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Abstract

Analytical and Experimental Study of FRP Honeycomb
Sandwich Panels with Sinusoidal Core

Justin Robinson

Fiber reinforced plastic (FRP) composite materials and structures have been increasingly used in

highway bridge applications.  Recent applications have demonstrated that FRP honeycomb

sandwich panels with sinusoidal core can be effectively and economically used for highway

bridge deck systems.  In this study, analytical and experimental characterizations are presented

for a FRP honeycomb panel with sinusoidal core geometry in the plane and extending vertically

between face laminates.  To verify the accuracy of the a closed-form solution, several honeycomb

sandwich beams with sinusoidal core waves either in the longitudinal or transverse directions are

tested in bending and torsion.  Also, a deck panel is tested under both symmetric and asymmetric

patch loading.  Finite element models are further developed to simulate the actual sandwich

geometry and also to simplify the structure as an equivalent three-layer laminate.  The explicit

and FE predictions are compared with experimental results.  The present analysis and

characterization procedures can be used in design applications and optimizations of honeycomb

structures.
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Chapter 1

Introduction

1.1 FRP Bridge Decks: Overview

There is an increasing demand for a solution to the deterioration of bridge decks.

Currently, there are over 600,000 bridges in the United States.  One-third of these bridges

have been deemed “structurally deficient” or “functionally obsolete”; 132,000 of these

deficiencies are attributed to deck decay (Lesko, 2001). Due to the increasing public

demand for more and better highway bridges, coupled with the need for increase of load

rating, and a tightening budget, several innovative products are being investigated.  One

such product that holds great future potential is fiber-reinforced plastic (FRP) composite

bridge decks.

There are two major types of FRP bridge decks currently in use: deck panels consisting

of either sandwich construction or bonded pultruded shapes (Lesko and Davalos, 2001).

Decks assembled from pultruded shapes make up a large portion of the structures on the

market.  However, these systems present limited opportunities for design modifications

once machine tooling is produced.  Sandwich structure technology has been widely used

in the automotive and aerospace industries, but it is just starting to be used in the civil

infrastructure.  Honeycomb systems with cellular cores are notably the most efficient

sandwich construction materials.  As recognized in a number of feasibility studies
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(Plunkett, 1997), honeycomb structures are shown to have a high performance with

minimal unit weight.

There are many positive aspects to FRP bridge decks.  FRP sections have a low unit

weight, but high strength and stiffness.  This quality could allow for a decrease in the

dead load of bridges, thus increasing the live load rating.  Also, FRP sections are non-

corrosive, which is a good quality, since steel reinforced concrete bridge decks corrode

due to deicing salts used during the winter months.  Another positive quality is the ease

of handling and placement.  Mostly all FRP bridge decks on the market today are

prefabricated and are shipped directly to the job sites in large sections.  Because of this,

they can be placed quickly, and normal traffic flow can resume promptly.

There are several issues of concern with FRP bridge decks.  Cost, performance and

quality control are a few concerns that the manufacturer must deal with.  A possible

unfavorable structural aspect of composite bridge decks is the lack of composite action

between the girders and the deck.  This may limit the use of these decks to short-span

bridges.  However, in glued-laminated timber (Glulam) bridge construction, the non-

composite action between transverse Glulam panels and either timber or steel stringers is

not a significant issue.  Of greater concern is the difference between the thermal

expansions of the steel girder and FRP deck.  Other areas which require further

investigations include connections, bridge rails and wearing surfaces.
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A major challenge with FRP honeycomb sandwich bridge decks is the development of

design procedures.  While a high degree of refinement in theoretical modeling of

honeycomb structures has been achieved throughout its history (Noor et al., 1996), the

characterization of unique shapes of core geometry for sandwich construction still require

significant effort.  This study is concerned with numerical modeling and experimental

evaluation of a FRP honeycomb sandwich panel with sinusoidal core geometry extending

in the vertical direction.  The goal of this research is to verify the accuracy of explicit

solutions for equivalent elastic material properties, which are useful to greatly simplify

the design process.

1.2 Types of Available FRP Composite Bridge Decks

The FRP Composites industry has been steadily growing for some time now.  There are

several companies today that have different designs for a composite bridge deck.  Many

of these designs have been the topics of research publications.  The Market Development

Alliance (2000) has published a product selection guide, from which the information

presented in this section was taken.  A summary of different existing FRP bridge deck

concepts is given.

Superdeck by Creative Pultrusions: This is a bridge deck system that is produced by

pultruding sections to a desired length and then bonding them together to produce a

bridge deck.  There are two components to form the Superdeck, as shown in Figure 1.1.

One is a truss shaped beam, while the other shape is a hexagonal tube, which fits inside
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the truss shape and is attached by adhesive bonding.  The hexagonal shape acts as a

shear-key, providing a connection device for the truss shapes. The fiber architecture of

these two shapes consists of E-glass fibers taking the form of stitch fabrics, continuous

strand mats, and continuous roving.  The resin is weather-resistant vinyl ester.

Figure 1.1 Components of the Superdeck

Several bridges have been completed using the Superdeck, including the ones located in

West Virginia, Ohio and Pennsylvania.  These bridges range in length from 20 feet to 168

feet.  In all cases, the deck is set on and connected to either steel or FRP girders.  The

bridges are finished by fitting them with traffic edge barriers and a wearing surface.

Martin Marietta Composites: In late 1992, Lockheed Martin decided to experiment

with polymer composites for uses in civil infrastructure.  A short-span demonstration
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bridge was unveiled in 1995, but Lockheed decided not to go forward with the new

technology.  A well-established materials company, itself being a spin-off of Lockheed,

Martin Marietta Materials bought the technology and created Martin Marietta

Composites. Today, their DuraSpan bridge deck is used in several bridges across the

United States.

DuraSpan is made of two different, yet similar diagonally braced box beam shapes,

shown in Figure 1.2.  They are manufactured from E-glass fibers and isophthalic resin

through a pultrusion process and can have a length of up to fifty feet.  The beams are

bonded together to a width of eight to ten feet, restricted by transportation requirements.

Figure 1.2 Beam Sections of DuraSpan Bridge Deck

The pultruded shapes are produced by Creative Pultrusions, the maker of the Superdeck.

The beams can be cut to any length depending on the bridge’s dimensions.  After the

shapes are pultruded and cut, they are bonded together using a polyurethane adhesive.
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The bond was tested at the University of Delaware and exceeded the performance

requirements.  After a panel is produced by bonding, the finishing work is performed, and

the product is shipped to the site.

Hardcore Composites: Hardcore Composites is a fiber reinforced polymer materials

company from Delaware.  Hardcore manufactures many composite parts for the marine

environment, and they recently decided to use their experience to tap into the bridge deck

market.  Hardcore makes a version of a honeycomb sandwich panel bridge deck.  They

adopted a manufacturing process called Vacuum Assisted Resin Transfer Molding

(VARTM) to manufacture the deck panels.

The deck panels are made of two face skins, concealing a low-density core matrix.  The

face skins are primarily for resistance of bending forces, while the core maintains shear

capacity.

The Hardcore bridge deck has some good qualities.  The thickness of the face skins, their

fiber architecture, and the core’s geometry can be modified for different applications.

Also, the depth of the panel section can be modified easily.  These are desirable features

when replacing existing deck structures.  Desired depths can be obtained while still

meeting maximum deflection requirements imposed by bridge codes.  This is an

important consideration, since deflection and not strength generally control composite

bridge decks.
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Hardcore Composites use an E-Glass fiber and a vinyl ester resin because of their non-

corrosive and workability properties.  Because Hardcore uses the VARTM manufacturing

process, they can obtain a typical fiber volume fraction of 50%.  They also have the

ability to produce complex three-dimensional shapes.  This allows important details such

as railings, blockouts, crowns, connection hardware, and so on, to be added to the deck

during manufacturing.

3TEX, Inc.: 3TEX, Inc. designs and manufactures many different composite material

parts for many different industries.  Mainly working in the automotive and defense

industries, 3TEX has teamed up with several companies to design and manufacture a

vehicular and pedestrian bridge deck system.

The deck that 3TEX manufactures and markets is primarily for narrow girder spacing of

two to three feet.  This is representative of most county bridges across the United States.

The deck is targeted at replacing existing corrugated steel with concrete or wood decking.

3TEX calls their bridge deck system TYCOR.  It is a fiber-reinforced foam core

sandwich panel.  The core also has fiberglass roving in the length direction for additional

reinforcing.  After the face skins and core are molded together, the result is a low-profile

deck, approximately 3.3 inches thick.  The deck is also cost competitive with

conventional corrugated steel decks.
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TYCOR composite panels are made using fiber-reinforced foam (FRF) core and face

skins and produced using the VARTM method, as in the Hardcore Composites bridge

deck.  The face skins use a glass fiber composed of 2-D knitted fabric and 3-D woven

fabric.  The FRF core is manufactured using a liquid molding process and is co-cured

with the face skins to provide the proper bond.

The connection of the deck and stringer is achieved by using coupled steel plates and two

bolts.  This acts as a clamping system and requires no drilling of the supporting girder.

However, an alternate system can be used which is similar, yet with self-tapping screws

that screw into the girder.  The deck panels are manufactured eight feet wide, and the

length of the panel spans the width of the deck.

Kansas Structural Composites, Inc.: KSCI provided the bridge deck panels for this

research.  It is a honeycomb core sandwich panel, in which a unique system of vertical

sinusoidal waves and flats are used as the core of the panel, as shown in Figure 1.3.

Basically, KSCI devoted their efforts to structural panels for bridge deck applications.

Although the deck panel has undergone laboratory and field investigations by KSCI, no

effort has been made to model or optimize the sandwich deck design, until the recent

study by the researchers at West Virginia University and the University of Akron

(Davalos et al. 2001).
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Figure 1.3 Core Geometry of Honeycomb Sandwich Panel

The deck is manufactured using a combined contact molding and hand lay-up procedures.

The core geometries are manufactured using molds.  The core consists of a combination

of a sinusoidal wave called a flute and a flat sheet.  The face panels are made of several

layers of CSM, 0° and 90° E-glass fibers and polyester resins. The thickness of the deck

panel can vary from 5” to more than 24”.  Current research into the core optimization,

skin sheet effect, and connector design is taking place at West Virginia University and

the University of Akron.

A summary of each of the previously mentioned bridge decks, as well as a few of the

other marketed decks, is presented by Lesko and Davalos (2001) and shown in Table 1.1.

A comparison of unit weight, cost and normalized deflections show that the KSCI design

appears to be more efficient and economical while providing superior stiffness.
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Table 1.1 Summary of Deck Characteristics

Deck System Depth Lb./ft2  a $/ft2 Normalized
Deflection b

Sandwich Construction

Hardcore 8” – 28” 20 – 23 75 – 95 L/1070

KSCI 5” – 24” 15.5c 65 L/1300

Adhesively Bonded Pultrusions

DuraSpan 7.63” 18.5 65 – 75 L/340

Superdeck 8” 22 75 L/530

EZSpan 9” 20 80 – 100 L/950

Strongwell 4.75” – 8” 23 65d L/325

a – Without wearing surface
b – Normalized to HS20+IM for an 8’ center to center between support girders
C – For an 8” deep deck targeted for RC bridge deck replacement
d – For a 6.75” deep deck with wearing surface under experimental fabrication process

1.3 Problem Statement and Objectives

Due to the complexity of FRP composite materials and the unique structure of the KSCI

sinusoidal core sandwich panel (Figure 1.3), an extensive investigation into stiffness

responses and equivalent material properties are necessary for design implementation and

further optimization.  The primary goal of this study is to develop an analytical solution

to obtain equivalent material properties of both honeycomb sinusoidal core and sandwich

panel and to verify their accuracy using finite element analysis and experimental testing.

The equivalent material properties provided in this study can then be used in design of

bridge deck systems.  More specifically, the three primary goals of this study are:
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1. To present analytical equivalent orthotropic properties, which were developed

independently of the study, for the FRP honeycomb bridge deck panel with

sinusoidal core configuration.

2. To correlate results for sandwich beam samples obtained by analytical

predictions, finite element modeling and experimental testing.

3. To compare finite element modeling results with experimental responses for a

simply supported deck panel under centric and eccentric patch loads.

1.4 Thesis Overview

The goal of this thesis is to present existing equivalent orthotropic plate properties for the

KSCI FRP honeycomb sandwich panel (Figure 1.3), and to verify these properties with

experimental and finite element evaluations described in detail herein.

A summary of the analytical investigation of equivalent plate properties for the KSCI

sandwich panel with sinusoidal core configuration is presented in Chapter 2.  This

investigation includes: (1) constituent materials and ply properties, (2) face laminates and

core wall engineering properties, (3) equivalent core material properties, and finally (4)

apparent stiffness properties for the honeycomb panel and its orthotropic material

properties.  The face laminate and core wall properties are evaluated using a

micro/macromechanics approach; whereas the equivalent core material properties are

defined based on a combined energy method and mechanics of materials approach.
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An overview of the experimental program and finite element modeling is presented in

Chapter 3, where the experimental samples and testing protocol are described in detail,

and some basic principles for the finite element modeling are also introduced and

discussed.

Based on the equivalent material properties of the panel obtained from Chapter 2,

apparent stiffnesses are used to calculate maximum strains and deflections of beam

samples with different widths, core orientations and span lengths under three- and four-

point bending configurations in Chapter 4.  These predicted values are then compared

with experimental results.  A finite element evaluation with models using the actual core

geometry as well as equivalent laminate and core properties is also presented in Chapter

4, to provide further correlation of experimental and analytical analyses.

An analysis of beam samples in torsion is presented in Chapter 5.  Since a closed-form

analytical solution for the honeycomb sandwich beam samples under torsion is still under

investigation by the researchers at West Virginia University and the University of Akron,

only finite element predictions for the actual geometry as well as using equivalent panel

properties are compared with experimental results in this study.

In Chapter 6, the finite element analyses and experimental results are presented and

compared for a sandwich panel tested under midspan and eccentric patch loads.
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Finally, in Chapter 7, the experimental results, finite element analyses and analytical

solutions of the sandwich structures with sinusoidal core configuration are summarized to

draw significant conclusions and make recommendations for further studies of the FRP

honeycomb sandwich panel.
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Chapter 2

Mechanics of FRP Honeycomb Core Sandwich Panel

2.1 Introduction

The analytical evaluation of FRP honeycomb sandwich panels presented in Chapter 2 is

mainly extracted from the paper by Davalos et al. (2001) and performed by the

researchers at both WVU and the University of Akron (Dr. Pizhong Qiao and co-

workers).  The procedures to evaluate equivalent properties of the face laminates, the

honeycomb core with a sinusoidal configuration, and the sandwich panel as a whole are

described.  The equivalent properties of the face laminates are obtained using a

micro/macromechanics approach, while the properties of the core are evaluated using a

combined approach of mechanics of materials and energy method.  This chapter outlines

the important procedures used to evaluate the equivalent properties for FRP honeycomb

sandwich panels.

2.2 Modeling of Honeycomb Core

The modeling of the honeycomb core is achieved using the concept of a homogenized

Representative Volume Element (RVE).  Using a combined energy method and

mechanics of materials approach, the equivalent properties of the core are evaluated.
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2.2.1 Geometry

The sandwich type structure of concern has two face plates co-cured with a core.  The

geometry chosen is intended to increase the stiffness and buckling capacity of the panel

by continually supporting the core elements with the face laminates.  Figure 2.1 is a

picture of a 12”x 12” section of the panel.

Figure 2.1 FRP Honeycomb Sandwich Panel

The geometry of the core consists of closed honeycomb-type cells.  A flat plate combined

with a corrugated plate defined a sinusoidal function for the core configuration.  The

waved section of the core is manufactured by forming the FRP sheet into a corrugated

mold.  The shape of the wave function of the core can be described by the following

equation:
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)
2

cos1(
l

x
hy

π−=     (2.1)

where, 2h is the interval distance between two adjoining flat plates and l is the distance of

adjoining crests.  In this study, the sinusoidal core dimensions are l = 4.0 in. and h = 1.0

in.  Figure 2.2 shows a plan view of the core.

Figure 2.2 Plan View of Honeycomb Core

2.2.2 Equivalent Properties

The elastic equivalence analysis of sinusoidal-waved honeycomb core structure (see

Figure 2.2) is based on a homogenization concept by a combined energy method and

mechanics of materials approach (Davalos et al. 2001).  The homogenization process of

periodic structures requires defining a Representative Volume Element (RVE), for which

the global properties can be obtained by periodical conditions and kinematical

assumptions.
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Figure 2.3. Representative Volume Element (RVE) of Honeycomb Core

For most sandwich cores, the RVE (as shown in Figure 2.3 in this study) with regular

spatial character in double symmetry gives orthotropic properties which can be defined

by nine equivalent stiffness constants.  The structure of the sandwich core can be

separated into a number of substructures.  For instance, the sinusoidal core (Figure 2.3)

contains the substructures of flat and curve walls, and the walls can be simplified as

series of simply supported elements without interaction with the top and bottom face

laminates.

The minimum energy theory states that the strain energy calculated from the exact

displacement distribution is a minimum.  For a given simplified sandwich core, the

averaging principle of RVE technique can be generally expressed in parallel and series

models according to Voigt and Reuss (see Christensen 1991):
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where k accounts for individual substructures in the RVE (Figure 2.3), and Ub, Us, and Ua

are, respectively, the strain energies related to bending, shear, and axial responses.

Equations (2.2) and (2.3) define, respectively, the conditions of lower and upper bounds

for stiffness constants.  In this study, only the energy due to bending, shear and axial

forces is included in the computation, which satisfies most periodic structures.

To obtain the elastic constants in Eqs. (2.2) and (2.3), several types of loading

arrangements for lower or upper bound condition are applied to the RVE and produce a

system of linear equations.  The most obvious and simple loading arrangement is the

application of each single principal stress or strain to obtain the corresponding stiffness

without other types of strain energy involved.

When a principal load/strain is applied, the strain energy in Eqs. (2) and (3) can be

written as:
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where M11, N11, V12 are the bending moment, axial force, and transverse shear force

acting on the core wall (Figure 2.4), and δ11 , α11 and h44 are the corresponding

compliance coefficients.  The subscripts 1, 2 and 3 denote local Cartesian coordinates,

with the 1-axis tangent and the 2-axis normal to the wave curve (see Figure 2.4).
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θ

Figure 2.4. Computation of Young’s Modulus in y-direction (Ey
e)

For simplicity, there are several assumptions made in equivalence analysis of a sandwich

core: the material behaves linear-elastically; perfect bonding exists at face-to-core and

core wall-to-wall contacts; and the ratio of thickness of core wall to radius of core wall is

small, and beam bending theory can be applied.  In the following section, core equivalent

properties are derived.
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Core longitudinal and transverse Young’s moduli (Ex
e and Ey

e)

In this study, a basic element of honeycomb (RVE) is taken (Figure 2.3), and the wave

function is defined by Eq. (2.1).  The properties of ContSM core wall can be obtained

from micromechanics (see Section 2.3.1).

By applying a uniform stress q in the y-direction (Figure 2.4), the internal energy U of the

RVE in Eq. (2.4) becomes
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where the bending moment, axial force, and shear force can be simply obtained by the

equilibrium condition and geometric property as (see Figure 2.3):
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and for ContSM core wall, the compliance coefficients are:
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where, H = 4h+2t1+2t2 (Figure 2.3); s = one half curve length of a sinusoidal period

starting from the origin of Cartesian coordinates; t1 =  thickness of flat core wall; t2 =

thickness of corrugated core wall; F = internal force; q = applied uniform stress parallel

to the y-axis; κ  = shear correction factor, 5/6 for a rectangular cross-section.
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The apparent strain value of RVE, εy, can be calculated through Castigliano’s second

theorem.  The theorem states that under the principal of superposition, a partial derivative

of the strain energy with respect to an external force gives the displacement

corresponding to that force.  In this case, the displacement (∆y) in y-direction can be

obtained as:

)(ql

U
H yy ∂

∂==∆ ε                                                    (2.8)

Before Eq. (2.8) is applied, the unknown internal force F can be found by imposing the

compatibility condition:
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where U’ is the strain energy stored in one period of sinusoidal wave.

Once the strains are defined, the equivalent stiffness (Ey
e) in the y-direction and the

Poisson’s ratio (νyx
e) can be obtained as:
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The above results based on mechanics of materials approach lead to an exact solution,

and the upper and lower bounds given in Eqs. (2.2) and (2.3) result in the same solutions.
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Similarly, the equivalent stiffness in the x-direction can be obtained by applying a

uniform stress in that direction. Based on the above formulation, the analysis indicates

that the stiffness contribution of the curve beams is negligible in the x-direction, and the

equivalent stiffness, Ex
e, can be approximated as

1
12

E
H

t
E e

x =                                    (2.12)

Core out-of-plane shear moduli (Gxz
e and Gyz

e)

When a shear force is applied, the induced deformation at each core wall is due to the

spatial non-uniformity of honeycomb structure. Unlike the cases of Young’s moduli, the

shear stiffness usually involves a complicated state of deformation, and it is relatively

difficult to get an exact analytical solution.  However, using the energy method, the lower

and upper bound solutions can be obtained, and the lower bound usually provides a

conservative solution in practical design.

When a shear stress τxz is applied in the x-direction, the resulting apparent distributed

shear flow is as shown in Figure 2.5.  The equilibrium equation and compatibility

condition are written as

xz

s
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where   lds
s

=∫0
cos2 θ .  Eqs. (2.13) and (2.14) lead to
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By applying Eq. (2.2), we can obtain:
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where G12
s is the in-plane shear modulus of core wall (see Section 2.3.1).

τ

τ

τ

τ
τ

τ
τ

τ

τ

Figure 2.5 Computation of out-of-plane shear modulus (Gxz
e)
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Similarly, applying a shear strain εxz and combining with corresponding compatibility

conditions, we can express Eq. (2.3) as
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Simplifying Eq. (2.18) gives:
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Following a similar analysis process, the out-of-plane shear modulus, Gyz
e, can be

obtained as
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Summary of core equivalent properties

Based on the above formulations, the equivalent properties of FRP honeycomb core

are computed and given in Table 2.1.  In a similar fashion and based on a mechanics of

materials approach, the Young’s modulus (Ez
e) in z-direction and in-plane shear modulus

(Gxy
e) are derived.  As shown in Table 2.1, the lower and upper bounds for the out-of-

plane shear moduli are within a relatively narrow range.
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Table 2.1 Equivalent elastic properties for honeycomb core

Geometric data: h = 1 in; l = 4in; t1 = t2 = 0.0898 in
Solid core wall properties:

E1
s = E2

s = 1.71 x 106 psi; G12
s = 0.611 x 106 psi

Young’s
Moduli

Ex
e Ey

e Ez
e

0.0449 E1
s 8.36x10-5 E1

s 0.107 E2
s

Shear Moduli Gxy
e Gxz

e Gyz
e

Upper bound 5.98x10-5 E1
s 0.078 G12

s 0.033 G12
s

Lower bound 5.98x10-5 E1
s 0.075 G12

s 0.027 G12
s

Poisson’s Ratios vxy
e vxz

e vyz
e

0.431 0.169 0.273x10-4

Note: e refers to quantities with equivalent properties;
         s refers to quantities with solid core properties.

2.3 Modeling of Face Laminates

Engineering properties for the face laminates can be obtained from a micro/macro-

mechanics approach.  Using micromechanics, the stiffness properties of each layer, or

ply, of the laminates can be predicted.  Based on the ply properties and lay-up, the

apparent stiffness of the laminate can be found using classical lamination theory.

2.3.1 Microstructure

The fiber architecture of the top and bottom face laminates is symmetric about the neutral

plane of the sandwich panel.  Thus the equivalent stiffnesses of the two face laminates are

the same.  Each laminate (Figure 2.6) consists of two layers of CM-3205, six layers of

UM-1810, and a bonding layer, which is a chopped strand mat, or ChopSM.  The CM-

3205 is comprised of a 0�/90� bi-directional stitched fabric and a continuous strand mat,
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or ContSM.  The UM-1810 is comprised of a unidirectional layer and a ContSM layer.

The constituent materials of the FRP honeycomb panel are E-glass fibers and polyester

resin, for which their material properties can be found in Table 2.2.  The details for each

of the face sheet layers are given in Table 2.3.

Table 2.2 Properties of Constituent Materials

Material E, x106 psi G, x106 psi � �, lb./in.3

E-Glass Fiber 10.5 4.18 0.255 0.092
Polyester Resin 0.734 0.237 0.30 0.041

Table 2.3 Layer Properties of Face Laminates

Ply name Ply type Nominal Weight
w, oz/ft2

Thickness
t, in

Vf

Bonding Layer ChopSM 3.0 0.082 0.1726

CM-3205 0� 1.667 0.0245 0.3428

90� 1.667 0.0245 0.3428

ContSM 0.5 0.01 0.2359

UM-1810 0� 2.0 0.025 0.3774

ContSM 1.0 0.0132 0.3582

2.3.2 Fiber-Volume Fraction

The fiber-volume fraction, Vf, found for each layer, is listed in Table 2.3.  The stiffness

properties of each ply depend on this value.  The fiber-volume fraction can be expressed

using the following equation:

t
V f ⋅

=
ρ
ω

  (2.21)
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where � is the nominal weight of the fabric, t is the thickness of the layer and � is

the density of the fibers.  The fiber-volume fraction is then used in

micromechanics to obtain stiffnesses of each layer.

2.3.3 Micromechanics

A micromechanics model for composites with periodic microstructure (Luciano and

Barbero 1994) is used to obtain the elastic constants for each individual layer.  The

stiffness properties of the ChopSM and the ContSM is found using an averaging

technique, based on the assumption that the material is isotropic in the ply plane.  The

values of the layer stiffnesses are summarized in Table 2.4.

Table 2.4 Layer Stiffness Properties

Ply name Orientation E1, x106 psi E2, x106 psi G12, x106 psi G23, x106 psi � 12 �23

Bond Layer Random 1.41 1.41 0.507 0.308 0.394 0.401

CM-3205 0� or 90� 4.02 1.16 0.447 0.417 0.295 0.39

Random 1.71 1.71 0.61 0.343 0.402 0.4

Um-1810 0� 4.36 1.24 0.479 0.447 0.293 0.386

Random 2.31 2.31 0.82 0.43 0.409 0.388

Core Mat Random 1.71 1.71 0.611 0.431 0.402 0.388

2.3.4 Equivalent Elastic Properties

The equivalent elastic properties of the face laminates are computed using the classical

lamination theory.  Using the ply properties found by micromechanics, a set of equivalent

laminate properties (Ex, Ey, Gxy, �xy) can be defined.  These constants represent a
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fictitious, equivalent, orthotropic plate that behaves in the manner of the actual laminate

under in-plane loading.

The elastic properties are based on the lay-up of the laminate, as well as the individual

ply properties.  Figure 2.6 shows the lay-up of the face laminates, and Table 2.5 gives the

equivalent elastic properties of the face laminate.

Bonding Layer (ChopSM) 

CM-3205 (0  /90  SF + ContSM) o o 

CM-3205 (0  /90  SF + ContSM) o o 

UM-1810 (0  roving + ContSM) o 

UM-1810 (0  roving + ContSM) 
o 

UM-1810 (0  roving + ContSM) o 

UM-1810 (0  roving + ContSM) o 

UM-1810 (0  roving + ContSM) 
o 

UM-1810 (0  roving + ContSM) o 

Figure 2.6 Lay-up of Face Laminate

Table 2.5 Equivalent Stiffness Properties of Face Laminates

Ex, x106 psi Ey, x106 psi �xy Gxy, x106 psi
2.846 1.850 0.302 0.546
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2.4 Equivalent Properties of FRP Honeycomb Sandwich Panel

Once the equivalent properties of the core and face laminates are found, classical

lamination theory is again used to find equivalent sandwich panel properties.  The values

are given in Table 2.6.  The layer properties for the face laminates are given in Table 2.5,

and the properties for the core are taken from the average of the lower and upper bounds

in Table 2.1.

Table 2.6 Equivalent Stiffness Properties of the FRP Honeycomb Panel

Ex, x106 psi Ey, x106 psi Gxy, x106 psi �xy

In-plane 0.553 0.320 0.094 0.303

Bending 1.273 0.803 0.236 0.301

2.5 Summary

In this chapter, the equivalent properties for the FRP honeycomb sandwich panel are

summarized and are later used in design analysis and finite element modeling.  Based on

mechanics of materials and energy method (Davalos et al. 2001), the procedures and

equations for homogenization of honeycomb core with a sinusoidal core configuration

are presented.  The equivalent properties of face sheet laminates and sandwich panels are

evaluated from a combined micro/macromechanics approach.  The equivalent properties

obtained in this chapter are used to predict strains and deflections of sandwich beams

under bending (Chapter 4).  The equivalent properties defined in this chapter can be

efficiently used in design and applications of the honeycomb sandwich structure.
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Chapter 3

Experimental Testing and Finite Element Modeling

An overview of the experimental testing protocol and finite element modeling is

presented.  The description of the test samples includes lengths, core orientations and

widths.  An explanation of the actual geometry and equivalent plate finite element models

is presented, as well as the methods used to collect and report the pertinent dat from these

separate analyses.

3.1 Test Samples

The experimental testing is performed to indirectly verify the accuracy of the analytical

predictions of the equivalent orthotropic properties of the FRP sandwich panel (as

derived and shown in Chapter 2).  Because of the manufacturing-induced imperfections

and variability present in the FRP sandwich panels, a number of samples must be tested

under several different loading conditions to achieve a confident comparison with

analytical solutions.  The main purpose of the several tests preformed is to describe the

responses for various loading conditions, thus comparing theoretical predictions to

experimental results.

As presented in Chapter 2, the honeycomb sandwich panel is modeled as an equivalent

orthographic plate with three-layer laminate configuration, which includes top and
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bottom skin sheets and homogenized core.  The equivalent elastic properties of skin

sheets and core are obtained using a micro/macromechanics approach and  a

homogenization method (a combined energy method and Mechanics of Materials

approach), respectively.  The panel with orthotropic properties has three orthogonal

planes of symmetry described by nine material constants as established in Chapter 2.

Thus, the panel responses under various loading conditions can be predicted using these

equivalent material properties.  Both, a rectangular panel and beam samples with

longitudinal and transverse core geometries are experimentally tested, so that analytical

solutions and finite element modeling results obtained with input of these equivalent

material constants can be verified and compared.

3.2 Testing Protocol

The FRP honeycomb sandwich panel and beam samples used in the experimental testing

were manufactured by Kansas Structural Composites, Inc.  The same beam samples are

used for the experimental evaluations in bending and torsion, although the lengths of

certain samples were not identical for each type of test.  The deck panel is also tested

under symmetric and asymmetric patch loadings.  This section provides a background for

the testing arrangements of the samples.
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3.2.1 Beam under bending

There are a total of eight longitudinal and transverse beam samples, four eight inches

wide and the other four twelve inches wide.  Four samples of 16 feet long have

longitudinal sinusoidal core geometries (hereby defined as longitudinal samples), of

which two samples are eight inches wide and the other two are twelve inches.    Four

samples of nine feet long have transverse sinusoidal core geometries (defined as

transverse samples), of which two of these samples are eight inches wide and the other

two are twelve inches wide.

The beam samples are provided by KSCI with the dimensions listed above.  Thus, the

bending tests are conducted without any physical alterations to the specimens.  The

longitudinal samples, which are sixteen feet in length, are tested with span lengths of 15’,

11 ½’, 8’, and 5 ½ feet.  The transverse samples are nine feet in length and are tested with

spans of 8’ and 5 ½’.  The procedure and results for the bending tests are later discussed

in Chapter 4.

3.2.2 Beam under torsion

The torsion test is conducted using a torsion machine (see Figure 5.1 in Chapter 5) and

the same beam samples described in Section 3.2.1.  The fixed spacing of the torsion

machine grips is ten feet end-to-end, and due to the span-length limitation of the torsion

machine, the longitudinal samples, originally 16 feet long, must be cut to 10 feet in
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length.  The original length of the transverse samples is nine feet thus, a special clamp (as

shown in Figure 5.8, Chapter 5) is manufactured to compensate for the additional one-

foot to grip the sample.  All eight beam samples are tested in torsion, and the

experimental procedures and results for both the longitudinal and transverse core

orientations are give in Chapter 5.

3.2.3 Panel under bending

A sandwich panel with dimension of 16’x8’ is used for bending tests under symmetric

and asymmetric loading conditions.  The longitudinal core orientation extends in the 16’

length direction of the panel.  Consequently, the core is oriented transversely through the

8’ width of the panel.  The span-length used for the loading conditions is 15’, and a pin-

roller support condition is provided along the 8’ direction of the panel.  The experimental

testing procedures and results are presented in Chapter 6.

3.3 Finite Element Modeling Procedures

The finite element method is a very useful tool in providing verification for analytical

predictions or experimental responses.  A background is presented on the formulation of

each model used in this study, in order to provide confidence on the data collected and

reported for comparative studies.  The following sections describe  two different models

used in the finite element evaluations: the actual geometry model, and the equivalent

orthotropic plate model.  The commercial Finite Element (FE) program ABAQUS



34

version 5.8 (1998) is used in this study, and FEMAP version 7.10 (1999) is used for the

pre- and post-processing operations.  Both, the formulation and post-processing of results

for each of the models used are discussed.

3.3.1 Formulation of Actual Geometry Model

The  geometry of the sandwich panel consists of top and bottom face sheets and a core

with vertical sinusoidal waves and flats.  This geometry is described in Chapter 2 (see

Figures 2.1 and 2.3).  The purpose of generating the actual geometry finite element model

is to reproduce and simulate the samples as identically and accurately as possible.

Figure 3.1 Top View of Core

The first portion of the actual geometry model is the simulation of the unique sinusoidal

core (Figure 3.1).  The core possesses a very unique shape and presents a challenge in

modeling. Figure 3.1 shows a top view of the core used in the finite element model of the
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actual geometry.  Since the shape function of the core is sinusoidal, shell elements

defined by parabolic curves must be used in creating the sinusoidal portion of the core.

Thus, the core consists of 8-node shell elements using reduced integration. Eight

elements were used in each four-inch span of wave, attempting to match the actual panel

geometry as best as possible.  For the flats we used four elements in a four-inch span.

The core consists of a chopped strand mat, with material properties and thickness as

described in Table 2.3 of Chapter 2. In the FE modeling, the core extends vertically from

the mid-plane of the top plate to the mid-plane of the bottom plate, with a distance of

4.554 inches.

The top and bottom face sheets are modeled using 6-node triangular layered shell

elements with orthotropic 2D material properties.  The lay-up of the bottom plate is

shown in Figure 2.6, Chapter 2, and the material properties and thicknesses used in the

formulation are given in Tables 2.3 and 2.4.  The top and bottom plates are symmetric

about the midplane of the panel; thus the material lay-up for the top face laminate is in

the reverse order of that for the bottom laminate.
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Since the top and bottom panels must be connected to the core, the panel and the core

must have coincidental nodes.  Basically, the geometry of the core controls the shape of

each face element, presenting a challenge when defining the geometry of the triangular

elements. However, once the core elements are produced, the elements of the face

laminates can be carefully added.  Figure 3.2 shows a plan view of a 4”x 4” laminate.

Figure 3.2 Top and Bottom Plate used in FE Model

The 6-node triangular layered shell element used for modeling the face sheets has three

integration points for reduced integration.  The advantage of reduced integration is

computational economy, taking less time to analyze larger models.  Because the size of

the actual samples used in the finite element analysis in Chapters 4, 5 and 6 are relatively

large, and the files generated by ABAQUS are of substantial size, it is advantageous to

use reduced integration.  Furthermore, reduced integration sometimes “softens” the

model, making up for the overestimation in stiffness from a finite element analysis. The
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disadvantages to reduced integration are the decrease in accuracy of the model (Bathe,

1982) and the nodal discontinuities of strains between elements (Cook et al., 1989).  For

example, two elements sharing a common node could display significantly different

strain values.  This phenomenon is further discussed in Section 3.3.2.

Figure 3.3 Cell used for Actual Geometry

A three-dimensional view of a 4”x 4” unit cell used in the actual geometry models is

shown in Figure 3.3.  This unit cell is used to create all actual geometry models used in

the finite element analyses, despite the size, length or core orientation characteristics.

Once the unit cell is produced, it can be duplicated as many times as necessary in order to

create the desired model.
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3.3.2 Explanation of Results from Actual Geometry Model

The values from the finite element models are analyzed and compared with analytical and

experimental values.  The data consist of deflections and extensional longitudinal and

transverse strains, as well as shear strains.  In order to provide reasonable certainty about

the methods used for extracting the required data, a proper and consistent method must be

used.  The deflection values are calculated directly at the nodes by the finite element

program, and thus can be reported for the location of interest with relative certainty.

However, the strain data cannot be easily extracted and usually require additional

explanation.

Based on reduced integration, the output for strain is given at the three integration points

for the six-node triangular elements used for the face laminates.  The strain values at the

corner nodes and the centroid of each element are then calculated in ABAQUS through

interpolation functions.

The desired strain data are collected at the locations where strain gauges are placed for

the experimental evaluations.  Using the actual geometry models in the finite element

analyses, these locations always coincide with a node either on the top or bottom face

elements.
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Figure 3.4 Coincident Node (#4541) for the Eight Adjacent Elements

However, in this model, one node is common to eight different triangular elements, as

can be seen in Figure 3.4.  Thus, eight separate strain values are found at this node.

Because of the coarseness of the FE mesh, the strain values found at this node are not all

identical. To complicate things further, each triangular element consists of 19 layers, and

for each layer, ABAQUS can report the strain at top and bottom of the layer at each

integration point.
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Table 3.1 Range of Longitudinal and Transverse Nodal Strain Values for an
8” Wide Longitudinal Bending Model with 8’ Span

Element E11, microstrain % from Average E22, microstrain % from Average

2515 -555 5.6 129 31.7

2516 -531 1.1 259 37.2

2517 -455 13.4 246 30.3

2518 -561 6.8 129 31.7

2587 -649 23.5 172 8.9

2588 -371 29.4 203 7.5

2589 -449 14.5 200 6.0

2590 -632 20.3 172 8.9

Average -525.4 0.0 188.8 0.0

A consistent procedure to obtain reasonable strain values should be devised to smooth out

the inconsistencies in the values of strain at a given node.  At a nodal point, there are

eight nodal strain values found from each of the eight connecting elements.  Thus, the

average of each of the eight strain readings is taken and reported as the final strain

reading.  Table 3.1 shows an example of this procedure.  The data in Table 3.1 is for an

8-inch wide section (see Figure 3.4) of an 8-foot long longitudinal sample under bending.

The strain values are taken 6 inches away from the midspan of the top layer of the top

face sheet, at the center of the width of the beam.  This average value of eight strain

readings is later correlated with experimental data at location of SG#2 (see Figure 4.1 and

Table 4.1, Chapter 4).  As indicated in Table 3.1, a range of as much as ±30% for strain

reading compared to the average value is typical for every node in the model. The

described procedure is used to obtain the required strain values for each of the actual
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geometry models.  These values are later compared with analytical predictions and

experimental results.

3.3.3 Formulation of Equivalent Plate Model

Finite element models using equivalent orthotropic properties of face sheets and core,

described as in Chapter 2, are also produced for bending, torsion and panel analysis.

These models are much simpler to analyze and smaller in size compared to their

counterparts that simulate the actual panel geometry.

A similar process is used for the equivalent models as for the actual geometry models.  A

unit 4”x 4” cell is created.  For the finite element modeling of the deck panel, the cell

consists of one eight-node layered shell element (Figure 3.5); whereas for beam samples

under bending and torsion, the models use four eight-node layered shell elements within a

unit 4”x4” cell (Figure 3.6).

The equivalent plate models consist of three layers: a top plate, a core and a bottom plate.

Equivalent properties for each equivalent layer are given in Tables 2.1 and 2.5 of Chapter

2.  The simulation using an equivalent plate for a honeycomb sandwich panel is much

simpler than that of the actual geometry, thus there are far fewer nodes and elements.
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Figure 3.5 Equivalent Cell for FE Panel Analysis

Figure 3.6 Equivalent Cell for FE Beam Analysis
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3.3.4 Explanation of Results Taken From Equivalent Plate Models

Results are obtained through the same process that is used for the actual geometry

models.  The desired outputs from the equivalent plate models are the strain and

deflection values.  The data from the equivalent plate model are needed for comparison

with actual geometry FE models, analytical predictions and experimental results; thus,

the accuracy of the equivalent plate model can be verified, and it also indirectly validates

the equivalent orthotropic properties of face laminates and core as given in Chapter 2.

The deflection data are taken from the nodes directly.  The value of deflection at a given

location is provided by a nodal output, which shows deflections and rotations along three

principal axes.  The strain data required could be in one of two locations.  The strain

readings could either fall on a node, or at the centroid of an element.  If the strain reading

location falls at the centroid, the interpolated value of strain is taken. If the strain reading

location is at a node, then the average value of the contributing elements adjacent to the

node is taken.  The equivalent plate model is defined by regular rectangular elements,

resulting in more continuous strain data than for the actual geometry models.

3.4 Conclusions

This chapter provides a background for the experimental testing and finite element

modeling work reported in the following chapters.  The descriptions of the experimental

samples and testing protocol are useful in understanding sample types, testing
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arrangements, and procedures.  The formulation of the finite element models is important

in understanding some basic principles behind each different model; for instance, the size

and type of elements and material properties.  The method of data collection from each of

the two types of models is instrumental in understanding the accuracy of the FE

predictions and comparisons in the following chapters.
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Chapter 4

Evaluation of Sandwich Beams in Bending

4.1 Introduction

Characterizing the behaviors of FRP honeycomb sandwich panels in bending is important

for developing sound design guidelines that can be confidently applied. In this study,

beam samples with core orientations in the longitudinal and transverse directions are

tested in bending, and the experimental results are used to verify analytical predictions,

either in explicit form or by the finite element method.

In this chapter, a comprehensive characterization of FRP honeycomb sandwich beams

under bending is presented, base on experimental tests, numerical modeling (FE), and

explicit solutions.  First, the experimental setup, procedures and results for three- and

four-point bending tests are presented in detail.  Then, the simulations and results using

actual geometry and equivalent plate finite element models are discussed.  Finally, the

analytical solution using Timoshenko beam theory is formulated, and comparisons of the

results among experimental, numerical and analytical evaluations are given.
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4.2 Experimental Evaluation

Experimental bending tests were performed using the longitudinal and transverse samples

described in Chapter 3.  The bending tests were conducted using 3-point and 4-point

loading conditions with various span lengths.  The testing setup and instrumentation of

beam samples are described in Section 4.2.1.  The procedure used in the experimental

testing is presented in Section 4.2.2, and the results are given in Section 4.2.3.  Later in

this chapter (Section 4.5), the experimental results are correlated with theoretical

predictions and numerical simulations.

4.2.1 Instrumentation and Testing Setup

The testing samples used are those outlined in Chapter 3 of this thesis.  All four

longitudinal samples as well as all four transverse samples were instrumented with strain

gauges and LVDT’s.  These devices were placed at selected locations to provide us with

useful and reliable data.

The strain gauges used are 350-Ohm linear quarter bridge gauges.  There are four gauges

placed on each sample.  Each gauge is oriented along the length of the sample, as to

measure strain longitudinally with respect to the span length.  There are three gauges

bonded on the top face and one on the bottom face of each sample.  To provide adequate

space for the loading plate during the 3-point bending test, the gauges on the top face are

placed six inches away from the midspan of the beams, and they are spaced at w/4, w/2,
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and 3w/4 along the width w of the sample.  The purpose of this setup is to gain an

understanding of the strain distribution through the width of the sample.  The strain gauge

placement on the top plate of a beam sample is shown in Figure 4.1. On the bottom face

of the sample, one gauge is bonded and used to measure strain along the length.  This

gauge is bonded at the center of the beam, with respect to the length and width (Figure

4.1).  This is to provide us with the maximum tensile strain that the bottom face will

undergo during the testing.  It is felt that one gauge is sufficient to provide the maximum

strain on the bottom of the sample, since the normal strain distribution in tension is

expected to be approximately constant through the width; i.e., no shear lag effect.  All

strain gauges were bonded using the recommended materials and procedures from the

manufacturer (Micro-Measurements Group, Inc.).  A bondable terminal was used as not

to apply any stress on the lead wires during loading of the samples.

Linear Voltage Differential Transducers, or LVDT’s, are used to measure the

displacements during the experiments.  The placement of the LVDT’s is based on the

span length.  They are placed at L/3, L/2 and 2 L/3, where L is the span length.  At these

locations and along the width of the sample, a wire is strung from one edge of the bottom

plate to the other edge of the bottom plate, and the core of the LVDT is then hung from

the center of the wire, in order to decrease localized effects and improve accuracy.

A two-kip load cell is used to measure the amount of load being placed on the samples,

and the load is applied with a manually operated hydraulic jack supported by a testing

frame.
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Figure 4.1 Strain Gauge Locations of Beam Samples

4.2.2 Procedure

The experimental testing was conducted strictly within the linear elastic response of the

material.  A constant load rate was applied to each sample, and as a consequence of the

loading apparatus used, the load rate was controlled by deflection, and thus determined

by the specific loading configuration and stiffness of the sample.

Each sample was tested under 3-point and 4-point loading conditions. For the 3-point

test, the load was applied through a swivel mechanism onto the loading plate located at

the midspan of the beam.  The 3-point bending configuration is shown in Figure 4.2. For
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the 4-point bending condition, the load was applied through a swivel and onto a spreader

beam, which transferred the applied load equally onto the test sample at L/3 and 2L/3.

The 4-piont bending configuration is illustrated in Figure 4.3.

The testing started with the longitudinal samples with a 15’ span.  First a sample is tested

under three-point bending, and next under four-point bending.  After the four longitudinal

samples are tested in three- and four-point bending conditions, the supports are moved

inward and the span is reduced to 11.5’.  Each sample is then tested in three- and four-

point bending configurations.  Similarly, the beams were further tested for spans of 8’

and 5.5’.

Since the transverse samples are only 9’ in length, they are tested at the spans of 8’ and

5.5’.  At 8’ spans, the longitudinal and transverse samples are tested in both three- and

four-point bending configurations.  At the 5.5’ span, the samples are only tested in three-

point bending, due to the short span length.

4.2.3 Results

Results for the experimental bending tests are shown in Tables 4.1 through 4.4.  The

results of the longitudinal samples in three-point bending are shown in Table 4.1, while

the four-point bending results are given in Table 4.2.  The results of transverse samples

under three-point bending and four-point bending are provided in Tables 4.3 and 4.4,

respectively.  All strain data is given in microstrain per kilo-pound (kip) of loading, and
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the displacement data is given in inches per kip of loading.  Each sample is tested twice

and the average value is presented

After the two samples with the same core orientation and width are tested, the

corresponding values are averaged and shown in the tables.  There are some occasional

discrepancies in correlating values (e.g., the deflections in Table 4.1 for 5.5’ span), but in

general, the bending responses for similar samples seems to be easily duplicated, and the

amount of experimental error is generally small.
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Figure 4.2 Bending Configuration for 3-point Loading

Figure 4.3 Bending Configuration for 4-point Loading
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Table 4.1 Experimental 3-Point Bending Results for Longitudinal Samples

Strains, microstrain/kip Deflection, inches/kip

Top Bottom

Span Width Sample

1 2 3 1 L/3 L/2 2L/3

#1 -557 -530 -539 547 0.5675 0.6912 0.5592

#2 -509 -475 -519 593 0.554 0.6774 0.5473

12 inch

Average -533 -502.5 -529 570 0.56075 0.6843 0.55325

#1 -849 -835 -858 814 0.8348 1.0055 0.8103

#2 -781 -790 -851 857 0.8312 0.9989 0.817

15 ft

8 inch

Average -815 -812.5 -854.5 835.5 0.833 1.0022 0.81365

#1 -417 -396 -403 418 0.2586 0.3181 0.2624

#2 -376 -349 -386 458 0.2575 0.3236 0.2702

12 inch

Average -396.5 -372.5 -394.5 438 0.25805 0.32085 0.2663

#1 -613 -608 -637 616 0.3827 0.4663 0.3855

#2 -593 -592 -643 650 0.3795 0.4662 0.3967

11.5 ft

8 inch

Average -603 -600 -640 633 0.3811 0.46625 0.3911

#1 -278 -260 -267 284 0.0813 0.1050 0.0872

#2 -230 -216 -262 321 0.0942 0.1258 0.1048

12 inch

Average -254 -238 -265 303 0.0878 0.1154 0.0960

#1 -415 -404 -412 420 0.1324 0.1598 0.1351

#2 -383 -383 -407 457 0.1287 0.1613 0.1383

8 ft

8 inch

Average -399 -394 -410 439 0.1306 0.1606 0.1367

#1 -168 -168 -178 194 0.0340 0.0420 0.0345

#2 -172 -132 -135 224 0.0493 0.0597 0.0430

12 inch

Average -170 -150 -157 209 0.0417 0.0509 0.0388

#1 -258 -263 -276 290 0.0497 0.0584 0.0513

#2 -251 -246 -260 306 0.0514 0.0631 0.0565

5.5 ft

8 inch

Average -255 -255 -268 298 0.0506 0.0608 0.0539
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Table 4.2 Experimental Results for Longitudinal 4-Point Bending

Strains, microstrain/kip Deflection, inches/kip

Top Bottom

Span Width Sample

1 2 3 1 L/3 L/2 2L/3

#1 -390 -378 -387 369 0.487 0.5925 0.4786

#2 -390 -354 -371 378 0.482 0.551 0.4677

12 inch

Average -390 -366 -379 373.5 0.4845 0.57175 0.47315

#1 -610 -578 -581 539 0.7171 0.8304 0.6963

#2 -561 -564 -608 577 0.7211 0.8415 0.7076

15 ft

8 inch

Average -585.5 -571 -594.5 558 0.7191 0.83595 0.70195

#1 -296 -289 -297 282 0.2131 0.2627 0.2232

#2 -317 -274 -270 293 0.2272 0.2633 0.2308

12 inch

Average -306.5 -281.5 -283.5 287.5 0.22015 0.263 0.227

#1 -432 -444 -480 410 0.3281 0.3837 0.3273

#2 -427 -432 -474 440 0.3294 0.3861 0.34

11.5 ft

8 inch

Average -430 -438 -477 425 0.3288 0.3849 0.3337

#1 -211 -202 -203 197 0.0733 0.0897 0.0788

#2 -223 -195 -191 202 0.0854 0.1048 0.0902

12 inch

Average -217 -199 -197 200 0.0794 0.0973 0.0845

#1 -322 -308 -311 285 0.1175 0.1360 0.1182

#2 -303 -300 -318 304 0.1133 0.1365 0.1214

8 ft

8 inch

Average -313 -304 -315 295 0.1154 0.1363 0.1198
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Table 4.3 Experimental 3-Point Bending Results for Transverse Samples

Strains, microstrain/kip Deflection, inches/kip

Top Bottom

Span Width Sample

1 2 3 1 L/3 L/2 2L/3

#1 -519 -518 -463 560 0.1655 0.2066 0.1766

#2 -496 -520 -482 567 0.1666 0.2078 0.1701

12 inch

Average -507.5 -519 -472.5 563.5 0.16605 0.2072 0.17335

#1 -670 -703 -686 851 0.2825 0.3429 0.2868

#2 -718 -705 -773 910 0.2582 0.3274 0.2616

8 ft

8 inch

Average -694 -704 -729.5 880.5 0.27035 0.33515 0.2742

#1 -330 -332 -301 388 0.0638 0.0791 0.0660

#2 -289 -320 -264 384 0.0673 0.0813 0.0660

12 inch

Average -310 -326 -283 386 0.0656 0.0802 0.0660

#1 -443 -435 error 648 0.0991 0.1250 0.1063

#2 -431 -460 -441 531 0.0996 0.1163 0.0960

5.5 ft

8 inch

Average -437 -448 -441 590 0.0994 0.1207 0.1012

Table 4.4 Experimental Results for Transverse 4-Point Bending

Strains, microstrain/kip Deflection, inches/kip

Top Bottom

Span Width Sample

1 2 3 1 L/3 L/2 2L/3

#1 -406 -404 -370 386 0.1475 0.1726 0.157

#2 -399 -403 -389 377 0.1455 0.1795 0.15

12 inch

Average -402.5 -403.5 -379.5 381.5 0.1465 0.17605 0.1535

#1 -547 -565 -554 561 0.2422 0.2742 0.2437

#2 -554 -544 -589 578 0.2308 0.2751 0.2325

8 ft

8 inch

Average -550.5 -554.5 -571.5 569.5 0.2365 0.27465 0.2381
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4.3 Finite Element Evaluation in Bending

To further correlate results from analytical solutions and experimental testing, a finite

element analysis of each individual sample is performed, and each model is constrained

and loaded following the experimental conditions.

4.3.1 Actual Core Geometry Finite Element Model

There are two different models developed for the finite element evaluation of beam

samples.  First, a model using the actual core geometry is produced and analyzed.  This

model uses the 4” x 4” cell described in Section 3.3.1.  Once this cell is produced, it can

be copied any number of times, and in any direction.  Thus all longitudinal and transverse

beam models are defined using this cell.

For each beam model, the appropriate loading and constraints are applied.  A simply-

supported boundary condition is specified to eliminate axial strain effects and to simulate

actual experimental conditions.  Because of the significant number of nodes and elements

in the model, the concept of symmetry is exploited to decrease processing time and

reduce the size of the model.  By applying a shear release on all the nodes at the midspan

of the beam, the length of the model can be cut in half.  For the symmetric half, the

boundary conditions allow for transverse and lateral translations, but constrain the

longitudinal translations and in-plane rotations.  To prevent instability of the model, one

node must be constrained against lateral displacement.
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Because of the numerous span lengths for the experimental testing, it is impractical to

make a different model for each test.  Thus, the end roller supports are moved to the

proper location for a given span.  Although this will cause one end of the model to have a

cantilevered portion, it is of no consequence since the beam model has no self-weight.

For the roller supports, translation is restrained in the transverse direction, but not in the

axial direction.  No rotation is constrained at the roller-support location, and the only

other constraint is the lateral translation on one node to prevent instability.

The loading of the model consisted of a line load.  To simulate the experimental load, a

number of nodes spanning the width of the sample are defined by a line.  The load per

unit width is then placed on this line and automatically discretized to the nodes.  Because

we are dealing with different width samples, this value differs.  However, for all samples,

there is 500 pounds of applied load for both 3-point and 4-point bending and due to the

use of symmetry, this results in a total of one kip applied to a full model.

For the 3-point bending case, the load is applied on the top face sheet at the edge of the

beam where the shear release exists.  For the 4-point bending case, the load is applied at a

distance of L/6 from the shear release, where L is the total span length.
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4.3.2 Equivalent Plate Finite Element Model

The models using the equivalent plate properties in the finite element investigation are

formulated using the procedures outlined in Section 3.3.3 of Chapter 3.  The eight-node

shell elements in ABAQUS with dimensions of 2” x 2”are used to simulate the beam

models, and the shell element consists of three layers: top and bottom face sheets and a

homogenized core.  The equivalent properties for all three layers are given in Chapter 2.

Unlike the actual geometry models in which only half of the beam is created and the

symmetry of the samples is exploited, the equivalent plate model uses the entire length of

each beam.

The boundary conditions are simply supported, as explained before for the actual

geometry model.  One beam model is produced for each width and used for all span

lengths, and the constraints are adjusted accordingly.

The load is applied using line loadings for both the three- and four-point bending

conditions.  The full load of 1000 pounds is placed at the midspan of the beam for the

three-point bending and discretized accordingly. The four-point bending conditions

consist of the load being placed at two locations, a distance of L/6 from the midspan

toward both supports.  A load of 500 pounds is applied to each line to simulate the four-

point bending conditions.
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4.3.3 Finite Element Bending Predictions

The finite element predictions are given for the actual core geometry and the equivalent

plate models.  For each of these models, the strains and deflections are taken at the same

locations as for the experimental testing.  The FE results are compared with the analytical

predictions and the experimental data in the following sections.

The predictions of the finite element analysis using the actual geometry models are given

in Tables 4.5 and 4.6.  The values for deflection and strain of the actual core geometry

model are found using the procedures outlined in Section 3.3.2 of Chapter 3.  The results

of interest are the normal strain and transverse deflection values.  The results for the

longitudinal samples are listed in Table 4.5, and for the transverse samples are listed in

Table 4.6.  Each value is given in units per one kip of loading.  As an illustration, the

displacement and strain contour for one sample is given in Figures 4.4 and 4.5,

respectively.

It should be noted that the strain values presented for the actual geometry finite element

models can fluctuate widely within the distance of a couple of inches.  This is partially

due to the unusual shape of the elements on the face laminates as discussed in Section

3.3.2 of Chapter 3.  While the experimental strain readings are taken at w/4, w/2 and

3w/4, where w is the width of the beam sample, the actual geometry FE strain values are

shown only at w/4 and w/2.  This is due to the symmetry that exists about the mid-width

of the beam samples.  Although the strain values at w/4 and 3w/4 obtained from model
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Table 4.5 Strains and Deflection Predictions of Longitudinal Samples using the
Actual Core Geometry Finite Element Model

Strains,
microstrain/kip

Deflection,
in/kip

Span Width Bending
Type

Top-w/4 Top-w/2 Bottom L/3 of Span L/2 of Span

3-point -731 -537 659 0.645 0.70112-inch

4-point -524 -383 435 0.562 0.645

3-point -678 -835 964 0.921 1.087

15-foot

8-inch

4-point -482 -596 646 0.803 0.921

3-point -548 -403 507 0.294 0.34812-inch

4-point -402 -293 334 0.257 0.294

3-point -510 -626 738 0.421 0.498

11.5-foot

8-inch

4-point -370 -457 495 0.368 0.421

3-point -342 -268 354 0.103 0.12212-inch

4-point -258 -204 233 0.09 0.103

3-point -407 -525 513 0.155 0.184

8-foot

8-inch

4-point -308 -400 345 0.136 0.155

12-inch 3-point -221 -173 245 0.036 0.0435.5-foot

8-inch 3-point -264 -338 352 0.054 0.065

Table 4.6 Strains and Deflection Predictions of Transverse Samples using the Actual
Core Geometry Finite Element Model

Strains,
microstrain/kip

Deflection,
in/kip

Span Width Bending
Type

Top-w/4 Top-w/2 Bottom L/3 of Span L/2 of Span

3-point -490 -510 481 0.167 0.212-inch

4-point -370 -381 348 0.147 0.167

3-point -758 -741 833 0.251 0.301

8-foot

8-inch

4-point -567 -551 567 0.221 0.251

12-inch 3-point -317 -331 318 0.06 0.0735.5-foot

8-inch 3-point -491 -483 567 0.09 0.109
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Figure 4.4 Deformed Shape of Actual Geometry Model of 8” Longitudinal Sample
Under 3-point Bending with 15’ Span

Figure 4.5 Strain Distribution of Actual Geometry Model 8” Longitudinal Sample
using 3-point bending with a 15’ Span
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are sometimes not identical due to the complexity and uniqueness of the elements, the

variation is relatively small.  Thus, the two compressive strain values along the width can

serve to interpolate an average strain for the top face sheet.

There is one strain reading taken on the bottom face of the sample, as in the experiment.

This FE strain reading is taken at one inch from the symmetric boundary condition,

directly at the mid-width of the sample.  This is to avoid any localized effects associated

with the constraint.  The deflection values are taken at nodes located at the mid-width of

the sample and at the same locations as in the experiment.  The deflection values

remained relatively constant through the cross-section at any location.

The values of the finite element analysis using the equivalent plate models are shown in

Tables 4.7 and 4.8, respectively, for the longitudinal and transverse samples.  Unlike the

actual geometry FE models, the strain distribution throughout the width is uniform.

Since the models have elements with rectangular shapes, the strain values are constant

and thus easily extracted.  A graphical output for one sample is shown in Figures 4.7 and

4.8.
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Table 4.7 Strains and Deflection Predictions of Longitudinal Samples using the
Equivalent Plate Finite Element Model

Strains,
microstrain/kip

Deflection,
in/kip

Span Width Bending
Type

Top-w/4 Top-w/2 Bottom L/3 of Span L/2 of Span

3-point -665 -665 713 0.668 0.78812-inch

4-point -475 -475 475 0.583 0.668

3-point -998 -998 1069 1 1.18

15-foot

8-inch

4-point -712 -712 712 0.874 1

3-point -499 -499 546 0.305 0.3612-inch

4-point -364 -364 364 0.266 0.305

3-point -748 -748 820 0.457 0.541

11.5-foot

8-inch

4-point -546 -546 546 0.399 0.399

3-point -333 -333 380 0.105 0.12612-inch

4-point -253 -253 253 0.092 0.105

3-point -561 -561 571 0.158 0.189

8-foot

8-inch

4-point -403 -403 380 0.139 0.158

12-inch 3-point -214 -214 261 0.036 0.0445.5-foot

8-inch 3-point -321 -321 393 0.055 0.66

Table 4.8 Strains and Deflection Predictions of Transverse Samples using the
Equivalent Plate Finite Element Model

Strains,
microstrain/kip

Deflection,
in/kip

Span Width Bending
Type

Top-w/4 Top-w/2 Bottom L/3 of Span L/2 of Span

3-point -561 -561 641 0.185 0.22312-inch

4-point -403 -403 403 0.154 0.174

3-point -793 -793 907 0.262 0.315

8-foot

8-inch

4-point -604 -604 604 0.231 0.262

12-inch 3-point -361 -361 441 0.066 0.0815.5-foot

8-inch 3-point -510 -510 624 0.094 0.115
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Figure 4.6 Deformed Shape of Equivalent Plate Model of
8” Longitudinal Sample Under 3-point Bending with 15’ Span

Figure 4.7 Strain Distribution of Equivalent Plate Model of
8” Longitudinal Sample using 3-point bending with a 15’ Span
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4.4 Analytical Solutions

The equivalent panel properties that are found in Chapter 2 are now used to predict

responses of the three and four-point bending tests.  These responses will be compared

with the predictions of the finite element models, as well as the experimental results.  A

good correlation of values can verify the accuracy of the equivalent panel properties.

In order to find responses of bending tests, the stiffnesses of the beams must be defined in

a rational way.  Because shear deformation is significant in FRP sandwich beams, due to

the relatively low shear stiffness of composites and possible short spans in actual

applications, both the bending and shear stiffnesses are formulated using beam theory.

The beam bending stiffness D consists of face in-plane tensile stiffness and the core

bending stiffness, and is expressed as

    (4.1)

where b is the beam width, d is the beam depth, t is the face thickness, and subscripts f

and c are associated with face and core properties.

The shear stiffness of the beam can be simplified by neglecting the face shear

deformation, and thus can be expressed as

          (4.2)








 −+−= cf E
td

E
ttd

bD
12

)2(

2

)( 32

bdGGA xz
e=)(κ



65

where Ge
xz is the out-of-plane shear modulus of the core and given in Chapter 2.  The

shear correction factor, �, is approximated as 1.0 for this study.

The responses of interest are the maximum strain at center span, the deflection at half-

span and the deflection at one-third span. The analytical results are based on the first-

order shear deformation theory.  It is reasonable to assume that the transverse shear strain

is constant throughout the thickness of the beam, thus using Timoshenko beam theory,

the governing differential equations are as follows:

  (4.3)

         (4.4)

where w denotes the deflection, and � represents the first derivative of the deflection due

to bending.

Combining the two previous equations, the maximum mid-span deflections for 3-point

(δ3) and 4-point (δ4) loading can be written as
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where P is the total applied load and L is the span length.  The results of the closed-form

solution are given in Tables 4. through 4.12, in which all values of the comparable

bending studies are shown.

Table 4.9 Comparison of Deflections for Longitudinal Beam Samples

Span, Width, Bending Deflection, in./kip

FE Model

Actual Equivalent

Analytical Experimentalfeet inches Type

1/2
Span

1/3
Span

1/2
Span

1/3
Span

1/2
Span

1/3
Span

1/2
Span

1/3
Span

3-point 0.701 0.645 0.788 0.668 0.753 0.639 0.684 0.55712"

4-point 0.645 0.562 0.668 0.583 0.639 0.557 0.572 0.479

3-point 1.087 0.921 1.180 1.000 1.130 0.958 1.000 0.824

15.0'

8"

4-point 0.921 0.803 1.000 0.874 0.958 0.835 0.836 0.711

3-point 0.348 0.294 0.360 0.305 0.344 0.291 0.321 0.26212"

4-point 0.294 0.257 0.305 0.266 0.291 0.254 0.263 0.224

3-point 0.498 0.421 0.541 0.457 0.517 0.437 0.466 0.386

11.5'

8"

4-point 0.421 0.368 0.399 0.399 0.437 0.381 0.385 0.331

3-point 0.122 0.103 0.126 0.105 0.120 0.101 0.115 0.09212"

4-point 0.103 0.090 0.105 0.092 0.101 0.088 0.097 0.082

3-point 0.184 0.155 0.189 0.158 0.180 0.151 0.161 0.134

8.0'

8"

4-point 0.155 0.136 0.158 0.139 0.151 0.133 0.136 0.117

12" 3-point 0.043 0.036 0.044 0.036 0.042 0.035 0.051 0.045.5'

8" 3-point 0.065 0.054 0.660 0.055 0.063 0.052 0.061 0.052

Table 4.10 Comparison of Deflections for Transverse Beam Samples

Span, Width, Bending Deflection, in./kip

FE Model

Actual Equiv.

Analytical Experimentalfeet inches Type

1/2
Span

1/3
Span

1/2
Span

1/3
Span

1/2
Span

1/3
Span

1/2
Span

1/3
Span

3-point 0.200 0.167 0.223 0.185 0.202 0.169 0.207 0.1712"

4-point 0.167 0.147 0.174 0.154 0.169 0.148 0.176 0.15

3-point 0.301 0.251 0.315 0.262 0.304 0.253 0.335 0.272

8.0'

8"

4-point 0.251 0.221 0.262 0.231 0.253 0.223 0.275 0.237

12" 3-point 0.073 0.060 0.081 0.066 0.073 0.060 0.08 0.0665.5'

8" 3-point 0.109 0.090 0.115 0.094 0.109 0.089 0.121 0.1
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Table 4.11 Strain Comparisons of Longitudinal Beam Samples

Strain @ 1/2 Span, microstrain/kip

FE Models

Actual Equivalent

Analytical Experimental

Span,
feet

Width,
inches

Bending
Type

Comp. Tens. Comp. Tens. Comp. Tens. Comp. Tens.

3-point -666 659 -665 713 -637 683 -521 57012"

4-point -477 435 -475 475 -455 455 -378 373.5

3-point -730 964 -998 1069 -956 1024 -827 836

15.0'

8"

4-point -520 646 -712 712 -683 683 -584 558

3-point -500 507 -499 546 -478 524 -388 43812"

4-point -366 334 -364 364 -349 349 -291 288

3-point -549 738 -748 820 -717 785 -614 633

11.5'

8"

4-point -399 495 -546 546 -524 524 -448 425

3-point -317 354 -333 380 -319 364 -252 30312"

4-point -240 233 -253 253 -243 243 -204 200

3-point -446 513 -561 571 -478 546 -401 439

8.0'

8"

4-point -339 345 -403 380 -364 364 -311 295

12" 3-point -205 245 -214 261 -205 250 -159 2095.5'

8" 3-point -289 352 -321 393 -307 376 -259 298

Table 4.12 Strain Comparisons of Transverse Beam Samples

Strain @ 1/2 Span, microstrain/kip

FE Models

Actual Equivalent

Analytical Experimental

Span,
feet

Width,
inches

Bending
Type

Comp. Tens. Comp. Tens. Comp. Tens. Comp. Tens.

3-point -497 481 -561 641 -521 595 -500 56412"

4-point -374 348 -403 403 -397 397 -395 382

3-point -752 833 -793 907 -781 892 -709 881

8.0'

8"

4-point -562 567 -604 604 -595 595 -559 570

12" 3-point -322 318 -361 441 -335 409 -306 3865.5'

8" 3-point -488 567 -510 624 -502 614 -442 590
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4.5 Discussion of Results

A comparison of strain and displacement results is shown in Tables 4.9 through 4.12.  It

can be noted that experimental values correlate well with both actual geometry and

equivalent plate finite element models, as well as analytical predictions.

The finite element values presented in the comparison tables are taken from Section 4.3.

The compression strain values for the actual geometry model are taken as an average of

the three locations on the top plate.  The experimental values are also taken as an average

of the three gauges on the top plate.  Experimental samples of the same width and core

orientation are averaged together as well.  All strain values for the experimental analysis

are given in Tables 4.1 through 4.4.  Compressive strain values are taken six inches from

the midspan of the beam, while the tensile strain readings are taken directly at the

midspan.  The experimental deflections at L/3 as presented in the tables are taken as an

average of the L/3 and 2L/3 readings for the beams.  Each value given in Table 4.9

through 4.12 is for one kip of loading.

The finite element and analytical predictions of displacements for the longitudinal

samples are generally higher than the experimental values.  This is also the case with the

strain values, although the percentage difference is somewhat larger.  A possible reason

for the differences between experimental values and analytical and numerical predictions

may be due to geometric variations of the experimental samples.  For example, the

longitudinal 12” wide samples could have a width of almost 13” in some locations.  The
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longitudinal 8” wide sample could be up to 9” in width in some locations.  This is due to

geometric imperfections in the manufacturing and fabrication process.  Also, the

longitudinal samples tended to delaminate the faceplates from the core, due to a weak

interface bond.  Since the bending resistance is mostly carried by the top and bottom

faceplates, this delamination does not play a significant role.

The experimental deflection results of the transverse beams are generally higher than the

predictions from analytical and numerical models.  Also, the equivalent plate finite

element models give larger deflection values than the actual geometry FE models and

analytical predictions.  Although there is some difference in values, there is a good

correlation in the comparisons of experimental results with each model.  The

experimental strains in the transverse beams also compare well with both FE and

analytical models.

An area of concern with analytical and finite element modeling of the beam samples is

the core.  It is assumed that the core is perfectly attached to the faceplates. As stated

earlier, this is not true.  However, the bonds between the core and face laminates of the

transverse samples are generally better than that of the longitudinal samples.  Basically,

the transverse samples may have more contacts along the interface; whereas it is easy to

introduce imperfection along the bonds for longitudinal samples, since the quality along

the long bonding lines might be difficult to control.  This may account for the fact that the

transverse samples tend to have better correlations with predicted values.
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Chapter 5

Evaluation of Sandwich Beams in Torsion

5.1 Introduction

Analytical models are valuable for describing responses of the FRP honeycomb panel

considered in this study, particularly explicit solutions that can be used in design.

However, due to the complex geometry of the sandwich panel, a closed-form solution for

torsion is not available at this time.  Thus, an experimental study is presented,

supplemented by a finite element analysis to evaluate the response of the samples in

torsion.  The calibration of the torsion machine to evaluate its accuracy is outlined in

Section 5.2.  The experimental investigation of the FRP sandwich beam samples is given

in Section 5.3, while the finite element modeling of the samples in torsion is presented in

Section 5.4.

5.2 Calibration of the Torsion Testing Machine

To validate the accuracy of the experimental torsion tests, it is necessary that the machine

be calibrated using a sample with a known shear modulus.  This section describes the

torsion machine and experimental torsion method, followed by a combined analytical,

experimental, and finite element evaluation of the torsional response of an aluminum bar.
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5.2.1 Overview of Experimental Methods

The machine used to experimentally test samples in torsion was designed by a former

graduate student, James Brokaw in 1992, and subsequently used by doctoral student Hani

Salim in 1996, among others.  A diagram of the torsion machine is show in Figure 5.1.

beam 
sample 

Location of LVDTs 

Gage length 

Torsion grip 

Load frame 

Counter-Balance 

Support beam 

Turnbuckle 

Load beam 
Hydraulic jack 

Figure 5.1 Torsion Machine

As shown in Figure 5.1, the test sample is placed between two grips, which hold the

sample at the ends. A hydraulic jack applies a vertical load to a loading beam suspended

diagonally from the moment arms at the ends.  The load is transferred to turnbuckles,

which in turn apply opposite loads to the moment arms at the grips.  These loads applied

to the moment arms cause the grips to rotate in opposite directions, thus applying a torque

to the sample.  The magnitude of the load transferred to each turnbuckle is approximately
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one-half the load applied by the hydraulic jack, and the load applied to the turnbuckle

when multiplied by the length of the moment arm produces the torque applied to the

sample.  Because both ends of the sample rotate by about the same angle, the sample will

rotate with respect to its mid-length, which will behave as a fixed boundary condition.

5.2.2 Analytical Predictions for Aluminum Test Sample

A 6061-T6 aluminum bar with dimension of 6” x 1” x 10’ is used for the calibration

process.  The aluminum bar was chosen because of its well-documented isotropic

material properties.  Using St. Venant’s isotropic torsion solution, the published shear

modulus and geometric properties can be used to find the angle of rotation, as well as the

maximum shear strain for a given torque. Using the isotropic material constants, the shear

modulus of the aluminum bar can be found as follows, for E = 11,000 ksi and � = 0.30.

        (5.1)

Boresi, Schmidt and Sidebottom (1993) reported the St. Venant’s solution for an isotropic

rectangular cross-section as

  (5.2)

  (5.3)

where � = angle of rotation per unit length in radians; �max = maximum shear stress at
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k1 and k2 are based on the ratio of b/h.  In this case, k1 = k2 = 0.299.  The predicted values

of � and �max from equations (5.2) and (5.3), respectively, are given in Table 5.1.

Table 5.1 Analytical Predictions using St. Venant’s Solution

Distance from Midspan
of Sample, inches

Strain,
Microstrains/kip-inch

Angle of Rotation,
Radians/kip-inch

0” 131.8 0.0

24” -- 0.00317

36” -- 0.00475

5.2.3 Experimental Results for Aluminum Bar

The goal of the experimental testing is to find the rotational response of the aluminum

sample.  Based on the data, a corresponding shear modulus can be calculated using the St.

Venant’s solution.  The instrumentation of the aluminum sample consists of four

LVDT’s.  The core of each LVDT is suspended from an attached arm placed at 36” from

the midspan of the sample towards the end-grip.  The length of the attached arm is 30”

from the mid-width of the sample.  This instrumentation with attached arms is used to

provide more accurate displacement readings of the LVDT’s, as shown in Figure 5.2.

The displacements are used to calculate the angle of rotation of the sample.  When the

sample undergoes an applied torque, the LVDT’s will measure the displacements at their

specific locations.  The deformed and undeformed cross-section of the sample, and the

corresponding displacements are shown in Figure 5.3.
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Figure 5.2 LVDT Locations of Aluminum Sample

Figure 5.3 Deformed Shape of Aluminum Sample
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For each LVDT, the angle of rotation in radians is calculated by dividing the absolute

value of the corresponding displacement by the arm length, l.  Theoretically, the absolute

value of the displacement should be the same for all LVDT locations.  However, due to

geometric variations in the testing setup and/or experimental errors, the angle of rotation

values are not all identical.

It should be noted that the section of the bar that undergoes no rotation should be the

midspan of the sample, but during the testing, this condition was not  precisely satisfied.

However, it would be tedious and to no advantage to try to find the neutral location along

the bar.  The angle of twist was found by averaging the corresponding values for all four

LVDT’s, and therefore, a fixed-free sample gauge length of 36” can be used in the

analysis.

The amount of force, P, applied to the load beam was measured using a 2-kip load cell,

and the torque is calculated using the following equation:

   (5.4)

where, T = torque (kip-in), P = load (kip), r = moment arm length (36 in).

Once the data for the applied load and displacement measurements are recorded, they are

used to find the experimental value of the shear modulus using Saint Venant’s solution

for an isotropic narrow rectangular bar as

                           (5.5)
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where T = applied Torque (kip-in); b = width of bar (6 in); h = height of bar (1 in);

k1 = constant based on bar geometry (k1 = 0.299 for 6” x 1” rectangular bar);

L = gauge length (36 in); � = angle of twist (rad).

The experimental values for the shear modulus were found from three tests.  The

experimental results, along with the percent differences with respect to the theoretical

value (G = 4230 ksi) are given in Table 5.2.

Table 5.2 Experimental Results for Aluminum Bar

Test Number Average Angle of Twist,
rad/kip-in

Shear Modulus,
ksi

Percentage Difference
From Theoretical

Value
Test #1 .004582 4380 3.5%
Test #2 .004534 4426 4.6%
Test #3 .004506 4453 5.3%

An average percent difference of 4.5% is obtained from the calibration test, and such a

small difference gives us the confidence to proceed with the torsion testing of the FRP

composite beam samples.
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5.2.4 Finite Element Modeling of Aluminum Bar

A finite element analysis is used to provide additional verification of the experimental

and analytical results for the calibration of the testing machine.  Moreover, the finite

element modeling of the aluminum bar will also serve as a first step to develop a finite

element model for the torsion of the FRP honeycomb samples.

The 6061-T6 aluminum bar is modeled with ABAQUS, using FEMAP as a pre- and post-

processor.  The mesh consists of 8-node shell elements, and each element is 3” x 3”, with

an aspect ratio of 1.  The cross-sectional data is input in the preprocessor, and the relevant

geometric properties are calculated automatically.  The material data used for linear

elastic analysis is the same as for the explicit solution.

It is assumed that during the experimental testing, the same magnitude of torque is

applied to each grip of the machine.  Theoretically, this provides a location of no rotation,

or point of fixity, at the midspan section of the sample, given that the sample tested has

symmetric material and geometric properties about the midspan. Thus, a model with a

length of 36”is used, corresponding to the gauge length of the experimental tests (see

Figure 5.2).

The boundary conditions used in the finite element analysis are fixed at one end of the

bar and free at the opposite end, where the torque is apllied by means of a moment
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couple, consisting of two equal but opposite concentrated loads placed on the two edges

of the model (Figure 5.4).  The total applied torque was 1 kip-in.

From the finite element analysis, the shear strains and the nodal displacements are the

quantities of interest and are given in Table 5.3.

Table 5.3 Finite Element Results for Aluminum Bar

Distance from Fixed
Support, inches

Maximum Shear Strain,
microstrain/kip-in

Angle of Rotation,
Radians/kip-in

24” 118 0.00294

36” 121 0.00442

Figure 5.4 Finite Element Modeling of Aluminum Bar
Showing Shear Strain Distribution
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5.2.5 Discussion of Calibration Test

Three different analyses are presented in the previous section.  The results for angle of

rotation at the gauge length of L = 36” for all three analyses are given in Table 5.4.

Table 5.4 Summary of Angle of Rotation for the Aluminum Bar

Analytical
Prediction

Finite Element
Prediction

Experimental
Results, Average

Angle of Rotation at
Gauge Length

L=36”,
radians/kip-in

0.00475 0.00442 0.00454

From Table 5.4, the percent difference between the analytical prediction and the average

experimental result is 7.5%, while the difference between the finite element analysis and

the average experimental result is 2.7%.  The small percent differences provide

confidence to proceed with the FE modeling, as well as experimental testing (see Table

5.2), of the FRP honeycomb samples.
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5.3 Experimental Evaluation of FRP Honeycomb Sandwich Beams in Torsion

Through bending tests described in Chapter 4, bending behaviors in the longitudinal and

transverse directions were characterized and successfully correlated with analytical and

finite element analyses.  The bending tests are also useful to indirectly evaluate the out-

of-plane shear stiffnesses in the longitudinal and transverse directions.  However, a better

test is required to study the shear behavior of the FRP honeycomb samples.  Thus, in this

chapter a torsion experimental method and finite element analysis are used to better

characterize the in-plane and out-of-plane shear stiffnesses of the FRP honeycomb panel.

The torsion tests are performed using the calibrated machine outlined in Section 5.2.2 and

pictured in Figure 5.1.  The samples that are used are outlined in Section 3.2.2, which

include 4 longitudinal samples and 4 transverse samples with widths of 8” and 12”.  Two

samples per each type were tested to provide more general data.

5.3.1 Instrumentation and Setup

The instrumentation of the test samples consists of two strain gauges (±45° to record

shear strain) and four LVDT’s.  These sensors are positioned at the same locations on

each beam specimen, regardless of sample type.  This scheme allows for uniform testing

results of all specimens.

The strain gauges used are intended for shear strain measurements.  Manufactured by

Micro-Measurements Group, each gauge contains two separated grids, which are oriented
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at ±45° with respect to the longitudinal axis of the sample.  Each grid, or strain gauge leg,

is independently connected to provide its own strain readings.  The gauges are placed

symmetrically, each at two feet away from the midspan towards the end-support and

along the centerline of the beam width.  In order to measure the angle of rotation of the

sample, four LVDT’s are used.  Two LVDT’s are placed on each side at three feet away

from the midspan in the direction of the end-support. The placement of the LVDT’s as

well as the location of the strain gauges are shown in Figure 5.5.

Figure 5.5 Location of LVDT’s and Strain Gauges

Each LVDT is attached to the sample using an 8-inch steel channel section over the edge

of the samples, with a 24-inch steel rod welded normal to the outside face of the channel

section.  The channel slides over the edge of the FRP sample, and is held in place by

setscrews drilled and tapped into the flanges of the channel.  The channel section is set in

such a way that the angle of rotation with respect to the mid-height of the beam is
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measured.  This scheme is used to permit warping deformations while minimizing local

effects.  A picture of a transverse sample ready for testing in the machine is shown in

Figure 5.6, and the details of the testing setup are shown in Figure 5.7.

Figure 5.6 Transverse Sample Prepared for Experimental Torsion Test
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Fig 5.7 (a) Initial Cross-section of FRP Beam Sample

Fig 5.7 (b) Rotated Cross-section of FRP Beam Sample

Figure 5.7 Cross-sectional View of FRP Beam Sample in Torsion
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5.3.2 Experimental Procedure

Testing of the beam samples in torsion took place in two separate phases.  The

longitudinal samples were tested first because they could fit in the machine using the

original grips.  The transverse samples were tested second because specially made end-

clamps (shown in Figure 5.8) were needed to make up for the beams only being nine feet

in length.  However, for both sample orientations, the procedure is the same. The distance

from the center of the beam sample to the LVDT location is determined by the half-width

of the beam sample plus the 24” long steel rod (Figure 5.5).

Each sample was loaded and unloaded five times, and the first three tests were used to

adjust the testing apparatus.  For example, small adjustments in the placement of the load

cell along the loading beam could cause a significant change in the location of the point

of fixity along the sample.  The goal is to try to place this point as close to the midspan of

the sample as possible in order to induce nearly the same angle of rotation on each end of

the sample.  After checking the consistency of the results, each sample was tested twice

and the data was collected for further analysis.
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Figure 5.8 End-Clamps for Torsion Testing of Transverse Samples
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The LVDT’s are used to measure the angle of rotation by recording the displacements at

the ends of the steel rods.  By using trigonometry and small angle assumption, the angle

of rotation can be derived by a similar method as that used for the aluminum bar.  The

difference being that the total distance between two LVDT’s at each location (distance l

in Figure 5.7) is measured directly and used in the calculations.  The following equation

is used to calculate the angle of rotation at one end of the sample (Figure 5.7):

(5.6)

where, �1 = displacements at one end of the steel rod (inches); �2 = displacement at the

opposite end of steel rod (inches); l = length between two LVDT’s (inches); � =

angle of rotation (radians).  The load is applied using a 2-kip load cell, and the torque

applied to the sample is calculated using the same method as described in Section 5.2.3.

As stated before, each strain gauge has two grids oriented at 90� to each other.  Each

grid records an independent strain reading in its respective direction.  The strain readings

are then combined to obtain the maximum shear strain.  The data acquisition system uses

the individual strain readings to provide the shear strain at each gauge location.  Using

the Mohr’s circle diagram shown in Figure 5.9, the process of obtaining the maximum

shear strain can be explained.  One grid of the strain gauge gives a positive strain reading,

while the other grid gives a negative reading.  The sum of the absolute value of the two

strain gauge readings gives the maximum in-plane shear strain at the location of the

gauge.

l
21 δδ

θ
+

=
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Figure 5.9 Mohr’s Circle Showing the Maximum Shear Strain

Once the loads, deflections and strains are recorded by the acquisition system, the data is

then reduced into an Excel© spreadsheet.  The torque, angles of rotations, and shear

strains are then calculated using the methods described earlier.

5.3.3 Results

The applied torque versus the angles of rotation at each end of the specimen, as well as

the average angle of rotation is shown for a typical sample in Figure 5.10.  The torque is

also plotted against the shear strain values recorded at the two symmetric locations from

the specimen mid-length.  A typical plot of torque vs. shear strain is shown in Figure

5.11.
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Figure 5.10 Typical Plot of Torque vs. Angle of Rotation (8” Longitudinal Sample #1)
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Figure 5.11 Typical Plot of Torque vs. Shear Strain (8” Longitudinal Sample #1)
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A summary of the experimental data is shown in Table 5.5.  The table provides the data

for the longitudinal and transverse samples, with eight- and twelve-inch widths.  A total

of two samples were tested for each core material orientation and sample width.  Two

repetitions for each sample were recorded and reduced, and the corresponding data is

averaged to give the values as shown in Table 5.5.  The strain data is given in

microstrains per kip-inch, while the angle of rotation data is given in radians per kip-inch.

Table 5.5 Experimental Results for Torsion Tests

Shear Strain Angle of Rotation

microstrain/kip-in radian/kip-in

Core Orientation
and Width

Sample #

#1 #2 �1 �2 �Avg

Longitudinal 1 71 50 0.0014 0.00124 0.00132

12" width 2 47 50 0.00155 0.00046 0.001

Longitudinal 1 66 70 0.00165 0.00183 0.00174

8" width 2 81 71 0.00137 0.00105 0.00121

Transverse 1 55 58 0.00043 0.00152 0.00098

12" width 2 65 61 0.00103 0.00119 0.00111

Transverse 1 83 99 0.0033 0.00282 0.00306

8" width 2 100 89 0.00324 0.00295 0.0031

While the torque versus angle of rotation plot in Figure 5.10 shows �1 and �2 relatively

close to each other, this is sometimes not the case as can be seen in Table 5.5.  In a few

instances, the two angles of rotation can be as much as 350% difference (12” longitudinal

sample # 2 and 12” transverse sample #1).  As stated in the procedure, the sample is

loaded and unloaded three times before the actual data collection starts.  The purpose of

this is to achieve the same angle of rotation on both sides of the beam by adjusting the

torsion machine accordingly.  However, symmetric readings are difficult to achieve due
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to the large amount of inertia the machine possesses.  Thus, if it is not possible to achieve

symmetric results during the unrecorded tests, the average angle of rotation is calculated,

and if a good correlation is found, then the testing is completed.  This is deemed

sufficient since the total angle of rotation across the 6’ span of the sample is being

measured, and the average value is taken as a convenient experimental measurement.

5.4 Finite Element Modeling of FRP Honeycomb Sandwich Beams in Torsion

A finite element evaluation of the different beam samples in torsion is performed for

comparison with the experimental testing.  The description of the actual geometry FE

model is given in Section 5.4.1, while the description of the equivalent plate FE model is

given in Section 5.4.2.  The response predictions for both analyses are discussed in

Section 5.4.3.

5.4.1 Actual Geometry Finite Element Model

The model used in the formulation of the finite element torsion analysis consists of

assemblies of the cell unit described in Section 3.3.1.  The cell, shown in Figure 3.3, is

the same one used in the FE bending analysis in Section 4.3.1, as well as the FE panel

analysis in Section 6.3.  Again, once this cell is defined, the sample can be generated for

any specified width, length, and core orientation. For the torsion model, a three-foot long

sample is generated, because this is one half of the gauge length used in the experimental

testing.  Thus, a total of four FE models, two transverse and two longitudinal is used, and
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two widths of eight-inch and twelve-inch for each sample orientation are defined.  The

analysis process used is similar to that for the aluminum sample described in Section

5.2.4.

Once the model is completed, the load and boundary conditions are specified.  In the

torsion model, a fixed-free boundary condition is utilized. All of the nodes at one end of

the sample are completely fixed, while only the center node at the opposite free-end is

constrained against translations along the geometric cross-sectional axis, but not

rotations.  This is to allow rotations and axial deformations of the cross-section, while

preventing out-of-plane bending.

The torque is applied by defining a uniform line traction load on each side of the free

edge of the sample.  The nodes on the edges of the top and bottom plates are joined by

continuous lines, over which the traction loads are applied. The uniform loads are

discretized to the nodes and specified as concentrated loads.  The loads on the top and

bottom edges are equal in magnitude but opposite in direction, defining a couple, or

torque at the free end of the beam.  The amount of traction load applied is determined by

using the following equation:

hw
p

×
= 1

    (5.7)

where; p = uniform load per unit length, in kips per inch; w = sample width, in inches;

and h = distance between top and bottom nodes at the mid-surface of the face sheets,

which is 4.554 inches.  The applied load is determined by the width of the sample, but the
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resulting applied torque is always 1 kip-in.  A finite element model of the 12-inch

longitudinal sample is given in Figure 5.12.

Figure 5.12 Finite Element Model for 12” Longitudinal Sample

5.4.2 Equivalent Plate Finite Element Model

The equivalent plate finite element model consists of 2”x 2” elements described in

Section 3.3.3.  The model is assembled exactly like the beam models used for modeling

of bending behavior.  The basic element can be copied to define any width and core

orientation.  For the torsion FE analyses, the length of the models is 36”.

The boundary condition used in the equivalent plate model is fixed-free, with all the

nodes at on edge of the model being fully constrained, and the center node at the other

edge of the model constrained against axial translation. This is similar to the actual
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geometry finite element model.  The torque is applied by a couple through forces placed

on the free edge of the beam.  The equal but opposite concentrated loads are applied on

opposite corners of the free edge, to produce a total torque of one kip-in.

5.4.3 Results

The experimental data was collected for the angles of rotation at three feet from the

midspan and for shear strains at two feet from the midspan, along the specimen

centerline.  Thus the finite element model is setup to collect the same data.  Once the

analysis is completed with ABAQUS, the results are imported back into FEMAP and

analyzed.  For the equivalent plate models, the angles of rotation and shear strain values

can be obtained directly at the locations of interest.  However, collecting data from the

actual geometry model is more difficult and requires a defined procedure.

Examining the elements at the locations of interest can provide the shear strain data for

the actual geometry model.  The data for angle of twist is found using the geometry of the

deformed shape.  Because of the induced torque, warping will cause some local effects on

the nodes.  To minimize this effect, the nodes at the center of the width of the sample are

used to find the angle of rotation.  The lateral displacement of the center nodes on the top

and bottom plates can be used to define a right triangle, and because of the small angle

theory, the sum of their displacements can be divided by their vertical distance to give the

angle of twist.  Figure 5.13 shows a sketch of the rotation of the cross-section, which is

used to calculate the angle of twist as,
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(5.8)

where, � = angle of twist (radians); �1 = lateral displacement of top-center node (in);

�2 = lateral displacement of bottom-center node (in); h = height of sample (4.554 in).

The total translation contour of a typical actual geometry sample is given in Figure 5.14,

and Table 5.6 summarizes the values of shear strains on the top face plate at two feet

away from the fixed support, as well as angles of rotation at the free end for all models.

The predictions of the equivalent plate models compared to the actual geometry models

show a good correlation with respect to the angles of rotation.  The shear strain

comparisons are also good for the transverse samples.  However, the shear strain

comparisons for the longitudinal samples are not good, with a maximum discrepancy of

60% for the 8” sample.  The response of the FE models subjected to torsion is expected to

be sensitive to the in-plane and out-of-plane shear strain evaluations, due primarily to the

degree of accuracy of the shear moduli data used in the analysis  The experimental results

are used to evaluate both FE models by comparing rotations and strains.

Table 5.6 Results for Finite Element Models in Torsion

Angle of Rotation
rad/kip-in

Shear Strain
microstrains/kip-in

Core
Orientation

Sample
Width

Actual Equiv. Actual Equiv.
Longitudinal 12-inch 0.0007 0.0006 44 68

8-inch 0.0016 0.0013 66 105

Transverse 12-inch 0.0009 0.0010 58 67

8-inch 0.0026 0.0028 96 103

h/)( 21 δδθ +=
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δ

δ

θ

Figure 5.13 Rotated Cross-section of FRP Beam Sample in Torsion

Figure 5.14 Total Translation Contour for 8” Transverse Sample in Torsion
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5.5 Comparison of FE and Experimental Results

The experimental and finite element data are compared to establish correlations of

results.  The comparisons of the angles of rotation between experimental and finite

element analysis values are shown in Table 5.7, while the comparisons of shear strains

are given in Table 5.8.  The values presented are all for a load of one kip-inch.

Table 5.7 Comparison of FE and Experimental Values of Angles of Rotation

Angle of Rotation, radians/kip-inCore Orientation Width Sample

FE Actual FE Equiv. Experimental

% Difference
from FE
Actual

% Difference
from FE
Equiv.

#1 0.0007 0.0006 0.00132 88.6 120.012"

#2 0.0007 0.0006 0.001 42.9 66.7

#1 0.0016 0.0013 0.00174 8.7 33.8

Longitudinal

8"

#2 0.0016 0.0013 0.00121 32.2 7.4

#1 0.0009 0.001 0.00098 8.9 2.012"

#2 0.0009 0.001 0.00111 23.3 11.0

#1 0.0026 0.0028 0.00306 17.7 9.3

Transverse

8"

#2 0.0026 0.0028 0.0031 19.2 10.7

Table 5.8 Comparison of FE and Experimental Values of Shear Strains

Shear Strain, microstrain

FE Model Experimental

% Difference
from  FE Actual

% Difference
from FE Equiv.

Core Orientation Width Sample

Actual Equiv. #1 #2 #1 #2 #1 #2

#1 44 68 71 50 61.4 13.6 4.4 36.012"

#2 44 68 47 50 6.8 13.6 44.7 36.0

#1 66 105 66 70 0.0 6.1 59.1 50.0

Longitudinal

8"

#2 66 105 81 71 22.7 7.6 29.6 47.9

#1 58 67 55 58 5.5 0.0 21.8 15.512"

#2 58 67 65 61 12.1 5.2 3.1 9.8

#1 96 103 83 99 15.7 3.1 24.1 4.0

Transverse

8"

#2 96 103 100 89 4.2 7.9 3.0 15.7
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The comparisons of the longitudinal samples reveal a large percent difference between

the finite element modeling and experimental evaluation.  There are several possible

reasons for this discrepancy.  First, it could be due to testing inaccuracies.  The test

procedures is difficult to implement, and slight errors could influence the results greatly.

Second, the lack of consistency in the manufacturing quality of the samples could affect

the testing results.  A serious problem that was observed during the torsion tests was the

delamination of the face-sheet from the core.  This problem was particularly evident for

the 12” wide longitudinal samples; thus the measured torsional responses for these

samples are likely to be in error with respect to the FE results.

Another possible source of error in the analysis could be the inaccuracy of the in-plane

and out-of-plane shear moduli material constants.  As can be seen in Table 5.7, the actual

and equivalent plate finite element models for the longitudinal 12” wide samples predict

a stiffer response than experimentally achieved.  While for the transverse samples there

are reasonable percent differences, the discrepancies are higher for the longitudinal

samples. The worst cases of high percent differences are for the 12-inch longitudinal

samples, each sample showing a higher angle of twist value in relation to the FE

predictions; these differences are due to the face-to-core delaminations, particularly for

sample #1, which exhibited the worst delamination condition.

While it is difficult to predict the shear strain values of the samples because of their

complex geometry, it can be seen from Table 5.8 that the actual FE models provide better

correlations to experimental values than the equivalent plate models.  With the exception
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of the 12” longitudinal sample #1 (stated before as having some degree of delamination),

relatively small percent differences are found between the actual FE models and the

experimental results.  However, the equivalent plate FE models show high percent

differences, especially for the longitudinal samples.  Again, this could be due to either

manufacturing irregularities, or inaccurate estimations of the shear stiffness properties.

The quality of manufacturing plays an important role in the bond between the top and/or

bottom face plates and the core.  This bond is critical in this specific loading condition.  It

was noticed that some delamination between the core and plates had occurred prior to, as

well as during torsional loading.  This delamination could cause the torsional stiffness to

decrease.  However, the finite element model assumes a perfect contact between core and

face plates, and thus gives a higher stiffness.

It should also be noted that during bending, the shear effects are small.  Even if some

portion of the core had delaminated from the face plates, the top and bottom face plates,

which act as beam flanges, are still held at the same locations away from the neutral axis,

thus still effectively carrying the bending moment.  In contrast, during torsional loading

of the FRP sandwich beams, the dominant properties that influence torsional rigidity are

the in-plane and out-of-plane shear stiffnesses which are obviously quite sensitive to

delamination effects.  Thus, a further study of shear effects with a closed-form solution

and using better estimates of shear moduli properties should be a topic of further

research.
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Chapter 6

Evaluation of Panel Sample

6.1 Introduction

A FRP honeycomb panel, approximately 8’ x 16’ in size, is experimentally tested in

bending and analyzed using the finite element method.  The experimental investigation is

presented in Section 6.2, and a description of the finite element analysis and results is

presented in Section 6.3.  The experimental and FE results are compared in Section 6.4.

6.2 Experimental Evaluation of the Panel

The test panel is subjected to static concentrated loads and strains and deflections are

recorded.  The following sections discusses the instrumentation of the panel, test

procedures, and results for concentric and eccentric loading conditions.

6.2.1 Instrumentation and Testing Setup

The testing setup corresponds to bending of a simply-supported plate, with a pin-roller

boundary condition, as for the bending tests of the beam samples.  The supports for the

panel are two large concrete blocks with steel plates resting on top.  For each support, a

steel cylinder rests on top of the plate.  To achieve the pin condition, one of the cylinders
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has a steel plate welded to it.  The other roller has the plate just resting atop, allowing for

axial displacement and simulating the roller condition.  The deck is placed over the

supports, which extend transversely across the width.  Loads are applied at the midspan

of the deck and also at two feet on each side from the midspan, as shown in Figure 6.2.

The displacements are measured using LVDT’s at 15 locations on the bottom face of the

panel.  Figure 6.1 (a) shows the location of each LVDT, which is numbered for reference.

For the case of midspan loading condition, readings are taken only along the midspan and

also mid-width of the panel, which corresponds with LVDT #3, #13 and #6 through #10.

The panel is instrumented using 18 strain gauges, nine of which are oriented

longitudinally and the other nine oriented transversely with respect to the deck.  Figure

6.1 (b) shows the location and orientation of the strain gauges.  A longitudinal and

transverse gauge is bonded at each location.  The gauges are numbered for reference, and

labeled either L for longitudinal or T for transverse.  For the midspan loading condition,

only the gauges along the midspan are used, which are gauges# 4 through 6 in both

longitudinally and transverse directions.

The load is recorded using a 10-kip load cell and is applied with a hydraulic jack.  The

applied load is transferred through a swivel onto a steel loading plate placed at a specified

location.  The load plate is two inches thick, with an area of 24”x 9.5”.  This specific size

is chosen to approximately simulate a wheel load of a dual-wheel truck.  The 24”
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direction of the plate is placed in the longitudinal direction of the deck.  The basic load

setup is shown in Figure 6.3.

Note: The dark corner triangle refers to corresponding
locations of the sample for Figures 6.1 and 6.2.

Figure 6.1 Location of LVDT’s and Strain Gauges
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Figure 6.2 Load Placements for Panel Tests

Figure 6.3 Basic Setup for Midspan Concentric Load Case



104

6.2.2 Procedure

The experimental tests are performed in two phases.  First, the load was applied along the

midspan, corresponding to locations 1, 2, and 3 in Figure 6.2.  Second, the panel and

supports were aligned so that the loading would be placed two feet away from the

midspan toward one support (simulating an eccentric loading), corresponding to locations

4, 5, and 6 in Figure 6.2.  In order to apply the loads on the opposite side, locations 7, 8,

and 9 in Figure 6.2, the panel is rotated 180 degrees.  Altogether, nine patch loading

locations are studied (Figure 6.2).

Once all the gauges and LVDT’s are in place, a load is applied to the panel.  Because the

testing frame used to hold the hydraulic jack is stationary, the jack must be moved to

achieve each load case.  The data acquisition system used only has the capability of

processing five LVDT readings at one time.  Thus each load case must be loaded and

unloaded several times to collect the necessary data.  For data collection, the deck is

loaded to 10 kips.  However, the deflection results are given in inch per kip as to provide

uniform data. The load was applied a minimum of three times before data is recorded for

reduction.

For the midspan loading condition, the supports and panel are aligned so that the jack can

be located along the midspan.  These loading conditions are represented by LC #1, #2

and #3 in Figure 6.2.  The three independent midspan load cases are implemented by

moving the hydraulic jack to the correct location for each case.  Each of these three cases
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required seven displacement readings (see Figure 6.1 (a)).  During the tests, the data was

analyzed to assure that each test was giving a consistent response.  The results for the

midspan load tests are shown in Table 6.1.

For the other loading conditions, the supports were moved such that the load will be

applied at locations two feet from the midspan.  Again, the hydraulic jack must be moved

in order to place loads at different locations with respect to the width.  After all three load

cases were completed on one side of the panel, the panel was then lifted and rotated.

This allows the other load placements to be tested.  For each of these cases 15 different

displacements were recorded, so the LVDT’s were moved three times for each case.  The

results for these tests are shown in Tables 6.2 and 6.3.

6.2.3 Results for Midspan Loading Conditions

There are three midspan loading cases, which are shown in Figure 6.2 as Case #1, #2, and

#3. As described in Figure 6.1, the displacements measured are displacement #3, #6

through #10, and #13, and the strains recorded at the midspan correspond to gauge

locations 4 through 6, both longitudinal and transverse.   The results for each midspan

load case are shown in Table 6.1.
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Table 6.1 Results for Midspan Loading, LC #1 through LC #3

Load Placement Deflection at Given Location, inch/kip

6 7 8 9 10 3 13

Case #1 0.1325 0.1151 0.0975 0.0819 0.0708 0.0815 0.0834

Case #2 0.097 0.0976 0.1 0.0972 0.0973 0.0819 0.0833

Case #3 0.0703 0.082 0.099 0.1175 0.1356 0.0815 0.0836

Strain Value at Given Location, microstrain/kip

4L 5L 6L 4T 5T 6T

Case #1 106.9 79.9 66.7 19.8 -12 -16.1

Case #2 82.5 85.5 82.6 -11.3 28.3 -4.8

Case #3 66.4 84.4 101.9 -18.9 -11.2 10.3

For load Case #2, the load is applied at the center of the panel, thus the results for this

load case should theoretically be symmetric about the center along the length and width,

assuming the material properties and geometry are the same throughout the panel.

Experimentally this was found to be the case.

For load Cases #1 and #3, the results should be antisymmetric with respect to each other.

For example, deflections at locations 9 and 10 (Figure 6.1 (a)) for Case #3 should give

the same results as deflections at the respective locations 7 and 6 for Case #1.  The strain

data should show the same response.  Table 6.2 provides a ratio of displacement data in

which each value shown for Load Case #1 should correspond with the value shown for

load Case #3.  The same data is given for strain values in Table 6.3.  A perfect correlation

would give a ratio of 1.  As is shown in the tables, a fairly good correlation exists, thus

showing uniform material properties and little experimental variability.



107

Table 6.2 Displacement Ratios for Symmetric Load Cases

Displacement
Load Case #1

LC1/LC3
Ratio

Displacement
Load Case #3

�6 0.977 �10

�7 0.980 �9

�8 0.985 �8

�9 0.999 �7

�10 1.007 �6

�3 1 �3

�13 0.998 �13

Table 6.3 Strain Ratios for Symmetric Load Cases

Displacement
Load Case #1

LC1/LC3
Ratio

Displacement
Load Case #3

�4L 1.050 �6L

�4T 1.922 �6T

�5L 0.947 �5L

�5T 1.071 �5T

�6L 1.005 �4L

�6T 0.852 �4T
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6.2.4 Results for Eccentric Loading Conditions

In addition to the midspan loading conditions, the deck is loaded at six more locations.

Table 6.4 shows the strain values for load Cases #4 through #9.  Table 6.5 shows the

deflection values for the same load cases.  For these tests, all the strain gauges and

LVDT’s shown in Figure 6.1 were recorded.

It is important that the locations of the load cases and the locations of the deflection and

strain readings are not misinterpreted.  To avoid this, a small triangle is shown in the

corner of the deck for Figure 6.1 and for Figure 6.2, and the proper orientation of the

deck is achieved by superimposing the corner triangles.  Thus it is possible to get the

proper values for the corresponding test.

Table 6.4 Strain Values for LC #4 to LC #9

Longitudinal Strain at Given Location, microstrain/kipLoad Case

1L 2L 3L 4L 5L 6L 7L 8L 9L

#4 154.95 66.75 58.65 76.7 69.95 60.35 50.9 48.75 43.1

#5 73.05 115.6 75.85 70.5 61.95 68.65 45.1 43.15 45.1

#6 55.65 62.15 112.3 60.2 65.85 74.15 38.9 44.05 47.65

#7 52.7 37 47.1 79.8 72.8 59.25 167.65 86.75 54.75

#8 47.9 38 49.6 71.15 62.7 69.5 72.2 156.75 71.85

#9 45.15 45.5 52.9 60.3 66.05 78.95 50.75 68.15 88.15

Transverse Strain at Given Location, microstrain/kipLoad Case

1T 2T 3T 4T 5T 6T 7T 8T 9T

#4 48.15 -7.05 -18.65 -2.4 -8.05 -18.35 -10.15 0.05 -13.7

#5 -4.3 47.3 -12.35 -1.55 9.65 -8.6 -4.65 -1.9 -7

#6 -13.75 -26.7 25.15 -10.95 -13.95 0.9 -8.55 -9.4 -6.5

#7 -11.7 -9.2 -14.05 -6.2 -7.3 -20.15 70.35 -16.75 -22.8

#8 -5.05 -2.3 -7.35 -3.15 12.35 -11.15 -0.55 110.4 -17.9

#9 -10.25 -13.05 -7.15 -13.25 -22.25 1.45 -13.45 -21.35 52.35
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Table 6.5 Deflection Values for LC #4 to LC #9

Deflection at Given Locations, in/kipLoad Case

1 2 3 4 5

#4 0.127354 0.111575 0.088312 0.075993 0.066451

#5 0.085283 0.093394 0.095445 0.088877 0.092489

#6 0.048578 0.065827 0.086546 0.119302 0.139616

#7 0.12215 0.112004 0.085106 0.061931 0.049991

#8 0.084235 0.089688 0.081633 0.075944 0.082017

#9 0.059355 0.068858 0.080815 0.090992 0.108439

Deflection at Given Locations, in/kipLoad Case

6 7 8 9 10

#4 0.132368 0.113443 0.094466 0.077862 0.065626

#5 0.09139 0.091931 0.094543 0.090552 0.092717

#6 0.054658 0.070699 0.095262 0.114657 0.140648

#7 0.15214 0.130085 0.096932 0.067309 0.049775

#8 0.1007 0.102838 0.096612 0.085377 0.088568

#9 0.066125 0.078379 0.090993 0.106577 0.127358

Deflection at Given Locations, in/kipLoad Case

11 12 13 14 15

#4 0.11617 0.098354 0.082608 0.066927 0.05164

#5 0.083343 0.08289 0.080621 0.075142 0.083593

#6 0.049486 0.064468 0.081375 0.094718 0.117564

#7 0.156795 0.132065 0.091973 0.060116 0.042462

#8 0.09194 0.09558 0.091085 0.082804 0.085497

#9 0.058495 0.074408 0.084363 0.102003 0.122538



110

The data provided in Tables 6.4 and 6.5 are given in unit of measure per kip of loading.

Each value is recorded twice, and the average of these values is shown.  Each test was

loaded to ten kips, and the linear regression of the data points are used to find the

reported value.  The procedure for the linear regression is the same used for the bending

tests of beam samples.

There is a lot of data to interpret, since there are nine load cases with 15 deflection values

and 18 strain values.  However, many of these cases have either symmetry or

antisymmetry response compared to other cases.  For example, Case #4 and Case #9

should have similar values.  Deflections at Location #2 for Case #4 should coincide with

the deflection at Location #14 of Case #9 (see Figures 6.1 and 6.2).  Thus, Tables 6.6 and

6.7 give ratios of comparisons for Load Case # 4 and Load Case #9 for selected

deflection and strain values.

The deflection ratios from Table 6.6 show good correlations, with a maximum difference

of around 10%.  The strain data shows sufficient correlation, however certain values have

large differences.  With exception of one pair of readings (�1L of Case #4 and �9L of

Case #9), the longitudinal strain ratios are close to 1.0.  The transverse strain, on the other

hand, shows more variability.  This is attributed to the fact that the transverse strains are

much smaller and more erratic. However, after reviewing the data from these tables, it

can be concluded that the material properties of the panel are approximately uniform, just

as shown by the concentric loading cases.
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Table 6.6 Displacement Ratios for Asymmetric Load Cases

Displacement
Load Case #4

LC4/LC9
Ratio

Displacement
Load Case #9

�2 1.098 �14

�3 1.046 �13

�4 1.02 �12

�7 1.064 �9

�8 1.038 �8

�9 0.993 �7

�12 1.081 �4

�13 0.935 �3

�14 0.972 �2

Table 6.7 Strain Ratios for Asymmetric Load Cases

Displacement
Load Case #4

LC4/LC9
Ratio

Displacement
Load Case #9

�1L 1.758 �9L

�1T 0.920 �9T

�3L 1.156 �7L

�3T 1.387 �7T

�5L 1.059 �5L

�5T 0.362 �5T

�7L 0.962 �3L

�7T 1.420 �3T

�9L 0.955 �1L

�9T 1.337 �1T
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6.3 Finite Element Evaluation of the Panel

The finite element modeling of the panel is performed by two separate approaches.  First,

the panel is evaluated using the actual core geometry model.  Secondly, the equivalent

material properties model is used.  Both methods are presented herein, and results for

each are shown and compared.

6.3.1 Finite Element Modeling

As previously stated, the finite element evaluation of the panel is accomplished using two

different models.  The actual core geometry model will be described first.  This model is

made using the 4”x 4” cell described in Chapter 3, Section 3.3.1.  The size of the model

when using this actual geometry for the entire panel is so large that symmetry is applied

to decrease the number of elements, and a part of the panel is modeled.  However, this

limits the flexibility of the model.

Symmetric boundary conditions are exploited for the actual geometry model, such that

only one-quarter of the deck panel is modeled, and the number of nodes and elements are

reduced by approximately three-quarters.  However this limits the possibilities for

different load cases.  It is possible to model eccentric load cases by superposition of

symmetric and antisymmetric substructures, but this was deemed too complex and

therefore, only the midspan concentric loading is modeled.  Figure 6.4 shows a diagram

of the loading and boundary conditions of one quarter of the deck.  The patch loading
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consists of one-quarter of the loading plate, which represents one-quarter of the actual

applied load.  The symmetric boundary conditions used are represented by shear release.

The translations and rotations allowed at these boundary conditions are defined to

conform to symmetric conditions.

Figure 6.4 Conditions of Finite Element Model for Actual Geometry

A finite element model using equivalent panel properties is also made.  The formulation

of the elements used for this model is described in Chapter 3, Section 3.3.3.  The

equivalent plate model has very few elements compared to the actual panel model.  Thus,

the entire deck is modeled, instead of just one quarter as in the actual panel model.  The

boundary conditions used are pin-roller, just as the experimental setup.  Also, all loading

conditions are applied.  These loads are applied using an attached surface, with a load per

unit area applied to this surface.  When the input file is created, the loads are
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automatically discretized to the correct and corresponding nodes.  A total of one kip

loading is used for each model.

6.3.2 Actual Panel Geometry Finite Element Modeling Results

The finite element results of the concentric load condition using the actual panel

geometry are shown in Table 6.8.  These values are later compared with the finite

element predictions using the equivalent panel properties, as well as experimental results.

These results are reported according to the methods outlined in Section 3.3.2.

Table 6.8 Finite Element Predictions of Concentric Loading using
The Actual Panel Geometry

Deflection
Location

Deflection,
in/kip

Strain
Location

Strain,
microstrain/kip

1,5,11,15 0.082 1L,3L,7L,9L 48.7

2,4,12,14 0.081 1T.3T,7T,9T -9.9

3,13 0.083 2L,8L 57.8

6,10 0.091 2T,8T 7.7

7,9 0.09 4L,6L 70.5

8 0.094 4T,6T -10.1

--- --- 5L 109

--- --- 5T 29.4

6.3.3 Finite Element Results using the Equivalent Plate Properties

The finite element predictions using the equivalent plate model are reported using the

methods outlined in Section 3.3.4.  The responses that are requested are longitudinal and
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transverse strains on the bottom layer of the plate and vertical translations.  Each of these

responses for the required locations is presented in Tables 6.9 and 6.10.

The strain and displacement locations are shown in Figure 6.1.  These locations

correspond to the experimental instrumentation locations.  The loads that are applied to

the panel represent the experimental loading conditions.  The nine load conditions shown

in Figure 6.2 can be represented in the analysis by simply four cases: Case #2, Case #3,

Case #5, and Case #6.

Both, deflection and strain contours obtained from the finite element analyses are shown

for the equivalent deck panel.  The deflection contours for each of the four loading cases

are shown in Figures 6.5 through 6.8.   The longitudinal and transverse strain contours for

the concentric midspan loading case are shown in Figures 6.9 and 6.10, respectively.   
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Table 6.9 Translations Using Equivalent Plate Model

Displacement at Given Locations, inch/kipLocation

Case #2 Case #3 Case #5 Case #6

1 0.095 0.058 0.08 0.054

2 0.094 0.069 0.081 0.065

3 0.096 0.085 0.084 0.081

4 0.094 0.103 0.081 0.101

5 0.095 0.123 0.08 0.118

6 0.105 0.064 0.085 0.058

7 0.104 0.076 0.085 0.069

8 0.108 0.093 0.086 0.085

9 0.104 0.116 0.085 0.103

10 0.105 0.136 0.085 0.122

11 0.095 0.058 0.076 0.052

12 0.094 0.069 0.074 0.061

13 0.096 0.085 0.074 0.074

14 0.094 0.103 0.074 0.088

15 0.095 0.123 0.076 0.105

6.10 Strains Using Equivalent Plate Model

Strains at Given Locations, microstrain/kipLocation

Case #2 Case #3 Case #5 Case #6

1L 71.2 52 70.7 52.5

1T -10.8 -18.1 -11.5 -19.3

2L 65.3 63.8 90.1 70.7

2T 12.2 -14.4 31.5 -17

3L 71.2 72.1 70.7 105.8

3T -10.8 -1.9 -11.5 16.5

4L 85.8 58.4 63.8 52

4T -14.6 -21.2 -9.7 -18.1

5L 107.2 77 58.6 63.8

5T 33.6 -18.7 10.9 -14.4

6L 85.8 112.4 63.8 72.2

6T -14.6 14.7 -9.7 -2

7L 71.2 52 46.8 42.1

7T -10.8 -18.1 -7.7 -13.5

8L 65.3 63.8 42.7 46.7

8T 12.2 -14.4 -0.9 -10.7

9L 71.2 72.1 46.8 51.4

9T -10.8 -1.9 -7.7 -9
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Figure 6.5 Deflection Contour for Equivalent Panel under Load Condition #2

Figure 6.6 Deflection Contour for Equivalent Panel under Load Condition #3
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Figure 6.7 Deflection Contour for Equivalent Panel under Load Condition #5

Figure 6.8 Deflection Contour for Equivalent Panel under Load Condition #6
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Figure 6.9 Longitudinal Strain Contour for Load Case #2

Figure 6.10 Transverse Strain Contour for Load Case #2
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6.4 Comparison of Results

Correlations of strains and displacements between the two finite element models, and

also between the FE models and the experimental results are important for evaluating the

accuracy of the equivalent panel properties obtained from the explicit solution.  Thus,

tables are given in this section that show comparisons for all loading conditions.

Theoretically, many of the experimental loading conditions are duplicated, and would

show identical results given perfect orthotropic material and geometric properties, ideal

testing conditions, and no experimental errors.  Unfortunately these conditions are not

always achievable; thus some inconsistencies exist.  This was discussed in part in

Sections 6.2.3 and 6.2.4.

In order to compare the experimental data with the finite element predictions, the

experimental load cases which should give duplicated results are averaged, and the

average as well as the range of values are given.  For example, load case #1 and load case

#3 should give identical responses (Figure 6.2), and although this is not exactly the case,

as shown in Tables 6.2 and 6.3, the corresponding values can be averaged and then

compared with the finite element predictions.  The displacement and strain correlations

are shown in Tables 6.11 and 6.12, respectively.
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Table 6.11 Displacement Correlation of Experimental Results and FE Models

Case #2 Case #3 Case #5 Case #6

FE Exp. Load Cases Exp. Load Cases Exp. Load Cases

Disp.
Loc. Exp.

Actual Equiv. Min Max Avg

FE
Equiv. Min Max Avg

FE
Equiv. Min Max Avg

FE
Equiv.

1 xxx 0.082 0.095 xxx xxx xxx 0.058 0.0853 0.0855 0.0854 0.08 0.042 0.066 0.054 0.054

2 xxx 0.081 0.094 xxx xxx xxx 0.069 0.0828 0.0934 0.0881 0.081 0.06 0.076 0.069 0.065

3 0.0819 0.083 0.096 0.0815 0.0815 0.0815 0.085 0.0911 0.0954 0.09325 0.084 0.084 0.092 0.088 0.081

4 xxx 0.081 0.094 xxx xxx xxx 0.103 0.0889 0.0956 0.09225 0.081 0.102 0.132 0.116 0.101

5 xxx 0.082 0.095 xxx xxx xxx 0.123 0.09194 0.0925 0.09222 0.08 0.122 0.157 0.137 0.118

6 0.097 0.091 0.105 0.0703 0.0708 0.07055 0.064 0.0886 0.0914 0.09 0.085 0.05 0.066 0.059 0.058

7 0.0976 0.09 0.104 0.0819 0.082 0.08195 0.076 0.0854 0.0919 0.08865 0.085 0.067 0.078 0.074 0.069

8 0.1 0.094 0.108 0.0975 0.099 0.099 0.093 0.0945 0.0966 0.09555 0.086 0.091 0.097 0.094 0.085

9 0.0972 0.09 0.104 0.1151 0.1175 0.1163 0.116 0.0906 0.1028 0.0967 0.085 0.107 0.13 0.116 0.103

10 0.0973 0.091 0.105 0.1325 0.1356 0.13405 0.136 0.0927 0.1007 0.0967 0.085 0.127 0.152 0.138 0.122

11 xxx 0.082 0.095 xxx xxx xxx 0.058 0.082 0.0833 0.08265 0.076 0.049 0.058 0.052 0.052

12 xxx 0.081 0.094 xxx xxx xxx 0.069 0.0759 0.0829 0.0794 0.074 0.062 0.074 0.067 0.061

13 0.0833 0.083 0.096 0.0834 0.0836 0.0835 0.085 0.0806 0.0816 0.0811 0.074 0.081 0.085 0.083 0.074

14 xxx 0.081 0.094 xxx xxx xxx 0.103 0.0751 0.0897 0.0824 0.074 0.095 0.112 0.102 0.088

15 xxx 0.082 0.095 xxx xxx xxx 0.123 0.0836 0.0842 0.0839 0.076 0.116 0.122 0.119 0.105

Note: The symbol xxx indicates values not recorded for midspan loading conditions, LC #1 through LC#3, as shown in Table 6.1.
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Table 6.12 Strain Correlation of Experimental Results and FE Models

Case #2 Case #3 Case #5 Case #6

FE Exp. Load Cases Exp. Load Cases Exp. Load Cases

Strain
Loc. Exp.

Actual Equiv. Min Max Avg

FE
Equiv. Min Max Avg

FE
Equiv. Min Max Avg

FE
Equiv.

1L xxx 48.7 71.2 xxx xxx xxx 52 72 73 72.5 70.7 51 59 55.3 52.5

1T xxx -9.9 -10.8 xxx xxx xxx -18.1 -18 -4 -11 -11.5 -23 -13 -17.3 -19.3

2L xxx 57.8 65.3 xxx xxx xxx 63.8 116 157 136.5 90.1 62 87 71.0 70.7

2T xxx 7.7 12.2 xxx xxx xxx -14.4 47 110 78.5 31.5 -27 -7 -18.0 -17

3L xxx 48.7 71.2 xxx xxx xxx 72.1 72 76 74 70.7 88 168 130.8 105.8

3T xxx -9.9 -10.8 xxx xxx xxx -1.9 -12 -1 -6.5 -11.5 25 70 48.8 16.5

4L 82.5 70.5 85.8 66.4 66.7 66.55 58.4 70 70 70 63.8 59 60 59.8 52

4T -11.3 -10.1 -14.6 -18.9 -16.1 -17.5 -21.2 -11 -2 -6.5 -9.7 -20 -11 -15.5 -18.1

5L 85.5 109 107.2 79.9 84.4 82.15 77 62 63 62.5 58.6 66 73 68.8 63.8

5T 28.3 29.4 33.6 -12 -11.2 -11.6 -18.7 10 12 11 10.9 -22 -7 -12.8 -14.4

6L 82.6 70.5 85.8 101.9 106.9 104.4 112.4 69 71 70 63.8 74 80 77.5 72.2

6T -4.8 -10.1 -14.6 10.3 19.8 15.05 14.7 -9 -3 -6 -9.7 -6 1 -1.5 -2

7L xxx 48.7 71.2 xxx xxx xxx 52 45 50 47.5 46.8 39 47 43.5 42.1

7T xxx -9.9 -10.8 xxx xxx xxx -18.1 -7 -5 -6 -7.7 -14 -9 -11.8 -13.5

8L xxx 57.8 65.3 xxx xxx xxx 63.8 38 44 41 42.7 37 49 44.0 46.7

8T xxx 7.7 12.2 xxx xxx xxx -14.4 -2 -2 -2 -0.9 -13 0 -7.8 -10.7

9L xxx 48.7 71.2 xxx xxx xxx 72.1 45 48 46.5 46.8 48 53 51.3 51.4

9T xxx -9.9 -10.8 xxx xxx xxx -1.9 -7 -5 -6 -7.7 -12 -7 -9.0 -9

Note: The symbol xxx indicates values not recorded for midspan loading conditions, LC #1 through LC#3, as shown in Table 6.1.
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The finite element models for Case #2 indicate that the FE actual geometry model usually

underestimates deflections and strains compared to the FE equivalent plate model.  The

experimental values seem to fall somewhere between the predictions of the two models.

For Case #3, a good correlation for both strain and deflection values is obtained.  For

strain values, the experimental results are generally lower than the FE predictions.  The

discrepancy may be caused by the load placement where localized effects influence the

strain value of the FE model.  The FE models for Cases #5 and #6 show lower strain and

deflection values in relation to the experimental results.  Since twist of the panel is more

prevalent in the eccentric loading conditions, the overestimation of the shear stiffness in

the FE model could be a direct result in smaller deformations (as described in Chapter 5).

Despite this, a good correlation is shown for all load cases.  Thus it can be concluded that

the equivalent orthotropic material properties analytically predicted for the core and face

laminates (given in Chapter 2) and used in the FE models are relatively accurate.  This

further implies that the explicit solution for equivalent properties can be confidently used

in design applications for bridge decks.
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Chapter 7

Conclusions and Recommendations

7.1 Overview

In this study, a FRP honeycomb sandwich panel, produced by KSCI for highway bridge

applications, is evaluated in the linear range under bending and torsional loads.

Analytical procedures for this sandwich panel were developed in conjunction with this

research work (Davalos et al. 2001) to determine equivalent orthotropic properties of the

core and face laminates.  The equivalent properties of the core, which consists of in-plane

sinusoidal cells extending vertically between the top and bottom faceplates, are obtained

using a combined energy method and mechanics of materials approach.  A combination

of micro/macromechanics is used to predict the properties of the face laminates.

Experimental results and finite element analyses are used to obtain responses of sandwich

beam samples in bending and torsion.  The experimental strains and displacements are

correlated with analytical predictions for bending from Timoshenko’s beam theory.  The

finite element models are formulated using layered shell elements with ABAQUS, and

the models consist of equivalent three-layer plate assemblies as well as simulations of

actual core geometries and face-sheet lay-up using ply properties of individual layers

found by micromechanics. Beam samples of two widths and either longitudinal or



125

transverse core orientations are tested under three and four-point bending, as well as in

torsion.  Finally, a panel is experimentally tested under midspan and eccentric patch

loads, and its response is then correlated with results obtained by finite element analyses.

7.2 Conclusions

The results of the finite element modeling and experimental testing indicate that

equivalent panel properties can be utilized to correctly predict responses of the FRP

honeycomb sandwich structure. The results for the beam samples tested in bending and

torsion showed indirectly that equivalent bending and shear stiffness properties can be

efficiently used with confidence, both in the explicit solution for bending and the FE

modeling in bending and torsion.  The tests of the beam samples indicated that material

properties for the sandwich structure were predicted with a good degree of accuracy.

Applying equivalent orthotropic material properties can allow for modeling of the FRP

honeycomb sandwich structure as an equivalent layered plate.  Thus the complex

geometry of the honeycomb core and the laminated face plates can be reduced to a few

material constants.  This provides an economic yet effective method of modeling the

otherwise complex panel.

The experimental testing and finite element evaluation of the panel under patch loading

provided reassurance that the predictions can correctly correlate with the responses of the

panel section under symmetric and asymmetric loadings.  Generally, the equivalent
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properties give conservative predictions, but in general a good correlation was shown.

Thus, the development of future design procedures for the KSCI honeycomb panel can be

carried out confidently using the equivalent material properties.

7.3 Recommendation

It was observed in the experimental investigation that delamination of the core from the

face plates can be a critical failure mode under torsional loading.  This delamination

severely decreases the sample’s out-of-plane shear stiffness.  Further research to improve

the manufacturing process with respect to the core-to-faceplate bond is suggested. It

would be beneficial to perform torsion tests in subsequent studies in which delamination

could be an issue to be evaluated.  While the effects of delamination show up slightly on

bending tests, the torsion tests showed high sensitivity to capture the delamination of the

face sheet.

As a further study, Schlussel (1996) has shown in his thesis that it is possible to obtain

shear moduli through experimental procedures.  Thus a study using the experimental

and/or finite element analysis results presented in this thesis could be used to find the in-

plane and out-of-plane equivalent shear moduli of the FRP honeycomb sandwich panel.
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