
Graduate Theses, Dissertations, and Problem Reports 

2012 

Multispectral scleral patterns for ocular biometric recognition Multispectral scleral patterns for ocular biometric recognition 

Simona G. Crihalmeanu 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Crihalmeanu, Simona G., "Multispectral scleral patterns for ocular biometric recognition" (2012). Graduate 
Theses, Dissertations, and Problem Reports. 4843. 
https://researchrepository.wvu.edu/etd/4843 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F4843&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/4843?utm_source=researchrepository.wvu.edu%2Fetd%2F4843&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


MULTISPECTRAL SCLERAL PATTERNS
FOR OCULAR BIOMETRIC RECOGNITION

Simona G. Crihalmeanu

Dissertation submitted to the
Benjamin M. Statler College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy
in

Electrical Engineering

Arun Ross, Ph.D., Chair
Lawrence Hornak, Ph.D.
Donald Adjeroh, Ph.D.

Xin Li, Ph.D.
Vernon Odom, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2012

madolan
Typewritten Text

madolan
Typewritten Text
Keywords: biometrics;multispectral;sclera;iris;conjunctival vasculature;segmentation;ocular

madolan
Typewritten Text

madolan
Typewritten Text

madolan
Typewritten Text



ABSTRACT

MULTISPECTRAL SCLERAL PATTERNS

FOR OCULAR BIOMETRIC RECOGNITION

Simona G. Crihalmeanu

Biometrics is the science of recognizing people based on their physical or be-

havioral traits such as face, fingerprints, iris, and voice. Among the various

traits studied in the literature, ocular biometrics has gained popularity due

to the significant progress made in iris recognition. However, iris recognition

is unfavorably influenced by the non-frontal gaze direction of the eye with

respect to the acquisition device. In such scenarios, additional parts of the

eye, such as the sclera (the white of the eye) may be of significance. In this

dissertation, we investigate the use of the sclera texture and the vasculature

patterns evident in the sclera as potential biometric cues. Iris patterns are bet-

ter discerned in the near infrared spectrum (NIR) while vasculature patterns

are better discerned in the visible spectrum (RGB). Therefore, multispectral

images of the eye, consisting of both NIR and RGB channels, were used in

this work in order to ensure that both the iris and the vasculature patterns

are successfully imaged.

The contributions of this work include the following. Firstly, a multispec-

tral ocular database was assembled by collecting high-resolution color infrared

images of the left and right eyes of 103 subjects using the DuncanTech MS



3100 multispectral camera. Secondly, a novel segmentation algorithm was de-

signed to localize the spacial extent of the iris, sclera and pupil in the ocular

images. The proposed segmentation algorithm is a combination of region-

based and edge-based schemes that exploits the multispectral information.

Thirdly, different feature extraction and matching method were used to deter-

mine the potential of utilizing the sclera and the accompanying vasculature

pattern as biometric cues. The three specific matching methods considered

in this work were keypoint-based matching, direct correlation matching, and

minutiae matching based on blood vessel bifurcations. Fourthly, the potential

of designing a bimodal ocular system that combines the sclera biometric with

the iris biometric was explored.

Experiments convey the efficacy of the proposed segmentation algorithm

in localizing the sclera and the iris. The use of keypoint-based matching was

observed to result in the best recognition performance for the scleral patterns.

Finally, the possibility of utilizing the scleral patterns in conjunction with the

iris for recognizing ocular images exhibiting non-frontal gaze directions was

established.
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Chapter 1

Introduction

Biometrics is the science of recognizing a person based on physical traits such as face,

fingerprint, and iris or behavioral characteristics such as gait, keystroke dynamics,

and signature [2]. Conventional techniques to authenticate an individual are based

on identification cards (something that you carry) and passwords or PINs (something

that you know). An issue associated with these ways of authentication is that the

cards, passwords and PINs can be stolen, lost, or simply forgotten. The need to

reliably determine and verify the identity of a person in a convenient, easy, and

accessible way has stimulated intense research in the field of biometric authentication.

Rooted in the latin word oculus that means eye, the term ocular biometrics is

used to bring together all the biometric modalities associated with the eye and its

surrounding region. Defined as an organ of sight, a specialized light-sensitive sensory

structure, the eye allow us to observe and learn about the surrounding world. A

cross section (Figure 1.1) reveals the main parts of the eye: the extraocular muscles

that controls the movement of the eyeball within the eye socket; the three layers

surrounding the eyeball, the sclera, the choroid and the retina with the cornea, the

iris and conjunctiva in front; the anterior and posterior chambers separated by the
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Chapter 1 Introduction

Figure 1.1 Cross-sectional view of the human eye

lens and filled with aqueous humor and vitreous humor; the optic nerve and the

macula with the fovea.

In the course of time, parts of the eye were proved to be powerful discriminatory

features among individuals. The most famous are the rich texture of the iris (Section

1.1) and the blood vessels observed on the retina (Section 1.2). Recent studies are

considering the shape of the eye and its surrounding region, named periocular region,

as a possible biometric cue (Section 1.3). The present work attempts to prove that the

sclera texture and the vasculature patterns exhibited on its surface, Figure 1.5 may be

considered an ocular biometric. Like any other biometric modality, the sclera texture

and the vasculature patterns have to conform with the well known criteria [3]: uni-

versality, uniqueness, permanence, acceptability, collectivity and circumvention. The

sclera is a part of the natural anatomy of the human eye, rendering its universality.

As a relatively new research topic in the field of biometrics, no previous thorough

analysis has been conducted in regards to its uniqueness. However, studies on other

vascular tissues, such as the fundus of the eye, confirms the distinctiveness of blood
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vessel patterns, has provided evidence of the long lasting form of the vessels and their

durability through the years as age progresses. Outside factors such as exposure to

chemicals, physical trauma, and some diseases may influence the appearance of the

sclera region. Images of the sclera region are easily collected with commercial digital

cameras when a proper amount of light is directed towards the eye, and therefore it

can be easily photographed without intrusion and discomfort to the subject. Staring

at a specific point is not required, and only a fraction of a second is needed to capture

the image of the eye; the subject is not obligated to be stationary for long periods

of time. Reproducing the rich texture of the sclera region is difficult, making this

modality invulnerable to imitation and tampering.

1.1 Iris recognition

Among various biometric modalities, the iris has been assumed to be reliable, accu-

rate, and stable over long periods of time [4], [5], [6], [7], [8]. The iris is the annular

colored structure in the eye located behind the cornea and the aqueous humour, and

in front of the lens (Figure 1.2). Its role is to control the amount of light that enters

the eye through the central opening called the pupil. The iris has two sets of muscles:

a sphincter muscle around the pupil that contracts in bright lighting, thereby decreas-

ing the pupil size, and one that radiates outward from the pupil, enlarging it in dim

light. The frontal view of the iris is separated into two regions called the pupillary

zone and the ciliary zone. They are separated by the collarette, which is the thickest

region in the iris and where the sphincter and the dilater muscles overlap. Visible

features of the iris that are important for recognition are the collarette; the pigment

related features, such as crypts and pigment spots [9]; the features controlling the

size of the pupil, such as radial and concentric furrows; and the visible anomalies due
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Figure 1.2 View of the frontal iris

to aging and trauma [10]. The advantages of using the iris for recognition are that it

is protected by the cornea, though it is still visible; it is acquirable from a distance

and presents good processing speed; it has a very rich texture, therefore affording a

high degree of randomness and uniqueness; it is difficult to tamper surgically. More

over, there are two irides, that are different even for twins. However, the iris is ob-

structed by eyelashes, and specific lighting can cause specular reflection due to the

iris’s location behind a curved, wet surface. Also, the iris contracts and dilates con-

stantly, causing variable non-linear deformations. The matching performance of the

iris recognition system is greatly and unfavorably influenced by the direction of the

gaze of the eye and the distance with respect to the acquisition device.

1.2 Retina recognition

A more dated identification method based on vasculature patterns are retinal scans

[3], [11], [12]. The retina, the innermost layer of the eye, is a sensory tissue that acts

as a camera film to create an image. It contains millions of photo-receptors called

cones and rods, which capture the incoming light, and through chemical and electrical

processes, trigger electrical impulses. These impulses advance along the optical nerve
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Figure 1.3 Illustration of blood vessels in the retina (Adapted from
en.wikipedia.org).

to the brain where image is formed. The light is focused on the retina in the macula.

The center of the macula is called the fovea which is accountable for sharp vision.

The cones are used for detecting bright light and colors, mostly packed in the fovea.

The rods are used for dim light and peripheral and night vision. They dominate

the peripheral macula. The retina exhibits a myriad of blood vessels, all converging

towards the optical disk. Their richness and tortuosity are highly accurate, difficult

to forge and stable in time (Figure 1.3). Since retina decays rapidly after death the

detection of vitality is not necessary. However, capturing the image of the back of

the eye is invasive, slow, and expensive. A beam of infrared light is directed into the

pupil for 10 to 15 seconds to illuminate the retina. This creates discomfort for the

subject and is perceived as a health threat by the general public. Medical conditions

that affect retinal scans are eye diseases such as cataract and glaucoma. Suited for

environments requiring maximum security - in the military and government - retinal

scans are unlikely to be deployed for general public use.
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Figure 1.4 Periocular region

1.3 Periocular region

Recently, researchers explored the feasibility of using the periocular region, defined

as the region surrounding the eye, Figure 1.4, as a biometric cue [13], [14], [15]. The

periocular region’s role is significant when the eye is occluded (e.g., due to blinking).

Its advantages are that it can be captured without strict viewing angle and distance

constraints, and it does not necessarily require the subject’s cooperation. Eye shape

and skin texture encoded by local or global features can be used as soft biometrics [14].

A limitation of the periocular region is that the features are not as distinguishable as

iris, resulting in lower accuracy.

1.4 Sclera region

In contrast, visible on the sclera (the white of the eye), a structure of fine blood vessels

may be imaged without discomfort for the subject (Figure 1.5). These patterns,

composed of more or less prominent veins, are visible at all times, except when the

gaze direction is downward and the eye is covered by the eyelid. Their richness

is increased in non-frontal eye images, thus allowing the sclera region to be used

in addition to iris recognition for more complete and accurate identification. The

sclera [16], [17] is the external layer of the eye, a protective coat serving to maintain
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the form of the eyeball under the pressure of the eye’s internal liquids. It also provides

an attachment for ligaments and the six extraocular muscles which rotate the eyeball

in the eye socket. It is a firm, dense membrane with thickness that varies from 0.8mm

to 0.3mm, containing collagen and elastic fibers. The sclera is organized in four layers

(from outermost to innermost): episclera, stroma, lamina fusca, and endothelium.

The sclera is generally avascular; only its outer surface, the episclera, contains the

blood vessels that nourish it. In the back of the eye, the sclera is continued with the

dural sheath of the optic nerve, and anterior sclera is completed by the cornea (a clear

and transparent layer at the center of the eye, located in front of the iris, and whose

main purpose is to focus the light as it enters the eye). The anterior part of the sclera,

up to the edge of the cornea (the sclero-corneal junction), and the inside of the eyelid,

are covered by the conjunctival membrane. The conjunctival membrane is a thin

layer containing secretory epithelium that helps lubricate the eye for eyelid closure

and protects the ocular surface from bacterial and viral infections. The part of the

conjunctiva that covers the inner lining of the eyelids is called palpebral conjunctiva.

The part of the conjunctiva that covers the outer surface of the eyeball is called bulbar

conjunctiva and the area where palpebral conjunctiva becomes the bulbar conjunctiva

is called the conjunctival fornix. The conjunctiva is semitransparent, colorless, and

contains blood vessels. Anatomically, the blood vessels in bulbar conjunctiva can be

differentiated from those of the episclera. While the conjunctival blood vessels can

slightly move with the conjunctival membrane, those in episclera will not [18]. The

rich vasculature patterns revealed in the episclera and conjunctival membrane are

together referred to as conjunctival vasculature in this study.
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Figure 1.5 Frontal view of the eye

1.5 Perceived challenges in scleral patterns pro-

cessing

Acquiring and processing images of the sclera surface and the conjunctival vascula-

ture patterns is challenging due to the approximately spherical surface of the eyeball,

external lighting conditions, anatomical structure of the layers of the sclera and the

fineness of vascular patterns. In order to image the scleral surface with its blood

vessel patterns, a sufficient amount of light has to be directed into the eye. This

light touches the spherical surface of the sclera, after passing through conjunctiva.

Optical processes such as reflection and refraction are difficult to control and cre-

ate specular reflections with a large variety of intensity values, different topologies,

shapes, sizes and locations. The randomness of the specular reflection is accentuated

by the rapid movement of the eyeball. According to the angle of incoming ray of

light to the sclera, some specular highlights have intensities close to the background

intensity values; hence detecting them is difficult. Because of the round shape of the

eye, there are large variations in intensity values across the sclera surface. Further,

due to the low contrast between the blood vessels in the foreground and the texture

in the background, classical methods of segmentation based on edge detection are

less robust and do not provide good results. Therefore, alternative methods that

overcome the problem of intensity variations have to be used. Upon rubbing the
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eye, the conjunctiva can slightly move relative to the sclera surface generating small

deformations of its blood vessels. Matching the conjunctival vasculature is greatly

impacted by these deformations. Medical conditions can also influence the perfor-

mance of the segmentation and feature extraction algorithms in all processing steps.

Diabetes, for example, is associated with the loss of capillaries, macrovessel dilation

and changes in tortuosity in conjunctiva [19], [20]. Hyperemia, conjunctivitis, hemor-

rhage, episcleritis [18] influence the amount of blood vessels seen on the sclera surface

and affect the contrast between the blood vessels and the background (the eye be-

comes reddish). Age is another factor that influences the appearance of the sclera

surface. Conjunctiva can stretch and loosen from the underlying sclera leading to

the formation of conjunctival folds. The white of the eye becomes yellowish and an

increase in melanin in conjunctiva can also appear. In younger people, blood vessels

may be less visible. With age the conjunctival vasculature becomes thicker and more

visible.

The implicit image challenges enumerated above makes sclera segmentation pro-

cess a difficult task. An accurate segmentation of the sclera region along the eyelid

contour and the iris boundary is important to further prevent challenges at feature

extraction level. When the entire image of the eye is used for processing, the blood

vessels are difficult to distinguish among other different types of lines such as wrinkles,

crows feet, and eyelashes. Therefore, a good segmentation of the sclera region that

clearly exhibits the blood vessels is necessary. The sclera is not a uniform white; more

over approaching the lacrimal caruncle (caruncula lachrymalis 1, a small, pink, globe-

like nodule located at the corner of the eye), the sclera gradually adopts a reddish

tint. Due to the natural redness of the sclera near the corner of the eye, the pixels

pertaining to the sclera region are difficult to differentiate from the pixels pertaining

1en.wikipedia.org
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to the skin. Also, an improper illumination of the curved surface of the eye, may

result in darker regions in the corner of the eye opposite to lacrimal caruncle. These

issues create problems for the segmentation process.

The thresholding and clustering methods (k-means) for segmentation are employed

in the presented work with some degree of performance. The key in thresholding

method is to select the proper threshold [21]. A common threshold that is optimal

for the segmentation of the sclera in all the images is difficult to find. When the

clustering method k-means is used, the final solution depends largely on the initial

set of clusters. The algorithm is fast but does not guarantee a good sclera-eyelid

contour detection.

The histogram-based segmentation method [22] consists of finding the peaks and

valleys in the chart in order to locate clusters. The image of the eye is divided in

four regions of interest: the iris; the sclera; the skin and the pupil, eyelashes included.

This method is fast; it takes one pass to read the intensity value of the pixels and

to create the histogram. However, it is difficult to identify which peaks (clusters)

and valleys (the boundaries between the regions of interest) are significant. The four

clusters often overlap, meaning they are undistinguishable.

Boundaries between regions that are to be segmented are characterized by changes

in the intensity value of pixels. They are known as edges. There are many different

ways in which edges can be detected [23], [21], [22]. Unfortunately, these methods

result in a multitude of disconnected segments from which it is difficult to select the

proper boundaries of the sclera region. It is also challenging and problematic to con-

tinue the gaps along the contour between the sclera and the eyelids.

Region growing, and split-and merge methods [21] were employed without satis-

factory results due to the large variation is intensity values across the sclera region.

There are other algorithms that could potentially be used to segment the sclera region
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such as partial differential equations (level set), graph partitioning and many others.

The image of the iris is better discerned in near infrared (NIR) spectrum, while

vasculature patterns are better observed in the visible spectrum (RGB). Therefore,

multispectral images of the eye (Section 2.1), consisting of both NIR and RGB chan-

nels, were used in this work in order to ensure that both the iris and the vasculature

patterns are successfully imaged. This dissertation is the first extensive work and

first attempt to demonstrate the validity of using the sclera texture and the con-

junctival vasculature visible on its surface as a new biometric modality. This idea

came to reality with the submission of Dr. R. Derakhshani’s and Dr. Arun Ross’

patent [24]. This work include the following enumerated contributions. Firstly, a

multispectral ocular database (2 collections of 103 and 31 subjects) was assembled

by collecting high-resolution color infrared images of the left and right eye using the

DuncanTech MS3100 multispectral camera under constrained conditions (Chapter 2).

Secondly, a novel segmentation algorithm was designed to localize the spatial extent

of the iris, sclera and pupil in the ocular images. The proposed segmentation al-

gorithm is a combination of region-based and edge-based schemes that exploits the

multispectral information (Chapter 2, 3). Thirdly, different feature extraction and

matching methods were used to determine the potential of utilizing the sclera and

the accompanying vasculature pattern as biometric cues. The three specific matching

methods considered in this work were keypoint-based matching, direct correlation

matching, and minutiae based on blood vessel bifurcations (Chapter 2, 4). Fourthly,

the potential of designing a bimodal ocular system that combines the sclera biometric

with the iris biometric was explored (Chapter 3, 4). It is well demonstrated that iris

recognition performance is greatly and negatively influenced by the occlusions, the

lighting conditions and by the direction of the gaze of the eye with respect to the

acquisition device [25]. The more the gaze direction deviates from the frontal pose,
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the more information from the iris texture is lost and the more information from the

sclera region is gained. Depending on the richness and locality of the conjunctival

vasculature exposed on the surface of the sclera, prominent veins may be visible when

iris is occluded. More over, the combined sclera and the iris texture may be used in

non-cooperative recognition. In the attempt to establish the utility of the sclera re-

gion as a biometric cue, the analysis of the sclera surface is also considered in low

resolution, visible spectrum, unconstrained images. The purpose is to evaluate the

matching performance of the sclera texture and the blood vessels in each case and

to compare their performances when moving from high to low resolution images, and

changing the lighting conditions, acquiring distances and viewing angles (Chapter 5).

1.6 Summary

This chapter is an introduction to biometrics as a discipline. It presents the ocu-

lar biometric modalities, each with its advantages and disadvantages. Among these

modalities, iris recognition gained popularity in the last decade due to its reliability,

stability for long period of times and accuracy. However, the matching performance

of the iris recognition system is greatly and unfavorably influenced by the direction

of the gaze of the eye with respect to the acquisition device. To compensate the loss

of information in non-frontal images, the sclera texture and the blood vessels seen on

its surface are proposed as a new biometric modality to be combined with the iris

patterns. An anatomical introduction of the sclera is presented along with the per-

ceived challenges in scleral pattern processing. General segmentation methods used

with some degree of success to localize the sclera region are presented. The chapter

ends by enumerating the contributions of this work to initiate research in this field,

mainly to investigate the use of sclera texture and the conjunctival vasculature as a
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biometric cue and the potential of designing a bimodal ocular system that combines

the scleral patterns with the iris patterns is proposed.
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Chapter 2

Methods for sclera patterns

matching using high resolution

multispectral images

In order to prove the feasibility of using the sclera surface in an ocular biometric

system, it is essential to determine what features could be exploited for identifica-

tion, how powerful is their discriminatory potential, and what methods are the most

effective to characterize this biometric. In this dissertation, the design of three differ-

ent feature extraction and matching methods is presented. The first one is based on

interest-point detection and utilizes the entire sclera region including the vasculature

pattern; the second is based on minutiae points on the vasculature structure; and the

third is based on direct correlation. The block diagram of the proposed system is

shown in Figure 2.1. In this approach the multispectral collection 1 is used.
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Figure 2.1 Block diagram for enhancing and matching multispectral con-
junctival vasculature.

2.1 Image acquisition

Multispectral imaging captures the image of an object at multiple spectral bands

often ranging from the visible spectrum to the infra-red spectrum. The small visible

spectrum band [21] is represented by three narrow sub-bands called the red, green and

blue channels, that range from 0.4µm to 0.7µm. The infrared spectrum is divided into

NIR (near infrared), MIR (midwave infrared), FIR (far infrared) and thermal bands,

ranging from 0.7µm to over 10µm. In this work, images of the eye were collected

using the Redlake (DuncanTech) MS3100 multispectral camera 1. The camera has

three array sensors based on CCD technology. Between the lenses and the sensors

there is a color-separating prism to split the ingoing broadband light into three optical

channels. The camera acquires imagery of four spectral bands from a three channel

optical system (Figure 2.2). The CIR (color Infrared)/RGB configuration outputs

1Hi-Tech Electronics, Spectral Configuration Guide for DuncanTech 3-CCD Cameras,

http://www.hitech.com.sg
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Figure 2.2 The DuncanTech MS3100 camera: CIR/RGB Spectral Configu-
ration (Adapted from Hi-Tech Electronics: www.hitech.com.sg).

three channels represented as a 2D matrix of pixels that are stacked on top of each

other along the third dimension; the three channels correspond to the near-infrared

(NIR), red component, and a Bayer mosaic-like pattern [26].

Some of the characteristics of the multispectral camera, as described in the datasheet

2, are displayed in the Table 2.1 and 2.2.

Figure 2.3 shows an example of a CIR image along with its components. The first

channel - the NIR component - is stored as a separate image. The second channel -

the red component - is stored as the red component of the RGB image. The green and

blue components are obtained from the third channel of the CIR/RGB configuration

through a Bayer pattern demosaicing algorithm 3 described in Section 2.1.1. The red

pixels on the Bayer color array are ignored. As specified by the sensor manufacturer,

the center wavelength of each spectral band is as follows: blue - 460 nm, green- 540

nm, red - 660 nm, and NIR - 800 nm.

The interface used to collect multispectral images is composed of an ophthalmol-

ogist’s slit-lamp mount and a light source. The mount consists of a rest chin to

position the head and a mobile arm to which the multispectral camera is attached.

2www.GeospatialSystems.com
3RGB “Bayer” Color and MicroLenses, www.siliconimaging.com/RGB Bayer.htm
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Table 2.1 Specifications for DuncanTech MS3100

Snapshot

Color separating prism with 3 CCD imaging sensors

1392(H) x 1040(V) resolution (x3), 4.3 million pixels of data

Image 3-5 spectral bands from 400-1100 nm

Standard models for RGB, CIR, and RGB/CIR

Custom multispectral configurations

Frame rates up to 7.5 fps

”Smart Camera” features for advanced control and processing

Display composite, false color, or individual color plane images

Independent gain, offset, and exposure control for each channel

RS-232 input for configuration and control

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.3 (a) Color-infrared image (NIR-Red-BayerPattern). (b) NIR com-
ponent. (c) Red component. (d) Bayer pattern. (e) RGB image. (f) Green
component. (g) Blue component. (h) Composite image (NIR-Red-Green).
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Table 2.2 Performance specifications for DuncanTech MS3100

Performance specifications

Image device 3 of 1/2 inch Interline Transfer CCD

Pixel size 4.65 x 4.65 m

Pixel clock rate 14.318 MHz

Sensing area 7.6 x 6.2 mm (1/2 inch format)

Frame rate 7.5 frames/second

Digital image output 8 bits x 4 taps or 10 bits x 3 taps (32 bits

max), EIA-644, RS-422, or CameraLink

Signal/Noise 60 dB

Electronic shutter Independent shutter time per channel

Range: 1/8000 - 1/7.5 sec.

Gain selection Independent gain per channel 0-36 dB

Offset selection Independent offset per channel 0-127

counts

Command/Control input RS-232 port

Operating voltage 12 VDC

Power consumption 10 Watts
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(a) (b) (c) (d)

Figure 2.4 (a) Right-eye-looking-left (R L). (b) Right-eye-looking-right
(R R). (c) Left-eye-looking-left (L L). (d) Left-eye-looking-right (L R).

While the person is gazing to the left or to the right, Figure 2.4, the camera can be

easily manipulated to focus on the white of the eye. The light source (SL1-Filter,

StellarNet Inc.) illuminates the eye using a spectral range from 350 nm to 1700 nm,

and is projected onto the eye via an optic fiber guide with a ring light attached to

its end (HeiScope Annular Ring Light Guide). The amount of light is around 5.6 lux

measured with cal-LIGHT 400L lightmeter (Cooke Corporation) at the temple, near

the eye. Due to the reflective qualities of the eyeball, pointing a light source directly

at the subject’s eye creates a glare on the sclera. The issue is resolved by directing

the light source such that the incoming rays to the eyeball are approximately per-

pendicular to the pupil region. This is not always possible due to subtle movements

of the eyeball. Thus, glare is not always contained within the pupil region and may

overlap with the iris.

The multispectral camera generates images with a resolution of 1040 × 1392 × 3

pixels. The first 17 columns are removed due to artifacts. The final size of the images

is 1035 × 1373 × 3.

Collection 1

Videos of the right and left eye are captured from 103 subjects (Table 2.3), with
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each eye gazing to the right or to the left. Eight images per eye per gaze direc-

tion are selected from the video, based on a proper illumination, less specular

reflection and in focus images. The total number of images is 3280. For one

subject, only data from the right eye was collected due to medical issues. Work-

ing with images from the same video allows us to bypass some of the challenges

encountered by Crihalmeanu et al. [27] primarily due to viewing angle. The

process of frame selection ensures that there is no remarkable change in pose.

The camera is focused on the sclera region. Similarly the light is directed as

much as possible towards the sclera region with the specular reflection as much

as possible on the pupil. As a result in some images, mostly for left eye looking

right (L R) and right-eye-looking-left (R L) the iris is less illuminated in the

area close to the nose region.

Collection 2

Videos of the right and left eye are captured from 31 subjects (Table 2.3), with

each eye gazing to the right or to the left. To increase the intra-class variation,

the participant is asked to keep the head still and alternate the gaze direction

between looking at the ring of lights (left or right side direction) and looking

to the camera (frontal gaze direction) as illustrated in Figure 2.4. While gazing

to the left or to the right, the subject is asked to look at a mark located on

the ring of lights. Four images per eye per gaze direction are selected from the

video when looking left or looking right, after each change in gaze direction

from frontal to the side. The total number of images is 496. The multispectral

camera and the light are focused on the iris region. Due to the movement of

the eye and the selection process of the frames, the four ocular images/eye/gaze

have variations in viewing angle. Since the light is directed to the iris and due

to the curvature of the eyeball, some images have sclera region less illuminated
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Table 2.3 High resolution multispectral database

Collection 1 Collection 2

1 video/left eye 1 video/left eye

1 video/right eye 1 video/right eye

Video 30 frames/sec Video 30 frames/sec

Camera focused on the sclera Camera focused on the iris

8 consecutive images/eye/gaze 4 images/eye/gaze (each image is

collected after the gaze direction is

changed from frontal to left or right)

Initial image size: 1040 x 1392 x 3, Initial image size: 1040 x 1392 x 3,

17 columns removed (artifacts), 17 columns removed (artifacts),

Final image size: 1035 x 1373 x 3 Final image size: 1035 x 1373 x 3

103 subjects 31 subjects

Total of 3280 images Total of 496 images

in the corner of the eye opposite to lacrimal caruncle.

Both multispectral collections contain images of the eye with different iris colors.

Based on the Martin-Schultz scale 4, often used in physical anthropology, we classify

the images as light eyes (blue, green gray), mixed eyes (blue, gray or green with brown

pigment, mainly around the pupil) and dark eyes (brown, dark brown, almost black).

2.1.1 From Bayer mosaic pattern to RGB

The Bayer-like pattern [28] is due to the placement of a grid of tiny color filters on

the face of the CCD sensor array to filter the light so that only one of the colors (red,

4http://wapedia.mobi/en/Eye color
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Figure 2.5 Bayer pattern: a) Bayer pattern grid. b) Green component, red
pixel interpolation. c) Green component, blue pixel interpolation (Adapted
from www.siliconimaging.com/RGB Bayer.htm).

blue or green) reaches any given pixel. Here, 25% of the pixels are assigned to blue,

25% to red and 50% to green. Blue and green components are obtained from the

Bayer mosaic pattern through interpolation 5. As illustrated in Figure 2.5, the value

of the green component on a red pixel is interpolated according to the strength of the

correlation on the vertical or horizontal direction of the neighboring red pixels:

G(R) =


(G1 +G3)/2 if | R1−R3 |<| R2−R4 |

(G2 +G4)/2 if | R1−R3 |>| R2−R4 |

(G1 +G2 +G3 +G4)/4 if | R1−R3 |=| R2−R4 |

(2.1)

The green component is interpolated on a blue pixel as follow:

G(B) =


(G1 +G3)/2 if | B1−B3 |<| B2−B4 |

(G2 +G4)/2 if | B1−B3 |>| B2−B4 |

(G1 +G2 +G3 +G4)/4 if | B1−B3 |=| B2−B4 |

(2.2)

The blue component values for green pixels are obtained in a similar way.

5RGB ”Bayer” Color and MicroLenses, www.siliconimaging.com/RGB Bayer.htm
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2.2 Image denoising

The red, green, blue and NIR components obtained from the CIR images are in

general noisy (Figure 2.6(a)(c)(e)(g)). The denoising algorithm employed is based

on a wavelet transformation. A double-density complex discrete wavelet transform

(DDCDWT) [29], which combines the characteristics and the properties of the double-

density discrete wavelet transform (DDDWT) [30] and the dual-tree discrete wavelet

transform (DTDWT) [1], is used. The transformation is based on two scaling func-

tions and four distinct wavelets such that one pair of wavelets form an approximate

Hilbert transform pair and the other pair of wavelets are offset from one other by one

half. It is implemented by applying four 2-D double density discrete wavelet trans-

forms in parallel to the input data with different filter sets for rows and columns,

yielding 32 oriented wavelets (Figure 2.7(a)) along one of six angles at ±15,±45,±75

degrees 6. The method is shift-invariant, possesses improved directional selectivity

and is based on FIR perfect reconstruction filter banks as illustrated in Figure 2.7(b).

For all scales and subbands, the magnitudes of the complex wavelet coefficients are

processed by soft thresholding that sets the coefficients with values less than a thresh-

old to zero and subtracts the threshold values from the non-zero coefficients. Original

and denoised red, green, blue and NIR images are presented in Figure 2.6. Visual

differences are not pronounced due to image rescaling. After denoising, all spectral

components (NIR, red, green and blue) are geometrically resized by a factor of 1/3

resulting in the final size of 310 × 411.

6http://taco.poly.edu/selesi/DoubleSoftware/index.html
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.6 Denoising with Double Density Complex Discrete Wavelet Trans-
form. a) Original NIR. b) Denoised NIR. c) Original red component. d)
Denoised red component. e) Original green component. f) Denoised green
component. g) Original blue component. h) Denoised blue component. Vi-
sual differences between original and denoised images are not pronounced
due to image rescaling.

2

2

2

H0

H1

H2

G0

G1

G2

2

2

2

H0

H1

H2

2

2

2

H0

H1

H2

2

2

2

2

2

2

G0

G1

G2

2

2

2

G0

G1

G2

(a) (b)

Figure 2.7 (a) Plot of Complex 2-D Double-Density Dual-Tree Wavelets.
(b) Iterated filterbank for the Double-Density Complex Discrete Wavelet
Transform [1].
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2.3 Specular reflection detection and removal

Specular reflections have to be detected and removed as they can impact the sclera

segmentation process (described in Section 2.4). The light directed to the eyeball

generates specular reflection that has a ring-like shape, caused by the shape of the

source of illumination, and highlights, due to the moisture of the eye and the curved

shape of the eyeball. Both are detected and removed by a fast inpainting algorithm. In

some images, the ring-like shape may be an incomplete circle, ellipse, or an arbitrary

curved shape with a wide range of intensity values. It may be located partially

in the iris region, making its detection and removal more difficult especially since

the iris texture has to be preserved as much as possible. The specular reflections

are detected using different intensity threshold values for each component: 0.60 for

NIR, 0.50 for red and 0.80 for green. Only regions with less then 1000 pixels in

size are labeled as specular reflection, are morphologically dilated and inpainted. In

digital inpainting, the information from the boundary of the region to be inpainted

is propagated smoothly inside the region. The value to be inpainted at a pixel is

calculated using a PDE equation 7 in which partial derivatives are replaced by finite

differences between the pixel and its eight neighbors. Results are presented in Figure

2.8.

2.4 Sclera Region Segmentation

When the entire image of the eye is used for enhancing the conjunctival vasculature,

it is difficult to distinguish between the different types of lines that appear in it:

wrinkles, crows feet, eyelashes, blood vessels. Therefore, a good segmentation of the

sclera region that clearly exhibits the blood vessels is necessary. Even if the light is

7http://www.mathworks.com/matlabcentral/fileexchange/4551
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(a) (b)

Figure 2.8 Specular reflection removal: (a) Original image. (b) Original
image with specular reflection removed.

directed to the pupil region to avoid specular reflections, the curved nature of the

eyeball presents a wide variety of intensity values across the sclera surface. Brighter

skin regions as a result of illumination, and occasionally the presence of mascara,

will make the segmentation of the sclera along the contour of the eyelid a challenging

process. The algorithm to segment the sclera region has three main steps as described

below.

2.4.1 Coarse sclera region segmentation: The sclera-eyelid

boundary

The method employed to segment the sclera region along the eyelid contour is inspired

by the work done in the processing of LandSat imagery (Land + Satellite) [31]. A set

of indices are used to segment the vegetation regions in aerial multispectral images.

Similarly, the index that we use for coarse sclera segmentation is based on the fact

that the skin has lesser water content than the sclera, and hence exhibits a higher

reflectance in NIR. Since water absorbs NIR light, the corresponding regions based
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(a) (b) (c)

Figure 2.9 Sclera region segmentation. The first row displays the original
image, the second row displays the normalized sclera index: (a) Dark colored
iris. (b) Light colored iris. (c) Mixed colored iris.

on this index appear dark in the image. The algorithm is as follows:

1. Compute an index called the normalized sclera index NSI(x, y) = NIR(x,y)−G(x,y)
NIR(x,y)+G(x,y)

,

where NIR(x, y) and G(x, y) are the pixel intensities of the NIR and green

components, respectively, at pixel location (x, y). The difference NIR − G is

larger for pixels pertaining to the sclera region; it is then normalized to help

compensate for the uneven illumination. Figure 2.9 displays the normalized

sclera index for all three categories as specified by the Martin-Schultz scale:

light colored iris, dark colored iris and mixed colored iris.

2. Locate sclera by thresholding the NSI image with the threshold value η = 0.1.

Figure 2.10(a) displays the scatter plot between the NIR intensity values and

the corresponding green intensity values for all pixels in the image. The pixels

above the threshold (η = 0.1) represent the background region while the rest

represent the sclera region. Changing the value of η will modify the slope of the

boundary line between the pixels of the two segmented regions.
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Figure 2.10 Sclera region segmentation. The first row displays the results
for dark colored iris, the second row displays the results for light colored iris,
and the third row displays the results for mixed colored iris: (a) NIR vs.green
intensity values. (b) Threshold applied to NSI. (c) Histogram of the NSI. (d)
Sclera mask contour imposed on original composite image.
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The output of the thresholding operation is a binary image 8, Figure 2.10(b).

For each category in the Martin-Schultz classification, the largest connected

region in the binary image is composed of sclera region only; or the sclera and

the iris; or the sclera and a portion of the iris. For dark irides (brown and

dark brown), the sclera region excluding the iris is localized (Figure 2.10(d) the

first row, referred henceforth as IS). Thus, in this case, further segmentation

of the sclera and iris is not required. For light irides (blue, green, etc.), regions

pertaining to both the sclera and iris are segmented (Figure 2.10(d) the second

row, referred henceforth as IS). Here, further separation of the sclera and iris is

needed. For mixed irides (blue or green with brown around pupil), the region of

the sclera and the light colored portion of the iris are segmented as one region

(referred henceforth as IS). The dark portion of the iris (brown) is not included

(Figure 2.10(d) the third row). Here, further separation of the sclera and the

portion of the iris is needed. To finalize the segmentation of the sclera, i.e.,

to find the boundary between the sclera and the iris regardless of the color of

the iris, the pupil is detected. The convex hull of the segmented region IS and

the pupil region will contain the sclera, the pupil, and the iris or the portion of

the iris. This region is referred to as ISIP and is further processed. Since the

proposed algorithm does not deduce the color of the iris, it is applicable to all

images irrespective of the eye color. As seen in Figure 2.10(b), the location of

the pupil is also visible either as a dark region that does not overlap the sclera

region (in dark and mixed irides) or as a lighter disk within the sclera region

(in light irides). This information can be exploited only if the color of the iris

is known in advance. Therefore, in Section 2.4.2 we present an automatic way

8MathWorks, Image Processing Toolbox, Finding Vegetation in a Multispectral Image,

http://www.mathworks.com/products/image/demos.html

29



Chapter 2 Methods for sclera patterns matching using high resolution multispectral
images

of finding the pupil location regardless of the color of the iris.

2.4.2 Pupil region segmentation

The location of the pupil is needed to determine ISIP and to find the boundary

between the sclera and the iris regardless of the color of the eye. Hence, the accurate

determination of its boundary is not necessary. In NIR images, the pupil region is

characterized by very low intensity values and, by employing a simple threshold, the

pupil region is obtained. However, this isolates the eyelashes as well. In order to

isolate only the pupil, the following steps are undertaken:

1. Geometrically resize the NIR component by a factor of 1/3 and apply power-law

transformation [21] to its pixels: IPL = c ∗ IxI , where c = 1 is a constant, IPL is

the output image, II is the input NIR image and x = 0.7.

2. Threshold IPL with a value of 0.1. The resulting binary image, IBW , has the pupil

and eyelashes denoted by 1.

3. Find the contour of the convex hull of the sclera region as segmented in Section

2.4.1, ISCH , Figure 2.11 (b), (d).

4. Use Hough transform for line detection. Select and remove the highest peak cor-

responding to the longest line, Figure 2.11 (c), (d).

5. Fit an ellipse to the remaining sclera contour points, E(a, b, (x0, y0), θ), where a,

b, (x0, y0) and θ correspond to the length of the semi-major axes, length of

the semi-minor axes, the center of the ellipse, and its orientation, respectively

Figure 2.11 (e). Define an elliptical mask (to detect the pupil region) to extract

the pixels located within the ellipse.
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6. Impose the ellipse mask on the binary image IBW obtained in step 2. The result

is a binary image that will contain the pupil, and possibly eyelashes, as logical

1 pixels, IP .

7. Count the number of connected objects N in IP . If N > 1, through an iterative

process, decrease the ellipse’s semi-major and semi-minor axis (by 2%) and

construct new elliptical masks that when imposed on the binary image IBW will

render a smaller value for N. The connected object for N = 1 will correspond

to the location of the pupil.

while N > 1 do

a = a− 2
100

× a,

b = b− 2
100

× b,

EMASK = E(a, b, (x0, y0), θ)

IP = IBW ∩ EMASK

find N in IP

end while

8. Fit a new ellipse E to the dilated region corresponding to the location of the

pupil. Compute IP = IBW ∩ EMASK . Even if low intensity regions in the iris

are inadvertently selected, the pupil region has by far the largest area among

all connected objects.

9. Fit an ellipse to the pixels pertaining to the pupil region to find the pupil mask,

PMASK . Resize the pupil mask to the original NIR image size Figure 2.11 (f).

The procedure described above is applied to all the images regardless of the color

of the iris. For 15 images, the algorithm failed to correctly segment the pupil.
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Figure 2.11 Pupil region segmentation. The first row displays the results for
dark colored iris, the second row displays the results for light colored iris: (a)
Original image. (b) Convex hull of the sclera region. (c) Hough transform
and the highest peak. (d) Sclera region contour and the longest line. (e)
The ellipse fitted to the sclera contour. (f) Output of the pupil segmentation
algorithm.
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(a) (b) (c)

Figure 2.12 Sclera region segmentation.The first row displays the contour of
the sclera cluster and pupil mask, the second row displays the Contour of the
convex hull of the sclera cluster and pupil mask imposed on the composite
image ISIP . (a) Dark colored iris. (b) Light colored iris. (c) Mixed colored
iris.

2.4.3 Fine sclera region segmentation: The sclera-iris bound-

ary

As mentioned in Section 2.4.1, the convex hull ISIP , of the segmented region IS and

the pupil region (Figure 2.12 second row) will contain the sclera, the pupil and the

iris or the portion of the iris. A finer segmentation of the iris is needed regardless of

the color of the eye. As in [32], we define four measures called “proportion of sclera”

p(x, y) in four directions: north, south, west and east. In ISIP , the value of p(x, y)

is set to 0 for all the pixels outside the convex hull region. For a pixel (x, y) inside

the convex hull, the proportion of sclera in the north direction, p↑(x, y), is computed

as the mean of all the pixels of column y above the location (x, y). The proportion

of sclera in the south direction, p↓(x, y), is computed as the mean of all the pixels of

column y below the location (x, y). The proportion of sclera in the west direction,

p←(x, y), is computed as the mean of all the pixels along row x, left of the location
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(a) (b) (c) (d) (e)

Figure 2.13 Sclera region segmentation. The first row displays the results for
dark colored iris, the second row displays the results for light colored iris, and
the third row displays the results for mixed colored iris: (a) Green component.
(b) Red Component. (c) Proportion of sclera in north direction p↑(x, y). (d)
Proportion of sclera in south direction p↓(x, y). (e) The proportion of sclera
in east direction p←(x, y) for left gaze direction.

(x, y) and the proportion of sclera in the east direction, p→(x, y), is computed as the

mean of all the pixels along row x, right of the location (x, y). Figure 2.13 (c)-(e)

illustrates this procedure.

We use the k-means clustering algorithm (k = 2) to segment the iris, and find the

limbus (sclera-pupil) boundary. The algorithm uses the pixels contained within the

segmented region ISIP as its input. Each pixel is viewed as a five-dimensional entity

consisting of the intensity value of the green component, intensity value of the red

component, the proportion of sclera in the north p↑(x, y) and south directions p↓(x, y).

According to the gaze direction - looking-to-the-left or looking-to-the-right - the pro-

portion of the sclera in the west or east direction as assessed in the red component

is used as the fifth feature. To detect the direction of the gaze, the y coordinate of

the centroid of the segmented region IS and the centroid of the pupil region is found
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and compared. For the left gaze direction ypupil > ysclera and proportion of sclera in

the east direction is used; for the right gaze direction ypupil < ysclera and the propor-

tion of sclera in the west direction is used. Euclidean distances between the origin

of the coordinate system and the centroid of each cluster are computed in order to

determine the label of the two clusters (the label can be ‘sclera’ or ‘iris’). The largest

distance is associated with the sclera cluster; this is the white region in Figure 2.14

first row. The smallest distance is associated with the iris cluster; this is the black

region in Figure 2.14 first row. Two binary images, a mask for the sclera region and

a mask for the iris region represent the output. On examining the two binary masks,

we observe that in some images, the k-means algorithm erroneously labels portion of

the sclera as being the iris (mainly the corners of the sclera that are less illuminated

and have lower intensity values). To address this issue, if the iris mask has more than

one connected region, the region in the iris mask that overlaps with the pupil mask

is assumed to be the iris region, and is subtracted from the convex hull ISIP .

The algorithm failed to segment the sclera region properly for a total number of

151 images. This is due to improper illumination and plenty of mascara (Figure 2.15)

present in some images. The pupil segmentation algorithm finds the convex hull of

the sclera region. This method creates straight lines along the contour of the sclera.

For dark colored irides and mix colored irides, the longest induced line that is to be

removed using Hough transform (Section 2.4.2) connects the highest point with the

lowest point on the curved boundary of the iris and sclera (Figure 2.16 (a), the red

line). It may happen that the longest line induced by the convex hull is not the proper

one, but one that is located along the sclera contour (Figure 2.16 (b)). As a result,

after removal of the line with Hough transform, the fitted ellipse to the contour of

the sclera will no longer generate the elliptical mask needed.
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(a) (b) (c)

Figure 2.14 Sclera region segmentation. The first row displays the K-means
output, the second row displays Contour of the segmented sclera mask im-
posed on the composite image: (a) Dark colored iris. (b) Light colored iris.(c)
Mixed colored iris.

(a) (b)

Figure 2.15 Example of eye images with: (a) Plenty of mascara. (b) Im-
proper illumination.
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(a)

(b)

Figure 2.16 Failure to remove the proper line using Hough transform: (a)
Correct detection of the longest line. (b) Incorrect detection of the longest
line.

2.5 Enhancement of blood vessels observed on the

sclera

An examination of the three components of the RGB image, suggests that the green

component has the best contrast between the blood vessels and the background.

To improve segmentation of the blood vessel patterns, the green component of the

segmented sclera image is pre-processed using a selective enhancement filter for lines

as described in [33] and similarly used in [27]. The enhancement filter for lines, and

implicitly for blood vessels, is described by the equation:

Iline(λ1, λ2) =


|λ1| − |λ2| if λ1 < 0

0 if λ1 ≥ 0
(2.3)

where λ1 and λ2 (with |λ1| > |λ2|) are the two eigenvalues of the Hessian matrix of

each pixel and computed as follows: λ1 = K +
√
(K2 −Q2), λ2 = K −

√
(K2 −Q2),
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(a) (b) (c)

Figure 2.17 Blood vessel enhancement on the segmented sclera region. (a)
Green component of the segmented sclera. (b) Result of the enhancement of
blood vessels. (c) The complement image of the enhanced blood vessels

where K = (Ixx + Iyy)/2, Q =
√
(Ixx ∗ Iyy − Ixy ∗ Iyx), Ixx, Iyy,Ixy and Iyx represent

the second-order derivatives in x and y directions. The algorithm for blood vessels

enhancement described in [33] is as follows:

1. Determine the minimum (dmin) and maximum (dmax) diameter of the blood vessels

2. Consider multiple 2D Gaussian distributions (N) with standard deviation within

the interval [dmin/4,dmax/4].

3. Convolve each Gaussian distribution with the original image

4. Compute the two eigenvalues for each pixel, for each of the N convolved images.

5. Using the eigenvalues, compute Iline.

6. Multiply each pixel with the square of the corresponding Gaussian standard devi-

ation, Iline ∗ σ2.

7. Consider the maximum value at each pixel level from all N outputs: Iout =

argmax(Iline ∗ σ2).
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2.6 Image registration

In this method, the two images to be compared are first registered using an im-

age alignment scheme, and a direct correlation between corresponding pixels is then

used to determine their similarity. Image registration is the process of finding a

transformation that aligns one image with another. The regions of the sclera in

the two images that are to be registered are cropped, and the images are padded

to the same size. The image with the smaller height is padded up and down with

an equal number of rows. If the gaze direction of the eye is to the left, the im-

age with the smaller width is padded to the right. If the gaze direction of the eye

is to the right, the image with the smaller width is padded to the left. To detect

the direction of the gaze, the y coordinate of the centroid of the sclera region and

the centroid of the pupil region is found and compared. This process results in a

better overlap of the two sclera regions. The registration method used here, de-

scribed in [34], models a local affine and a global smooth transformation. It also

accounts for contrast and brightness variations between the two images that are to be

registered. The registration between two images, the source I(x, y, t) and the target

I(x̂, ŷ, t−1), is modeled by the transformation m⃗ = (m1,m2,m3,m4,m5,m6,m7,m8):

m7I(x, y, t)+m8 = I(m1x+m2y+m5,m3x+m4y+m6, t−1), wherem1,m2,m3, and m4

are the linear affine parameters, m5,m6 are the translation parameters, and m7,m8

are the contrast and brightness parameters. A multi-scale approach is employed by

using a Gaussian pyramid to downsample the images to be registered. From a coarse-

to-fine level, the transformation m⃗ is determined globally at each level, and then

locally, and the estimated parameters are used to warp the source image. Using the

linear affine parameters m1,m2,m3, and m4, and the translation parameters m5,m6,

the sclera mask of the source image is also registered. Figure 2.18 shows results for
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Figure 2.18 Image registration of the sclera region from images of the same
eye. a) Source image. b) Target image. c) Registered source. d) Flow image
depicting the warping process. e) Estimated contrast map

the registration of two pre-processed sclera images of the same eye. Figure 2.19 shows

results for the registration of two pre-processed sclera images of different eyes.

2.7 Feature extraction and matching

The algorithms used to compare two images may consider the entire image, such

as the pixel intensity or may rely on the characteristic features extracted from the

images. These features have to be detectable under changes in image scale, noise and

illumination. The design of three different feature extraction and matching methods

is presented. The first one is based on interest-point detection and utilizes the entire

sclera region including the vasculature pattern; the second is based on minutiae points
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Figure 2.19 Image registration of the sclera region from two different eyes.
a) Source image. b) Target image. c) Registered source. d) Flow image
depicting the warping process. e) Estimated contrast map.
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on the vasculature structure; and the third is based on direct correlation. While the

first two techniques do not need an explicit image registration scheme, the third

technique relies on image registration.

2.7.1 Speeded Up Robust Features (SURF)

The Speeded-Up Robust Features (SURF) algorithm [35] is a scale and rotation

invariant detector and a descriptor of point correspondences between two images.

These points called “interest points” are prominent structures such as corners and

T-junctions on the image. The algorithm uses a detector to locate interest points that

are represented using a feature descriptor. The detector employs a Hessian matrix

applied to the image convolved with Laplacian of Gaussian filters that further are

approximated as box filters. These approximations allow the use of integral images

for image convolution as described in [36]. The scale space is divided into octaves and

is analyzed by up-scaling the filter size. The same image is convolved with a filter

of increasing size at a very low computational cost. Interest points over multiple

scales are localized using a non-maximum suppression algorithm as described in [37].

The localized maximums are interpolated in scale and image space using [38]. The

descriptor uses the distribution of intensity values in a square region of size equal

to 20s, where s is the scale centered at the interest point. This region is further

split into sub-regions. The entries for the 64 length feature vector are the sum of the

Haar wavelet responses on the horizontal and vertical directions in these sub-regions.

In our work, SURF is applied to the enhanced blood vessel images. The similarity

between two images is assessed using the Euclidean distance as a measure between

their respective corresponding interest points. Only Euclidean distances greater than

0.1 are considered and the number of corresponding interest point pairs is counted.

Figure 2.20 displays the corresponding interest points between images of the same
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(a)

(b)

Figure 2.20 The output of the SURF algorithm when applied to enhanced
blood vessel images of the same eye (The complement of the enhanced blood
vessel images are displayed for better visualization). The number of interest
points: 112 and 108. (a) The first 10 pairs of corresponding interest points.
(b) All the pairs of corresponding interest points.

eye, and Figure 2.21 between images of two different eyes.

2.7.2 Minutiae detection

Another technique to represent and match scleral images is based on the cross-over

points of the conjunctival vasculature. These are referred as minutiae points based on

the fingerprint biometric literature [39]. Because of the large variations in intensity

values and the low contrast between the blood vessels and the background, classical

methods of segmentation based on edge detection are not robust and do not give good

results. The region growing method is used for segmenting the enhanced blood vessels
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(a)

(b)

Figure 2.21 The output of the SURF algorithm when applied to enhanced
blood vessel images of different eyes (The complement of the enhanced blood
vessel images are displayed for better visualization). Number of interest
points: 112 and 64. (a) The first 10 pairs of corresponding interest points.
(b) All the pairs of corresponding interest points.
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(a) (b)

Figure 2.22 The centerline of the segmented blood vessels imposed on the
green component of two images.

based on the algorithm described in [40]. The labeling of each pixel as pertaining to

the conjunctival vasculature or background, is based on the information provided by

the intensity value and the magnitude of the gradient of the pre-processed image.

The result of conjunctival vasculature segmentation using region growing is a binary

image, that is subjected to morphological operations, mainly a thinning procedure

through which the blood vessel thickness is reduced to one pixel (Figure 2.23 (b)).

The minutiae points, in this work, correspond to the bifurcations of the center-

line of the blood vessels (Figure 2.23 (c). Each blood vessel ramification has to

be as least 4 pixels in length. A point matching algorithm is used to compare the

points extracted from two images where each point is characterized as a (x, y) lo-

cation. The matching algorithm consists of finding an alignment between the two

sets of points that will result in the maximum overlap of minutiae pairs from the

two images. For two minutiae sets, A = {a1, a2, a3, ...am}, ai = (xi, yi), i = 1..m

and B = {b1, b2, b3, ...bn}, bj = (xj, yj), j = 1..n, where m and n are the number of

minutiae in A and B, minutiae ai is said to be in correspondence with a minutiae

bj if the Euclidean distance (E) between them is smaller than a given tolerance t ,

i.e., E(ai, bj) =
√
((xj − xi)2 + (yj − yi)2) ≤ t. The match score is computed as the

square of the number of corresponding minutiae points divided by the product mn.

The algorithm failed to detect minutiae points on 28 images. This is due to the de-
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(a) (b) (c)

Figure 2.23Detection of minutiae points. (a) Enhanced blood vessels image.
(b) Centerline of the detected blood vessels. (c) Minutiae points: bifurcations
(red) and endings (green).

(a) (b)

Figure 2.24 Failure to detect minutiae points. (a) Enhanced blood vessels
image. (b) The detected vasculature without ramifications and intersections
(Morphological operations such as dilation is applied to the blood vessels for
a better visualization).

tection of blood vessels without ramifications and blood vessels that do not intersect

(Figure 2.24).

2.7.3 Direct correlation

Different measures are used to compare two registered sclera images. These measures

provide a quantitative score that describes the degree of similarity or conversely the

degree of error/distortion between two images. To generate genuine scores, the mea-

sure is computed between pairs of images pertaining to the same subject; to generate

impostor scores, the measure is computed between the first image (from the set of
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eight sequence images) of each subject pair. Having two registered images I1 and I2,

and the two sclera masks, mask1 and mask2, we assess the similarity of the two im-

ages over the region mask1
∩
mask2 using different quantitative measures: root mean

square error (RMSE) [41], cross-correlation (CORR), mutual information (MI) [42],

normalized mutual information (NMI) [43], ratio-image uniformity (RIU) [42], and

structural similarity index measure (SSIM) [44].

2.8 Results

Results are displayed using Receiver Operator Charateristic (ROC) curves and nor-

malized score histograms. The results indicate lower EER values for left-eye-looking-

left and right-eye-looking-right compared to left-eye-looking-right and right-eye-looking-

left. This is due to the curvature of the eyeball and to the fact that facial features

(such as the nose) partially obstruct the light directed to the left eye when looking

right and the right eye when looking left.

2.8.1 SURF

The number of corresponding interest point pairs between images of the same eye

will generate a genuine score and the number of corresponding interest point pairs

between images of different eyes will generate an impostor score. The ROC and the

normalized score distribution for both eyes, left and right gaze direction were obtained

and are displayed in Appendix A. The approximate EER values are as follows: 0.37%

for left-eye-looking left, 1.7% for left-eye-looking-right, 1.25% for right-eye-looking-

left and 0.75% for right-eye-looking-right as shown in the Table 2.4. The ROC and

the distribution of scores are displayed in Appendix A. Results indicate that SURF

method distinguishes very well between genuine and impostors.
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Figure 2.25 The histogram (25 bins) of the detected number of interest
points for images of the eye (data collection 1). (a) Left-eye-looking-left
(L L). (b) Left-eye-looking-right (L R). (c) Right-eye-looking-right (R L).
(d) Right-eye-looking-right (R R)

48



Chapter 2 Methods for sclera patterns matching using high resolution multispectral
images

Table 2.4 The EER (%) results when using SURF.

Performance measure L L L R R L R R

SURF 0.37% 1.7% 1.25% 0.75%

Table 2.5 The average number of detected interest points for data collection
1

SURF L L L R R L R R

Average nr. of interest points 73 81 78 72

2.8.2 Minutiae points

The ROC and the normalized score distribution for both eyes, left and right gaze

direction were obtained. They are displayed in Appendix A. An approximate EER

value of 9.5% is obtained for left-eye-looking-left, 10.3% for left-eye-looking-right, 12%

for right-eye-looking-left, and 11.5% for right-eye-looking-right as shown in Table 2.6.

A better segmentation of the conjunctival vasculature, a better detection of the finer

blood vessels, and also a more accurate localization of the centerline of the blood

vessels, may improve the value of EER when minutiae points are used for matching.

2.8.3 Direct correlation

The ROC and normalized score plots were obtained for all the measures mentioned in

Section 2.7.3, for both eyes, and both gaze directions and are displayed in Appendix

A. The approximate values of EER are displayed in Table 2.7 for left-eye-looking-

Table 2.6 The EER (%) results when using minutiae points.

Performance measure L L L R R L R R

Minutiae points 9.5% 10.3% 12% 11.5%
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Table 2.7 The EER (%) results when using different correlation methods.

Performance measure L L L R R L R R

RMSE 1.51% 4.75% 5.6% 2%

CORR 0.1% 3.5% 4.75% 1.25%

MI 2% 5% 6.4% 2.57%

NMI 0.7% 3.4% 5.2% 1.6%

RIU 4.6% 6.25% 7.5% 5.1%

SSIM 1.25% 4.3% 6% 4%

left (L L), left-eye-looking-right (L R), right-eye-looking-left (R L), right-eye-looking-

right (R R). The best performance is obtained when using the correlation measure,

followed by the normalized mutual information scheme. If the eye images with the

exposed sclera region that are to be compared are taken from approximately the same

viewing angle, then direct correlation measures may be used as a matching method.

2.9 Score-level Fusion

In this work, min-max technique is used to normalize and fuse the minutiae scores

with that of the direct correlation methods. Correlation, mutual information, nor-

malized mutual information, and structural similarity index are similarity measures.

Root mean square error, and ratio intensity uniformity are dissimilarity measures. A

dissimilarity score is transformed into a similarity score by subtracting the normal-

ized score from 1. Minutiae scores contain information about the veins only, while

the direct correlation methods characterize the entire sclera surface. The results for

score level fusion using the sum rule, max rule and min rule [45] shown in Tables

2.8, indicate that for the fusion of minutiae scores with CORR, RIU, SSIM, RMSE
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scores, sum rule and the max rule perform the best. For the fusion of minutiae scores

with MI scores, the sum and min rules have the best results, and for the fusion of

minutiae scores with NMI scores, the min rule is the best method. The ROC and the

distribution of scores are displayed in Appendix A.

2.10 Summary

The work presented in this chapter investigates the feasibility of using multispectral

conjunctival vasculature in an ocular biometric system. To complement the loss of

information from non-frontal iris images, additional details such as the sclera surface

and its blood vessels are exploited for recognition. Iris patterns are better discerned in

the NIR spectrum while vasculature patterns are better observed in the visible spec-

trum (RGB). Therefore, using multispectral images of the eye ensures that both, the

iris and the sclera, are successfully imaged. In this chapter the spectral bands of mul-

tispectral imaging are presented and the color infrared images are described. In order

to initiate the research for sclera texture and the accompanying blood vessels seen

on its surface, a multispectral database of eye images, composed of two collections

is assembled. The first collection consists of eight sequential eye images/eye/gaze

direction collected from 103 subjects, with the camera being focused on the sclera

region. The second collection consists of four images of the eye/eye/gaze direction

collected from 31 subjects, the camera being focused on the iris region. The four

images/eye/gaze direction are collected after the subject alternates the gaze direction

from left or right to frontal and then back to left or right, so that the intra-class

variation is higher. Each component of the color infrared image (NIR, red, green and

blue) are individually subjected to denoising pre-processing method based on wavelet

transform. A novel sclera segmentation method based on normalized sclera index fol-
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Table 2.8 The EER (%) results of the fusion of minutiae scores with different
correlation measures.

CORR MI NMI

L L L R L L L R L L L R

Sum rule 0.3% 3% 3.5% 6.1% 4.4% 6.2%

Max rule 0.125% 3% 9% 9.2% 9.6% 10%

Min rule 9% 9.65% 2% 6.25% 0.525% 3.9%

R L R R R L R R R L R R

Sum rule 4.25% 1.25% 7.2% 4.2% 7.95% 6%

Max rule 4.75% 1.25% 9.75% 7.95% 11.75% 11.5%

Min rule 11% 11% 7.5% 4.1% 5.9% 1.75%

RIU RMSE SSIM

L L L R L L L R L L L R

Sum rule 3.1% 5.1% 1.5% 3.75% 1.65% 3.95%

Max rule 4.6% 6.25% 1.5% 4.75% 2.8% 4%

Min rule 9.6% 10% 9.25% 10.1% 3.5% 6.25%

R L R R R L R R R L R R

Sum rule 7.25% 5.55% 5% 2.95% 5.9% 3.25%

Max rule 7.75% 5.1% 5.5% 2% 6.3% 4.5%

Min rule 11.9% 11.6% 12% 11.6% 7.9% 5.75%
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lowed by thresholding is applied to the first collection of the multispectral database.

The pupil region segmentation based on power law transformation and multiple fitted

ellipses is described. Processing techniques such as vasculature enhancement using

a selective enhancement filter for lines, and implicitly for blood vessels is presented.

Further, the images of the eye are registered with a global smooth and a local affine

transformation based on intensity values. The design of three different feature ex-

traction and matching methods is presented. The first one is based on interest-point

detection and utilizes the entire sclera region including the vasculature pattern; the

second is based on minutiae points on the vasculature structure; and the third is based

on direct correlation. While the first two techniques do not need an explicit image

registration scheme, the third technique relies on image registration. The results

demonstrate the validity of using the sclera surface and the conjunctival vasculature

for recognition and support further investigation in this area of research.
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Fusion of iris patterns with scleral

patterns

Iris recognition performance is greatly and negatively influenced by the occlusions,

the lighting conditions and the direction of the gaze of the eye with respect to the

acquisition device. The use of the sclera as a biometric may be significant in the

context of iris recognition, when changes in the gaze angle of the eye can result in

non-frontal iris images that cannot be easily recognized. The more the gaze direction

deviates from the frontal pose, the more information from the iris texture is lost and

the more information from the sclera region is gained. The combined sclera and the

iris texture may be used in non-cooperative recognition when the probability of non-

ideal iris occurrence is greatly increased. By utilizing the texture of the sclera along

with the vascular patterns evident on it, the performance of an iris recognition system

can potentially be improved. The block diagram of the proposed system is shown in

Figure 3.1. In this approach the multispectral collection 1 is used. Image acquisition

and image denoising were presented in Chapter 2.
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Figure 3.1 Block Diagram
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3.1 Specular reflection detection and removal

The specular reflection (the ring-like shape and the highlights due to the moisture

of the eye) is detected in a two step algorithm and removed by a fast inpainting

procedure. In some images, the ring-like shape may be an incomplete circle, ellipse,

or an arbitrary curved shape with a wide range of intensity values. It may be located

partially in the iris region, its precise detection and removal being more important

especially since the iris texture has to be preserved as much as possible. In the first

step of the algorithm, a good detection of the ring-like shape specular reflection is

accomplished by converting the RGB image into L*a*b color scheme followed by a

range filtering through which every pixel in the image is replaced with the difference

between the maximum and minimum value in a 3− by − 3 neighborhood around the

corresponding pixel. The ring-like shape specular reflection is obtain by applying

a threshold of value th = 30 to the luminance component and it is removed by

morphological dilation and inpainting. The high value of the threshold isolates the

ring-like shape specular reflection from the other highlights. The remaining specular

reflections are detected using different intensity threshold values for each component:

0.8 for NIR, 0.7 for red and 0.8 for green. Only regions with less then 1000 pixels in

size are labeled as specular reflection, are morphologically dilated and inpainted. In

digital inpainting, the information from the boundary of the region to be inpainted

is propagated smoothly inside the region. The value to be inpainted at a pixel is

calculated using a PDE equation 1 in which partial derivatives are replaced by finite

differences between the pixel and its eight neighbors. The final specular reflection

mask consists of the logical OR operation between the masks obtained in two steps.

1http://www.mathworks.com/matlabcentral/fileexchange/4551
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3.2 Ocular Region Segmentation

The color image segmentation is a challenging process. It is influenced by illumination,

and the image texture as a result of the saturation, hue and blending of the colors.

Since the scope of the algorithm is to fuse the information provided from the iris and

the sclera, an accurate labeling of pixels pertaining to both regions is very important.

Uneven illumination, the wide variety of intensity values across the eye surface caused

by the curved shape of the eyeball, reflections of the light on the skin surface and

occasionally the presence of plenty of mascara, will make the segmentation of the iris

and the sclera regions a difficult process and even more problematic to achieve in non-

frontal images of the eye. Exposed on the sclera surface, the conjunctival vasculature

appears as dark curved lines, of different thickness that intersect in a random way.

Through the segmentation process they will be distinguished from wrinkles, crows

feet, and eyelashes. It is also important to have an accurate sclera contour along the

eyelids, since the blood vessels may be located on the margins of the sclera. Regardless

of the color of the iris, the algorithm to segment the sclera, the iris and the pupil has

five steps as described below.

1. The sclera-eyelid boundary

2. Pupil region segmentation

3. The sclera-iris boundary

4. Iris region segmentation

5. Final sclera region segmentation
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3.2.1 The Sclera-Eyelid Boundary

The algorithm to segment the sclera region presented in Chapter 2 and used in [46]

uses the threshold 0.1 to delineate the pixels pertaining to the sclera region and the

background. The threshold value depends on the illumination of the eye and doesn’t

represent the optimal choice for all the images of the eye. Therefore an improved

automatic segmentation of the sclera region free of thresholds is necessary. The

method employed to segment the sclera region along the eyelid contour is inspired

by the work done in the processing of LandSat imagery (Land + Satellite) [31].

A set of indices, are used to segment the vegetation regions in aerial multispectral

images based on a different absorbtion of the NIR wavelength by regions with different

saturation in water content. Similarly, the index that it’s used for coarse sclera

segmentation is based on the fact that the skin has lesser water content than the

sclera, and hence exhibits a higher reflectance in NIR. Since water absorbs NIR light,

the corresponding regions appear dark in the image and, hence, the sclera appears

darker in the image. The algorithm is as follows:

1. Geometrically resize the near-infrared and green component by a factor of 1/2.

2. Compute an index called the normalized sclera index NSI(x, y) = NIR(x,y)−G(x,y)
NIR(x,y)+G(x,y)

,

where NIR(x, y) and G(x, y) are the pixel intensities of the NIR and green

components, respectively, at pixel location (x, y). The difference NIR(x, y) −

G(x, y) is larger for pixels pertaining to the sclera region; it is then normalized

to help compensate for the uneven illumination. Figure 3.2 (b) displays the

normalized sclera index for all three categories as specified by the Martin-Schultz

scale: light colored iris, dark colored iris and mix colored iris.

5. Using the integral image as explained in [36], for each pixel of (x, y) of NSI

compute the mean µ and the standard deviation σ for a neighborhood of radii
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(a) (b) (c) (d)

Figure 3.2 The sclera-eyelid boundary. The first row displays the results
for dark colored iris, the second row displays the results for light colored
iris, and the third row displays the results for mix colored iris: (a) original
composite image. (b) The normalized sclera index (NSI). (c) The output of
the K-means clustering algorithm. (d) Sclera-eyelid boundary imposed on
original composite image.

0, 1, 3, 5 and 7 pixels.

6. Build the feature vector Features = [µ0, µ1, µ3, µ5, µ7, σ0, σ1, σ3, σ5, σ7], where

µ is the mean and σ is the standard deviation, column vectors for the above

mentioned radii.

7. Three clusters are considered: the sclera, the iris and the background. Apply

k-means clustering algorithm to the feature vector Features with k = 3, where

k is the number of clusters. The algorithm will partition all the pixels in three

clusters and will return the cluster centroid locations. As seen in Figure 3.2 (c),

for all three categories as specified by the Martin-Schultz scale (light colored

iris, dark colored iris and mix colored iris) the sclera-eyelid boundary is very

well defined.
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8. For each cluster compute the mean value of all the pixels from NSI image. The

cluster with the lowest mean represents the sclera region. For all three categories

as specified by the Martin-Schultz scale (light colored iris, dark colored iris and

mix colored iris), the sclera cluster exhibits a good segmentation along the

sclera-eyelid boundary, but differs in regard of sclera-iris boundary. For dark

irides (brown and dark brown), the sclera region excluding the iris is localized

(Figure 3.2(d) the first row, referred henceforth as IS). Thus, in this case, the

sclera-iris boundary is detected, and further segmentation of the sclera and iris

is not required. For light irides (blue, green, etc.), regions pertaining to both the

sclera and iris are segmented (Figure 3.2 (d) the second row, referred henceforth

as IS). Here, further separation of the sclera and iris is needed. For mixed irides

(blue or green with brown around pupil), the region of the sclera and the light

colored portion of the iris are segmented as one region (referred henceforth as

IS). The dark portion of the iris (brown) is not included (Figure 3.2(d) the third

row). Here, further separation of the sclera and the portion of the iris is needed.

To find the boundary between the sclera and the iris regardless of the color of

the iris, the pupil is detected. The convex hull of the segmented region IS and

the pupil region will contain the sclera, the pupil, and the iris or the portion of

the iris. This region is referred to as ISIP and is further processed. Since the

proposed algorithm does not deduce the color of the iris, it is applicable to all

images irrespective of the eye color. As seen in Figures 3.2 (c), the location of

the pupil is also visible as part of the sclera cluster in dark and mixed irides, or

as a lighter disk within the sclera region in light irides. This information can be

exploited only if the color of the iris is known in advance. Therefore, in Section

3.2.2 we present an automatic way of finding the pupil location regardless of

the color of the iris.
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(a) (b) (c)

Figure 3.3 The sclera-eyelid boundary errors. First row represents the er-
rors in images with strong uneven illumination. Second row represents the
errors in images with large specular reflections on the skin. (a) Original com-
posite image. (b) Normalized sclera index. (c) The output of the k-means
algorithm.

9. Sclera mask is represented by the largest connected region from the sclera cluster.

10. Geometrically resize the mask of the sclera to the original size of the near-infrared

or green component.

The algorithm fails to segment properly the sclera region for images with strong

uneven illumination or with large areas of specular reflections on the skin surface.

Such areas may represent the largest connected region from the sclera cluster and

may be erroneously selected as sclera region (Figure 3.3).

For a total of 36 images, from 6 subjects the sclera region is segmented manually.

3.2.2 Pupil Region Segmentation

The location of the pupil is needed to build ISIP and further find the boundary

between the sclera and the iris regardless of the color of the eye. It is also needed for

iris segmentation presented in Section 3.2.4. The algorithm implemented to segment

the pupil region is based on different thresholds applied to the NIR component to

detect the pixels with low intensity values. This will result in the detection not only
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Figure 3.4 Pupil region segmentation. Filling the holes at the iris-pupil
boundary due to inpainting of the specular reflection that results in higher
pixel value than the pupil pixel value.

of the pupil region but also of the eyelashes or other darker regions in the image.

To discriminate among these pixels the round shape of the pupil is exploited. The

algorithm is as follows:

1. Find the Otsu threshold for NIR image, otsuTh.

2. Through an iterative process when n varies from max(min(NIR(x,y)),0) to 0.3

with the increase step of 0.02, compute the threshold Th = n× otsuTh

3. For each Th find the pixels NIR(x, y) < Th. Consider the connected regions with

more than 400 pixels (Figure 3.5).

4. For each connected region fill the possible holes caused by improper inpainting of

the specular reflection along the iris-pupil boundary as described in [47]. If the

binary mask of the pupil doesn’t contain a hole, then along an horizontal line

there will be only one crossing from 0 to 1, otherwise it will have more crossings.

Along each horizontal line all detected points that belong to a hole are filled as

depicted in Figure 3.4.

5. For each connected region compute the metric M = 4×pi×area
perimeter2

. The closer the

shape of the connected region to a circle, the closer to 1 the value of the metric.

In non-frontal iris images, the pupil region is approximated with an ellipse.
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Since the pupil is not a very elongated ellipse, the metric M will have a value

close to 1.

6. Choose the connected region with the highest value of the metric M . This rep-

resents the contour of the pupil region. Find its contour and fit an ellipse

Epupil(xp, yp,Mp,mp, θp) where (xp, yp) represents the center coordinates of the

ellipse, Mp,mp represents the major and minor axes and θp represents the tilt

of the ellipse.

Since the value of the metric M is based on the area and perimeter values, the

algorithm fails to properly segment the pupil region if by inpainting a large specu-

lar reflection area located at the boundary between the pupil and the iris, changes

drastically the elliptical contour of the pupil. In such cases the failure to segment

properly the pupil region is accentuated by heavy mascara on the eyelashes. To solve

this problem, constraints on pupil location may be added to the algorithm to improve

the segmentation performance such as considering only half the image, according to

the gaze direction or locate the pupil region in the ellipse mask fitted to the sclera

region as described in Chapter 2 and used in [48] (The contour of the convex hull of

the sclera region is detected. Using Hough transform for line detection, the highest

peak corresponding to the longest line is selected and removed. An ellipse is fitted

to the remaining contour pixels. The search for the pupil region is constraint among

the pixels located within the fitted ellipse).

Example of images with segmented pupil region are displayed in Figure 3.6

For a total of 19 images pertaining to 6 subjects, the pupil is segmented automat-

ically.

63



Chapter 3 Fusion of iris patterns with scleral patterns
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(a) (b) (c) (d)

Figure 3.5 Pupil region segmentation. (a) The metric M for the thresholds
0.04, 0.1, and 0.16. (b) Thresholding result (the contour) imposed on the
composite image, thresholds 0.04, 0.1, and 0.16. (c) The metric M for the
thresholds 0.18, 0.2, and 0.24. (d) Thresholding result (the contour) imposed
on the composite image, for thresholds 0.18, 0.2, and 0.24.

Figure 3.6 Pupil region segmentation. Examples.
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Figure 3.7 Ocular images with a greater amount of melanin around the iris
region.

3.2.3 The Sclera-Iris Boundary

The convex hull of the segmented sclera region and the pupil region will contain the

sclera, the pupil and the iris or the portion of the iris. To find the sclera-iris boundary

we use the method defined in Chapter 2, subsection 2.4.3. This method fails to find

the correct sclera-iris boundary for ocular images that reveal a greater amount of

melanin at the limbus boundary, Figure 3.7.

3.2.4 Iris Region Segmentation

The segmentation of the iris region in non-frontal iris images is a challenging process.

Existing algorithms use NIR images and aim to find the best fit contour along the

limbus region. Previous research for multispectral iris is encountered in [49] where

an automatic localization of the spatial extent of the iris structure is detected in two

steps: a pupillary boundary detection followed by a limbic boundary detection. How-

ever this study was performed on frontal iris images. Besides the non-frontal position

of the iris, another challenge encountered in the process of iris segmentation for our

dataset was the improper illumination of the iris in some images. Our iris segmenta-

tion algorithm uses the color information (color gradient) provided by the composite

(CIR) image, the elliptical parameters of the pupil and the sclera-iris boundary. The

algorithm is as follows (subscript i stands for iris and p for pupil):
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1. Using the parameters of the ellipse that fit the contour of the pupil, unwrap the

sclera mask. The angular resolution is ang res = 360 and the radial resolution is

rad res = radius/res where res = 120 and radius is of variable size according

to the dilation of the pupil. To detect the best radial resolution, through an

iterative process and starting with the value radius = 3, the radius is increased

by 1 and sclera mask unwrapped for each iteration. The number of pixels

pertaining to the unwrapped sclera mask along the lines is computed and the

maximum value is detected. The iterative process stops when the location of

the maximum value is greater then res − 10. This is based on the fact that

as the sclera mask is unwrapped, the shape of the unwrapped sclera can be

approximated with that of a trapezoid with the larger base up. The value of

the resolution rad res is very important for the ratios calculated in the next

steps. The results are depicted in Figure 3.9 (b). The sclera region is represented

by the white region. To better visualize the location of the iris, pupil, and sclera

region in the unwrapped sclera mask and pupil mask, the composite images from

Figure 3.2 (a), representing the three categories in the Martin-Schultz scale, are

unwrapped and displayed in Figure 3.8.

2. Using the parameters of the ellipse that fit the contour of the pupil, elliptical

unwrap the pupil mask with the determined angular and the radial resolutions.

The results are depicted in Figure 3.9 (a). The pupil region is represented by

the gray region. Since the pupil parameters are used to unwrap the pupil mask,

the iris-pupil boundary is represented by a straight line. Find the pupil-iris

boundary Bpi.

3. Since the pupil parameters are used to unwrap the sclera mask, the sclera-iris

boundary is represented by a a curved line as displayed with yellow color in
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Figure 3.9 (b). Find two lines Bsimin (red color) and Bsimax (blue color) corre-

sponding to the minimum and the maximum position of the sclera-iris boundary

(the yellow line). Two ratios are calculated Rmin and Rmax, in order to find the

parameters of two ellipses, Emin and Emax, used to approximate the contour of

the iris region.

Rmin = Bsimin

Bpi
,

Rmax = Bsimax

Bpi

(3.1)

4. Keeping the tilt angle and the center coordinates of the pupil, based on the two

ratios and the pupil’s major and minor axis values, calculate the major and

minor axis of two ellipses Ellipsemin and Ellipsemax, as follows:

Rp = Mp/mp,

mi max = Rmax ×mp,

mi min = Rmin ×mp,

Mi min = Rp ×mi min,

Mi max = Rp ×mi max

(3.2)

The resulting ellipses Emin(xi, yi,Mi min,mi min, θi) and Emax(xi, yi,Mi max,mi max, θi)

, where (xi, yi) = (xp, yp) , and θi = θp, are depicted in Figure 3.10. As it can be

observed, the sclera-iris boundary is in between the two ellipses. The remaining

steps are considered for a more accurate ellipse fitting to the contour of the iris.

5. Build an elliptical mask comprised of all the pixels inside the Emax.

6. Apply the color gradient algorithm to the composite image, Figure 3.11 (a) and

threshold it with Th = 0.1. Impose the elliptical mask on the resulting image.

Results, ImCG, are displayed in Figure 3.11 (b).
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7. Using the parameters that fit the contour of the pupil, unwrap the image ImCG

obtained in the previous step.

8. Calculate the sum of all the pixels along the rows and find the maximum value in

between the two lines Bsimin (red color) and Bsimax (blue color).

9. Recalculate the ratios from step 4 and find the major and minor axis for an ellipse

that will best fit the contour of the iris. Build an elliptical mask comprised of

all the pixels inside the ellipse.

10. Find the convex hull of the sclera cluster and the elliptical mask and apply the

hole filling algorithm as used in Section 3.2.2.

11. Similar to the algorithm presented in Chapter 2, Section 2.4.3, apply K-means

algorithm with k = 2 (the sclera and iris clusters) to the pixels inside the convex

hull. Two binary images, a mask for the sclera region and a mask for the iris

region represent the output.

12. Pixels pertaining to the sclera region, mostly those along the upper eyelid con-

tour, may be labeled as iris pixels. Therefore, from the center of the pupil,

build a set of rays to the contour of the iris mask and consider always the first

intersection of the ray with the iris contour. This will provide the final iris

contour. Fit an ellipse to this contour.

13. Find the maximum and minimum values along the x coordinate of the sclera

mask and limit the iris mask in between these to values.

Examples of images with segmented iris are displayed in Figure 3.13.

The algorithm returns error to segment the iris in 12 images. For these images,

the iris is segmented manually. Approximately 85% of the times the generated ellipse

will fit the boundary region of the iris for both eyes both gaze directions.
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(a)

(b)

(c)

Figure 3.8 Iris segmentation. Elliptical unwrapping based on the pupil
parameters: (a)Dark colored iris . (b) Light colored iris . (c) Mixed colored
iris.

(a) (b)

Figure 3.9 Iris segmentation.The first row displays the results for dark col-
ored iris, the second row displays the results for light colored iris, and the
third row displays the results for mix colored iris: (a) Pupil mask unwrapped.
(b) Sclera mask unwrapped.
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Figure 3.10 Iris segmentation. Contour of the two ellipses, Ellipsemin and
Ellipsemax, and their tilt imposed on the composite image.

(a) (b)

Figure 3.11 Iris segmentation: (a) Color gradient on composite image. (b)
The threshold and Ellipsemax ellipse mask imposed on color gradient image
ColorGradTh.
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Figure 3.12 Iris segmentation. Image ColorGradTh unwrapped along with
the two lines Boundarysimin (red color) and Boundarysimax (blue color).

(a) (b) (c)

Figure 3.13 Examples of segmented irides: (a) Dark colored iris. (b) Light
colored iris. (c) Mixed colored iris.
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Figure 3.14 Examples of correct eye image segmentation.

Figure 3.15 Examples of correct eye image segmentation.

3.2.5 Final Sclera Region Segmentation

The last step in the segmentation of the regions of interest for an image of the eye ,

is to finalize the segmentation of the sclera. This is accomplished as follows:

1. Build the convex hull of the sclera cluster obtained in Section 3.2.1.

2. Subtract the iris mask from the convex hull obtained in the previous step.

3. Erode the binary image with a structuring element of disk shape and size 5. This

will ensure that the contour line of the sclera is not included in the mask.

Example of correct eye image segmentation are illustrated in Figure 3.14.

Example of incorrect eye image segmentation are illustrated in Figure 3.15
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3.3 Iris Feature Extraction

Feature extraction is defined as the transformation of the input data into a set of

features that capture the relevant information characteristic to the data. It consists

of three steps: iris normalization, feature extraction using 2D Gabor wavelets and

dissimilarity scores calculation using the Hamming distance measure.

3.3.1 Iris Normalization

The outcome of the iris segmentation process consists in iris regions of different sizes.

The dimensional inconsistencies are mainly due to the pupil dilation, the viewing

angle from which the image of the eye is captured, and the tilt of the head. For

comparison purposes, the segmented irides are to be normalized and brought to the

same size. An example code for elliptical unwrapping of the iris and pupil regions

in non-ideal iris images that considers the center of the pupil as the center of the

two ellipses, is used in [50] 2. Using Daugman’s rubber sheet model displayed in

Figure 3.16, every iris pixel is mapped from the Cartesian coordinate system into the

polar coordinate system I(x,y) → I(r,θ) with an angular resolution of 360 and radial

resolution of 64, according to the equations:

x(r,θ) = (1− r)× xp(θ) + r × xi(θ)

y(r,θ) = (1− r)× yp(θ) + r × yi(θ)
(3.3)

where I(x,y) is the iris image in Cartesian coordinates, I(r,θ) is the iris image in

polar coordinates, (xp, yp) and (xi, yi) are the coordinates of the boundary of the

pupil and iris along the direction θ. The radius r varies in the interval [0, 1] and θ in

the interval [0, 2π]. This model accounts for the pupil dilation, takes in consideration

that the center locations of the pupil and iris are different, but is not invariant to

2http://www.csee.wvu.edu/ ∼ xinl/demo/nonideal iris.html
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Figure 3.16 Iris normalization: Daugman rubber sheet model.

(a) (b)

Figure 3.17 Examples for iris normalization: (a) Normalized iris. (b) The
mask for occlusions.

rotations. Since the irides are from sequential images, we assume that there are very

small rotation differences that will be accounted for when the Hamming distance

(explained in Section 3.4) is calculated.

In a similar way the iris mask is also normalized. Examples of iris normalization

are depicted in Figure 3.17.

There are different methods used to extract the iris features, the most famous

being pioneered by J. Daugman in wavelet domain. His algorithm is based on Gabor

wavelets described in Section 3.3.2. Another popular method is R. Wildes’ algorithm

based on the Laplacian pyramid that aims to find spacial characteristics of the data.

It’s also worth mentioning Bolle’s algorithm that localizes the zeros crossings with

one dimensional dyadic wavelet. Gabor wavelet is implemented in this work.

74



Chapter 3 Fusion of iris patterns with scleral patterns

−10
−5

0
5

10

−10

0

10

−0.5

0

0.5

xy

Figure 3.18 Gabor wavelet

3.3.2 Gabor Wavelets

Wavelets are mathematical functions that decompose the data in different frequencies

at different scales, therefore the data can be represented in the same time in spa-

cial and frequency domains. Two dimensional Gabor wavelets G(x, y) (Figure 3.18)

consist of sine/cosine oscillations S(x, y), the carrier, modulated by a 2D Gaussian

W (x, y), the envelop [51]: G(x, y) = S(x, y)×W (x, y). The mathematical expression

for the carrier is S(x, y) = ej(2π(u0x+v0y)+P ), where u0 and v0 ar spacial frequencies

and P is the phase of the sinusoid. The mathematical expression for the envelop

is W (x, y) = Ke−π(a
2(x−x0)2r+b2(y−y0)2r), where (x0, y0) is location of the peak of the

function, K is the scale parameter for the amplitude, a, b are the scaling parameters,

r represents the rotation operation. According to [51]:

(x− x0)r = (x− x0) cos(θ) + (y − y0) sin(θ)

(y − y0)r = −(x− x0) sin(θ) + (y − y0) cos(θ)
(3.4)

where θ is the rotation angle of the Gaussian. The Gabor wavelet may be seen as

two functions, a real and imaginary one, out of phase by 90 degrees.

75



Chapter 3 Fusion of iris patterns with scleral patterns

(a) (b)

Figure 3.19 Phase quantization: (a) Four levels represented by the sign of
the Im and Re for every quadrant (0 - negative, 1 - positive). (b) Example
of iris template.

3.4 Iris Encoding and Matching

The feature used to encode the iris is the phase vector of the convolution of the

normalized iris with the Gabor wavelet through a four level quantization process.

The phase quantization is represented by the location of the phase vector in one of

the four quadrants in a complex plane as illustrated in Figure 3.19 (a). The values

of the two bits are given by the sign of the real and imaginary part of the quadrant

where the phase resides. An example of iris template is shown in Figure 3.19 (b).

The matching algorithms use similarity or dissimilarity measures between the two

iris templates in order to assess how closely the two templates are to each other.

Different measures are convenient for different types of analysis (e.g. numerical data,

boolean data, or string data). The iris template is a part of boolean data, and

Hamming distance is commonly used for matching. For two N bit iris templates T1

and T2, the Hamming distance is defined as the sum of all the disagreeing bits divided

by N . The bits from the non-iris artifacts represented in the iris masks (mask1 and

mask2) are excluded. The mathematical expression of the Hamming distance as a

dissimilarity measure for iris templates is as follows:
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HD =

∑N
i=1(T1i ⊕ T2i ∩mask1i ∩mask2i)

N
(3.5)

3.5 Sclera Feature Extraction and Matching

The conjunctival vasculature displayed on the sclera surface is enhanced using selec-

tive enhancement filter for lines. The algorithm is described in Chapter 2, Section

2.5. The use of keypoint-based matching method (SURF) described in Chapter 2,

Section 2.7.1 was observed to result in the best recognition performance for the scleral

patterns. Therefore this method is further used to combine the iris patterns with the

sclera patterns.

3.6 Results

The ROC and the distribution of scores for all methods employed in this chapter

such as SURF, Hamming distance and the score level fusion of iris patterns and

scleral patterns, for left and right eye, both gaze directions are depicted in Appendix

B. Table 3.1 shows the results of the Hamming distance dissimilarity measure. The

best performance of iris recognition is obtained for left-eye-looking-left (L L) and

right-eye-looking-right (R R) with EER values of less then 1%. In the case of left-eye-

looking right (L R) and right-eye-looking-left (R L) where the light that reaches the

eye is obstructed by the facial structure (the nose) and is directed as much as possible

towards the sclera region, the EER values of 3.5% show a decrease is performance for

iris recognition.

Table 3.2 displays the results for interest point matching SURF applied to the

pre-processed images of the sclera. The results are promising; the EER values are in
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Table 3.1 The EER (%) results for iris patterns using Hamming distance.

Performance measure L L L R R L R R

Hamming distance 0.45% 3.5% 3.5% 0.95%

Table 3.2 The EER (%) results for scleral patterns when using SURF.

Performance measure L L L R R L R R

SURF 0.225% 0.4% 0.28% 0.2%

the interval 0.2% to 0.4%.

Table 3.3 shows the EER values for score level fusion of the scleral patterns when

using SURF and the iris patterns when using the Hamming distance. For simple

sum rule and maximum rule the genuine and impostor distribution of scores have no

overlap region with EER value of 0%. For minimum rule, the EER values are in the

interval 0.07% to 0.27%.

SURF scores are similarity scores with integer values greater then 0. Hamming

distance measure is a dissimilarity measure with score values between 0 and 0.5.

Before the fusion of the two sets of scores, their values are brought in the interval

[0, 1]. The dissimilarity score is transformed into a similarity score by subtracting its

value from 1. The results of the score level fusion demonstrate the validity of using

scleral patterns in non-frontal ocular images of the eye to successfully improve the

iris recognition.

The ocular images are processed using Matlab R2010a installed on a OptiPlex

755 computer with an Intel Core 2 vPro processor, 2.99 GHz, Windows XP Profes-

sional operating system, and 4 Gb RAM. The average computation times for several

procedures are displayed in Table 3.4.
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Table 3.3 The EER (%) results of the fusion of iris patterns (Hamming
distance) and scleral patterns (SURF).

Performance measure L L L R R L R R

Simple sum rule 0% 0% 0% 0%

Maximum rule 0% 0% 0% 0%

Minimum rule 0.17% 0.07% 0.27% 0.17%

Table 3.4 Average computation times

Procedure Computation

times

Specular reflection 0.65 sec

Ocular image segmentation. Sclera-eyelid boundary 1.67 sec

Ocular image segmentation. Pupil segmentation 3.672 sec

Ocular image segmentation. Sclera-iris boundary 2.631 sec

Ocular image segmentation. Iris segmentation 4.314 sec

Ocular image segmentation. Final sclera segmentation 0.645 sec

Blood vessel enhancement 1.674 sec

Blood vessel segmentation 0.952 sec

Minutiae point detection 0.062 sec
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3.7 Summary

The work presented in this chapter aims to demonstrate the potential of designing a

bimodal ocular system that combines sclera biometric with the iris biometric. The

ocular images of the first collection of the multispectral database are denoised and

further pre-processed to detect and remove the specular reflections. An automatic

sclera region segmentation was designed to localize the spatial extent of the iris, sclera

and pupil regions in the ocular images. The proposed segmentation algorithm is a

combination of region-based and edge-based schemes that exploits the multispectral

information. The use of keypoint-based matching was observed to result in the best

recognition performance for the scleral patterns. Therefore, Speeded Up Robust

Features is used to asses the performance of scleral patterns as biometric cue. Using

elliptical unwrapping, the segmented iris is normalized and encoded using 2D Gabor

filters. Hamming distance is used as a dissimilarity measure to asses the performance

of iris recognition. The sclera scores and the iris scores are combined at a score

level using three fusion rules: simple sum rule, maximum rule and minimum rule.

The results show an improvement of the EER mainly for the simple sum rule and

maximum rule when the genuine and impostor distribution scores are totaly non-

overlapping. This suggests that when looking to the left or looking to the right,

the information gained from the exposed sclera texture may be used to improve the

performance of non-frontal iris recognition.
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Impact of intra-class variation

The previous approaches demonstrate the validity of using the sclera texture and the

conjunctival vasculature exhibited on its surface as a biometric cue and the benefit

gained from the fusion of iris patterns with sclera patterns in non-ideal images of the

eye. The ocular images were obtained in a constraint environment, with controlled

lighting conditions and distance to the camera. The selection of eight consecutive

frames ensured that the viewing angle is approximately the same for all eight images.

The results are promising and suggest further insight into addressing the remaining

challenges. However, the selection of the consecutive frames resulted in less intra-

class variation. The work in this chapter investigates the potential of using the sclera

texture and the blood vessels as a biometric cue for ocular images with increased

intra-class variation. This is accomplished by using the ocular images of the second

collection from the multispectral database presented in Chapter 2, Section 2.1.

The block diagram of the proposed system is shown in Figure 4.1.

After acquisition presented in Chapter 2, Section 2.1, the ocular images are de-

noised using wavelet transform as presented in Chapter 2, Section 2.2. The specular

reflection is detected and removed with the two step algorithm presented in Chapter 3,
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Figure 4.1 Block Diagram
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Section 3.1. The sclera, the pupil and the iris are segmented using the automatic

segmentation algorithm, a combination of region-based and edge-based schemes as

described in Chapter 3, Section 3.2. The conjunctival vasculature seen on the seg-

mented sclera region is enhanced using the selective enhancement filter for lines as

in Chapter 2, Section 2.5 and the pre-processed images are registered as described in

Chapter 2, Section 2.6. The three feature extraction and matching techniques men-

tioned in Chapter 2, Section 2.7, the keypoint-based matching (SURF), pixel to pixel

matching (direct correlation matching - CORR, MI, NMI, RMSE, RIU, SSIM) and

the bifurcations of the blood vessels matching (minutiae points) are applied to the

pre-processed or registered images of the sclera region. Based on elliptical unwrapping

algorithm mentioned in Chapter 3, Section 3.3.1, the iris is normalized, and then en-

coded using 2D Gabor wavelet as in Section 3.3.2 and 3.4. Hamming distance is used

to assess the performance of iris recognition. As observed in the previous chapters the

keypoint-based matching was observed to result in the best recognition performance

for scleral patterns. Therefore the fusion of the iris patterns with the sclera patterns

is realized by combining the sclera scores obtained with Speeded Up Robust Features

(SURF) and the iris scores obtained with Hamming distance dissimilarity measure.

4.1 Results

The ROC and the distribution of scores for all the methods used in this chapter are

depicted in Appendix C. As observed from the Table 4.1, for ocular images of the

eye with increased intra-class variation there is little change in performance when

using keypoint-based matching (SURF) technique. The values of EER are slightly

increased from 0.2% to 0.8% for right-eye-looking-right (R R), but slightly decreased

from around 0.2% to 0.1% for left-eye-looking-left (L L) and right-eye-looking-left
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Table 4.1 The EER (%) results for scleral patterns when using SURF.

Performance measure L L L R R L R R

SURF 0.175% 2.5% 0.1% 0.8%

Table 4.2 The EER (%) results for scleral patterns when using minutiae
points.

Performance measure L L L R R L R R

Minutiae points 16% 15% 11.5% 16%

(R L). This is due to the invariance of SURF to small changes in viewing angle.

However, there is a decrease in performance for left-eye-looking-right (L R) with

2.1%. Results are compared with EER values from the Table 4.1.

As presented in Table 4.2, and compared with the values from the Table 2.6, there

is an increase in EER values when minutiae points technique is used with around 5%

for left-eye-looking-left (L L) and left-eye-looking-right (L R). For right-eye-looking-

left (R L) the value of EER is approximately the same. For right-eye-looking-right

(R R) the EER is increased with 4.5%. In ocular images with increased intra-class

variation, the performance of sclera biometric when using minutiae points technique

is decreased. The location of the bifurcations of the blood vessels are not invariant

to the changes in the viewing angle mainly on a curved surface such as the eyeball.

The Table 4.3 contains the EER values for ocular images when direct correla-

tion methods are used. Mutual information (MI), normalized mutual information

(NMI), and ratio-image uniformity (RIU) decrease in performance compared with

the values displayed in the Table 2.7. An improved performance is observed for

structural similarity index measure (SSIM). The EER for root mean square error

(RMSE) and correlation (CORR) methods are approximately the same with the
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Table 4.3 The EER (%) results for scleral patterns when using different
correlation methods.

Performance measure L L L R R L R R

RMSE 9.5% 4.5% 4.3% 1.5%

CORR 6% 1.1% 1.1% 0.21%

MI 10% 14.5% 12% 12%

NMI 9% 11% 7% 5.75%

RIU 15% 14% 12% 14%

SSIM 5% 1.1% 0.9% 0.9%

exception of left-eye-looking-left (L L) when an increase of 8% and 5.9% respectively

is observed. The decrease in performance for all techniques for left-eye-looking-left

compared with right-eye-looking-left and right-eye-looking-right may be explained by

the position of the ophthalmologist’s slit-lamp mount that did not allow a better

adjustment of the position of the camera and the source of light when images of the

left eye were collected. The mount was positioned having the office wall to the right,

so that the participant had the wall on the left side. This was not apprehended at

the data collection time.

The EER values for the Hamming distance are compared with the values from

the Table 4.4. The values for the right eye, both gaze directions show an improved

performance explained by a better illumination and the focus of the camera on the

iris region Section 2.1. The values for the left eye do not show an increase or decrease

in performance. Similar with the results obtained when direct correlation methods

are used, the lack of improvement may be explained by the data collection setup.

As expected the combination of the sclera biometric with the iris biometric presents

good results for all three score level fusion rules. For simple sum rule and maximum
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Table 4.4 The EER (%) results for iris patterns using Hamming distance.

Performance measure L L L R R L R R

Hamming distance 0.55% 3.8% 2.2% 0.02%

Table 4.5 The EER (%) results of the fusion of iris patterns (Hamming
distance) and scleral patterns (SURF).

Performance measure L L L R R L R R

Simple sum rule 0% 0% 0% 0%

Maximum rule 0% 0% 0% 0%

Minimum rule 0% 2.5% 0% 0%

rule, the genuine and impostor distribution of scores are totaly non-overlapped. EER

value is 0% for both eyes, both gaze directions. This suggests that the fusion of iris

patterns and scleral patterns may be used with success to improve iris recognition in

data sets with intra-class variation.

4.2 Summary

In the previous chapters the potential of using the sclera texture and the blood ves-

sels exposed on its surface is assessed using the first collection of the multispectral

database. The ocular images are obtained in constraint environment, with controlled

lighting conditions and distance to the camera. The selection of eight consecutive

frames ensured that the viewing angle is approximately the same for all eight images,

but resulted in less intra-class variation. The work in this chapter investigates the

potential of using the sclera texture and the blood vessels as a biometric cue for oc-

ular images with increased intra-class variation. This is accomplished by using the

ocular images of the second collection from the multispectral database. The auto-
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matic segmentation algorithm is used to localize the iris, sclera and pupil regions.

Conjunctival vasculature is enhanced using the selective line enhancement filters for

lines and pre-processed images of the sclera are registered as described in previous

chapters. The three feature extraction methods, keypoint-based matching, direct cor-

relation methods and minutiae points are applied to the pre-processed images of the

sclera. The results demonstrate an increase of EER for direct correlation methods

and minutiae points method. This is explained by the variance of these methods

to changes in the viewing angle. On the other hand, keypoint-based method SURF

exhibits the same good results. This is explained by the fact that SURF is invariant

to small changes in the viewing angle. Further the score level fusion of scleral pat-

terns and iris patterns when using SURF and Hamming distance, presents the same

good results, proving that the use of scleral patterns combined with iris patterns may

improve the iris recognition in non-frontal images of the eye.
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Chapter 5

Sclera recognition using low

resolution visible spectrum images

5.1 Visible spectrum data set

The SONY CyberShot DSC F717 (5 megapixels) was used to capture color images of

the eye 1. Each subject was asked to move their eyes in the following manner with

respect to the optical axis of the camera: frontal, upward, to the left and to the right.

Thus different regions of the sclera where represented in the ensuing pictures. These

color images (RGB) were collected in two sessions. The first session had 2400 images

from 50 subjects, and the second session had 816 images from 17 of the original 50

subjects. Images were captured from both eyes at three different distances: 1 foot

considered as near distance images, 9 feet as medium distance images, and 12 feet as

far distance images. For each eye, 2 images were collected per gaze at each distance.

Figure 5.1 displays the four gaze directions for near distance.

1Collected at University of Missouri, Kansas City
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(a) (b) ( c) (d)

Figure 5.1 Near images of the eye where the subject is: a) looking straight
ahead, b) looking up, c) looking left, d) looking right.

5.2 Sclera region segmentation

Accurately segmenting the sclera from the eye image is very important for further

processing as stated in Chapter 2, Section 2.4. A semi-automated technique is used for

this purpose. The proposed technique first applies an automated clustering method

whose output is subsequently refined by manual intervention. Each pixel is repre-

sented as a three-dimensional point in a Cartesian coordinate system based on its

primary spectral components of red, green and blue. The k-means clustering algo-

rithm is used to partition the pixels into three categories: the sclera, the iris, and

the background (Figure 5.2 (b)). Since the sclera is typically whiter than the rest

of the eye, such a procedure is expected to work well in separating the scleral pixels

from the rest of the image. The pixels pertaining to the sclera region are determined

as the cluster with the largest Euclidean distance from the origin of the coordinate

system to its centroid. The pixels belonging to the iris region are determined as the

cluster with the smallest Euclidean distance from the origin of the coordinate system

to its centroid. A mask for the iris region and a mask for the sclera region comprise

the output of the clustering method. Entries marked as 1 in the masks denote the

pixels assigned to the particular cluster (iris or sclera). The largest connected region

is selected in both masks. Due to the image characteristics of illumination and spec-

ular reflection, it is possible for some pixels from the sclera to not be assigned to the

proper cluster, thereby appearing as holes in the sclera mask. In order to eliminate
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Cluster Data

(a) (b) (c)

Figure 5.2 Segmenting the sclera from two different eye images, displayed
by column: a) Original image, b) Segmented sclera region based on RGB
values (red = sclera region, blue = iris region, black = the background) c)
Convex hull of the sclera (blue+red) containing a portion of the iris (blue)

(a) (b) (c)

Figure 5.3 Segmenting the sclera of two different eye images: a) Original
image, b) Sclera mask, c) Segmented sclera region.

these holes and to smooth the contour of the sclera mask, its convex hull is considered

(Figure 5.2(c)). This, however, means that pixels pertaining to the iris cluster may

be included in the sclera mask. To address this, we first locate the pixels within the

convex hull of the sclera region belonging to the iris cluster. Next, we remove the

convex hull of the located pixels from the convex hull of the sclera region. The output

of the process is a binary mask (Figure 5.3 (b)), which when imposed on the original

image, will identify the region of interest corresponding to the sclera (Figure 5.3 (c)).

On examining the segmented sclera region, we observed that in some images, a small

portion of the lower eyelid was erroneously included. To address this issue, the mask

is manually corrected for such images, thereby eliminating the lower eyelashes. Table

5.1 records the number of images for which manual correction of the segmented sclera

was needed.
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Table 5.1 Manual correction statistics of segmented sclera

Gaze Distance Left eye Right eye

automatic only automatic only

segmentation automatic segmentation automatic

and manual segmentation and manual segmentation

correction correction

Left

near 61 73 42 92

medium 49 85 36 98

far 43 91 39 95

Right

near 54 80 56 78

medium 53 81 51 83

far 35 99 44 90

5.3 Specular reflection

5.3.1 General considerations

Specular reflections may provide valuable information about the shape of the object

and its location with respect to the light source. However, they can cause problems

for image processing algorithms that may erroneously consider these specularities as

pixels of interest during the process of segmentation resulting in spurious results.

Localization of specularities in images is very important and requires a good under-

standing of the reflection of light, a complicated process that depends on the material

of the object under consideration, the roughness of its surface, the angle of illumina-

tion, the angle of viewing, and the wavelength of light.

Specular reflections on the sclera have different topologies, sizes and shapes that can-

not be described by a single pattern. Their pixel intensity values are distinctively
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Figure 5.4 Plots of the equation 5.1 for various values of γ; c = 1 in all
cases

high, and exhibit a large variation both within the same image and across multi-

ple images. Different approaches for specular reflection detection and removal have

been proposed in the literature [52], [53], [54], [55]. The algorithm for specular re-

flection consists of three main steps: detection and localization of specular reflection,

construction of specular reflection mask, and exclusion of the region containing the

specular reflection from the sclera region.

5.3.2 Detection of specular reflection

If original images of sclera containing specular reflection were to be further processed,

as explained in the following sections, the edges of the specular reflection region may

appear as spurious blood vessels in the enhanced image. The algorithm to detect

specular reflections is based on the power law transformation as applied to pixel

intensities in the color image. Power law transformations have the basic form:

S = c ∗Rγ, (5.1)

where c, γ are positive constants, R is the input pixel intensity, and S is the output

intensity. As shown in Figure 5.4, by simply varying γ we obtain a family of possible
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transformation curves. For γ > 1, the power - law curves map a narrow range of light

input values into a wider range of output values. For γ < 1, the power - law curves

map a narrow range of dark input values into a wider range of output values. In order

to detect specularities, we consider γ an integer in the range [1, 10]. The detection of

the specular reflection is as follows.

1. Convert the RGB image to the HSI (hue, saturation, illumination) color space.

2. Consider the illumination component of the HSI space as the input image R in

equation 5.1.

3. Compute the output image S for different γ values using equation 5.1. Fig. 5.5

(a) displays results for gamma = 3.

4. Compute the histogram for each image S as seen in Fig. 5.5 (b).

5. Compute the filtered histogram for each image S using the moving average [1/3

1/3 1/3] filter as seen in Fig. 5.5 (c).

6. Compute the slope θ of the filtered histogram.

7. For the filtered histogram corresponding to each γ, find the first negative θ (θγ)

and its corresponding intensity value, Sγ, as a potential threshold value for

detecting specular reflection.

8. Examine the distribution of θγ as a function of γ to select γopt, γopt = arg max (|

θγ − θγ−1 |). Figure 5.6 shows γopt = 5 ; for near distance images, the threshold

to detect specular reflection is selected as the mean of all thresholds values

found for γ, 5 ≤ γ ≤ 10.

9. Use the threshold value found to obtain a binary mask for isolating specular re-

flection.
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Figure 5.5 Detection of specularities. Examples for γ = 3: (a) Illumination
component of HSI sclera image; (b) Histogram of the illumination component;
(c) Filtered envelop of the histogram
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Figure 5.6 Example of threshold values for different values of γ

Fig.5.7 shows the results of specular reflection detection.

5.4 Segmented sclera image without specular re-

flection

The segmented sclera image without specular reflection is obtained as follows:

1) Use sclera mask and specular reflection mask to obtain the final sclera mask
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Figure 5.7 Detecting specularities: a) Original image, b) Threshold values
for 1 ≤ γ ≤ 10 c) Specular reflection mask
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(a) (b) (c)

Figure 5.8 Segmenting the sclera after removing specularities: a) Original
image, b) Specular reflection mask c) Segmented sclera without specular
reflection

without specular reflection.

2) Superimpose the final mask on the RGB image to obtain segmented sclera without

specular reflection (Fig.5.8).

5.5 Image Pre-processing

To improve segmentation of the blood vessel patterns, the segmented sclera image is

pre-processed in two consecutive steps as described in [27]. In the first step, we build

the RGB image from the three components, red, green and blue obtained in section

2.1.1. The RGB image is converted to L*a*b color space. Contrast-limited adaptive

histogram equalization (CLAHE) [56] is applied to the luminance component L*. The

algorithm divides the entire image in small square regions called tiles. Each tile is

enhanced using histogram equalization. This induces artificial boundaries between

tiles that are removed using bilinear interpolation. The L*a*b image is converted

back to RGB color space (Figure 5.9 (b)).

In order to obtain the best results for vein segmentation, an examination of the

three components (red, blue and green) of the enhanced colored sclera images, sug-

gests the use of the green component that has the best contrast between the blood

vessels and the background. In order to improve sensitivity to vein detection and seg-

mentation, we use a selective enhancement filter for lines, as described in Chapter 2,
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(a) (b)

Figure 5.9 Image Enhancement:(a) Original sclera vein image, (b) Enhanced
sclera vein image.

Figure 5.10 Example of pre-processed sclera vein image.

Section 2.5. Results are displayed in Figure 5.10.

After enhancement, images are registered using the algorithm presented in Chap-

ter 2, Section 2.6.

5.6 Matching Results

The similarity between two sclera images is assessed using cross-correlation between

regions of the sclera that do not include the specular reflections from both images.

Results are displayed in Figure 5.11. In the case of low resolution, unconstrained

images, the initial analysis indicates that an EER of ∼ 25% has been obtained on

a subset of images belonging to the left-eye-looking-left, near-distance category. An

assessment of the results suggests that the large intra-class variation is caused by the

following factors: (a) the curved surface of the eye that cannot be modeled using a

linear surface; (b) the large range of viewing angles; (c) the glossy surface of the sclera

that reflects light; (d) eyelashes that obstruct the sclera region and can be incorrectly

perceived as vasculature patterns; and (e) the presence of less prominent veins that

can degrade performance.
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Figure 5.11 ROC curve indicating the results of matching

5.7 Summary

This work investigates the usability of the sclera texture and the vasculature pat-

terns in visible spectrum images (RGB) as a biometric cue. The images of the eye

are collected in unconstrained lighting conditions, distances and viewing angles. The

purpose is to evaluate the matching performance and to examine how the results vary

when moving from high to low resolution, from constrained to unconstrained envi-

ronment. The segmentation of the sclera region based on k-means clustering method

was presented; specular reflection detection and conjunctival vasculature enhance-

ment were described; and direct correlation method for matching performance was

used. There are several challenges associated with processing these images. These

issues are related to: (a) the curved surface of the eyeball; (b) harsh ambient lighting

resulting in significant specularities; (c) the large range of viewing angles; (d) eye-

lashes that obstruct the sclera region and can be incorrectly perceived as vasculature

patterns; and (e) the presence of less prominent veins that can degrade performance.

The results reflect the challenges that further have to be conquered to consider the

sclera texture and the vasculature patterns as a biometric cue.
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Chapter 6

Discussions and Conclusions

Among different biometric modalities, iris recognition has gained popularity in the

last decade due to its reliability, accuracy, and stability over long periods of time.

However, it has been noted that when the gaze direction is non-frontal in regards to

the imaging device, the performance of iris recognition degrades considerably. The

idea of using the sclera surface as a biometric modality was developed to compensate

the loss of information in non-frontal images of the iris. There is an academic interest

in sclera biometrics as an individual and independent component of biometric science.

Based on the patent [24] approved in 2008, the work in this dissertation investigates

the novel use of the sclera texture and blood vessels seen on its surface as a biometric

cue. This new modality is presented as a potential part of the ocular biometric entity

that reunites all the biometric modalities related to the eye and its surrounding re-

gion. Iris patterns are better observed in the NIR spectrum, while the blood vessels

exposed on the sclera surface are better discerned in the visible spectrum. Therefore,

multispectral images of the eye are used to ensure that both the iris and the sclera

region are successfully imaged. A high resolution multispectral database consisting of

two different collections - the first of 103 subjects and the second of 31 subjects - was
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assembled to initiate the research in this field. The images were collected within spe-

cific constraints that included stable lighting, consistent distance, and similar viewing

angles. The pre-processing and post-processing of the ocular images required image

denoising; specular reflection detection and removal; automatic segmentation of the

sclera, the iris, and the pupil;blood vessel enhancement; and image registration. To

evaluate and assess the performance of the sclera texture as a biometric modality,

first we had to find the feature extraction methods and matching algorithms that

better characterized this biometric. The study of the sclera texture as a biometric

modality was accomplished through four approaches.

1. The performance of sclera texture is evaluated by using three feature extraction

and matching schemes: SURF, a keypoint-based matching method; direct cor-

relation methods such as correlation, mutual information, normalized mutual

information, root mean square error, structural similarity index measure, and

ratio-image uniformity, such as pixel to pixel matching; and minutiae point

matching, which mark the locations of bifurcations of blood vessels visible on

the sclera region. The score level fusion of minutiae with each of the direct

correlation methods is evaluated using the simple sum rule, maximum rule, and

minimum rule (Chapter 3).

2. After establishing the potential use of sclera as a biometric cue, the matching

performance of the fusion of sclera patterns (scores obtained with SURF tech-

nique) with iris patterns (scores obtained with Hamming distance) is evaluated

by using three score level fusion rules: simple sum rule, maximum rule, and

minimum rule (Chapter 4).

3. The matching performance of the sclera texture as a potential biometric modality

is evaluated for data sets with intra-class variation. The methods used for
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feature extraction and matching schemes are the ones used in the first approach.

The performance of the fusion of the sclera biometric (using SURF technique)

and the iris biometric (using Hamming distance) is also evaluated (Chapter 5).

4. The evaluation of sclera texture as a biometric in unconstrained, low resolution

visible spectrum images. (Chapter 6).

The first approach investigated the feasibility of using multispectral conjunctival

vasculature in an ocular biometric system. Due to its relative novelty as a research

topic, this paper mainly covers the challenges imposed when acquiring and processing

sclera images and should therefore be treated as a gateway to further exploration of

the sclera veins as a biometric modality. A new sclera segmentation method was pre-

sented and different feature extraction and matching techniques were used to represent

this biometric. The matching results using all the methods indicate lower values of

EER for left-eye-looking-left (L L) and right-eye-looking-right (R R) compared with

right-eye-looking-left (R L) and left-eye-looking-right (L R). This is because the fa-

cial features (such as the nose) partially obstruct the light directed to the left eye

when looking right and to the right eye when looking left. In such cases the EER

is improved using fusion methods. The best accuracy (EER < 0.8% for L L, R R,

and EER < 1.8% for L R, R L) is obtained when interest-point detection (SURF)

is used. This is because SURF utilizes the entire sclera region, including the vascu-

lature patterns; further it is not sensitive to small variations in the viewing angle,

affine deformations, and the color shades. Direct correlation measures also provide

good results, mainly when correlation (EER < 1.3% for L L, R R, and EER < 4.8%

for L R, R L) and normalized mutual information (EER < 1.7% for L L, R R, and

EER < 5.3% for L R, R L) are used. Like the SURF method, direct correlation

measures use the entire sclera surface including the conjunctival vasculature, but in
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contrast are sensitive to changes in the viewing angle and illumination. Results could

be improved with a better blood vessel enhancement method. The minutiae based

method presents an EER in the range [9.5%, 12%] for both eyes and both gaze direc-

tions. The performance is greatly impacted by the presence of more or less prominent

veins, by the percentage of successfully segmented blood vessels and the accuracy with

which the centerline of the blood vessels is found. The perceived shape and tortuosity

of the blood vessels are influenced by the small changes in the viewing angle. This

method can be improved by accurately segmenting the blood vessels resulting in a

higher percentage of segmented blood vessels containing finer veins. The fusion of

direct correlation measure scores with minutiae scores is performed in an attempt to

boost the matching performance. In the case of left-eye-looking-right and right-eye-

looking-left, where the light that reaches the eye is obstructed by the facial structure

and the curvature of the eyeball, the EER is lowered when the sum rule is used for

fusing minutiae based scores with each of the direct correlation scores, except when

using mutual information and normalized mutual information.

The second approach investigated the benefits of combining the iris biometric with

the sclera biometric. The first approach demonstrated that SURF technique resulted

in the best recognition performance for scleral patterns. Therefore, this technique

was used to further combine the sclera patterns with iris patterns. Among differ-

ent evaluation techniques for iris biometric, Hamming distance is one of the most

popular. Three techniques were used to fuse the SURF scores with the Hamming dis-

tance scores: the simple sum rule, maximum rule, and minimum rule. As observed,

the combination of the two biometric modalities resulted in improved iris recognition

performance, especially when the simple sum rule or maximum rule was used. The

EER had the value of 0% for both eyes and both gaze directions, and there was no

overlap between the genuine and impostor distribution of scores. The performance of
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iris recognition was also improved when using the minimum rule. The values of the

EER, which were obtained using Hamming distance, were between 0.45% and 3.5%.

After the fusion of the iris and the sclera patterns, the EER values were limited to

the interval 0.2% to 0.4%. The results suggested that iris recognition performance

would be improved by the fusion with sclera recognition.

The third approach investigated the potential of using the sclera patterns as a

biometric cue in the presence of intra-class variation. However, sclera recognition

exhibited the same performance with or without the presence of intra-class variation

when keypoint-based method SURF was used. The EER values were contained within

the interval 0.1% to 0.8% for left-eye-looking-left, right-eye-looking-right, and right-

eye-looking-left. Only the value of EER for the left-eye-looking-right was slightly

higher, at 2.5%. SURF technique is invariant to small changes in the viewing an-

gle. By comparison, the direct correlation techniques and minutiae points method

are not invariant to the changes in the viewing angle. Therefore, a decrease in the

performance of sclera recognition was observed when the variant methods were used.

The EER values for minutiae points were constrained to the interval 11.5% to 16%,

which were also higher values when compared with those from the Table 2.6. The

performance of iris recognition in this approach was more positive than when com-

pared with the values of EER obtained in the second approach. This is explained

by a better illumination of the eye and the focus of the camera on the iris region.

Similarly, the iris recognition performance for ocular images with intra-class variation

was increased as a result of the fusion of iris patterns with sclera patterns.

The fourth and the last approach investigated the usability of the sclera texture

and the vasculature patterns in visible spectrum images (RGB) as a biometric cue.

The images collected in an unconstrained environment exhibited a large range of

viewing angles, specular reflections of different sizes, topologies, and locations. The
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correlation was used for matching performance. For near distance, left-eye-looking-

left, the EER is 25%. A future step is to address the challenges encountered when

acquiring and processing images of the sclera collected in unconstrained environment.

The following publications were generated as a consequence of this research:

1. S. Crihalmeanu, A. Ross,Multispectral Scleral Patterns for Ocular Biometric

Recognition, Pattern Recognition Letters, In press 2012, http://dx.doi.org./10.1016/j.patrec.2011.11.006

2. S. Crihalmeanu and A. Ross, On the Use of Multispectral Conjunctival Vascula-

ture as a Soft Biometric, WACV, Kona USA, January 2011

3. S. Tankasala, P.Doynov, R. Derakhshani, A. Ross and S. Crihalmeanu, Classifi-

cation of Conjunctival Vasculature using GLCM Features, ICIIP, Shimla India,

November 2011

4. S. Crihalmeanu, A. Ross and R. Derakhshani, Enhancement and Registration

Schemes for Matching Conjunctival Vasculature, ICB, Alghero Italy, June 2009

5. R. Derakhshani, A. Ross and S. Crihalmeanu, A new Biometric Modality Based

On Conjunctival Vasculature, ANNIE, Saint Louis USA, November 2006

6.1 Future work

The results obtained in the four approaches described in this dissertation demonstrate

the potential of using the sclera surface and the conjunctival vasculature for recog-

nition and reflect the challenges that further have to be conquered to consider the

sclera texture and the vasculature patterns as a biometric cue. The results suggest

that more work is needed in this area, such as evaluating the sclera in non-frontal
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images of the eye using texture analysis techniques described in [57]: color texture

analysis, random texture analysis, hierarchical texture, etc. Another approach could

be the study of segmented blood vessels as open curves, their tortuosity and thickness

(more or less prominent blood vessels), and the changes that occur with an incon-

sistent viewing angle. The detection of the eyelashes may help improve the sclera

region segmentation. Other issues that may be addressed are related to lessening

the constrains of the environment; for example, by evaluating the sclera surface in

ocular images with the entire sclera exposed (wide open eye) or partially occluded

sclera region, and evaluating the matching performance of the sclera texture under

different lighting conditions and different viewing angles. The age of the subject and

the chemicals the eye has come in contact with both greatly influence the appear-

ance of the sclera texture. These changes may have a significant effect not only on

the matching performance, but also on the segmentation process. It is well known

that an improper segmentation will also influence the performance matching. Little

research for iris recognition using multispectral images is published. A more in depth

exploitation of the multispectral information may support a more accurate segmen-

tation of the iris and sclera region, and feature extraction and matching algorithms.

The answers to all these issues lead to the innovative idea of customizing imaging

systems for sclera. As for any other biometric system, a quality measure has to be

found in order to address the problem of failure to acquire.

In this dissertation the possibility of utilizing the scleral patterns in conjunction

with the iris for recognizing ocular images exhibiting non-frontal gaze directions was

established.
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Figure A.1 Data collection 1. The ROC and the distribution of scores for
the SURF technique.
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Figure A.2 Data collection 1. The ROC and the distribution of scores for
the minutiae-based matching technique.
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Figure A.3 Data collection 1. The ROC and the distribution of scores for
the correlation technique.
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Figure A.4 Data collection 1. The ROC and the distribution of scores for
the mutual information technique.
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Figure A.5 Data collection 1. The ROC and the distribution of scores for
the normalized mutual information technique.
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Figure A.6 Data collection 1. The ROC and the distribution of scores for
the ratio-image uniformity technique.
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Figure A.7 Data collection 1. The ROC and the distribution of scores for
the root mean square error technique.
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Figure A.8 Data collection 1. The ROC and the distribution of scores for
the structural similarity index technique.
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Figure A.9 Data collection 1. The ROC and the distribution of scores for
the fusion of minutiae and correlation technique.
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Figure A.10 Data collection 1. The ROC and the distribution of scores for
the fusion of minutiae and mutual information technique.
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Figure A.11 Data collection 1. The ROC and the distribution of scores for
the fusion of minutiae and normalized mutual information technique.
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Figure A.12 Data collection 1. The ROC and the distribution of scores for
the fusion of minutiae and ratio-image uniformity technique.
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Figure A.13 Data collection 1. The ROC and the distribution of scores for
the fusion of minutiae and root mean square error technique.
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Figure A.14 Data collection 1. The ROC and the distribution of scores for
the fusion of minutiae and structural similarity index technique.
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Figure B.1 Data collection 1. The ROC and the distribution of scores for
the SURF technique (automatic sclera segmentation).
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Figure B.2 Data collection 1. The ROC and the distribution of scores for
the Hamming distance.
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Figure B.3 Data collection 1. Fusion of iris patterns and sclera patterns.
The ROC and the distribution of scores for L L, simple sum rule, maximum
rule, minimum rule.
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Figure B.4 Data collection 1. Fusion of iris patterns and sclera patterns.
The ROC and the distribution of scores for L R, simple sum rule, maximum
rule, minimum rule.
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Figure B.5 Data collection 1. Fusion of iris patterns and sclera patterns.
The ROC and the distribution of scores for R L, simple sum rule, maximum
rule, minimum rule.
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Figure B.6 Data collection 1. Fusion of iris patterns and sclera patterns.
The ROC and the distribution of scores for R R, simple sum rule, maximum
rule, minimum rule.
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Appendix C

Impact of intra-class variation.

The ROC and the distribution of

scores. Data collection 2.
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Chapter C Impact of intra-class variation. The ROC and the distribution of scores.
Data collection 2.
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Figure C.1 Data collection 2. The ROC and the distribution of scores for
the SURF technique.
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Figure C.2 Data collection 2. The ROC and the distribution of scores for
the minutiae-based matching technique.
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Figure C.3 Data collection 2. The ROC and the distribution of scores for
the correlation technique.

130



Chapter C Impact of intra-class variation. The ROC and the distribution of scores.
Data collection 2.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20
MI     L_L

False Accept Rate (%)

F
al

se
 R

ej
ec

t 
R

at
e 

(%
)

EER ~ 10%

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

Normalized score

D
is

tr
ib

u
ti

o
n

 o
f 

sc
o

re
s

MI     L_L

Imposter Distribution
Genuine Distribution

(a) (b)

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0
2
4
6
8

10
12
14
16
18
20
22
24
26

MI     L_R

False Accept Rate (%)

F
al

se
 R

ej
ec

t 
R

at
e 

(%
)

EER ~ 14.5%

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Normalized score

D
is

tr
ib

u
ti

o
n

 o
f 

sc
o

re
s

MI     L_R

Imposter Distribution
Genuine Distribution

(c) (d)

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0
2
4
6
8

10
12
14
16
18
20
22
24
26

MI     R_L

False Accept Rate (%)

F
al

se
 R

ej
ec

t 
R

at
e 

(%
)

EER ~ 12%

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Normalized score

D
is

tr
ib

u
ti

o
n

 o
f 

sc
o

re
s

MI     R_L

Imposter Distribution
Genuine Distribution

(e) (f)

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0
2
4
6
8

10
12
14
16
18
20
22
24
26

MI     R_R

False Accept Rate (%)

F
al

se
 R

ej
ec

t 
R

at
e 

(%
)

EER ~ 12%

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

Normalized score

D
is

tr
ib

u
ti

o
n

 o
f 

sc
o

re
s

MI     R_R

Imposter Distribution
Genuine Distribution

(g) (h)

Figure C.4 Data collection 2. The ROC and the distribution of scores for
the mutual information technique.
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Figure C.5 Data collection 2. The ROC and the distribution of scores for
the normalized mutual information technique.
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Figure C.6 Data collection 2. The ROC and the distribution of scores for
the ratio-image uniformity technique.
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Figure C.7 Data collection 2. The ROC and the distribution of scores for
the root mean square error technique.
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Figure C.8 Data collection 2. The ROC and the distribution of scores for
the structural similarity index technique.
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Figure C.9 Data collection 2. The ROC and the distribution of scores for
the Hamming distance.
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Figure C.10 Data collection 2. The fusion of iris and sclera patterns for
left-eye-looking-left. The ROC and the distribution of scores.
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Figure C.11 Data collection 2. The fusion of iris and sclera patterns for
left-eye-looking-right. The ROC and the distribution of scores.
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Figure C.12 Data collection 2. The fusion of iris and sclera patterns for
right-eye-looking-left. The ROC and the distribution of scores.
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Figure C.13 Data collection 2. The fusion of iris and sclera patterns for
right-eye-looking-right. The ROC and the distribution of scores.
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