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ABSTRACT 

Nanophotonics, specifically photonic crystals (PhCs), offer unique optical bandgap engineering possibilities that has 

driven the emergence of a variety of device platforms, including: beam splitters, nano-cavity resonators, lasers, 

fibers, waveguides and highly sensitive optofluidic biosensor devices. The design and fabrication of accurate lattice 

parameters for a PhC is very important to achieving the desired operating bandgap.  The inclusion of tunability in 

thin film PhCs not only offers a means of adjusting for fabrication errors but also a mechanism to increase device 

functionality as well as providing a wider range of operating wavelengths. Nitride thin films, specifically Aluminum 

Nitride (AlN) and Gallium Nitride (GaN), are being used as PhC slab materials by our group due to their desirable 

optical properties at visible wavelengths and high chemical and thermal stability under harsh conditions.  The 

inherent piezoelectric properties of these materials offer a means of direct tuning of PhC lattice parameters through 

piezoelectric deformation. 

 

This thesis presents the results of research aimed at actively tuning the bandgap of PhCs fabricated in piezoelectric 

AlN thin films.  Theoretical investigations of the bandgap tuning of ‗as-drawn‘ and deformed 1- and 2-D PhC lattice 

structures using coupled results from PhC optical behavioral modeling and finite element mechanical simulations 

are discussed. The results of experimental characterization of the optical and mechanical (i.e. tuning) properties of 

micro to nanoscale PhC lattice structures fabricated in Si and AlN using e-beam and optical lithography and reactive 

ion etching are presented. Experimental data is then used to explore the bandwidth tuning capability of large-area 

periodic nanophotonic structures. 
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CHAPTER 1: Introduction to Photonic Crystals and Tuning 

1.1 Introduction 

Photonic crystals (PhCs)1 are engineered nanostructures exhibiting one, two, or three dimensional periodicity of 

refractive index as shown in Figure 1.1. PhCs provide unique optical properties for controlling and manipulating the  

flow of light. Similar to the electrons in a crystalline semiconductor, photons are scattered by a crystal of 

periodically arranged dielectric. Photon propagation through such nanostructures depends on the varying refractive 

index which creates a photonic band-gap, i.e. a region in which propagation of light is prohibited.  

 

Figure1. 1 (a) 1-D PhC (b)2-D PhCand (c )3-D PhC   

The ability to engineer the bandgap of PhCs is central to the realization of many device applications such as 

waveguides, beam splitters, nanocavity resonators, lasers, LEDs, biosensors e.t.c. A brief explanation of few PhC 

applications is discussed below. 

Applications 

PhC LEDs
2: For typical semiconductor LEDs, a large fraction of the energy is emitted into waveguided modes 

internal to the semiconductor rather than radiation modes. Light generated inside the semiconductor bounces around 

due to total internal reflection, and there is a high probability that the light will be absorbed before it can escape 

from the semiconductor. A photonic crystal can improve light extraction by diffracting waveguided modes out of the 

semiconductor. 

Nanocavity Lasers
3: PhCs with engineered defect cavities can have extremely high quality factors to modal volume 

ratios. These ratios are proportional to the spontaneous emission rate in a micro-cavity. Before the widespread use of 

photonic crystals, the advantages of large spontaneous rate enhancement could not be fully explored in lasers 

because of their large mode volumes.  With the recent advances in the fabrication of high quality PhCs in semi-

(a) (b) 

(c ) 



2 
 

conductors, ultrafast, efficient and compact lasers which show great promise can be achieved with a defect in PhCs 

for applications in high -speed communications, information processing and on-chip optical interconnects.  

Beam Splitters
4: Defects into photonic bandgap structures can be used to manipulate photons in highly localized 

regions. There are different kinds of defects such as line defects which can be used to realize straight or bent 

waveguides. Furthermore, point defects can be introduced into line defects to build wavelength add–drop devices or 

to improve the transmission properties of bent waveguides. Combinations of line defects such as T-, Y-, and cross-

type waveguides can act as photonic crystal beam splitters. 

Sensors
5: Sensing schemes based on photonic crystals (PhCs) are very well suited for integration, because they are 

compact and have tunable properties. Due to their unique optical properties, PhCs are emerging as platforms for 

optical bandgap engineering in opto-fluidic systems as low limit of detection transducer for biosensing applications. 

One such sensor element under development by our group employs a thin film 2-D PhC which acts as a transducer 

that possesses an engineered lattice defect6,7,8 as shown in Figure 1.2. The resonant property of the lattice defect 

leads to confinement of photons emitted from the flouroscent labels which shows potential for increasing the 

detection limit of fluoreescence spectrocsopy techniques. 

1.2 Project Review 

Though 3-D PhCs offer a confinement of light in all the three directions, top-down fabrication of 3-D PhCs is 

difficult. This makes them less viable for use in device applications.  Thin film PhCs, which are essentially 1- or 2-D 

PhCs fabricated on thin films with a finite thickness, are commonly employed in PhC device architectures due to 

their unique optical properties and their ease in fabrication.    

A major hurdle in realizing thin-film PhC device structures optimized for visible wavelengths is that they invariably 

require critical dimensions that are often on the order of 100-300 nm, making reliable, accurate transfer of ideal 

model parameters to fabricated structures particularly challenging.  In this respect, critical dimension variations as 

small as 5-7% is sufficient to dramatically shift the photonic bandgap and severely alter or disallow proper device 

functionality. For instance if a PhC is designed with a defect to exhibit resonance at a particular wavelength, and if 

the fabricated lattice parameters are different compared to designed values, then the PhC structure does not exhibit 
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resonance at desired value which will eventually alter the functionality of the device. As a consequence, the 

challenges associated with fabricating thin-film photonic crystals are barriers that, to date, have significantly limited 

their practical utility in biophotonics, advanced imaging, and sensing applications, namely: fixed device 

characteristics after fabrication and nanofabrication process variations that lead to decreased device performance and 

yield.  

The addition of parameter tuning to PhC devices through well-designed and direct in situ piezoelectric material 

deformation and rearrangement of the PhC lattice will not only provide the performance and reliability 

improvements but also potentially provide a wide operation range for a PhC. Photonic bandgap tuning of a specific 

PhC structure can be achieved through various techniques. A few techniques presented in the literature are discussed 

in the next section. 

1.3 Literature Review of Tuning Mechanisms 

Tuning mechanisms applied to PhCs depend largely on the structural geometries and the desired operating 

wavelengths. The PhC tuning methods reported in the literature can be classified into two distinct groups: 

1. Post –Fabrication Tuning: uses micro-and nano fabrication methods to tune the geometrical variations; referred to 

in this thesis as static tuning. 

2. In-Situ Tuning: varying the PhC structure during device implementation achieve the improved or variable 

operation of the device; referred to in this thesis as dynamic tuning. 

h 

rdef 

a 

rlat 

n1 

n2 

Figure1. 2 2-D PhC lattice structure and its lattice parameters8 
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The latter mechanism of tuning can further be grouped by different tuning techniques applied to affect different 

properties of PhCs.  These dynamic tuning techniques include: 

 (i)Tuning by Temperature
9,10: H.Nemec et.al

11 fabricated Bragg mirrors with alternating layers of quartz and high 

permittivity ceramics with a defect layer of SrTiO3. The defect layer which exhibits ferro-electric properties was 

tuned thermally for a single defect mode over the entire forbidden band. They achieved a tuning of almost 60% for 

this structure in the tetrahertz range 

(ii)Tuning by Magnetic field
12: Sergey Savel‘ev et.al fabricated a Josephson vortex (JV) lattice which is a periodic 

array of layered superconductors and insulators that scatters Josephson plasma waves. This produces a photonic 

band gap structure in terahertz frequency range. The gaps were easily controlled or tuned by either the in-plane 

magnetic field or the transverse transport current flowing across the superconducting layers. They proved that a 

small change in the in-plane component of magnetic field can switch the sample from fully transparent to fully 

reflective within given frequency windows. Thus, the material can change from a tetra hertz glass to a mirror by 

merely changing in-plane magnetic field or transport current. Magneto-optical Voigt effect has been used to vary the 

negative refractive index of n-doped GaAs photonic crystals by Liang Feng et.al
13

. Tunability of super paramagnetic 

PhCs self-assembled in colloidal magnetic fluids was achieved using external magnetic field by Shengli Pu et.al
14. 

The band structures of 2-D PhCs of triangular lattice with limited heights of magnetic columns were calculated and 

the simulation results indicated that band gaps of z-odd modes can be easily tuned by external magnetic field while 

zodd modes have a weak dependence on external magnetic field. 

(iii) Tuning by AFM: Lalouat et.al
15  and I. Marki et.a

16
l used sub-wavelength AFM tips to tune the resonance of the 

defect cavity of PhCs. 

(iv)Tuning by optical-methods: Different optical-methods were used to tune or control PhC operation, which include 

external pump laser excitation of free carriers for resonance tuning17,18, cavity resonance tuning using a laser to 

cause localized thermal and plasma dispersion19, and photosensitive materials usage in the fabrication of PhC lattice 

structures20.  Liquid-crystal material addition to the 1-D PhC structures  of alternating layers of air and dielectric was 

used for tuning the refractive index of the air region which in, turn, tunes the bandgap of PhC.21,22,23, as well as the 

The same was performed by controlled addition & extraction of other gas- and liquid-phase materials24,25.  

(v) Tuning by mechanical methods: MEMS and NEMS actuators were attached to the Si gratings to achieve 

structural deformation to tune the bandgap of PhCs26,27,28,29,30,31. In this technique tuning of the bandgap depends 
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directly on the variation in the geometrical properties of the PhC in Si which in turn depends on the piezoelectric 

deformation caused by the MEMS actuators. A tunable photonic bandgap micro cavity has been designed, fabricated 

and characterized to operate at 1.55 μm wavelengths using piezoelectric actuators on silicon, indicating that 

piezoelectric strain tuning provides significantly faster response and better localization of tunability32. In this 

referenced work, the diffracted angular change, Δθ, is related to the grating period change, Δd, through, 

                                         𝛥𝜃  ≅     
𝑚  𝜆  𝛥𝑑  

𝑑2                                                                                            (1. 1)    
                                                                                  

where m is the diffracted order, λ is the wavelength, and d is the grating period. 

PhCs were fabricated in nitride thin-films specifically Aluminum Nitride (AlN) and Gallium Nitride (GaN) were 

chosen as PhC substrates by our group because of the operating spectrum (visible) of our sensor architectures, their 

high chemical and mechanical stability under harsh conditions, low loss in the visible spectral range as well as high 

indices of refraction, which is necessary to obtain a wide photonic bandgap and better light confinement within their 

defects. These films also exhibit piezoelectric properties at elevated temperatures which can potentially be employed 

for direct bandgap tuning. Instead of using actuators to tune the geometry of Si gratings as discussed in literature36, 

piezoelectric properties of nitride thin films in which PhCs were fabricated can potentially be used to directly tune 

the bandgap. The application of an electric field induces strain on the PhC structure in piezo-thin films that deforms 

it to allow for direct tunability of the bandgap. 

1.4 OBJECTIVES 

As discussed, fabrication errors result in alteration of device functionality as PhC designs are transferred from e-

beam writing files to actual device structures.  In addition, thin-film PhCs possess fixed optical properties that 

cannot be dynamically changed after fabrication is complete. To overcome the challenges imposed by fabrication 

errors and limitations of fixed lattice geometries in thin-film PhCs, this research explores the direct bandgap tuning 

capabilities of thin-film nitride PhCs. The main objectives of this research are:  

(a)  To Design and simulate 2-D/ 1-D PhCs using MPB modeling tool. 

(b) To calculate the losses imposed by the PhC slab structure by initially modeling waveguides using Opti-

BPM. 

(c) Modeling of 1-D and 2-D PhCs in AlN using ANSYS to analyze the piezoelectric tuning capabilities. 

(d) Fabrication of nanometer scale 1-D PhCs in Si and AlN for optical characterization. 
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(e) Fabrication of micron-scale 1-D PhCs in AlN for piezoelectric characterization. 

(f) Optical Characterization of 1-D PhCs using ellipsometer and Waveguide characterization using Prism 

coupler setup. 

(g) Mechanical Characterization of micron-scale 1-D PhCs using Vibrometer. 

1.5 Thesis Organization 

The material presented in this these details efforts toward meeting the goals stated in the previous section. Chapter 2 

discusses the optical theory for PhCs and the proposed piezoelectric tuning mechanism. Chapter 3 presents the 

results of PhC modeling efforts using MPB modeling and piezoelectric modeling using ANSYS. It also includes a 

discussion of waveguide modeling efforts using Opti-BPM software to determine the optimum GaN slab thickness 

for light guiding.  Fabrication processes development efforts for nano- and micro-meter scale 1-D PhCs are 

presented in Chapter 4.  Chapter 5 presents characterization techniques used to experimentally measure PhC optical 

and piezoelectric properties. It outlines the results acquired by ellipsometric characterization of PhCs and presents 

prism coupler characterization of asymmetric slab waveguides. 
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CHAPTER 2: THEORY 

2.1 Photonic Crystal Theory 

Photonic crystals are optical analogs to semi-conductor materials in which there exists a complete bandgap between 

valence and conduction bands. The propagation of light in a periodic dielectric media is regulated by four Maxwell‘s 

Equations1. 

                                                                 𝛻.𝐵 = 0    ,                                          (2. 1)                                 

                                                                    𝛻.𝐷 = 𝜌        ,           (2. 2)                                                                    

                                             𝛻 𝑋 𝐸 + 𝜕𝐵/𝜕𝑡 = 0  ,                                                                (2. 3)            

                                                𝛻 𝑋 𝐻 − 𝜕𝐷/𝜕𝑡 = 𝐽   .        (2. 4)                                                          

where E and H are electric and magnetic fields respectively, D is the displacement field (D = ε0E + P, where P is 

the polarization density of the material and ε0 is the vacuum permittivity) , H is the magnetic field strength (B = μH 

where μ is the magnetic permeability), ρ and J represents free charges and currents densities respectively. In a 

homogenous dielectric medium with no sources of light we can set ρ=0 and J=0. In a homogenous, isotropic and 

transparent material without dispersion, 𝐷 𝑟 = 𝜖0𝜖 𝑟 𝐸(𝑟), 𝐵 = 𝜇0𝐻 and 𝑛 =  𝜇𝜖, then Maxwell‘s equations can 

be simplified as  

𝛻.𝐻 𝑟, 𝑡 = 0         ,        (2. 5) 

         𝛻.  𝜖 𝑟 𝐸 𝑟, 𝑡  = 0  ,           (2. 6) 

        𝛻 𝑋𝐸 𝑟, 𝑡 +  𝜇0
𝜕𝐻 𝑟 ,𝑡 

𝜕𝑡
= 0     ,                  (2. 7)                                     

𝛻 𝑋 𝐻 𝑟, 𝑡 − 𝜀0𝜀 𝑟 
𝜕𝐸 𝑟 ,𝑡 

𝜕𝑡
= 0  .                  (2. 8) 

Because of the linearity of Maxwell‘s equations, time dependence can be separated from the spatial dependence by 

expanding the fields in to a set of harmonic modes. Electric field and magnetic field can be simplified as 

    𝐸 𝑟, 𝑡 = 𝐸(𝑟)𝑒−𝑖𝜔𝑡                (2. 9)     

                                                                           𝐻 𝑟, 𝑡 = 𝐻(𝑟)𝑒−𝑖𝜔𝑡         .                                                           (2. 10)  

To find the equations governing the mode profiles for a given frequency, inserting the above equations into 

Eqn(2.(5,6,7,8)) ,the two divergence equations gives the conditions 

    𝛻.𝐻 𝑟 = 0                            (2. 11)                                          

        𝛻.  𝜀 𝑟 𝐸 𝑟  = 0      .        (2. 12)                                                 
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These equations indicate that there are no point sources or sinks of displacement and magnetic fields in the medium.  

For transverse electromagnetic fields the two curl equations relate 𝐸 𝑟  to 𝐻 𝑟   as 

    𝛻 𝑋 𝐸 𝑟 − 𝑖𝜇0𝜔𝐻 𝑟 = 0               (2. 13)                              

              𝛻 𝑋 𝐻 𝑟 + 𝑖𝜔𝜀0𝜀 𝑟 𝐸 𝑟 = 0                                                                (2. 14)                                         

Upon simplification of equations 2.13 and 2.14 (𝑐 = 1  𝜀0𝜇0 ), the resulting equation in 𝐻 𝑟  is given by1 

     𝛻 x 
1

𝜀 𝑟 
𝛻 x 𝐻 𝑟  =  

𝜔

𝑐
 

2

𝐻(𝑟)           (2. 15)                        

This equation is known as the master equation which can be solved to acquire the modes of 𝐻(𝑟) and the 

corresponding frequencies. 𝐸 𝑟  can then be determined by substituting 𝐻 𝑟   into Eqn (2.13). 

Eqn 2.15 gives a result which will be the original function multiplied by a constant. This is an example of an eigen 

value problem in mathematical physics where the constant is known as eigen value and the function 𝐻 𝑟  is known 

as an Eigen function. 

One of the most important implications of equation 2.15 is the scaling property. Suppose we scale the photonic 

crystal structure by a factor of s, so that, 

   𝜖′ (𝑟) = 𝜖(𝑟/𝑠)           (2. 16)                                                                      

Then, by performing a change of variable with 𝑟′ = 𝑠𝑟 and, ∇′ = ∇/𝑠 , equation 2.15 becomes, 

 𝛻 ′  𝑋  
1

𝜖 ′  𝑟 ′  
 𝛻 ′  𝑋 𝐻  

𝑟 ′

𝑠
   = (

𝜔

𝑐𝑠
)2 𝐻(𝑟′/𝑠)      .        (2. 17)                             

We get the same equation as 2.15 with eigenvector 𝐻(𝑟)  =  𝐻(𝑟′/𝑠) and eigenvalue  𝜔′ = 𝜔𝑠. 

In other words, after scaling the structure by a factor of s, both the frequency and the field profile are scaled by the 

same factor. So in designing photonic crystals, the wavelengths of certain features can be controlled by adjusting the 

lattice constants of the photonic crystals.  

The origin of bandgap can be explained by the Variational theorem which states that a mode tends to concentrate its 

electric-field energy in high dielectric regions while remaining orthogonal to the modes below it in frequency1. In a 

photonic crystal band diagram the lower band is known as dielectric band where as the rest of the bands are known 

as air bands. In the air bands energy is concentrated in lowest dielectric regions to maintain orthogonality in the 

Variational theorem principle, thus creating a gap between the bands. There are no eigen value solutions for the 

master equation in this bandgap region as shown in Figure 2.1.  A design rule of thumb is that the higher the   
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Figure 2.1 TE Band diagram of triangular lattice of air (n=1) holes in Si(n=3.45) with radius 0.28a has a gap-to-mid-gap 

ratio of 23% 

dielectric constant contrast of materials comprising the photonic crystal, the wider the bandgap. So, high dielectric 

contrast should be chosen whenever possible. 

2.2 1-D Photonic Crystal Theory
 

One dimensional photonic crystals are the simple photonic crystal structures that consists of alternating layers of 

dielectric films as shown in Figure 2.2 .This kind of structure also known as Bragg mirror which acts as a mirror for 

specified range of frequencies. One dimensional photonic crystal can also localize modes if there are defects present 

in its structure. The working of a one-dimensional photonic crystal can be understood by considering a plane wave 

propagating through the material and accounting for the multiple reflections and transmissions that occur at each 

interface and the associated phase changes that occur for plane waves propagating from layer to layer. Fresnel‘s 

equations can be used to determine the amplitude and phase of the reflected and transmitted waves at an interface in 

terms of the refractive indices of the multilayer film.  
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Fig 2.2 1-D Photonic Crystal1 

In a 1-D photonic crystal, the photonic band gap depends on the difference in the dielectric constant or the thickness 

of dielectric material (d/a=(d1+d2)/a). According to perturbation theory, if either the dielectric constant is weak 

(∆𝜀/𝜀 ≪ 1) or the thickness is small then the bandgap can be expressed as  

                                                          𝜔/𝜔𝑚  ≈ ∆𝜀/𝜀. 𝑆𝑖𝑛(𝜋𝑑/𝑎)/𝜋     .                                                   (2. 18)                                    

For two materials with refractive indices n1 and n2 and thickness d1 and d2 (where a= d1 + d2) the normal incidence bandgap can 

be maximized when1  

𝑑1𝑛1 = 𝑑2𝑛2                                                 (2. 19)   

Upon substitution of, d2 =a- d1  in Eqn 2.19: 

          𝑑1 =
𝑎𝑛2

(𝑛1 + 𝑛2)                           (2. 20)                                    

and                                                                   𝑑2 =
𝑎𝑛1

(𝑛1 + 𝑛2)  .                                                                   (2. 21)                         

In this case, the mid-gap frequency  𝜔𝑚  is given by  

    𝜔𝑚 =
𝑛1+𝑛2

4𝑛1𝑛2  
 .

2𝜋𝑐

𝑎
                      (2. 22)                                          

Substitution of the vacuum wavelength  𝜆𝑚 = 2𝜋𝑐/𝜔𝑚  satisfies the relations 𝜆𝑚/𝑛1  = 4𝑑1 and 𝜆𝑚/𝑛2  = 4𝑑2 

which denote that each layer is a quarter wave length in thickness for maximum photonic bandgap. The gap-to- mid- 

gap ratio‘ between the first two bands of a quarter wave stack can be given as1  

n1 n2 

d1 d2 

Plane wave 

a 

x 

y 

z 
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    ∆𝜔

𝜔𝑚
=  

4

𝜋
 𝑠𝑖𝑛−1(

|𝑛1−𝑛2|

𝑛1+𝑛2
)                (2. 23)                                     

From the above relation it can be calculated that bandgap is a maximum only for a quarter wavelength stack of 

materials.  

2.3 Photonic Crystal Slab and Off-Axis Propagation 

All the above derived formulae are for photonic crystals with normal incidence light propagation, defined here as 

on-axis propagation. The one major difference between on-axis and off-axis propagation is that there are no 

bandgaps in the off-axis propagation. This is because in the off-axis directions there is no periodic regime to scatter 

light and setup the conditions for a bandgap to be present. Another difference is that off-axis propagation has no 

degenerate bands because of lack of rotational symmetry.  

In Figure 2.3 it can be observed that the two polarizations are linear at longer wavelengths although they have 

different slopes. This long wavelength phenomenon is important in all photonic crystals irrespective of geometry. At 

longer wavelengths, the electromagnetic wave cannot differentiate the fine structures of a photonic crystal and it 

sees the structure as a homogenous medium with an effective dielectric constant. In this region of wavelengths 

(where λ>> material period), the diffraction is negligible.  

The effective dielectric constant of a two material composite of which one is air is given as1 

                                                 𝜀𝑒𝑓𝑓 = 𝜀𝑎𝑖𝑟𝑓 +  1 − 𝑓 . 𝜀𝑝𝑕𝑐        ,               (2. 24)  

 

Fig 2.3 Band diagram of a 1-D Photonic crystal with off-axis propagation1                

where  𝜀𝑒𝑓𝑓  is the effective dielectric constant, 𝜀𝑎𝑖𝑟  is the dielectric constant of air , 𝜀𝑝𝑕𝑐  is the dielectric constant of 

the photonic crystal material and  f  is the air filing factor or air-fraction. 
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The general limits of an effective dielectric constant is given by1  

   (𝑓1𝜀1
−1 + 𝑓2𝜀2

−1)−1 ≤ 𝜀𝑒𝑓𝑓 ≤  𝑓1𝜀1 + 𝑓2𝜀2               (2. 25)                   

where 𝜀1, 𝜀2 are the dielectric constants of the two materials and 𝑓1, 𝑓2 are the volume fractions of the materials. 

At wavelength λ close to the material period, properties associated with the structural periodicity which allows the 

dispersion curve mapping can be characterized33.  

2.3 Piezoelectric properties of Nitride Thin Films 

Aluminum– and Gallium–Nitride (AlN and GaN) thin films have high chemical and mechanical stability under 

harsh conditions as well as to their piezoelectric properties34. PhCs made on these films exhibit low loss in the 

visible spectral range and possess high indices of refraction, which is necessary to obtain a wide photonic bandgap 

and better light confinement within their defects. 

2.3.1 Piezoelectricity 

The piezoelectric effect was discovered by Pierre and Jacque Curie in 188035. The piezoelectric effect occurs when 

the charge balance within the crystal lattice of a material is disturbed. When there is no applied stress on the 

material, the positive and negative charges are evenly distributed so the resultant net charge is zero potential 

difference. When the lattice is slightly changed due to the stress caused by an applied force, the charge imbalance 

creates a potential difference; often as high as several thousand volts however, the current is extremely small. 

 

Figure 2.3 Schematic showing Piezoelectric Effect36 

The converse piezoelectric effect occurs when an external electric field is applied to the piezoelectric element. In 

this case, the ions in each unit cell are displaced by electrostatic forces, resulting in mechanical deformation of the 

whole crystal as shown in Figure 2.3. 
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s11   s12   s13   0      0      0 

s12   s11   s13   0      0      0 

s13   s13   s33   0      0      0 

0     0       0    s44    0      0 

0     0       0     0      s44   0 

0     0       0     0       0   2(s11-s12) 

 

0       0       0       0        d15        0 

0       0       0       d15      0           0 

d31    d31     d33     0       0           0     

If a voltage of the same polarity as the poling voltage is applied to a piezoelectric element, in the direction of the 

poling voltage, the element will lengthen and its diameter will become smaller. If a voltage of polarity opposite that 

of the poling voltage is applied, the element will become shorter and broader. If an alternating voltage is applied, the 

element will lengthen and shorten cyclically, at the frequency of the applied voltage.  

2.3.2 Piezoelectric constants 

A piezoelectric material or ceramic can be considered as a cluster of small individual piezoelectric crystals fitted in a 

random way. The behavior of a piezoelectric material can be explained by combining equations of its electrical 

behavior and elastic behavior (Hooke‘s law).  

When an electric field is applied to a piezoelectric material, it produces a proportional strain in the material.  It is 

expressed as S=d.E where d is the piezoelectric charge constant and E is the Electric field. The constitutive 

equations of a piezoelectric material derived from the above relations can be given as5 

D=d T+ε
T 

E                                                                       (2. 26)                   

S= s
E 

T+ d E                                                                       (2. 27)   

The tensor form of elastic compliance (s) taking into account all symmetry relations37 can be expressed as      

 

 

                                  s         =     

 

 

 

(i)Piezoelectric charge constant (d) is the polarization generated per unit of mechanical stress (T) applied to a 

piezoelectric material or, alternatively, is the mechanical strain (S) experienced by a piezoelectric material per unit 

of electric field applied. It has the units of Coulombs/Newton in the direct piezoelectric effect and meters/volt in 

converse piezoelectric effect. 

Its tensor form can be expressed as5 

 

                                                             d    = 
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(ii)Permittivity or dielectric constant (ε) is the dielectric displacement per unit electric field. 

(iii)Young's modulus(Y) is an indicator of the stiffness (elasticity) of a ceramic material. Y is determined from the 

value for the stress applied to the material divided by the value for the resulting strain in the same direction. Its units 

are Newton/m2. 

(iv)Mechanical Stress (T) is the average amount of force exerted per unit area 

(v)Elastic compliance(s) is the strain developed in a piezoelectric material per unit of stress applied. sD is the 

compliance under a constant electric displacement; sE is the compliance under a constant electric field. Its units are 

m2/Newton. 

2.4 Waveguide and Losses 

A waveguide is a structure which guides optical waves via total internal reflection. The light can be trapped in a 

waveguide when   n2<n1   and   n3<n1. For a guided mode to prevail in the waveguide the angle of incidence has to 

be greater than the critical angle (θ > θc) where Sin θc= n2/n1 for lower boundary; Sin θc=n3/n1 for upper boundary.  

 

 

 

 

 

 

(i) Symmetric slab dielectric Waveguide: A symmetric slab dielectric waveguide is a wave guide in which both sides 

of wave guiding region has same refractive index 𝑛2 = 𝑛3 

(ii) Asymmetric slab dielectric Waveguide: An asymmetric slab dielectric waveguide is a waveguide in which the 

region above x=h is air and the region below x=0 is substrate  𝑛2 ≠ 𝑛3. 

(iii) Mode condition: A mode is a spatial distribution of optical energy in one or more dimensions38.The two 

boundaries of the waveguide form a cavity. A cavity is resonant when round trip phase shift is 2πm, 

                  ∆∅ = m(2π). 

Waves travelling at these allowed angles will interfere constructively, while the ones which are out of phase 

interfere destructively. Similar conditions exist to dictate sustainable modes in slab waveguide systems. A guided 

mode is a set of electromagnetic fields which maintain their transverse spatial distribution along the propagating 

n3 

n1 

n2 

x=h 

x=0 

θ θ 

z 

Figure 2. 4 Waveguide profile showing total internal reflection 
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direction. A guided wave consists of a non-planar wave decaying in ±x direction in the cladding region while 

maintaining a propagation constant of   kz in the z direction. 

Waveguide Losses: The relative difference between the output power present at the ends of the waveguide to that of 

the power launched as an input gives the measure of attenuation. Coupling, scattering, absorption and radiation 

losses are important sources of attenuation in waveguides.  

(a)Absorption Losses: Materials absorb light energy depending upon the operating wavelength and inherent material 

characteristics. If the absorption is in the visible spectrum, then is the material will be opaque. Light absorption 

occurring in waveguides due to the waveguide material is known as intrinsic absorption. Absorption due to 

impurities within the waveguide material is known as extrinsic absorption. Neglecting the loss from impurities, 

absorption loss is uniform and constant. These losses can be reduced by the choice of material and operating 

wavelength39 

(b)Scattering Losses
17

: These form the major part of all the losses and must be minimized for better operation of any 

waveguide device. There are many types of scattering losses based on their origin. There are two types of scattering 

losses based on the output frequency. They are Linear Scattering and Non-linear scattering losses. 

(c)Radiation Losses or Bending Losses
17

: Radiation losses occur at bends or curves in the waveguide path. These 

losses usually occur as the evanescent tails‘ velocity exceeds the velocity of light in the cladding and hence the light 

is radiated from the waveguide. During bends, the portion of the evanescent tail in the cladding region has to travel 

faster than the light in the core to stay with the wave, which is not possible, and hence, that part of light is lost in 

radiation modes. Radiation losses occur in straight waveguides when scattering events couple optical power 

contained in guided modes into radiation modes which then carry the power from the waveguide. 

(d) Coupling Losses
17

: Losses that occur during coupling of light to and from the waveguide are termed coupling 

losses. These can be reduced only by using efficient couplers and the losses would vary with the optical schemes 

employed to input light into the waveguides. These losses do not depend on any of the waveguide parameters but 

depend on the physical operation of the device. As an example, losses in prism coupling can be reduced by coupling 

the light at the coupling spot and, thus, enabling maximum amount of power transfer into the waveguides. In thin 

dielectric waveguides the major source of attenuation is through scattering. Hence all the losses are usually 

neglected while measuring losses in the waveguide. Assuming attenuation is present solely due to scattering, the 

intensity at a point in the propagation path of the waveguide can be approximated by,  
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            𝐼 𝑧 = 𝐼𝑜   exp⁡(−𝛼𝑧) 

where Io is the initial intensity at z = 0. The loss (in dB) is related to α by the following expression
16  

                                                            Loss(dB/cm) = 4.3α [cm
-1]. 
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CHAPTER 3: THEORETICAL MODELING 

3.1 Introduction 

A variety of modeling tools can be used to theoretically understand the optical and mechanical properties of thin 

film devices. In this Chapter, photonic crystal optical modeling using MIT Photonic Bands (MPB) and piezoelectric 

modeling of lattice structures using ANSYS are discussed. This discussion also includes waveguide modeling using 

Opti-BPM (Beam Propagation Method) software is also discussed for determining the optical loss properties of thin 

films. 

3.2 PhC and Structural Modeling Tools: 

MPB (MIT Photonic Bands)40 is modeling software for the calculation of the band structure (dispersion relations41) 

and electromagnetic modes for periodic structures such as photonic crystals, waveguides, and resonator systems 

e.t.c. MPB is a UNIX or LINUX based software which is freely available and it was developed on Scheme 

language40 which is very simple yet powerful. MPB does a direct computation of the eigen states and eigen values of 

Maxwell‘s equations using a plane-wave expansion technique42.Solutions to the master equation solved by MPB are 

scaled in terms of lattice parameter a. Therefore, all photonic band structures are plotted as normalized wavelength 

(a / λ0) vs. wave vector k. Hence we can determine solutions at any length scale. 

                ANSYS is a sophisticated and comprehensive finite element modeling tool that is available commercially. 

It can be used for numerically solving a wide variety of mechanical structural analyses43. However, it has 

capabilities in many different physics fields such as static structural, nonlinear, thermal, implicit and explicit 

dynamics, fluid flow, electro magnetics, and electric field analysis e.t.c. It can also perform multi-domain coupled 

field analyses combining one or more of these different simulation domains. Piezoelectric analysis is a form of 

coupled field analysis because it takes electric as well as elastic properties of the material into account.  

3.2.1 MPB and FEA of 2-D Photonic Crystal 

MPB was used to design 2-D photonic crystal device geometry in GaN6,7,8,44, which exhibits piezoelectric properties 

that could potentially be used as a tuning mechanism. The lattice geometry errors inherent to PhC fabrication could 

potentially cause a shift in bandgap which will, in turn, affect the intended functionality of the PhC device. In order 

to better understand the effect of geometrical parameter variation on the bandgap of a photonic crystal, efforts were 

made to analyze the coupled results from MPB optical and ANSYS structural modeling of PhCs. Even though GaN 
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exhibits piezoelectric properties, it has very low piezoelectric coefficients which make it less useful in the direct 

tuning of geometrical parameters of PhCs. Because of this, AlN, which has higher piezoelectric coefficients than 

GaN and is another nitride material being studied by our group, was used for further exploring the effect of 

variations in lattice parameters on PhC bandgap.  The band diagram of 2-D PhCs in AlN with a geometry derived 

from the GaN PhC discussed in [5] and [6] is shown in Figure 3.1. Wave vector, k with indication of the irreducible 

Brillouin zone points are plotted on the x-axis and normalized frequency on the y-axis.  Because of the scalar 

invariance of Maxwell‘s equations, the gap-to-mid-gap ratio is a excellent way of articulating photonic bandgaps 

independent of the scale of the photonic crystal, where 

% 𝑏𝑎𝑛𝑑𝑔𝑎𝑝 =
𝑔𝑎𝑝  𝑡𝑜𝑝  𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡 𝑕−𝑔𝑎𝑝  𝑏𝑜𝑡𝑡𝑜𝑚  𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡 𝑕

𝑔𝑎𝑝  𝑚𝑖𝑑 −𝑝𝑜𝑖𝑛𝑡
                                                (3. 1) 

 

Figure 3.20 TM Band Diagram of 2-D PhC with triangular lattice of air holes in AlN with a radius  of 0.29a has a gap-to-

mid gap ratio of 21% between 1st and 2nd bands and 7% between 3rd and 4th bands 

In an ideal 2-D photonic crystal, the material is assumed to be infinitely thick, but in reality there is a finite thickness 

to the photonic crystal. Such structures are known as photonic crystal slabs. The optical properties of slab structures 

differ from those of the infinite thickness case as there is confinement of modes in the z-direction (thickness). Even 

though a third dimension is added to the photonic crystal, they cannot be treated as 3-D photonic crystals as there is 

no periodicity in the z-direction. The finite thickness of the PhC slab leads to major differences in the band structure 
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compared to the ideal 2-D case. First, the modes do not decouple anymore into TE and TM polarization. For a 

symmetric photonic crystal slab ( i.e  upper and lower cladding layers are similar) since the central axis of the PhC is 

parallel to the plane of incidence, the modes can be labeled as even and odd modes (denoted by the addition of a ‗z‘, 

zeven or zodd). In the case of even (or odd) modes, the magnetic field is even (or odd) with respect to the plane of 

symmetry. Secondly, not all the modes existing in the PhC slab are guided. Most of them couple with modes of the 

claddings and are either guided in the cladding or scattered out of the slab. This continuum of radiation states is 

called the light cone and is limited by the light line in the cladding. Thus, radiation and guided modes are separated 

by light line defined as45 

                𝜔 = 𝑐𝑘
𝑛𝑐𝑙𝑎𝑑                                                                                   (3. 2 )  

where ω is angular frequency, k is the magnitude of wave vector, c is the speed of light in vacuum and nclad is the 

refractive index of the cladding.  The TE-like or zeven band diagram of 2-D PhC slab in AlN is shown in Figure 3.2.

 

Figure 3.21 TE-like or zeven band diagram of 2-D PhC in AlN slab with a gap-to-midgap ratio of 10% 

between the first two guided bands under the light cone. 

The modes that lie under the light cone are known as guided modes and the modes above the light cone are called 

the radiation modes. The bandgap exists in the region below the light cone which is also defined as the region in 
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which there are no guided modes under the light cone. The TE-like band structure of a symmetrical 2-D PhC in AlN 

with circular air holes surrounded by air cladding is shown in Figure 3.2. The slab thickness plays a vital role in the 

existence of bandgap in a photonic crystal slab. If the slab is too thick, then higher order modes are created which 

will lie slightly above the lowest order mode, pulling down the air band causing miniscule gap. If the slab is too thin, 

then the slab will provide only a weak perturbation on the background dielectric constant which produces weakly 

guided modes. The optimal slab thickness can be calculated as 

𝑠𝑙𝑎𝑏 𝑡𝑕𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑕~
1

2 𝜔𝑔𝑎𝑝 −𝑏𝑜𝑡𝑡𝑜𝑚  𝜀
                                                                    (3. 3)                      

 

Figure 3.22 Band Diagram of 2-D Phc in AlN slab with a common band gap of ~9.8% between the guided modes of TE-

like and TM-like bands 

After determining device geometries which give a maximum bandgap to work at a specified wavelength via optical 

modeling, the structure is then transferred to ANSYS finite element analysis (FEA) software to calculate structural 

deformations and deflections using the embedded AC and DC voltage source tool within ANSYS.   

The band structure for an asymmetrical photonic crystal slab (e.g. substrate and air are the two cladding layers) 

differs from that of symmetrical systems. In this case, vertical symmetry is broken and so the modes become 

inseparable and hence cannot be referred to as even or odd modes. Bandgap formation in such situation would be 

difficult if the substrate and the PhC material are not chosen properly9.   
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The band diagram of a 2-D AlN PhC slab is shown in Figure 3.3. TE-like and TM-like bands are overlapped in this 

diagram to find the common band gap of the structure. The gap-to-midgap ratio of the portion where there is 

absence of guided modes was found to be ~9.8% as shown the Figure 3.3. 

In general, the dielectric periodicity of 2-D photonic crystal is infinitely extended in two dimensions (in the plane of 

the slab). In ANSYS, the structure to be simulated divided into small, finite elements and further into nodes. Due to 

the limitation on the number of elements (or nodes) that can be used to divide the sample in ANSYS, larger 

structures such as infinite PhC patterns on a slab are difficult to analyze, because if a large structure is used with a 

smaller number of elements, the simulation resolution will be too large, resulting in erroneous results. Hence any 

structure should be finely divided into elements and then to nodes. Due to this limitation usage of large-area 

photonic crystals is not possible in our version of ANSYS. To prepare for this, simulations were done to see the 

effect of increasing the size of structure on deformation.  The dimensions of the slab and the 2-D PhC pattern as 

derived in optical modeling were used in the FEA as shown in Table 3.15,8. 

Tale 3. 1 Lattice parameters of 2-D PhC used in FEA 

 Lattice 

Parameters 

 Values(nm) 

Radius 64 

Lattice constant 220 

Thickness 250 
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Different lengths and breadths of PhC slab sizes were considered in the simulation. In order for ANSYS to run 

piezoelectric coupled field analysis, a dielectric matrix, a piezoelectric matrix, [e], and either a compliance matrix, 

[d], or stiffness matrix, [c], are required.  

Tale 3. 2 Material Properties of AlN 

Material 
Permittivity 

(F/m) 

Density 

(kg/m
3
) 

Compliance 

matrix/elastic modulus 

Piezoelectric stress 

matrix/Poisson’s ratio 

(Coulombs/meter²). 

AlN 

PERX= 8.5, 

PERY=8.5, 

PERZ=9 

3512 

D11=D22=345GPa 

D12=125GPa 

D13=D23=120GPa 

D44=D55=118GPa 

D66=440GPa 

e15=e24=-0.48 

e31=e32=-0.58 

e33=1.55 

 

The dielectric property defines the electrical permittivity in Farads per meter. The piezoelectric matrix, [e], relates 

the electric field to stress, and typically has units of Coulombs per meter². While ANSYS accepts stiffness data in 

terms of the elastic modulus and Poisson's ratio, it is more common in practice to define either the compliance 

matrix, [d], or the stiffness matrix, [c], for a piezoelectric coupled-field analysis.  Material properties of AlN that 

were used in ANSYS are given in Table 3.234. 

Figure 3.4 is the visual representation of the mechanical deformation of a finite photonic crystal slab with lateral 

dimensions of 1μm. In this case, the nodes on the corners of the slab are clamped which means that the nodes on the 

corners are defined as fixed points or given a zero displacement and a positive voltage of 20V is applied on the 

upper portion of the slab and 0V on the lower portion of slab.  
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Figure 3.23 FEA of 2-D PhC showing the displacement in x-direction when the edges of the slab are clamped 

The variation of the dimensions of the slab vs. deformation in -x, -y and -z directions is shown in Figure 3.5. 

Graph indicates that when the corners of the PhC slab are clamped then there is a high deformation in the lateral 

directions compared to the z-direction. Results indicate that deformation increases with the amount of piezoelectric 

material. 

 
Figure 3.24 Dimensions of the slab vs. the deformation in –x,-y and –z directions 

Variation of the level of deformation with changes in applied voltage is shown in Figure 3.6. These results indicate 

that, as expected, the mechanical deformation increase with applied voltage. Also, the level of deformation is high in 
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the –x, and –y directions compared to –z direction. It should be noted that ANSYS does not predict the effects of 

breakdown voltage in this type of simulation.  

 
Figure 3.25 Voltage applied to the slab vs. deformation in –x,-y and-z direction 

 

Figure 3.26 Deformation of 2-D PhC in –x direction when one side of the slab is clamped  
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Another simulation was performed to observe how the photonic crystal behaves when clamped at different parts of 

the slab. The visual representation is shown in Figure 3.7. The slab used has dimensions of 4X1μm with a triangular 

lattice of holes in the center 1x1 μm area. This result indicates that the degrees of freedom of the simulation greatly 

influence the piezoelectric deformation. In reality, if a piezoelectric slab is clamped to the substrate, the piezoelectric 

deformation observed in the z-direction will be less than the displacement of a suspended slab. This behavior was 

observed in the simulations. 

DC Analysis of nanometer patterns of circular air holes on AlN (as shown in Figure 3.5 and 3.6) indicated sub-

picometer deformation of the air-hole lattice. This is considered to be insignificant in two ways. First, it is hard to 

measure such miniscule variations as the error in fabrication using E-beam Lithography is considered to be more 

than the geometrical variation due to piezoelectric effects. Second, the equipment required to measure such small 

scale deformations is not available in the lab. However, these modeling results indicate that the out-of-plane 

deformation in the overall slab surface is ~10-20 times larger than the deformation in the holes. This slab bending 

behavior can be used for tuning of bandgap by effectively changing the angle of incidence for a 1-D PhC. Therefore, 

1-D PhCs were used for further exploring the geometrical variation effect on band gap as 1-D lattices will 

experience more deformation due to more material freedom compared to 2-D PhCs.  

3.2.2 1-D PhC Modeling 

3.2.2.1 1-D PhC MPB Modeling 

Based on advantages discussed above, the effect of geometrical variations on bandgap was tested on 1-D PhCs.  

MPB was used to calculate the band diagram of 1-D PhCs in AlN.  For an ideal 1-D PhC quarter wave stack as  

discussed in Chapter 2 condition gives the maximum bandgap. 

Figures (3.8 a & b) e demonstrate the TE and TM band diagrams of AlN 1D photonic crystal structure designed with 

the parameters of a quarter wave stack, 

𝑊𝑖𝑑𝑡𝑕𝐴𝑙𝑁 =
𝑛𝑎𝑖𝑟

𝑛𝑎𝑖𝑟 +𝑛𝐴𝑙𝑁
                                                                                (3. 4 )                         

𝑊𝑖𝑑𝑡𝑕𝑎𝑖𝑟 =
𝑛𝐴𝑙𝑁

𝑛𝑎𝑖𝑟 +𝑛𝐴𝑙𝑁
                                                                                 (3. 5) 
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 where Widthair is the width of air grating, WidthAlN  is width of the AlN grating. These are calculated with refractive 

indices nair =1 and naln=2.11. The widths are normalized with respect to the lattice constant in MPB.  The maximum 

bandgap of a 1D PhC with an air-in-AlN lattice for TE and TM is found to be 44.56% ideally when the grating is 

assumed to be infinitely long in y and z-directions.  

In general, the bandgap of a PhC increases with a larger refractive index contrast. Figure 3.9 demonstrates band gap 

change with variation in the width of the air grating in an ideal case. It is clearly noted that a 1D PhC gives 

maximum bandgap with the dimensions of quarter wave stack (location of vertical line in plot). From the plot, it can 

be observed that small variation in the width varies the optical bandgap by as much as 2% to 3%. The non- linearity 

in the graph is due to the complex behavior of light interactions with the lattice parameters, which may cause higher 

order modes to shift down and reduce the bandgap. However, in reality, the length and thickness of the slab cannot 

extend to infinity: i.e. they have a finite length and thickness. To account for this characteristic, a second simulation 

was performed that accounts for the thickness of the PhC slab. Results are shown in Figure 3.10. 

 

Figure 3. 27 (a&b ) TE and TM Band diagram of 1-D PhC in AlN 
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Figure 3. 28 Width of the air grating vs. gap-to-midgap ratio of 1-D PhC in AlN 

 

Figure 3.29 Slab thickness of 1-D PhC in AlN bounded by air cladding  vs. gap-to midgap ratio  

Quarter wave 

stack condition 
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Variation in the TE (blue) photonic bandgap is greater than the variation in the TM (red) bandgap. The higher order 

modes that lie slightly above lowest order mode reduce the optical bandgap as thickness is increased beyond an 

optimal value (using Eqn 3.3) which gives maximum bandgap. This is the main reason for the non-linearity in the 

graph. An optimum value of slab thickness is used to obtain the PhC design parameters based on normalized 

dimensions obtained from the simulation and desired operating wavelength in which our sensor architecture works. 

The lattice dimensions necessary for an optical bandgap which blocks a wavelength of 1.55 µm which will be used 

for optical characterization are given in Table 3.3. 

Tale 3. 3 Lattice parameters of 1-D PhC 

λ   1.55µm 

WidthAlN 216.4nm 

Widthair 456.6nm 

a 673nm 

h 538nm 

 

3.2.2.2 ANSYS Modeling 

3.2.2.2(a) DC Analysis and Harmonic Analysis of 1-D PhC: 

In the suspended slab design shown in Figure 3.11, the solid lattice structures are anchored on both ends by a larger 

area of unpatterned material. As maximum deflection is critical to obtain maxim um tunability, different models 

were considered for simulation. In a model without conductive electrodes, which are necessary for providing the 

potential necessary for piezoelectric deformation in actual fabricated devices, the variation in the width and height of 

1D PhC are very small: on the order of picometers, as shown in Figure 3.12 
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Figure 3. 31 Deformation vs. voltage for a model which gives minimum deflection 

 

Not only will these changes in lattice parameters (h and a) be difficult to measure with certainty using experimental 

methods, but they are also too small to cause a significance shift in the photonic bandgap of the structure. 

Figure 3. 30 Design of 1-D PhC in AlN  
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Figure 3. 32 Top-view of design of 1-D PhC with metal contact 

In practice, conductive electrodes will be used to deliver the excitation voltage to the AlN PhC as shown in Figure 

3.13. The addition of conductive electrodes not only offers a more accurate behavioral model, but also offers an 

avenue with which to cause higher degrees of mechanical deformation. Because of the difference in the rates of 

expansion of PhC and electrode materials with application of voltage, the beam exhibits a bow bending behavior. 

The amount of deflection varies with change in the electrode material. 
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 Figure 3. 33 Z-Deflection of 1D PhC with application of 10 V on the 1-D PhC with electrode .   
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Figure 3. 34 Deflection  of 1-D PhC in Z-direction vs. voltage 

 

Figure 3.14 shows the results of deformation in a 1D PhC with lattice stripes anchored on both ends; using 200nm 

thick metal which was used as a conductive electrode as shown in Figure3.13. This structural arrangement induces a 

deflection which is much larger than direct parameter tuning (lattice spacing, etc), and offers a method of indirect 

bandgap tuning, as mentioned in the literature46,47,48,49. .Voltage is varied to find the relationship between applied 

potential and deflection. It is noted that the modeling tool does not take into account the breakdown voltage of the 

piezoelectric material. Hence, optimum values of voltage are used to find the voltage vs. deflection relationship, as 

shown in Figure 3.15. As the voltage is varied from 0 to 30 V, deflection increased from 0 to 6nm. Maximum 

deflection is experienced in the z-direction compared to x- and y-directions, which are of the order of 0.1nm. 

However this z-axis deflection does not cause a significant change in h, but does potentially change the effective 

angle of incidence of light interacting with the PhC lattice. 

Experimental measurements are needed to determine the impact of this deflection on optical properties. 

3.2.2.2(b) AC Analysis 

AC Analysis was performed on the initial designs to determine whether or not higher levels of deformation are 

possible if excitation is provided near a structural resonance.  
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Figure 3. 35 Deflection in Z-direction vs. frequency 

Harmonic FEA was performed on the PhC lattice structure to obtain information about deflection near resonance. As 

the frequency is varied from 1MHz to 10 MHz, the beam experiences resonance near frequencies of 1.9MHz, 

3.5MHz, 5.8MHz, 8.7MHz as shown in Figure 3.17. Higher magnitudes of deflection are generated at higher 

resonance harmonics, where larger magnitudes of deflection of the beam deflection are obtained. All simulations 

were performed with the surrounding media defined as vacuum. However, experimentally deflections might be less 

than the theoretical ones due to air and material damping.  

3.3 MPB Modeling for Polycrystalline PhC structures in GaN 

MPB modeling was performed to verify the functional differences of polycrystalline PhCs in GaN50 which were 

considered to be different from the ideal planar PhCs. The differences between polycrystalline PhCs compared to 

ideal PhCs are (1) finite lattice domains of varying sizes, and (2) adjacent lattice domains which are placed at 

different angles with each other. 
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(1)Finite Lattice domains: MPB simulations were performed to observe the variation of bandgaps with different 

lattice domain sizes. 

 

Figure 3. 36 (a) lattice domain with 7X9arrays of holes (b)lattice domain with 13X17 arrays of holes(c)17X29arrays of 

holes arranged  in triangular lattice on GaN 

Figure 3.18 shows the lattice domains of different sizes which were simulated using MPB to find the bandgap 

variation. Figure 3.19 represents the bandgap variations found with differently sized lattice domains. From the graph 

it can be inferred that, as the lattice domain size increases, TE bandgap increases, whereas TM bandgap decreases. 

As one reaches an ideal photonic crystal of infinite size TE bandgap sees its maximum whereas TM bandgap 

reaches its minimum. 

 

Figure 3. 37 Gap-to-mid-gap ratio vs. different sizes of lattice domains 

.According to the literature a minimum of 6 to 10 periods are necessary to create an appreciable bandgap51,52,53,54. 

The bandgap gradually closes for sizes smaller than 7x9 lattice hole arrays, which is consistent with experimental 

and theoretical results presented in the literature15,16. Lattice domains observed in the nanosphere deposition 
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performed under the supervision of Dr. Korakakis(WVU) were typically 7x9 periods in size which showed 

appreciable bandgap in the simulations. Results also showed that a bandgap existed for larger domains of PhC 

lattices.  

(2)Dependency of bandgap on oblique angle of incidence: For periodic optical structures, K-space coordinates are 

the Fourier transform representation of Cartesian coordinates arising due to the periodic Bloch optical modes of the 

structure. Variation of angle of incidence in Cartesian crystal geometry implies variation of K points in K-space.  

 

Figure 3. 38 Bandgap vs. angle of incidence (variation of K points) 

From Figure 3.20, we can see that as the K-points (angle of incidence) are varied from 0 to 0.5 (effectively 0 to 90 

degrees) in the irreducible Brillourin zone, the bandgap (both TE and TM) increase and decrease symmetrically, 

both following the same pattern.  As the irreducible Brillourin zone describes optical behavior in the whole crystal, 

the pattern of bandgap variation shown in Figure 3.20 will repeat for light propagation angles from 90-360 degrees. 

The fabricated photonic crystal has adjacent lattice domains that meet at varying angles.  

(3) Adjacent domains placed at different angles: Simulations were performed to determine the bandgap caused by 

two adjacent domains, one of which is at a 45 degree angle to the other with different domain sizes as shown in 

Figure 3.21(a,b,c,d). 

(a) (c) 
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Figure 3. 39(a,b,c,d) Adjacent domains placed at an angle of 450 to each other with different lattice domain sizes (e) Gap-

to-midgap ratio vs. different lattice domains sizes of adjacent PhCs placed at an angle of 450to each other 

Figure 3.21(e) indicates that, as the lattice domain sizes of adjacently placed lattices vary, variation in the bandgap 

can be observed. From the graph, it can be inferred that, with the increase in the size of lattice domains, TE gap 

increases, accompanied by a similar decrease in TM gap. It indicates that some level of bandgap will exist in either 

the TE or TM modes for all angles of propagation in the plane of the crystal and for any angle variation between 

adjacent lattice domains.   

3.4 Waveguide Modeling 

The MPB software tool was used to demonstrate the existence of an optimal bandgap for a 2-D PhC of triangular 

lattice of air holes in GaN which has a normalized slab thickness (h/a) of 0.8 and lattice hole radius (rlat/a) of 0.29. 

The dimensions derived were used for fabricating a 2-D PhC which operates in visible spectral range. However, the 

device functionality may fail if the quality of GaN fabricated in the lab is not optimal or if the GaN slab doesn‘t act 

as a waveguide. Initially, the wave guiding properties of GaN on sapphire substrate with specified thickness and 

refractive index were modeled using Opti-BPM. Opti-BPM55 is used to investigate linear and non-linear properties 

of light propagation in waveguides. In BPM, it is assumed that the device has an optical axis and that most of the 

light travels in the axis direction (paraxial approximation).  

(b) 

(d) 
(e) 
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After determining the waveguide geometry in the modeling, an input plane was drawn. Because a prism coupler 

would be used for experimental measurements, a modal field was chosen as input wave for the simulations. More 

details about the input types and the assumptions in the simulation software can be found in the documentation of 

Opti-Wave software20. The structure can be simulated either in 2-D mode or in 3-D mode. After the simulation, the 

refractive index profile and the field distribution obtained are shown in the Figure 5.2. 2-D (or 3-D) mode solver can 

be used to determine the number of modes that can exist and their corresponding modal indices in the structure. 

Scanning the parameters such as thickness, refractive index, wavelength can be very useful in finding the optimized 

waveguide structure. 

 

 

 

 

 

 

 

 

 

 

 

The refractive index profile, as shown in Figure 5.20 was a representation of a GaN (Gallium nitride) waveguide 

with a small buffer layer of AlN(~61nm) grown on a sapphire substrate under the supervision of Dr. D. Korakakis 

(WVU). Full confinement of the wave in GaN is shown in Figure 5.20, indicating that GaN on sapphire can be used 

as a waveguide. The refractive indices and the thicknesses that were used in modeling were measured by 

ellipsometry. The thicknesses of substrate and the cladding (air) were assumed to be small in this model in order to 

speed up the simulation.  

(1) (2) (3) 

Figure 5. 20(1) GaN waveguide on top of a thin AlN layer and sapphire substrate. (2) The field intensity as modeled by 

OptBPM that shows a complete confinement within the waveguide (3) Field intensity (green) plotted across the different 

refractive indices of the layers (red.) 
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In order to implement a 2-D PhC fabricated on a GaN slab as a transducer of a biosensor, a suspended structure is 

most optimal. One potential device architecture employs a SiO2 layer as a sacrificial layer that will be removed to 

create a suspended structure. Coupling of light into the 2-D PhC slab above SiO2 is very crucial to operate the same 

as a biosensor. Therefore, modeling efforts were done to find optimum slab thickness of GaN required to couple 

most of the light into the top waveguiding layer. OptiBPM shows that a full confinement can be obtained when the 

top GaN layer (above the flow channel) is at least 1 μm thicker than the lower GaN layer.  

3.5 SUMMARY 

From theoretical results of the optical modeling of PhCs it was observed that, as thickness is varied by 0.1a, there is 

a bandgap change of nearly 2-4%. The same is observed while varying the width of the grating. However, in FEA 

studies, the deformation of AlN films with applied voltages within the breakdown limit of the material lead to 

deformations on the order of picometers, which are not large enough to affect the optical bandgap. By applying 

higher voltages and by varying frequency, a maximum slab deflection of 120 nm can be achieved. A 7 nm deflection 

is sufficient for creating a 2-4% change in the bandgap, which can be acquired by applying a voltage of 30 V. 

Bandgap can be actively tuned by following this technique.  

(1) (2) (3) 

Figure 5. 21 (1) The GaN waveguide with an underlying SiO2 layer which will eventually be removed after the 

fabrication process is finished and obtain a flow channel instead. (2) The field intensity demonstrates the 

confinement of the light in the waveguiding GaN layer that will include the PhC structure.  (3) Field intensity 

(green) plotted across the different refractive indices of the layers (red )  

 



39 
 

CHAPTER 4: FABRICATION 

4.1 Introduction 

Modeling results indicated that high deformation can be observed for a suspended 1-D PhCs in AlN which can 

eventually be used for tuning the bandgap. Si substrate was considered for initial process development of fabricating 

nanometer-scale 1-D PhCs and for optical characterization. Due to the limitations on the equipment to mechanically 

characterize a nanometer scale 1-D PhC, efforts were also made to fabricate micron-scale suspended 1-D PhCs in 

AlN for initial tuning measurements. 

4.2 Fabrication of 1-D PhCs for optical characterization 

4.2.1 Nanometer scale 1-D PhCs in Si 

Optical Characterization of 1-D PhCs required nanometer scale PhC patterns due to the limitations on the operating 

wavelengths of the characterization equipment. Because of this, nanometer patterns were fabricated using E-beam 

lithography techniques. Initially, efforts were made to etch PhCs into Si for the reason that Si processing is relatively 

easy when compared to AlN. The process flow for fabricating 1-D PhCs in Si and SOI substrates were shown in 

Figure 4.1.  

 

1. Degrease the sample 

 

 

2. Spin  ma-N2403  for 50sec at 
4500rpm &  Soft bake 1min at 
95°C 

 

3. Pattern with E-beam 
Lithography and developed in 
300MIF for 16sec 

 

4. Metal liftoff with Nickel 
(~20nm) 
 

5. Etch the patterns into Si 
(400ICP/100RIE/20mT) and 
the Ni is removed using 
Nickel etchant(3nm/sec at 
25°C) 

 

Figure 4. 2 Process flow for fabricating nanometer scale 1-D PhCs in Si and SOI 
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The substrate was thoroughly cleaned with acetone and methanol for 5 mins each followed by a HF dip to remove 

any oxide on the surface. DI water is used to rinse the samples.  A nitrogen blower was used to blow off any water 

on the samples. The samples were then kept in an oven for nearly 30 min at a temperature of 100oC to remove any 

moisture on the samples. ma-N 2403, a negative E-beam resist was spun on the samples at4500rpm for 50sec 

followed by a soft bake for 1min.  

On one of the edges of the sample, a small scratch was made on the resist before loading the sample into JEOL 

system. This scratch can be used to focus the beam into a very small diameter which is required for writing high 

quality nanometer scale features. Two different 1-D PhC patterns were designed using Design CAD LT 2000 which 

were used by the NPGS software to give commands to E-beam lithography system for pattern writing. In order to 

write patterns at a working distance of 8mm, a dose of 80μC/cm
2, magnification scale of 1100x and 40pA probe 

current was used. The samples were unloaded after pattern writing and developed in 300MIF developer for 

16seconds. Nickel with thickness ~30nm was sputtered on the samples in order to use the same as etch mask. The 

nanometer patterns were transferred into Si using 400/100Watts ICP/RIE power, 20mT pressure, 24/6 sccm of 

CF4/O2 gases in Trion etch system. Tthe SEM images are shown below .SEM Images 01:1-D PhC patterns in Si 

 

Figure 4. 2 1-D PhC pattern with 700nm wide Si stripe with 300nm air spacing on SOI samples 



41 
 

 

Figure 4. 3 1-D PhCs pattern with 400nm wide Si stripe with 300nm air spacing on SOI samples. Samples were over etched into 
SiO2 in the image 

4.2.2 Introduction to Aluminum Nitride: 

Aluminum nitride (AlN) has a wurtzite crystal structure which gained significance in MEMs device fabrication 

because of its piezoelectric properties. It exhibits high thermal stability which makes it an ideal candidate in high 

temperature applications. Its high bandgap (~6.2eV) and refractive index (~2.11) make it an ideal candidate for 

optoelectronic applications. AlN thin films can be obtained using various techniques such as CVD (chemical vapor 

deposition), sputtering, vapor phase epitaxy or molecular beam epitaxy (MBE). Of these techniques, sputtering is a 

low cost, versatile technique that is widely used to fabricate AlN thin films. Sputtered AlN thin films are produced 

under much lower temperatures compared to MOVPE. Sputtered AlN is polycrystalline, whereas MOVPE grown 

AlN is single crystalline. Sputtered AlN exhibits a reduced amount of piezoelectricity compared to MOVPE grown 

AlN because of the random orientation of the crystal domains. Degreasing the sample thoroughly and pre-sputtering 

for a reasonable amount of time to remove contamination on the surface of target material improves the quality of 

sputtered AlN thin films. 
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4.2.3Etching of AlN 

1-D PhCs in reality can be called quasi PhCs that have a slab structure made up of lattice ‗lines.‘ The fabrication of 

this type of structure requires resist patterning and subsequent transfer of patterns to the slab material by etching. 

Different etching techniques, such as wet and dry etching, can be considered depending on different parameters such 

as etch rate, selectivity and isotropy. Etch rates depend on various factors including the quality of thin films. To etch 

sputtered amorphous AlN, different acidic and basic solutions such as HF/H2056, HF/HNO3
57

 , KOH58 or NaOH59 

can be used. It was reported that AZ400K developer whose active ingredient is KOH can also produce substantial 

etching of polycrystalline AlN which is selective over GaN and Al2O3
60.In the reported work, the time dependence 

of etch rate, and also the undercut caused by etching the samples in heated AZ400K solution were measured. It was 

reported that isotropic etching in AZ400K increases with increase in temperature. Generally, wet etching is more 

selective and isotropic whereas dry etching is more anisotropic.  Anisotropic etching is optimal in PhC pattern 

transfer with very small feature sizes. Isotropic etching often results in deformed lattice structures which results in 

improper device functionality. Various plasma etch techniques such as reactive ion etching (RIE), electron cyclotron 

resonance (ECR), inductively coupled plasma (ICP), and reactive ion beam etching (RIBE) have been used to etch 

III-nitrides6. In an ICP etching technique, high density plasma is created by applying rf-power to an inductive coil 

encircling a dielectric vessel. The coil produces an electric field which induces a strong magnetic field in the vertical 

plane, trapping electrons in the center of the chamber thereby producing high density plasma. At pressures lower 

than 20 mT, the plasma diffuses from the center of the chamber to the substrate at low ion energy, producing 

minimal damage and high etch rates. ICP etch systems produce the highest etch rates and smoothest morphologies in 

group-III nitrides. High-plasma-density systems improve the bond-breaking efficiency of the etch process and 

enhance sputter desorption of etch products from the surface of the material. While ICP etch characteristics are 

similar to ECR, ICP systems are more widely used as they are easier to scale-up and are more economical61. 

4.2.4 Nanometer scale 1-D PhCs in AlN 

After successful fabrication of 1-D PhCs in Si, efforts were made to fabricate nanometer scale 1-D PhCs in AlN on a 

Si substrate. The process flow and the SEM images are shown below in Figure 4.4.  
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1. Degrease the sample 
 

 

2. Sputter AlN 

 

 

3. Deposit SiO2 
 
 

 

4. Spin ma-N2403and soft bake 

 

 

5. Develop patterns in AZ300MIF 
developer. 
 
 
 

6. Metal liftoff with Nickel ~50nm 
 
 
 
 
 

7. Etch SiO2 using CF4/O2 plasma. 
 
 
 
 
 

8. Etch AlNusing Cl2 plasma. 

 Figure 4. 4 Process flow for fabrication of 1-DPhC in AlN 
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The Si samples were cleaned thoroughly and AlN films were sputter deposited on Si by using CVC-610 Direct 

Current (DC) magnetron sputtering system in an Ar/N2 environment. Pre-sputtering the Al target to clean and 

equilibrate the target surface prior to film deposition reduces the chance of film contamination62 . Approximately 

200nm thick AlN is sputtered using a 3‖ Al target which is 99.99% pure with a Ar/N2 gas concentration of 3/27sccm 

and 45mT pressure at room temperature. AlN is relatively hard to etch because of its atomic bond strength. In order 

to etch 200 nm of AlN, a very thick etch mask is desired. But, due to the limitations in the liftoff technique (very 

thin e-beam resist; ~250nm), only 40-50nm of etch mask can be used. Even though Ni is considered a hard etch 

mask, 40-50nm of Ni is not sufficient to etch 200nm of AlN in a chlorine plasma. So, SiO2 is deposited on the 

samples using PECVD (Plasma enhanced chemical vapor deposition) after AlN deposition. ma-N2403, e-beam 

resist was spun@4500rpm for 50sec followed by 1 minute soft bake at 950C . The patterns were then written using  

e-beam lithography technique. The samples were developed in AZ300MIF for 35sec. Ni was deposited on the 

pattern with thickness of ~50nm. Liftoff was performed on the samples. Etching is performed on a Trion Mini-Lock 

Phantom III Series ICP-RIE system. A chlorine based gas mixture was used for dry-etching AlN.  In a Cl2/BCl3 

plasma , the excited material interacts with the exposed regions of the material while the ions in the plasma 

physically bombard the sample and remove material. The vertical etch rate depends on both the chemical and 

physical etch but the etch rate is not the sum of the two quantities. The etch mask was used to transfer the patterns to 

SiO2 using CF4/O2 plasma. Then SiO2 etch mask along with the remaining Ni was used to transfer patterns to AlN 

using 12/18 sccm of BCl3/Cl2 plasma in 400/100 ICP/RIE power at 10mT pressure. The SEM images at each step of 

fabrication were shown in Figure4.(5,6,7,8) 
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Figure 4. 5 SEM image of SiO2 deposited on Sputtered AlN 

 

Figure 4.6 1-D PhC patterns in E-beam resist spun on AlN after development for 35sec 
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Figure 4.7 1-D PhC Patterns  in SiO2 with Ni on top 

 

Figure 4.8 1-D PhC patterns in AlN etched into Si 
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4.3 Fabrication for Piezoelectric Characterization 

4.3.1 Suspended AlN PhC pattern: 

Finite Element Modeling results showed that the degrees of freedom of a cantilever play a vital role in the 

piezoelectric deformation of the film. For a clamped–clamped suspended cantilever the deformation is high 

compared to non-suspended cantilever.  The process flow for fabricating suspended 1-D PhCS in AlN is shown in 

Figure 4.9. 

 

 

 

 

1. Degrease the sample 

 

 

 2. Spin AZ5214  

 

 

3. Patterned with photo-Lithography and 
Image reversal process and development.  

 

 

 

4. Sputtered AlN (~300nm) for metal liftoff. 

 

 

5. ICP/RIE etch for 2mins on (260/1 μm)SOI 
And 10 mins for(1.5/2.5μm)SOI  

 

 

6. Agitate gently in HF to remove SiO2(4min-
8mins).  Figure 4. 9 Process flow for fabricating suspended 1-D PhCs in AlN  
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Consequently, efforts were made to fabricate a suspended 1-D PhC in AlN. In this fabrication procedure SOI 

(Silicon on insulator) samples (with Si/SiO2 dimensions 250nm/1μm and  1.5/2.5μm were used to create free 

standing structures instead of Si. Standard degreasing procedures were performed to clean the sample thoroughly.  

AZ5214 PR is spun @ 4500rpm for 50sec prior to soft bake at 950C for 50sec. The samples were patterned 

employing photolithography technique. Image reversal bake at 1200C is performed for 2 min followed by flood 

exposure for 90sec. The samples were developed in AZ300MIF for 45sec. Approximately, 300nm ~400nm AlN is 

sputter deposited on the samples. Acetone immersion followed by sonication is performed on the samples, which 

results in patterned AlN. The samples were dipped in HF to remove the underlying oxide layer of the SOI substrate, 

effectively suspending the lattice pattern. Even though, this procedure should result in suspended 1-D PhCs in AlN, 

there were certain issues that were not taken into account while fabricating suspended 1-D PhCs in AlN which 

resulted in failures. The problems are discussed in the issues section. 

 

Figure 4. 10 Debonding of AlN from Si 
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Figure 4. 11 Debonding in AlN 

 

 

Figure 4. 12 Buckling phenomena 



50 
 

 

Figure 4. 13 Buckling phenomena of AlN in Si 

ISSUE-1: Length of the pattern 

The main issue in the fabrication of surface micro machined structures is that arbitrary dimensions for the cantilever 

beams are not allowed due to the limitations imposed by external forces, fabrication process e.t.c. 1-D PhCs in our 

design is a case of clamped-clamped beams where the distributed forces arising from weight of the beam impose 

limitations on beam length. As the beam length is increased, these forces eventually cause the beam to touch the 

surface of the substrate. To understand the mechanical behavior of the clamped –clamped beams, a first step would 

be calculation of the spring constant of the beam. The spring constant for a clamped-clamped beam with distributed 

load is given by63 

kz = 32Ew(
t

l
)3                                                                     (4.1) 

As already mentioned, the beam touches the substrate due to many reasons, initially collapse of the beam due to its 

own weight is considered. Using the mechanical equation of motion, the critical beam length can be calculated as 

follows 

Fz = kz . z                                                                  (4.2) 

m. g = kz . z                                                                (4.3) 



51 
 

m. g = 32Ew(
t

l
)3 . z                                                           (4.4) 

where              m = density/volume = ρ/V 

 and                 volume=l.w.t 

Therefore critical length can be derived as64  

𝒍𝒄𝒓𝒊 =  
𝟑𝟐𝑬𝒛𝒕𝟐

𝝆.𝒈

𝟒
                                                              (4.4) 

Critical length of a silicon beam of width 7μm, thickness of 260nm, density 2330kg/m
3
, 1μm spacing from the 

substrate and Young‘s modulus 150GPa can be calculated using Equation 4.4 and is found to be 1.94mm.  

Long beams are difficult to release after wet etching of the sacrificial layer such as SiO2 using HF. During final 

drying, the beams pull down to the substrate due to the surface tension from liquid trapped under the beams. 

The beam length that was used earlier was nearly 4mm which resulted in stiction65. To eliminate the possibility of 

stiction,, 400μm long beams were considered for further processing. 

ISSUE-2: Delamination and buckling Effect 

Thin films are grown on the substrates using different techniques such as Sputtering, MOVPE e.t.c. Residual 

stresses may cause cracks in the film, or in the substrate, or on the film-substrate interface. These phenomena can be 

observed in daily life such as peeling of paints and pavements cracking66. Using the above discussed deposition 

techniques, the films are grown at a fixed temperature. After the film is grown, the temperature is changed to a 

different level.  Due to this variation in the temperature, the substrate acquires a thermal strain but remains stress-

free; also the film acquires a thermal strain which is different from the substrate. This difference can be related to the 

difference in the thermal expansion coefficients of the substrate and the thin film. When the film and the substrate 

are well-bonded, the net in-plane strain must be the same as thermal strain of substrate. As a result, the mismatch 

strain has to be accommodated by the thin film, either by elastic or inelastic deformation. A film under tensile stress 

may debond from the edge of the film or from the root of a channel crack. When the debond length exceeds several 

times the film thickness, the debonding process attains a steady-state, and the driving force becomes independent of 

the debond length11.  
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Figure 4. 14 Debond from an edge of the film, driven by residual tensile stress11 (Courtesy of Q. Ma of Intel Corp) 

 

From figure 4.3, when the film that was deboned approaches the other edge of the film, the debond driving force 

decreases, so that the debonding stops before it reaches the film edge11. If the film is under compressive stress, then 

a certain area underneath it is unbounded to substrate which might result in buckling of the film. The AlN films that 

were released from the Si substrate exhibited the debonding phenomena due to tensile stress as shown in Figures 4.5 

4.6. Buckling phenomena was exhibited due to compressive stress when the thin film comprised of both AlN and 

Ti/Pt as shown in Figure 4.7 and Figure 4.8. Even though, the sputtering pressure was varied67 to reduce both 

compressive and tensile stress in the films; stress prevailed in the films.  

4.3.2 Clamped 1-D PhCs in AlN 

The tensile and compressive stress prevailed significantly in the AlN thin films even after various measures were 

taken to reduce the same during the process of sputtering.  The process flow for fabricating clamped 1-D PhCs in 

AlN is shown in Figure 4.15. 
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Consequently, clamped 1-D PhCs were realized for measuring the piezoelectric coefficient d33. In this process, Si 

samples were degreased and were patterned using the negative lithography technique discussed earlier. The patterns 

were transferred into Si using Ni as etch mask in ICP/RIE etching technique. The samples were eventually dipped in 

HF to release the clamped-clamped beams. AlN is sputtered at 45mTorr pressure with Ar/N2 gas concentration of 

3/27 after a presputter of Al at 60mTorr pressure and Ar gas concentration of 30sccm for 10 minutes to remove 

impurities. Later, Ti/Pt was sputtered on the sample to act as a top electrode. The SEM images are shown below. 

1. Degrease the sample 

 

2. Spin AZ5214  

 

 

3. Patterned with optical-Lithography  

 

 

4. Sputtered Cr (~300nm) for metal liftoff 

 

5. ICP/RIE etch for 2mins on (260/1 
μm)SOI And 10 mins for(1.5/2.5μm)SOI  

 

6. Agitate gently in HF to remove 
SiO2(4min-8mins) 

 

7. Sputtered AlN on the suspended 
structures 

 

8. Sputtered Pt over it.  

Figure 4. 15 Process Flow for fabrication of Clamped 1-D PhCs 
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After the deposition of Ti/Pt, when the samples were broken to view the cross section, due to the pressure on  the 

samples, the surfaces appeared to be pinned to the substrate.  

 

Figure 4. 16 SOI samples with 1-D PhCs transferred into Si (1.5 μmSi /2.5μmSiO2) after ICP/RIE etch  

 

Figure 4. 3 1-D PhC pattern after 1 min etch of SiO2 in HF 
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Figure 4. 4 Side view of 1-D PhC patterns in Si suspended or released from substrate   

                               

 
 

Figure 4. 5 Suspended 1-D PhCs in Si after SiO2 etch in HF 
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Figure 4. 20 Clamped 1-D PhCs after AlN deposition  on suspended Si PhC patterns followed by Pt-image 01 

 

Figure 4. 21 Clamped 1-D PhCs after AlN deposition on suspended Si PhC patterns followed by Pt- Image02 
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4.4 SUMMARY 

Nanometer scale 1-D PhCs were successfully fabricated in Si substrate and AlN thin films which can be used for 

optical characterization. Optimization in the process of etching of AlN is required to achieve perfect sidewalls in 

nanometer scale patterns. Fabrication of suspended micron-scale 1-D PhCs in AlN resulted in buckling effect which 

might be accounted for the stress problems due to sputtered AlN. Process for sputtering AlN needs further 

optimization in order to create suspended AlN 1-D PhCs on SOI substrates.   

 

Figure 4.22 (a&b) Composition of Al & N2 in Sputtered AlN on Si and SOI wafers respectively 

EDAX measurements provide a general idea of atomic compositions of elements in a compound. EDAX 

measurements were performed on AlN sputtered on Si and SOI to analyze the atomic compositions as shown in 

Figure 4.22. But before drawing any conclusion from these results, it is recommended to compare the results with 

the results drawn from MOCVD grown AlN using an accurate measuring technique. 
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CHAPTER 5: CHARACTERIZATION 

5.1 Optical Characterization 

The optical bandgap of planar PhCs reveals their unique properties such as transmittance, reflectivity, diffraction 

efficiency, losses, absorption, and reduced group velocity e.t.c. These properties can be used to implement both 

linear and non-linear devices, such as photonic crystal fibers, filters, biosensors e.t.c. 1-D PhCs that were designed 

and fabricated in this effort were tested to determine transmission and reflectivity properties of the PhC lattice. The 

techniques for experimentally determining and plotting band diagrams, as well as waveguide characterization using 

prism coupler, will be discussed in this chapter. 

5.2 Photonic Crystal Characterization 

5.2.1 Band Diagram Characterization Techniques using Normal Incidence 

For a periodic optical wave with an angle of incidence normal to the PhC lattice; the wave undergoes several optical 

phenomena which result in the formation of a band gap. Band gap comparison of the as-designed and fabricated 

PhCs is very important because variation in device geometries during the fabrication phase may alter the device 

functionality. The direct measurement of optical spectra below the light cone can be attained using various optical 

setups.  Coupling of light into the thin films to subsequently reach nanometer scale PhC features in order to measure 

bandgap is challenging. Some of the coupling techniques are discussed below. 

(i)End-fire coupling technique:  

Optical setup for implementing this technique typically consists of a light source, Light-emitting diode(LED), 

polarizers as PhCs are polarization sensitive, optical fibers which can be used as connectors for input and output, IR 

camera, detector, spectrometer e.t.c  as shown in the Figure5.2. 

End-fire characterization setups using a on a multi–port channel drop filter68 and using Mach-Zehnder 

interferometer69 are some good examples which are used for complex or advanced device designs. Ideally, this 

technique gives a direct measurement of optical properties of a PhC device. But practically the output signal 

obtained from such a setup is degraded due to some interference fringes caused by the parasitic reflections from 

sample facets, tapers e.t.c. Optimization of fabrication steps may lower the degradation caused by reflections to an 

extent however it does not completely circumvent them.  
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Figure 5.2Schematic of an end-fire measurement70. 

(ii) Internal Light Source (ILS) Technique: 

ILS technique is mainly designed for III-V planar PhCs, and h does not require complete fabrication of waveguide 

patterns for light propagation into the sample. Instead of coupling light into the sample at the end facets, light 

emitters which are potentially either quantum wells (QW) or quantum dots (QD) are inserted into the planar 

waveguides wherever needed. The photoluminescence (PL) of the light emitters is excited and the beam coupled 

travels as a guided mode towards PhC lattice. The image of the guided beam emitted from the sample through a 

cleaved facet is coupled into a spectrometer for spectral analysis. The signal obtained at the cleaved facet may 

contain a beam that propagated through air, planar waveguide and substrate which will result in cross-talk. This 

cross-talk can be avoided by using large edges and keeping the excitation spot far away from cleaved facet. The 

schematic experimental setup is as shown in Figure 5.3 
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Figure 5.3(a) Schematic of ILS experiment (b) side-view of schematic (c) Typical experimental Transmission71 

In the Figure 5.3(b) the reference signal I1 and the signal from PhC lattice I2 are measured by keeping the distance 

from the excitation point to the cleaved facet constant. The ration of I2/I1 yields the absolute transmission spectrum 

as shown in Figure 5.3(c). The main disadvantage of this technique is that absorption from light emitters layer result 

in propagation losses and reduced quality factors for high performance structures. These are some of the most 

frequently used techniques for bandgap characterization. Some other advanced techniques like Local probe 

Scanning near-field optical Microscopy (SNOM)1, Fourier imaging1 e.t.c are used less often because of their 

complexity.  

5.2.2Band diagram Characterization using Surface Coupling Technique 

The techniques described in section 5.1.1 can be used to determine the band diagram of a photonic crystal slab 

below the light cone. However, the bands above light cone are not easy to determine using ILS or end-fire coupling 

techniques. Even though the determination of bands above the light cone is not so significant for most of the PhC 

based devices such as biosensors; strong dispersive effects above the light cone show a significant promise to solve 

the long-standing problem of light extraction from light emitting diodes (LEDs)5.  
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Dr. Vasily N. Astratov developed a method known as surface coupling technique72,73,74 to directly draw the 

dispersion curves above the light cone in PhCs. The main advantage of this technique compared to external coupling 

techniques is that it possesses external angular control of the group velocity and group velocity dispersion of the 

modes excited. In this technique, the dispersion of the leaky modes of 1-D or 2-D PhCs above light cone can be 

reconstructed based on resonant coupling in reflectivity as a function of wavelength and incidence angle as is shown 

in Figure 5.6. For a given wavelength (i.e., photon energy), resonant coupling occurs when the in plane component 

of the incident wave vector matches the wave vector of a corresponding photonic mode. If the light reflected off the 

sample surface is measured as a function of wavelength, such coupling can then be identified as a resonance feature 

(e.g. a peak or dip) in the reflected spectrum. By recording such spectra for a number of angles of incidence, thereby 

varying the in-plane component of the incident wave vector, particular points of the photonic band structure can be 

probed, and the dispersion curves of leaky modes can be mapped to the band structure. A better understanding of 

dispersion curves can be gained by considering the theory of diffraction gratings optics, as discussed in Appendix B.  

Figure 5.6 Off-axis propagation in 1-D slab PhC 
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5.1.2.1 Earlier Work in Surfacing coupling Technique 

 

Figure 5.7 Experimental geometry of 1-D and 2-D structures used by Astratov et.al6 

Vasily N. Astratov et.al used the surface coupling technique to study the photonic crystal waveguides that were 

fabricated in the AlGaAs (Aluminum Gallium Arsenide) material system. The regular lattices of air stripes or holes 

are etched all the way through the surface waveguide deep into the cladding layer.  Optical studies were performed 

with broad band plane polarized light obtained from a tungsten-halogen lamp. CCD detection was employed and the 

light was incident perpendicular to the stripes of the lattice at a range of angles of incidence. The specularly 

reflected beam was imaged to study reflectivity properties as shown in Figure 5.8 (a) of individual lattices and 

projected on to the slits of a grating spectrometer.  

 

Results indicated that waveguide modes in such lattices experience very high in-plane modulation of refractive 

index, and significant forbidden zones open up in the photonic band structure allowing, for example, important 

Figure 5.8 Angular dependent TM polarized reflectivity 

spectra from a 2-D honeycomb lattice of air cylinders with 

a = 360 nm6. 

Figure 5.9 TE and TM spectra mapped on to the 2-D 

model of perfectly confining waveguide model with PhC 

pattern6  

Figure 5.8 Angular dependent TM polarized reflectivity 

spectra from a 2-D honeycomb lattice of air cylinders with 

a = 360 nm6. 
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applications such as enhanced light extraction efficiency from solid state emitters and control of spontaneous 

emission. M.Patrini et.al 75characterized two different 1-D structures with different lattice constants and air-fractions 

using Fourier-transform spectrometer ( Bruker IFS66) at a spectral resolution of 1 meV and measured variable angle 

specular reflectance in the spectral range 0.25–2 eV. The plane of incidence is perpendicular to the sample surface 

and the angle of incidence of the collimated beam from the spectrometer varies over the range 50 –750. A liquid-

nitrogen-cooled InSb photodiode is used as the detector and a silver mirror is the absolute reflectance reference. 

Measurements were done for light incident along the ᴦ–M orientation of the 1-D crystal (i.e. perpendicular to the 

stripes) both in transverse electric (TE) and transverse magnetic (TM) polarizations by means of a calcite Glan–

Taylor polarizer. Superimposed on the interference background caused by the effective refractive index of the 

photonic crystal, several sharp features are observed which display a well-defined dispersion in their energy 

positions with increasing angle of incidence. While sample with higher air fraction displays rather weak and broad 

features which imply a larger coupling of folded guided modes above the light cone to leaky waveguide modes and 

therefore an increase of the diffraction losses outside the waveguide, sample with smaller air fraction shows more 

intense and well-defined structures. 

Y. Benachour et.al
76

 reported non-destructive characterization of planar two-dimensional (2D) photonic crystals 

(PhCs) made in silicon on insulator (SOI) wafers using ellipsometric or Fourier transformed infrared (FTIR) 

spectroscope.  At large wavelengths, devices behave as homogeneous isotropic materials defined by an effective 

filling factor. Even though they proved that diffractive optics methods, usually used in the short wavelength range to 

draw dispersion curves above the light cone, can operate in the long wavelength range to characterize actual PhCs. 

5.2.2.2 Characterization Set up  

Instead of using an optical setup with halogen lamp, polarizers, spectrometer and CCD camera to measure the 

variable specular reflectance of the photonic crystal above the light cone; FTIR( Fourier Transform Infrared 

Spectroscope) and Variable Angular Reflectance Spectroscopic (VASE) Ellipsometer  were chosen. A brief study of 

the devices is discussed in the subsequent sections. 

(a)FTIR:- 

The term Fourier Transform Infrared Spectroscopy (FTIR) refers to a manner in which the data is collected and 

converted from an interference pattern of an optical spectrum. For the characterization of PhCs using the surface 
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coupling technique, an additional accessory VEEMAX or VMAX (Variable grazing angle motorized stage), which 

is one of the specular reflectance accessory, is used in conjunction with normal FTIR operation. The optical design 

 

Figure 5.13 VEEMAX accessory77 

enables the accessory to be in alignment for all angles of incidence. The angle may be varied continuously from 300 

to 850 degrees by the rotation of a single control. The sample is placed face down on the sampling surface. Masks 

with 2", 5/8" and 3/8" apertures can be used to sample different geometries.  

The setup can be used for collecting reflectance data in the mid-IR range. For operation at these wavelengths, the 

PhC lattice features are micron-scale. A major problem that occurred while using VEEMAX for varied angular 

specular reflectance measurements on a photonic crystal was the size of the sample. Sample sizes were very small ~ 

2-3mm, while the laser beam diameter which was much larger than the PhC pattern. As the angle is varied, the beam 

shifted its position of incidence on the sample (i.e beam was not incident on the same spot every time angle was 

varied,) which introduced significant uncertainty in the data collected, making it unreliable.  

(b)Ellipsometer 

An ellipsometer78 is capable of performing variable angular specular reflectance measurements, also known as 

VASE (Variable Angle Spectroscopic Ellipsometry). Ellipsometry is a very important technique to characterize the 

optical constants such a refractive index n and extinction constant k since the changes in the polarization state of the 

reflection beam from the sample are very sensitive to these parameters. In addition, ellipsometry is also a very useful 

technique to evaluate the properties of thin film multi-layers, where the polarization modification caused by the 

interference of the multiple reflected beams provides very accurate information about the thickness of the layers.  
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Figure 5.14 Principle of Ellipsometry
15 

The input arm or illuminating arm contains a quartz tungsten halogen (QTH) lamp, beam collimation optics and a 

polarizer with fixed orientation at 45º with respect to the s and p components. Light reflected from the sample is 

then analyzed at the detection arm or output arm. The detection arm includes a rotating wave plate and analyzer, in 

order to achieve a full determination of the reflected beam polarization ellipse. In addition the detection arm 

includes a spectroscopic system that permits taking measurements at different wavelengths in the range of 290 to 

996 nm.   

 

  Figure 5.15 VASE setup79 
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In order to acquire variable angle specular reflectance data from the nano-scale PhC patterns with a surface area 

500μmX500μm of micrometers using the ellipsometer, lenses have to be inserted into the input and output arm. This 

lens setup helps in collimating the beam to a small beam areas of ~ 300-600μm
2. Though the lenses impose certain 

limitations such as the reduction in the power and the reduced angular range of incidence, variable angular 

reflectance measurements can be taken easily at different angles after calibrating the device with the lenses inserted. 

The variable angular specular reflectance data taken from a 1-D PhC patterned with a lattice constant of 1μm and air 

fractions of 0.3 on a SOI sample are shown in Figure 5.17.  Patterns on SOI sample is a case of asymmetric PhC slab 

in which due to the asymmetric conditions, the bands are no more polarized as even or odd and bandgap vanishes. 

But, some of the experimental results in the literature showed that bandgap and the polarization exists even for 

asymmetric PhC slab such as SOI with air and silicon-dioxide as cladding layers when the refractive index contrast 

of the claddings is minimal80. Henceforth, two different samples were used for characterization; one with PhC 

patterns on SOI and one with suspended structures in Si.  Initially, experimental data was taken on unpatterned SOI 

samples as a reference as shown in Figure 5.16. The fringes observed in the unpatterned case are different when 

compared to the patterned SOI. 

 

Figure 5. 16 s-pol reflectivity from unpatterned SOI substrate 

The interference fringes in the diagram are caused due to the thickness of the layers on the substrate. In the patterned SOI, the 

resonant peaks are the guided modes evanescently coupled into the PhC pattern at the phase matching conditions. 
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Figure 5.17 s-pol reflectivity spectra of 1-D PhC in SOI (700_300nm) wafers   

 

Figure 5. 18 Theoretical and experimental data from the surface coupling technique plotted 

Resonance peaks 
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The energy positions at the resonant peaks or inflection points in Figure 5.17 were chosen and their corresponding 

in-plane wave vector is calculated using Equation (5.1). 

𝒌|| =
𝝎

𝒄
 𝐬𝐢𝐧𝜽                                                                                       (5. 1) 

The resonant peaks at different angles are mapped onto the band diagram of the 1-D PhC slab as shown in Figure 

5.18.  In Figure 5.18, theoretical band-diagram was calculated using MPB. The band diagram obtained from MPB 

will have y-axis as normalized frequencies. Since we are using an ellipsometer which gives data corresponding to 

energy of the photon, the frequency band diagram was converted to energy band diagram. Figure 5.17 shows the 

radiative modes extending to 1.8eV, and the radiative modes are a continuum where no bandgap exists. Plotting the 

experimental ellipsometer data and theoretical band structure on the same graph indicated close correlation of 

experimental and theoretical results.  The graph indicates that there is good agreement with theoretical and 

experimental data except that there are few variations which are mostly due to the following: 

1. The 1-D PhC pattern fabricated on the samples does not extend infinitely. The pattern consists of 100X100μm
2  

patterns stitched together to form a 600X600 μm
2 area to meet the requirement of lens of Ellipsometer whose 

beam width is around the ~500-600 μm
2.  The difference in the modes may be due to the stitching issues in the 

fabrication. 

2. Also the data was collected from 400 to 700 at regular intervals of 50. If the data is taken at a wider range of 

angles at higher resolution, more accurate results would have been obtained. 

To avoid the limitations on the bandgap caused by the asymmetric nature of photonic crystal slab in SOI, surface 

coupling is done on a sample with PhC patterns in suspended Si (with air cladding). The corresponding experimental 

data and the mapping between theoretical and experimental data are shown in Figure 5.19 and 5.20 respectively.   

Figure 5.19 shows the data taken between 400 to 700 at regular intervals of 50 with a s-polarized light which is similar 

to TE polarized light. Figure 5.20 shows the mapping between theoretical and experimental data of a 1-P PhC 

suspended in air much above the light cone. 
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Figure 5. 19 spol reflectivity spectra of suspended PhC in Si (700_300nm lattice) 

 

 

Figure 5. 20 Zeven band diagram and experimental data from 1-D PhC suspended in air with lattice constant of 1μm 
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These results indicate that band diagram far above the light cone can only be drawn using this technique. In order to 

verify the band diagram near the light cone; a lamp which operates near the bandgap is needed. As an alternative, 

the lattice parameter could be reduced, allowing modes nearer to the light cone to be plotted.  

 

 

 

 

 

 

 

Figure 5.22 zeven and zodd Band Diagram of 1-D PhCs in Si suspended in air with lattice constant 600nm 

To verify this, another sample with a 600nm lattice constant and 400nm stripe widths were fabricated and measured 

using the ellipsometer as shown in Figure 5.21. The pattern is suspended in Si to avoid asymmetrical conditions. 

Figure 5.22 indicates zeven and zodd modes mapping onto a theoretical band diagram obtained using MPB. The 

Figure 5. 21 spol and ppol reflectivity spectra of 1-D PhC suspended in air in400_200nm lattice respectively 
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modes closer to the light cone can thus be measured by reducing the lattice parameter size.  In future work, further 

reduction of lattice size would allow radiative modes directly outside the light cone to be measured using the 

existing ellipsometer light source. 

5.3 Optical Characterization of Waveguides  

The dimensions derived from modeling tools were used for fabricating a 2-D PhC which operates in the visible 

spectral range. To implement a GaN based 2-D PhC as a in biosensing architectures6,7, light from the laser must be 

coupled into the GaN slab waveguide. Since this waveguideing is a critical function of our sensor design, the device 

functionality may fail if the optical properties of GaN are not optimal or if the GaN slab doesn‘t act as a waveguide. 

Of these, the latter problem can be solved when the slab is grown with optimum values of thickness which allow 

coupling of light into waveguide, whereas the former problem can be solved if a high quality film is grown in the 

lab. Losses of GaN films should be determined in order to optimize film growth for optical operations as a 

waveguide. The next section covers loss mechanisms in detail. 

5.3.2 Prism Coupling Characterization: 

A prism coupler is a device used to couple a laser beam efficiently into thin-film dielectric wave guides to determine 

the refractive index and thickness of the guiding film, provided that the film supports two or more modes. Prism 

Coupler operation is based on frustrated total internal reflection
17. When light is incident from a higher index 

material to a lower index material, there is total internal reflection if the incident angle exceeds critical angle. 

Though there is no power in the second medium there is an evanescent wave which decays rapidly. If there is a third 

medium which is optically denser than the second medium, and if the thickness of second medium is not large 

enough to decay the evanescent wave (total internal reflection gets frustrated) then the power from first medium is 

transferred to the third medium.  

A Metricon2010/M prism coupler setup is shown in Fig 5.22. It shows a laser beam (light source) that hits the high 

indexed prism during which some of the light passes into the film through the air gap. The evanescent fields that 

pass in to the film are capable of transferring power between the incident beam and a waveguide mode.  A pneumatic 

plunger holds the sample in close vicinity to the prism and a stepper motor is used to rotate the prism/plunger 

assembly while a stationary laser is incident on the rotating prism face. The rotating assembly allows for coupling 

into the waveguide sample‘s discrete modes. 
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Figure 5.22 Metricon 2010/M Prism coupler setup14    

Every mode in a waveguide, depending upon the medium, has a distinct angle at which the light propagates. If the 

light is incident on the prism at an angle greater than critical angle, total internal reflection takes place and the light 

gets reflected as shown in Fig 5.23.  

Effective Refractive Index: 

Rays traveling in each mode angle have a corresponding modal index which is also known as effective index. This is 

also defined as the free-space velocity divided by the guided wave velocity   

                                           𝑛𝑒𝑓𝑓 =
𝑐

𝑣𝑔
 = 𝑛2𝑠𝑖𝑛 𝜃2, 

where 𝜃 is the angle of incidence on the face of the prism . Ray angles for propagating waves vary from the critical 

angle to 90° and thus, the 𝑛𝑒𝑓𝑓 value lies somewhere between the core and cladding refractive indices. Coupling 

losses of any sample can be calculated using this setup. 
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The GaN slab was grown on a thin AlN layer (~61nm) on top of a sapphire substrate to a thickness of approximately 

2 μm. As the prism couples light into the sample, it produces a streak which indicates a propagating mode. Figure 

5.24 shown below is a streak in the sapphire substrate. 

 

Figure 5.24 Picture of streak in sapphire from CCD camera   

Wave guide 

Substrate 

Plunger 

Prism 

  Airgap 
Θ1 

Θ2 

Figure 5.23 Cross -sectional view of the prism coupler layout 
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The second mode obtained was observed using the CCD camera as the beam incidence angle was varied.  The image 

taken from the CCD camera was used as an input into a Matlab script16 that converts the image into RGB, and, when 

a portion of the streak is selected, generates plots that are used to characterize waveguide loss (intensity vs. length,  

log of intensity vs. length and curve fitting tool). The slope of the curve-fitted line is calculated which gives value of  

Coupling losses = - 4.3 α 

 

The coupling losses for a sapphire substrate were found to be 2.02db/cm and coupling losses in GaN were found to 

be 4.01db/cm. The losses indicated that the GaN film growth conditions need more optimization. 

5.4 SUMMARY 

Reflectance data taken from Ellipsometer using surface coupling technique which was in good agreement with the 

theoretical data except a few variations due to pattern area, interference due to background and low range of angles.  

1-D PhCs on a SOI substrate as well as suspended patterns were successfully characterized for the modes above 

light cone with an ellipsometer.  To plot the band diagram near the light cone, lattice parameters size was reduced 

and the data extracted from the graph was near the light cone. The bandgap of the PhC, which lies below light cone, 

can also be characterized using ellipsometer if the device is equipped with a light source which operates in the 

wavelength range of 1μm-3μm. Coupling losses of GaN on sapphire were successfully determined using Prism 

coupler setup which indicated that optimization in the growth process is required to achieve better results. 

(1) (2) 

Figure 5.24(a) The guiding streak through the GaN slab. (b) The plotted intensity decay across the propagating distance 
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Conclusions and Future Work 

Conclusions 

In this research effort, bandgap tuning capabilities of PhCs in III-V nitride thin films were explored. Initially, 2-D 

PhCs in AlN thin films were considered for tuning. Finite element modeling results of nanometer patterns of circular 

air holes on AlN indicated picometer scale deformation in the lattice parameters. This insignificant lattice parameter 

change would be hard to measure, as the errors in fabrication using E-beam Lithography are considered to be greater 

than the geometrical variation due to piezoelectric effects. Furthermore, the change in lattice parameter due to 

deformation is not enough to result in an appreciable change in theoptical bandgap. However, a clamped-clamped 

beam (without holes) repeated periodically (essentially a 1-D PhC) suspended in air shows greater promise for 

increased deformation. FE Analysis of 1-D PhCs showed significant out-of-plane deformation in the overall slab 

surface which is considered to be ~10-20 times larger than the deformation in the lattice. This effect can potentially 

be used for tuning of bandgap by effectively changing the angle of incidence for a 1-D PhC. Extensive modeling on 

the impact of off-axis incident light on the effective bandgap substantiated this claim. FEA studies indicated that the 

deformation of 1D PhCs in AlN films with low applied voltages lead to deformations on the order of picometers, 

which were not large enough to affect the optical bandgap. Application of higher voltages and frequencies which 

create resonance phenomena in the structure can create a maximum slab deflection of ~120 nm. Theoretical optical 

modeling results indicated that 7 nm deflection is sufficient for creating a 2-4% change in the bandgap, which can be 

acquired by applying a voltage of 30 V.  

Metrology equipment (both mechanical/piezoelectric and optical) limitations two differently scaled 1-D PhCs were 

fabricated for characterization. Due to restrictions on the characterizing devices, nanometer scale 1-D PhCs were 

fabricated in Si as well as in AlN for optical characterization (at 1.55 microns) and micron scale 1-D PhCs were 

fabricated in AlN for mechanical characterization. Even though nanometer scale 1-D PhCs were successfully 

fabricated in Si substrate and AlN thin films which can be used for optical characterization, fabrication of suspended 

micron-scale 1-D PhCs in AlN resulted in buckling effect which might be accounted to the stress in the sputtered 

AlN thin films. This indicates that the process for sputtering AlN needs further optimization in order to create 

suspended AlN 1-D PhCs on SOI substrates. 

A surface coupling technique was used to characterize photonic crystals for plotting the radiative modes.  

Ellipsomtery was used to acquire reflectance data using variable angular incidence. The experimental data was in 
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good agreement with the theoretical data except a few variations due to pattern area, and the angular resolution of 

the measurments.  1-D PhCs on a SOI substrate, as well as suspended patterns, were successfully characterized for 

the modes above light cone. However, the modes acquired for such structures were far away from the light cone due 

to the available source wavelength. In order to plot the radiative modes near the light cone, lattice parameters size 

was reduced. The manual mapping of the experimental data to the theoretical data indicated the modes for this 

structure existed much closer to the light cone. The bandgap of the PhC, which lies below light cone, can be 

characterized using an ellipsometer with a light source which operates in the wavelength range of bandgap. 

Future Work 

One of our future work that relates to this research includes process optimization for sputtering AlN to create 

suspended 1-D PhCs for mechanical characterization. Also, a metrology setup is required to simultaneously 

characterize PhCs optically and mechanically incidentally to explore tuning capabilities. Even though the modeling 

results indicated efficient bandgap tuning with out-of plane deformation of PhC structure, such bandgap tuning 

mechanism may limit PhC applications.  

Another avenue for future work involves considering other mechanisms for bandgap tuning in piezoelectric PhCs. 

Instead of using physical deformation of the device to tune the bandgap, a novel idea involving the associated 

change in refractive indices due to the application of voltage to a piezoelectric material can be further explored for 

effective bandgap tuning. The master equation which gives eigen-solutions for a PhC structure was derived 

assuming free charge carriers and current densities to be zero in an isotropic medium. But, in an anisotropic 

piezoelectric material, application of electric field induces change in the polarization which effects dielectric 

permittivity of the material. The dielectric constant of a material is proportional to n
2
((refractive index)

2
). This 

change in refractive index can be used to potentially explore the bandgap tuning capabilities of PhCs in nitride thin 

films. 
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APPENDIX A: PRISM COUPLER OPERATION 

1. Mount the sample onto the Prism coupler and reference it if concerned with the beta values of the film. 

2.Once the effective indexes are calculated remove the detector and place the CCD camera focusing on the regions 

you like to measure. 

3. Place a graph paper on the back side of the sample and take measurement with light switched on so that it can be 

used as a reference for pixel to distance conversion. 

4. Without changing the focus of the camera take the images for different exposure times. 

5. Always the prism‘s index has to be greater than the film index. 

6. Prism used in the experiment has an index of 2.8.  

7. Due to this high index of prism, reference gain raised above the scale. This gain was reduced using beam splitters, 

and filters. A filter which when used could bring the gain exactly to an optimum value was not found which results 

in very low gain. Because of these reasons 𝑛𝑒𝑓𝑓  and thicknesses were not calculated from prism coupler 

measurement instead they were calculated from ellipsometer .This setup was only used to calculate losses.                      
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APPENDIX B: Diffraction Grating Theory 

When light is incident on a grating surface, each grating or groove becomes a source of transmitted/reflected light.  

At a unique set of angles, light scattered from the facet is in phase due to constructive interference. This occurs  

when the geometrical path difference between successive grooves equals the wavelength of light and the light will 

be in phase. At all other angles, the light is out of phase due to destructive interference. The grating equation which 

describes these diffraction phenomena is given by81 

𝑺𝒊𝒏𝜽𝒎 = 𝑺𝒊𝒏𝜽𝒊 + 𝒎
𝝀

𝒅
;           𝒎 = 𝟎, ±𝟏, ±𝟐… ..,                                         Equation 5.1 

Where 𝜃𝑖  (and  𝜃𝑚  ) are the angles between the incident (and the diffracted) wave directions and the normal to the 

grating surface which is assumed perpendicular to the plane of grooves, 𝜆 is the wavelength and d is the grating 

period (Fig.a). m is an integer. When m=0, the grating acts as a mirror.  If the plane of incidence is not perpendicular 

then Equation 5.1 transforms as 

                𝒌𝒎𝒙
= 𝒌𝒊𝒙 + 𝒎

𝟐𝝅

𝒅
         and                    𝒌𝒎𝒛

= 𝒌𝒊𝒛,                                                  Equation 5.2 

 

where kx , ky, and kz  are the wave vector  components of the plane wave in x,y and z directions. For a transmission 

grating, direction of propagation of the transmission orders can be determined by 

                                                𝒌𝒙 = 𝒏
𝟐𝝅

𝝀
𝐬𝐢𝐧 𝜽.                                                                          Equation 5.3 

It is also necessary to distinguish between the polarizations of the wave that is incident on the grating. If the incident 

wave is linearly polarized and the electric field vector is perpendicular to the plane of incidence, all the diffracted 

Figure (b) Schematic of diffraction grating in co-ordinate axis82  Figure( a) Diffraction grating82 
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orders have the same polarization. It is called s, or P, or TE polarization. The other case, when the electric field lies 

in the plane of incidence, also preserves the polarization direction and is called p, or S, or the TM case. 

The grating equation can be satisfied for more than one value of m, but the solution exists only when 

  𝒔𝒊𝒏𝜽𝒎 < 1.                                                                             Equation 5.2 

The diffraction orders with number m such that the condition is fulfilled are called propagating orders. The vertical 

wave vector component can be easily found from the wave equation which is real 

𝒌𝒙
𝟐 + 𝒌𝒚

𝟐 = (
𝟐𝝅

𝝀
𝒏)𝟐.                                                                            Equation 5.3 

For the orders with m which satisfies the condition | 𝑠𝑖𝑛𝜃𝑚 | > 1 the vertical wave vector component derived is 

imaginary. i.e., these orders decrease exponentially with the distance from the grating surface. These orders are 

called evanescent orders. They cannot be detected at a distance larger than few wavelengths from the surface of the 

grating, but can play an important role in surface-enhancement properties. The property of gratings to couple infinite 

number of electromagnetic waves plays an important role in integrated fiber optics and waveguides. The guiding 

property in a waveguide prevails only when the wave is in propagating order in the core and evanescent order in the 

cladding layers. The property of the grating to couple evanescent or radiative orders to propagating orders (in the 

cladding) is widely used to couple light into and out of the waveguide. 

The mode is characterized by its propagation constant, phase velocity kG in the direction of propagation, which takes 

discrete values depending on the waveguide optical and geometrical properties such as the wavelength, and 

polarization. This constant should always be greater than the modulus of the wave vector in the cladding so that the 

radiation field in the cladding is evanescent. According to the equation of propagation and wave vectors of a 

evanescent wave, the grating can couple this evanescent wave into a propagating order under specific conditions 

called phase-matching conditions given by, 

𝒌𝑮 =
𝟐𝝅

𝝀
(𝒏𝟏 𝐬𝐢𝐧 𝜽𝒎 + 𝒎

𝝀

𝒅
).                                                              Equation 5.4 

Diffraction gratings can be fabricated in many ways. Metallic and dielectric gratings are a few examples. Our main 

interest is dielectric gratings. Dielectric gratings are constructed of dielectric materials that are transparent to 

electromagnetic radiation that impinges on it. Scattering from dielectric diffraction gratings depends strongly on 

three main factors, namely the type and strength of periodic variation of the refractive index, the type of material the 

grating is made from, and the type of EM wave that is incident on the grating82. Of these factors periodic variation of 

the grating may be one-dimensional or it may be two-dimensional referred to a crossed grating. 
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Taking into account the phase matching conditions and the periodic variability of gratings, the laws derived in this 

section can be used for drawing dispersive curves of either 1-D or 2-D PhCs above the light cone by using surface 

coupling techniques83. 
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APPENDIX C: MPB 

MIT Photonic Bands is linux based software developed at MIT for finding the eigen-value solutions of periodic 

structures such as photonic crystals. In this research work, MPB was used to plot band diagrams of 1-D/2-D PhCs 

and also different plots for band gap dependence on lattice parameter variations. In this work, photonic crystal slabs 

which were symmetrical as well as asymmetrical were considered. The band diagram of asymmetrical PhC slab 

cannot be considered as zeven or zodd because of loss of symmetry. 

MPB code for an ideal 1-D PhC: 

;Hyma Yalamanchili 

;04-22-2010 

;1-daln.ctl 

;MPB program to calculate band diagram of 1-D Photonic crystal in AlN 

;Define lattice parameters 

(define-param n-lo 1) 

;refractive index of air ‘n-lo’ 

(define-param n-hi 2.11) 

;refractive index of AlN ‘n-hi’ 

(define-param w-hi (/ n-lo (+ n-hi n-lo))) 

;width of higher index grating ‘w-hi’ in units of  ‘a’ 

(define-param w-lo (/ n-hi (+ n-hi n-lo))) 

;width of lower index grating ‘w-lo’ in units of ‘a’ 

(print "w-hi" "," w-hi "\n") 

(print "w-lo" "," w-lo "\n")  

;prints the values of w-hi and w-lo in the output file. 

(set! geometry-lattice (make lattice (size 1 no-size no-size)))  

;All points of periodic lattice can be defined using the basis vectors and lattice command 

(set! default-material (make dielectric (index n-hi))) 

;default material if not specified will be air  
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(set! geometry(list 

  (make block (material (make dielectric (index n-lo)))               

         (center 0 0 0)(size w-lo infinity infinity)))) 

;a unit cell geometry is created which is a block that contains AlN grating. 

;Due to periodicity of real-space lattice and periodicity of k-space lattice, 

;points within k-space's irreducible Brillouin zone only will be considered  

;to derive solutions for the entire crystal and all k-points.  

(define Gamma (vector3 0 0 0)) 

(define M (vector3 0.5 0 0)) 

(define K (vector3 -0.5 0 0)) 

(define-param k-interp 9) 

(set! k-points (interpolate k-interp (list K Gamma M))) 

(set-param! resolution 16) 

; Resolution=pixels per unit distance ‘a’  

; Recommended to have 8 pixels per wavelength for wavelength in highest index material 

(set-param! num-bands 8) 

(run-tm) 

(run-te) 

The commands for running the code and acquiring the dielectric structure can be found in (http://ab-

initio.mit.edu/mpb/). 

For a Photonic crystal slab structure, after determining the lattice parameters and grating widths the thickness of the 

slab has to be specified.   

(define-param h 0.8) 

;thickness of the slab 

(define-param supercell-h 8) 

;If thickness of slab has to be specified in MPB, a lattice vector has to be ;defined in that direction instead of 

;specifying no-size. But, if a lattice size is defined then the structure repeats itself in that direction. Therefore, 

http://ab-initio.mit.edu/mpb/
http://ab-initio.mit.edu/mpb/
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;a supercell-h is defined with a thickness of several wavelengths of light ;thick, allowing for negligible guided mode 

;power existing outside of background. This supercell contains slab structure at the center. 

 (set! geometry (list 

            ; Block materials for PhC slab system 

     (make block (material (make dielectric (index n-lo))) 

     (center 0 0 (* 0.25 supercell-h))(size 1 infinity (* 0.5 supercell-h))) 

;specifies the thickness of lower cladding layer, if asymmetric slab is considered then refractive index should be 

;changed. 

     (make block (material (make dielectric (index n-lo))) 

     (center 0 0 (* -0.25 supercell-h))(size 1 infinity (* 0.5 supercell-h))) 

;specifies thickness of upper cladding layer 

     (make block (material (make dielectric (index n-hi))) 

     (center 0) (size w-hi infinity h)))) 

(define Gamma (vector3 0 0 0)) 

(define M (vector3 0.5 0 0)) 

(define K (vector3 -0.5 0 0)) 

(define-param k-interp 9) 

(set! k-points (interpolate k-interp (list  Gamma M))) 

(set-param! resolution 16) 

(set-param! num-bands 8) 

(run-zeven); zeven modes for PhC symmetric slab structure  

(run-zodd); zodd modes for PhC symmetric slab structure 

Once the simulations are performed and data is acquired from the output file, light cone for that structure has to be 

calculated . For a symmetric PhC slab, light cone can be determined by ω/c=k/ncladding. This light cone separates the 

guided modes and radiative modes. The band gap which lies below the light cone can thus be determined from the 

zeven and zodd band diagram. For an asymmetrical PhC slab with different cladding layers, the light cone is an 

union of the light cones of two cladding layers. There will not be any bandgap in such structures due to absence of 

zeven and zodd modes.  
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APPENDIX D: ELLIPSOMETRY/Reflectivity 

Process flow for acquiring reflectance data using ellipsometer for mapping the experimental data to the theoretically 

drawn band diagram can be shown in Process flow below. 

 

 

Ellipsometer uses a beam which has a width of 2-3mm for data acquisition from the sample. But, the nanoscale PhC 

pattern size is approximately 600μm2. So, using a beam width of 3mm would result in redundant data. Therefore, 

lenses were used to collimate the beam to a size of ~500-600 μm2. After the insertion of lenses into the input and 

output arms of ellipsometer, it needs alignment and calibration as specified in the ellipsometer manual.  

1.Normal reflectance data can be acquired at different angles by following steps. 

Reflectance Data Acquisition for 
different angles of incidence of 
light using ellipsometer. 

Identification of resonant peaks 
from reflectivity spectra. 

Calculate in-plane wave vector 
for each mode using 
        k|| =(ω/c)Sinθ 

 

Plot theoretical band diagram in 
Energy vs. k-vector 

Map the modes identified through 
experimental results on theoretical 
band diagram. 

Figure(c)  Process flow for mapping experimental data to theoretical band diagram  
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Hardwareacquire dataR&T data baseline scan and datascan, Refl p-pol without backside, specify 

angle(eg.700).                                                                                                            ……………............................ (a) 

A base line data has to be acquired keeping the arms in 900 angle position. After acquiring data at a specified angle, 

reflectance data can be acquired at different angles of incidence following the same steps as in (a).  One baseline 

scan is sufficient for multiple angles of incidence. The data acquired at variable angular incidence is saved in a .dat 

file for further processing.  

2.Resonance peaks or inflection points were identified from the reflectance graph plotted using MATLAB or 

ORIGIN or Excel.  

3.Parallel component of k-vector for each peak identified can be calculated using k||=(ω/c) Sinθ.  

4.Theoretical band diagram calculated using MPB is not only plotted as frequency vs. k-wave vector but also it is 

normalized. Therefore, frequency band diagram is converted into Energy band diagram to match the ellipsometry 

data taking into consideration lattice constant. 

5. MATLAB can be used to further map the experimental data to the theoretical band diagram. 
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APPENDIX E: ANSYS 

ANSYS is commercial software used for numerically solving a wide variety of mechanical structural analyses. FEA 

can be performed using Graphical user interface as well as command files.  

Inorder to simulate a structure in GUI, the following steps are implemented. 

1. Preferencesstructural, electricok 

 

Figure(d) Coupled behavior of piezoelectric material can be analyzed by selecting structural/electric analysis  

2. PreprocessorElement typeAdd/Edit/DeleteAddcoupledfieldscalar brick 5or Scalar Tet 98ok 

3. Element typesoptionsUX,UY,UZ,voltok 

4. Preprocessor Material Props material models Structural Linear Elastic Anisotropic insert 

compliance matrix. 
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Figure(e) Material properties can be given in the material properties window 

5. PreprocessorMaterial Propsmaterial modelsStructuralDensityinsert ok 

6. PreprocessorMaterial Props material models Structural Electro-magnetics relative permittivity 

orthotropic enter permittivity tensor value. 

7. PreprocessorMaterial Propsmaterial modelsStructuralPiezoelectricsvalue 

8. Preprocessormodeling-create the structure using the drawing tools present. 

9. PreprocessorMeshingMesh attributespicked volumesselect the volume to be meshed 

10. Size of the mesh can be adjusted using size-ctrls button. 

11. Preprocessormeshvolumesselect volumesok 

12. After meshing the structure –boundary conditions can be applied using define loads option.  

13. Solutionanalysis typeDC/AC/Harmonic analysis 

14. Solutiondefine loads—Applystructural/Electric boundary conditions 
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Figure(f) Zero displacement applied on the corners of the structure whereas voltage is applied on top and bottom plane   

15. Solvecurrent LS 

16. General post processor can be used to analyze results. 

These are the basic steps used for a coupled field analysis of a piezoelectric material. After simulation, the results 

can be analyzed in general post processor. 
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