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Abstract

Prosody in Text-to-Speech Synthesis Using Fuzzy Logic

by

Jonathan Brent Williams

For over a thousand years: inventors, scientists and researchers have tried to
reproduce human speech. Today, the quality of synthesized speech is not equivalent to
the quality of real speech. Most research on speech synthesis focuses on improving the
quality of the speech produced by Text-to-Speech (TTS) systems. The best TTS systems
use unit selection-based concatenation to synthesize speech. However, this method is
very timely and the speech database is very large. Diphone concatenated synthesized
speech requires less memory, but sounds robotic. This thesis explores the use of fuzzy
logic to make diphone concatenated speech sound more natural. A TTS is built using
both neural networks and fuzzy logic. Text is converted into phonemes using neural
networks. Fuzzy logic is used to control the fundamental frequency for three types of
sentences. In conclusion, the fuzzy system produces fO contours that make the diphone
concatenated speech sound more natural.
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Chapter 1: Introduction and Background

1.1 Introduction

Text-to-Speech (TTS) is the process of converting unknown text into sounds that
represent the text. Reading out loud is an example of TTS. A TTS system involves
converting random text into intelligible synthesized speech. The text can be either
directly introduced to the system by a user or scanned from a source [16]. The
applications of TTS systems are numerous, from assisting people with disabilities to
improving customer service. The ideal TTS system would sound similar to HAL-9000
from the movie, “2001: A Space Odyssey”. However, current TTS systems still sound
robotic and thus have yet to gain public acceptance. Today, the main problem facing
TTS systems is refining the naturalness of synthesized speech. Naturalness of speech is
correlated to the prosody of speech. Prosody refers to the intonation, timing, and vocal
stress of speech. Currently, TTS research focuses on the improvement of synthesized

speech prosody.

1.2 Human Speech Process

Synthesizing human speech is difficult due to the complexity of human speech.
The production of human speech involves the lungs, the vocal folds, and the vocal tract
(oral cavity, nasal cavity, and pharyngeal cavity) functioning collectively. Figure 1-1

shows the organs used in speech production.
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Human speech is created by an air source (lungs and the surrounding muscles) causing
some type of excitation in the vocal system (vocal folds and vocal tract). The type of
sound produced is determined by the vocal system’s affect on the air flow. There are two
types of speech produced by humans; voiced and unvoiced. With voiced speech, sound is
produced from the vibration caused by air flowing through tensed vocal folds. Unvoiced
speech is created from air flowing through abducted vocal folds, and the sound is
produced by air flowing through a constriction in the vocal tract or air being stopped and
then suddenly released [40].

Mimicking the sounds created by human speech is difficult because real
continuous speech is a combination of many complex audio signals. With voiced speech,
the speech signal is modified by either the oral cavity or the nasal cavity. These cavities
act as resonators with pole and zero frequencies. Pole and zero frequencies are called
formant and anti-formant frequencies, respectively. These frequencies have their own
amplitude and bandwidth. Voiced speech also produces a complex quasi-periodic
pressure wave from an interruption in air flow caused by the vibration of the vocal folds.
The frequency of impulses from the pressure wave is called the fundamental frequency.
With purely unvoiced speech, since there is no vibration of the vocal folds, there is no
fundamental frequency.

Researchers believe that the most important signals generated by human speech

are the formant frequencies and the fundamental frequencies. When synthesizing speech,



these signals greatly contribute to the naturalness of the speech. The formant frequency
represents the shape of the sound that is formed by the vocal tract (oral cavity and the
nasal cavity). Different sounds (vowels, nasals, etc.) within a language are
distinguishable by their formant frequencies. The fundamental frequency determines the
pitch of the voice. For example, women and children have a higher pitch (i.e. higher
fundamental frequency) than men. Throughout the years, research involving the
naturalness of synthesized speech has focused primarily on these two acoustic features.
Sounds created by humans are merely noise if the sounds do not have meaning.
Sounds in speech production are categorized into units. These units can be as large as
words or as minute as a phone. However, phonemes are the fundamental units of
phonology. The definition of phonemes is the theoretical unit of sound that can
distinguish words [29]. The concatenation of phonemes produces the words in the
language, i.e. changing a phoneme means changing the word. Phonemes are split into
two major categories: vowels and consonants. All vowels are voiced sounds while some
consonants are voiced sounds and some are unvoiced sounds. The number of phonemes
on a language depends of the actual language, speaker, and the particular dialect. For
example, most standard American English consists of 41 phonemes. Diphones are the
stable middle region between two phonemes. Diphones represent the transition between
two phones. Therefore, the number of diphones in a language is the number of phonemes
squared. With speech synthesis, the role of phonemes and diphones is to focus on sounds

that the system should yield.

1.3 Speech Synthesis Techniques

Speech synthesis is the artificial production of human speech. The techniques of
speech synthesis are categorized into three different approaches. These are concatenative

speech synthesis, formant-based synthesis, and Hidden Markov Model synthesis.

1.3.1 Concatenative Speech Synthesis

Concatenative speech synthesis involves combining previously recorded speech to

form words or sentences. The concatenative speech synthesis approach currently



produces the most natural sounding speech because of the use of real speech. There are
three methods of concatenative speech synthesis: diphone synthesis, domain-specific
synthesis, and unit-selection synthesis. The most commonly used methods today are
domain-specific and unit-selection synthesis.

Diphone synthesis involves the concatenation of diphones. As previously
explained, diphones are the middle region between two phones. The concatenation of
diphones minimizes the co-articulatory effects of the phone to phone transition. During
synthesis, digital signal processing (DSP) techniques such as linear predictive coding
(LPC), POLA, and MBROLA are used to overlay the desired prosody onto these
diphones. The amount of diphones for a given language is equal to the number of
phonemes of that particular language squared. Therefore, the diphone inventory size is
relatively small and diphone synthesis can be used with inexpensive processors and
embedded systems. However, diphone concatenation yields robotic sounding speech
due to the digital signal processing.

Domain-specific concatenation is a very common form of speech
synthesis. Most companies use domain-specific synthesis for their phone-based customer
service systems. Consequently, this type of synthesis has gained some notoriety over the
years. Domain-specific synthesis concatenates pre-recorded words and phrases to create
speech. Domain-specific synthesis is only useful in applications where the output is
restricted to a certain domain. Examples of domain-specific synthesis are automatic
reports of the weather, talking gadgets, automated banking, and automated customer
service. Domain-specific concatenation sounds natural because the variety of sentence
type is limited; therefore, the output matches the original recording. However, since this
method of synthesis is limited to only specific applications, domain-specific synthesis
could not be implemented in a TTS system.

Unit selection-based synthesis is the method currently used in commercial-based
TTS systems. Unit selection is created from large databases of hours of recorded speech.
These recordings are then converted into units to be concatenated into speech. First, a
recording of speech is segmented into individual phonemes, syllables, words, phrases,
and sentences. The segmentation is done by hand or automatically by a modified speech

recognizer. An index of the units from the speech database is then created based upon



prosodic parameters, like fundamental frequency and segment duration. Synthesis is
created using a decision tree that determines the best path of candidate units from the
database. Unit selection yeilds the most natural sounding speech today. However, to
achieve maximum naturalness requires unit selection-based systems’ speech databases to

be gigabytes in size [36].

1.3.2 Formant Synthesis

Formant synthesis generates synthetic speech using formants. Formants represent
the resonant frequencies of the oral cavity or the nasal cavity. An acoustic model is used
to create the speech and parameters, like fundamental frequency, spectral components,
and noise levels which are varied over time to create a waveform of speech. The
disadvantage of formant synthesis is the robotic sounding quality of speech [36].
However, formant synthesis does have many advantages over concatenative speech.

Formant synthesis does not require stored databases and thus requires little
memory. Formant synthesis can also be generated at very high speeds. This makes
formant-based systems useful in embedded computing and real-time applications. For
example, most reading machines for the blind use formant-based synthesis. In addition,
formant-based systems offer the user more control over the output speech. With formant
synthesis, intonation and prosody can be altered to represent an assortment of emotions

and tones of voice.

1.3.3 Hidden Markov Model Synthesis

Hidden Markov Model (HMM) synthesis is the process of modeling the speech
output using the Markov process. The HMM is a Markov process where the parameters
are unknown. With HMM, each state has outputs, and future states are dependent only on
the present state [36]. HMMs are used in speech synthesis to model the vocal tract and
prosody. The quality of HMM speech synthesis is good but not as good as unit selection-
based systems [36]. HMM synthesis is a newer method of speech synthesis and has been
applied mostly to trainable TTS systems.



1.4 Methods of Text-to-Phoneme Conversion

In order for a TTS system to be accepted by the public, the system must correctly
convert the inputted text into the correct pronunciation. Text-to-Phoneme (TTP)
conversion consists of translating text into its phonetic transcript. This task can be
accomplished using many different methods. The most common methods are the

dictionary-based approach, the rule-based approach, and the machine learning approach.

1.4.1 Dictionary-based Approach

The dictionary-based approach is the easiest TTP conversion method to
implement. Dictionary-based TTP conversion consists of storing phonological
knowledge into a lexicon [16]. Early dictionary-based conversions required locating
word pronunciations that were stored in a large lexicon. This process required enormous
amounts of memory because the lexicons had to contain every word and its
pronunciation. Most dictionary-based TTP conversions today use stored morphemes
instead of words in the lexicon. Morphemes are the smallest language unit that carries a
semantic interpretation. For example, the word “uncontrollable” contains three
morphemes; “un-", “-control-“, and “-able”. Morphemes require less memory to store
and can cover most words in a language. Both types of dictionary-based conversion
methods handle unknown words similarly. Rules are used to pronounce unknown words
or morphemes [16]. The main drawback of dictionary-based TTP conversion is the
amount of memory that the lexicon can consume. Yet, dictionary-based systems are the

easiest to create.

1.4.2 Rule-based Approach

The rule-based TTP conversion approach uses expert rules to yield
pronunciations. The pronunciations are based on the spelling of the word. These rules
are similar to the sounding-out rules used by grade school students when learning how to
read [36]. There are some drawbacks to the rule-based approach. For instance, rule-based
TTP conversion system rules can become very complex, especially with irregular

languages like the English language. Rules are much more complex to code than simple



binary searches used by dictionary-based TTP systems. However, rules-based systems

can work on any input presented to the system.

1.4.3 Machine Learning Approach

There are many different types of machine-learning approaches to TTP
conversion. Machine learning is the ability of a machine, a computer, or an electronic
device to improve its performance based upon previous results. Machine learning
requires that a system “learns” how to convert text into its phonetic representation. With
TTP conversion, this task can be accomplished with many different methods. Neural
networks, Self-Organizing Maps, and Decisions Trees are examples of the machine
learning approach. However, for irregular languages like English, the accuracy is not

equivalent to the latter approaches.



Chapter 2: Motivation and Objectives

2.1 Motivation

TTS systems are becoming more commercially available as the quality of the
systems improves. Most commercial systems use the unit-selection based concatenation
approach to produce speech output [36]. However, unit-selection requires large
prerecorded speech databases that must be segmented in order to create a useable system
[36]. Segmentation of a prerecorded speech database can be very difficult and timely.
Formant synthesis uses less amounts of memory, but the speech is very mechanical in
sound. For speech synthesis to be widely accepted in robotics and our shrinking
electronics, speech synthesis systems must use as little memory as possible, must require
little effort to create, and must sound somewhat natural.

Diphone concatenation is adequate enough to produce understandable synthesized
speech. Most languages consist of about 2000 diphones. Diphone inventories take
relatively little memory to store, and there are many freely available programs that use
diphone concatenation. However, diphone concatenation systems produce speech that is
robotic and not the quality of current unit-selection based systems. Prosody is what
makes speech sound natural, and the prosody in recorded speech segments is more
natural sounding than that of synthesized prosody.

This thesis presents a different method to produce more natural sounding speech
for diphone concatenation-based TTS systems. Most TTS systems that use diphone
concatenation use either neural networks or rule-based approaches to generate prosody.
This research exams the use of Fuzzy Logic to generate one aspect of prosody:
fundamental frequency. TTP conversion is performed using the neural network Back
Propagation algorithm. Using linguistic data as input, the fuzzy logic system produces
fundamental frequency and frequency contour as outputs. The rules of the fuzzy logic
system are from the O’Shaughnessy fundamental frequency algorithm used in the MITalk

system [2]. As a result, the TTS system output speech should sound more natural.



2.2 Research Objectives

The research objective is to apply the flexibility of fuzzy logic to the randomness
of TTS conversion in order to produce more natural sounding synthesized speech. Using
established information provided by the user of the TTS system, the fuzzy controller will
produce output that will reflect the user’s input.

The specific research objectives are:

1. Gain an understanding of the process of human speech production.
Understand the concepts and theories of generating synthetic speech. Research
different algorithms that have been created to generate English prosody

automatically.

2. Build an English text-to-phoneme system using neural networks that will
produce accurate phonemes given inputted text. The Back Propagation
algorithm will be used to train the network. The training set will consist of

about 1800 words.

3. Implement a fuzzy control system that will control the intonation of the
speech. The fuzzy controller will receive different linguistic parameters as the
input and produce fundamental frequency as the output. This fuzzy controller
will represent the O’Shaughnessy fundamental frequency algorithm and
system will handle three types of sentences: declarative, yes/no question, and
interrogative questions. The final system should produce understandable

speech that mimics the proper intonation for each type of sentence.

4. Calculate the accuracy of the text-to-phoneme network using the training set
and unknown text. Evaluate the fuzzy controller by comparing the f0 contour
produced by the controller with the fO contour of the Microsoft Research
Speech Technology Asia (MRSA) on-line TTS system [37].



Chapter 3: Literature Review

TTS research has been extensively examined over the last 40 years. This chapter
presents an extensive literature review of past and present research on the different
aspects of the TTS system. The review has been performed on the following subjects:
generation of synthetic speech, TTS conversion algorithms, TTS systems, automatic

prosody generation, and the fuzzy logic inference system.

3.1 Generation of Synthetic Speech

Generating synthetic speech has been a curiosity for the past 1100 years. Around
the year 1003, Gerbert of Aurillac created the first known mechanical talking machine.
For the next two centuries, inventors like Albertus Magnus and Roger Bacon created
machines know as “talking heads” [23]. However, the first known machine that tried to
mimic real human speech was developed by Christian Kratzenstein of St. Petersburg in
1779. This machine could produce five long vowel sounds. Twelve years later,
Wolfgang Von Kempelen developed a machine that could produce vowels and some

consonants [21, 33].

Figure 3-1: Wolfgang Von Kempelen's Talking Machine [33]

With the start of the 20" century and the increasing use of electricity, speech synthesis

began to move from mechanical machines to electrical machines.
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Electronic speech synthesizers were first developed in the 1920’s. The first
known electronic synthesizer, VODER, was developed by Homer Dudley in the late
1930’s [21]. Dudley was a research physicist at the Bell Laboratories in New Jersey.
Dudley reconstructed the Bell Laboratories speech analysis, VOCODER, into the speech
synthesizer VODER. The VODER was controlled by an operator using a keyboard to

Figure 3-2: Woman Operating the VODER [36]

adjust the filter output, foot pedals to control the fundamental frequency, and special keys
to create closure and the release required for stops [23]. The VODER was operated like a
musical instrument. Eventually, human operated machines became obsolete. After World
War 11, the spectrograph provided a new tool for researching acoustic phonetics. As a
result, researchers began to study speech based on acoustical data.

In the 1950’s, speech synthesizers like the Pattern Playback were developed to
produce speech from copied speech waveforms. The speech synthesis by rule approach
(formant synthesis) began to become prevalent in the following decade. Concatenative
speech synthesis became a focus of research in the 1970’s with the initial focus on
phoneme concatenation. However, it was quickly discovered that diphone concatenation
would be more feasible than phoneme concatenation [21]. In 1976, Olive and
Spickenagle used linear prediction speech analysis to automatically create a full diphone
inventory for concatenation [27]. In 1988, Nakajima and Hamada wrote about a method

of speech concatenation that used a unit-selection based approach, instead of the more

11



common diphone concatenation approach [25]. Today, diphone concatenation and unit-
selection concatenation are the most common methods of speech synthesis with the latter

becoming more common commercially.

3.2 Text-to-Phonemes Algorithms

Today, there are many different ways to produce speech from text. One of the
earliest methods of converting text to phonetics was the use of sophisticated heuristics
[21]. The first full English TTS system used this method in combination with a syntactic
analysis module. As computer memory increased, the preferred method for TTP
conversion was the use of a look-up dictionary. Look-up dictionary algorithms consist of
matching inputted words to words in a lexicon, utilizing phonological rules as a back-up.
By the 1980’s, TTS systems like the KlatTalk and DECTalk used a combination of a
look-up dictionary and phonological rules [2, 21, 22]. As computer technology became
more sophisticated and accessible, researchers began to develop new ways of tackling the
TTP conversion problem.

The use of machine learning techniques for TTP conversion was researched in the
1980s. In 1987, Sejonowski and Rosenberg used neural networks to convert inputted text
into phonemes. This system used a 120 hidden neuron multi-layered perceptron trained
with 2000 words [35]. Neural networks use neurons with weights that represent the
neurons and the synapse of the neurons, respectively. Each weight represents the firing
strength of the neuron synapse. Initially, all of the weights for each neuron in the network
are randomized. The weights are updated using the calculated error from the training data
and the network’s actual output. In the multi-layered perceptron algorithm, the error is
propagation backwards throughout the layers of network. Figure 3-3 shows an overview

of the NetTalk network.
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Figure 3-3: NetTalk Multi-layered Perceptron

McCulloch devised a re-implementation of the NETTalk multi-layer perceptron
algorithm called NETSpeak, which yielded about 85% accuracy [24]. Recently,
Arciniegas and Embrechts used a staged neural network algorithm to handle some of the
previous problems of the single-staged multi-layer perceptron algorithm. In that paper,
two stages of neural networks were used to convert text to phonemes. One stage
separated regular words from special words. Special words were categorized as words
that contained single letters represented by two output phonemes. The other stage found
the phonetic output for the two types of words [4]. Gubbins used a hybrid-neural
network approach which used both neural networks and a simple rule-based system to
convert text to phonemes [18]. The multi-layer perceptron neural network is not the only
neural network algorithm researchers have used for TTP conversion.

Adamson and Damper researched different ways to improve the performance of
TTP conversion neural networks [24]. They used a recurrent neural network which
addressed some of the problems of the multi-layer perceptron algorithm. A recurrent
neural network uses a single letter as input and trains itself using the Back Propagation
through Time algorithm. This algorithm removes the need for alignment of the training
set. The network has a recurrent structure with no constraints regarding which direction
units can interact [19]. Adamson and Damper’s algorithm initially performed worse than
the NETTalk and NETSpeak, but their paper was the foundation for other recurrent
neural network based algorithms [1]. In 2004, Bilcu, Astyola and Saarinen improved the

performance of the recurrent neural network algorithm by using three letters as the input
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to a recurrent neural network [6]. In 2003, Bilcu compared the performance of multi-
layered perceptron to two types of recurrent networks. The results showed that the multi-
layered perceptron is the most accurate of the three [7]. Besides neural networks, TTS
systems have also used other forms of machine learning to convert text to phonemes.

The pronunciation by analogy (PBA) algorithm is another machine learning
algorithm that has been used for TTP conversion. PBA is similar to the dictionary-based
algorithms because both algorithms use dictionaries to convert text to phonemes.
However, the PBA algorithm uses a different method to handle words not in the
dictionary. The PBA algorithm concatenates partial pronunciations of substrings using
learned phonological knowledge [12]. Using an aligned lexicon, pronunciation can be
achieved through explicit and implicit learning. An example of a system that uses this
algorithm is the PRONOUNCE system [12, 13]. In the PRONOUNCE system, an
inputted word is matched to words in a dictionary. Then substrings with common letters
are found between the found dictionary entry and the input. Phonetic substrings are also
built from the matched substrings. Information from these substrings is then used to build
a pronunciation lattice. Lattice nodes are first labeled with L; and P; representing the
matched letter and the corresponding phoneme in the substring, respectively. P; is labeled
P;m to represent the my, matched substring. If there is a match between two L; and L;, then
an arch is placed between the two nodes with the Py, and P, being the arc labels. The
pronunciation for an unknown string is created by the best path through the lattices [12].
PBA do suffer from one major drawback however. Due to incomplete paths, PBA tend
to have silences during text conversion. This problem was solved in Sullivan and

Damper, but the pronunciation lattices’ size greatly increased [39].

3.3 Text-to-Speech Systems

The first full TTS system was developed in the late 1960’s. Since then, there have
been many advances in the accuracy and the quality of TTS systems. Companies like
IBM, Microsoft, and Bell Labs have developed both free and commercially available

systems.
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In 1968, Umeda of Japan developed the first demonstrated TTS system for the
English language. This system transformed text to phonemes using linguistic rules.
Sentence pauses were placed in sentences with ten or more syllables [21]. In 1973, the
Haskins TTS system was developed but was later discontinued due to inadequate
research funds. This system used the Kenyon and Knott 140,000 word phonetic
dictionary with a rule system to handle unknown words. The Haskins TTS system was
developed to aid the blind with reading. Although the system was never produced
commercially, the Haskins TTS system is considered a significant step in TTS research
[21].

In 1976, Allen, Hunnicutt, and Klatt developed the MITalk at MIT [2]. This TTS
used different levels to convert text to synthesized speech. In the first level,
abbreviations, numbers, and symbols were transformed into words. Then, using a 12,000
morph (prefixes, roots, and suffixes) lexicon, words were converted to their phonetic
equivalent. Words not in the lexicon were converted to phonemes by using rules. Stress
and “part of speech” for each word was determined on another level. Then the final level
produced the synthesized speech. Phoneme, syllabic, and pause duration were
determined using the Klatt duration rules [20, 2]. Fundamental frequency contour was
determined using an adaptation of the O’Shaughnessy algorithm [28, 2]. The {0 contour
was smoothed, and the waveform was generated using a terminal synthesizer.

The Klatttalk TTS system was developed in 1983 by Dennis Klatt. Dennis Klatt
had previously worked on the MITalk system a few years earlier. This system used the
Hunnicutt letter-to-phoneme rule system plus an exception dictionary to convert text to
speech. The Klattalk was more rule-based than the dictionary-based MITalk system [22].
The Klattalk system was the basis for the 1982 Digital Equipment Corporation DECTalk.
The DECTalk system later became commercially available in 1983. DECTalk was very
versatile because of its ranges of voices and different speech speeds. Due to the flexibility
of the DECTalk hardware, the DECTalk was easily updated with improved versions of
the Klattalk system [21].
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Figure 3-4: Stevie Wonder Introducing the DECTalk in 1983 [41]

In the early 1980’s, Richard Gagnon developed a very inexpensive segmental
synthesis program. This system became the commercial Votrax Type-n-Talk. The
system was built with very inexpensive hardware and a small phoneme inventory to
synthesize speech. The Echo TTS system was another inexpensive segment-based system
which used a diphone inventory and a linear predictive synthesizer to produce speech
[21].

Today, there are many types of TTS systems for many different purposes. The
Festival Text-to-Speech system developed by Black and Clark is an example of current
TTS systems developed for research. Festival uses letter-to-sound rules and a large
lexicon for TTP conversion. Speech synthesis is accomplished using unit-selection
concatenation of diphones [8]. The MBROLA project is a TTS system that is freely
available for researchers. The MBROLA project was developed by TCTS Lab of the
Faculté Polytechnique de Mons in Belgium and is a back-end system [15]. This system is
to be used as a speech producer for a TTS system developed by the user. MBROLA uses
diphone concatenation to produce speech for many different languages. Microsoft has
many English TTS systems for different applications. Microsoft based products use
either unit-selection or diphone concatenation to synthesize speech. Microsoft Reader is

free software from Microsoft that converts text from e-mails and other documents to
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speech. The Apple PlainText TTS system is standard on PowerPC computers. The
PlainText uses a dictionary-based system to convert text to sounds and diphone
concatenation to produce speech. A very high quality commercial system is the AT&T
Natural Voices TTS system. The AT&T Natural Voices enables users to define the
pronunciation of certain words. This system uses unit-selection synthesis to produce

speech [5].

3.4 Automatic Prosody Generation

Currently, prosody is the major issue in speech synthesis. As a result, most
research deals with prosody of speech. Prosody, in the context of speech, consists of the
properties of speech, such as pitch, loudness, and duration [16]. Prosodic events can be
phonemes, syllables, or words. Prosody in a speech system mainly deals with
fundamental frequency and segmental duration.

Segmental duration refers to the timing of the units that create speech. These
units can be either as small as a phone or as large as a phrase. The size of the units must
be determined in order to adequately model real speech. Researchers know that sub-
phonetic segments do exhibit different durations. However, this information would be
too complex for TTS systems, so most research is focused on either the phonetic or the
supra-phonetic sized segments [16]. Early research on segmental duration addresses the
principles of isochrones. A speaker would unconsciously use an internal clock while
speaking. As a result, Campbell contended that segments in a syllable frame are found

using the following formula:

Dur; = exp(u;+ ko))
(3.1)
Dur; is the duration of the segment at syllable; and x; and g; statistical measures of a large
corpus. However, this formula is too strict of an application to accurately model duration
[15].
More accurate segmental duration models have focused primarily on the phoneme

as the segmental unit. Although other segments are taken into account, these segments
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do not directly affect the duration of the units. Currently, there are two types of
segmental duration models: rule-based models and corpus-based models. Rule-based
models use rules to modify intrinsic durations, while corpus-based models use
sophisticated methods to automatically derive models using data within the corpus [16].
One of the best known rule-based duration models was developed by Dennis Klatt
in 1976. This model has been used in MITalk, Klattalk, and DECTalk TTS systems.
Each phoneme consists of an inherent duration and a minimum duration [2]. There are
eleven rules that alter the duration of the phoneme due to factors like their location, their
manner of articulation, their stress, etc. The duration of the phonemes is changed by

using the formula:

PRCNTI = (PRCNTI)*(PRCNT2)/100 (3.2)

Where PRCNT1 represents the current duration of the phoneme, and PRCNT?2 is a
number that the phonemes need to be altered [2]. Although this duration model works
well, recent research has focused more on the corpus-based approach to duration
modeling.

Corpus-based duration models take advantage of the advancements in
computational resources. Using a large recorded speech corpus, parameters are extracted
and models are created using some type of abstract learning method. In 1994, Riley used
a corpus of 400 utterances from a single speaker and 4000 utterances from 400 speakers
to model segmental duration. From this corpus, Riley built a classification and regression
tree (CART) as the segmental duration model [32]. In 1992, Campbell used a neural
network to model segmental duration. In that paper, he computed syllable duration
independent of inherit segmental durations. Campbell believed that previous rule-based
models were incorrectly based on inherent durations. His focus was to model higher
levels of prosodic structure like syllables and prosodic phrases. Consequently,
Campbell’s network was trained to model Japanese and English syllables [11].

Although segmental duration is a very important aspect of speech synthesis
prosody, it is not as essential as pitch and intonation. For example, a modification in

pitch can change a statement into a question. Initially, research on this aspect of prosody
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mainly focused on the relationship between intonation and stress. Intonation deals with
the pattern of tones in an utterance. Stress deals with the emphasized syllable of a word.
It was believed that there was a direct association between intonation and pitch and that
stress was created by changes in vocal intensity and syllable duration [21]. However, it is
now known that the change in the fundamental frequency indicates stress and intonation
[21]. Over the years, there have been different theories to predict the rise and fall of
fundamental frequency (f0).

In the mid 1960’s, Mattingly developed a fundamental frequency theory that used
three tunes placed on the last prominent syllable of a clause. The tunes were rise, fall,
and rise-fall which correspond to a statement end, a question end, and a continuation rise,
respectively. Later in the decade, researchers tried to develop models that mimic the
exact fundamental frequency contour of natural speech. In 1969, Ohman stated that f0
contours can be modeled in terms of a discrete signal fed to a linear smoothing filter [21,
26]. A Japanese intonation model by Fujisaki was able to closely match natural
intonation contours using the ideas proposed by Ohman [17]. Fujisaki listed two types of
events: phrase and accent command [16]. Phrase commands were modeled as a pulse
function, and accent commands were modeled as a step function [16]. Hart and Cohen
described intonation as a hat pattern. The fundamental frequency will rise on the first
stressed syllable of a phrase and then remain high until the final stressed syllable. At the
end of the phrase, there will be either a large fall or a fall-rise of the fundamental
frequency [21].

The O’Shaughnessy fundamental frequency algorithm was developed in 1979.
This rule-based method first assigned peaks to stresses in the sentence. The size of the
peak depended on the length of the sentence, the location of the stress, and the
importance of the word. Then rises and falls were placed around the peaks. The final
rise or fall of the sentence depended on whether the sentence was a statement, a yes-no
question, or an interrogative question [2]. The Pitch Contour theory was developed in the
late 1960’s for British English. This theory splits speech into four components: prehead,
head, nucleus, and tail [16].

By the early 1980’s, models for fundamental frequency generation began to

become more comprehensive and flexible. A well known model was developed in 1984
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by Anderson and Pierrehumbert [30]. Anderson and Pierrehumbert believed that stress
patterns in a sentence affected the fundamental frequency contour. This model advances
on some of the earlier research that used two tones. The model separates intonation into
two main tones, a high and a low [30]. These tones are placed on stressed syllables as a
single tone or a combination of tones. The sequence of tones is restricted by a three level
finite state grammar [16]. With the tones reflecting target points in the fundamental
frequency contour, this model does generate good intonation contours. As the 1980’s
came to an end, researchers began to focus on more statistical and data-driven models.

Some researchers began to focus on the use of classification and regression trees
(CART) to generate intonation. These trees were used with different intonation models
to automatically generate fundamental frequency for TTS systems. Classification and
regression trees consist of a question on each leaf (node) about the feature. The answers
from the tree nodes form another sub-tree path. The leaves of these trees contain
statistical measures that define the path taken [14]. The Festival TTS system by
Dusterhoff and Black uses classification and regression trees in combination with the Tilt
Intonation model to generate prosody. The Tilt Intonation model is used to automatically
analyze intonation. There are two types of Tilt events: pitch accents and boundary tones
[31]. Unlike previous work which used categorical parameters, the Tilt model uses
continuous parameters [31]. Using real speech, information is extracted from the
database. Then regression trees are built for each parameter in the Tilt model. These
trees are used as the fundamental frequency model for the system.

Neural networks have also been used to automatically generate fundamental
frequency. In 1989, Scordilis and Gowdy of Clemson University first used neural
networks to generate fundamental frequency. Using a small training corpus of real
speech, a network was trained to learn f0 values and f0 fluctuations in phonemes [34].
Similar to the NETTalk and NETSpeak systems, this network used the Back Propagation
algorithm to train itself. The network consisted of three layers with a hidden layer of 30
neurons. The results revealed that the network could learn to generate fundamental
frequency [34]. In 1992, Traber developed a recurrent neural network to predict the
number of pitch values in a syllable. The network was trained using automatically

labeled data. The network had two hidden layers with the output representing the

20



different fO values [10]. Recent systems that use neural networks for f0 generations
closely follow the system developed in the early 1990’s. Today neural networks have
been used to automatically generate fundamental frequency for a large range of

languages.

3.5 Back Propagation Algorithm

The Back Propagation algorithm was first developed around the mid 1970’s.
Learning is based on the gradient descent in the error [38]. This algorithm consists of two
main phases: the forward pass and the backwards pass [38]. This algorithm is very

similar to Rosenblatt’s Perceptron algorithm and is called the Multi-layered Perceptron.

3.5.1 Forward Pass

With the Back Propagation algorithm, the network should first be considered a

black box with inputs and a single output.

Figure 3-5: The Black Box

Hidden within the black box are neurons in many different layers. The first layers
consist of the input neurons, the middle layers are the hidden neurons, and the last layer is

the output neurons. Each layer is interconnected to the surrounding layers.
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Hidden

Figure 3-6: Interconnection of Neurons

The outer and input layers are static, while the neurons in the hidden layers can be
adjusted. The first step in the Back Propagation algorithm is to create random weights
for each neuron in the hidden layers and output layer. The input vector needs to be a
vector of ones and zeros. The network is presented with an input vector and a desired
output. The hidden weights’ outputs are computed using an activation function. The

activation function can be sigmoid, tangential, etc.

y= 1/(1 + e-(XWixi))

>Y

Xn

Figure 3-7: The Sigmod Activation Function Neuron
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Using the input vector, the hidden layer neuron weights, and the activation function, the

hidden layer nodes’ output is computed using the equation:

= 1 /(1 + e-Z(input vector * hidden neurons weights))

Vi (3.3)

In the equation above, yy,, corresponds to the output of the hidden layer. The subscript £
represents the number of layers in the system, and the subscript m represents the number
of nodes in layer k. The hidden layer outputs now become the inputs to the output layer.
The output layer nodes’ outputs are calculated using the activation function, weights of

each output node, and output from each of the hidden layers node.

-Y(hidden layer outputs * output neurons weights))

y(k+1)m: 1/(1 +e (3.4)

where y+1)m 1 the output of the output nodes, which is the actual output of the network.
Figure 3-8 shows an example of a network and the different inputs and outputs in the

layers.

k
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yka
X1 N Ny Y k1)1
’ Output
Input
N Y (c+1)m
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Layer 0 I I Layer K+ 1
| N, |
| |
Layer K

Figure 3-8: K layered Back Propagation Network
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Using the actual output and the desired output the Mean Square Error can be

determined with the following equation:

E=%(dn— Yarim) ? (3.5)

In this equation, d, is the desired output for the output nodes and y+1ym 1s the actual
output of the output nodes. The next phase of the Back Propagation algorithm can now

be computed using the Mean Square Error [38].

3.5.2 Backward Pass

After the error has been calculated, the weights are updated in each layer to fit
more closely to the desired output. The output layer weights are updated using the delta
rule equation. This involves changing the weights using the gradient of the calculated

error. The error term 6 for the output layer is:

Ot ym = YkrDm (1 = Yacrym) (dm — Ykt 1ym) (3.6)

where y(+1)m is the actual output at node m and d, is the desired output at node m of the
network. Using delta, the weights in the output layer can now be updated thus reducing

the error of the network.

Wienm(t + 1) = Wi im(t) + MOt 1)m Ykm (3.7)

Wanm(t + 1) are the new updated weights in the output layer, and W+ 1)m(t ) are the old
weights in the output layer. m is the learning rate of the network. The learning rate can
be a number greater than zero and less than one. If the learning rate is high, the network
will converge faster but might be less accurate. However, a low learning rate will cause
the network to converge much slower. Also convergence can be changed by using a

momentum term o in equation 3.8.

Waiim(t+ 1) = Wianm(t) + a NSt 1ym Yim (3.8)

Using d+1) from the output layer, the hidden layer error term dx can be computed using

the equation:
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Okm = Yim (1 = ¥ikm) Z(W i 1)mOac+1)m) (3.9)

In equation 4.7, yim are the hidden layer outputs and W(k+1) are the updated weights in
the output layer. After the error term Ok is computed for the hidden layer, the hidden

layer weights are updated using dxm, the presented input vector, and the learning rate.

Win(t + 1) = Win(t) + ndxminput vector,, (3.10)

Wim(t + 1) represents the new hidden layer nodes’ weights and Wi, (t) represents the old
hidden layer nodes weights. This process continues until some stopping criterion has
been met. Once again, convergence can be changed by using the momentum term o in

equation 3.11 [38].

Wit + 1) = Win(t) + a ndxminput vector,, (3.11)

3.6 Fuzzy Logic Inference System

Fuzzy logic has its roots in philosophy. In ancient Greece, a group of philosophers
wrote the “Law of Thought”. One of the laws stated that logic must either be true or
false. The seeds of fuzzy logic were later planted by Plato who contended that there
could be a middle ground between true and false [9]. About 2500 years later, a Polish
philosopher named Jan Lukasiewicz described in detail an alternative to the true/false
logic of early Greek philosophy. Lukasiewicz mathematically created a tri-valued logic
and then later expanded his theory to four-value and five-value logic. Lukasiewicz’s
work affirmed that someday logic could be expanded to infinite-value logic [9].

The father of modern fuzzy logic created this infinite-value logic. In 1965,
Professor Lotfi Zadeh of UC Berkeley wrote the paper “Fuzzy Sets” which described,
mathematically, the theory of fuzzy logic. In this paper, Zadeh described the two
opposites, true and false, as membership functions. These membership functions truths
are determined through a range of numbers, normally between 0 and 1 [42]. In 1973,

Zadeh expanded on this theory, solving complex systems and decision processes [9].
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Fuzzy systems are designed to take advantage of imprecision. Solving real world
problems with precise logic can be difficult. Logic deals with making an absolute choice,
like true or not true. But sometimes the right choice is somewhere in between true and
not true. Fuzzy systems add fuzziness to the choice in order to accommodate the grey
area of logic.

Fuzzy systems assign truth values to statements to determine their truthfulness.
These numbers are usually between 0 and 1. The truth value determines the membership
of a certain group. To describe these groups, the fuzzy system uses the membership
function. With a given statement, the membership function determines the truthfulness of
that statement. The membership function can be many shapes and sizes. Some examples

of membership functions are shown in Figure 3-9.

0 0
Triangle Trapezoid Bell Curve

Figure 3-9: Different Types of Membership Functions

The fuzzy system is built with linguist rules and membership functions. The
linguist rules are used to conduct the actions of the fuzzy system. The membership
functions are used to determine how these rules affect the fuzzy system. The rules are
built using the logical terms like, OR, AND, NOT, and THEN. Rules can also be built
with other terms to hedge behavior like, MORE, LESS, VERY, and SOMEWHAT. Some

examples of how these terms can be used to build rules are:

“If Jon is tall OR Jon is fat THEN Jon’s size is big.”

“If the car is old AND the car is cheap THEN the car is worthless”

“If the car is NOT old AND the car is NOT cheap THEN the car is valuable”
Each term used in the fuzzy system has different effects on the behavior of the

system. The OR term is the same as the UNION of two variables. The OR term is
equivalent to the maximum. The AND term is the equivalent to the INTERSECTION of
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two variables. The AND term is equivalent to the minimum. The NOT term corresponds
to the COMPLEMENT of a variable which is its opposite. Finally, the THEN term
indicates the consequence produced by the rule.

The descriptive linguist variables in the rules represent the membership of the
statement. Therefore, descriptive linguist variables are the membership functions of the
fuzzy system. The fuzzy system is constructed of different fuzzy inputs and consequences
of the inputs. Each input and consequence of the fuzzy system has its own set of
membership functions. When an input is presented to the fuzzy system, the output is
determined by the firing strength of the rules onto the input. From the rules and the

presented input, a crisp output is calculated to produce the output of the fuzzy system.
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Chapter 4: Text-to-Phoneme Conversion

4,1 Text-to-Phoneme Conversion Overview

This chapter presents the algorithm used to convert user’s text into phonemes.
Phonemes are the smallest phonetic unit in a language within a word. When American
students first learn to read, they are taught all of the English phonemes. Table 4-1 gives

some examples of phonemes and the sounds that they represent.

Table 4-1: Examples of English Phonemes
Phoneme |Sound

/p/ pit

/k/ cat

/t/ tap

/a/ about
/&/ bend

/a/ father
/sh/ show
/zh/ measure

In order to convert text into speech, the algorithm must be able to handle words in the
English language that do not sound like the way they are written. The method used to
accomplish this task is neural networks.

Neural networks have been used to solve many types of problems over the years.
These problems include pattern recognition, data classification, and other very complex
problems. The advantage of neural networks is in their parallel architecture. The neural
network simulates how the brain uses interconnected neurons to process information.
With neural networks, the nodes of the networks are interconnected and work in unison

to solve specific problems. However, the only way the neuron network learns is by
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example. Therefore, the network must guess an output, compute an error using the actual
output, and then correct itself by adjusting its neurons [38].

Converting English text to English speak is an example of a complex problem that
neuron networks can solve. English text can be very tricky to pronounce. For example,
words like “Philadelphia”, “bike”, and “brought” are not pronounced how they are
spelled. Using data to correct itself, a network can learn to pronounce English text. For
this system, a neural network is trained with the Back Propagation algorithm using a data
set of about 1800 words [38]. The network was trained on a Dell Optiplex 2.80 GHz

Intel Pentium 4 computer.

4.2 Text-to-Phoneme Conversion Algorithm

The TTP algorithm used by this system follows very closely to the algorithm used
by Sejonowski and Rosenberg. Sejonowski and Rosenberg created the NETTalk system
in the late 1980’s. As previously discussed in Section 3.2, this system used the Back
Propagation algorithm to train a network to pronounce inputted text. The original
NETTalk used a three layered network with 120 hidden neurons and 26 output neurons
that represented each phoneme. Figure 4-1 shows the outline of the NETTalk program.
The training data used in the NETTalk system consisted of 2000 of the most common
words aligned with their pronunciations [35]. Although this algorithm is similar to the
original NETTalk algorithm, there are some slight modifications to the network, training
data, and training algorithm.

The overall network should be thought of as a loop. An input is taken from the
training data, an output is calculated, and the nodes of the network are adjusted according
to the error. Then another input vector follows the same steps, and the process continues

until some stopping criterion is met.
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Figure 4-1: Network Training Cycle

4.2.1 Network Input and Output Design

The network consists of seven windows for the input and one output for the
system. The input to the network is not the total word but single characters. Each word
from the training data is entered into the window one character at a time. The inputted
training word enters the system and moves through the seven windows one character at a
time. The network’s input is the seven windows. Figure 4-2 shows an example of how

this process takes places.

Network Loop 1

Il o || N I S
Network Loop 2
J O N I S

Network Loop 3
@) N I S C

Figure 4-2: Moving Window Example
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The output of the network is the phonetic representation of the 4™ input window
at any given time. The input and output must be aligned to ensure that the output
represents the correct input window. The output can also be thought of as seven windows
aligned with the seven windows of the input. However, the only output window of
concern is the 4™ window. As the input letters move through the seven input windows,
the output phonemes move through the seven output windows. During training, the
network inputs are all seven letters in the input windows, and the network desired output
is the phoneme in the fourth position of the output windows. Figure 4-3 shows an

example of how the output windows work.

Network Loop 1
J O

% J AH % I S

Network Loop 1

1] o 1>¢/ I s ||
J AH N % I S %
4™ Window

Phonetic Output

Figure 4-3: Moving Window Example

4.2.2 Network Detailed Training Design

The training of the network involves obtaining a word and its phonetic
representation from the training set, placing the word’s first character in the first input
window, calculating the actual output of the seven windows, and updating the weights.

The network then moves the characters throughout the windows until the word ends. If
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training is not done, the network retrieves the next word from the training set. Figure 4-4

shows an outline of the training algorithm.

( Start Training )

\ 4
Get word from Training
training set Data

A 4

A

Calculate actual
output

\ 4

Find error form
actual output

Update weights

y

Last word in
training set?

Display
training stats

Maximum
epoch?

End Training

Figure 4-4: Network Training Flow Chart

The first step of the network is retrieving the input vector from the training data.
However, the network does not start with the first word of the data when training first
begins. Initially, the training network input is set to all silences with the desired output
being a silence. This was performed to simplify the beginning of the training process and
to insure that the network and the output are aligned properly. Figure 4-5 shows the

initial look of the network at the beginning of training.
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% % % % % %

Figure 4-5: Initial State of the Network

After the first iteration, the first word is retrieved from the training set. The first letter of
the word is placed in the seven letter window. If the first word is “aardvark”, then the
seven windows would have six silences and one letter after the first iteration. The desired
output would still be a silence. Figure 4-6 shows the seven input windows with the

desired output.

% % % % % ah

Figure 4-6: State of the Network after First Iteration

In order to calculate the actual output of the system, the letters and phonemes
need to be converted to numbers. In this program, each input letter is converted into a
vector. The vector size is the total number of characters used in the network. For the
network, there are 27 characters used for the input, 26 characters that represent the
alphabet and one character that represents a silence. The input vector consists of zeros
and a one. Each input vector is all zeros, with a one located to indicate the letter. For
example, the letter d would be a vector of zeros with a one located at the 4 position of

the vector.
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1 2 3 4 5 6 7 8 9 101112 24 25 26 27
010j{0f{1|0]0O[OlO]O[{OlO|Of 777~ 010[0(0

Figure 4-7: Input Vector for the Letter d

The output vector is very similar to the input vector. The vector size is the total
number of different phonemes used in the network. There are 41 phonemes used, 40 for
sound and one for silence. The ideal output consists of all zeros and a one; therefore, the
network is trained using a desired output vector with all zeros and a one. Each phoneme
has its own location in the output vector. Like the input vector, the one is located where
the phoneme is located in the vector. For example, a desired output phoneme /ah/ would
produce a desired output vector of all zeros and a one placed in the o position of the

vector.

1 2 3 4 5 6 7 8 9 101112 38 39 40 41
011{0{010]0[O0OlO]O[O1O]Of 7777~ 010[0(0

Figure 4-8: Desired Output Vector /ah/

Once the letters are converted to vectors, the actual output can be calculated.
During training, the output vector is computed using all seven windows. Therefore, the
input used for calculation is a 7*27 long vector with seven ones located throughout the
vector. All the weights of the network, i.e. hidden weights and output weights, are
initially set to random values between -.5 to .5. Using the equations from Section 3.5.1,

the actual output is calculated.

. -Z i input * hi ight;
hidden layer vector = 1 /(1 +e (seven window input vector * hidden neurons weights) ( 410)

actual o utp ut vector = 1 /(1 + e-Z(hidden layer vector * output neurons weights)) ( 4.1 1)

These equations will produce an output vector output of the network. The actual output

and the error of the actual output are calculated. Weight adjustment occurs after each
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loop, i.e. after every single letter of every word in the training set. The weights of the

system are changed using the backward propagation equations described in Section 3.5.2.

output layer weights = Wiq ouput + 0 NOa+1ym hidden layer ouput (4.12)
hidden layer weights = W ojd hidden T MOkmiNput vectory, (4.13)
Once the weights are adjusted, the network will retrieve the next letter and desired

output of the word. If there are no letters left in the word, the network will retrieve the
next word from the training set. Once the last letter of the last word is retrieved for the
training set, an epoch has been completed and the average error is calculated and
displayed. The next word entered into the network would then be the first word of the
training set. Training will continue in this manner until the maximum number of epochs
is reached. Once the training is complete, the weights of the network are saved, and the

weight can be used for TTP mapping.

4.2.3 Training Set Detail and Alignment

Training the network involves using real words aligned with their exact
pronunciation phonemes. For example, ‘cat’ or ‘example’ would be aligned with ‘kat’
and ‘eksampul’, respectively. The list of the 41 phonemes used for this system is in
Appendix A. Originally, about 900 words were used from the “Cue Practice With the
1000 Most Common Words” website as training data. However, this amount of data was
not sufficient enough to yield an acceptable performance. The rest of the data was chosen
based on the network performance using www.allwords.com. For example, the network
initially struggled with words beginning with “th”, so about 20 words beginning and
ending with “th” were added to the training data. Appendix C lists the entire training set.

Certain factors need to be accounted for when choosing the training data. The
network input size consists of only seven windows. However, since the words are entered
into the training window one letter at a time, the word size can be any number of
characters. In addition, all words, even the words initially found on the web, need to be
aligned by hand in order to maximize the performance of the system. Figure 4-9 shows

an example of how this alignment is done.
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Figure 4-9: Word Alignment
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Chapter 5: Automatic Prosody Generation

5.1 Generation of Prosody Overview

Prosody deals with the tone and the timing of speech. In speech synthesis
systems, the most complex problem is the generation of natural sounding prosody. Real
speech often reflects the speaker’s personal knowledge of the audience, the mood and
emotional state, the general knowledge of the world around them, and the reaction from
the audience. With TTS systems, this problem is more complex because the text input is
random. These issues have yet to be resolved by speech synthesis systems. Automatic
prosody generation has to factor in these setbacks and focus on neural language that is
understandable to the audience.

The main focus of this thesis is the automatic generation of prosody. This system
generates two main aspects of prosody: fundamental frequency and segmental duration.
Fundamental frequency is generated using fuzzy logic. The primary focus of this chapter
will be on this aspect of prosody. Segmental duration is determined using rules described
by Klatt [2]. After the network converts the text to phonemes, the system then computes
the prosody of the system. Both the phonemes found by the network and the actual texts
are used to generate prosody. The prosody generator can be thought of as a finite loop,
with information describing each phoneme used to produce both duration and

fundamental frequency. The first step of prosody generation is segmental duration.

Produce

User Input Convert Text Generate Speech with
Text ‘ to Phonemes ‘ Prosody ‘ I\IjIBROLA

Figure 5-1: System Overview
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5.2 Segmental Duration

Segmental duration handles the length of segments within words. These segments
can be either syllables or phonemes. For this system, the focus will be on phoneme
duration. Researchers believe that English phoneme durations are only affected by a few
parameters. In 1979, Dennis Klatt developed rules that governed the durations of
phonemes within words. These rules were used in the aforementioned MITTalk TTS
system [2]. The Klatt Duration Rules are used to generate the segmental duration of this
system.

The original MITalk system was a formant synthesized speech. With formant
synthesizers, certain factors need to be taken into account. Phonemes with different
articulations are handled differently when it comes to duration. For example, the duration
of a fricative is measured by the visible noise. For stops, the duration also includes the
closure [2]. With this TTS system, the speech synthesis is generated using diphone
concatenation. Therefore, these factors are not factored into consideration when
computing the segmental duration.

The Klatt Duration rules were designed to replicate observed duration from a
speaker. There are two main rules that govern the model: segments that are altered by a
percentage using the rules and segments that cannot be shorter than a minimum duration.
Each segment has its own minimum and average duration. The minimum and average
durations for each phoneme used in this system are shown in Appendix B. The formula

used to alter the phoneme duration is:

DURATION = ((AVEDUR-MINDUR) *(PRCNT))/100 + MINDUR (5.1)

The variable AVEDUR is the average duration, and variable MINDUR is the minimum
duration. The Klatt rules work by altering the PRCNT variable. There are a total of 11
Klatt Duration rules. Each rule has a justification on how the rule was created. The rule
formulas were developed through extensive trial and error. The Klatt duration rules are
listed below. These rules are obtained directly from the book, “From Text to Speech: The
MITalk System” [2].
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10.

11.

. Pause insertion Rule

Insert a 200 millisecond pause before each sentence-internal main clause and at
boundaries delimited by a syntactic comma, but not before relative clauses.
Clause-final lengthening

The vowel or syllabic consonant in the syllable before a pause is length by
PRCNT = 140.

Non-phrase-final shortening

Vowels and syllabic consonants are shortened by PRCNT = 60, if not in the
phrase’s last syllable. A phrase final postvocalic liquid or nasal is lengthened by
PRCNT = 140.

Non-word-final shortening

Vowels and syllabic consonants are shortened by PRCNT =85, if not in the
word’s last syllable.

. Polysyllabic shortening

Vowels and syllabic consonants in word with multiple syllables are shortened by
PRCNT = 80.

Non-initial-consonant shortening

Consonants are shortened by PRCNT = 85, if not in the word’s initial position.
Non-phrase-final shortening

Vowels and syllabic consonants are shortened by PRCNT = 60, if not in the
phrase’s last syllable. A phrase final postvocalic liquid or nasal is lengthened by
PRCNT = 140.

Lengthening for emphasis

Emphasized vowels are lengthened by PRCNT = 140.

Postvocalic context of vowels

The consonant after a vowel in the same word influences the length of the vowel.
The list below shows these effects.

open syllable, final word PRCNT1 = 120

before a voiced fricative PRCNT1 = 160

before a voiced plosive PRCNTI1 =120

before a nasal PRCNT1 = 85

o before a voiced plosive PRCNT1 = 70

Shortening Clusters

Segments are shortened in consonant-consonant sequences and in vowel-vowel
sequences.

vowel followed by a vowel PRCNT1 = 120

vowel proceeding a vowel PRCNT1 =70

consonant surrounded by consonants PRCNT1 = 50

consonant proceeding a consonant PRCNT1 = 70

o consonant followed by a consonant PRCNT1 = 70

Lengthening due to plosives aspirations

A primary or secondary stressed vowel or sonorant preceded by a voiceless
plosive is lengthened by 25 milliseconds.
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5.3 Stress Assignment

One of the most crucial components of generating automatic prosody is stress
assignment. Stress assignment is placing lexical stresses on the proper syllable. All
stresses are placed on vowels. With TTS synthesis this can be very complicated. Since
the input is random, the words are random. Therefore, a stress assignment algorithm
needs to be implemented that is both automatic and flexible. The stress assignment
algorithm used for this system is the rule-based system used in the MITalk. Those rules
were based on the Halle and Keyer lexical stress rules developed in 1971 [2].

The rules are based upon phonetic input without regard to part-of-speech.
Stresses are placed on individual words independently. There are three levels of stress; 0-
stress, 1-stress, and 2-stress. The 1-stress represents the primary stress in a word and the
2-stress represents lesser stresses. 0-stress represents no stress. The stress rules have two
different phases. The first phase is called the cyclic and is committed to placing primary
stresses on the word. There are three rules in the cyclic phase. The first rule in the cyclic
phase is the main stress rule, and the other two rules are exceptions to the first rule. The
second phase is called the non-cyclic phase and includes the application of the entire
word of rules. The non-cyclic phase reduces the final word to just one 1-stress mark and

turns the rest of the primary marks into 2-stress marks [2].

5.4  Fuzzy Fundamental Frequency

Fundamental frequency is a vital part of the naturalness of any TTS system. This
frequency, sometimes called fO frequency, produces the tone of speech. An example of
fundamental frequency can be heard in the difference between a male and a female voice.
Male voices exude a lower overall fundamental frequency while female voices typically
have a higher overall fundamental frequency. Fundamental frequency can be generated
in many ways for TTS systems. Most systems today generate fundamental frequency
using unit selection synthesis together with pre-recorded units (sounds). These pre-
recorded sounds contain natural frequency fundamentals. Other methods used to generate

frequency fundamentals are rule-based and neural network approaches.
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The fundamental frequency of this TTS system is generated using the flexibility
of fuzzy logic. Fuzzy logic can be used to control complicated problems. The generation
of fundamental frequency for TTS systems is a very complex problem for many reasons.
For example, the user’s input needs to be thought of as random; therefore, the system
must be flexible. Also, the fundamental frequency in speech is different for every
sentence, and many factors control this overall curve. Fuzzy logic can be a solution to
the fundamental frequency problem by using a small set of rules. The rules are
constructed based upon the fundamental frequency algorithm used in the MITalk system,

the O’Shaughnessy algorithm.

5.5 O’Shaughnessy Algorithm

The O’Shaughnessy fundamental frequency algorithm was used in the MITalk
system to generate fundamental frequency. The result of the algorithm is a fundamental
frequency curve throughout the sentence. This curve is called the fO contour. This
algorithm is detailed in the book, “From Text to Speech: The MITalk System” [2]. The
algorithm has two main levels, high and low, which work as two different systems. The
first level is the high level. This level generates an outline of how the overall fO contour
should be shaped. The high level of this algorithm takes grammatical information about
the sentence and builds a basic contour of the system. The fO contour in the high level is
augmented using four factors: sentence type, phrase contour, word contour, and prosodic
indicators [2].

The first factor, sentence type, is determined by the first word and punctuation of
the sentence. For example, the endings of questions are indicated by question marks and
the endings of statements are indicated by commas or periods. There are three tunes that
represent three types of sentences: declarative sentences, yes/no question and “wh”
questions. These three tunes determine the fO contour trend of the sentence. Every tune

has a downward linear trend throughout the sentence [2]. Figure 5-2 shows this trend.
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Time

Figure 5-2: Downward Linear Trend

Tune A, which deals with declarative sentences, causes the f0 contour to fall linearly
throughout the sentence with the sharp decline at the end of the sentence or phrase. Tune
B manages yes/no questions. Tune B sentences have an initial rise to the fO contour,
followed by a flat contour with a final sharp rise. The final tune, which handles “wh”
questions, starts with a high peak on the “wh” word, followed by a steep fall and a high
rise at the end of the sentence [2].

The second factor of the algorithm contends with the phrase contour of the
sentence. The different phrases of a sentence can be determined with many different
algorithms. Each phrase must have two or more content words to be affected by this
factor. At the beginning of each phrase, the fO curve rises sharply on the first content
word. At the end of each phrase, the f0 curve falls on the final content word.

The third factor handles the individual words in a sentence. Within each word,
the {0 contour fluctuates. This third factor determines the amount of change within each
word. The amount of change is correlated with the importance of the word and the
amount of syllables in the word [2]. Words that are more important and have a great deal

of syllables contain the most f0 changes. Table 5-1 shows the importance of these words.
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Table 5-1: Word Importance
Level | Part of Speech
0 article
1 conjunction, relative pronoun
2 preposition, auxiliary verb
3 personal pronoun
6 verb, demonstrative pronoun
7
8
9

noun, adjective, adverb, contraction
reflexive pronoun

stressable modal

10 | quantifier

11 | interrogative adjective

12 | negative element

14 | sentential adverb

The prosodic indicator assignment is the last factor of the high level part of the
algorithm. First, accent numbers are given to each accent in the sentence. The number
depends on the size and importance of the word. Then an integer that represents the word
position is placed on each word. Words at phrase boundary positions are given larger
integer values than words that are in the middle of the phrase. The high level part of the
algorithm combines all of these factors to form the outline of the sentence fO contour. The
high level then becomes the input to the low level component of the algorithm [2].

The low level of the O’Shaughnessy algorithm sculpts the details of the final {0
contour. In the low level, the fO contour is affected by the number of syllables in
combination with the lexical stress. The importance of the word affects the height of the
stressed peak. More important words have higher peaks on their stresses. The amount of
syllables directly influences the fundamental frequency of the sentence. The first and
highest peak should have an f0 contour of about 190 Hz. However, larger sentences with
more syllables have a higher starting peak frequency, and smaller sentences with fewer
syllables have a lower starting peak frequency. The number of syllables between stressed
syllables also affects the height and outer shape of a peak. Stressed peaks separated by
two or three syllables have their peak height decreased by 15% and 20%. Stressed peaks
separated by two, three, or four syllables have their peak rise increased by 15%, 20%, and
30%, respectively. Stressed peaks that are adjacent have their peak rises decreased by

40%. All other peaks maintain their heights and are shaped by a default rise [2].
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5.6 Fuzzy System Inputs and Consequence

The fuzzy system is developed to model the O’Shaughnessy algorithm using a
fuzzy interference system. The inputs to the fuzzy system are the phonemes’ linguistic
data. The output of the fuzzy system is the fundamental frequency. The system consists
of four inputs and one output. The inputs are: word importance, sentence size, position in
sentence, and distance from stress. Each input has three linguistic variables and the
output has seven linguistic variables. Using a system similar to the system described in

4.3.2, the fundamental frequency can be computed for any given sentence.

5.6.1 Word Importance

The inputs to the fuzzy system are formulated from the main parts of the
O’Shaughnessy algorithm. The first input is the importance of the word. This input
comes from the word importance of the O’Shaughnessy algorithm. The O’Shaughnessy
algorithm places importance on words based on part-of-speech. There are two types of
words this system takes into consideration, function words and content words. Content
words have more importance than function words, with articles having the least
importance. The system calculates the importance of the word based on the size of the
word and the type of word. The calculation yields a number between 0 and 10; therefore,
the fuzzy input consists of a number range between 0 and 10. The Word Importance input
has three linguistic variables for this input: useless, semi-important, and important.

Figure 5-3 shows the membership functions of the Word Importance input.

Word Importance

useless semi-important important

Figure 5-3: Word Importance Input Membership Functions
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5.6.2 Sentence Size

The second input to the fuzzy system is the sentence size. In the O’Shaughnessy
algorithm, peak size is correlated with the length of the sentence. According to the
algorithm, smaller sentences, i.e., sentences with fewer syllables have smaller
fundamental frequency peaks. Larger sentences have much larger fundamental frequency
peaks. The input is divided into three linguistic variables: small, medium, and large. The

sentence size is determined by the number of syllables multiplied by an offset.

Size = (number of phonemes) * offset (5.2)
offset = .5

The input range values are from 0 to 10. Any size that is greater than 10 is considered to

be equal to 10 by the system.

Sentence Size

small medium large

Figure 5-4: Sentence Size Input Membership Functions

5.6.3 Sentence Position

The third input is the position in the sentence. The position in the sentence deals
with the word, not the phoneme. Sentence position is calculated using the following

equation:

Position = (word location in sentence / total number of words)*10 (5.3)
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The location of the word in the sentence is a very important aspect of the O’Shaughnessy
algorithm. As described in Section 5.5, each tune’s fundamental frequency contour
differs throughout the sentence. Therefore, the location of the phoneme or word
determines the frequency contour depending on the type of tune. For example with tune
B sentences (yes/no questions), at the end of the sentence, the fundamental frequency
increases sharply. Like the previous inputs to the fuzzy system, the Sentence Position
input has three linguistic variables and a number range between 0 and 10. The input
variables are start, middle, and end. Figure 5-5 shows the membership functions for the

Sentence Position input.

Sentence Position

start middle end

Figure 5-5: Sentence Position Input Membership Functions

5.6.4 Stress Distance

The final input to the fuzzy system is the phoneme distance from the stress. The
O’Shaughnessy algorithm places peaks on primary stresses in sentences. The
fundamental frequency of phonemes around these stresses is also altered. Peak size
depends on the location, sentence type, and importance of the word. Stress distance is
calculated using the closest, right-hand, most stress within the word. If a phoneme is
stressed, its distance value is “dead-on”. Stressed phonemes equal the maximum.
Phonemes inside of a word without a stress are assigned a zero. The fuzzy input ranges
from 0 to 10. If the phoneme is not stressed and the word contains a stress, the distance

is calculated using the formulas:

stress distance = ((stress location — phoneme location)+ 1) *offset (5.4)

offset = 10/(length of the word) (5.5
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Stress Distance

far near dead-on

Figure 5-6: Stress Distance Input Membership Functions

5.6.5 Consequence

The consequence (output) of the system is the fundamental frequency. The
consequence of the fuzzy system has seven linguistic variables. These variables represent
the peak of the fundamental frequency. These peaks range from negligible to large.
These rule consequences are constructed following the O’Shaughnessy algorithm’s peak

alterations.

Fundamental Frequency

zero low mid-low mid  mid-high  high peak

Figure 5-7: Consequence Membership Functions

5.7  Fuzzy System Rules

The rules of this system are designed to follow the overall idea of the
O’Shaughnessy algorithm. The O’Shaughnessy algorithm is very specific on the shapes

of each individual peak. However, these rules create an overall contour of the sentence,
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which follows the O’Shaughnessy algorithm. The rules are divided into three categories:
declarative sentences, yes/no questions, and interrogative questions. To simplify each
rule set, the rules are divided by location within the sentence. This made it easy to edit,
delete, or add rules. Since there are four inputs to the system, there are over 50 rules.

This adds the proper detail and improves the flexibility of the fuzzy system.

5.7.1 Declarative Sentence

As described in the O’Shaughnessy algorithm, declarative sentences are
characterized by the f0 contour falling linearly with a sharp decline at the end of the
sentence or phrase. Peaks within the sentence are altered, considering their location in
the sentence. Declarative sentences do not have dramatic fO contour changes inside the
middle of the sentence. Therefore, syllables and word importance should produce subtle
changes. With declarative sentences, the final fall should be located after the last

accented syllable [2].

Beginning of Sentence Rules

e [IF the word is useless AND position in sentence at the beginning THEN output is
low.

e [F the word is semi-important AND position in sentence at the beginning THEN
output is mid-low.

e [F the word is semi-important AND sentence size is large AND position in
sentence at the beginning THEN output is mid.

e [F sentence size is small AND position in sentence at the beginning AND the
stress is dead-on THEN output is high.

e [F position in sentence at the beginning AND the stress is dead-on THEN output
1s peak.

e [F sentence size is small AND position in sentence at the beginning THEN output
is mid.

Middle of Sentence Rules

e [F the word is useless AND position in sentence at the middle THEN output is
low.

e [F the word is useless AND sentence size is large AND position in sentence at the
middle THEN output is mid-low.

e [F the word is semi-important AND position in sentence at the middle THEN
output is mid-low.

e [F the word is semi-important AND sentence size is large AND position in
sentence at the middle AND the stress is dead-on THEN output is mid.
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e [F position in sentence at the middle AND the stress is dead-on THEN output is

mid-high.
e [F sentence size is medium AND position in sentence at the middle THEN output
is mid.
End of Sentence Rules

IF sentence is at the end AND the stress is far THEN output is mid-low.

IF sentence is at the end AND the stress is near THEN output is zero.

IF sentence size is middle AND sentence at the end THEN output is mid-low.
IF word is useless AND sentence is at the end THEN output is zero.

5.7.2 Yes/no Question

Yes/no questions are questions that can be answered with either a “yes” or a “no”. These

2 ¢ P13 29 ¢ 9 6

questions do not begin with “who”, “what”, “where”, “when”, “why”, or “how”. The
overall fO contour of these questions begins with a rise, followed by a flat contour, and

then ending with a final sharp rise [2].

Beginning of Sentence Rules

e [IF the word is useless AND position in sentence at the beginning THEN output is
mid-low.

e [F the word is semi-important AND position in sentence at the beginning THEN
output is mid.

e [F the word is semi-important AND sentence size is large AND position in
sentence at the beginning THEN output is mid-low.

e [F position in sentence at the beginning AND the stress is near THEN output is
mid-high.

e [F position in sentence at the beginning AND the stress is dead-on THEN output
is mid-high.

Middle of Sentence Rules

e [F the word is useless AND position in sentence at the middle THEN output is
mid-low.

e [IF the word is useless AND sentence size is large AND position in sentence at the
middle THEN output is low.

e [F the word is semi-important AND position in sentence at the middle THEN
output is mid-low.

e [F the word is important AND position in sentence at the middle AND the stress
is dead-on THEN output is mid-high.

e [F position in sentence at the middle AND the stress is dead-on THEN output is
mid.
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e [F sentence size is medium AND position in sentence at the middle THEN output

is mid.
e [F sentence size is large AND position in sentence at the middle THEN output is
mid-low.
End of Sentence Rules

e [F sentence is at the end AND the stress is far THEN output is high.
e [F sentence is at the end AND the stress is near THEN output is mid-high.

e [F sentence size is large AND sentence at the end AND the stress is dead-on
THEN output is high.

e [F word is useless AND sentence is at the end AND the stress is near THEN
output is mid-high.

e [F word is important AND sentence is at the end AND the stress is dead-on
THEN output is high.

5.7.3 Interrogative Question

Interrogative questions are questions that are answered with more than just a

2 6 99 ¢C 29 ¢

“yes” or “no”. These sentences begin with either “who”, “what”, “where”, “when”,
“why”, or “how”. Overall, the fO contour should initially be high with the final steep fall.
The fall of the interrogative question should be much steeper than the fall of the
declarative sentence. According to the O’Shaughnessy algorithm, the peaks throughout
the sentence should be much higher and the overall contour should be higher than the
declarative sentence contour. Syllables and word importance should produce change near

accents [2].

Beginning of Sentence Rules

e [IF position in sentence at the beginning THEN output is mid-low.

e [IF the word is important AND position in sentence at the beginning THEN output
is mid.

e [F the word is semi-important AND sentence size is large AND position in
sentence at the beginning THEN output is mid.

e [F sentence size is small AND position in sentence at the beginning AND the
stress is dead-on THEN output is mid.

e [F position in sentence at the beginning AND the stress is dead-on THEN output
is mid-high.

e [F sentence size is small AND position in sentence at the beginning THEN output
is mid-low.
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Middle of Sentence Rules

IF the word is useless AND position in sentence at the middle THEN output is
mid.

IF the word is useless AND sentence size is large AND position in sentence at the
middle THEN output is mid-low.

IF the word is semi-important AND sentence size is large AND position in
sentence at the middle AND the stress is dead-on THEN output is mid-high.

IF position in sentence at the middle AND the stress is dead-on THEN output is
mid-high.

IF sentence size is medium AND position in sentence at the middle THEN output
1s mid.

IF the word is important AND position in sentence at the middle AND the stress
is near THEN output is mid-high.

IF sentence size is medium AND position in sentence at the middle AND the
stress is near THEN output is high.

IF sentence size is medium AND position in sentence at the middle THEN output
is mid-low.

End of Sentence Rules

5.8

IF sentence is at the end AND the stress is dead-on THEN output is mid-low.
IF sentence is at the end AND the stress is near THEN output is zero.

IF sentence size is medium AND sentence at the end THEN output is low.

IF word is useless AND sentence is at the end THEN output is zero.

Fuzzy Output Calculation

In a fuzzy system, the output is calculated using the rules, the membership

functions, and the inputs. Each input parameter value is calculated using the formulas in

Section 5.6. The firing strength of each input is determined by the membership functions.

Figure 5-8 shows an example of the Word Importance input with a calculated input of 6.
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Word Importance

1 6
"""" 7
semi 4\ | 3
Seless import
0 5 10

Figure 5-8: Example of Word Importance with Calculated Input of 6

The firing strength of each membership function is shown in Figure 5-8. The
membership function “semi” and “important” have a firing strength of .7 and .3,
respectively. The “useless” membership function has a firing strength of 0 because the
input value does not touch the membership function. The rules of the fuzzy system are
used to compute the consequence of the inputs presented to the system. For example, if a
rule stated,” IF word important is semi-important AND ... “, then for an input value of 6
on input Word Importance, the firing strength onto that rule would be .7. The operators
then determine the effects of the input onto the consequence membership function. The
AND operates equals the minimum value and the OR operator equals the maximum
value. Figure 5-9 shows an example of how an input to the fuzzy system determines the
consequence. For simplicity, there are only two rules and the consequence only has three

membership functions. The rules in Figure 5-9 are:

e [IF word is importance AND sentence at the end THEN fundamental
frequency is high.

e [F word is semi-importance AND sentence at the middle THEN fundamental
frequency is middle.
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Figure 5-9: Firing Strength of Input onto Rules

Crisp Output------==""""

Figure 5-10: Final Shape and Centroid
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5.9  Final Speech Production

Once the network is trained and the prosody is calculated, the MBROLA program
is used to produce the final speech output. As discussed briefly in Section 3.3, the
MBROLA program creates speech using diphone concatenation. This program was
developed by the TCTS Lab of the Faculté Polytechnique de Mons in Belgium and was
created for use by researchers [15]. The advantage of using the MBROLA program is its
ease of use. The only input needed to produce speech is phonemes and durations. Users
of MBROLA do not need any knowledge of diphone concatenation algorithms; the
program automatically converts the user phonemes to diphones.

The trained hidden and output weights are stored in a MATLAB *.mat file. The
TTP conversion is accomplished using the trained weights and formulas. The output is
computed using the formulas used to calculate the actual output during training as

described in Section 4.2.1.

hidden layer outputs = 1/(1 + e—Z(input vector * hidden neurons weights) (56)

actual ou tp ut =1 /(1 + e-Z(hidden layer outputs * output neurons Weights)) ( 5 7)

The actual output of the system will be a 41 element long vector. The ideal output would
be all zeros and a one; however, since the network is not ideal, the maximum of the
output needs to be determined. This maximum value of the vector is the output phoneme
produced by the network from the text.

When text is entered into the system, the fuzzy controller and the Klatt duration
rules compute the prosody of the system. Next, the symbols are converted to the
MBROLA symbols. The phonemes, duration, and fundamental frequency values are
written to output.pho file. Pho files are the files used by MBROLA to convert phonemes
to sounds. The output.pho file is opened and the speech is converted into sound file. See

Appendix for more detail on the MBROLA system.
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Chapter 6: Results

6.1 Text-to-Phoneme Results

Neural networks are used in TTS applications in many different ways. Current
research focuses on the use of neural networks to produce prosody. This thesis uses
neural networks for TTP mapping. Current neural network TTP mapping techniques yield
about an 80% accuracy [7]. The performance of the neural network algorithm in this
system is determined by the amount of accurate phonemes the network identifies. Two
types of tests are performed to determine the performance of the algorithm used. The first
test calculates the performance using the full training set. The second test uses words that
were not in the training set. Performance was measured by the percentage of correct
phonetic conversions. Figure 6-1, shows the convergence of the networks. The number
of hidden neurons is correlated to the network’s convergence. However, after 50 hidden

neurons, the network convergance doesn’t change much.
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Figure 6-1: Network Convergence

In the first test, network performance is computed by calculating the percentage
of correct phonemes determined by the weights on the entire training set. Five different
types of trained weights were tested for overall accuracy. The hidden neurons are
different for the trained weights sets. The overall performance of the network did change
with an increase in the hidden neurons. The maximum accuracy is about 80%. The
networks were trained on an Intel Pentium 4 2.80 GHz computer. Table 6-1 shows the

overall accuracy and training results for each network tested.

Table 6-1: First Test Results

Network TTP Training Time | Epochs Hidden Nodes
Accuracy (%) | (P4 2.80GHz)

1 66.93 15 min 10s 75 20

2 68.81 19 min 30s 75 30

3 72.45 22 min 59s 75 40

4 75.77 25 min 13s 75 50

5 80.16 35 min 46s 75 75
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In the second test, network performance is computed by calculating the
percentage of correct phonemes calculated on 100 random unknown words (i.e., words
that were not in the training set). The same trained weights were tested for overall
accuracy. The overall performance, shown in Table 6-2, is about 67%, which is lower
than the performance in the first test. The performance is lower in the second test
because of the rule expectations in the English language. For example, the word “vice” is

[13%4]
1

pronounced with a /ie/ phoneme for the “i”. But the “i” in the word “service” is
pronounced with a /uh/ phoneme. Consequently, the network does not catch expectations

and hence the performance is lower with unknown text.

Table 6-2: Second Test Results

Network TTP
Accuracy (%)

62.78

63.09

63.59

67.12

N[ ||| =

67.52

Overall, these tests show that the network is about 80% accurate on the training
data. When data not in the training set is introduced, the network performs around 67%
accuracy. When testing the TTS system manually, the text-to-phoneme conversion
accuracy is good with some minor faults. The TTP errors of the system might go
unnoticed to the user. For example, if the correct (trained) phonetic representation of the
word “the” is “\th\ \u\” and the system produces “\th\ \ee\”, the user will not notice the
incorrect TTP conversion. On the whole, this network is accurate enough to produce the

correct text-to-phoneme conversion without many major errors.

0.2  Fuzzy Fundamental Frequency Results

Testing the fuzzy system can be complicated. Comparing the sound of the speech
produced by the system is somewhat subjective. However, the research objective was to
make to the synthesized speech sound more natural using fuzzy logic. Therefore, the
fuzzy controller was tested by evaluating the fO contour produced by the fuzzy system.

Two types of tests were used to evaluate the fuzzy system. In the first test, the fO contour
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produced by the system was analyzed to see if it was producing a natural looking f0
contour trend. With speech, only voiced sounds create fundamental frequency.

Therefore, some phonemes will not have fundamental frequency. The fuzzy system was
tested by evaluating the three different sentences types. Figure 6-2, 6-3, and 6-4 show the
output produced by the system for a declarative sentence, an interrogative question, and a
yes/no question, respectively. The sentences are, “My name is Jonathan Williams”,
“What time is the thesis defense?”, and “Is it going to rain at noon?" All three f0

contours produced by the fuzzy system are the accurate f0 trends.
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Figure 6-2: Declarative Sentence - “My name is Jonathan Williams”
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Figure 6-3: Interrogative Question - “What time is the thesis defense?”
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Figure 6-4: Yes/no Question - “Is it going to rain at noon?"

The second test involves viewing the fO output produced by the fuzzy system with
the f0 output of a high quality system. The purpose is to further prove that the fuzzy

system’s f0 contours are natural looking. It would be impossible to make a comparison
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between both systems, since they are completely different systems. The other {0 contour
is the Microsoft Research Speech Technology Asia (MRSA) on-line TTS system, which
is one of the best unit-selection based TTS systems [37]. The MRSA system’s output f0
contour is determined using the MBROLIGN program. The MBROLIGN program is a
tool that aligns phonetic transcripts with a speech signal. MBROLIGN then calculates
the f0 contour of the speech signal. Using the same sentences, three fO contours produced
by the fuzzy system are graphed with the fO contours of the MSRA system. The sentence
types are declarative sentence, interrogative question, and yes/no question. The following
figures show the fO contour produced by both systems. The sentences are, “My name is
Jonathan”, “What time is it?”’ and, “Is it raining today?”’

The f0 contour of declarative sentences should be high at the beginning of the
sentence and then drop at the end of the sentence. Peaks are on the primary stresses of
the stressed syllables. The peak sizes decrease linearly throughout the sentence. For the
f0 contours below, both systems produce a downward linear fO contour trend with a drop
at the end of the sentence. Both systems also produce peaks on the stressed words within

the sentence.
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Figure 6-5: FO Contours for Declarative Sentence, “My name is Jonathan.”

The interrogative question f0 contour is similar to the declarative sentence {0

contour because both contours fall at the end of the sentence. The interrogative question
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should initially be high with a very sharp drop after the last stress. There should also be
peaks around the stresses and the highest peak should be on the first word of the question.
These peaks do not fall linearly like the declarative sentence. In the figure below, both
contours follow this trend. The fuzzy f0 contour peaks on the initial words in the

sentence. Then the fuzzy system’s f0 contour sharply falls at the end of the sentence.
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Figure 6-6: FO Contours for Interrogative Question, “What time is it?”

The yes/no question fO contour should be relatively low at the beginning with a
sharp rise at the end. The peaks throughout the question are smaller compared to the
final rise. The graph below shows that the fuzzy f0 contour raises at the end the sentence.

The fuzzy controller also has peaks in the middle of the sentence.
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Chapter 7: Conclusion

7.1  Summary and Conclusion

The goal was to build a TTS system with fuzzy logic controlling the fundamental
frequency of the speech. First, a neural network based on the NetTalk network was
trained to convert text into phonemes. The training set contained 1800 words with their
phonetic transcription. The Back Propagation algorithm was used to train a three layer
network. Then stress was assigned using the Halle and Keyer lexical stress rules. Next,
segmental duration was calculated using the Klatt duration rules which were designed to
replicate observed segmental durations from a speaker. A fuzzy inference system was
built to control the fundamental frequency of the speech output. The inputs to the fuzzy
controller were word importance, sentence size, stress location, and sentence position.
The output was the fundamental frequency. The system had three sets of rules for three
types of sentences: declarative sentence, interrogative question, and yes/no question.
Finally, the phonemes and calculated prosodic information was set to the MBROLA
program to produce the final speech.

The contribution to this thesis is the idea of using a fuzzy controller to control
fundamental frequency. No publications on using fuzzy logic to control fundamental
frequency were found. The fuzzy controller generates the expected f0 contour for each of
the three sentence types. Thus, the system produces more natural sounding speech. Since
evaluating the speech produced by the system is subjective, the fO contour is compared to
a high quality TTS system’s fO contour. In comparison, the fuzzy system produces
similar f0 trends compared to the high quality TTS system. However, there are many
improvements that can be made to the fuzzy fundamental frequency controller.

Overall, the final speech produced by the TTS system sounds more natural. The
speech is very understandable and the user can hear the intonation. The purpose of this
thesis was to explore the possibilities of using fuzzy logic for automatic prosodic control.
This thesis proves that fuzzy logic can a make low memory method of speech synthesis
sound more natural. Currently, unit selection is the best sounding speech synthesis

method. However, the speech databases must be segmented and the speech databases
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sizes are measured in gigabytes. Compared to unit selection-based synthesis, the diphone
database does not need to be segmented and the speech database requires a small amount
of memory. Using the MBROLA diphone concatenation program, the total program size
is under 8 MB. The TTS system itself is less than a megabyte in size and the diphone
database is only 6.75MB. With further research, fuzzy logic controlled speech could be

the preferred speech synthesis method for our shrinking electronics.

7.2  Future Work

The neural network text to phoneme conversion accuracy needs to improve.
Currently, the Back Propagation algorithm yields the best correctness. Different methods
like Bi-Direction Recurrent Networks (BRNN) and Self-Organizing Maps (SOM)
produce about 70% TTP conversion accuracy [7]. Performance can be improved in
many ways. One way to improve network performance is to increase the size of the
training set. The results showed that the network produces 80% accuracy on known text
and about 70% accuracy of unknown text. Therefore, minimizing the amount of
unknown text during training would yield better results. However, the algorithm would
still produce errors. Improvements to the Back Propagation method or other machine
learning methods need to be further researched in order for machine learning methods to
be comparable to the current technologies. Also, research into error correction after
training would be very beneficial to the acceptance of the machine learning method.

Improvements to certain components of the TTS system would produce more
natural-sounding speech. The stress assignment algorithm can be greatly improved. The
current stress assignment method does not assign stress with complete accuracy.
Improvements to the system stress algorithm would improve the prosody and naturalness
of the speech output. A part-of-speech parser also needs to be added to the system. The
current TTS system only handles two types of words: function and content. Assigning
word importance based on the part-of-speech would also improve the speech output.

Although the fuzzy controller works adequately, the fuzzy system needs
improvements. One improvement can be on the actual rules of the fuzzy system.
Decreasing the amount of rules could improve the speed, since the system computation

requirements would decrease. The system currently has over 50 rules. Another
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improvement can be on the composition of the rules. There needs to be research into
designing expert rules for a fuzzy system controlling prosody. If more research went into
creating expert fuzzy prosodic rules, a fuzzy system could control fundamental frequency
and other aspects of prosody, like segmental duration and stress assignment. The
membership functions may not be optimized in the fuzzy system. Research into different
types of membership function could also produce more natural sounding speech. The use
of different types of membership functions or the use of ANFIS could improve the fuzzy

system.
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Appendix A — Phoneme List

Network MBROLA Sound

% _ silence
a { apple
ah A Arthur
aw O all

ay El able

b b cob
ch tS notch
d d nod

e E else
ee i even

f f for

g g jog

h h harm

i I illness
ie Al island
i Z garage
k k rock

I I doll

m m palm
n n john
ng N bong
oh @uU over
oi ol oyster
00 ] good
ow au out

p p drop

r r star

S S boss
sh S wash
t t plot

th T cloth
u @ about
ue u oodles
uh \% nut

ur r= her

v v salve
w w show
xh D clothe
y i yacht
z z was
zh s seizure
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Appendix B — Phoneme Inherit Duration

Phoneme Minimum(ms)Maximum (ms)

a 80 230
ah 100 240
aw 100 240
ay 70 150
e 100 190
ee 55 155
i 40 135
ie 150 250
oh 80 220
oi 150 280
00 60 160
ow 100 260
u 60 120
ue 70 210
uh 60 140
ur 80 180
h 20 80
I 40 80
r 30 80
w 60 80
y 40 80
m 60 70
n 50 60
ng 60 95
f 80 100
S 60 105
sh 80 105
th 60 90
v 40 60
xh 30 50
z 40 75
zh 40 70
b 60 85
d 50 75
g 60 80
k 60 80
p 50 90
t 50 75
ch 50 70
j 50 70
% 25 25
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Appendix C — Training Set

a
abbey
able
about
above
abs
action
add
adjoin
advance
affix
afraid
after
again
age
agree
ahoy
air
airplane
airway
all
alley
alloy
along
already
also
although
always
am
amount
and
anger
Anglo
angry
anima
annex
annoy
anoint
anomie
anomy
another
anoxia
answer
antics
any
apex

fu/
/abbee/
Jaybul/
/ubowt/
/ubuhv/
/abz/
/akshun/
fad/
/adjoin/
/udvans/
Jufiks/
/ufrayd/
[aftur/
/ugen/
layj/
lugree/
/uhoi/

ler/
lerplayn/
lerway/
lawl/
/alee/
/owlloi/
/ulawng/
[awlredi/
/awlsoh/
/awlthoh/
lawlwayz/
lam/
/fumownt/
/and/
/anggur/
/angloh/
/anggree/
fanumul/
/aneks/
/unnoi/
/unoint/
/unahmee/
/funahmee/
/unuhthur/
/anoksu/
Jansur/
/antiks/
leni/
laypeks/

guts
habits
hacker
had
hags
hail
hair
half
hall
hallo
halo
halt
halve
hamper
hand
handle
handy
hang
happen
happy
hard
hardly
hardy
hare
has
hasty
hat
hatch
have
he
head
hea
health
health
heap
hear
heard
heart
heat
heater
heaven
heavy
hedge
height
held
hello
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/guts/
/habits/
/hackur/
/had/
/hagz/
/hayl/
/her/
/haf/
/hawl/
/hawloh/
/hayloh/
/halt/
/hav/
/hampur/
/hand/
/handul/
/handee/
/hang/
/hapun/
/hapee/
/hahrd/
/hawrdlee/
/hawrdee/
/her/
/haz/
/haystee/
/hat/
/hach/
/hav/
/hee/
/hed/
/heel/
/helxh/
/helth/
/heep/
/hir/
/hurd/
/hahrt/
/heet/
/heetur/
/hevun/
/hevee/
/hej/
/hiet/
/held/
/heloh/

Renee
reply
report
require
rest
result
retch
return
rich
riches
ridden
ride
right
ring
rise
river
road
rock
roll
room
round
row
royal
ruby
ruches
rule
rummy
run
rush
rush
rushes
rusty
sad
safety
said
sail
salt
same
sandy
sashes
sat
Saturday
save
saw
say
scene

/rennay/
Iriplie/
Iripawrt/
[rikwier/
frest/
[rizuhlt/
/rech/
[riturn/
[rich/
[richiz/
/ridun/
[ried/
[riet/
Iring/
Iriez/
[rivur/
/rohd/
[rawk/
[rohl/
[ruem/
/rownd/
[roh/
[roiyul/
Iruebee/
[roochiz/
[ruel/
/ruhmee/
/ruhn/
/ruhsh/
/rush/
/ruhshiz/
[ruhstee/
/sad/
/sayftee/
/sed/
/sayl/
[sawlt/
/saym/
/sandee/
/sashiz/
[sat/
/Saturday/
/sayv/
[saw/
/say/
/seen/



appear
apple
April
arch
are
arm
army
around
array
arrive
art
article
as

ash
ashes
ask
astray
at
attach
attept
August
aunt
avoid
away
ax
axis
baby
back
bad
bag
balk
ball
balmy
bangs
bank
banker
barmy
bash
basket
batch
bath
baths
battle
batty
baulk
bawdy
bay
bay

be
bean

lupir/
/apul/
layprul/
/arch/
/ahr/
[ahrm/
/ahrmee/
/urownd/
larray/
luriev/
lart/
/ahrtukul/
laz/
/ash/
/ashiz/
fask/
lustray/
[at/
/uttach/
/utempt/
/Awgust/
fant/
/uvoid/
Juway/
laks/
laksis/
/baybee/
/bak/
/bad/
/bag/
/bawlk/
[bawl/
/bahimee/
/bangz/
/bangk/
/bangkur/
/bahrmee/
/bash/
/baskut/
/bach/
/bath/
/bathz/
/batul/
/batee/
/bowlk/
/bawdee/
/bay/
/bay/
/bee/
/been/

help
hem
her
herbs
here
heresy
hero
hers
hey
hey
hiccup
hiding
high
hijack
hike
hikes
hill
him
hinder
hint
hip
hire
his
history
hit
hoax
hobble
hobby
hold
hole
holy
home
homely
homy
honey
hoof
hook
hooks
hoops
hope
horrid
horse
hot
hotty
hour
hours
house
how
however
hugs
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/help/
/hem/
/hur/
/hurbz/
/hir/
/herusee/
/heeroh/
/hurz/
/hay/
/hay/
/hikup/
/hieding/
/hie/
/hiejak/
/hiek/
/hiekz/
/hil/
/him/
/hindur/
/hint/
/hip/
/hieur/
/hiz/
/histree/
/hit/
/hoaks/
/hawbul/
/hahbee/
/hohld/
/hohl/
/hohlee/
/hohm/
/hohmee/
/hohmee/
/huhnee/
/hoof/
/hook/
/hooks/
/huepz/
/hohp/
/hawrid/
/hawrs/
/haht/
/hawtee/
lowr/
lowrz/
/hows/
/how/
/howevur/
/huhgz/

schoo
sea
seat
second
see
seed
seem
seen
self
sell
sense
sent
separate
September
serve
service
set
settle
seven
several
shabby
shade
shake
shall
sham
shame
shape
share
shark
sharp
shave
she
shed
sheep
sheer
sheet
shelf
shell
shield
shift
shine
ship
ships
shirk
shirt
shit
shock
shoe
shoot
shop

/skuel/
/seel
/seet/
/sekund/
/see/
[seed/
/seem/
/seen/
[selff
Isell
/sens/
/sent/
Iseprit/
/septembur/
[surv/
/survis/
[set/
[/setul/
/sevun/
/sevrul/
/shabbee/
/shayd/
/shayk/
/shal/
/sham/
/shaym/
/shayp/
/sher/
/shahrk/
/shahrp/
/shayv/
[shee/
/shed/
/sheep/
[shir/
/sheet/
/shelf/
/shell
/sheeld/
[shift/
/shien/
/ship/
[shipz/
[shirk/
/shurt/
[shit/
/shahk/
[shue/
[shuet/
/shahp/



beauty
became
because
become
bed
beech
been
before
began
begin
behind
being
believe
bell
belong
below
bends
berth
beside
best
betray
better
between
beyond
bicycle
big
bilk
birch
bird
birth
black
bleach
blood
bloody
blow
blue
blush
board
boat
body
boil
bone
book
books
born
borrow
botch
both
bottle
bounds

/beeuetee/
/bikaym/
/bikawz/
/bikuhm/
/bed/
/beech/
/bin/
/bifawr/
/bigan/
/bigin/
/bihiend/
/beeing/
/bileev/
/bel/
/bilawng/
/biloh/
/bendz/
/berth/
/busied/
/best/
/beetray/
[betur/
/bitween/
/biyahnd/
/biesikul/
/big/
[bilk/
/burch/
/burd/
/berth/
/blak/
/bleech/
/bluhd/
/bluhdee/
/bloh/
/blue/
/bluhsh/
/bawrd/
/boht/
/bahdee/
/boil/
/bohn/
/book/
/books/
/bawrn/
/bawroh/
/bawch/
/bohxh/
[bawtul/
/bowndz/

hulk
humid
humor
hump
hums
hunch
hungry
hunt
hurry
hurt
husband
I

ice
idea

if

iffy

ilk

ill
important
in

inch
inches
include
increase
indeed
industry
inside
instead
into
iron

is

it

itch

its

jab
jabber
jack
jacket
jade
jail
jam
jammy
jangle
jar
jargon
jaunt
jaw
jazz
jazzy
jeans
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/hohlk/
/huemid/
/huemawr/
/huhmp/
/huhmz/
/huhnch/
/hunggree/
/huhnt/
/huree/
/hurt/
/huhzbund/
lie/

lies/
fiediu/

[if/

liffee/

filk/

fil/
/impawrtunt/
fin/

finch/
finchiz/
finklued/
finkrees/
/indeed/
/industree/
/insied/
finsted/
fintue/
fieurn/
fizl

fit/

fich/

fits/

fjab/
fjabur/
fjak/
fjakit/
ljayd/
ljayl/
ljam/
ljamee/
fjangul/
fjahr/
fjahrgawn/
fjawnt/
ljaw/

ljaz/
ljazeel/
lieenz/

shore
short
shot
should
shoulder
shout
shove
show
shower
shown
shred
shrill
shrine
shrink
shrug
sick
side
sight
sights
sign
silk
silver
simple
since
sing
single
sister
Six
sixty
size
skulk
sleep
slept
slow
small
smell
smoke
snow
o)
soft
soil
sold
soldier
solo
some
son
song
soon
sorry
sort

[shawr/
/shawrt/
/shaht/
/shood/
/shohldur/
/showt/
/shuhv/
/shoh/
/showur/
/shohn/
/shred/
[shril/
[shrien/
[shrink/
/shruhg/
[sik/
/sied/
[siet/
[siets/
/sien/
Isilk/
[silvur/
/simpul/
[sins/
[sing/
/singgul/
[sistur/
[siks/
[siktee/
[siez/
/skuhlk/
Isleep/
/slept/
/sloh/
/smawl/
/smel/
/smohk/
/snoh/
/soh/
[sawft/
[soil/
/sohld/
/sohljur/
/sohloh/
/suhm/
/suhn/
/sawng/
/suen/
/sahree/
[sawrt/



box
boxer
boxy
boy
boy
boyish
brain
brains
branch
branch
brash
breach
bread
break
bridge
briefs
bright
bring
broad
broke
broken
broth
brought
brown
brunch
bucks
buddy
bug
build
building
built
bulk
burn
bus
bush
bushes
business
busty
busy
but
butter
buy

by
cake
call
came
can
captain
car
care

/bahks/
/bahksur/
/bahksee/
/boi/

/boi/
/boiish/
/brayn/
/braynz/
/branch/
/branch/
/brash/
/breech/
/bred/
/brayk/
[brij/
[breefs/
/briet
/bring/
/brawd/
/brohk/
/brohkun/
/brahth/
[brawt/
/brown/
/bruhnch/
[buhks/
/buhdee/
/buhg/
/bild/
/bilding/
/bilt/
/buhlk/
/burn/
/buhs/
/boosh/
/booshiz/
/biznus/
/buhstee/
/bizee/
/buht/
[buhtur/
/bie/

/bie/
/kayk/
lkawl/
/kaym/
/kan/
/kaptun/
/kahr/
/ker/

jeer
jelly
jemmy
jerk
Jeron
jersey
jest
jester
Jesus
jet
jetty
Jew
jewel
jib
jiffy

jig
jiggle
jigsaw
jilt
jingle
jitter
jive
job
jockey
jog
join
joint
joke
joker
jolly
Jon
joshes
joy
judge
jug
juice
juke
July
jumble
jump
June
jungle
junior
junk
just
kecks
keep
kept
keshes
key
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lieer/
lielee/
liemee/
lierk/
lierahn/
ljursee/
ljest/
liestur/
l/jeesuhs/
fiet/
ljetee/
fjue/
fjuel/
fjib/
ljifee/
fiig/
fjigul/
fjigsaw/
filt/
fjingul/
fjittur/
ljiev/
fjahb/
ljawkee/
ljiahg/
fjoin/
fjoint/
fjohk/
fjohkur/
ljawlee/
/jahn/
ljawshiz/
fjoi/
fjuhj/
fjuhg/
fjues/
fjuek/
/Joolie/
/juhmbul/
/juhmp/
/Juen/
/juhngul/
fjuenyur/
fjuhnk/
fjuhst/
/keks/
/keep/
/kept/
/keeshiz/
/kee/

sound
south
soy
space
speak
special
spend
spent
spoke
spot
spread
spring
square
stalk
stand
star
starch
start
state
station
stay
step
stick
still
stitch
stock
stone
stood
stop
store
storm
story
straight
strange
stranger
stream
street
strength
strike
strong
student
study
sturdy
subject
succeed
success
such
sudden
suffer
sugar

/sownd/
/sowth/
/soil
/spays/
Ispeek/
/speshul/
/spend/
/spent/
/spohk/
/spaht/
/spred/
/spring/
/skwer/
[/stahlk/
/stand/
[stahr/
[stahrch/
[/stahrt/
[stayt/
[stayshun/
[stay/
Istep/
[stik/

[stil/
[stich/
/stawk/
/stohn/
[/stood/
I/stahp/
[stawr/
[stawrm/
[stawree/
[strayt/
[straynj/
[straynjur/
/streem/
[street/
/strengxh/
[striek/
[strawng/
[stuedunt/
/stuhdee/
/sturdee/
/suhbijikt/
/sukseed/
/sukses/
/suhch/
/suhdun/
[suhfur/
/shoogur/



carry
case
cash
cashes
catch
caught
caulk
cause
cello
cent
century
chafe
chair
chair
chalk
chance
chance
change
chant
chaos
character
charge
charm
chase
chat
cheat
cheer
chesty
chew
chief
child
childhood
children
chill
chin
choke
choose
chore
Christ
chunk
church
churn
cigarette
circle
city
civics
class
clay
clean
clear

/karee/
/kays/
/kash/
/kashiz/
/kach/
lkawt/
/kawlk/
lkawz/
/cheloh/
/sent/
/senchuri/
/chayf/
/cher/
/cher/
/chawlk/
/chans/
/chans/
/chang/
/chant/
/kayahs/
/karuktur/
/chahrj/
/chahrm/
/chays/
/chat/
/cheet/
/cheer/
/chestee/
/chue/
/cheef/
[/chield/
/chieldhood/
/childrun/
[chil/
/chin/
/chohk/
/chuez/
/chawr/
/chriest/
/chuhnk/
/church/
/churn/
/siguret/
/surkul/
[sitee/
[siviks/
/klas/
/klay/
/kleen/
[Klir/

kicks
kidney
kilo
kind
king
kiss
kitchen
kitty
labor
laches
ladder
lady
lake
land
language
large
lashes
last
late
laugh
laughter
law
lax
lay
lead
leader
learn
least
leave
leches
led
left
leg
legs
length
less
let
letter
liar

lie

life
light
limy
line
liquid
liquor
list
listen
little
live
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Ikikz/
/kidnee/
/keeloh/
/kiend/
/king/
/kis/
/kichun/
/kitee/
Nlaybur/
/lachiz/
/ladur/
Nlaydee/
Nayk/
Nland/
Nlanggwij/
Nahrj/
Nlashiz/
/last/
Nayt/
Naf/
Naftur/
Nlaw/
Nlaks/
Nay/
/leed/
/leedur/
/lurn/
/leest/
lleev/
llechiz/
Nled/
Neft/
Nleg/
llegz/
llengxh/
lles/
llet/
/letur/
[lier/
llie/
Nief/
Nliet/
/liemee/
llien/
Nikwid/
Nlikur/
Nlist/
lisun/
Nitul/
Niv/

suit
sulk
summer
sun
Sunday
supply
suppose
sure
surprise
sweet
switch
syntax
system
table
tail

take
talem
talk
talks
tall
tammy
taste
tasty
tax

taxi
teach
tear

tell

ten
testy
thai
than
thank
thanks
that

the
theft
their
theirs
them
theme
then
thence
theory
there
therefore
these
thesis
they
thick

/suet/
/suhlk/
/suhmur/
/suhn/
/Suhnday/
/suhplie/
/supohz/
/shoor/
/supriez/
/sweet/
[swich/
/sintaks/
[sistum/
ltaybul/
ltayl/
ltayk/
/taykun/
ltawk/
ltawlkz/
ftawl/
ltamee/
ltayst/
ltaystee/
ftaks/
ltaksee/
/teech/
Itir/

Itell
lten/
ltestee/
[tie/
/than/
Ixhangk/
/thanks/
/that/
lthee/
[theft/
lther/
ltherz/
lthem/
/theem/
/then/
/thens/
Ithirree/
lther/
/therfawr/
/theez/
ltheesus/
/thay/
Ixhik/



clock
close
cloth
clothes
cloud
clutch
coat

coil

coin
cold
college
color
come
company
complete
condition
consider
considerable
contain
continue
control
convey
convoy
cook
cool
corn
corner
coshes
cost
could
count
country
course
cover
CcoX
crash
crips
cross
crowd
crusty
cry

cup

cut
daddy
daily
dance
dare
dark
darts
dashes

/klahk/
/klohs/
/klawxh/
/klohz/
/klowd/
/kluhch/
/koht/
/koil/
/koin/
/kohld/
/kahlij/
/kuhlur/
/kuhm/

/kuhmpunee/

/kumpleet/
/kundishun/
/kunsidur/

/kunsidurubul/

/kuntayn/
/kuntinyue/
/kuntrohl/
/kohnvay/
/kahnvoi/
/kook/
/kuel/
[kawrn/
/kawnur/
/kohshiz/
/kawst/
/kood/
/kownt/
/kuhntree/
[kawrs/
/kuhwvur/
/kahks/
/krash/
/krips/
/kraws/
/krowd/
[crestee/
krie/
/kuhp/
/kuht/
/dadee/
/daylee/
/dans/
/der/
/dahrk/
/dahrtz/
/dashiz/

loath
lobby
loin
loiter
lone
long
look
Lord
lose
loss
lost

lot

loud
love
low
lower
lox
loyal
lurch
lushes
lusty
lynch
Ma
machine
mad
made
mail
mains
make
man
manner
many
March
mark
market
marque
marry
marsh
master
material
maths
matter
maxim
May
mayor
me
mean
means
measure
meat
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/lohth/
/lahbee/
/loin/
lloitur/
/lohn/
Nlawng/
/look/
/Lawrd/
Nluez/
llaws/
/lawst/
Naht/
/lowd/
Nluhv/
/loh/
/lohur/
/lawks/
Nloiyul/
/lurch/
/luhshiz/
/lahbee/
/linch/
/Mah/
/musheen/
/mad/
/mayd/
Imayl/
/maynz/
/mayk/
/man/
/manur/
/meni/
/mahrch/
/mahrk/
/mahrkut/
/mahrk/
/maree/
/mawrsh/
/mastur/
/mutiriul/
/mathz/
/matur/
/maksem/
/May/
/mayur/
/mee/
/meen/
/meenz/
/mezhur/
/meet/

thief
thigh
thin
thing
things
think
third
thirst
thirteen
thirty
this
those
though
thought
thousand
thrall
thrash
thrawn
thread
threat
three
threw
thrice
thrill
thrive
throb
throe
throne
throng
through
throve
throw
thrown
thru
thrust
thug
thumb
thumbs
thus
tiches
tidy

tie

till

time

to
today
together
toil

told
tommy

/theef/
[thie/
Ixhin/
Ixhing/
Ithingz/
Ixhingk/
fthurd/
lthurst/
/xhurteen/
/thurstee/
Ithis/
/thohz/
/thoh/
Ixhawt/
Ixhowzund/
thral/
/thrash/
Ithrawn/
lthred/
thret/
Ixhree/
Ixhrue/
[thries/
[thril/
[thriev/
/thrahb/
/throh/
/throhn/
/thrawng/
Ixhrue/
/throhv/
/xhroh/
Ixhrohn/
lthrue/
lthruhst/
/thuhg/
/thuhm/
/thuhmz/
/thuhs/
[tichiz/
[tiedee/
Itie/

Mtil/

/tiem/
ltue/
/tooday/
ltoogethur/
toil/
/tohld/
/tahmee/



date
daughter
day
dayglo
dead
deal
dear
December
decide
decks
decoy
deep
degree
deity
delight
demand
deploy
depth
desire
destroy
detach
detox
device
devoid
dibs
dicey
did

die
difference
different
difficult
dig

digs
dinner
dioxin
direct
dirty
discover
dish
dishes
dismay
distance
distant
ditch
divide
do
doctor
does
dog
doing

/dayt/
/dawtur/
/day/
/daygloh/
/ded/
/deel/
[dir/
/Disembur/
[disied/
/dekz/
/deekoi/
/deep/
/digree/
/deetee/
[diliet/
/dimand/
/deeploi/
/depth/
[dizier/
distroi/
/deetach/
/deetahks/
/divies/
/deevoid/
/dibz/
/diesee/
/did/

[die.
[difruns/
[difrunt/
[difukult/
/dig/
/digz/
/dinur/
/deeahksin/
[direkt/
[dirtee/
/diskuhvur/
/dish/
/dishiz/
/dismay/
/distuns/
/distunt/
/dich/
/divied/
/due/
/dahktur/
/duhz/
/dawg/
/dueing/

meaty
meet
meeting
member
men
met
method
meths
middle
might
mile
milk
million
mind
mine
minute
miss
mister
misty
mix
modern
moist
Monday
money
month
moody
moon
more
morning
mosque
most
moth
mother
mountain
mouth
move
movement
moxa
much
mud
munch
music
must
my

nail
nasty
nation
nature
near
nearly
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/meetee/
/meet/
/meeting/
/membur/
/men/
/met/
/mexhud/
/methz/
/midul/
/miet/
/miel/
/milk/
/milyun/
/miend/
/mien/
/minit/
/mis/
Imistur/
/mistee/
/miks/
/mawdurn/
/moist/
/Muhnday/
/mohnee/
/muhnxh/
/muedee/
/muen/
/mawr/
/mawrning/
/mahsk/
/mohst/
/mawth/
/muhthur/
/mowntin/
/mowxh/
/muev/
/muevmunt/
/mohksu/
/muhch/
/muhd/
/muhnch/
Imyuezik/
/muhst/
/mie/
Inayl/
/nastee/
/nayshun/
/naychur/
Inir/

Inirli/

tomorrow
too
took
tooth
torch
tore
touch
toward
town
toxic
toy
tracks
trade
train
training
travel
tree
tried
tries
trip
trouble
trust
truth
try
Tuesday
turfs
turn
twelve
twenty
twins
twitch
two
udder
uglier
uglis
ugly
ulcer
ulema
ulna
ultima
ultra
umbel
umber
umpire
uncle
under
understand
understood
until

up

/toomahroh/
ftue/

/took/
ltueth/
ltawrch/
ftawr/
/tuhch/
ltawrd/
ftown/
ltawksik/
[toi/

[traks/
Itrayd/
[trayn/
[trayning/
ftravul/
ftree/

[tried/
[triez/

ftrip/
/truhbul/
[truhst/
ftrueth/
[trie/
[Tuezday/
lturfs/

fturn/
ltwelv/
/twentee/
ltwinz/
ltwich/

ftue/
fuhdur/
/uhgleeur/
/uhglis/
/uhglee/
lawlsur/
fulemu/
lawlnu/
lawlteemu/
lawltru/
/uhmbul/
/uhmbur/
/uhmpieur/
/uhngkul/
/uhndur/
/uhndurstand/
/uhndurstood/
funtil/
/uhp/



dollar
done
donkey
don't
door
dormie
dormy
double
doubt
down
dream
dregs
dress
dried
drink
drive
drop
dry
dubs
duck
dummy
during
dusk
dusty
duty
dwarfs
each
ear
early
earth
east
easy
eat
edge
effort
€99
eight
either
electric
electricity
elk
else
Emmy
employ
end
ends
enemy
English
enjoy
enough

/dahlur/
/duhn/
/duhnkee/
/dohnt/
/dawr/
/dawrmee/
/dawrmee/
/duhbul/
/dowt/
/down/
/dreem/
/dregz/
/dres/
/dried/
/dringk/
[driev/
/drahp/
[drie/
/duhbz/
/duhk/
/duhmee/
/dooring/
/duhsk/
/duhstee/
/duetee/
/dwawrfs/
leech/

fir/

lurlee/
/urxh/
/eest/
leezee/
leet/

lejl

lefurt/
leg/

layt/
/eethur/
Julektrik/
/ulektrisitee/
lelk/

lels/
lemee/
/emploi/
/end/
/endz/
/lenumee/
fingglish/
finjoi/
/inuhf

necessary
neck
need
needle
needs
needy
neighbor
neither
nerve
never
new
news
next
nice
niece
night
nine
ninth
no
noise
none
noon
nor
north
nose
not
notch
note
nothing
notice
November
now
number
nutty
nylons
oath
oats
object
ocean
oches
October
odds
of

off
offer
office
often
oh

oil

oil
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/nesuseri/
/nek
/need/
/needul/
/needz/
/needee/
/naybur/
/neethur/
/nurv/
/nevur/
Inue/
/nuez/
/nekst/
/nies/
Inees/
Iniet/
Inien/
/nienth/
/noh/
/noiz/
/nuhn/
/nuen/
/nawr/
/nawrxh/
/nohz/
/naht/
/nawch/
/noht/
/nuhxhing/
/nohtis/
/INOHvembur/
/now/
/nuhmbur/
/nuhtee/
/nielahnz/
/ohth/
/ohts/
/ahbjekt/
/ohshun/
/ohchiz/
/Ahktohbur/
/ahdz/
/uhv/
lawf/
Jawfur/
lawfis/
lawfun/
loh/

foil/

[oil/

upon
urban
urchin
urea
urge
urgent
urine
us
use
use
usual
vac
vacuum
vagina
vague
vain
valet
valid
valley
value
valve
vamp
van
vanda
vanish
vapid
vapor
various
vary
vast
vault
vector
veer
vegan
vein
venom
vent
verb
verbs
verse
very
vet
via
vice
video
view
view
vile
visa
visit

/upahn/
/urban/
/urchin/
lureeu/
lurg/
/urgent/
Iyurin/
/uhs/
lyuez/
lyues/
/yuezhooul/
Ivac/
/vakuem/
/vahjienu/
Ivayg/
Ivayn/
Ivalay/
Ivalid/
/valee/
Ivalyue/
Ivalv/
vamp/
Ivan/
/vandul/
/vanish/
/vaypid/
/vaypur/
Ivarius/
Iveree/
Ivast/
Ivawlt/
Ivektur/
Iveer/
Iveegin/
Ivayn/
/venuhm/
Ivent/
Ivurb/
Ivurbz/
Iverz/
Iveree/
Ivet/
/veeuh/
Ivies/
/videeoh/
Ivyue/
Ivue/
Iviel/
Iveezul/
Ivizit/



enter
epoxy
equal
equip
escape
etches
ethics
even
evening
ever
every
exact
exalt
exam
excel
except
exert
exile
exit
expect
experience
explain
eye
face
fact

fail

fair
faith
fall
family
famous
fancy
far
farm
fast

fat
father
fatty
favor
fax
fear
February
feed
feel
feet
feisty
fell
fellow
felt
fence

lentur/
leepawksee/
leekwul/
leekwip/
Juskayp/
/etchiz/
/ethiks/
/eevun/
/eevning/
levur/
levree/
liksakt/
likawlt/
fiksam/
fikssel/
leksept/
fiksurt/
/eksiel/
leksit/
likspekt/
likspiriuns/
leksplayn/
fiel

[fays/
[fakt/
[fayl/
[fer/
[fayth/
[fawl/
[famulee/
[faymus/
[fansee/
[fahr/
[fahrm/
[fast/
[fat/
[fahthur/
[fatee/
[fayvur/
[faks/

[fir/
/Febrooeree/
[feed/
[feel/
[feet/
[fiestee/
[fel/
[feloh/
[felt/
[fens/

oily

old

on
only
oogamy
open
opinion
or
order
orderly
other
ought
our

out
outer
outside
over
ovolo
own
(04
oxen
oxide
page
paid
pain
part
partial
party
pass
past
pasty
patch
pay
peace
peach
pegs
people
perfect
perhaps
period
person
phag
phage
pharm
phase
phatic
phenol
phenyl
phew
phi
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[oilee/
/ohld/
fahn/
/ohnlee/
/luegamee/
/ohpun/
/upinyun/
fawr/
Jawrdur/
lawrdurli/
/uhthur/
fawt/
lowr/
lowt/
/owtur/
/owtsied/
/ohvur/
/ohvohlu/
/ohn/
Jawks/
lawksen/
/awksied/
Ipayj/
/payd/
/payn/
/pahrt/
/pahrshul/
/pahrtee/
/pas/
/past/
/paystee/
/pach/
Ipay/
Ipees/
/peech/
Ipegz/
/peepul/
Ipurfikt/
/purhaps/
[piriud/
/pursun/
[fag/
[fayg/
/fahrm/
[fays/
[fatik/
[feenul/
[feeniel/
Ipue/
[fie/

vocal
vogue
voice
void
vomit
vote
vouch
voyage
voyeur
wagon
wait
walk
wall
want
war
warm
was
wash
wash
washes
watch
water
wave
wax
way

we
weak
wear
weather
wedge
Wednesday
weds
week
weight
welcome
well
went
west
wet
what
wheat
wheel
whelk
when
where
whether
which
while
white
whole

/vohkul/
/vohg/
Ivois/
/void/
vawmit/
/voht/
/vowch/
Ivoiyeg/
Ivoiyur/
/wagun/
Iwayt/
Iwawk/
Iwawl/
Iwawnt/
Iwawr/
Iwawrm/
/wuhz/
/wahsh/
/wahsh/
/washiz/
/wahch/
/wahtur/
Iwayv/
/waks/
Iway/
/wee/
Iweek/
Iwer/
/wethur/
Iwej/
/Wenzday/
/wedz/
/week/
Iwayt/
/welkum/
Iwel/
/went/
/west/
Iwet/
/whuht/
/wheet/
/wheel/
Iwelk/
/when/
/wher/
/whethur/
/which/
Iwhiel/
/whiet/
/hohl/



fetch
few
field
fifteen
fifth
fifty
fight
figure
fill

filo
filth
find
fine
finger
finish
finish
fire
firm
first
fish
fishes
fit

five
fix

fix
fixed
flabby
flier
floor
flower
fly
foamy
foible
foil
folk
follow
food
fool
foot
for
force
foreign
forest
forever
forget
form
fortieth
forty
forward
found

[fech/
lfyue/
[feeld/
[fifteen/
[fitxh/
[fiftee/
[fiet/
[ffigyur/
[fill
[ffiloh/
ffilth/
[ffiend/
[ffien/
ffinggur/
[ffinish/
[finish/
[fier/
[furm/
[furst/
[fish/
[fishiz/
[fit/

[fiev/
[fiks/
[fiks/
[fikst/
[flabee/
fflier/
[flawr/
[flowur/
[flie/
[fohmee/
[foibul/
[foil/
[fohlk/
[fawloh/
/fued/
[fuel/
[foot/
[fawr/
[fawrs/
[fawrun/
[fawrust/
[fawrevur/
[furget/
[fawrm/
[fawrtiuxh/
[fawrtee/
[fawrwurd/
[fownd/

phial
phiz
phlox
phobia
phoebe
phon
phone
phonic
phony
phot
photo
photon
phrase
phut
phyla
physic
pick
picture
piece
pinch
pique
pith

pity
pixel
place
plain
plan
plant
plaque
play
pleasant
please
pleasure
ploy
poach
point
poise
polo
poor
position
possible
pot
pouch
power
pox
prepare
present
president
press
pretty
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[ffieul/
[fiz/
[flahks/
/fohbeeu/
[feebee/
/fahn/
/fohn/
[fahnik/
/fohnee/
[fawt/
/fohtoh/
/fohtahn/
[frays/
ffuht/
ffielu/
ffisik/
Ipik/
Ipikchur/
Ipees/
/pinch/
Ipik/
/pith/
Ipitee/
Ipiksul/
Iplays/
Iplayn/
/plan/
/plant/
Iplak/
Iplay/
Iplezunt/
Ipleez/
Iplezhur/
/ploi/
/pohch/
/point/
/pois/
/pohloh/
/poor/
/puzishun/
/pahsubul/
/paht/
/powch/
Ipowur/
/pawks/
Ipriper/
/presunt/
/prezudunt/
Ipres/
[pritee/

whom
whose
why
width
wife
wild
will

win
wind
window
wing
wings
winter
wise
wish
wishes
with
within
without
witty
woman
women
won
wonder
wood
word
wore
work
world
worn
worth
would
write
written
wrong
wrote
yacht
yack
yah
yahoo
yajur
yak
yakut
yale
yam
yang
yank
Yankee
yap
yappy

[huem/
/huez/
Iwhie/
/width/
Iwief/
/wield/
Iwil/
Iwin/
/wind/
/windoh/
/wing/
Iwingz/
Iwintur/
Iwiez/
Iwish/
Iwishiz/
Iwith/
/within/
Iwithowt/
Iwitee/
/woomun/
/wimin/
/wuhn/
/wuhndur/
/wood/
/wurd/
wawr/
Iwurk/
/wurld/
/wawrn/
Iwurxh/
/wood/
[riet/
Iwritun/
/rawng/
/roht/
lyaht/
lyak/
lyah/
lyahhue/
lyahijur/
lyak/
lyakuet/
lyayl/
lyam/
lyang/
lyank/
lyankee/
lyap/
lyappee/



four
fousty
fox
foxed
foxy
foyer
fray
free
fresh
fresh
Friday
friend
from
front
froth
full
further
fusty
gain
game
garden
gashes
gate
gather
gave
gay
general
gentle
gentleman
gents
get

gift

girl
give
glad
glass
gloom
gloomy
glossary
gnash
go

God
goes
gold
gone
good
goodbye
got
govern
grain

[fawr/
[fowstee/
[fahks/
[fahkst/
[fahksee/
[foiyur/
[fray/
[free/
[fresh/
[fresh/
/Frieday/
[frend/
[fruhm/
[fruhnt/
[frawth/
/fool/
[furthur/
[fuhstee/
/gayn/
/gaym/
/gahrdun/
/gashiz/
/gayt/
/gathur/
/gayv/
/gay/
f/jenurul/
fjentul/
/jentulmun/
lients/
/get/

[gift/
/gurl/
/giv/
/glad/
/glas/
/gluem/
/gluemee/
/glawsuree/
/nash/
/goh/
/Gahd/
/gohz/
/gohld/
/gawn/
/good/
/goodbie/
/gaht/
/guhvurn/
/grayn/

prey
price
probably
problem
produce
promise
proud
prove
public
pull
pure
push
pushes
put
pygmy
pyramid
qua
quad
quaff
quag
quail
quake
qualm
guart
quarter
quartz
quash
quasi
quay
gueen
queen
queer
quell
query
quest
question
gqueue
quick
quiet
quiff
quilt
quip
quirk
quite
quiz
guota
guote
race
rags
rain
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/pray/
Ipries/
/prahbubli/
/prahblum/
/prohdues/
/prahmis/
/prowd/
/pruev/
/puhblik
/pool/
/pyoor/
/poosh/
/pooshiz/
/poot/
/pigmee/
/peeramid/
lkwa/
/kwad/
/kwaf/
/kwag/
/kwayl/
Ikwayk/
/kwawlm/
Ikwawrt/
/kwawrtur/
/kwartz/
/kwahsh/
/kwahzee/
Ikway/
/kween/
/kween/
/kweer/
Ikwel/
/kweeree/
/kwest/
/kweschun/
/kwue/
Tkwik/
/kwieut/
Tkwif/
Tkwilt/
/kwip/
Tkwirk/
Ikwiet/
/kwiz/
/kwohtu/
/kwoht/
Irays/
Iragz/
/rayn/

yard
yarn
yate
yawl
yawn
ye
year
yearly
yearn
years
yeast
yell
yellow
yellow
yelp
yen
yes
yesterday
yet
yew
yiddish
yield
yo
yob
yodal
yoga
Yogi
yoke
yolk
yonder
yore
you
young
your
yours
youth
yummy
zag
Zaire
zakat
zany
zap
zeal
zealot
zebra
zebu
zed
zee
Zen
zest

lyahrd/
lyawrn/
lyayt/
lyawl/
lyawn/
lyeel
lyirl
lyeerlee/
Iyurn/
lyirz/
lyeest/
lyell
lyeloh/
lyelloh/
lyelp/
lyen/
lyes/
lyesturday/
lyet/
Iyue/
lyiddish/
lyild/
lyoh/
lyahb/
/yohdul/
/yohgu/
/yohgee/
lyohk/
lyohlk/
/yahndur/
lyawr/
Iyue/
lyuhng/
lyawr/
lyawrz/
lyueth/
/lyuhmee/
[zag/
Izieir/
/zahkat/
[zaynee/
[zap/
/zeel/
/zeelawt/
/zeebruh/
/zebue/
/zed/
Izeel
/zen/
[zest/



grave
gray
great
green
grew
grey
groin
group
grow
grown
guard
guches
guess
guide
gummy
gun
gushes
gusty

/grayv/
/gray/
/grayt/
/green/
/grue/
/gray/
/groin/
/gruep/
/groh/
/grohn/
/gahrd/
/guhchiz/
/ges/
/gied/
/guhmee/
/guhn/
/guhshiz/
/guhstee/

raise
ran
ranch
ranks
rather
reach
read
ready
real
realize
reason
receive
recoil
record
red
reins
relax
remember
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Irayz/
/ran/
/ranch/
/ranks/
/rathur/
/reech/
/reed/
/redee/
Ireell
Ireeuliez/
[reezun/
/ruseev/
/reekoil/
[rekurd/
/red/
[rayns/
[reelaks/
/rimembur/

zesty
zeta
ziff

zZig
zilch
zinc
zine
zZip
zither
zodiac
zombie
zonal
zone
zonk
Z00
zulu

[zestee/
[zetu/

[zifl

Izig/
/zilch/
[zingk/
/zien/

zip/
[zixhur/
/zohdeeak/
/zahmbee/
/zohnul/
/zohn/
[zahnk/
[zue/
/zulue/



Appendix D — MBROLA Program Description

The MBROLA program is designed to take four variables as inputs. The inputs to
the MBROLA program are the phoneme, the phoneme duration, the pitch pattern point,
and the fundamental frequency. The program only needs the phoneme and the duration
to produce speech. If the user wants to add fundamental frequency values, the program
must have a corresponding pitch pattern point. The program can handle up to 20 pitch
pattern point and fundamental frequency pairs.
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Appendix E — Source Code

JonTalk Flow Chart

( Start JonTalk.m )

\ 4

Retrieve Input from User
get(edit box)

Sentence Words
(find_sentece_words.m)

A 4

Find Acornoyms
(find_acronym.m)

.

Find Orthographic Word
(find_orthographic.m)

A 4

Calculate phonemes
(BP_Calculate.m)

Trained
Data
(*mat file)

Find Orthographic Word
(find_orthographic.m)

A 4
Find Fuzzy Inputs

Sentence Size, Word importance, Stress Distance, Position <
(find_sentence_size.m, word_type.m, distance_from_stress.m)

\ 4
Calculate Stress Calculate FO
(english_sresss (f0_calculator.m)
_rules.m) —

NO

Last Senetence
Word?

YES

Segmental Duration
(phoneme_duration_rules.m)

A 4

Call MBROLA
Produce System Speech
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% Function: JonTalk.m
% Purpose: The GUI of the JonTalk text-to-so-speech program

% Description: This program is the GUlI for the TTS system. The program
% handles text input and produces speech output. The user can control

% the tone of the speech and the speed of the speech.
% Outputs: Speech

function varargout = JonTalk(varargin)

gui_Singleton = 1;

gui_State = struct("gui_Name®, mFilename, ...
"gui_Singleton®, gui_Singleton, ...
"gui_OpeningFcn®, @JonTalk _OpeningFcn, ...
"gui_OutputFcn®, @JonTalk OutputFcn, ...
"gui_LayoutFcn®, [1 , ---
"gui_Callback", [D:

if nargin & isstr(varargin{l})

gui_State.gui_Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before JonTalk is made visible.
function JonTalk OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes JonTalk wait for user response (see UIRESUME)
% uiwait(handles.figurel);

% --- Outputs from this function are returned to the command line.
function varargout = JonTalk OutputFcn(hObject, eventdata, handles)
varargout{l} = handles.output;

global declarative_sentence_rules

global yes no_question_rules

global interrogative_question_rules

global wh_question_rules

global rise_fall _rules

global PHONEME_SET

global pitch

global speed

pitch = 1;
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speed = 1;
set(gcft, "Color",[0 0 O]);

linguist variables{l
linguist variables{2

¥} = {“useless”™ "semi” "important®™ "none"};

}
linguist_variables{3}

}

}

"small®™ "medium® "large® "none"};

"start® "middle® “end® "none"};

"dead-on® "near® "far® "none"};

"zero® "low" "mid-low®™ "mid" "mid-high® "high®

linguist_variables{4
linguist_variables{5
"peak”};

A A A e

%System default rules

yes no_question rules = {[1 01 03] [20104] [23103][0012

5] [00115]...
[10203][13202][20204][80215][00214]]I]o0

2204 [0320 3]---
[O0316][00325][03326][10325] [B30316]}:;

declarative _sentence rules = {1 01 02] [20103][23104] 01
116][00117] [01104]--.-
[10202][13203][20203][23214][00215]]0
2204] ...
[00312][30323][02302]T[1030 2]};

wh_question_rules

={[00103][30104][23104][01114]I0
0115][0110 3]

[10204][13203][00224][23215][00215]I[3
0216][022023] ...
[00313][00321][02302] [1030 1]};

main_menu = uimenu(“Label®,"Options™);
uimenu(main_menu, "Label ", "View Rules”,"Callback”,@Rule_Viewer);
uimenu(main_menu, "Label ", "Close”, "Callback”®,"close”);

[dummy variable excel file phoneme] = xlsread("Word
Data\phoneme_set._.xl1s");
PHONEME_SET = excel_Tfile_phoneme(:,1);

% --- Executes during object creation, after setting all properties.
function input_screen_CreateFcn(hObject, eventdata, handles)
% hObject handle to input_screen (see GCBO)
if ispc
set(hObject, "BackgroundColor®, "white");
else

set(hObject, "BackgroundColor®,get(0, "defaultUicontrolBackgroundColor®))

énd

function input_screen_Callback(hObject, eventdata, handles)
% hObject handle to input_screen (see GCBO)
% --- Executes on button press in TTS.

function TTS_Callback(hObject, eventdata, handles)
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% hObject handle to TTS (see GCBO)

global listbox_handles

global declarative_sentence_rules
global yes no_question_rules
global wh_question_rules

global rise_fall _rules

global MF_descriptors

global MF_descriptors_rise_fall
global test axes

global PHONEME_SET

global pitch

global speed

%Membership function
MF_descriptors{1l} =
MF_descriptors{2}
MF_descriptors{3}
MF_descriptors{4}
MF_descriptors{5}
12 14];

ecsriptors

; 05 10; 5 10 15];

; 05 10; 5 10 15];

; 05 10; 5 10 15];

; 0510; 5 10 15];

;024; 246; 46 8; 68 10; 8 10 12; 10

s decsr
[-5 05
[-5 05
[-5 05
[-5 05
[-2 0 2

typed_input = get(handles.input_screen, "String”);
wh_words = {"how" “what® “"when® “where® “who" “"whom®" “"whose®" “why" };

if isempty(typed_input) ==
return;
end

%Find the sentence type, depend on pucutation and the first word
it isempty(strfind(typed_input,"?")) == 0
question_marks = strfind(typed_input,"?");
typed_input(question_marks) = * *;
rule_list = yes no_question_rules;
for count = 1:length(wh_words)

it isempty(strfind(lower(typed_input),wh words{count})) ==

rule_list = wh_question_rules;

break;
end
end
else
rule_list = declarative_sentence_rules;
end

%Load the trained Back Propagation 85 epoch mat file
loaded data = load("BPU85epochs.mat");
hidden_weights = loaded_data.hidden_weights;

output _weights = loaded_data.output weights;

hidden_size = size(hidden_weights);
HIDDEN_NEURONS = hidden_size(1);

typed_input(isspace(typed_input)) = "%";
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for count=1:length(typed input)
input_letters{count} = typed input(count);
end

global COMMAS
COMMAS = strfind(typed_input,”,");

%Converts words to individual cell strings
actual_words = find_sentence_words(input_letters,COMMAS) ;

%Find acronyms, words like NASA or FBI
actual_words = find_acronyms(actual_words);

%Find orthographic words like Mr. Mrs. and numbers
actual_words_normalized = orthographic_converter(actual _words);

sentence_words = "";

output phonemes = ;

%For each word within the cellstring, calculate the weight output
for main_count=1:length(actual_words normalized)
word = char(actual_words_normalized{main_count});

%Set the front string to 7 silences (for alignment purposes)
input_size = length(word);

input_string = {"%" %" %" "%" "%" "%" "%"};

for count=1:input_size

input_string(7+count) = cellstr(word(count));

end

%Place seven silences at the beginning of the Input string
size_string = 7 + input_size;
input_string(size_string+l:size_string+7) = {"%"};

%Send input string, weights, and the other variables to the function
BP_calculate

phonetic_word =
lower(BP_calculate(input_string,output_weights,hidden_weights,PHONEME_S
ET,HIDDEN_NEURONS)) ;

spaces = strmatch("%" ,phonetic_word);

phonetic_word(spaces) = "";

sentence_words{main_count} = phonetic_word;

output_phonemes = [output_phonemes {"%"} sentence_words{main_count}];
end

% Call this function to remove double phonemes
[output_phonemes sentence_words] =
double_phoneme_handler(output_phonemes,sentence_words);
sentence_size = find_sentence_size(output_phonemes);

seperated_sentence_indexes = 0;
all_phonemes = "*°;
temp_output_phonemes = output_phonemes;
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intonation_count = 1;
if length(sentence words) > 0O
for count=1:length(sentence_words)

word = sentence_words{count};

real_word = actual_words_normalized(count);

%Find iImportance

[word_def, word_importance] = word_type(real_word);
%Find sentence position

offset = 10/length(sentence_words);
sentence_position = count*offset;

phonemes = sentence_words{count};

for phoneme_count=1:length(sentence_words{count})

%Find distance from stress

distance =
distance_from_stress(sentence_words(count),{phonemes},phonemes{phoneme_
count});

%With all of the inputs calcualted, they are are sent to the
fuzzy

%controller with rules to produce a crisp output

fO_output =
TO_calculator(word_importance,sentence_size,sentence_position,distance,
rule_list);

if isempty(fO_output) ==

plotting_data{intonation_count} = f0_output*pitch;
all_phonemes{intonation_count} = phonemes{phoneme_count};
else

plotting_data{intonation_count} = [];
all_phonemes{intonation_count} = phonemes{phoneme_count};
end

TO_data{intonation_count} = fO_output*pitch;

intonation_count = intonation_count + 1;

spot = strmatch(phonemes(phoneme_count),temp output_phonemes);
spot = spot(l);

temp_output_phonemes(l:spot) = {"*"};
phonemes{phoneme_count} = "/~;

end

end

else
return;
end
fO_contour = 0;
%data = smooth_T0_contour(fO_contour,fO_data);
data = smooth_f0_contour(fO0_data);
spaces = strmatch("%",output_phonemes, "exact”);
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phoneme_spot = 1:length(output phonemes);
phoneme_spot(spaces) = "°;
real_intonation_data(l:length(output_phonemes)) = {""};
real_intonation_data(spaces) = {""};
real_intonation_data(phoneme_spot) = data;

phoplayer_text =
phoneme_duration_rules(output_phonemes,real intonation_data,seperated_s
entence_indexes, speed);

%Plotting the O contour
h = figure;
for count=1:length(plotting data)-1
point = plotting_data{count};
next_point = plotting_data{count+1};
it isempty(point) == 0 & isempty(next_point) == 0
plot _one = plot([count count+1], [point
next _point], "bs: ", "MarkerFaceColor®,"c", "MarkerEdgeColor~®, "k");
elseif isempty(point) ==
plot_one =
plot(count,point, "bs: ", "MarkerFaceColor","c", "MarkerkEdgeColor”®, "k");
end
hold on;
end

%useless stuff
limit data = plotting_data;

ax = gca;

ifT length(limit_data) > 1

set(ax, "xlim",[1 length(limit_data)]);

end

if length(limit_data) > 1 & isempty(cellZmat(limit_data))==
set(ax, “"ylim®,[min(celIZmat(limit_data))-1
max(celIZmat(limit_data))+1]);

end

set(ax, "XTick",1:length(limit_data));

set(ax, "XTickLabel " ,all_phonemes);

title("Output Phonemes vs. Fundamental Frequency®);
ylabel ("Fundamental Frequency (Hz)");

% --- Executes on button press in clear.

function clear_Callback(hObject, eventdata, handles)
% hObject handle to clear (see GCBO)

set(handles. input_screen, "String”,"");

% --- Executes during object creation, after setting all properties.
function pitch_slide_CreateFcn(hObject, eventdata, handles)
% hObject handle to pitch_slide (see GCBO)
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usewhitebg = 1;
if usewhitebg

set(hObject, "BackgroundColor®,[-9 .9 .9]);
else

set(hObject, "BackgroundColor®,get(0, "defaultUicontrolBackgroundColor®))

end

% --- Executes on slider movement.

function pitch_slide Callback(hObject, eventdata, handles)
% hObject handle to pitch_slide (see GCBO)

global pitch

pitch = 1.5 - get(handles.pitch_slide, "Value®);

% --- Executes during object creation, after setting all properties.
function speed_slide CreateFcn(hObject, eventdata, handles)
% hObject handle to speed _slide (see GCBO)
usewhitebg = 1;
if usewhitebg
set(hObject, "BackgroundColor®,[-9 .9 .9]);
else

set(hObject, "BackgroundColor®,get(0, "defaultUicontrolBackgroundColor®))
end

% --- Executes on slider movement.

function speed_slide_Callback(hObject, eventdata, handles)

% hObject handle to speed_slide (see GCBO)

global speed
speed = 1.5 - get(handles.speed_slide, "Value®);
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% Function: phoneme_duration_rules.m

% Purpose: Calculate segmental duration

% Description: This program calculates the phonetic segmental

% duration.

% This done using the Klatt duration rules (“'From Text to Speech: The
% MiTalk™). Each section below shows which rule corresponds to which
% section. The program computes the segmental duration and then calls
% the MBROLA program with the segments, intonation, and phonemes

% Outputs: text(unused)

function phoplayer_text =
phoneme_duration_rules(old_output_phonemes, intonation_data,seperated_se
ntence_indexes,speed)

phoplayer_text "3
sentence_words

num_of _phonemes = length(old_output_phonemes);

%Vowels an consonants

VOWELS_DIPHTHONGS = {"a" "e" "i" "u" "ah" "aw" "ay" "ee” "ie" "oi" 00"
"oh® "ow" “ue®" “uh" “ur-};

CONSONANTS = {Ib. IdI IfI IgI IhI IjI IkI III ImI InI IpI IrI ISI ItI

-V- -W y Z- -Ch- -ng- -Sh- -th- -Xh- -Zh-};

%Manner of articulaion classes for consonants
NASALS = {"m" "n" "ng"};

LIQUIDS = {"r" "1%};
GLIDES = {"w" "y"};
SONORANT_CONSONANTS = {
SYLLABIC _CONSONANTS = {~
VOICED_FRICATIVE = {"v" "th" "z" "zh"};

b

DURATION_COLUMN = 2;

[excel _file _durations excel_ file_phonemes] = xlsread("Word Data\Phoneme
Duration.xlIs");

[dummy data text data] = xIsread("Word Data\Phoneme Convert List.xlIs");
phoneme_conversion_list(:,1) = text data(:,1);
phoneme_conversion_list(:,2) = text data(:,4);

%Rule #1 All Pauses at end of sentence or phrase need to be length 200
MS
phoplayer_text{l1} = " 200%;

%Find the initial values for the phoneme durations
silent_count = 1;
for count=1:length(old_output phonemes)

spot =
strmatch(lower(old_output_phonemes(count)),excel_ Ffile_phonemes, "exact™)

duration_list(count) = excel_ file_durations(spot,DURATION_COLUMN);
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end
%duration_list

%Find the words in the sentences
sentence_words = find_sentence_words(old_output_phonemes);

%Rule #2 Vowels in the last syllable before the end needs to be
lengthened
syllables =
convert_phonemes_to_syllable(sentence words{length(sentence_words)});
last _syllable = syllables{length(syllables)};
vowel spot = 0;
for count=1:length(last_syllable)
if
isempty(strmatch(lower(last_syllable(count)),VOWELS DIPHTHONGS, "exact™)
vowel spot = count;
end
end
if vowel _spot > 0
spot = strmatch(lower(last_syllable(vowel _spot)),old output_phonemes);
spot = spot(end);
duration_list(spot) = duration_list(spot)*1.1;
ifT spot+l <= length(old_output_phonemes)
if
isempty(strmatch(lower(old_output phonemes(spot+1)),CONSONANTS, "exact™)
duration_list(spot+l) = duration_list(spot+1)*1._4;
end;
end;
end;

%Rule #3 Vowels are shorted by .60 if not in a phrase final syllable
%A phrase final postvocalic liquid or nasal is lengthend by 1.4
temp_sentence_words = sentence_words;

temp_old_output_phonemes = old_output_phonemes;

final_word = sentence_words{length(sentence_words)};

if length(sentence words) > 1
temp_sentence_words(length(sentence_words)) = " °;
final_word_offset = length(temp_old_output phonemes);
for word_count=1:length(temp_sentence words)
word = temp_sentence_words{word_count};
for letter_count=1:length(word)
if
isempty(strmatch(lower(word(letter_count)),VOWELS DIPHTHONGS, "exact®))
real location =
strmatch(lower(word(letter_count)),temp_old output phonemes, "exact”);
real_location = real_location(l);
duration_list(real location) =
duration_list(real _location)*.60;
temp_old_output_phonemes(1:real _location) = {"/"};
end;
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end;

end;
end
it isempty(strmatch(old_output_phonemes(end) ,NASALS)) == 0 |
isempty(strmatch(old_output_phonemes(end),LIQUIDS)) ==

spot = length(old_output phonemes);

duration_list(spot) = duration_list(spot)*1.4;
end

%Rule #4 Vowels are shorten by .85 if not in a word final syllable
temp_sentence_words = sentence_words;

temp_old_output_phonemes = old_output_phonemes;
temp_phoneme_letter_spots = find(strcmp("%",temp_old_output_phonemes)
== 0);

temp_phoneme_spot = temp_phoneme_letter_spots(l);
temp_phoneme_space_spots = Tfind(strcmp("%",temp_old_output_phonemes)
== 1);

temp = find(temp_phoneme_space_spots > temp_phoneme_spot);

it isempty(temp) ==

temp_phoneme_spot = temp_phoneme_space_spots(temp(1));

end

%Take into account 2 spaces ina row

SKIP = 1;

it SKIP ==

for word_count=1:length(temp_sentence_words)

original_word = temp_sentence_words{word_count};
word_syllables = convert_phonemes_to_syllable(original_word);
if length(word_syllables) > 1
word_syllables(length(word_syllables)) = "*;

word = "7;

for count=1:length(word_syllables)

word = [word word_syllables{count}];

end

for letter_count=1:length(word)
if
isempty(strmatch(lower(word(letter_count)),VOWELS DIPHTHONGS, "exact®))
real location =
strmatch(lower(word(letter_count)),temp_old_output phonemes, "exact”);
real_location = real_location(l);
temp_old_output_phonemes(real location)
pause;
duration_list(real_location) =
duration_list(real_location)*.85;
temp_old_output_phonemes(1:real location) = {"/"};
end;
end;
end;
temp_old_output_phonemes(1:temp_phoneme_spot) = {"/"}
temp_phoneme_starting_point = find(strcmp("%" ,temp_old_output_phonemes)
== 1 & strcmp("/",temp_old_output_phonemes) == 0)
pause;
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end;

end

%Rule #5 Vowels are shorten by .80 in all words with multiple syllables

%1 think it"s fixed!

temp_old_output _phonemes = old_output phonemes;

for word_count=1:length(sentence_words)

word = sentence_words{word_count};

syllables = convert_phonemes_to_syllable(word);

if length(syllables) > 1

for letter_count=1:length(word)

if

isempty(strmatch(lower(word(letter_count)),VOWELS DIPHTHONGS, "exact®))
real_location =

strmatch(lower(word(letter_count)),temp_old output phonemes, "exact”);
real _location = real_location(l);
duration_list(real_location) =

duration_list(real_location)*.80;
temp_old_output _phonemes(l:real location) = {"/"};
end;

end;

else

real_locationl =

strmatch(lower(word(end)) ,temp_old_output_phonemes, "exact");

if length(word) > 1

real _location2 = strmatch(lower(word(end-

1)) ,temp_old_output_phonemes, "exact”);

else

real_location2 = real_locationl - 1;

end

real_location = real_locationl(find(real locationl - 1 ==

real_location2(1)));

temp_old_output_phonemes(1:real location) = {"/"};

end;

end;

%Rulle #6 Consonants that are not the first letter of the word are
shorten by .85
temp_old_output _phonemes = old_output phonemes;
for word_count=1:length(sentence_words)
word = sentence_words{word_count};
if length(word) > 1
for letter_count=2:length(word)
if
isempty(strmatch(lower(word(letter_count)),CONSONANTS, "exact®)) ==
real_location =
strmatch(lower(word(letter_count)),temp_old output phonemes, "exact");
real_location = real_location(l);
duration_list(real location) =
duration_list(real_location)*.85;
temp_old_output_phonemes(1:real location) = {"/"};
else
real_location =
strmatch(lower(word(letter_count)),temp_old output phonemes, "exact”);
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real _location = real_location(l);
temp_old_output _phonemes(l:real location) = {"/"};
end;
end;
end;
end;

%Rule #7 Unstressed segments are compressed compared to stressed
elements

temp_old_output _phonemes = old_output phonemes;

for word_count=1:length(sentence_words)

word = sentence_words{word_count};

stresses = english_stress_rules(word);

for letter_count=1:length(word)

if
isempty(strmatch(lower(word(letter_count)),VOWELS DIPHTHONGS, "exact®))
== 0 & (stresses(letter_count) == 0 | stresses(letter_count) == 2)

real_location =
strmatch(lower(word(letter_count)),temp_old output phonemes, "exact”);
real _location = real_location(l);
duration_list(real_location) = duration_list(real_location)*.9;
temp_old_output_phonemes(1:real location) = {"/"};
else
real_location =
strmatch(lower(word(letter_count)),temp_old output phonemes, "exact”);
real_location = real_location(l);
temp_old_output_phonemes(1:real location) = {"/"};
end
end
end

%Rule #8 An emphasized vowel is lengthend by 1.4
temp_old_output_phonemes = old_output phonemes;
for word_count=1:length(sentence_words)
word = sentence_words{word count};
stresses = english_stress_rules(word);
for letter_count=1:length(word)
if
isempty(strmatch(lower(word(letter_count)),VOWELS DIPHTHONGS, "exact"))
== 0 & stresses(letter_count) ==
real location =
strmatch(lower(word(letter_count)),temp_old output phonemes, "exact”);
real _location = real_location(l);
duration_list(real location) =
duration_list(real _location)*1.10;
temp_old_output_phonemes(1:real_location) = {"/"};
else
real_location =
strmatch(lower(word(letter_count)),temp_old output phonemes, "exact”);
real_location = real_location(l);
temp_old_output_phonemes(1:real_location) = {"/"};
end
end
end
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%Rulle #9 Alter duration of vowels that are affected by postvocalic
consonants
temp_old_output_phonemes = old_output_phonemes;
for word_count=1:length(sentence_words)
word = sentence_words{word_count};
for letter_count=1:length(word)
if
(isempty(strmatch(lower(word(letter_count)),VOWELS DIPHTHONGS, "exact®))
== I
isempty(strmatch(lower(word(letter_count)),SONORANT CONSONANTS, "exact")
) == 0) & letter_count + 1 <= length(word)
%Before a voiced fricative
if
isempty(strmatch(lower(word(letter_count+1)),VOICED FRICATIVE, "exact"))
real_location =
strmatch(lower(word(letter_count)),temp_old output phonemes, "exact”);
real_location = real_location(l);
duration_list(real_location) =
duration_list(real _location)*1.40;
temp_old_output _phonemes(l:real location) = {"/"};
end
%Before a voiced plosive
if
isempty(strmatch(lower(word(letter_count+1)),VOICED_PLOSIVE, "exact®))
real_location =
strmatch(lower(word(letter_count)),temp_old_output phonemes, "exact®);
real_location = real_location(l);
duration_list(real_location) =
duration_list(real _location)*1.20;
temp_old_output _phonemes(l:real location) = {"/"};
end
%Before a nasal
if
isempty(strmatch(lower(word(letter_count+1)),NASALS, "exact")) ==
real_location =
strmatch(lower(word(letter_count)),temp_old_output phonemes, "exact”);
real_location = real_location(l);
duration_list(real_location) =
duration_list(real _location)*.85;
temp_old_output _phonemes(l:real location) = {"/"};
end
%Before a voiceless plosive
if
isempty(strmatch(lower(word(letter_count+1)),VOICEDLESS PLOSIVE, "exact”

)) ==
real location =
strmatch(lower(word(letter_count)),temp_old output phonemes, "exact”);
real_location = real_location(l);
duration_list(real _location) = duration_list(real_location)*.7;
temp_old_output _phonemes(l:real location) = {"/"};
end

else
real location =
strmatch(lower(word(letter_count)),temp_old output phonemes, "exact”);
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real _location = real_location(l);
temp_old_output _phonemes(l:real location) = {"/"};
end
end
end

%Rule #10 Alter duration of vowel-vowel combinations and consonant-
consonant combinations
%Vowel-vowel combinations
temp_old_output _phonemes = old_output phonemes;
for word_count=1:length(sentence_words)
word = sentence_words{word count};
for letter_count=1:length(word)
if
isempty(strmatch(lower(word(letter_count)),VOWELS DIPHTHONGS, "exact®))
== 0 & letter_count + 1 <= length(word)
if
isempty(strmatch(lower(word(letter_count+1)),VOWELS DIPHTHONGS, "exact®)
real_location =
strmatch(lower(word(letter_count)),temp_old output phonemes, "exact");
real _location = real_location(l);
duration_list(real_location) =
duration_list(real_location)*1.20;
duration_list(real _location+l) =
duration_list(real _location+1)*.7;
temp_old_output _phonemes(l:real location) = {"/"};
end
else
real_location =
strmatch(lower(word(letter_count)),temp_old output phonemes, "exact");
real _location = real_location(l);
temp_old_output_phonemes(1:real location) = {"/"};
end
end
end
%Consonant-consonant combinations
temp_old_output_phonemes = old_output_phonemes;
for word_count=1:length(sentence_words)
word = sentence_words{word _count};
for letter_count=1:length(word)
it isempty(strmatch(lower(word(letter_count)),CONSONANTS, "exact™))
== 0 & letter_count + 1 <= length(word)
if
isempty(strmatch(lower(word(letter_count+1)),CONSONANTS, "exact™)) ==
real_location =
strmatch(lower(word(letter_count)),temp_old output phonemes, "exact”);
real_location = real_location(l);
duration_list(real_location) =
duration_list(real _location)*1.20;
duration_list(real_location+l) =
duration_list(real _location+1)*.7;
temp_old_output_phonemes(1:real_location) = {"/"};
end
else
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real_location =
strmatch(lower(word(letter_count)),temp_old output phonemes, "exact”);
real_location = real_location(l);
temp_old_output_phonemes(1:real_location) = {"/"};
end
end
end

%Rule #11 My rule, if there are two silences in a row the reduce the
second silence
temp_old_output _phonemes = old_output phonemes;
for phoneme_count=1:length(old_output_phonemes)

if
isempty(strmatch(temp_old_output_phonemes(phoneme_count), "%", "exact”))
== 0 & phoneme_count + 1 <= length(old_output phonemes)

if
isempty(strmatch(temp_old output phonemes(phoneme_count+1l), %", "exact")

duration_list(phoneme_count+1l) =

duration_list(phoneme_count+1)*.4;

temp_old_output_phonemes(1:phoneme_count) = {"/"};
end
else
temp_old_output_phonemes(1:phoneme_count) = {"/"};
end
end

%Create the file *pho ouput file
for count=1:length(old_output_phonemes)

index =
strmatch(lower(char(old_output_phonemes(count))),phoneme_conversion_lis
t(:,2),"exact");

output phonemes(count) = phoneme_conversion_ list(index,1);
end

%adjust the speed
duration_list = duration_list*speed*1.15;

for count=1:length(old_output phonemes)

phoplayer_text{count+1} = [char(output_phonemes(count)), "

" ,num2str(duration_list(count)), " ", num2str(intonation_data{count})];
end

phoplayer_text = [phoplayer_text cellstr("_ 210%)];
fid = fopen(“output.pho”,*w");

for count=1:length(phoplayer_text)

fprintf(Fid, "%s\n",char(phoplayer_text(count)));

end

OK = fclose(fid);

dos("mbrola usl output.pho output.wav®);
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[wav_data,FS,NBITS,0PTS]= wavread("output.wav®);
wavplay(wav_data,FS);
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% Function: BP_calculate.m

% Purpose: Weights Back Propgation Calculation

% Description: Function calculates the network output with inputs and
% weights. The for loop finds the actual output of the weights

% the maximum of the weights are supposed to be the correct output

% and phonemes

% Outputs: calculated phonemes

function output =
BP_calculate(input_string,output weights,hidden_weights,PHONEME_SET,HID
DEN_NEURONS)

alphabet_size = 27;
INPUT_SIZE = alphabet _size*7;
OUTPUT_NEURONS = 43;

NUM_CHARACTERS = length(input_string);

converted_input_string =
convert_to numbers(input_string,NUM_CHARACTERS);
input_vector = converted_input_string(1:INPUT_SIZE);
%reshape(converted_input_string,27,NUM_CHARACTERS)
%reshape(input_vector,27,7)
character_count = 8;
count = 1;
output_string = " 7;
while character_count <= NUM_CHARACTERS;

for hide = 1:HIDDEN_ NEURONS;

hidden_layer_ output(hide) = 1/(1 + exp(-
1*sum(input_vector.*hidden_weights(hide,:))));

end

for out = 1:0UTPUT_NEURONS;
output_layer_output =

sum(output_weights(out, :).*hidden_layer_output);
output(out) = 1/(1 + exp(-output layer_output));
end;

output _phoneme_number = find(output == max(output));

output string{count} = char(PHONEME_ SET(output_phoneme_number));
input_vector =
BP_calculate_moving_window(input_vector,converted_input_string,characte
r_count);

character_count = character_count + 1;

count = count + 1;

%input_string_count = input string_count + 1;

end

output = output_string(5:end-3);
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% Function: english_stress rules.m

% Purpose: Assigns Stress

% Description: Function places stress using the Halle and Keyer stress
% rules from the MITalk System. The rules are just numbered. The

% actual rules are located in the book "From Text to Speech: The MITalk
% System'

% Outputs: array of stresses for the inputted word

function stresses = english_stress rules(unstressed_word)
stresses(l:length(unstressed _word)) = 0;

stress_count = 1;

syllable_list = " 7;

%Vowels an consonants

VOWELS_DIPHTHONGS = {"a" "e" "i" "u" "ah" "aw" "ay" "ee” "ie" "oi" 00"
"oh®™ "ow" "ue®" "uh® "ur"};

CONSONANTS = {Ib. IdI IfI IgI IhI IjI IkI III ImI InI IpI IrI ISI ItI
IV W yI IZI IChI IngI .Sh. I.thI IXhI IZhI I%I};

%Short and Long Vowels

SHORT _VOWELS = {"a" "e" "i" "u"};

LONG_VOWELS = {"ah® "aw"™ "ay" "ee” "ie" "oi" "00" "oh" "ow" “ue" "uh"®
urt};

%First find all of the vowels

syllables = convert _phonemes_to_syllable(unstressed word);

num_of _syllables = length(syllables);

no_vowel = O;

for count=1:length(unstressed word)

if isempty(strmatch(lower(unstressed word{count}),VOWELS DIPHTHONGS))
no_vowel = no_vowel + 1;

end

end

if no_vowel == length(unstressed_word)
return;

end

%Rule #1 A and B
BEEN_STRESSED = 0;
last_syllable _has short = 0;
vowel = °7;
last _syllable = syllables{end};
for count=1:length(last_syllable)
if isempty(strmatch(lower(last_syllable(count)),SHORT_VOWELS, "exact®))
last_syllable _has short = 1;

end
end

if num_of syllables >= 3

ifT length(syllables{end-1}) == 1 & length(syllables{end}) >=1
& last_syllable has short ==

silly = syllables{end-2};

for letter_count=1:length(silly)

if

isempty(strmatch(lower(silly(letter_count)),VOWELS DIPHTHONGS, "exact"))
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vowel = silly(letter_count);
end
end

it isempty(vowel) ==
vowel _spots = strmatch(vowel ,unstressed _word, "exact”);
silly_spots = 0;
for count=1:length(silly)
silly_spots = [silly_spots
strmatch(lower(silly(count)) ,unstressed word, "exact®)"];
end

final _vowel location = find(vowel _spots(l) == silly_spots);
stresses(silly_spots(final_vowel location)) = 1;
BEEN_STRESSED = 1;
end
end
end

%Rule #1 C and D

if num_of syllables >= 2 & BEEN _STRESSED ==
if length(syllables{end}) >= 1 & last_syllable _has_short ==
silly = syllables{end-1}%};
for letter_count=1:length(silly)
if
isempty(strmatch(lower(silly(letter_count)),VOWELS DIPHTHONGS, "exact™))
vowel = silly(letter_count);
end
end

it isempty(vowel) == 0
vowel spots = strmatch(vowel ,unstressed word, "exact”);
silly_spots = 0;
for count=1:length(silly)
silly _spots = [silly_spots
strmatch(lower(silly(count)) ,unstressed _word, "exact®)"];
end

final_vowel location = find(vowel _spots(l) == silly_spots);
stresses(silly_spots(final _vowel location)) = 1;
BEEN_STRESSED = 1;

end

end

end

%Rule #2 A and B
any syllable_has_short = 0;
if num_of syllables >= 2 & BEEN _STRESSED ==
for syl_count=2:num_of_syllables
syl = syllables{syl count};
for letter_count =1:length(syl)
if
isempty(strmatch(lower(syl (letter_count)),SHORT VOWELS, "exact")) ==
any syllable_has_short = 1;
short_vowel syl = syl count;
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break;

end
if any syllable has short == 1
break;
end
end
end

if num_of syllables >= 2 & any syllable_has short == 1

silly = syllables{short _vowel syl-1};

for letter_count=1:length(silly)
if

isempty(strmatch(lower(silly(letter_count)),VOWELS DIPHTHONGS, "exact"))

vowel = silly(letter_count);
end

end

it isempty(vowel) ==
vowel _spots = strmatch(vowel ,unstressed word, "exact”);
silly_spots 0;
for count=1:length(silly)
silly_spots = [silly_spots
strmatch(lower(silly(count)) ,unstressed_word, "exact®)"];
end

final_vowel location = find(vowel_spots(l) == silly_spots);
stresses(silly_spots(final_vowel_location)) = 1;
BEEN_STRESSED = 1;

end

end;

end

%Rule #3 Place Stress on last vowel and syllable

if num_of syllables >= 1 & BEEN _STRESSED ==

silly = syllables{num_of _syllables};

for letter_count=1:length(silly)
if

isempty(strmatch(lower(silly(letter_count)),VOWELS DIPHTHONGS, "exact"))

vowel = silly(letter_count);
end

end

ifT isempty(vowel) ==
vowel _spots = strmatch(vowel ,unstressed word, "exact”);
silly_spots = 0;
for count=1:length(silly)
silly_spots = [silly_spots
strmatch(lower(silly(count)) ,unstressed_word, "exact®)"];
end

final_vowel location = find(vowel _spots(l) == silly_spots);
stresses(silly_spots(final _vowel location)) = 1;
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%return;
end
end

%Stress Exceptions
%Rules #1-3 Place Stress on First Syllable
it num_of_syllables >= 2
silly = syllables{1};
for letter_count=1:length(silly)
if
isempty(strmatch(lower(silly(letter_count)),VOWELS DIPHTHONGS, "exact"))
vowel = silly(letter_count);
end
end

it isempty(vowel) ==

vowel spots = strmatch(vowel ,unstressed word, "exact”);
stresses(vowel_spots(1l)) = 1;

%return;

end

end

%Compond Stress Rules (Retaining Rules)
%Rules #1
it isempty(strmatch(lower(last_syllable(end)), "ee”,"exact”)) == 0 &
num_of syllables >= 3 & length(find(stresses == 1)) >= 2
stress_spots = find(stresses == 1);
stresses(stress_spots(2)) = 2;
end
%Rule #2 and Rule #3 Retain 1l-stress vowel if it is followed by a
string of syllable
Ywithout primamry stresses. |IT only one syllable or stress skip
if num_of syllables >= 2 & length(find(stresses == 1)) >= 2
temp_unstressed word = unstressed_word;
temp_unstressed word(1:length(syllables{1})) = {"/"};
stress_spots = find(stresses == 1);
second_syllable = syllables{2};
for count=1:length(second_syllable)
spots = strmatch(lower(second_syllable(count)),temp_unstressed word);
second_syllable_spots(count) = spots(l);

end

second_stress_spot = stress_spots(2);

iT isempty(find(second_stress_spot == second_syllable_spots)) ==
stresses(stress_spots(1l)) = 2;

else
stresses(stress_spots(2)) = 2;

end

end

%Strong First syllable rules
%Rule #1 assign 2-stress to the first vowel of the word if it is long
if num_of syllables >= 2 & length(find(stresses == 1)) >= 2
for count=1:length(unstressed_word)
it isempty(strmatch(lower(unstressed_word(count)),VOWELS DIPHTHONGS))
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it isempty(strmatch(lower(unstressed _word(count)),LONG _VOWELS))

stresses(count) = 2;
end
break;
end
end
end

%Rule #1 assign 2-stress to the first vowel of the word if it is
followed by two syllables
iT num_of_syllables >= 2 & length(find(stresses == 1)) >= 2
for count=1:length(unstressed word)
it isempty(strmatch(lower(unstressed_word(count)),VOWELS DIPHTHONGS))
== 0 & count+2 <=length(unstressed_word)
it isempty(strmatch(lower(unstressed_word(count+1)),CONSONANTS))
== 0 & isempty(strmatch(lower(unstressed word(count+2)),CONSONANTS)) ==
0
stresses(count) = 2;
end
break;
end
end
end
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% Function: convert_phonemes_to_syllable.m

% Purpose: Syllable Parser

% Description: This function parses a string into syllables.

% The output to this function is the syllable arrainged into a cell
% string

% Outputs: syllables (cell string)

function syllable = convert_phonemes_to_syllable(word)

syllable = ;

WORD_CONSONANT_LOCATE_ARRAY = 0;

WORD_VOWEL_LOCATE_ARRAY = 0;

word = lower(word);

VOWELS = {"a" "e" "i1" "u"};

CONSONANTS = {"%" *b" *d" "f* *g” "h" "j* "k" "I *m" "n" "p° "r* "s-
It' IVI IWI IyI IZI IChI 'ng' 'Sh' Ith' IXhI 'Zh'};

DIPHTHONGS = {"ah® "aw®™ "ay" "ee” "ie" "oi1" "00" "oh" "ow" “ue® “uh-”
urt};

SHORT_VOWELS = {"a" "e" "i" "u"};

WORD_BEGINS_WITH_VOWEL
INITIAL_VOWEL_IS_SHORT

0;
0;

%Count the number of vowels and diphthongs in the word
vowel count = 0;

syllable_count = 0;

word_length = length(word);

for count=1:word_length
if isempty(strmatch(lower(word(count)),VOWELS, "exact®)) ==
vowel count = vowel count + 1;
end
end

for count=1:word_length
if isempty(strmatch(lower(word(count)),DIPHTHONGS, "exact®)) ==
vowel count = vowel count + 1;
end
end

%Number of syllables equal the number of vowels and dipthongs
syllable _count = vowel count;

it syllable_count == 1 | syllable_count == 0;
syllable{1} = word;
return;

end

%Check to see if the word begins with a vowel
WORD_BEGINS_WITH_VOWEL =
isempty(strmatch(word(1),CONSONANTS, "extact™));
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%Find all and locate of the consonants in the word
word_c_count = 1;
for count=1:length(word)
CON = strmatch(lower(word(count)),CONSONANTS, "extact");
ifT isempty(CON) ==
WORD_CONSONANT_LOCATE_ARRAY(word_c_count) = count;
word_c_count = word_c_count + 1;
end
end

%Find and locate all of the vowels in the word
word_v_count = 1;
for count=1:length(word)
VOW = strmatch(lower(word(count)),VOWELS, "extact");
DIP = strmatch(lower(word(count)),DIPHTHONGS, "extact™);
it isempty(VOW) == 0 | isempty(DIP) ==
WORD_VOWEL_LOCATE_ARRAY(word_v_count) = count;
word_v_count = word_v_count + 1;
end
end

%Check to see if there are two vowels in a row and subtract from the
total count of syllables
syllable_count = syllable_count -
length(find(diff(WORD_VOWEL LOCATE_ARRAY) == 1));
if syllable _count == 1 | syllable _count == 0;
syllable{l} = word;
return;
end

%Splitting two middle consonants

MIDDLE_C = find(diff(WORD_CONSONANT_LOCATE_ARRAY) == 1);

it isempty(MIDDLE _C) == 0 & syllable count == 2 & length(MIDDLE_C) ==
syllable{1} = word(1:WORD_CONSONANT_LOCATE_ARRAY(MIDDLE_C));
syllable{2} = word(WORD_CONSONANT_LOCATE_ARRAY(MIDDLE_C+1):end);

return;

end

%Test to see if the first vowel is short or long

if syllable_count ==
if isempty(strmatch(word(1),SHORT _VOWELS, "extact")) == 0 |

isempty(strmatch(word(2),SHORT VOWELS, "extact")) ==
INITIAL_VOWEL_IS _SHORT = 1;
end

end

%Splitting before single middle consonant in a 2 syllable word

%Intital vowel is not short

iT INITIAL_VOWEL_1S SHORT == 0 & syllable_count ==

if isempty(MIDDLE_C) == 1 & WORD_BEGINS_WITH_VOWEL ==
syllable{1} = word(1:WORD_CONSONANT_LOCATE_ARRAY(2)-1);
syllable{2} = word(WORD_CONSONANT_LOCATE_ARRAY(2):end);

return;

end;

if isempty(MIDDLE_C) == 1 & WORD_BEGINS_WITH_VOWEL ==
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syllable{l1} = word(1);
syllable{2} = word(2:end);
return;
end;
end;

%Splitting before single middle consonant in a 2 syllable word

%Intital vowel is short

iT INITIAL_VOWEL_I1S SHORT == 1 & syllable_count ==

iT isempty(MIDDLE_C) == 1 & WORD_BEGINS_WITH_VOWEL ==
syllable{1} = word(1:WORD_CONSONANT_LOCATE_ARRAY(2));
syllable{2} = word(WORD_CONSONANT_LOCATE_ARRAY(2)+1:end);

return;

end;

it isempty(MIDDLE _C) == 1 & WORD_BEGINS_WITH_VOWEL ==
syllable{l} = word(1:2);
syllable{2} = word(3:end);

return;

end;

end;

%Seperate word syllables that have more than 2 syllables or do not
follow

%the above criteria

if syllable count >= 2

if WORD_BEGINS WITH_VOWEL ==
%1f the word begins with consonant syllable is 3 letters long
initally
syllable_starting_point =
syllable_ending point = 3;
else
%1f the word begins with vowel syllable is 2 letters long
syllable_starting point = 1;
syllable_ending_point = 2;
end

1;

num_of syllables = syllable_count;
for syl_cell_count=1:num_of_syllables
%initially store the syllable from the starting and ending letters
%syllable_starting_point
%syllable_ending_point
% word(syllable_starting point:syllable_ending_point)
iT syllable_ending_point <= length(word)
syllable{syl _cell _count} =
word(syllable_starting point:syllable_ending point);
end
%Find the location of the next two letters
next letter = syllable _ending point + 1;
next _next letter = syllable_ending point + 2;
next _next next letter = syllable _ending point + 3;
if syl cell _count ==
%For the first iteration, check to see if the next letter at the
end of the 3 letter long syllable is a vowel.
%1f so, then make the first syllable only 2 letters long and set
the location for the next syllable
%1Ff not then set the location for the next syllable; if the word
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%begins with a vowel then automatically goto this step
it isempty(find(next letter == WORD _VOWEL_ LOCATE_ARRAY)) == 0 &
WORD_BEGINS_WITH_VOWEL ==
syllable = °*;
syllable{syl_cell_count} =
word(syllable_starting point:syllable_ending_point-1);
syllable_starting _point = syllable _ending_point;

syllable_ending_point = syllable _ending_point + 1;

else
syllable_starting _point = syllable_ending_point + 1;
syllable_ending_point = syllable_ending_point + 2;
end
end

if syl _cell _count > 1
%For the rest of rest of the iterations, check to see if the
second
%letter after the lat letter in the 2 letter syllable is a vowel
%1f so, then update the syllable location for the next syllable
%1f the letter is a consonant then make the syllable 3 letters
long
%and update the syllable location for the next syllable
it isempty(find(next_next_ letter == WORD_VOWEL_LOCATE_ARRAY)) ==
syllable_starting_point = syllable_ending_point + 1;
syllable_ending_point = syllable _ending point + 2;
else
if syllable_starting_point < length(word) &
syllable_ending_point+l <= length(word)
syllable{syl_cell_count} =
word(syllable_starting point:syllable_ending_point+l);
syllable_starting point = syllable_ending point + 2;
syllable_ending_point = syllable _ending point + 3;

it syllable_ending _point > length(word)
syllable_starting point = syllable starting point - 1;
syllable_ending_point = syllable_ending_point - 1;
syllable{syl_cell_count} =

word(syllable_starting point:syllable_ending_point-1);
end

end
end
end

%for loop
end

output length = 0;

syllable_start = "~;

for count=1:length(syllable)

output_length = output_length + length(syllable{count});
syllable_start{count} = output _length - length(syllable{count});
end
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if output_length < word_length
temp_word = word(syllable_start{end}+1:word_length);

syllable{end} = temp_word;
end

%syllable count > 2
end

%END OF PROGRAM
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X

% Function: orthographic_converter.m

» Purpose: Orthographic Converter

» Description: This program handle numbers and abbreviations for the
4 TTS program. It converts these orthgraphic words into regular text
% Outputs: words

XXX

function actual_words = orthographic_converter(actual_words);

[abbreviations regular_words] = textread("Word
Data\Abbreviations.txt", "%s%s");

%Abbreviations Conversion

for count=1:length(actual_words)
word = word_normalizer(actual_words{count});
spot = strmatch(word,abbreviations, "exact");
if isempty(spot) == 0
actual _words{count} = {regular_words{spot}};
end

end

%Numeric Conversion
[numbers numeric_words]

textread("Word Data\Numbers.txt", "%s%s");

%temp_actual _words = actual_words;
temp_actual_words = " 7;
%temp_actual words{l:end}

count = 1;

temp_count = 1;

while count <= length(actual_words)

word = char(word_normalizer(actual_words{count}));
%if isempty(str2num(word)) ==

if sum(isletter(word)) ==

%if isnumeric(word) ==

numbered_word = Ffloor(str2num(word));

if numbered _word < O
temp_actual_words{temp_count} = "negative-;
temp_count = temp_count + 1;

numbered_word = floor(abs(str2num(word)));
end

if numbered_word ==

temp_actual_words{temp_count} = "zero";

end

% For words between 1 and 10

if numbered word >= 1 & numbered word <= 10
worded_number = num2str(numbered_word);
temp_actual_words{temp_count} =

numeric_words{strmatch(worded_number,numbers, "exact")};
end
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% For words between 10 and 100
it numbered_word > 10 & numbered_word < 100
worded_number = num2str(numbered_word);
spot = strmatch(worded number,numbers, "exact”);
if isempty(spot) ==
temp_actual_words{temp_count} = numeric_words{spot};
else
temp_actual_words{temp_count} =
numeric_words{strmatch([worded_number(1),"0"],numbers, "exact")};
temp_actual_words{temp_count+1} =
numeric_words{strmatch(worded_number(2),numbers, "exact”)};
temp_count = temp_count + 1;
end
%End for words between 10 and 100
end

% For words between 100 and 1000

if numbered word >= 100 & numbered word < 1000
worded_number = num2str(numbered_word);
% hundreds place
temp_actual_words{temp_count} =

numeric_words{strmatch(worded number(1),numbers, "exact")};

temp_actual_words{temp_count+1} = "hundred”;
temp_count = temp_count + 1;

%tens and ones place
tens_place_number = str2num(worded_number(2:3));

% For words between 1 and 10

if tens _place number >= 1 & tens_place_number <= 10

worded_number = num2str(tens_place number);

temp_actual_words{temp_count+1} =
numeric_words{strmatch(worded_ number,numbers, "exact")};

temp_count = temp_count + 1;

end

% For words between 10 and 100

if tens _place _number > 10 & tens_place_number < 100

worded_number = num2str(tens_place number);

spot = strmatch(worded_number ,numbers, "exact”);

if isempty(spot) ==

temp_actual_words{temp_count+1} = numeric_words{spot};

temp_count = temp_count + 1;

else

temp_actual_words{temp_count+1} =
numeric_words{strmatch([worded_number(1),"0"],numbers, "exact")};

temp_actual_words{temp_count+2} =
numeric_words{strmatch(worded_number(2),numbers, "exact")};

temp_count = temp_count + 2;

end

end

%end for words between 100 and 1000

115



end

%between 1000 and 1,000,0000

if numbered _word > 1000 & numbered word < 1000000
worded_number = num2str(numbered_word);
% hundreds thousand place
temp_actual_words{temp_count} =

numeric_words{strmatch(worded_number (1) ,numbers, "exact”)};

temp_actual_words{temp_count+1} = “hundred"”;
temp_count = temp_count + 1;

%tens and ones thousand place
tens_place number = str2num(worded_number(2:3));

% For words between 1 and 10

if tens_place number >= 1 & tens_place number <= 10

worded_number = num2str(tens_place number);

temp_actual_words{temp_count+1} =
numeric_words{strmatch(worded_number,numbers, "exact")};

temp_count = temp_count + 1;

end

% For words between 10 and 100

if tens_place number > 10 & tens_place number < 100

worded_number = num2str(tens_place number);

spot = strmatch(worded_number ,numbers, "exact”);

it isempty(spot) ==

temp_actual_words{temp_count+1} = numeric_words{spot};

temp_count = temp_count + 1;

else

temp_actual_words{temp_count+1} =
numeric_words{strmatch([worded_number(1),"0"],numbers, "exact")};

temp_actual_words{temp_count+2} =
numeric_words{strmatch(worded_number(2),numbers, "exact")};

temp_count = temp_count + 2;

end

end

temp_actual_words{temp_count+1} = “thousand”;

%end for words between 100 and 1000
end

%Decimal points
if abs(rem(str2num(word),1)) > O
decimal_word = num2str(abs(rem(str2num(word),1)));
temp_actual_words{temp_count+1} = "point";
temp_count = temp_count + 1;
for decimal_count = 3:length(decimal_word)
temp_count = temp_count + 1;
temp_actual_words{temp_count} =
numeric_words{strmatch(decimal_word(decimal _count),numbers, "exact®)};
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end
%End to Decimal points
end

%Else to the first if statement in the while loop

else

temp_actual_words{temp_count} = word;
%End of the first if statement in the while loop
end

count = count + 1;
temp_count = temp_count + 1;
%End of the while loop

end

actual_words = temp_actual_words;
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% Function: T0_calculator.m

% Purpose: Fuzzy Inference Computation

% Description: Function calculates the fO output. The is basically the
% fuzzy interference system with calls to the MF-Calculator. Using the
% MF decsriptior (global) and input variables the function calculates
% the crisp O output for a given phoneme

% Outputs: FO (fundamental frequency) output

function fO_output =
fO_calculator(variablel,variable2,variable3,variable4,rules)

global MF_descriptors
global test axes

variables(1l) = variablel;
variables(2) = variable2;
variables(3) = variable3;
variables(4) = variable4;
GRAPH = 0;

%Get each rule in from the list
for rule_count=1:length(rules)

%First get the numberes that represent the linguist variables of the
rule
rule_numbers = rules{rule_count};

MF_count = 1;

%Then for each linguistic variable excpet the output, get the MF for
that

%input, the calculate the output that variable produces with that input
%1Ff the rule number is 0 then that means that input has no bearing on
the

%rule.

for count=1:length(rule_numbers)-1

if rule_numbers(count) > 0

membership_functions = MF_descriptors{count};

MF(MF_count) =

MF_calculator(variables(count) ,membership_functions(rule_numbers(count)
»1));

MF_count = MF_count + 1;

end

end

rule_output _numbers(rule_count) = min(MF);
end

output MF = MF_descriptors{5};

fired_rules = find(rule_output_numbers > 0);

it isempty(fired_rules) == O
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for fire_count=1:length(Ffired rules)

firing_strength =
rule_output_numbers(fired_rules(fire_count));

rule_spot = rules{fired_rules(fire _count)};

triangles = output MF;

output_tri = triangles(rule_spot(5),:);

trapezoid =
create MF_trapezoid(firing_strength,output_tri(1l),output tri(2),output_
tri(3),12);

all_trapezoids(fire_count,:) = trapezoid;

end

else
TO_output = [];
return;

end

if length(fired _rules) > 1

trape_max = max(all_trapezoids);

centroid = sum((0:.1:12).*(trape_max))/sum(trape_max);
fO_output = 130 + centroid*9;
else

trape_max = all_trapezoids;

centroid = sum((0:.1:12).*(trape_max))/sum(trape_max);
fO _output = 130 + centroid*9;
end
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% Function: find_acronyms.m

% Purpose: Find the Acronyms

t Description: This program handle acronyms. It converts these acronyms
% words into regular text

% Outputs: ACRONYMS converted into words

XX

function actual _words = find_acronyms(actual_words)

[capital _letters columnl column2] = textread("Word Data\Capital Letter
to Sound List.txt", "%shs%s®);

word_count = 1;

temp_word_count = 1;

FOUND_ALL_CAPS = 0;

number_of words = length(actual _words);

temp_actual _words = actual _words;

while word_count <= number_of words

word = actual_words{word_count};
upper_count=0;
for another_count=1:length(word)
if isempty(strmatch(word{another_count},capital_letters)) ==
upper_count = upper_count + 1;
end
end

ifT upper_count==length(word)
for capital_count=1:length(word)
letter_spot = strmatch(word(capital_count),capital_letters);
temp_actual_words{(temp_word_count + capital _count)-1} =
columnl(letter_spot);
%temp_word_count = temp_word count + 1;
if letter_spot == 23
temp_actual_words{(temp_word_count + capital_count)} =
column2(letter_spot);
%word_count = word_count + 1;
end
end

temp_word_count = temp_word _count + length(word) - 1;

%end to iIf statement

else

temp_actual_words{temp_word_count} = actual_words{word_count};
end

%number_of _words = length(actual_words);

%actual _words{word_count+1}

word_count = word count + 1;

temp_word_count = temp_word_count + 1;

end

actual_words = temp_actual_words;
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% Function: word_type.m

% Purpose: Find the type of word

% Description: This program finds the word importance of a given word.
% The input is the word and the program first checks to see if it is a
% function or content word. Then it assigns a value between 1 and 10

% based on the word size.

% words into regular text

% Outputs: interger (1-10) and word type (function or content)

function [word_type, word_importance] = word_type(First word)
word_type = "CONTENT";

ARTICLES = {"a" "an" "the" "some"};
CONJUNCTIONS = {"and" “but® "or" "so" "because® “although® "nor*
"neither® "either"};
OTHER_FUNCTIONS = { "about® "across® "against®™ "am® “among® “any
"anybody® ...
"anyone® "anything”
"before” "behind® “below®...
"beneath® "beside® “"between® “beyond®
"do" "does” "down®" “during” ...
"each® "ever®™ “every" “everybody®" “everyone® "everything® “for-
"from®" "going®" "had" ...

are” "around® "as" "at" "be" "been”

by®" "can® "could® "did-

"has®™ "have"™ "he" "her”™ "hers® “herself”™ "him" “himself" "his”
"however® "1° "if" "in" _._.

"into" Tis" "it" "its" Titself” “like®" "may" "me® "might”
"mine® "my" “"myself" “"never®...

"no" "nobody®" "noone® "not" "nothing®" “off" "on" “onto" "or"

"ought®™ “our® “ours® "ourselves®™ ...

"over®” "shall® "she" "should® "since-
"something”™ "than® “that® “the" ...

"their®" "them" "themselves® "then®" "therefore® "therfore”
"these®” "they" "this" "those" "though® “through® ...

"to" “under® “unless® “until®™ “up® “us® “was
"whatever®™ “"whenever®" ...

"wherever® “"whether® "which®" “"while® “"whose® “will®" “"with"
"without® “would®" “"you®™ ...

"your® “yours" “yourself"};

so" "somebody® "someone®

we® “were”

%empty_cells = strmatch("",prep_size2,"exact");
%double word_start = empty cells(end) + 1;

%"how" “what®" “"when® “where® “"who®" "whom®" “whose® “why

%single prepositions prep_sizel(l:double word_start-1);
%double prepositions [prep_sizel(double word start:end)
prep_size2(double_word_start:end)];
%Check to see if the word is an article
for count=1:length(ARTICLES)
if isempty(strmatch(lower(first_word),ARTICLES(count), "exact®)) ==

0
word_type = "FUNCTION";
word_importance = length(first _word{1}) - 1;
it word_importance > 1.5
word_importance = 1.5;
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end
return;
end
end

%check for conjunctions
for count=1:1ength(CONJUNCTIONS)
it isempty(strmatch(lower(First_word) ,CONJUNCTIONS(count), "exact"))

word_type = "FUNCTION®;

word_importance = length(first word{1});

if word_importance > 2.5
word_importance = 2.5;

end

return;
end
end

%Check to see if word is a other function words
for count=1:length(OTHER_FUNCTIONS)
if
isempty(strmatch(lower (first_word),0THER_FUNCTIONS(count), "exact™)) ==
0

word_type = "FUNCTION®;
word_importance = length(first word{1})+.15;
if word_importance > 2.75
word_importance = 2.75;
end
return;
end
end

word_importance = length(first_word{l}) + 1.75;
if word_importance > 10;

word_importance = 10;
end
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X

¢ Function: distance_from_stress.m

% Purpose: Find the word distance from stress

¢ Description: This program finds the word distance form stress and
4 then it assigns a value between 1 and 10

% Outputs: interger (1-10)

XXX

function stress_distance =
distance_from_stress(sentence_word,temp_phonemes,phoneme)

VOWELS = {"a" "e" "i1" "u"};

CONSONANTS = {"b" *d" *Ff" "g" "h" "j" "k" "I" "m" "n" "p" "r" "s" "t"
"v w y®" "z" "ch” "ng" "sh®" "th" *xh" "zh"};

DIPHTHONGS = {"ah" "aw"™ "ay" "ee" "ie" "oi" "00" "oh" "ow" "ue" “uh”
.ur.};

phoneme_spot = strmatch(phoneme,temp_phonemes{l}, "exact");
phoneme_spot = phoneme_spot(l);
phoneme_word_stresses = english_stress rules(sentence_word{1});
primary_stresses = find(phoneme_word _stresses == 1);
if isempty(primary_stresses) ==

stress_distance = 10;

return;
end

if primary_stresses(l) == phoneme_spot
stress_distance = 0;
return;

end

ifT length(sentence_word) ==
offset = 10/length(sentence word{1});
stress_distance = (abs(primary_stresses(l) -
phoneme_spot)+1)*offset;
return;
end
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% Function: distance_from _stress.m

» Purpose: Calculates position in sentence

» Description: Calculates position in sentence and then it assigns a
4 value between 1 and 10

% Outputs: interger (1-10)

XXX

function sentence_position =
find_sentence_position(output_phonemes, phoneme)

sentence_size = length(output_phonemes);
offset = 10/sentence_size;

found_letter = strmatch(phoneme,output_phonemes, "exact”);
found_letter = found_ letter(1);

sentence_position = found_letter*offset;
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% Function: distance_from _stress.m

» Purpose: Calculates sentence size

» Description: Calculates sentence size and then it assigns a
4 value between 1 and 10

% Outputs: interger (1-10)

XXX

function sentence_size = find_sentence_size(output phonemes);

sentence_words
syllable_count

= find_sentence_words(output_phonemes);
= 0;
for count=1:length(sentence_words)
word = sentence_words{count};
syllable = convert_phonemes_to_syllable(word);
syllable_count = syllable count + length(syllable);
end
off_set = .5;
sentence_size = syllable count*off_set;
if sentence_size > 10
sentence_size = 10;
end
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% Function: distance_from _stress.m

0 Purpose: Finds the words in sentence

o Description: Finds the words in sentence based on the spaces.
% Outputs: cell string of sentence words

XX

function sentence_words =
find_sentence_words(old_output_phonemes, COMMAS) ;

spaces = strmatch("%",old_output phonemes, "exact”);
if isempty(spaces) == 0;

temp_phonemes = old_output_phonemes;

spaceless _word = old_output_phonemes;
spaceless_word(spaces) = "°;

for count=1: Iength(spaceless word) ;

spot = strmatch(spaceless_word(count),temp_phonemes);
non_space_letter_indices(count) = spot(l);
temp_phonemes(1l:spot(1)) = {"\"};

end

word_spot = 1;

word_count = 1;

word{word_spot} =
char(old_output_phonemes(non_space_letter_indices(1)));
word_spot = word_spot + 1;

differences = diff(nhon_space_letter_indices);

for count=1: Iength(differences)

if differences(count) == 1;

word{word_spot} =

char(old_output_phonemes(non_space letter_indices(count+1)));
word_spot = word_spot + 1;

else

sentence_words{word_count} = word;

word_count = word_count + 1;

word = "°;

word_spot = 1;

word{word_spot} =
char(old_output_phonemes(non_space_letter_indices(count+1)));
word_spot = word_spot + 1;

end

end

sentence_words{word_count} = word;
end

if isempty(spaces) == 1;

sentence_words{1} = old_output phonemes;
end
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