
Graduate Theses, Dissertations, and Problem Reports

2011

Parameterized Strings: Algorithms and Data Structures Parameterized Strings: Algorithms and Data Structures

Richard A. Beal
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Beal, Richard A., "Parameterized Strings: Algorithms and Data Structures" (2011). Graduate Theses,
Dissertations, and Problem Reports. 4690.
https://researchrepository.wvu.edu/etd/4690

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230466071?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F4690&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/4690?utm_source=researchrepository.wvu.edu%2Fetd%2F4690&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Parameterized Strings:

Algorithms and Data Structures

by

Richard A. Beal

Thesis submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Computer Science

Arun A. Ross, Ph.D.
Elaine M. Eschen, Ph.D.

Donald A. Adjeroh, Ph.D., Chair

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2011

Keywords: parameterized suffix array, parameterized suffix sorting, parameterized longest
common prefix, structural match, p-string, s-string, p-match, s-match, arithmetic coding,

fingerprints, LPF, LCP

Copyright 2011 Richard A. Beal

Abstract

Parameterized Strings:
Algorithms and Data Structures

by

Richard A. Beal

A parameterized string (p-string) T = T [1]T [2]...T [n] is a sophisticated string of length n
composed of symbols from a constant alphabet Σ and a parameter alphabet Π. Given a pair
of p-strings S and T , the parameterized pattern matching (p-match) problem is to verify
whether the individual constant symbols match and whether there exists a bijection between
the parameter symbols of S and T . If the two conditions are met, S is said to be a p-match
of T . A significant breakthrough in the p-match area is the prev encoding, which is proven
to identify a p-match between S and T if and only if prev(S) == prev(T). In order to utilize
suffix data structures in terms of p-matching, we must account for the dynamic nature of
the parameterized suffixes (p-suffixes) of T , namely prev(T [i...n]) ∀ i, 1 ≤ i ≤ n.

In this work, we propose transformative approaches to the direct parameterized suffix
sorting (p-suffix sorting) problem by generating and sorting lexicographically numeric fin-
gerprints and arithmetic codes that correspond to individual p-suffixes. Our algorithm to
p-suffix sort via fingerprints is the first theoretical linear time algorithm for p-suffix sort-
ing for non-binary parameter alphabets, which assumes that each code is represented by a
practical integer. We eliminate the key problems of fingerprints by introducing an algorithm
that exploits the ordering of arithmetic codes to sort p-suffixes in linear time on average.

The longest previous factor (LPF) problem is defined for traditional strings exclusively
from the constant alphabet Σ. We generalize the LPF problem to the parameterized longest
previous factor (pLPF) problem defined for p-strings. Subsequently, we present a linear time
solution to construct the pLPF array. Given our pLPF algorithm, we show how to construct
the pLCP (parameterized longest common prefix) array in linear time. Our algorithm is
further exploited to construct the standard LPF and LCP arrays all in linear time.

We then study the structural string (s-string), a variant of the p-string that extends the
p-string alphabets to include complementary parameters that correspond to one another.
The s-string problem involves the new encoding schemes sencode and compl in order to
identify a structural match (s-match). Current s-match solutions use a structural suffix tree
(s-suffix tree) to study structural matches in RNA sequences. We introduce the suffix array,
LCP , and LPF data structures for the s-string encoding schemes. Using our new data
structures, we identify the first suffix array solution to the s-match problem. Our algorithms
and data structures are shown to apply to s-strings and also p-strings and traditional strings.

iii

Acknowledgments

My committee chair and advisor Dr. Donald A. Adjeroh has always proposed the ques-

tions to fuel novel, cutting-edge research. Dr. Adjeroh introduced me to the world of strings

and always provided the guidance to see an idea through to success. For the research and

teaching opportunities, I am grateful. I would like to deeply thank my committee members

Dr. Arun A. Ross and Dr. Elaine M. Eschen for their insights, suggestions, and support

of my work. The knowledge obtained in the coursework taught by committee members was

fundamental to the results achieved in this research. The wisdom accumulated in those

courses will indeed extend beyond this work. Together, we have advanced string theory.

The individuals involved in my “road to graduate school” also deserve appreciation. My

pursuit of an advanced degree is thanks to the persistence of Dr. Anthony Pyzdrowski, in

addition to the support of Dr. Lisa Kovalchick and Dr. Weifeng Chen. My professional

mentors – Dr. George Novak, Bjorn Moreau, Bill Cooey, and Thad Magyar – are responsible

for shaping my knowledge base with internship opportunities. I am appreciative of Dr.

Edward Chute and Professor Erin Mountz for fostering my creativity with honors research.

To my overseeing committee – Chris Pollaro, Chris Janovich, Vince Baronti, Aric Ilko, Brian

Krukowsky, and Ray Boyles – and colleague Jessie Salmon, I am thankful for your friendship.

I am infinitely appreciative of my father, Richard Sr., and mother, Pamela. My par-

ents have been instrumental in my studies and very supportive in the roller coaster that is

academia – spanning from pressures to praises of proposals, presentations, and papers. To

sharpen my focus, my brother, Eric, has always been there to first break any monotony in my

studies with in-depth discussions on football rivalries and situational comedies. I would like

to deeply thank my cousin James V. Matthews for his continued confidence in my abilities.

This work was partly supported by a grant from the National Historical Publications &

Records Commission (in collaboration with the DCAPE team at the University of North

Carolina, Chapel Hill).

iv

Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Motivation and the Problem . 1
1.2 General Approach . 2
1.3 Thesis Contributions . 3
1.4 Thesis Outline . 4

2 Background / Related Work 7
2.1 Exact Matching . 7
2.2 Parameterized Matching . 9
2.3 Longest Previous Factor . 11
2.4 Structural Matching . 11
2.5 Main Contributions . 12
2.6 Preliminaries and Notation . 14

3 Parameterized Suffix Array 18
3.1 Introduction . 18
3.2 p-Suffix Sorting via Fingerprints . 19
3.3 p-Suffix Sorting via Arithmetic Coding . 25
3.4 Summary . 30

4 Parameterized Longest Previous Factor 31
4.1 Introduction . 31
4.2 Preliminaries . 33
4.3 Parameterized LPF . 33
4.4 From pLPF to pLCP . 39
4.5 From pLPF to LPF and LCP . 41
4.6 Applications . 42
4.7 Summary . 43

CONTENTS v

5 Structural Matching via Suffix Arrays 44
5.1 Introduction . 44
5.2 Preliminaries . 45
5.3 Constructing compl and sencode Suffix Arrays 49
5.4 Constructing compl and sencode LCP Arrays 58

5.4.1 cLPF and sLPF . 59
5.4.2 cLCP and sLCP . 61

5.5 s-Matching . 63
s-Matching via prev and compl . 64
s-Matching via sencode . 66

5.6 Summary . 67

6 Conclusion 69
6.1 Summary . 69
6.2 Future Research . 70

References 72

vi

Listings

3.1 p-suffix sorting with fingerprints . 24
3.2 Generating arithmetic codes for an m-length prefix of p-suffix i 27
4.1 (before<,before>) and (after<,after>) construction 37
4.2 pLPF computation . 38
4.3 p-matcher function Λ . 38
4.4 pLCP computation . 40
4.5 Improved pLCP computation . 41
5.1 cforw construction . 55
5.2 Generating arithmetic codes for an m-length prefix of s-suffix i 56
5.3 Generalized LPF computation . 61
5.4 Generalized LCP computation . 63

vii

List of Tables

2.1 String computations on W=CABCABCC$, Σ = {A,B,C}, $ /∈ Σ 8
2.2 p-string computations on T=AwBzABwz$, Σ={A,B}, Π={w, z}, $ /∈ Σ ∪ Π 10
2.3 LPF calculation for string W = AAABABAB$, Σ = {A,B}, $ /∈ Σ 11

3.1 Lexicographical ordering of p-suffixes with pKR, using T = AwBzABwz$. 22
3.2 Lexicographical ordering of p-suffixes with pAC, using T = AwBzABwz$. . 28

4.1 pLPF calculation for p-string T = AAAwBxyyAAAzwwB$ 35

5.1 Lexicographical ordering of p-suffixes with pAC, using T = AwxyBwzw$. . 53
5.2 Lexicographical ordering of c-suffixes with sAC, using T = AwxyBwzw$. . 56
5.3 Lexicographical ordering of s-suffixes with sAC, using T = AwxyBwzw$. . 57
5.4 pLCP and pLPF computations, using T = AwxyBwzw$ 59
5.5 cLPF and sLPF computations, using T = AwxyBwzw$ 60
5.6 cLCP and sLCP computations, using T = AwxyBwzw$ 62

viii

List of Figures

1.1 Source files that p-match . 6

3.1 Transitioning the AC m-block code from a cab→ cab→ cab d 26

1

Chapter 1

Introduction

1.1 Motivation and the Problem

Strings are everywhere; they construct the World Wide Web, represent the human

genome, and even provide the transmission layout for our daily communications! A tra-

ditional string is a production of symbols from the constant alphabet Σ. An exact match

exists between two traditional strings S and T when each symbol matches. Traditional

strings are powerful data structures to determine whether two strings are exactly equivalent

by simply comparing symbols. The limitation of the traditional string is that any further

intricate study of the symbol composition and structure requires intelligent algorithms and

bookkeeping. The source code in Figure 1.1 displays two programs with slightly different

code and output to achieve the same function: to display all possible permutations of DNA

sequences of length n. Exact matching will not detect this relationship between the source

files.

The parameterized matching (p-match) problem is a sophisticated pattern matching

scheme that utilizes a parameterized string (p-string), which is a production from the con-

stant alphabet Σ and parameter alphabet Π, with Σ ∩ Π = ∅. A p-match exists between

two p-strings S and T when the constant symbols σ ∈ Σ match and there exists a bijec-

tion of parameter symbols π ∈ Π between S and T . If we disregard whitespace and let

Σ = {class, public, static, ..., {, }, (,), ...} represent the keywords and special tokens and let

Π = {n, num, prog, Program, ...,A,C,G,T, ...} represent the remaining tokens, namely the

Richard A. Beal Chapter 1. Introduction 2

variables and values, then we observe that a p-match exists between the two source files in

Figure 1.1. The use of the p-string in the p-match problem permits a more natural pattern

matching scheme to observe the composition of parameters in a string. The notion that the

p-string can provide more involved pattern matching capabilities for applications provides

the motivation to 1) redefine traditional string problems for p-strings, 2) construct p-string

oriented data structures with algorithms that run in linear time with practical memory foot-

prints, and 3) further advance the string theory of related sophisticated string definitions as

the structural string (s-string) used in the structural match (s-match) problem.

1.2 General Approach

In this work, we advance the theory of p-strings [1, 2, 3] and s-strings [4, 5] with algorithms

that construct traditional and newly proposed data structures by extending proven solutions

for traditional strings. The resulting data structures are intended to be used for string

applications, such as pattern matching. The time efficient pattern matching technique via

the space practical suffix array (SA) and longest common prefix (LCP) array combination

introduced by Manber and Myers [6] is the core incentive to computing the SA and LCP data

structures. The longest previous factor (LPF) data structure introduced by Crochemore [7]

is used in fundamental string applications dealing with compression and duplication. The

purpose of this thesis is to construct the SA, LCP , and LPF data structures for p-strings and

s-strings intended for applications analogous to the respective data structures for traditional

strings. The major challenge that we conquer is the correct and efficient handling of the

dynamic nature of p-string and s-string suffixes, which is an intricate process since the

suffixes of a p-string and s-string are encoded. Thus, the dynamic suffix encodings require

more sophisticated methods than their traditional counterparts. The general approach used

to directly construct our proposed suffix arrays for p-strings and s-strings without the use

of a suffix tree is centralized on generalizing the traditional direct suffix sorting approaches

of [8] for the encoding schemes of the p-string and s-string. Our approach to construct

the LPF data structure also revolves around generalizing the traditional LPF algorithm in

Richard A. Beal Chapter 1. Introduction 3

[7] to handle the p-string and s-string encodings. We further compute the respective LCP

arrays by exploiting the respective LPF algorithms. Throughout the thesis, we make it clear

that our algorithms and data structures are generalized to handle s-strings, p-strings, and

traditional strings.

1.3 Thesis Contributions

We introduce a transformative approach to direct parameterized suffix sorting (p-suffix

sorting), without the assistance of a suffix tree, by representing m-block prefixes of each

individual parameterized suffix (p-suffix) of a p-string with a parameterized arithmetic code

(pAC). It is shown that pAC codes can be generated in linear time by transitioning the

codes between neighboring p-suffixes, conceptually similar to the approach used in [8]. The

resulting codes are then sorted to, in turn, sort the p-suffixes and construct the parameterized

suffix array (p-suffix array) in linear time on average. This same approach is used to construct

the suffix arrays for the structural encodings (s-encodings) of an s-string.

In addition to the suffix array data structure, we introduce new flavors of conventional

problems, originally defined for traditional strings, in terms of p-strings and s-strings. We

define the parameterized longest previous factor (pLPF) problem analogous to the LPF prob-

lem for traditional strings. An algorithm is presented to construct the pLPF data structure

in linear time. We then use the pLPF algorithm to also construct the parameterized longest

common prefix (pLCP) data structure. Even though in [7] the LPF array is constructed

with the LCP array and it is acknowledged that LCP and LPF arrays are permutations

of one another, we are the first to observe that a single LPF algorithm can be exploited

to construct both the LPF and LCP data structures. We show how this construction is

achieved. We also show similar results for the s-string encodings.

The current state of the art solutions for the s-match problem defined for s-strings revolves

around the s-suffix tree data structure [4, 5]. By constructing the suffix array and LCP array

for s-string encodings, we provide the first suffix array solutions to the s-match problem. Our

data structures and algorithms are generalized to also apply to the s-string, the p-string, and

the traditional string.

Richard A. Beal Chapter 1. Introduction 4

1.4 Thesis Outline

Prior to the intricate details of our contributions, we place our work in perspective by

describing the current state of the art in the area of strings within Chapter 2. The chapter

discusses the history of exact pattern matching with traditional strings from conventional

matching, to suffix trees, and ultimately leading to the suffix array data structure. The suffix

array is highlighted as a time and space practical data structure for efficient pattern matching.

We further detail the suffix array pattern matching solutions introduced by Manber and

Myers [6]. Next, a similar history is shown for the p-string and the p-match problem. It is

here that we identify the modern challenges of p-suffix sorting. The chapter then moves to a

discussion of the suffix array in terms of the LPF problem for traditional strings with a brief

spotlight on the importance of LPF in fundamental string applications. We then venture

into the world of s-strings and highlight the exclusive use of the structural suffix tree (s-suffix

tree) to address the s-match problem, which serves as a motivation for additional s-matching

data structures. The preliminaries that conclude the chapter present the foundation for

p-strings used throughout the thesis.

The essence of Chapter 3 is the novel use of coding techniques to address the p-suffix

sorting problem, namely, constructing the p-suffix array. We start the chapter by setting

the stage for the p-suffix sorting problem, highlighting the demand for new approaches.

Our task is to propose approaches to directly construct the p-suffix array without the use

of a parameterized suffix tree (p-suffix tree). Fingerprinting is explored as a new method

to address direct p-suffix sorting by which, sorting the integral fingerprints will sort the

p-suffixes. We then derive a mapping function to map symbols to lexicographically sorted

integers. Subsequently, we identify the challenges of constructing fingerprints that represent

each individual p-suffix with traditional fingerprinting techniques. Then, we introduce the

parameterized Karp Rabin (pKR) algorithm to generate the fingerprints. We then identify a

more efficient way to transition fingerprints to construct neighboring fingerprints in constant

time. It is then shown how to sort our fingerprints to, in turn, p-suffix sort in linear time. The

promise of fingerprinting is accompanied with the practical limitations of conventional KR

fingerprints. Addressing these limitations leads to our main contribution: a fundamentally

Richard A. Beal Chapter 1. Introduction 5

unique method to p-suffix sort in linear time on average by representing the m-block prefixes

of the individual p-suffixes with parameterized arithmetic codes (pAC). We further discuss

the detail of pAC codes using the same methodology as the pKR discussion.

In Chapter 4, we first introduce the LPF problem for traditional strings. We then de-

fine the pLPF problem for p-strings analogous to the traditional LPF. Motivated by the

traditional LPF algorithm in [7], we show how to similarly extend pLPF computations for

neighboring p-suffixes in a p-string. Using this, we present the algorithm to construct the

pLPF data structure in linear time. The chapter continues with the observation that the

pLPF and pLCP data structures are related. We then identify how to construct the pLCP

data structure from the pLPF algorithm by simply altering the data structures in the func-

tion call. Our p-string contributions are supplemented by the proof that our algorithms

are also capable of working with traditional strings. We conclude the chapter by briefly

discussing practical applications of the LPF and pLPF data structures.

Chapter 5 explores the s-string, a variant of the p-string. In this chapter, we begin with

an introduction on the history and theory of s-strings and the exclusive use of the s-suffix tree

to solve the s-match problem. We then present additional s-string preliminaries to provide

the foundations for the chapter. Next, we introduce the suffix array data structures for the

s-encodings, utilizing a similar approach to that of Chapter 3. Mirroring the methodology

of Chapter 4, we define the LPF problem in terms of the s-encodings and present solutions

to compute the corresponding LPF and LCP arrays. We use our proposed s-string data

structures to introduce the first suffix array solutions to the s-match problem. Throughout

the chapter, we show the generalized nature of our work by proving that s-string algorithms

and data structures also address corresponding problems in both p-strings and traditional

strings.

Chapter 6 concludes the thesis by summarizing our main contributions and identifying

the future research areas emerging from this work.

Richard A. Beal Chapter 1. Introduction 6

1 public class Program {
2 private stat ic char [] a lphabet
3 = { ’A ’ , ’C ’ , ’G’ , ’T ’ } ;
4 private int num;
5
6 public Program(int num)
7 throws Exception
8 {
9 this .num = num;

10 i f (this .num <= 0) // i n v a l i d
11 throw new Exception (” ! ! ! ”) ;
12 this . dnaPermutations (””) ;
13 }
14
15 public void dnaPermutations (
16 St r ing s t r){
17 i f (s t r . l ength () != this .num)
18 {
19 for (char q : this . a lphabet)
20 this . dnaPermutations (s t r+q) ;
21 }
22 else
23 System . out . p r i n t l n (s t r) ;
24 }
25
26 public stat ic void main (
27 St r ing [] a rgs) throws Exception
28 {
29 new Program (3) ;
30 }
31 }

public class prog {
private stat ic char [] a lpha

= { ’A ’ , ’T ’ , ’G’ , ’C ’ } ;
private int n ;

public prog (int n)
throws Exception {

this . n = n ;
i f (this . n <= 0) // i n v a l i d

throw new Exception (” ! ! ! ”) ;
this . dna perm (””) ;

}

public void dna perm (St r ing s){
i f (s . l ength () != this . n){

for (char q : this . a lpha)
this . dna perm (s+q) ;

} else System . out . p r i n t l n (s) ;
}

public stat ic void main (
St r ing [] a rgs) throws Exception {
new prog (3) ;

}

}

Figure 1.1: Source files that p-match

7

Chapter 2

Background / Related Work

Baker [9] defines three types of pattern matching: 1) exact matching, 2) parameter-

ized matching, and 3) matching with modifications. The exact and parameterized matching

schemes are the relevant background materials required for this work. We further discuss

the longest previous factor (LPF) problem in terms of exact matching, which is significant

in many pattern matching applications. We conclude by observing a variant of the param-

eterized matching (p-match) problem known as the structural matching (s-match) problem

defined especially for applications involving biological sequences that require more intricate

pattern matching techniques.

2.1 Exact Matching

Exact pattern matching of a pattern P (m = |P |) on a string W = W [1]W [2]...W [n]

(n = |W |) from the alphabet Σ is the exact matching of symbols between P and W at some

position i in W . Traditional mechanisms of exact matching with algorithms KMP and BM

are the basis of many hybrid algorithms to match patterns in O(n) time [10, 11]. Suffix trees

and suffix arrays are suffix data structures that were introduced to improve pattern matching

capabilities by exploiting the relationships between the individual suffixes W [i...n] of a string.

The ith suffix of a string W = AABABA with n = 6 and i = 3 is W [3...6] = BABA. An

overview of suffix structures is included in [12]. The suffix tree is a tree structure that

represents each suffix as a path from the root to a leaf, which may be constructed in O(n)

Richard A. Beal Chapter 2. Background / Related Work 8

time with O(n) space [10, 11, 12, 13]. The practical space required to represent the suffix tree

was the bottleneck that led way to more space efficient data structures. Manber and Myers

[6] introduced the suffix array with a construction algorithm originally requiring O(n log n)

time, which escapes the practical space limitations of the suffix tree. They also showed

how to use the LCP (longest common prefix) array to competitively search for a pattern in

O(m+ log n) time. Table 2.1 displays the suffix array SA and LCP for a traditional string.

Any algorithm that constructs a suffix array and indirectly requires the use of a suffix tree

suffers from the same suffix tree space limitations. Direct suffix sorting algorithms construct

the suffix array without the suffix tree and thus, do not require the memory footprint of the

suffix tree. Linear time direct suffix sorting algorithms were described by [14] along with

lightweight suffix sorting algorithms developed by [15]. More recently, Adjeroh and Nan

[8] proposed a transformative approach to linear time direct suffix sorting by representing

m-blocks, short prefixes of the suffixes, with arithmetic codes and intelligently sorting the

m-blocks to obtain the suffix array.

Table 2.1: String computations on W=CABCABCC$, Σ = {A,B,C}, $ /∈ Σ

i W [SA[i]...n] SA[i] LCP [i]

1 $ 9 0
2 ABCABCC$ 2 0
3 ABCC$ 5 3
4 BCABCC$ 3 0
5 BCC$ 6 2
6 C$ 8 0
7 CABCABCC$ 1 1
8 CABCC$ 4 4
9 CC$ 7 1

Consider finding the pattern P = BCA with m = 3 in our example string W =

CABCABCC$ with n = 9 and SA = {9, 2, 5, 3, 6, 8, 1, 4, 7} as the suffix array of W , dis-

played in Table 2.1. Manber and Myers [6] identify two main techniques that extend the

traditional binary search to string suffixes by exploiting the lexicographical ordering of the

SA, in order to efficiently determine the location of pattern P in string W . Their first

approach compares each pattern P with the individual suffixes of W encountered in the

binary search process, which requires O(m log n) time. Initially, we consider that P may

Richard A. Beal Chapter 2. Background / Related Work 9

exist the range [L,R] = [1, n]: that is, [1, 9] or the entire SA. As with the binary search,

we identify the midpoint M = b1+9
2
c = 5 and compare P with W [SA[M]...SA[M] +m− 1]

to identify whether: 1) P is found, 2) P exists in the range [L,M), or 3) P exists in the

range (M,R]. So, we compare P == W [SA[M]...SA[M] + m − 1] or BCA == BCC and

identify that only the first two symbols BC match. Since k = |BC| < m, a match does not

occur. Moreover, since P [k+ 1] < W [SA[M + k]] or A < C is lexicographically the case, we

can refine the possible location of P to the left half of the SA, namely [L,M) = [1, 5). We

continue this process next with M = 3 by comparing P == W [SA[M]...SA[M] +m− 1] or

BCA = ABC and detecting that k = 0 symbols match. Since P [1] > W [SA[3]] or B > A

is lexicographically true, we further refine the location of M to be in the right half of the

previous range, namely (M,R] = (3, 5]. Upon the next trial, we identify that M = 4 and

indeed P == SA[SA[M] + m − 1]. Thus, we can report that P exists in W at position

SA[4] = 3.

The notion that the SA maintains a lexicographical ordering of the suffixes of a string

permits the use of the binary search. The problem with the previously described algorithm

with running time O(m log n) is the need to continually match all m symbols of P between

each suffix of W . It was shown in [6] that a significant number of symbol comparisons can be

saved by extending matches using the LCP values between each suffix at midpoint M with

1 < M < n and the two suffixes L and R such that M = bL+R
2
c. They further identify how

to use the 2× (n− 2) ∈ O(n) LCP values to search for P in the SA of W in O(m + log n)

time. The improved algorithm uses the same conceptual idea of our previously discussed

example and differs only in the integration of the LCP values.

2.2 Parameterized Matching

A parameterized string (p-string) is composed of symbols from a constant symbol al-

phabet Σ and a parameter alphabet Π. A pair of p-strings S and T of length n are said

to p-match when the constant symbols σ ∈ Σ match and there exists a bijection of pa-

rameter symbols π ∈ Π between the pair of p-strings. Baker [3] offered the first p-match

breakthroughs, namely, the prev encoding and the parameterized suffix tree (p-suffix tree).

Richard A. Beal Chapter 2. Background / Related Work 10

The p-suffix tree is analogous to the suffix tree for traditional strings [10, 11, 12, 13]. Baker

discovered that a p-match exists between the p-strings S and T when prev(S) == prev(T).

The p-suffix tree is built on the prev encodings of the individual suffixes of the p-string,

which requires O(n(|Π| + log(|Π| + |Σ|))) construction time [3]. Improvements to the p-

suffix tree construction were introduced in [16, 17, 18]. The physical space required for the

p-suffix tree implementation was a limitation acknowledged as traditional pattern matching

approaches were extended to offer time and space efficient p-match functionality. Amir et

al. proposed the parameterized-KMP [19] and Baker introduced the parameterized-BM [20],

in which each method detected p-matches optimally in time O(n log(min{m, |Π|})) with m

as the length of the pattern. Idury et al. [21] studied the multiple p-match problem using

the traditional Aho-Corasick automata [22]. The native time and space efficiency of the

suffix array led to the origination of the parameterized suffix array (p-suffix array). Table

2.2 displays the p-suffix array pSA and parameterized longest common prefix pLCP arrays

for a p-string. The p-suffix array is analogous to the suffix array for traditional strings

[6, 10, 11, 12]. Direct p-suffix array construction was first introduced by Deguchi et al. [23]

for binary strings with |Π| = 2, which required O(n) construction time through the assistance

of a defined fw encoding. Deguchi and colleagues [24] later proposed the first approaches

to p-suffix sorting with an arbitrary alphabet size requiring O(n2) time in the worst case.

The parameterized longest common prefix (pLCP) array analogous to the traditional LCP

array was also defined and constructed in [23, 24]. We introduce new algorithms to p-suffix

sort in linear time on average using coding methods from information theory.

Table 2.2: p-string computations on T=AwBzABwz$, Σ={A,B}, Π={w, z}, $ /∈ Σ ∪ Π

i T [pSA[i]...n] prev(T [pSA[i]...n]) pSA[i] pLCP [i]

1 $ $ 9 0
2 z$ 0$ 8 0
3 wz$ 00$ 7 1
4 zABwz$ 0AB04$ 4 1
5 wBzABwz$ 0B0AB54$ 2 1
6 AwBzABwz$ A0B0AB54$ 1 0
7 ABwz$ AB00$ 5 1
8 Bwz$ B00$ 6 0
9 BzABwz$ B0AB04$ 3 2

Richard A. Beal Chapter 2. Background / Related Work 11

2.3 Longest Previous Factor

In a novel application of the suffix array and the corresponding LCP array, Crochemore

and Ilie [7] introduced the longest previous factor (LPF) problem for traditional strings.

Table 2.3 shows an example LPF for a short sequence W = AAABABAB$. For any suffix u

beginning at index i in string W , the LPF problem is to identify the exact matching longest

factor between u and another suffix v starting prior to index i in W . We note that this

definition is similar to (though not the same as) the Prior array used in [10]. Crochemore

and Ilie [7] exploited the notion that the nearby elements within a suffix array are closely

related en route to proposing a linear time solution to the LPF problem. They also proposed

another linear time algorithm to compute the LPF array by using the LCP structure. The

significance of an efficient solution to the LPF is that the resulting data structure simplifies

computations in various string analysis procedures. Typical examples include computing

the Lempel-Ziv factorization [25, 26], which is fundamental in string compression algorithms

such as the UNIX gzip utility [10, 11] and in algorithms for detecting repeats in a string

[27]. Our motivation to study the LPF in terms of p-strings and s-strings is the power of

generalizations and the relevance to various important applications.

Table 2.3: LPF calculation for string W = AAABABAB$, Σ = {A,B}, $ /∈ Σ

i SA[i] W [SA[i]...n] LCP [i] W [i...n] LPF [i]

1 9 $ 0 AAABABAB$ 0
2 1 AAABABAB$ 0 AABABAB$ 2
3 2 AABABAB$ 2 ABABAB$ 1
4 7 AB$ 1 BABAB$ 0
5 5 ABAB$ 2 ABAB$ 4
6 3 ABABAB$ 4 BAB$ 3
7 8 B$ 0 AB$ 2
8 6 BAB$ 1 B$ 1
9 4 BABAB$ 3 $ 0

2.4 Structural Matching

A structural string (s-string), introduced by Shibuya [4, 5], is a p-string with the added

notion of complementary parameter symbols. Two parameter symbols π1, π2 ∈ Π are comple-

Richard A. Beal Chapter 2. Background / Related Work 12

ments if they correspond to each other in the following way: π1 == complement(π2) ∧ π2 ==

complement(π1). A structural match (s-match) exists between two s-strings S and T

when 1) the constant symbols match, 2) a bijection exists between the parameter sym-

bols of S and T , and 3) the complementary symbols are consistently structured in both

s-strings. The relationship between the s-match and p-match problem is evident since con-

ditions 1) and 2) are fulfilled by identifying a p-match. The notion of complementary sym-

bols adds a level of structure not achieved in the p-match problem. Shibuya [4] proposes

a compl encoding scheme that shows the structure of the complementary parameters to

enforce condition 3). It is shown in [4] that an s-match exists between the s-strings S

and T when prev(S) == prev(T) ∧ compl(S) == compl(T). The sencode scheme is

then proposed by [4] to simplify s-matching so that two s-strings S and T s-match when

sencode(S) == sencode(T). The structural suffix tree (s-suffix tree) by Shibuya [4] is a

data structure, analogous to the traditional suffix tree [10, 11, 12, 13] and the p-suffix tree

[3, 16, 17, 18], used to facilitate convenient s-matching, requiring O(n(log |Σ|+ log |Π|)) con-

struction time. Shibuya [4] shows how to use the s-suffix tree to address the structural pattern

matching of RNA sequences. We advance s-string theory by proposing an s-match solution

using newly introduced suffix array and LCP data structures for the s-string encodings.

2.5 Main Contributions

We advance the current state of the art in p-string theory by introducing transformative

approaches of working with p-strings via coding techniques. We present efficient algorithms

to construct fundamental p-string data structures for the p-match problem and generalize

problems for the p-string. The techniques used in our p-string work are shown to be portable

to the area of s-strings and s-match problem.

Uniquely, we represent the dynamic p-suffixes under the prev encoding of a p-string by

special arithmetic codes. We show how to generate a parameterized arithmetic code (pAC)

to represent an m-block, a prefix of length m, of a p-suffix and maintain the lexicographical

ordering of the p-suffixes between the representative pAC codes. The relationships between

adjacent p-suffixes are exploited to efficiently translate one m-block code to succeeding p-

Richard A. Beal Chapter 2. Background / Related Work 13

suffixes in order to generate the pAC codes for all n suffixes of T . It is shown that sorting

the codes is equivalent to sorting the p-suffixes and thus, constructing the p-suffix array.

Our direct p-suffix sorting approach via information theoretic codes is the first algorithm to

claim linear time on average, stated formally in the following theorem.

Theorem 3.3.5 Given a p-string T of length n, p-suffix-sorting of T can be accomplished

in O(n) time on average via parameterized arithmetic coding.

As an application for the p-suffix array, we generalize the standard LPF problem to the

parameterized longest previous factor (pLPF) problem defined for p-strings. We identify

the similarities between the LPF and pLPF problems en route to proposing a linear time

solution to construct the pLPF data structure. We state our result in the following theorem:

Theorem 4.3.4. Given an n-length p-string T , prevT = prev(T), the prev encoding of T ,

and pSA, the parameterized suffix array for T , the algorithm compute pLPF constructs the

pLPF array in O(n) time.

We are the first to identify how to modify the LPF algorithm to also solve the LCP

problem. We show that our pLPF algorithm can also be used to construct the pLCP array,

as formalized in the following.

Theorem 4.4.2. Given an n-length p-string T , prevT = prev(T), the prev encoding of T ,

and pSA, the parameterized suffix array for T , the compute pLPF algorithm can be used to

construct the pLCP array in O(n) time.

We further highlight the power of our pLPF algorithm by proving that the traditional

LPF and LCP arrays may also be constructed from our pLPF solution.

In this work, we also make significant contributions to the area of s-strings, a variant of

the p-string. We introduce and construct the suffix array data structure for the compl and

sencode encodings fundamental to the s-match problem, identified in Theorem 5.3.13.

Theorem 5.3.13. Given an s-string T of length n, constructing the sSA, cSA, pSA, and

SA can be accomplished in O(n) time on average via structural arithmetic coding.

Then, we define the LPF problem in terms of the s-string encodings and further show how

Richard A. Beal Chapter 2. Background / Related Work 14

to compute the respective LCP arrays. The resulting data structures are then utilized to

propose the first s-match solution via the suffix array. Theorem 5.5.1 formalizes the s-match

claim.

Theorem 5.5.1. Given an n-length s-string T , the sSA, and the sLCP data structure,

it is possible to s-match, c-match, p-match, or traditional match an m-length s-string P in

O(m+ log n) time.

The power of our s-string data structures and algorithms is the generalization potential

that we identify to also apply to respective problems in p-strings and traditional strings,

formalized in Theorems 5.4.4 and 5.4.8.

Theorem 5.4.4. Given an n-length s-string T and the appropriate suffix array, the algorithm

compute all LPF can construct the sLPF , cLPF , pLPF , and LPF array in O(n) time.

Theorem 5.4.8. Given an n-length s-string T , the algorithm compute all LCP can con-

struct the sLCP , cLCP , pLCP , and LCP array in O(n) time.

2.6 Preliminaries and Notation

A string on an alphabet Σ is a production T = T [1]T [2]...T [n] from Σn with n = |T |

the length of T . We will use the following string notations: T [i] refers to the ith symbol

of T , T [i...j] refers to the substring T [i]T [i + 1]...T [j], and T [i...n] refers to the ith suffix

T [i]T [i+ 1]...T [n] of T . A factor refers to a nonempty substring and a prefix is defined as a

leading substring of a suffix. The area of parameterized pattern matching defines the finite

alphabets Σ and Π. Alphabet Σ denotes the set of constant symbols while Π represents the

set of parameter symbols. Alphabets are defined such that Σ ∩ Π = ∅. Furthermore, we

append the terminal symbol $ /∈ Σ∪Π to the end of all strings to clearly distinguish between

suffixes. For practical purposes, we can assume that |Σ| + |Π| ≤ n since, otherwise a single

mapping can be used to enforce the condition.

Definition 2.6.1 Parameterized string (p-string): A p-string is a production T of

length n from (Σ ∪ Π)∗$.

Richard A. Beal Chapter 2. Background / Related Work 15

Consider the alphabet arrangements Σ = {A,B} and Π = {w, x, y, z}. Example p-strings

include S = AxByABxy$, T = AwBzABwz$, and U = AyByAByy$.

Definition 2.6.2 ([23, 24]) Parameterized matching (p-match): A pair of p-strings

S and T are p-matches with n = |S| if and only if |S| == |T | and each 1 ≤ i ≤ n corresponds

to one of the following:

1. S[i], T [i] ∈ (Σ ∪ {$}) ∧ S[i] == T [i]

2. S[i], T [i] ∈ Π ∧ ((a) ∨ (b)) /* parameter bijection */

(a) S[i] 6= S[j], T [i] 6= T [j] for any 1 ≤ j < i

(b) S[i] == S[i− q] iff T [i] == T [i− q] for any 1 ≤ q < i

In our example, we have a p-match between the p-strings S and T since every constant/ter-

minal symbol matches and there exists a bijection of parameter symbols between S and T . U

does not satisfy the parameter bijection to p-match with S or T . The process of p-matching

leads to defining the prev encoding.

Definition 2.6.3 ([23, 24]) Previous (prev) encoding: Given Z as the set of non-

negative integers, the function prev : (Σ∪Π)∗$→ (Σ∪Z)∗$ accepts a p-string T of length n

and produces a string Q of length n that 1) encodes constant/terminal symbols with the same

symbol and 2) encodes parameters to point to previous like-parameters. More formally, Q

is constructed of individual Q[i] with 1 ≤ i ≤ n where:

Q[i] =

T [i], if T [i] ∈ (Σ ∪ {$})
0, if T [i] ∈ Π ∧ T [i] 6= T [j] for any 1 ≤ j < i

i− k, if T [i] ∈ Π ∧ k = max{j|T [i] == T [j], 1 ≤ j < i}

For a p-string T of length n, the above O(n) space prev encoding requires the construction

time of order O(n log(min{n, |Π|})), which follows from the discussions of Baker [3, 20] and

Amir et al. [19] on the dependency of alphabet Π in p-match applications. Note that with an

indexed alphabet and an auxiliary O(|Π|) mapping structure, we can construct prev in O(n)

time. Using Definition 2.6.3, our working examples evaluate to prev(S) = A0B0AB54$,

Richard A. Beal Chapter 2. Background / Related Work 16

prev(T) = A0B0AB54$, prev(U) = A0B2AB31$. The relationship between p-strings and

the lexicographical ordering of the prev encoding is fundamental to the p-match problem.

Definition 2.6.4 prev Lexicographical ordering: Given the p-strings S and T and two

symbols s and t from the encodings prev(S) and prev(T) respectively, the relationships ==,

6=, <, and > refer to lexicographical ordering between s and t. We define the ordering of

symbols from a prev encoding of the production (Σ ∪ Z)∗$ to be $ < ζ ∈ Z < σ ∈ Σ,

where each ζ and σ is lexicographically sorted in their respective alphabets. The relation-

ships ==, 6=, ≺, and � refer to the lexicographical ordering between strings. In the case of

prev(S) and prev(T), prev(S) ≺ prev(T) when prev(S)[1] == prev(T)[1], prev(S)[2] ==

prev(T)[2], ..., prev(S)[j − 1] == prev(T)[j − 1], prev(S)[j] < prev(T)[j]. Similarly, we can

define ==k, 6=k, ≺k, and �k to refer to the lexicographical relationships between a pair of

p-strings considering only the first k ≥ 0 symbols.

The following proposition essential to the p-match problem is directly related to the

established symbol ordering.

Proposition 2.6.5 ([3]) Two p-strings S and T p-match when prev(S) == prev(T). Sim-

ilarly, S ≺ T when prev(S) ≺ prev(T) and S � T when prev(S) � prev(T).

The example prev encodings show a p-match between S and T since prev(S) = A0B0AB54$

and prev(T) = A0B0AB54$. Also, U � S and U � T since prev(U) = A0B2AB31$ �

prev(S) == prev(T) = A0B0AB54$. We use the ordering established in Definition 2.6.4 to

define the parameterized suffix array and the parameterized longest common prefix array.

Definition 2.6.6 Parameterized suffix array (pSA): The pSA for a p-string T of

length n maintains a lexicographical ordering of the indices i representing individual p-

suffixes prev(T [i...n]) with 1 ≤ i ≤ n, such that prev(T [pSA[q]...n]) ≺ prev(T [pSA[q +

1]...n]) ∀ q, 1 ≤ q < n.

Definition 2.6.7 Parameterized longest common prefix (pLCP) array: The pLCP

array for a p-string T of length n maintains the length of longest common prefix between

neighboring p-suffixes. We define the computation plcp(α, β) = max{k | prev(α) ==k

prev(β)}. Then, pLCP is defined on each p-suffix i with 1 ≤ i ≤ n such that:

Richard A. Beal Chapter 2. Background / Related Work 17

pLCP [i] =

{
0, if i == 1

max{k | plcp(T [pSA[i]...n], T [pSA[i− 1]...n])}, if 2 ≤ i ≤ n

For T = AwBzABwz$ with prev(T) = A0B0AB54$, we have pSA = {9, 8, 7, 4, 2, 1, 5, 6, 3}

and pLCP = {0, 0, 1, 1, 1, 0, 1, 0, 2}. The encoding prev is supplemented by the encoding

forw.

Definition 2.6.8 Forward (forw) encoding: Let the function rev(T) reverse the p-string

T and repl(T, x, y) replace all occurrences in T of the symbol x with y. We define the function

forw for the p-string T of length n as forw(T) = rev(repl(prev(rev(T)), 0, n)).

The function forw performs the following on a p-string T of length n: 1) encodes each

constant/terminal symbol with the same symbol and 2) encodes each parameter p with

the forward distance to the next occurrence of p or an unreachable forward distance n.

Our definition of the forw encoding generates output mirroring the fw encoding used by

Deguchi et al. [23, 24]. Let N refer to the set of positive, non-zero integers. The function

fw : (Σ∪Π)∗ → (Σ∪N)∗ produces an output encoding G with fw(T) = G for each 1 ≤ i ≤ n:

G[i] =

T [i], if T [i] ∈ Σ

∞, if T [i] ∈ Π ∧ T [i] 6= T [j] for any i < j ≤ n

k − i, if T [i] ∈ Π ∧ k = min{j|T [i] == T [j], i < j ≤ n}

The forw encodings in our example with n = 9 are forw(S) = A5B4AB99$, forw(T) =

A5B4AB99$, forw(U) = A2B3AB19$.

18

Chapter 3

Parameterized Suffix Array

3.1 Introduction

Conventional pattern matching typically constitutes the matching of traditional strings

over an alphabet Σ. Parameterized pattern matching using parameterized strings, introduced

by Baker [3], attempts to answer pattern matching questions beyond its classical counterpart.

A parameterized string (p-string) is a production of symbols from the alphabets Σ and Π

with Σ ∩ Π = ∅, representing the constant symbols and parameter symbols respectively.

Given a pair of p-strings S and T , the parameterized pattern matching (p-match) problem is

to verify whether the individual constant symbols match and whether there exists a bijection

between the parameter symbols of S and T . If the two conditions are met, S is said to be a

p-match of T . For example, there exists a p-match between the p-strings z=y ∗ f/++y; and

a=b ∗ f/++b; that represent program statements over the alphabets Σ = {∗, /,+,=, ; } and

Π = {a, b, f, y, z}. The incentive for studying the p-match problem is the range of problems

that a single solution can address including 1) exact pattern matching when |Π| = 0, 2)

mapped matching (m-matching) when |Σ| = 0 [19], and clearly, 3) p-matching when |Σ| >

0∧|Π| > 0. Applications inherent to the p-matching problem include detecting plagiarism in

academia and industry, reporting similarities in biological sequences [4], discovering cloned

code segments in a program to assist with software maintenance [3], and answering critical

legal questions regarding the unauthorized use of intellectual property [28].

Initial solutions to the p-match problem were based on the parameterized suffix tree (p-

Richard A. Beal Chapter 3. Parameterized Suffix Array 19

suffix tree) [3]. Idury et al. [21] studied the multiple p-match problem in terms of automata.

The physical space requirements of the p-suffix tree led to algorithms such as parameterized-

KMP [19], parameterized-BM [20], and the parameterized suffix array [23, 24]. Analogous

to standard suffix sorting, the problem of parameterized suffix sorting (p-suffix sorting) is to

sort all the n parameterized suffixes (p-suffixes) of an n-length p-string into a lexicographic

order. The major difficulty is that unlike the traditional suffixes of a string, the p-suffixes

are dynamic, varying with the starting position of the p-suffix. Thus, standard suffix sorting

cannot be directly applied to the p-suffix sorting problem. Current approaches to directly

construct the p-suffix array, without a p-suffix tree, for an n-length p-string from an arbitrary

alphabet require O(n2) time in the worst case [24]. Such demands the need for alternative

approaches to direct p-suffix sorting.

Main Contribution: We construct p-suffix arrays by generating and sorting codes that

represent the individual p-suffixes of a p-string. We propose the first theoretical linear time

claims to directly p-suffix sort p-strings from non-binary parameter alphabets. We state our

main result in the following theorem:

Theorem 3.3.5. Given a p-string T of length n, p-suffix-sorting of T can be accomplished

in O(n) time on average via parameterized arithmetic coding.

3.2 p-Suffix Sorting via Fingerprints

The magic of sorting the suffixes of a string T of length n from an alphabet Σ is rooted in the

notion that individual suffixes are very closely related. For instance, suffix k is a common

suffix to both suffixes i and j with 1 ≤ i ≤ j ≤ k ≤ n. Throughout this work, we are

challenged with the reality that the p-suffix, more formally prev(T [i...n]), is not näıvely the

suffix of the prev encoding of T , namely prev(T)[i...n], which is formalized in Lemma 3.2.1.

Lemma 3.2.1 Given a p-string T of length n, the suffixes of prev(T) are not necessarily

the p-suffixes of T. More formally, if π ∈ Π occurs more than once in T , then ∃i, s.t.

prev(T [i...n]) 6= prev(T)[i...n], 1 ≤ i ≤ n.

Proof Consider that the only parameter symbol to occur in the p-string T is π ∈ Π, which

Richard A. Beal Chapter 3. Parameterized Suffix Array 20

exists only at positions α and β with α < β. Suppose that indeed prev(T [α...n]) ==

prev(T)[α...n] and prev(T [β...n]) == prev(T)[β...n]. By Definition 3, the first occurrence

of symbol π at position α will be prev encoded by 0 and the π at position β will be prev

encoded by β − α. So, in the case of suffix α, prev(T [α...n]) == prev(T)[α...n]. At suffix

β, the encoding of π at position β in T will change to 0 in prev(T [β...n]) by Definition 3

whereas prev(T)[β...n] will retain the old encoding of β − α since symbol π still occurs in

prev(T) at position α. The π at position β forces prev(T [β...n]) 6= prev(T)[β...n], which is

a contradiction. 2

The centerpiece of this work is rooted in the notion that we directly construct the p-suffix

array without the large memory footprint of the p-suffix tree by handling the dynamically

changing p-suffixes, which is fundamentally different from the standard suffix sorting ap-

proaches for traditional strings. To visually identify the difference between traditional suffixes

and p-suffixes, consider the example T = zAwz$ as a traditional string, in which the suffixes

are methodically created by removing a symbol: zAwz$ → Awz$ → wz$ → z$ → $.

If we consider the same example T = zAwz$ with Σ = {A} and Π = {w, z}, the p-suffixes

defined under the prev encoding are dynamically changing: 0A03$ → A00$ → 00$ →

0$ → $.

Our idea is to modify the traditional Karp and Rabin (KR) fingerprinting scheme pre-

sented in [10, 11, 29] to accommodate the changing nature of p-suffixes. The KR algorithm

generates an integral “signature” or “fingerprint” code to represent a string using the lexico-

graphical ordering of symbols [29]. By representing p-suffixes through numeric fingerprints

we devise a mechanism to retain a “tangible” copy of the changing p-suffixes under the prev

encoding. In this section, we assume that n is not too large. That is, the KR codes can fit

into standard integer representations such as long long int.

We now denote the following variables that are continually reused throughout this section

for the working p-string T of length n: prevT = prev(T), forwT = forw(T), maxP =

maxdist(prevT) (see below), R = |Σ|+maxP + 2. Our fingerprinting approach relies on a

lexicographical ordering implementation of Definition 2.6.4 to appropriately accommodate

for the prev encoding alphabet (Σ ∪ Z ∪ {$}). Our ordering scheme, function map, is

Richard A. Beal Chapter 3. Parameterized Suffix Array 21

formalized in Definition 3.2.2.

Definition 3.2.2 Mapping function: Let maxP = maxdist(prevT) = max{prevT [i] |

prevT [i] ∈ Z for 1 ≤ i ≤ |prevT |}. Let function αi(x,X) return the lexicographical order

(1, 2, ..., |X|) of the symbol x in alphabet X. We then define the function map : (Σ∪Z∪{$})→

N to map a symbol, say x, in prevT to an integer preserving the ordering of Definition 2.6.4.

We also define the supplement function in(x,X) to determine if x ∈ X instantaneously based

on the definition of map(x).

map(x) =

1, if x == $

αi(x,Z) + 1, if x ∈ Z
αi(x,Σ) +maxP + 2, if x ∈ Σ

in(x,X) =

true, if X == Z ∧ (1 < map(x) ≤ maxP + 2)

true, if X == (Σ ∪ {$}) ∧ (map(x) == 1 ∨map(x) > maxP + 2)

false, otherwise

The function map is fundamental in the following definition for the parameterized Karp-

Rabin fingerprint.

Definition 3.2.3 Parameterized Karp-Rabin fingerprint (pKR): Let p-suffix prevTi =

prev(T [i...n]). We define pKR(i) =
∑i

k=n

[
Rk−1 ×map(prevTi[n− k + 1])

]
to return a fin-

gerprint generated for the p-suffix beginning at index i.

Table 3.1 shows the parameterized KR fingerprints for the example string T = AwBzABwz$.

This example shows the true power of our pKR in that the ordering of the computed fin-

gerprints for p-suffixes of T yields the correct p-suffix array pSA = {9, 8, 7, 4, 2, 1, 5, 6, 3}.

We notice that using KR directly produces the array {1, 4, 5, 2, 3, 6, 7, 9, 8}, which is not the

correct p-suffix array. The execution of function pKR may be näıvely cascaded to produce

fingerprints for all p-suffixes at positions 1 ≤ i ≤ n of p-string T requiring O(n2) time,

which is a theoretical bottleneck. We can intelligently construct pKR fingerprints for the

p-suffixes of T by taking advantage of the relationship between p-suffixes and pKR codes.

Consider qi to be the pKR code for the p-suffix at position i. The code qi+1 can be used to

compute the fingerprint for qi for i ≥ 1 by introducing a new symbol at position i. Lemmas

Richard A. Beal Chapter 3. Parameterized Suffix Array 22

Table 3.1: Lexicographical ordering of p-suffixes with pKR, using T = AwBzABwz$

i pSA T[pSA[i]...n] prev(T[pSA[i]...n]) pKR(pSA[i]) KR(pSA[i])

1 9 $ $ 43046721 43046721
2 8 z$ 0$ 90876411 263063295
3 7 wz$ 00$ 96190821 330556302
4 4 zABwz$ 0AB04$ 129298356 129593601
5 2 wBzABwz$ 0B0AB54$ 130740084 130740084
6 1 AwBzABwz$ A0B0AB54$ 358900444 358900444
7 5 ABwz$ AB00$ 388608030 391501431
8 6 Bwz$ B00$ 398108358 424148967
9 3 BzABwz$ B0AB04$ 401786973 401819778

3.2.4 and 3.2.5 identify the adjustments that dynamically change the p-suffixes between the

neighboring p-suffixes at i and (i+ 1) when considering a symbol introduced at position i.

Case 1: When the new symbol is a constant, terminal, or the only occurrence of that

parameter in the suffix T [i...n], Lemma 3.2.4 describes the required transition.

Lemma 3.2.4 Given p-string T , prevT = prev(T), and prevT [i + 1...n] == prev(T [i +

1...n]) where T [i] is a constant, terminal, or the only occurrence of parameter T [i] in T [i...n],

then prevT [i...n] == prev(T [i...n]) if prevT [i] == prev(T [i]).

Proof For symbol σ ∈ (Σ ∪ {$}), prev(σ) = σ by Definition 2.6.3. For symbol π ∈ Π

Definition 2.6.3 states that prev(π) = 0 for the first occurrence. When T [i] is the only

occurrence of π in T [i...n], ∃ no future π to re-encode at positions (i+ 1) to n by Definition

2.6.3. Since we are given that prevT [i + 1...n] == prev(T [i + 1...n]), and Definition 2.6.3

states that σ or π will generate a definitive encoding without impacting current encodings,

then prevT [i...n] == prev(T [i...n]) upon adjustment of the encoding at prevT [i] so that

prevT [i] == prev(T [i]). 2

Case 2: When the new symbol is a parameter with multiple occurrences in the suffix

T [i...n], Lemma 3.2.5 describes the required transition.

Lemma 3.2.5 Given p-string T , prevT = prev(T), forwT = forw(T), and prevT [i +

1...n] == prev(T [i+1...n]) where T [i] ∈ Π occurs multiple times in T [i...n], then prevT [i...n] ==

prev(T [i...n]) after 1) identifying the current parameter as the first occurrence of T [i] (prevT [i] =

0) and 2) modifying the future occurrence of T [i] (prevT [i+ forwT [i]] = forwT [i]).

Richard A. Beal Chapter 3. Parameterized Suffix Array 23

Proof We must achieve prev(T [i...n]) by using prevT [i...n] given that prevT [i+1...n] is the

correct p-suffix for position (i + 1). Since T [i] ∈ Π is the first occurrence of T [i] in T [i...n],

by Definition 2.6.3, its encoding is clearly prev(T [i]) = 0. So, prevT [i] = 0 will adjust our

p-suffix. However, since we are given the fact that T [i] has future occurrences in T [i+ 1...n],

then ∃ exactly one future occurrence of T [i] to adjust. This occurrence of T [i] in T [i+1...n] at

position, say j, j > i is currently such that prevT [j] = 0 and by Definition 2.6.3, only the first

occurrence of a T [i] in prev(T [i...n]) can be 0. Then, clearly Definition 2.6.3 states that the

encoding prevT [j] = j − i. To make this change we must locate the next forward parameter

T [i] in T [i+1...n], which Definition 2.6.8 informs us is available at forwT [i] positions ahead of

the current symbol position i; i.e. j = i+forwT [i]. So, prevT [j] = j−i must be the case. By

substituting j, prevT [i+ forwT [i]] = (i+ forwT [i])− i⇒ prevT [i+ forwT [i]] = forwT [i].

2

We refer to the pKR code of p-suffix i as qi. The transitions needed to compute a p-

suffix i from a p-suffix (i + 1) formalized in Lemmas 3.2.4 and 3.2.5 are subsequently the

requirements to compute code qi from qi+1. These transitions are consolidated into δpKR and

shown to efficiently generate pKR codes.

Definition 3.2.6 Function δpKR: Let β = forwT [i], λ = (map(β) −map(0)) × Rn−β−1,

and B = qi+1+map(prev(T [i]))Rn

R
. We define the function δpKR(i, qi+1) as follows to return the

code qi via a transition of the provided code qi+1 with the newly added symbol at position i.

δpKR(i, qi+1) =

{
B, if in(prevT [i],Σ ∪ {$}) ∨ (in(prevT [i],Z) ∧ forwT [i] ≥ n)

B + λ, if in(prevT [i],Z) ∧ forwT [i] < n

The transition function δpKR is used to efficiently construct the fingerprints.

Theorem 3.2.7 Given a p-string T of length n and precalculated variables prevT and

forwT , function δpKR requires O(n) time to generate fingerprints for all p-suffixes in T .

Proof The fingerprints are generated successively by the function calls qn = δpKR(n, 0),

qn−1 = δpKR(n − 1, qn),...,q1 = δpKR(1, q2). Either case of function δpKR may be computed

Richard A. Beal Chapter 3. Parameterized Suffix Array 24

Listing 3.1: p-suffix sorting with fingerprints
1 struct pcode { int i , long long int pKR }
2 int [] p−s u f f i x−sort−pKR(char [] T) {
3 pcode [] code , int [] pSA , long long int pKR=0
4 // A) −− genera te the i n d i v i d u a l prev f i n g e r p r i n t s
5 for int i=n to 1 , step −1 {
6 pKR=δpKR (i , pKR)
7 code [i]=(i ,pKR)
8 }
9 // B) −− s o r t p−s u f f i x e s

10 radix sort the pKR a t t r i b u t e o f each pa i r in code
11 // C) −− r e t a i n p−s u f f i x array
12 for int k=1 to n , step 1
13 pSA [k]= code [k] . i
14 return pSA
15 }

in O(1) time and is called sequentially a total of n times, once for each of the n p-suffixes.

The overall time is O(n). 2

We introduce the algorithm p-suffix-sort-pKR in Listing 3.1 to sort p-suffixes via the sorting

of fingerprints through the transition function in Definition 3.2.6. Theorem 3.2.8 proves the

time complexity of Listing 3.1.

Theorem 3.2.8 Given a p-string T of length n, function p-suffix-sort-pKR sorts all the n

p-suffixes of T in O(n) time.

Proof We assume that the fingerprints for each p-suffix are practically represented by an

integer code and each computational use of the code is achieved in constant time. Thus,

Section A) of p-suffix-sort-pKR follows from Theorem 3.2.7 to require O(n) time. The radix

sorting required in section B) requires O(cn), where c is a constant. The loop in section C)

clearly requires O(n) time. Overall, p-suffix-sort-pKR requires O(n) time. 2

The idea used in the algorithm p-suffix-sort-pKR is unique, but assumes that the p-string

fingerprints fit into practical integer representations. This assumption is primarily a limi-

tation inherent to fingerprinting. It is well documented that KR integral fingerprints can

Richard A. Beal Chapter 3. Parameterized Suffix Array 25

be large and exceed the extremes of an integer with large strings and vast alphabets. The

modulo operation discussed in [10, 11, 29] is used to handle this problem. However, the

modulo operation will not preserve the lexicographical ordering between fingerprints and

creates a new problem with respect to suffix sorting. Even if we use fingerprints to encode

prefixes of p-suffixes, the codes can still be quite large with collisions. We extend our idea

using arithmetic coding to address these limitations.

3.3 p-Suffix Sorting via Arithmetic Coding

Arithmetic coding compresses a string by recursively dividing up a real number line into

intervals that account for the cumulative distribution function (cdf), which describes the

probability space of each symbol. The interval for an arithmetic code AC is (lo, hi), where lo

and hi are the low and high boundaries, respectively. Any consistent choice in this region, say

tag(s) = s.hi+s.lo
2

, represents the arithmetic code and preserves the lexicographical ordering

of strings. Arithmetic coding is further described in [30, 31]. Recently, Adjeroh and Nan [8]

used a novel application of Shannon-Fano-Elias codes from information theory to address the

traditional suffix sorting problem. In the work, they generate arithmetic codes for m-blocks,

or m-length prefixes of the suffixes, to maintain the ordering of m symbols. They show how

to efficiently transition one AC m-block code at suffix i to construct the m-block AC at suffix

(i+ 1) by removing the symbol at i and appending the symbol at (i+m). The transitioning

scheme is illustrated in Figure 3.1. Then, the suffixes are recursively partitioned and the

generated m-block arithmetic codes are exploited to induce the ordering of the partitions in

linear time. Extending the suffix sorting via arithmetic coding algorithm given in [8] to the

p-suffix sorting problem is not straightforward because of the differing relationship between

p-suffixes, identified in Lemma 3.2.1.

Given an n-length p-string T , we wish to generate the parameterized arithmetic code

pAC for the m-blocks, or m-length prefixes, of the n p-suffixes of T . The distribution of

symbols plays a role in the size of the intervals and hence the tag, but this does not change

the lexicographic order of the generated arithmetic codes. Thus, without loss of generality,

we assume each symbol x ∈ (Σ ∪ Z ∪ {$}) in the alphabet of a prev encoding to be equally

Richard A. Beal Chapter 3. Parameterized Suffix Array 26

Figure 3.1: Transitioning the AC m-block code from a cab→ cab→ cab d

Richard A. Beal Chapter 3. Parameterized Suffix Array 27

Listing 3.2: Generating arithmetic codes for an m-length prefix of p-suffix i
1 struct AC { long double lo , long double hi }
2 AC pAC(int i , int m) {
3 AC new=(0 ,0) , AC old =(0 ,1) , int end=min{ i+m−1,n}
4 char [] prevTi=prev (T[i . . . end])
5 for k=i to end , step 1 {
6 new . h i=old . l o +(o ld . hi−old . l o)∗ cd f [map(prevTi [k−i +1])]
7 new . l o=old . l o +(o ld . hi−old . l o)∗ cd f [map(prevTi [k−i +1])−1]
8 o ld=new
9 }return new

10 }

probable, where p represents the probability of a symbol and the array cdf contains the values

of the uniform cdf with respect to the neighboring lexicographical alphabet symbols. The

following definition modifies the traditional AC algorithm to create an m-block arithmetic

code for a p-suffix at position i in T .

Definition 3.3.1 Parameterized arithmetic coding (pAC) function: For an n-length

p-string T , Listing 3.2 will generate an arithmetic code interval for the m-block of the p-suffix

starting at position i.

Table 3.2 shows the pAC codes for m-blocks of m = 2, 3, n of p-string T = AwBzABwz$.

We notice that a “collision” occurs for two pAC codes using m = 2 since the m-blocks

are equivalent. Even though the pAC codes distinctly sort the n p-suffixes of T when m

approaches n, we highlight that the practical limitation is arithmetic precision. See [8, 30]

for handling this problem.

In order to use the m-block codes, we must generate them efficiently. We denote the

m-block arithmetic code at p-suffix i by pACi. The idea is to first use function pAC to

compute pAC1 and use this code to generate the remaining (n − 1) codes, namely pAC2,

pAC3, ..., and pACn. Iteratively, we will need to adjust the arithmetic codes to 1) remove

the old symbol and 2) add the new symbol. These cases are described below. The lemmas

are similar in nature to Lemmas 3.2.4 and 3.2.5 exploiting Definitions 2.6.3 and 2.6.8 and

are omitted for space.

Richard A. Beal Chapter 3. Parameterized Suffix Array 28

Table 3.2: Lexicographical ordering of p-suffixes with pAC, using T = AwBzABwz$

i pSA T[pSA[i]...n] prev(T[pSA[i]...n]) tag(pAC(pSA[i],m))
m=2 m=3 m=n

1 9 $ $ 0.055556 0.055556 0.055556
2 8 z$ 0$ 0.117284 0.117284 0.117284
3 7 wz$ 00$ 0.129630 0.124143 0.124143
4 4 zABwz$ 0AB04$ 0.203704 0.209191 0.208743
5 2 wBzABwz$ 0B0AB54$ 0.216049 0.211934 0.212459
6 1 AwBzABwz$ A0B0AB54$ 0.796296 0.801783 0.801384
7 5 ABwz$ AB00$ 0.882716 0.878601 0.878076
8 6 Bwz$ B00$ 0.907407 0.903292 0.902683
9 3 BzABwz$ B0AB04$ 0.907407 0.911523 0.912083

Case 1: Removing a symbol s from an arithmetic code m-block requires us to simply

delete s when s ∈ Σ or s ∈ Π and does not occur in the m-block. When s ∈ Π and occurs

later in the m-block, the code must accommodate for both the removed occurrence and the

future occurrence of s.

Definition 3.3.2 Remove symbol δ−pAC transition: Given the AC code A at m-block i

with (i + m − 1) ≤ n, δ−pAC supplies the transition to remove the symbol at position i and

provide the new code A of the (m-1)-block at p-suffix (i + 1). Let β = forwT [i], j = i + β,

e = min{i+m− 1, n}, λ = (map(β)−map(0))× pβ+1, and c = cdf [map(prev(T [i]))− 1].

δ−pAC(i, A) =

(
A.lo−c
p

, A.hi−c
p

)
,if (in(prevT [i],Z) ∧ j > e) ∨ in(prevT [i],Σ ∪ {$})(

A.lo−λ−c
p

, A.hi−λ−c
p

)
,if in(prevT [i],Z) ∧ j ≤ e

Case 2: Adding (i.e. appending) symbol s to an arithmetic code m-block requires us

to simply append a symbol to the code when s ∈ Σ or s ∈ Π and does not occur in the

m-block. When s ∈ Π and occurs previously in the m-block, the code must account for the

new occurrence in terms of the previous occurrence of s.

Definition 3.3.3 Add symbol δ+
pAC transition: Given the AC code A at (m-1)-block

(i−m+ 1) ≥ 1, δ+
pAC supplies the transition to add the symbol at position i and provide the

new code A of the m-block at p-suffix (i−m+1). Let b = max{1, i−m+1}, k = i−prevT [i],

∆ = A.hi − A.lo, d = ∆ × cdf [map(prev(T [i]))], f = ∆ × cdf [map(prev(T [i])) − 1],

v = ∆× cdf [map(prevT [i])], and w = ∆× cdf [map(prevT [i])− 1])

Richard A. Beal Chapter 3. Parameterized Suffix Array 29

δ+
pAC(i, A) =

{
(A.lo+ f, A.lo+ d),if (in(prevT [i],Z) ∧ k < b) ∨ in(prevT [i],Σ ∪ {$})
(A.lo+ w,A.lo+ v),if in(prevT [i],Z) ∧ k ≥ b

With the assistance of Definitions 3.3.2 and 3.3.3, we can efficiently generate the m-block

codes for all n p-suffixes of T . Consider the p-string T = zwzABA$, Σ = {A,B}, Π =

{w, z}, and m = 4, we successively generate the m-block codes in the following fashion:

0 0 2 A
δ−pAC→ 00A

δ+pAC→ 00A B → · · · . Given prevT = prev(T) and forwT = forw(T), we

can construct all pAC codes in linear time.

Theorem 3.3.4 Given a p-string T of length n and precalculated variables prevT and

forwT , the pAC codes for all the m-length prefixes of the p-suffixes require O(n) time to

generate.

Proof Generating the first m-block code pAC1 via pAC1 = pAC(1,m) will require O(m)

time. Iteratively, the neighboring pAC codes will be used to create the successive p-suffix

codes. The first extension of code pAC1 to create pAC2 will require the removal of prevT [1]

via a call to pAC2 = δ−pAC(1, pAC1), which is O(1) work, and the addition of symbol prevT [2+

m − 1] via a call to pAC2 = δ+
pAC(2 + m − 1, pAC2), which also demands O(1) work. This

process requiring two O(1) steps is needed for the remaining (n− 1) m-block p-suffixes of T .

The resulting time is O(m+ n). Since m ≤ n, the theorem holds. 2

The efficient preprocessing from Theorem 3.3.4 leads to our main result: an average case

linear time algorithm for direct p-suffix sorting for non-binary parameter alphabets. We

discuss the intricacies of the worst case p-suffix array construction in the chapter summary

as an area for future work.

Theorem 3.3.5 Given a p-string T of length n, p-suffix-sorting of T can be accomplished

in O(n) time on average via parameterized arithmetic coding.

Proof We can construct prev(T) in O(n) time given an indexed alphabet and an O(|Π|)

auxiliary data structure. The lexicographical ordering of the m-block pAC codes follow from

the notion of arithmetic coding and Definition 3.2.2. From Theorem 3.3.4, we can create all

the m-block pAC codes in O(n) time. Similar to [8], the individual floating-point codes may

Richard A. Beal Chapter 3. Parameterized Suffix Array 30

be converted to integer codes di in the range [0, c(n− 1)] by di =
⌊
c(n− 1) pACi−pACmin

pACmax−pACmin

⌋
,

where the constant c (c > 1) is chosen to best separate the di and values pACmin and pACmax

correspond to the minimum and maximum pAC codes, respectively. From [32, 33], we know

that on average, the maximum LCP for an n-length general string is O(log|Σ| n). Let α◦β be

the string concatenation of α and β. Then, Q = prev(T [1...n−1])$◦prev(T [2...n−1])$◦ ...◦

prev(T [n− 2...n− 1])$ ◦ $ contains each individual p-suffix of T . Notice that Q is of length

|Q| = n(n+1)
2
∈ O(n2) and since all p-suffixes are clearly represented, the symbols of Q may

be mapped to a traditional string alphabet, allowing us to use the contribution of [32, 33]

to obtain the length of the maximum LCP for the general string Q, which is of the same

order O(log n2) ∈ O(log n). Thus by choosing m = O(log n), only the first O(n) radix sort

of the di codes is required to differentiate the p-suffixes, demanding only O(n) operations on

average. 2

3.4 Summary

Approaching the direct p-suffix sorting problem by representing p-suffixes with finger-

prints and arithmetic codes provides new mechanisms to handle the challenges of the p-string.

We proposed a theoretical algorithm using fingerprints to p-suffix sort an n-length p-string

in O(n) time, with n and the alphabet size constrained in practice. Arithmetic codes were

then used to propose an algorithm to p-suffix sort p-strings in linear time on average. An

area of future research is the worst case performance for p-suffix sorting, which requires

an investigation of the intricate relationship between the dynamic nature of p-suffixes and

induced sorting, the fundamental mechanism in worst case linear time direct suffix sorting

of traditional strings [8, 12, 14, 15].

31

Chapter 4

Parameterized Longest Previous

Factor

4.1 Introduction

Given an n-length traditional string W = W [1]W [2]...W [n] from the alphabet Σ, the

longest previous factor (LPF) problem is to determine the maximum length of a previously

occurring factor for each individual suffix occurring in W . More formally, for any suffix u

beginning at index i in the string W , the LPF problem is to identify the length of the longest

factor between u and another suffix v at some position h before i in W : that is, 1 ≤ h < i.

The LPF problem, introduced by Crochemore and Ilie [7], yields a data structure convenient

for fundamental applications such as string compression [25] and detecting runs [27] within

a string. In order to compute the LPF array, it is shown in [7] that the suffix array SA

is required to quickly identify the most lexicographically similar suffixes that constitute as

previous factors for the chosen suffix in question. The use of SA expedites the work required

to solve the LPF problem and likewise, is the cornerstone to solutions for many problems

defined for traditional strings.

A generalization of traditional strings over an alphabet Σ is the parameterized string (p-

string), introduced by Baker [3]. A p-string is a production of symbols from the alphabets Σ

and Π with Σ∩Π = ∅, which represent the constant symbols and parameter symbols respec-

tively. The parameterized pattern matching (p-match) problem is to identify an equivalence

Richard A. Beal Chapter 4. Parameterized Longest Previous Factor 32

between a pair of p-strings S and T when 1) the individual constant symbols match and

2) there exists a bijection between the parameter symbols of S and T . For example, the

following p-strings that represent program statements z=y ∗ f/++y; and a=b ∗ f/++b; over

the alphabets Σ = {∗, /,+,=, ; } and Π = {a, b, f, y, z} satisfy both conditions and thus, the

p-strings p-match. The motivation for addressing a problem in terms of p-strings is the range

of problems that a single solution can address, including 1) exact pattern matching when

|Π| = 0, 2) mapped matching (m-matching) when |Σ| = 0 [19], and clearly, 3) p-matching

when |Σ| > 0 ∧ |Π| > 0. Prominent applications inherent to the p-match problem include

detecting plagiarism in academia and industry, reporting similarities in biological sequences

[4], discovering cloned code segments in a program [9], and even answering critical legal

questions regarding the unauthorized use of intellectual property [28].

In this work, we introduce the parameterized longest previous factor (pLPF) for p-

strings analogous to the LPF problem for traditional strings, which can similarly be used

to study compression and duplication within p-strings. Given an n-length p-string T =

T [1]T [2]...T [n], the pLPF problem is to determine the longest parameterized suffix (p-suffix)

v at position h for a p-suffix starting at i in T with 1 ≤ h < i. Our approach uses a param-

eterized suffix array (pSA) [23, 24] for p-strings analogous to the traditional suffix array [6].

The major difficulty of the pLPF problem is that unlike traditional suffixes of a string, the

p-suffixes are dynamic, varying with the starting position of the p-suffix. Thus, traditional

LPF solutions cannot be directly applied to the pLPF problem.

Main Contributions: We generalize the LPF problem for traditional strings to the pa-

rameterized longest previous factor (pLPF) problem defined for p-strings. Then, we present

a linear time algorithm for constructing the pLPF data structure. Traditionally, the LPF

is solved by using the LCP array. This was the approach used in [7]. In this work, we show

how to go in the reverse direction: that is, given the pLPF solution, we now construct the

pLCP array. Further, we identify how to exploit our algorithm for the pLPF problem to

construct the LPF and LCP arrays. Our main results are stated in the following theorems:

Theorem 4.3.4. Given an n-length p-string T , prevT = prev(T), the prev encoding of T ,

and pSA, the parameterized suffix array for T , the algorithm compute pLPF constructs the

Richard A. Beal Chapter 4. Parameterized Longest Previous Factor 33

pLPF array in O(n) time.

Theorem 4.4.2. Given an n-length p-string T , prevT = prev(T), the prev encoding of T ,

and pSA, the parameterized suffix array for T , the compute pLPF algorithm can be used to

construct the pLCP array in O(n) time.

4.2 Preliminaries

In addition to the p-string preliminaries in Section 2.6, we further define the traditional

LPF problem.

Definition 4.2.1 ([7]) Longest previous factor (LPF): For an n-length traditional

string W , the LPF is defined for each index 1 ≤ i ≤ n such that LPF [i] = max({0} ∪

{k | W [i...n] ==k W [h...n], 1 ≤ h < i}).

The traditional string W = AAABABAB$ yields LPF = {0, 2, 1, 0, 4, 3, 2, 1, 0}.

4.3 Parameterized LPF

We define the parameterized longest previous factor (pLPF) problem below to generalize

the traditional LPF problem to p-strings.

Definition 4.3.1 Parameterized longest previous factor (pLPF): For a p-string T

of length n, the pLPF array is defined for each index 1 ≤ i ≤ n to maintain the length of

the longest factor between a p-suffix and a previous p-suffix occurring in T . More formally,

pLPF [i] = max({0} ∪ {k | prev(T [i...n]) ==k prev(T [h...n]), 1 ≤ h < i}).

The pLPF problem requires that we deal with p-suffixes, which are suffixes encoded with

prev. This task is more demanding than the LPF for traditional strings because Lemma

4.3.2 proves that we cannot guarantee the individual suffixes of a single prev encoding to

be p-suffixes. Thus, the changing nature of the prev encoding poses a major challenge to

efficient and correct construction of the pLPF array using current algorithms that construct

the LPF array for traditional strings.

Richard A. Beal Chapter 4. Parameterized Longest Previous Factor 34

Lemma 4.3.2 Given a p-string T of length n, the suffixes of prev(T) are not necessarily

the p-suffixes of T. More formally, if π ∈ Π occurs more than once in T , then ∃i, s.t.

prev(T [i...n]) 6= prev(T)[i...n], 1 ≤ i ≤ n.

Proof Consider that the only parameter symbol to occur in the p-string T is π ∈ Π, which

exists only at positions α and β with α < β. Suppose that indeed prev(T [α...n]) ==

prev(T)[α...n] and prev(T [β...n]) == prev(T)[β...n]. By Definition 3, the first occurrence

of symbol π at position α will be prev encoded by 0 and the π at position β will be prev

encoded by β − α. So, in the case of suffix α, prev(T [α...n]) == prev(T)[α...n]. At suffix

β, the encoding of π at position β in T will change to 0 in prev(T [β...n]) by Definition 3

whereas prev(T)[β...n] will retain the old encoding of β − α since symbol π still occurs in

prev(T) at position α. The π at position β forces prev(T [β...n]) 6= prev(T)[β...n], which is

a contradiction. 2

Table 4.1 shows the pLPF computation for a p-string T = AAAwBxyyAAAzwwB$ using

the previously defined alphabets. We note the intricacies of Lemma 4.3.2 since simply using

the traditional LPF algorithm 1) with T yields LPF = {0, 2, 1, 0, 0, 0, 0, 1, 3, 2, 1, 0, 1, 2, 1, 0},

2) with prev(T) produces LPF = {0, 2, 1, 0, 0, 1, 1, 0, 4, 3, 2, 1, 0, 1, 1, 0}, and 3) with forw(T)

generates the following array LPF = {0, 2, 1, 0, 0, 0, 0, 1, 3, 2, 1, 3, 2, 1, 1, 0}, neither of which

is the correct pLPF array.

Crochemore and Ilie [7] efficiently solve the LPF problem for a traditional string W by

exploiting the properties of the suffix array SA. They construct the arrays prev<[1...n] and

prev>[1...n], which for each i in W maintain the suffix h < i positioned respectively before

and after suffix i in SA; when no such suffix exists, the element is denoted by −1. It is

described in [7] how to compute the prev< and prev> arrays in linear time via deletions in a

doubly linked list or without loss of generality, another dynamically-sized list data structure

of the SA. We will furthermore refer to prev< and prev> as before< and before> respectively,

in order to avoid confusion with the prev encoding for p-strings. Similarly, we also define

after< and after> for each i in W to maintain the suffix j > i positioned before and after suf-

fix i in SA. For completeness, the algorithm in Listing 4.1 constructs the before and after ar-

Richard A. Beal Chapter 4. Parameterized Longest Previous Factor 35

Table 4.1: pLPF calculation for p-string T = AAAwBxyyAAAzwwB$

i pSA[i] pLCP [i] prev(T [pSA[i]...n]) before<[pSA[i]] before>[pSA[i]] pLPF [i]

1 16 0 $ -1 6 0
2 6 0 001AAA001B$ -1 4 2
3 12 3 001B$ 6 7 1
4 7 1 01AAA001B$ 6 4 0
5 13 2 01B$ 7 8 0
6 8 1 0AAA001B$ 7 4 1
7 14 1 0B$ 8 4 1
8 4 2 0B001AAA091B$ -1 3 1
9 11 0 A001B$ 4 3 4
10 3 2 A0B001AAA091B$ -1 2 3
11 10 1 AA001B$ 3 2 2
12 2 3 AA0B001AAA091B$ -1 1 3
13 9 2 AAA001B$ 2 1 2
14 1 4 AAA0B001AAA091B$ -1 -1 2
15 15 0 B$ 1 5 1
16 5 1 B001AAA001B$ 1 -1 0

rays in the fashion construct before after(SA, b) =

{
(before<, before>), if b == true

(after<, after>), otherwise
.

It is noted that the algorithm in Listing 4.1 applies to any type of suffix array (for traditional

strings, p-strings, etc.) since the algorithm is only concerned with the unique existence of

integers [1, n] in the suffix array of an n-length string. Clearly, the algorithm runs in O(n)

time.

With the before< and before> arrays, the element LPF [i] is simply the maximum q

between W [i...n] ==q W [before<[i]...n] and W [i...n] ==q W [before>[i]...n]. The magic of

a linear time solution to constructing the LPF array is achieved through the computation

of an element by extending the previous element, more formally LPF [i] ≥ LPF [i − 1] − 1.

We show that this same property holds for the pLPF problem defined on p-strings.

Lemma 4.3.3 The pLPF for a p-string T of length n is such that pLPF [i] ≥ pLPF [i−1]−1

with 1 < i ≤ n.

Proof Consider pLPF [i] at i = 1 by which Definition 4.3.1 requires that we find a previous

factor at 1 ≤ h < 1 that does not exist; i.e. pLPF [1] = 0. At i = 2, indeed pLPF [2] ≥

pLPF [1]− 1 = −1 is clearly true for all succeeding elements in which a previous factor does

Richard A. Beal Chapter 4. Parameterized Longest Previous Factor 36

not exist. For arbitrary i = j with 1 < j < n, suppose that the maximum length factor is

at g < j and without loss of generality, consider that the first q ≥ 2 symbols match so that

prev(T [j...n]) ==q prev(T [g...n]). Thus, pLPF [j] = q. Shifting the computation to i = j+1,

we lose the symbols prev(T [j]) and prev(T [g]) in the p-suffixes at j and g respectively. By

Proposition 2.6.5, prev(T [j...j+q−1]) == prev(T [g...g+q−1])⇒ prev(T [j]) == prev(T [g])

and as a consequence of the prev encoding in Definition 2.6.3 we have prev(T [i...n]) ==q−1

prev(T [g + 1...n]). Since we can guarantee that ∃ a factor with (q− 1) symbols for pLPF [i]

or possibly find another factor at h with 1 ≤ h < i matching q or more symbols, the lemma

holds. 2

Lemma 4.3.3 permits us to adapt the algorithm compute LPF given in [7] to p-strings.

We introduce compute pLPF in Listing 4.2 to construct the pLPF , which makes use of the

p-matcher Λ in Listing 4.3 to properly handle the sophisticated matching of p-suffixes, the

dynamic suffixes under the prev encoding. The role of Λ is to extend the matches between the

p-suffixes at a and b beyond the initial q symbols by directly comparing constant/terminal

symbols and comparing the dynamically adjusted parameter encodings for each p-suffix.

Theorem 4.3.4 Given an n-length p-string T , prevT = prev(T), the prev encoding of T ,

and pSA, the parameterized suffix array for T , the algorithm compute pLPF constructs the

pLPF array in O(n) time.

Proof It follows from Lemma 4.3.3 that our algorithm compute pLPF exploits the proper-

ties of pLPF to correctly compute and extend factors, which requires O(n) time. Computing

the arrays before< and before> require O(n) processing [7]. What remains now is to show

that, between Listing 4.2 and Listing 4.3, the total number of times that the body of the

while loop (lines 6-15 in Listing 4.3) will be executed is in O(n). The number of iterations of

the while loop is given by the number of matching symbol comparisons, namely the number

of increments of the variable q, which identifies the shift required to compare the current

symbol. Without loss of generality, suppose that the initial p-suffixes at position a and b

are the longest suffixes at positions 1 and 2 in T of lengths n and (n − 1) respectively. In

the worst case, (n − 1) of the symbols will match between these suffixes, by which each

Richard A. Beal Chapter 4. Parameterized Longest Previous Factor 37

Listing 4.1: (before<,before>) and (after<,after>) construction
1 /∗
2 ∗∗∗∗ Doubly Linked L i s t ∗∗∗∗
3 Node s t r u c t : s t r u c t Node { i n t suf , Node∗ prev ious , Node∗ next }
4 Operat ions :
5 −− void init() : i n i t i a l i z a t i o n r o u t i n e
6 −− Node ∗ insert(int i) : i n s e r t s Node wi th suf i ; r e t u r n s p o i n t e r
7 −− void delete(Node ∗ ptr) : removes the Node po in ted to by ptr
8 −− void clear() : removes a l l Nodes
9 ∗/

10 (int [] , int []) c o n s t r u c t b e f o r e a f t e r (int SA [] , boolean b) {
11 int q< [n] , q> [n] , i , j = 1
12 Node∗ ptr [n]
13 i n i t ()
14 i n s e r t (−1)
15 for i = 1 to n , step 1
16 ptr [SA[i]] = i n s e r t (SA[i])
17 i n s e r t (−1)
18 for i = n to 1 , step −1 {
19 i f (b) { // c o n s t r u c t (before<, before>)
20 q< = ptr [i]−>prev ious−>su f
21 q> = ptr [i]−>next−>su f
22 d e l e t e (ptr [i])
23 } else { // c o n s t r u c t (after<, after>)
24 q< = ptr [j]−>prev ious−>su f
25 q> = ptr [j]−>next−>su f
26 d e l e t e (ptr [j])
27 j++
28 }
29 } c l e a r ()
30 return (q< , q>)
31 }

Richard A. Beal Chapter 4. Parameterized Longest Previous Factor 38

Listing 4.2: pLPF computation
1 int [] compute pLPF (int be f o r e< [] , int be f o r e> []) {
2 int pLPF [n] , pLPF<=0, pLPF>=0, i , j , k
3 for i = 1 to n , step 1 {
4 j = max{0 ,pLPF<−1}
5 k = max{0 ,pLPF>−1}
6 pLPF< = Λ(i , b e f o r e< [i] , j)
7 pLPF> = Λ(i , b e f o r e> [i] , k)
8 pLPF [i] = max{pLPF< ,pLPF>}
9 }return pLPF

10 }

Listing 4.3: p-matcher function Λ
1 int Λ(int a , int b , int q) {
2 boolean c = true
3 int x , y
4 i f (b == −1) return 0
5 while (c ∧ (a+q)≤n ∧ (b+q)≤n) {
6 x = prevT [a+q] , y = prevT [b+q]
7 i f (in(x , Σ)∧ in(y , Σ)){
8 i f (x == y) q++
9 else c = fa l se

10 } else i f (in(x ,Z)∧ in(y ,Z)){
11 i f (q < x) x = 0
12 i f (q < y) y = 0
13 i f (x == y) q++
14 else c = fa l se
15 } else c = fa l se
16 }return q
17 }

Richard A. Beal Chapter 4. Parameterized Longest Previous Factor 39

comparison that clearly requires O(1) work, will increment q. Lemma 4.3.3 indicates that

succeeding calculations, or calls to Λ, already match at least (q − 1) symbols that are not

rematched and rather, the match is extended. Since the decreasing lengths of the succeeding

suffixes at 3, 4, ..., n cannot extend the current q, no further matching or increments of q are

needed. Hence, the while loop iterates a total of O(n) times amortized across all of the n

iterations of the for loop in Listing 4.2. Thus, the total work is O(n). 2

Our algorithm compute pLPF is motivated by the compute LPF algorithm in [7]. We

also observe that similar pattern matching mechanisms as the one used between the for loop

and the while loop exist in standard string processing, for example in computing the border

array discussed in [11].

4.4 From pLPF to pLCP

Deguchi et al. [23, 24] studied the problem of constructing the pLCP array given the

pSA. They showed that constructing the pLCP array requires a non-trivial modification of

the original LCP algorithm of Kasai et al. [34]. In [7], the LCP array was used as the basis

for constructing the LPF array for traditional strings. Here, we present a simpler algorithm

for constructing the pLCP array. In particular, we show that, unlike in [7], it is possible

to go the other way around: that is, given the pLPF solution, we now construct the pLCP

array. Later, we show that the same pLPF algorithm can be used to construct the LCP

array and the LPF array for traditional strings.

Crochemore and Ilie [7] identify that the traditional LPF array is a permutation of the

well-studied LCP array. We observe the same relationship in terms of the pLPF and pLCP

arrays.

Proposition 4.4.1 The pLPF array is a permutation of pLCP .

This observation allows us to view the pLCP array from a different perspective. As a novel

use of our compute pLPF algorithm, we introduce a way to construct the pLCP array in

linear time. The key observation is integrating the notion that the pLCP occurs between

neighboring p-suffixes and the fact that we preprocess the before< array, which for each i

Richard A. Beal Chapter 4. Parameterized Longest Previous Factor 40

Listing 4.4: pLCP computation
1 int [] compute pLCP (int be f o r e< [] , int a f t e r< []) {
2 int pLCP[n] , M[n] , R[n] , i
3 for i = 1 to n , step 1
4 R[pSA [i]] = i
5 M = compute pLPF (be f o r e< , a f t e r<)
6 for i = 1 to n , step 1
7 pLCP[R[i]] = M[i]
8 return pLCP
9 }

in the p-string T maintains the p-suffix h < i positioned prior to the p-suffix i in pSA. We

can also construct the array after< to maintain the p-suffix j > i also positioned prior to

the p-suffix i in pSA (see Listing 4.1). Since h and j are both positioned prior to i in pSA,

we can guarantee that either h or j must be the nearest neighbor to i. So, the maximum

factor determines the nearest neighbor and thus, pLCP [R[i]], where R is the inverse of pSA

(see Listing 4.4). Theorem 4.4.2 shows that this computation is done in linear time.

Theorem 4.4.2 Given an n-length p-string T , prevT = prev(T), the prev encoding of T ,

and pSA, the parameterized suffix array for T , the compute pLPF algorithm can be used to

construct the pLCP array in O(n) time.

Proof We can clearly relax the p-suffix selection restrictions enforced by the problem pLPF

in Lemma 4.3.3 to exploit the notion of extending factors. Subsequently, only the parameters

of Listings 4.2 and 4.3 impose such restrictions. Let R[1...n] be the rank array, the inverse

of pSA. We prove that the pLCP is constructed with compute pLPF (before<, after<).

Let before<[1...n] and after<[1...n] maintain, for all the i in T , the p-suffixes h < i

at position R[h] in pSA and j > i at position R[j] in pSA, respectively, that are po-

sitioned prior to the p-suffix i at position R[i] in pSA; when no such suffix exists, the

element is denoted by −1. Without loss of generality, suppose that both h and j exist

and 2 < i ≤ n, so we have either R[j] == R[i] − 1 or R[h] == R[i] − 1 as the neighbor-

ing p-suffix. So, max{plcp(prev(T [h...n]), prev(T [i...n])), plcp(prev(T [j...n]), prev(T [i...n]))}

distinguishes which p-suffix h or j is closer to i, identifying the nearest neighbor and in turn,

pLCP [R[i]]. This statement is utilized in compute pLPF exactly in terms of factors ex-

Richard A. Beal Chapter 4. Parameterized Longest Previous Factor 41

Listing 4.5: Improved pLCP computation
1 int [] compute pLCP (int be f o r e< [] , int a f t e r< []) {
2 int pLCP[n] , M[n] , i
3 M = compute pLPF (be f o r e< , a f t e r<)
4 for i = 1 to n , step 1
5 pLCP[i] = M[pSA [i]]
6 return pLCP
7 }

cept that the value will be stored in pLCP [i]. So, after the computation using the call to

compute pLPF (line 5) in Listing 4.4, the rearranging of the resulting array using the rank

array R (lines 6-7) produces the required pLCP array. We have yet to prove the time com-

plexity. Since the parameter after< can be computed in O(n) by deletions and indexing into

a doubly linked list similar to before< (see Listing 4.1) and since compute pLPF executes

in O(n) time via Theorem 4.3.4, the theorem holds. 2

The algorithm in Listing 4.4 uses the rank array R, but this is only conceptual and thus,

may be omitted for practical space. The improved solution is shown in Listing 4.5.

4.5 From pLPF to LPF and LCP

The power of defining the pLPF problem in terms of p-strings is the generalization of

a p-string production. A useful property of p-strings is that a special case of the alphabet

definitions or composition of symbols will yield a traditional string. Consider the case when

|Σ| > 0 ∧ |Π| = 0, then only traditional strings are valid p-string productions. Similarly,

when all of the individual symbols σ of a p-string are such that σ ∈ Σ, this also constitutes a

traditional string. Such generalization by the p-string allows us to offer solutions to multiple

problems with a single algorithm based on p-strings. We show in Theorems 4.5.1 and 4.5.2

that given a traditional string W , our p-string LPF and LCP algorithms can also compute

the traditional LPF and LCP arrays in linear time.

Theorem 4.5.1 Given an n-length traditional string W , the compute pLPF algorithm con-

structs the LPF array in O(n) time.

Richard A. Beal Chapter 4. Parameterized Longest Previous Factor 42

Proof Since W [i] ∈ Σ ∀ i, 1 ≤ i < n and W [n] ∈ {$}, then by Definition 2.6.1 we have

W ∈ (Σ∪Π)∗$, which labels W as a valid p-string. Given this, Theorem 4.3.4 proves that the

construction of pLPF for a p-string requires O(n) time. In this special case, W consists of

no such symbol π ∈ Π so Lemma 4.3.2 identifies that prev(W [i...n]) == prev(W)[i...n] and

further W == prev(W) by Definition 2.6.3, so W [i...n] == prev(W)[i...n], which constrains

the pLPF in Definition 4.3.1 to the LPF problem in Definition 4.2.1. Thus, Theorem 4.3.4

computes the LPF of W . 2

Theorem 4.5.2 Given an n-length traditional string W , the compute pLCP algorithm con-

structs the LCP array in O(n) time.

Proof In the same manner as Theorem 4.5.1, we may label W as a valid p-string. Given

this, Theorem 4.4.2 proves that the construction of pLCP for a p-string requires O(n) time.

Mirroring the proof of Theorem 4.5.1, we have W [i...n] == prev(W)[i...n], which constrains

the pLCP in Definition 2.6.7 to the traditional LCP problem. Thus, Theorem 4.4.2 computes

the LCP of W . 2

4.6 Applications

The significance of constructing the LPF array highlighted in [7, 26] is the straight-

forward algorithm to compute the Lempel-Ziv (LZ) factorization [25]. In turn, the LZ

computation through the LPF array benefits from the implementation of a space efficient

suffix array, which has clear practical space advantages to the well-documented suffix tree

solutions [10, 11] to LZ factorization. Several string applications exist that use the LZ data

structure, including the detection of runs [27] and string compression [25]. Computing the

pLPF array will similarly assist in simple computation of the LZ array and allows us to

study such applications as maximal runs in p-strings, which may be extended to source code

plagiarism or redundancies in biological sequences.

Richard A. Beal Chapter 4. Parameterized Longest Previous Factor 43

4.7 Summary

We introduce the parameterized longest previous factor (pLPF) problem for p-strings,

which is analogous to the longest previous factor (LPF) problem defined for traditional

strings. A linear time algorithm is provided to construct the pLPF array for a given p-

string. The advantage of implementing our solution compute pLPF is that the algorithm

may be used to compute the arrays pLPF , pLCP , LPF , and LCP in linear time, which are

fundamental data structures preprocessed for the efficiency of countless pattern matching

applications. Each of the proposed algorithms requires O(n) worst case space.

44

Chapter 5

Structural Matching via Suffix Arrays

5.1 Introduction

A closely related variant of the parameterized string (p-string) is the structural string (s-

string), introduced by Shibuya [4, 5]. Recall that a p-string is a production of symbols from a

constant symbol alphabet Σ and a parameter alphabet Π with Σ∩Π = ∅. The s-string adds

the notion of complementary symbols in Π that enables the pattern matching of s-strings, or

structural matching (s-match), to further observe the actual intricate composition of symbols.

The s-string is used in [4, 5] for RNA structural pattern matching by a structural suffix tree

(s-suffix tree). An s-suffix tree is similar in nature to the p-suffix tree [3]. Both were the first

solutions for pattern matching with the sophisticated s-string and p-string generalizations.

Similarly, both solutions utilize an encoding scheme. The p-suffix tree requires observing

suffixes in terms of a prev encoding to point to the previous occurrence of a parameter [3].

The s-suffix tree is built by observing the sencode scheme that combines the prev and compl

schemes to encode the structure of complementary symbols [4]. Finally, both the p-suffix

tree and s-suffix tree solutions suffer from the practical limitations of the memory footprint

demanded by a suffix tree implementation.

Main Contributions: We introduce the first suffix array solution to the s-match

problem. Similar to the parameterized suffix array solutions for p-strings proposed in Chapter

3, we propose a direct construction of newly defined suffix arrays for the s-string encodings

compl and sencode in linear time on average, without the assistance of an s-suffix tree. We

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 45

then introduce the longest previous factor (LPF) problem in terms of the s-string encodings

compl and sencode and further compute the respective longest common prefix (LCP) arrays

using the observations in Chapter 4. It is highlighted how our individual s-string algorithms

may be further used to compute the traditional and parameterized suffix array, LPF , and

LCP arrays. We then show how to use the resulting suffix arrays and LCP arrays to expedite

the process of s-matching. We state our main results in the following theorems:

Theorem 5.3.13 Given an s-string T of length n, constructing the sSA, cSA, pSA, and

SA can be accomplished in O(n) time on average via structural arithmetic coding.

Theorem 5.4.8 Given an n-length s-string T , the algorithm compute all LCP can construct

the sLCP , cLCP , pLCP , and LCP array in O(n) time.

Theorem 5.5.1 Given an n-length s-string T , the sSA, and the sLCP data structure, it

is possible to s-match, c-match, p-match, or traditional match an m-length s-string P in

O(m+ log n).

5.2 Preliminaries

As an addendum to the p-string preliminaries in Section 2.6, we present the following to

formalize the theory of structural strings (s-strings).

An s-string is an n-length p-string T = T [1]T [2]...T [n] production from the constant

symbol alphabet Σ and the parameter alphabet Π with Σ∩Π = ∅. We terminate the string

with a terminal $ /∈ Σ ∪ Π to clearly distinguish between suffixes. An s-string is a p-string

with the added notion of complementary symbols, by which two symbols may uniquely

correspond to one another. The notion that the s-string is a p-string allows us to apply the

prev encoding, forw encoding, and the remaining p-string theory presented in this work.

The s-string definition follows.

Definition 5.2.1 ([4]) Structural string (s-string): An s-string is a p-string T of

length n from (Σ∪Π)∗$. A subset of the parameter symbols, say {π1, π2} ⊆ Π = {π1, π2, ..., π|Π|},

may uniquely correspond to one another and behave as complements, such that only

complement(π1) = π2 and complement(π2) = π1. We further define the alphabet Γ to rep-

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 46

resent the complements within Π as a set of pairs in the fashion Γ = {(π1, π2)}.

Consider the alphabet arrangements Σ = {A,B}, Π = {v, w, x, y, z}, and Γ = {(w, x), (y, z)}.

These alphabets are used throughout the chapter. Example s-strings include S = AxBzzywv$,

T = AwByyzxv$, and U = AwByyxzv$. The analysis of the complement symbols between

two s-strings forms the added restrictions of the structural match (s-match) beyond the

parameter bijection required by the p-match problem.

Definition 5.2.2 ([4]) Structural matching (s-match): A pair of s-strings S and T

are s-matches with n = |S| if and only if |S| == |T | and each 1 ≤ i ≤ n corresponds to one

of the following:

1. S[i], T [i] ∈ (Σ ∪ {$}) ∧ S[i] == T [i]

2. S[i], T [i] ∈ Π∧((a)∨(b))∧((c)∨(d)) /*parameter bijection AND complement mapping*/

(a) S[i] 6= S[j], T [i] 6= T [j] for any 1 ≤ j < i

(b) S[i] == S[i− q] iff T [i] == T [i− q] for any 1 ≤ q < i

(c) S[i] 6= complement(S[j]), T [i] 6= complement(T [j]) for any 1 ≤ j < i

(d) S[i] == complement(S[i−q]) iff T [i] == complement(T [i−q]) for any 1 ≤ q < i

In our working example, S and T s-match. The s-string U does not s-match with either

S or T . The act of verifying Definition 5.2.2 between a pair of s-strings is quite involved.

Shibuya [4] identifies that we can use the p-string prev encoding in Definition 2.6.3 and the

compl encoding in Definition 5.2.3 jointly to determine an s-match.

Definition 5.2.3 ([4]) Complement (compl) encoding: Given Z as the set of non-

negative integers, the function compl : (Σ∪Π)∗$→ (Σ∪Z)∗$ accepts an s-string T of length

n and produces a string Q of length n that 1) encodes constant/terminal symbols with the

same symbol and 2) encodes parameters to point to their previous complementary param-

eters. More formally, Q is constructed of individual Q[i] with 1 ≤ i ≤ n where:

Q[i] =

T [i], if T [i] ∈ (Σ ∪ {$})
0, if T [i] ∈ Π ∧ T [i] 6= complement(T [j]) for any 1 ≤ j < i

i− k, if T [i] ∈ Π ∧ k = max{j | T [i] == complement(T [j]), 1 ≤ j < i}

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 47

We observe the similarity between the definition of the compl encoding (Definition 5.2.3)

and the prev encoding (Definition 2.6.3) where compl(T) == prev(T) is true with the

mapping structure (π, π) ∈ Γ ∀ π ∈ Π. Definition 5.2.3 presents a mechanism to point to

the previous complementary symbol for a parameter symbol. By Definition 5.2.1, in the

worst case, since each π ∈ Π is only the complement of only one other symbol π ∈ Π, then

|Γ| = |Π| in the maximum size of alphabet Γ. Thus, the compl encoding for an s-string T of

length n may be constructed in time O(n log(min{n, |Π|})) using a balanced tree [4], which

also follows from the discussions of Baker [3, 20] and Amir et al. [19] on the dependency of

alphabet Π in p-string applications. Note that with an indexed alphabet and an auxiliary

O(|Π|) mapping structure, we can construct compl in O(n) time.

Shibuya [4] proves that the s-match may be achieved by comparing the prev and compl

encodings between a pair of s-strings.

Proposition 5.2.4 ([4]) Two s-strings S and T s-match when prev(S) == prev(T) ∧

compl(S) == compl(T).

Our example using S = AxBzzywv$, T = AwByyzxv$, U = AwByyxzv$, and Γ =

{(w, x), (y, z)} yields the following compl encodings: compl(S) == compl(T) = A0B00150$

and compl(U) = A0B00420$. Moreover, prev(S) == prev(T) == prev(U) = A0B01000$.

By Proposition 5.2.4, we verify that S and T indeed s-match.

It is proven in [4] that comparing the encodings sencode, formalized in Definition 5.2.5,

equivalently achieves the same s-match comparison of Proposition 5.2.4, which uses both of

the encodings prev and compl. We refer to prev, compl, and sencode as structural encodings

(s-encodings). The alternative s-match scheme is presented in Proposition 5.2.6.

Definition 5.2.5 ([4]) Structural encoding (sencode): Given Z as the set of non-

negative integers, the function sencode : (Σ ∪ Π)∗$ → (Σ ∪ Z)∗$ accepts an s-string T

of length n and produces a string Q of length n that 1) encodes constant/terminal symbols

with the same symbol and either 2a) encodes parameters to point to an existing previous

parameter or 2b) encodes remaining parameters to point to previous complementary pa-

rameter symbols. More formally, Q is constructed of individual Q[i] with 1 ≤ i ≤ n where:

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 48

Q[i] =

T [i], if T [i] ∈ (Σ ∪ {$})
prev(T)[i], if prev(T)[i] > 0

compl(T)[i], if compl(T)[i] > 0

0, otherwise

Proposition 5.2.6 ([4]) Two s-strings S and T s-match when sencode(S) == sencode(T).

In our working example, sencode(U) = A0B01420$ and sencode(S) == sencode(T) =

A0B01150$. Thus, S and T are again confirmed to s-match.

When working with suffix structures, it is a necessity to obtain any symbol of a chosen

suffix. It is identified in [4] that, similar to the intricacies of p-suffixes encoded by the

prev encoding (see Lemma 3.2.1), the suffixes at position i, 1 ≤ i ≤ n, of compl(T) and

sencode(T) are not necessarily the compl suffixes (c-suffixes) compl(T [i...n]) and sencode

suffixes (s-suffixes) sencode(T [i...n]) of some n-length s-string T . The following functions

permit constant time access to the individual symbols of the suffixes of the s-encodings.

Definition 5.2.7 ([4]) c-suffix and s-suffix symbol retrieval: Given an n-length s-

string T, let prevT = prev(T), complT = compl(T), and Z represent the set of non-negative

integers. Further, let i, j ∈ Z such that 1 ≤ i ≤ n and 1 ≤ j ≤ (n − i + 1). The func-

tion compl : (i, j) → (Σ ∪ Z ∪ {$}) retrieves the symbol j of the compl suffix (c-suffix)

compl(T [i...n]).

compl(i, j) = compl(T [i...n])[j] =

T [i], if T [i] ∈ (Σ ∪ {$})
complT [j + i− 1], if 0 < complT [j + i− 1] < j

0, otherwise

The function sencode : (i, j) → (Σ ∪ Z ∪ {$}) retrieves the symbol j of the sencode suf-

fix (s-suffix) sencode(T [i...n]).

sencode(i, j) = sencode(T [i...n])[j] =

T [i], if T [i] ∈ (Σ ∪ {$})
prevT [j + i− 1], if 0 < prevT [j + i− 1] < j

complT [j + i− 1], if 0 < complT [j + i− 1] < j

0, otherwise

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 49

We note that the alphabet membership x ∈ X questions of Definition 5.2.7 may be an-

swered instantaneously via function in(x,X) utilizing our map function from Definition 3.2.2

by simply adjusting maxP so that maxP = max{maxdist(prev(T)),maxdist(compl(T))}.

For completeness, we introduce the complementary matching (c-match) problem, which

utilizes only the compl encoding of the s-match problem in Definition 5.2.2.

Definition 5.2.8 Complementary matching (c-match): A pair of s-strings S and T

are c-matches with n = |S| if and only if |S| == |T | and each 1 ≤ i ≤ n corresponds to one

of the following:

1. S[i], T [i] ∈ (Σ ∪ {$}) ∧ S[i] == T [i]

2. S[i], T [i] ∈ Π ∧ ((a) ∨ (b)) /*complement mapping*/

(a) S[i] 6= complement(S[j]), T [i] 6= complement(T [j]) for any 1 ≤ j < i

(b) S[i] == complement(S[i−q]) iff T [i] == complement(T [i−q]) for any 1 ≤ q < i

The following proposition identifies how to detect a c-match.

Proposition 5.2.9 Two s-strings S and T c-match when compl(S) == compl(T).

Our example s-strings S = AxBzzywv$ and T = AwByyzxv$ are said to c-match since

compl(S) == compl(T) = A0B00150$.

In the context of s-strings, we continue to use the p-string theory previously established

in this work for portability of concept and concision. We further highlight nontrivial modi-

fications in order to utilize p-string theory in terms of s-strings.

5.3 Constructing compl and sencode Suffix Arrays

Fast and space efficient pattern matching involves the suffix array (SA) data structure.

The problem of constructing the SA, known as suffix sorting, requires sorting the individual

suffixes of a string into a lexicographical order. Direct suffix sorting requires constructing the

suffix array without the use of a suffix tree. Adjeroh and Nan [8] show how to directly suffix

sort traditional strings by first encoding m-blocks, short prefixes of the individual suffixes of

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 50

a string, with information theoretic codes and subsequently sorting the codes. We showed in

Chapter 3 how to utilize this approach to p-suffix sort the individual p-suffixes of a p-string

to construct the p-suffix array (pSA) in linear time on average. We utilize this same scheme

for suffix sorting the s-encodings.

We now define the suffix arrays for the s-encodings.

Definition 5.3.1 compl suffix array (cSA): The c-suffix array cSA for an s-string T

of length n maintains a lexicographical ordering of the indices i representing individual c-

suffixes compl(T [i...n]) with 1 ≤ i ≤ n, such that compl(T [cSA[q]...n]) ≺ compl(T [cSA[q +

1]...n]) ∀ q, 1 ≤ q < n.

Definition 5.3.2 sencode suffix array (sSA): The s-suffix array sSA for an s-string T of

length n maintains a lexicographical ordering of the indices i representing individual s-suffixes

sencode(T [i...n]) with 1 ≤ i ≤ n, such that sencode(T [sSA[q]...n]) ≺ sencode(T [sSA[q +

1]...n]) ∀ q, 1 ≤ q < n.

Similar in nature to the dynamic p-suffixes discussed in Chapter 3, the suffixes under

the compl and sencode encoding schemes also vary depending on the start of the suffix.

Recall the alphabets used throughout this chapter: Σ = {A,B}, Π = {v, w, x, y, z}, and

Γ = {(w, x), (y, z)}. Consider the s-string Awvx$ and the individual suffixes: Awvx$ →

wvx$ → vx$ → x$ → $. Notice that each traditional suffix is very closely related,

i.e. by removing a symbol, we simply obtain a suffix. Now, consider the compl encoded

suffixes from the s-string Awvx$, which follow: A002$ → 002$ → 00$ → 0$ → $.

The compl encoded suffixes are dynamically changing. Likewise, the sencode suffixes share

a similar dynamic behavior. This is similar to, though not exactly the same as, the behavior

of adjacent p-suffixes in a p-string. The varying nature and exact relationships between the

encoded suffixes is a consequence of the Definitions 5.2.3 and 5.2.5 for compl and sencode

respectively, which differ from the p-suffix under the prev encoding in Definition 2.6.3. Thus,

traditional or parameterized suffix sorting approaches cannot be applied in a straightforward

manner.

At this point, we reach a crossroad. We can näıvely solve the cSA and sSA problems indi-

vidually or further study the relationship between the compl and sencode encoding schemes,

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 51

in order to propose a single solution to address both problems. For conciseness, we fur-

ther observe the relationship between the sencode and the compl schemes to introduce a

common solution. Indeed, the encodings compl and sencode are related as it is obvious

from Definition 5.2.5 that in addition to the prev encoding, sencode also depends on compl.

A significant observation used in this work is that we can exploit the retrieval function in

Definition 5.2.7 to force the sencode(i, j) function to behave like the compl(i, j) function.

Lemma 5.3.3 supplies the proof that a single solution that utilizes the function sencode(i, j)

may be easily manipulated to address the same problem in terms of the compl encoding.

Lemma 5.3.3 Given an n-length s-string T , prevT = 0n, and complT = compl(T), the

function sencode(i, j) in Definition 5.2.7 simulates compl(i, j) for c-suffixes.

Proof Since prevT = 00...0 = 0n and prevT [k] = 0 ∀ k, 1 ≤ k ≤ n, then 0 6< prevT [k]

for all such k. Let σ and π represent the constant/terminal and parameter symbols in T ,

respectively. Thus, sencode(i, j) never returns a symbol in prevT and mirrors the compl(i, j)

function in Definition 5.2.7 by 1) encoding each σ ∈ (Σ∪ {$}) with the same symbol and 2)

encoding each π ∈ Π to the distance of the previous symbol π′ = complement(π) within T .

2

Moreover, since sencode(i, j) also utilizes the prev encoding, we show how to further

exploit the function for both p-strings in Lemma 5.3.4 and traditional strings in Lemma

5.3.5.

Lemma 5.3.4 Given an n-length s-string T , complT = 0n, and prevT = prev(T), the

function sencode(i, j) in Definition 5.2.7 simulates prev(T [i...n])[j] for p-suffixes.

Proof Similar to the proof of Lemma 5.3.3, since complT [j] = 0 ∀ k, 1 ≤ i ≤ n, then

0 6< complT [k] for all such k. Let σ and π represent the constant/terminal and parameter

symbols in T , respectively. Thus, sencode(i, j) will never return a symbol in complT and is

restricted to 1) the encoding of σ ∈ (Σ ∪ {$}) with the same symbol and 2) the encoding of

π ∈ Π to the distance of the previous π in T as formalized by prev in Definition 2.6.3. 2

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 52

Lemma 5.3.5 Given an n-length s-string T , let Σ = (Σ ∪ Π) then Π = ∅, and prevT =

prev(T), the function sencode(i, j) in Definition 5.2.7 simulates T [i+ j − 1] for traditional

suffixes.

Proof Since the symbols in T are such that T [k] ∈ (Σ∪{$}) ∀ k, 1 ≤ k ≤ n, then prev(x) =

x with x ∈ (Σ ∪ {$}) by Definition 2.6.3 and prevT [i...n] == prev(T [i...n]) by Lemma

3.2.1. Subsequently, sencode will retrieve the constant symbols at k = i + j − 1 for every

k, 1 ≤ k ≤ n, namely prevT [k] == T [k]. 2

Lemmas 5.3.3, 5.3.4, and 5.3.5 prove that a solution which uses the sencode(i, j) function

for pattern matching can be used for various solutions. This is a significant step for us to

construct the cSA and sSA using the mechanisms in Chapter 3. Since our solutions in

Chapter 3 involve more than pattern matching, we will require further observations.

Recall the p-suffix sorting of Chapter 3. We use an information theoretic scheme to encode

each m-length m-block parameterized arithmetic code (pAC). The resulting codes maintain

the lexicographical ordering between the p-suffixes, which permits sorting the numbers to

in turn, sort the p-suffixes in linear time on average. An example of the pAC codes is

displayed in Table 5.1. The key to efficiently generating each pAC is to exploit the fact

that neighboring p-suffixes and neighboring m-block pAC codes share the same relationship.

By using this relationship, we can obtain a neighboring m-block code by simply shifting

the neighboring code by removing the old symbol, adding a new symbol, and adjusting

any changed symbol. The challenge of creating the m-blocks for p-suffixes is the dynamic

nature of the symbols in each p-suffix since the positioning of a parameter in the p-suffix

will alter the prev encoding and hence, change the p-suffix m-block code. We handle this

in our pAC algorithm by maintaining the forward distance to the changing parameters

between the pAC codes via the forw data structure, which encodes the forward distance

from π ∈ Π to the succeeding π in the p-string. We employ a similar idea in our cforw data

structure in terms of complementary characters of the compl encoding, which is fundamental

to the sencode(i, j) function described earlier. Since neighboring c-suffixes need to adjust

several complementary symbols to comply with the encoding compl, it is required that we

maintain the forward distance from a symbol π ∈ Π to all of the complementary symbols

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 53

π′ = complement(π) occurring before the next instance of π in the s-string.

Table 5.1: Lexicographical ordering of p-suffixes with pAC, using T = AwxyBwzw$

i pSA T [pSA[i]...n] prev(T [pSA[i]...n]) tag(pAC(pSA[i],m))
m = 2 m = 3 m = n

1 9 $ $ 0.055556 0.055556 0.055556
2 8 w$ 0$ 0.117284 0.117284 0.117284
3 7 zw$ 00$ 0.129630 0.124143 0.124143
4 2 wxyBwzw$ 000B402$ 0.129630 0.125514 0.126135
5 6 wzw$ 002$ 0.129630 0.128258 0.127648
6 3 xyBwzw$ 00B002$ 0.129630 0.135117 0.134606
7 4 yBwzw$ 0B002$ 0.216049 0.211934 0.211452
8 1 AwxyBwzw$ A000B402$ 0.796296 0.792181 0.791793
9 5 Bwzw$ B002$ 0.907407 0.903292 0.903072

Definition 5.3.6 compl forward (cforw) encoding: Given an s-string T of length n,

let forwT = forw(T) and complT = compl(T). We define the function cforw for the

compl encoding of T , namely compl(T), as an extension to the fw encoding by Deguchi et

al. [23, 24] for p-strings. Function cforw 1) encodes constant/terminal symbols with the

same symbol and 2) encodes each parameter p at position i with the forward distance to

all occurrences of complement(p) prior to the next occurrence of p at position forwT [i] or

in the case of no future occurrences of complement(p), an unreachable forward distance n.

More formally, cforw produces an output encoding G with cforw(T) = G for each 1 ≤ i ≤ n:

G[i] =

{complT [i]}, if in(complT [i],Σ ∪ {$})
{n}, if in(complT [i],Z)∧ 6 ∃ T [k], s.t. T [i] == complement(T [k]), i < k < forwT [i]⋃forwT [i]−1
k=i+1 {k − i | T [i] == complement(T [k])}, otherwise

Our proposed cforw data structure, which is constructed using the algorithm in Listing

5.1, maintains for each π ∈ Π the forward distance to all such parameters equivalent

to complement(π) preceding the next instance of π in the s-string. For example, T =

AwxyBwzw$ with n = 9 yields cforw(T) = {A}{1}{3, 5}{3}{B}{9}{9}{9}{$}. We can

represent the cforw encoding by using a space-friendly 2-dimension jagged array, where

constants, terminals, and some parameter symbols require only a singleton array and other

parameters may require a longer array of elements. The actual number of elements in the

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 54

cforw encoding is evident in Lemma 5.3.7. Indexing into the structure is illustrated in the

following examples: cforw(T)[1][1] == A, cforw(T)[2][1] == 1, cforw(T)[3] == {3, 5},

|cforw(T)[3]| == 2, and cforw(T)[3][2] == 5.

Lemma 5.3.7 Given an n-length s-string T and complT = compl(T), the algorithm con-

struct cforw computes cforw(T) in O(n) time using O(n) space.

Proof It is obvious that construct cforw computes the cforw encoding in Definition 5.3.6.

Clearly, the time complexity of algorithm construct cforw is O(n) and since the algorithm

generates the individual elements in the encoding, the total space is also O(n). Moreover, the

actual space requirement is enforced by considering the worst case example for a single array

in the cforw structure. Without loss of generality, suppose that we only consider parameters

in the s-string T = π1π
n−2
2 π1 from the alphabets Σ = ∅, Π = {π1, π2}, and Γ = {(π1, π2)}.

Consider the first instance of π1 in T at position α = 1. Then, the succeeding location

of π1 in T occurs at forw(T)[α] = β via Definition 2.6.8 with β = n and all symbols

in the range (α, β) are such that T [q] == π2 ∀ q, α < q < β. Then, cforw(T)[α] =

{(q − complT [q]) == α | α < q < β} and it is true that each q ∈ cforw(T)[α] obtains

the forward distance to all of the π2 symbols preceding the π1 at position β in T , which

requires |cforw(T)[α]| = (β − α − 1) = (n − 2) elements. Further, the individual T [q]

containing π2 at α < q < β − 1 will encode the forward distance singleton {n}, since they

are directly succeeded by another π2 symbol, which requires (n − 3) elements. Moreover,

cforw(T)[β−1] = {β− (β−1)} = {1} and cforw(T)[n] = {n}, a total of 2 elements. Thus,

the total number of elements encoded is (n− 2) + (n− 3) + 2 ∈ O(n). 2

We identify that the algorithm construct cforw may construct both cforw in Definition

5.3.6 and also, the forw encoding in Definition 2.6.8.

Lemma 5.3.8 Given an n-length s-string T with all pairs in Γ of the form (π, π), the algo-

rithm construct cforw computes forw(T) in O(n) time.

Proof Since algorithm construct cforw computes cforw(T) and (π, π) ∈ Γ ∀ π ∈ Π, then

compl(T) == prev(T) and forw(T) is directly computed from prev(T) by Definition 2.6.8.

2

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 55

Listing 5.1: cforw construction
1 int [] [] c on s t ru c t c f o rw () {
2 int C[n] [1] , i , j
3 // primary encoding
4 for i = 1 to n , step 1 {
5 i f in (complT [i] , Σ ∪ {$})
6 C[i] [1] = complT [i]
7 else
8 C[i] [1] = n
9 }

10 // f u r t h e r encode parameters
11 for i = n to 1 , step −1 {
12 i f in (complT [i] ,Z) {
13 j = i − complT [i]
14 i f C[j] [1] == n
15 C[j] [1] = complT [i]
16 else
17 C[j] = complT [i] ∪ C[j]
18 }
19 }return C
20 }

With the generalized matching provided by the function sencode(i, j) given by Lemmas

5.3.3, 5.3.4, and 5.3.5 and the generalization of the cforw data structure given by Lemma

5.3.8, we can further pursue the suffix sorting for sSA, cSA, pSA and SA by encoding an

m-block of an s-suffix with a structural arithmetic code (sAC). We can näıvely construct an

sAC code via Definition 5.3.9.

Definition 5.3.9 Structural arithmetic coding (sAC) function: For an n-length s-

string T , the algorithm in Listing 5.2 will generate an arithmetic code interval for the m-block

of the s-suffix starting at position i.

In the same fashion as Chapter 3, we assume the use of a uniform cdf , where each symbol

has the same probability p. Also, the function tag is used to determine the midpoint of the

sAC code. The examples in Table 5.2 and Table 5.3 display the codes produced by the sAC

function in terms of both c-suffixes and s-suffixes.

To avoid the theoretical backlog of generating the m-block codes using Definition 5.3.9,

we introduce the δsAC functions to efficiently transition the codes between neighboring s-

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 56

Listing 5.2: Generating arithmetic codes for an m-length prefix of s-suffix i
1 struct AC { long double lo , long double hi }
2 AC sAC(int i , int m) {
3 AC new=(0 ,0) , AC old =(0 ,1) , int end=min{ i+m−1,n}
4 for k=i to end , step 1 {
5 new . h i=old . l o +(o ld . hi−old . l o)∗ cd f [map(sencode (i , k))]
6 new . l o=old . l o +(o ld . hi−old . l o)∗ cd f [map(sencode (i , k))−1]
7 o ld=new
8 }return new
9 }

Table 5.2: Lexicographical ordering of c-suffixes with sAC, using T = AwxyBwzw$

i cSA T [cSA[i]...n] compl(T [cSA[i]...n]) tag(sAC(cSA[i],m))
m = 2 m = 3 m = n

1 9 $ $ 0.055556 0.055556 0.055556
2 8 w$ 0$ 0.117284 0.117284 0.117284
3 7 zw$ 00$ 0.129630 0.124143 0.124143
4 6 wzw$ 000$ 0.129630 0.125514 0.124905
5 3 xyBwzw$ 00B335$ 0.129630 0.135117 0.135120
6 2 wxyBwzw$ 010B335$ 0.141975 0.137860 0.138470
7 4 yBwzw$ 0B030$ 0.216049 0.211934 0.211877
8 1 AwxyBwzw$ A010B335$ 0.796296 0.793553 0.793163
9 5 Bwzw$ B000$ 0.907407 0.903292 0.902767

suffixes, which are not straightforward extensions to the transitioning functions of Chapter

3. We denote the sAC code at m-block i by sACi. Our goal is to transition the code sACi

to sACi+1. In performing this transition, we have to consider two cases: adding a symbol

and removing a symbol.

Case 1: Removing a symbol s from the start of an arithmetic code m-block requires us

to simply delete s when s ∈ (Σ ∪ {$}). When s ∈ Π, we must adjust the next occurrence

of s and the forward occurrences of complement(s) pointed to by the encoding cforw that

precede the next instance of s within the m-block.

Definition 5.3.10 Remove symbol δ−sAC transition: Given the AC code A at m-block

i with q = (i + m − 1) ≤ n, δ−sAC supplies the transition to remove the symbol at position i

and provide the new code A of the (m-1)-block at s-suffix (i+ 1). Let cforwT = cforw(T),

forwT = forw(T), λ1 =
∑|cforwT [i]|

j=1 [(map(sencode(i, k))−map(0))×pk+1 iff k ≤ min{q, n}

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 57

Table 5.3: Lexicographical ordering of s-suffixes with sAC, using T = AwxyBwzw$

i sSA T [sSA[i]...n] sencode(T [sSA[i]...n]) tag(sAC(sSA[i],m))
m = 2 m = 3 m = n

1 9 $ $ 0.055556 0.055556 0.055556
2 8 w$ 0$ 0.117284 0.117284 0.117284
3 7 zw$ 00$ 0.129630 0.124143 0.124143
4 6 wzw$ 002$ 0.129630 0.128258 0.127648
5 3 xyBwzw$ 00B332$ 0.129630 0.135117 0.135114
6 2 wxyBwzw$ 010B432$ 0.141975 0.137860 0.138486
7 4 yBwzw$ 0B032$ 0.216049 0.211934 0.211910
8 1 AwxyBwzw$ A010B432$ 0.796296 0.793553 0.793165
9 5 Bwzw$ B002$ 0.907407 0.903292 0.903072

∧ cforwT [i][j] < forwT [i], k = i + cforwT [i][j]], λ2 = [(map(sencode(i, forwT [i])) −

map(sencode(i+1, forwT [i]−1)))×pβ+1 iff forwT [i] < n], and c = cdf [map(sencode(i, i))−

1].

δ−sAC(i, A) =

(
A.lo−c
p

, A.hi−c
p

)
,if in(sencode(1, i),Σ ∪ {$})(

A.lo−λ1−λ2−c
p

, A.hi−λ1−λ2−c
p

)
, otherwise

Case 2: Adding (i.e. appending) symbol at a position i to the arithmetic code is simply

accomplished by adding the retrieved symbol from the sencode function in Definition 5.2.7.

Definition 5.3.11 Add symbol δ+
sAC transition: Given the AC code A at (m-1)-block

q = (i−m+1) ≥ 1, δ+
sAC supplies the transition to add the symbol at position i and provide the

new code A of the m-block at s-suffix q. Let ∆ = A.hi−A.lo, d = ∆×cdf [map(sencode(q, i))],

and f = ∆× cdf [map(sencode(q, i))− 1]. Then, δ+
sAC(i, A) = (A.lo+ f, A.lo+ d).

At this point, we have devised all of the generalizations and developed the definitions

required to pass the remaining details to the theorems of Chapter 3 in order to generate the

s-encoding suffix arrays via m-block arithmetic codes that represent the encoded suffixes.

Theorem 5.3.12 Given an s-string T of length n, the sAC codes for all the m-length pre-

fixes of the s-suffixes can be generated in O(n) time.

Proof Similar to Theorem 3.3.4, we can generate the m-block codes for s-suffixes. We

generate the first m-block code sAC1 via sAC1 = sAC(1,m), which will require O(m)

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 58

time. Iteratively, we transition the codes to generate neighboring codes by first removing the

leading symbol by sAC2 = δ−sAC(1, sAC1) and then adding the symbol at position (2+m−1)

via a call to sAC2 = δ+
sAC(2 +m− 1, sAC2). Since we are looping to generate n codes, δ+

sAC

requires O(1) time, and in the worst case, δ−sAC observes each element of the O(n) cforw

encoding a single time amortized across n iterations, the theorem holds. 2

Theorem 5.3.13 Given an s-string T of length n, constructing the sSA, cSA, pSA, and

SA can be accomplished in O(n) time on average via structural arithmetic coding.

Proof Since it is possible to generate arithmetic codes that represent m-block s-suffixes in

O(n) time from Theorem 5.3.12, we can suffix sort the s-suffixes represented by the arithmetic

codes to construct the sSA by Theorem 3.3.5 in O(n) time on average. Since Lemmas 5.3.3,

5.3.4, 5.3.5, and 5.3.8 prove that the sencode(i, j) and cforw schemes used in Definitions

5.3.10 and 5.3.11 may be generalized to handle s-suffixes, c-suffixes, p-suffixes, and traditional

suffixes, then Theorem 3.3.5 can be used to construct sSA, cSA, pSA, and SA. 2

5.4 Constructing compl and sencode LCP Arrays

A prerequisite for fast pattern matching with a suffix array SA is to accompany the SA

with a corresponding longest common prefix (LCP) array. The LCP problem is to maintain

the length of the longest prefix common between two neighboring suffixes in the SA. We

show in Chapter 4 how to compute the parameterized LCP (pLCP) array for a p-string by

working through the parameterized longest previous factor (pLPF) problem for p-strings,

which is analogous to the LPF problem for traditional strings. The general problem of LPF,

as defined for some string T , is to obtain the length of the longest factor between a suffix i and

some suffix h starting prior to i in T . Recall that the pLCP and pLPF problems are defined

similarly for the dynamic p-suffixes of a p-string under the prev encoding (see Chapter 4).

Table 5.4 displays the pLCP and pLPF arrays for the p-string T = AwxyBwzw$.

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 59

Table 5.4: pLCP and pLPF computations, using T = AwxyBwzw$

i pSA prev(T [pSA[i]...n]) pLCP [i] prev(T [i...n]) pLPF [i]

1 9 $ 0 A000B402$ 0
2 8 0$ 0 000B402$ 0
3 7 00$ 1 00B002$ 2
4 2 000B402$ 2 0B002$ 1
5 6 002$ 2 B002$ 0
6 3 00B002$ 2 002$ 2
7 4 0B002$ 1 00$ 2
8 1 A000B402$ 0 0$ 1
9 5 B002$ 0 $ 0

5.4.1 cLPF and sLPF

Like Chapter 4, we can compute the LCP arrays for the compl suffix array (cSA) and

the sencode suffix array (sSA) by first defining the LPF problem in terms of the s-encodings.

Definition 5.4.1 compl longest previous factor (cLPF): For an s-string T of length n,

the cLPF array is defined for each index 1 ≤ i ≤ n to maintain the length of the longest

factor between a c-suffix and a previous c-suffix occurring in T . More formally, cLPF [i] =

max({0} ∪ {k | compl(T [i...n]) ==k compl(T [h...n]), 1 ≤ h < i}).

Definition 5.4.2 sencode longest previous factor (sLPF): For an s-string T of length

n, the sLPF array is defined for each index 1 ≤ i ≤ n to maintain the length of the longest

factor between an s-suffix and a previous s-suffix occurring in T . More formally, sLPF [i] =

max({0} ∪ {k | sencode(T [i...n]) ==k sencode(T [h...n]), 1 ≤ h < i}).

Examples of the cLPF and sLPF data structures are displayed in Table 5.5. We highlight

that since the individual c-suffixes and s-suffixes vary in the example or more formally,

compl(T [i...n]) 6= sencode(T [i...n]) ∀ i, 1 ≤ i ≤ n, it is coincidentally the case that cLPF ==

sLPF in this particular example.

To avoid redundancies and maintain concision in this work, we first observe that the

compl and sencode are very closely related. The significance of Lemmas 5.3.3, 5.3.4, and

5.3.5 is that a solution to the sLPF problem using the sencode(i, j) function will also provide a

solution to the cLPF, pLPF, and traditional LPF problems. Using the same proof in Lemma

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 60

Table 5.5: cLPF and sLPF computations, using T = AwxyBwzw$

i compl(T [i...n]) cLPF [i] sencode(T [i...n]) sLPF [i]

1 A010B335$ 0 A010B432$ 0
2 010B335$ 0 010B432$ 0
3 00B335$ 1 00B332$ 1
4 0B030$ 1 0B032$ 1
5 B000$ 0 B002$ 0
6 000$ 2 002$ 2
7 00$ 2 00$ 2
8 0$ 1 0$ 1
9 $ 0 $ 0

4.3.3 for the pLPF problem, it is evident that the neighboring elements in the sLPF array

may be extended, which is the key to linear time LPF computations (see [7] and Theorem

4.3.4). Our compute all LPF algorithm is a linear time solution to the collection of LPF

data structure variants (sLPF , cLPF , pLPF , and LPF).

Lemma 5.4.3 The sLPF for an s-string T of length n is such that sLPF [i] ≥ sLPF [i −

1]− 1 with 1 < i ≤ n.

Proof Using Proposition 5.2.6, Definition 5.2.5, and Definition 5.4.2, the proof is identical

to the proof of Lemma 4.3.3. 2

Theorem 5.4.4 proves the generality of the compute all LPF algorithm in Listing 5.3.

Theorem 5.4.4 Given an n-length s-string T and the appropriate suffix array, the algorithm

compute all LPF can construct the sLPF , cLPF , pLPF , and LPF array in O(n) time.

Proof Using Lemma 5.4.3 to implement algorithm compute all LPF and upgrading the Λ

matching functionality with the sencode(i, j) retrieval function in Definition 5.2.7 that clearly

introduces O(1) work, the proof of Theorem 4.3.4 identifies that we can construct the longest

previous factor for the suffixes in the given suffix array matched by Λ in O(n) time. Since

Lemmas 5.3.3, 5.3.4, and 5.3.5 prove that in addition to matching s-suffixes in an sSA, the

function sencode(i, j) can be exploited to match c-suffixes in a cSA, p-suffixes in a pSA, and

traditional suffixes in a traditional SA, the theorem holds. 2

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 61

Listing 5.3: Generalized LPF computation
1 int [] compute all LPF (int be f o r e< [] , int be f o r e> []) {
2 int LPF[n] , LPF<=0, LPF>=0, i , j , k
3 for i = 1 to n , step 1 {
4 j = max{0 ,LPF<−1}
5 k = max{0 ,LPF>−1}
6 LPF< = Λ(i , b e f o r e< [i] , j)
7 LPF> = Λ(i , b e f o r e> [i] , k)
8 LPF[i] = max{LPF< ,LPF>}
9 }

10 return LPF
11 }
12 int Λ(int a , int b , int q) {
13 i f (b == −1) return 0
14 while (sencode(a , q)==sencode(b , q))
15 q++
16 return q
17 }

5.4.2 cLCP and sLCP

Initially, we define the traditional LCP problem in terms of the compl and sencode

encoding schemes for s-strings.

Definition 5.4.5 compl longest common prefix (cLCP) array: The cLCP array for

an s-string T of length n maintains the length of the longest common prefix between neigh-

boring c-suffixes in a compl suffix array (cSA). We define the computation clcp(α, β) =

max{k | compl(α) ==k compl(β)}. Then, cLCP is defined on each c-suffix i with 1 ≤ i ≤ n

such that:

cLCP [i] =

{
0, if i == 1

max{k | clcp(T [cSA[i]...n], T [cSA[i− 1]...n])}, if 2 ≤ i ≤ n

Definition 5.4.6 sencode longest common prefix (sLCP) array: The sLCP ar-

ray for an s-string T of length n maintains the length of the longest common prefix be-

tween neighboring s-suffixes in an sencode suffix array (sSA). We define the computation

slcp(α, β) = max{k | sencode(α) ==k sencode(β)}. Then, sLCP is defined on each s-suffix

i with 1 ≤ i ≤ n such that:

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 62

sLCP [i] =

{
0, if i == 1

max{k | slcp(T [sSA[i]...n], T [sSA[i− 1]...n])}, if 2 ≤ i ≤ n

Table 5.6 displays example cLCP and sLCP arrays for an s-string T = AwxyBwzw$. We

note that even though the suffixes differ such that compl(T [i...n]) 6= sencode(T [i...n]) ∀ i, 1 ≤

i ≤ n, it is coincidentally the case that cLCP == sLCP for this particular example.

Table 5.6: cLCP and sLCP computations, using T = AwxyBwzw$

i cSA compl(T [cSA[i]...n]) cLCP [i] sSA sencode(T [sSA[i]...n]) sLCP [i]

1 9 $ 0 9 $ 0
2 8 0$ 0 8 0$ 0
3 7 00$ 1 7 00$ 1
4 6 000$ 2 6 002$ 2
5 3 00B335$ 2 3 00B332$ 2
6 2 010B335$ 1 2 010B432$ 1
7 4 0B030$ 1 4 0B032$ 1
8 1 A010B335$ 0 1 A010B432$ 0
9 5 B000$ 0 5 B002$ 0

Similar to both the observation made by Crochemore and Ilie [7] to relate the LPF and

LCP arrays and our Proposition 4.4.1 to connect the pLPF and pLCP arrays, we also

identify that both the sLPF and cLPF arrays are permutations of the sLCP and cLCP

arrays, respectively.

Proposition 5.4.7 The sLPF array is a permutation of sLCP and the cLPF array is a

permutation of cLCP .

It was observed in Chapter 4 that we can use an algorithm that addresses the pLPF

problem to also compute the pLCP and LCP arrays. Likewise, we can employ our com-

pute all LPF algorithm in the function compute all LCP in Listing 5.4 to compute the

sLCP , cLCP , pLCP , and LCP arrays, since the sencode(i, j) function can retrieve the

appropriate types of suffix symbols necessary for matching encodings.

Theorem 5.4.8 Given an n-length s-string T , the algorithm compute all LCP can con-

struct the sLCP , cLCP , pLCP , and LCP array in O(n) time.

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 63

Listing 5.4: Generalized LCP computation
1 int [] compute all LCP (int be f o r e< [] , int a f t e r< []) {
2 int LCP[n] , M[n] , i
3 M = compute all LPF (be f o r e< , a f t e r<)
4 for i = 1 to n , step 1
5 LCP[i] = M[SA[i]]
6 return LCP
7 }

Proof It is clear that the concept of Theorem 4.4.2 for generating a pLCP array from a

pLPF algorithm is generalized by our compute all LPF implementation with the matching

component Λ that uses the function sencode(i, j), which may be generalized via Lemmas

5.3.3, 5.3.4, and 5.3.5. Since Theorem 5.4.4 claims O(n) time, the theorem holds. 2

5.5 s-Matching

Currently, the s-match problem is addressed with the s-suffix tree [4]. It is possible to

search for an m-length s-string pattern P in an n-length s-string T in O(m log(|Σ| + |Π|))

time using the s-suffix tree. Given the original suffix array search algorithms presented in [6],

the suffix arrays for the s-encodings prev, compl, and sencode, and the respective LCP data

structures presented in this work, we describe the first suffix array solutions to the s-match

problem using Propositions 5.2.4 and 5.2.6.

Traditionally, the key to efficiently pattern matching an m-length pattern P on a suffix

array of the string T of length n is to adapt the solutions introduced by Manber and Myers [6].

Recall the background discussion in Section 2.1 of pattern matching via the suffix array and

binary search philosophies of [6]. We want to closely mirror the pattern matching approach

in [6] requiring O(m+log n) search time, in addition to the preprocessing required for a suffix

array SA and LCP data structure. This solution is simply referred to as the “MM improved

algorithm” throughout this section. In the MM improved algorithm, the LCP array is used to

further preprocess the LCP between each midpoint M with 1 < M < n and the two suffixes

L and R such that M = bL+R
2
c to construct the O(n) data structures LLCP and RLCP ,

which signify the number of symbols that already match between a suffix and a midpoint

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 64

in order to avoid unnecessary re-matching. Consider lcp(α, β) = max{k | α ==k β}. In

essence, the idea is to preprocess LLCP values between the left suffixes L and a midpoint

M , namely lcp(T [SA[M]...n], T [SA[L]...n]), and also the right suffixes R for a midpoint M ,

namely lcp(T [SA[M]...n], T [SA[R]...n]). Thus, additional preprocessing of the LCP array

is required to construct the LLCP and RLCP arrays. It was identified in [35, 36, 37]

that retrieving the computation lcp(T [SA[i]...n], T [SA[j]...n]) for any i and j is achieved by

computing the range minimum query RMQ(i, j), which retrieves the minimum value in the

range [i, j] of the standard LCP array. The RMQ calculation was proven by [35, 36, 37]

to require O(n) preprocessing in O(n) space with O(1) query time, which is ideal since the

preprocessing time is of the same order as suffix array construction and the query time is

clearly absorbed in the MM improved algorithm. We observe that the RMQ computation

is also relevant for the LCP data structures in this work. For discussion purposes of time

and space complexity, we acknowledge that the traditional lcp, the plcp of Definition 2.6.7,

the clcp of Definition 5.4.5, and the slcp of Definition 5.4.6 may be implemented with the

RMQ computation.

s-Matching via prev and compl

Consider an m-length s-string P , our task is to detect an s-match between P and some

prefix, say S, of a suffix in the s-string T . The first s-match method displayed in Proposition

5.2.4 states that a pair of s-strings, in our case P and S, will match when prev(P) ==

prev(S)∧ compl(P) == compl(S). To implement the s-match of Proposition 5.2.4 using the

suffix array pattern matching approaches proposed by Manber and Myers [6], we require a

suffix array and corresponding LCP array for the encodings prev(T) and compl(T). In this

work, we have shown how to construct the p-suffix array (pSA) and c-suffix array (cSA) to

suffix sort the encodings prev(T) and compl(T) respectively. We also show how to compute

the pLCP array for prev(T) and the cLCP array for compl(T). Let prevP = prev(P),

complP = compl(P), prevT = prev(T), and complT = compl(T) and then, discard P and

T . Given prevP , complP , the pSA of prevT , the pLCP of pSA, the cSA of complT , and

the cLCP of cSA, the discussion proceeds to detecting an s-match of P in T .

In order to efficiently s-match using Proposition 5.2.4, we strive to use the MM improved

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 65

search algorithm in [6] between pSA and cSA sequentially. Since the lexicographical ordering

between the pSA and cSA arrays are not necessarily the same, i.e. pSA 6= cSA ∀ T ∈

{Σ∪Π}∗$ with an arbitrary Γ, we cannot simply exploit the ordering of one suffix array, say

pSA, to refine the binary search interval of a match in the lexicographically unrelated cSA,

vice versa. To discuss this intricacy in more detail, suppose that prevP matches at suffix i in

prevT and complP does not match at the same suffix i in complT . Conceptually, the notion

that either complP ≺ compl(T [i...i+m− 1]) or complP � compl(T [i...i+m− 1]) does not

identify where to continue the binary search in the cSA given the possibility that prevP may

occur O(n) times in pSA and moreover, complP may not occur at all in cSA. Thus, we must

first find the leftmost and rightmost instances of prevP in pSA, namely the interval Iprev =

[Lprev, Rprev] and the range of instances of complP in cSA, namely Icompl = [Lcompl, Rcompl].

Finding the respective L and R values can be computed individually by a straightforward

modification to the MM improved search algorithm in [6] using the lcp computation to

require O(m+ log n) time. Let ∆Iprev = Rprev −Lprev and ∆Icompl = Rcompl −Lcompl. When

∆Iprev == 0 ∨∆Icompl == 0, i.e. an interval from L to R does not exist in both pSA and

cSA, the search can be terminated and report that P does not s-match in T . In practice,

the cSA may prove to be more restrictive than the pSA since the compl encoding is directly

impacted by both the individual symbols of an s-string and the choice of complementary

symbol mappings.

After the intervals Iprev and Icompl are targeted and ∆Iprev > 0 ∧ ∆Icompl > 0, we have

reached a milestone in that P might s-match in T . The new challenge is to validate that

an s-match has indeed occurred. So, we align the suffix indices between the intervals and

determine if the intervals share an index in common, i.e. {i == j | i = pSA[a], j =

cSA[b], Lprev ≤ a ≤ Rprev, Lcompl ≤ b ≤ Rcompl}. This is achieved simply by radix sorting the

suffix indices in the intervals and walking through the elements once to report a common

index between both lists. In the worst case, since we spend O(m + log n) to detect the

intervals and clearly the number of suffixes in each interval may be of order O(n) to demand

possibly O(n) time to validate a match, the search requires O(n + m + log n) time, which

is quite costly for a search! The time disadvantage is compounded by the need for the data

structures prevP and complP of O(m) space plus the fundamental data structures prev(T),

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 66

compl(T), pSA, cSA, pLCP , and cLCP that require O(n) space, in addition to the overhead

required to implement the algorithm. The time complexity and practical space limitations

provide the motivation to introduce an improved time and practical space algorithm to

s-match via suffix arrays.

s-Matching via sencode

The core problem discovered when trying to s-match an m-length s-string P in the s-

string T of length n using the pSA and cSA is the added cost to validate a match between

the suffix arrays. We are regulated to validating an s-match because of notion that the

pSA and cSA arrays are lexicographically unrelated, so, the existence of a possible order

O(n) matches of P in the pSA of T will not resolve the fact that the corresponding suffix

in cSA may never match and hence, consume O(n) time in the process. Proposition 5.2.6

identifies that we can detect an s-match by simply using the sencode encoding scheme. This

eliminates the challenges of suffix array pattern matching with the encodings prev and compl

by restricting the s-match problem to a single sencode encoding, which makes the s-match

via suffix arrays mirror the O(m + log n) time complexity achieved using a p-suffix array

for the p-match problem in [23, 24] analogous to the traditional pattern matching problem

using suffix arrays in [6]. Since the s-string is a variant of the p-string and the MM improved

algorithm can be extended for p-matching with p-strings using a single suffix array pSA

[23, 24], the MM improved algorithm can clearly be extended to accommodate the s-match

problem with a single suffix array sSA.

The prerequisites for s-matching with the sencode encoding scheme are the s-suffix array

(sSA) and the sLCP array for T , which are constructed in this work. In addition, we

must obtain the compl(T) and prev(T) encodings for the sencode suffix retrieval function in

Definition 5.2.7 to retrieve s-suffix symbols of T , whereas sencode(P) is used for the pattern

P since we only work with the first s-suffix of P . Theorem 5.5.1 formalizes the claim.

Theorem 5.5.1 Given an n-length s-string T , the sSA, and the sLCP data structure, it

is possible to s-match, c-match, p-match, or traditional match an m-length s-string P in

O(m+ log n) time.

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 67

Proof In order to adapt the MM improved algorithm to s-match using sSA and sLCP ,

we must first consider the preprocessing required for each query. Since we are provided

with the m-length s-string P , we need to perform the sencode on the s-string in order to

compare it with s-suffixes of T , which is accomplished by sencodeP = sencode(P). Since the

sencode function uses the prev and compl functions that require O(m) time via an auxiliary

O(|Π|) mapping structure with |Π| ≤ m enforced by a single mapping, then only O(m)

preprocessing time is needed prior to each query. To extend the MM improved algorithm

for pattern matching via suffix arrays in O(m+ log n) time to apply to s-suffixes given sSA

and sLCP , we only require an additional mechanism for pattern matching that retrieves

any symbol from any s-suffix of T in constant time, which is achieved by the sencode(i, j)

function in Definition 5.2.7. Since sencode(i, j) is defined to retrieve symbols of s-suffixes

and can be generalized to retrieve symbols from c-suffixes, p-suffixes and traditional suffixes

via Lemmas 5.3.3, 5.3.4, and 5.3.5, respectively, the theorem holds. 2

Our improved s-match algorithm is analogous to the MM improved algorithm, claiming

the same time complexity. The new s-match algorithm is an advancement also in terms of

practical space when compared to the approach discussed previously requiring the use of

two suffix arrays and LCP data structures, since s-matching with sencode only requires one

suffix array sSA and sLCP array. In practice, the s-match algorithm is generalized for the

p-match, c-match, and traditional pattern matching problems, which is similar to the other

s-match algorithms presented in this work, providing the added incentive to implement a

single core solution to address multiple problems with minimal adjustments to the data and

alphabets.

5.6 Summary

The s-string theory, which is introduced in [4] using suffix trees as the exclusive data

structure, is advanced in this work to include the suffix array data structure. We provide

an information theoretic approach to construct the suffix arrays for the s-encodings compl

and sencode in linear time on average. Then, the traditional LPF problem [7] is generalized

for the s-encodings of an s-string. It is shown how to further manipulate the LPF algorithm

Richard A. Beal Chapter 5. Structural Matching via Suffix Arrays 68

to also construct the LCP arrays for the s-encodings in linear time in the worst case. We

culminate the chapter by using our data structures to offer the first s-match solution via

suffix arrays. It is identified how to extend traditional pattern matching via suffix arrays in

[6] to s-match with the same running time O(m+ log n) per query, where n is the length of

the s-string text T and m is the length of the located pattern P . A significant observation

exploited throughout this work is the capability to generalize the s-string encoding sencode

to permit all algorithms to apply also to p-strings and traditional strings.

69

Chapter 6

Conclusion

6.1 Summary

Our information theoretic approach to suffix sorting p-string suffixes and s-string suffixes

in linear time on average is a creative approach to suffix array construction for sophisticated

string encodings. The information theoretic approach to suffix sorting the suffixes of a p-

string and s-string allows the sorting of numeric codes to, in turn, sort the suffixes, resembling

the work of [8]. This approach is transformative for the suffixes of p-strings and s-strings

because of the dynamic nature of the encoded suffixes. Numeric codes represent a trivial

and tangible lexicographical ordering for an m-block prefix of a dynamically changing suffix,

which would otherwise require an involved mechanism to maintain the proper lexicographical

ordering.

Before this work, the LPF problem was limited to the confines of traditional strings. By

redefining the traditional LPF problem in terms of p-strings and s-strings, we liberate the

capabilities of the LPF data structure to apply to more generalized strings. Subsequently,

we introduce an application for our previously constructed suffix arrays. Similar to [7], we

show a linear time solution for our respective LPF data structures. We are the first to show

that it is indeed possible to use the LPF algorithm to construct the respective LCP data

structure. Such is a novel application of the LPF algorithm to reuse functionality and help

construct yet another fundamental string data structure.

Prior to this thesis, the s-match problem was exclusively solved with s-suffix trees. Our

Richard A. Beal Chapter 6. Conclusion 70

work on suffix arrays and LCP arrays for s-strings provides the necessary data structures

to propose the first suffix array solution to the s-match problem, which claims the same

time complexity as the mirroring pattern matching via suffix array approach for traditional

strings [6].

A significant contribution of this thesis is the clear incentive to approach string ap-

plications from the standpoint of s-strings or p-strings. We consistently show how minor

adjustments to the data or alphabets can adjust the behavior of an algorithm to apply to

traditional strings, p-strings, and s-strings, highlighting the generality of our algorithms,

data structures, and overall contributions to the string analysis community.

6.2 Future Research

We contribute to the advancement of p-string and s-string theory in this work. Our

studies have introduced future research areas to continue the advancement of the p-string

and s-string.

Recall that p-strings and s-strings are productions from a given constant symbol alphabet

Σ and a given parameter alphabet Π, such that Σ∩Π = ∅. The s-string introduces the notion

of complementary parameter symbols in the alphabet Γ. Suppose that the alphabets are not

given, the question is: how can we best choose the constants σ ∈ Σ and the parameters

π ∈ Π with limited knowledge of the intended application? How can we further process

the individual π ∈ Π to identify which parameters are complementary symbols in Γ? It is

intriguing to consider a symbol, say α, where the initial case is α ∈ (Σ ∪Π) and the further

processing of a module M can “classify” the symbol as either α ∈ Σ or α ∈ Π. Identifying

the technique used by module M , which may possibly be influenced by studies in the areas

of pattern recognition and natural language processing, is a pivotal research question.

Our work introduces new techniques to suffix sort the p-string suffix encodings and the

s-string suffix encodings in linear time on average. The notion that linear time suffix sorting

is achieved for traditional strings via induced sorting (see [8, 12, 14, 15]) introduces a new

goal for p-strings and s-strings. To improve the worst case suffix sorting for p-strings and

s-strings, it will be required to identify the intricate relationship between the dynamically

Richard A. Beal Chapter 6. Conclusion 71

encoded suffixes. More specifically, the challenge is to determine the technique in which

sorting a methodically chosen partition of dynamically encoded suffixes correctly implies

the sorting of the encoded suffixes of the remaining partitions. Improvements to the worst

case suffix sorting of p-strings and s-strings will further encourage the study of suffix array

applications.

In this work, we present the LPF problem for p-strings and s-strings. Another area

of research is to further use the proposed LPF data structures to study duplication and

compression in terms of p-strings and s-strings. Perhaps, the generalization potential of the

parameterized and structural string will catapult p-string and s-string solutions to become

the preferred way to implement string algorithms.

72

References

[1] Baker, B. Parameterized pattern matching: Algorithms and applications. J. Comput.
Syst. Sci. 52(1), 28-42 (1996)

[2] Baker, B. Parameterized duplication in strings: Algorithms and an application to
software maintenance. SIAM J. Comput. 26(5), 1343-1362 (1997)

[3] Baker, B. A theory of parameterized pattern matching: Algorithms and applications.
In Proceedings of STOC’93, pp. 71-80, ACM, New York (1993)

[4] Shibuya, T. Generalization of a suffix tree for RNA structural pattern matching. Al-
gorithmica. 39(1), 1-19 (2004)

[5] Shibuya, T. Generalization of a suffix tree for RNA structural pattern matching. In
Proceedings of SWAT’00, pp. 393-406, Springer, London (2000)

[6] Manber, U., Myers, G. Suffix arrays: A new method for on-line string searches. SIAM
J. Comput. 22, 935-948 (1993)

[7] Crochemore, M., Ilie, L. Computing longest previous factor in linear time and appli-
cations. Inf. Process. Lett. 106(2), 75-80 (2008)

[8] Adjeroh, D., Nan, F. Suffix sorting via Shannon-Fano-Elias codes. Algorithms. 3(2),
145-167 (2010)

[9] Baker, B. Finding clones with dup: Analysis of an experiment. IEEE Trans. Software
Eng., 33(9), 608-621 (2007)

[10] Gusfield, D. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge, UK (1997)

[11] Smyth, W. Computing Patterns in Strings. Pearson, New York (2003)

[12] Adjeroh, D., Bell, T., Mukherjee, A. The Burrows-Wheeler Transform: Data Com-
pression, Suffix Arrays and Pattern Matching. Springer, New York (2008)

[13] Ukkonen, E. On-line construction of suffix trees. Algorithmica. 14, 249-260 (1995)

[14] Kärkkäinen, J., Sanders, P., Burkhardt, S. Linear work suffix array construction. J.
ACM. 53, 918-936 (2006)

REFERENCES 73

[15] Manzini, G., Ferragina, P. Engineering a lightweight suffix array construction algo-
rithm. Algorithmca. 40, 33-50 (2004)

[16] Kosaraju, S. Faster algorithms for the construction of parameterized suffix trees. In
Proceedings of FOCS ’95, pp. 631-637, ACM, Washington, DC, (1995)

[17] Cole, R., Hariharan, R. Faster suffix tree construction with missing suffix links. SIAM
J. Comput. 33(1), 26-42 (2003)

[18] Lee, T., Na, J., Park, K. On-line construction of parameterized suffix trees for large
alphabets. Inf. Process. Lett. 111(5), 201-207 (2011)

[19] Amir, A., Farach, M., Muthukrishnan, S. Alphabet dependence in parameterized
matching. Inf. Process. Lett. 49, 111-115 (1994)

[20] Baker, B. Parameterized pattern matching by Boyer-Moore-type algorithms. In Pro-
ceedings of SODA’95, pp. 541-550, ACM, Philadelphia, PA (1995)

[21] Idury, R., Schäffer, A. Multiple matching of parameterized patterns. Theor. Comput.
Sci. 154, 203-224 (1996)

[22] Aho, A.V., Corasick, M.J. Efficient string matching: An aid to bibliographic search,
Commun. ACM 18, 333-340 (1975)

[23] Deguchi, S., Higashijima, F., et al. Parameterized suffix arrays for binary strings. In
Proceedings of PSC’08, pp. 84-94, Czech Republic (2008)

[24] Tomohiro, I., Deguchi, S., et al. Lightweight parameterized suffix array construction. In
Proceedings of IWOCA’09. LNCS, vol. 5874, pp. 312-323. Springer, Heidelberg (2009)

[25] Ziv, J., Lempel, A. A universal algorithm for sequential data compression. IEEE Trans.
Inf. Theory. 23(3), 337-343 (1977)

[26] Crochemore, M., Ilie, L., Smyth, W. A simple algorithm for computing the Lempel
Ziv factorization. In Proceedings of DCC’08, pp. 482-488 (2008)

[27] Main, M. Detecting leftmost maximal periodicities. Discrete Appl. Math. 25(1-2), 145-
153 (1989)

[28] Zeidman, B. Software v. software. IEEE Spectr. 47, 32-53 (Oct. 2010)

[29] Karp, R., Rabin, M. Efficient randomized pattern-matching algorithms. IBM J. Res.
Dev. 31. 249-260 (1987)

[30] Moffat, A., Neal, R., Witten, I. Arithmetic coding revisited. ACM Trans. Inf. Syst.
16, 256-294 (1995)

[31] Cover, T., Thomas, J. Elements of Information Theory. Wiley (1991)

[32] Karlin, S., Ghandour, G., et al. New approaches for computer analysis of nucleic acid
sequences. PNAS. 80(18), 5660-5664 (1983)

REFERENCES 74

[33] Devroye, L., Szpankowski, W., Rais, B. A note on the height of suffix trees. SIAM J.
Comput. 21, 48-53 (1992)

[34] Kasai, T., Lee, G., et al. Linear-time longest-common-prefix computation in suffix
arrays and its applications. In Proceedings of CPM’01. LNCS, vol. 2089, pp. 181-192
(2001)

[35] Bender M., Farach M. The lca problem revisited. In Proceedings of LATIN’00, pp.
88-94, Springer, London (2000)

[36] Sadakane, K. Succinct representations of lcp information and improvements in the com-
pressed suffix arrays. In Proceedings of SODA’02, pp. 225-232, ACM-SIAM, Philadel-
phia, PA (2002)

[37] Kim, D., Sim, J., Park, H., Park, K. Linear-time construction of suffix arrays. In
Proceedings of CPM’03, pp. 186-199, Springer, Heidelberg (2003)

	Parameterized Strings: Algorithms and Data Structures
	Recommended Citation

	Parameterized Strings: Algorithms and Data Structures

		2011-05-05T11:09:31-0400
	John H. Hagen

