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Abstract

Spline Based Controller For Nonlinear Systems

by

Ali Karimi
Master of Science in Electrical Engineering

West Virginia University

Professor Ali Feliachi, Ph.D., Chair

The objective of this thesis is to apply spline theory to implement controllers for nonlinear sys-
tems. Two different systems, forced duffing oscillators and power systems, are investigated. The
spline method is used to mimic the controller which drives a state of the Duffing system toward
a desired path. The spline-based nonlinear controller has piecewise polynomial segments with
different order of polynomials on each segment. Controller efforts for different order of polynomial
interpolants and power spectral densities of the controller signals are compared with the exact
feedback linearizaton method.

The first objective for power systems is to design nonlinear excitation controllers for a multi-
machine power system using Direct Feedback Linearization. The designed controllers, whose
parameters are obtained, require the internal variables of the machines. These variables are
verified by using a proposed internal variable identifying algorithm. The objective is to design
nonlinear excitation controllers for power system stability enhancement. Spline techniques are
used to approximate the nonlinear controllers obtained through feedback linearization by piece-
wise polynomials while enhancing the stability of the system.
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Chapter 1

Introduction

1.1 Motivation

Significant progress has been made during the past few years on modelling and control design

for systems. Generally, systems can be classified in several ways such as linear-nonlinear, time

variant-time invariant, single input-single output, multiple input-multiple output, deterministic-

probabilistic. It is usually tedious to design a controller for a nonlinear system. One way is to

obtain the linearized model and based on the linearized model, the controller is designed. Lin-

earization can be done around one operating point or several operating points.

A new nonlinear controller design is presented based on approximation techniques with splines.

The controller is tested for different nonlinear systems. Here, the main objective is to see the

effectiveness of the controller and compare it to conventional design methods.

In this thesis, the term Nonlinear Systems refers to either the Duffing Oscillator or power

systems. The nonlinear oscillator itself is simple but it has all the characteristics of a complex

nonlinear system such as chaotic oscillation. Nonlinear mathematical model for this system is

called Duffing Oscillator.

Based on the model, nonlinear controllers are obtained and implemented. The objective of

controller design is to drive the states of the system into a specific trajectory path. The problem

is defined as tracking problem. Basic objective is to study the effectiveness of controller in com-

parison with conventional methods.
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The second system investigated is a power system. In the last decades power systems have

grown largely in size and complexity. The complexity is not only in the system itself, but also

in the amount of information that is needed to be monitored and processed in order to have the

desired performance. Thousands of generators are connected together through the grid which

is mainly high voltage AC transmission lines. These generators are nonlinear electromechanical

devices that need to run synchronously and remain stable.

Transients in the power system are analyzed using many levels of modelling details. The

model needs to be accurate enough to grasp the characteristics of transients. Mathematical

formulation is governed by differential-algebraic equations that describe the dynamics of the gen-

erators in connection with the grid. The dynamic performance is influenced by machines and

the controllers. Following large system disturbances, some synchronous generators may swing

enough to lose synchronism with the system. Controllers are preferably installed locally at the

generators and directly affect the stability of the overall grid.

From this point of view, control is vital to maintain the stability of the interconnected power

system. Because of this need, control structures are becoming more pervasive and numerous,

guaranteeing the stability of system over a wide range of operating points. Information about

the system is also distributed over a wide geographic area, and hence the only feasible control

structure is a decentralized one. Moreover the controllers need to be nonlinear in order to act

properly for larger operating regions. Spline approximation techniques are applied in controller

design for generator side. Controller performance is compared with conventional control method

by Direct Feedback Linearization (DFL) method.

DFL has been applied to power systems previously but only for simplified generator models

such as the “one-axis” model. Here the “two-axis” generator model is used. The designed DFL

is a decentralized nonlinear controller with internal state identifier. The identifier is used to con-

struct the internal variables of the machine which cannot be measured directly.
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1.2 Approach

In this thesis, MATrix LABoratory (MATLAB) is used for simulation, symbolic computation

and coding. In brief, MATLAB is a programming environment that is supported by a variety of

toolboxes comprising source code. Sophisticated algorithms in high level languages are provided

by these toolboxes. Several toolboxes such as control toolbox, signal processing toolbox, genetic

algorithm toolbox, spline toolbox, and power analysis toolbox are used. These toolboxes are a

collection of algorithms for control implementation, signal and system processing, data fitting,

interpolation, spline functions, and power system analysis.

1.3 Overview

The organization of this thesis is as follows. Literature survey is given in Chapter 2. Two

independent classes of nonlinear systems are covered separately, namely oscillator and power

systems. Controller design is considered for both cases. In Chapter 3 basic definitions for ap-

proximation technique with spline method, mainly cubic splines, are given. Chapter 4 discusses

the application of spline methods in controller design. First, duffing oscillator is covered. Track-

ing controller design is tested with spline-based controller and compared to conventional control

method. Second the electric power system is analyzed. Application of the spline approximation

is tested in the excitation control loop of the synchronous generator. Classical three-machine

nine-bus test system with two-axis generator model is considered.

Internal Variable Identifier is also presented in Chapter 4. The identifier is used to obtain

the internal variables of the machine which cannot be measured directly. At the end comparison

between excitation controller with DFL controller for two-axis and one-axis model is covered.

Chapter 5 includes a summary of studies done and discussion of possible future work.
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Chapter 2

Literature Survey

2.1 Nonlinear Oscillators

2.1.1 Definitions

Linear systems are ideal models and mainly have simple mathematical equations with explicit

solutions. Some characteristics of these systems are invariance under scaling, additivity, and fre-

quency fidelity which can be defined as follows [15].

Invariance under scaling — If the input u gives the output y, then αu gives αy.

Additivity — If the input u1 and u2 give outputs y1 and y2 respectively, then u1 + u2 gives

the output y1 + y2.

Frequency Fidelity — A component in a reference or disturbance signal with frequency f

affects the control error only at the frequency f .

In physical systems these characteristics are not valid due to nonlinearity which bring a

significant difference between linear and nonlinear systems. Practical engineering systems are

inherently nonlinear. From this point of view, accurate modelling of system has essential role for

controller design techniques. Theoretical study of this field is very subtle and often need to be

supplemented by numerical techniques.
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The torsion pendulum is a physical example of nonlinear oscillators and shows all the ba-

sic features of a dynamical system. The behavior of nonlinear pendulum has been explored by

different researchers. Though it is an example of a simple system it can demonstrate different

behaviors. The mathematical model of the nonlinear oscillator is known as Duffing Oscillator.

Chaotic oscillations are of interest and it has been used as a basis for mathematical models for

many systems. But this dynamics, even for simple systems, are not always predictable. This

motion is called chaotic and has been investigated [32, 6]. Note that chaotic behavior of the

system is not due to random external influence. Examples of such systems can be found in some

chemical reactions, mechanical and electrical oscillator. One characteristic of a chaotic system is

that although the motion is deterministic (given an exact initial condition, its future motion can

be predicted mathematically) it is non-periodic, which means that the motion of pendulum is not

repeated in time. The other characteristic is the extreme sensitivity to initial states which leads

into unpredictable response of the system. It is essential to know when the system shifts toward

a chaotic mode and how to prevent that with help of controllers. Therefore, the main objective

is to train the controller to drive a chaotic system to follow a specific trajectory and maintain the

system at that specific target. Before getting into more details in system description and control

methods, some classical definitions for different types of oscillations are explained in the following

[6].

Periodic one motion — If the motion of pendulum (output response of the system) repeats

after one driving cycle the motion is called period one motion. This will happen at relatively

high frequency.

Periodic two motion — If the motion of pendulum (output response of the system) repeats

after two driving cycles the motion is called period two motion.

Chaotic motion — If the motion of pendulum does not repeat its path the response is called

chaotic. Note that chaos and random behavior are different. For random processes some sta-

tistical measures of the parameters are known but for chaotic behavior there are no random or

unpredictable inputs. So all the parameters and initial conditions are considered to be known for

chaotic behavior of the system [6].
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Here, the main objective is to design a controller which can bring a chaotic oscillation into a

periodic orbit and capable to order the chaos. The controller design objective can be expressed as

a tracking problem. The design of nonlinear and linear controllers for driving chaotic trajectories

of chaotic motion to its periodic orbits are covered. Both linear and nonlinear control methods

have been used in this research area. A literature survey mainly related to the Duffing oscillator

is presented next

Lefeber et al. [23] designed a state feedback controllers for a chaotic dynamical system and

presented the bounded feedback controller for trajectory tracking in forced Duffing equation.

The controller was defined globally with help of Lyapunov function. The trajectory tracking was

established for any initial state condition and any desired trajectory. It is clear that selecting

different Lyapunov functions may lead into different controllers with different convergence rate.

So it is up to designer to select an appropriate Lyapunov function.

Conventional nonlinear feedback controller by applying Lyapunov direct method has also been

applied by Dong et al. [9] for continuous chaotic system where the target position is an equilib-

rium point of chaotic system. They also showed that conventional canonical feedback control

technique can control the chaotic trajectory of a continuous time nonlinear system, specifically

Duffing oscillator, to converge into its equilibrium and also multi-periodic orbits.

From a continuation of Dong et al. [10] work the adaptive feedback controller was developed

based on Lyapunov stability theory for an uncertain chaotic Duffing oscillator.

Linear feedback controllers have also been applied to forced Duffing oscillators. Linear feed-

back control laws are simpler to implement in practice than nonlinear controllers. Referring to

Jiang et al. [18] linear controllers are often less sensitive to sensor errors and inherently robust

against measurement errors. State feedback and nonlinear observer based output feedback con-

trol laws were also obtained and showed that tracking error converges to zero.

Chen et al. [7] investigated this problem by establishing a linear feedback control law for non-

linear oscillation. They presented a methodology based on input-output linearization method.

The controller were modified by locally linearizing the nonlinear control law in small neighbor-
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hood of the control goal. They also showed through simulation that the controller law is robust

to model errors.

In this thesis, EFL controller is obtained for forced Duffing oscillator based on Exact Feedback

Linearization method. Then spline technique is used to approximate the nonlinear controller by

piecewise polynomials. Order of polynomials can be changed easily. It will show that the spline

based controller can be trained to drive a chaotic system to follow a certain trajectory [19].

2.1.2 Mathematical Model

Forced Duffing oscillator is a well-known model for a mass-spring mechanical system which

contains hardening spring, viscous friction, and a periodic external force [21]. It was first intro-

duced by Duffing in 1918 and formulated as a second-order non-autonomous ordinary differential

equation with nonlinear term in form of cubic stiffness.

ẍ + p1ẋ + p2x + px3 = q cos(ωt) (2.1)

Parameters are defined as follow

p1 . . . Damping coefficient
p . . . Constant coefficient for nonlinear part

p2 . . . Constant coefficient for linear part
t . . . Time
q . . . Amplitude of external driving force
ω . . . Frequency of external driving force

In physical system the parameters p2, p are determined by pendulum dimensions. Changes

in damping coefficient, forcing amplitude and forcing frequency yield different responses of the

system in terms of period 1, period 2, and chaotic behavior. Output responses of the system show

different dynamic behaviors of the system. The equation can be written in form of two first-order

ordinary differential equations or in affine form

ẋ1 = x2 (2.2)

ẋ2 = −p1x2 − p2x1 − px3
1 + q cos(ωt) (2.3)
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where

x1 = x (2.4)

x2 = ẋ (2.5)

and the output is taken as x1. The main interest is to train the controller in a way that removes

the chaotic system behavior.

For dynamic behavior of the Duffing oscillation, consider a numerical example as follows. Intro-

ducing y = ẋ, Duffing equation is given as two first order differential equations in affine form. ẋ = y

ẏ = −p1x− x3 − py + q cos(ωt)

Periodic and chaotic behavior can be obtained by choosing parameters of Duffing equation as

p = 0.4, p1 = −1.1, ω = 1.8. Changing external driving force or q can yield into periodic and

chaotic system behavior. Figure 2.1 shows period-1 motion after 25 seconds with q = 0.620, and

Figure 2.2 shows chaotic motion with q = 1.8. As it can be seen from Figure 2.1, the response
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Figure 2.1: Periodic response of the Duffing Oscillation

repeats after one driving cycle that express period-1 cycle.

Another important characteristic of Duffing oscillator is high sensitivity of output response to

its initial conditions. A Duffing oscillation formulated by equations 2.2 and 2.3 where x1 = x and

x2 = ẋ. The system’s output is taken as x1. Consider the Duffing equation with specific values

p = 0.4, p1 = −1.1, ω = 1.8, q = 2.1, and the initial conditions x10 = x20 = 1. The state response
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Figure 2.2: Chaotic response of the Duffing Oscillation
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Figure 2.3: Sensitivity to initial condition

with these conditions is shown in Figure 2.3 (solid line). Additionally, the state response for the

initial conditions of x10 = 1 and x20 = 1.01 is given (dotted line). The high sensitivity for very

small variation in initial conditions can be seen clearly from the output response of the system.

2.1.3 Problem Description

From control point of view, Duffing oscillator as explained in (2.1) is considered as uncon-

trolled oscillator. Depending on parameters, the solution is a periodic or chaotic behavior. Con-

troller signal can be understood as a force (torque) applied to the uncontrolled Duffing equation.
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So, the formulation can be modified as

ẍ + p1ẋ + p2x + px3 = u + q cos(ωt) (2.6)

The proposed controller needs to satisfy the global tracking problem. This tracking trajectory is

independent of starting point of original system and also chaotic behavior of the system. Mainly,

tracking problem is achieved by means of feedback controllers that automatically act as error

correction mechanisms. This feedback controller can be obtained by nonlinear control methods

such as Lyapunov direct method. Another method is based on exact linearization. The method

itself has great attraction in nonlinear control [17]. The main idea of this method is to construct

a coordinate transformation and a feedback control law such that input-output or the input-state

relationship of the close loop system, in the new coordinates, is linear. This technique has been

applied to chaotic systems such as Duffing and Lorenze systems.

The approach considered here is different in the point that spline theory is applied to ap-

proximate the original nonlinear controller. Nonlinear controller is approximated by piecewise

polynomial with specific order of polynomial. There are several parameters involved in this ap-

proximation methods such as the number of sampled data, knots position, different types of spline

and the order of polynomial for interpolation method. This study is mainly focused on numerical

experiments based on nonlinear Duffing oscillator. For the proposed controller, it is important

to see whether the controller can bring the state of the system to a desired path and how much

effort and energy it takes to fulfill this task.

2.1.4 Controller Design

The following gives a brief numerical example related to EFL method. Consider a non-

autonomous system with a control law u, given by

ẋ = f(x, t) + u (2.7)

Without control law u, the system has chaotic behavior for a given set of system parameters.

The objective is to design a control law u to order the chaotic behavior. Assume that xd(t)

is a desirable path that can be a fixed point or periodic orbit. Defining the error signal as

e(t) = x(t)−xd(t), the control design should result in a control law u such that e → 0 as t →∞.



CHAPTER 2. LITERATURE SURVEY 11

For a single input single output system given as

ẋ = f(x) + g(x)u (2.8)

y = h(x) (2.9)

where

f(x) =

 x2

−p1x2 − p2x1 − px3
1 + q cos(ωt)

 (2.10)

g(x) =

 0

1

 (2.11)

h(x) = x1 (2.12)

The vectors x, u and y are the state, input and output vector, respectively. The vectors f(x) and

g(x) are smooth and real functions. The system is defined to have relative degree n at point x if

it satisfies the following conditions

LgL
k
fh(x) = 0 ∀ k < n− 1 (2.13)

LgL
n−1
f h(x) 6= 0 (2.14)

The notation Lfλ(x) is called Lie derivative or derivative of λ along the state trajectory and it

is defined as ∂λ
∂xf(x) [17]. Repeated Lie derivatives are defined by (2.15), (2.16), and (2.17). Also

if g is another vector field then (2.18). There are some basic notation related to Lie derivative

which are given as follow

L0
fh(x) = h(x) (2.15)

L2
fh(x) = LfLfh(x) =

∂Lfh

∂x
f(x) (2.16)

Lk
fh(x) = LfLk−1

f h(x) =
∂(Lk−1

f h)

∂x
f(x) (2.17)

LgLfh(x) =
∂Lfh

∂x
g(x) (2.18)
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The set of equations for single input and single output system is input-output linearizable if

it has finite relative degree n with respect to the output. The relative degree is the number of

times the output function needs to be differentiated before the input explicitly appeares. The

control law in general form is given by [17, 21]

u =
−Ln

f h(x) + x
(n)
d

LgL
n−1
f h(x)

−
∑n

i=1 Ci−1(Li−1
f h(x)− xi−1

d )

LgL
n−1
f h(x)

(2.19)

The pole placement method or linear quadratic regulator (LQR) can be used in order to specify

the coefficients Ci−1 for i = 1..n. Relative degree for the Duffing oscillator system is obtained as

LgLfh(x) =
∂Lfh(x)

∂x
g(x) (2.20)

Where

Lfh(x) =
∂h(x)

∂x
f(x) = x2 (2.21)

The Lie derivative will become LgLfh(x) = 1 and shows that system has a relative degree of

second. The control law is given by

u =
−L2

fh(x) + x
(2)
d −

∑2
i=1 Ci−1(Li−1

f h(x)− x
(i−1)
d )

LgL
2−1
f h(x)

(2.22)

u =
−L2

fh(x) + x2
d − C0(L0

fh(x)− x0
d)− C1(L1

fh(x)− x1
d)

LgLfh(x)
(2.23)

Use following Lie derivatives in (2.23)

L2
fh(x) = −p1x2 − p2x1 − px3

1 + q cos(ωt) (2.24)

Lfh(x) = x2 (2.25)

L0
fh(x) = x1 (2.26)

LgLfh(x) = 1 (2.27)

Finally, the controller law is obtained as

u = p1x2 + p2x1 + px3
1 − q cos(ωt) + x

(2)
d − C0(x1 − x

(0)
d )− C1(x2 − x

(1)
d ) (2.28)

In Chapter 4 tracking problem for Duffing oscillator will be covered by using spline techniques.
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2.2 Power Systems

2.2.1 Power System Dynamics

The electric power system is a large interconnected system whose structure changes constantly

due to changes in loading conditions, planned or unplanned line-outages, disturbances, and in-

stallation of new devices and apparatus to maintain a minimum level of reliability. Information

about the system is distributed over a wide geographic area, and hence the only feasible control

structure is a decentralized one. Electric machines are part of this nonlinear system and therefore

a challenging area for implementation of nonlinear control techniques to enhance the stability of

the system.

Dynamics of electric machines exhibit significant non-linearities. Besides, it is not always

the case that access to all state variables of system is given. The parameters of the system may

also vary significantly from their nominal values. So it is necessary for nonlinear controllers to

include an algorithm to provide state estimation and parameter identification in order to over-

come this problem [22]. Recently, several methods have been used for enhancing power system

stability. Literature survey based on power system stability enhancement is given in the following.

An overview related to nonlinear control design for generators is covered by Taylor [28]. The

most common control designs for electric machines, for application requiring high dynamic per-

formance, are based on forms of exact linearization. As mentioned by Taylor “Not all nonlinear

systems can be controlled in this fashion; the applicability of exact linearization is determined by

the type and location of the model nonlinearities.”

Among nonlinear controller methods direct feedback linearization is an attractive methodol-

ogy that can be applied to the excitation system of synchronous generators. Excitation control

systems have been improved since the 60’s [28]. The control is based on mathematical modelling

of the synchronous machine. So, the modelling for electric machines needs to be accurate enough

to grasp the essential characteristics relevant to control design, especially with nonlinear methods

as direct feedback linearization method.

Direct feedback linearization has been investigated by Wang et al. [30, 31]. They applied
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DFL controller method to one-axis model generator. The main concern is to prevent an electric

power system losing synchronism after a large sudden fault on the system. Also, achieving the

good post fault regulation of generator terminal voltage is their concern.

Application of nonlinear decentralized control to large scale power systems has been pre-

sented by Hill et al. [16]. They proposed nonlinear bounds of generator interconnections in order

to achieve less-conservative control gains while maintaining the stability of the system.

Loss of synchronism can be detected by distance or gap between rotor angle oscillation with

respect to time. If the rotor angle is increasing in comparison to the rest of the machines, the

system is considered unstable. For stability problem, usually it is more convenient to work with

relative rotor angle rather than absolute angle. More description related to synchronism and first

swing problem can be found in reference [24].

In this thesis, first DFL controller is obtained for two-axis generator model. Based on nonlin-

ear controller, spline techniques are used to approximate the controller by polynomials of different

degrees. It will show that the spline-base controller can enhance the stability of the system [20].

Generator models can be classified as classical, transient and subtransient. For transient

classification there are two models with one-axis or two-axis. A complete description for machine

modelling is given by Sauer et al. [26]. Mathematical modelling for one-axis and two-axis gener-

ators are covered in the Appendix.

2.2.2 Stability Enhancement

Power systems are large-scale nonlinear systems prone to faults and disturbances. The ma-

jor concern for the system during fault periods is preserving the synchronism of the generators

and stability of the system. One controller device, known as Power System Stabilizer (PSS),

is designed mainly by using linear control theory. The plant is linearized of a few operating

points and the controller is designed based on the linearized models. The drawback of this de-

sign is that by changing the operating point of the system, the controller may not work effectively.
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The excitation control plays an important role in preserving the stability of the system. Here,

nonlinear controllers with Direct Feedback Linearization is applied. Linear control methods have

also been applied previously. The major problem with linear controller is the limitation of oper-

ating region. Due to a large disturbance in the system, the operating condition may change and

controllers may not act properly with new operating conditions.

From two-axis model dynamics it is obvious that the synchronous generator is nonlinear

through the excitation loop. Some of the control design requirements are high dynamic perfor-

mance.

It is assumed that the controller is designed as a part of generator excitation system design.

Because of the physical limitations in the system, the output of controller is limited to a certain

level and this fact has influence on the overall system performance.

Similar methodology based on feedback lineaization has been applied to single machine in-

finite bus with one-axis generator [30, 31]. Simulation results show that controller is capable of

stabilizing the system even when subjected to large disturbances.

2.2.3 Problem Description

As mentioned before, transient stability is the major concern in operating large-scale power

systems. Stability enhancement is always sought since the power system is constantly undergoing

structural and loading condition changes.

One way of enhancing stability is through the DFL excitation system. The spline techniques

are used to approximate the excitation controller. The fundamental idea behind approximation

theory is to resolve a complex nonlinear function, which is called target function, with a simpler

function called approximants in the form of piecewise polynomials. The number of parameters

that need to be specified for this polynomial are determined by the complexity of the approx-

imation process. However, it does not necessarily agree with computational complexity. The

objective is to study the effect of control by spline approximation and to investigate the behavior

of the approximated controller while the system is subjected to disturbances.
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The spline approximations are in different forms and bases. Two commonly used spline func-

tions are cubic spline and B-spline. Both types of spline approximation are used in excitation

controllers. By applying faults, the performance of two approximant controllers are compared.

The comparison is done in order to test how well the controllers are able to damp generator rotor

oscillations and how fast stability of the system for post fault condition can be restored.

In constructing the approximants, the other issue is breaking points or free knots which need

to be designed. There are several methods mentioned by de Boor that can lead into break points

from free sequences of knots [3]. But it is not always easy to find partitions that give a good

approximation from free knots. Once new break points are computed, approximated functions

are constructed with spline functions based on these breaking points. As mentioned in [3] “when

interpolating with spline of order K, one good method is to knot averages from the augmented

knot sequence.”

Generally, controller design for the excitation loop with DFL method concept has two stages.

In the first part, nonlinear compensation is derived which explicitly cancels the non-linearities

present in synchronous generator without any specific control objective. In the second part, lin-

ear compensation is derived on the basis of the resulting linear dynamics of the pre-compensated

machine to achieve some particular control objective.

Nonlinear approximation theory is applied in DFL Controller with spline techniques. The

controllers are approximated in different forms as cubic spline and B-spline. The approximated

controller is tested for the three machine nine bus system [2]. Schematic view of the system is

shown in Figure 2.4. Spline controllers are specified for each area by a controller block locally at

the generator’s side. Each area is specified by a circle which encloses generator and controller for

excitation, measurable outputs are given as inputs to the controller and control signal is fed back

to the excitation system of the generator.
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Figure 2.4: Three Machine Nine Bus Test System with Spline Controller
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Chapter 3

Spline Theory

3.1 Introduction

Interpolation and the cubic spline technique are covered in this section. These methods have

numerous applications in engineering problems, especially in analysis of sampled data points.

Generally, interpolation is used to estimate the value of a function between known data points.

The main objective is to fit a curve or set of curves to sampled data. Interpolation can be divided

into two classes global and piecewise interpolation. The task consists of finding an approximate

function instead of the original complicated function. A typical curve fit or global interpolation

involves forming one polynomial through all set of data points. By using only one polynomial for

all set of points the order of the polynomial will become too high. Although the result is a smooth

curve, it is not well suited for engineering applications because it is prone to high oscillation and

overshoot at adjoining points. The order of polynomial is defined as the number of points minus

one. Increasing the order does not necessarily increase the accuracy of interpolation, especially

in polynomial interpolation.

The other method is piecewise interpolation. The method is to match the data points using a

lower order polynomial between each pair of adjacent data points. If a first-degree polynomial is

used, it is called linear interpolation. For second and third order polynomials it is called quadratic

and cubic polynomial, respectively. Piecewise interpolation allows each segment to have a unique

polynomial while guaranteeing global smoothness in the interpolated function up to a certain

order of its derivative. As an example cubic spline interpolation has a polynomial of third degree

for each segment and is continues up to the second order derivative. Mathematical formulation
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for cubic spline and the procedure to derive the polynomial coefficients are given in detail.

3.2 Global and Piecewise Interpolation

Consider a smooth nonlinear function f(x) where x takes values in the interval [a, b]. Let x0

be a point in this interval. Local approximation of smooth function is usually done with polyno-

mials. One way to approximate the function f(x0) is to use a truncated Taylor series expansion∑n
j=0

(x−a)j

k! Djf(a) where Djf(a) = ∂jf(x)
∂xj |x=a. For larger number of points, passing a single

polynomial through all of them, yields a high order interpolant which is expensive to determine

and evaluate. Note that in this case, polynomial goes through the data points but it may oscillate

between data points. Better method is to subdivide the whole range [a...b] of approximation into

small subintervals as a = τ1 < τ2 < ...τn−1 < τn = b.

The objective is to fit a polynomial to each subinterval. Splines are a special set of piecewise

polynomials and it provides a technique for obtaining a smoother interpolation formula [12, 13].

A commonly used spline technique is the cubic spline. Cubic spline provides an interpolant, that

is twice continuously differentiable. In addition spline method can be extended to two or three

dimensions by sequencing one-dimensional interpolation. It also allows curvature between points

and has continuous first and second derivatives on the interval [a, b]. The main advantage of

piecewise polynomial interpolation, in comparisom to global interpolation, is that a large number

of data points can be fit with low order polynomials which are aligned between each pair of knots

controlling points. Cubic spline can be interpreted as the result of bending a flexible rod between

a series of control points or knots. Figure. 3.1 shows a flexible beam using cubic spline curves

which passes through a limited number of control points. Consider the cubic polynomial for one

segment as

z = ai(τ − τ i)3 + bi(τ − τ i)2 + ci(τ − τ i) + di (3.1)

The parameters are
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Figure 3.1: Piecewise interpolation

i . . . ith subinterval
τ i . . . lower end of interval

τ i+1 . . . upper end of interval
hi . . . length of interval hi = τ i+1 − τ i

si . . . second derivative at lower end si = d2z
dτ2 |τ i

si+1 . . . second derivative at upper end si+1 = d2z
dτ2 |τ i+1

Abscissas τ i are called knots or breakpoints at which interpolants change from one cubic

polynomial to another. Polynomial coefficients ai,bi,ci, and di are specified with respect to si and

si+1 for each segment [14].

ai =
si+1 − si

6hi
(3.2)

bi =
si

2
(3.3)

ci =
zi+1 − zi

hi
− 2hisi + hisi+1

6
(3.4)

di = zi (3.5)

The s terms which contain s1, s2, ..., sn−1, sn are obtained from solving the following set of equa-

tions. These recursive equations specify the slope of adjacent polynomials at each segment.

hi−1si−1 + (2hi−1 + 2hi)si + hisi+1 = 6(
zi+1 − zi

hi
− zi − zi−1

hi−1
) (3.6)

The right side of the above equation contains known values, which includes z and h. From

the left side, h is known, so the equation can be solved for s on each segment and coefficients for
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piecewise cubic polynomials can be computed for i = 2, 3, ..., n − 1. To have a unique solution,

number of equations must equal number of parameters to be determined. Note that (3.6) has

n− 2 equations and n unknowns. Thus it needs to eliminate two unknowns (s1, sn) which define

end conditions on the shape of the spline. In brief, there are different types of cubic splines with

different end conditions such as complete cubic spline, natural cubic spline [3, 4].

Polynomial coefficients as given in (3.2)—(3.5) are derived as follows. Matrix formulation is

given by Wheatly and Gerald [14].

H =



h1 2(h1 + h2) h2 0 0 0 . . . 0 0 0

0 h2 2(h2 + h3) h3 0 0 . . . 0 0 0

0 0 h3 2(h3 + h4) h4 0 . . . 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 . . . hn−2 2(hn−2 + hn−1) hn−1


(3.7)

S =


s1

s2

...

sn

 (3.8)

Z =


6z3−6z2

h2
− 6z2−6z1

h1

6z4−6z3
h3

− 6z3−6z2
h2

...
6zn−6zn−1

hn−1
− 6zn−1−6zn−2

hn−2

 (3.9)

Equation is given as HS = Z and the objective is to find S. Thus one needs to eliminate two

unknowns (s1, sn) which define end conditions on the shape of spline. These two end points can

specify different types of cubic splines, S is also referred to mass matrix. As an example in natural

spline the second order derivative of splines at the end points are zero. Another type is clamped

spline with the first order derivatives of the spline at the end points are set to be known values

[3, 4].
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Figure 3.2: Global and piecewise interpolation

As a numerical example consider a random set of data, global and piecewise interpolation

are applied to this random set. Figure 3.2 shows the comparison between global and piecewise

interpolation. Global polynomial has relative high degree polynomial interpolant. Dashed line

presents a global interpolation and solid line presents piecewise polynomial interpolation.

For low degree polynomial, global interpolation does not give exact match through break

points as shown in Figure 3.3 and can not pass through all break points. Through a number of

sampled data points which are taken arbitrarly, global polynomial interpolation is shown with

dashed line and piecewise polynomial in shown with solid line. The global interpolation clearly

shows that the approximant cannot pass through the control points and it gives a very different

curve when compared to piecewise polynomial interpolation.

3.3 Knot Sequences Method

For cubic splines, the support basis function consists of four piecewise cubic sections. The

end-points are aligning with the knots and sampled data are used for starting point for spline

interpolation method. It is possible to specify where the spline interpolant should have its new

break points and it is recommended as good interpolation method [3]. One good method is knot

sequences method. The procedure is explained by numerical example.

Consider a nonlinear function u = f(xi), i = 1, 2, ..., n with bounded variation for each
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Figure 3.3: Global and piecewise interpolation

independent variable. First step is to construct a finite number of sampled data with uniform

length for each independent variable. These sampled data are called Xi. Knot sequences are

given as

Knot sequences = {0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2} (3.10)

The next step is to apply augmented knot sequence to these set of data. From definition, aug-

mented knot returns a nondecreasing knot sequence that has multiplicity k for the first and last

knot [3]. Knot multiplicity is 3, with multiplicity for first and last breaking points.

Augmented knot sequence = {0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2, 2} (3.11)

Apply moving average method to each set of data. Average of successive k − 1 knots is defined

as

X∗
i =

Xi+1 + ... + Xi+k−1

k − 1
(3.12)

With knot sequence defined as

X = (X∗
i )n+k

i=1

(3.13)
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X∗
1 =

X2 + X3

2
= 0 (3.14)

X∗
2 =

X3 + X4

2
= 0.1 (3.15)

X∗
3 =

X4 + X5

2
= 0.3 (3.16)

X∗
4 =

X5 + X6

2
= 0.5 (3.17)

X∗
5 =

X6 + X7

2
= 0.7 (3.18)

X∗
6 =

X7 + X8

2
= 0.9 (3.19)

X∗
7 =

X8 + X9

2
= 1.1 (3.20)

X∗
8 =

X9 + X10

2
= 1.3 (3.21)

X∗
9 =

X10 + X11

2
= 1.5 (3.22)

X∗
10 =

X11 + X12

2
= 1.7 (3.23)

X∗
11 =

X12 + X13

2
= 1.9 (3.24)

X∗
12 =

X13 + X14

2
= 2 (3.25)

Where n is the number of data in this case n = 12. Knot averages method is recommended

for a better spline approximation of order k with knot sequence X. Knot averages values for

augmented knot sequence with previous set of data are computed. The final result is given as

Knot averages = {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2} (3.26)

So the cubic spline interpolation is applied to new set of data which is given by the knot aver-

age method. Spline approach is especially attractive in the characterization and calculation of
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optimal solution. As a result, it gives proper evaluation of mathematical function with low order

polynomial which can replace the original function. The basic idea of approximation theory is to

resolve the complicated function, called target function, into simpler functions or approximants.

So in approximation theory one assumes that sampled values from original function are available.

The information is then used to construct the approximants with spline interpolation method

which is in form of piecewise polynomial with low order.

3.4 Cubic Spline

In this part, mathematical proof for cubic spline is given in detail [14]. Define following

equalities

hi = τ i+1 − τ i (3.27)

di =
zi+1 − zi

τ i+1 − τ i
(3.28)

si = z
′′
(τ i) (3.29)

This notation implies that z(τ) is piecewise cubic. Also z
′
(τ) is piecewise quadratic and z

′′
(τ) is

piecewise linear. Performing Lagrange interpolation or piecewise linear interpolation for the set

of data yields

z
′′
i (τ) = z

′′
(τ i)

τ − τ i+1

τ i − τ i+1
+ z

′′
(τ i+1)

τ − τ i

τ i+1 − τi
(3.30)

Substituting equations (3.27) and (3.29) in (3.30).

z
′′
i (τ) =

si(τ i+1 − τ)
hi

+
si+1(τ − τ i)

hi
(3.31)

Where i = 0, 1, 2, ..., n − 1 and τ ∈ [τ i, τ i+1]. Obtaining the first derivative and the interpolant

by integrating (3.31). Note that p and q are considered as constant values.

z
′
i(τ) = −si(τ i+1 − τ)2

2hi
+

si+1(τ − τ i)2

2hi
− pi + qi (3.32)

zi(τ) =
si(τ i+1 − τ)3

6hi
+

si+1(τ − τ i)3

6hi
+ pi(τ i+1 − τ) + qi(τ − τ i) (3.33)
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In order to obtain p and q, the interpolant needs to be evaluated at τ = τ i, τ = τ i+1. It requires

also that zi(τ i) = zi and zi+1(τ i+1) = zi+1 which are the values of polynomials at specific points.

zi(τ i) =
si(τ i+1 − τ i)3

6hi
+ pi(τ i+1 − τ i) =⇒ pi =

zi

hi
− sihi

6
(3.34)

zi(τ i+1) =
si+1(τ i+1 − τ i)3

6hi
+ qi(τ i+1 − τ i) =⇒ qi =

zi+1

hi
− si+1hi

6
(3.35)

Substituting p, q into (3.33)

zi(τ) =
si(τ i+1 − τ)3

6hi
+

si+1(τ − τ i)3

6hi
+ (

zi

hi
− sihi

6
)(τ i+1 − τ) + (

zi+1

hi
− si+1hi

6
)(τ − τ i) (3.36)

Continuity of first derivative shows that

z
′
i−1(τ i) = z

′
i(τ i) (3.37)

Using (3.37) in (3.32) yields into

z
′
i(τ) = −si(τ i+1 − τ)2

2hi
+

si+1(τ − τ i)2

2hi
− (

zi

hi
− sihi

6
) + (

zi+1

hi
− si+1hi

6
) (3.38)

z
′
i−1(τ) = −si−1(τ i − τ)2

2hi−1
+

si(τ − τ i−1)2

2hi−1
− (

zi−1

hi−1
− si−1hi−1

6
) + (

zi

hi−1
− sihi−1

6
) (3.39)

Evaluating (3.38) and (3.39) for τ = τ i and τ = τ i−1 gives

z
′
i(τ i) = −si(τ i+1 − τ i)2

2hi
− (

zi

hi
− sihi

6
) + (

zi+1

hi
− si+1hi

6
) (3.40)

z
′
i−1(τ i) =

si(τ i − τ i−1)2

2hi−1
− (

zi−1

hi−1
− si−1hi−1

6
) + (

zi

hi−1
− sihi−1

6
) (3.41)

Applying the continuity of first derivative conditions results in

− sihi

2
− zi

hi
+

sihi

6
+

zi+1

hi
− si+1hi

6
=

sihi−1

2
− zi−1

hi−1
+

si−1hi−1

6
+

zi

hi−1
− sihi−1

6

By simplifying both sides of the equation, the difference equation for the cubic spline is obtained

hi−1si−1 + (2hi−1 + 2hi)si + hisi+1 = 6(
zi+1 − zi

hi
− zi − zi−1

hi−1
) (3.42)
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Substitute the equalities given by (3.28)

di =
zi+1 − zi

τ i+1 − τ i
(3.43)

di−1 =
zi − zi−1

τ i − τ i−1
(3.44)

Allows (3.42) to become

hi−1si−1 + (2hi−1 + 2hi)si + hisi+1 = 6(di − di−1) (3.45)

Once the end conditions are specified, the spline coefficients can be determined uniquely by

fixed solving the set of linear equations for s and then solving for the coefficients of polynomial

as given by (3.2)—(3.5). As a result spline function can be constructed by using polynomial

coefficients for each segment.
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Chapter 4

Applications

4.1 Tracking Controller Design for Duffing Oscillator

In this case study, the objective is to drive the state of the system into the desired path.

This task is fulfilled with help of exact feedback linearization method which is applied to forced

Duffing oscillator. Consider the forced Duffing oscillator as formulated in (2.6) with the following

parameters q = 0.31, p = 0.2, p1 = −1, p2 = 0.05, p3 = 1, and ω = 1. The resulting differential

equation contains quadratic and cubic nonlinearities.

ẍ + 0.2ẋ− x + 0.05x2 + x3 = 0.31 cos(t) + u (4.1)

Following the control law as mentioned in (2.28), u is given by

u = 0.2x2 − x1 + 0.05x2
1 + x3

1 − 0.31 cos(t)− sin(t)− C0(x1 − sin(t))− C1(x2 − cos(t)) (4.2)

Pole placement method is used for tuning the coefficients C0, C1. The numerical values are

obtained as C0 = 3 and C1 = 1.5. State trajectory x1 for the system of Duffing oscillator is

shown without any controller input in Figure 4.1. The controller needs to act in a way that

brings the state trajectory to the desired path. Desired path is considered as periodic sine wave.

The controller signal is applied at t = 38 seconds. Figure 4.2 and Figure 4.3 show the state

trajectory and controller signal, respectively.

The spline function as mentioned in (4.2) is used to approximate the nonlinear controller.
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Figure 4.1: Uncontrolled response
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Figure 4.2: Controlled response

Generally, the equation can be written in form of

u = Nonlinear Function(x1, x2, x3) = F (x1, x2, x3) (4.3)

The procedure for constructing the controller based in splines is explained in the following

Consider a limited number of sampled data points for x1, x2, and x3 which are equally spaced

and in an increasing sequence. Applying augmented knot sequence to these set of data. As men-

tioned in section 3.3, augmented knot returns a nondecreasing knot sequence that has multiplicity

of k = 3 for the first and last knot. Output sampled data from controller is obtained with new
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Figure 4.3: Controller signal

set of knots. Spline function is constructed for these set of input-output data in form of piecewise

polynomials.

A piecewise polynomial is a function defined on an interval [a, b] that is divided into subin-

tervals [xi, xi+1], where i = 0, 1, 2, ..., n− 1 with end point conditions as x0 = a and xn = b. On

each subinterval, [xi, xi+1], the function is equal to a polynomial which is called Pi(x). Piecewise

polynomial spline of order k provides a definition in terms of its breaks x1, x2, x3, ..., xl+1 and

general local polynomial coefficients ξij of its breaking pieces. General formulation for these set

of polynomials is

Pi(x) =
k∑

j=1

(x− xi)k−jξij (4.4)

A cubic spline polynomial can be written as follow.

Pi(x) = ξi1(x− x1)3 + ξi2(x− x2)2 + ξi3(x− x3) + ξi4 (4.5)

Different polynomial order can be used for approximation process. Schematic view of conventional

EFL controller and spline approximation based are shown in Figure 4.4. Depending on degree

of polynomial, different controller path is approximated with spline function. The complexity

of the controller is increased by increasing the polynomial coefficients between each segment of
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points. Figure 4.5 shows controller signals with different polynomial degree. State trajectories

for different order of polynomials are shown in Figure 4.6. Desired path is taken as periodic sine

function.

It is possible to estimate the difference between the given function f(x) and its complete

cubic spline interpolant, with bounds involving the maximum absolute values of the higher order

derivatives of f(x). Basic definitions for cubic spline end conditions interpolation is given as

follow

Clamped Spline — S
′
(a) = f

′
(a) and S

′
(b) = f

′
(b)

Natural Spline — S
′′
(a) = S

′′
(b) = 0

Not a Knot condition — S
′′′

is continuous at x1 and xn−1.

Suppose that f and its first four derivatives are continuous on interval [a, b]. Consider the standard

notation

Mk = max |f (k)(x)| : x0 ≤ x ≤ xn (4.6)

Defining the approximated spline function S(x) which construct the new approximants on
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Figure 4.5: Controller signal

points xk for k = 0, 1, 2, ..., n with a = x0 < x1 < ... < xn−1 < xn = b. Burden et al. [5] presented

the error bound for spline interpolation and original function

max
a≤x≤b

|f(x)− S(x)| ≤ 5M4

384
max

0≤j≤n−1
(xj+1 − xj)4 (4.7)

The error bound is valid for various end conditions of cubic spline such as clamped spline,

natural spline, and Not a knot condition. Spline approach is attractive in characterization and

calculation of the optimal solution and has been used previously, for instance in Netravali et al.

[25]. Their work is based on the relationship between a class of minimum energy control problems

and spline interpolation technique. The system that has been investigated includes dynamical

interconnected systems and it has number of single-input single-output finite dimensional linear
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Figure 4.6: State trajectories for different polynomial degree

time varying dynamical subsystems.

Spline method is used to approximate nonlinear controller based on EFL controller for tracking

problem in a way that controller effort is reduced. Controller effort is defined as

E1 =
∫ t

0
u(t)2dt (4.8)

E2 =
∫ t

0
tu(t)2dt (4.9)

On each input-output set of vector, polynomial is interpolated with different order. Table 4.1
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shows that for different combination of piecewise polynomial, the controller effort varies.

In comparison with spline based controller effort, EFL controller needs larger amount of

energy for driving the state of the system into desired path. For instance, controller effort with

EFL method is E1 = 0.411, E2 = 10.505 whereas the cubic spline based has E1s = 0.405,

E2s = 10.417. This study can also be done in frequency domain by computing power spectral

density (PSD). In the frequency domain, PSD shows distribution of power per unit frequency

(Hz). For two controller signals, EFL and spline-based, the average power of spectral density are

compared with each other. As expected from previous analysis, results show that with spline-

based controller distribution of power per unit frequency is much less than the original EFL

controller. Note that real value of sampled data produce a one-sided power spectral density. This

method is called periodogram. Mathematical formula is given by

Pxx(f) =
|UL(f)|2

fsL

where

UL(f) =
L∑

n=0

UL[n]e
−2fnπj

fs (4.10)

The parameters are

L . . . length of the sampled data
UL[n] . . . sampled data
fs . . . sampling frequency
Pxx(f) . . . power spectral density

Periodogram is a method in which the estimate of the PSD is made from the signal directly.

The spectral density is computed in units of power per hertz. Polynomials with different orders

for controller are constructed. It shows power contained in the sampled data from the spline-

based controller signals has less density of power through the frequency range while satisfying

the trajectory of the desired path. For example the PSD for controller signal with exact feedback

linearization method is 3.1729, and with cubic spline is 3.1002. Table 4.2 shows PSD for spline

based controller with different order of polynomial between each set of input-output data. Peri-

odogram between DFL controller and cubic spline controller is shown in Figure 4.7.

Spline method was used to approximate the nonlinear EFL controller. Controller effort in

spline-based with different order, showed better performance in time domain when compared
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 Piecewise 
polynomial 
 order 
(First input) 

 1x  

Piecewise 
polynomial 
 order 
(Second 
input) 

2x  

Piecewise 
polynomial 
order 
(Third input) 

3x  

Controller 
effort 

3
1 10´SE  

Controller 
effort 

3
2 10´SE  

1 1 1 0.868 38.267 
1 1 3 0.550 19.097 
1 1 5 0.544 18.538 
1 3 1 0.768 31.637 
1 3 3 0.472 14.793 
1 3 5 0.484 15.345 
1 5 1 0.768 31.637 
1 5 3 0.472 14.793 
1 5 5 0.484 15.345 
3 1 1 0.759 30.334 
3 1 3 0.485 15.023 
3 1 5 0.490  15.042 
3 3 1 0.637 23.262 
3 3 3 0.403 10.412 
3 3 5 0.408 10.408 
3 5 1 0.637 23.262 
3 5 3 0.403 10.412 
3 5 5 0.408 10.408 
5 1 1 0.754 30.050 
5 1 3 0.492 15.431 
5 1 5 0.493 15.241 
5 3 1 0.665 25.019 
5 3 3 0.403 10.413 
5 3 5 0.409 10.499 
5 5 1 0.665 25.019 
5 5 3 0.403 10.413 
5 5 5 0.409 10.499 

 

Table 4.1: Controller effort with spline-based controller
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Piecewise 
polynomial 
 order 
(First input) 

 1x  

Piecewise 
polynomial 
 order 
(Second input) 

2x  

Piecewise 
polynomial 
order 
(Third input) 

3x  

Average of 
power spectral 
density for 
Spline 
controller 
  

1 1 1 2.7858 
1 1 3 1.7391 
1 1 5 1.7897 
1 3 1 2.9561 
1 3 3 1.9685 
1 3 5 1.9069 
1 5 1 2.9561 
1 5 3 1.9685 
1 5 5 1.9069 
3 1 1 3.0886 
3 1 3 2.2780 
3 1 5 2.3088 
3 3 1 3.5626 
3 3 3 3.0625 
3 3 5 3.1452 
3 5 1 3.5626 
3 5 3 3.0625 
3 5 5 3.1452 
5 1 1 2.9270 
5 1 3 2.1597 
5 1 5 2.2794 
5 3 1 3.6365 
5 3 3 3.0628 
5 3 5 3.1302 
5 5 1 3.6365 
5 5 3 3.0628 
5 5 5 3.1302 

 

Table 4.2: Power spectral density with spline-based controller
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Figure 4.7: Periodogram between DFL and cubic spline

to the EFL. In frequency domain, average of power spectral density of the controller signal is

compared with exact feedback linearizaton. Spline-based controller has an advantage of selecting

the polynomial order within specific range while decreasing the controller effort. The order of

piecewise interpolation can be chosen as linear, quadratic, cubic and also higher between a set of

input-output data.
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4.2 Excitation control with Direct Feedback Linearization Method

Direct Feedback Linearization is a nonlinear control design tool which is implemented in two

steps [30]. The first step is to obtain a linear system using feedback to compensate for the non-

linearities. The compensator can explicitly cancel the nonlinearities present in the machine. The

second step is to design a controller using the feedback linearized system. The advantage of linear

closed loop dynamics is that the selection of controller gains are simplified and classical controller

designed can be used. By using DFL compensating law the multi-machine power system can be

linearized and decoupled as state space equations.

One-axis model generator has been used previously for implementing DFL technique. The

applicability of the method is based on type of nonlinearities. DFL controller will be used for

two axis model generator. Controller design for excitation loop with DFL method concept is ex-

plained in two stages. First a brief description is given of the two-axis model generator. Consider

the ith generator in multi machine power system. Two-axis model contains the set of differential

and algebraic equations as follows

a) Differential equations

δ̇i(t) = ωi(t)− ω0 (4.11)

ω̇i(t) =
−Di

2Hi
(ωi(t)− ω0) +

ω0

2Hi
(Pmi − P ei) (4.12)

Ė
′
di =

1
T
′
qoi

[Iqi(Xqi −X
′
qi)− E

′
di] (4.13)

Ė
′
qi =

1
T
′
doi

[Efldi − Idi(Xdi −X
′
di)] (4.14)

b) Algebraic equations

Pei = E
′
diIdi + E

′
qiIqi (4.15)

Edi = E
′
di − Idirai + IqiX

′
di (4.16)

Eqi = E
′
qi − Iqirai + IdiX

′
di (4.17)

Iqi(t) =
n∑

j=1

E
′
qj(Bij sin δij(t) + Gij cos δij(t)) (4.18)

Idi(t) =
n∑

j=1

E
′
qj(Gij sin δij(t)−Bij cos δij(t)) (4.19)
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The variables Id and Iq are internal variables. When these variables are used in (4.15), it will

yield the generator’s electric power output. Hence, an alternative model will be to use this active

power as a state variable instead of the internal voltages E
′
d and E

′
q. The state equation of the

active power is obtained by taking the derivative of (4.15)

Ṗei = Ė
′
diIdi + E

′
diİdi + Ė

′
qiIqi + E

′
qiİqi (4.20)

By substituting the dynamic state equations (4.13, 4.14) of E
′
d and E

′
q into (4.20) one obtains

Ṗei =
1

T
′
qoi

[Iqi(Xqi −X
′
qi)− E

′
di]Idi + E

′
diİdi + (4.21)

+
1

T
′
doi

[Efldi − Idi(Xdi −X
′
di)]Iqi + E

′
qiİqi

Equations (4.11) and (4.12) remain the same. To obtain the feedback linearized system, assume

that the mechanical power Pmi is kept constant equal to P 0
mi. The accelerating power is then

given by

∆Pei = Pei − P 0
mi (4.22)

and its dynamics are governed by the following state equation, obtained from (4.21)

∆Ṗei = Ṗei =
IqiIdi(Xqi −X

′
qi)

T
′
qoi

−
E

′
diIdi

T
′
qoi

+ E
′
diİdi +

+
EfldiIqi

T
′
doi

−
IqiIdi(Xdi −X

′
di)

T
′
doi

+ E
′
qiİqi (4.23)

Using algebraic equation for electric power (4.15)

E
′
diIdi = ∆Pei − E

′
qiIqi + P 0

mi (4.24)

Substitute (4.24) into (4.23)

∆Ṗei = −∆Pei

T
′
qoi

+
IqiIdi(Xqi −X

′
qi)

T
′
qoi

+
E

′
qiIqi

T
′
qoi

− P 0
mi

T
′
qoi

+

+E
′
di

˙Idi + E
′
qi

˙Iqi +
Efldi

Iqi

T
′
doi

−
IqiIdi(Xdi −X

′
di)

T
′
doi

(4.25)
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This can be written as

∆Ṗei = −∆Pei

T
′
qoi

+
Vfi(t)
T
′
qoi

(4.26)

where

Vfi(t) = IqiIdi(Xqi −X
′
qi) + E

′
qiIqi − P 0

mi + E
′
diİdiT

′
qoi +

+E
′
qiİqiT

′
qoi +

T
′
qoi

T
′
doi

IqEfldi −
T
′
qoi

T
′
doi

IdiIqi(Xdi −X
′
di) (4.27)

Let the nominal values be δi0, ωi0. Then define variations around these nominal values as

∆δi(t) = δi(t)− δi0 (4.28)

∆ωi(t) = ωi(t)− ωi0 (4.29)

Their dynamics are given by

∆δ̇i = ∆ωi (4.30)

∆ω̇i = − Di

2Hi
∆ωi −

ωio

2Hi
∆Pei (4.31)

Equations (4.30), (4.31) and (4.26) form the feedback linearized model for the ith generator. This

model is written in matrix form as

ẋi(t) = Aixi + BiVfi(t) (4.32)

Where the state variables are xT
i = [∆δi(t) ∆ωi(t) ∆Pei(t)] and

Ai =


0 1 0

0 − Di
2Hi

− ωi0
2Hi

0 0 − 1

T
′
qoi

 Bi =


0

0
1

T
′
qoi

 (4.33)

4.2.1 Control Design

Using the linearized system given by (4.32) the controller Vfi can be designed via different

methods such as pole placement. It is a linear state feedback controller of the form

Vfi = −Kixi = −Kδi
∆δi −Kωi∆ωi −KPei∆Pei (4.34)

where Kδi, Kωi, and KPei are constant gains.
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4.2.2 Nonlinear Controller

Finally the nonlinear controller is obtained from (4.27) and (4.34)

Efldi
(t) =

T
′
doi

T
′
qoiIqi

[−Kδi
∆δi −Kωi∆ωi −KPei∆Pei] + [−

T
′
doi

T
′
qoi

Idi(Xqi −X
′
qi)−

−
E

′
qiT

′
doi

T
′
qoi

+
PmiT

′
doi

T
′
qoiIqi

−
E

′
diİdiT

′
doi

Iqi
−

E
′
qiİqiT

′
doi

Iqi
+ Idi(Xdi −X

′
di)] (4.35)

From analysis above it is clear that when a compensating law is employed, the plant is linearized

and the linearization is valid over a wide range of operating points. The controller includes

linear state feedback loop plus nonlinear compensator and it is valid for a wide range except

Iq(t) = 0. The case where Iq(t) = 0 is a singular point. After linearization, it is easy to implement

deterministic method such as LQR [27] or even probabilistic method as genetic algorithm for

tuning controller in achieving desired stability and performance properties. Spline technique is

used to approximate the controller given in (4.35) with piecewise polynomials.
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4.3 Three Machine Nine Bus Test System

A three machine nine bus test system, Figure 4.8, as described by Anderson and Fouad [2]

is used to illustrate the application of spline based controller in comparison with DFL controller.

The parameters for generators are given in Table I. Note that the rotor angle and speed of

generator number 1 is chosen as the reference. Three cases are considered, loss of line 5− 7, loss

of load at bus 5, and a line to ground fault on line 5− 7.

 

Figure 4.8: Three Machine Nine Bus Test System

Table 4.3: Generator parameters
Machine Xdi X

′
di T

′
doi Xqi X

′
qi T

′
qoi Hi

1 0.146 0.0608 8.96 0.0969 0.0969 0.31 23.64
2 0.8958 0.1198 6.00 0.8645 0.1969 0.535 6.40
3 1.3125 0.1813 5.89 1.2578 0.2500 0.600 3.01

When applying the (DFL), the linearized model is

ẋi = Aixi(t) + BiVfi(t)

(4.36)

For {i = 1, 2, 3} Ai and Bi are obtained
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A1 =


0 1 0

0 −0.0212 −0.0212

0 0 −3.2258

 B1 =


0

0

3.2258

 (4.37)

A2 =


0 1 0

0 −0.0781 −0.0781

0 0 −1.8692

 B2 =


0

0

1.8692

 (4.38)

A3 =


0 1 0

0 −0.1661 −0.1661

0 0 −1.6667

 B3 =


0

0

1.6667

 (4.39)

The controller Vfi(t) can be designed by using different linear control design method. Here, LQR

method is used. Following gains are obtained

Vf1(t) = −∆δ1 − 10.4483∆ω1 + 0.4619∆Pe1

Vf2(t) = −∆δ2 − 5.0708∆ω2 + 0.5569∆Pe2

Vf3(t) = −∆δ3 − 3.2505∆ω3 + 0.6272∆Pe3

(4.40)

DFL nonlinear controller is obtained by substituting the following linear functions into (4.35).

Eflid1 =
−28.9∆δ1 − 301.9571∆ω1 + 13.3475∆Pe1

Iq1(t)
−

− 28.9032E
′
q1 +

20.7062
Iq1

− 8.96E
′
d1

˙Id1

Iq1
− 8.96E

′
q1

˙Iq1

Iq1
+ 0.0852Id1 (4.41)

Eflid2 =
−11.21∆δ2 − 56.8437∆ω2 + 6.2427∆Pe2

Iq2(t)
−

− 7.49Id2 − 11.214E
′
q2 +

18.2803
Iq2

− 6E
′
d2

˙Id2

Iq2
− 6E

′
q2

˙Iq2

Iq2
+ 0.6562Id2 (4.42)

Eflid3 =
−9.810∆δ3 − 31.8870∆ω3 + 6.1533∆Pe3

Iq3(t)
−

− 9.8932Id3 − 9.816E
′
q3 +

8.3441
Iq3

− 5.89E
′
d3

˙Id3

Iq3
− 5.89E

′
q3

˙Iq3

Iq3
+ 1.1312Id3 (4.43)
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From construction of DFL controller, it is clear that each controller has two parts which

include linear compensator and nonlinear compensator:

Controller = Linear Compensator(∆δi,∆ωi,∆Pei) +

Nonlinear Compensator (E
′
di, E

′
qi, Idi, Iqi, İdi, İqi)

Nonlinear approximation with spline technique is used to approximate both parts of this con-

troller. Figure 4.9 shows schematic procedure for obtaining the spline based controller.

 Knot Averages 
Method For 
Augmented Knot 
sequence 

 
   DFL Controller 

       Spline  
    Technique       

Piecewise 
polynomial  

    Interpolant 
 

 

Generation of 
arrays for N -
dimensional 
function  

sampled Input

sampled Output

         Output

Figure 4.9: Schematic block diagram for spline-based controller

Usually spline is constructed from some information. These information can be function

values, derivative values, or approximation solution to some ordinary differential equation. It

is also possible to construct the spline function from scratch by providing its knot sequence

and break sequence. In this case sampled input data includes equally spaced, increasing se-

quence with variation of independent variables of controller. These independent variables include

δi, ωi, Pei, E
′
di, E

′
qi, Idi, Iqi, İdi, İqi. Knot averages method, as explained in section 3.3 is applied in

order to obtain a new set of data. Combination of space for each three vectors is considered in

multi-dimensional grid. Basically, this is the construction for the space in order to apply spline

technique.

Cubic spline interpolation technique is applied through input-output set of data. The result is in

form of piecewise polynomials. Dashed line in Figure 4.9 shows the spline based controller. Piece-

wise polynomial spline of order k provides a definition in terms of its breaks x1, x2, x3, ..., xl+1
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and general local polynomial coefficients ξij of its breaking pieces. General formulation for these

set of polynomials is given as

yi =
k∑

j=1

(x− xi)k−jξij (4.44)

A cubic spline can be written as

yi = ξi1(x− x1)3 + ξi2(x− x2)2 + ξi3(x− x3) + ξi4 (4.45)

where coefficients ξi1, ξi2, ξi3, and ξi4 are equal to the coefficients (3.2)—(3.5).

4.3.1 Case 1 - Loss of Line

First contingency is a loss of line for a short period of time. The system is in steady state.

Line 5−7 is removed at 1 second and it is reconnected after 0.3 seconds. Constant field voltage is

applied to each generator. Values for field voltage are computed from general load flow solution

and are given by Efiled1 = 1.082, Efield2 = 1.789, and Efield3 = 1.402. Here, the response of

the system for constant type of field voltage is called open loop response. Next the proposed

control strategy with spline technique is applied to the controller of each generator. Figure 4.10,

and Figure 4.11 compare relative speed and angle of machine 3 with respect to machine 1 for

two cases of open loop response and closed loop response respectively. From the simulation it is

clear that the closed loop system, with spline based nonlinear controller, stabilizes the disturbed

system much faster than constant field voltages as expected.

4.3.2 Case 2 - Loss of Load

The load which is connected to bus 5 is removed for 0.13 seconds. Load A form Figure 4.8 is

given as PL = 1.25 p.u, QL = 0.5 p.u. Figure 4.12 and Figure 4.13 compare relative speed and

angle of machine 2 with respect to machine 1 for open and closed loop scenarios.
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Figure 4.10: Case 1 Relative speed 3-1
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
54

55

56

57

58

59

60

61

time

re
lat

ive
 an

gle
 2−

1

Closed loop response
Open loop response

Figure 4.13: Case 2 Relative angle 2-1



CHAPTER 4. APPLICATIONS 48

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
40

45

50

55

60

65

70

75

80

time

re
lat

ive
 an

gle
 2−

1

DFL controller
Spline−based controller

Figure 4.14: Case 3 Relative angle 2-1
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Figure 4.15: Case 3 Relative angle 3-1

4.3.3 Case 3 - Line to Ground Fault

In this case the performance of DFL and spline based controller are compared with each

other. Line to ground fault is applied on line 5− 7 for 0.15 seconds. Figure 4.14 and Figure 4.15

compare relative angle for closed loop responses. First, DFL controller applied. Then nonlinear

controller for each generator with DFL method is approximated with piecewise polynomial with

cubic spline technique. Approximated controller enhances stability of the system. Case 3 shows

that spline based controller has better performance in comparisom to DFL method as can be seen

by the oscillation of rotor angle.

Figure 4.16 compares spline based controller signal with DFL controller signal which applies
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Figure 4.16: Case 3 Controller signals for generator 1
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Figure 4.17: Case 3 Controller signals for generator 1 (detail)

to generator number 1. DFL controller signal has larger pick in compare to spline controller. For

this case, rate limiter does not include for control signals. By zooming in Figure 4.16, difference

between two controller signals can specified. Figure 4.17 and Figure 4.18 are focused for time

interval 1.1− 2.1 and 2− 5 second.

Comparison between controllers for generator 2 and 3 is also shown in Figures 4.19 and Fig-

ure 4.20. It is assumed that the working region for synchronous generators is 0 < δ < 180 in

order to guarantee that Iq 6= 0 in (4.35). But this assumption is only valid for the steady state.

The problem can be solved by including saturation nonlinearity on the control signal. Saturation

block limits the gain 1
Iq

in the controller.
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Figure 4.18: Case 3 Controller signals for generator 1 (detail)
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Figure 4.20: Case 3 Controller signals for generator 3

4.4 Spline Controller

Controller with DFL method is a nonlinear controller given by

Efldi
= Linear Compensator + Nonlinear Compensator (4.46)

Two approximation methods are applied to DFL excitation controller. First, the DFL excitation

controller is approximated by cubic spline. For each independent variable of controller consid-

ered 20 number of sampled data. Assuming that the sampled data can cover the variation for

each independent variable. This means that twenty sequences of data within a maximum and

minimum variation are limited within a bound. Apply knot averages method to these set of data.

Construct all the combination sets of these which construct the spline space. The linear compen-

sator is computed for the discretized three dimension space. The same procedure is also applied

to nonlinear compensator. The final objective of this sampling, knot averaging, and finally cubic

spline interpolation, is to reconstruct the overall function in form piecewise polynomials which

approximate DFL excitation controller.

Another method of computing splines to approximate functions is B-splines. This method is

based on constructing the basis for the vector space of splines defined on interval [a, b] and then

solving a system of linear equations for the coefficients of the desired approximants in new basis.
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The basis function are known as B-splines. The ”B” declares that these splines form a basis and

they tend to have bell-shaped graphs. Linear system of equations can be solved very efficiently.

B-splines can be defined in various ways, including recursive, convolution, and divided differences.

Here, the recursive method is considered. Mathematical notation for an arbitrary function f of

order k for knot sequence t written as f ∈ Sk,t. This expresses that f is a linear combination of

B-splines of order k with knot sequence t. In particular, B-form presents the spline as a weighted

sum of B-splines with order k. It can be written as summation

n∑
j=1

Bj,kαj (4.47)

Here Bj,k is the jth B-spline of order k that depends on the knot sequence t1 < t2 < ... < tn+k.

There are some definitions related to this mathematical formulation which are explained as follow

αj are n real numbers which are called control points.

k is the order of the polynomial segment of the B-splines curve.

Order k means that the curve is made up of piecewise polynomial segments of degree k − 1.

Bj,k are normalized B-splines functions. These functions are described by the order k and by non

decreasing sequence of real numbers which are called knot sequences ti : i = 0 . . . n + k.

Basically Bj,k is piecewise polynomial of degree < k with breaks tj , ..., tj+k, is nonnegative and

zero outside the interval (tj ...tj+k). The summation is normalized in a way that for interval

[tk...tn+1] the summation of splines will become 1.

n∑
j=1

Bj,k = 1 (4.48)

Which is one important property of B-splines function. Recursive definition for B-splines is given

next

For the case where k = 1 the jth B-spline of degree 1 is defined by

Bj,1 =

 1 if x ∈ [tj , tj+1)

0 otherwise x /∈ [tj , tj+1)

And for the case where k > 1 then the jth B-spline of degree k is defined by

Bj,k(x) =
x− tj

tj+k − tj
Bj,k−1(x) +

tj+1+k − x

tj+1+k − tj+1
Bj+1,k−1(x) (4.49)

Note that the order k is independent of the number of control points. For B-splines there is

flexibility of using many control points while restricting the degree of polynomial for each segment.
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4.4.1 Case 4 - Three Phase Fault

B-splines approximation is applied to the same system and it will be compared with cubic

spline approximation. Three phase fault is applied on line 5 − 7. The fault is cleared after

0.15 seconds. Figures 4.21 and 4.22 show the comparison between oscillation of rotor angles

of machines 2, 3 with respect to machine 1. The transient response for rotor angle oscillation

obtained with B-splines controller is improved compared to cubic spline controller.
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Figure 4.21: Case 4 Relative rotor angle 2-1
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4.5 Internal Variable Identifier

Direct feedback linearization is a nonlinear control design tool. From (4.35) controller for

two-axis model generator needs Iqi, Idi, E
′
qi, and E

′
di which are internal machine variables that

cannot be measured directly [22]. A method is proposed to identify these internal variables. Its

schematic block diagram is shown in Figure 4.23. The input variables of the identifier, ūi, are

rate of change of active and reactive power, field voltage, and active power

ūi =
(

Ṗei Q̇ei Efldi
Pei

)T
(4.50)

The state variables, x̂i, of the identifier are direct and quadrature currents, internal voltages,

and speed

x̂i =
(

Idi Iqi E
′
qi E

′
di ωi

)T
(4.51)

Controller

System Output

Identifier's InputsIdentifier's Output

)ˆ( ix )( iu

 
Nonlinear 
System  

Internal 
Variable 
Identifier 

DFL Saturation  

Figure 4.23: Internal variable identifier block diagram

The state equations for the identifier are of the form

˙̂xi = fi(x̂i) + gi(x̂i, ūi) (4.52)

Which are derived as follows. Consider the equations for active and reactive power

Pei = E
′
diIdi + E

′
qiIqi (4.53)

Qei = E
′
qiIdi − E

′
diIqi (4.54)
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Their rate of change is

Ṗei = Ė
′
diIdi + E

′
diİdi + Ė

′
qiIqi + E

′
qiİqi (4.55)

Q̇ei = Ė
′
qiIdi + E

′
qiİdi − Ė

′
diIqi − E

′
diİqi (4.56)

Substitute equations (4.13, 4.14) into (4.55, 4.56) and rearrange to yield İdi and İqi.

İdi = [ṖeiE
′
di − (−E

′
di + (Xqi −X

′
qi)Iqi)IdiE

′
di

1
Tqi

+

+Q̇eiE
′
qi − IqiE

′
di(−E

′
qi − (Xdi −X

′
di)Idi + Efldi

)
1

Tdi
−

−(−E
′
qi − (Xdi −X

′
di)Idi + Efldi

)IdiE
′
qi

1
Tqi

+

+IqiE
′
qi(−E

′
di + (Xqi −X

′
qi)Iqi)

1
Tqi

]
1

E
′2
qi + E

′2
di

(4.57)

İqi = [ṖeiE
′
qi − (−E

′
di + (Xqi −X

′
qi)Iqi)IdiE

′
qi

1
Tqi

−

−Q̇eiE
′
di − IqiE

′
qi(−E

′
qi − (Xdi −X

′
di)Idi + Efldi

)
1

Tdi
+

+(−E
′
qi − (Xdi −X

′
di)Idi + Efldi

)IdiE
′
di

1
Tdi

−

−IqiE
′
di(−E

′
di + (Xqi −X

′
qi)Iqi)

1
Tqi

]
1

E
′2
qi + E

′2
di

(4.58)

In summary, the system of nonlinear differential equations given by (4.12), (4.13), (4.14),

(4.57), and (4.58) is the state space representation of the identifier. This method is tested for

three machines nine bus test system. Evaluation for performance of the identifiers is assessed.

Figures 4.24, 4.25, and 4.26 compare exact and identified values for Idi, Iqi, and ωi. The major

difference for direct and quadrature currents happens at the time when fault occurs.
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Figure 4.24: Direct and quadrature current for machine 1
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Figure 4.25: Direct and quadrature current for machine 3



CHAPTER 4. APPLICATIONS 57

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.999

1

1.001

1.002

1.003

M
a
c
h
in

e
 3

Exact Value
Identified Value

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1

1.005

M
a
c
h
in

e
 2

Exact Value
Identified Value

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.999

1

1.001

1.002

M
a
c
h
in

e
 1

Relative Speed

Exact Value
Identified Value

Figure 4.26: Speed of the machines
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4.6 Controller Tuning - Genetic Algorithm

Genetic algorithm can be used to solve a vast variety of optimization problems. In brief, the

method is a probabilistic optimization technique which is based on the natural evolution pro-

cess. In this technique, fitness function has the same role as objective function for the traditional

optimization problem. There are some basic definitions that are commonly used in genetic opti-

mization and are given briefly in the following

Individual — Set of variables that need to be optimized.

Generation — Summation for the set of individuals.

Selection — Collect the best individuals in current population and use it for generating next

population.

Crossover — Make large set of individual to exchange a subset of the genetic information with

each other.

Mutation — Causes individual genetics changes according to some probabilistic rules.

Objective function — It is used to provide a measure of how individuals have performed in

problem domain.

Fitness function — It corresponds to the number of offspring that an individual can expect to

produce in next generation.

In genetic optimization method, individuals with better fitness values are accepted and those

with low fitness values are rejected. So, the final solution will become individual with best fitness

value. This final solution may not be unique, and mainly depends on problem formulation. In

control theory, genetic algorithm can also be used to obtain the control gains such that the closed

loop eigenvalues of linear system lie on the left hand side of jω axis of s-complex plane. Basically

the algorithms are global search techniques and more likely to converge to global optima than

conventional optimization techniques. It has already been used in complicated multidimensional

problems. Conventional optimization techniques, such as output feedback, are based on deter-

ministic method which may find local solution instead of global while genetic algorithms based

global solutions [1, 11, 8].

In genetic algorithm, fitness function is defined in a way that will minimize the real part of

closed loop eigenvalues for each subsystem as defined by
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Acli = Ai + BiKi (4.59)

fitness function = max[Re{eig(Acli)}]

subject to Ki ∈ [−α, α]

Where α is the bound for controller gains. The controller gains are found by minimizing the

fitness function. The fitness function should give domain-specific information about each indi-

vidual. So it is proper to define it in form of a mathematical formulation, either a maximization

or minimization of some parameters and constrains.

Genetic algorithms are very efficient method in finding the optimization solution to nonlinear

and non-differentiable problems. The size of problems that can be solved using genetic algorithms

is a lot greater than maximum size of problems that can be solved using other techniques. The

algorithm is capable of handling harder and larger size problem, and it is flexible in terms of the

size of populations being used, the cross over and mutation probabilities and their methods. For

more complicated problems, the algorithm can be easily modified.

4.6.1 Case Study

The three machine nine bus test system is used to illustrate the proposed approach. First a

feedback linearized system is obtained for each machine then genetic search optimization method

is applied in order to tune the controller gains. Limits on the gains are imposed within a limited

bound Ki = [−150, 150]. The fitness function is defined in a way that will minimize the real part

of closed loop eigenvalues for each subsystem [1, 11].

The gains are obtained as follows

K1 =
(
−98.3322 −134.3784 −0.4811

)
(4.60)

K2 =
(
−138.0316 −131.9364 −2.7827

)
(4.61)

K3 =
(
−143.9325 −112.3946 −4.6062

)
(4.62)
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Comparison is done between open-loop and close-loop eigenvalues for each subsystem. Open

loop means the subsystem itself without any controller as eig(Ai) and closed loop means that

once the gains are obtained by genetic algorithm the closed loop eigenvalues are obtained as

eig(Ai + BiKi).

Subsystem - 1

eigopen =
(

0 −0.0212 −3.2258
)

eigclose =
(
−1.6047 −1.6049 + 1.2872i −1.6047− 1.2872i

)
Subsystem - 2

eigopen =
(

0 −0.0781 −1.8692
)

eigclose =
(
−2.3828 −2.3830 + 1.6668i −2.3830− 1.6668i

)
Subsystem - 3

eigopen =
(

0 −0.1661 −1.6667
)

eigclose =
(
−3.1702 −3.1699 + 1.5877i −3.1699− 1.5877i

)

Using the gains in (4.35), the controller can be obtained as

Eflid1 =
28.9Vf1(t)

Iq1(t)
− 28.9032E

′
q1 +

20.7062
Iq1

− 8.96E
′
d1

İd1

Iq1
− 8.96E

′
q1

İq1

Iq1
+ 0.0852Id1 (4.63)

Eflid2 =
11.21Vf2(t)

Iq2(t)
− 7.49Id2 − 11.214E

′
q2 +

18.2803
Iq2

− 6E
′
d2

İd2

Iq2
− 6E

′
q2

İq2

Iq2
+ 0.6562Id2 (4.64)

Eflid3 =
9.81Vf3(t)

Iq3(t)
− 9.8932Id3 − 9.816E

′
q3 +

8.3441
Iq3

− 5.89E
′
d3

İd3

Iq3
− 5.89E

′
q3

İq3

Iq3
+ 1.1312Id3(4.65)
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The three phase symmetrical fault is applied on line 5− 7 at time t = 1 second. It is removed

after 0.15 seconds. The nonlinear controllers designed in the previous section are applied using

outputs of the identifiers. The control signals for generators 1, 2, and 3 are shown in Figures

4.27, 4.28, 4.29. Field voltage signals are limited within specified bound. Excitation field voltage

with DFL controller reaches the pre-fault steady state values after a short period of time, once

the fault is cleared.
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Figure 4.27: Control signal
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Figure 4.28: Control signal

Figures 4.30 and 4.31 show machine speed and rotor angle when the designed controllers are

applied. Based on the first swing stability criteria, the generators will not loose their synchronism
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Figure 4.29: Control signal

for the first swing of the rotor angle as shown in Figures 4.31.

The simulation shows that by using DFL excitation controller for two axis model, stability

enhancement of the system is preserved in a case where large sudden fault occurs in the system.

This case study shows control design for a nonlinear electric power system through the excitation

loop of synchronous generator. Direct Feedback Linearization technique is presented and applied

using a two-axis generator model.

DFL controller requires unmeasurable internal variables. Internal variable identifier block is

presented in order to construct the unmeasurable variables for two axis model. The proposed

method has been illustrated using a three-machine nine-bus test system.
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4.7 Comparison between DFL Controller for One-Axis and Two-

Axis Model

For multi-machine power system, transient stability simulation is the most important tool for

planning, design, and operation. Models of generator are considered as important factor with

influence in simulation result. In this section, two types of generator models are covered with

their own complexity of DFL controllers. Synchronous generator is the most important kind of

the equipments in the electric power system. Performance of DFL controller is compared for

two-axis and one-axis generator.

DFL controller has been applied to one-axis model previously by several researchers [16, 31,

30, 33]. One axis model generators have mathematical models slightly different from two axis.

From the one axis model, it can be found that synchronous generator is also nonlinear through

the excitation loop. Applying DFL technique the controller for excitation loop is given as

Efldi =
1
Iqi

[Wfi(t)− E
′
qiİqiT

′
doi + Pm] + Idi(Xd −X

′
d) (4.66)

Similar to two-axis model, nonlinear generator model can also be linearized and decoupled as

subsystem. Each subsystem has state space equation as follow

ẋi = Āixi(t) + B̄iWfi(t)

(4.67)

With

Āi =


0 1 0

0 − Di
2Hi

− ωi0
2Hi

0 0 − 1

T
′
doi

 B̄i =


0

0
1

T
′
doi

 (4.68)

Controller Wfi(t) is

Wfi = −K̄ixi = −K̄δi
∆δi − K̄ωi∆ωi − K̄Pei∆Pei (4.69)

where K̄δi, K̄ωi, and K̄Pei are constant gains.

Classical three machine nine bus test system is considered here for comparison. Same controller
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design method, genetic algorithm, is applied for tuning static controller gains of Vfi and Wfi in

DFL excitation controller. The fitness function is taken similar, which is to minimize the real

part of closed loop eigenvalues for each subsystem. Controller gains are kept in same range for

both models. The objective is to compare the effectiveness of controllers in transient stability

enhancement of multi machine power system for different fault scenarios. Controller gains, ob-

tained by genetic algorithm, within the bound of [−100 100] are

One-Axis Model

K̄1 = (11.4515 95.0126 − 5.8675) (4.70)

K̄2 = (29.1955 99.9998 − 10.4482) (4.71)

K̄3 = (43.6102 100 − 16.1482) (4.72)

Two-Axis Model

K1 = (53.1255 100 − 0.3964) (4.73)

K2 = (85.2390 100 − 2.4267) (4.74)

K3 = (81.0893 75.5685 − 3.5896) (4.75)

4.7.1 Case 1 - Line to Ground Fault

Line to ground fault is applied on line 5− 7. The fault is removed after 0.25 seconds. Figure

4.32 compare relative rotor angles. From rotor angle stability criteria, it is clear that two-axis

model has advantage of preserving the stability of the system with smaller deviation in rotor

angle. The control signals for generators 1 is shown in Figure 4.33. Excitation field voltage with

DFL controller for two-axis model reaches the pre-fault steady state values after almost 3 second,

while for one-axis model it takes almost 6 second with high deviation around steady state values.

4.7.2 Case 2 - Three Phase Fault

Three phase fault is applied on line 5− 7 for 0.15 seconds. Figure 4.34 compare the relative

rotor angles for both systems. DFL excitation control for two-axis model is more accurate in

compare to one-axis in the way that it can grasp detailed characteristic relevant to control design.
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Controller signal for generator 3 is also shown in Figure 4.35 which compares the response of DFL

controller for two-axis and one-axis model.

4.7.3 Comments

There are several comments related to the previous case study specifically with tuning the

controller gain with genetic algorithms and the effect of nonlinear saturation block on controller

signals in place. These issues are addressed in the following

1. Genetic algorithm is used for tuning the controller gains under the same type of condi-
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Figure 4.35: Comparison between control signals

tions. Fitness function is defined similarly for both decoupled system. Also the controller gains

are bound within the same range.

2. For two-axis model, the complexity of DFL controller is increased when compared to one-

axis model. This is due to the more detailed dynamic modelling of the system.

3. Controller signals for two-axis model has smaller oscillation where compared to one-axis

model, and tends to be more stable in compare to one-axis model.
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4. Nonlinear elements such as saturation block has direct influence on dynamic simulation

of the system and also on the controller signals. For example in the three machine nine bus test

system, consider a loss of line 5−7 for 0.15 seconds. Controller gain is tuned by genetic algorithm.

The gain is tuned within the bound [−70 70].

K̄1 = (31.4076 66.5679 − 0.1043) (4.76)

K̄2 = (53.1455 69.9992 − 1.7910) (4.77)

K̄3 = (−38.489 − 47.2931 − 2.7501) (4.78)

Two different scenarios are compared for controller signals with and without saturation block.

in Figures 4.36, 4.37, and 4.38 dotted line shows the controller signal with effect of saturation

block. Solid line shows the controller signal without any saturation limit. The difference happens

especially during the transient period.
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Chapter 5

Summary and Conclusion

5.1 Conclusion and future work

The nonlinear feedback controller with exact feedback linearization method has been pre-

sented for the system of forced Duffing oscillator. The spline method has been explained and

computation of piecewise polynomial interpolation for cubic spline concluded. Spline method is

used to mimic the EFL controller. Controller effort for Spline-based with different polynomial

order, showed better performance in time domain when compared to the EFL. In frequency do-

main, average of power spectral density of the controller signal is compared with exact feedback

linearizaton. Spline-based controller has an advantage of selecting the polynomial order within

specific range while in some cases decreasing the controller effort. The degree of piecewise inter-

polation can be chosen as linear, quadratic, cubic and also higher order and it can be changed

easily. It would be interesting to see the application of spline approximation in more general class

of nonlinear systems such as Lorenz system.

Second case considered a methodology to control a nonlinear electric power system through

the excitation systems. Direct Feedback Linearization technique is used to cancel the nonlin-

earities of the system and stabilize the system with classical methods such as Linear Quadratic

Regulator and genetic algorithms. Cubic spline technique is applied to approximate the compli-

cated nonlinear controller with piecewise polynomial construction. Performance of two controllers

are compared for three machine nine bus test system. The system performance under different

contingencies is tested. Simulation results show that the proposed controller can enhance the

transient stability regardless of different types of faults.
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DFL controller requires unmeasurable internal variables. Internal variable identifier block is

presented in order to construct the unmeasurable variables for two axis model. DFL method

has two stages for designing the controller. First, nonlinear compensator is designed in a way

that it can explicitly cancel the nonlinearities present in the synchronous machine. Second, linear

compensator is obtained to achieve particular control objective which stabilize the overall system.

Nonlinear simulation demonstrates the effectiveness of the approach in enhancing the stability of

the system.

For multi-machine power system, transient stability simulation is the most important tool for

planning, design, and operation. Models of generator in power system are important factors in

power system. Two types of generator with transient model are mentioned. Controller designed

with DFL method is obtained separately for each. Even though DFL controller for two-axis

model is complex but it shows more detailed characteristic and dynamics from the system which

are relevant to more sophisticated and complete controller design.

Comparison needs to be done between DFL excitation system and standard exciter models.

Standard exciter models such as excitation system with dc exciter, static excitation systems with

controlled rectifiers, and the excitation systems with ac exciters plus rectifiers are all classified

as classical exciters. The proposed algorithm based on spline approximation was tested on 3-

machine 9-bus test system. It would be more interesting to see the effect of spline controller on

larger size system with more detail in generator modelings such as sub-transient modelling.

The main objective of designing the controller with DFL technique and later with spline

based is improvement in stability enhancement. Voltage regulation is also another factor that

can be considered in controller design procedure. So, the controller needs to be designed in a way

that can satisfy transient stability and voltage regulation at the same time. Finally, it should be

pointed out that the direct feedback linearization technique is a general method and it can be

applied to more detailed excitation system. In fact, the further modelling could include excitation

dynamics, voltage regulation, stabilizer and excitation limits.
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Appendix A

One and Two-Axis Generator Models

In this appendix, a complete model for synchronous machines with one-axis and two-axis

models are considered. A mathematical model for the machine includes differential and algebraic

equations. In two-axis generator model, a synchronous generator is represented a voltage source

behind transient reactance. Machine dynamics for the two-axis model of the ith machine with

excitation Efldi are given with following differential equations

δ̇i(t) = ωi(t)− ω0 (A.1)

ω̇i(t) = − Di

2Hi
(ωi(t)− ω0) +

ω0

2Hi
(Pmi − P ei) (A.2)

Ė
′
di =

1
T
′
qoi

[Iqi(Xqi −X
′
qi)− E

′
di] (A.3)

Ė
′
qi =

1
T
′
doi

[Efldi − Idi(Xdi −X
′
di)] (A.4)

Swing equation as shown in equation number A.2 is important equation for synchronous gen-

erator dynamics. First swing stability criteria based on the fact that the generator will not loose

its synchronism for the first swing of the rotor angle. The equation shows the dynamic relation

between motion of rotor in accordance with Newton’s second law. It also shows important char-

acteristic of synchronism for rotor angles.
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Algebraic equations for two axis model are given as

Pei = E
′
diIdi + E

′
qiIqi + (X

′
qi −X

′
di)IdiIqi (A.5)

Edi = E
′
di − Idirai + IqiX

′
di (A.6)

Eqi = E
′
qi − Iqirai + IdiX

′
di (A.7)

Iqi(t) =
n∑

j=1

E
′
qj(Bij sin δij(t) + Gij cos δij(t)) (A.8)

Idi(t) =
n∑

j=1

E
′
qj(Gij sin δij(t)−Bij cos δij(t)) (A.9)

The model is converted to simpler two axis that considered in this study by ignoring transient

saliency by assuming X
′
qi = X

′
di. Definition for parameters are given in Table A.1

Table A.1: Parameters for two axis model
δi Rotor angle in radians
ωi Relative speed in radians per second

Pmi Mechanical input power in per unit
P ei Electrical power in per unit
H i Per unit inertia constant in seconds
Di Damping constant in per unit
T
′
doi Direct axis open circuit time constant in seconds

T
′
qoi Quadrature axis open circuit time constant in seconds

Idi Direct axis current
Iqi Quadrature axis current in per unit
E

′
di Transient EMF in direct axis in per unit

E
′
qi Transient EMF in quadrature axis in per unit

Edi EMF in direct axis, in per unit
Eqi EMF in quadraturee axis, in per unit

Efldi Equivalent EMF in excitation coil in per unit
X

′
di Transient reactance in direct axis

X
′
qi Transient reactance in quadrature axis

The one axis generator is similar to two-axis model except the dynamics of E
′
di is ignored. So

the differential equations are the same except for equation A.3.

Differential equations are



APPENDIX A. ONE AND TWO-AXIS GENERATOR MODELS 74

δ̇i(t) = ωi(t)− ω0 (A.10)

ω̇i(t) = − Di

2Hi
(ωi(t)− ω0) +

ω0

2Hi
(Pmi − P ei) (A.11)

Ė
′
qi(t) =

1
T
′
doi

(Efldi(t)− Eqi(t)) (A.12)

The algebraic equations are

Eqi(t) = E
′
qi(t)− (Xdi −X

′
di)Idi(t) (A.13)

Efi(t) = kciufi(t) (A.14)

Pei(t) = E
′
qiIqi + (Xqi −X

′
di)IqiIdi (A.15)

Qei(t) = E
′
qi(t)Idi(t) (A.16)

Iqi(t) =
n∑

j=1

E
′
qj(Bij sin δij(t) + Gij cos δij(t)) (A.17)

Idi(t) =
n∑

j=1

E
′
qj(Gij sin δij(t)−Bij cos δij(t)) (A.18)

Parameters are given in Table A.2

Table A.2: Parameters for one axis model
kci(t) The gain of excitation amplifier, in per unit
ufi(t) The input of amplifier, in per unit
Pei(t) Active power in per unit
Qei(t) Reactive power in per unit
Iqi(t) Quadrature axis current in per unit
Idi(t) Direct axis current in per unit
E

′
qi(t) Transient EMF in quadrature axis in per unit

Eqi(t) EMF in quadrature axis, in per unit
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