

/s
)

Sampled Voltage (V)

4.0 4.5 5.0 5.5 6.0
3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

A
v
e

ra
g
e

 P
e

d
e

s
ta

l
E

rr
o

r
(m

V
)

Sampled Voltage (V)

(a)

(b)

Figure 3.15: Dependence of S/H droop and pedestal errors on Vin, while Vref is fixed at 4.1V. (a)
S/H droop rate vs Vin measured out of five trials per input. (b) S/H pedestal error vs Vin measure
out of five trials per input. The error bars indicate the range of measured values for each input. The
solid line indicates the overall average pedestal, equal to 3.405mV.

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 37

since it is independent of the input.

The maximum measured droop rate is 275µV/s; however, we can program the maximum Vtarg

in under 6 seconds. The maximum measured pedestal error is 392µV , taken with respect to the

overall average pedestal. Thus, the overall the S/H has a resolution given by

ENOB = log2

(
FSR

error

)
= log2

(
2V

6(275µV) + 392µV

)
= 9.94-bits (3.31)

which still exceeds the resolution to which we can program our memory cell.

3.5 Programming Methodology

Now that each block has been presented, it is important to discuss how they operate together

to perform the programming of an array. Figure 3.16 shows the timing diagram used to program

a row of FGs in parallel. For brevity, the SPI bits have been clustered into functional groups

comprised of the 10-bit DAC word, 3-bit column address, 1-bit row address, 1-bit DAC pulldown

enable, 1-bit voltage output mode enable, and 1-bit circuit connection enable. Bit 3 of the SPI

(Vtarg pin select) has been ignored here since it is reserved for testing purposes and is not used in

regular programming cycles.

Before programming, Vdd and Vdd,fg are raised to 4.5V , as discussed in the previous section.

Then during period A, bit 10 of the SPI (DAC pulldown) is enabled which forces the output of the

DAC to equal ∼ 0V . Each S/H is sequentially selected using the column address bits and ∼ 0V is

sampled onto each of them. The input codeword to the DAC does not affect this procedure so its

value is irrelevant, denoted with an X.

In the next period (B), Vdd,fg is raised to its elevated programming level equal to 6.5V . Voltage

output (VO) enable is HIGH and circuit connection (CIRC) enable is LOW, connecting each FG in

row r to its corresponding programmer. Each column is then sequentially selected using the COL

address bits; simultaneously, the DAC input word for the selected FG, Cn, is applied to the DAC.

After these data bits are latched into the SRAM, Vout from the DAC is sampled onto the selected

S/H, setting Vtarg for the selected programmer. Finally, the START pin is pulsed HIGH to inject

current into the channel of the FG and start the programming circuit. This process is repeated for

each column in the row. Once the last programmer has been started, Vdd,fg is left high until the

DONE circuit (not pictured) indicates that all FGs have reached their targets. Once programming

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 38

X

n

r

1

1

0

X

0

r

1

1

0

X

1

r

1

1

0

C1

0

r

0

1

0

1

r

0

1

0

n

r

0

1

0

CnC2

c

r

0

0

1

X

CLK

LATCH

SAMPLE

START

CS

ROW

COL

DAC
word

DAC
pulldown

VO

CIRC

Vdd,fg

A B C

Figure 3.16: Timing diagram of programming an array of n floating-gates in parallel.

is finished, Vdd and Vdd,fg are lowered to the run-time level (3.3V) and the SPI is used to set VO

LOW and CIRC HIGH, disconnecting the FGs from their programmers and connecting them to

their circuits (time interval C). Note that the selected row, r, remains constant throughout this

entire process. This indicates that this procedure must be repeated for each row that is required

to be programmed. Also, note that the chip select (CS) signal is low whenever the shift register is

in use, otherwise it remains high.

3.6 Chapter Summary

A new method for parallel programming analog floating-gate memory arrays was presented.

The circuit uses an SPI to digitally interface with the rest of the chip which is comprised of a

DAC, an array of sample-and-holds, and an array of FG memory cells. The DAC is a 10-bit

resistive divider with a pFET switch-tree decoder. The S/H employs Miller feedback in its hold-

mode configuration to increase its effective hold-mode capacitance by approximately an order of

magnitude. This topology was chosen because it was of importance to reduce the droop rate and

pedestal errors, both of which are inversely proportional to Chold. The programming circuit is

configured in an array where each column is composed of a S/H, FG memory cell, and a circuit

which is biased using the FG.

Spencer L. Clites Chapter 3. A Parallel Programmer for FG Arrays 39

To program an array in parallel, the S/Hs must first be “cleared” of any high values stored

on them, to prevent FGs from programming during the next step. Then, the floating-gate supply

voltage, Vdd,fg, is raised to its programming level and the FG memory cells are configured in

programming mode. Then, sequentially, each column is selected along with a DAC voltage, the

S/H clocked to set Vtarg, and Vstart is pulsed to begin programming. A DONE circuit monitors Vcg

on each memory cell and indicates when all FGs in the row have completed programming. Then,

Vdd,fg is lowered to its run-time level and the FGs are connected to their circuits for biasing.

40

Chapter 4

A Parallel-Programmable Bandpass

Filter Array

A proof-of-concept programmable filter array employing our parallel programmer was fabricated

in a 0.5µm standard CMOS process available through MOSIS. The chip contains 8 sample-and-

holds, 8 programmer OTAs, 16 floating-gate transistors, and 8 bandpass filters as well as the SPI,

DAC, and miscellaneous peripheral circuitry. Each bandpass filter requires two FGs for biasing,

one for the low corner frequency and one for the high corner frequency. The FGs are distributed

in an array of 2 rows and 8 columns. In this configuration, the chip allows for one row of FGs

to be programmed in parallel. Thus, two programming sequences, one for each row, are required

to program the full chip. This arrangement was chosen to minimize the number of programmers

required so that the active area could be reduced.

A die photograph of the chip is shown in Fig. 4.1, and the approximate active area of each

block is given in Table 4.1. The area inside the pad frame measures approximately 1.4mm2. The

DAC is the largest component, consuming roughly 50% of the active area; the C4s are second

with 12%, then S/Hs with 11%, FGs with 9.5%, programmers with 9%, and the SPI with 6%.

Table 4.1: Active Area per Block

Block Area (µm2)

SPI 57,000

DAC 450,000

S/H Array 100,000

Programmer Array 80,000

FG Array 85,000

C4 Array 110,000

Misc. Peripheral 10,000

Spencer L. Clites Chapter 4. A Programmable Bandpass Array 41

SPI

10-Bit
DAC

S&H Array

Programmer
Array

3-to-8
Decoder

FG Array

C4 Array

1.19mm

1
.1

9
m

m

Figure 4.1: Die photograph of the programmable bandpass array chip.

Miscellaneous peripheral circuitry including logic level-shifters, current bias circuits, a 3×8 column

address decoder, multiplexers and other switches also consumes 1% of the active area. Not included

in active area is the inter-stage routing which consumes roughly 200, 000µm2 throughout the entire

die.

Spencer L. Clites Chapter 4. A Programmable Bandpass Array 42

0 1 2 3 4 5 6 7
2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Time (s)

O
u

tp
u

t
(V

)

V
cg1

V
cg2

V
targ1

V
targ2

Figure 4.2: Transient response of node Vcg on two FG memory cells being programmed in parallel
using our parallel programmer.

4.1 Parallel Programmer Accuracy

Before using the FGs in their bandpass circuits, it was of interest to characterize the pro-

gramming accuracy achieved using our parallel programmer employing the DAC and S/H array.

The circuit parameters used for programming the FGs are the same as those used to characterize

the standalone memory cell presented in Chapter 3 (Ib = 250nA, I1 = 100nA, I2 = 2nA, and

Vdd,fg = 6.5V). In addition to raising Vdd,fg, the low power rail, Vdd, also had to be raised to 4.5V

in order to allow the S/H OTA enough headroom to operate with Vref = 4.1V to achieve a low

droop rate. Again, the programmed value was measured using the voltage-output configuration of

Fig. 3.2 (a), and the output was measured from node Vcg.

Figure 4.2 shows two FGs being programmed in parallel using our programmer. At 100ms,

the first S/H is clocked, sampling the DAC output to set Vtarg1. Shortly after, Vstart is pulsed to

start programming. Then, the next column is selected, and the process is repeated. The input

codewords used were 768 and 1023 to yield Vtarg1 = 5.5v and Vtarg2 = 6V , respectively. Due to

the limited number of pins, only two S/H outputs and two control gate outputs were hard-wired

to the pad frame, thus only two FGs can be demonstrated in parallel. The rest are multiplexed to

an output pin using the row and column address bits; however, the same process applies for the

Spencer L. Clites Chapter 4. A Programmable Bandpass Array 43

0 128 256 384 512 640 768 896 1024
0.5

1.0

1.5

2.0

2.5

A
v
g
e

ra
g
e

 V
c
g
,r

u
n
 (

V
)

Input Code Word

0 128 256 384 512 640 768 896 1024
-4

-3

-2

-1

0

1

2

3

A
v
e

ra
g
e

 E
rr

o
r

(m
V

)

Input Code Word

(a)

(b)

Figure 4.3: Accuracy of programming circuit out of 25 trials. (a) Run-time Vcg values vs digital input
codeword sent to the DAC. (b) Average deviation from linear, where the error bars indicate the range
of measured values.

Spencer L. Clites Chapter 4. A Programmable Bandpass Array 44

remaining 6 FGs in parallel.

DAC words from 0 to 1023 in increments of 32 were tested, and each word was programmed

across all FGs in the chip 25 times. The average Vcg,run of each word was computed, which is shown

in Fig. 4.3 (a). Just as with the standalone memory cell, a line of best-fit was drawn through this

data set and the average deviation from this line was computed to determine the programming

error (Fig. 4.3 (b)). The error bars represent the range of deviations from linear. The difference

maximum measured programming error is equal to 3.6mV , yielding a resolution equal to

ENOB = log2

(
FSR

error

)
= log2

(
2V

3.6mV

)
= 9.12-bits (4.1)

which corresponds to a loss of only 0.51-bits from the standalone programming accuracy. Addi-

tionally, our parallel programmer adds −0.2% increase in gain error, resulting in an overall gain

error of −0.4% of the FSR.

4.2 The C4 Bandpass Filter

To demonstrate the programmer’s ability to directly tune circuit parameters, we will use the

capacitively-coupled current conveyor (C4) shown in Fig. 4.4 (a). The C4 is part of a class of

transconductance-capacitance (Gm-C) filters whose corner frequencies are proportional to transcon-

ductance and capacitance, as apparent from (4.3). The transfer function of the C4 is given by

Vout

Vin
= −C1

C2

sτl(1− sτf)

1 + s
(
τl + τf

(
CO
C2

− 1
))

+ s2τhτl
(4.2)

where CT = C1 + C2 + CW and CO = C2 + CL and

τl =
C2

Gm,L
τh =

COCT − C2
2

C2Gm,H
τf =

C2

Gm,H
(4.3)

such that τl is the time constant of the low corner frequency, and τh is the time constant of the high

corner frequency. The capacitors are sized so that the zero, τf , is designed to be at a sufficiently

high frequency that its effect can be ignored.

The C4’s low and high corner frequencies are proportional to transconductances Cm,L and Gm,H

in Fig. 4.4 (a), respectively. Since these transconductances are directly proportional to the bias

currents of each OTA, the corner frequencies can be directly tuned using the FG memory cell as

Spencer L. Clites Chapter 4. A Programmable Bandpass Array 45

Gm,L

Gm,HVref

Vin Vout

C1

C2

CW CL

(a)

M4

M8M7

V+ V-

Iout

Vcg

M3

M6

M1 M2

M10

M9

M11

Vtun

Mfg

Transconductor Floating Gate Biasing

M5

(b)

(c)

G
a

in
(d

B
)

101 102 103 104

0

-10

-20

Increasing
Gm,L

Frequency (Hz)
101 102 103 104

G
a

in
(d

B
)

0

-10

-20

Increasing
Gm,H

Frequency (Hz)
(d)

Figure 4.4: Overview of the OTA-based C4 bandpass filter. (a) Schematic of OTA-based C4. (b)
Schematic of bump-linearized OTA used in C4. (c) Independent tuning of fL. (d) Independent tuning
of fH. — Figures (c) and (d) were measured using a 0.35µm CMOS process as presented in [44], but
are used here qualitatively.

a current reference to bias them, as shown in Fig. 4.4 (b). The gain and quality-factor are both

indirectly controlled by the ratio of these transconductances Gm,H/Gm,H according to

|Av| =
C1

C2

1

1 + CL
C2

Gm,L

Gm,H

Q =

√
COCT − C2

2

CL

√
Gm,L

Gm,H
+ C2

√
Gm,H

Gm,L

(4.4)

The derivation for these relations are outside the scope of this work. An in-depth treatment of the

OTA-based C4 can be found in [45].

The C4 device sizes are the same as presented in [46], however an algorithmic design procedure

for the C4 presented in [44] allows for the filter to be easily altered to meet other design specifications

if needed. In this case, the C4 was designed for a maximum quality factor of 4.3 and a dynamic

range of 50dB. The OTA is also the same as presented in [46], which is designed for an extended

linear range in subthreshold operation and was originally presented by Furth, et al. in [47]. The

schematic diagram for this transconductor is shown in Fig. 4.4 (b). The component parameters

for this C4 implementation are given in Table 4.2.

In (4.3), C2 is a constant, τl ∝ G−1
m,L, and τh ∝ G−1

m,H , so the corner frequencies have no

Spencer L. Clites Chapter 4. A Programmable Bandpass Array 46

Table 4.2: C4 Device Sizes

Transistor W (µm) L (µm)

M1 −M4 6 1.2

M5 −M6 12 1.2

M7 −M8 1.5 9

M9 12 1

M10 −M11 3 2.4

Mfg 3 1.2

Capacitor Value (fF)

C1 50

C2 25

CW 3000

CL 500

Cg 80

Ctun 2

dependence on one another, allowing them each to be programmed independently, as shown in

Figures 4.4 (c) and (d) — this data was measured on a 0.35µm CMOS process as presented in [44],

but is used here qualitatively. Figure 4.4 (c) shows the effect on frequency response holding Gm,H

constant and increasing Gm,L; Fig. 4.4 (d) shows the effect of doing the opposite.

4.2.1 C4 Programming

The C4s were operated using Vdd = 3.3V and Vcg = 3.0V . Each corner frequency was set by

programming different DAC words into the FG arrays using our parallel programmer. A character-

ization script extracted the relationships between DAC input word and τl and τh as well as between

τl/τh and Av and Q. The results of this script were then used to program the filters by directly

specifying fc, Av, and Q.

Figure 4.5 demonstrates the results of applying this characterization to tune the C4s to perform

frequency decomposition at various bandwidths and filter spacings. Three filter spacings are demon-

strated: full-octave spacing, half-octave spacing, and third-octave spacing. The value of Q for each

of these configurations was chosen according to fractional octave spacing rules, such that the filters

cross at their −3dB points. Therefore, Q ∼ 1.4 for octave spacing, Q ∼ 2.9 for half-octave spacing,

and Q ∼ 4.3 for third-octave spacing. Figure 4.5 (a) shows the results of programming the C4s to

octave spacing starting at fc = 88Hz, (b) shows half-octave spacing beginning at fc = 300Hz, and

(c) shows third-octave spacing beginning at fc = 445Hz.

4.3 Chapter Summary

A prototype circuit was fabricated using a 0.5µm standard CMOS process containing our par-

allel programmer. The programming accuracy of the parallel programming scheme was measured

using the voltage reference configuration shown in Fig. 3.2 (a), and accuracy was computed out

of twenty-five trials. A programming accuracy of 9.12-bits was achieved, indicating a loss of only

Spencer L. Clites Chapter 4. A Programmable Bandpass Array 47

10
1

10
2

10
3

10
4

10
5

-30

-20

-10

0

Frequency (Hz)

10
1

10
2

10
3

10
4

10
5

-30

-20

-10

0

N
o

rm
a

liz
e

d
 G

a
in

 (
d

B
)

10
1

10
2

10
3

10
4

10
5

-30

-20

-10

0 (a)

(b)

(c)

Octave

Half-Octave

Third-Octave

Figure 4.5: Programmed C4 array frequency responses. (a) octave spacing starting at fc = 88Hz, (b)
half-octave spacing starting at fc = 300Hz, and (c) third-octave spacing starting at fc = 445Hz.

Spencer L. Clites Chapter 4. A Programmable Bandpass Array 48

0.51-bits of accuracy through the use of our parallel programmer.

An 8-channel bandpass array was used to test the ability of the programmer array to tune

operating parameters of a circuit. The filter topology chosen was the C4, which offers independently

tunable corner frequencies set by programming different DAC words into the FG memory cells. A

characterization script was run on the C4 which extracted relationships between DAC words and

filter parameters. Using this characterization allows the user to program the C4s by specifying only

fc, Av, and Q. The functionality of this programming scheme was demonstrated by programming

the filter bank to three different filter spacings: octave, half-octave, and third-octave spacings.

49

Chapter 5

Broader Applications, Conclusions

and Future Work

Many analog floating-gate memory applications require large numbers of FGs to be integrated

on a single die, requiring the programmer to be able to write to high volumes of FGs in a short

period of time. The programmer circuit presented in this work has the potential to scale up to meet

the demands of such dense FG arrays with little complexity. By allocating the FGs into rows that

are programmed in parallel, good scalability is achieved since the number of S/Hs and programmers

remains fixed while the number of FGs can be increased.

5.1 Field-Programmable Analog Arrays

One large-scale application that would benefit from this programming scheme is the area of

field-programmable analog arrays (FPAAs). In fact, an early implementation of the programming

DAC presented in this work was previously used for serially programming floating-gate arrays in

our reconfigurable analog mixed-signal platform (RAMP) FPAA presented in [23]. FPAAs take

inspiration from field-programmable gate arrays (FPGAs) in that they replace custom-designed

application-specific integrated circuits (ASICs) with programmable architectures. The result is a

reconfigurable platform that facilitates rapid prototyping of fully-integrated analog systems. These

reconfigurable analog systems are usually employed in low-power signal processing applications to

save energy where digital computations would be more costly. Many of these applications are tasks

that are difficult or even impossible to perform using solely digital circuitry.

For instance, one brief example that was synthesized in our RAMP is a reconfigurable Wheat-

stone bridge used for temperature measurement. The Wheatstone bridge is a classic signal inter-

Spencer L. Clites Chapter 5. Conclusions and Future Work 50

R(1+δ)

240 260 280 300 320 340

260

275

290

305

320

335

350

Temperature (K)

M
e

a
s
u

re
d

T
e

m
p

e
ra

tu
re

(K
)

(a)

(b)

VDD

2

VDD

2

Vout

Vref

R2

R(1+δ)

R1

OP2OP1

R1

Figure 5.1: Wheatstone bridge for temperature measurement that was synthesized in our FPAA,
employing non-volatile analog memory arrays. (a) Schematic diagram of the Wheatstone bridge
circuit. (b) Measured temperature using a 1MΩ NTC thermistor.

facing circuit that is used to measure changes in resistance. The circuit synthesized in the FPAA,

shown in 5.1 (a), is based on the classic Wheatstone bridge. However, it employs two op-amps to

linearize Vout with respect to changes in δ [48]. The output voltage is expressed by

Vout =
Vdd

2
− R2

R1
δ

(
Vref − Vdd

2

)
(5.1)

where Vdd = 2.5V , Vref = 1.3V , R1 = 1.1MΩ, R2 = 2.2MΩ, and R = R2 = 2.2MΩ. A resistive

sensor was used in place of R(1 + δ) in Fig. 5.1 (a), in this case a negative temperature coefficient

(NTC) thermistor with a nominal resistance of 1MΩ measured at T = 270◦K (0◦C). If the R vs

temperature relationship is known, then Vout can be used to solve for temperature based on the

change in resistance, as show in Fig. 5.1 (b).

Applications such as these are costly to perform in a fully digital platform, while low power and

easy to accomplish using a reconfigurable analog architecture. Such low-power analog processing

is especially useful in resource-constrained systems which rely on batteries or energy harvesting for

power. Within these systems, FPAAs are capable of reconfiguring their analog circuitry on-the-fly,

upon the detection of pre-determined external stimuli. In these cases, the speed at which the FPAA

can reconfigure its circuitry determines how much information of this new stimulus is sensed or lost.

It follows that faster reconfiguration time corresponds to better performance, thus, it is important

for the programmer to be able to reconfigure quickly.

Spencer L. Clites Chapter 5. Conclusions and Future Work 51

5.2 Conclusions and Future Work

This work has presented a new programming circuit for non-volatile analog memory arrays. By

employing an SPI, DAC, and S/H array, the programming is performed using only digital inputs,

greatly reducing the amount of overhead required to program an array of FGs. A proof-of-concept

chip was fabricated in a 0.5µm standard CMOS process in order to demonstrate the viability of the

proposed method. This chip contains 16 FGMOS transistors used to bias an 8-channel bandpass

filter bank.

Programming accuracy using the circuit presented in [37] was measured to be 9.63-bits along

with a gain error of −0.17% FSR. The measured accuracy of the programming method presented

in this work was 9.12-bits along with a gain error of −0.4% FSR. Thus, our programming method

only results in a loss of 0.51-bits of resolution as well as a −2% increase in gain error.

Although high accuracy was maintained, there were several limitations encountered that pre-

vented this methodology from achieving the desired speed increase over serial programming. The

first of these limitations was the reverse-bias pn junction leakage on the inverting terminal of the

S/H OTA which caused high droop rates for low values of Vref . To mitigate this droop, Vref had to

be raised to 4.1V during programming phases which required raising Vdd to 4.5V to allow the S/H

OTA sufficient operating headroom. Extra settling time was required when raising this voltage

since the programmer current bias circuit is operated from this supply. When Vdd is raised, this

current bias requires time to stabilize before programming can begin; lower programming accuracy

can result if the currents are not allowed sufficient time to settle. This limitation did not affect

achievable injection speed but it did increase the overall time required to program the array.

The second limitation was the low-value for Ib/Istart of the programmer circuit. In order to

save pins, Istart was hard-wired to share the same current as Ib of the programmer OTA. In order

to achieve high programming rates, Ib must be set to ∼ 1µA, which caused no issue in simulations;

however, when the test chip was received from fabrication, it was discovered that high values of Ib

created sufficiently large Vds across M4 in the programming circuit (Fig. 3.2 (c)), preventing the

memory cell from beginning to program when Vstart was pulsed. To mitigate this problem, Ib had

to be lowered until Vds,M4 was low enough to allow the start functionality to operate successfully.

The value of Ib used to do this was 250nA, which was low enough to cause a programming speed

limitation of ∼ 600mV/s, even for Vdd,fg = 6.5V and I2 = 2nA.

Programming times of < 100ms were reported using this same memory cell in [37], albeit using

Spencer L. Clites Chapter 5. Conclusions and Future Work 52

a 0.35µm process. Still, programming speeds of the chip presented in this work were significantly

lower than what was expected to be achieved, due to the requirements on Ib.

On future implementations of this programmer, two main changes are suggested: (1) Remove

the dependence of Istart on Ib. This can be accomplished by omitting Istart altogether or simply

ratioing the current mirror between Ib and Istart such that Istart < 100nA for Ib = 1µA. (2) Fix

the droop problem caused by the S/H switch leakage. There are a number of potential approaches

to solve this problem. One would be to simply use an entirely different S/H topology; however, the

design time associated with this might prove too costly. Another would be to implement S2 in the

S/H using only nFET switches. This is possible due to the fact that if the S/H is operated on the

low supply, Vdd = 3.3V , then ideally Vref can be operated around midrail, Vmid = 1.65V . Since

the nFET switches are capable of passing voltages in this region, only the nFETs are required. If

this route is taken, then the charge injection cancellation must be solely performed through the use

of other nFET dummy switches which are not always a sufficient solution. Thus, another solution

might be to keep the transmission-gate switches but lower the logic level as well as bulk voltage of

the pFETs in S2 on the low supply level (3.3V). This latter option is likely the best solution since

charge injection cancellation is still maintained to the same degree as the current implementation;

also the change in the circuit would be very minimal, requiring only a HIGH-to-LOW level shifter

and some re-routing of control signals.

Not explicitly mentioned until now is also the fact that Vdd, Vdd,fg, and Vtun as well as various

other voltage and current biases were provided using off-chip sources. This chip was designed

in the spirit of making programming FGs as easy as possible, so to that end, these voltage and

current biases should be integrated on chip in future iterations of the programmer. A high-voltage

tunneling charge-pump has already been reported in [23], and the design of an injection charge-

pump is currently being finalized. Thus these shall be included in future iterations. These charge

pumps were fabricated using a 0.35µm CMOS process so scaling the design of this charge-pump

up to a larger process should be a relatively simple task.

53

References

[1] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices,” Bell System
Technical Journal, vol. 46, no. 6, pp. 1288–1295, 1967.

[2] S. Lai, “Flash memories: where we were and where we are going,” in IEEE International
Electron Devices Meeting, 1998, pp. 971–974.

[3] ——, “Non-volatile memory technologies: the quest for ever lower cost,” in IEEE International
Electron Devices Meeting, Dec 2008, pp. 1–6.

[4] A. Benvenuti, A. Ghetti, A. Mauri, H. Liu, and C. Mouli, “Current status and future prospects
of non-volatile memory modeling,” in International Conference on Simulation of Semiconduc-
tor Processes and Devices, Sep 2014, pp. 5–8.

[5] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim, “A case for flash memory SSD in
enterprise database applications,” in ACM SIGMOD International Conference on Management
of Data.

[6] P. Hasler, B. Minch, and C. Diorio, “Floating-gate devices: they are not just for digital
memories any more,” in IEEE International Symposium on Circuits and Systems, vol. 2, Jul
1999, pp. 388–391.

[7] C. Mead, Analog VLSI and Neural Systems. Boston, MA: Addison-Wesley Longman Pub-
lishing Co., Inc., 1989.

[8] T. Shibata and T. Ohmi, “A functional MOS transistor featuring gate-level weighted sum and
threshold operations,” IEEE Transactions on Electron Devices, vol. 39, no. 6, pp. 1444–1455,
Jun 1992.

[9] M. Holler, S. Tam, H. Castro, and R. Benson, “An electrically trainable artificial neural
network (ETANN) with 10240 ‘floating gate’ synapses,” in International Joint Conference on
Neural Networks, vol. 2, 1989, pp. 191–196.

[10] A. Thomsen and M. Brooke, “A floating-gate MOSFET with tunneling injector fabricated
using a standard double-polysilicon CMOS process,” IEEE Electron Device Letters, vol. 12,
no. 3, pp. 111–113, March 1991.

[11] B. Lee, B. Sheu, and H. Yang, “Analog floating-gate synapses for general-purpose VLSI neural
computation,” IEEE Transactions on Circuits and Systems, vol. 38, no. 6, pp. 654–658, Jun
1991.

[12] D. Durfee and F. Shoucair, “Comparison of floating gate neural network memory cells in
standard VLSI CMOS technology,” IEEE Transactions on Neural Networks, vol. 3, no. 3, pp.
347–353, May 1992.

REFERENCES 54

[13] O. Fujita and Y. Amemiya, “A floating-gate analog memory device for neural networks,” IEEE
Transactions on Electron Devices, vol. 40, no. 11, pp. 2029–2035, Nov 1993.

[14] C. Diorio, P. Hasler, B. Minch, and C. Mead, “A floating-gate MOS learning array with
locally computed weight updates,” IEEE Transaction on Electron Devices, vol. 44, no. 12, pp.
2281–2289, Dec 1997.

[15] P. Hasler, B. Minch, and C. Diorio, “Adaptive circuits using pFET floating-gate devices,” in
Advanced Research in VLSI, 1999. Proceedings. 20th Anniversary Conference on, Mar 1999,
pp. 215–229.

[16] Y. Wong, M. Cohen, and P. Abshire, “A 750-MHz 6-b adaptive floating-gate quantizer in 0.35-
µm CMOS,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 7, pp.
1301–1312, July 2009.

[17] C. Huang, P. Sarkar, and S. Chakrabartty, “Rail-to-rail, linear hot-electron injection program-
ming of floating-gate voltage bias generators at 13-bit resolution,” IEEE Journal of Solid-State
Circuits, vol. 46, no. 11, pp. 2685–2692, Nov 2011.

[18] M. Gu and S. Chakrabartty, “Subthreshold, varactor-driven CMOS floating-gate current mem-
ory array with less than 150-ppm/◦K temperature sensitivity,” IEEE Journal of Solid-State
Circuits, vol. 47, no. 11, pp. 2846–2856, Nov 2012.

[19] R. Harrison, J. Bragg, P. Hasler, B. Minch, and S. DeWeerth, “A CMOS programmable analog
memory-cell array using floating-gate circuits,” IEEE Transactions on Circuits and Systems
II: Analog and Digital Signal Processing, vol. 48, no. 1, pp. 4–11, Jan 2001.

[20] C. Twigg, J. Gray, and P. Hasler, “Programmable floating gate FPAA switches are not dead
weight,” in IEEE International Symposium on Circuits and Systems, May 2007, pp. 169–172.

[21] T. Hall, C. Twigg, J. Gray, P. Hasler, and D. Anderson, “Large-scale field-programmable
analog arrays for analog signal processing,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 52, no. 11, pp. 2298–2307, Nov 2005.

[22] C. Twigg and P. Hasler, “A large-scale reconfigurable analog signal processor (RASP) IC,” in
IEEE Custom Integrated Circuits Conference, Sept 2006, pp. 5–8.

[23] B. Rumberg, D. Graham, S. Clites, B. Kelly, M. Navidi, A. Dilello, and V. Kulathumani,
“RAMP: Accelerating wireless sensor hardware design with a reconfigurable analog/mixed-
signal platform,” in Proceedings of the ACM/IEEE Conference on Information Processing in
Sensor Networks, Apr 2015, pp. 47–58.

[24] S. Shah and S. Collins, “A temperature independent trimmable current source,” in IEEE
International Symposium on Circuits and Systems, vol. 1, 2002, pp. 713–716.

[25] S. Jackson, J. Killens, and B. Blalock, “A programmable current mirror for analog trimming
using single poly floating-gate devices in standard CMOS technology,” IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing, vol. 48, no. 1, pp. 100–102, Jan
2001.

[26] A. Negut and A. Manolescu, “Analog floating gate approach for programmable current mirrors
and current sources,” in International Semiconductor Conference, vol. 02, Oct 2010, pp. 525–
528.

REFERENCES 55

[27] L. Carley, “Trimming analog circuits using floating-gate analog MOS memory,” IEEE Journal
of Solid-State Circuits, vol. 24, no. 6, pp. 1569–1575, Dec 1989.

[28] P. Hasler, B. Minch, and C. Diorio, “An autozeroing floating-gate amplifier,” IEEE Trans-
actions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 48, no. 1, pp.
74–82, Jan 2001.

[29] T. Constandinou, J. Georgiou, and C. Toumazou, “An auto-input-offset removing floating
gate pseudo-differential transconductor,” in International Symposium on Circuits and Systems,
vol. 1, May 2003, pp. 169–172.

[30] B. Rumberg and D. Graham, “Efficiency and reliability of fowler-nordheim tunnelling in cmos
floating-gate transistors,” Electronics Letters, vol. 49, no. 23, pp. 1484–1486, Nov 2013.

[31] M. Lenzlinger and E. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2,” IEEE
Transactions on Electron Devices, vol. 15, no. 9, p. 686, Sep 1968.

[32] K. hyoun Kim, K. Lee, T.-S. Jung, and K.-D. Suh, “An 8-bit-resolution, 360-µs write time
nonvolatile analog memory based on differentially balanced constant-tunneling-current scheme
(DBCS),” IEEE Journal of Solid-State Circuits, vol. 33, no. 11, pp. 1758–1762, Nov 1998.

[33] C. Diorio, “A p-channel MOS synapse transistor with self-convergent memory writes,” IEEE
Transaction on Electron Devices, vol. 47, no. 2, pp. 464–472, Feb 2000.

[34] S. Chakrabartty and G. Cauwenberghs, “Fixed-current method for programming large floating-
gate arrays,” in IEEE International Symposium on Circuits and Systems, vol. 4, May 2005,
pp. 3934–3937.

[35] A. Bandyopadhyay, G. Serrano, and P. Hasler, “Adaptive algorithm using hot-electron injec-
tion for programming analog computational memory elements within 0.2% of accuracy over
3.5 decades,” IEEE Journal of Solid-State Circuits, vol. 41, no. 9, pp. 2107–2114, Sept 2006.

[36] H. Roman and G. Serrano, “A system architecture for automated charge modification of
analog memories,” in 53rd IEEE International Midwest Symposium on Circuits and Systems,
Aug 2010, pp. 1069–1072.

[37] B. Rumberg and D. Graham, “A floating-gate memory cell for continuous-time programming,”
in IEEE International Midwest Symposium on Circuits and Systems, Aug 2012, pp. 214–217.

[38] M. R. Kucic, “Analog computing arrays,” Ph.D. dissertation, Georgia Institute of Technology,
December 2004.

[39] R. Baker, CMOS: Circuit Design, Layout, and Simulation, 3rd ed. Hoboken, NJ: John Wiley
& Sons, Inc., 2011.

[40] P. Allen and D. Holberg, CMOS Analog Circuit Design, 2nd ed. New York, NY: Oxford
University Press, Inc., 2002.

[41] P. Lim and B. Wooley, “A high-speed sample-and-hold technique using a Miller hold capaci-
tance,” IEEE Journal of Solid-State Circuits, vol. 26, no. 4, pp. 643–651, Apr 1991.

[42] T. Carusone, D. Johns, and K. Martin, Analog Integrated Circuit Design, 2nd ed. Hoboken,
NJ: John Wiley & Sons, Inc., 2012.

REFERENCES 56

[43] B. Razavi, Design of Analog CMOS Integrated Circuits. New York, NY: McGraw-Hill Higher
Education, 2002.

[44] B. Rumberg and D. Graham, “A low-power and high-precision programmable analog filter
bank,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 4, pp.
234–238, April 2012.

[45] B. D. Rumberg, “Low-power and programmable analog circuitry for wireless sensors,” Ph.D.
dissertation, West Virginia University, December 2014.

[46] B. Rumberg, D. Graham, and V. Kulathumani, “A low-power, programmable analog event
detector for resource-constrained sensing systems,” in IEEE International Midwest Symposium
on Circuits and Systems, Aug 2012, pp. 338–341.

[47] P. Furth and A. Andreou, “Linearised differential transconductors in subthreshold CMOS,”
Electronics Letters, vol. 31, no. 7, pp. 545–547, Mar 1995.

[48] S. Franco, Designing with Operational Amplifiers and Analog Integrated Circuits, 3rd ed. New
York, NY: McGraw-Hill Higher Education, 2002.

	A Parallel Programmer for Non-Volatile Analog Memory Arrays
	Recommended Citation

	tmp.1568233084.pdf.NWg0T

