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ABSTRACT

Pierce-Engel Hybrid Expansions

Andrea Sutyak

Pierce and Engel expansions are representations of numbers between 0 and 1 as sums of
unitary fractions (of alternating signs in the case of Pierce) whose denominators are built
multiplicatively, choosing the successive factors greedily. We show some results for Pierce
expansions, and investigate the idea of hybrid expansions, which are built similarly but
without regard to the signs of the terms.
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1 Pierce and Engel Expansions

1.1 Introduction

The Pierce expansion of a number 0 < x ≤ 1 is the unique way of writing

x =
1

q1
−

1

q1q2
+

1

q1q2q3
− · · · ,

where the sequence qn is a strictly increasing sequence of positive integers. Similarly, the

Engel expansion is the unique representation

x =
1

q1
+

1

q1q2
+

1

q1q2q3
+ · · · ,

where qn is an increasing sequence of positive integers.

The terms of the sequences qn for the respective expansions of a rational number a
b

can

be found using variations on the Euclidean algorithm, or division algorithm. Without loss

of generality, hereafter we will assume that a ≤ b. The well-known algorithm is as follows:

THE EUCLIDEAN ALGORITHM: Given a pair of positive integers, b, a, there exist

a unique quotient q and a unique remainder r with 0 ≤ r < a such that

b = aq + r.

Iterating the division algorithm, we get a sequence of expressions

b = aq1 + r1

a = r1q2 + r2
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r1 = r2q3 + r3

...

rn−2 = rn−1qn + 0,

where each ri satisfies 0 ≤ ri < ri−1 < a. (The greatest common divisor of (b, a) arises as

the last non-zero remainder, namely rn−1). The quotients produced by this algorithm also

generate the continued fraction expansion of a
b
.

By changing the way that we iterate this algorithm, we find a tool for devising the

quotients necessary for the Pierce expansion of a
b
, iterating for each pair (b, ri) as follows:

THE PIERCE ALGORITHM:

b = aq1 + r1

b = r1q2 + r2

b = r2q3 + r3

...

b = rn−1qn + 0,

where each ri satisfies 0 ≤ ri < ri−1 < a. [3]

The sequence qi produces the unique Pierce expansion for the quotient a
b
, given a pair of

positive integers b, a. This sequence terminates if and only if a
b

is rational. [4]

The algorithm for finding the Engel expansion of a rational number is also closely related

to the division algorithm, with the exception that the quotients are chosen so that the

remainder is negative (with magnitude less than that of a.)

THE ENGEL ALGORITHM:
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b = aq1 − r1

b = r1q2 − r2

b = r2q3 − r3

...

b = rn−1qn − 0,

where each ri satisfies 0 ≤ ri < ri−1 < a.

It should be immediately clear that for either of these algorithms, any two equivalent

fractions a
b

and ka
kb

will yield precisely the same sequence of quotients qi, and thus have the

same expansion. As a consequence, we may assume that a
b

is in lowest terms.

1.2 Notable Results

Pierce expansions, while not unexplored, still hold a certain mystery. Perhaps the most

intriguing question revolves around predicting the length of the expansion. As in the work

of Erdös and Shallit [1], we define a function P (b, a) such that for each pair b, a, P (b, a) is

equal to the number of terms in the Pierce expansion (or, equivalently, the number of steps

for the Pierce algorithm to terminate). As an example, consider b = 7, a = 4:

7 = 4(1) + 3

7 = 3(2) + 1

7 = 1(7) + 0.
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Since the algorithm terminates after three steps, we say P (7, 4) = 3. The expansion also

has three terms: 4
7

= 1
1
− 1

1·2
+ 1

1·2·7
= 1

1
− 1

2
+ 1

14
.

Below is a short table of values for P (b, a) for 1 ≤ a ≤ b ≤ 25.

b|a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 1

2 1 1

3 1 2 1

4 1 1 2 1

5 1 2 3 2 1

6 1 1 1 2 2 1

7 1 2 2 3 3 2 1

8 1 1 2 1 3 2 2 1

9 1 2 1 2 3 2 3 2 1

10 1 1 2 2 1 3 3 2 2 1

11 1 2 3 4 2 3 5 4 3 2 1

12 1 1 1 1 2 1 3 2 2 2 2 1

13 1 2 2 2 3 2 3 4 3 3 3 2 1

14 1 1 2 2 3 2 1 3 4 3 3 2 2 1

15 1 2 1 2 1 2 2 3 3 2 3 2 3 2 1

16 1 1 2 1 2 2 2 1 3 3 3 2 3 2 2 1

17 1 2 3 2 3 4 4 2 3 5 5 4 3 4 3 2 1

18 1 1 1 2 2 1 3 2 1 3 4 2 3 3 2 2 2 1

19 1 2 2 3 4 2 5 3 2 3 4 6 3 5 4 3 3 2 1

20 1 1 2 1 1 2 3 2 2 1 3 3 4 3 2 2 3 2 2 1

21 1 2 1 2 2 2 1 3 2 2 3 3 4 2 3 3 3 2 3 2 1

22 1 1 2 2 2 3 2 4 3 2 1 3 4 5 3 4 3 3 3 2 2 1

23 1 2 3 4 4 5 3 4 5 4 2 3 5 6 5 4 6 5 5 4 3 2 1

24 1 1 1 1 2 1 2 1 2 2 2 1 3 3 3 2 3 2 3 2 2 2 2 1

25 1 2 2 2 1 2 3 2 4 2 3 2 3 4 3 5 3 4 3 2 3 3 3 2 1

Some natural first questions are to wonder if it is possible to use known values of P (b, a)

to predict the value for certain other pairs, to consider the properties of the sequence P (b, a),

and so forth. The following observations are relevant in responding to such inquiries.

Theorem 1.1. For fixed b > 0, if maxcP (b, c) = n, then for each j ≤ n, ∃a such that

P (b, a) = j.

Proof. Since maxcP (b, c) = n, ∃d such that P (b, d) = n. Then applying the Pierce algorithm,

4



we have

b = dq1 + r1

b = r1q2 + r2

b = r2q3 + r3

...

b = rn−1qn + 0,

from which it is clear that

P (b, r1) = n − 1,

P (b, r2) = n − 2,

...

P (b, rn−1) = 1.

Theorem 1.2. If P (b, a) = n where a < b − a (or equivalently, a < b
2
), then P (b, b − a) =

n + 1.

Proof. Apply the Pierce algorithm to the pair (b, b − a):

b = (b − a) · ⌊
b

b − a
⌋ + a.

5



(Note that ⌊ b
b−a

⌋ = 1.) This is merely the first step. To compute P (b, b − a), the problem

falls to finding P (b, a). Thus P (b, b − a) = n + 1.

Recalling that equivalent fractions share a Pierce expansion, the two theorems below

consider some simple congruence classes.

Theorem 1.3. For b > 3,

(i) P (b, b
2
) = 1 if b is even.

(ii) P (b, ⌊ b
2
⌋) = 2 if b is odd.

(iii) P (b, ⌈ b
2
⌉) = 3 if b is odd.

Proof. (i) If b is even, the result is obvious: b = b
2
· 2 + 0, so P (b, b

2
) = 1. If b is odd, then

b = ⌊
b

2
⌋ · 2 + 1

b = 1(b) + 0.

and

b = ⌈
b

2
⌉ · 1 +

b − 1

2

b =
b − 1

2
· 2 + 1

b = 1(b) + 0.

Theorem 1.4. If b ≡ 1 (mod k) and b
k
≥ 2, then P (b, ⌊ b

k
⌋) = 2.

Proof. b ≡ 1 (mod k) implies that b = km + 1 for some non-negative integer m. Then

b = ⌊km+1
k

⌋ · k + 1, or b = 1(b) + 0 Thus P (b, ⌊ b
k
⌋) = 2.
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Theorem 1.5. If b ≡ 2 (mod k) and b
k
≥ 3, then P (b, ⌊ b

k
⌋) = 2 if b is even, 3 if b is odd.

Proof. b ≡ 2 (mod k) implies that b = km + 2 for some non-negative integer m. Then

b = ⌊
km + 2

k
⌋ · m + 2

b = 2 · ⌊
b

2
⌋ + r2.

Now if b is even, r2 = 0, so P (b, ⌊ b
k
⌋) = 2. If b is odd, r2 = 1, and so r3 = 0: thus

P (b, ⌊ b
k
⌋) = 3.

These results describe the behavior of certain diagonals in the table of Pierce values

given previously. For example, for k = 3, we could take the values b = 11, 14, 17, 20, ... (all

congruent to 2 mod 3), and a diagonal of Pierce values alternating between 2 and 3 when we

consider P (b, ⌊ b
k
⌋). The restrictions on b, k are severely limiting, as they require the diagonals

to lie within the leftmost third of the table.

For a general base b, we have the following result:

Theorem 1.6. P (bm − 1, bm−k) = 2 + P (bm − 1, bk − 1) for 0 < k < m
2
, m > 2, b > 2.

Proof.

bm − 1 = bm−k(bk − 1) + (bm−k − 1)

bm − 1 = (bm−k − 1)(bk) + (bk − 1)

And the remaining steps of the algorithm fall to computing P (bm − 1, bk − 1).

Considering the possibilities for b’s congruence modulo a, we can arrive at several tedious
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and impractical results, which we omit here. Clearly, P (b, a) can attain its maximum value

if the remainders decrease as slowly as possible, as noted in [3]. To do this, b should satisfy

the following system of congruences.

Theorem 1.7. If b ≡ k (mod a), b ≡ k − 1 (mod k), b ≡ k − 2 (mod k − 1), . . . , b ≡ 1

(mod 2), then P (b, a) = k + 1.

Proof. Since the sequence of remainders will decrease by 1 at each step, this process has

k + 1 steps, so P (b, a) = k + 1 as desired.

This may be useful in constructing values of b, using a, to achieve the maximum P (b, a).

The simplest examples are to take b = a! − 1 or b = lcm(1, 2, . . . , a) − 1. By the previous

theorem, P (b, a) = a for either choice. However, both force b to be significantly larger than

the “champion” for P (x, y) = a – that is, the smallest pair (x, y) such that P (x, y) = a. [3]

To find a champion, then, we would like to find a pair b, a with a small b that produces a

large first remainder, and thus a large possible value for P (b, a). We also want to choose b so

that it will NOT satisfy all these congruences! Rather, we want to keep the remainders large,

but not quite large enough to satisfy the congruences above. This paradoxical convolution

makes finding champions quite difficult. Numerical results have shown the champion pairs

b, a for P (b, a) = n, 1 ≤ n ≤ 49, requiring denominators as large as 1,371,719. [2] As n

marches toward infinity, it is also known that champion pairs satisfy lim bn

an
= e

e−1
. [3]

Analyzing specific systems of congruences as we did above finds a sequence of P (b, a) that

is constant, or has period 1. In fact, the lengths of the Pierce expansions for well-chosen

sequences of a
b

is always periodic:

Lemma 1.8. For any rational c
d

= 1
q1
− 1

q1·q2
+ . . .+ (−1)n+1

q1·q2···qn
= q2·q3···qn−q3·q4···qn+...+(−1)n+1

q1·q2···qn
, and

any (b, a) pair whose Pierce expansion agrees up through qn, the Pierce expansions of each

of the expressions in the sequence {a+cz
b+dz

: z ∈ Z+} all begin with the given expansion for c
d
.

8



Proof. Since a
b

agrees with c
d

through qn, we have

b = aq1 + r1

b = riqi+1 + ri+1,

where each ri < ri−1, r0 = a, for 0 ≤ i < n + k for P (b, a) = n + k. Then

a + c

b + d
=

q2 · q3 · · · qn+k−1 − q3 · q4 · · · qn+k−1 + · · · + (−1)n+k + c

q1q2 · · · qn+k + q1q2 · · · qn

a + c

b + d
=

c(qn+1qn+2 · · · qn+k−1 + 1)

d(qn+1qn+2 · · · qn+k + 1)
.

We can bound this rational by cqn+1qn+2···qn+k−1

d(qn+1qn+2···qn+k+1)
< a+c

b+d
< c(qn+1qn+2···qn+k−1+2)

d(qn+1qn+2···qn+k+1)
.

The left bound is a bit smaller than c
d
, the right a bit larger. The difference between the

two bounds is smaller than 2
q1q2···qn+k

, and thus the expansion for a+c
b+d

must agree with the

expansion for c
d

through the nth quotient qn.

Since cz
dz

= c
d

for all positive integers z, they may be written with the same expansion

– that is, they share the same quotient sequence qi – and so all Pierce expansions for pairs

(b + dz, a + cz) agree up to qn.

Further, if the first n quotients are fixed by our choice of c
d
, then this causes the nth

remainder found when calculating P (b + d, a + c) to be rn, the same remainder required by

9



the nth step of calculation for P (b, a).

Lemma 1.9. For a, b, c, d as above, with b = ri−1qi +ri, a = r0, b+d = r′i−1q
′
i +r′i, a+c = r′0,

and for i ≤ n, qi = q′i, we have rn = r′n.

Proof. Calculating P (b + d, a + c), we find

b + d = (a + c)q1 + r′1 = (aq1 + r1) + d.

Solving the rightmost equation for r′1, we have r′1 = r1 + d − cq1.

In the next step of the calculation,

b + d = r′1q2 + r′2 = (r1q2 + r2) + d.

So r′2 = r2 + d − dq2 + cq1q2. Continuing this process, we find that in general,

r′i = ri + d − dqi + dqi−1qi − dqi−2qi−1qi + . . . + (−1)icq1q2 · · · qi

r′i = ri + d(1 − qi + qi−1qi − . . . + (−1)ic).

In particular, for i = n, r′n = rn + d(1− qn + qn−1qi − . . . + (−1)nc) = rn + d(c− c) = rn.

Theorem 1.10. Let a, b, c, d be as in the lemmas above. Then {P (b + dz, a + cz), z ∈ Z+}

is periodic, of period p = lcm{1, 2, . . . rn} (or some divisor thereof).
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Proof. Consider P (b + dp, a + cp). As in the lemmas, q1, q2, · · · , qn are fixed, as is rn:

b + dp = (a + cp)q1 + r′1

b + dp = r′1(q2) + r′2

...

b + dp = r′n−1qn + rn.

The next step of the process is as follows:

b + dp = rnq′n+1 + rn+1 + dp = rn(q′n+1 + d
p

rn

) + rn+1

where rn+1 < rn.

b + dp = rn+1q
′
n+2 + rn+2 + dp = rn+1(q

′
n+2 +

dp

rn+1
) + rn+2

where rn+2 < rn+1 < rn, implying also that dp

rn+1
is an integer. The process continues

this way, so that the remainder at the ith step (for i > n) is ri. Since rn+k = 0 when

calculating P (b, a), we find that calculating P (b + dp, a + cp) requires n + k steps also. Thus

P (b+dp, a+cp) = n+k = P (b, a). Now for 0 < z < p, we may consider b+dz = b′, a+cz = a′

and apply the logic above, noting that the lemmas ensure that all quantities rn, qi for i ≤ n

are independent of our choice of z. Further, each remainder produced after the nth step

must be smaller than rn, and will divide p. Thus the sequence {P (b + dz, a + cz), z ∈ Z+}

is periodic, of period p.

The algorithms used for finding Pierce and Engel expansions are defined for positive

integers a,b only. However, if either is negative, allowing q to be a negative integer and

modifying the requirement for the remainder so that 0 ≤ r < |a|, we get algorithms which

11



accommodate negative numbers. On the other hand, if a or b is a rational (non-integer)

number, we simply allow r to be rational (non-integer) as well – naturally, its denominator

must be the same as that of a. Using this modified algorithm, we can investigate analogous

expansions. Note, however, that the sign patterns we observe in the Pierce and Engel

expansions will, of course, be altered when working with negative numbers. Consider the

brief example b = 3
4
, a = −1

5
:

3

4
= −

1

5
(−3) +

3

20

3

4
=

3

20
(5) + 0.

Thus we find the expansion a
b

= 1
−3

+ 1
−3·5

= 1
−3

− 1
−15

. Using this expanded division algorithm,

we can investigate P (b, a) for negative pairs.

Theorem 1.11. For any positive integers a, b, c, d, P (a
b
, c

d
) = P (ad, bc).

Proof.

a

b
=

c

d
q1 + r1, 0 ≤ r1 <

c

d
.

Multiplying both sides by bd, we get the equivalent statement

ad = cbq1 + bdr1.

Therefore P (a
b
, c

d
) = P (ad, bc).

Theorem 1.12. Let b, a be positive integers. P (−b,−a) = P (b, a), and P (b,−a) = P (−b, a) =

E(b, a), where E(b, a) is the function which counts the terms in the Engel expansion for a
b
.

Proof. For the first half of the statement, simply note that a
b

= −a
−b

. We must have precisely

the same sequence of quotients (and thus remainders), so multiplying both sides by −1 is

12



the only way to achieve this result.

b = aq + r

−b = (−a)q − r

Note that the negative remainder looks more like the algorithm required for the Engel ex-

pansion.

To prove the latter half of the statement, note that since −a
b

= a
−b

, we have P (b,−a) =

P (−b, a). Now suppose E(b, a) = n. Then

a

b
=

1

q1
+

1

q1q2
+

1

q1q2q3
+ . . . +

1

q1q2 · · · qn

−a

b
= (−1)(

1

q1

+
1

q1q2

+
1

q1q2q3

+ . . . +
1

q1q2 · · · qn

)

a

−b
=

1

−q1

−
1

(−q1)(−q2)
+

1

(−q1)(−q2)(−q3)
+ . . . + (−1)n−1 1

(−q1)(−q2) · · · (−qn)

which is precisely the Pierce expansion for −a
b

, hence their lengths are the same. Thus,

P (b,−a) = P (−b, a) = E(b, a). It is also relevant to note that if q1 = ⌊ b
a
⌋ (in other words,

it is the first quotient produced by algorithm 6), then −q1 = ⌈−b
a
⌉, the quotient required by

the Engel algorithm (and vice versa). Thus allowing negative quotients effectively switches

the algorithm required to find the desired sign pattern.

Hence, we can graphically represent P (b, a) on the plane as shown in Figure 1. Here, we

have used gray scale to indicate the functional value for a pair b, a, with the vertical axis

representative of a values.

Our graphical representation has several notable features. In each quadrant, an empty

region corresponds to improper fractions a
b
. (If this flat region does not appeal to you, it can

be made more interesting by allowing the first term ⌈a
b
⌉ for the expansion of an improper

13



Figure 1: P (b, a) for −1000 ≤ b ≤ 1000, −b ≤ a ≤ b

fraction.) Prominent diagonal stripes are caused by reducing rational numbers. The lighter

vertical stripes correspond to choosing prime b. Naturally, prime b > 2 means b ± 1 is even,

so many of the a
b±1

reduce, giving a shorter expansion and thus a darker vertical line.

14



2 Hybrid Expansions

2.1 Introduction

Given the connection between the Pierce and Engel expansions, it becomes natural to wonder

what other sign patterns we could use for expansions, and whether we have similar results

for these new expansions. Since Pierce expansions have terms with alternating signs, we

next consider expansions in which the signs cycle two at a time. For example, suppose we

would like an expansion for 7
9

with sign pattern cycling ++ - - ++ - -... The first term of

the expansion needs to be less than 7
9
, but adding the second term must produce a number

larger than 7
9

to force the third term to be negative. Thus we want to choose q1 a bit too

large – in contrast to the division algorithm, this produces a negative remainder. (However,

the remainder should still be smaller than a in magnitude.) The second term is then found

as usual.

9 = 7(2) − 5

9 = 5(1) + 4

9 = 4(3) − 3

9 = 3(3) + 0

Then 7
9

= 1
2

+ 1
2·1

− 1
2·1·3

− 1
2·1·3·3

.

A modified expansion for π with this sign pattern may be found as sequence A015884 in

the Online Encyclopedia of Integer Sequences [6]. Modifications necessary include allowing

remainders in our algorithm to be non-integer, as well as taking the first term of the expansion

as the integer part of the number being represented.
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Figure 2: P (b, a) for 0 < a ≤ b, 0 < b ≤ 100

Observe that these expansions produce a sequence {qn} which is not necessarily increas-

ing. Decreases (of one) may occur in the sequence of resultant quotients only when the

process takes a negative remainder ri followed by a positive remainder ri+1.

As long as we keep to positive remainders, the process is akin to finding a Pierce expan-

sion, which means that subsequent quotients will be strictly increasing. In order to choose a

negative remainder at some point, the quotient will necessarily increase by at least two, as

it must increase by at least one for the Pierce algorithm equivalent, with positive remainder,

and the quotient required for a negative remainder will be one greater than that. Hence,

after any decrease, the quotient sequence must “right itself” by increasing by at least two

before any additional decreases may occur.

Not surprisingly, the length of an expansion of this type for a given pair b, a cannot

be generalized using the length of the Pierce expansion. However, below are first-quadrant

graphs relating (again via gray scale) a pair (b, a) to the length of its expansions: Figure 2

shows Pierce lengths, Figure 3 expansions which cycle ++ - - ++ - -..., and Figure 4 shows

expansions which cycle + - - ++ - - +.... The results are surprisingly similar, due largely to

divisibility.
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Figure 3: Expansions with pattern ++ - - for 0 < a ≤ b, 0 < b ≤ 100

Figure 4: Expansions with pattern + - - + for 0 < a ≤ b, 0 < b ≤ 100

17



Define a Hybrid Expansion for rational number a
b

as

a

b
=

1

q1
±

1

q1q2
± . . . ±

1

q1q2 . . . qn

,

where qi values are chosen at each step by either undershooting or overshooting the amount

left to approximate a
b
. (Or taking the algorithmic approach, by allowing remainders to be

either positive or negative, but requiring that their magnitude be less than b. In this case,

if the remainder is positive, the next term in the expansion should have sign opposite to

the previous term. If negative, the sign should stay the same.) For example, we previously

noted that 7
9

= 1
2

+ 1
2·1

− 1
2·1·3

− 1
2·1·3·3

is one expansion. Further, since

9 = 7(2) − 5

9 = 5(2) − 1

9 = 1(9) − 0,

we find 7
9

= 1
2
+ 1

2·2
+ 1

2·2·9
is also a hybrid expansion. In all, 7

9
has 5 expansions, shown below:
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9 = 4 · 2 + 1 → 9 = 9 · 1 (7
9

= 1 − 1
4

+ 1
36

)

ր

9 = 1 · 7 + 2

ց

9 = 5 · 2 − 1 → 9 = 9 · 1 (7
9

= 1 − 1
5
− 1

45
)

9 = 2 · 4 + 1 → 9 = 9 · 1 (7
9

= 1
2

+ 1
2
− 1

4
+ 1

36
)

ր

9 = 1 · 5 + 4

ր ց

9 = 2 · 7 − 5 9 = 3 · 4 − 3 → 9 = 3 · 3 (7
9

= 1
2

+ 1
2
− 1

6
− 1

18
)

ց

9 = 2 · 5 − 1 → 9 = 9 · 1 (7
9

= 1
2

+ 1
4

+ 1
36

)

Table 1: The 5 Hybrid Expansions of
7

9

Allow H(b, a) to represent the number of hybrid expansions for a given pair b, a of non-zero

integers. Note that negative values are irrelevant here: expansions for (b, a) and (−b,−a)

are clearly the same (as before), and any expansion for (b, a) can be transformed to an

expansion for (−b, a) or (b,−a) simply by multiplying the expansion by −1. (Thus there is

a 1-1 correspondence among these expansions.) A key observation to counting these hybrid

expansions is to note that, if b = aq + r, then we could calculate H(b, a) by the simple

recurrence relation H(b, a) = H(b, r) + H(b, a − r).
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How many different expansions are possible for a given pair of integers b, a? There will

always be a finite number: since the remainders produced by the iterations form a strictly

decreasing sequence of remainders, the iterations will always terminate in a finite number

of steps. It is noteworthy, however, that if we remove the requirement that r < |a|, any

pair b, a has infinitely many expansions. To see this fact, suppose 1
n

is the first term of any

expansion of a
b
. If we drop the restrictions that the remainders must decrease, then we can

form infinitely many expansions simply by replacing 1
n

with 1
2n

+ 1
2n

or 1
3n

+ 1
3n

+ 1
3n

, etc.

Clearly then, this restriction on the remainders is necessary to keep our problem interesting!

However, as a consequence of this restriction, some very natural-looking expansions are not

considered hybrids. For instance, 2
9

= 1
3
− 1

6
+ 1

18
appears at first glance to be a hybrid

expansion, since each denominator is a multiple of the last. However, if we write out the

corresponding division algorithm statements to generate the indicated quotients, we have

9 = 2(3) + 3

9 = 3(2) + 3

9 = 3(3) + 0.

The first two steps of the iteration violate our division algorithms by allowing remainders

that are too large, and so this is not a proper expansion.

Figure 5 shows a graph representing the values of H(b, a) for 0 < a ≤ b, 0 < b ≤

100: again, we use the convention that lighter pixels represent higher values, meaning more

expansions. Limited values for H(b, a) are listed in Appendix B, as well as in sequences

A135511, A135513, and A135514 in the Online Encyclopedia of Integer Sequences. [6]

20



Figure 5: H(b, a) for 0 < a ≤ b, 0 < b ≤ 500

2.2 Notable Results

It is simple to place an upper bound on the number of proper hybrid expansions possible:

Theorem 2.1. H(b, a) ≤ a

Proof. If a = 1, this is trivial. So assume that H(b, a) ≤ a for all a < n. Consider H(b, n),

which we may assume is in lowest terms. There are two choices for the first term of the

expansion:

n

b
=

1

⌈ b
n
⌉

+ S1

or

n

b
=

1

⌊ b
n
⌋
− S2,

where S1 is an expansion of
n⌈ b

n
⌉−b

b⌈ b
n
⌉

and S2 is an expansion of
n⌊ b

n
⌋−b

b⌊ b
n
⌋

. However, these expan-

sions must have a common term of 1
⌈ b

n
⌉

and 1
⌊ b

n
⌋
, respectively. Factoring these out, we desire

expansions for
n⌈ b

n
⌉−b

b
and

n⌊ b
n
⌋−b

b
. Because the latter is negative, we instead consider

b−n⌊ b
n
⌋

b
,

which has precisely the same number of expansions, as previously noted.
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(n⌈
b

n
⌉ − b) + (b − n⌊

b

n
⌋) = n

Since n does not divide b, both of these terms are nontrivial, so each is strictly less than n.

Applying the induction hypothesis to each, S1 has at most n⌈ b
n
⌉ − b expansions, S2 at most

b − n⌊ b
n
⌋, and thus H(b, n) ≤ (n⌈ b

n
⌉ − b) + (b − n⌊ b

n
⌋) = n.

Special choices for a, b also lend predictability to our function H :

Theorem 2.2. For p prime with 1 ≤ n < p, H(p, n) = n.

Proof. Certainly it is true for n = 1. As an induction hypothesis, suppose that it is true for

1 ≤ k < n.

Suppose p ≡ i (mod n). Then n
p

= 1
⌈ p

n
⌉

+ S1 or n
p

= 1
⌊ p

n
⌋
− S2 with S1 representing the

expansion for

n⌈ p

n
⌉ − p

⌈ p

n
⌉p

=
n( p

n
+ n−i

n
) − p

⌈ p

n
⌉p

=
n − i

⌈ p

n
⌉p

.

Factoring out the common term 1
⌈ p

n
⌉

which must occur in each term, we find the number of

possible expansions is exactly the number of expansions of n−i
p

, which has n − i expansions

by induction.

Similarly, S2 represents the expansions for

n⌊ p

n
⌋ − p

⌊ p

n
⌋p

=
n( p

n
− i

n
) − p

⌊ p

n
⌋p

=
−i

⌊ p

n
⌋p

.

Factoring out the common term 1
⌊ p

n
⌋

which must occur in each term, we find the number

of possible expansions is exactly the number of expansions of i
p
, which has i expansions by

induction. Thus H(p, n) = (n − i) + i = n expansions.

Theorem 2.3. H(2n, 2n − 1) = n.
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Proof. The Engel expansion has n terms:

1

2
+

1

2 · 2
+

1

2 · 2 · 2
+ . . . +

1

2n
.

When this expansion is generated (algorithmically), each quotient is 2:

2n = (2n − 1)(2) − (2n − 2)

2n = (2n − 2)(2) − (2n − 4)

and so forth. If we choose to change the sign of the m+1st term of the expansion, it requires

the mth step of the algorithm to use a smaller quotient, namely 1, and have a nonnegative

remainder. However, this will always end the expansion immediately, since we already have

1

2
+

1

22
+

1

23
+ . . . +

1

2m
+

1

2m

which is equivalent to

1

2
+

1

22
+

1

23
+ . . . +

1

2m−1
+

2

2m

1

2
+

1

22
+

1

23
+ . . . +

1

2m−1
+

1

2m−1

1

2
+

1

22
+

1

23
+ . . . +

2

2m−1

...

2m − 1

2m
.

Therefore, we have only as many additional expansions as signs that we may change. Since

we cannot change the first term’s sign, there are n possible: the Engel expansion plus the

n − 1 expansions made possible by changing signs. Thus H(2n, 2n − 1) = n.

Theorem 2.4. For a prime p with a 6= p, H(2p, a) = ⌈a
2
⌉.
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Proof. If a is even, then the fraction a
2p

will reduce to
a
2

p
. Since the two fractions are equal,

they have the same number of expansions: by Theorem 2.2, we see that they must have a
2

expansions.

If, on the other hand, a is odd, then we can proceed by induction: It is certainly true for

a = 1, as 1
2p

has only 1 expansion, itself. Assume the result holds for a with 1 < a < 2n + 1.

Then

2n + 1

2p
=

1

⌈ 2p

2n+1
⌉

+ S1

or

2n + 1

2p
=

1

⌊ 2p

2n+1
⌋
− S2.

For all expansions arising from the first possibility, factoring out the common term 1

⌈ 2p

2n+1
⌉

which must occur in each term, we find the number of possible expansions is exactly the

number of expansions of
(2n + 1)⌈ 2p

2n+1
⌉ − 2p

(2p)
.

If we write 2p = m(2n + 1) + i with 0 < i < a = 2n + 1, then

(2n + 1)(m + 1) − 2p

2p

=
2p − i + (2n + 1) − 2p

2p

=
2n + 1 − i

2p
.

Now apply the induction hypothesis: there are ⌈2n+1−i
2

⌉ expansions resulting from S1.

Similarly, expansions arising from the second possibility have the common term 1

⌊ 2p

2n+1
⌋
.

Factoring it out, we find the number of possible expansions is exactly the number of expan-
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sions of
(2n + 1)⌊ 2p

2n+1
⌋ − 2p

(2p)
.

Again writing 2p = m(2n + 1) + i, then

(2n + 1)(m) − 2p

2p

=
−i

2p
.

Since negative values are irrelevant, this has the same number of expansions as i
2
. Now since

i < 2p, apply the induction hypothesis: there are ⌈ i
2
⌉ expansions resulting from S2, and thus

H(2p, 2n + 1) = ⌈
2n + 1 − i

2
⌉ + ⌈

i

2
⌉

= n + ⌈
1 − i

2
⌉ + ⌈

i

2
⌉

= n + 1 = ⌈
a

2
⌉.

Just as we found a periodicity result for Pierce expansions, it is no surprise that period-

icity is also found for hybrid expansions. In fact, more can be said for hybrids: the period

consists of 2 palindromic subsequences of predictable lengths.

Lemma 2.5. For fixed integer a, let L = lcm{1, 2, . . . , a}. The sequence {H(b, a)}∞b=a is

periodic, of period L.

Proof. Note that if b = aq ± r, then b + L = a(q + n) ± r, for n = L
a
. Also, since for any

0 < r < a, r divides L also, this argument applies to each stage of the algorithm. Further,
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if r = 0, then a divides b, and trivially, a divides b + L. Hence, H(b, a) = H(b + L, a) =

H(b + zL, a) for any integer z: the sequence is periodic of period L.

Theorem 2.6. (Short palindrome) For fixed integer a > 2, L = lcm{1, 2, . . . , a}, the se-

quence {H(b, a)}L+a
b=L−a is palindromic.

Proof. First, we note that H(L, a) = 1, since a divides L trivially. For any 0 < r < a,

performing the algorithm to find the hybrid expansions, we have

L + r = aq + r and L + r = a(q + 1) − (a − r).

On the other hand, L − r = a(q − 1) + (a − r) and L − r = aq − r.

Observe that the remainders found for L + r, L − r are the same (though reversed).

Continuing the algorithm, note that both r, a − r < a and so both divide L. The branches

that had remainder r terminate in the next step, while the branches with remainder a − r

continue:

L + r = (a − r)q2 + r2, L + r = (a − r)(q2 + 1) − (a − r − r2)

L − r = (a − r)(q2 − 1) + (a − r − r2), L − r = (a − r)(q2) − r2.

In general, suppose an arbitrary remainder i < a is encountered (along with its appro-

priate complementary remainder in the other branch of the algorithm) . If i divides r, then

it divides L ± r and the algorithm terminates for one branch of both L + r, L − r, leaving

the branches with the complementary remainders, which we consider as our new i.

Suppose then that i does not divide r. Then b = L + r gives some
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L + r = iq + j, L + r = i(q + 1) − (i − j),

and since i divides L, it must be that r ≡ j mod i. Hence, for b = L − r,

L − r = iq + j − 2r = iQ + j − 2j = iQ − j for some integer Q, and

L − r = i(Q − 1) + (i − j), accordingly.

Since the remainders will be exactly the same at each stage, the expansions will end

after precisely the same number of steps. Therefore, H(L − r, a) = H(L + r, a) for any

0 < r < a.

Theorem 2.7. (Long palindrome) For fixed integer a > 2, L = lcm{1, 2, . . . , a}, the sequence

{H(b, a)}L−a
b=a is palindromic.

Proof. If the proposed sequence is palindromic, its center is at b = L
2
. We proceed as in the

last proof, considering H(L
2
± i, a) for 0 < i < L

2
− a. Note that if a 6= 2n for some integer

n > 1, then L
2

is divisible by a. (If not, then a contains the highest power of 2 in L, say

2m, and so a = 2mq for some q > 2. But q > 2 means that 2m+1 < a, so 2m+1 divides L, a

contradiction.) Suppose then that L
2

is divisible by a, and take 0 < i < L
2
− a. Then

L
2

+ i = a L
2a

+ i and L
2

+ i = a( L
2a

+ 1) − a + i = a( L
2a

+ 1) − (a − i)

L
2
− i = a( L

2a
) − i and also L

2
− i = a( L

2a
− 1) + (a − i).

The remainder terms above are not guaranteed to be smaller than a as required algorith-

mically. However, this presents no problem: if the matching remainders are too large, the

corresponding quotients will be increased/decreased by the same amounts, and the remain-

ders, now reduced modulo a, will still be precisely the same. Subsequently, we encounter
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the same remainders for L
2
± i. As above, this continues as long as the remainders we find

divide L
2
, which is true unless the remainder is the largest power of 2 which divides L.

What happens when a (or a remainder) is this largest power of 2?

If i = a
2
, then L

2
is divisible by i, so L

2
± i = aQ + 0 for appropriate Q.

If i < a
2
:

L
2

+ i = a⌊ L
2a
⌋ + (a

2
+ i)

L
2

+ i = a⌈ L
2a
⌉ + i − a

2
= a⌈ L

2a
⌉ − (a

2
− i)

L
2
− i = a⌊ L

2a
⌋ − i + a

2
= a⌊ L

2a
⌋ + (a

2
− i)

L
2
− i = a⌈ L

2a
⌉ − a

2
− i = a⌈ L

2a
⌉ − (a

2
+ i).

If i > a
2
:

L
2

+ i = a(⌊ L
2a
⌋ + 1) + (i − a

2
)

L
2

+ i = a(⌈ L
2a
⌉ + 1) + i − 3a

2
= a(⌈ L

2a
⌉ + 1) − (3a

2
− i)

L
2
− i = a⌊ L

2a
⌋ − i + a

2
= a(⌊ L

2a
⌋ − 1) + (3a

2
− i)

L
2
− i = a⌈ L

2a
⌉ − a

2
− i = a⌊ L

2a
⌋ − (i − a

2
).

We find that the remainders continue to match. Hence, as before, the algorithms will

end after precisely the same number of steps, so H(L
2

+ i, a) = H(L
2
− i, a).
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It is trivial to find a b, a pair with a small number of expansions by choosing a small

(in particular, a = 1 is an obvious choice). The theorems above outline some special cases

where the number of expansions for a b, a pair will be predictable. However, as yet, we have

left untouched the question of which b, a pairs will have the most expansions. Clearly, they

must be larger than 1
2
, as any smaller b, a pair has fewer expansions than b, b − a by using

a simple remainder argument. What other conclusions can be drawn about the most likely

pairs to have the greatest number of hybrid expansions?

Theorem 2.8. For a fixed b, any choice of a that results in the largest number of hybrid

expansions is of the form a = b − (2n − 1), where 0 < n < b
4
. That is, champion pairs have

numerators with parity opposite that of the denominator.

Proof. For a = b − m with m < b
2
, we have b = (b − m)(2) − (b − 2m) as one of the valid

steps of the hybrid algorithm, as 0 < b − 2m < b − m. Thus we can encounter any suitably

large integer with the same parity as b among the remainders of iterations for other pairs,

preventing these same-parity numbers from being champions. Hence, any numerator that

results in the largest number of hybrid expansions for some denominator has the opposite

parity.

Numerical evidence suggests that b−1 and b−3 are common numerators for champions,

while denominators that are round numbers (in the sense of having many small divisors) are

likely to have a large number of numerators which all share the status of champion.
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2.3 Infinite Expansions

We next turn our attention to extending our understanding of hybrid expansions to include

not just rational numbers, but irrationals as well. Clearly, the algorithm outlined for rational

a
b

can be applied to irrational numbers as well by requiring only the quotients chosen to

be integers. The process would be non-terminating since each expansion is, by necessity,

nonterminating for irrationals. Consequently, we will have an infinite number of hybrid

expansions for any irrational number. If we specify an irrational number as well as an

infinite pattern of signs we would like to satisfy, an appropriate infinite expansion exists: for

each term, we simply choose to (as nearly as possible) overshoot or undershoot the quotient

necessary to accommodate the desired sign.

Expansions for irrationals, being by nature infinitely long and infinitely many, leave us no

interesting questions pertaining to “how many”. However, if we instead reverse the question,

and choose an infinite family of quotients, we could ask which numbers are representable

using the chosen family of quotients. Obviously, if the sequence of quotients chosen were

periodic, choosing a periodic sign pattern as well would result in a series with a rational

sum. However, any rational should have finitely many hybrid expansions, and so we term

such an occurrence an improper expansion.

Consider, on the other hand, expansions whose quotients are built from the sequence

{3, 6, 12, 24, ...}, but whose sign pattern for each term (from the second on - we require the

first term to be positive since we assume for the time being that we are writing expansions

of nonnegative numbers) could be any possible combination of positive and negative ones.

The smallest number resulting from such an expansion would be 1
3
− 1

3·6
− 1

3·6·12
... = m, and

the largest is the Engel expansion, E = 1
3

+ 1
3·6

+ 1
3·6·12

....
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Which numbers inside the interval (m, E) are representable via such expansions? Trun-

cating the expansion after some number n of terms, we could use these partial sums with

n terms, Pi (1 ≤ i ≤ 2n), to approximate the results. If we call the sum of the terms lost

in truncation Sn, we could feasibly add or subtract this difference to obtain numbers within

±Sn of each Pi. This defines small intervals of numbers that are still possible to reach at

each step. As we consider larger and larger n, these bands will winnow down, defining ever

smaller intervals.

Truncating infinite expansions after some finite number of steps produces intervals of

feasibility - the result of the infinite expansion must lie within this region. Moreover, any

expansion, finite or not, that matches the truncated expansion up to this point will lie in

the feasibility region. This makes it simple to find the family of rational numbers whose

expansions begin with this sequence.

Suppose instead that we select a sequence from which to build denominators and allow

either positive, negative or zero terms, so that we may effectively skip any term of the

resulting series if we choose. (However, a zero numerator still means that the denominator

contributes a factor to the ever-increasing denominators of the expansion.) The smallest

possible number obtainable (again requiring any first term to be nonnegative) is 0, and the

maximum is the Engel expansion. However, making this small change can result in a set of

positive measure for certain sequences.

Theorem 2.9. For the sequence {qi} where each qi ∈ {2, 3}, the set of numbers attainable by

an infinite sum
∑

i=1...∞
aiQ

j=1..i qj
, where each ai ∈ {−1, 0, 1}, a1 ≥ 0, has positive measure.

In particular, the set is the interval [0, 1] if the sequence has qi = 2 ∀i; otherwise, it is the

interval [0, E], where E =
∑

i=1..∞
1Q

j=1...i qj
, the largest (Engel) expansion.

Proof. We will first consider the result for the sequences S = {2, 2, 2, ...} and T = {3, 3, 3, ...}.
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Note that
∑

1
2i = 1, and

∑
1
3i = 1/2.

For S, we only need to observe that every number in [0, 1] can be written in binary,

which translates directly to the representations described above: a 0 in the jth position in

the binary representation indicates aj = 0, a 1 in the jth position indicates aj = 1. (Hence,

we do not even need expansions with negative terms in this case.)

For T , consider the ternary representation of all numbers in [0, 1
2
]. Clearly, any represen-

tation consisting solely of 0’s and 1’s can be represented. Suppose a number has a ternary

representation {tj} with a 2 first occurring in the jth position. Then

t1
3

+
t2
32

+ · · · +
2

3j
+

∑ ti
3i

=
t1
3

+
t2
32

+ · · ·+
tj−1 + 1

3j−1
−

1

3j
+

∑ ti
3i

.

Therefore, if a number has tj as its first 2, increase aj−1 by 1 (mod 3) and set aj = −1. If the

increase creates a new 2 in position j − 1, simply repeat the procedure, as this position is now

home to the new leading 2. Note that it is not possible that this procedure is nonterminating,

as that would indicate that all the first j positions are already 1 in ternary, which means the

current number is larger than .1111 . . . 2, and so greater than 1
2
, thus outside our domain.

Therefore, any number between 0 and the Engel expansion is representable for a sequence

of strictly 2’s or strictly 3’s. In a mixed sequence, we must have either infinitely many

2’s or infinitely many 3’s (or both). Suppose we have infinitely many 3’s. Then [0, E] is

representable, as above. Consider the insertion of a 2 into the jth position of the sequence.

Without loss of generality, suppose a 2 is inserted into the first position. The first term in

any resultant expansion is either 0 or 1
2
, and the rest of the sequence is composed by either

adding or subtracting 1
2
· T ′, for T ′ some expansion using the sequence of 3’s. As noted

previously, these expansions cover all of [0, 1
2
· 1

2
]. Adding these sequences when choosing

0 as the first term gives [0, 1
4
], subtracting when choosing 1

2
as first term gives [1

4
, 1

2
], and
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adding when choosing 1
2

as first term gives [1
2
, 3

4
]: together, these cover [0, E] for E the Engel

expansion for {2, 3, 3, 3, . . .}.

By repeating this argument for each 2 to be inserted into a sequence with infinitely many

3’s, the desired result is achieved. A similar argument holds if we consider inserting a 3 into

a sequence with infinitely many 2’s.

Recall that the Cantor set is a fractal built on the interval [0, 1] by removing the middle

third of the interval, and iterating the process to infinity by removing the middle third of

each remaining interval. This construction forms an infinite set of points which is totally

disconnected. Furthermore, this set has measure zero, since the sum of all the intervals

removed is 1. The set has some well known variations: a fat Cantor set is built by removing

middle subintervals of some fixed ratio less than one third. It has positive measure, since

the sum of the lengths of the intervals removed is necessarily less than 1. Similarly, thin

Cantor sets can be built by removing middle subintervals of length at least one third. Both

fat and thin Cantor sets are homeomorphic to the Cantor set, since they share the same

structure, despite the fact that measure is not preserved. Of course, they are not the only

sets homeomorphic to the Cantor set: any nonempty, perfect, compact metric space which

is totally disconnected is homeomorphic to the Cantor set. [7] We say that a set S is a

Cantor set if it is homeomorphic to the Cantor set.

Theorem 2.10. For a sequence qi with qi > 1 ∀i, and infinitely many qn ≥ 3, the set

S = {
∑

i=1..∞
aiQ

j=1..i qi
}, where ai ∈ {−1, 1} is a Cantor set.

Proof. Without loss of generality, suppose the first q1 ≥ 3.
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The Cantor set may be constructed from the interval [0, 1] by removing the middle third

of the interval and repeating the process on the smaller intervals created. At the ith step,

2i+1 endpoints of 2i intervals are created, each with length 1
3i . Order these endpoints as

Ci,j, where i indicates the current step number and j indicates that Ci,j is the jth smallest

endpoint.

Let xi,j =
∑

n=1...i
anQ

m=1..i qm
±

∑
n=i+1...∞

1Q
m=1..n qm

, ordered so that for fixed i, xi,j is the

jth smallest such number. For example, xi,1 = −E for all i, where E is the Engel expansion

built from the sequence given. If we consider the specific sequence {3, 3, ..}, we can choose

to begin an expansion with ±1
3
, and the remaining terms can cover an additional distance

of 1
2
− 1

3
= 1

6
, we have four x1,j values:

x1,1 = −1
3
− 1

6
= −1

2
= −E,

x1,2 = −1
3

+
∑

i=2..∞
aiQ

n=1..i qn
= −1

3
+ 1

6
= −1

6
,

x1,3 = 1
3
−

∑
i=2..∞

aiQ
n=1..i qn

= 1
3
− 1

6
= 1

6
, and

x1,4 = 1
3

+ 1
6

= 1
2

= E.

It is clear that for any i, we have exactly 2i+1 xi,j : this was shown for i = 1 above, and

proceeding by induction, each xi,j , we can form xi+1,2j and xi+1,2j+1 by choosing ai+1 to be

-1 and 1 respectively, and changing the limits on the sums and products appropriately. Since

there were 2i+1 xi,j , we form 2 · 2i+1 xi+1,j , or 2i+2 xi+1,j . Therefore the Ci,j, xi,j are in a one

to one correspondence.

Furthermore, from the construction of the xi,j (as a partial sum on i terms plus or minus

the remaining distance that may be covered with the remaining terms), it is clear that any
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number representable as a hybrid expansion with denominators built from S must lie inside

[xi,2j−1, xi,2j ] for all i, for some 1 ≤ j ≤ 2i+1.

Define a continuous function f from [−E, E] to [0, 1], where E is the maximum Engel

expansion for the sequence S, so that f(xi,j) = Ci,j. Defining such a continuous map is

clearly possible since the order of the points is preserved. Furthermore, we shall define f to

be a bijection, noting that our supposition that there is a qn ≥ 3 for n > i guarantees that

xi,j 6= xi,j+1.

For any x not representable by an expansion built from S, x must fail to be between

xi,2j−1, xi,2j for some i. Then under f , its image will fail to fall between some Ci,2j−1, Ci,2j,

and thus is one of the intervals eliminated during the construction of the Cantor set. On

the other hand, a representable x can never fall inside (xi,2j−1, xi,2j), as this indicates an

insurmountable difference from a limit point of the sequence after the ith term. Under the

function f , such an x maps to a number lying between some Ci,2j−1, Ci,2j, and so has been

eliminated from membership in the Cantor set.

Thus the Cantor set and the set of numbers representable as a hybrid expansion built

from S as prescribed are homeomorphic.

For sequences which introduce even a single term larger than 3, the resultant set of

representable numbers is not a single interval: in fact, it may not even contain an interval

of nonzero length.

Consider a variation S on the Cantor set: beginning with some closed interval, split the

interval into 5 equal pieces and remove the 2nd and 4th pieces. Iterate this process on the
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3 remaining pieces. At each stage, we remove 2
5

of each interval. As this process continues

to infinity, we can calculate the amount removed with a simple series.

2

5

∞∑

k=0

(
3

5
)k = 1

As such, the remaining set has measure zero. However, the set S is not empty, as the

endpoints of each interval are never removed.

We can also conclude that S, like the Cantor set, is uncountable, either by using a

diagonalization argument or by noting that our set contains a thin Cantor set (ie, removing

the middle 3
5
), which is of course uncountable. Our set S is closed, as its complement is a

union of open intervals, and thus it is a complete metric space. S is also bounded, and so is

compact.

Set S also has no isolated points: let s be an element of our set. For any neighborhood

N about s, s is contained in an interval I of length 1
5k for some k such that I is contained in

N . As the endpoints of I are never removed from our set, we have found additional points

of S within our arbitrary neighborhood, and so S is perfect.

Finally, S is totally disconnected. For any 2 distinct points x, y of the set, {x, y} is

disconnected: a removal must take place between the two at some level of the iteration.

(Though this could occur earlier, it has certainly happened by the nth round of iteration,

where n is such that 1
5n < |x − y|.) After this removal, the points x and y are contained in

complementary closed intervals, and so {x, y} is disconnected.

However, any nonempty, perfect, compact metric space which is totally disconnected

must be homeomorphic to the Cantor set, and so S is homeomorphic to the Cantor set. [7]

Theorem 2.11. For a sequence qi with qi > 1, ai ∈ {−1, 0, 1} for all i, and infinitely many
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qn > 3, the set T = {
∑

i=1..∞
aiQ

j=1..i qi
} is a Cantor set.

Proof. Without loss of generality, suppose q1 > 3.

Let xi,j =
∑

n=1...i
anQ

m=1..i qm
±

∑
n=i+1...∞

1Q
m=1..n qm

, ordered so that for fixed i, xi,j is the

jth smallest such number.

Let si,j be, similarly, the jth smallest endpoint of some interval remaining after the ith

round of deletions in constructing set S as above.

It is clear that for any i, we have exactly 2 · 3i xi,j. Therefore the si,j, xi,j are in a one to

one correspondence.

Define a continuous function f from [−E, E] to [−1, 1], where E is the maximum Engel

expansion for the sequence T , so that f(xi,j) = si,j. Defining such a continuous map is

clearly possible since the order of the points is preserved. Furthermore, we shall define f to

be a bijection, noting that our supposition that there are qn > 3 for n > i guarantees that

xi,j 6= xi,j+1.

Note that for any x not representable by an expansion built from T , x must be between

xi,j , xi,j+1 for some i, and for j ∈ {2, 4} mod 5 . Then under f , its image will fall between

si,j, si,j+1, and thus is one of the intervals eliminated during the construction of our Cantor-

like set S. On the other hand, a representable x can never fall inside (xi,j, xi,j+1) for j ∈ {2, 4}

mod 5, as this indicates an insurmountable difference from a limit point of the sequence after

the ith term. Under the function f , such an x maps to a number lying between si,j, si,j+1,

and so has been eliminated from membership in the Cantor set.

Restricting our function f to the set of numbers representable as an expansion from T ,
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we find this set is homeomorphic to the Cantor-like set S, and thus, to the Cantor set.

There are many questions remaining about these hybrid expansions, both finite and

infinite. In the future, we hope to narrow the possibilities for champion pairs of b, a with

respect to hybrid expansions, and to give better insight to those expansions which have a

decreasing quotient.
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3 Appendix A: Maple Code

The following code was written in Maple 7. First, we define a procedure which will determine

the list of quotients necessary to build a hybrid expansion. Output is a list of signed integers:

the integers are the quotients necessary to build the expansions, while the signs denote the

overall sign of the current term in the expansion. For example, 3
5

has three lines of output

representing its three expansions:

2 5; 1 -3 -5; 1 -2 5;

These indicate the expansions 1
2

+ 1
2·5

, 1
1
− 1

1·3
− 1

1·3·5
, 1

1
− 1

1·2
+ 1

1·2·5
, respectively.

> WriteAllExpansions:=proc(c, string, currQuotient, outStream,

loopCounter)

> ### outStream is OPENED BEFORE calling writeAllExps to which

> ### the expansions for a given fraction will be written.

>

> local steps::integer, ##length of Engel expansion

> expansion::Array, ##sequence of factors

> quotients::Array, ##quotients for expansion

> copyC::integer, ##a changable copy of c=a/b

> q::integer,

> signArray::Array, ##keeps signs for an expansion

> current::integer, ##index of quotient modified

> ##[(current+1)’s sign changes]

> temp::float, ##used to approximate copyC

>

> loopCount::integer, ##helps keep signs

> tempString::string: ##expansion found

>

> steps:=0: ##initialize all variables

> copyC:=c:

> tempString:=string:

> q:=1:
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> temp:=1/currQuotient:

> for i from 0 to 500 do

> quotients(i):=currQuotient:

> end do:

> expansion(0):=1:

> loopCount:=loopCounter:

> FAILSAFE:=0: ##tracks length of expansion

> ##if too high, must be a mistake.

> ##failsafe allows a bail out.

> if (c>1)

> then copyC:=0;

> quotients(1):=1/floor(c):

> tempInteger:=floor(c)*(-1)^(loopCount):

> tempString:=cat(string," (",tempInteger,")"):

> WriteAllExpansions(c-1/quotients(1), tempString,1, outStream,

loopCount):

> if not(1/quotients(1)=c) then

> quotients(1):=1/( floor(c)+1):

> tempInteger:=ceil(c)*(-1)^(loopCount):

> tempString:=cat(string," (",tempInteger,")"):

> WriteAllExpansions(abs(1/(quotients(1))-c),tempString,1,

outStream, loopCount+1):

>

> end if:

> else

> ################## Find Engel Expansion first ################

> while not(copyC=0) do

> if (FAILSAFE<500000) then

> steps:=steps+1:

> signArray(steps):=0:

> for j from 1 to 50000 while (evalf(copyC<(temp*1/j)))

do ###always undershoot

> q:=j+1:

> end do:

> temp:=temp*1/q:

> expansion(steps):=q:

> tempInteger:=q*(-1)^(loopCount):

> tempString:=cat(tempString," ", tempInteger):

> quotients(steps):=quotients(steps-1)*q:

> copyC:= copyC-temp:

> FAILSAFE:=FAILSAFE+1:

> else copyC:=0:

> end if:

> end do:

> if (FAILSAFE<500000) then
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> fprintf(outStream, "%s\n", "");

> fprintf(outStream, "%s\n", tempString);

> end if:

> ### Now begin varying the patterns.

> ###Notice that overshooting jth term means (j-1)th term will

> ###be negative

> if (FAILSAFE<500000)

> then current:=steps-1:

> else copyC:=0:

> end if:

> ### if Engel aborted, no basis to vary on... abort ###

> while (current>0) do

> while (signArray(current+1)=1 and current>0) do

> current:=current-1: ##Find next sign change

> end do:

> copyC:=c:

> tempString:=string:

> for i from 1 to (current-1) do

> tempInteger:=expansion(i)*(-1)^(signArray(i)+loopCount):

> tempString:=cat(tempString," ",tempInteger):

> end do:

> if (current=0) ##Then all possibilities are

> then copyC:=0: ##exhausted, so stop looking for

> else ##new ones. Otherwise, overshoot

> signArray(current+1):=1:

> ##current term so next term will

> ##be forced negative.

> expansion(current):=expansion(current)-1:

> tempInteger:=expansion(current)*

(-1)^(signArray(current)+loopCount):

> tempString:=cat(tempString," ",tempInteger):

> end if:

> if (current>1)

> then quotients(current):=quotients(current-1)*

expansion(current):

> else quotients(current):=expansion(current)*

currQuotient:

> end if:

> if (copyC>0) then ##reduce copyC by current

> ##approximation, then find

> ##next term in expansion for

> ##this smaller problem.

> temp:=sum(’1/quotients(j)*(-1)^signArray(j)’,

’j’=1..current):

> if (copyC-temp<0) then copyC:=temp-copyC:
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> else copyC:=copyC-temp:

> end if:

> #Search for next appropriate term of expansion.#

> q:=1:

> for i from 1 to 500 while

(copyC<1/(quotients(current)*q)) do

> q:=i:

> end do:

> expansion(current+1):=q:

> quotients(current+1):=quotients(current)*

> expansion(current+1):

> ####We have a new approximation of copyC. If it

> ####is exact, show it and increase numExps.

> ####If not, find all expansions for what we have

> ####left to approximate.

> copyC:=abs(copyC-1/quotients(current+1)):

> if (copyC=0) then

> fprintf(outStream, "%s\n", "");

> tempInteger:=expansion(current+1)*

(-1)^(loopCount+signArray(current+1)):

> tempString2:=cat(tempString," ",tempInteger):

> fprintf(outStream, "%s\n", tempString2);

> else

> tempInteger:=expansion(current+1)*

(-1)^(loopCount+signArray(current+1));

> tempString2:=cat(tempString," ",tempInteger):

> WriteAllExpansions(copyC, tempString2,

quotients(current)*q, outStream,

loopCount+1):

> tempInteger:=(expansion(current+1)-1)*

(-1)^(loopCount+signArray(current+1)):

> tempString2:=cat(tempString," ",tempInteger):

> copyC:=abs(c-(temp-1/(quotients(current)*

(q-1)))):

> WriteAllExpansions(copyC, tempString2,

quotients(current)*(q-1), outStream,

loopCount):

> end if:

> end if:

> copyC:=c:

> end do:

> end if:

> end proc:
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After defining this procedure, these lines of code will write the quotient lists to the file
specified. (The variables a and b must be positive integers.)

> outStream:=fopen("c:\\destination\\folder\\yourfile.txt", WRITE);

> WriteAllExpansions(a/b,"",1, outStream,0);

>

> fclose(outStream);
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4 Appendix B: Values of H(b, a)

b|a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 1

2 1 1

3 1 2 1

4 1 1 2 1

5 1 2 3 4 1

6 1 1 1 2 3 1

7 1 2 3 4 5 6 1

8 1 1 2 1 3 2 3 1

9 1 2 1 2 3 2 5 6 1

10 1 1 2 2 1 3 4 4 5 1

11 1 2 3 4 5 6 7 8 9 10 1

12 1 1 1 1 2 1 3 2 2 3 4 1

13 1 2 3 4 5 6 7 8 9 10 11 12 1

14 1 1 2 2 3 3 1 4 5 5 6 6 7 1

15 1 2 1 2 1 2 3 4 3 2 5 4 7 8 1

16 1 1 2 1 2 2 3 1 4 3 4 2 5 3 4 1

17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1

18 1 1 1 2 2 1 3 2 1 3 5 2 4 5 3 6 7 1

19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1

20 1 1 2 1 1 2 3 2 4 1 5 3 5 4 2 4 6 5 6 1

21 1 2 1 2 3 2 1 4 3 4 5 4 7 2 5 8 9 6 11 12 1

22 1 1 2 2 3 3 4 4 5 5 1 6 7 7 8 8 9 9 10 10 11 1

23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1

24 1 1 1 1 2 1 2 1 2 2 3 1 4 3 3 2 4 2 5 3 3 4 5 1

25 1 2 3 4 1 2 7 8 9 2 11 12 13 14 3 16 17 18 15 4 21 18 23 24 1

26 1 1 2 2 3 3 4 4 5 5 6 6 1 7 8 8 9 9 10 10 11 11 12 12 13

27 1 2 1 2 3 2 3 4 1 4 5 2 3 4 3 8 7 2 9 6 5 10 11 6 13

28 1 1 2 1 3 2 1 2 3 3 5 3 6 1 7 4 7 5 6 5 2 6 8 6 8

29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

30 1 1 1 2 1 1 2 2 2 1 3 2 4 3 1 4 6 3 5 2 4 5 6 4 3

31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

32 1 1 2 1 3 2 3 1 4 2 3 2 5 3 6 1 7 4 7 3 5 4 7 2 7

33 1 2 1 2 3 2 5 6 3 6 1 4 7 6 5 6 7 6 9 12 7 2 13 8 13

34 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 1 9 10 10 11 11 12 12 13

35 1 2 3 4 1 2 1 4 5 2 7 8 9 2 3 12 13 14 15 4 3 14 15 16 5

36 1 1 1 1 2 1 2 2 1 2 3 1 3 3 2 2 3 1 4 3 3 5 5 2 6

37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

38 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 10 11 11 12 12 13

39 1 2 1 2 3 2 3 4 3 4 5 4 1 6 5 6 7 6 7 8 7 10 9 8 11

40 1 1 2 1 1 2 2 1 2 1 3 2 3 3 2 2 5 4 6 1 7 5 7 3 3

41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

42 1 1 1 2 2 1 1 2 2 3 3 2 4 1 3 4 4 3 5 4 1 5 7 4 6

43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

44 1 1 2 1 2 2 3 2 3 3 1 3 4 4 5 4 6 5 6 5 7 1 8 6 8

45 1 2 1 2 1 2 3 2 1 2 3 2 5 4 1 6 5 2 5 2 3 4 5 4 3

46 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 1 12 13

47 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

48 1 1 1 1 2 1 2 1 2 2 3 1 3 2 2 1 3 2 4 2 3 3 4 1 5

49 1 2 3 4 5 6 1 2 9 10 11 12 13 2 15 16 17 18 13 20 3 22 23 24 25

50 1 1 2 2 1 3 4 4 3 1 4 2 5 7 2 8 9 9 6 2 9 11 8 12 1

b|a 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

26 1

27 14 1

28 7 8 1

29 26 27 28 1

30 7 5 8 9 1

31 26 27 28 29 30 1

32 5 7 3 7 4 5 1

33 14 9 16 15 10 17 18 1

34 13 14 14 15 15 16 16 17 1

35 18 19 4 17 6 23 20 25 26 1

36 4 2 5 7 3 6 6 4 7 8 1

37 26 27 28 29 30 31 32 33 34 35 36 1

38 13 14 14 15 15 16 16 17 17 18 18 19 1

39 2 9 12 11 10 13 14 11 14 15 12 17 18 1

40 5 6 4 7 2 7 4 7 6 3 5 8 6 7 1

41 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 1

42 7 5 2 8 5 7 8 6 9 3 6 10 11 7 12 13 1

43 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 1

44 7 9 7 9 8 9 8 2 9 10 9 11 10 11 10 12 11 12 1

45 8 3 8 11 2 9 10 5 8 5 4 13 12 7 6 15 8 17 18 1

46 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 1

47 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 1

48 4 4 3 6 3 5 2 4 4 6 2 7 5 5 3 6 3 7 4 4 5 6 1

49 26 27 4 29 24 31 32 33 28 5 36 37 38 39 40 35 6 43 44 39 46 41 42 1

50 13 10 14 13 3 8 16 17 17 4 18 17 15 18 4 19 21 22 18 5 23 20 24 25 1
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