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ABSTRACT 

Kinetic Analysis of Coal and Biomass Co-gasification with Carbon Dioxide 

Jiachuan Bu 

Based on Thermogravimetric Analysis (TGA) experimental data, a kinetic 

analysis of the Boudouard reaction was studied for three different coal chars, three 

different biomass chars, and their mixtures. The coal chars included: North Dakota 

Lignite, Illinois No.6, and Powder River Basin char; the biomass chars included: 

Hardwood, Switchgrass, and Corn Stove char. The reaction temperature ranged from 

900°C to 1100°C. Different kinetic models were used for modeling the reaction rate. For 

the simplified Dutta and Wen model, it was found that the reaction rate was first order 

with respect to both CO2 and carbon.  For the modified shrinking sphere model, the 

reaction rate was first order with respect to CO2 but 2/3 order with respect to carbon. For 

simplicity, none of the models incorporated physical characteristics such as porosity or 

surface area. Statistical analysis showed the shrinking sphere model provided the best fit 

for most of gasification rates. Kinetic parameters, such as the apparent rate constant kapp, 

and apparent activation energy Eapp, were derived from the simplified model and 

shrinking sphere model. The values of the apparent activation energy were comparable 

for the two models and to those from earlier studies. 

A positive synergistic effect on the gasification reaction rate was observed 

between some coal char and biomass char pairs. These char pairs included: Illinois No.6 

mixed with Switchgrass, Illinois No.6 mixed with Hardwood, and Powder River Basin 

mixed with Corn Stover. Based on Inductively Coupled Plasma – Mass Spectrometry 

(ICPMS) analysis and predictive modeling of the apparent activation energy, the amount 

of Alkali and Alkaline Earth metals bound in the biomass chars was found to cause the 

positive synergistic effect and the enhanced gasification rate of the coal char. 
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Chapter 1 Introduction 

Gasification is a process that converts low-value carbonaceous materials, such as 

coal, coke, biomass and other organic wastes into high-value synthesis gas composed 

mainly of carbon monoxide and hydrogen. The raw materials are heated at high 

temperatures with a controlled amount of oxygen and/or steam. The mixture of product 

gas, called synthesis gas or syngas, can be used as a fuel directly or as a raw chemical 

feedstock. Compared to other processes, gasification is a flexible, reliable, clean and 

effective technology, and more importantly, it provides an alternative energy source for 

natural gas and crude oil.  

Gasification, especially coal gasification, has a long application history since 

being invented in the early 19th century. In these early years, coal gasification processes 

were used to produce a fuel gas, called town gas. At that time, town gas was primarily 

used for lighting and heating. From the beginning of 20th century, coal gasification 

technology experienced a rapid development to meet the demand for chemicals. During 

this time, syngas was the building block of so-called C1 chemistry products, such as 

ammonia and methanol. Developed in the 1920s in Germany, the Fischer-Tropsch 

process (or Fischer-Tropsch Synthesis) provided a way to produce a synthetic liquid fuel 

by the gasification route. Although coal gasification technology had a wide range of 

applications during World War II, petroleum and natural gas with their overwhelming 

advantages and plentiful quantities appeared on the stage of modern industry in the 

1950s. The importance of gasification soon declined. 

 1.1 The restoration of gasification technology 

Modern life depends on energy, and that energy mostly comes from the 

combustion of fossil fuel. The world has been consuming fossil fuels at an accelerating 

rate since the beginning of the industrial age. According to a report from U.S.DOE, world 

energy consumption is expected to expand by 50 percent from 2005 to 2030, and total 

world energy use will rise from 462 quadrillion British thermal units (Btu) in 2005 to 563 

quadrillion Btu in 2015 and then to 695 quadrillion Btu in 2030 (USDOE, 2008). 

Moreover, it is reported that in the early 21st century, more than 85 percent of world 

energy will come from fossil fuels. Currently the breakdown of the total energy 
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consumption is: natural gas 24%, oil 39%, coal 24%, nuclear 6%, hydro 6%, and other 

1% (Wolfson, 2008). However, there is growing evidence that the use of natural gas and 

oil may peak within the 21-century and then their supply will be depleted soon after. 

Considering all of these conditions, it is not surprising that the price of crude oil and 

natural gas keeps rising in the long-term trends. For example, in Summer 2008 the price 

climbed to US$147/bbl for oil and US$13/MMBtu for natural gas. Consequently, it is this 

increased cost of energy that forced the world to look at coal as an alternative source of 

energy, since coal is abundant and is found widely around the world.  

Integrated Gasification Combined Cycle (IGCC) technology was initiated during 

the 1970s and demonstrated in several commercial projects in the 1980s (Joshi and Lee, 

1996). The IGCC technology not only enhances the environmental acceptability of coal, 

but also increases the overall efficiency of the conversion of the chemical energy in coal 

into electricity (because the syngas can be combusted at higher temperatures than direct 

combustion of the original fuel). Actually, electricity generation has emerged as the 

largest new field for the application of gasification processes. In addition, coal 

gasification derivative chemicals are another major focus for coal utilization. The 

products derived from gasification processes show an abundant diversity, from bulk 

chemicals like ammonia, methanol and Fisher-Tropsch hydrocarbon products, through 

industrial gases to utilities such as clean gaseous fuel. 

Generally speaking, the cost of energy, the advantages of IGCC technology, and 

the requirement for diversity chemicals call for the development of coal gasification 

technology. This being the case, in the last 10-15 years, coal gasification technology 

experienced a rapid restoration (Higman and Burgt, 2008).   

1.2 Biomass, an important feedstock for gasification 

Contrary to fossil fuels (coal, natural gas, petroleum), biomass is a renewable 

resource. Due to environmental considerations and the increasing demands for energy, 

the application of biomass has received great attention. The main biomass resources 

include the following: forest and mill residues, agriculture crops and wastes, wood and 

wood wastes, animal wastes, livestock operation residues, aquatic plants, fast-growing 

trees and plants, and municipal and industrial wastes. Since biomass has negligible 
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amounts of sulfur, nitrogen, and ash-forming constitutes, it gives lower emissions of 

sulfur dioxide, nitrogen oxides, and soot than other conventional fossil fuels. During 

World War II, primarily as a source of fuel gas, biomass gasification was widespread. 

After the war, however, biomass gasification was forgotten for many years, until the first 

oil crisis in the 1970’s. Again, it was the pressure of energy costs that pushed people to 

expand the diversity of energy sources, of which biomass is one. Since that time, 

investigation and application of biomass gasification launched a new age for gasification 

technology. It is reported that in 2007, biomass contributed 2% worldwide as a 

gasification feedstock (NETL, 2007).  

Meanwhile, to answer the challenges of global climate change, greenhouse-gas 

(GHGs) emissions from fossil fuels must be reduced. It is reported that the atmospheric 

carbon dioxide concentration had increased by almost 100 ppm in comparison to the 

preindustrial levels, reaching 379 ppm in 2005 (IPCC, 2007). Since GHGs are primarily 

caused by the combustion of fossil fuels, the top priority is to change or partly change the 

current energy sources so that they will not produce so much climate-changing emissions 

or pollution. Biomass gasification technology has this potential advantage and is one of 

the options to fulfill this transition. Biomass gasification can produce not only chemical 

feedstock but also fuels and electric power. More importantly, it is a carbon-neutral 

process, which will decrease the total GHG emissions. For example, based on a well-to-

wheels analysis, Wu and co-workers estimated that using biomass as the raw material, the 

combination of biological (fermentation ethanol) and thermochemical (Fisher-Tropsch 

diesel) processes with power co-generation (IGCC) is very effective because it consumes 

the least fossil energy and achieves the greatest reductions in GHGs and pollutants when 

used with both conventional and HEV (hybrid electric vehicle) technologies compared 

with conventional gasoline and diesel (Wu et al. , 2006).   

A large effort has been made into the development of advanced biomass 

gasification technologies since the 1970’s. The current developments are essentially 

based on coal gasification processes. In contrast to coal gasification, which is currently 

used in several commercial processes, biomass is more reactive and can be effectively 

gasified at lower temperatures than coal. Coal and biomass co-gasification is another 

noteworthy field in the gasification process. On the one hand, co-gasification increases 
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the variety of the available feedstock. On the other hand, by displacing part of the fossil 

fuel with biomass, GHGs emissions and pollution can be reduced.  

For these gasification systems, as in all other chemical processes, fundamental 

knowledge of the reaction rate and mechanism is essential for the proper design and 

control of the process. Therefore, based on Thermogravimetric Analysis (TGA) 

experimental data, the present thesis work focuses on the chemical reaction kinetics for 

the gasification in carbon dioxide of coal char, biomass char, and the co-gasification of 

their mixtures. The detailed objectives of the work are as follows: 

(1) Gasification data will be acquired for the reaction of carbon dioxide with three 

different coal and three different biomass chars, both alone and for selected mixtures;  

(2) The CO2 gaseous flow rate through the reactor will be varied to investigate the 

external mass transport effects on the gasification reaction, further confirming the 

appropriate CO2 flow rate;   

(3) Using different kinetic models, fits of the TGA data will be performed; a 

reasonable model will be determined to describe the gasification reaction rate with 

respect to fractional carbon conversion vs. time; 

(4) By either the integral or differential approach, the TGA data will be regressed 

according to different kinetic models. Kinetic parameters will be obtained for each char, 

such as apparent rate constant kapp, and apparent activation energy Eapp; 

(5) From the experimental results, any potential synergism will be examined 

between pairs of coal char and biomass char that can increase the gasification reaction 

rate of the coal; 

(6) An explanation of the synergistic phenomena of the biomass char will be 

presented.  
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Chapter 2 Literature Review 

Reacted with air, oxygen, steam, carbon dioxide or other reagent gases, a solid or 

liquid carbonaceous material is converted into gaseous products, and this series of 

reactions is known as gasification. The gaseous product primarily contains CO, H2, CO2, 

H2O, and light hydrocarbons mixed with volatile and condensable organic and inorganic 

compounds. A simplified reaction sequence for coal or biomass gasification can be 

described by the following two stages: raw material pyrolysis followed by char 

gasification.  

Pyrolysis or devolatilization is the first stage of the gasification process. The 

chemical components in the raw coal decompose by heating to a relatively low 

temperature (350-800°C) in the absence of oxygen. The products include: pyrolysis gases 

(CO, H2, CH4, and H2O), tar, oil, naphtha, and residual solid char. A complete description 

of the characteristics of pyrolysis is complicated, but for a given sample,  the pyrolysis 

behavior depends on: (1) heating rate, (2) final decomposition temperature, (3) vapor 

residence time, (4) the environment under which the pyrolysis takes place, (5) pressure, 

(6) coal particle size, and (7) coal rank (Dutta et al. , 1977). 

In the second stage, the remaining carbonaceous solids from the pyrolytic 

reactions are further oxidized to syngas through heterogeneous reactions with carbon 

dioxide, carbon monoxide, steam, oxygen, and hydrogen. The reactivity of chars in 

gaseous atmospheres is a complicated function of temperature, particle structure, carbon 

source, and thermal history of the char. Additionally, the overall rate of char gasification 

may be affected not only by chemical kinetics but also by intraparticle and external mass 

transfer resistances (Kapteijn and Moulijn, 1986). Therefore, any description of the 

kinetics of the gasification reactions must include: (1) its intrinsic chemical rate and (2) 

the effects of mass transfer.   

This thesis work will focus on the kinetic modeling of one of the char gasification 

reactions, the Boudouard reaction: 

CO2(g)  +  C(s)  2CO(g)  -  Q [2.1]  
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Since the reaction starts with a solid and produces gaseous products, the reaction 

kinetics can easily be followed by measuring the change in weight via 

Thermogravimetric Analysis (TGA). 

2.1 Thermodynamic background 

Although the chars come from different sources, either from coal or biomass, the 

essential chemical reaction is the same: the redox reaction of a mixture of the C-CO2-CO 

system at a given temperature. Understanding the thermodynamic characteristics of the 

gasification reaction [2.1] is important. For instance, the equilibrium constant and heat of 

reaction are very important parameters to evaluate the limiting performance of the 

reaction.  

             The equilibrium constant of the reaction [2.1] are expressed as (Kapteijn and 

Moulijn, 1986): 
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                                             [2.2] 

where xi is the mole fraction of component i; P is the total pressure of the reaction system 

(bar); Pi is the partial pressures of the ideal gases i (bar); Pref  is the pressure of  the 

thermodynamic standard reference state for gases (1.01bar); ac is the “activity” of a 

particular carbon, referenced to graphite (for graphite ac = 1). 

Since the carbon structure of the chars is highly disordered (amorphous), so-called 

“polycrystalline-graphite”, it is analogous to the “glassy carbons” derived from poly 

furfuryl alcohol by pyrolysis. However, for convenience, one of the assumptions is that 

the carbon in the char for the gasification reaction has the same free energy of formation 

as the graphite (Kapteijn and Moulijn, 1986). That means, ΔGf =0, because graphite is the 

reference substance in thermodynamic calculations. Some researchers also assume that 

the carbon in the char may have a higher free energy of formation than graphite, and that 

causes the chars carbon to have a higher heat of formation (Johnson, 1979). Researchers 

also tried to establish values of ac by measuring the thermodynamic equilibrium 
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composition for a particular char and comparing it with the one calculated for graphite. 

Values of ac between 1 and 20 have been reported in the literature (Kapteijn and Moulijn, 

1986). 

The equilibrium constant, Keq, is a function of temperature and reacting 

molecules. It can be easily calculated from tabulated thermochemical data, such as those 

listed in the JANAF tables, the expression shown as: 

)(ln TGKRT o
eq Δ−=⋅                                                                                [2.3] 

)()( TGTG
i

o
fi

o
i∑ Δ=Δ ν                                                                        [2.4]     

where )(TGoΔ  is the free energy change of the reaction (KJ/mol) at temperature T; 

)(TGo
fi

Δ  is the free energy of formation of compound i (KJ/mol) at temperature T; iν  is 

the stoichiometric coefficient for each particular species in the reaction expression, 
2COν = 

-1, Cν = -1, and COν = 2 for reaction [2.1].  

The forward reaction of [2.1] is endothermic, and the number of vapor-phase 

moles is increased. Consequently, according to Le Chatelier's Principle, high temperature 

and lower total pressure is favorable for the forward reaction. Actually, for the C-CO2-

CO system, equilibrium gas compositions are a function only of temperature and total 

pressure. Equilibrium carbon monoxide mole fractions for this system increase with 

increasing temperature and decreasing pressure (Johnson, 1979). 

The enthalpy changes associated with the reaction [2.1] have different values at 

different temperatures. The heats of reaction for [2.1] using graphite as the carbonaceous 

material are listed as follows: +172.5 kJ/mol (800K); +170.7 KJ/mol (1000K); +168.7 

KJ/mol (1200K) (Kapteijn and Moulijn, 1986). 

2.2 Kinetic models 

Before discussing the kinetic models for reaction [2.1], it is necessary to define 

the reaction rate expressions with respect to different reaction reagents (solid carbon and 

gaseous carbon dioxide). For an arbitrary chemical reaction, dDcCbBaA +→+ , the 

rates of formation of each component per unit reactor  volume, ri, can be described 
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respectively as: 
dt

dCA−  , 
dt

dCB− , 
dt

dCC , and 
dt

dCD , where Ci is the molar concentration of 

the ith species. This assumes a batch reactor at constant volume. The rates correlate as: 

dt
dC

a
A1

− =
dt

dC
b

B1
− =

dt
dC

c
C1 =

dt
dC

d
D1 . Typically, the species whose concentration is 

easy to measure is used as the concentration for the rate expression. For the 

heterogeneous reaction [2.1], the rate expression of carbon is related to the rate of 

formation above but is based on a unit mole of solid initially in this gas-solid system 

instead of the reactor volume, and can be written as:                   

dt
dX

dt
dN

Ndt
dw

w
r C

C

C

Co
C

o

=−=−=
11             [2.5] 

where wC is the carbon weight at any time; wCo is the initial carbon weight; NC is the 

number of moles of carbon at any time; NCo is the initial moles of carbon; X is the 

fractional conversion of carbon and defined as the fraction of carbon converted into 

product as follows: 

Co

CCo

Co

CCo

N
NN

w
wwX −

=
−

=            [2.6] 

rC is the carbon reaction rate or reactivity, (time-1).  

The “specific carbon gasification rate”, also given the symbol Rsp, is defined as: 

( ) dt
dX

XX
rR C

sp −
=

−
=

1
1

1
           [2.7] 

The rate expression of CO2 as defined on per unit volume of the reactor and can 

be written:  

dt
dC

r CO
CO

2

2
−=              [2.8] 

Although continuous monitoring of gas chromatographic data is possible, tracking 

the weight change of the carbon char in a TGA is more conveniently and directly 

measured.  
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2.2.1 Intrinsic kinetic models expressed by carbon dioxide concentration 

Generally, the intrinsic kinetic reaction rate expressions are derived from different 

proposed reaction mechanisms, each of them consisting of a series of elementary reaction 

steps, such as adsorption, surface reactions and desorption that are involved in the overall 

reaction. Sometimes, supported by more recent investigation, the reaction mechanisms 

may be changed, but the kinetic model remains essentially the same, and the rate 

expression is unaltered. For reaction [2.1], numerous intrinsic kinetic models expressed 

by carbon dioxide concentration are listed in reviews papers or books (Reif, 1952) (Ergun 

and Mentser, 1965) (Johnson, 1979), and (Kapteijn and Moulijn, 1986). Most of them are 

of the so-called Langmuir-Hinshelwood type. Some of the more widely-known models 

are described in detail below:  

Model 1 

This model was proposed by Reif (Reif, 1952) and Ergun (Ergun, 1956), and is 

based on a two-step oxygen exchange mechanism. The final rate expression with respect 

to CO2 can be written as: 

2

2

2
32

1

1 COCO

CO
CO pkpk

pk
r

++
=             [2.9] 

where pCO, pCO2 are carbon monoxide and carbon dioxide partial pressures; k1, k2, k3 are 

kinetic parameters that depend on temperature and the nature of the char carbon. 

Equation [2.9] shows that gasification rate decreases with increasing carbon 

monoxide partial pressure because of an inhibiting effect that is not directly related to 

thermodynamic reversibility. The rate expression also implies that the reaction rate with 

respect to CO2 concentration is approximately a first or fractional order at low pressure, 

but approaches zero-th order at high pressure.  

Model 2 

Kapteijn and Moulijn came up with a mechanism different from Model 1 and 

gave the rate expression as [2.10] (Kapteijn and Moulijn, 1986): 
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2

2

2
76

2
54

1 COCO

COCO
CO pkpk

pkpk
r

++

−
=             [2.10] 

where pCO, pCO2 are carbon monoxide and carbon dioxide partial pressures; k4, k5, k6, k7 

are kinetic parameters that depend on temperature and the nature of the char carbon. 

With the exception of the term p2
CO in the numerator of equation [2.10], the form 

of the expression is the same as that of equation [2.9], which is frequently used to 

describe results in studies at or near atmospheric pressure. If the partial pressure of 

carbon monoxide is negligible, such as in a pure CO2 reaction system, equations [2.9] and 

[2.10] have essentially the same form. 

Model 3 

Blackwood and Ingeme have proposed a mechanism different from Model 1 and 

Model 2 to interpret the reaction rate at pressure up to 40 atm (Blackwood and Ingeme, 

1960). Based on a number of simplifying approximations, they reported the rate 

expressions as:  

  
2

22

2
1110

2
98

1 COCO

COCO
CO pkpk

pkpk
r

++

+
=             [2.11] 

where pCO, pCO2 are carbon monoxide and carbon dioxide partial pressures; k8, k9, k10, k11 

are kinetic parameters that depend on temperature and the nature of the char carbon. 

Except for the term 2
2COp  in the numerator of equation [2.11], the form of the rate 

expression is the same as that of equation [2.9]. For the gasification of coconut charcoal 

at 790-870°C and a total pressure up to 40 atm, the numerical evaluation results show 

that the term 2
9 2COpk  can be neglected at carbon dioxide partial pressures less than 1atm. 

However, at sufficiently high pressures, equation [2.11] can be approximately rewritten 

as:  

2

2

2
1110

2
9

COCO

CO
CO pkpk

pk
r

+
≅          [2.12] 
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Therefore, the reaction rate with respect to CO2 partial pressure is approximately 

first order at high pressure of CO2 rather than zero-th order, which is predicated by Model 

1, equation [2.9].  

Model 4 

Gadsby suggested a mechanism based on experimental results (Gadsby et al., 

1948), and reported the rate expressions as : 

2

2

2
1413

12

1 COCO

CO
CO pkpk

pk
r

++
=                                      [2.13] 

where pCO, pCO2 are carbon monoxide and carbon dioxide partial pressures; k12, k13, k14 

are kinetic parameters that depend on temperature and the nature of the char carbon.  

Comparing the equations [2.9] and [2.13], Model 1 and Model 4 have the same 

rate expression with respect to the carbon dioxide concentration, but have different 

definitions and meanings for the kinetic parameters. 

2.2.2 Kinetic models expressed as the reactivity of the carbon char 

The reactivity of a coal char or carbon (rC, or Rsp) is a complicated function that 

includes the active site density at the carbon surface, the total specific surface area, gas 

phase conditions, temperature, etc. It is noted that some physical parameters, such as the 

active site density and surface area, may significantly change during the carbon 

gasification process. Generally, for an uncatalyzed gasification, the carbon rate 

expression can be written as equations [2.14] and [2.15](Kapteijn and Moulijn, 1986):  

),,(. ⋅⋅⋅∝ iTC pTfNr                                                                                         [2.14] 

λ.aT SN =                                                                                                         [2.15] 

where NT is total number of active sites per amount of carbon present (mol/mol); Sa is the 

specific surface area (m2/mol C); and λ is surface concentration of active sites (mol/m2).  

Although numerous kinetic models for the carbon reactivity have been reported, 

they can be generally classified into two categories: (1) empirical models and (2) 

theoretical models.  
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2.2.2.1 Empirical models 

Model 5 

Dutta and Wen proposed an empirical model in 1977 (Dutta et al., 1977; Sears 

and Wen, 1981). For chemical reaction control, the reactivity of the char carbon can be 

expressed as follows: 

)1(
2

XCkS
dt
dX

COr −⋅⋅⋅⋅=η                                                                            [2.16] 

)10(,1 ≤≤±= − νβνβ XeXS                                                                              [2.17] 

where kr is the global rate constant; X is the carbon conversion; t is time; η is an 

effectiveness factor (dimensionless); S is relative surface area (dimensionless); CCO2 is 

the concentration of carbon dioxide; ν, β are physical parameters characteristic of a given 

coal char. 

The basic assumptions of Model 5 are: (1) an isothermal reaction system; (2) the 

gas flow rate is high enough so that external mass transfer effects are negligible; (3) the 

term, η, the effectiveness factor, is introduced to deal with the internal mass transfer 

effects, and this will be discussed in a later section. 

 The “S” term in Model 5 is defined as the ratio of the surface area at any time 

during the reaction to the surface area at the beginning of the reaction. Equation [2.17] is 

an empirical relationship with no theoretical basis. The parameter β has no physical 

meaning. The parameter ν is defined as the fractional conversion of the char at which the 

surface area is a maximum. By introducing the term “S”, Model 5 allows the model to 

relate the rate to the surface area that changes during the reaction.  

In Model 5, the reaction order with respect to carbon is a pseudo first-order, and 

the intrinsic chemical reaction is occurring on the changing surface of the char particle. 

However, the global reaction kinetics order of the char gasification is the sum of the 

orders with respect to carbon and carbon dioxide; consequently, it is not a pseudo first-

order.  
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Model 6 

Based on a series of experimental results of coal char gasified in air (405°C, 

0.101Mpa), carbon dioxide (900°C, 0.101Mpa), steam (910°C, 0.101Mpa), and hydrogen 

(980°C, 2.76Mpa), Mahajan et al. proposed a three-parameter model (Mahajan et al. , 

1978). The equation is shown in [2.38] and [2.39]: 

7.0~0,, 2
543

3
2

2
10 =++=⋅+⋅+⋅= Xaaa

d
dXoraaaX ττ
τ

τττ                      [2.18] 

5.0=

=
Xt
tτ                                                                                                        [2.19] 

where X is the conversion; a0 ~ a5 are parameters for different chars and are without 

physical meaning; τ is a dimensionless time scale such that t/t0.5 equals one at a fractional 

conversion of 0.5. Up to a conversion of 0.7, it is reported that equation [2.18] fits 

reasonably well for different char gasification reactions.  

By comparison of results, the authors reported that for most coal chars, from 

anthracite to lignite, the conversion-time profiles exhibit a similarity in shape. Moreover, 

if time is normalized by equation [2.19], then the curves of conversion versus 

dimensionless time are almost converged into one universal curve.  

Model 7 

Chornet (Chornet et al., 1979) proposed a more compact model with two variable 

parameters, shown in the following equations: 

cb
r XXk

d
dX )1( −⋅⋅=
τ

                                                                                     [2.20] 

where kr is a global rate constant; X is the conversion; b, c are adjustable characteristic 

parameters without physical meaning; τ is a dimensionless time scale such that t/t0.5 

equals one at a fractional conversion of 0.5, the same definition as in equation [2.19]. 

The theoretical assumptions for Model 7 are:  (1) the active sites for the reaction 

are increasing during the first half of the reaction, so the reaction rate increases in the first 

half of the reaction; (2) with the char further decomposed, the active sites collapse and 

the rate of reaction decreases. Through those assumptions, Model 7 can explain the 
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phenomena that for most chars, the reaction rate increases to a maximum and then 

decreases. After much numerical regression, the authors also gave the value of the three 

parameters:  kr= 1.763; b=0.5; c=1.0 and equation [2.20] is rewritten as: 

)1( XXk
d
dX

r −=
τ

        [2.21] 

Model 8 

Simons later adapted and modified the Chornet model (Simons, 1980). It is a 

semi-theoretical model, and the theoretical assumption is that the pore structure changes 

to account for the varying surface area during the reaction. During the reaction, the pores 

inside the char particles will develop, and as they grow, they combine with other nearby 

pores. Thus the internal surface area increases with pore growth and decreases with pore 

combination. For a chemical kinetic-controlled reaction, the pore internal surface area 

(Sp) follows the relation as:  

)1(2
1

εε −∝pS                                                                                                [2.22] 

where ε  is the porosity of the char particle. If the reaction rate is directly proportional to 

the pore internal surface area, the following relation arises: 

)1(2
1

εε
τ

−∝
d
dX                                                                                                [2.23] 

If the carbon conversion, X, is further defined as: 

o

oX
ε
εε

−
−

=
1

                                                                                                       [2.24] 

where oε  is the initial porosity at τ =0 (X=0), the rate expression can be rewritten as: 

( )[ ] ( )XXXk
d
dX

or −−+= 11 2
1

ε
τ

                                                                     [2.25] 

where kr is the global rate constant; X and oε  are as defined earlier; τ is a dimensionless 

time scale such that t/t0.5 equals one at a fractional conversion of 0.5, the same definition 
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as in equation [2.19]. When oε  approaches zero, equation [2.25] reduces to [2.21], and 

Model 8 and Model 7 have the same form. 

Model 9 

Liliedahl and coworkers presented another semi-empirical model (Liliedahl and 

Sjostrom, 1997). They adapted the Ergun mechanism (Model 1) and incorporated it in 

their model. In contrast to most other modeling approaches, a non-steady-state condition 

is assumed, and the mass balance equation is:  

0102

2

=++ mc
d
dmc

d
md

ττ
                                                                                    [2.26] 

where m is the carbon mass; c0 and c1 are constants; τ is a dimensionless time scale such 

that t/t0.5 equals one at a fractional conversion of 0.5, the same definition as in equation 

[2.19]. By normalizing m as M=m/m0 and applying the boundary condition: (1) M=1 at 

τ=0; (2) M=0.5 at τ=1, also provided that 10 2 cc > , the solution to equation [2.26] can 

be written as: 

( ) ( )ττ 21 exp)1(exp xBxBM −−+−=                                                              [2.27] 

where ( )
( ) ( )21

2

expexp
exp5.0

xx
xB
−−−

−−
= , and x1 and x2 are rate constants. 

A further non-linear least-square regression found that equation [2.27] can be 

rewritten as: 

( ) ( )ττ 47.1exp18.11 −+=M                                                                             [2.28] 

It should be noted that M could be written as (1-X), and the equation is consistent 

with the reactivity profiles that exhibit a maximum during the gasification reaction for 

most of chars. 

In summary, most of the above empirical models mathematically describe the 

char gasification kinetics very well. However, neither these mathematical functions nor 

their adjustable parameters have any physical significance. The advantage of those 

empirical models is that they are simple for application. They also can be used to predict 
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reaction rate increasing to a maximum, and after this maximum rate, the models further 

predict a decreasing rate. 

2.2.2.2 Theoretical models 

The theoretical models can be classified into two categories: (1) those that 

consider the reaction on the surfaces of nonporous grains; (2) those that attribute the 

reaction to the pore surfaces within the solid.  

Model 10 (Shrinking sphere model) 

When a solid char carbon consists of a cluster grains, and the reaction occurs on 

the surface area of the grain, the shrinking sphere model can be used to analyze the 

reaction kinetics. The model was first introduced by Yagi and Kunii, and was later 

studied by Szekely and Evans (Szekely and Evans, 1970) who introduced a moving 

boundary. Park and Levenspiel further developed the model, and presented the cracking 

core model (Park and Levenspiel, 1975). Levenspiel gives a very detailed analysis in his 

textbook (Levenspiel, 1972).   

 An analysis of the kinetics of reaction [2.1] with this model, assumes that there 

are three steps during the reaction: (1) carbon dioxide diffuses from the bulk of gas 

through the gas film to the surface of the solid char carbon (cluster grain); (2) gasification 

reaction occurs on the surface of the cluster grain; (3) the reaction gaseous product (CO) 

diffuses from the surface of the cluster grain through the gas film back into the main body 

of gas. The rate-controlling step is either the reaction (step 2), or the diffusion (step 1, or 

3). The additional assumptions are: (4) the surface chemical reaction is a first-order 

irreversible reaction with respect to CO2; (5) there is no mass transfer resistance in the 

ash layer; and (6) the particle is spherical. 

According to above assumptions, the rate of formation or loss is proportional to 

the available surface area of unreacted sphere, and the kinetic equations are deduced 

based on the boundary surface area of a particle, Sb. The stoichiometry relation of 

reaction [2.1], dNC=dNCO2 , yields the following expression: 

2

2

22 4
1

4
11

COs
CO
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Ck
dt
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dN
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S

=−=−=−
ππ

                                        [2.29] 
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where ks is the rate constant for the surface reaction with respect to CO2, here assumed to 

be first-order; rp is the radius of the unreacted spherical particle at a given time; NC is the 

number of moles of carbon; NCO2 is the number of moles of the gas CO2; and CCO2 is the 

bulk concentration of carbon dioxide, and assumed to be equal to the surface 

concentration.  

If  ρC is the molar density of char carbon and VC  is the volume of a particle, then: 

            ppCpCCCCOC drrrddVdNdN 23 4
3
4

2
πρπρρ −=⎟

⎠
⎞

⎜
⎝
⎛−=−=−=−                            [2.30] 

Introducing equation [2.29] into [2.30], yields: 

2

2
2 4

4
1

COs
p

C
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pC
p

Ck
dt
dr

dt
dr

r
r

=−=− ρπρ
π

                                                          [2.31] 

Integrating the equation [2.31] and assuming CCO2 is constant, yields:  

∫∫ =−
t

COs

r

R
pC dtCkdr

p

o 0
2

ρ  , where Ro is the initial radius of the spherical particle.  The 

integrated form can be written as: 

)(
2

po
COs

C rR
Ck

t −=
ρ                                                                                          [2.32] 

Defining the time tX =1 as the required time for complete reaction, or when rp=0, 

yields: 

2

1
COs

oC
X Ck

Rt ρ
==                                                                                                    [2.33] 

By normalizing the time t as a dimensionless time, τ, defined as: 

oC

COs

X R
Ctk

t
t

ρ
τ 2

1

==
=

                                                                                           [2.34] 

Equation [2.32] reduces to: 
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o

p

R
r

−= 1τ                                                                                                         [2.35] 

According to the definition of fractional conversion X, the following relationship 

can be written: 
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                                                                              [2.36] 

Substituting equation [2.36] into [2.35], finally yields equation [2.37] as: 

( ) 3
1

11 X−−=τ                                                                                                [2.37] 

Differentiating equation [2.37] with respect to τ, produces an equation comparable 

with other models: 

( ) ( ) 3
2

3
2

1,13 X
d
dXorX

d
dX

−∝−=
ττ

                                                              [2.38] 

The general formulation of a rate expression analyzed by the shrinking sphere 

model was reviewed by Bhatia (Bhatia and Perlmutter, 1980). Assuming chemical 

reaction controlling, the reaction rate expression is shown as: 

( ) ( )m
o

o
n

COs X
SCk

dt
dX

−
−

= 1
1

2

ε
                                                                                 [2.39] 

where ks is the rate constant for the surface reaction with respect to CO2, here it is nth 

order; m is identified as a shape factor that depends on the geometry of the particle: for 

spheres m=2/3, for cylinders m=1/2 and for flat plates m=0; So is the initial reaction 

surface area per unit volume; oε  is the initial value of the porosity.  

Equation [2.39] introduces into the model the structural parameters of the char 

carbon in terms of porosity and surface area. Since the reacting surface area of the sphere 

for each particle is decreasing, the model predicts a monotonic decrease of reaction rate. 

However, there is a discrepancy between the shrinking sphere model and the empirical 

models, which demonstrate the gasification reaction rate exhibits a maximum and then 
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decreases. This is generally attributed to an increase in the reacting surface area during 

the early stages of the reaction. However, the shrinking sphere model does not account 

for such changes in the solid structure during the reaction.  

Model 11 (Random Pore model)  

The theoretical basis of the random pore model is that the reaction occurs on the 

pore surfaces within the solid particle. The basic assumptions about the pore structure 

are: (1) all pores are of the same size; and (2) during the whole reaction process, no new 

pore intersections occur so that the reaction surface area within the particles has no 

growth at all. Based on Petersen’s structural characteristic parameters (Petersen, 1957), 

which included reaction surface area S and porosity ε , Szekely et al. derived a 

complicated conversion-time relationship expression (Szekely et al., 1976). 

Later, Bhatia and Perlmutter demonstrated a general model that considers the   

random overlap of reaction surface areas when the pores grow (Bhatia and Perlmutter, 

1980). The key assumption of the model is that they propose a set of overlapping parallel 

cylinders within the particle, and the cylinders have a size distribution. After a series of 

mathematical deductions, the authors reported an expression of the conversion X as [2.40] 

with three parameters defined as [2.41], [2.42], and [2.43]: 
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( )o

ooSR
εσ −= 1     , particle size parameter                                                    [2.41] 

( )o

o
n

COs tSCk
ετ −= 1

2  , dimensionless time                                                    [2.42] 

( )
2

14
o

oo
S

L επψ −=   , structural parameter                                                     [2.43] 

where t is the time; ks is the rate constant for the surface reaction with respect to CO2, 

here it is nth order; V is the volume enclosed by the reaction surface at any time; Vo is the 

initial volume enclosed by the reaction surface at t=0; Ro is the initial radius of a carbon 

particle; CCO2 is the concentration of the gas CO2; So is the initial reaction surface area at 
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t=0; oε  is the initial value of the porosity; Lo is the initial length of the overlapped  pore 

system at t=0.  

Further derivation yields the following final expressions: 
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where S is the reaction surface area at any time. When the particle size parameter, σ , is 

large as it is in many porous gas-solid reactions, or ∞→σ , differentiating the equation 

[2.45], results in: 

( ) ( )XX
d
dX

−−−= 1ln11 ψ
τ

                                                                          [2.46] 

            It is interesting to note that with different assumptions about the structure 

parameterψ , equation [2.46] can be rewritten in the same form as that of Model 10 and 

Model 5. For example,  if 0=ψ , then expression [2.46] has the same form as Model 5, 

shown in [2.16]. 

To summarize the theoretical models, it is noted that the theoretical models give a 

clear physical meaning either in their mathematical formulation or parameters which 

include the structural characteristics of the char. However, more than two parameters 

make the application of these theoretical models difficult. Furthermore, theoretical 

models cannot explain some phenomena in the gasification reaction, such as the 

reactivity climbing up to a maximum and then decreasing. 

2.3 Mass transfer effect  

According to Sears (Sears and Wen, 1981) and Kapteijn (Kapteijn and Moulijn, 

1986), typically, with the increase of temperature, the controlling steps for a gasification 

reaction are: (1) chemical reaction controlling, or Region I, at relative lower temperature; 
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(2) internal diffusion controlling, or Region II, at medium temperature; and (3) external 

gas-film diffusion controlling, or Region III, at higher temperature. To conduct a 

chemical kinetic analysis, it is generally assumed that the gasification reaction is 

chemically controlled. However, before performing a kinetic analysis, it should be 

confirmed that the reaction conditions are valid for this assumption. 

2.3.1 Internal mass transfer limitation 

For a porous carbon particle, the gasification reaction occurs principally on the 

pore surface within the particle. Except at very high temperature, CO2 must diffuse into 

the pore and react on the pore surface. Therefore, in Region II, an effectiveness factor 

must be introduced. The effectiveness factor, η , is defined as follows (Graboski, 1979): 

surface

average

r
r

=η                                                                                                         [2.47] 

where raverage is the mean reaction rate within the particle; rsurface is the assumed reaction 

rate that only occurs on the particle surface area without diffusion resistance. 

The effectiveness factor is a function of a dimensionless group termed the Thiele 

modulus, which includes the diffusivity inside the pore, the rate constant for reaction, 

pore dimensions, and external surface concentration of CO2, CS. For instance, for an 

isothermal particle, the nth order reaction effectiveness factor, η, is given as follows: 

( )
φ
φη tanh

=                                                                                                       [2.48] 

where φ  is the Thiele modulus and defined as: 

DV
CkL
P

n
SS

P

1−

=φ                                                                                                 [2.49] 

where LP is effective pore length, for spheres LP=R/3 (R is particle radius); ks is the rate 

constant for the surface reaction with respect to CO2; CS is external surface concentration 

for CO2; n is reaction order with respect to CO2; VP is pore volume; D is gas diffusivity.  

From these definitions, it can be shown:  
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Condition (1): when the mass diffusion is faster than the mass consumed by the 

surface reaction, 1,0 →→ ηφ , then raverage=rsurface. Under this condition, all of the pore 

area inside the particles is accessible and effective for gaseous reactant, CO2, to react 

with solid carbon. Condition (2): contrary to the first condition, when mass diffusion is 

slower than the reaction rate or 0, →∞→ ηφ , then the reaction occurs exclusively at the 

particle external surface and the reactant gas does not penetrate into the pores. It should 

be noted that in Region I (chemical controlling), the effectiveness factor, η, almost equals 

1. But for most of the cases, the value of η is between 0 and 1.  

Based on this approach, Dutta and Wen considered the diffusion resistance within 

the solid particle in their model, Model 5 (Dutta et al., 1977), and gave the expression 

[2.16], shown as:  

)1(
2

XCkS
dt
dX

COr −⋅⋅⋅⋅= η                                                                            [2.16]  

2.3.2 External mass transfer limitation 

External mass transport generally becomes dominant at temperatures higher than 

that at which internal mass transfer limits the gasification rate. In Region III, the gaseous 

reactant CO2 must penetrate through a hydrodynamic boundary layer and a stationary gas 

film surrounding the particle, to arrive at the solid particle boundary surface or diffuse 

further into the pore surface inside the particle. External mass transfer resistance reduces 

the concentration of reactant gas close to the particle surface and thus reduces the overall 

process rate. Generally speaking, increasing the external gas velocity or mass flux and 

decreasing the particle size can minimize external mass transfer effects. 

To analyze an external mass transfer problem, Fogler developed a model for a 

single particle (Fogler, 1999). Based on a hydrodynamic analysis on a single particle, and 

a steady-state static assumption, he gave a relationship as: 

( ) SsSCOgCOCO CkCCKrW ⋅=−⋅=−=
222

                                                         [2.50] 

where WCO2 is the mass diffusion flux of CO2; rCO2 is the reaction rate with respect to 

CO2; Kg is the gas mass transfer coefficient; CCO2 is the bulk concentration of CO2; CS is 
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the surface concentration of CO2; ks is the rate constant for the surface reaction with 

respect to CO2, here assumed to be first order.  

Further mathematical manipulation yields:  

           
222 COeffCOCO CkrW ⋅=−= , and 

sg

sg
eff kK

kK
k
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⋅
=                                                   [2.51] 

Consequently, further analysis shows two extreme conditions:  

Under condition (1), for a rapid chemical reaction, it is assumed that gs Kk >> , 

then: 
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For this condition, the external mass transfer is the controlling step, and one can use a 

dimensionless number, such as the Sh (Sherwood number), to calculate the value of Kg. 

 Under condition (2), for a slow chemical reaction, it is noted that gs Kk << , then:  
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For this condition, the chemical reaction is the controlling step, and mass transfer has no 

contribution on the reaction resistance. In other cases, if ks and Kg are of the same order 

of magnitude, one can first employ a Sh number-type correlation to obtain Kg and then 

use equation [2.51] to extract the value of ks from experimental data of keff. 

Doraiswamy presented an experimental method to evaluate the external mass 

transfer effect (Doraiswamy and Sharma, 1984). The theoretical principle for this method 

is that if there exists no external mass transfer limitation during a reaction, then at a fixed 

residence time, the measured conversion X at a given time should be independent of 

either the mechanical agitation or the hydrodynamic agitation caused by a fluid flow. 

Consequently, the  first step for an experimental procedure should be the investigation of  

the conversion X as a function of the agitation characteristic, but the experiment should 



 24

be conducted  under a fixed value of W/F , where, W is the sample weight, and F is the 

gas flow rate. Actually, W/F is a measurement for the fluid residence time in a reactor. 

Afterward, a plot of the conversion vs. the flow velocity is constructed. If the conversion 

X vs. different flow velocities levels off beyond a certain flow velocity, then it can be 

concluded that external mass transfer has no effect at these relatively high velocities. For 

example, Sofekun successfully used this approach in the kinetic modeling of the 

oxidation of zinc sulfide with a set of TGA data (Sofekun and Doraiswamy, 1996). 

2.4 Catalytic Effects 

It is reported that most metals, their oxides, and their salts are more or less 

catalytic. For instance, Huggins and coworkers using an in situ XAFS approach revealed 

that alkali and alkaline-earth cations were initially bound in lignite by carboxyl groups, 

and later transformed in their states during the gasification and showed a catalytic effect 

(Huggins et al., 1989). 

Mims and Pabst also reported a kinetic model for alkali-catalyzed carbon 

gasification (Mims and Pabst, 1987). They employed a surface alkylation technique to 

measure the relative reaction rate, and quantitatively unified the relative reaction rates for 

alkali (Li through Cs) salt-catalyzed carbon gasification with reactants such as H2O, D2O, 

and CO2. Their results indicated that the rates are governed by a surface oxidation step in 

equilibrium with the gas phase, which is general to all three gaseous reactants.  

Based on a molecular orbital calculation, Chen and Yang proposed a mechanism 

for the gasification reaction of graphite with CO2 catalyzed by alkali and alkaline earths 

(Chen and Yang, 1997). Their mechanism explained all major experimental features. For 

instance, the experiment results showed that alkali and alkaline earth catalysts only 

increase the gasification rate but keep the activation energy unchanged. Based on their 

reaction mechanism, Chen and Yang further gave a rate equation for a catalyzed 

gasification reaction.  

Adjorlolo and Rao gave a so-called “vapor cycle” mechanism (Adjorlolo and Rao, 

1984).  The two-reaction sequence is shown as: 
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M2CO3(s) + 2 C(s) 2 M (g) + 3CO(g)                               [2.54]

2 M(g) + 2CO2(g) M2CO3(s) + CO(g)                             [2.55]  

The first step [2.54] is a metal reduction step, and the second step [2.55] is an oxidation 

step. Based on experimental results, they pointed out that potassium and sodium 

carbonate proved to be effective catalysts for the coke-CO2 gasification reaction, and the 

former was slightly more effective. The key issue in this mechanism is the metal vapor 

cycle. Later, by an approach of molecular beam/mass spectrometry, Dayton directly 

observed the alkali vapor release during biomass combustion and gasification (Dayton et 

al., 1995). This observation provides some objective support to the “vapor cycle” 

mechanism.  

It is noteworthy that Brown et al. reported a series of CO2-char gasification 

experiments performed in a TGA to evaluate the catalytic activity of an alkali-rich 

biomass, switchgrass (Brown et al., 2000). Their results demonstrated that switchgrass 

char and switchgrass ash displayed significant catalytic activity when mixed with Illinois 

No.6 coal char. It was reported that, when a mixture of 10% (weight) coal char and  90% 

switchgrass ash was reacted with CO2 at 895°C , the gasification rate impressively 

increased by almost eight-fold. Encouraged by this work, it can be expected that biomass, 

char or its ash could be a source of coal gasification catalysts, which are both cheap and 

abundant. 
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Chapter 3 Experimental Methods and Data Analysis   

3.1 Raw material and supply 

Chars: 

Considering the geographical location of coal and biomass for economical 

reasons, three groups of coal char and biomass char are paired as gasification feedstock 

for reaction with carbon dioxide. Group 1 includes North Dakota lignite coal (Lignite) 

char and Hardwood char; Group 2 includes Illinois No.6 coal (Bituminous) char and 

Switchgrass char; and Group 3 includes Powder River Basin (Sub-bituminous) coal char 

and Corn Stover char.  

The raw coal and biomass were obtained from the Pennsylvania State University 

Coal Bank. Coworkers in the NETL/DOE laboratory of Morgantown prepared the chars 

by flowing nitrogen past a hot plate containing the raw sample at 900°C. Afterward, the 

chars were ground and homogenized at WVU for the gasification experiments. No 

attempt was made to control the particle size of the char. 

The proximate analysis data of raw coal and biomass are collected in Table 3.1. 

The analysis data of raw coal were obtained from the Pennsylvania State University Coal 

Bank Database and the raw biomass data were determined at WVU. 

Table 3.1 Proximate analysis of raw coal and biomass 

Type Sample Name Moisture (%) Volatile (%) Ash (%) Fixed Carbon (%) 

Coal 
Illinois No.6 13.20 35.44 11.62 39.74 
North Dakota lignite 33.38 37.36 6.37 22.89 
Powder River Basin 26.30 33.06 5.58 35.06 

Biomass* 
Switchgrass  8.58 68.75 6.27 16.41 
Hardwood 5.21 67.17 10.54 17.08 
Corn Stover 4.61 77.62 0.30 17.47 

       Note: * Raw biomass data are the average value of three duplicate analyses.  

Gases: 

The following gases were used in the study; 

• Carbon dioxide: Airgas Inc., ultra high purity grade, 99.999% purity; 

• Nitrogen: Airgas Inc., ultra high purity grade, 99.999% purity; 
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• Helium: Airgas Inc., ultra high purity grade, 99.999% purity. 

3.2 Apparatus     

For all three groups of chars, a TherMax 500 TGA instrument was employed to 

obtain gasification data for the pure coal chars, the pure biomass chars, and the above 

three char blends. The TGA unit consisted of a stainless steel furnace vessel with a quartz 

reactor tube inserted in the center of the vessel. The top part of the vessel houses the 

micro-balance assembly which is protected by a helium gas purge during the reaction. 

The specifications of TherMax 500 are as follows: 

• Temperature range: ambient to 1100°C; 

• Sensitivity: 1μg (1*10-6g); 

• Pressure: up to 100 atm; 

• Quartz reactor tube dimensions: Diameter, 31.75mm; Height, 428.625mm. 

3.3 Safety information 

Details of the safe operation of the gas cylinders and the TGA experiment are 

given in the Appendix J. Parenti included more safety information in his master thesis 

(Parenti, 2009). 

3.4 Experimental procedure 

The TherMax 500 TGA system was used to measure the gasification kinetics of 

the coal and biomass chars. The arrangement of the instrument is shown in the Figure 3.1. 

After the regulators on the cylinders, the gases CO2 and N2, go through a common flow 

meter (gas flow rate controller) that is calibrated at room temperature for different gases. 

The gas flow rate controller also acts as a gas switch between CO2 and N2.  The gases 

then go into the bottom of the reactor tube and the product gases after exiting the top of 

the reactor zone, pass through a valve (installed in TGA analyzer) and are exhausted into 

the atmosphere. Data acquired by the TGA analyzer in the form of sample mass vs. time 

are transferred to a computer for further analysis. 
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Figure 3.1 Schematic of the experimental TGA apparatus 

For a standard TGA run, about 50mg of char sample is put into the specially 

designed sample holder and the furnace vessel is assembled according to the manual. The 

sample holder appears like a basket with a Platinum mesh shelf inserted in the middle. 

The sides are also made of Platinum mesh and there is a Platinum foil in the bottom to 

catch any particles which may pass through the basket.  

There are three steps to carry out the carbon dioxide gasification reaction: 

• Step 1: Isothermal preparation stage  

Switching the gas to pure nitrogen, and setting the N2 flow rate at 187ml/min, the 

temperature is held at 20°C for 15 minutes to equilibrate the instrument. The TGA 

sample time interval is set at 10 seconds. 

• Step 2: Temperature increasing stage 

Keeping the nitrogen gas flowing through the reactor and the N2 flow rate at 

187ml/min, the reactor temperature is increased at a rate of 20°C/min to the set point 

(900°C, 1000°C, or 1100°C). After reaching the set point, the reactor is held at that 

temperature for a time such that the entire time from the beginning of step 1 to the end of 

step 2 is 200 minutes. This time was arbitrarily decided upon after many runs. This step is 

to drive off the remaining volatile material in the chars as much as possible.    
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• Step 3: Isothermal gasification stage 

Once the time at the end of step 2 is 200 minutes, the gas is switched from 

nitrogen to carbon dioxide to start the gasification reaction. The CO2 flow rate is set at 

118ml/min for most runs. TGA sample time interval is set at 0.5 seconds. Since the whole 

system is connected to the atmosphere, it is assumed that the reaction pressure is 1 atm. 

This is confirmed by a pressure gauge on the reactor. The reaction completion time is 

quite different with respect to different chars. Once the sample weight drops to a constant 

value, the experiment was terminated by switching to N2 and cooling the system to room 

temperature. 

3.5 Experiment data 

All CO2 gasification experiments were carried out by Mr. Joshua A. Parenti, and 

the experimental matrix is shown in the Table 3.2. Full details on the experiment can be 

found in his thesis (Parenti, 2009). 
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Table 3.2 Gasification experimental matrix 

Groups Chars Temperature(Cº) and replication(f) 

1 

ND lignite (a) 900(A,B) 1000(A,B) 1100(A,B) 
Hardwood 900(A,B) 1000(A,B) 1100(A,B) 
Mixed 10% (b) 900(A,B) 1000(A,B) 1100(A,B) 
Mixed 30% (c) 900(A,B) 1000(A,B) 1100(A,B) 

2 

ILL No.6 (d),(g) 900(A,B) 1000(A,B) 1100(A,B) 
Switchgrass 900(A,B) 1000(A,B) 1100(A,B) 
Mixed 10% (b) 900(A,B) 1000(A,B) 1100(A,B) 
Mixed 30% (c) 900(A,B) 1000(A,B) 1100(A,B) 

3 

PRB (e) 900(A,B) 1000(A,B) 1100(A,B) 
Corn Stover 900(A,B) 1000(A,B) 1100(A,B) 
Mixed 10% (b) 900(A,B) 1000(A,B) 1100(A,B) 
Mixed 30% (c) 900(A,B) 1000(A,B) 1100(A,B) 

4 ILL No.6 Mixed 30% Hardwood(c) 900(A,B) 
5 ND lignite Mixed 30% Switchgrass(c) 900(A,B) 

Note: 

(a) ND lignite presents the North Dakota lignite char; 

(b) 10% is based on weight, or as 10:90 (weight) of biomass char to coal char; 

(c) 30% is based on weight, or as 30:70 (weight) of biomass char to coal char; 

(d) Ill No.6 presents the Illinois No.6 coal char; 

(e) PRB presents the Powder River Basin coal char; 

(f) The (A, B) symbols means that each of the experiments was done in duplicate; 

(g) For Ill No.6 only, the matrix also includes single runs at 950°C and 1050°C; 

3.6 Data analysis 

3.6.1 Definition of carbon conversion fraction X 

The original TGA data are presented in the form of sample weight vs. time (wC vs. 

t, where t is time and wC is the sample weight at a given time). Dutta’s definition of the 

carbon conversion X (Dutta et al., 1977) includes ash weight in equation [2. 6]. For the 

work herein, the weight of the sample residue is used instead of the ash weight since the 

proximate analysis for all the chars could not be performed due to sample availability. 

Consequently, the initial sample weight is defined as wCo at t=0, and the finial sample 

weight as wresidue when the reaction is terminated. As a consequence, the carbon 

conversion fraction X is taken as follows; 

 
residueCo

residueC

ww
wwX

−
−

−= 1                                                                                         [3.1] 



 31

Equation [3.1] can be rearranged to give the relationship of (1-X) as:  

             
residueCo

residueC

ww
wwX

−
−

=−1                                                                                         [3.2] 

3.6.2 Data truncation 

During the data analysis process, it was found that more or less unstable data 

appear at the initial stage and the final stage of the reaction. In the initial stage, the 

phenomenon may be caused by the gas buoyancy impact on the microbalance during the 

gas switching. For the final stage, the small sample weight causes unstable readings. 

Considering all of situations, the conversion data are truncated from X= 0.1 to 0.9 for the 

modeling fitting.   

3.6.3 Kinetic analysis methods 

Differentiation of a polynomial fit data (Differential method):  

If the carbon reaction rate has the following relationship: 

( )nm
COrC XCk

dt
dXr −∝= 1

2
                                                                                 [3.3] 

(where kr is the global rate constant; CCO2 is the concentration of carbon dioxide; m is the 

reaction order for CO2; n is the reaction order for carbon), then directly determining the 

value of the derivative 
dt
dX is one method of analysis for the reaction kinetics. This 

method is called the differential method (Fogler, 1999). Generally speaking, there are 

three methods to obtain the derivative, 
dt
dX : (1) graphical differentiation; (2) numerical 

differentiation formulas; (3) differentiation of a polynomial fit of the data.  

Here, the polynomial fit method is selected by first fitting all the conversion-time 

data to an nth-order polynomial and the conversion X is used from 0 to 1:  

n
ntatataaX ++++= ...2

210                                                                            [3.4] 

Since X=0 at t=0, a0 is set to 0. After determining all the constants, ai, the 

polynomial is directly differentiated with respect to t to obtain the following expression: 
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12
321 ...32 −++++= n

ntnatataa
dt
dX                                                                  [3.5] 

By this approach, the 
dt
dX value is obtained at any given time. By setting t=0, the 

initial reaction rate, 
0=

⎟
⎠
⎞

⎜
⎝
⎛

tdt
dX , is obtained. The polynomial order was used as 4th order.  

Integral Method: 

If the carbon reaction rate has the same differential equation as [3.3], then the 

integral method can be used to obtain a function directly relating X vs. t and the 

associated kinetic parameters. Upon separating variables and letting time go from 0 to t 

and conversion from 0 to X, the resulting equation relates X to t with some constant 

terms. Finally a Least-Squares Regression method is employed to fit the experimental 

data and obtain kinetic parameters.      

The integral method is generally used when the reaction model has been 

postulated and it is desired to evaluate the order of reaction and the rate constant at 

different temperatures to determine the activation energy. Since the relationship of X vs. t 

depends on the kinetic model, more detailed information will be given in later section. It 

should note that for the integral method, here, the experimental data were truncated from 

X =0.1 to 0.9.   

Arrhenius Activation Energy: 

The Swedish chemist Arrhenius suggested that the temperature dependence of the 

reaction rate constant, k, could be correlated by an equation as (Fogler, 1999):  

( ) ⎟
⎠
⎞

⎜
⎝
⎛−=

RT
EATk exp                                                                                           [3.6] 

where A is the pre-exponential or frequency factor, E is the activation energy (J/mol), R is 

the universal gas constant (8.314 J mol-1 K-1), and T is the absolute temperature, K.  

The activation energy is determined experimentally by carrying out the reaction at 

several different temperatures and evaluating k at each temperature. Taking logarithms of 

the above equation yields: 
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RT
E

Ak −= lnln                                                                                                 [3.7] 

Hence a plot of lnk vs. 1/T should give a straight line, and the slope is –E /R. From 

this, the activation energy is found. 

3.6.4 Mathematical analysis methods  

Least-Squares Regression: 

The most common method of fitting a line to a scatter plot is the method of Least 

Squares. It describes how a response variable y changes with an independent variable x 

(Moore and McCabe, 2002). The least-squares regression to a straight line, bxay +=
∧

, 

minimizes the sum of the squares of the vertical distances of the observed-y value from 

the line. Here, b, is the slope of the line, and
x

y

S
S

Rb = , where R is the correlation between 

x and y; Sy is standard deviation (STDEV) in y; Sx is STDEV in x.  The term “a” is the 

intercept of the regression line, xbya −= , where y  is the mean value of y (observed 

value), x  is the mean value of x. The squared value of R, R2, is the fraction of the 

variation in the y (observed) variable that is explained by the least-squares regression. A 

perfect correlation means the points lie exactly on a line. In this case, R2 =1 and all of the 

variation in one variable is accounted for by the linear relationship with the other 

variable. In another words, an R-squared value close to 1 implies a relatively good linear 

relationship. 

Standard deviation (STDEV): 

According to Moore and McCabe (Moore and McCabe, 2002), STDEV is defined 

as following: 

( )∑ −
−

=
2

1
1 xx

n
STDEV i                                                                             [3.8] 

where n is the number of samples of x;  xi is the value of ith sample of x;  and x  is the 

mean value of x. 
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STDEV (or variance) has the following rules: 

• If x is a random variable and c and d are fixed numbers, then: 

      xdxc STDEVdSTDEV ⋅=+                                                                             [3.9] 

• If x1 and x2 are two independent random variables, then: 

      
2121 xxxx STDEVSTDEVSTDEV +=+                                                             [3.10] 

3.7 Evaluation of external mass transfer effects 
Based on the theoretical principle of Doraiswamy (Doraiswamy and Sharma, 

1984), the Switchgrass char was selected as a candidate (since it exhibited a relatively 

fast reaction rate), and a series of experiments was designed to investigate external mass 

transfer effects at the highest temperature, 1100°C. The combination of high temperature 

and fast reaction rate accentuates the presence of external mass transfer effects should 

they be present. The experiments were conducted under a fixed value of W/F, 0.43 

(mg.min/ml), where W is the sample weight (mg), and F is the CO2 gas flow rate 

(ml/min). At three different reaction times, 60 seconds, 120 seconds, and 195 seconds, 

the values of conversion X corresponding to the different CO2 gas flow rates are 

inspected. The corresponding experimental conditions are listed in the Table 3.3, while 

Figure 3.2 is a plot of the changes in X at three different reaction times with the same 

value of W/F.  

Table 3.3 Experimental conditions for external mass transfer effect evaluation 

Temperature (°C)* 1100 1100 1100 1100 
W/F (mg.min/ml) 0.43 
Sample weight (W, mg) 33.5 42 50 66.9 
FCO2 (ml/min) 79 99 118** 158 
X at 60s 0.04 0.06 0.16 0.16 
X at 120s 0.21 0.25 0.42 0.38 
X at 195s 0.43 0.49 0.70 0.63 

 Note: 
 *   Switchgrass char is chosen as the gasification sample;  
 ** All other kinetic analysis experiments are carried out at 118ml/min of CO2 flow rate.  
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Figure 3.2 Changes in X at different reaction time with the same W/F value 

Figure 3.2 shows a nearly flat curve after the critical point 118ml/min for three 

different residence times: 60s, 120s, and 195s. According to the principle of Doraiswamy, 

these preliminary results lead to the conclusion that for Switchgrass char, maintaining the 

W/F value at 0.43 (mg.min/ml) and CO2 flow rates greater than 118ml/min, the reaction 

rate is not impacted by external mass transfer for the gasification reaction at 1100°C.  

It should be noted that the above evaluation result is just a preliminary finding. To 

make a definitive conclusion, the study should include all the sample chars at all the 

temperature levels. However, since these mass transfer evaluation experiments were 

designed at the highest temperature, and the Switchgrass char is of a relative fast reaction 

rate, it is suggested that the kinetic experiments (described in Table 3.1 with a CO2 flow 

rate at 118ml/min) do not include significant external mass transfer effects.  
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Chapter 4 Discussion 

The following analysis and discussion section will include: (1) Selection of the 

appropriate models; (2) Calculation of kinetic parameters through the data regression; (3) 

Comparison of the regression quality for different models; (4) Discussion of the reaction 

rate for different chars at different temperatures; (5) Investigation and discussion of the 

synergistic effect between the different char pairs.  

4.1 Model options 

From the literature review, it is seen that the carbon reactivity for reaction [2.1] is 

dependent on the concentration of carbon and the concentration of carbon dioxide, and 

can be described as follows: 

2CO
m

C Cr ∝ ;  n
C Xr )1( −∝                                                   [4.1] 

Consequently, a rate expression is postulated that includes these terms: 

n
CO

m
appc XCkr )1(2 −=                                                                                        [4.2] 

where kapp is the apparent global rate constant; m is the kinetic reaction order with respect 

to carbon dioxide; n is the kinetic reaction order for carbon.  

In equation [4.2], the carbon dioxide concentration can also be written in terms of 

temperature and pressure with the ideal gas law. The carbon concentration, depending on 

the specific model, can be written as (1-X)n, or Xn, or their combination.  

4.1.1 Selection of the representative reaction order for carbon dioxide   

Looking over all the intrinsic kinetic models (Model 1 to Model 4) expressed by 

carbon dioxide concentration, it is found that they all follow Langmuir-Hinshelwood  

kinetics. Providing the concentration of carbon monoxide is negligible, and then except 

for Model 3, they all have the same rate expression with respect to CO2 shown in Model 

1 [2.9]: 

2

2

2
32

1

1 COCO

CO
CO pkpk

pk
r

++
=                                                                                    [2.9] 
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The general rate expression [2.9] indicates that the reaction rate with respect to 

CO2 concentration is approximately a first order at low CO2 pressure, but approaches 

zero-th order at high CO2 pressure. In the present research, high purity carbon dioxide gas 

is used for the gasification reaction, and the system pressure is kept at one atmosphere 

(1atm). Consequently, the reaction is assumed to be first order with respect to carbon 

dioxide. Thus, in all the following modeling work, m=1 for equation [4.2].  

4.1.2 Selection of appropriate models for carbon reactivity  

A total of 7 different models were considered for carbon reactivity, from Model 5 

to Model 11; five were empirical models (Model 5 to Model 9) and two were solely 

theoretical models (Model 10 and Model 11).  The principles for the model chosen are: 

(1) the model should not include any particle structural parameter that can not be easily 

determined. Without the need for structural parameters, the model will be easier to apply. 

It should also be noted that structural parameters were not assessed in this study; (2) the 

model should allow easy deduction of an apparent rate constant. Some models can 

precisely describe the conversion-time relation. However, the main goal for a modeling 

study is to obtain kinetic parameters, such as an apparent rate constant (kapp) and apparent 

activation energy (Eapp). The summary information about these seven different models is 

collected in the Table 4.1. 
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Table 4.1 Carbon Reactivity Models Summary Information 

Model Type Model expressions 
Structural 
parameter 
numbers 

Can directly 
deduce an 

apparent rate 
constant or not? 

Model 5 Empirical )1(
2

XCkS
dt
dX

COr −⋅⋅⋅⋅=η  2 Yes 

Model 6 Empirical 2
543 ττ

τ
aaa

d
dX

++=  0 No 

Model 7 Empirical cb
r XXk

d
dX )1( −⋅⋅=
τ

 0 Yes 

Model 8 Empirical ( )[ ] ( )XXXk
d
dX

or −−+= 11 2
1

ε
τ

 1 Yes 

Model 9 Empirical ( ) ( )ττ 47.1exp18.111 −+−=X  0 No 

Model 10 Theoretical 
( ) ( )m

o

o
n

COs X
SCk

dt
dX

−
−

= 1
1

2

ε
 2 Yes 

Model 11 Theoretical ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ −−=

4
1exp11

3 ψττ
σ
τX  2 No 

 

Based on the above principles, Model 5, Model 7 and Model 10 are selected as 

the template for further modeling the gasification data. All of the three models can 

directly deduce an apparent rate constant. Model 7 does not include any particle structural 

parameter. Providing some reasonable assumptions (discussed in a later section), the 

structural parameters of Model 5 and Model 10 can be reduced from 2 to zero.  

4.1.3 Initial reaction rate constant as compensation   

As described in section 3.6.2, the experimental data have been truncated from 

X=0.1 to 0.9 for the fitting work for stability reasons. Obviously, some part of the 

reaction kinetics in the beginning stage of the reaction will be lost. To compensate for 

this, the differential method will be employed to obtain an initial reaction rate constant, 

and this is termed as the “Initial Rate Model”. 

 

 

 



 39

4.2 Kinetic parameters regression with different models 

4.2.1 Fitting the data with Model 5 (A simplified Dutta and Wen Model) 

The model expression referred to as Model 5 is: 

n
COr XCSk

dt
dX )1(

2
−=η                                                                                      [4.3] 

)10(,1 ≤≤±= − νβνβ XeXS                                                                                [4.4] 

where kr is the global rate constant, (L/mol·s); X is the carbon conversion, 

(dimensionless); t is time, (s); η is an effectiveness factor, (dimensionless); S is relative 

surface area, (dimensionless); CCO2 is the concentration of carbon dioxide, (mol/L); ν, β 

are the physical parameters characteristic of a given coal or char, (dimensionless). 

The following assumptions are made, and the resulting model is called as a 

“simplified” Dutta and Wen Model: 

• Reaction order n=1 for carbon ; 

• Chemical reaction controls: η =1; 

• S value stays constant during the reaction; 

• Treat the CO2 gas as an ideal gas, thus for pure carbon dioxide, 
RT
P

C CO
CO

2

2
= , 

where CCO2 is the concentration of carbon dioxide, (mol/L); PCO2 is the 

pressure of carbon dioxide, (atm); T is the temperature of reaction, (K); R is 

the universal gas constant, (0.082 L atm K-1 mol-1). 

Then the global rate constant, kr, and the relative surface area, S , are lumped into 

an apparent rate constant, kapp, (L/mol·s). Thus the rate expression of [4.3] is rewritten as 

a pseudo first-order reaction with respect to carbon as: 

( )X
RT
P

k
dt
dX CO

app −= 12                                                                                       [4.5] 
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Assuming PCO2 being constant, integration of the differential equation [4.5] with 

respect to t, yields the following expression: 

t
RT
P

kXLn CO
app

2)1( =−−                                                                                    [4.6] 

Using the integral method of kinetic analysis (section 3.6.3), a plot of this linear 

relation, –Ln (1-X) vs. t, is employed with the least-squares regression approach to fit the 

data.  From the slope (
RT
P

k CO
app

2 ) of the linear relationship, the apparent rate constant, 

kapp, can be obtained.  

The temperature dependence of apparent rate constant, kapp, is described with the 

Arrhenius type equation as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

RT
E

Ak app
app exp                                                                                         [4.7] 

A plot of lnkapp vs. 1/T as described in the section 3.6.3, is prepared and from the 

slope (–Eapp /R), the apparent activation energy, Eapp, is found. 

Figures 4.1 and 4.2 are examples of the kinetic parameters fitted with the 

simplified Model 5. Figure 4.1 is equation [4.6] plotted for ILL No.6 char fitted at 900°C, 

and Figure 4.2 is the Eapp regression of ILL No.6 char (Arrhenius plot) for five different 

temperatures. A total of 74 figures showing kapp fitted with Model 5 are attached in 

Appendix A, and the Eapp regression figures (12 figures) based on Model 5 are attached in 

Appendix B. The kapp derived from Model 5 are listed in Table 4. 2, and the R-squared 

values are listed in Table 4.3. The Eapp and frequency factor, A, are listed in Table 4.4. 
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Figure 4.1 Gasification data for ILL No.6 char fitted with Model 5 at 900°C 
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Figure 4.2 Arrhenius plot of ILL No.6 rate data based on Model 5 
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Table 4.2 kapp obtained from on Model 5 

Group Chars 
kapp at different temperature (L/mol.s), Model 5 

900°C(A) 900°C(B) 1000°C(A) 1000°C(B) 1100°C(A) 1100°C(B) 

1 

ND lignite 0.171752 0.171923 0.533742 0.43579 1.105913 0.9628376 
Hardwood 0.070924 0.069496 0.257195 0.256227 0.691021 0.6789016 
Mixed 10% 0.137803 0.12968 0.391839 0.38369 0.860504 0.8569513 
Mixed 30% 0.116714 0.121477 0.387826 0.396292 0.788712 0.7798934 

2 

ILL No.6 0.007467 0.008425 0.051509 0.047394 0.126883 0.127737 
Switchgrass 0.063828 0.063589 0.316203 0.293603 0.764191 0.8659263 
Mixed 10% 0.012101 0.010818 0.076362 0.070245 0.20368 0.1835826 
Mixed 30% 0.01748 0.016046 0.109603 0.097648 0.263488 0.2245671 

3 

PRB 0.078208 0.079735 0.263127 0.269302 0.563648 0.5724371 
Corn Stover 0.178276 0.187475 0.547349 0.566229 1.054448 1.0489386 
Mixed 10% 0.089112 0.08829 0.304069 0.308622 0.642649 0.5962948 
Mixed 30% 0.111092 0.114936 0.381221 0.363069 0.727576 0.6771736 

 

Table 4.3 R-squared value of the kapp regression based on Model 5  

Group Chars 
R-squared value of kapp (Model 5) 

900°C(A) 900°C(B) 1000°C(A) 1000°C(B) 1100°C(A) 1100°C(B)

1 

ND lignite 0.9426 0.9292 0.9237 0.9216 0.8976 0.8985 
Hardwood 0.9159 0.8933 0.8334 0.8202 0.8139 0.8056 
Mixed 10% 0.9269 0.9208 0.9128 0.9107 0.8947 0.8915 
Mixed 30% 0.9341 0.9169 0.9044 0.9047 0.8922 0.8998 

2 

ILL No.6 0.9932 0.9834 0.9884 0.9930 0.9780 0.9852 
Switchgrass 0.9761 0.9706 0.8989 0.8870 0.8752 0.9180 
Mixed 10% 0.9784 0.9694 0.9932 0.9884 0.9992 0.9976 
Mixed 30% 0.9750 0.9627 0.9861 0.9842 0.9959 0.9971 

3 

PRB 0.8590 0.8763 0.8770 0.8718 0.8928 0.8978 
Corn Stover 0.9349 0.9274 0.9019 0.9101 0.9199 0.9180 
Mixed 10% 0.8688 0.8651 0.8774 0.8745 0.8917 0.9010 
Mixed 30% 0.8649 0.8777 0.8801 0.8883 0.8887 0.8920 
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Table 4.4 Parameters regressed from the Arrhenius plot using Model 5  

Group Chars 
Model 5  

Eapp(KJ/mol) A (L.mol-1.s-1) R-squared value 

1 

ND lignite 120.25 3.97 X 104 0.9890 
Hardwood 152.75 4.55 X 105 0.9987 
Mixed 10% 124.75 4.89 X 104 0.9979 
Mixed 30% 126.82 5.58 X 104 0.9885 

2 

ILL No.6 194.28 3.79 X 106 0.9722 
Switchgrass 171.2 2.84 X 106 0.9910 
Mixed 10% 190.46 3.84 X 106 0.9805 
Mixed 30% 180.48 2.05 X 106 0.9716 

3 

PRB 132.63 6.66 X 104 0.9922 
Corn Stover 117.74 3.37 X 104 0.9872 
Mixed 10% 130.75 6.25 X 104 0.9866 
Mixed 30% 123.01 3.62 X 104 0.9822 

 

4.2.2 Fitting the data with Model 10 (Shrinking sphere model) 

In the regime of chemical reaction control, the general form of a rate expression 

for the shrinking sphere model expresses the reaction rate as: 

( ) ( )n
o

oCOs X
SCk

dt
dX

−
−

= 1
1

2

ε
                                                                                    [4.8] 

where ks is the rate constant for the surface reaction with respect to CO2, (m·L/mol·s). 

The parameter, n, is the reaction rate order with respect to carbon, and it is identified with 

a shape factor that depends on the geometry of the grains: for spheres n=2/3, for 

cylinders n=1/2 and for flat plate n=0. So is the initial reaction surface area per unit 

volume, (m2/m3); and oε is the initial value of the porosity, (dimensionless).  

Assuming the following and the resulting model is actually a “modified” 

shrinking sphere model:  

• The shape of the particle is spherical, and hence, n=2/3. 

• Chemical reaction controls; 
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• CO2 gas is an ideal gas, thus for pure carbon dioxide, 
RT
P

C CO
CO

2

2
= , where CCO2   is 

the concentration of carbon dioxide, (mol/L); PCO2 is the pressure of carbon 

dioxide, (atm); T is the temperature of reaction, (K); R is the universal gas 

constant, (0.082 L atm K-1 mol-1). 

The intrinsic rate constant ks, along with ( )oε−1 , and So are lumped into an 

apparent rate constant, kapp, (L/mol·s). Afterward, the rate expression of equation [4.8] is 

rewritten as 2/3 order reaction with respect to carbon: 

( )3
2

12 X
RT
P

k
dt
dX CO

app −=                                                                                      [4.9] 

Integration of the differential equation [4.9] with respect to t, yields the following 

expression: 

t
RT
P

kX CO
app

2

3
1)1(1 3

1
=−−                                                                              [4.10] 

Using the integral method of kinetic analysis described in section 3.6.3, a plot of 

the linear relation, 1-(1-X)1/3 vs. t, is made and the data are regressed with the least-

squares regression method. From the linear slope (
RT
P

k CO
app

2⋅ ), the apparent rate constant, 

kapp, is found. A plot of lnkapp vs. 1/T as described in the section 3.6.3 is prepared. From 

this, the apparent activation energy, Eapp, is calculated.  

Figures 4.3 and 4.4 are examples of the kinetic parameters fitted with the 

“modified” Model 10. Figure 4.3 is equation [4.10] plotted for ILL No.6 char at 900°C, 

and Figure 4.4 is the Eapp regression of ILL No.6 based on Model 10 (Arrhenius plot) for 

five different temperatures. A total of 74 figures from which kapp is fitted with Model 10 

are attached in Appendix C; 12 Eapp regression figures based on the Model 10 are 

attached in Appendix D. The kapp derived from Model 10 are listed in Table 4. 5, and the 

R-squared values are listed in Table 4.6. The Eapp and frequency factor, A, are listed in 

Table 4.7. 
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Figure 4.3 Gasification data for ILL No.6 char fitted with Model 10 at 900°C 
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Figure 4.4 Arrhenius plot of ILL No.6 based on Model 10 
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Table 4.5 kapp obtained from Model 10 

Group Chars 
kapp at different temperature (L/mol.s), Model 10 

900°C(A) 900°C(B) 1000°C(A) 1000°C(B) 1100°C(A) 1100°C(B) 

1 

ND lignite 0.134369 0.135257 0.417885 0.341652 0.863251 0.7508289 
Hardwood 0.056317 0.055225 0.204558 0.204268 0.552763 0.5444137 
Mixed 10% 0.108609 0.102091 0.309418 0.302771 0.677172 0.6751961 
Mixed 30% 0.092045 0.096537 0.307129 0.314122 0.620805 0.6151431 

2 

ILL No.6 0.005751 0.006497 0.039647 0.036407 0.097702 0.0981716 
Switchgrass 0.049303 0.049176 0.246378 0.229074 0.588339 0.6708649 
Mixed 10% 0.00937 0.008403 0.058648 0.053989 0.155866 0.140694 
Mixed 30% 0.013586 0.01252 0.083881 0.074748 0.199345 0.1708929 

3 

PRB 0.062255 0.063318 0.20846 0.213835 0.444363 0.4500899 
Corn Stover 0.138854 0.146232 0.431114 0.44519 0.824471 0.8204961 
Mixed 10% 0.070577 0.069908 0.241286 0.244579 0.506762 0.4703041 
Mixed 30% 0.087895 0.090813 0.301367 0.287222 0.573937 0.5347549 

 

Table 4.6 R-squared value of the kapp regression based on Model 10 

Group Chars 
R-squared value of kapp (Model 10) 

900°C(A) 900°C(B) 1000°C(A) 1000°C(B) 1100°C(A) 1100°C(B) 

1 

ND lignite 0.9891 0.9819 0.9795 0.9779 0.9607 0.9628 
Hardwood 0.9743 0.9595 0.9139 0.9022 0.8923 0.8844 
Mixed 10% 0.9802 0.9762 0.9713 0.9700 0.9573 0.9584 
Mixed 30% 0.9845 0.9746 0.9661 0.9665 0.9563 0.9619 

2 

ILL No.6 0.9934 0.9994 0.9972 0.9943 0.9973 0.9980 
Switchgrass 0.9996 0.9987 0.9636 0.9544 0.9448 0.9744 
Mixed 10% 0.9999 0.9989 0.9945 0.9975 0.9773 0.9857 
Mixed 30% 0.9997 0.9973 0.9963 0.9969 0.9445 0.9487 

3 

PRB 0.9300 0.9430 0.9441 0.9399 0.9550 0.9592 
Corn Stover 0.9821 0.9778 0.9621 0.9678 0.9730 0.9718 
Mixed 10% 0.9361 0.9334 0.9438 0.9415 0.9545 0.9616 
Mixed 30% 0.9323 0.9433 0.9467 0.9524 0.9523 0.9551 
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Table 4.7 Parameters regressed from the Arrhenius plot using Model 10 

Group Chars 
Model 10 

Eapp(KJ/mol) A (L.mol-1.s-1) R-squared value 

1 

ND lignite 119.89 3.00 X 104 0.9889 
Hardwood 153.29 3.82 X 105 0.9988 
Mixed 10% 124.73 3.85 X 104 0.9978 
Mixed 30% 126.52 4.29 X 104 0.9879 

2 

ILL No.6 194.02 2.85 X 106 0.9726 
Switchgrass 171.18 2.20 X 106 0.9902 
Mixed 10% 189.61 2.73 X 106 0.9806 
Mixed 30% 178.73 1.33 X 106 0.9716 

3 

PRB 131.99 4.97 X 104 0.9918 
Corn Stover 117.99 2.70 X 104 0.9861 
Mixed 10% 130.49 4.82 X 104 0.9861 
Mixed 30% 122.9 2.83 X 104 0.9821 

 

4.2.3 Fitting the data with Model 7 (Chornet’s Model) 

If the real time, t, is employed in equation [2.20], after some mathematical 

rearranging, one form of Model 7 is found to be: 

cb
COapp XXCk

dt
dX )1(

2
−=                                                                                 [4.11] 

where kapp is the apparent rate constant, (L/mol·s); X is the conversion, (dimensionless); t 

is time, (s); CCO2 is the concentration of carbon dioxide, (mol/L); b, c are adjustable 

characteristic parameters without physical meaning, (dimensionless). 

Assuming the following and the resulting model is actually a “modified” Chornet 

Model:  

• Chemical reaction controls; 

• Adjustable characteristic parameters according to equation [2.21]: b=0.5, c=1; 

• CO2 gas is an ideal gas, thus for pure carbon dioxide, 
RT
P

C CO
CO

2

2
= , where CCO2  is 

the concentration of carbon dioxide, (mol/L); PCO2 is the pressure of carbon 
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dioxide, (atm); T is the temperature of reaction, (K); R is the universal gas 

constant, (0.082 L atm K-1 mol-1). 

Based on these assumptions, the rate expression of [4.11] is rewritten as follows: 

  )1(2 XX
RT

P
k

dt
dX CO

app −=                                                                             [4.12] 

Integration of the differential equation [4.12] with respect to t, yields the 

following expression: 

t
RT
P

k
X
XLn CO

app
2

1
1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+                                                                                 [4.13] 

Employing the integral method of kinetic analysis described in section 3.6.3, a 

linear plot of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

X
XLn

1
1  vs. t, is fitted with the least-squares regression method. From 

the linear slope (
RT
P

k CO
app

2⋅ ), the apparent rate constant, kapp, is found. 

However, as shown in the following example plots, it is seen that for the Ill No.6 

and Switchgrass char, the linear correlation of the “modified” Model 7 shows a poor 

quality fit when compared with simplified Models 5 and 10. The details of the 

comparison are shown in the Figures 4.5 and 4.6. As a result, the model selection 

procedure is narrowed down to Model 5 and Model 10, and henceforth no kinetic 

parameters are obtained from Model 7.  
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Figure 4.5 ILL No.6 char fitted with different models at 900°C. Note: line 1 represents 

the truncated experimental data; line 2 represents the linear regression. 

 

 

Figure 4.6 Switchgrass char fitted with different models at 900°C. Note: line 1 represents 

the truncated experimental data; line 2 represents the linear regression. 
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4.2.4 Fitting the data with the Initial Rate Model 

As mentioned in an early section 3.6.2, to avoid the unstable data in the beginning 

and final stages of the reaction, the conversion data are truncated and only the region 

from X=0.1 to 0.9 is considered for the regression fitting. Consequently, obtaining the 

initial rate constant will compensate somewhat for the data truncation. 

If CO2 gas is treated as an ideal gas, then
RT
P

C CO
CO

2

2
= , and a rate expression is 

postulated as the following: 

nCO
appc X

RT
P

k
dt
dXr )1(2 −==                                                                             [4.14] 

Then, if n=1, the expression follows the simplified Model 5; and if n=2/3, the 

expression [4.14] will obey the modified Model 10.  But, at the initial condition: t=0, and 

X=0, equation [4.14] can be rewritten as: 

RT
P

k
dt
dX CO

app
t

2

0

=⎟
⎠
⎞

⎜
⎝
⎛

=

                                                                                         [4.15] 

No matter which model is being used, from equation [4.15], an apparent rate 

constant kapp can be found from the initial reaction rate
0=

⎟
⎠
⎞

⎜
⎝
⎛

tdt
dX . From this point view, 

the initial rate constant can also supply additional information on any discrepancies 

between Model 5 and Model 10.  

For the fitting of the initial rate data, the method of “differentiation of a 

polynomial” was employed as described in section 3.6.3. If the conversion-time data 

(from X=0 to 1) are expressed as a higher order polynomial, such as 4th-order:  

4
4

3
3

2
21 tatatataX +++=                                                                               [4.16] 

Then direct differentiation of equation [4.16] with respect to t yields the following:  

3
4

2
321 432 tatataa

dt
dX

+++=                                                                         [4.17]                               

And at t=0,   
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1
0

2 a
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k
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dX CO

app
t

==⎟
⎠
⎞

⎜
⎝
⎛

=

                                                                                  [4.18]  

From the equation [4.18], one can directly extract the value of the initial apparent 

rate constant, kapp, (L/mol·s). Further, a plot of lnkapp vs. 1/T as described in section 3.6.3, 

allows the apparent activation energy, Eapp, to be found from the slope. 

The kapp derived from the Initial Rate Model are listed in the Table 4.8. R-squared 

values are not available for the Differential method. The Eapp and frequency factor, A, are 

listed in Table 4.9. The Arrhenius plots for all the chars are listed in Appendix E. 

Table 4.8 Apparent rate constants based on the Initial Rate Model 

Group Chars 
kapp at different temperature (L/mol.s),Initial Rate Model 

900°C(A) 900°C(B) 1000°C(A) 1000°C(B) 1100°C(A) 1100°C(B) 

1 

ND lignite 0.107577 0.103128 0.298645 0.249367 0.534476 0.4135675 
Hardwood 0.044959 0.040407 0.127364 0.115948 0.218143 0.1376477 
Mixed 10% 0.082921 0.071822 0.199656 0.196774 0.504125 0.4771172 
Mixed 30% 0.076277 0.080427 0.203449 0.197294 0.320759 0.3514781 

2 

ILL No.6 0.006994 0.006361 0.038666 0.039047 0.089109 0.090738 
Switchgrass 0.047791 0.0463 0.153112 0.174944 0.288961 0.4532513 
Mixed 10% 0.00935 0.00788 0.064797 0.057006 0.189024 0.1659896 
Mixed 30% 0.013493 0.013006 0.071008 0.077341 0.262946 0.239917 

3 

PRB 0.031473 0.033794 0.103452 0.094598 0.224605 0.2433627 
Corn Stover 0.080158 0.078107 0.250553 0.270361 0.379336 0.3860734 
Mixed 10% 0.028157 0.028339 0.108951 0.110232 0.126102 0.1152749 
Mixed 30% 0.041835 0.047321 0.138295 0.131541 0.259519 0.252937 
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Table 4.9 Parameters regressed from the Arrhenius plot using the Initial Rate Model 

Group Chars 
Initial Rate Model 

Eapp(KJ/mol) A (L.mol-1.s-1) R-squared value 

1 

ND lignite 100.67 3.35 X 103 0.9967 
Hardwood 94.93 7.86 X 102 0.8979 
Mixed 10% 123.63 2.43 X 104 0.9954 
Mixed 30% 97.99 1.90 X 103 0.9827 

2 

ILL No.6 187.43 1.55 X 106 0.9485 
Switchgrass 137.12 6.28 X 104 0.9679 
Mixed 10% 203.80 1.13 X 107 0.9818 
Mixed 30% 197.47 8.58 X 106 0.9963 

3 

PRB 132.05 2.51 X 104 0.9967 
Corn Stover 106.72 4.97 X 103 0.9416 
Mixed 10% 99.17 8.77 X 102 0.8328 
Mixed 30% 117.79 8.23 X 103 0.9856 

 

4.3 Evaluation of Model 5 and Model 10 

Since the integral and least-squares regression method is employed in the 

modeling process, the R-squared values can be used to evaluate the quality of the data 

regression. As mentioned in section 3.6.4, an R-squared value close to 1 implies a better 

linear relationship. A better linear relationship in the kapp fitting process implies that the 

postulated model is a good kinetic representation of the reaction. For an Arrhenius plot, a 

better linear relationship can be used as a positive support for the exclusion of external 

mass transfer effect; however this is just a necessary but not a sufficient condition. 

A total of 36 pairs of R-squared data for the kapp fitted with the simplified Model 5 

and the modified Model 10 are listed in the Table 4.10. Since at each temperature level 

there were two repeat experiments, the two models are compared by the average R-

squared value ± standard deviation (STDEV). Meanwhile, a similar comparison of the 

results from the Arrhenius regressions is listed in Table 4.11. 
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Table 4.10 Comparison of kapp fitted with different models 

Chars 
R-squared value Comparison (Average value±STDEV) 

900°C 1000°C 1100°C 

Model 5 Model 10 Model 5 Model 10 Model 5 Model 10 

ND lignite 0.9359±0.010 0.9855±0.005 0.9227±0.001 0.9787±0.001 0.8980±0.001 0.9617±0.001 

Hardwood 0.9046±0.016 0.9669±0.011 0.8268±0.009 0.9081±0.008 0.8097±0.006 0.8884±0.006 

Mixed 10% 0.9239±0.004 0.9782±0.003 0.9117±0.001 0.9707±0.001 0.8931±0.002 0.9578±0.001 

Mixed 30% 0.9255±0.012 0.9796±0.007 0.9046±0.000 0.9663±0.000 0.8960±0.005 0.9591±0.004 

ILL No.6 0.9883±0.007 0.9964±0.004 0.9907±0.003 0.9958±0.002 0.9816±0.005 0.9977±0.000 

Switchgrass 0.9733±0.004 0.9991±0.001 0.8930±0.008 0.9590±0.006 0.8966±0.030 0.9596±0.021 

Mixed 10% 0.9739±0.006 0.9994±0.002 0.9908±0.003 0.9960±0.002 0.9984±0.001 0.9815±0.006 

Mixed 30% 0.9689±0.009 0.9985±0.002 0.9851±0.001 0.9966±0.000 0.9965±0.001 0.9466±0.003 

PRB 0.8676±0.012 0.9365±0.009 0.8744±0.004 0.9420±0.003 0.8953±0.004 0.9571±0.003 

Corn Stover 0.9312±0.005 0.9799±0.003 0.9060±0.006 0.9649±0.004 0.9189±0.001 0.9724±0.001 

Mixed 10% 0.8669±0.003 0.9348±0.002 0.8760±0.002 0.9426±0.002 0.8963±0.007 0.9581±0.005 

Mixed 30% 0.8713±0.009 0.9378±0.008 0.8842±0.006 0.9496±0.004 0.8904±0.002 0.9537±0.002 

Note:  

1. Almost all the data show that Model 10 has a better fit quality than Model 5; 

2. The data typed in Bold show the fit quality of Model 5 is better than Model 10 for only two       

     experiments.    

 

Table 4.11 Comparison of Eapp from Arrhenius plot regressions based on different models 

Group Chars 

Model 5  Model 10  

Eapp 
(KJ/mol) R-squared Eapp 

(KJ/mol) R-squared Error based on 
Model 5 (%) 

1 

ND lignite 120.25 0.9890 119.89 0.9889 -0.30 
Hardwood 152.75 0.9987 153.29 0.9988 0.35 
Mixed 10% 124.75 0.9979 124.73 0.9978 -0.02 
Mixed 30% 126.82 0.9885 126.52 0.9879 -0.24 

2 

ILL No.6 194.28 0.9722 194.02 0.9726 -0.13 
Switchgrass 171.2 0.9910 171.18 0.9902 -0.01 
Mixed 10% 190.46 0.9805 189.61 0.9806 -0.45 
Mixed 30% 180.48 0.9716 178.73 0.9716 -0.97 

3 

PRB 132.63 0.9922 131.99 0.9918 -0.48 
Corn Stover 117.74 0.9872 117.99 0.9861 0.21 
Mixed 10% 130.75 0.9866 130.49 0.9861 -0.20 
Mixed 30% 123.01 0.9822 122.9 0.9821 -0.09 
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For the total 36 data pairs shown in Table 4.10, all but two pairs indicate that 

Model 10 is better than Model 5 for the fitting of the apparent rate constant. Only one of 

the average R-squared values for Model 10 is below 0.9, but for Model 5, 16 values are 

below 0.9. The data in Table 4.11 show that: (1) for both Model 5 and Model 10, the R-

squared value for the Eapp regression are above 0.97, implying Arrhenius regressions are 

good; (2) Eapp data regressed from different models are almost identical, the difference 

between Model 5 and Model 10 is no more than 1%. 

The above comparisons lead to the conclusion that, for the chars studied here, 

Model 10 is better than Model 5 in the kinetic analysis for gasification of most of the 

chars with CO2, but for Group 2 chars there are some exceptions. For the ILL No.6 char, 

kapp fitting quality of Model 5 and Model 10 is almost the same and the average values of 

R-squared are near 0.99 for both models. However, when the ILL No.6 is mixed with 

Switchgrass, especially at higher temperature (1100°C), the fitting quality of Model 5 is 

better than Model 10. 

It is noted that the results of apparent activation energy in this study are in good 

agreement with the previous researchers’ results. For example, Brown et al. reported 

(Brown et al. , 2000) for a char gasification with CO2, in the temperature range of 760 to 

980°C, the Eapp was about 176 (KJ/mol) for ILL No.6 char, and 174 (KJ/mol) for 

Switchgrass char. The results of Eapp in this study are 194 (KJ/mol) for ILL No.6 char, 

and 171 (KJ/mol) for Switchgrass char.   

4.4 Rates for different chars 

Before further discussion of the synergism between different coal and biomass 

char pairs, it is necessary to compare their individual gasification rates since the average 

reaction rate of the mixture will depend on each of the individual rates. For the coal char 

gasification with carbon dioxide, it has been reported that the reactivity of Lignite char is 

higher than Bituminous char (Scott, 1983). In other words, the lower rank coal char’s 

reaction rate is higher than for the higher rank coal. Low-rank coals, including lignite and 

sub-bituminous coals, have lower energy content because they have lower carbon 

content. They generally have higher volatile matter and moisture levels. High-rank coals, 

including bituminous and anthracite coals, contain more carbon than lower-rank coals 
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which results in a much higher energy content. They also have lower moisture content 

than lower-rank coals.  

From a geological point of view, coals can be classified in an increasing order of 

rank as: Lignite (immature), Sub-bituminous, Bituminous, and Anthracite (mature) 

(Given, 1984). Coal starts off as peat. After a considerable amount of time, heat, and 

burial pressure, it is metamorphosed from peat to lignite. Lignite is considered to be 

"immature" coal at this stage of development because it is still somewhat light in color 

and remains soft. As time passes, lignite increases in maturity by becoming darker, harder 

and higher in carbon. It is then classified as sub-bituminous coal. As this process of burial 

and alteration continues, more chemical and physical changes occur and the coal is 

classified as bituminous. At this point the coal is dark and hard. Anthracite is the last of 

the classifications, and this terminology is used when the coal has reached ultimate 

maturation. Anthracite coal is very hard, shiny and high in carbon. 

There is lack of the information about biomass char gasification reaction rates. 

However, it can be postulated that biomass chars are somewhat like the “immature” 

Lignite coal chars. The following figures (Figures 4.7, 4.8 and 4.9) compare the 

gasification reaction rate constant (obtained through different models) for a total of the 

six different chars used in this study. It should be mentioned that the average value of kapp 

is reported along with the standard deviation (STDEV) of the two repeat runs for each 

temperature level shown as the error bar in the figures.  
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Figure 4.7 Comparison of kapp  for pure coal or biomass fitted with Model 5 at three 

different temperatures 
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Figure 4.8 Comparison of kapp for pure coal or biomass fitted with Model 10 at three 

different temperatures 
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k app  (average) at different temperature, Initial Rate Model
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Figure 4.9 Comparison of kapp for pure coal or biomass fitted with Initial Rate Model at 

three different temperatures 

From the above figures, it can be observed that, although the rate comparison 

results have some small discrepancies in different temperature levels and also have some 

data scatter, the general reaction rate sequence for six chars at the three different 

temperatures is:  

            (Corn Stover ≈ ND lignite) ≥ Switchgrass > (Hardwood ≈ PRB) > Ill No.6                      [4.19] 

The rate sequence for the three coal chars is:  

ND lignite > PRB > Ill No.6                                                                                                [4.20] 

It can be seen that the gasification reactivity increases from the higher rank to 

lower rank coal chars as expected.  

For the three biomass chars, the rate sequence is:  

Corn Stover ≥ Switchgrass > Hardwood                                                                    [4.21] 

It should also be noted that at higher temperature (1100°C), the top three chars of 

the rate sequence, Corn Stover, ND lignite, and Switchgrass have almost the same 
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reaction rate. This similarity on the reaction rate supports the assumption that biomass 

chars (Corn Stover and Switchgrass) can be treated as “immature” Lignite coal chars.  

4.5 Synergistic effect between coal chars and biomass chars 

Here, for the gasification of char mixtures, if the interaction of two chars shows a 

faster reaction rate than the sum of the rate of each pure char individually (weighted 

according to their mixture mass ratio) accounting for experimental uncertainty, then a 

positive synergistic effect or synergy is noted between the char pair. On the contrary, if 

the interaction of two chars shows a slower reaction rate than the sum of the weighted 

rates based on the individual chars, a negative synergistic effect is demonstrated. 

4.5.1 Reaction rate for char mixtures 

Based on the above observation of the relative char gasification reaction rates, if a 

fast-reacting char and a relatively slow one are mixed, it will be expected that the rate for 

the mixture should be between the rates of the individual chars. Moreover, the rate for the 

mixture will be in proportion to the mixture ratio.  

In the following figures, the experimental value of (1-X)average (mean value of two 

repeat experiments for a char blend) is evaluated for char mixture with different mixture 

ratios reacting at 900°C. They include the mixture chars of Group 1, 2, and 3 as described 

earlier. For data at other reaction temperature, please see Appendix F. In all of these 

figures (4.10, 4.11 and 4.12),  the (1-X)average  data come from the average of two repeat 

experiments at each temperature level, the error bars (gray bands) are presented as ± 

STDEV, and a lower curve indicates a faster reaction rate.  
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Figure 4.10 Reaction rate data for various Group 1 char mixtures of 900°C 

 

 

Figure 4.11 Reaction rate data for various Group 2 char mixtures of 900°C  
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Figure 4.12 Reaction rate data for various Group 3 char mixtures of 900°C  

For the mixtures of Group 1 chars shown in Figure 4.10, since the reaction rate of 

ND Lignite char is much faster than that for the Hardwood char, the reaction rate of the 

mixture is slower than the pure ND Lignite. With an increasing weight ratio of Hardwood 

char, from 0% to 30%, the mixture’s rate is decreased. The same result appears in the 

reaction at 1000 and 1100°C, as seen in the detailed figures in Appendix F. 

For the mixtures of Group 2 and 3, gasification reaction rates of the pure coal 

chars (ILL No.6 and PRB) are correspondingly slower than those of the pure biomass 

chars (Switchgrass, Corn Stover). Consequently, as demonstrated in Figure 4.11 and 4.12 

for reactions at 900°C, the reaction rate for the mixture is faster than the pure coal char, 

and the higher mixture ratio of biomass char results in a higher reaction rate. This 

phenomenon appears not only at 900°C, but also is observed at 1000 and 1100°C. 

Detailed figures for Groups 2 and 3 are collected in Appendix F for 1000 and 1100°C. 

Since the mixtures of Group 2 and 3 show an increasing tendency on their 

reaction rate with increasing the mixture ratio of biomass, the kapp data derived from 

Model 10 at different temperature were employed to investigate the correlation of the rate 

constant with respect to the biomass mixture ratio. Figures 4.13 and 4.14 illustrate this 

correlation for the Group 2 and Group 3 mixtures respectively.   
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kapp  (Model 10, average ) changing with the mixture ratio increase, 
Group 2 char pair (ILL No.6 & Switchgrass)
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Figure 4.13 Changes in the apparent rate constant, kapp, (Model 10) with biomass weight 

ratio for the Group 2 char pair 
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Figure 4.14 Changes in the apparent rate constant, kapp, (Model 10) with biomass weight 

ratio for the Group 3 char pair 
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In both Figure 4.13 and 4.14, the relationship between the rate constant and the 

biomass mixture ratio is the same: the kapp increases linearly with the increasing biomass 

mixture ratio. Therefore, for these char mixtures, the reaction rate expression can be 

described as: BiomassC Rr ∝ , where RBiomass is the weight ratio of the biomass char in the 

mixture. From the linear regression result shown in Figure 4.13 and 4.14, the apparent 

rate constant (derived from Model 10) for mixture chars at each of the three temperatures 

can be written as: 

kapp (mixture char)= Slope* RBiomass + Intercept       [4.22] 

where kapp is the rate constant, (L/mol.s); RBiomass is the weight ratio of the biomass char in 

the mixture, %; the slope is the value from the regression linear line, dimensionless; the 

intercept is the rate constant for pure coal char, (L/mol.s).  The linear regression 

parameters for Group 2 and Group3 char pairs are listed in Table 4.12. 

Table 4.12 The linear regression parameters of kapp (Model 10) with biomass mixture 

ratio for Group 2 and Group 3 char pairs 

Group Temperature(°C) Slope Intercept(L/mol.s) R-squared Value 

2 
900 0.0002 0.0061 0.9924 
1000 0.0014 0.038 0.9784 
1100 0.0031 0.0979 0.8936 

3 
900 0.0009 0.0628 0.9953 
1000 0.0028 0.2111 0.9958 
1100 0.0036 0.4472 0.9952 

Generally, based on the gasification kinetic analysis of pure coal and pure 

biomass chars, trends for the reaction rate of the mixture can be roughly predicted. A 

biomass char with a faster reaction rate than its coal char partner, will increase the 

reaction rate of the mixture, and vice versa.  

4.5.2 Prediction of synergistic effects (Prediction Model A) 

To inspect the synergistic effect, the conversion-time correlation for the mixture 

char is employed with the assumption that there is no interaction between the two chars. 

Referred to as Prediction Model A, it can be described by a purely additive model as 

follows:              
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( ) ( ) ( ) erimentalbiomassBiomasserimentalcoalBiomasspredicted XRXRX exp_exp_ 11)1(1 −⋅+−⋅−=−      [4.23] 

where (1-X)predicted  is the predicted value of conversion for the mixture with no 

interaction;  the (1-X)coal_experimental and (1-X)biomas_experimental values come from the real 

experimental data of pure coal and biomass char; RBiomass is the weight ratio of the 

biomass char in the mixture. The predicted value is a weighted average of individual     

(1-X) data for the two chars, the pure coal char and pure biomass char. For example, for a 

weight mixture ratio of 90:10 (coal char to biomass char): 

( ) ( ) ( ) erimentalbiomasserimentalcoalpredicted XXX exp_exp_ 11.019.01 −⋅+−⋅=−              [4.24] 

A plot of the actual experimental data for the gasification of the char mixture,    

(1-X)experimental vs. t, is superposed on the plot of the data calculated from Prediction Model 

A ((1-X)predicted  vs. t) so that a direct comparison can be made. The approach here is to 

compare the value of (1-X)predicted  with the real experiment data (1-X)experimental at a given 

time and examine them for any difference in the reaction rate.  

In other words, for Prediction Model A, it is assumed that there is no synergistic 

effect at all. If the real experimental conversion kinetics (1-X)experimental are faster than the 

value of (1-X)predicted after accounting for experimental error, then a positive synergy is 

identified between the char pairs. On the contrary, if the kinetics of (1-X)experimental are 

slower than the value (1-X)predicted , then there is a negative synergistic effect between the 

char pairs.   

4.5.3 Synergistic effect inspection plots and discussion 

Since for each pure coal or pure biomass char there are two repeat runs at each 

temperature level, the data of (1-X)coal_experimental and (1-X) biomass_experimental in equation 

[4.23] are presented as the average, and data scatter presented as ± (STDEV)coal_experimental 

and ±(STDEV)biomass_experimental. Here, the conversion X is used from 0 to 1. Consequently, 

the (1-X) predicted value in Prediction Model A is also an average value.  Assuming that 

there is no interaction between two pure chars, then based on the STDEV rules described 

in section 3.6.4 ([3.9] , [3.10]), the data scatter of (1-X)predicted  can be presented by a ± 

(STDEV)mixture_predicted, which is a sum of (STDEV)coal_experimental and 

(STDEV)biomass_experimental. In the following figures (Figure 4.15 to 4.22), the (1-X)predicted 
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data of Prediction Model A are presented by an average with error bars, but the mixture 

experimental data of  (1-X)experimental  are presented without error bars. To emphasize of 

the synergistic effect, two separate plots were made at each mixture ratio, 10% and 30%. 

The repeat runs are identified as A and B in the figures. 

Figures 4.15 through 4.16 are used to determine any synergistic effect for the 

Group 1 char mixtures (ND Lignite & Hardwood) at 900°C. The profile curves for 

mixture ratios of 10% and 30% show the same tendency: the kinetics of (1-X)experimental 

are slower than (1-X)predicted  during most of the reaction. Only in the final stage of the 

reaction (X >0.8), the prediction profiles become faster than the experimental one. The 

higher temperature cases show the same tendency at 1000 and 1100°C. Please see 

Appendix G for these detailed plots. At higher temperature, the only difference is that the 

experimental curves are slower than the predicted one during the whole reaction. It can 

be concluded that there is a negative synergistic effect of the Hardwood char in the 

gasification kinetics of the ND Lignite char.     

 

Figure 4.15A Synergistic effect inspection for Group 1 chars 10% mixture at 900°C, A 
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Figure 4.15B Synergistic effect inspection for Group 1 chars 10% mixture at 900°C, B 

 

Figure 4.16A Synergistic effect inspection for Group 1 chars 30% mixture at 900°C, A 
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Figure 4.16B Synergistic effect inspection for Group 1 chars 30% mixture at 900°C, B 

Figures 4.17 through 4.18 demonstrate the synergistic effect for the Group 2 char 

mixtures (ILL No.6 & Switchgrass) at 900°C. For both the cases of the mixture ratios of 

10% and 30%, the profile curves indicate the same result: after some time delay (X >0.3), 

the actual kinetics of (1-X)experimental become faster than the value of (1-X)predicted for the 

remaining time of the reaction. Plots are listed in Appendix H for the higher temperature 

cases, 1000 and 1100°C, and there are no exceptions. Thus there is a significant positive 

synergistic effect between the mixture char pair of ILL No.6 and Switchgrass, and it 

appears the higher the mixture ratio of Switchgrass char, the greater the synergistic effect.  
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Figure 4.17A Synergistic effect inspection for Group 2 chars 10% mixture at 900°C, A 

 
Figure 4.17B Synergistic effect inspection for Group 2 chars 10% mixture at 900°C, B 
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Figure 4.18A Synergistic effect inspection for Group 2 chars 30% mixture at 900°C, A 

 

Figure 4.18B Synergistic effect inspection for Group 2 chars 30% mixture at 900°C, B 
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slower than the experimental ones. Detailed plots are displayed in Appendix I for the 

higher temperature cases, 1000 and 1100°C, but the values of X where the two curves 

diverge are different. There is some positive synergistic effect between the mixture char 

pair of PRB and Corn Stover, and it appears that the higher the mixture ratio of Corn 

Stover char, the greater the synergistic effect.  

 
Figure 4.19A Synergistic effect inspection for Group 3 chars 10% mixture at 900°C, A 
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Figure 4.19B Synergistic effect inspection for Group 3 chars 10% mixture at 900°C, B 

 

Figure 4.20A Synergistic effect inspection for Group 3 chars 30% mixture at 900°C, A 
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Figure 4.20B Synergistic effect inspection for Group 3 chars 30% mixture at 900°C, B 

Figures 4.21 shows the synergistic effect of the Group 4 char mixtures (ILL No.6 

& Hardwood) at 900°C. Both figures show, for a 30% mixture ratio case, after X > 0.4, 

the experimental kinetics are significantly faster than the predicted one. Thus it is 

concluded that there is a significant positive synergistic effect between the mixture char 

pair of ILL No.6 and Hardwood. 
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Figure 4.21A Synergistic effect inspection for Group 4 chars 30% mixture at 900°C, A 

 

Figure 4.21B Synergistic effect inspection for Group 4 chars 30% mixture at 900°C, B 
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predicted one. Thus it is concluded that there is no significant synergistic effect between 

the char pair of ND Lignite and Switchgrass, neither positive nor negative. 

 

Figure 4.22A Synergistic effect inspection for Group 5 chars 30% mixture at 900°C, A 

 

Figure 4.22B Synergistic effect inspection for Group 5 chars 30% mixture at 900°C, B 
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In summary, the Group 2 char pair (ILL No.6 & Switchgrass), Group 3 char pair 

(PRB & Corn Stover), and Group 4 char pair (ILL No.6 & Hardwood) show a positive 

synergistic effect. For the Group 1 char pair (ND Lignite & Hardwood), a negative 

synergistic effect is demonstrated. The Group 5 char pair (ND Lignite & Switchgrass) 

does not show the synergistic effect at all, neither positive nor positive. It is interesting 

that all the positive synergistic effects appear only after some “critical” X value, which is 

different for different char pairs and different temperatures. This may imply that the 

positive synergistic effect comes out only after the biomass char is close to being totally 

reacted away. 

4.5.4 The explanation of the synergistic effect between chars pair 

It is well known that plants uptake different minerals from the soil as they grow. 

For example, it is reported that Switchgrass takes up alkali metals from the soil (Brown et 

al., 2000). When considering the catalytic effect of these metal species on the gasification 

reaction, it is postulated that: (1) the char gasification is a catalytic reaction: (2) the 

positive synergistic effect between char pairs is caused by the additional metals contained 

in the biomass char. 

To support the assumption, the metal content in each of the chars was analyzed by 

means of Inductively Coupled Plasma – Mass Spectrometry (ICPMS). The measured 

trace elements include Alkali metals (Group I: Li, Na, K, Rb, Cs) and Alkaline Earth 

metals (Group II: Mg, Ca, Sr, Ba). Previous researchers have reported that these elements 

show a significant catalytic effect in gasification (Kapteijn and Moulijn, 1986), (Sutton et 

al., 2001). Kapteijn and Moulijn also reported that the Alkali metal catalysts can lower 

the apparent activation energy for char gasification with CO2, but the Alkaline Earth 

catalysts will not affect the apparent activation energy. Although the catalytic activity of 

each metal should not be equal, here for purpose of argument, it is assumed that the effect 

is the same for each of the metal elements. The analytical results from the ICPMS are 

listed in the Table 4.13. Also a comparison of the total amount of Alkali and Alkaline 

Earth elements for each char is made in Figure 4.23.  
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Table 4.13 ICPMS Spectrometry analysis results* 

Char Type 
Group I (Alkali Metal) 

Amount (ppm) 
Group II (Alkaline Earth Metal) 

Amount (ppm) Sum 
(ppm) 

Na K Mg Ca Sr Ba 
ILL No.6 129 112 58 5127 184 618 6228 

Switchgrass 401 8107 1641 9245 137 1015 20546 
ND Lignite 7300 326 3832 16617 116 545 28736 
Hardwood 580 7849 1526 8737 213 674 19579 

PRB 1571 165 256 1415 148 322 3877 
Corn Stover 1574 12764 3733 11408 69 82 29630 

Note: 

 * The analysis was done in National Research Center for Coal and Energy (NRCCE) at WVU.. 
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Figure 4.23 Comparison the total amount of Alkali and Alkaline Earth metal 

As shown in the Figure 4.23, the decrease of the total amount of catalytic metal 

for these 6 chars follows the sequence:   

(ND lignite ≈Corn Stover) > (Switchgrass≈ Hardwood) > Ill No.6 >PRB                           [4.25] 

It is noticeable that this sequence of the total metal amount is nearly identical to the 

decreasing reaction rate sequence for the six chars as described in equation [4.19], except 

that the reaction rate of PRB is larger than ILL No.6. Further, if the amount of 

Magnesium is compared separately with respect to the different pure chars, then as shown 

in the Figure 4.24, the Mg content decline sequence is exactly the same as the reaction 

rate decline sequence: 



 76

(Corn Stover ≈ ND lignite) ≥ Switchgrass > (Hardwood ≈ PRB) > Ill No.6                        [4.19] 

This “coincidence” implies that it may be the amount of catalytic metals of the char, and 

especially the amount of Magnesium, that influences the reaction rate most significantly.  
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Figure 4.24 Comparison the Magnesium amount in six pure char 

At a given reaction temperature, one of the general observations for a catalytic 

reaction is that the activity of a catalyst increases with the concentration of the catalyst to 

an optimum maximum, and beyond that maximum no further gain is made in the reaction 

rate (Berkowitz, 1985). From this point view, the similarity of the two reaction sequences 

([4.19] and [4.25]) and the correlation shown in Figure 4.13, 4.14 supports the first 

postulate above that the char gasification is a catalytic reaction; and one of the 

determining factors for the reaction rate is the amount of the catalytic material present in 

the reacting char mixture. 

As mentioned in the reference by Huggins (Huggins et al. , 1989), the initial state 

of the catalytic metal in the lignite char is as an organic complex. In this stage for 

example, some of the metal cations are bound in lignite by carboxyl groups so that they 

do not demonstrate initial catalytic activity. With the progress of the reaction, the 

complexes are decomposed and the minerals are transformed into the metal state, which 

does show some catalytic effect according to the “vapor cycle” mechanism (described in 

section Chapter 2.4).  
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It is noted that for those pairs exhibiting a positive synergistic effect, Groups 2, 3, 

and 4, the coal chars ILL No.6 and PRB have a slower reaction rate. But for Groups 1, 5, 

since the ND lignite coal char has a faster rate, there is no positive synergistic effect 

demonstrated at all. It seems that the slower the reaction rate of coal char, the greater is 

the positive synergistic effect. The explanation for this phenomenon is that the catalytic 

metal (special for Mg) contents in ILL No.6 or PRB coal char are far lower than the 

amount in ND lignite coal char or in three biomass chars. When ILL No.6 or PRB coal 

chars are mixed with biomass chars, the biomass char shows a faster reaction rate than 

the coal char. Once the faster char finishes the reaction, its catalytic metals still have a 

catalytic impact on the slower and currently reacting coal char. For the slower char, this 

increase of the catalytic metals causes an extra increase of the reaction rate, thus the 

“positive synergistic effect”. On the other hand, since the ND lignite char contained a 

higher amount of catalytic metal than Switchgrass or Hardwood char, it shows a faster 

reaction rate than the biomass char. When ND lignite char is mixed with biomass char, 

there is no additional catalytic metal contributed by the biomass char and hence no 

positive synergistic effect is demonstrated. This explanation can also account for the 

phenomenon that the positive synergy is manifested only after the biomass char totally 

burns out. This observation supports the second postulate above: the positive synergistic 

effect between char pairs is caused by the additional metals contained in the biomass 

char. 

The apparent activation energy, Eapp, for the mixed char pair of Group 2 (ILL 

No.6 & Switchgrass) and Group 3 (PRB & Corn Stover) also show a positive synergistic 

effect. Here, Prediction Model B is employed to predict the Eapp for the char reaction of 

the mixture, which is described as follows: 

biomassappBiomasscoalappBiomasspredictedapp ERERE ___ )1( ⋅+⋅−=                               [4.26] 

where Eapp_predicted  is the predicted value; Eapp_coal and Eapp_biomass values come from the 

regression analysis of data for the pure coal and biomass char; RBiomass is the weight 

mixture of the biomass char. A list and comparison of the Eapp_experimental and Eapp_predicted  

is shown in Table 4.14. 
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Table 4.14 Apparent activation energy comparison for Group 2 and 3 char mixtures 

Group Chars 
Model 5 Model 10  

* Eapp 
(KJ/mol) 

**Predication 
Model B(KJ/mol) 

*Eapp 
(KJ/mol) 

**Predication  
Model B (KJ/mol) 

2 

ILL No.6 194.28  194.28 194.02 194.02 
Switchgrass 171.2  171.2 171.18  171.18 
Mixed 10% 190.46 191.97 189.61 191.74 
Mixed 30% 180.48 187.36 178.73 187.17 

3 

PRB 132.63  132.63 131.99  131.99 
Corn Stover 117.74  117.74 117.99  117.99 
Mixed 10% 130.75 131.14 130.49 130.59 
Mixed 30% 123.01 128.16 122.9 127.79 

            Note:  

           * Here, the Eapp values are regressed from experiments, termed as  Eapp_experimental; 

           ** The Eapp values are predicted by Predication Model B, termed as Eapp_predicted . 

The results in Table 4.14 for either Model 5 or Model 10, show that for the Group 

2 and Group 3 char mixtures, the experimental values (Eapp_experimental) are either equal to 

or less than the predicted values (Eapp_predicted_). With the increasing amount of biomass, 

the apparent activation energies decrease further than the predication. According to the 

transition-state theory, a catalyst reduces the potential energy barrier, which is related to 

Eapp. The decrease of the apparent activation energy promotes the enhanced catalytic 

activity, which is caused by the extra catalytic effects of the metal. The investigation of 

the Eapp gives additional support to the second postulate that the positive synergistic 

effect between char pairs is caused by the additional metal contained in the biomass char. 

While the above explanation of the catalytic effects of the metal on the 

gasification rate of the char mixture does seem to elucidate the synergistic effect, it is far 

from definitive. Other physical properties (which were ignored here) such as particle size, 

porosity, surface area, etc, no doubt contribute to the observed gasification rate. A 

detailed study of these effects is left for future work.  
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Chapter 5 Conclusion 

Based on experimental data from Thermogravimetric Analysis (TGA) 

experiments, a kinetic analysis of the Boudouard reaction is studied for three different 

coal chars, three different biomass chars, and their selected mixtures. The coal chars 

include: North Dakota Lignite char (ND Lignite), Illinois No.6 char (ILL No.6), and 

Powder River Basin char (PRB). The biomass chars include: Hardwood char 

(Hardwood), Switchgrass char (Switchgrass), and Corn Stove char (Corn Stove). The 

char mixtures include: Group 1 (ND Lignite & Hardwood), Group 2 (ILL No.6 & 

Switchgrass), Group 3 (PRB & Corn Stover), Group 4 (ILL No.6 & Hardwood), and 

Group 5 (ND Lignite & Switchgrass). The main conclusions drawn from this work are 

listed below: 

1) After a series of experiment evaluations, it was determined the experimental 

conditions which exclude the external mass transfer effects were: sample weight 

of  50 mg and CO2 flow rate of 118ml/min for a W/F=0.43 ; 

2) A total of four kinetic models were selected to fit the reaction data, X vs. t; the 

models included: Model 5 (Simplified Dutta and Wen model), Model 7 (Chornet 

model), Model 10 (modified shrinking sphere model), and the Initial Rate Model. 

The simplified formulation of the char gasification rate expression can be 

described as: ( )nCO
app X

RT
P

k
dt
dX

−= 12 . For the Model 5, n equals one; and for 

Model 10 n equals 2/3; 

3) Using the integral, differential, and least squares regression methods, kinetic 

parameters were obtained based on the three different models (Model 5, Model 

10, and the Initial Rate Model) for each char. The kinetic parameters included: the 

apparent rate constant kapp, and the apparent activation energy Eapp; 

4) A comparison of the fitting quality for the three different models (Model 5, 7, 10), 

found that Model 10 was the best one for most of chars, while Model 7 was the 

worst one. Meanwhile, the use of an Initial Rate Model provided additional 

information for the initial stage of the reaction; 
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5) A comparison of the reaction rates for the pure chars revealed the following 

reaction rate sequence: 

            (Corn Stover ≈ ND lignite) ≥ Switchgrass > (Hardwood ≈ PRB) > Ill No.6.  

6) It is found that the apparent rate constant varies linearly with the mixture weight 

ratio of the biomass in the coal/biomass mixture. This is true for Group 2 and 3 

mixtures where a positive synergistic effect was observed;  

7) Using Prediction Model A, the synergistic effect between coal char and biomass 

char pairs was examined. The results show that the Group 2 char pair (ILL No.6 

& Switchgrass), Group 3 char pair (PRB & Corn Stover), and Group 4 char pair 

(ILL No.6 & Hardwood) all exhibit a positive synergistic effect. Meanwhile, the 

Group 1 char pair (ND Lignite & Hardwood) shows a negative synergistic effect; 

8) Based on ICPMS data, plots of Prediction Model A, and the apparent activation 

energy data of Prediction Model B give a reasonable explanation for the positive 

synergistic effect. It was found that the positive synergistic effect of the reaction 

rate for the char mixtures correlated well with the amount of Alkali and Alkaline 

Earth metals bound in the biomass chars, and Magnesium appeared to be 

especially significant. 
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Future Work 

1. As mentioned above, the synergistic effects are correlated with the amount of 

catalytic metal contained in the char and the positive synergistic effect between char 

pairs is caused by the additional metal contained in the biomass char. However, for 

Group 1 char pair (ND Lignite & Hardwood), a negative synergistic effect is noted. 

The metal amount difference in chars can not account for the negative synergistic 

effect. A further investigation should be done into this problem. 

2. To explain the catalytic activity of Alkali and Alkaline earth metal, it was mentioned 

in Chapter 4.5.4 that the metal status in the char may be as an organic complex. This 

explanation is not always true for most of mineral matter in the coal. For example, 

Parenti reported in his thesis that there are four major mineral types in the coal: 

aluminosilicates, oxides, carbonates, and sulfides or sulfate, all of which are inorganic 

(Parenti, 2009). For those inorganic Alkali and Alkaline earth metals, during 

gasification, they first have to lose their interaction with lattice oxygen species and 

then migrate into the carbon matrix. Consequently, the catalytic effect is delayed and 

only part of the catalyst metal is active for reaction in the initial stage (Meijer et al., 

1991).  However, there is no information about the detailed status of those catalytic 

metals in chars, neither the coal chars nor the biomass chars. To understand fully the 

catalytic effect or synergistic effect, it is necessary to investigate the metal status and 

their surroundings in the molecules as a char. 

3. The presence of external mass transfer needs to be investigated further along with the 

effects of the structural parameters of the char. The relationship between these and the 

reaction rate can then be determined.            
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Appendix 

Appendix A. Plots of apparent rate constant kapp fitted with Model 5 

Group 1. ND lignite & Hardwood chars (24 plots) 
900°C (A) ND lignite fitted with Model 5
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900°C (B) ND lignite fitted with Model 5
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1000°C (A) ND lignite fitted with Model 5
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1000°C (B) ND lignite fitted with Model 5
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1100°C (A) ND lignite fitted with Model 5
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1100°C (B) ND lignite fitted with Model 5
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900°C (A) Hardwood fitted with Model 5
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900°C (B) Hardwood fitted with Model 5
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1000°C (A) Hardwood fitted with Model 5
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1000°C (B) Hardwood fitted with Model 5
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1100°C (A) Hardwood fitted with Model 5
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1100°C (B) Hardwood fitted with Model 5
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900°C (A) ND lignite Mixed with 10% Hardwood (Model 5)
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900°C (B) ND lignite Mixed with 10% Hardwood (Model 5)

y = 0.001347115x
R2 = 0.920792911

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200 1400 1600
time (s)

-L
n(

1-
X)

Truncated Data
Linear (Truncated Data)



 90

1000°C (A) ND lignite Mixed with 10% Hardwood (Model 5)
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1000°C (B) ND lignite Mixed with 10% Hardwood (Model 5)
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1100°C (A) ND lignite Mixed with 10% Hardwood (Model 5)

y = 0.007636937x
R2 = 0.894664087

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250
time (s)

-L
n(

1-
X)

Truncated Data
Linear (Truncated Data)



 91

1100°C (B) ND lignite Mixed with 10% Hardwood (Model 5)
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900°C (A) ND lignite Mixed with 30% Hardwood (Model 5)
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900°C (B) ND lignite Mixed with 30% Hardwood (Model 5)
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1000°C (A) ND lignite Mixed with 30% Hardwood (Model 5)
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1000°C (B) ND lignite Mixed with 30% Hardwood (Model 5)
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1100°C (A) ND lignite Mixed with 30% Hardwood (Model 5)
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1100°C (B) ND lignite Mixed with 30% Hardwood (Model 5)
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Group 2. ILL No.6 & Switchgrass chars (26 plots) 

900°C (A) ILL No.6 fitted with Model 5
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900°C (B) ILL No.6 fitted with Model 5
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950°C (A) ILL No.6 fitted with Model 5
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1000°C (A) ILL No.6 fitted with Model 5
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1000°C (B) ILL No.6 fitted with Model 5
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1050°C (B) ILL No.6 fitted with Model 5
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1100°C (B) ILL No.6 fitted with Model 5
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900°C (A)) Switchgrass fitted with Model 5
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900°C (B) Switchgrass fitted with Model 5
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1000°C (A) Switchgrass fitted with Model 5
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1000°C (B) Switchgrass fitted with Model 5
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1100°C (B) Switchgrass fitted with Model 5
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900°C (A) ILLNo.6 Mixed with 10% Switchgrass (Model 5)
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1000°C (A) ILL No.6 Mixed with 10% Switchgrass (Model 5)
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1000°C (B) ILL No.6 Mixed with 10% Switchgrass (Model 5)
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1100°C (B) ILL No.6 Mixed with 10% Switchgrass (Model 5)
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900°C (A) ILL No.6 Mixed with 30% Switchgrass (Model 5)
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900°C (B) ILL No.6 Mixed with 30% Switchgrass (Model 5)
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1000°C (A) ILL No.6 Mixed with 30% Switchgrass (Model 5)
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1000°C (B) ILL No.6 Mixed with 30% Switchgrass (Model 5)
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1100°C (A) ILL No.6 Mixed with 30% Switchgrass (Model 5)
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1100°C (B) ILL No.6 Mixed with 30% Switchgrass (Model 5)
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Group 3. PRB & Corn Stover chars (24 plots) 
900°C (A) PRB fitted with Model 5
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900°C (B) PRB fitted with Model 5
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1000°C (A) PRB fitted with Model 5
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1000°C (B) PRB fitted with Model 5
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1100°C (A) PRB fitted with Model 5
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1100°C (B) PRB fitted with Model 5
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900°C (A) Corn Stover fitted with Model 5
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900°C (B) Corn Stover fitted with Model 5
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1000°C (A) Corn Stover fitted with Model 5
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1000°C (B) Corn Stover fitted with Model 5
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1100°C (A) Corn Stover fitted with Model 5
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1100°C (B) Corn Stover fitted with Model 5
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900°C (A) PRB Mixed with 10% Corn Stover (Model 5)
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1000°C (A) PRB Mixed with 10% Corn Stover (Model 5)
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1000°C (B) PRB Mixed with 10% Corn Stover (Model 5)
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1100°C (B) PRB Mixed with 10% Corn Stover (Model 5)
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900°C (A) PRB Mixed with 30% Corn Stover (Model 5)
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1000°C (A) PRB Mixed with 30% Corn Stover (Model 5)

y = 0.003649061x
R2 = 0.880101732

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600
time (s)

-L
n(

1-
X)

Truncated Data
Linear (Truncated Data)
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1100°C (A) PRB Mixed with 30% Corn Stover (Model 5)
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Note: 
Total 74 plots fitted with Model 5. 

 



 113

Appendix B. Plots of Eapp regression based on Model 5 

Group 1. ND lignite & Hardwood chars (4 plots) 
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ND lignite Mixed with 10% Hardwood,Model 5
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ND lignite Mixed with 30% Hardwood, Model 5
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Group 2. ILL No.6 & Switchgrass char (4 plots) 

ILL No.6, Model 5
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ILL No.6 Mixed with 10% Switchgrass,Model 5
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ILL No.6 Mixed with 30% Switchgrass, Model 5
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Group 3. PRB & Corn Stover chars (4 plots) 

PRB, Model 5
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PRB Mixed with 10% Corn Stover, Model 5
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Note: 
Total 12 plots are about Eapp regression based on Model 5. 
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Appendix C. Plots of apparent rate constant kapp fitted with Model 10 

Group 1. ND lignite & Hardwood chars (24 plots) 
900°C (A) ND lignite fitted with Model 10

y = 0.000465273x
R2 = 0.989117313

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000 1200
time (s)

1-
(1

-X
)^

1/
3

Truncated Data
Linear (Truncated Data)

 
900°C (B) ND lignite fitted with Model 10
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1000°C (A) ND lignite fitted with Model 10
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1000°C (B) ND lignite fitted with Model 10
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1100°C (A) ND lignite fitted with Model 10
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1100°C (B) ND lignite fitted with Model 10

y = 0.002221192x
R2 = 0.962793954

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
time (s)

1-
(1

-X
)^

1/
3

Truncated Data
Linear (Truncated Data)

 
900°C (A) Hardwood fitted with Model 10
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900°C (B) Hardwood fitted with Model 10
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1000°C (A) Hardwood fitted with Model 10

y = 0.000652678x
R2 = 0.913935464

0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500 600 700 800
time (s)

1-
(1

-X
)^

1/
3

Truncated Data
Linear (Truncated Data)

 
1000°C (B) Hardwood fitted with Model 10
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1100°C (A) Hardwood fitted with Model 10
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1100°C (B) Hardwood fitted with Model 10

y = 0.001610550x
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900°C (A) ND lignite Mixed with 10% Hardwood (Model 10)
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900°C (B) ND lignite Mixed with 10% Hardwood (Model 10)
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1000°C (A) ND lignite Mixed with 10% Hardwood (Model 10)
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1000°C (B) ND lignite Mixed with 10% Hardwood (Model 10)
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1100°C (A) ND lignite Mixed with 10% Hardwood (Model 10)
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1100°C (B) ND lignite Mixed with 10%Hardwood (Model 10)
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900°C (A) ND lignite Mixed with 30% Hardwood (Model 10)
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900°C (B) ND lignite Mixed with 30% Hardwood (Model 10)
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1000°C (A) ND lignite Mixed with 30% Hardwood (Model 10)
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1000°C (B) ND lignite Mixed with 30% Hardwood (Model 10)
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1100°C (A) ND lignite Mixed with 30% Hardwood (Model 10)
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1100°C (B) ND lignite Mixed with 30% Hardwood (Model 10)
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Group 2. ILL No.6 & Switchgrass chars (26 plots) 

900°C (A) ILL No.6 fitted with Model 10
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900°C (B) ILL No.6 fitted with Model 10
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950°C (A) ILL No.6 fitted with Model 10
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1000°C (A) ILL No.6 fitted with Model 10
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1000°C (B) ILL No.6 fitted with Model 10
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1050°C (B) ILL No.6 fitted with Model 10
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1100°C (A) ILL No.6 fitted with Model 10
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1100°C (B) ILL No.6 fitted with Model 10
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900°C (A) Switchgrass fitted with Model 10
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900°C (B) Switchgrass fitted with Model 10

y = 0.000170281x
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1000°C (A) Switchgrass fitted with Model 10
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1000°C (B) Switchgrass fitted with Model 10
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1100°C (A) Switchgrass fitted with Model 10

y = 0.001740494x
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1100°C (B) Switchgrass fitted with Model 10
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900°C (A) ILL No.6 Mixed with 10% Switchgrass (Model 10)
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900°C (B) ILL No.6 Mixed with 10% Switchgrass (Model 10)
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1000°C (A) ILL No.6 Mixted with 10% Switchgrass (Model 10)
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1000°C (B) ILL No.6 Mixed with 10% Switchgrass (Model 10)
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1100°C (A) ILL No.6 Mixed with 10% Switchgrass (Model 10)
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1100°C (B) ILL No.6 Mixed with 10% Switchgrass (Model 10)
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900°C (A) ILL No.6 Mixed with 30% Switchgrass (Model 10)
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900°C (B) ILL No.6 Mixed with 30% Switchgrass (Model 10)
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1000°C (A) ILL No.6 Mixed with 30% Switchgrass (Model 10)
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1000°C (B) ILL No.6 Mixed with 30% Switchgrass (Model 10)
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1100°C (A) ILL No.6 Mixed with 30% Switchgrass (Model 10)
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1100°C (B) ILL No.6 Mixed with 30% Switchgrass (Model 10)
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Group 3. PRB & Corn Stover chars (24 plots)  
900°C (A) PRB fitted with Model 10
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900°C (B) PRB Model 10
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1000°C (A) PRB fitted with Model 10

y = 0.000665128x
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1000°C (B) PRB fitted with Model 10
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1100°C (A) PRB fitted with Model 10
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R2 = 0.954988794

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300 350 400
time (s)

1-
(1

-X
)^

1/
3

Truncated Data
Linear (Truncated Data)

 



 140

1100°C (B) PRB fitted with Model 10
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900°C (A) Corn Stover fitted with Model 10
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900°C (B) Corn Stover fitted with Model 10
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1000°C (A) Corn Stover fitted with Model 10
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1000°C (B) Corn Stover fitted with Model 10

y = 0.001420461x
R2 = 0.967801117

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300 350 400
time (s)

1-
(1

-X
)^

1/
3

Truncated Data
Linear (Truncated Data)

 
1100°C (A) Corn Stover fitted with Model 10

y = 0.002439048x
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1100°C (B) Corn Stover fitted with Model 10
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900°C (A) PRB Mixed with 10% Corn Stover (Model 10)
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900°C (B) PRB Mixed with 10% Corn Stover (Model 10)
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1000°C (A) PRB Mixed with Corn Stover (Model 10)

y = 0.000769868x
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1000°C (B) PRB Mixed with 10% Corn Stover (Model 10)
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1100°C (A) PRB Mixed with 10% Corn Stover (Model 10)
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1100°C (B) PRB Mixed with 10% Corn Stover (Model 10)
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900°C (A) PRB Mixed with 30% Corn Stover (Model 10)
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900°C (B) PRB Mixed with 30% Corn Stover (Model 10)
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1000°C (A) PRB Mixed with 30% Corn Stover (Model 10)

y = 0.000961565x
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1000°C (B) PRB Mixed with 30% Corn Stover (Model 10)
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1100°C (A) PRB Mixed with 30% Corn Stover (Model 10)
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1100°C (B) PRB Mixed with 30% Corn Stover (Model 10)

y = 0.001581976x
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Note: 
Total 74 plots fitted with Model 10. 
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Appendix D. Plots of Eapp regression based on Model 10 

Group 1. ND lignite & Hardwood chars (4 plots)  
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ND lignite Mixed with 10% Hardwood, Model 10

y = -15002x + 10.558
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ND lignite Mixed with 30% Hardwood, Model 10
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Group 2. ILL No.6 & Switchgrass char (4 plots) 

ILL No.6, Model 10
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ILL No.6 Mixed with 10% Switchgrass, Model 10
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ILL No.6 Mixed with 30% Switchgrass, Model 10
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Group 3. PRB & Corn Stover chars (4 plots) 

PRB, Model 10
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PRB Mixed with 10% Corn Stover, Model 10
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PRB Mixed with 30% Corn Stover, Model 10
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Note: 
Total 12 plots are about Eapp  regression based on Model 10. 
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Appendix E. Plots of Eapp regression based on Initial Rate Model 

Group 1. ND lignite & Hardwood chars (4 plots) 
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ND lignite Mixed with 10% Hardwood,Initial Rate Model
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ND lignite Mixed with 30% Hardwood, Initial Rate Model
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Group 2. ILL No.6 & Switchgrass char (4 plots) 

ILL No.6, Initial Rate Model
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Switchgrass, Initial Rate Model
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ILL No.6 Mixed with 10% Switchgrass,Initial Rate Model
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ILL No.6 Mixed with 30% Switchgrass, Initial Rate Model
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Group 3. PRB & Corn Stover chars (4 plots) 

PRB, Initial Rate Model
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Corn Stover, Initial Rate Model
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PRB Mixed with 10% Corn Stover, Initial Rate Model
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PRB Mixed with 30% Corn Stover, Initial Rate Model
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Note: 
Total 12 plots are about Eapp regression based on Initial Rate Model. 
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Appendix F. Experimental value of (1-X)average with different mixture ratio at 900°C, 

1000°C, and 1100°C 

Group 1. ND lignite & Hardwood chars (3 plots) 
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1000°C ND lignite Mixed with different ratio of Hardwood
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1100°C ND lignite Mixed with different ratio of Hardwood
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Group 2. ILL No.6 & Switchgrass char (3 plots) 
 

900°C ILL No.6 Mixed with different ratio of Switchgrass 
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1000°C ILL No.6 Mixed with different ratio of Switchgrass 
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1100°C ILL No.6 Mixed with different ratio of Switchgrass 
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Group 3. PRB & Corn Stover chars (3 plots) 
 

900°C PRB Mixed with different ratio of Corn Stover Mixture
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1000°C PRB Mixed with different ratio of Corn Stover 
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1100°C PRB Mixed with different ratio of Corn Stover
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Note: 

1. Total 9 plots about experimental value of (1-X)average for 3 groups char pairs 
mixed with different ratio reacted at different temperature; 

2.  The value of (1-X)average are the average data of two repeat experiment for each 
pair at each temperature level; 

3. The color bands are the error bars, which are presented by a ± Standard Deviation 
(STDEV). 
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Appendix G. Synergistic effect inspection plots for  

Group 1 ND lignite & Hardwood chars 

10% mixed ratio at different reaction temperature (6 plots) 
 

900°C (A) ND lignite Mixed with 10% Hardwood (Synergistic effect)
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900°C (B) ND lignite Mixed with 10% Hardwood (Synergistic effect)
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1000°C (A) ND lignite Mixed with 10% Hardwood (Synergistic effect)
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1000°C (B) ND lignite Mixed with 10% Hardwood (Synergistic effect)
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1100°C (A) ND lignite Mixed with 10% Hardwood (Synergistic effect)
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1100°C (B) ND lignite Mixed with 10% Hardwood (Synergistic effect)
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30% mixed ratio at different reaction temperature (6 plots) 
900°C (A) ND lignite Mixed with 30% Hardwood (Synergistic effect)
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900°C (B) ND lignite Mixed with 30% Hardwood (Synergistic effect)
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1000°C (A) ND lignite Mixed with 30% Hardwood (Synergistic effect)
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1000°C (B) ND lignite Mixed with 30% Hardwood (Synergistic effect)
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1100°C (A) ND lignite Mixed with 30% Hardwood (Synergistic effect)
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1100°C (B) ND lignite Mixed with 30% Hardwood (Synergistic effect)
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Note: 

1. Total 12 plots for the synergistic effect inspection of Group 1 char pair; 
2. The value of (1-X) for Prediction Model A  is the average data of two repeat 

experiments that include the pure coal and pure biomass char gasification; 
3. The error bars of Prediction Model A are presented by a ± Standard Deviation 

(STDEV), which are calculated based on the pure chars experiments result.  
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Appendix H. Synergistic effect inspection plots for  

Group 2 ILL No.6 & Switchgrass chars  

10% mixed ratio at different reaction temperature (6 plots) 
 

900°C (A) ILL No.6 Mixed with 10% Switchgrass (Synergistic effect) 
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900°C (B) ILL No.6 Mixed with 10% Switchgrass (Synergistic effect) 
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1000°C (A) ILL No.6 Mixed with 10% Switchgrass (Synergistic effect) 
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1000°C (B) ILL No.6 Mixed with 10% Switchgrass (Synergistic effect) 
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1100°C (A) ILL No.6 Mixed with 10% Switchgrass (Synergistic effect) 
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1100°C (B) ILL No.6 Mixed with 10% Switchgrass (Synergistic effect) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500
time (s)

1-
X

Experiment data

Predication Model A



 174

30% mixed ratio at different reaction temperature (6 plots) 
900°C (A) ILL No.6 Mixed with 30% Switchgrass (Synergistic effect) 
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900°C (B) ILL No.6 Mixed with 30% Switchgrass (Synergistic effect)
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1000°C (A) ILL No.6 Mixed with 30% Switchgrass (Synergistic effect)
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1000°C (B) ILL No.6 Mixed with 30% Switchgrass (Synergistic effect)
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1100°C (A) ILL No.6 Mixed with 30% Switchgrass (Synergistic effect)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500
time (s)

1-
X

Experiment data

Predication Model A

 
1100°C (B) ILL No.6 Mixed with 30% Switchgrass (Synergistic effect)
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Note: 

4. Total 12 plots for the synergistic effect inspection of Group 2 char pair; 
5. The value of (1-X) for Prediction Model A  is the average data of two repeat 

experiments that include the pure coal and pure biomass char gasification; 
6. The error bars of Prediction Model A are presented by a ± Standard Deviation 

(STDEV), which are calculated based on the pure chars experiments result.  
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Appendix I. Synergistic effect inspection plots for  

Group 3 PRB & Corn Stover chars 

10% mixed ratio at different reaction temperature (6 plots) 
 

900°C (A) PRB Mixed with 10% Corn Stover (Synergistic effect)
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900°C (B) PRB Mixed with 10% Corn Stover (Synergistic effect)
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1000°C (A) PRB Mixed with 10% Corn Stover (Synergistic effect)
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1000°C (B) PRB Mixed with 10% Corn Stover (Synergistic effect)
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1100°C (A) PRB Mixed with 10% Corn Stover (Synergistic effect)
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1100°C (B) PRB Mixed with 10% Corn Stover (Synergistic effect)
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30% mixed ratio at different reaction temperature (6 plots) 
900°C (A) PRB Mixed with 30% Corn Stover (Synergistic effect)
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900°C (B) PRB Mixed with 30% Corn Stover (Synergistic effect)
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1000°C (A) PRB Mixed with 30% Corn Stover (Synergistic effect)
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1000°C (B) PRB Mixed with 30% Corn Stover (Synergistic effect)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200
time (s)

1-
X

Experiment data
Predication Model A

 



 182

1100°C (A) PRB Mixed with 30% Corn Stover (Synergistic effect)
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1100°C (B) PRB Mixed with 30% Corn Stover (Synergistic effect)
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Note: 

7. Total 12 plots for the synergistic effect inspection of Group 3 char pair; 
8. The value of (1-X) for Prediction Model A  is the average data of two repeat 

experiments that include the pure coal and pure biomass char gasification; 
9. The error bars of Prediction Model A are presented by a ± Standard Deviation 

(STDEV), which are calculated based on the pure chars experiments result.  
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Appendix J. Safety information 

1. Safety cautions for the operation of compressed gas cylinders: 

The following safety cautions are adapted from the “Safety Manual Start-up and 

Safety Procedures”, West Virginia University Department of Chemical Engineering, 

2005. 

• Always secure gas cylinders with bench clamps or chains; 

• Use the correct regulator for a particular gas, never attempt to use improvised 

adaptors; 

• Transport cylinders on a cylinder cart with a safety chain; 

• Protect cylinders from all sources of heat and direct sunlight in order to 

prevent an accidental increase in pressure; 

• Don’t remove protective cylinder caps until the cylinder is securely fastened; 

• Check cylinders and all other connections under pressure for leaks before 

using. Use a soap solution and check for bubbles; 

• Turn off both the main valve and regulator when not using the cylinder, and 

bleed off pressure in the regulator after use. 

2. Safety cautions for the operation of TherMax 500 TGA system 

The following safety cautions are obtained from the “Operation Manual”, they 

include several parts of information, such as gas, electrical connection, furnace, and 

glassware operation and maintenance.  

Gas Safety: 

• Consider hazardous the properties of all gases used over the entire 

temperature range of the experiment; 

• Be aware of the reaction products that give off over the entire temperature 

range of the experiment; 
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• All gas line connections, gaskets, O-rings, fittings and tubing must be tight 

and without leaks; 

• The area must be well-ventilated. 

Electrical Connections: 

• Be sure that power to the TG instrument is OFF before removing TG covers; 

• Be sure that the TG instrument, computer, plotter and printer are turned off 

and unplugged before establishing electrical connections. 

Furnace Temperature: 

• Do not touch the furnace or reactor tube during a run. Both can be very hot 

and produce sever burns if touched; 

• Use caution when turning the upper and lower collar which can be very hot 

and produce severe burns if touched. 

Glassware and O-rings: 

• Check glassware regularly for nicks, scratches an cracks. Damaged glassware 

can break, explode or implode during an experiment, releasing gases into the 

air; 

• Check the O-rings regularly for signs of wear and replace when necessary. 
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