
Graduate Theses, Dissertations, and Problem Reports

2005

Prosody in text-to-speech synthesis using fuzzy logic Prosody in text-to-speech synthesis using fuzzy logic

Jonathan Brent Williams
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Williams, Jonathan Brent, "Prosody in text-to-speech synthesis using fuzzy logic" (2005). Graduate
Theses, Dissertations, and Problem Reports. 1690.
https://researchrepository.wvu.edu/etd/1690

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1690&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1690?utm_source=researchrepository.wvu.edu%2Fetd%2F1690&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Prosody in Text-to-Speech Synthesis Using Fuzzy Logic

by

Jonathan Brent Williams

Thesis submitted to the College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

 Master of Science
in

Electrical Engineering

Approved by

Dr. Norman Lass, Ph.D
Dr. Roy S. Nutter, Ph.D

Dr. Powsiri Klinkhachorn, Ph.D., Chair

Lane Department of Computer Science and Electrical Engineering
Morgantown, West Virginia 2005

Keywords: Text-to-Speech, Fuzzy Logic, Intonation, Prosody, Neural

Networks

Copyright 2005 Jonathan Brent Williams

Abstract

Prosody in Text-to-Speech Synthesis Using Fuzzy Logic

by

Jonathan Brent Williams

For over a thousand years: inventors, scientists and researchers have tried to
reproduce human speech. Today, the quality of synthesized speech is not equivalent to
the quality of real speech. Most research on speech synthesis focuses on improving the
quality of the speech produced by Text-to-Speech (TTS) systems. The best TTS systems
use unit selection-based concatenation to synthesize speech. However, this method is
very timely and the speech database is very large. Diphone concatenated synthesized
speech requires less memory, but sounds robotic. This thesis explores the use of fuzzy
logic to make diphone concatenated speech sound more natural. A TTS is built using
both neural networks and fuzzy logic. Text is converted into phonemes using neural
networks. Fuzzy logic is used to control the fundamental frequency for three types of
sentences. In conclusion, the fuzzy system produces f0 contours that make the diphone
concatenated speech sound more natural.

Acknowledgements

I would like to express my gratitude to Dr. Klinkhachorn for his guidance and
invaluable advice throughout my project. I would like to thank him for believing in me
and for willingly being the chair of my committee. And I would also like to thank him
for his patience when my initial thesis topic did not come to fruition. I would also like to
thank Dr. Norman Lass for being on my committee and for his guidance throughout my
project. His book, “Principles of Experimental Phonetics”, guided me in the right
direction and was an important asset to my research. I would also like to thank Dr. Roy
Nutter for being a member of my committee and for providing me with valuable career
advice.

This thesis is dedicated to my late grandparents, Mrs. Madeline Pleasant and Mr.

Brent Pleasant. Without them and their sacrifices, I would not have this opportunity.

Special thanks to Dr. Peter Simeonov for providing me with a research

assistantship at NIOSH that helped me complete my research.

 iii

Table of Contents

Abstract ... ii
Acknowledgements .. iii
Table of Contents...iv
List of Figures ...vi
Chapter 1: Introduction and Background ..1

1.1 Introduction..1
1.2 Human Speech Process...1
1.3 Speech Synthesis Techniques...3

1.3.1 Concatenative Speech Synthesis ..3
1.3.2 Formant Synthesis..5
1.3.3 Hidden Markov Model Synthesis ..5

1.4 Methods of Text-to-Phoneme Conversion ...6
1.4.1 Dictionary-based Approach..6
1.4.2 Rule-based Approach ..6
1.4.3 Machine Learning Approach..7

Chapter 2: Motivation and Objectives ..8
2.1 Motivation...8
2.2 Research Objectives ..9

Chapter 3: Literature Review..10
3.1 Generation of Synthetic Speech ..10
3.2 Text-to-Phonemes Algorithms ..12
3.3 Text-to-Speech Systems..14
3.4 Automatic Prosody Generation...17
3.5 Back Propagation Algorithm..21

3.5.1 Forward Pass...21
3.5.2 Backward Pass ..24

3.6 Fuzzy Logic Inference System...25
Chapter 4: Text-to-Phoneme Conversion ..28

4.1 Text-to-Phoneme Conversion Overview...28
4.2 Text-to-Phoneme Conversion Algorithm..29

4.2.1 Network Input and Output Design ..30
4.2.2 Network Detailed Training Design ...31
4.2.3 Training Set Detail and Alignment..35

Chapter 5: Automatic Prosody Generation..37
5.1 Generation of Prosody Overview ...37
5.2 Segmental Duration...38
5.3 Stress Assignment ..40

 iv

5.4 Fuzzy Fundamental Frequency..40
5.5 O’Shaughnessy Algorithm..41
5.6 Fuzzy System Inputs and Consequence ...44

5.6.1 Word Importance...44
5.6.2 Sentence Size...45
5.6.3 Sentence Position ...45
5.6.4 Stress Distance..46
5.6.5 Consequence ...47

5.7 Fuzzy System Rules ...47
5.7.1 Declarative Sentence..48
5.7.2 Yes/no Question..49
5.7.3 Interrogative Question ..50

5.8 Fuzzy Output Calculation...51
5.9 Final Speech Production...54

Chapter 6: Results..56
6.1 Text-to-Phoneme Results ...56
6.2 Fuzzy Fundamental Frequency Results..58

Chapter 7: Conclusion ..64
7.1 Summary and Conclusion...64
7.2 Future Work ...65

References...67
Appendix A – Phoneme List ...71
Appendix B – Phoneme Inherit Duration...72
Appendix C – Training Set ..73
Appendix D – MBROLA Program Description ..85
Appendix E – Source Code ...86

 v

List of Figures
Figure 1-1: Human Speech Organs... 2

Figure 3-1: Wolfgang Von Kempelen's Talking Machine.. 10
Figure 3-2: Woman Operating the VODER ... 11
Figure 3-3: NetTalk Multi-layered Perceptron ... 13
Figure 3-4: Stevie Wonder Introducing the DECTalk in 1983... 16
Figure 3-5: The Black Box ... 21
Figure 3-6: Interconnection of Neurons.. 22
Figure 3-7: The Sigmod Activation Function Neuron.. 22
Figure 3-8: K layered Back Propagation Network ... 23
Figure 3-9: Different Types of Membership Functions.. 26

Figure 4-1: Network Training Cycle... 30
Figure 4-2: Moving Window Example ... 30
Figure 4-3: Moving Window Example ... 31
Figure 4-4: Network Training Flow Chart.. 32
Figure 4-5: Initial State of the Network.. 33
Figure 4-6: State of the Network after First Iteration ... 33
Figure 4-7: Input Vector for the Letter d .. 34
Figure 4-8: Desired Output Vector /ah/ .. 34
Figure 4-9: Word Alignment .. 36

Figure 5-1: System Overview ... 37
Figure 5-2: Downward Linear Trend.. 42
Figure 5-3: Word Importance Input Membership Functions.. 44
Figure 5-4: Sentence Size Input Membership Functions.. 45
Figure 5-5: Sentence Position Input Membership Functions.. 46
Figure 5-6: Stress Distance Input Membership Functions.. 47
Figure 5-7: Consequence Membership Functions .. 47
Figure 5-8: Example of Word Importance with Calculated Input of 6............................. 52
Figure 5-9: Firing Strength of Input onto Rules ... 53
Figure 5-10: Final Shape and Centroid... 53
Figure 5-11: MBROLA *.pho file .. 55

Figure 6-1: Network Convergence.. 57
Figure 6-2: Declarative Sentence - “My name is Jonathan Williams” 59
Figure 6-3: Interrogative Question - “What time is the thesis defense?” 60
Figure 6-4: Yes/no Question - “Is it going to rain at noon?".. 60
Figure 6-5: F0 Contours for Declarative Sentence, “My name is Jonathan.”................... 61
Figure 6-6: F0 Contours for Interrogative Question, “What time is it?” 62
Figure 6-7: F0 Contour Comparison for Yes/no Question, “Is it raining today?”............ 63

 vi

Chapter 1: Introduction and Background

1.1 Introduction

Text-to-Speech (TTS) is the process of converting unknown text into sounds that

represent the text. Reading out loud is an example of TTS. A TTS system involves

converting random text into intelligible synthesized speech. The text can be either

directly introduced to the system by a user or scanned from a source [16]. The

applications of TTS systems are numerous, from assisting people with disabilities to

improving customer service. The ideal TTS system would sound similar to HAL-9000

from the movie, “2001: A Space Odyssey”. However, current TTS systems still sound

robotic and thus have yet to gain public acceptance. Today, the main problem facing

TTS systems is refining the naturalness of synthesized speech. Naturalness of speech is

correlated to the prosody of speech. Prosody refers to the intonation, timing, and vocal

stress of speech. Currently, TTS research focuses on the improvement of synthesized

speech prosody.

1.2 Human Speech Process

Synthesizing human speech is difficult due to the complexity of human speech.

The production of human speech involves the lungs, the vocal folds, and the vocal tract

(oral cavity, nasal cavity, and pharyngeal cavity) functioning collectively. Figure 1-1

shows the organs used in speech production.

 1

Figure 1-1: Human Speech Organs [40]

Human speech is created by an air source (lungs and the surrounding muscles) causing

some type of excitation in the vocal system (vocal folds and vocal tract). The type of

sound produced is determined by the vocal system’s affect on the air flow. There are two

types of speech produced by humans; voiced and unvoiced. With voiced speech, sound is

produced from the vibration caused by air flowing through tensed vocal folds. Unvoiced

speech is created from air flowing through abducted vocal folds, and the sound is

produced by air flowing through a constriction in the vocal tract or air being stopped and

then suddenly released [40].

 Mimicking the sounds created by human speech is difficult because real

continuous speech is a combination of many complex audio signals. With voiced speech,

the speech signal is modified by either the oral cavity or the nasal cavity. These cavities

act as resonators with pole and zero frequencies. Pole and zero frequencies are called

formant and anti-formant frequencies, respectively. These frequencies have their own

amplitude and bandwidth. Voiced speech also produces a complex quasi-periodic

pressure wave from an interruption in air flow caused by the vibration of the vocal folds.

The frequency of impulses from the pressure wave is called the fundamental frequency.

With purely unvoiced speech, since there is no vibration of the vocal folds, there is no

fundamental frequency.

 Researchers believe that the most important signals generated by human speech

are the formant frequencies and the fundamental frequencies. When synthesizing speech,

 2

these signals greatly contribute to the naturalness of the speech. The formant frequency

represents the shape of the sound that is formed by the vocal tract (oral cavity and the

nasal cavity). Different sounds (vowels, nasals, etc.) within a language are

distinguishable by their formant frequencies. The fundamental frequency determines the

pitch of the voice. For example, women and children have a higher pitch (i.e. higher

fundamental frequency) than men. Throughout the years, research involving the

naturalness of synthesized speech has focused primarily on these two acoustic features.

Sounds created by humans are merely noise if the sounds do not have meaning.

Sounds in speech production are categorized into units. These units can be as large as

words or as minute as a phone. However, phonemes are the fundamental units of

phonology. The definition of phonemes is the theoretical unit of sound that can

distinguish words [29]. The concatenation of phonemes produces the words in the

language, i.e. changing a phoneme means changing the word. Phonemes are split into

two major categories: vowels and consonants. All vowels are voiced sounds while some

consonants are voiced sounds and some are unvoiced sounds. The number of phonemes

on a language depends of the actual language, speaker, and the particular dialect. For

example, most standard American English consists of 41 phonemes. Diphones are the

stable middle region between two phonemes. Diphones represent the transition between

two phones. Therefore, the number of diphones in a language is the number of phonemes

squared. With speech synthesis, the role of phonemes and diphones is to focus on sounds

that the system should yield.

1.3 Speech Synthesis Techniques

Speech synthesis is the artificial production of human speech. The techniques of

speech synthesis are categorized into three different approaches. These are concatenative

speech synthesis, formant-based synthesis, and Hidden Markov Model synthesis.

1.3.1 Concatenative Speech Synthesis

Concatenative speech synthesis involves combining previously recorded speech to

form words or sentences. The concatenative speech synthesis approach currently

 3

produces the most natural sounding speech because of the use of real speech. There are

three methods of concatenative speech synthesis: diphone synthesis, domain-specific

synthesis, and unit-selection synthesis. The most commonly used methods today are

domain-specific and unit-selection synthesis.

Diphone synthesis involves the concatenation of diphones. As previously

explained, diphones are the middle region between two phones. The concatenation of

diphones minimizes the co-articulatory effects of the phone to phone transition. During

synthesis, digital signal processing (DSP) techniques such as linear predictive coding

(LPC), POLA, and MBROLA are used to overlay the desired prosody onto these

diphones. The amount of diphones for a given language is equal to the number of

phonemes of that particular language squared. Therefore, the diphone inventory size is

relatively small and diphone synthesis can be used with inexpensive processors and

embedded systems. However, diphone concatenation yields robotic sounding speech

due to the digital signal processing.

 Domain-specific concatenation is a very common form of speech

synthesis. Most companies use domain-specific synthesis for their phone-based customer

service systems. Consequently, this type of synthesis has gained some notoriety over the

years. Domain-specific synthesis concatenates pre-recorded words and phrases to create

speech. Domain-specific synthesis is only useful in applications where the output is

restricted to a certain domain. Examples of domain-specific synthesis are automatic

reports of the weather, talking gadgets, automated banking, and automated customer

service. Domain-specific concatenation sounds natural because the variety of sentence

type is limited; therefore, the output matches the original recording. However, since this

method of synthesis is limited to only specific applications, domain-specific synthesis

could not be implemented in a TTS system.

Unit selection-based synthesis is the method currently used in commercial-based

TTS systems. Unit selection is created from large databases of hours of recorded speech.

These recordings are then converted into units to be concatenated into speech. First, a

recording of speech is segmented into individual phonemes, syllables, words, phrases,

and sentences. The segmentation is done by hand or automatically by a modified speech

recognizer. An index of the units from the speech database is then created based upon

 4

prosodic parameters, like fundamental frequency and segment duration. Synthesis is

created using a decision tree that determines the best path of candidate units from the

database. Unit selection yeilds the most natural sounding speech today. However, to

achieve maximum naturalness requires unit selection-based systems’ speech databases to

be gigabytes in size [36].

1.3.2 Formant Synthesis

Formant synthesis generates synthetic speech using formants. Formants represent

the resonant frequencies of the oral cavity or the nasal cavity. An acoustic model is used

to create the speech and parameters, like fundamental frequency, spectral components,

and noise levels which are varied over time to create a waveform of speech. The

disadvantage of formant synthesis is the robotic sounding quality of speech [36].

However, formant synthesis does have many advantages over concatenative speech.

Formant synthesis does not require stored databases and thus requires little

memory. Formant synthesis can also be generated at very high speeds. This makes

formant-based systems useful in embedded computing and real-time applications. For

example, most reading machines for the blind use formant-based synthesis. In addition,

formant-based systems offer the user more control over the output speech. With formant

synthesis, intonation and prosody can be altered to represent an assortment of emotions

and tones of voice.

1.3.3 Hidden Markov Model Synthesis

Hidden Markov Model (HMM) synthesis is the process of modeling the speech

output using the Markov process. The HMM is a Markov process where the parameters

are unknown. With HMM, each state has outputs, and future states are dependent only on

the present state [36]. HMMs are used in speech synthesis to model the vocal tract and

prosody. The quality of HMM speech synthesis is good but not as good as unit selection-

based systems [36]. HMM synthesis is a newer method of speech synthesis and has been

applied mostly to trainable TTS systems.

 5

1.4 Methods of Text-to-Phoneme Conversion

In order for a TTS system to be accepted by the public, the system must correctly

convert the inputted text into the correct pronunciation. Text-to-Phoneme (TTP)

conversion consists of translating text into its phonetic transcript. This task can be

accomplished using many different methods. The most common methods are the

dictionary-based approach, the rule-based approach, and the machine learning approach.

1.4.1 Dictionary-based Approach

The dictionary-based approach is the easiest TTP conversion method to

implement. Dictionary-based TTP conversion consists of storing phonological

knowledge into a lexicon [16]. Early dictionary-based conversions required locating

word pronunciations that were stored in a large lexicon. This process required enormous

amounts of memory because the lexicons had to contain every word and its

pronunciation. Most dictionary-based TTP conversions today use stored morphemes

instead of words in the lexicon. Morphemes are the smallest language unit that carries a

semantic interpretation. For example, the word “uncontrollable” contains three

morphemes; “un-”, “-control-“, and “-able”. Morphemes require less memory to store

and can cover most words in a language. Both types of dictionary-based conversion

methods handle unknown words similarly. Rules are used to pronounce unknown words

or morphemes [16]. The main drawback of dictionary-based TTP conversion is the

amount of memory that the lexicon can consume. Yet, dictionary-based systems are the

easiest to create.

1.4.2 Rule-based Approach

The rule-based TTP conversion approach uses expert rules to yield

pronunciations. The pronunciations are based on the spelling of the word. These rules

are similar to the sounding-out rules used by grade school students when learning how to

read [36]. There are some drawbacks to the rule-based approach. For instance, rule-based

TTP conversion system rules can become very complex, especially with irregular

languages like the English language. Rules are much more complex to code than simple

 6

binary searches used by dictionary-based TTP systems. However, rules-based systems

can work on any input presented to the system.

1.4.3 Machine Learning Approach

There are many different types of machine-learning approaches to TTP

conversion. Machine learning is the ability of a machine, a computer, or an electronic

device to improve its performance based upon previous results. Machine learning

requires that a system “learns” how to convert text into its phonetic representation. With

TTP conversion, this task can be accomplished with many different methods. Neural

networks, Self-Organizing Maps, and Decisions Trees are examples of the machine

learning approach. However, for irregular languages like English, the accuracy is not

equivalent to the latter approaches.

 7

Chapter 2: Motivation and Objectives

2.1 Motivation

TTS systems are becoming more commercially available as the quality of the

systems improves. Most commercial systems use the unit-selection based concatenation

approach to produce speech output [36]. However, unit-selection requires large

prerecorded speech databases that must be segmented in order to create a useable system

[36]. Segmentation of a prerecorded speech database can be very difficult and timely.

Formant synthesis uses less amounts of memory, but the speech is very mechanical in

sound. For speech synthesis to be widely accepted in robotics and our shrinking

electronics, speech synthesis systems must use as little memory as possible, must require

little effort to create, and must sound somewhat natural.

Diphone concatenation is adequate enough to produce understandable synthesized

speech. Most languages consist of about 2000 diphones. Diphone inventories take

relatively little memory to store, and there are many freely available programs that use

diphone concatenation. However, diphone concatenation systems produce speech that is

robotic and not the quality of current unit-selection based systems. Prosody is what

makes speech sound natural, and the prosody in recorded speech segments is more

natural sounding than that of synthesized prosody.

This thesis presents a different method to produce more natural sounding speech

for diphone concatenation-based TTS systems. Most TTS systems that use diphone

concatenation use either neural networks or rule-based approaches to generate prosody.

This research exams the use of Fuzzy Logic to generate one aspect of prosody:

fundamental frequency. TTP conversion is performed using the neural network Back

Propagation algorithm. Using linguistic data as input, the fuzzy logic system produces

fundamental frequency and frequency contour as outputs. The rules of the fuzzy logic

system are from the O’Shaughnessy fundamental frequency algorithm used in the MITalk

system [2]. As a result, the TTS system output speech should sound more natural.

 8

2.2 Research Objectives

The research objective is to apply the flexibility of fuzzy logic to the randomness

of TTS conversion in order to produce more natural sounding synthesized speech. Using

established information provided by the user of the TTS system, the fuzzy controller will

produce output that will reflect the user’s input.

 The specific research objectives are:

1. Gain an understanding of the process of human speech production.

Understand the concepts and theories of generating synthetic speech. Research

different algorithms that have been created to generate English prosody

automatically.

2. Build an English text-to-phoneme system using neural networks that will

produce accurate phonemes given inputted text. The Back Propagation

algorithm will be used to train the network. The training set will consist of

about 1800 words.

3. Implement a fuzzy control system that will control the intonation of the

speech. The fuzzy controller will receive different linguistic parameters as the

input and produce fundamental frequency as the output. This fuzzy controller

will represent the O’Shaughnessy fundamental frequency algorithm and

system will handle three types of sentences: declarative, yes/no question, and

interrogative questions. The final system should produce understandable

speech that mimics the proper intonation for each type of sentence.

4. Calculate the accuracy of the text-to-phoneme network using the training set

and unknown text. Evaluate the fuzzy controller by comparing the f0 contour

produced by the controller with the f0 contour of the Microsoft Research

Speech Technology Asia (MRSA) on-line TTS system [37].

 9

Chapter 3: Literature Review

TTS research has been extensively examined over the last 40 years. This chapter

presents an extensive literature review of past and present research on the different

aspects of the TTS system. The review has been performed on the following subjects:

generation of synthetic speech, TTS conversion algorithms, TTS systems, automatic

prosody generation, and the fuzzy logic inference system.

3.1 Generation of Synthetic Speech

Generating synthetic speech has been a curiosity for the past 1100 years. Around

the year 1003, Gerbert of Aurillac created the first known mechanical talking machine.

For the next two centuries, inventors like Albertus Magnus and Roger Bacon created

machines know as “talking heads” [23]. However, the first known machine that tried to

mimic real human speech was developed by Christian Kratzenstein of St. Petersburg in

1779. This machine could produce five long vowel sounds. Twelve years later,

Wolfgang Von Kempelen developed a machine that could produce vowels and some

consonants [21, 33].

Figure 3-1: Wolfgang Von Kempelen's Talking Machine [33]

With the start of the 20th century and the increasing use of electricity, speech synthesis

began to move from mechanical machines to electrical machines.

 10

Electronic speech synthesizers were first developed in the 1920’s. The first

known electronic synthesizer, VODER, was developed by Homer Dudley in the late

1930’s [21]. Dudley was a research physicist at the Bell Laboratories in New Jersey.

Dudley reconstructed the Bell Laboratories speech analysis, VOCODER, into the speech

synthesizer VODER. The VODER was controlled by an operator using a keyboard to

Figure 3-2: Woman Operating the VODER [36]

adjust the filter output, foot pedals to control the fundamental frequency, and special keys

to create closure and the release required for stops [23]. The VODER was operated like a

musical instrument. Eventually, human operated machines became obsolete. After World

War II, the spectrograph provided a new tool for researching acoustic phonetics. As a

result, researchers began to study speech based on acoustical data.

 In the 1950’s, speech synthesizers like the Pattern Playback were developed to

produce speech from copied speech waveforms. The speech synthesis by rule approach

(formant synthesis) began to become prevalent in the following decade. Concatenative

speech synthesis became a focus of research in the 1970’s with the initial focus on

phoneme concatenation. However, it was quickly discovered that diphone concatenation

would be more feasible than phoneme concatenation [21]. In 1976, Olive and

Spickenagle used linear prediction speech analysis to automatically create a full diphone

inventory for concatenation [27]. In 1988, Nakajima and Hamada wrote about a method

of speech concatenation that used a unit-selection based approach, instead of the more

 11

common diphone concatenation approach [25]. Today, diphone concatenation and unit-

selection concatenation are the most common methods of speech synthesis with the latter

becoming more common commercially.

3.2 Text-to-Phonemes Algorithms

Today, there are many different ways to produce speech from text. One of the

earliest methods of converting text to phonetics was the use of sophisticated heuristics

[21]. The first full English TTS system used this method in combination with a syntactic

analysis module. As computer memory increased, the preferred method for TTP

conversion was the use of a look-up dictionary. Look-up dictionary algorithms consist of

matching inputted words to words in a lexicon, utilizing phonological rules as a back-up.

By the 1980’s, TTS systems like the KlatTalk and DECTalk used a combination of a

look-up dictionary and phonological rules [2, 21, 22]. As computer technology became

more sophisticated and accessible, researchers began to develop new ways of tackling the

TTP conversion problem.

 The use of machine learning techniques for TTP conversion was researched in the

1980s. In 1987, Sejonowski and Rosenberg used neural networks to convert inputted text

into phonemes. This system used a 120 hidden neuron multi-layered perceptron trained

with 2000 words [35]. Neural networks use neurons with weights that represent the

neurons and the synapse of the neurons, respectively. Each weight represents the firing

strength of the neuron synapse. Initially, all of the weights for each neuron in the network

are randomized. The weights are updated using the calculated error from the training data

and the network’s actual output. In the multi-layered perceptron algorithm, the error is

propagation backwards throughout the layers of network. Figure 3-3 shows an overview

of the NetTalk network.

 12

n i s c oJ o o l

Hidden Units

/Z/

Figure 3-3: NetTalk Multi-layered Perceptron

McCulloch devised a re-implementation of the NETTalk multi-layer perceptron

algorithm called NETSpeak, which yielded about 85% accuracy [24]. Recently,

Arciniegas and Embrechts used a staged neural network algorithm to handle some of the

previous problems of the single-staged multi-layer perceptron algorithm. In that paper,

two stages of neural networks were used to convert text to phonemes. One stage

separated regular words from special words. Special words were categorized as words

that contained single letters represented by two output phonemes. The other stage found

the phonetic output for the two types of words [4]. Gubbins used a hybrid-neural

network approach which used both neural networks and a simple rule-based system to

convert text to phonemes [18]. The multi-layer perceptron neural network is not the only

neural network algorithm researchers have used for TTP conversion.

Adamson and Damper researched different ways to improve the performance of

TTP conversion neural networks [24]. They used a recurrent neural network which

addressed some of the problems of the multi-layer perceptron algorithm. A recurrent

neural network uses a single letter as input and trains itself using the Back Propagation

through Time algorithm. This algorithm removes the need for alignment of the training

set. The network has a recurrent structure with no constraints regarding which direction

units can interact [19]. Adamson and Damper’s algorithm initially performed worse than

the NETTalk and NETSpeak, but their paper was the foundation for other recurrent

neural network based algorithms [1]. In 2004, Bilcu, Astyola and Saarinen improved the

performance of the recurrent neural network algorithm by using three letters as the input

 13

to a recurrent neural network [6]. In 2003, Bilcu compared the performance of multi-

layered perceptron to two types of recurrent networks. The results showed that the multi-

layered perceptron is the most accurate of the three [7]. Besides neural networks, TTS

systems have also used other forms of machine learning to convert text to phonemes.

The pronunciation by analogy (PBA) algorithm is another machine learning

algorithm that has been used for TTP conversion. PBA is similar to the dictionary-based

algorithms because both algorithms use dictionaries to convert text to phonemes.

However, the PBA algorithm uses a different method to handle words not in the

dictionary. The PBA algorithm concatenates partial pronunciations of substrings using

learned phonological knowledge [12]. Using an aligned lexicon, pronunciation can be

achieved through explicit and implicit learning. An example of a system that uses this

algorithm is the PRONOUNCE system [12, 13]. In the PRONOUNCE system, an

inputted word is matched to words in a dictionary. Then substrings with common letters

are found between the found dictionary entry and the input. Phonetic substrings are also

built from the matched substrings. Information from these substrings is then used to build

a pronunciation lattice. Lattice nodes are first labeled with Li and Pi representing the

matched letter and the corresponding phoneme in the substring, respectively. Pi is labeled

Pim to represent the mth matched substring. If there is a match between two Li and Lj, then

an arch is placed between the two nodes with the Pim and Pjm being the arc labels. The

pronunciation for an unknown string is created by the best path through the lattices [12].

PBA do suffer from one major drawback however. Due to incomplete paths, PBA tend

to have silences during text conversion. This problem was solved in Sullivan and

Damper, but the pronunciation lattices’ size greatly increased [39].

3.3 Text-to-Speech Systems

The first full TTS system was developed in the late 1960’s. Since then, there have

been many advances in the accuracy and the quality of TTS systems. Companies like

IBM, Microsoft, and Bell Labs have developed both free and commercially available

systems.

 14

 In 1968, Umeda of Japan developed the first demonstrated TTS system for the

English language. This system transformed text to phonemes using linguistic rules.

Sentence pauses were placed in sentences with ten or more syllables [21]. In 1973, the

Haskins TTS system was developed but was later discontinued due to inadequate

research funds. This system used the Kenyon and Knott 140,000 word phonetic

dictionary with a rule system to handle unknown words. The Haskins TTS system was

developed to aid the blind with reading. Although the system was never produced

commercially, the Haskins TTS system is considered a significant step in TTS research

[21].

In 1976, Allen, Hunnicutt, and Klatt developed the MITalk at MIT [2]. This TTS

used different levels to convert text to synthesized speech. In the first level,

abbreviations, numbers, and symbols were transformed into words. Then, using a 12,000

morph (prefixes, roots, and suffixes) lexicon, words were converted to their phonetic

equivalent. Words not in the lexicon were converted to phonemes by using rules. Stress

and “part of speech” for each word was determined on another level. Then the final level

produced the synthesized speech. Phoneme, syllabic, and pause duration were

determined using the Klatt duration rules [20, 2]. Fundamental frequency contour was

determined using an adaptation of the O’Shaughnessy algorithm [28, 2]. The f0 contour

was smoothed, and the waveform was generated using a terminal synthesizer.

The Klatttalk TTS system was developed in 1983 by Dennis Klatt. Dennis Klatt

had previously worked on the MITalk system a few years earlier. This system used the

Hunnicutt letter-to-phoneme rule system plus an exception dictionary to convert text to

speech. The Klattalk was more rule-based than the dictionary-based MITalk system [22].

The Klattalk system was the basis for the 1982 Digital Equipment Corporation DECTalk.

The DECTalk system later became commercially available in 1983. DECTalk was very

versatile because of its ranges of voices and different speech speeds. Due to the flexibility

of the DECTalk hardware, the DECTalk was easily updated with improved versions of

the Klattalk system [21].

 15

Figure 3-4: Stevie Wonder Introducing the DECTalk in 1983 [41]

In the early 1980’s, Richard Gagnon developed a very inexpensive segmental

synthesis program. This system became the commercial Votrax Type-n-Talk. The

system was built with very inexpensive hardware and a small phoneme inventory to

synthesize speech. The Echo TTS system was another inexpensive segment-based system

which used a diphone inventory and a linear predictive synthesizer to produce speech

[21].

Today, there are many types of TTS systems for many different purposes. The

Festival Text-to-Speech system developed by Black and Clark is an example of current

TTS systems developed for research. Festival uses letter-to-sound rules and a large

lexicon for TTP conversion. Speech synthesis is accomplished using unit-selection

concatenation of diphones [8]. The MBROLA project is a TTS system that is freely

available for researchers. The MBROLA project was developed by TCTS Lab of the

Faculté Polytechnique de Mons in Belgium and is a back-end system [15]. This system is

to be used as a speech producer for a TTS system developed by the user. MBROLA uses

diphone concatenation to produce speech for many different languages. Microsoft has

many English TTS systems for different applications. Microsoft based products use

either unit-selection or diphone concatenation to synthesize speech. Microsoft Reader is

free software from Microsoft that converts text from e-mails and other documents to

 16

speech. The Apple PlainText TTS system is standard on PowerPC computers. The

PlainText uses a dictionary-based system to convert text to sounds and diphone

concatenation to produce speech. A very high quality commercial system is the AT&T

Natural Voices TTS system. The AT&T Natural Voices enables users to define the

pronunciation of certain words. This system uses unit-selection synthesis to produce

speech [5].

3.4 Automatic Prosody Generation

Currently, prosody is the major issue in speech synthesis. As a result, most

research deals with prosody of speech. Prosody, in the context of speech, consists of the

properties of speech, such as pitch, loudness, and duration [16]. Prosodic events can be

phonemes, syllables, or words. Prosody in a speech system mainly deals with

fundamental frequency and segmental duration.

Segmental duration refers to the timing of the units that create speech. These

units can be either as small as a phone or as large as a phrase. The size of the units must

be determined in order to adequately model real speech. Researchers know that sub-

phonetic segments do exhibit different durations. However, this information would be

too complex for TTS systems, so most research is focused on either the phonetic or the

supra-phonetic sized segments [16]. Early research on segmental duration addresses the

principles of isochrones. A speaker would unconsciously use an internal clock while

speaking. As a result, Campbell contended that segments in a syllable frame are found

using the following formula:

Duri = exp(µi+ kσi)
 (3.1)

Duri is the duration of the segment at syllablei and µi and σi statistical measures of a large

corpus. However, this formula is too strict of an application to accurately model duration

[15].

More accurate segmental duration models have focused primarily on the phoneme

as the segmental unit. Although other segments are taken into account, these segments

 17

do not directly affect the duration of the units. Currently, there are two types of

segmental duration models: rule-based models and corpus-based models. Rule-based

models use rules to modify intrinsic durations, while corpus-based models use

sophisticated methods to automatically derive models using data within the corpus [16].

One of the best known rule-based duration models was developed by Dennis Klatt

in 1976. This model has been used in MITalk, Klattalk, and DECTalk TTS systems.

Each phoneme consists of an inherent duration and a minimum duration [2]. There are

eleven rules that alter the duration of the phoneme due to factors like their location, their

manner of articulation, their stress, etc. The duration of the phonemes is changed by

using the formula:

PRCNT1 = (PRCNT1)*(PRCNT2)/100 (3.2)

Where PRCNT1 represents the current duration of the phoneme, and PRCNT2 is a

number that the phonemes need to be altered [2]. Although this duration model works

well, recent research has focused more on the corpus-based approach to duration

modeling.

Corpus-based duration models take advantage of the advancements in

computational resources. Using a large recorded speech corpus, parameters are extracted

and models are created using some type of abstract learning method. In 1994, Riley used

a corpus of 400 utterances from a single speaker and 4000 utterances from 400 speakers

to model segmental duration. From this corpus, Riley built a classification and regression

tree (CART) as the segmental duration model [32]. In 1992, Campbell used a neural

network to model segmental duration. In that paper, he computed syllable duration

independent of inherit segmental durations. Campbell believed that previous rule-based

models were incorrectly based on inherent durations. His focus was to model higher

levels of prosodic structure like syllables and prosodic phrases. Consequently,

Campbell’s network was trained to model Japanese and English syllables [11].

Although segmental duration is a very important aspect of speech synthesis

prosody, it is not as essential as pitch and intonation. For example, a modification in

pitch can change a statement into a question. Initially, research on this aspect of prosody

 18

mainly focused on the relationship between intonation and stress. Intonation deals with

the pattern of tones in an utterance. Stress deals with the emphasized syllable of a word.

It was believed that there was a direct association between intonation and pitch and that

stress was created by changes in vocal intensity and syllable duration [21]. However, it is

now known that the change in the fundamental frequency indicates stress and intonation

[21]. Over the years, there have been different theories to predict the rise and fall of

fundamental frequency (f0).

In the mid 1960’s, Mattingly developed a fundamental frequency theory that used

three tunes placed on the last prominent syllable of a clause. The tunes were rise, fall,

and rise-fall which correspond to a statement end, a question end, and a continuation rise,

respectively. Later in the decade, researchers tried to develop models that mimic the

exact fundamental frequency contour of natural speech. In 1969, Öhman stated that f0

contours can be modeled in terms of a discrete signal fed to a linear smoothing filter [21,

26]. A Japanese intonation model by Fujisaki was able to closely match natural

intonation contours using the ideas proposed by Öhman [17]. Fujisaki listed two types of

events: phrase and accent command [16]. Phrase commands were modeled as a pulse

function, and accent commands were modeled as a step function [16]. Hart and Cohen

described intonation as a hat pattern. The fundamental frequency will rise on the first

stressed syllable of a phrase and then remain high until the final stressed syllable. At the

end of the phrase, there will be either a large fall or a fall-rise of the fundamental

frequency [21].

The O’Shaughnessy fundamental frequency algorithm was developed in 1979.

This rule-based method first assigned peaks to stresses in the sentence. The size of the

peak depended on the length of the sentence, the location of the stress, and the

importance of the word. Then rises and falls were placed around the peaks. The final

rise or fall of the sentence depended on whether the sentence was a statement, a yes-no

question, or an interrogative question [2]. The Pitch Contour theory was developed in the

late 1960’s for British English. This theory splits speech into four components: prehead,

head, nucleus, and tail [16].

By the early 1980’s, models for fundamental frequency generation began to

become more comprehensive and flexible. A well known model was developed in 1984

 19

by Anderson and Pierrehumbert [30]. Anderson and Pierrehumbert believed that stress

patterns in a sentence affected the fundamental frequency contour. This model advances

on some of the earlier research that used two tones. The model separates intonation into

two main tones, a high and a low [30]. These tones are placed on stressed syllables as a

single tone or a combination of tones. The sequence of tones is restricted by a three level

finite state grammar [16]. With the tones reflecting target points in the fundamental

frequency contour, this model does generate good intonation contours. As the 1980’s

came to an end, researchers began to focus on more statistical and data-driven models.

Some researchers began to focus on the use of classification and regression trees

(CART) to generate intonation. These trees were used with different intonation models

to automatically generate fundamental frequency for TTS systems. Classification and

regression trees consist of a question on each leaf (node) about the feature. The answers

from the tree nodes form another sub-tree path. The leaves of these trees contain

statistical measures that define the path taken [14]. The Festival TTS system by

Dusterhoff and Black uses classification and regression trees in combination with the Tilt

Intonation model to generate prosody. The Tilt Intonation model is used to automatically

analyze intonation. There are two types of Tilt events: pitch accents and boundary tones

[31]. Unlike previous work which used categorical parameters, the Tilt model uses

continuous parameters [31]. Using real speech, information is extracted from the

database. Then regression trees are built for each parameter in the Tilt model. These

trees are used as the fundamental frequency model for the system.

Neural networks have also been used to automatically generate fundamental

frequency. In 1989, Scordilis and Gowdy of Clemson University first used neural

networks to generate fundamental frequency. Using a small training corpus of real

speech, a network was trained to learn f0 values and f0 fluctuations in phonemes [34].

Similar to the NETTalk and NETSpeak systems, this network used the Back Propagation

algorithm to train itself. The network consisted of three layers with a hidden layer of 30

neurons. The results revealed that the network could learn to generate fundamental

frequency [34]. In 1992, Traber developed a recurrent neural network to predict the

number of pitch values in a syllable. The network was trained using automatically

labeled data. The network had two hidden layers with the output representing the

 20

different f0 values [10]. Recent systems that use neural networks for f0 generations

closely follow the system developed in the early 1990’s. Today neural networks have

been used to automatically generate fundamental frequency for a large range of

languages.

3.5 Back Propagation Algorithm

The Back Propagation algorithm was first developed around the mid 1970’s.

Learning is based on the gradient descent in the error [38]. This algorithm consists of two

main phases: the forward pass and the backwards pass [38]. This algorithm is very

similar to Rosenblatt’s Perceptron algorithm and is called the Multi-layered Perceptron.

3.5.1 Forward Pass

With the Back Propagation algorithm, the network should first be considered a

black box with inputs and a single output.

Y
x2

x1

xn

Figure 3-5: The Black Box

Hidden within the black box are neurons in many different layers. The first layers

consist of the input neurons, the middle layers are the hidden neurons, and the last layer is

the output neurons. Each layer is interconnected to the surrounding layers.

 21

Hidden

Input Output

Figure 3-6: Interconnection of Neurons

The outer and input layers are static, while the neurons in the hidden layers can be

adjusted. The first step in the Back Propagation algorithm is to create random weights

for each neuron in the hidden layers and output layer. The input vector needs to be a

vector of ones and zeros. The network is presented with an input vector and a desired

output. The hidden weights’ outputs are computed using an activation function. The

activation function can be sigmoid, tangential, etc.

Σ F Yy = 1/(1 + e-(Σwixi))

x1

x2

xn

Figure 3-7: The Sigmod Activation Function Neuron

 22

Using the input vector, the hidden layer neuron weights, and the activation function, the

hidden layer nodes’ output is computed using the equation:

ykm = 1/(1 + e-Σ(input vector * hidden neurons weights)) (3.3)

In the equation above, ykm corresponds to the output of the hidden layer. The subscript k

represents the number of layers in the system, and the subscript m represents the number

of nodes in layer k. The hidden layer outputs now become the inputs to the output layer.

The output layer nodes’ outputs are calculated using the activation function, weights of

each output node, and output from each of the hidden layers node.

y(k+1)m = 1/(1 + e-Σ(hidden layer outputs * output neurons weights)) (3.4)

where y(k+1)m is the output of the output nodes, which is the actual output of the network.

Figure 3-8 shows an example of a network and the different inputs and outputs in the

layers.

Layer K

Layer K + 1 Layer 0

Input
Output

Y(k+1)m

Y(k+1)1x1

xn

yk1

yk2
N1

Nm

N1

N2

Nm

Figure 3-8: K layered Back Propagation Network

 23

Using the actual output and the desired output the Mean Square Error can be

determined with the following equation:

E = Σ (dm – y(k+1)m) 2 (3.5)

In this equation, dm is the desired output for the output nodes and y(k+1)m is the actual

output of the output nodes. The next phase of the Back Propagation algorithm can now

be computed using the Mean Square Error [38].

3.5.2 Backward Pass

After the error has been calculated, the weights are updated in each layer to fit

more closely to the desired output. The output layer weights are updated using the delta

rule equation. This involves changing the weights using the gradient of the calculated

error. The error term δ for the output layer is:

δ(k+1)m = y(k+1)m (1 – y(k+1)m) (dm – y(k+1)m) (3.6)

where y(k+1)m is the actual output at node m and dm is the desired output at node m of the

network. Using delta, the weights in the output layer can now be updated thus reducing

the error of the network.

W(k+1)m(t + 1) = W(k+1)m(t) + ηδ(k+1)m ykm (3.7)

W(k+1)m(t + 1) are the new updated weights in the output layer, and W(k+1)m(t) are the old

weights in the output layer. η is the learning rate of the network. The learning rate can

be a number greater than zero and less than one. If the learning rate is high, the network

will converge faster but might be less accurate. However, a low learning rate will cause

the network to converge much slower. Also convergence can be changed by using a

momentum term α in equation 3.8.

W(k+1)m(t + 1) = W(k+1)m(t) + α ηδ(k+1)m ykm (3.8)

Using δ(k+1) from the output layer, the hidden layer error term δk can be computed using

the equation:

 24

δkm = ykm (1 – ykm) Σ(W(k+1)mδ(k+1)m) (3.9)

In equation 4.7, ykm are the hidden layer outputs and W(k+1) are the updated weights in

the output layer. After the error term δkm is computed for the hidden layer, the hidden

layer weights are updated using δkm, the presented input vector, and the learning rate.

Wkm(t + 1) = Wkm(t) + ηδkminput vectorm (3.10)

Wkm(t + 1) represents the new hidden layer nodes’ weights and Wkm(t) represents the old

hidden layer nodes weights. This process continues until some stopping criterion has

been met. Once again, convergence can be changed by using the momentum term α in

equation 3.11 [38].

Wkm(t + 1) = Wkm(t) + α ηδkminput vectorm (3.11)

3.6 Fuzzy Logic Inference System

Fuzzy logic has its roots in philosophy. In ancient Greece, a group of philosophers

wrote the “Law of Thought”. One of the laws stated that logic must either be true or

false. The seeds of fuzzy logic were later planted by Plato who contended that there

could be a middle ground between true and false [9]. About 2500 years later, a Polish

philosopher named Jan Lukasiewicz described in detail an alternative to the true/false

logic of early Greek philosophy. Lukasiewicz mathematically created a tri-valued logic

and then later expanded his theory to four-value and five-value logic. Lukasiewicz’s

work affirmed that someday logic could be expanded to infinite-value logic [9].

The father of modern fuzzy logic created this infinite-value logic. In 1965,

Professor Lotfi Zadeh of UC Berkeley wrote the paper “Fuzzy Sets” which described,

mathematically, the theory of fuzzy logic. In this paper, Zadeh described the two

opposites, true and false, as membership functions. These membership functions truths

are determined through a range of numbers, normally between 0 and 1 [42]. In 1973,

Zadeh expanded on this theory, solving complex systems and decision processes [9].

 25

Fuzzy systems are designed to take advantage of imprecision. Solving real world

problems with precise logic can be difficult. Logic deals with making an absolute choice,

like true or not true. But sometimes the right choice is somewhere in between true and

not true. Fuzzy systems add fuzziness to the choice in order to accommodate the grey

area of logic.

Fuzzy systems assign truth values to statements to determine their truthfulness.

These numbers are usually between 0 and 1. The truth value determines the membership

of a certain group. To describe these groups, the fuzzy system uses the membership

function. With a given statement, the membership function determines the truthfulness of

that statement. The membership function can be many shapes and sizes. Some examples

of membership functions are shown in Figure 3-9.

1

0

1

0

1

0
Triangle Trapezoid Bell Curve

Figure 3-9: Different Types of Membership Functions

The fuzzy system is built with linguist rules and membership functions. The

linguist rules are used to conduct the actions of the fuzzy system. The membership

functions are used to determine how these rules affect the fuzzy system. The rules are

built using the logical terms like, OR, AND, NOT, and THEN. Rules can also be built

with other terms to hedge behavior like, MORE, LESS, VERY, and SOMEWHAT. Some

examples of how these terms can be used to build rules are:

“If Jon is tall OR Jon is fat THEN Jon’s size is big.”
“If the car is old AND the car is cheap THEN the car is worthless”
“If the car is NOT old AND the car is NOT cheap THEN the car is valuable”

Each term used in the fuzzy system has different effects on the behavior of the

system. The OR term is the same as the UNION of two variables. The OR term is

equivalent to the maximum. The AND term is the equivalent to the INTERSECTION of

 26

two variables. The AND term is equivalent to the minimum. The NOT term corresponds

to the COMPLEMENT of a variable which is its opposite. Finally, the THEN term

indicates the consequence produced by the rule.

The descriptive linguist variables in the rules represent the membership of the

statement. Therefore, descriptive linguist variables are the membership functions of the

fuzzy system. The fuzzy system is constructed of different fuzzy inputs and consequences

of the inputs. Each input and consequence of the fuzzy system has its own set of

membership functions. When an input is presented to the fuzzy system, the output is

determined by the firing strength of the rules onto the input. From the rules and the

presented input, a crisp output is calculated to produce the output of the fuzzy system.

 27

Chapter 4: Text-to-Phoneme Conversion

4.1 Text-to-Phoneme Conversion Overview

This chapter presents the algorithm used to convert user’s text into phonemes.

Phonemes are the smallest phonetic unit in a language within a word. When American

students first learn to read, they are taught all of the English phonemes. Table 4-1 gives

some examples of phonemes and the sounds that they represent.

Table 4-1: Examples of English Phonemes

Phoneme Sound
/p/ pit
/k/ cat
/t/ tap
/ə/ about
/ĕ/ bend
/ä/ father
/sh/ show
/zh/ measure

In order to convert text into speech, the algorithm must be able to handle words in the

English language that do not sound like the way they are written. The method used to

accomplish this task is neural networks.

Neural networks have been used to solve many types of problems over the years.

These problems include pattern recognition, data classification, and other very complex

problems. The advantage of neural networks is in their parallel architecture. The neural

network simulates how the brain uses interconnected neurons to process information.

With neural networks, the nodes of the networks are interconnected and work in unison

to solve specific problems. However, the only way the neuron network learns is by

 28

example. Therefore, the network must guess an output, compute an error using the actual

output, and then correct itself by adjusting its neurons [38].

Converting English text to English speak is an example of a complex problem that

neuron networks can solve. English text can be very tricky to pronounce. For example,

words like “Philadelphia”, “bike”, and “brought” are not pronounced how they are

spelled. Using data to correct itself, a network can learn to pronounce English text. For

this system, a neural network is trained with the Back Propagation algorithm using a data

set of about 1800 words [38]. The network was trained on a Dell Optiplex 2.80 GHz

Intel Pentium 4 computer.

4.2 Text-to-Phoneme Conversion Algorithm

The TTP algorithm used by this system follows very closely to the algorithm used

by Sejonowski and Rosenberg. Sejonowski and Rosenberg created the NETTalk system

in the late 1980’s. As previously discussed in Section 3.2, this system used the Back

Propagation algorithm to train a network to pronounce inputted text. The original

NETTalk used a three layered network with 120 hidden neurons and 26 output neurons

that represented each phoneme. Figure 4-1 shows the outline of the NETTalk program.

The training data used in the NETTalk system consisted of 2000 of the most common

words aligned with their pronunciations [35]. Although this algorithm is similar to the

original NETTalk algorithm, there are some slight modifications to the network, training

data, and training algorithm.

The overall network should be thought of as a loop. An input is taken from the

training data, an output is calculated, and the nodes of the network are adjusted according

to the error. Then another input vector follows the same steps, and the process continues

until some stopping criterion is met.

 29

Weights are
updated

throughout
the network.

Actual
output is

calculated
and the error

is found.

Input vector
is retrieved

from the
training data

Figure 4-1: Network Training Cycle

4.2.1 Network Input and Output Design

The network consists of seven windows for the input and one output for the

system. The input to the network is not the total word but single characters. Each word

from the training data is entered into the window one character at a time. The inputted

training word enters the system and moves through the seven windows one character at a

time. The network’s input is the seven windows. Figure 4-2 shows an example of how

this process takes places.

_ J O N _ I S

J O N _ I S _

O N _ I S _ C

Network Loop 1

Network Loop 2

Network Loop 3

Figure 4-2: Moving Window Example

 30

The output of the network is the phonetic representation of the 4th input window

at any given time. The input and output must be aligned to ensure that the output

represents the correct input window. The output can also be thought of as seven windows

aligned with the seven windows of the input. However, the only output window of

concern is the 4th window. As the input letters move through the seven input windows,

the output phonemes move through the seven output windows. During training, the

network inputs are all seven letters in the input windows, and the network desired output

is the phoneme in the fourth position of the output windows. Figure 4-3 shows an

example of how the output windows work.

_ J O N _ I S

% J AH N % I S

Network Loop 1

J O N _ I S _

J AH N % I S %

Network Loop 1

4th Window
Phonetic Output

Figure 4-3: Moving Window Example

4.2.2 Network Detailed Training Design

The training of the network involves obtaining a word and its phonetic

representation from the training set, placing the word’s first character in the first input

window, calculating the actual output of the seven windows, and updating the weights.

The network then moves the characters throughout the windows until the word ends. If

 31

training is not done, the network retrieves the next word from the training set. Figure 4-4

shows an outline of the training algorithm.

Start Training

Get word from
training set

Last word in
training set?

Training
Data

Maximum
epoch?

yes

End Training

yes

Update weights

Display
training stats

no

no

Calculate actual
output

Find error form
actual output

Figure 4-4: Network Training Flow Chart

The first step of the network is retrieving the input vector from the training data.

However, the network does not start with the first word of the data when training first

begins. Initially, the training network input is set to all silences with the desired output

being a silence. This was performed to simplify the beginning of the training process and

to insure that the network and the output are aligned properly. Figure 4-5 shows the

initial look of the network at the beginning of training.

 32

_ _ _ _ _ _ _

% % % % % % %

Figure 4-5: Initial State of the Network

After the first iteration, the first word is retrieved from the training set. The first letter of

the word is placed in the seven letter window. If the first word is “aardvark”, then the

seven windows would have six silences and one letter after the first iteration. The desired

output would still be a silence. Figure 4-6 shows the seven input windows with the

desired output.

_ _ _ _ _ _ a

% % % % % % ah

Figure 4-6: State of the Network after First Iteration

In order to calculate the actual output of the system, the letters and phonemes

need to be converted to numbers. In this program, each input letter is converted into a

vector. The vector size is the total number of characters used in the network. For the

network, there are 27 characters used for the input, 26 characters that represent the

alphabet and one character that represents a silence. The input vector consists of zeros

and a one. Each input vector is all zeros, with a one located to indicate the letter. For

example, the letter d would be a vector of zeros with a one located at the 4th position of

the vector.

 33

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 24 25 26 27

Figure 4-7: Input Vector for the Letter d

The output vector is very similar to the input vector. The vector size is the total

number of different phonemes used in the network. There are 41 phonemes used, 40 for

sound and one for silence. The ideal output consists of all zeros and a one; therefore, the

network is trained using a desired output vector with all zeros and a one. Each phoneme

has its own location in the output vector. Like the input vector, the one is located where

the phoneme is located in the vector. For example, a desired output phoneme /ah/ would

produce a desired output vector of all zeros and a one placed in the 2nd position of the

vector.

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 38 39 40 41

Figure 4-8: Desired Output Vector /ah/

Once the letters are converted to vectors, the actual output can be calculated.

During training, the output vector is computed using all seven windows. Therefore, the

input used for calculation is a 7*27 long vector with seven ones located throughout the

vector. All the weights of the network, i.e. hidden weights and output weights, are

initially set to random values between -.5 to .5. Using the equations from Section 3.5.1,

the actual output is calculated.

hidden layer vector = 1/(1 + e-Σ(seven window input vector * hidden neurons weights)) (4.10)
actual output vector = 1/(1 + e-Σ(hidden layer vector * output neurons weights)) (4.11)

These equations will produce an output vector output of the network. The actual output

and the error of the actual output are calculated. Weight adjustment occurs after each

 34

loop, i.e. after every single letter of every word in the training set. The weights of the

system are changed using the backward propagation equations described in Section 3.5.2.

output layer weights = Wold output + α ηδ(k+1)m hidden layer ouput (4.12)
hidden layer weights = Wold hidden + ηδkminput vectorm (4.13)

Once the weights are adjusted, the network will retrieve the next letter and desired

output of the word. If there are no letters left in the word, the network will retrieve the

next word from the training set. Once the last letter of the last word is retrieved for the

training set, an epoch has been completed and the average error is calculated and

displayed. The next word entered into the network would then be the first word of the

training set. Training will continue in this manner until the maximum number of epochs

is reached. Once the training is complete, the weights of the network are saved, and the

weight can be used for TTP mapping.

4.2.3 Training Set Detail and Alignment

Training the network involves using real words aligned with their exact

pronunciation phonemes. For example, ‘cat’ or ‘example’ would be aligned with ‘kat’

and ‘eksampul’, respectively. The list of the 41 phonemes used for this system is in

Appendix A. Originally, about 900 words were used from the “Cue Practice With the

1000 Most Common Words” website as training data. However, this amount of data was

not sufficient enough to yield an acceptable performance. The rest of the data was chosen

based on the network performance using www.allwords.com. For example, the network

initially struggled with words beginning with “th”, so about 20 words beginning and

ending with “th” were added to the training data. Appendix C lists the entire training set.

Certain factors need to be accounted for when choosing the training data. The

network input size consists of only seven windows. However, since the words are entered

into the training window one letter at a time, the word size can be any number of

characters. In addition, all words, even the words initially found on the web, need to be

aligned by hand in order to maximize the performance of the system. Figure 4-9 shows

an example of how this alignment is done.

 35

_ D O U B T _

% d ow % % t %

Figure 4-9: Word Alignment

 36

Chapter 5: Automatic Prosody Generation

5.1 Generation of Prosody Overview

Prosody deals with the tone and the timing of speech. In speech synthesis

systems, the most complex problem is the generation of natural sounding prosody. Real

speech often reflects the speaker’s personal knowledge of the audience, the mood and

emotional state, the general knowledge of the world around them, and the reaction from

the audience. With TTS systems, this problem is more complex because the text input is

random. These issues have yet to be resolved by speech synthesis systems. Automatic

prosody generation has to factor in these setbacks and focus on neural language that is

understandable to the audience.

The main focus of this thesis is the automatic generation of prosody. This system

generates two main aspects of prosody: fundamental frequency and segmental duration.

Fundamental frequency is generated using fuzzy logic. The primary focus of this chapter

will be on this aspect of prosody. Segmental duration is determined using rules described

by Klatt [2]. After the network converts the text to phonemes, the system then computes

the prosody of the system. Both the phonemes found by the network and the actual texts

are used to generate prosody. The prosody generator can be thought of as a finite loop,

with information describing each phoneme used to produce both duration and

fundamental frequency. The first step of prosody generation is segmental duration.

User Input
Text

Convert Text
to Phonemes

Generate
Prosody

Produce
Speech with
MBROLA

Figure 5-1: System Overview

 37

5.2 Segmental Duration

Segmental duration handles the length of segments within words. These segments

can be either syllables or phonemes. For this system, the focus will be on phoneme

duration. Researchers believe that English phoneme durations are only affected by a few

parameters. In 1979, Dennis Klatt developed rules that governed the durations of

phonemes within words. These rules were used in the aforementioned MITTalk TTS

system [2]. The Klatt Duration Rules are used to generate the segmental duration of this

system.

The original MITalk system was a formant synthesized speech. With formant

synthesizers, certain factors need to be taken into account. Phonemes with different

articulations are handled differently when it comes to duration. For example, the duration

of a fricative is measured by the visible noise. For stops, the duration also includes the

closure [2]. With this TTS system, the speech synthesis is generated using diphone

concatenation. Therefore, these factors are not factored into consideration when

computing the segmental duration.

The Klatt Duration rules were designed to replicate observed duration from a

speaker. There are two main rules that govern the model: segments that are altered by a

percentage using the rules and segments that cannot be shorter than a minimum duration.

Each segment has its own minimum and average duration. The minimum and average

durations for each phoneme used in this system are shown in Appendix B. The formula

used to alter the phoneme duration is:

DURATION = ((AVEDUR-MINDUR)*(PRCNT))/100 + MINDUR (5.1)

The variable AVEDUR is the average duration, and variable MINDUR is the minimum

duration. The Klatt rules work by altering the PRCNT variable. There are a total of 11

Klatt Duration rules. Each rule has a justification on how the rule was created. The rule

formulas were developed through extensive trial and error. The Klatt duration rules are

listed below. These rules are obtained directly from the book, “From Text to Speech: The

MITalk System” [2].

 38

1. Pause insertion Rule
Insert a 200 millisecond pause before each sentence-internal main clause and at
boundaries delimited by a syntactic comma, but not before relative clauses.

2. Clause-final lengthening
The vowel or syllabic consonant in the syllable before a pause is length by
PRCNT = 140.

3. Non-phrase-final shortening
Vowels and syllabic consonants are shortened by PRCNT = 60, if not in the
phrase’s last syllable. A phrase final postvocalic liquid or nasal is lengthened by
PRCNT = 140.

4. Non-word-final shortening
Vowels and syllabic consonants are shortened by PRCNT =85, if not in the
word’s last syllable.

5. Polysyllabic shortening
Vowels and syllabic consonants in word with multiple syllables are shortened by
PRCNT = 80.

6. Non-initial-consonant shortening
Consonants are shortened by PRCNT = 85, if not in the word’s initial position.

7. Non-phrase-final shortening
Vowels and syllabic consonants are shortened by PRCNT = 60, if not in the
phrase’s last syllable. A phrase final postvocalic liquid or nasal is lengthened by
PRCNT = 140.

8. Lengthening for emphasis
Emphasized vowels are lengthened by PRCNT = 140.

9. Postvocalic context of vowels
The consonant after a vowel in the same word influences the length of the vowel.
The list below shows these effects.
• open syllable, final word PRCNT1 = 120
• before a voiced fricative PRCNT1 = 160
• before a voiced plosive PRCNT1 = 120
• before a nasal PRCNT1 = 85
• before a voiced plosive PRCNT1 = 70

10. Shortening Clusters
Segments are shortened in consonant-consonant sequences and in vowel-vowel
sequences.
• vowel followed by a vowel PRCNT1 = 120
• vowel proceeding a vowel PRCNT1 = 70
• consonant surrounded by consonants PRCNT1 = 50
• consonant proceeding a consonant PRCNT1 = 70
• consonant followed by a consonant PRCNT1 = 70

11. Lengthening due to plosives aspirations
A primary or secondary stressed vowel or sonorant preceded by a voiceless
plosive is lengthened by 25 milliseconds.

 39

5.3 Stress Assignment

One of the most crucial components of generating automatic prosody is stress

assignment. Stress assignment is placing lexical stresses on the proper syllable. All

stresses are placed on vowels. With TTS synthesis this can be very complicated. Since

the input is random, the words are random. Therefore, a stress assignment algorithm

needs to be implemented that is both automatic and flexible. The stress assignment

algorithm used for this system is the rule-based system used in the MITalk. Those rules

were based on the Halle and Keyer lexical stress rules developed in 1971 [2].

 The rules are based upon phonetic input without regard to part-of-speech.

Stresses are placed on individual words independently. There are three levels of stress; 0-

stress, 1-stress, and 2-stress. The 1-stress represents the primary stress in a word and the

2-stress represents lesser stresses. 0-stress represents no stress. The stress rules have two

different phases. The first phase is called the cyclic and is committed to placing primary

stresses on the word. There are three rules in the cyclic phase. The first rule in the cyclic

phase is the main stress rule, and the other two rules are exceptions to the first rule. The

second phase is called the non-cyclic phase and includes the application of the entire

word of rules. The non-cyclic phase reduces the final word to just one 1-stress mark and

turns the rest of the primary marks into 2-stress marks [2].

5.4 Fuzzy Fundamental Frequency

Fundamental frequency is a vital part of the naturalness of any TTS system. This

frequency, sometimes called f0 frequency, produces the tone of speech. An example of

fundamental frequency can be heard in the difference between a male and a female voice.

Male voices exude a lower overall fundamental frequency while female voices typically

have a higher overall fundamental frequency. Fundamental frequency can be generated

in many ways for TTS systems. Most systems today generate fundamental frequency

using unit selection synthesis together with pre-recorded units (sounds). These pre-

recorded sounds contain natural frequency fundamentals. Other methods used to generate

frequency fundamentals are rule-based and neural network approaches.

 40

The fundamental frequency of this TTS system is generated using the flexibility

of fuzzy logic. Fuzzy logic can be used to control complicated problems. The generation

of fundamental frequency for TTS systems is a very complex problem for many reasons.

For example, the user’s input needs to be thought of as random; therefore, the system

must be flexible. Also, the fundamental frequency in speech is different for every

sentence, and many factors control this overall curve. Fuzzy logic can be a solution to

the fundamental frequency problem by using a small set of rules. The rules are

constructed based upon the fundamental frequency algorithm used in the MITalk system,

the O’Shaughnessy algorithm.

5.5 O’Shaughnessy Algorithm

The O’Shaughnessy fundamental frequency algorithm was used in the MITalk

system to generate fundamental frequency. The result of the algorithm is a fundamental

frequency curve throughout the sentence. This curve is called the f0 contour. This

algorithm is detailed in the book, “From Text to Speech: The MITalk System” [2]. The

algorithm has two main levels, high and low, which work as two different systems. The

first level is the high level. This level generates an outline of how the overall f0 contour

should be shaped. The high level of this algorithm takes grammatical information about

the sentence and builds a basic contour of the system. The f0 contour in the high level is

augmented using four factors: sentence type, phrase contour, word contour, and prosodic

indicators [2].

The first factor, sentence type, is determined by the first word and punctuation of

the sentence. For example, the endings of questions are indicated by question marks and

the endings of statements are indicated by commas or periods. There are three tunes that

represent three types of sentences: declarative sentences, yes/no question and “wh”

questions. These three tunes determine the f0 contour trend of the sentence. Every tune

has a downward linear trend throughout the sentence [2]. Figure 5-2 shows this trend.

 41

Time

Declination
Line

Declination
Line

f0 Peak
f0

Figure 5-2: Downward Linear Trend

Tune A, which deals with declarative sentences, causes the f0 contour to fall linearly

throughout the sentence with the sharp decline at the end of the sentence or phrase. Tune

B manages yes/no questions. Tune B sentences have an initial rise to the f0 contour,

followed by a flat contour with a final sharp rise. The final tune, which handles “wh”

questions, starts with a high peak on the “wh” word, followed by a steep fall and a high

rise at the end of the sentence [2].

The second factor of the algorithm contends with the phrase contour of the

sentence. The different phrases of a sentence can be determined with many different

algorithms. Each phrase must have two or more content words to be affected by this

factor. At the beginning of each phrase, the f0 curve rises sharply on the first content

word. At the end of each phrase, the f0 curve falls on the final content word.

The third factor handles the individual words in a sentence. Within each word,

the f0 contour fluctuates. This third factor determines the amount of change within each

word. The amount of change is correlated with the importance of the word and the

amount of syllables in the word [2]. Words that are more important and have a great deal

of syllables contain the most f0 changes. Table 5-1 shows the importance of these words.

 42

Table 5-1: Word Importance
Level Part of Speech

0 article
1 conjunction, relative pronoun
2 preposition, auxiliary verb
3 personal pronoun
6 verb, demonstrative pronoun
7 noun, adjective, adverb, contraction
8 reflexive pronoun
9 stressable modal
10 quantifier
11 interrogative adjective
12 negative element
14 sentential adverb

 The prosodic indicator assignment is the last factor of the high level part of the

algorithm. First, accent numbers are given to each accent in the sentence. The number

depends on the size and importance of the word. Then an integer that represents the word

position is placed on each word. Words at phrase boundary positions are given larger

integer values than words that are in the middle of the phrase. The high level part of the

algorithm combines all of these factors to form the outline of the sentence f0 contour. The

high level then becomes the input to the low level component of the algorithm [2].

The low level of the O’Shaughnessy algorithm sculpts the details of the final f0

contour. In the low level, the f0 contour is affected by the number of syllables in

combination with the lexical stress. The importance of the word affects the height of the

stressed peak. More important words have higher peaks on their stresses. The amount of

syllables directly influences the fundamental frequency of the sentence. The first and

highest peak should have an f0 contour of about 190 Hz. However, larger sentences with

more syllables have a higher starting peak frequency, and smaller sentences with fewer

syllables have a lower starting peak frequency. The number of syllables between stressed

syllables also affects the height and outer shape of a peak. Stressed peaks separated by

two or three syllables have their peak height decreased by 15% and 20%. Stressed peaks

separated by two, three, or four syllables have their peak rise increased by 15%, 20%, and

30%, respectively. Stressed peaks that are adjacent have their peak rises decreased by

40%. All other peaks maintain their heights and are shaped by a default rise [2].

 43

5.6 Fuzzy System Inputs and Consequence

The fuzzy system is developed to model the O’Shaughnessy algorithm using a

fuzzy interference system. The inputs to the fuzzy system are the phonemes’ linguistic

data. The output of the fuzzy system is the fundamental frequency. The system consists

of four inputs and one output. The inputs are: word importance, sentence size, position in

sentence, and distance from stress. Each input has three linguistic variables and the

output has seven linguistic variables. Using a system similar to the system described in

4.3.2, the fundamental frequency can be computed for any given sentence.

5.6.1 Word Importance

The inputs to the fuzzy system are formulated from the main parts of the

O’Shaughnessy algorithm. The first input is the importance of the word. This input

comes from the word importance of the O’Shaughnessy algorithm. The O’Shaughnessy

algorithm places importance on words based on part-of-speech. There are two types of

words this system takes into consideration, function words and content words. Content

words have more importance than function words, with articles having the least

importance. The system calculates the importance of the word based on the size of the

word and the type of word. The calculation yields a number between 0 and 10; therefore,

the fuzzy input consists of a number range between 0 and 10. The Word Importance input

has three linguistic variables for this input: useless, semi-important, and important.

Figure 5-3 shows the membership functions of the Word Importance input.

1

semi-important important

Word Importance

useless

Figure 5-3: Word Importance Input Membership Functions

 44

5.6.2 Sentence Size

The second input to the fuzzy system is the sentence size. In the O’Shaughnessy

algorithm, peak size is correlated with the length of the sentence. According to the

algorithm, smaller sentences, i.e., sentences with fewer syllables have smaller

fundamental frequency peaks. Larger sentences have much larger fundamental frequency

peaks. The input is divided into three linguistic variables: small, medium, and large. The

sentence size is determined by the number of syllables multiplied by an offset.

Size = (number of phonemes) * offset (5.2)
offset = .5

The input range values are from 0 to 10. Any size that is greater than 10 is considered to

be equal to 10 by the system.

1

medium large

Sentence Size

small

Figure 5-4: Sentence Size Input Membership Functions

5.6.3 Sentence Position

The third input is the position in the sentence. The position in the sentence deals

with the word, not the phoneme. Sentence position is calculated using the following

equation:

Position = (word location in sentence / total number of words)*10 (5.3)

 45

The location of the word in the sentence is a very important aspect of the O’Shaughnessy

algorithm. As described in Section 5.5, each tune’s fundamental frequency contour

differs throughout the sentence. Therefore, the location of the phoneme or word

determines the frequency contour depending on the type of tune. For example with tune

B sentences (yes/no questions), at the end of the sentence, the fundamental frequency

increases sharply. Like the previous inputs to the fuzzy system, the Sentence Position

input has three linguistic variables and a number range between 0 and 10. The input

variables are start, middle, and end. Figure 5-5 shows the membership functions for the

Sentence Position input.

1

middle end

Sentence Position

start

Figure 5-5: Sentence Position Input Membership Functions

5.6.4 Stress Distance

The final input to the fuzzy system is the phoneme distance from the stress. The

O’Shaughnessy algorithm places peaks on primary stresses in sentences. The

fundamental frequency of phonemes around these stresses is also altered. Peak size

depends on the location, sentence type, and importance of the word. Stress distance is

calculated using the closest, right-hand, most stress within the word. If a phoneme is

stressed, its distance value is “dead-on”. Stressed phonemes equal the maximum.

Phonemes inside of a word without a stress are assigned a zero. The fuzzy input ranges

from 0 to 10. If the phoneme is not stressed and the word contains a stress, the distance

is calculated using the formulas:

stress distance = ((stress location – phoneme location)+1)*offset (5.4)
offset = 10/(length of the word) (5.5)

 46

1

near dead-on

Stress Distance

far

Figure 5-6: Stress Distance Input Membership Functions

5.6.5 Consequence

 The consequence (output) of the system is the fundamental frequency. The

consequence of the fuzzy system has seven linguistic variables. These variables represent

the peak of the fundamental frequency. These peaks range from negligible to large.

These rule consequences are constructed following the O’Shaughnessy algorithm’s peak

alterations.

1
Fundamental Frequency

low mid-low mid mid-high high peak zero

Figure 5-7: Consequence Membership Functions

5.7 Fuzzy System Rules

The rules of this system are designed to follow the overall idea of the

O’Shaughnessy algorithm. The O’Shaughnessy algorithm is very specific on the shapes

of each individual peak. However, these rules create an overall contour of the sentence,

 47

which follows the O’Shaughnessy algorithm. The rules are divided into three categories:

declarative sentences, yes/no questions, and interrogative questions. To simplify each

rule set, the rules are divided by location within the sentence. This made it easy to edit,

delete, or add rules. Since there are four inputs to the system, there are over 50 rules.

This adds the proper detail and improves the flexibility of the fuzzy system.

5.7.1 Declarative Sentence

As described in the O’Shaughnessy algorithm, declarative sentences are

characterized by the f0 contour falling linearly with a sharp decline at the end of the

sentence or phrase. Peaks within the sentence are altered, considering their location in

the sentence. Declarative sentences do not have dramatic f0 contour changes inside the

middle of the sentence. Therefore, syllables and word importance should produce subtle

changes. With declarative sentences, the final fall should be located after the last

accented syllable [2].

Beginning of Sentence Rules

• IF the word is useless AND position in sentence at the beginning THEN output is
low.

• IF the word is semi-important AND position in sentence at the beginning THEN
output is mid-low.

• IF the word is semi-important AND sentence size is large AND position in
sentence at the beginning THEN output is mid.

• IF sentence size is small AND position in sentence at the beginning AND the
stress is dead-on THEN output is high.

• IF position in sentence at the beginning AND the stress is dead-on THEN output
is peak.

• IF sentence size is small AND position in sentence at the beginning THEN output
is mid.

Middle of Sentence Rules

• IF the word is useless AND position in sentence at the middle THEN output is
low.

• IF the word is useless AND sentence size is large AND position in sentence at the
middle THEN output is mid-low.

• IF the word is semi-important AND position in sentence at the middle THEN
output is mid-low.

• IF the word is semi-important AND sentence size is large AND position in
sentence at the middle AND the stress is dead-on THEN output is mid.

 48

• IF position in sentence at the middle AND the stress is dead-on THEN output is
mid-high.

• IF sentence size is medium AND position in sentence at the middle THEN output
is mid.

End of Sentence Rules

• IF sentence is at the end AND the stress is far THEN output is mid-low.
• IF sentence is at the end AND the stress is near THEN output is zero.
• IF sentence size is middle AND sentence at the end THEN output is mid-low.
• IF word is useless AND sentence is at the end THEN output is zero.

5.7.2 Yes/no Question

Yes/no questions are questions that can be answered with either a “yes” or a “no”. These

questions do not begin with “who”, “what”, “where”, “when”, “why”, or “how”. The

overall f0 contour of these questions begins with a rise, followed by a flat contour, and

then ending with a final sharp rise [2].

Beginning of Sentence Rules

• IF the word is useless AND position in sentence at the beginning THEN output is
mid-low.

• IF the word is semi-important AND position in sentence at the beginning THEN
output is mid.

• IF the word is semi-important AND sentence size is large AND position in
sentence at the beginning THEN output is mid-low.

• IF position in sentence at the beginning AND the stress is near THEN output is
mid-high.

• IF position in sentence at the beginning AND the stress is dead-on THEN output
is mid-high.

Middle of Sentence Rules

• IF the word is useless AND position in sentence at the middle THEN output is
mid-low.

• IF the word is useless AND sentence size is large AND position in sentence at the
middle THEN output is low.

• IF the word is semi-important AND position in sentence at the middle THEN
output is mid-low.

• IF the word is important AND position in sentence at the middle AND the stress
is dead-on THEN output is mid-high.

• IF position in sentence at the middle AND the stress is dead-on THEN output is
mid.

 49

• IF sentence size is medium AND position in sentence at the middle THEN output
is mid.

• IF sentence size is large AND position in sentence at the middle THEN output is
mid-low.

End of Sentence Rules

• IF sentence is at the end AND the stress is far THEN output is high.
• IF sentence is at the end AND the stress is near THEN output is mid-high.
• IF sentence size is large AND sentence at the end AND the stress is dead-on

THEN output is high.
• IF word is useless AND sentence is at the end AND the stress is near THEN

output is mid-high.
• IF word is important AND sentence is at the end AND the stress is dead-on

THEN output is high.

5.7.3 Interrogative Question

Interrogative questions are questions that are answered with more than just a

“yes” or “no”. These sentences begin with either “who”, “what”, “where”, “when”,

“why”, or “how”. Overall, the f0 contour should initially be high with the final steep fall.

The fall of the interrogative question should be much steeper than the fall of the

declarative sentence. According to the O’Shaughnessy algorithm, the peaks throughout

the sentence should be much higher and the overall contour should be higher than the

declarative sentence contour. Syllables and word importance should produce change near

accents [2].

Beginning of Sentence Rules

• IF position in sentence at the beginning THEN output is mid-low.
• IF the word is important AND position in sentence at the beginning THEN output

is mid.
• IF the word is semi-important AND sentence size is large AND position in

sentence at the beginning THEN output is mid.
• IF sentence size is small AND position in sentence at the beginning AND the

stress is dead-on THEN output is mid.
• IF position in sentence at the beginning AND the stress is dead-on THEN output

is mid-high.
• IF sentence size is small AND position in sentence at the beginning THEN output

is mid-low.

 50

Middle of Sentence Rules

• IF the word is useless AND position in sentence at the middle THEN output is
mid.

• IF the word is useless AND sentence size is large AND position in sentence at the
middle THEN output is mid-low.

• IF the word is semi-important AND sentence size is large AND position in
sentence at the middle AND the stress is dead-on THEN output is mid-high.

• IF position in sentence at the middle AND the stress is dead-on THEN output is
mid-high.

• IF sentence size is medium AND position in sentence at the middle THEN output
is mid.

• IF the word is important AND position in sentence at the middle AND the stress
is near THEN output is mid-high.

• IF sentence size is medium AND position in sentence at the middle AND the
stress is near THEN output is high.

• IF sentence size is medium AND position in sentence at the middle THEN output
is mid-low.

End of Sentence Rules

• IF sentence is at the end AND the stress is dead-on THEN output is mid-low.
• IF sentence is at the end AND the stress is near THEN output is zero.
• IF sentence size is medium AND sentence at the end THEN output is low.
• IF word is useless AND sentence is at the end THEN output is zero.

5.8 Fuzzy Output Calculation

In a fuzzy system, the output is calculated using the rules, the membership

functions, and the inputs. Each input parameter value is calculated using the formulas in

Section 5.6. The firing strength of each input is determined by the membership functions.

Figure 5-8 shows an example of the Word Importance input with a calculated input of 6.

 51

1

0

semi
important

Word Importance

useless

10 5

6

.7

.3

Figure 5-8: Example of Word Importance with Calculated Input of 6

The firing strength of each membership function is shown in Figure 5-8. The

membership function “semi” and “important” have a firing strength of .7 and .3,

respectively. The “useless” membership function has a firing strength of 0 because the

input value does not touch the membership function. The rules of the fuzzy system are

used to compute the consequence of the inputs presented to the system. For example, if a

rule stated,” IF word important is semi-important AND … “, then for an input value of 6

on input Word Importance, the firing strength onto that rule would be .7. The operators

then determine the effects of the input onto the consequence membership function. The

AND operates equals the minimum value and the OR operator equals the maximum

value. Figure 5-9 shows an example of how an input to the fuzzy system determines the

consequence. For simplicity, there are only two rules and the consequence only has three

membership functions. The rules in Figure 5-9 are:

• IF word is importance AND sentence at the end THEN fundamental

frequency is high.
• IF word is semi-importance AND sentence at the middle THEN fundamental

frequency is middle.

 52

Figure 5-9: Firing Strength of Input onto Rules

he consequences are then combined to produce a final shape. The crisp output of the

T
fuzzy system is calculated by finding the centroid of the final shape.

Figure 5-10: Final Shape and Centroid

1 1 1

1
1 1

AND

AND

important end high

Word Importance Word Position Fundamental Freq.

semi-important middle medium

8 7
1

Final Output
● Crisp Output

1 1 1

1
1 1

AND

AND

important end high

Word Importance Word Position Fundamental Freq.

semi-important middle medium

8 7

 53

5.9 Final Speech Production

Once the network is trained and the prosody is calculated, the MBROLA program

is used to produce the final speech output. As discussed briefly in Section 3.3, the

MBROLA program creates speech using diphone concatenation. This program was

developed by the TCTS Lab of the Faculté Polytechnique de Mons in Belgium and was

created for use by researchers [15]. The advantage of using the MBROLA program is its

ease of use. The only input needed to produce speech is phonemes and durations. Users

of MBROLA do not need any knowledge of diphone concatenation algorithms; the

program automatically converts the user phonemes to diphones.

The trained hidden and output weights are stored in a MATLAB *.mat file. The

TTP conversion is accomplished using the trained weights and formulas. The output is

computed using the formulas used to calculate the actual output during training as

described in Section 4.2.1.

hidden layer outputs = 1/(1 + e-Σ(input vector * hidden neurons weights)) (5.6)
actual output = 1/(1 + e-Σ(hidden layer outputs * output neurons weights)) (5.7)

The actual output of the system will be a 41 element long vector. The ideal output would

be all zeros and a one; however, since the network is not ideal, the maximum of the

output needs to be determined. This maximum value of the vector is the output phoneme

produced by the network from the text.

When text is entered into the system, the fuzzy controller and the Klatt duration

rules compute the prosody of the system. Next, the symbols are converted to the

MBROLA symbols. The phonemes, duration, and fundamental frequency values are

written to output.pho file. Pho files are the files used by MBROLA to convert phonemes

to sounds. The output.pho file is opened and the speech is converted into sound file. See

Appendix for more detail on the MBROLA system.

 54

Figure 5-11: MBROLA *.pho file

 55

Chapter 6: Results

6.1 Text-to-Phoneme Results

Neural networks are used in TTS applications in many different ways. Current

research focuses on the use of neural networks to produce prosody. This thesis uses

neural networks for TTP mapping. Current neural network TTP mapping techniques yield

about an 80% accuracy [7]. The performance of the neural network algorithm in this

system is determined by the amount of accurate phonemes the network identifies. Two

types of tests are performed to determine the performance of the algorithm used. The first

test calculates the performance using the full training set. The second test uses words that

were not in the training set. Performance was measured by the percentage of correct

phonetic conversions. Figure 6-1, shows the convergence of the networks. The number

of hidden neurons is correlated to the network’s convergence. However, after 50 hidden

neurons, the network convergance doesn’t change much.

 56

Figure 6-1: Network Convergence

In the first test, network performance is computed by calculating the percentage

of correct phonemes determined by the weights on the entire training set. Five different

types of trained weights were tested for overall accuracy. The hidden neurons are

different for the trained weights sets. The overall performance of the network did change

with an increase in the hidden neurons. The maximum accuracy is about 80%. The

networks were trained on an Intel Pentium 4 2.80 GHz computer. Table 6-1 shows the

overall accuracy and training results for each network tested.

Table 6-1: First Test Results
Network TTP

Accuracy (%)
Training Time
(P4 2.80GHz)

Epochs Hidden Nodes

1 66.93 15 min 10s 75 20
2 68.81 19 min 30s 75 30
3 72.45 22 min 59s 75 40
4 75.77 25 min 13s 75 50
5 80.16 35 min 46s 75 75

 57

In the second test, network performance is computed by calculating the

percentage of correct phonemes calculated on 100 random unknown words (i.e., words

that were not in the training set). The same trained weights were tested for overall

accuracy. The overall performance, shown in Table 6-2, is about 67%, which is lower

than the performance in the first test. The performance is lower in the second test

because of the rule expectations in the English language. For example, the word “vice” is

pronounced with a /ie/ phoneme for the “i”. But the “i” in the word “service” is

pronounced with a /uh/ phoneme. Consequently, the network does not catch expectations

and hence the performance is lower with unknown text.

Table 6-2: Second Test Results
Network TTP

Accuracy (%)
1 62.78
2 63.09
3 63.59
4 67.12
5 67.52

Overall, these tests show that the network is about 80% accurate on the training

data. When data not in the training set is introduced, the network performs around 67%

accuracy. When testing the TTS system manually, the text-to-phoneme conversion

accuracy is good with some minor faults. The TTP errors of the system might go

unnoticed to the user. For example, if the correct (trained) phonetic representation of the

word “the” is “\th\ \u\” and the system produces “\th\ \ee\”, the user will not notice the

incorrect TTP conversion. On the whole, this network is accurate enough to produce the

correct text-to-phoneme conversion without many major errors.

6.2 Fuzzy Fundamental Frequency Results

Testing the fuzzy system can be complicated. Comparing the sound of the speech

produced by the system is somewhat subjective. However, the research objective was to

make to the synthesized speech sound more natural using fuzzy logic. Therefore, the

fuzzy controller was tested by evaluating the f0 contour produced by the fuzzy system.

Two types of tests were used to evaluate the fuzzy system. In the first test, the f0 contour

 58

produced by the system was analyzed to see if it was producing a natural looking f0

contour trend. With speech, only voiced sounds create fundamental frequency.

Therefore, some phonemes will not have fundamental frequency. The fuzzy system was

tested by evaluating the three different sentences types. Figure 6-2, 6-3, and 6-4 show the

output produced by the system for a declarative sentence, an interrogative question, and a

yes/no question, respectively. The sentences are, “My name is Jonathan Williams”,

“What time is the thesis defense?”, and “Is it going to rain at noon?" All three f0

contours produced by the fuzzy system are the accurate f0 trends.

Figure 6-2: Declarative Sentence - “My name is Jonathan Williams”

 59

Figure 6-3: Interrogative Question - “What time is the thesis defense?”

Figure 6-4: Yes/no Question - “Is it going to rain at noon?"

The second test involves viewing the f0 output produced by the fuzzy system with

the f0 output of a high quality system. The purpose is to further prove that the fuzzy

system’s f0 contours are natural looking. It would be impossible to make a comparison

 60

between both systems, since they are completely different systems. The other f0 contour

is the Microsoft Research Speech Technology Asia (MRSA) on-line TTS system, which

is one of the best unit-selection based TTS systems [37]. The MRSA system’s output f0

contour is determined using the MBROLIGN program. The MBROLIGN program is a

tool that aligns phonetic transcripts with a speech signal. MBROLIGN then calculates

the f0 contour of the speech signal. Using the same sentences, three f0 contours produced

by the fuzzy system are graphed with the f0 contours of the MSRA system. The sentence

types are declarative sentence, interrogative question, and yes/no question. The following

figures show the f0 contour produced by both systems. The sentences are, “My name is

Jonathan”, “What time is it?” and, “Is it raining today?”

The f0 contour of declarative sentences should be high at the beginning of the

sentence and then drop at the end of the sentence. Peaks are on the primary stresses of

the stressed syllables. The peak sizes decrease linearly throughout the sentence. For the

f0 contours below, both systems produce a downward linear f0 contour trend with a drop

at the end of the sentence. Both systems also produce peaks on the stressed words within

the sentence.

Figure 6-5: F0 Contours for Declarative Sentence, “My name is Jonathan.”

The interrogative question f0 contour is similar to the declarative sentence f0

contour because both contours fall at the end of the sentence. The interrogative question

 61

should initially be high with a very sharp drop after the last stress. There should also be

peaks around the stresses and the highest peak should be on the first word of the question.

These peaks do not fall linearly like the declarative sentence. In the figure below, both

contours follow this trend. The fuzzy f0 contour peaks on the initial words in the

sentence. Then the fuzzy system’s f0 contour sharply falls at the end of the sentence.

Figure 6-6: F0 Contours for Interrogative Question, “What time is it?”

The yes/no question f0 contour should be relatively low at the beginning with a

sharp rise at the end. The peaks throughout the question are smaller compared to the

final rise. The graph below shows that the fuzzy f0 contour raises at the end the sentence.

The fuzzy controller also has peaks in the middle of the sentence.

 62

Figure 6-7: F0 Contour Comparison for Yes/no Question, “Is it raining today?”

 63

Chapter 7: Conclusion

7.1 Summary and Conclusion

The goal was to build a TTS system with fuzzy logic controlling the fundamental

frequency of the speech. First, a neural network based on the NetTalk network was

trained to convert text into phonemes. The training set contained 1800 words with their

phonetic transcription. The Back Propagation algorithm was used to train a three layer

network. Then stress was assigned using the Halle and Keyer lexical stress rules. Next,

segmental duration was calculated using the Klatt duration rules which were designed to

replicate observed segmental durations from a speaker. A fuzzy inference system was

built to control the fundamental frequency of the speech output. The inputs to the fuzzy

controller were word importance, sentence size, stress location, and sentence position.

The output was the fundamental frequency. The system had three sets of rules for three

types of sentences: declarative sentence, interrogative question, and yes/no question.

Finally, the phonemes and calculated prosodic information was set to the MBROLA

program to produce the final speech.

The contribution to this thesis is the idea of using a fuzzy controller to control

fundamental frequency. No publications on using fuzzy logic to control fundamental

frequency were found. The fuzzy controller generates the expected f0 contour for each of

the three sentence types. Thus, the system produces more natural sounding speech. Since

evaluating the speech produced by the system is subjective, the f0 contour is compared to

a high quality TTS system’s f0 contour. In comparison, the fuzzy system produces

similar f0 trends compared to the high quality TTS system. However, there are many

improvements that can be made to the fuzzy fundamental frequency controller.

Overall, the final speech produced by the TTS system sounds more natural. The

speech is very understandable and the user can hear the intonation. The purpose of this

thesis was to explore the possibilities of using fuzzy logic for automatic prosodic control.

This thesis proves that fuzzy logic can a make low memory method of speech synthesis

sound more natural. Currently, unit selection is the best sounding speech synthesis

method. However, the speech databases must be segmented and the speech databases

 64

sizes are measured in gigabytes. Compared to unit selection-based synthesis, the diphone

database does not need to be segmented and the speech database requires a small amount

of memory. Using the MBROLA diphone concatenation program, the total program size

is under 8 MB. The TTS system itself is less than a megabyte in size and the diphone

database is only 6.75MB. With further research, fuzzy logic controlled speech could be

the preferred speech synthesis method for our shrinking electronics.

7.2 Future Work

The neural network text to phoneme conversion accuracy needs to improve.

Currently, the Back Propagation algorithm yields the best correctness. Different methods

like Bi-Direction Recurrent Networks (BRNN) and Self-Organizing Maps (SOM)

produce about 70% TTP conversion accuracy [7]. Performance can be improved in

many ways. One way to improve network performance is to increase the size of the

training set. The results showed that the network produces 80% accuracy on known text

and about 70% accuracy of unknown text. Therefore, minimizing the amount of

unknown text during training would yield better results. However, the algorithm would

still produce errors. Improvements to the Back Propagation method or other machine

learning methods need to be further researched in order for machine learning methods to

be comparable to the current technologies. Also, research into error correction after

training would be very beneficial to the acceptance of the machine learning method.

Improvements to certain components of the TTS system would produce more

natural-sounding speech. The stress assignment algorithm can be greatly improved. The

current stress assignment method does not assign stress with complete accuracy.

Improvements to the system stress algorithm would improve the prosody and naturalness

of the speech output. A part-of-speech parser also needs to be added to the system. The

current TTS system only handles two types of words: function and content. Assigning

word importance based on the part-of-speech would also improve the speech output.

Although the fuzzy controller works adequately, the fuzzy system needs

improvements. One improvement can be on the actual rules of the fuzzy system.

Decreasing the amount of rules could improve the speed, since the system computation

requirements would decrease. The system currently has over 50 rules. Another

 65

improvement can be on the composition of the rules. There needs to be research into

designing expert rules for a fuzzy system controlling prosody. If more research went into

creating expert fuzzy prosodic rules, a fuzzy system could control fundamental frequency

and other aspects of prosody, like segmental duration and stress assignment. The

membership functions may not be optimized in the fuzzy system. Research into different

types of membership function could also produce more natural sounding speech. The use

of different types of membership functions or the use of ANFIS could improve the fuzzy

system.

 66

References

1. Adamson, M. J., and Robert I. Damper. "A Recurrent Network that Learns to
Pronounce English Text", ICSLP-1996, (1996), 1704-1707.

2. Allen, John, Hunnicutt, Sharon, and Dennis Klatt. From Text To Speech, The

MITTALK System. Cambridge: Cambridge University Press, 1987.

3. Anderson, Mark, and Janet Pierrehumbert. “Synthesis by Rule of English
Intonation”, Proceedings of the International Conference on Acoustic, Speech
and Signal Processing 84, (1984), 281-284.

4. Arcieniegas, Fabio and Mark J. Embrechts. “Text-To-Speech Conversion with

Staged Neural Networks”, Intelligent Engineering Systems through Artificial
Neural Networks: Smart Engineering System Design: Vol. 10, C. H. Dagli et
al., eds., ASME Press, (2000), 733-738.

5. “AT&T Natural Voices – Home Page.” 2002.

http://www.naturalvoices.att.com/ (4/13/2005).

6. Beatrice, Enikö, Astola, Jaakko, and Jukka Saarinen. “Recurrent Neural
Network with Both Side Context Dependence for Text-To-Phoneme
Mapping“, Proceedings of the IEEE First International Symposium on
Control, Communications, and Signal Processing, ISCCSP 2004, Hammamet,
Tunisia, March, (2004).

7. Bilcu, Beatrice, Salmela, Janne, and Jaarinen Saarinen. “Application of the

Neural Networks for Text-to-phoneme Mapping”, Proceedings of XI
European Signal and Image Processing Conference, EUSIPCO 2002,
Toulouse, France, September, (2002), 892-896.

8. Black, A., and P. Taylor. The Festival Speech Synthesis System: system

documentation, Human Communications Research Centre, University of
Edinburgh, Scotland, January 1997.

9. Brule, James F. “Fuzzy Systems – A Tutorial.” 1999.

www.austinlinks.com/Fuzzy/tutorial.html/ (6/1/2005).

10. Buhmann, Jeska, Vereecken, Halewijn, Fackrell, Justin, Martens, Jean-Pierre
and Bert van Coile. "Data driven intonation modelling of 6 languages",
ICSLP-2000, vol.3, 179-182 (2000).

11. Campbell, W.N. “Syllable-based segmental duration”, Talking Machines:

Theories, Models and Designs, Amsterdam: Elsevier Science Publishers, 211-
224

 67

12. Damper, Robert I., and Y. Marchand. "Improving Pronunciation by Analogy

for Text-to-Speech Applications", SSW3-1998, (1998), 65-70.

13. Dedina, M. J., and H. C. Nusbaum. “PRONOUNCE: A program for
pronunciation by analogy”, Computer Speech and Language, 5(1):55–64,
(1991).

14. Dusterhoff, Kurt E., Black, Alan W. and Paul A. Taylor. “Using Decision

Trees within the Tilt Intonation Model to Predict F0 Contours”, Eurospeech
99, (1999).

15. Dutoit, T., and H. Leich. "MBR-PSOLA: Text-To-Speech Synthesis Based on

an MBE Re-Synthesis of the Segments Database", Speech Communication,
Elsevier Publisher, vol. 13, no. 3-4 (1993).

16. Dutoit, T., An Introduction to Text-To-Speech Synthesis¸ Kluwer Academic

Publishers, 1996.

17. Fujsaki, H. “The Role of Quantitative Modeling in the Study of Intonation” ,
Proceedings of the International Symposium on Japanese Prosody, (1992),
163-174

18. Gubbins, P.R., Curtis, K.M., and J.D. Burniston. “A Hybrid Neural

Network/Rule Based Architecture Used as a Text to Phoneme Transcriber”,
Proc. International Symposium on Speech, Image Processing and Neural
Networks (ISSIPNN’94), Hong Kong, April, (1994), 113-116.

19. Hemming, Cecilia. Department of Languages, University College of Skövde

Swedish National Graduate School of Language Technology. "Using Neural
Networks in Linguistic Resources" 2002.
http://www.hemming.se/gslt/LingRes/NeuralNetworks.htm/ (4/19/2005).

20. Klatt, Dennis. “Linguist Use of Segmental Duration in English: Acoustic and

Perceptual Evidence”, Journal of the Acoustical Society of America, 59, vol.
3, 1208-1221, (1976).

21. Klatt, Dennis. “Review of Text-to-Speech Conversion for English”, Journal

of the Acoustical Society of America, 82, vol. 3, 737-793, (1987).

22. Klatt, Dennis. “The Klattalk Text-to-Speech Conversion System”,
Proceedings of ICASSP 82, (1982), 1589-1592.

23. Mattingly, I. G. "Speech Synthesis for Phonetic and Phonological Models",

T.A. Sebeok (Ed.) Current Trends in Linguistics, vol 12, Linguistics and
Adjacent Arts and Sciences, vol. 4, Mouton: The Hague. 2451-2487, (1974).

 68

24. McCulloch, N., Bedworth, M., and J. Bridle. “NETspeak – A Re-

implementation of NETtalk”, Computer Speech and Language, vol. 2, 284-
301, (1987).

25. Nakajima, S. and H. Hamada. "Automatic Generation of Synthesis Units

Based on Context oriented Clustering," Proc. ICASSP-88, (1987).

26. Öhman, S. “Word and Sentence Intonation: a Quantitative Model”, K.T.H.
Quarterly Progress Report, vol. 2, 25-54, (1969).

27. Olive, J. P. and N. Spickenagel. “Speech Resynthesis from Phoneme-related

Parameters,'' JASA, vol. 59, no. 4, Apr 1976, 993-996.

28. O'Saughnessy, D. Speech Communication - Human and Machine, Reading,
PA: Addison-Wesley, 1987.

29. “Phoneme.” Encyclopedia on Labor Law Talk [online encyclopedia] (Jelsoft

Enterprises Ltd. 2000); available from http://encyclopedia.laborlawtalk.com/
(7/3/2005).

30. Pierrehumbert, Janet. ‘Synthesizing Intonation”, Journal of the Acoustical

Society of America, vol. 70, no. 4, 1981, 985-995.

31. Taylor, P. “The Tilt Intonation Model”, In R. Mannell and J. Robert-Ribes,
eds, Proc. ICSLP 98, vol. 4, (1998), 1383–1386.

32. Riley, M.D. “Tree-based Modeling for Speech Synthesis”, Talking Machines:

Theories, Models, and Designs, G. Baily and C. Benoit, eds., North Holland,
265-273, (1992).

33. Schroeder, M. “A Brief History of Synthetic Speech”. Speech

Communication, vol. 13, 231-237, (1993).

34. Scordilis, M. and J. Gowdy. “Neural Network Based Generation of
Fundamental Frequency Contours”, IEEE International Conference on
Acoustics, Speech, and Signal Processing, (1989), 219-222.

35. Sejnowski, T. J., and C. R. Rosenberg. “Parallel Network that Learn to

Pronounce English Text,” Complex Systems, vol. 1, no. 1, 145-168, (1987).

36. “Speech Synthesis.” Wikipedia, the Free Encyclopedia [encyclopedia online]
(Wikimedia Foundation, Inc.); available from http://en.wikipedia .org/wiki/.

37. “Speech Technology.” Microsoft Research Speech Technology (Asia). 2005.

http://www.research.microsoft.com/speech/ (7/19/2005).

 69

38. Stacey, Deborah and Steven Kramer. “Artificial Neural Networks: From

McCulloch Pitts to Back Propagation.” Jan. 1999.
http://hebb.cis.uoguelph.ca/~skremer/Teaching/27642/BP/BP.html/
(6/2/2005).

39. Sullivan, K.P., and R.I., Damper. “Novel Word Pronunciation: A Cross-

lallgtlage Study”, Speech Communications, vol. 13, 44l-452, (1993).

40. Tangsangiumvisai, Nisachon. Department of Electrical Engineering,
Chulalongkorn University. “Study of LPC Speech” 2004.
http://www.student.chula.ac.th/~47704705/index.html/ (5/16/05).

41. “Timeline: Digital Computing, DECTalk” Microsoft Research. 21 April 1998.

http://research.microsoft.com/~gbell/Digital/timeline/1983-5.htm (7/15/05).

42. Zadeh, Lofti. “Fuzzy Sets.” Journal of Information and Control 8, 338-353,
(1965).

 70

Appendix A – Phoneme List

Network MBROLA Sound
% _ silence
a { apple
ah A Arthur
aw O all
ay EI able
b b cob
ch tS notch
d d nod
e E else
ee i even
f f for
g g jog
h h harm
i I illness
ie AI island
j Z garage
k k rock
l l doll
m m palm
n n john
ng N bong
oh @U over
oi OI oyster
oo U good
ow aU out
p p drop
r r star
s s boss
sh S wash
t t plot
th T cloth
u @ about
ue u oodles
uh V nut
ur r= her
v v salve
w w show
xh D clothe
y j yacht
z z was
zh s seizure

 71

Appendix B – Phoneme Inherit Duration

Phoneme Minimum(ms) Maximum (ms)
a 80 230
ah 100 240
aw 100 240
ay 70 150
e 100 190
ee 55 155
i 40 135
ie 150 250
oh 80 220
oi 150 280
oo 60 160
ow 100 260
u 60 120
ue 70 210
uh 60 140
ur 80 180
h 20 80
l 40 80
r 30 80
w 60 80
y 40 80
m 60 70
n 50 60
ng 60 95
f 80 100
s 60 105
sh 80 105
th 60 90
v 40 60
xh 30 50
z 40 75
zh 40 70
b 60 85
d 50 75
g 60 80
k 60 80
p 50 90
t 50 75
ch 50 70
j 50 70
% 25 25

 72

Appendix C – Training Set

a /u/ guts /guts/ Renee /rennay/
abbey /abbee/ habits /habits/ reply /riplie/
able /aybul/ hacker /hackur/ report /ripawrt/
about /ubowt/ had /had/ require /rikwier/
above /ubuhv/ hags /hagz/ rest /rest/
abs /abz/ hail /hayl/ result /rizuhlt/
action /akshun/ hair /her/ retch /rech/
add /ad/ half /haf/ return /riturn/
adjoin /adjoin/ hall /hawl/ rich /rich/
advance /udvans/ hallo /hawloh/ riches /richiz/
affix /ufiks/ halo /hayloh/ ridden /ridun/
afraid /ufrayd/ halt /halt/ ride /ried/
after /aftur/ halve /hav/ right /riet/
again /ugen/ hamper /hampur/ ring /ring/
age /ayj/ hand /hand/ rise /riez/
agree /ugree/ handle /handul/ river /rivur/
ahoy /uhoi/ handy /handee/ road /rohd/
air /er/ hang /hang/ rock /rawk/
airplane /erplayn/ happen /hapun/ roll /rohl/
airway /erway/ happy /hapee/ room /ruem/
all /awl/ hard /hahrd/ round /rownd/
alley /alee/ hardly /hawrdlee/ row /roh/
alloy /owlloi/ hardy /hawrdee/ royal /roiyul/
along /ulawng/ hare /her/ ruby /ruebee/
already /awlredi/ has /haz/ ruches /roochiz/
also /awlsoh/ hasty /haystee/ rule /ruel/
although /awlthoh/ hat /hat/ rummy /ruhmee/
always /awlwayz/ hatch /hach/ run /ruhn/
am /am/ have /hav/ rush /ruhsh/
amount /umownt/ he /hee/ rush /rush/
and /and/ head /hed/ rushes /ruhshiz/
anger /anggur/ heal /heel/ rusty /ruhstee/
Anglo /angloh/ health /helxh/ sad /sad/
angry /anggree/ health /helth/ safety /sayftee/
animal /anumul/ heap /heep/ said /sed/
annex /aneks/ hear /hir/ sail /sayl/
annoy /unnoi/ heard /hurd/ salt /sawlt/
anoint /unoint/ heart /hahrt/ same /saym/
anomie /unahmee/ heat /heet/ sandy /sandee/
anomy /unahmee/ heater /heetur/ sashes /sashiz/
another /unuhthur/ heaven /hevun/ sat /sat/
anoxia /anoksu/ heavy /hevee/ Saturday /Saturday/
answer /ansur/ hedge /hej/ save /sayv/
antics /antiks/ height /hiet/ saw /saw/
any /eni/ held /held/ say /say/
apex /aypeks/ hello /heloh/ scene /seen/

 73

appear /upir/ help /help/ school /skuel/
apple /apul/ hem /hem/ sea /see/
April /ayprul/ her /hur/ seat /seet/
arch /arch/ herbs /hurbz/ second /sekund/
are /ahr/ here /hir/ see /see/
arm /ahrm/ heresy /herusee/ seed /seed/
army /ahrmee/ hero /heeroh/ seem /seem/
around /urownd/ hers /hurz/ seen /seen/
array /array/ hey /hay/ self /self/
arrive /uriev/ hey /hay/ sell /sel/
art /art/ hiccup /hikup/ sense /sens/
article /ahrtukul/ hiding /hieding/ sent /sent/
as /az/ high /hie/ separate /seprit/
ash /ash/ hijack /hiejak/ September /septembur/
ashes /ashiz/ hike /hiek/ serve /surv/
ask /ask/ hikes /hiekz/ service /survis/
astray /ustray/ hill /hil/ set /set/
at /at/ him /him/ settle /setul/
attach /uttach/ hinder /hindur/ seven /sevun/
attept /utempt/ hint /hint/ several /sevrul/
August /Awgust/ hip /hip/ shabby /shabbee/
aunt /ant/ hire /hieur/ shade /shayd/
avoid /uvoid/ his /hiz/ shake /shayk/
away /uway/ history /histree/ shall /shal/
ax /aks/ hit /hit/ sham /sham/
axis /aksis/ hoax /hoaks/ shame /shaym/
baby /baybee/ hobble /hawbul/ shape /shayp/
back /bak/ hobby /hahbee/ share /sher/
bad /bad/ hold /hohld/ shark /shahrk/
bag /bag/ hole /hohl/ sharp /shahrp/
balk /bawlk/ holy /hohlee/ shave /shayv/
ball /bawl/ home /hohm/ she /shee/
balmy /bahlmee/ homely /hohmee/ shed /shed/
bangs /bangz/ homy /hohmee/ sheep /sheep/
bank /bangk/ honey /huhnee/ sheer /shir/
banker /bangkur/ hoof /hoof/ sheet /sheet/
barmy /bahrmee/ hook /hook/ shelf /shelf/
bash /bash/ hooks /hooks/ shell /shel/
basket /baskut/ hoops /huepz/ shield /sheeld/
batch /bach/ hope /hohp/ shift /shift/
bath /bath/ horrid /hawrid/ shine /shien/
baths /bathz/ horse /hawrs/ ship /ship/
battle /batul/ hot /haht/ ships /shipz/
batty /batee/ hotty /hawtee/ shirk /shirk/
baulk /bowlk/ hour /owr/ shirt /shurt/
bawdy /bawdee/ hours /owrz/ shit /shit/
bay /bay/ house /hows/ shock /shahk/
bay /bay/ how /how/ shoe /shue/
be /bee/ however /howevur/ shoot /shuet/
bean /been/ hugs /huhgz/ shop /shahp/

 74

beauty /beeuetee/ hulk /hohlk/ shore /shawr/
became /bikaym/ humid /huemid/ short /shawrt/
because /bikawz/ humor /huemawr/ shot /shaht/
become /bikuhm/ hump /huhmp/ should /shood/
bed /bed/ hums /huhmz/ shoulder /shohldur/
beech /beech/ hunch /huhnch/ shout /showt/
been /bin/ hungry /hunggree/ shove /shuhv/
before /bifawr/ hunt /huhnt/ show /shoh/
began /bigan/ hurry /huree/ shower /showur/
begin /bigin/ hurt /hurt/ shown /shohn/
behind /bihiend/ husband /huhzbund/ shred /shred/
being /beeing/ I /ie/ shrill /shril/
believe /bileev/ ice /ies/ shrine /shrien/
bell /bel/ idea /iediu/ shrink /shrink/
belong /bilawng/ if /if/ shrug /shruhg/
below /biloh/ iffy /iffee/ sick /sik/
bends /bendz/ ilk /ilk/ side /sied/
berth /berth/ ill /il/ sight /siet/
beside /busied/ important /impawrtunt/ sights /siets/
best /best/ in /in/ sign /sien/
betray /beetray/ inch /inch/ silk /silk/
better /betur/ inches /inchiz/ silver /silvur/
between /bitween/ include /inklued/ simple /simpul/
beyond /biyahnd/ increase /inkrees/ since /sins/
bicycle /biesikul/ indeed /indeed/ sing /sing/
big /big/ industry /industree/ single /singgul/
bilk /bilk/ inside /insied/ sister /sistur/
birch /burch/ instead /insted/ six /siks/
bird /burd/ into /intue/ sixty /siktee/
birth /berth/ iron /ieurn/ size /siez/
black /blak/ is /iz/ skulk /skuhlk/
bleach /bleech/ it /it/ sleep /sleep/
blood /bluhd/ itch /ich/ slept /slept/
bloody /bluhdee/ its /its/ slow /sloh/
blow /bloh/ jab /jab/ small /smawl/
blue /blue/ jabber /jabur/ smell /smel/
blush /bluhsh/ jack /jak/ smoke /smohk/
board /bawrd/ jacket /jakit/ snow /snoh/
boat /boht/ jade /jayd/ so /soh/
body /bahdee/ jail /jayl/ soft /sawft/
boil /boil/ jam /jam/ soil /soil/
bone /bohn/ jammy /jamee/ sold /sohld/
book /book/ jangle /jangul/ soldier /sohljur/
books /books/ jar /jahr/ solo /sohloh/
born /bawrn/ jargon /jahrgawn/ some /suhm/
borrow /bawroh/ jaunt /jawnt/ son /suhn/
botch /bawch/ jaw /jaw/ song /sawng/
both /bohxh/ jazz /jaz/ soon /suen/
bottle /bawtul/ jazzy /jazee/ sorry /sahree/
bounds /bowndz/ jeans /jeenz/ sort /sawrt/

 75

box /bahks/ jeer /jeer/ sound /sownd/
boxer /bahksur/ jelly /jelee/ south /sowth/
boxy /bahksee/ jemmy /jemee/ soy /soi/
boy /boi/ jerk /jerk/ space /spays/
boy /boi/ Jeron /jerahn/ speak /speek/
boyish /boiish/ jersey /jursee/ special /speshul/
brain /brayn/ jest /jest/ spend /spend/
brains /braynz/ jester /jestur/ spent /spent/
branch /branch/ Jesus /jeesuhs/ spoke /spohk/
branch /branch/ jet /jet/ spot /spaht/
brash /brash/ jetty /jetee/ spread /spred/
breach /breech/ Jew /jue/ spring /spring/
bread /bred/ jewel /juel/ square /skwer/
break /brayk/ jib /jib/ stalk /stahlk/
bridge /brij/ jiffy /jifee/ stand /stand/
briefs /breefs/ jig /jig/ star /stahr/
bright /briet jiggle /jigul/ starch /stahrch/
bring /bring/ jigsaw /jigsaw/ start /stahrt/
broad /brawd/ jilt /jilt/ state /stayt/
broke /brohk/ jingle /jingul/ station /stayshun/
broken /brohkun/ jitter /jittur/ stay /stay/
broth /brahth/ jive /jiev/ step /step/
brought /brawt/ job /jahb/ stick /stik/
brown /brown/ jockey /jawkee/ still /stil/
brunch /bruhnch/ jog /jahg/ stitch /stich/
bucks /buhks/ join /join/ stock /stawk/
buddy /buhdee/ joint /joint/ stone /stohn/
bug /buhg/ joke /johk/ stood /stood/
build /bild/ joker /johkur/ stop /stahp/
building /bilding/ jolly /jawlee/ store /stawr/
built /bilt/ Jon /jahn/ storm /stawrm/
bulk /buhlk/ joshes /jawshiz/ story /stawree/
burn /burn/ joy /joi/ straight /strayt/
bus /buhs/ judge /juhj/ strange /straynj/
bush /boosh/ jug /juhg/ stranger /straynjur/
bushes /booshiz/ juice /jues/ stream /streem/
business /biznus/ juke /juek/ street /street/
busty /buhstee/ July /Joolie/ strength /strengxh/
busy /bizee/ jumble /juhmbul/ strike /striek/
but /buht/ jump /juhmp/ strong /strawng/
butter /buhtur/ June /Juen/ student /stuedunt/
buy /bie/ jungle /juhngul/ study /stuhdee/
by /bie/ junior /juenyur/ sturdy /sturdee/
cake /kayk/ junk /juhnk/ subject /suhbjikt/
call /kawl/ just /juhst/ succeed /sukseed/
came /kaym/ kecks /keks/ success /sukses/
can /kan/ keep /keep/ such /suhch/
captain /kaptun/ kept /kept/ sudden /suhdun/
car /kahr/ keshes /keeshiz/ suffer /suhfur/
care /ker/ key /kee/ sugar /shoogur/

 76

carry /karee/ kicks /kikz/ suit /suet/
case /kays/ kidney /kidnee/ sulk /suhlk/
cash /kash/ kilo /keeloh/ summer /suhmur/
cashes /kashiz/ kind /kiend/ sun /suhn/
catch /kach/ king /king/ Sunday /Suhnday/
caught /kawt/ kiss /kis/ supply /suhplie/
caulk /kawlk/ kitchen /kichun/ suppose /supohz/
cause /kawz/ kitty /kitee/ sure /shoor/
cello /cheloh/ labor /laybur/ surprise /supriez/
cent /sent/ laches /lachiz/ sweet /sweet/
century /senchuri/ ladder /ladur/ switch /swich/
chafe /chayf/ lady /laydee/ syntax /sintaks/
chair /cher/ lake /layk/ system /sistum/
chair /cher/ land /land/ table /taybul/
chalk /chawlk/ language /langgwij/ tail /tayl/
chance /chans/ large /lahrj/ take /tayk/
chance /chans/ lashes /lashiz/ talem /taykun/
change /chang/ last /last/ talk /tawk/
chant /chant/ late /layt/ talks /tawlkz/
chaos /kayahs/ laugh /laf/ tall /tawl/
character /karuktur/ laughter /laftur/ tammy /tamee/
charge /chahrj/ law /law/ taste /tayst/
charm /chahrm/ lax /laks/ tasty /taystee/
chase /chays/ lay /lay/ tax /taks/
chat /chat/ lead /leed/ taxi /taksee/
cheat /cheet/ leader /leedur/ teach /teech/
cheer /cheer/ learn /lurn/ tear /tir/
chesty /chestee/ least /leest/ tell /tel/
chew /chue/ leave /leev/ ten /ten/
chief /cheef/ leches /lechiz/ testy /testee/
child /chield/ led /led/ thai /tie/
childhood /chieldhood/ left /left/ than /than/
children /childrun/ leg /leg/ thank /xhangk/
chill /chil/ legs /legz/ thanks /thanks/
chin /chin/ length /lengxh/ that /that/
choke /chohk/ less /les/ the /thee/
choose /chuez/ let /let/ theft /theft/
chore /chawr/ letter /letur/ their /ther/
Christ /chriest/ liar /lier/ theirs /therz/
chunk /chuhnk/ lie /lie/ them /them/
church /church/ life /lief/ theme /theem/
churn /churn/ light /liet/ then /then/
cigarette /siguret/ limy /liemee/ thence /thens/
circle /surkul/ line /lien/ theory /thirree/
city /sitee/ liquid /likwid/ there /ther/
civics /siviks/ liquor /likur/ therefore /therfawr/
class /klas/ list /list/ these /theez/
clay /klay/ listen /lisun/ thesis /theesus/
clean /kleen/ little /litul/ they /thay/
clear /klir/ live /liv/ thick /xhik/

 77

clock /klahk/ loath /lohth/ thief /theef/
close /klohs/ lobby /lahbee/ thigh /thie/
cloth /klawxh/ loin /loin/ thin /xhin/
clothes /klohz/ loiter /loitur/ thing /xhing/
cloud /klowd/ lone /lohn/ things /thingz/
clutch /kluhch/ long /lawng/ think /xhingk/
coat /koht/ look /look/ third /thurd/
coil /koil/ Lord /Lawrd/ thirst /thurst/
coin /koin/ lose /luez/ thirteen /xhurteen/
cold /kohld/ loss /laws/ thirty /thurstee/
college /kahlij/ lost /lawst/ this /this/
color /kuhlur/ lot /laht/ those /thohz/
come /kuhm/ loud /lowd/ though /thoh/
company /kuhmpunee/ love /luhv/ thought /xhawt/
complete /kumpleet/ low /loh/ thousand /xhowzund/
condition /kundishun/ lower /lohur/ thrall /thral/
consider /kunsidur/ lox /lawks/ thrash /thrash/
considerable /kunsidurubul/ loyal /loiyul/ thrawn /thrawn/
contain /kuntayn/ lurch /lurch/ thread /thred/
continue /kuntinyue/ lushes /luhshiz/ threat /thret/
control /kuntrohl/ lusty /lahbee/ three /xhree/
convey /kohnvay/ lynch /linch/ threw /xhrue/
convoy /kahnvoi/ Ma /Mah/ thrice /thries/
cook /kook/ machine /musheen/ thrill /thril/
cool /kuel/ mad /mad/ thrive /thriev/
corn /kawrn/ made /mayd/ throb /thrahb/
corner /kawnur/ mail /mayl/ throe /throh/
coshes /kohshiz/ mains /maynz/ throne /throhn/
cost /kawst/ make /mayk/ throng /thrawng/
could /kood/ man /man/ through /xhrue/
count /kownt/ manner /manur/ throve /throhv/
country /kuhntree/ many /meni/ throw /xhroh/
course /kawrs/ March /mahrch/ thrown /xhrohn/
cover /kuhvur/ mark /mahrk/ thru /thrue/
cox /kahks/ market /mahrkut/ thrust /thruhst/
crash /krash/ marque /mahrk/ thug /thuhg/
crips /krips/ marry /maree/ thumb /thuhm/
cross /kraws/ marsh /mawrsh/ thumbs /thuhmz/
crowd /krowd/ master /mastur/ thus /thuhs/
crusty /crestee/ material /mutiriul/ tiches /tichiz/
cry /krie/ maths /mathz/ tidy /tiedee/
cup /kuhp/ matter /matur/ tie /tie/
cut /kuht/ maxim /maksem/ till /til/
daddy /dadee/ May /May/ time /tiem/
daily /daylee/ mayor /mayur/ to /tue/
dance /dans/ me /mee/ today /tooday/
dare /der/ mean /meen/ together /toogethur/
dark /dahrk/ means /meenz/ toil /toil/
darts /dahrtz/ measure /mezhur/ told /tohld/
dashes /dashiz/ meat /meet/ tommy /tahmee/

 78

date /dayt/ meaty /meetee/ tomorrow /toomahroh/
daughter /dawtur/ meet /meet/ too /tue/
day /day/ meeting /meeting/ took /took/
dayglo /daygloh/ member /membur/ tooth /tueth/
dead /ded/ men /men/ torch /tawrch/
deal /deel/ met /met/ tore /tawr/
dear /dir/ method /mexhud/ touch /tuhch/
December /Disembur/ meths /methz/ toward /tawrd/
decide /disied/ middle /midul/ town /town/
decks /dekz/ might /miet/ toxic /tawksik/
decoy /deekoi/ mile /miel/ toy /toi/
deep /deep/ milk /milk/ tracks /traks/
degree /digree/ million /milyun/ trade /trayd/
deity /deetee/ mind /miend/ train /trayn/
delight /diliet/ mine /mien/ training /trayning/
demand /dimand/ minute /minit/ travel /travul/
deploy /deeploi/ miss /mis/ tree /tree/
depth /depth/ mister /mistur/ tried /tried/
desire /dizier/ misty /mistee/ tries /triez/
destroy distroi/ mix /miks/ trip /trip/
detach /deetach/ modern /mawdurn/ trouble /truhbul/
detox /deetahks/ moist /moist/ trust /truhst/
device /divies/ Monday /Muhnday/ truth /trueth/
devoid /deevoid/ money /mohnee/ try /trie/
dibs /dibz/ month /muhnxh/ Tuesday /Tuezday/
dicey /diesee/ moody /muedee/ turfs /turfs/
did /did/ moon /muen/ turn /turn/
die /die. more /mawr/ twelve /twelv/
difference /difruns/ morning /mawrning/ twenty /twentee/
different /difrunt/ mosque /mahsk/ twins /twinz/
difficult /difukult/ most /mohst/ twitch /twich/
dig /dig/ moth /mawth/ two /tue/
digs /digz/ mother /muhthur/ udder /uhdur/
dinner /dinur/ mountain /mowntin/ uglier /uhgleeur/
dioxin /deeahksin/ mouth /mowxh/ uglis /uhglis/
direct /direkt/ move /muev/ ugly /uhglee/
dirty /dirtee/ movement /muevmunt/ ulcer /awlsur/
discover /diskuhvur/ moxa /mohksu/ ulema /ulemu/
dish /dish/ much /muhch/ ulna /awlnu/
dishes /dishiz/ mud /muhd/ ultima /awlteemu/
dismay /dismay/ munch /muhnch/ ultra /awltru/
distance /distuns/ music /myuezik/ umbel /uhmbul/
distant /distunt/ must /muhst/ umber /uhmbur/
ditch /dich/ my /mie/ umpire /uhmpieur/
divide /divied/ nail /nayl/ uncle /uhngkul/
do /due/ nasty /nastee/ under /uhndur/
doctor /dahktur/ nation /nayshun/ understand /uhndurstand/
does /duhz/ nature /naychur/ understood /uhndurstood/
dog /dawg/ near /nir/ until /until/
doing /dueing/ nearly /nirli/ up /uhp/

 79

dollar /dahlur/ necessary /nesuseri/ upon /upahn/
done /duhn/ neck /nek urban /urban/
donkey /duhnkee/ need /need/ urchin /urchin/
don't /dohnt/ needle /needul/ urea /ureeu/
door /dawr/ needs /needz/ urge /urg/
dormie /dawrmee/ needy /needee/ urgent /urgent/
dormy /dawrmee/ neighbor /naybur/ urine /yurin/
double /duhbul/ neither /neethur/ us /uhs/
doubt /dowt/ nerve /nurv/ use /yuez/
down /down/ never /nevur/ use /yues/
dream /dreem/ new /nue/ usual /yuezhooul/
dregs /dregz/ news /nuez/ vac /vac/
dress /dres/ next /nekst/ vacuum /vakuem/
dried /dried/ nice /nies/ vagina /vahjienu/
drink /dringk/ niece /nees/ vague /vayg/
drive /driev/ night /niet/ vain /vayn/
drop /drahp/ nine /nien/ valet /valay/
dry /drie/ ninth /nienth/ valid /valid/
dubs /duhbz/ no /noh/ valley /valee/
duck /duhk/ noise /noiz/ value /valyue/
dummy /duhmee/ none /nuhn/ valve /valv/
during /dooring/ noon /nuen/ vamp /vamp/
dusk /duhsk/ nor /nawr/ van /van/
dusty /duhstee/ north /nawrxh/ vandal /vandul/
duty /duetee/ nose /nohz/ vanish /vanish/
dwarfs /dwawrfs/ not /naht/ vapid /vaypid/
each /eech/ notch /nawch/ vapor /vaypur/
ear /ir/ note /noht/ various /varius/
early /urlee/ nothing /nuhxhing/ vary /veree/
earth /urxh/ notice /nohtis/ vast /vast/
east /eest/ November /NOHvembur/ vault /vawlt/
easy /eezee/ now /now/ vector /vektur/
eat /eet/ number /nuhmbur/ veer /veer/
edge /ej/ nutty /nuhtee/ vegan /veegin/
effort /efurt/ nylons /nielahnz/ vein /vayn/
egg /eg/ oath /ohth/ venom /venuhm/
eight /ayt/ oats /ohts/ vent /vent/
either /eethur/ object /ahbjekt/ verb /vurb/
electric /ulektrik/ ocean /ohshun/ verbs /vurbz/
electricity /ulektrisitee/ oches /ohchiz/ verse /verz/
elk /elk/ October /Ahktohbur/ very /veree/
else /els/ odds /ahdz/ vet /vet/
Emmy /emee/ of /uhv/ via /veeuh/
employ /emploi/ off /awf/ vice /vies/
end /end/ offer /awfur/ video /videeoh/
ends /endz/ office /awfis/ view /vyue/
enemy /enumee/ often /awfun/ view /vue/
English /ingglish/ oh /oh/ vile /viel/
enjoy /injoi/ oil /oil/ visa /veezu/
enough /inuhf oil /oil/ visit /vizit/

 80

enter /entur/ oily /oilee/ vocal /vohkul/
epoxy /eepawksee/ old /ohld/ vogue /vohg/
equal /eekwul/ on /ahn/ voice /vois/
equip /eekwip/ only /ohnlee/ void /void/
escape /uskayp/ oogamy /uegamee/ vomit /vawmit/
etches /etchiz/ open /ohpun/ vote /voht/
ethics /ethiks/ opinion /upinyun/ vouch /vowch/
even /eevun/ or /awr/ voyage /voiyeg/
evening /eevning/ order /awrdur/ voyeur /voiyur/
ever /evur/ orderly /awrdurli/ wagon /wagun/
every /evree/ other /uhthur/ wait /wayt/
exact /iksakt/ ought /awt/ walk /wawk/
exalt /ikawlt/ our /owr/ wall /wawl/
exam /iksam/ out /owt/ want /wawnt/
excel /ikssel/ outer /owtur/ war /wawr/
except /eksept/ outside /owtsied/ warm /wawrm/
exert /iksurt/ over /ohvur/ was /wuhz/
exile /eksiel/ ovolo /ohvohlu/ wash /wahsh/
exit /eksit/ own /ohn/ wash /wahsh/
expect /ikspekt/ ox /awks/ washes /washiz/
experience /ikspiriuns/ oxen /awksen/ watch /wahch/
explain /eksplayn/ oxide /awksied/ water /wahtur/
eye /ie/ page /payj/ wave /wayv/
face /fays/ paid /payd/ wax /waks/
fact /fakt/ pain /payn/ way /way/
fail /fayl/ part /pahrt/ we /wee/
fair /fer/ partial /pahrshul/ weak /week/
faith /fayth/ party /pahrtee/ wear /wer/
fall /fawl/ pass /pas/ weather /wethur/
family /famulee/ past /past/ wedge /wej/
famous /faymus/ pasty /paystee/ Wednesday /Wenzday/
fancy /fansee/ patch /pach/ weds /wedz/
far /fahr/ pay /pay/ week /week/
farm /fahrm/ peace /pees/ weight /wayt/
fast /fast/ peach /peech/ welcome /welkum/
fat /fat/ pegs /pegz/ well /wel/
father /fahthur/ people /peepul/ went /went/
fatty /fatee/ perfect /purfikt/ west /west/
favor /fayvur/ perhaps /purhaps/ wet /wet/
fax /faks/ period /piriud/ what /whuht/
fear /fir/ person /pursun/ wheat /wheet/
February /Febrooeree/ phag /fag/ wheel /wheel/
feed /feed/ phage /fayg/ whelk /welk/
feel /feel/ pharm /fahrm/ when /when/
feet /feet/ phase /fays/ where /wher/
feisty /fiestee/ phatic /fatik/ whether /whethur/
fell /fel/ phenol /feenul/ which /which/
fellow /feloh/ phenyl /feeniel/ while /whiel/
felt /felt/ phew /pue/ white /whiet/
fence /fens/ phi /fie/ whole /hohl/

 81

fetch /fech/ phial /fieul/ whom /huem/
few /fyue/ phiz /fiz/ whose /huez/
field /feeld/ phlox /flahks/ why /whie/
fifteen /fifteen/ phobia /fohbeeu/ width /width/
fifth /fifxh/ phoebe /feebee/ wife /wief/
fifty /fiftee/ phon /fahn/ wild /wield/
fight /fiet/ phone /fohn/ will /wil/
figure /figyur/ phonic /fahnik/ win /win/
fill /fil/ phony /fohnee/ wind /wind/
filo /filoh/ phot /fawt/ window /windoh/
filth /filth/ photo /fohtoh/ wing /wing/
find /fiend/ photon /fohtahn/ wings /wingz/
fine /fien/ phrase /frays/ winter /wintur/
finger /finggur/ phut /fuht/ wise /wiez/
finish /finish/ phyla /fielu/ wish /wish/
finish /finish/ physic /fisik/ wishes /wishiz/
fire /fier/ pick /pik/ with /with/
firm /furm/ picture /pikchur/ within /within/
first /furst/ piece /pees/ without /withowt/
fish /fish/ pinch /pinch/ witty /witee/
fishes /fishiz/ pique /pik/ woman /woomun/
fit /fit/ pith /pith/ women /wimin/
five /fiev/ pity /pitee/ won /wuhn/
fix /fiks/ pixel /piksul/ wonder /wuhndur/
fix /fiks/ place /plays/ wood /wood/
fixed /fikst/ plain /playn/ word /wurd/
flabby /flabee/ plan /plan/ wore /wawr/
flier /flier/ plant /plant/ work /wurk/
floor /flawr/ plaque /plak/ world /wurld/
flower /flowur/ play /play/ worn /wawrn/
fly /flie/ pleasant /plezunt/ worth /wurxh/
foamy /fohmee/ please /pleez/ would /wood/
foible /foibul/ pleasure /plezhur/ write /riet/
foil /foil/ ploy /ploi/ written /writun/
folk /fohlk/ poach /pohch/ wrong /rawng/
follow /fawloh/ point /point/ wrote /roht/
food /fued/ poise /pois/ yacht /yaht/
fool /fuel/ polo /pohloh/ yack /yak/
foot /foot/ poor /poor/ yah /yah/
for /fawr/ position /puzishun/ yahoo /yahhue/
force /fawrs/ possible /pahsubul/ yajur /yahjur/
foreign /fawrun/ pot /paht/ yak /yak/
forest /fawrust/ pouch /powch/ yakut /yakuet/
forever /fawrevur/ power /powur/ yale /yayl/
forget /furget/ pox /pawks/ yam /yam/
form /fawrm/ prepare /priper/ yang /yang/
fortieth /fawrtiuxh/ present /presunt/ yank /yank/
forty /fawrtee/ president /prezudunt/ Yankee /yankee/
forward /fawrwurd/ press /pres/ yap /yap/
found /fownd/ pretty /pritee/ yappy /yappee/

 82

four /fawr/ prey /pray/ yard /yahrd/
fousty /fowstee/ price /pries/ yarn /yawrn/
fox /fahks/ probably /prahbubli/ yate /yayt/
foxed /fahkst/ problem /prahblum/ yawl /yawl/
foxy /fahksee/ produce /prohdues/ yawn /yawn/
foyer /foiyur/ promise /prahmis/ ye /yee/
fray /fray/ proud /prowd/ year /yir/
free /free/ prove /pruev/ yearly /yeerlee/
fresh /fresh/ public /puhblik yearn /yurn/
fresh /fresh/ pull /pool/ years /yirz/
Friday /Frieday/ pure /pyoor/ yeast /yeest/
friend /frend/ push /poosh/ yell /yel/
from /fruhm/ pushes /pooshiz/ yellow /yeloh/
front /fruhnt/ put /poot/ yellow /yelloh/
froth /frawth/ pygmy /pigmee/ yelp /yelp/
full /fool/ pyramid /peeramid/ yen /yen/
further /furthur/ qua /kwa/ yes /yes/
fusty /fuhstee/ quad /kwad/ yesterday /yesturday/
gain /gayn/ quaff /kwaf/ yet /yet/
game /gaym/ quag /kwag/ yew /yue/
garden /gahrdun/ quail /kwayl/ yiddish /yiddish/
gashes /gashiz/ quake /kwayk/ yield /yild/
gate /gayt/ qualm /kwawlm/ yo /yoh/
gather /gathur/ quart /kwawrt/ yob /yahb/
gave /gayv/ quarter /kwawrtur/ yodal /yohdul/
gay /gay/ quartz /kwartz/ yoga /yohgu/
general /jenurul/ quash /kwahsh/ Yogi /yohgee/
gentle /jentul/ quasi /kwahzee/ yoke /yohk/
gentleman /jentulmun/ quay /kway/ yolk /yohlk/
gents /jents/ queen /kween/ yonder /yahndur/
get /get/ queen /kween/ yore /yawr/
gift /gift/ queer /kweer/ you /yue/
girl /gurl/ quell /kwel/ young /yuhng/
give /giv/ query /kweeree/ your /yawr/
glad /glad/ quest /kwest/ yours /yawrz/
glass /glas/ question /kweschun/ youth /yueth/
gloom /gluem/ queue /kwue/ yummy /yuhmee/
gloomy /gluemee/ quick /kwik/ zag /zag/
glossary /glawsuree/ quiet /kwieut/ Zaire /zieir/
gnash /nash/ quiff /kwif/ zakat /zahkat/
go /goh/ quilt /kwilt/ zany /zaynee/
God /Gahd/ quip /kwip/ zap /zap/
goes /gohz/ quirk /kwirk/ zeal /zeel/
gold /gohld/ quite /kwiet/ zealot /zeelawt/
gone /gawn/ quiz /kwiz/ zebra /zeebruh/
good /good/ quota /kwohtu/ zebu /zebue/
goodbye /goodbie/ quote /kwoht/ zed /zed/
got /gaht/ race /rays/ zee /zee/
govern /guhvurn/ rags /ragz/ Zen /zen/
grain /grayn/ rain /rayn/ zest /zest/

 83

grave /grayv/ raise /rayz/ zesty /zestee/
gray /gray/ ran /ran/ zeta /zetu/
great /grayt/ ranch /ranch/ ziff /zif/
green /green/ ranks /ranks/ zig /zig/
grew /grue/ rather /rathur/ zilch /zilch/
grey /gray/ reach /reech/ zinc /zingk/
groin /groin/ read /reed/ zine /zien/
group /gruep/ ready /redee/ zip /zip/
grow /groh/ real /reel/ zither /zixhur/
grown /grohn/ realize /reeuliez/ zodiac /zohdeeak/
guard /gahrd/ reason /reezun/ zombie /zahmbee/
guches /guhchiz/ receive /ruseev/ zonal /zohnul/
guess /ges/ recoil /reekoil/ zone /zohn/
guide /gied/ record /rekurd/ zonk /zahnk/
gummy /guhmee/ red /red/ zoo /zue/
gun /guhn/ reins /rayns/ zulu /zulue/
gushes /guhshiz/ relax /reelaks/
gusty /guhstee/ remember /rimembur/

 84

Appendix D – MBROLA Program Description

The MBROLA program is designed to take four variables as inputs. The inputs to
the MBROLA program are the phoneme, the phoneme duration, the pitch pattern point,
and the fundamental frequency. The program only needs the phoneme and the duration
to produce speech. If the user wants to add fundamental frequency values, the program
must have a corresponding pitch pattern point. The program can handle up to 20 pitch
pattern point and fundamental frequency pairs.

Pitch Pattern Point
within the Phoneme (%)

Phoneme Duration (ms)

MBROLA Phonemes

Fundamental Frequency (Hz)

 85

Appendix E – Source Code

JonTalk Flow Chart

Start JonTalk.m

Retrieve Input from User
get(edit box)

Trained
Data

 (.*mat file)

Find Orthographic Word
(find_orthographic.m)

Calculate phonemes
(BP_Calculate.m)

Sentence Words
(find_sentece_words.m)

Find Acornoyms
(find_acronym.m)

Find Orthographic Word
(find_orthographic.m)

Find Fuzzy Inputs
Sentence Size, Word importance, Stress Distance, Position

(find_sentence_size.m, word_type.m, distance_from_stress.m)

Calculate F0
(f0_calculator.m)

Segmental Duration
(phoneme_duration_rules.m)

Call MBROLA
Produce System Speech

Last Senetence
Word?

Calculate Stress
(english_sresss

_rules.m)

NO

YES

 86

%--
% Function: JonTalk.m
% Purpose: The GUI of the JonTalk text-to-so-speech program
% Description: This program is the GUI for the TTS system. The program
% handles text input and produces speech output. The user can control
% the tone of the speech and the speed of the speech.
% Outputs: Speech
%--
function varargout = JonTalk(varargin)
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @JonTalk_OpeningFcn, ...
 'gui_OutputFcn', @JonTalk_OutputFcn, ...
 'gui_LayoutFcn', [] , .. .
 'gui_Callback', []);
if nargin & isstr(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before JonTalk is made visible.
function JonTalk_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes JonTalk wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = JonTalk_OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;
global declarative_sentence_rules
global yes_no_question_rules
global interrogative_question_rules
global wh_question_rules
global rise_fall_rules
global PHONEME_SET
global pitch
global speed

pitch = 1;

 87

speed = 1;
set(gcf,'Color',[0 0 0]);

linguist_variables{1} = {'useless' 'semi' 'important' 'none'};
linguist_variables{2} = {'small' 'medium' 'large' 'none'};
linguist_variables{3} = {'start' 'middle' 'end' 'none'};
linguist_variables{4} = {'dead-on' 'near' 'far' 'none'};
linguist_variables{5} = {'zero' 'low' 'mid-low' 'mid' 'mid-high' 'high'
'peak'};

%System default rules
yes_no_question_rules = {[1 0 1 0 3] [2 0 1 0 4] [2 3 1 0 3] [0 0 1 2
5] [0 0 1 1 5]...
 [1 0 2 0 3] [1 3 2 0 2] [2 0 2 0 4] [3 0 2 1 5] [0 0 2 1 4] [0
2 2 0 4] [0 3 2 0 3]...
 [0 0 3 1 6] [0 0 3 2 5] [0 3 3 2 6] [1 0 3 2 5] [3 0 3 1 6]};

declarative_sentence_rules = {[1 0 1 0 2] [2 0 1 0 3] [2 3 1 0 4] [0 1
1 1 6] [0 0 1 1 7] [0 1 1 0 4]...
 [1 0 2 0 2] [1 3 2 0 3] [2 0 2 0 3] [2 3 2 1 4] [0 0 2 1 5] [0
2 2 0 4] ...
 [0 0 3 1 2] [3 0 3 2 3] [0 2 3 0 2] [1 0 3 0 2]};

wh_question_rules = {[0 0 1 0 3] [3 0 1 0 4] [2 3 1 0 4] [0 1 1 1 4] [0
0 1 1 5] [0 1 1 0 3] ...
 [1 0 2 0 4] [1 3 2 0 3] [0 0 2 2 4] [2 3 2 1 5] [0 0 2 1 5] [3
0 2 1 6] [0 2 2 0 3] ...
 [0 0 3 1 3] [0 0 3 2 1] [0 2 3 0 2] [1 0 3 0 1]};

main_menu = uimenu('Label','Options');
uimenu(main_menu,'Label','View Rules','Callback',@Rule_Viewer);
uimenu(main_menu,'Label','Close','Callback','close');

[dummy_variable excel_file_phoneme] = xlsread('Word
Data\phoneme_set.xls');
PHONEME_SET = excel_file_phoneme(:,1);

% --- Executes during object creation, after setting all properties.
function input_screen_CreateFcn(hObject, eventdata, handles)
% hObject handle to input_screen (see GCBO)
if ispc
 set(hObject,'BackgroundColor','white');
else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'))
;
end

function input_screen_Callback(hObject, eventdata, handles)
% hObject handle to input_screen (see GCBO)
% --- Executes on button press in TTS.

function TTS_Callback(hObject, eventdata, handles)

 88

% hObject handle to TTS (see GCBO)

global listbox_handles
global declarative_sentence_rules
global yes_no_question_rules
global wh_question_rules
global rise_fall_rule s
global MF_descriptors
global MF_descriptors_rise_fall
global test_axes
global PHONEME_SET
global pitch
global speed

%Membership functions decsriptors
MF_descriptors{1} = [-5 0 5; 0 5 10; 5 10 15];
MF_descriptors{2} = [-5 0 5; 0 5 10; 5 10 15];
MF_descriptors{3} = [-5 0 5; 0 5 10; 5 10 15];
MF_descriptors{4} = [-5 0 5; 0 5 10; 5 10 15];
MF_descriptors{5} = [-2 0 2; 0 2 4; 2 4 6; 4 6 8; 6 8 10; 8 10 12; 10
12 14];

typed_input = get(handles.input_screen,'String');
wh_words = {'how' 'what' 'when' 'where' 'who' 'whom' 'whose' 'why' };

if isempty(typed_input) == 1
 return;
end

%Find the sentence type, depend on pucutation and the first word
if isempty(strfind(typed_input,'?')) == 0
question_marks = strfind(typed_input,'?');
typed_input(question_marks) = ' ';
rule_list = yes_no_question_rules;
for count = 1:length(wh_words)
 if isempty(strfind(lower(typed_input),wh_words{count})) == 0
 rule_list = wh_question_rules;
 break;
 end
end

else
rule_list = declarative_sentence_rules;
end

%Load the trained Back Propagation 85 epoch mat file
loaded_data = load('BPU85epochs.mat');
hidden_weights = loaded_data.hidden_weights;
output_weights = loaded_data.output_weights;

hidden_size = size(hidden_weights);
HIDDEN_NEURONS = hidden_size(1);

typed_input(isspace(typed_input)) = '%';

 89

for count=1:length(typed_input)
 input_letters{count} = typed_input(count);
end

global COMMAS
COMMAS = strfind(typed_input,',');

%Converts words to individual cell strings
actual_words = find_sentence_words(input_letters,COMMAS);

%Find acronyms, words like NASA or FBI
actual_words = find_acronyms(actual_words);

%Find orthographic words like Mr. Mrs. and numbers
actual_words_normalized = orthographic_converter(actual_words);

sentence_words = '';
output_phonemes = '';

%For each word within the cellstring, calculate the weight output
for main_count=1:length(actual_words_normalized)
word = char(actual_words_normalized{main_count});

%Set the front string to 7 silences (for alignment purposes)
input_size = length(word);
input_string = {'%' '%' '%' '%' '%' '%' '%'};
for count=1:input_size
input_string(7+count) = cellstr(word(count));
end

%Place seven silences at the beginning of the input string
size_string = 7 + input_size;
input_string(size_string+1:size_string+7) = {'%'};
%Send input string, weights, and the other variables to the function
BP_calculate
phonetic_word =
lower(BP_calculate(input_string,output_weights,hidden_weights,PHONEME_S
ET,HIDDEN_NEURONS));
spaces = strmatch('%',phonetic_word);
phonetic_word(spaces) = '';
sentence_words{main_count} = phonetic_word;
output_phonemes = [output_phonemes {'%'} sentence_words{main_count}];
end

% Call this function to remove double phonemes
[output_phonemes sentence_words] =
double_phoneme_handler(output_phonemes,sentence_words);
sentence_size = find_sentence_size(output_phonemes);

seperated_sentence_indexes = 0;
all_phonemes = '';
temp_output_phonemes = output_phonemes;

 90

intonation_count = 1;
if length(sentence_words) > 0
for count=1:length(sentence_words)

 word = sentence_words{count};
 real_word = actual_words_normalized(count);
 %Find importance
 [word_def, word_importance] = word_type(real_word);
 %Find sentence position
 offset = 10/length(sentence_words);
 sentence_position = count*offset;
 phonemes = sentence_words{count};

 for phoneme_count=1:length(sentence_words{count})

 %Find distance from stress
 distance =
distance_from_stress(sentence_words(count),{phonemes},phonemes{phoneme_
count});
 %With all of the inputs calcualted, they are are sent to the
fuzzy
 %controller with rules to produce a crisp output
 f0_output =
f0_calculator(word_importance,sentence_size,sentence_position,distance,
rule_list);

 if isempty(f0_output) == 0
 plotting_data{intonation_count} = f0_output*pitch;
 all_phonemes{intonation_count} = phonemes{phoneme_count};
 else
 plotting_data{intonation_count} = [];
 all_phonemes{intonation_count} = phonemes{phoneme_count};
 end

 f0_data{intonation_count} = f0_output*pitch;
 intonation_count = intonation_count + 1;
 spot = strmatch(phonemes(phoneme_count),temp_output_phonemes);
 spot = spot(1);

 temp_output_phonemes(1:spot) = {'*'};
 phonemes{phoneme_count} = '/';

 end

end

else
 return;
end
f0_contour = 0;
%data = smooth_f0_contour(f0_contour,f0_data);
data = smooth_f0_contour(f0_data);
spaces = strmatch('%',output_phonemes,'exact');

 91

phoneme_spot = 1:length(output_phonemes);
phoneme_spot(spaces) = '';
real_intonation_data(1:length(output_phonemes)) = {''};
real_intonation_data(spaces) = {''};
real_intonation_data(phoneme_spot) = data;

phoplayer_text =
phoneme_duration_rules(output_phonemes,real_intonation_data,seperated_s
entence_indexes,speed);

%Plotting the f0 contour
h = figure;
for count=1:length(plotting_data)-1
 point = plotting_data{count};
 next_point = plotting_data{count+1};
 if isempty(point) == 0 & isempty(next_point) == 0
 plot_one = plot([count count+1],[point
next_point],'bs:','MarkerFaceColor','c','MarkerEdgeColor','k');
 elseif isempty(point) == 0
 plot_one =
plot(count,point,'bs:','MarkerFaceColor','c','MarkerEdgeColor','k');
 end
 hold on;
end

%useless stuff
limit_data = plotting_data;

ax = gca;

if length(limit_data) > 1
set(ax,'xlim',[1 length(limit_data)]);
end
if length(limit_data) > 1 & isempty(cell2mat(limit_data))== 0
set(ax,'ylim',[min(cell2mat(limit_data))-1
max(cell2mat(limit_data))+1]);
end

set(ax,'XTick',1:length(limit_data));
set(ax,'XTickLabel',all_phonemes);
title('Output Phonemes vs. Fundamental Frequency');
ylabel('Fundamental Frequency (Hz)');

% --- Executes on button press in clear.
function clear_Callback(hObject, eventdata, handles)
% hObject handle to clear (see GCBO)
set(handles.input_screen,'String','');

% --- Executes during object creation, after setting all properties.
function pitch_slide_CreateFcn(hObject, eventdata, handles)
% hObject handle to pitch_slide (see GCBO)

 92

usewhitebg = 1;
if usewhitebg
 set(hObject,'BackgroundColor',[.9 .9 .9]);
else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'))
;
end

% --- Executes on slider movement.
function pitch_slide_Callback(hObject, eventdata, handles)
% hObject handle to pitch_slide (see GCBO)
global pitch
pitch = 1.5 - get(handles.pitch_slide,'Value');

% --- Executes during object creation, after setting all properties.
function speed_slide_CreateFcn(hObject, eventdata, handles)
% hObject handle to speed_slide (see GCBO)
usewhitebg = 1;
if usewhitebg
 set(hObject,'BackgroundColor',[.9 .9 .9]);
else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'))
;
end

% --- Executes on slider movement.
function speed_slide_Callback(hObject, eventdata, handles)
% hObject handle to speed_slide (see GCBO)
global speed
speed = 1.5 - get(handles.speed_slide,'Value');

 93

%--
% Function: phoneme_duration_rules.m
% Purpose: Calculate segmental duration
% Description: This program calculates the phonetic segmental
% duration.
% This done using the Klatt duration rules ("From Text to Speech: The
% MiTalk"). Each section below shows which rule corresponds to which
% section. The program computes the segmental duration and then calls
% the MBROLA program with the segments, intonation, and phonemes
% Outputs: text(unused)
%--
function phoplayer_text =
phoneme_duration_rules(old_output_phonemes,intonation_data,seperated_se
ntence_indexes,speed)

phoplayer_text = '';
sentence_words = '';

num_of_phonemes = length(old_output_phonemes);
%Vowels an consonants
VOWELS_DIPHTHONGS = {'a' 'e' 'i' 'u' 'ah' 'aw' 'ay' 'ee' 'ie' 'oi' 'oo'
'oh' 'ow' 'ue' 'uh' 'ur'};
CONSONANTS = {'b' 'd' 'f' 'g' 'h' 'j' 'k' 'l' 'm' 'n' 'p' 'r' 's' 't'
'v' 'w' 'y' 'z' 'ch' 'ng' 'sh' 'th' 'xh' 'zh'};

%Manner of articulaion classes for consonants
NASALS = {'m' 'n' 'ng'};
LIQUIDS = {'r' 'l'};
GLIDES = {'w' 'y'};
SONORANT_CONSONANTS = {'h' 'l' 'r' 'w' 'y'};
SYLLABIC_CONSONANTS = {'n' 'l' 'r'};
VOICED_FRICATIVE = {'v' 'th' 'z' 'zh'};
VOICED_PLOSIVE = {'b' 'd' 'g'};
VOICEDLESS_PLOSIVE = {'p' 't' 'k'};

DURATION_COLUMN = 2;

[excel_file_durations excel_file_phonemes] = xlsread('Word Data\Phoneme
Duration.xls');
[dummy_data text_data] = xlsread('Word Data\Phoneme Convert List.xls');
phoneme_conversion_list(:,1) = text_data(:,1);
phoneme_conversion_list(:,2) = text_data(:,4);

%Rule #1 All Pauses at end of sentence or phrase need to be length 200
MS
phoplayer_text{1} = '_ 200';

%Find the initial values for the phoneme durations
silent_count = 1;
for count=1:length(old_output_phonemes)

 spot =
strmatch(lower(old_output_phonemes(count)),excel_file_phonemes,'exact')
;
 duration_list(count) = excel_file_durations(spot,DURATION_COLUMN);

 94

end
%duration_list

%Find the words in the sentences
sentence_words = find_sentence_words(old_output_phonemes);

%Rule #2 Vowels in the last syllable before the end needs to be
lengthened
syllables =
convert_phonemes_to_syllable(sentence_words{length(sentence_words)});
last_syllable = syllables{length(syllables)};
vowel_spot = 0;
for count=1:length(last_syllable)
 if
isempty(strmatch(lower(last_syllable(count)),VOWELS_DIPHTHONGS,'exact')
) == 0
 vowel_spot = count;
 nd e
end
if vowel_spot > 0
spot = strmatch(lower(last_syllable(vowel_spot)),old_output_phonemes);
spot = spot(end);
duration_list(spot) = duration_list(spot)*1.1;
if spot+1 <= length(old_output_phonemes)
if
isempty(strmatch(lower(old_output_phonemes(spot+1)),CONSONANTS,'exact')
) == 0
 duration_list(spot+1) = duration_list(spot+1)*1.4;
end;
end;
end;

%Rule #3 Vowels are shorted by .60 if not in a phrase final syllable
%A phrase final postvocalic liquid or nasal is lengthend by 1.4
temp_sentence_words = sentence_words;
temp_old_output_phonemes = old_output_phonemes;
final_word = sentence_words{length(sentence_words)};

if length(sentence_words) > 1
temp_sentence_words(length(sentence_words)) = '';
final_word_offset = length(temp_old_output_phonemes);
for word_count=1:length(temp_sentence_words)
word = temp_sentence_words{word_count};
 for letter_count=1:length(word)
 if
isempty(strmatch(lower(word(letter_count)),VOWELS_DIPHTHONGS,'exact'))
== 0
 real_location =
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact');
 real_location = real_location(1);
 duration_list(real_location) =
duration_list(real_location)*.60;
 temp_old_output_phonemes(1:real_location) = {'/'};
 end;

 95

 end;
end ;
end
if isempty(strmatch(old_output_phonemes(end),NASALS)) == 0 |
isempty(strmatch(old_output_phonemes(end),LIQUIDS)) == 0
 spot = length(old_output_phonemes);
 duration_list(spot) = duration_list(spot)*1.4;
end

%Rule #4 Vowels are shorten by .85 if not in a word final syllable
temp_sentence_words = sentence_words;
temp_old_output_phonemes = old_output_phonemes;
temp_phoneme_letter_spots = find(strcmp('%',temp_old_output_phonemes)
== 0);
temp_phoneme_spot = temp_phoneme_letter_spots(1);
temp_phoneme_space_spots = find(strcmp('%',temp_old_output_phonemes)
== 1);
temp = find(temp_phoneme_space_spots > temp_phoneme_spot);
if isempty(temp) == 0
temp_phoneme_spot = temp_phoneme_space_spots(temp(1));
end
%Take into account 2 spaces ina row
SKIP = 1;
if SKIP == 0
for word_count=1:length(temp_sentence_words)

original_word = temp_sentence_words{word_count};
word_syllables = convert_phonemes_to_syllable(original_word);
if length(word_syllables) > 1
word_syllables(length(word_syllables)) = '';
word = '';
for count=1:length(word_syllables)
word = [word word_syllables{count}];
end

 for letter_count=1:length(word)
 if
isempty(strmatch(lower(word(letter_count)),VOWELS_DIPHTHONGS,'exact'))
== 0
 real_location =
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact');
 real_location = real_location(1);
 temp_old_output_phonemes(real_location)
 pause;
 duration_list(real_location) =
duration_list(real_location)*.85;
 temp_old_output_phonemes(1:real_location) = {'/'};
 end;
 end;
end;
temp_old_output_phonemes(1:temp_phoneme_spot) = {'/'}
temp_phoneme_starting_point = find(strcmp('%',temp_old_output_phonemes)
== 1 & strcmp('/',temp_old_output_phonemes) == 0)
pause;

 96

end;

end
%Rule #5 Vowels are shorten by .80 in all words with multiple syllables
%I think it's fixed!
temp_old_output_phonemes = old_output_phonemes;
for word_count=1:length(sentence_words)
word = sentence_words{word_count};
syllables = convert_phonemes_to_syllable(word);
if length(syllables) > 1
 for letter_count=1:length(word)
 if
isempty(strmatch(lower(word(letter_count)),VOWELS_DIPHTHONGS,'exact'))
== 0
 real_location =
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact');
 real_location = real_location(1);
 duration_list(real_location) =
duration_list(real_location)*.80;
 temp_old_output_phonemes(1:real_location) = {'/'};
 end;
 end;
else
real_location1 =
strmatch(lower(word(end)),temp_old_output_phonemes,'exact');
if length(word) > 1
real_location2 = strmatch(lower(word(end-
1)),temp_old_output_phonemes,'exact');
else
real_location2 = real_location1 - 1;
end
real_location = real_location1(find(real_location1 - 1 ==
real_location2(1)));
temp_old_output_phonemes(1:real_location) = {'/'};
end;
end;

%Rule #6 Consonants that are not the first letter of the word are
shorten by .85
temp_old_output_phonemes = old_output_phonemes;
for word_count=1:length(sentence_words)
word = sentence_words{word_count};
if length(word) > 1
 for letter_count=2:length(word)
 if
isempty(strmatch(lower(word(letter_count)),CONSONANTS,'exact')) == 0
 real_location =
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact');
 real_location = real_location(1);
 duration_list(real_location) =
duration_list(real_location)*.85;
 temp_old_output_phonemes(1:real_location) = {'/'};
 else
 real_location =
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact');

 97

 real_location = real_location(1);
 temp_old_output_phonemes(1:real_location) = {'/'};
 end;
 end;
end;
end;

%Rule #7 Unstressed segments are compressed compared to stressed
elements
temp_old_output_phonemes = old_output_phonemes;
for word_count=1:length(sentence_words)
word = sentence_words{word_count};
stresses = english_stress_rules(word);
for letter_count=1:length(word)
 if
isempty(strmatch(lower(word(letter_count)),VOWELS_DIPHTHONGS,'exact'))
== 0 & (stresses(letter_count) == 0 | stresses(letter_count) == 2)
 real_location =
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact');
 real_location = real_location(1);
 duration_list(real_location) = duration_list(real_location)*.9;
 temp_old_output_phonemes(1:real_location) = {'/'};
 else
 real_location =
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact');
 real_location = real_location(1);
 temp_old_output_phonemes(1:real_location) = {'/'};
 end
end
end

%Rule #8 An emphasized vowel is lengthend by 1. 4
temp_old_output_phonemes = old_output_phonemes;
for word_count=1:length(sentence_words)
word = sentence_words{word_count};
stresses = english_stress_rules(word);
for letter_count=1:length(word)
 if
isempty(strmatch(lower(word(letter_count)),VOWELS_DIPHTHONGS,'exact'))
== 0 & stresses(letter_count) == 1
 real_location =
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact');
 real_location = real_location(1);
 duration_list(real_location) =
duration_list(real_location)*1.10;
 temp_old_output_phonemes(1:real_location) = {'/'};
 else
 real_location =
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact');
 real_location = real_location(1);
 temp_old_output_phonemes(1:real_location) = {'/'};
 end
end
end

 98

%Rule #9 Alter duration of vowels that are affected by postvocalic
consonants
temp_old_output_phonemes = old_output_phonemes;
for word_count=1:length(sentence_words)
word = sentence_words{word_count};
for letter_count=1:length(word)
 if
(isempty(strmatch(lower(word(letter_count)),VOWELS_DIPHTHONGS,'exact'))
== 0 |
isempty(strmatch(lower(word(letter_count)),SONORANT_CONSONANTS,'exact')
) == 0) & letter_count + 1 <= length(word)
 %Before a voiced fricative
 if
isempty(strmatch(lower(word(letter_count+1)),VOICED_FRICATIVE,'exact'))
== 0
 real_location =
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact');
 real_location = real_location(1);
 duration_list(real_location) =
duration_list(real_location)*1.40;
 temp_old_output_phonemes(1:real_location) = {'/'};
 end
 %Before a voiced plosive
 if
isempty(strmatch(lower(word(letter_count+1)),VOICED_PLOSIVE,'exact'))
== 0
 real_location =
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact');
 real_location = real_location(1);
 duration_list(real_location) =
duration_list(real_location)*1.20;
 temp_old_output_phonemes(1:real_location) = {'/'};
 end
 %Before a nasal
 if
isempty(strmatch(lower(word(letter_count+1)),NASALS,'exact')) == 0
 real_location =
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact');
 real_location = real_location(1);
 duration_list(real_location) =
duration_list(real_location)*.85;
 temp_old_output_phonemes(1:real_location) = {'/'};
 end
 %Before a voiceless plosive
 if
isempty(strmatch(lower(word(letter_count+1)),VOICEDLESS_PLOSIVE,'exact'
)) == 0
 real_location =
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact');
 real_location = real_location(1);
 duration_list(real_location) = duration_list(real_location)*.7;
 temp_old_output_phonemes(1:real_location) = {'/'};
 end

 else
 real_location =
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact');

 99

 real_location = real_location(1);
 temp_old_output_phonemes(1:real_location) = {'/'};
 end
end
end

%Rule #10 Alter duration of vowel-vowel combinations and consonant-
consonant combinations
%Vowel-vowel combinations
temp_old_output_phonemes = old_output_phonemes;
for word_count=1:length(sentence_words)
word = sentence_words{word_count};
for letter_count=1:length(word)
 if
isempty(strmatch(lower(word(letter_count)),VOWELS_DIPHTHONGS,'exact'))
== 0 & letter_count + 1 <= length(word)
 if
isempty(strmatch(lower(word(letter_count+1)),VOWELS_DIPHTHONGS,'exact')
) == 0
 real_location =
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact');
 real_location = real_location(1);
 duration_list(real_location) =
duration_list(real_location)*1.20;
 duration_list(real_location+1) =
duration_list(real_location+1)*.7;
 temp_old_output_phonemes(1:real_location) = {'/'};
 end
 else
 real_location =
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact');
 real_location = real_location(1);
 temp_old_output_phonemes(1:real_location) = {'/'};
 end
end
end
%Consonant-consonant combinations
temp_old_output_phonemes = old_output_phonemes;
for word_count=1:length(sentence_words)
word = sentence_words{word_count};
for letter_count=1:length(word)
 if isempty(strmatch(lower(word(letter_count)),CONSONANTS,'exact'))
== 0 & letter_count + 1 <= length(word)
 if
isempty(strmatch(lower(word(letter_count+1)),CONSONANTS,'exact')) == 0
 real_location =
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact');
 real_location = real_location(1);
 duration_list(real_location) =
duration_list(real_location)*1.20;
 duration_list(real_location+1) =
duration_list(real_location+1)*.7;
 temp_old_output_phonemes(1:real_location) = {'/'};
 end
 else

 100

 real_location =
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact');
 real_location = real_location(1);
 temp_old_output_phonemes(1:real_location) = {'/'};
 nd e
end
end

%Rule #11 My rule, if there are two silences in a row the reduce the
second silence
temp_old_output_phonemes = old_output_phonemes;
for phoneme_count=1:length(old_output_phonemes)
 if
isempty(strmatch(temp_old_output_phonemes(phoneme_count),'%','exact'))
== 0 & phoneme_count + 1 <= length(old_output_phonemes)
 if
isempty(strmatch(temp_old_output_phonemes(phoneme_count+1),'%','exact')
) == 0
 duration_list(phoneme_count+1) =
duration_list(phoneme_count+1)*.4;
 temp_old_output_phonemes(1:phoneme_count) = {'/'};
 end
 else
 temp_old_output_phonemes(1:phoneme_count) = {'/'};
 end
end

%Create the file *pho ouput file
for count=1:length(old_output_phonemes)
 index =
strmatch(lower(char(old_output_phonemes(count))),phoneme_conversion_lis
t(:,2),'exact');
 output_phonemes(count) = phoneme_conversion_list(index,1);
end

%adjust the speed
duration_list = duration_list*speed*1.15;

for count=1:length(old_output_phonemes)
phoplayer_text{count+1} = [char(output_phonemes(count)),'
',num2str(duration_list(count)),' ', num2str(intonation_data{count})];
end

phoplayer_text = [phoplayer_text cellstr('_ 210')];

fid = fopen('output.pho','w');
for count=1:length(phoplayer_text)
fprintf(fid,'%s\n',char(phoplayer_text(count)));
end
OK = fclose(fid);

dos('mbrola us1 output.pho output.wav');

 101

[wav_data,FS,NBITS,OPTS]= wavread('output.wav');
wavplay(wav_data,FS);

 102

%--
% Function: BP_calculate.m
% Purpose: Weights Back Propgation Calculation
% Description: Function calculates the network output with inputs and
% weights. The for loop finds the actual output of the weights
% the maximum of the weights are supposed to be the correct output
% and phonemes
% Outputs: calculated phonemes
%--
function output =
BP_calculate(input_string,output_weights,hidden_weights,PHONEME_SET,HID
DEN_NEURONS)

alphabet_size = 27;
INPUT_SIZE = alphabet_size*7;
OUTPUT_NEURONS = 43;

NUM_CHARACTERS = length(input_string);

converted_input_string =
convert_to_numbers(input_string,NUM_CHARACTERS);
input_vector = converted_input_string(1:INPUT_SIZE);
%reshape(converted_input_string,27,NUM_CHARACTERS)
%reshape(input_vector,27,7)
character_count = 8;
count = 1;
output_string = '';
while character_count <= NUM_CHARACTERS;
 for hide = 1:HIDDEN_NEURONS;
 hidden_layer_output(hide) = 1/(1 + exp(-
1*sum(input_vector.*hidden_weights(hide,:))));
 end

 for out = 1:OUTPUT_NEURONS;
 output_layer_output =
sum(output_weights(out,:).*hidden_layer_output);
 output(out) = 1/(1 + exp(-output_layer_output));
 end;

output_phoneme_number = find(output == max(output));
output_string{count} = char(PHONEME_SET(output_phoneme_number));
input_vector =
BP_calculate_moving_window(input_vector,converted_input_string,characte
r_count);
character_count = character_count + 1;
count = count + 1;
%input_string_count = input_string_count + 1;
end
output = output_string(5:end-3);

 103

%--
% Function: english_stress_rules.m
% Purpose: Assigns Stress
% Description: Function places stress using the Halle and Keyer stress
% rules from the MITalk System. The rules are just numbered. The
% actual rules are located in the book "From Text to Speech: The MITalk
% System"
% Outputs: array of stresses for the inputted word
%--
function stresses = english_stress_rules(unstressed_word)
stresses(1:length(unstressed_word)) = 0;
stress_count = 1;
syllable_list = '';
%Vowels an consonants
VOWELS_DIPHTHONGS = {'a' 'e' 'i' 'u' 'ah' 'aw' 'ay' 'ee' 'ie' 'oi' 'oo'
'oh' 'ow' 'ue' 'uh' 'ur'};
CONSONANTS = {'b' 'd' 'f' 'g' 'h' 'j' 'k' 'l' 'm' 'n' 'p' 'r' 's' 't'
'v' 'w' 'y' 'z' 'ch' 'ng' 'sh' 'th' 'xh' 'zh' '%'};
%Short and Long Vowels
SHORT_VOWELS = {'a' 'e' 'i' 'u'};
LONG_VOWELS = {'ah' 'aw' 'ay' 'ee' 'ie' 'oi' 'oo' 'oh' 'ow' 'ue' 'uh'
'ur'};

%First find all of the vowels
syllables = convert_phonemes_to_syllable(unstressed_word);
num_of_syllables = length(syllables);
no_vowel = 0;
for count=1:length(unstressed_word)
if isempty(strmatch(lower(unstressed_word{count}),VOWELS_DIPHTHONGS))
== 1
 no_vowel = no_vowel + 1;
end
end
if no_vowel == length(unstressed_word)
 return;
end

%Rule #1 A and B
BEEN_STRESSED = 0;
last_syllable_has_short = 0;
vowel = '';
last_syllable = syllables{end};
for count=1:length(last_syllable)
if isempty(strmatch(lower(last_syllable(count)),SHORT_VOWELS,'exact'))
== 0
 last_syllable_has_short = 1;
end
end
 if num_of_syllables >= 3
 if length(syllables{end-1}) == 1 & length(syllables{end}) >= 1
& last_syllable_has_short == 1
 silly = syllables{end-2};
 for letter_count=1:length(silly)
 if
isempty(strmatch(lower(silly(letter_count)),VOWELS_DIPHTHONGS,'exact'))
== 0

 104

 vowel = silly(letter_count);
 end
 end

 if isempty(vowel) == 0
 vowel_spots = strmatch(vowel,unstressed_word,'exact');
 silly_spots = 0;
 for count=1:length(silly)
 silly_spots = [silly_spots
strmatch(lower(silly(count)),unstressed_word,'exact')'];
 end

 final_vowel_location = find(vowel_spots(1) == silly_spots);
 stresses(silly_spots(final_vowel_location)) = 1;
 BEEN_STRESSED = 1;
 end
 end
 end
%Rule #1 C and D

 if num_of_syllables >= 2 & BEEN_STRESSED == 0
 if length(syllables{end}) >= 1 & last_syllable_has_short == 1
 silly = syllables{end-1};
 for letter_count=1:length(silly)
 if
isempty(strmatch(lower(silly(letter_count)),VOWELS_DIPHTHONGS,'exact'))
== 0
 vowel = silly(letter_count);
 end
 end

 if isempty(vowel) == 0
 vowel_spots = strmatch(vowel,unstressed_word,'exact');
 silly_spots = 0;
 for count=1:length(silly)
 silly_spots = [silly_spots
strmatch(lower(silly(count)),unstressed_word,'exact')'];
 end

 final_vowel_location = find(vowel_spots(1) == silly_spots);
 stresses(silly_spots(final_vowel_location)) = 1;
 BEEN_STRESSED = 1;
 end
 end
 end

 %Rule #2 A and B
 any_syllable_has_short = 0;
 if num_of_syllables >= 2 & BEEN_STRESSED == 0
 for syl_count=2:num_of_syllables
 syl = syllables{syl_count};
 for letter_count =1:length(syl)
 if
isempty(strmatch(lower(syl(letter_count)),SHORT_VOWELS,'exact')) == 0
 any_syllable_has_short = 1;
 short_vowel_syl = syl_count;

 105

 break;
 end
 if any_syllable_has_short == 1
 break;
 end
 end
 end

 if num_of_syllables >= 2 & any_syllable_has_short == 1
 silly = syllables{short_vowel_syl-1};
 for letter_count=1:length(silly)
 if
isempty(strmatch(lower(silly(letter_count)),VOWELS_DIPHTHONGS,'exact'))
== 0
 vowel = silly(letter_count);
 end
 end

 if isempty(vowel) == 0
 vowel_spots = strmatch(vowel,unstressed_word,'exact');
 silly_spots = 0;
 for count=1:length(silly)
 silly_spots = [silly_spots
strmatch(lower(silly(count)),unstressed_word,'exact')'];
 end

 final_vowel_location = find(vowel_spots(1) == silly_spots);
 stresses(silly_spots(final_vowel_location)) = 1;
 BEEN_STRESSED = 1;
 end
 end;
 end

 %Rule #3 Place Stress on last vowel and syllable

 if num_of_syllables >= 1 & BEEN_STRESSED == 0
 silly = syllables{num_of_syllables};
 for letter_count=1:length(silly)
 if
isempty(strmatch(lower(silly(letter_count)),VOWELS_DIPHTHONGS,'exact'))
== 0
 vowel = silly(letter_count);
 end
 end

 if isempty(vowel) == 0
 vowel_spots = strmatch(vowel,unstressed_word,'exact');
 silly_spots = 0;
 for count=1:length(silly)
 silly_spots = [silly_spots
strmatch(lower(silly(count)),unstressed_word,'exact')'];
 end

 final_vowel_location = find(vowel_spots(1) == silly_spots);
 stresses(silly_spots(final_vowel_location)) = 1;

 106

 %return;
 end
 end

 %Stress Exceptions
 %Rules #1-3 Place Stress on First Syllable
 if num_of_syllables >= 2
 silly = syllables{1};
 for letter_count=1:length(silly)
 if
isempty(strmatch(lower(silly(letter_count)),VOWELS_DIPHTHONGS,'exact'))
== 0
 vowel = silly(letter_count);
 end
 end

 if isempty(vowel) == 0
 vowel_spots = strmatch(vowel,unstressed_word,'exact');
 stresses(vowel_spots(1)) = 1;
 %return;
 end
 end

 %Compond Stress Rules (Retaining Rules)
 %Rules #1
 if isempty(strmatch(lower(last_syllable(end)),'ee','exact')) == 0 &
num_of_syllables >= 3 & length(find(stresses == 1)) >= 2
 stress_spots = find(stresses == 1);
 stresses(stress_spots(2)) = 2;
 end
 %Rule #2 and Rule #3 Retain 1-stress vowel if it is followed by a
string of syllable
 %without primamry stresses. If only one syllable or stress skip
 if num_of_syllables >= 2 & length(find(stresses == 1)) >= 2
 temp_unstressed_word = unstressed_word;
 temp_unstressed_word(1:length(syllables{1})) = {'/'};
 stress_spots = find(stresses == 1);
 second_syllable = syllables{2};
 for count=1:length(second_syllable)
 spots = strmatch(lower(second_syllable(count)),temp_unstressed_word);
 second_syllable_spots(count) = spots(1);
 end
 second_stress_spot = stress_spots(2);
 if isempty(find(second_stress_spot == second_syllable_spots)) == 0
 stresses(stress_spots(1)) = 2;
 else
 stresses(stress_spots(2)) = 2;
 end
 end

%Strong first syllable rules
%Rule #1 assign 2-stress to the first vowel of the word if it is long
if num_of_syllables >= 2 & length(find(stresses == 1)) >= 2
for count=1:length(unstressed_word)
 if isempty(strmatch(lower(unstressed_word(count)),VOWELS_DIPHTHONGS))
== 0

 107

 if isempty(strmatch(lower(unstressed_word(count)),LONG_VOWELS))
== 0
 stresses(count) = 2;
 end
 break;
 end
end
end

%Rule #1 assign 2-stress to the first vowel of the word if it is
followed by two syllables
if num_of_syllables >= 2 & length(find(stresses == 1)) >= 2
for count=1:length(unstressed_word)
 if isempty(strmatch(lower(unstressed_word(count)),VOWELS_DIPHTHONGS))
== 0 & count+2 <=length(unstressed_word)
 if isempty(strmatch(lower(unstressed_word(count+1)),CONSONANTS))
== 0 & isempty(strmatch(lower(unstressed_word(count+2)),CONSONANTS)) ==
0
 stresses(count) = 2;
 end
 break;
 end
end
end

 108

%--
% Function: convert_phonemes_to_syllable.m
% Purpose: Syllable Parser
% Description: This function parses a string into syllables.
% The output to this function is the syllable arrainged into a cell
% string
% Outputs: syllables (cell string)
%--
function syllable = convert_phonemes_to_syllable(word)

syllable = '';
WORD_CONSONANT_LOCATE_ARRAY = 0;
WORD_VOWEL_LOCATE_ARRAY = 0;
word = lower(word);
VOWELS = {'a' 'e' 'i' 'u'};
CONSONANTS = {'%' 'b' 'd' 'f' 'g' 'h' 'j' 'k' 'l' 'm' 'n' 'p' 'r' 's'
't' 'v' 'w' 'y' 'z' 'ch' 'ng' 'sh' 'th' 'xh' 'zh'};
DIPHTHONGS = {'ah' 'aw' 'ay' 'ee' 'ie' 'oi' 'oo' 'oh' 'ow' 'ue' 'uh'
'ur'};
SHORT_VOWELS = {'a' 'e' 'i' 'u'};

WORD_BEGINS_WITH_VOWEL = 0;
INITIAL_VOWEL_IS_SHORT = 0;

%Count the number of vowels and diphthongs in the word
vowel_count = 0;
syllable_count = 0;
word_length = length(word);

for count=1:word_length
 if isempty(strmatch(lower(word(count)),VOWELS,'exact')) == 0
 vowel_count = vowel_count + 1;
 end
end

for count=1:word_length
 if isempty(strmatch(lower(word(count)),DIPHTHONGS,'exact')) == 0
 vowel_count = vowel_count + 1;
 end
end

%Number of syllables equal the number of vowels and dipthongs
syllable_count = vowel_count;
if syllable_count == 1 | syllable_count == 0;
 syllable{1} = word;
 return;
end

%Check to see if the word begins with a vowel
WORD_BEGINS_WITH_VOWEL =
isempty(strmatch(word(1),CONSONANTS,'extact'));

 109

%Find all and locate of the consonants in the word
word_c_count = 1;
for count=1:length(word)
 CON = strmatch(lower(word(count)),CONSONANTS,'extact');
 if isempty(CON) == 0
 WORD_CONSONANT_LOCATE_ARRAY(word_c_count) = count;
 word_c_count = word_c_count + 1;
 nd e
end

%Find and locate all of the vowels in the word
word_v_count = 1;
for count=1:length(word)
 VOW = strmatch(lower(word(count)),VOWELS,'extact');
 DIP = strmatch(lower(word(count)),DIPHTHONGS,'extact');
 if isempty(VOW) == 0 | isempty(DIP) == 0
 WORD_VOWEL_LOCATE_ARRAY(word_v_count) = count;
 word_v_count = word_v_count + 1;
 end
end

%Check to see if there are two vowels in a row and subtract from the
total count of syllables
syllable_count = syllable_count -
length(find(diff(WORD_VOWEL_LOCATE_ARRAY) == 1));
if syllable_count == 1 | syllable_count == 0;
 syllable{1} = word;
 turn; re
end

%Splitting two middle consonants
MIDDLE_C = find(diff(WORD_CONSONANT_LOCATE_ARRAY) == 1);
if isempty(MIDDLE_C) == 0 & syllable_count == 2 & length(MIDDLE_C) == 1
 syllable{1} = word(1:WORD_CONSONANT_LOCATE_ARRAY(MIDDLE_C));
 syllable{2} = word(WORD_CONSONANT_LOCATE_ARRAY(MIDDLE_C+1):end);
return;
end

%Test to see if the first vowel is short or long
if syllable_count == 2
 if isempty(strmatch(word(1),SHORT_VOWELS,'extact')) == 0 |
isempty(strmatch(word(2),SHORT_VOWELS,'extact')) == 0
 INITIAL_VOWEL_IS_SHORT = 1;
 nd e
end
%Splitting before single middle consonant in a 2 syllable word
%Intital vowel is not short
if INITIAL_VOWEL_IS_SHORT == 0 & syllable_count == 2
if isempty(MIDDLE_C) == 1 & WORD_BEGINS_WITH_VOWEL == 0
 syllable{1} = word(1:WORD_CONSONANT_LOCATE_ARRAY(2)-1);
 syllable{2} = word(WORD_CONSONANT_LOCATE_ARRAY(2):end);
return;
end;
if isempty(MIDDLE_C) == 1 & WORD_BEGINS_WITH_VOWEL == 1

 110

 syllable{1} = word(1);
 syllable{2} = word(2:end);
return;
end;
end;
%Splitting before single middle consonant in a 2 syllable word
%Intital vowel is short
if INITIAL_VOWEL_IS_SHORT == 1 & syllable_count == 2
if isempty(MIDDLE_C) == 1 & WORD_BEGINS_WITH_VOWEL == 0
 syllable{1} = word(1:WORD_CONSONANT_LOCATE_ARRAY(2));
 syllable{2} = word(WORD_CONSONANT_LOCATE_ARRAY(2)+1:end);
return;
end;
if isempty(MIDDLE_C) == 1 & WORD_BEGINS_WITH_VOWEL == 1
 syllable{1} = word(1:2);
 syllable{2} = word(3:end);
return ;
end;
end;

%Seperate word syllables that have more than 2 syllables or do not
follow
%the above criteria
if syllable_count >= 2

if WORD_BEGINS_WITH_VOWEL == 0
 %If the word begins with consonant syllable is 3 letters long
initally
 syllable_starting_point = 1;
 syllable_ending_point = 3;
else
 %If the word begins with vowel syllable is 2 letters long
 syllable_starting_point = 1;
 syllable_ending_point = 2;
end

num_of_syllables = syllable_count;
for syl_cell_count=1:num_of_syllables
 %Initially store the syllable from the starting and ending letters
 %syllable_starting_point
 %syllable_ending_point
% word(syllable_starting_point:syllable_ending_point)
 if syllable_ending_point <= length(word)
 syllable{syl_cell_count} =
word(syllable_starting_point:syllable_ending_point);
 end
 %Find the location of the next two letters
 next_letter = syllable_ending_point + 1;
 next_next_letter = syllable_ending_point + 2;
 next_next_next_letter = syllable_ending_point + 3;
 if syl_cell_count == 1
 %For the first iteration, check to see if the next letter at the
end of the 3 letter long syllable is a vowel.
 %If so, then make the first syllable only 2 letters long and set
the location for the next syllable
 %If not then set the location for the next syllable; if the word

 111

 %begins with a vowel then automatically goto this step
 if isempty(find(next_letter == WORD_VOWEL_LOCATE_ARRAY)) == 0 &
WORD_BEGINS_WITH_VOWEL == 0
 syllable = '';
 syllable{syl_cell_count} =
word(syllable_starting_point:syllable_ending_point-1);
 syllable_starting_point = syllable_ending_point;
 syllable_ending_point = syllable_ending_point + 1;

 else
 syllable_starting_point = syllable_ending_point + 1;
 syllable_ending_point = syllable_ending_point + 2;
 end
 end

 if syl_cell_count > 1
 %For the rest of rest of the iterations, check to see if the
second
 %letter after the lat letter in the 2 letter syllable is a vowel
 %If so, then update the syllable location for the next syllable
 %If the letter is a consonant then make the syllable 3 letters
long
 %and update the syllable location for the next syllable
 if isempty(find(next_next_letter == WORD_VOWEL_LOCATE_ARRAY)) == 0
 syllable_starting_point = syllable_ending_point + 1;
 syllable_ending_point = syllable_ending_point + 2;
 else
 if syllable_starting_point < length(word) &
syllable_ending_point+1 <= length(word)
 syllable{syl_cell_count} =
word(syllable_starting_point:syllable_ending_point+1);
 syllable_starting_point = syllable_ending_point + 2;
 syllable_ending_point = syllable_ending_point + 3;

 if syllable_ending_point > length(word)
 syllable_starting_point = syllable_starting_point - 1;
 syllable_ending_point = syllable_ending_point - 1;
 syllable{syl_cell_count} =
word(syllable_starting_point:syllable_ending_point-1);
 end

 end
 end
 end

%for loop
end

output_length = 0;
syllable_start = '';
for count=1:length(syllable)
output_length = output_length + length(syllable{count});
syllable_start{count} = output_length - length(syllable{count});
end

 112

if output_length < word_length
temp_word = word(syllable_start{end}+1:word_length);
syllable{end} = temp_word;
end

%syllable_count > 2
end

%END OF PROGRAM

 113

%--
% Function: orthographic_converter.m
% Purpose: Orthographic Converter
% Description: This program handle numbers and abbreviations for the
% TTS program. It converts these orthgraphic words into regular text
% Outputs: words
%--
function actual_words = orthographic_converter(actual_words);

[abbreviations regular_words] = textread('Word
Data\Abbreviations.txt','%s%s');

%Abbreviations Conversion
for count=1:length(actual_words)
 word = word_normalizer(actual_words{count});
 spot = strmatch(word,abbreviations,'exact');
 if isempty(spot) == 0
 actual_words{count} = {regular_words{spot}};
 end
end

%Numeric Conversion
[numbers numeric_words] = textread('Word Data\Numbers.txt','%s%s');

%temp_actual_words = actual_words;
temp_actual_words = '';
%temp_actual_words{1:end}
count = 1;
temp_count = 1;

while count <= length(actual_words)

 word = char(word_normalizer(actual_words{count}));
 %if isempty(str2num(word)) == 0
 if sum(isletter(word)) == 0
 %if isnumeric(word) == 1

 numbered_word = floor(str2num(word));

 if numbered_word < 0
 temp_actual_words{temp_count} = 'negative';
 temp_count = temp_count + 1;
 numbered_word = floor(abs(str2num(word)));
 end

 if numbered_word == 0
 temp_actual_words{temp_count} = 'zero';
 end
 % For words between 1 and 10
 if numbered_word >= 1 & numbered_word <= 10
 worded_number = num2str(numbered_word);
 temp_actual_words{temp_count} =
numeric_words{strmatch(worded_number,numbers,'exact')};
 end

 114

 % For words between 10 and 100
 if numbered_word > 10 & numbered_word < 100
 worded_number = num2str(numbered_word);
 spot = strmatch(worded_number,numbers,'exact');
 if isempty(spot) == 0
 temp_actual_words{temp_count} = numeric_words{spot};
 else
 temp_actual_words{temp_count} =
numeric_words{strmatch([worded_number(1),'0'],numbers,'exact')};
 temp_actual_words{temp_count+1} =
numeric_words{strmatch(worded_number(2),numbers,'exact')};
 temp_count = temp_count + 1;
 end
 %End for words between 10 and 100
 end

 % For words between 100 and 1000
 if numbered_word >= 100 & numbered_word < 1000
 worded_number = num2str(numbered_word);
 % hundreds place
 temp_actual_words{temp_count} =
numeric_words{strmatch(worded_number(1),numbers,'exact')};
 temp_actual_words{temp_count+1} = 'hundred';
 temp_count = temp_count + 1;

 %tens and ones place
 tens_place_number = str2num(worded_number(2:3));

 % For words between 1 and 10
 if tens_place_number >= 1 & tens_place_number <= 10
 worded_number = num2str(tens_place_number);
 temp_actual_words{temp_count+1} =
numeric_words{strmatch(worded_number,numbers,'exact')};
 temp_count = temp_count + 1;
 end

 % For words between 10 and 100
 if tens_place_number > 10 & tens_place_number < 100
 worded_number = num2str(tens_place_number);
 spot = strmatch(worded_number,numbers,'exact');
 if isempty(spot) == 0
 temp_actual_words{temp_count+1} = numeric_words{spot};
 temp_count = temp_count + 1;
 else
 temp_actual_words{temp_count+1} =
numeric_words{strmatch([worded_number(1),'0'],numbers,'exact')};
 temp_actual_words{temp_count+2} =
numeric_words{strmatch(worded_number(2),numbers,'exact')};
 temp_count = temp_count + 2;
 end
 end

 %end for words between 100 and 1000

 115

 end

 %between 1000 and 1,000,0000
 if numbered_word > 1000 & numbered_word < 1000000
 worded_number = num2str(numbered_word);
 % hundreds thousand place
 temp_actual_words{temp_count} =
numeric_words{strmatch(worded_number(1),numbers,'exact')};
 temp_actual_words{temp_count+1} = 'hundred';
 temp_count = temp_count + 1;

 %tens and ones thousand place
 tens_place_number = str2num(worded_number(2:3));

 % For words between 1 and 10
 if tens_place_number >= 1 & tens_place_number <= 10
 worded_number = num2str(tens_place_number);
 temp_actual_words{temp_count+1} =
numeric_words{strmatch(worded_number,numbers,'exact')};
 temp_count = temp_count + 1;
 end

 % For words between 10 and 100
 if tens_place_number > 10 & tens_place_number < 100
 worded_number = num2str(tens_place_number);
 spot = strmatch(worded_number,numbers,'exact');
 if isempty(spot) == 0
 temp_actual_words{temp_count+1} = numeric_words{spot};
 temp_count = temp_count + 1;
 else
 temp_actual_words{temp_count+1} =
numeric_words{strmatch([worded_number(1),'0'],numbers,'exact')};
 temp_actual_words{temp_count+2} =
numeric_words{strmatch(worded_number(2),numbers,'exact')};
 temp_count = temp_count + 2;
 end
 end

 temp_actual_words{temp_count+1} = 'thousand';

 %end for words between 100 and 1000
 end

 %Decimal points
 if abs(rem(str2num(word),1)) > 0
 decimal_word = num2str(abs(rem(str2num(word),1)));
 temp_actual_words{temp_count+1} = 'point';
 temp_count = temp_count + 1;
 for decimal_count = 3:length(decimal_word)
 temp_count = temp_count + 1;
 temp_actual_words{temp_count} =
numeric_words{strmatch(decimal_word(decimal_count),numbers,'exact')};

 116

 end
 %End to Decimal points
 end

 %Else to the first if statement in the while loop
 else

 temp_actual_words{temp_count} = word;
 %End of the first if statement in the while loop
 end

count = count + 1;
temp_count = temp_count + 1;
%End of the while loop
end

actual_words = temp_actual_words;

 117

%--
% Function: f0_calculator.m
% Purpose: Fuzzy Inference Computation
% Description: Function calculates the f0 output. The is basically the
% fuzzy interference system with calls to the MF-Calculator. Using the
% MF decsriptior (global) and input variables the function calculates
% the crisp f0 output for a given phoneme
% Outputs: f0 (fundamental frequency) output
%--
function f0_output =
f0_calculator(variable1,variable2,variable3,variable4,rules)

global MF_descriptors
global test_axes

variables(1) = variable1;
variables(2) = variable2;
variables(3) = variable3;
variables(4) = variable4;

GRAPH = 0;

%Get each rule in from the lis t
for rule_count=1:length(rules)

%First get the numberes that represent the linguist variables of the
rule
rule_numbers = rules{rule_count};

MF_count = 1;
%Then for each linguistic variable excpet the output, get the MF for
that
%input, the calculate the output that variable produces with that input
%If the rule number is 0 then that means that input has no bearing on
the
%rule.
for count=1:length(rule_numbers)-1
if rule_numbers(count) > 0
membership_functions = MF_descriptors{count};
MF(MF_count) =
MF_calculator(variables(count),membership_functions(rule_numbers(count)
,:));
MF_count = MF_count + 1;
end
end

rule_output_numbers(rule_count) = min(MF);

end

output_MF = MF_descriptors{5};

fired_rules = find(rule_output_numbers > 0);

if isempty(fired_rules) == 0

 118

 for fire_count=1:length(fired_rules)
 firing_strength =
rule_output_numbers(fired_rules(fire_count));
 rule_spot = rules{fired_rules(fire_count)};
 triangles = output_MF;
 output_tri = triangles(rule_spot(5),:);
 trapezoid =
create_MF_trapezoid(firing_strength,output_tri(1),output_tri(2),output_
tri(3),12);
 all_trapezoids(fire_count,:) = trapezoid;
 end

 else
 f0_output = [];
 return;
 end

 if length(fired_rules) > 1
 trape_max = max(all_trapezoids);
 centroid = sum((0:.1:12).*(trape_max))/sum(trape_max);
 f0_output = 130 + centroid*9;
else
 trape_max = all_trapezoids;
 centroid = sum((0:.1:12).*(trape_max))/sum(trape_max);
 f0_output = 130 + centroid*9;
end

 119

%--
% Function: find_acronyms.m
% Purpose: Find the Acronyms
% Description: This program handle acronyms. It converts these acronyms
% words into regular text
% Outputs: ACRONYMS converted into words
%--
function actual_words = find_acronyms(actual_words)

[capital_letters column1 column2] = textread('Word Data\Capital Letter
to Sound List.txt','%s%s%s');
word_count = 1;
temp_word_count = 1;
FOUND_ALL_CAPS = 0;
number_of_words = length(actual_words);
temp_actual_words = actual_words;

while word_count <= number_of_words

 word = actual_words{word_count};
 upper_count=0;
for another_count=1:length(word)
 if isempty(strmatch(word{another_count},capital_letters)) == 0
 upper_count = upper_count + 1;
 end
end

if upper_count==length(word)
 for capital_count=1:length(word)
 letter_spot = strmatch(word(capital_count),capital_letters);
 temp_actual_words{(temp_word_count + capital_count)-1} =
column1(letter_spot);
 %temp_word_count = temp_word_count + 1;
 if letter_spot == 23
 temp_actual_words{(temp_word_count + capital_count)} =
column2(letter_spot);
 %word_count = word_count + 1;
 end
 end

temp_word_count = temp_word_count + length(word) - 1;
%end to if statement
else
temp_actual_words{temp_word_count} = actual_words{word_count};
end
%number_of_words = length(actual_words);
%actual_words{word_count+1}
word_count = word_count + 1;
temp_word_count = temp_word_count + 1;
end

actual_words = temp_actual_words;

 120

%--
% Function: word_type.m
% Purpose: Find the type of word
% Description: This program finds the word importance of a given word.
% The input is the word and the program first checks to see if it is a
% function or content word. Then it assigns a value between 1 and 10
% based on the word size.
% words into regular text
% Outputs: interger (1-10) and word type (function or content)
%--
function [word_type, word_importance] = word_type(first_word)
word_type = 'CONTENT';

ARTICLES = {'a' 'an' 'the' 'some'};
CONJUNCTIONS = {'and' 'but' 'or' 'so' 'because' 'although' 'nor'
'neither' 'either'};
OTHER_FUNCTIONS = { 'about' 'across' 'against' 'am' 'among' 'any'
'anybody' ...
 'anyone' 'anything' 'are' 'around' 'as' 'at' 'be' 'been'
'before' 'behind' 'below'...
 'beneath' 'beside' 'between' 'beyond' 'by' 'can' 'could' 'did'
'do' 'does' 'down' 'during' ...
 'each' 'ever' 'every' 'everybody' 'everyone' 'everything' 'for'
'from' 'going' 'had' ...
 'has' 'have' 'he' 'her' 'hers' 'herself' 'him' 'himself' 'his'
'however' 'I' 'if' 'in' ...
 'into' 'is' 'it' 'its' 'itself' 'like' 'may' 'me' 'might'
'mine' 'my' 'myself' 'never'...
 'no' 'nobody' 'noone' 'not' 'nothing' 'off' 'on' 'onto' 'or'
'ought' 'our' 'ours' 'ourselves' ...
 'over' 'shall' 'she' 'should' 'since' 'so' 'somebody' 'someone'
'something' 'than' 'that' 'the' ...
 'their' 'them' 'themselves' 'then' 'therefore' 'therfore'
'these' 'they' 'this' 'those' 'though' 'through' ...
 'to' 'under' 'unless' 'until' 'up' 'us' 'was' 'we' 'were'
'whatever' 'whenever' ...
 'wherever' 'whether' 'which' 'while' 'whose' 'will' 'with'
'without' 'would' 'you' ...
 'your' 'yours' 'yourself'};

%empty_cells = strmatch('',prep_size2,'exact');
%double_word_start = empty_cells(end) + 1;

%'how' 'what' 'when' 'where' 'who' 'whom' 'whose' 'why'

%single_prepositions = prep_size1(1:double_word_start-1);
%double_prepositions = [prep_size1(double_word_start:end)
prep_size2(double_word_start:end)];
%Check to see if the word is an article
for count=1:length(ARTICLES)
 if isempty(strmatch(lower(first_word),ARTICLES(count),'exact')) ==
0
 word_type = 'FUNCTION';
 word_importance = length(first_word{1}) - 1;
 if word_importance > 1.5
 word_importance = 1.5;

 121

 end
 eturn; r
 end
end

%check for conjunctions
for count=1:length(CONJUNCTIONS)
 if isempty(strmatch(lower(first_word),CONJUNCTIONS(count),'exact'))
== 0
 word_type = 'FUNCTION';
 word_importance = length(first_word{1});
 if word_importance > 2.5
 word_importance = 2.5;
 end

 return;
 end
end

%Check to see if word is a other function words
for count=1:length(OTHER_FUNCTIONS)
 if
isempty(strmatch(lower(first_word),OTHER_FUNCTIONS(count),'exact')) ==
0
 word_type = 'FUNCTION';
 word_importance = length(first_word{1})+.15;
 if word_importance > 2.75
 word_importance = 2.75;
 end
 return;
 d en
end

word_importance = length(first_word{1}) + 1.75;
if word_importance > 10;
 word_importance = 10;
end

 122

%--
% Function: distance_from_stress.m
% Purpose: Find the word distance from stress
% Description: This program finds the word distance form stress and
% then it assigns a value between 1 and 10
% Outputs: interger (1-10)
%--
function stress_distance =
distance_from_stress(sentence_word,temp_phonemes,phoneme)

VOWELS = {'a' 'e' 'i' 'u'};
CONSONANTS = {'b' 'd' 'f' 'g' 'h' 'j' 'k' 'l' 'm' 'n' 'p' 'r' 's' 't'
'v' 'w' 'y' 'z' 'ch' 'ng' 'sh' 'th' 'xh' 'zh'};
DIPHTHONGS = {'ah' 'aw' 'ay' 'ee' 'ie' 'oi' 'oo' 'oh' 'ow' 'ue' 'uh'
'ur'};

phoneme_spot = strmatch(phoneme,temp_phonemes{1},'exact');
phoneme_spot = phoneme_spot(1);
phoneme_word_stresses = english_stress_rules(sentence_word{1});
primary_stresses = find(phoneme_word_stresses == 1);
if isempty(primary_stresses) == 1
 stress_distance = 10;
 return;
end

if primary_stresses(1) == phoneme_spot
 stress_distance = 0;
 return;
end

if length(sentence_word) == 1
 offset = 10/length(sentence_word{1});
 stress_distance = (abs(primary_stresses(1) -
phoneme_spot)+1)*offset;
 turn; re
end

 123

%--
% Function: distance_from_stress.m
% Purpose: Calculates position in sentence
% Description: Calculates position in sentence and then it assigns a
% value between 1 and 10
% Outputs: interger (1-10)
%--

function sentence_position =
find_sentence_position(output_phonemes,phoneme)

sentence_size = length(output_phonemes);
offset = 10/sentence_size;

found_letter = strmatch(phoneme,output_phonemes,'exact');
found_letter = found_letter(1);

sentence_position = found_letter*offset;

 124

%--
% Function: distance_from_stress.m
% Purpose: Calculates sentence size
% Description: Calculates sentence size and then it assigns a
% value between 1 and 10
% Outputs: interger (1-10)
%--

function sentence_size = find_sentence_size(output_phonemes);

sentence_words = find_sentence_words(output_phonemes);
syllable_count = 0;

for count=1:length(sentence_words)
 word = sentence_words{count};
 syllable = convert_phonemes_to_syllable(word);
 syllable_count = syllable_count + length(syllable);
end
off_set = .5;
sentence_size = syllable_count*off_set;
if sentence_size > 10
 sentence_size = 10;
end

 125

%--
% Function: distance_from_stress.m
% Purpose: Finds the words in sentence
% Description: Finds the words in sentence based on the spaces.
% Outputs: cell string of sentence words
%--
function sentence_words =
find_sentence_words(old_output_phonemes,COMMAS);

spaces = strmatch('%',old_output_phonemes,'exact');
if isempty(spaces) == 0;
temp_phonemes = old_output_phonemes;
spaceless_word = old_output_phonemes;
spaceless_word(spaces) = '';
for count=1:length(spaceless_word);
spot = strmatch(spaceless_word(count),temp_phonemes);
non_space_letter_indices(count) = spot(1);
temp_phonemes(1:spot(1)) = {'\'};
end

word_spot = 1;
word_count = 1;
word{word_spot} =
char(old_output_phonemes(non_space_letter_indices(1)));
word_spot = word_spot + 1;
differences = diff(non_space_letter_indices);

for count=1:length(differences)
if differences(count) == 1;
word{word_spot} =
char(old_output_phonemes(non_space_letter_indices(count+1)));
word_spot = word_spot + 1;
else
sentence_words{word_count} = word;
word_count = word_count + 1;
word = '';
word_spot = 1;
word{word_spot} =
char(old_output_phonemes(non_space_letter_indices(count+1)));
word_spot = word_spot + 1;
end
end

sentence_words{word_count} = word;
end

if isempty(spaces) == 1;
sentence_words{1} = old_output_phonemes;
end

 126

	Prosody in text-to-speech synthesis using fuzzy logic
	Recommended Citation

	Abstract
	Acknowledgements
	 Table of Contents
	 List of Figures
	Chapter 1: Introduction and Background
	1.1 Introduction
	1.2 Human Speech Process
	1.3 Speech Synthesis Techniques
	1.3.1 Concatenative Speech Synthesis
	1.3.2 Formant Synthesis
	1.3.3 Hidden Markov Model Synthesis

	1.4 Methods of Text-to-Phoneme Conversion
	1.4.1 Dictionary-based Approach
	1.4.2 Rule-based Approach
	1.4.3 Machine Learning Approach

	 Chapter 2: Motivation and Objectives
	2.1 Motivation
	2.2 Research Objectives

	 Chapter 3: Literature Review
	3.1 Generation of Synthetic Speech
	3.2 Text-to-Phonemes Algorithms
	3.3 Text-to-Speech Systems
	3.4 Automatic Prosody Generation
	3.5 Back Propagation Algorithm
	3.5.1 Forward Pass
	3.5.2 Backward Pass

	3.6 Fuzzy Logic Inference System

	 Chapter 4: Text-to-Phoneme Conversion
	4.1 Text-to-Phoneme Conversion Overview
	4.2 Text-to-Phoneme Conversion Algorithm
	4.2.1 Network Input and Output Design
	4.2.2 Network Detailed Training Design
	4.2.3 Training Set Detail and Alignment

	 Chapter 5: Automatic Prosody Generation
	5.1 Generation of Prosody Overview
	5.2 Segmental Duration
	5.3 Stress Assignment
	5.4 Fuzzy Fundamental Frequency
	5.5 O’Shaughnessy Algorithm
	5.6 Fuzzy System Inputs and Consequence
	5.6.1 Word Importance
	5.6.2 Sentence Size
	5.6.3 Sentence Position
	5.6.4 Stress Distance
	5.6.5 Consequence

	5.7 Fuzzy System Rules
	5.7.1 Declarative Sentence
	5.7.2 Yes/no Question
	5.7.3 Interrogative Question

	5.8 Fuzzy Output Calculation
	 5.9 Final Speech Production

	 Chapter 6: Results
	6.1 Text-to-Phoneme Results
	6.2 Fuzzy Fundamental Frequency Results

	 Chapter 7: Conclusion
	7.1 Summary and Conclusion
	7.2 Future Work

	 References
	 Appendix A – Phoneme List
	 Appendix B – Phoneme Inherit Duration
	 Appendix C – Training Set
	 Appendix D – MBROLA Program Description
	 Appendix E – Source Code

		2005-08-30T14:45:38-0400
	John H. Hagen
	I am approving this document

