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Abstract 
 

Prosody in Text-to-Speech Synthesis Using Fuzzy Logic 
 

by 
 

Jonathan Brent Williams 
 
 

For over a thousand years: inventors, scientists and researchers have tried to 
reproduce human speech.  Today, the quality of synthesized speech is not equivalent to 
the quality of real speech. Most research on speech synthesis focuses on improving the 
quality of the speech produced by Text-to-Speech (TTS) systems.  The best TTS systems 
use unit selection-based concatenation to synthesize speech. However, this method is 
very timely and the speech database is very large. Diphone concatenated synthesized 
speech requires less memory, but sounds robotic.  This thesis explores the use of fuzzy 
logic to make diphone concatenated speech sound more natural.  A TTS is built using 
both neural networks and fuzzy logic. Text is converted into phonemes using neural 
networks.  Fuzzy logic is used to control the fundamental frequency for three types of 
sentences.  In conclusion, the fuzzy system produces f0 contours that make the diphone 
concatenated speech sound more natural.   
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Chapter 1:  Introduction and Background 
 

1.1 Introduction 
 

Text-to-Speech (TTS) is the process of converting unknown text into sounds that 

represent the text.  Reading out loud is an example of TTS. A TTS system involves 

converting random text into intelligible synthesized speech.  The text can be either 

directly introduced to the system by a user or scanned from a source [16]. The 

applications of TTS systems are numerous, from assisting people with disabilities to 

improving customer service.  The ideal TTS system would sound similar to HAL-9000 

from the movie, “2001: A Space Odyssey”.  However, current TTS systems still sound 

robotic and thus have yet to gain public acceptance.  Today, the main problem facing 

TTS systems is refining the naturalness of synthesized speech.  Naturalness of speech is 

correlated to the prosody of speech.  Prosody refers to the intonation, timing, and vocal 

stress of speech.  Currently, TTS research focuses on the improvement of synthesized 

speech prosody.     

 

1.2 Human Speech Process 
 

Synthesizing human speech is difficult due to the complexity of human speech.  

The production of human speech involves the lungs, the vocal folds, and the vocal tract 

(oral cavity, nasal cavity, and pharyngeal cavity) functioning collectively.   Figure 1-1 

shows the organs used in speech production.  
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Figure 1-1: Human Speech Organs [40] 

 
Human speech is created by an air source (lungs and the surrounding muscles) causing 

some type of excitation in the vocal system (vocal folds and vocal tract).  The type of 

sound produced is determined by the vocal system’s affect on the air flow.  There are two 

types of speech produced by humans; voiced and unvoiced. With voiced speech, sound is 

produced from the vibration caused by air flowing through tensed vocal folds.  Unvoiced 

speech is created from air flowing through abducted vocal folds, and the sound is 

produced by air flowing through a constriction in the vocal tract or air being stopped and 

then suddenly released [40].    

 Mimicking the sounds created by human speech is difficult because real 

continuous speech is a combination of many complex audio signals. With voiced speech, 

the speech signal is modified by either the oral cavity or the nasal cavity. These cavities 

act as resonators with pole and zero frequencies. Pole and zero frequencies are called 

formant and anti-formant frequencies, respectively.  These frequencies have their own 

amplitude and bandwidth. Voiced speech also produces a complex quasi-periodic 

pressure wave from an interruption in air flow caused by the vibration of the vocal folds.  

The frequency of impulses from the pressure wave is called the fundamental frequency. 

With purely unvoiced speech, since there is no vibration of the vocal folds, there is no 

fundamental frequency.   

  Researchers believe that the most important signals generated by human speech 

are the formant frequencies and the fundamental frequencies. When synthesizing speech, 
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these signals greatly contribute to the naturalness of the speech.  The formant frequency 

represents the shape of the sound that is formed by the vocal tract (oral cavity and the 

nasal cavity).  Different sounds (vowels, nasals, etc.) within a language are 

distinguishable by their formant frequencies. The fundamental frequency determines the 

pitch of the voice.  For example, women and children have a higher pitch (i.e. higher 

fundamental frequency) than men. Throughout the years, research involving the 

naturalness of synthesized speech has focused primarily on these two acoustic features.  

Sounds created by humans are merely noise if the sounds do not have meaning.  

Sounds in speech production are categorized into units.  These units can be as large as 

words or as minute as a phone.  However, phonemes are the fundamental units of 

phonology.  The definition of phonemes is the theoretical unit of sound that can 

distinguish words [29].  The concatenation of phonemes produces the words in the 

language, i.e. changing a phoneme means changing the word.  Phonemes are split into 

two major categories: vowels and consonants. All vowels are voiced sounds while some 

consonants are voiced sounds and some are unvoiced sounds. The number of phonemes 

on a language depends of the actual language, speaker, and the particular dialect.   For 

example, most standard American English consists of 41 phonemes. Diphones are the 

stable middle region between two phonemes.  Diphones represent the transition between 

two phones.  Therefore, the number of diphones in a language is the number of phonemes 

squared.  With speech synthesis, the role of phonemes and diphones is to focus on sounds 

that the system should yield.   

1.3 Speech Synthesis Techniques 
 

Speech synthesis is the artificial production of human speech.  The techniques of 

speech synthesis are categorized into three different approaches.  These are concatenative 

speech synthesis, formant-based synthesis, and Hidden Markov Model synthesis. 

1.3.1 Concatenative Speech Synthesis 
 

Concatenative speech synthesis involves combining previously recorded speech to 

form words or sentences.  The concatenative speech synthesis approach currently 
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produces the most natural sounding speech because of the use of real speech.  There are 

three methods of concatenative speech synthesis: diphone synthesis, domain-specific 

synthesis, and unit-selection synthesis. The most commonly used methods today are 

domain-specific and unit-selection synthesis.  

Diphone synthesis involves the concatenation of diphones.  As previously 

explained, diphones are the middle region between two phones. The concatenation of 

diphones minimizes the co-articulatory effects of the phone to phone transition.  During 

synthesis, digital signal processing (DSP) techniques such as linear predictive coding 

(LPC), POLA, and MBROLA are used to overlay the desired prosody onto these 

diphones.  The amount of diphones for a given language is equal to the number of 

phonemes of that particular language squared.  Therefore, the diphone inventory size is 

relatively small and diphone synthesis can be used with inexpensive processors and 

embedded systems.   However, diphone concatenation yields robotic sounding speech 

due to the digital signal processing.     

 Domain-specific concatenation is a very common form of speech 

synthesis.  Most companies use domain-specific synthesis for their phone-based customer 

service systems. Consequently, this type of synthesis has gained some notoriety over the 

years.  Domain-specific synthesis concatenates pre-recorded words and phrases to create 

speech.   Domain-specific synthesis is only useful in applications where the output is 

restricted to a certain domain.  Examples of domain-specific synthesis are automatic 

reports of the weather, talking gadgets, automated banking, and automated customer 

service. Domain-specific concatenation sounds natural because the variety of sentence 

type is limited; therefore, the output matches the original recording.  However, since this 

method of synthesis is limited to only specific applications, domain-specific synthesis 

could not be implemented in a TTS system.   

Unit selection-based synthesis is the method currently used in commercial-based 

TTS systems.  Unit selection is created from large databases of hours of recorded speech. 

These recordings are then converted into units to be concatenated into speech.  First, a 

recording of speech is segmented into individual phonemes, syllables, words, phrases, 

and sentences.   The segmentation is done by hand or automatically by a modified speech 

recognizer.  An index of the units from the speech database is then created based upon 
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prosodic parameters, like fundamental frequency and segment duration.  Synthesis is 

created using a decision tree that determines the best path of candidate units from the 

database.  Unit selection yeilds the most natural sounding speech today.  However, to 

achieve maximum naturalness requires unit selection-based systems’ speech databases to 

be gigabytes in size [36].    

1.3.2 Formant Synthesis 
 

Formant synthesis generates synthetic speech using formants.  Formants represent 

the resonant frequencies of the oral cavity or the nasal cavity.  An acoustic model is used 

to create the speech and parameters, like fundamental frequency, spectral components, 

and noise levels which are varied over time to create a waveform of speech.  The 

disadvantage of formant synthesis is the robotic sounding quality of speech [36].  

However, formant synthesis does have many advantages over concatenative speech. 

Formant synthesis does not require stored databases and thus requires little 

memory.  Formant synthesis can also be generated at very high speeds.  This makes 

formant-based systems useful in embedded computing and real-time applications.  For 

example, most reading machines for the blind use formant-based synthesis.  In addition, 

formant-based systems offer the user more control over the output speech. With formant 

synthesis, intonation and prosody can be altered to represent an assortment of emotions 

and tones of voice.   

1.3.3 Hidden Markov Model Synthesis 
 

Hidden Markov Model (HMM) synthesis is the process of modeling the speech 

output using the Markov process.  The HMM is a Markov process where the parameters 

are unknown. With HMM, each state has outputs, and future states are dependent only on 

the present state [36].  HMMs are used in speech synthesis to model the vocal tract and 

prosody.  The quality of HMM speech synthesis is good but not as good as unit selection-

based systems [36].  HMM synthesis is a newer method of speech synthesis and has been 

applied mostly to trainable TTS systems.   
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1.4 Methods of Text-to-Phoneme Conversion 
 

In order for a TTS system to be accepted by the public, the system must correctly 

convert the inputted text into the correct pronunciation.  Text-to-Phoneme (TTP) 

conversion consists of translating text into its phonetic transcript.   This task can be 

accomplished using many different methods.  The most common methods are the 

dictionary-based approach, the rule-based approach, and the machine learning approach.   

1.4.1 Dictionary-based Approach 
 

The dictionary-based approach is the easiest TTP conversion method to 

implement.  Dictionary-based TTP conversion consists of storing phonological 

knowledge into a lexicon [16].   Early dictionary-based conversions required locating 

word pronunciations that were stored in a large lexicon.  This process required enormous 

amounts of memory because the lexicons had to contain every word and its 

pronunciation.   Most dictionary-based TTP conversions today use stored morphemes 

instead of words in the lexicon.  Morphemes are the smallest language unit that carries a 

semantic interpretation. For example, the word “uncontrollable” contains three 

morphemes; “un-”, “-control-“, and “-able”.  Morphemes require less memory to store 

and can cover most words in a language.  Both types of dictionary-based conversion 

methods handle unknown words similarly.  Rules are used to pronounce unknown words 

or morphemes [16].  The main drawback of dictionary-based TTP conversion is the 

amount of memory that the lexicon can consume. Yet, dictionary-based systems are the 

easiest to create.   

1.4.2 Rule-based Approach 
 

The rule-based TTP conversion approach uses expert rules to yield 

pronunciations.  The pronunciations are based on the spelling of the word.  These rules 

are similar to the sounding-out rules used by grade school students when learning how to 

read [36].  There are some drawbacks to the rule-based approach. For instance, rule-based 

TTP conversion system rules can become very complex, especially with irregular 

languages like the English language. Rules are much more complex to code than simple 
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binary searches used by dictionary-based TTP systems. However, rules-based systems 

can work on any input presented to the system.  

 

1.4.3 Machine Learning Approach 
 

There are many different types of machine-learning approaches to TTP 

conversion.  Machine learning is the ability of a machine, a computer, or an electronic 

device to improve its performance based upon previous results. Machine learning 

requires that a system “learns” how to convert text into its phonetic representation.  With 

TTP conversion, this task can be accomplished with many different methods. Neural 

networks, Self-Organizing Maps, and Decisions Trees are examples of the machine 

learning approach.  However, for irregular languages like English, the accuracy is not 

equivalent to the latter approaches.   
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Chapter 2:  Motivation and Objectives 
 

2.1 Motivation 
 

TTS systems are becoming more commercially available as the quality of the 

systems improves.  Most commercial systems use the unit-selection based concatenation 

approach to produce speech output [36].  However, unit-selection requires large 

prerecorded speech databases that must be segmented in order to create a useable system 

[36].  Segmentation of a prerecorded speech database can be very difficult and timely.  

Formant synthesis uses less amounts of memory, but the speech is very mechanical in 

sound.  For speech synthesis to be widely accepted in robotics and our shrinking 

electronics, speech synthesis systems must use as little memory as possible, must require 

little effort to create, and must sound somewhat natural. 

Diphone concatenation is adequate enough to produce understandable synthesized 

speech.  Most languages consist of about 2000 diphones. Diphone inventories take 

relatively little memory to store, and there are many freely available programs that use 

diphone concatenation.   However, diphone concatenation systems produce speech that is 

robotic and not the quality of current unit-selection based systems.  Prosody is what 

makes speech sound natural, and the prosody in recorded speech segments is more 

natural sounding than that of synthesized prosody.  

This thesis presents a different method to produce more natural sounding speech 

for diphone concatenation-based TTS systems.  Most TTS systems that use diphone 

concatenation use either neural networks or rule-based approaches to generate prosody.  

This research exams the use of Fuzzy Logic to generate one aspect of prosody: 

fundamental frequency.  TTP conversion is performed using the neural network Back 

Propagation algorithm.  Using linguistic data as input, the fuzzy logic system produces 

fundamental frequency and frequency contour as outputs.  The rules of the fuzzy logic 

system are from the O’Shaughnessy fundamental frequency algorithm used in the MITalk 

system [2].  As a result, the TTS system output speech should sound more natural.    
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2.2 Research Objectives 
 

The research objective is to apply the flexibility of fuzzy logic to the randomness 

of TTS conversion in order to produce more natural sounding synthesized speech.  Using 

established information provided by the user of the TTS system, the fuzzy controller will 

produce output that will reflect the user’s input.  

 The specific research objectives are: 
 
1. Gain an understanding of the process of human speech production. 

Understand the concepts and theories of generating synthetic speech. Research 

different algorithms that have been created to generate English prosody 

automatically. 

 

2. Build an English text-to-phoneme system using neural networks that will 

produce accurate phonemes given inputted text.  The Back Propagation 

algorithm will be used to train the network.  The training set will consist of 

about 1800 words.  

 

3. Implement a fuzzy control system that will control the intonation of the 

speech. The fuzzy controller will receive different linguistic parameters as the 

input and produce fundamental frequency as the output.  This fuzzy controller 

will represent the O’Shaughnessy fundamental frequency algorithm and 

system will handle three types of sentences: declarative, yes/no question, and 

interrogative questions. The final system should produce understandable 

speech that mimics the proper intonation for each type of sentence.  

 

4. Calculate the accuracy of the text-to-phoneme network using the training set 

and unknown text.  Evaluate the fuzzy controller by comparing the f0 contour 

produced by the controller with the f0 contour of the Microsoft Research 

Speech Technology Asia (MRSA) on-line TTS system [37].    
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Chapter 3:  Literature Review  
 
 

TTS research has been extensively examined over the last 40 years.  This chapter 

presents an extensive literature review of past and present research on the different 

aspects of the TTS system.  The review has been performed on the following subjects: 

generation of synthetic speech, TTS conversion algorithms, TTS systems, automatic 

prosody generation, and the fuzzy logic inference system.  

 

3.1 Generation of Synthetic Speech 
 

Generating synthetic speech has been a curiosity for the past 1100 years.  Around 

the year 1003, Gerbert of Aurillac created the first known mechanical talking machine.  

For the next two centuries, inventors like Albertus Magnus and Roger Bacon created 

machines know as “talking heads” [23].  However, the first known machine that tried to 

mimic real human speech was developed by Christian Kratzenstein of St. Petersburg in 

1779.  This machine could produce five long vowel sounds. Twelve years later, 

Wolfgang Von Kempelen developed a machine that could produce vowels and some 

consonants [21, 33].   

 

 
Figure 3-1: Wolfgang Von Kempelen's Talking Machine [33] 

 
With the start of the 20th century and the increasing use of electricity, speech synthesis 

began to move from mechanical machines to electrical machines.  

 10



 

Electronic speech synthesizers were first developed in the 1920’s.  The first 

known electronic synthesizer, VODER, was developed by Homer Dudley in the late 

1930’s [21].  Dudley was a research physicist at the Bell Laboratories in New Jersey. 

Dudley reconstructed the Bell Laboratories speech analysis, VOCODER, into the speech 

synthesizer VODER. The VODER was controlled by an operator using a keyboard to  

 

 
Figure 3-2: Woman Operating the VODER [36] 

 
adjust the filter output, foot pedals to control the fundamental frequency, and special keys 

to create closure and the release required for stops [23]. The VODER was operated like a 

musical instrument. Eventually, human operated machines became obsolete.  After World 

War II, the spectrograph provided a new tool for researching acoustic phonetics.   As a 

result, researchers began to study speech based on acoustical data.  

 In the 1950’s, speech synthesizers like the Pattern Playback were developed to 

produce speech from copied speech waveforms.  The speech synthesis by rule approach 

(formant synthesis) began to become prevalent in the following decade. Concatenative 

speech synthesis became a focus of research in the 1970’s with the initial focus on 

phoneme concatenation. However, it was quickly discovered that diphone concatenation 

would be more feasible than phoneme concatenation [21].  In 1976, Olive and 

Spickenagle used linear prediction speech analysis to automatically create a full diphone 

inventory for concatenation [27].  In 1988, Nakajima and Hamada wrote about a method 

of speech concatenation that used a unit-selection based approach, instead of the more 
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common diphone concatenation approach [25]. Today, diphone concatenation and unit-

selection concatenation are the most common methods of speech synthesis with the latter 

becoming more common commercially.    

3.2 Text-to-Phonemes Algorithms 
 

Today, there are many different ways to produce speech from text.  One of the 

earliest methods of converting text to phonetics was the use of sophisticated heuristics 

[21].  The first full English TTS system used this method in combination with a syntactic 

analysis module. As computer memory increased, the preferred method for TTP 

conversion was the use of a look-up dictionary.  Look-up dictionary algorithms consist of 

matching inputted words to words in a lexicon, utilizing phonological rules as a back-up.  

By the 1980’s, TTS systems like the KlatTalk and DECTalk used a combination of a 

look-up dictionary and phonological rules [2, 21, 22].   As computer technology became 

more sophisticated and accessible, researchers began to develop new ways of tackling the 

TTP conversion problem.      

 The use of machine learning techniques for TTP conversion was researched in the 

1980s.  In 1987, Sejonowski and Rosenberg used neural networks to convert inputted text 

into phonemes.  This system used a 120 hidden neuron multi-layered perceptron trained 

with 2000 words [35].  Neural networks use neurons with weights that represent the 

neurons and the synapse of the neurons, respectively.  Each weight represents the firing 

strength of the neuron synapse. Initially, all of the weights for each neuron in the network 

are randomized. The weights are updated using the calculated error from the training data 

and the network’s actual output.  In the multi-layered perceptron algorithm, the error is 

propagation backwards throughout the layers of network.  Figure 3-3 shows an overview 

of the NetTalk network.  
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Figure 3-3: NetTalk Multi-layered Perceptron 

 
McCulloch devised a re-implementation of the NETTalk multi-layer perceptron 

algorithm called NETSpeak, which yielded about 85% accuracy [24].  Recently, 

Arciniegas and Embrechts used a staged neural network algorithm to handle some of the 

previous problems of the single-staged multi-layer perceptron algorithm.  In that paper, 

two stages of neural networks were used to convert text to phonemes. One stage 

separated regular words from special words.  Special words were categorized as words 

that contained single letters represented by two output phonemes.  The other stage found 

the phonetic output for the two types of words [4].  Gubbins used a hybrid-neural 

network approach which used both neural networks and a simple rule-based system to 

convert text to phonemes [18].  The multi-layer perceptron neural network is not the only 

neural network algorithm researchers have used for TTP conversion.   

Adamson and Damper researched different ways to improve the performance of 

TTP conversion neural networks [24].  They used a recurrent neural network which 

addressed some of the problems of the multi-layer perceptron algorithm.  A recurrent 

neural network uses a single letter as input and trains itself using the Back Propagation 

through Time algorithm.  This algorithm removes the need for alignment of the training 

set. The network has a recurrent structure with no constraints regarding which direction 

units can interact [19].  Adamson and Damper’s algorithm initially performed worse than 

the NETTalk and NETSpeak, but their paper was the foundation for other recurrent 

neural network based algorithms [1].  In 2004, Bilcu, Astyola and Saarinen improved the 

performance of the recurrent neural network algorithm by using three letters as the input 
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to a recurrent neural network [6].   In 2003, Bilcu compared the performance of multi-

layered perceptron to two types of recurrent networks.  The results showed that the multi-

layered perceptron is the most accurate of the three [7].  Besides neural networks, TTS 

systems have also used other forms of machine learning to convert text to phonemes. 

The pronunciation by analogy (PBA) algorithm is another machine learning 

algorithm that has been used for TTP conversion.  PBA is similar to the dictionary-based 

algorithms because both algorithms use dictionaries to convert text to phonemes.  

However, the PBA algorithm uses a different method to handle words not in the 

dictionary.  The PBA algorithm concatenates partial pronunciations of substrings using 

learned phonological knowledge [12]. Using an aligned lexicon, pronunciation can be 

achieved through explicit and implicit learning.  An example of a system that uses this 

algorithm is the PRONOUNCE system [12, 13].  In the PRONOUNCE system, an 

inputted word is matched to words in a dictionary.  Then substrings with common letters 

are found between the found dictionary entry and the input.  Phonetic substrings are also 

built from the matched substrings. Information from these substrings is then used to build 

a pronunciation lattice.  Lattice nodes are first labeled with Li and Pi representing the 

matched letter and the corresponding phoneme in the substring, respectively. Pi is labeled 

Pim to represent the mth matched substring. If there is a match between two Li and Lj, then 

an arch is placed between the two nodes with the Pim and Pjm being the arc labels. The 

pronunciation for an unknown string is created by the best path through the lattices [12]. 

PBA do suffer from one major drawback however.  Due to incomplete paths, PBA tend 

to have silences during text conversion.  This problem was solved in Sullivan and 

Damper, but the pronunciation lattices’ size greatly increased [39].  

 
 

3.3 Text-to-Speech Systems 
 

The first full TTS system was developed in the late 1960’s. Since then, there have 

been many advances in the accuracy and the quality of TTS systems. Companies like 

IBM, Microsoft, and Bell Labs have developed both free and commercially available 

systems.  
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 In 1968, Umeda of Japan developed the first demonstrated TTS system for the 

English language.  This system transformed text to phonemes using linguistic rules. 

Sentence pauses were placed in sentences with ten or more syllables [21].  In 1973, the 

Haskins TTS system was developed but was later discontinued due to inadequate 

research funds. This system used the Kenyon and Knott 140,000 word phonetic 

dictionary with a rule system to handle unknown words.  The Haskins TTS system was 

developed to aid the blind with reading.  Although the system was never produced 

commercially, the Haskins TTS system is considered a significant step in TTS research 

[21].  

In 1976, Allen, Hunnicutt, and Klatt developed the MITalk at MIT [2].  This TTS 

used different levels to convert text to synthesized speech.  In the first level, 

abbreviations, numbers, and symbols were transformed into words. Then, using a 12,000 

morph (prefixes, roots, and suffixes) lexicon, words were converted to their phonetic 

equivalent. Words not in the lexicon were converted to phonemes by using rules.  Stress 

and “part of speech” for each word was determined on another level. Then the final level 

produced the synthesized speech.  Phoneme, syllabic, and pause duration were 

determined using the Klatt duration rules [20, 2].  Fundamental frequency contour was 

determined using an adaptation of the O’Shaughnessy algorithm [28, 2].  The f0 contour 

was smoothed, and the waveform was generated using a terminal synthesizer.   

The Klatttalk TTS system was developed in 1983 by Dennis Klatt.   Dennis Klatt 

had previously worked on the MITalk system a few years earlier. This system used the 

Hunnicutt letter-to-phoneme rule system plus an exception dictionary to convert text to 

speech. The Klattalk was more rule-based than the dictionary-based MITalk system [22].  

The Klattalk system was the basis for the 1982 Digital Equipment Corporation DECTalk.  

The DECTalk system later became commercially available in 1983.  DECTalk was very 

versatile because of its ranges of voices and different speech speeds. Due to the flexibility 

of the DECTalk hardware, the DECTalk was easily updated with improved versions of 

the Klattalk system [21].  
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Figure 3-4: Stevie Wonder Introducing the DECTalk in 1983 [41] 

 
In the early 1980’s, Richard Gagnon developed a very inexpensive segmental 

synthesis program. This system became the commercial Votrax Type-n-Talk.  The 

system was built with very inexpensive hardware and a small phoneme inventory to 

synthesize speech. The Echo TTS system was another inexpensive segment-based system 

which used a diphone inventory and a linear predictive synthesizer to produce speech 

[21].   

Today, there are many types of TTS systems for many different purposes.  The 

Festival Text-to-Speech system developed by Black and Clark is an example of current 

TTS systems developed for research.  Festival uses letter-to-sound rules and a large 

lexicon for TTP conversion. Speech synthesis is accomplished using unit-selection 

concatenation of diphones [8]. The MBROLA project is a TTS system that is freely 

available for researchers. The MBROLA project was developed by TCTS Lab of the 

Faculté Polytechnique de Mons in Belgium and is a back-end system [15].  This system is 

to be used as a speech producer for a TTS system developed by the user. MBROLA uses 

diphone concatenation to produce speech for many different languages.  Microsoft has 

many English TTS systems for different applications.  Microsoft based products use 

either unit-selection or diphone concatenation to synthesize speech. Microsoft Reader is 

free software from Microsoft that converts text from e-mails and other documents to 
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speech.  The Apple PlainText TTS system is standard on PowerPC computers.  The 

PlainText uses a dictionary-based system to convert text to sounds and diphone 

concatenation to produce speech.  A very high quality commercial system is the AT&T 

Natural Voices TTS system.  The AT&T Natural Voices enables users to define the 

pronunciation of certain words. This system uses unit-selection synthesis to produce 

speech [5].  

 

3.4 Automatic Prosody Generation 
 

Currently, prosody is the major issue in speech synthesis.  As a result, most 

research deals with prosody of speech. Prosody, in the context of speech, consists of the 

properties of speech, such as pitch, loudness, and duration [16].  Prosodic events can be 

phonemes, syllables, or words.  Prosody in a speech system mainly deals with 

fundamental frequency and segmental duration.  

Segmental duration refers to the timing of the units that create speech.  These 

units can be either as small as a phone or as large as a phrase. The size of the units must 

be determined in order to adequately model real speech. Researchers know that sub-

phonetic segments do exhibit different durations.  However, this information would be 

too complex for TTS systems, so most research is focused on either the phonetic or the 

supra-phonetic sized segments [16].  Early research on segmental duration addresses the 

principles of isochrones.  A speaker would unconsciously use an internal clock while 

speaking. As a result, Campbell contended that segments in a syllable frame are found 

using the following formula: 

 
Duri = exp(µi+ kσi) 
           (3.1) 
 
Duri is the duration of the segment at syllablei and µi and σi statistical measures of a large 

corpus. However, this formula is too strict of an application to accurately model duration 

[15].  

More accurate segmental duration models have focused primarily on the phoneme 

as the segmental unit.  Although other segments are taken into account, these segments 

 17



 

do not directly affect the duration of the units.  Currently, there are two types of 

segmental duration models: rule-based models and corpus-based models.  Rule-based 

models use rules to modify intrinsic durations, while corpus-based models use 

sophisticated methods to automatically derive models using data within the corpus [16].   

One of the best known rule-based duration models was developed by Dennis Klatt 

in 1976.  This model has been used in MITalk, Klattalk, and DECTalk TTS systems.  

Each phoneme consists of an inherent duration and a minimum duration [2]. There are 

eleven rules that alter the duration of the phoneme due to factors like their location, their 

manner of articulation, their stress, etc.   The duration of the phonemes is changed by 

using the formula: 

 
PRCNT1 = (PRCNT1)*(PRCNT2)/100      (3.2) 
            
 
Where PRCNT1 represents the current duration of the phoneme, and PRCNT2 is a 

number that the phonemes need to be altered [2].  Although this duration model works 

well, recent research has focused more on the corpus-based approach to duration 

modeling.  

Corpus-based duration models take advantage of the advancements in 

computational resources. Using a large recorded speech corpus, parameters are extracted 

and models are created using some type of abstract learning method.  In 1994, Riley used 

a corpus of 400 utterances from a single speaker and 4000 utterances from 400 speakers 

to model segmental duration.  From this corpus, Riley built a classification and regression 

tree (CART) as the segmental duration model [32].  In 1992, Campbell used a neural 

network to model segmental duration.  In that paper, he computed syllable duration 

independent of inherit segmental durations. Campbell believed that previous rule-based 

models were incorrectly based on inherent durations.  His focus was to model higher 

levels of prosodic structure like syllables and prosodic phrases. Consequently, 

Campbell’s network was trained to model Japanese and English syllables [11].    

Although segmental duration is a very important aspect of speech synthesis 

prosody, it is not as essential as pitch and intonation.  For example, a modification in 

pitch can change a statement into a question.  Initially, research on this aspect of prosody 
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mainly focused on the relationship between intonation and stress. Intonation deals with 

the pattern of tones in an utterance. Stress deals with the emphasized syllable of a word. 

It was believed that there was a direct association between intonation and pitch and that 

stress was created by changes in vocal intensity and syllable duration [21].  However, it is 

now known that the change in the fundamental frequency indicates stress and intonation 

[21]. Over the years, there have been different theories to predict the rise and fall of 

fundamental frequency (f0).   

In the mid 1960’s, Mattingly developed a fundamental frequency theory that used 

three tunes placed on the last prominent syllable of a clause.  The tunes were rise, fall, 

and rise-fall which correspond to a statement end, a question end, and a continuation rise, 

respectively.  Later in the decade, researchers tried to develop models that mimic the 

exact fundamental frequency contour of natural speech.  In 1969, Öhman stated that f0 

contours can be modeled in terms of a discrete signal fed to a linear smoothing filter [21, 

26].  A Japanese intonation model by Fujisaki was able to closely match natural 

intonation contours using the ideas proposed by Öhman [17].  Fujisaki listed two types of 

events: phrase and accent command [16]. Phrase commands were modeled as a pulse 

function, and accent commands were modeled as a step function [16].  Hart and Cohen 

described intonation as a hat pattern.  The fundamental frequency will rise on the first 

stressed syllable of a phrase and then remain high until the final stressed syllable.  At the 

end of the phrase, there will be either a large fall or a fall-rise of the fundamental 

frequency [21].   

The O’Shaughnessy fundamental frequency algorithm was developed in 1979. 

This rule-based method first assigned peaks to stresses in the sentence. The size of the 

peak depended on the length of the sentence, the location of the stress, and the 

importance of the word.   Then rises and falls were placed around the peaks.  The final 

rise or fall of the sentence depended on whether the sentence was a statement, a yes-no 

question, or an interrogative question [2]. The Pitch Contour theory was developed in the 

late 1960’s for British English. This theory splits speech into four components: prehead, 

head, nucleus, and tail [16].   

By the early 1980’s, models for fundamental frequency generation began to 

become more comprehensive and flexible.  A well known model was developed in 1984 
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by Anderson and Pierrehumbert [30]. Anderson and Pierrehumbert believed that stress 

patterns in a sentence affected the fundamental frequency contour. This model advances 

on some of the earlier research that used two tones. The model separates intonation into 

two main tones, a high and a low [30].  These tones are placed on stressed syllables as a 

single tone or a combination of tones. The sequence of tones is restricted by a three level 

finite state grammar [16].  With the tones reflecting target points in the fundamental 

frequency contour, this model does generate good intonation contours.   As the 1980’s 

came to an end, researchers began to focus on more statistical and data-driven models. 

Some researchers began to focus on the use of classification and regression trees 

(CART) to generate intonation.  These trees were used with different intonation models 

to automatically generate fundamental frequency for TTS systems. Classification and 

regression trees consist of a question on each leaf (node) about the feature.  The answers 

from the tree nodes form another sub-tree path.  The leaves of these trees contain 

statistical measures that define the path taken [14].  The Festival TTS system by 

Dusterhoff and Black uses classification and regression trees in combination with the Tilt 

Intonation model to generate prosody.  The Tilt Intonation model is used to automatically 

analyze intonation. There are two types of Tilt events: pitch accents and boundary tones 

[31].  Unlike previous work which used categorical parameters, the Tilt model uses 

continuous parameters [31].  Using real speech, information is extracted from the 

database.  Then regression trees are built for each parameter in the Tilt model.   These 

trees are used as the fundamental frequency model for the system.   

Neural networks have also been used to automatically generate fundamental 

frequency.  In 1989, Scordilis and Gowdy of Clemson University first used neural 

networks to generate fundamental frequency.   Using a small training corpus of real 

speech, a network was trained to learn f0 values and f0 fluctuations in phonemes [34].   

Similar to the NETTalk and NETSpeak systems, this network used the Back Propagation 

algorithm to train itself.  The network consisted of three layers with a hidden layer of 30 

neurons. The results revealed that the network could learn to generate fundamental 

frequency [34].  In 1992, Traber developed a recurrent neural network to predict the 

number of pitch values in a syllable.  The network was trained using automatically 

labeled data.  The network had two hidden layers with the output representing the 
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different f0 values [10].  Recent systems that use neural networks for f0 generations 

closely follow the system developed in the early 1990’s.  Today neural networks have 

been used to automatically generate fundamental frequency for a large range of 

languages.  

 

3.5 Back Propagation Algorithm 
 

The Back Propagation algorithm was first developed around the mid 1970’s. 

Learning is based on the gradient descent in the error [38]. This algorithm consists of two 

main phases: the forward pass and the backwards pass [38].   This algorithm is very 

similar to Rosenblatt’s Perceptron algorithm and is called the Multi-layered Perceptron.  

  

3.5.1 Forward Pass 
 

With the Back Propagation algorithm, the network should first be considered a 

black box with inputs and a single output.   

 

Y
x2

x1

xn

 
Figure 3-5: The Black Box 

 
Hidden within the black box are neurons in many different layers.  The first layers 

consist of the input neurons, the middle layers are the hidden neurons, and the last layer is 

the output neurons.  Each layer is interconnected to the surrounding layers.   
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Hidden 

Input Output 

Figure 3-6: Interconnection of Neurons 

 
The outer and input layers are static, while the neurons in the hidden layers can be 

adjusted.  The first step in the Back Propagation algorithm is to create random weights 

for each neuron in the hidden layers and output layer. The input vector needs to be a 

vector of ones and zeros. The network is presented with an input vector and a desired 

output. The hidden weights’ outputs are computed using an activation function.  The 

activation function can be sigmoid, tangential, etc.   

 

Σ F Yy = 1/(1 + e-(Σwixi)) 

x1

x2

xn
 

Figure 3-7: The Sigmod Activation Function Neuron 
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Using the input vector, the hidden layer neuron weights, and the activation function, the 

hidden layer nodes’ output is computed using the equation: 

 
ykm = 1/(1 + e-Σ(input vector * hidden neurons weights))      (3.3) 
          
In the equation above, ykm corresponds to the output of the hidden layer. The subscript k 

represents the number of layers in the system, and the subscript m represents the number 

of nodes in layer k. The hidden layer outputs now become the inputs to the output layer.  

The output layer nodes’ outputs are calculated using the activation function, weights of 

each output node, and output from each of the hidden layers node.  

 
y(k+1)m = 1/(1 + e-Σ(hidden layer outputs * output neurons weights))    (3.4) 
           
where y(k+1)m is the output of the output nodes, which is the actual output of the network. 

Figure 3-8 shows an example of a network and the different inputs and outputs in the 

layers. 

 

Layer K 

Layer K + 1 Layer 0 

Input 
Output 

Y(k+1)m

Y(k+1)1x1

xn

yk1

yk2
N1

Nm

N1

N2

Nm

 
                                            

Figure 3-8: K layered Back Propagation Network 
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Using the actual output and the desired output the Mean Square Error can be 

determined with the following equation: 

 
E = Σ (dm – y(k+1)m) 2        (3.5)  

         
In this equation, dm is the desired output for the output nodes and y(k+1)m is the actual 

output of the output nodes.  The next phase of the Back Propagation algorithm can now 

be computed using the Mean Square Error [38]. 

 

3.5.2 Backward Pass 
 

After the error has been calculated, the weights are updated in each layer to fit 

more closely to the desired output. The output layer weights are updated using the delta 

rule equation.  This involves changing the weights using the gradient of the calculated 

error.  The error term δ for the output layer is: 

 
δ(k+1)m =  y(k+1)m (1 – y(k+1)m) (dm – y(k+1)m)     (3.6) 

 
where y(k+1)m is the actual output at node m and dm is the desired output at node m of the 

network.  Using delta, the weights in the output layer can now be updated thus reducing 

the error of the network. 

 
W(k+1)m(t + 1) = W(k+1)m(t) +  ηδ(k+1)m ykm       (3.7) 

 
W(k+1)m(t + 1) are the new updated weights in the output layer, and W(k+1)m(t ) are the old 

weights in the output layer.  η is the learning rate of the network.  The learning rate can 

be a number greater than zero and less than one.  If the learning rate is high, the network 

will converge faster but might be less accurate. However, a low learning rate will cause 

the network to converge much slower.  Also convergence can be changed by using a 

momentum term α in equation 3.8. 

 
W(k+1)m(t + 1) = W(k+1)m(t) +  α ηδ(k+1)m ykm       (3.8) 

 
Using δ(k+1) from the output layer, the hidden layer error term δk can be computed using 

the equation: 
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δkm =  ykm (1 – ykm) Σ(W(k+1)mδ(k+1)m)      (3.9) 

 
In equation 4.7, ykm are the hidden layer outputs and W(k+1) are the updated weights in 

the output layer.  After the error term δkm is computed for the hidden layer, the hidden 

layer weights are updated using δkm, the presented input vector, and the learning rate. 

 
Wkm(t + 1) = Wkm(t) +  ηδkminput vectorm      (3.10)  

 
Wkm(t + 1) represents the new hidden layer nodes’ weights and Wkm(t) represents the old 

hidden layer nodes weights. This process continues until some stopping criterion has 

been met. Once again, convergence can be changed by using the momentum term α in 

equation 3.11 [38]. 

 
Wkm(t + 1) = Wkm(t) +  α ηδkminput vectorm       (3.11) 

 
 

3.6 Fuzzy Logic Inference System 
 

Fuzzy logic has its roots in philosophy. In ancient Greece, a group of philosophers 

wrote the “Law of Thought”.  One of the laws stated that logic must either be true or 

false.  The seeds of fuzzy logic were later planted by Plato who contended that there 

could be a middle ground between true and false [9].  About 2500 years later, a Polish 

philosopher named Jan Lukasiewicz described in detail an alternative to the true/false 

logic of early Greek philosophy. Lukasiewicz mathematically created a tri-valued logic 

and then later expanded his theory to four-value and five-value logic.  Lukasiewicz’s 

work affirmed that someday logic could be expanded to infinite-value logic [9].  

The father of modern fuzzy logic created this infinite-value logic.  In 1965, 

Professor Lotfi Zadeh of UC Berkeley wrote the paper “Fuzzy Sets” which described, 

mathematically, the theory of fuzzy logic.  In this paper, Zadeh described the two 

opposites, true and false, as membership functions.  These membership functions truths 

are determined through a range of numbers, normally between 0 and 1 [42]. In 1973, 

Zadeh expanded on this theory, solving complex systems and decision processes [9].   
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Fuzzy systems are designed to take advantage of imprecision. Solving real world 

problems with precise logic can be difficult.  Logic deals with making an absolute choice, 

like true or not true.  But sometimes the right choice is somewhere in between true and 

not true.  Fuzzy systems add fuzziness to the choice in order to accommodate the grey 

area of logic.   

Fuzzy systems assign truth values to statements to determine their truthfulness.  

These numbers are usually between 0 and 1.   The truth value determines the membership 

of a certain group.  To describe these groups, the fuzzy system uses the membership 

function. With a given statement, the membership function determines the truthfulness of 

that statement.  The membership function can be many shapes and sizes.  Some examples 

of membership functions are shown in Figure 3-9.  

 

 

1

0 

1

0

1

0
Triangle Trapezoid Bell Curve 

Figure 3-9: Different Types of Membership Functions 

 
The fuzzy system is built with linguist rules and membership functions.  The 

linguist rules are used to conduct the actions of the fuzzy system.  The membership 

functions are used to determine how these rules affect the fuzzy system.  The rules are 

built using the logical terms like, OR, AND, NOT, and THEN. Rules can also be built 

with other terms to hedge behavior like, MORE, LESS, VERY, and SOMEWHAT. Some 

examples of how these terms can be used to build rules are: 

 
“If Jon is tall OR Jon is fat THEN Jon’s size is big.”  
“If the car is old AND the car is cheap THEN the car is worthless” 
“If the car is NOT old AND the car is NOT cheap THEN the car is valuable” 
 
Each term used in the fuzzy system has different effects on the behavior of the 

system. The OR term is the same as the UNION of two variables. The OR term is 

equivalent to the maximum. The AND term is the equivalent to the INTERSECTION of 

 26



 

two variables.  The AND term is equivalent to the minimum.  The NOT term corresponds 

to the COMPLEMENT of a variable which is its opposite.   Finally, the THEN term 

indicates the consequence produced by the rule.   

The descriptive linguist variables in the rules represent the membership of the 

statement.  Therefore, descriptive linguist variables are the membership functions of the 

fuzzy system. The fuzzy system is constructed of different fuzzy inputs and consequences 

of the inputs. Each input and consequence of the fuzzy system has its own set of 

membership functions.  When an input is presented to the fuzzy system, the output is 

determined by the firing strength of the rules onto the input.  From the rules and the 

presented input, a crisp output is calculated to produce the output of the fuzzy system.   
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Chapter 4:  Text-to-Phoneme Conversion 
 

4.1 Text-to-Phoneme Conversion Overview 
 
This chapter presents the algorithm used to convert user’s text into phonemes.  

Phonemes are the smallest phonetic unit in a language within a word. When American 

students first learn to read, they are taught all of the English phonemes.  Table 4-1 gives 

some examples of phonemes and the sounds that they represent.  

 
Table 4-1:  Examples of English Phonemes 

Phoneme Sound 
/p/ pit 
/k/ cat 
/t/ tap 
/ə/ about  
/ĕ/ bend 
/ä/ father  
/sh/ show 
/zh/ measure

 
 

In order to convert text into speech, the algorithm must be able to handle words in the 

English language that do not sound like the way they are written. The method used to 

accomplish this task is neural networks.  

Neural networks have been used to solve many types of problems over the years.  

These problems include pattern recognition, data classification, and other very complex 

problems.  The advantage of neural networks is in their parallel architecture.  The neural 

network simulates how the brain uses interconnected neurons to process information. 

With neural networks, the nodes of the networks are interconnected and work in unison 

to solve specific problems.  However, the only way the neuron network learns is by 
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example. Therefore, the network must guess an output, compute an error using the actual 

output, and then correct itself by adjusting its neurons [38].    

Converting English text to English speak is an example of a complex problem that 

neuron networks can solve.  English text can be very tricky to pronounce.  For example, 

words like “Philadelphia”, “bike”, and “brought” are not pronounced how they are 

spelled.  Using data to correct itself, a network can learn to pronounce English text. For 

this system, a neural network is trained with the Back Propagation algorithm using a data 

set of about 1800 words [38].  The network was trained on a Dell Optiplex 2.80 GHz 

Intel Pentium 4 computer.   

 

4.2 Text-to-Phoneme Conversion Algorithm 
 

The TTP algorithm used by this system follows very closely to the algorithm used 

by Sejonowski and Rosenberg.  Sejonowski and Rosenberg created the NETTalk system 

in the late 1980’s. As previously discussed in Section 3.2, this system used the Back 

Propagation algorithm to train a network to pronounce inputted text.  The original 

NETTalk used a three layered network with 120 hidden neurons and 26 output neurons 

that represented each phoneme. Figure 4-1 shows the outline of the NETTalk program.  

The training data used in the NETTalk system consisted of 2000 of the most common 

words aligned with their pronunciations [35]. Although this algorithm is similar to the 

original NETTalk algorithm, there are some slight modifications to the network, training 

data, and training algorithm.   

The overall network should be thought of as a loop.  An input is taken from the 

training data, an output is calculated, and the nodes of the network are adjusted according 

to the error. Then another input vector follows the same steps, and the process continues 

until some stopping criterion is met.  
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Figure 4-1: Network Training Cycle 

 
 

4.2.1 Network Input and Output Design 
 

The network consists of seven windows for the input and one output for the 

system.  The input to the network is not the total word but single characters. Each word 

from the training data is entered into the window one character at a time.  The inputted 

training word enters the system and moves through the seven windows one character at a 

time. The network’s input is the seven windows.  Figure 4-2 shows an example of how 

this process takes places.   

 

_ J O N _ I S 

J O N _ I S _ 

O N _ I S _ C 

Network Loop 1  

Network Loop 2  

Network Loop 3  

 
Figure 4-2: Moving Window Example 
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The output of the network is the phonetic representation of the 4th input window 

at any given time. The input and output must be aligned to ensure that the output 

represents the correct input window.  The output can also be thought of as seven windows 

aligned with the seven windows of the input. However, the only output window of 

concern is the 4th window.  As the input letters move through the seven input windows, 

the output phonemes move through the seven output windows.  During training, the 

network inputs are all seven letters in the input windows, and the network desired output 

is the phoneme in the fourth position of the output windows.  Figure 4-3 shows an 

example of how the output windows work. 

 

_ J O N _ I S 

% J AH N % I S 

Network Loop 1  

J O N _ I S _ 

J AH N % I S % 

Network Loop 1  

4th Window 
Phonetic Output  

Figure 4-3: Moving Window Example 

 

4.2.2 Network Detailed Training Design 
 
The training of the network involves obtaining a word and its phonetic 

representation from the training set, placing the word’s first character in the first input 

window, calculating the actual output of the seven windows, and updating the weights. 

The network then moves the characters throughout the windows until the word ends. If 
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training is not done, the network retrieves the next word from the training set.  Figure 4-4 

shows an outline of the training algorithm. 

 

Start Training 

Get word from 
training set 

Last word in 
training set? 

Training 
Data 

Maximum 
epoch? 

yes 

End Training 

yes 

Update weights 

Display 
training stats 

no 

no 

Calculate actual 
output 

Find error form 
actual output 

 
Figure 4-4: Network Training Flow Chart 

 
The first step of the network is retrieving the input vector from the training data.  

However, the network does not start with the first word of the data when training first 

begins.  Initially, the training network input is set to all silences with the desired output 

being a silence. This was performed to simplify the beginning of the training process and 

to insure that the network and the output are aligned properly.  Figure 4-5 shows the 

initial look of the network at the beginning of training. 

 
 

 32



 

_ _ _ _ _ _ _ 

% % % % % % % 

 
Figure 4-5: Initial State of the Network 

 

After the first iteration, the first word is retrieved from the training set.  The first letter of 

the word is placed in the seven letter window. If the first word is “aardvark”, then the 

seven windows would have six silences and one letter after the first iteration.  The desired 

output would still be a silence. Figure 4-6 shows the seven input windows with the 

desired output.  

 

_ _ _ _ _ _ a

% % % % % % ah 

 
 

Figure 4-6: State of the Network after First Iteration 

 
In order to calculate the actual output of the system, the letters and phonemes 

need to be converted to numbers. In this program, each input letter is converted into a 

vector. The vector size is the total number of characters used in the network.  For the 

network, there are 27 characters used for the input, 26 characters that represent the 

alphabet and one character that represents a silence.  The input vector consists of zeros 

and a one.  Each input vector is all zeros, with a one located to indicate the letter.  For 

example, the letter d would be a vector of zeros with a one located at the 4th position of 

the vector.  
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0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 24 25 26 27

 
Figure 4-7: Input Vector for the Letter d 

 
The output vector is very similar to the input vector.  The vector size is the total 

number of different phonemes used in the network.  There are 41 phonemes used, 40 for 

sound and one for silence. The ideal output consists of all zeros and a one; therefore, the 

network is trained using a desired output vector with all zeros and a one.  Each phoneme 

has its own location in the output vector.  Like the input vector, the one is located where 

the phoneme is located in the vector.  For example, a desired output phoneme /ah/ would 

produce a desired output vector of all zeros and a one placed in the 2nd position of the 

vector.  

 
 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 38 39 40 41

 
 

Figure 4-8: Desired Output Vector /ah/ 

 
Once the letters are converted to vectors, the actual output can be calculated.  

During training, the output vector is computed using all seven windows.  Therefore, the 

input used for calculation is a 7*27 long vector with seven ones located throughout the 

vector. All the weights of the network, i.e. hidden weights and output weights, are 

initially set to random values between -.5 to .5.  Using the equations from Section 3.5.1, 

the actual output is calculated. 

 
hidden layer vector  = 1/(1 + e-Σ(seven window input vector * hidden neurons weights))  (4.10) 
actual output vector  = 1/(1 + e-Σ(hidden layer vector * output neurons weights))   (4.11) 
 
These equations will produce an output vector output of the network.  The actual output 

and the error of the actual output are calculated.  Weight adjustment occurs after each 

 34



 

loop, i.e. after every single letter of every word in the training set. The weights of the 

system are changed using the backward propagation equations described in Section 3.5.2.   

 
output layer weights = Wold output +  α ηδ(k+1)m hidden layer ouput   (4.12)  
hidden layer weights = Wold hidden +  ηδkminput vectorm     (4.13) 

 
Once the weights are adjusted, the network will retrieve the next letter and desired 

output of the word.  If there are no letters left in the word, the network will retrieve the 

next word from the training set.  Once the last letter of the last word is retrieved for the 

training set, an epoch has been completed and the average error is calculated and 

displayed.  The next word entered into the network would then be the first word of the 

training set. Training will continue in this manner until the maximum number of epochs 

is reached.  Once the training is complete, the weights of the network are saved, and the 

weight can be used for TTP mapping.   

 

4.2.3 Training Set Detail and Alignment 
 
Training the network involves using real words aligned with their exact 

pronunciation phonemes. For example, ‘cat’ or ‘example’ would be aligned with ‘kat’ 

and ‘eksampul’, respectively.  The list of the 41 phonemes used for this system is in 

Appendix A.  Originally, about 900 words were used from the “Cue Practice With the 

1000 Most Common Words” website as training data.  However, this amount of data was 

not sufficient enough to yield an acceptable performance. The rest of the data was chosen 

based on the network performance using www.allwords.com.  For example, the network 

initially struggled with words beginning with “th”, so about 20 words beginning and 

ending with “th” were added to the training data.  Appendix C lists the entire training set. 

Certain factors need to be accounted for when choosing the training data.  The 

network input size consists of only seven windows. However, since the words are entered 

into the training window one letter at a time, the word size can be any number of 

characters.  In addition, all words, even the words initially found on the web, need to be 

aligned by hand in order to maximize the performance of the system.  Figure 4-9 shows 

an example of how this alignment is done. 
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_ D O U B T _ 

% d ow % % t % 

 
Figure 4-9: Word Alignment 
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Chapter 5:  Automatic Prosody Generation 
 

5.1 Generation of Prosody Overview 
 

Prosody deals with the tone and the timing of speech.  In speech synthesis 

systems, the most complex problem is the generation of natural sounding prosody.  Real 

speech often reflects the speaker’s personal knowledge of the audience, the mood and 

emotional state, the general knowledge of the world around them, and the reaction from 

the audience. With TTS systems, this problem is more complex because the text input is 

random. These issues have yet to be resolved by speech synthesis systems. Automatic 

prosody generation has to factor in these setbacks and focus on neural language that is 

understandable to the audience.  

The main focus of this thesis is the automatic generation of prosody.  This system 

generates two main aspects of prosody: fundamental frequency and segmental duration.  

Fundamental frequency is generated using fuzzy logic.  The primary focus of this chapter 

will be on this aspect of prosody.  Segmental duration is determined using rules described 

by Klatt [2].  After the network converts the text to phonemes, the system then computes 

the prosody of the system. Both the phonemes found by the network and the actual texts 

are used to generate prosody. The prosody generator can be thought of as a finite loop, 

with information describing each phoneme used to produce both duration and 

fundamental frequency.  The first step of prosody generation is segmental duration. 

 

User Input 
Text 

Convert Text 
to Phonemes 

Generate 
Prosody 

Produce 
Speech with 
MBROLA 

 
Figure 5-1: System Overview 
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5.2 Segmental Duration 
 

Segmental duration handles the length of segments within words.  These segments 

can be either syllables or phonemes.  For this system, the focus will be on phoneme 

duration. Researchers believe that English phoneme durations are only affected by a few 

parameters. In 1979, Dennis Klatt developed rules that governed the durations of 

phonemes within words.  These rules were used in the aforementioned MITTalk TTS 

system [2]. The Klatt Duration Rules are used to generate the segmental duration of this 

system. 

The original MITalk system was a formant synthesized speech.  With formant 

synthesizers, certain factors need to be taken into account.  Phonemes with different 

articulations are handled differently when it comes to duration. For example, the duration 

of a fricative is measured by the visible noise. For stops, the duration also includes the 

closure [2].    With this TTS system, the speech synthesis is generated using diphone 

concatenation.  Therefore, these factors are not factored into consideration when 

computing the segmental duration.  

The Klatt Duration rules were designed to replicate observed duration from a 

speaker. There are two main rules that govern the model: segments that are altered by a 

percentage using the rules and segments that cannot be shorter than a minimum duration. 

Each segment has its own minimum and average duration.  The minimum and average 

durations for each phoneme used in this system are shown in Appendix B.  The formula 

used to alter the phoneme duration is: 

 
DURATION = ((AVEDUR-MINDUR)*(PRCNT))/100 + MINDUR   (5.1) 
 
The variable AVEDUR is the average duration, and variable MINDUR is the minimum 

duration. The Klatt rules work by altering the PRCNT variable. There are a total of 11 

Klatt Duration rules. Each rule has a justification on how the rule was created.  The rule 

formulas were developed through extensive trial and error.  The Klatt duration rules are 

listed below. These rules are obtained directly from the book, “From Text to Speech: The 

MITalk System” [2].       
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1. Pause insertion Rule 
Insert a 200 millisecond pause before each sentence-internal main clause and at 
boundaries delimited by a syntactic comma, but not before relative clauses. 

2. Clause-final lengthening 
The vowel or syllabic consonant in the syllable before a pause is length by 
PRCNT = 140. 

3. Non-phrase-final shortening 
Vowels and syllabic consonants are shortened by PRCNT = 60, if not in the 
phrase’s last syllable. A phrase final postvocalic liquid or nasal is lengthened by 
PRCNT = 140. 

4. Non-word-final shortening 
Vowels and syllabic consonants are shortened by PRCNT =85, if not in the 
word’s last syllable.  

5. Polysyllabic shortening 
Vowels and syllabic consonants in word with multiple syllables are shortened by 
PRCNT = 80.  

6. Non-initial-consonant shortening 
Consonants are shortened by PRCNT = 85, if not in the word’s initial position. 

7. Non-phrase-final shortening 
Vowels and syllabic consonants are shortened by PRCNT = 60, if not in the 
phrase’s last syllable. A phrase final postvocalic liquid or nasal is lengthened by 
PRCNT = 140. 

8. Lengthening for emphasis  
Emphasized vowels are lengthened by PRCNT = 140. 

9. Postvocalic context of vowels 
The consonant after a vowel in the same word influences the length of the vowel.  
The list below shows these effects. 
• open syllable, final word PRCNT1 = 120 
• before a voiced fricative PRCNT1 = 160 
• before a voiced plosive PRCNT1 = 120 
• before a nasal PRCNT1 = 85 
• before a voiced plosive PRCNT1 = 70 

10. Shortening Clusters  
Segments are shortened in consonant-consonant sequences and in vowel-vowel 
sequences.  
• vowel followed by a vowel PRCNT1 = 120 
• vowel proceeding a vowel PRCNT1 = 70 
• consonant surrounded by consonants PRCNT1 = 50 
• consonant proceeding a consonant PRCNT1 = 70 
• consonant followed by a consonant PRCNT1 = 70 

11. Lengthening due to plosives aspirations 
A primary or secondary stressed vowel or sonorant preceded by a voiceless 
plosive is lengthened by 25 milliseconds.  
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5.3 Stress Assignment 
 

One of the most crucial components of generating automatic prosody is stress 

assignment. Stress assignment is placing lexical stresses on the proper syllable. All 

stresses are placed on vowels. With TTS synthesis this can be very complicated.  Since 

the input is random, the words are random.  Therefore, a stress assignment algorithm 

needs to be implemented that is both automatic and flexible.   The stress assignment 

algorithm used for this system is the rule-based system used in the MITalk.  Those rules 

were based on the Halle and Keyer lexical stress rules developed in 1971 [2].        

 The rules are based upon phonetic input without regard to part-of-speech.   

Stresses are placed on individual words independently. There are three levels of stress; 0-

stress, 1-stress, and 2-stress. The 1-stress represents the primary stress in a word and the 

2-stress represents lesser stresses. 0-stress represents no stress.  The stress rules have two 

different phases.  The first phase is called the cyclic and is committed to placing primary 

stresses on the word. There are three rules in the cyclic phase.  The first rule in the cyclic 

phase is the main stress rule, and the other two rules are exceptions to the first rule.  The 

second phase is called the non-cyclic phase and includes the application of the entire 

word of rules.  The non-cyclic phase reduces the final word to just one 1-stress mark and 

turns the rest of the primary marks into 2-stress marks [2].   

 

5.4 Fuzzy Fundamental Frequency 
 

Fundamental frequency is a vital part of the naturalness of any TTS system.  This 

frequency, sometimes called f0 frequency, produces the tone of speech.  An example of 

fundamental frequency can be heard in the difference between a male and a female voice. 

Male voices exude a lower overall fundamental frequency while female voices typically 

have a higher overall fundamental frequency.  Fundamental frequency can be generated 

in many ways for TTS systems. Most systems today generate fundamental frequency 

using unit selection synthesis together with pre-recorded units (sounds).  These pre-

recorded sounds contain natural frequency fundamentals. Other methods used to generate 

frequency fundamentals are rule-based and neural network approaches.   
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The fundamental frequency of this TTS system is generated using the flexibility 

of fuzzy logic.  Fuzzy logic can be used to control complicated problems.  The generation 

of fundamental frequency for TTS systems is a very complex problem for many reasons. 

For example, the user’s input needs to be thought of as random; therefore, the system 

must be flexible.  Also, the fundamental frequency in speech is different for every 

sentence, and many factors control this overall curve.   Fuzzy logic can be a solution to 

the fundamental frequency problem by using a small set of rules.  The rules are 

constructed based upon the fundamental frequency algorithm used in the MITalk system, 

the O’Shaughnessy algorithm.   

 

5.5 O’Shaughnessy Algorithm 
 

The O’Shaughnessy fundamental frequency algorithm was used in the MITalk 

system to generate fundamental frequency.  The result of the algorithm is a fundamental 

frequency curve throughout the sentence.  This curve is called the f0 contour. This 

algorithm is detailed in the book, “From Text to Speech: The MITalk System” [2]. The 

algorithm has two main levels, high and low, which work as two different systems.  The 

first level is the high level.  This level generates an outline of how the overall f0 contour 

should be shaped.  The high level of this algorithm takes grammatical information about 

the sentence and builds a basic contour of the system.  The f0 contour in the high level is 

augmented using four factors: sentence type, phrase contour, word contour, and prosodic 

indicators [2].   

The first factor, sentence type, is determined by the first word and punctuation of 

the sentence. For example, the endings of questions are indicated by question marks and 

the endings of statements are indicated by commas or periods. There are three tunes that 

represent three types of sentences: declarative sentences, yes/no question and “wh” 

questions. These three tunes determine the f0 contour trend of the sentence. Every tune 

has a downward linear trend throughout the sentence [2]. Figure 5-2 shows this trend. 
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Figure 5-2: Downward Linear Trend 

 
Tune A, which deals with declarative sentences, causes the f0 contour to fall linearly 

throughout the sentence with the sharp decline at the end of the sentence or phrase. Tune 

B manages yes/no questions.  Tune B sentences have an initial rise to the f0 contour, 

followed by a flat contour with a final sharp rise. The final tune, which handles “wh” 

questions, starts with a high peak on the “wh” word, followed by a steep fall and a high 

rise at the end of the sentence [2].  

The second factor of the algorithm contends with the phrase contour of the 

sentence.  The different phrases of a sentence can be determined with many different 

algorithms.  Each phrase must have two or more content words to be affected by this 

factor. At the beginning of each phrase, the f0 curve rises sharply on the first content 

word. At the end of each phrase, the f0 curve falls on the final content word.  

The third factor handles the individual words in a sentence.  Within each word, 

the f0 contour fluctuates.  This third factor determines the amount of change within each 

word.  The amount of change is correlated with the importance of the word and the 

amount of syllables in the word [2].  Words that are more important and have a great deal 

of syllables contain the most f0 changes. Table 5-1 shows the importance of these words.  

 
 
 
 

 42



 

 
Table 5-1: Word Importance 
Level Part of Speech 

0 article 
1 conjunction, relative pronoun 
2 preposition, auxiliary verb 
3 personal pronoun 
6 verb, demonstrative pronoun 
7 noun, adjective, adverb, contraction 
8 reflexive pronoun 
9 stressable modal 
10 quantifier 
11 interrogative adjective 
12 negative element 
14 sentential adverb 

 
 The prosodic indicator assignment is the last factor of the high level part of the 

algorithm.   First, accent numbers are given to each accent in the sentence.  The number 

depends on the size and importance of the word.  Then an integer that represents the word 

position is placed on each word.  Words at phrase boundary positions are given larger 

integer values than words that are in the middle of the phrase.  The high level part of the 

algorithm combines all of these factors to form the outline of the sentence f0 contour. The 

high level then becomes the input to the low level component of the algorithm [2].   

The low level of the O’Shaughnessy algorithm sculpts the details of the final f0 

contour.  In the low level, the f0 contour is affected by the number of syllables in 

combination with the lexical stress. The importance of the word affects the height of the 

stressed peak. More important words have higher peaks on their stresses.  The amount of 

syllables directly influences the fundamental frequency of the sentence. The first and 

highest peak should have an f0 contour of about 190 Hz. However, larger sentences with 

more syllables have a higher starting peak frequency, and smaller sentences with fewer 

syllables have a lower starting peak frequency.  The number of syllables between stressed 

syllables also affects the height and outer shape of a peak. Stressed peaks separated by 

two or three syllables have their peak height decreased by 15% and 20%.  Stressed peaks 

separated by two, three, or four syllables have their peak rise increased by 15%, 20%, and 

30%, respectively.  Stressed peaks that are adjacent have their peak rises decreased by 

40%.  All other peaks maintain their heights and are shaped by a default rise [2].  
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5.6 Fuzzy System Inputs and Consequence 
 

The fuzzy system is developed to model the O’Shaughnessy algorithm using a 

fuzzy interference system. The inputs to the fuzzy system are the phonemes’ linguistic 

data.  The output of the fuzzy system is the fundamental frequency.  The system consists 

of four inputs and one output.  The inputs are: word importance, sentence size, position in 

sentence, and distance from stress.  Each input has three linguistic variables and the 

output has seven linguistic variables. Using a system similar to the system described in 

4.3.2, the fundamental frequency can be computed for any given sentence.    

5.6.1 Word Importance 
 
The inputs to the fuzzy system are formulated from the main parts of the 

O’Shaughnessy algorithm. The first input is the importance of the word.  This input 

comes from the word importance of the O’Shaughnessy algorithm. The O’Shaughnessy 

algorithm places importance on words based on part-of-speech.  There are two types of 

words this system takes into consideration, function words and content words. Content 

words have more importance than function words, with articles having the least 

importance. The system calculates the importance of the word based on the size of the 

word and the type of word.  The calculation yields a number between 0 and 10; therefore, 

the fuzzy input consists of a number range between 0 and 10. The Word Importance input 

has three linguistic variables for this input: useless, semi-important, and important.   

Figure 5-3 shows the membership functions of the Word Importance input. 

 

1

semi-important important

Word Importance 

useless 
 

Figure 5-3: Word Importance Input Membership Functions 
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5.6.2 Sentence Size 
 
The second input to the fuzzy system is the sentence size.  In the O’Shaughnessy 

algorithm, peak size is correlated with the length of the sentence.  According to the 

algorithm, smaller sentences, i.e., sentences with fewer syllables have smaller 

fundamental frequency peaks.  Larger sentences have much larger fundamental frequency 

peaks.  The input is divided into three linguistic variables: small, medium, and large.  The 

sentence size is determined by the number of syllables multiplied by an offset.  

 
Size = (number of phonemes) * offset       (5.2) 
offset = .5 

 
The input range values are from 0 to 10.  Any size that is greater than 10 is considered to 

be equal to 10 by the system.   

 

1

medium large

Sentence Size 

small 
 

Figure 5-4: Sentence Size Input Membership Functions 

 
 

5.6.3 Sentence Position 
 
The third input is the position in the sentence.  The position in the sentence deals 

with the word, not the phoneme.   Sentence position is calculated using the following 

equation: 

 
Position = (word location in sentence / total number of words)*10   (5.3) 
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The location of the word in the sentence is a very important aspect of the O’Shaughnessy 

algorithm.  As described in Section 5.5, each tune’s fundamental frequency contour 

differs throughout the sentence.  Therefore, the location of the phoneme or word 

determines the frequency contour depending on the type of tune.  For example with tune 

B sentences (yes/no questions), at the end of the sentence, the fundamental frequency 

increases sharply. Like the previous inputs to the fuzzy system, the Sentence Position 

input has three linguistic variables and a number range between 0 and 10. The input 

variables are start, middle, and end.  Figure 5-5 shows the membership functions for the 

Sentence Position input.  

 

1

middle end

Sentence Position 

start 
 

Figure 5-5: Sentence Position Input Membership Functions 

 

5.6.4 Stress Distance 
 
The final input to the fuzzy system is the phoneme distance from the stress.  The 

O’Shaughnessy algorithm places peaks on primary stresses in sentences.  The 

fundamental frequency of phonemes around these stresses is also altered.  Peak size 

depends on the location, sentence type, and importance of the word.  Stress distance is 

calculated using the closest, right-hand, most stress within the word.  If a phoneme is 

stressed, its distance value is “dead-on”.  Stressed phonemes equal the maximum.  

Phonemes inside of a word without a stress are assigned a zero.  The fuzzy input ranges 

from 0 to 10.  If the phoneme is not stressed and the word contains a stress, the distance 

is calculated using the formulas: 

 
stress distance = ((stress location – phoneme location)+1)*offset   (5.4) 
offset = 10/(length of the word)       (5.5) 
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Figure 5-6: Stress Distance Input Membership Functions 

 

5.6.5 Consequence 
 
 The consequence (output) of the system is the fundamental frequency.  The 

consequence of the fuzzy system has seven linguistic variables. These variables represent 

the peak of the fundamental frequency.  These peaks range from negligible to large.  

These rule consequences are constructed following the O’Shaughnessy algorithm’s peak 

alterations.   

 

 

1
Fundamental Frequency 

low mid-low mid mid-high high peak zero 

Figure 5-7: Consequence Membership Functions 

 

5.7 Fuzzy System Rules 
 

The rules of this system are designed to follow the overall idea of the 

O’Shaughnessy algorithm. The O’Shaughnessy algorithm is very specific on the shapes 

of each individual peak.  However, these rules create an overall contour of the sentence, 
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which follows the O’Shaughnessy algorithm.  The rules are divided into three categories: 

declarative sentences, yes/no questions, and interrogative questions.  To simplify each 

rule set, the rules are divided by location within the sentence.  This made it easy to edit, 

delete, or add rules.  Since there are four inputs to the system, there are over 50 rules.  

This adds the proper detail and improves the flexibility of the fuzzy system.  

 

5.7.1 Declarative Sentence 
 

As described in the O’Shaughnessy algorithm, declarative sentences are 

characterized by the f0 contour falling linearly with a sharp decline at the end of the 

sentence or phrase.  Peaks within the sentence are altered, considering their location in 

the sentence. Declarative sentences do not have dramatic f0 contour changes inside the 

middle of the sentence.  Therefore, syllables and word importance should produce subtle 

changes. With declarative sentences, the final fall should be located after the last 

accented syllable [2]. 

 
Beginning of Sentence Rules 

• IF the word is useless AND position in sentence at the beginning THEN output is 
low.   

• IF the word is semi-important AND position in sentence at the beginning THEN 
output is mid-low.   

• IF the word is semi-important AND sentence size is large AND position in 
sentence at the beginning THEN output is mid.   

• IF sentence size is small AND position in sentence at the beginning AND the 
stress is dead-on THEN output is high.   

• IF position in sentence at the beginning AND the stress is dead-on THEN output 
is peak. 

• IF sentence size is small AND position in sentence at the beginning THEN output 
is mid. 

 
Middle of Sentence Rules  

• IF the word is useless AND position in sentence at the middle THEN output is 
low.   

• IF the word is useless AND sentence size is large AND position in sentence at the 
middle THEN output is mid-low.   

• IF the word is semi-important AND position in sentence at the middle THEN 
output is mid-low.  

• IF the word is semi-important AND sentence size is large AND position in 
sentence at the middle AND the stress is dead-on THEN output is mid.  
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• IF position in sentence at the middle AND the stress is dead-on THEN output is 
mid-high. 

• IF sentence size is medium AND position in sentence at the middle THEN output 
is mid. 

 
End of Sentence Rules 

• IF sentence is at the end AND the stress is far THEN output is mid-low.  
• IF sentence is at the end AND the stress is near THEN output is zero.  
• IF sentence size is middle AND sentence at the end THEN output is mid-low.  
• IF word is useless AND sentence is at the end THEN output is zero. 

 
 

5.7.2 Yes/no Question 
 
Yes/no questions are questions that can be answered with either a “yes” or a “no”.  These 

questions do not begin with “who”, “what”, “where”, “when”, “why”, or “how”.  The 

overall f0 contour of these questions begins with a rise, followed by a flat contour, and 

then ending with a final sharp rise [2].   

 
Beginning of Sentence Rules 

• IF the word is useless AND position in sentence at the beginning THEN output is 
mid-low.   

• IF the word is semi-important AND position in sentence at the beginning THEN 
output is mid.   

• IF the word is semi-important AND sentence size is large AND position in 
sentence at the beginning THEN output is mid-low.   

• IF position in sentence at the beginning AND the stress is near THEN output is 
mid-high.   

• IF position in sentence at the beginning AND the stress is dead-on THEN output 
is mid-high.   

 
Middle of Sentence Rules  

• IF the word is useless AND position in sentence at the middle THEN output is 
mid-low.   

• IF the word is useless AND sentence size is large AND position in sentence at the 
middle THEN output is low.   

• IF the word is semi-important AND position in sentence at the middle THEN 
output is mid-low.  

• IF the word is important AND position in sentence at the middle AND the stress 
is dead-on THEN output is mid-high.  

• IF position in sentence at the middle AND the stress is dead-on THEN output is 
mid. 
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• IF sentence size is medium AND position in sentence at the middle THEN output 
is mid. 

• IF sentence size is large AND position in sentence at the middle THEN output is 
mid-low. 

 
 
End of Sentence Rules 

• IF sentence is at the end AND the stress is far THEN output is high.  
• IF sentence is at the end AND the stress is near THEN output is mid-high.  
• IF sentence size is large AND sentence at the end AND the stress is dead-on 

THEN output is high.  
• IF word is useless AND sentence is at the end AND the stress is near THEN 

output is mid-high. 
• IF word is important AND sentence is at the end AND the stress is dead-on 

THEN output is high. 
 
 

5.7.3 Interrogative Question 
 

Interrogative questions are questions that are answered with more than just a 

“yes” or “no”. These sentences begin with either “who”, “what”, “where”, “when”, 

“why”, or “how”. Overall, the f0 contour should initially be high with the final steep fall. 

The fall of the interrogative question should be much steeper than the fall of the 

declarative sentence.  According to the O’Shaughnessy algorithm, the peaks throughout 

the sentence should be much higher and the overall contour should be higher than the 

declarative sentence contour.  Syllables and word importance should produce change near 

accents [2]. 

 
Beginning of Sentence Rules 

• IF position in sentence at the beginning THEN output is mid-low.   
• IF the word is important AND position in sentence at the beginning THEN output 

is mid.   
• IF the word is semi-important AND sentence size is large AND position in 

sentence at the beginning THEN output is mid.   
• IF sentence size is small AND position in sentence at the beginning AND the 

stress is dead-on THEN output is mid.   
• IF position in sentence at the beginning AND the stress is dead-on THEN output 

is mid-high.   
• IF sentence size is small AND position in sentence at the beginning THEN output 

is mid-low.   
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Middle of Sentence Rules 

• IF the word is useless AND position in sentence at the middle THEN output is 
mid.   

• IF the word is useless AND sentence size is large AND position in sentence at the 
middle THEN output is mid-low.   

• IF the word is semi-important AND sentence size is large AND position in 
sentence at the middle AND the stress is dead-on THEN output is mid-high.  

• IF position in sentence at the middle AND the stress is dead-on THEN output is 
mid-high. 

• IF sentence size is medium AND position in sentence at the middle THEN output 
is mid. 

• IF the word is important AND position in sentence at the middle AND the stress 
is near THEN output is mid-high. 

• IF sentence size is medium AND position in sentence at the middle AND the 
stress is near THEN output is high. 

• IF sentence size is medium AND position in sentence at the middle THEN output 
is mid-low. 

 
End of Sentence Rules 

• IF sentence is at the end AND the stress is dead-on THEN output is mid-low.  
• IF sentence is at the end AND the stress is near THEN output is zero.  
• IF sentence size is medium AND sentence at the end THEN output is low.  
• IF word is useless AND sentence is at the end THEN output is zero. 

 
 

5.8 Fuzzy Output Calculation 
 

In a fuzzy system, the output is calculated using the rules, the membership 

functions, and the inputs.  Each input parameter value is calculated using the formulas in 

Section 5.6. The firing strength of each input is determined by the membership functions.  

Figure 5-8 shows an example of the Word Importance input with a calculated input of 6.   
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Figure 5-8: Example of Word Importance with Calculated Input of 6 

 
The firing strength of each membership function is shown in Figure 5-8.  The 

membership function “semi” and “important” have a firing strength of .7 and .3, 

respectively.   The “useless” membership function has a firing strength of 0 because the 

input value does not touch the membership function.  The rules of the fuzzy system are 

used to compute the consequence of the inputs presented to the system. For example, if a 

rule stated,” IF word important is semi-important AND … “, then for an input value of 6 

on input Word Importance, the firing strength onto that rule would be .7.  The operators 

then determine the effects of the input onto the consequence membership function.  The 

AND operates equals the minimum value and the OR operator equals the maximum 

value.  Figure 5-9 shows an example of how an input to the fuzzy system determines the 

consequence.  For simplicity, there are only two rules and the consequence only has three 

membership functions.  The rules in Figure 5-9 are: 

 
• IF word is importance AND sentence at the end THEN fundamental 

frequency is high. 
• IF word is semi-importance AND sentence at the middle THEN fundamental 

frequency is middle. 
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Figure 5-9: Firing Strength of Input onto Rules 

he consequences are then combined to produce a final shape. The crisp output of the 
 
T
fuzzy system is calculated by finding the centroid of the final shape. 
 
 

 
Figure 5-10: Final Shape and Centroid 
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5.9 Final Speech Production 
 

Once the network is trained and the prosody is calculated, the MBROLA program 

is used to produce the final speech output. As discussed briefly in Section 3.3, the 

MBROLA program creates speech using diphone concatenation.  This program was 

developed by the TCTS Lab of the Faculté Polytechnique de Mons in Belgium and was 

created for use by researchers [15].  The advantage of using the MBROLA program is its 

ease of use.  The only input needed to produce speech is phonemes and durations.  Users 

of MBROLA do not need any knowledge of diphone concatenation algorithms; the 

program automatically converts the user phonemes to diphones.  

The trained hidden and output weights are stored in a MATLAB *.mat file.  The 

TTP conversion is accomplished using the trained weights and formulas.  The output is 

computed using the formulas used to calculate the actual output during training as 

described in Section 4.2.1. 

 
hidden layer outputs = 1/(1 + e-Σ(input vector * hidden neurons weights))    (5.6) 
actual output  = 1/(1 + e-Σ(hidden layer outputs * output neurons weights))    (5.7) 
 
The actual output of the system will be a 41 element long vector. The ideal output would 

be all zeros and a one; however, since the network is not ideal, the maximum of the 

output needs to be determined. This maximum value of the vector is the output phoneme 

produced by the network from the text.  

When text is entered into the system, the fuzzy controller and the Klatt duration 

rules compute the prosody of the system.  Next, the symbols are converted to the 

MBROLA symbols.  The phonemes, duration, and fundamental frequency values are 

written to output.pho file.  Pho files are the files used by MBROLA to convert phonemes 

to sounds. The output.pho file is opened and the speech is converted into sound file.  See 

Appendix for more detail on the MBROLA system.  
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Figure 5-11: MBROLA *.pho file 

 

 55



 

Chapter 6: Results  
 

6.1 Text-to-Phoneme Results 
 

Neural networks are used in TTS applications in many different ways.  Current 

research focuses on the use of neural networks to produce prosody.  This thesis uses 

neural networks for TTP mapping. Current neural network TTP mapping techniques yield 

about an 80% accuracy [7]. The performance of the neural network algorithm in this 

system is determined by the amount of accurate phonemes the network identifies.  Two 

types of tests are performed to determine the performance of the algorithm used. The first 

test calculates the performance using the full training set.  The second test uses words that 

were not in the training set.   Performance was measured by the percentage of correct 

phonetic conversions.  Figure 6-1, shows the convergence of the networks.  The number 

of hidden neurons is correlated to the network’s convergence. However, after 50 hidden 

neurons, the network convergance doesn’t change much.  
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Figure 6-1: Network Convergence 

 

In the first test, network performance is computed by calculating the percentage 

of correct phonemes determined by the weights on the entire training set. Five different 

types of trained weights were tested for overall accuracy.  The hidden neurons are 

different for the trained weights sets. The overall performance of the network did change 

with an increase in the hidden neurons.  The maximum accuracy is about 80%.  The 

networks were trained on an Intel Pentium 4 2.80 GHz computer.  Table 6-1 shows the 

overall accuracy and training results for each network tested.   

 
Table 6-1: First Test Results 
Network TTP 

Accuracy (%) 
Training Time 
(P4 2.80GHz) 

Epochs Hidden Nodes 

1 66.93 15 min 10s 75 20 
2 68.81 19 min 30s 75 30 
3 72.45 22 min 59s 75 40 
4 75.77 25 min 13s 75 50 
5 80.16 35 min 46s 75 75 
 

 57



 

In the second test, network performance is computed by calculating the 

percentage of correct phonemes calculated on 100 random unknown words (i.e., words 

that were not in the training set).  The same trained weights were tested for overall 

accuracy. The overall performance, shown in Table 6-2, is about 67%, which is lower 

than the performance in the first test.  The performance is lower in the second test 

because of the rule expectations in the English language. For example, the word “vice” is 

pronounced with a /ie/ phoneme for the “i”.  But the “i” in the word “service” is 

pronounced with a /uh/ phoneme.  Consequently, the network does not catch expectations 

and hence the performance is lower with unknown text.    

 

Table 6-2: Second Test Results 
Network TTP 

Accuracy (%) 
1 62.78 
2 63.09 
3 63.59 
4 67.12 
5 67.52 
 

Overall, these tests show that the network is about 80% accurate on the training 

data.  When data not in the training set is introduced, the network performs around 67% 

accuracy. When testing the TTS system manually, the text-to-phoneme conversion 

accuracy is good with some minor faults.  The TTP errors of the system might go 

unnoticed to the user. For example, if the correct (trained) phonetic representation of the 

word “the” is “\th\ \u\” and the system produces “\th\ \ee\”, the user will not notice the 

incorrect TTP conversion. On the whole, this network is accurate enough to produce the 

correct text-to-phoneme conversion without many major errors.  

6.2 Fuzzy Fundamental Frequency Results 
 

Testing the fuzzy system can be complicated.  Comparing the sound of the speech 

produced by the system is somewhat subjective. However, the research objective was to 

make to the synthesized speech sound more natural using fuzzy logic.  Therefore, the 

fuzzy controller was tested by evaluating the f0 contour produced by the fuzzy system.  

Two types of tests were used to evaluate the fuzzy system.  In the first test, the f0 contour 
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produced by the system was analyzed to see if it was producing a natural looking f0 

contour trend. With speech, only voiced sounds create fundamental frequency.  

Therefore, some phonemes will not have fundamental frequency. The fuzzy system was 

tested by evaluating the three different sentences types.  Figure 6-2, 6-3, and 6-4 show the 

output produced by the system for a declarative sentence, an interrogative question, and a 

yes/no question, respectively. The sentences are, “My name is Jonathan Williams”, 

“What time is the thesis defense?”, and “Is it going to rain at noon?"  All three f0 

contours produced by the fuzzy system are the accurate f0 trends.  

 

 
Figure 6-2: Declarative Sentence - “My name is Jonathan Williams” 
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Figure 6-3: Interrogative Question - “What time is the thesis defense?” 

 
 

 
Figure 6-4: Yes/no Question - “Is it going to rain at noon?"   

 
The second test involves viewing the f0 output produced by the fuzzy system with 

the f0 output of a high quality system. The purpose is to further prove that the fuzzy 

system’s f0 contours are natural looking. It would be impossible to make a comparison 

 60



 

between both systems, since they are completely different systems. The other f0 contour 

is the Microsoft Research Speech Technology Asia (MRSA) on-line TTS system, which 

is one of the best unit-selection based TTS systems [37]. The MRSA system’s output f0 

contour is determined using the MBROLIGN program.  The MBROLIGN program is a 

tool that aligns phonetic transcripts with a speech signal.  MBROLIGN then calculates 

the f0 contour of the speech signal. Using the same sentences, three f0 contours produced 

by the fuzzy system are graphed with the f0 contours of the MSRA system. The sentence 

types are declarative sentence, interrogative question, and yes/no question. The following 

figures show the f0 contour produced by both systems.  The sentences are, “My name is 

Jonathan”, “What time is it?” and, “Is it raining today?”   

The f0 contour of declarative sentences should be high at the beginning of the 

sentence and then drop at the end of the sentence.  Peaks are on the primary stresses of 

the stressed syllables.  The peak sizes decrease linearly throughout the sentence.  For the 

f0 contours below, both systems produce a downward linear f0 contour trend with a drop 

at the end of the sentence.  Both systems also produce peaks on the stressed words within 

the sentence.  

 
Figure 6-5: F0 Contours for Declarative Sentence, “My name is Jonathan.” 

 
The interrogative question f0 contour is similar to the declarative sentence f0 

contour because both contours fall at the end of the sentence.  The interrogative question 
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should initially be high with a very sharp drop after the last stress. There should also be 

peaks around the stresses and the highest peak should be on the first word of the question. 

These peaks do not fall linearly like the declarative sentence.  In the figure below, both 

contours follow this trend. The fuzzy f0 contour peaks on the initial words in the 

sentence.  Then the fuzzy system’s f0 contour sharply falls at the end of the sentence.  

 
Figure 6-6: F0 Contours for Interrogative Question, “What time is it?” 

 
The yes/no question f0 contour should be relatively low at the beginning with a 

sharp rise at the end.  The peaks throughout the question are smaller compared to the 

final rise.  The graph below shows that the fuzzy f0 contour raises at the end the sentence. 

The fuzzy controller also has peaks in the middle of the sentence.  
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Figure 6-7: F0 Contour Comparison for Yes/no Question, “Is it raining today?” 
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Chapter 7: Conclusion 
 

7.1 Summary and Conclusion 
 

The goal was to build a TTS system with fuzzy logic controlling the fundamental 

frequency of the speech.  First, a neural network based on the NetTalk network was 

trained to convert text into phonemes.  The training set contained 1800 words with their 

phonetic transcription.  The Back Propagation algorithm was used to train a three layer 

network.  Then stress was assigned using the Halle and Keyer lexical stress rules.  Next, 

segmental duration was calculated using the Klatt duration rules which were designed to 

replicate observed segmental durations from a speaker. A fuzzy inference system was 

built to control the fundamental frequency of the speech output. The inputs to the fuzzy 

controller were word importance, sentence size, stress location, and sentence position.  

The output was the fundamental frequency.  The system had three sets of rules for three 

types of sentences: declarative sentence, interrogative question, and yes/no question. 

Finally, the phonemes and calculated prosodic information was set to the MBROLA 

program to produce the final speech.  

The contribution to this thesis is the idea of using a fuzzy controller to control 

fundamental frequency.  No publications on using fuzzy logic to control fundamental 

frequency were found. The fuzzy controller generates the expected f0 contour for each of 

the three sentence types. Thus, the system produces more natural sounding speech. Since 

evaluating the speech produced by the system is subjective, the f0 contour is compared to 

a high quality TTS system’s f0 contour.  In comparison, the fuzzy system produces 

similar f0 trends compared to the high quality TTS system.  However, there are many 

improvements that can be made to the fuzzy fundamental frequency controller.  

Overall, the final speech produced by the TTS system sounds more natural.  The 

speech is very understandable and the user can hear the intonation. The purpose of this 

thesis was to explore the possibilities of using fuzzy logic for automatic prosodic control. 

This thesis proves that fuzzy logic can a make low memory method of speech synthesis 

sound more natural.  Currently, unit selection is the best sounding speech synthesis 

method. However, the speech databases must be segmented and the speech databases 
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sizes are measured in gigabytes. Compared to unit selection-based synthesis, the diphone 

database does not need to be segmented and the speech database requires a small amount 

of memory.  Using the MBROLA diphone concatenation program, the total program size 

is under 8 MB.  The TTS system itself is less than a megabyte in size and the diphone 

database is only 6.75MB.  With further research, fuzzy logic controlled speech could be 

the preferred speech synthesis method for our shrinking electronics.   

7.2 Future Work 
 

The neural network text to phoneme conversion accuracy needs to improve. 

Currently, the Back Propagation algorithm yields the best correctness.  Different methods 

like Bi-Direction Recurrent Networks (BRNN) and Self-Organizing Maps (SOM) 

produce about 70% TTP conversion accuracy [7].   Performance can be improved in 

many ways. One way to improve network performance is to increase the size of the 

training set. The results showed that the network produces 80% accuracy on known text 

and about 70% accuracy of unknown text.  Therefore, minimizing the amount of 

unknown text during training would yield better results. However, the algorithm would 

still produce errors. Improvements to the Back Propagation method or other machine 

learning methods need to be further researched in order for machine learning methods to 

be comparable to the current technologies.  Also, research into error correction after 

training would be very beneficial to the acceptance of the machine learning method.   

Improvements to certain components of the TTS system would produce more 

natural-sounding speech.  The stress assignment algorithm can be greatly improved.   The 

current stress assignment method does not assign stress with complete accuracy. 

Improvements to the system stress algorithm would improve the prosody and naturalness 

of the speech output.   A part-of-speech parser also needs to be added to the system.  The 

current TTS system only handles two types of words: function and content. Assigning 

word importance based on the part-of-speech would also improve the speech output.  

Although the fuzzy controller works adequately, the fuzzy system needs 

improvements. One improvement can be on the actual rules of the fuzzy system.  

Decreasing the amount of rules could improve the speed, since the system computation 

requirements would decrease.  The system currently has over 50 rules. Another 
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improvement can be on the composition of the rules. There needs to be research into 

designing expert rules for a fuzzy system controlling prosody.  If more research went into 

creating expert fuzzy prosodic rules, a fuzzy system could control fundamental frequency 

and other aspects of prosody, like segmental duration and stress assignment.  The 

membership functions may not be optimized in the fuzzy system. Research into different 

types of membership function could also produce more natural sounding speech. The use 

of different types of membership functions or the use of ANFIS could improve the fuzzy 

system.   
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Appendix A – Phoneme List 
 
Network MBROLA Sound 
% _ silence 
a { apple 
ah A Arthur 
aw O all 
ay EI able 
b b cob
ch tS notch
d d nod
e E else 
ee i even 
f f for 
g g jog
h h harm 
i I illness 
ie AI island 
j Z garage 
k k rock
l l doll
m m palm
n n john
ng N bong
oh @U over 
oi OI oyster 
oo U good 
ow aU out 
p p drop
r r star
s s boss
sh S wash
t t plot
th T cloth
u @ about 
ue u oodles 
uh V nut 
ur r= her
v v salve 
w w show
xh D clothe 
y j yacht 
z z was
zh s seizure 
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Appendix B – Phoneme Inherit Duration 
 
Phoneme Minimum(ms) Maximum (ms)
a 80 230
ah 100 240
aw 100 240
ay 70 150
e 100 190
ee 55 155
i 40 135
ie 150 250
oh 80 220
oi 150 280
oo 60 160
ow 100 260
u 60 120
ue 70 210
uh 60 140
ur 80 180
h 20 80
l 40 80
r 30 80
w 60 80
y 40 80
m 60 70
n 50 60
ng 60 95
f 80 100
s 60 105
sh 80 105
th 60 90
v 40 60
xh 30 50
z 40 75
zh 40 70
b 60 85
d 50 75
g 60 80
k 60 80
p 50 90
t 50 75
ch 50 70
j 50 70
% 25 25
 
 

 72



 

Appendix C – Training Set  
 
a /u/  guts /guts/  Renee /rennay/ 
abbey /abbee/  habits /habits/  reply /riplie/ 
able /aybul/  hacker /hackur/  report /ripawrt/ 
about /ubowt/  had /had/  require /rikwier/ 
above /ubuhv/  hags /hagz/  rest /rest/ 
abs /abz/  hail /hayl/  result /rizuhlt/ 
action /akshun/  hair /her/  retch /rech/ 
add /ad/  half /haf/  return /riturn/ 
adjoin /adjoin/  hall /hawl/  rich /rich/ 
advance /udvans/  hallo /hawloh/  riches /richiz/ 
affix /ufiks/  halo /hayloh/  ridden /ridun/ 
afraid /ufrayd/  halt /halt/  ride /ried/ 
after /aftur/  halve /hav/  right /riet/ 
again /ugen/  hamper /hampur/  ring /ring/ 
age /ayj/  hand /hand/  rise /riez/ 
agree /ugree/  handle /handul/  river /rivur/ 
ahoy /uhoi/  handy /handee/  road /rohd/ 
air /er/  hang /hang/  rock /rawk/ 
airplane /erplayn/  happen /hapun/  roll /rohl/ 
airway /erway/  happy /hapee/  room /ruem/ 
all /awl/  hard /hahrd/  round /rownd/ 
alley /alee/  hardly /hawrdlee/  row /roh/ 
alloy /owlloi/  hardy /hawrdee/  royal /roiyul/ 
along /ulawng/  hare /her/  ruby /ruebee/ 
already /awlredi/  has /haz/  ruches /roochiz/ 
also /awlsoh/  hasty /haystee/  rule /ruel/ 
although /awlthoh/  hat /hat/  rummy /ruhmee/ 
always /awlwayz/  hatch /hach/  run /ruhn/ 
am /am/  have /hav/  rush /ruhsh/ 
amount /umownt/  he /hee/  rush /rush/ 
and /and/  head /hed/  rushes /ruhshiz/ 
anger /anggur/  heal /heel/  rusty /ruhstee/ 
Anglo /angloh/  health /helxh/  sad /sad/ 
angry /anggree/  health /helth/  safety /sayftee/ 
animal /anumul/  heap /heep/  said /sed/ 
annex /aneks/  hear /hir/  sail /sayl/ 
annoy /unnoi/  heard /hurd/  salt /sawlt/ 
anoint /unoint/  heart /hahrt/  same /saym/ 
anomie /unahmee/ heat /heet/  sandy /sandee/ 
anomy /unahmee/ heater /heetur/  sashes /sashiz/ 
another /unuhthur/  heaven /hevun/  sat /sat/ 
anoxia /anoksu/  heavy /hevee/  Saturday /Saturday/ 
answer /ansur/  hedge /hej/  save /sayv/ 
antics /antiks/  height /hiet/  saw /saw/ 
any /eni/  held /held/  say /say/ 
apex /aypeks/  hello /heloh/  scene /seen/ 
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appear /upir/  help /help/  school /skuel/ 
apple /apul/  hem /hem/  sea /see/ 
April /ayprul/  her /hur/  seat /seet/ 
arch /arch/  herbs /hurbz/  second /sekund/ 
are /ahr/  here /hir/  see /see/ 
arm /ahrm/  heresy /herusee/  seed /seed/ 
army /ahrmee/  hero /heeroh/  seem /seem/ 
around /urownd/  hers /hurz/  seen /seen/ 
array /array/  hey /hay/  self /self/ 
arrive /uriev/  hey /hay/  sell /sel/ 
art /art/  hiccup /hikup/  sense /sens/ 
article /ahrtukul/  hiding /hieding/  sent /sent/ 
as /az/  high /hie/  separate /seprit/ 
ash /ash/  hijack /hiejak/  September /septembur/ 
ashes /ashiz/  hike /hiek/  serve /surv/ 
ask /ask/  hikes /hiekz/  service /survis/ 
astray /ustray/  hill /hil/  set /set/ 
at /at/  him /him/  settle /setul/ 
attach /uttach/  hinder /hindur/  seven /sevun/ 
attept /utempt/  hint /hint/  several /sevrul/ 
August /Awgust/  hip /hip/  shabby /shabbee/ 
aunt /ant/  hire /hieur/  shade /shayd/ 
avoid /uvoid/  his /hiz/  shake /shayk/ 
away /uway/  history /histree/  shall /shal/ 
ax /aks/  hit /hit/  sham /sham/ 
axis /aksis/  hoax /hoaks/  shame /shaym/ 
baby /baybee/  hobble /hawbul/  shape /shayp/ 
back /bak/  hobby /hahbee/  share /sher/ 
bad /bad/  hold /hohld/  shark /shahrk/ 
bag /bag/  hole /hohl/  sharp /shahrp/ 
balk /bawlk/  holy /hohlee/  shave /shayv/ 
ball /bawl/  home /hohm/  she /shee/ 
balmy /bahlmee/  homely /hohmee/  shed /shed/ 
bangs /bangz/  homy /hohmee/  sheep /sheep/ 
bank /bangk/  honey /huhnee/  sheer /shir/ 
banker /bangkur/  hoof /hoof/  sheet  /sheet/ 
barmy /bahrmee/  hook /hook/  shelf /shelf/ 
bash /bash/  hooks /hooks/  shell /shel/ 
basket /baskut/  hoops /huepz/  shield /sheeld/ 
batch /bach/  hope /hohp/  shift /shift/ 
bath /bath/  horrid /hawrid/  shine /shien/ 
baths /bathz/  horse /hawrs/  ship /ship/ 
battle /batul/  hot /haht/  ships /shipz/ 
batty /batee/  hotty /hawtee/  shirk /shirk/ 
baulk /bowlk/  hour /owr/  shirt /shurt/ 
bawdy /bawdee/  hours /owrz/  shit /shit/ 
bay /bay/  house /hows/  shock /shahk/ 
bay /bay/  how /how/  shoe /shue/ 
be /bee/  however /howevur/  shoot /shuet/ 
bean /been/  hugs /huhgz/  shop /shahp/ 
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beauty /beeuetee/ hulk /hohlk/  shore /shawr/ 
became /bikaym/  humid /huemid/  short /shawrt/ 
because /bikawz/  humor /huemawr/ shot /shaht/ 
become /bikuhm/  hump /huhmp/  should /shood/ 
bed /bed/  hums /huhmz/  shoulder /shohldur/ 
beech /beech/  hunch /huhnch/  shout /showt/ 
been /bin/  hungry /hunggree/ shove /shuhv/ 
before /bifawr/  hunt /huhnt/  show /shoh/ 
began /bigan/  hurry /huree/  shower /showur/ 
begin /bigin/  hurt /hurt/  shown /shohn/ 
behind /bihiend/  husband /huhzbund/ shred /shred/ 
being /beeing/  I /ie/  shrill /shril/ 
believe /bileev/  ice /ies/  shrine /shrien/ 
bell /bel/  idea /iediu/  shrink /shrink/ 
belong /bilawng/  if /if/  shrug /shruhg/ 
below /biloh/  iffy /iffee/  sick /sik/ 
bends /bendz/  ilk /ilk/  side /sied/ 
berth /berth/  ill /il/  sight /siet/ 
beside /busied/  important /impawrtunt/ sights /siets/ 
best /best/  in /in/  sign /sien/ 
betray /beetray/  inch /inch/  silk /silk/ 
better /betur/  inches /inchiz/  silver /silvur/ 
between /bitween/  include /inklued/  simple /simpul/ 
beyond /biyahnd/  increase /inkrees/  since /sins/ 
bicycle /biesikul/  indeed /indeed/  sing /sing/ 
big /big/  industry /industree/ single /singgul/ 
bilk /bilk/  inside /insied/  sister /sistur/ 
birch /burch/  instead /insted/  six /siks/ 
bird /burd/  into /intue/  sixty /siktee/ 
birth /berth/  iron /ieurn/  size /siez/ 
black /blak/  is /iz/  skulk /skuhlk/ 
bleach /bleech/  it /it/  sleep /sleep/ 
blood /bluhd/  itch /ich/  slept /slept/ 
bloody /bluhdee/  its /its/  slow /sloh/ 
blow /bloh/  jab /jab/  small /smawl/ 
blue /blue/  jabber /jabur/  smell /smel/ 
blush /bluhsh/  jack /jak/  smoke /smohk/ 
board /bawrd/  jacket /jakit/  snow /snoh/ 
boat /boht/  jade /jayd/  so /soh/ 
body /bahdee/  jail /jayl/  soft /sawft/ 
boil /boil/  jam /jam/  soil /soil/ 
bone /bohn/  jammy /jamee/  sold /sohld/ 
book /book/  jangle /jangul/  soldier /sohljur/ 
books /books/  jar /jahr/  solo /sohloh/ 
born /bawrn/  jargon /jahrgawn/  some /suhm/ 
borrow /bawroh/  jaunt /jawnt/  son /suhn/ 
botch /bawch/  jaw /jaw/  song /sawng/ 
both /bohxh/  jazz /jaz/  soon /suen/ 
bottle /bawtul/  jazzy /jazee/  sorry /sahree/ 
bounds /bowndz/  jeans /jeenz/  sort /sawrt/ 
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box /bahks/  jeer /jeer/  sound /sownd/ 
boxer /bahksur/  jelly /jelee/  south /sowth/ 
boxy /bahksee/  jemmy /jemee/  soy /soi/ 
boy /boi/  jerk /jerk/  space /spays/ 
boy /boi/  Jeron /jerahn/  speak /speek/ 
boyish /boiish/  jersey /jursee/  special /speshul/ 
brain /brayn/  jest /jest/  spend /spend/ 
brains /braynz/  jester /jestur/  spent /spent/ 
branch /branch/  Jesus /jeesuhs/  spoke /spohk/ 
branch /branch/  jet /jet/  spot /spaht/ 
brash /brash/  jetty /jetee/  spread /spred/ 
breach /breech/  Jew /jue/  spring /spring/ 
bread /bred/  jewel /juel/  square /skwer/ 
break /brayk/  jib /jib/  stalk /stahlk/ 
bridge /brij/  jiffy /jifee/  stand /stand/ 
briefs /breefs/  jig /jig/  star /stahr/ 
bright /briet  jiggle /jigul/  starch /stahrch/ 
bring /bring/  jigsaw /jigsaw/  start /stahrt/ 
broad /brawd/  jilt /jilt/  state /stayt/ 
broke /brohk/  jingle /jingul/  station /stayshun/ 
broken /brohkun/  jitter /jittur/  stay /stay/ 
broth /brahth/  jive /jiev/  step /step/ 
brought /brawt/  job /jahb/  stick /stik/ 
brown /brown/  jockey /jawkee/  still /stil/ 
brunch /bruhnch/  jog /jahg/  stitch /stich/ 
bucks /buhks/  join /join/  stock /stawk/ 
buddy /buhdee/  joint /joint/  stone /stohn/ 
bug /buhg/  joke /johk/  stood /stood/ 
build /bild/  joker /johkur/  stop /stahp/ 
building /bilding/  jolly /jawlee/  store /stawr/ 
built /bilt/  Jon /jahn/  storm /stawrm/ 
bulk /buhlk/  joshes /jawshiz/  story /stawree/ 
burn /burn/  joy /joi/  straight /strayt/ 
bus /buhs/  judge /juhj/  strange /straynj/ 
bush /boosh/  jug /juhg/  stranger /straynjur/ 
bushes /booshiz/  juice /jues/  stream /streem/ 
business /biznus/  juke /juek/  street /street/ 
busty /buhstee/  July /Joolie/  strength /strengxh/ 
busy /bizee/  jumble /juhmbul/  strike /striek/ 
but /buht/  jump /juhmp/  strong /strawng/ 
butter /buhtur/  June /Juen/  student /stuedunt/ 
buy /bie/  jungle /juhngul/  study /stuhdee/ 
by /bie/  junior /juenyur/  sturdy /sturdee/ 
cake /kayk/  junk /juhnk/  subject /suhbjikt/ 
call /kawl/  just /juhst/  succeed /sukseed/ 
came /kaym/  kecks /keks/  success /sukses/ 
can /kan/  keep /keep/  such /suhch/ 
captain /kaptun/  kept /kept/  sudden /suhdun/ 
car /kahr/  keshes /keeshiz/  suffer /suhfur/ 
care /ker/  key /kee/  sugar /shoogur/ 
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carry /karee/  kicks /kikz/  suit /suet/ 
case /kays/  kidney /kidnee/  sulk /suhlk/ 
cash /kash/  kilo /keeloh/  summer /suhmur/ 
cashes /kashiz/  kind /kiend/  sun /suhn/ 
catch /kach/  king /king/  Sunday /Suhnday/ 
caught /kawt/  kiss /kis/  supply /suhplie/ 
caulk /kawlk/  kitchen /kichun/  suppose /supohz/ 
cause /kawz/  kitty /kitee/  sure /shoor/ 
cello /cheloh/  labor /laybur/  surprise /supriez/ 
cent /sent/  laches /lachiz/  sweet /sweet/ 
century /senchuri/  ladder /ladur/  switch /swich/ 
chafe /chayf/  lady /laydee/  syntax /sintaks/ 
chair /cher/  lake /layk/  system /sistum/ 
chair /cher/  land /land/  table /taybul/ 
chalk /chawlk/  language /langgwij/  tail /tayl/ 
chance /chans/  large /lahrj/  take /tayk/ 
chance /chans/  lashes /lashiz/  talem /taykun/ 
change /chang/  last /last/  talk /tawk/ 
chant /chant/  late /layt/  talks /tawlkz/ 
chaos /kayahs/  laugh /laf/  tall /tawl/ 
character /karuktur/  laughter /laftur/  tammy /tamee/ 
charge /chahrj/  law /law/  taste /tayst/ 
charm /chahrm/  lax /laks/  tasty /taystee/ 
chase /chays/  lay /lay/  tax /taks/ 
chat /chat/  lead /leed/  taxi /taksee/ 
cheat /cheet/  leader /leedur/  teach /teech/ 
cheer /cheer/  learn /lurn/  tear /tir/ 
chesty /chestee/  least /leest/  tell /tel/ 
chew /chue/  leave /leev/  ten /ten/ 
chief /cheef/  leches /lechiz/  testy /testee/ 
child /chield/  led /led/  thai /tie/ 
childhood /chieldhood/ left /left/  than /than/ 
children /childrun/  leg /leg/  thank /xhangk/ 
chill /chil/  legs /legz/  thanks /thanks/ 
chin /chin/  length /lengxh/  that /that/ 
choke /chohk/  less /les/  the /thee/ 
choose /chuez/  let /let/  theft /theft/ 
chore /chawr/  letter /letur/  their /ther/ 
Christ /chriest/  liar /lier/  theirs /therz/ 
chunk /chuhnk/  lie /lie/  them /them/ 
church /church/  life /lief/  theme /theem/ 
churn /churn/  light /liet/  then /then/ 
cigarette /siguret/  limy /liemee/  thence /thens/ 
circle /surkul/  line /lien/  theory /thirree/ 
city /sitee/  liquid /likwid/  there /ther/ 
civics /siviks/  liquor /likur/  therefore /therfawr/ 
class /klas/  list /list/  these /theez/ 
clay /klay/  listen /lisun/  thesis /theesus/ 
clean /kleen/  little /litul/  they /thay/ 
clear /klir/  live /liv/  thick /xhik/ 

 77



 

clock /klahk/  loath /lohth/  thief /theef/ 
close /klohs/  lobby /lahbee/  thigh /thie/ 
cloth /klawxh/  loin /loin/  thin /xhin/ 
clothes /klohz/  loiter /loitur/  thing /xhing/ 
cloud /klowd/  lone /lohn/  things /thingz/ 
clutch /kluhch/  long /lawng/  think /xhingk/ 
coat /koht/  look /look/  third /thurd/ 
coil /koil/  Lord /Lawrd/  thirst /thurst/ 
coin /koin/  lose /luez/  thirteen /xhurteen/ 
cold /kohld/  loss /laws/  thirty /thurstee/ 
college /kahlij/  lost /lawst/  this /this/ 
color /kuhlur/  lot /laht/  those /thohz/ 
come /kuhm/  loud /lowd/  though /thoh/ 
company /kuhmpunee/ love /luhv/  thought /xhawt/ 
complete /kumpleet/ low /loh/  thousand /xhowzund/ 
condition /kundishun/ lower /lohur/  thrall /thral/ 
consider /kunsidur/  lox /lawks/  thrash /thrash/ 
considerable /kunsidurubul/ loyal /loiyul/  thrawn /thrawn/ 
contain /kuntayn/  lurch /lurch/  thread /thred/ 
continue /kuntinyue/ lushes /luhshiz/  threat /thret/ 
control /kuntrohl/  lusty /lahbee/  three /xhree/ 
convey /kohnvay/  lynch /linch/  threw /xhrue/ 
convoy /kahnvoi/  Ma /Mah/  thrice /thries/ 
cook /kook/  machine /musheen/ thrill /thril/ 
cool /kuel/  mad /mad/  thrive /thriev/ 
corn /kawrn/  made /mayd/  throb /thrahb/ 
corner /kawnur/  mail /mayl/  throe /throh/ 
coshes /kohshiz/  mains /maynz/  throne /throhn/ 
cost /kawst/  make /mayk/  throng /thrawng/ 
could /kood/  man /man/  through /xhrue/ 
count /kownt/  manner /manur/  throve /throhv/ 
country /kuhntree/  many /meni/  throw /xhroh/ 
course /kawrs/  March /mahrch/  thrown /xhrohn/ 
cover /kuhvur/  mark /mahrk/  thru /thrue/ 
cox /kahks/  market /mahrkut/  thrust /thruhst/ 
crash /krash/  marque /mahrk/  thug /thuhg/ 
crips /krips/  marry /maree/  thumb /thuhm/ 
cross /kraws/  marsh /mawrsh/  thumbs /thuhmz/ 
crowd /krowd/  master /mastur/  thus /thuhs/ 
crusty /crestee/  material /mutiriul/  tiches /tichiz/ 
cry /krie/  maths /mathz/  tidy /tiedee/ 
cup /kuhp/  matter /matur/  tie /tie/ 
cut /kuht/  maxim /maksem/  till /til/ 
daddy /dadee/  May /May/  time /tiem/ 
daily /daylee/  mayor /mayur/  to /tue/ 
dance /dans/  me /mee/  today /tooday/ 
dare /der/  mean /meen/  together /toogethur/ 
dark /dahrk/  means /meenz/  toil /toil/ 
darts /dahrtz/  measure /mezhur/  told /tohld/ 
dashes /dashiz/  meat /meet/  tommy /tahmee/ 
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date /dayt/  meaty /meetee/  tomorrow /toomahroh/ 
daughter /dawtur/  meet /meet/  too /tue/ 
day /day/  meeting /meeting/  took /took/ 
dayglo /daygloh/  member /membur/  tooth /tueth/ 
dead /ded/  men /men/  torch /tawrch/ 
deal /deel/  met /met/  tore /tawr/ 
dear /dir/  method /mexhud/  touch /tuhch/ 
December /Disembur/ meths /methz/  toward /tawrd/ 
decide /disied/  middle /midul/  town /town/ 
decks /dekz/  might /miet/  toxic /tawksik/ 
decoy /deekoi/  mile /miel/  toy /toi/ 
deep /deep/  milk /milk/  tracks /traks/ 
degree /digree/  million /milyun/  trade /trayd/ 
deity /deetee/  mind /miend/  train /trayn/ 
delight /diliet/  mine /mien/  training /trayning/ 
demand /dimand/  minute /minit/  travel /travul/ 
deploy /deeploi/  miss /mis/  tree /tree/ 
depth /depth/  mister /mistur/  tried /tried/ 
desire /dizier/  misty /mistee/  tries /triez/ 
destroy distroi/  mix /miks/  trip /trip/ 
detach /deetach/  modern /mawdurn/ trouble /truhbul/ 
detox /deetahks/ moist /moist/  trust /truhst/ 
device /divies/  Monday /Muhnday/ truth /trueth/ 
devoid /deevoid/  money /mohnee/  try /trie/ 
dibs /dibz/  month /muhnxh/  Tuesday /Tuezday/ 
dicey /diesee/  moody /muedee/  turfs /turfs/ 
did /did/  moon /muen/  turn /turn/ 
die /die.  more /mawr/  twelve /twelv/ 
difference /difruns/  morning /mawrning/ twenty /twentee/ 
different /difrunt/  mosque /mahsk/  twins /twinz/ 
difficult /difukult/  most /mohst/  twitch /twich/ 
dig /dig/  moth /mawth/  two /tue/ 
digs /digz/  mother /muhthur/  udder /uhdur/ 
dinner /dinur/  mountain /mowntin/  uglier /uhgleeur/ 
dioxin /deeahksin/ mouth /mowxh/  uglis /uhglis/ 
direct /direkt/  move /muev/  ugly /uhglee/ 
dirty /dirtee/  movement /muevmunt/ ulcer /awlsur/ 
discover /diskuhvur/ moxa /mohksu/  ulema /ulemu/ 
dish /dish/  much /muhch/  ulna /awlnu/ 
dishes /dishiz/  mud /muhd/  ultima /awlteemu/ 
dismay /dismay/  munch /muhnch/  ultra /awltru/ 
distance /distuns/  music /myuezik/  umbel /uhmbul/ 
distant /distunt/  must /muhst/  umber /uhmbur/ 
ditch /dich/  my /mie/  umpire /uhmpieur/ 
divide /divied/  nail /nayl/  uncle /uhngkul/ 
do /due/  nasty /nastee/  under /uhndur/ 
doctor /dahktur/  nation /nayshun/  understand /uhndurstand/
does /duhz/  nature /naychur/  understood /uhndurstood/
dog /dawg/  near /nir/  until /until/ 
doing /dueing/  nearly /nirli/  up /uhp/ 
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dollar /dahlur/  necessary /nesuseri/  upon /upahn/ 
done /duhn/  neck /nek  urban /urban/ 
donkey /duhnkee/  need /need/  urchin /urchin/ 
don't /dohnt/  needle /needul/  urea /ureeu/ 
door /dawr/  needs /needz/  urge /urg/ 
dormie /dawrmee/ needy /needee/  urgent /urgent/ 
dormy /dawrmee/ neighbor /naybur/  urine /yurin/ 
double /duhbul/  neither /neethur/  us /uhs/ 
doubt /dowt/  nerve /nurv/  use /yuez/ 
down /down/  never /nevur/  use /yues/ 
dream /dreem/  new /nue/  usual /yuezhooul/ 
dregs /dregz/  news /nuez/  vac /vac/ 
dress /dres/  next /nekst/  vacuum /vakuem/ 
dried /dried/  nice /nies/  vagina /vahjienu/ 
drink /dringk/  niece /nees/  vague /vayg/ 
drive /driev/  night /niet/  vain /vayn/ 
drop /drahp/  nine /nien/  valet /valay/ 
dry /drie/  ninth /nienth/  valid /valid/ 
dubs /duhbz/  no /noh/  valley /valee/ 
duck /duhk/  noise /noiz/  value /valyue/ 
dummy /duhmee/  none /nuhn/  valve /valv/ 
during /dooring/  noon /nuen/  vamp /vamp/ 
dusk /duhsk/  nor /nawr/  van /van/ 
dusty /duhstee/  north /nawrxh/  vandal /vandul/ 
duty /duetee/  nose /nohz/  vanish /vanish/ 
dwarfs /dwawrfs/  not /naht/  vapid /vaypid/ 
each /eech/  notch /nawch/  vapor /vaypur/ 
ear /ir/  note /noht/  various /varius/ 
early /urlee/  nothing /nuhxhing/ vary /veree/ 
earth /urxh/  notice /nohtis/  vast /vast/ 
east /eest/  November /NOHvembur/ vault /vawlt/ 
easy /eezee/  now /now/  vector /vektur/ 
eat /eet/  number /nuhmbur/  veer /veer/ 
edge /ej/  nutty /nuhtee/  vegan /veegin/ 
effort /efurt/  nylons /nielahnz/  vein /vayn/ 
egg /eg/  oath /ohth/  venom /venuhm/ 
eight /ayt/  oats /ohts/  vent /vent/ 
either /eethur/  object /ahbjekt/  verb /vurb/ 
electric /ulektrik/  ocean /ohshun/  verbs /vurbz/ 
electricity /ulektrisitee/ oches /ohchiz/  verse /verz/ 
elk /elk/  October /Ahktohbur/ very /veree/ 
else /els/  odds /ahdz/  vet /vet/ 
Emmy /emee/  of /uhv/  via /veeuh/ 
employ /emploi/  off /awf/  vice /vies/ 
end /end/  offer /awfur/  video /videeoh/ 
ends /endz/  office /awfis/  view /vyue/ 
enemy /enumee/  often /awfun/  view /vue/ 
English /ingglish/  oh /oh/  vile /viel/ 
enjoy /injoi/  oil /oil/  visa /veezu/ 
enough /inuhf  oil /oil/  visit /vizit/ 
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enter /entur/  oily /oilee/  vocal /vohkul/ 
epoxy /eepawksee/ old /ohld/  vogue /vohg/ 
equal /eekwul/  on /ahn/  voice /vois/ 
equip /eekwip/  only /ohnlee/  void /void/ 
escape /uskayp/  oogamy /uegamee/ vomit /vawmit/ 
etches /etchiz/  open /ohpun/  vote /voht/ 
ethics /ethiks/  opinion /upinyun/  vouch /vowch/ 
even /eevun/  or /awr/  voyage /voiyeg/ 
evening /eevning/  order /awrdur/  voyeur /voiyur/ 
ever /evur/  orderly /awrdurli/  wagon /wagun/ 
every /evree/  other /uhthur/  wait /wayt/ 
exact /iksakt/  ought /awt/  walk /wawk/ 
exalt /ikawlt/  our /owr/  wall /wawl/ 
exam /iksam/  out /owt/  want /wawnt/ 
excel /ikssel/  outer /owtur/  war /wawr/ 
except /eksept/  outside /owtsied/  warm /wawrm/ 
exert /iksurt/  over /ohvur/  was /wuhz/ 
exile /eksiel/  ovolo /ohvohlu/  wash /wahsh/ 
exit /eksit/  own /ohn/  wash /wahsh/ 
expect /ikspekt/  ox /awks/  washes /washiz/ 
experience /ikspiriuns/ oxen /awksen/  watch /wahch/ 
explain /eksplayn/ oxide /awksied/  water /wahtur/ 
eye /ie/  page /payj/  wave /wayv/ 
face /fays/  paid /payd/  wax /waks/ 
fact /fakt/  pain /payn/  way /way/ 
fail /fayl/  part /pahrt/  we /wee/ 
fair /fer/  partial /pahrshul/  weak /week/ 
faith /fayth/  party /pahrtee/  wear /wer/ 
fall /fawl/  pass /pas/  weather /wethur/ 
family /famulee/  past /past/  wedge /wej/ 
famous /faymus/  pasty /paystee/  Wednesday /Wenzday/ 
fancy /fansee/  patch /pach/  weds /wedz/ 
far /fahr/  pay /pay/  week /week/ 
farm /fahrm/  peace /pees/  weight /wayt/ 
fast /fast/  peach /peech/  welcome /welkum/ 
fat /fat/  pegs /pegz/  well /wel/ 
father /fahthur/  people /peepul/  went /went/ 
fatty /fatee/  perfect /purfikt/  west /west/ 
favor /fayvur/  perhaps /purhaps/  wet /wet/ 
fax /faks/  period /piriud/  what /whuht/ 
fear /fir/  person /pursun/  wheat /wheet/ 
February /Febrooeree/ phag /fag/  wheel /wheel/ 
feed /feed/  phage /fayg/  whelk /welk/ 
feel /feel/  pharm /fahrm/  when /when/ 
feet /feet/  phase /fays/  where /wher/ 
feisty /fiestee/  phatic /fatik/  whether /whethur/ 
fell /fel/  phenol /feenul/  which /which/ 
fellow /feloh/  phenyl /feeniel/  while /whiel/ 
felt /felt/  phew /pue/  white /whiet/ 
fence /fens/  phi /fie/  whole /hohl/ 
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fetch /fech/  phial /fieul/  whom /huem/ 
few /fyue/  phiz /fiz/  whose /huez/ 
field /feeld/  phlox /flahks/  why /whie/ 
fifteen /fifteen/  phobia /fohbeeu/  width /width/ 
fifth /fifxh/  phoebe /feebee/  wife /wief/ 
fifty /fiftee/  phon /fahn/  wild /wield/ 
fight /fiet/  phone /fohn/  will /wil/ 
figure /figyur/  phonic /fahnik/  win /win/ 
fill /fil/  phony /fohnee/  wind /wind/ 
filo /filoh/  phot /fawt/  window /windoh/ 
filth /filth/  photo /fohtoh/  wing /wing/ 
find /fiend/  photon /fohtahn/  wings /wingz/ 
fine /fien/  phrase /frays/  winter /wintur/ 
finger /finggur/  phut /fuht/  wise /wiez/ 
finish /finish/  phyla /fielu/  wish /wish/ 
finish /finish/  physic /fisik/  wishes /wishiz/ 
fire /fier/  pick /pik/  with /with/ 
firm /furm/  picture /pikchur/  within /within/ 
first /furst/  piece /pees/  without /withowt/ 
fish /fish/  pinch /pinch/  witty /witee/ 
fishes /fishiz/  pique /pik/  woman /woomun/ 
fit /fit/  pith /pith/  women /wimin/ 
five /fiev/  pity /pitee/  won /wuhn/ 
fix /fiks/  pixel /piksul/  wonder /wuhndur/ 
fix /fiks/  place /plays/  wood /wood/ 
fixed /fikst/  plain /playn/  word /wurd/ 
flabby /flabee/  plan /plan/  wore /wawr/ 
flier /flier/  plant /plant/  work /wurk/ 
floor /flawr/  plaque /plak/  world /wurld/ 
flower /flowur/  play /play/  worn /wawrn/ 
fly /flie/  pleasant /plezunt/  worth /wurxh/ 
foamy /fohmee/  please /pleez/  would /wood/ 
foible /foibul/  pleasure /plezhur/  write /riet/ 
foil /foil/  ploy /ploi/  written /writun/ 
folk /fohlk/  poach /pohch/  wrong /rawng/ 
follow /fawloh/  point /point/  wrote /roht/ 
food /fued/  poise /pois/  yacht /yaht/ 
fool /fuel/  polo /pohloh/  yack /yak/ 
foot /foot/  poor /poor/  yah /yah/ 
for /fawr/  position /puzishun/ yahoo /yahhue/ 
force /fawrs/  possible /pahsubul/ yajur /yahjur/ 
foreign /fawrun/  pot /paht/  yak /yak/ 
forest /fawrust/  pouch /powch/  yakut /yakuet/ 
forever /fawrevur/  power /powur/  yale /yayl/ 
forget /furget/  pox  /pawks/  yam /yam/ 
form /fawrm/  prepare /priper/  yang /yang/ 
fortieth /fawrtiuxh/  present /presunt/  yank  /yank/ 
forty /fawrtee/  president /prezudunt/ Yankee /yankee/ 
forward /fawrwurd/  press /pres/  yap /yap/ 
found /fownd/  pretty /pritee/  yappy /yappee/ 
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four /fawr/  prey /pray/  yard /yahrd/ 
fousty /fowstee/  price /pries/  yarn /yawrn/ 
fox /fahks/  probably /prahbubli/ yate /yayt/ 
foxed /fahkst/  problem /prahblum/ yawl /yawl/ 
foxy /fahksee/  produce /prohdues/ yawn /yawn/ 
foyer /foiyur/  promise /prahmis/  ye /yee/ 
fray /fray/  proud /prowd/  year /yir/ 
free /free/  prove /pruev/  yearly /yeerlee/ 
fresh /fresh/  public /puhblik  yearn /yurn/ 
fresh /fresh/  pull /pool/  years /yirz/ 
Friday /Frieday/  pure /pyoor/  yeast /yeest/ 
friend /frend/  push /poosh/  yell /yel/ 
from /fruhm/  pushes /pooshiz/  yellow /yeloh/ 
front /fruhnt/  put /poot/  yellow /yelloh/ 
froth /frawth/  pygmy /pigmee/  yelp /yelp/ 
full /fool/  pyramid /peeramid/ yen /yen/ 
further /furthur/  qua /kwa/  yes /yes/ 
fusty /fuhstee/  quad /kwad/  yesterday /yesturday/ 
gain /gayn/  quaff /kwaf/  yet /yet/ 
game /gaym/  quag /kwag/  yew /yue/ 
garden /gahrdun/  quail /kwayl/  yiddish /yiddish/ 
gashes /gashiz/  quake /kwayk/  yield /yild/ 
gate /gayt/  qualm /kwawlm/  yo /yoh/ 
gather /gathur/  quart /kwawrt/  yob /yahb/ 
gave /gayv/  quarter /kwawrtur/  yodal /yohdul/ 
gay /gay/  quartz /kwartz/  yoga /yohgu/ 
general /jenurul/  quash /kwahsh/  Yogi /yohgee/ 
gentle /jentul/  quasi /kwahzee/  yoke /yohk/ 
gentleman /jentulmun/ quay /kway/  yolk /yohlk/ 
gents /jents/  queen /kween/  yonder /yahndur/ 
get /get/  queen /kween/  yore /yawr/ 
gift /gift/  queer /kweer/  you /yue/ 
girl /gurl/  quell /kwel/  young /yuhng/ 
give /giv/  query /kweeree/  your /yawr/ 
glad /glad/  quest /kwest/  yours /yawrz/ 
glass /glas/  question /kweschun/ youth /yueth/ 
gloom /gluem/  queue /kwue/  yummy /yuhmee/ 
gloomy /gluemee/  quick /kwik/  zag /zag/ 
glossary /glawsuree/ quiet /kwieut/  Zaire /zieir/ 
gnash /nash/  quiff /kwif/  zakat /zahkat/ 
go /goh/  quilt /kwilt/  zany /zaynee/ 
God /Gahd/  quip /kwip/  zap /zap/ 
goes /gohz/  quirk /kwirk/  zeal /zeel/ 
gold /gohld/  quite /kwiet/  zealot /zeelawt/ 
gone /gawn/  quiz /kwiz/  zebra /zeebruh/ 
good /good/  quota /kwohtu/  zebu /zebue/ 
goodbye /goodbie/  quote /kwoht/  zed /zed/ 
got /gaht/  race /rays/  zee /zee/ 
govern /guhvurn/  rags /ragz/  Zen /zen/ 
grain /grayn/  rain /rayn/  zest /zest/ 
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grave /grayv/  raise /rayz/  zesty /zestee/ 
gray /gray/  ran /ran/  zeta /zetu/ 
great /grayt/  ranch /ranch/  ziff /zif/ 
green /green/  ranks /ranks/  zig /zig/ 
grew /grue/  rather /rathur/  zilch /zilch/ 
grey /gray/  reach /reech/  zinc /zingk/ 
groin /groin/  read /reed/  zine /zien/ 
group /gruep/  ready /redee/  zip /zip/ 
grow /groh/  real /reel/  zither /zixhur/ 
grown /grohn/  realize /reeuliez/  zodiac /zohdeeak/ 
guard /gahrd/  reason /reezun/  zombie /zahmbee/ 
guches /guhchiz/  receive /ruseev/  zonal /zohnul/ 
guess /ges/  recoil /reekoil/  zone /zohn/ 
guide /gied/  record /rekurd/  zonk /zahnk/ 
gummy /guhmee/  red /red/  zoo /zue/ 
gun /guhn/  reins /rayns/  zulu /zulue/ 
gushes /guhshiz/  relax /reelaks/    
gusty /guhstee/  remember /rimembur/   

 

 84



 

Appendix D – MBROLA Program Description 
 
 

The MBROLA program is designed to take four variables as inputs.  The inputs to 
the MBROLA program are the phoneme, the phoneme duration, the pitch pattern point, 
and the fundamental frequency.   The program only needs the phoneme and the duration 
to produce speech.  If the user wants to add fundamental frequency values, the program 
must have a corresponding pitch pattern point. The program can handle up to 20 pitch 
pattern point and fundamental frequency pairs.   
 

 
 

 
 
 
 
 
 
 

 

Pitch Pattern Point 
within the Phoneme (%) 

Phoneme Duration (ms) 

MBROLA Phonemes 

Fundamental Frequency (Hz) 
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Appendix E – Source Code 
 
JonTalk Flow Chart 

Start JonTalk.m 

Retrieve Input from User 
get(edit box)  

Trained 
Data 

 (.*mat file) 

Find Orthographic Word 
(find_orthographic.m) 

Calculate phonemes 
(BP_Calculate.m) 

Sentence Words 
(find_sentece_words.m) 

Find Acornoyms 
(find_acronym.m) 

Find Orthographic Word 
(find_orthographic.m) 

Find Fuzzy Inputs 
Sentence Size, Word importance, Stress Distance, Position 

(find_sentence_size.m, word_type.m, distance_from_stress.m) 

Calculate F0 
(f0_calculator.m) 

Segmental Duration 
(phoneme_duration_rules.m) 

Call MBROLA 
Produce System Speech 

Last Senetence 
Word? 

Calculate Stress 
(english_sresss 

_rules.m) 

NO 

YES 
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%---------------------------------------------------------------------- 
% Function: JonTalk.m 
% Purpose: The GUI of the JonTalk text-to-so-speech program 
% Description:  This program is the GUI for the TTS system. The program 
% handles text input and produces speech output.  The user can control 
% the tone of the speech and the speed of the speech. 
% Outputs: Speech 
%---------------------------------------------------------------------- 
function varargout = JonTalk(varargin) 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @JonTalk_OpeningFcn, ... 
                   'gui_OutputFcn',  @JonTalk_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ..  .
                   'gui_Callback',   []); 
if nargin & isstr(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
  
% --- Executes just before JonTalk is made visible. 
function JonTalk_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
  
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
% UIWAIT makes JonTalk wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
  
  
% --- Outputs from this function are returned to the command line. 
function varargout = JonTalk_OutputFcn(hObject, eventdata, handles) 
varargout{1} = handles.output; 
global declarative_sentence_rules 
global yes_no_question_rules 
global interrogative_question_rules 
global wh_question_rules 
global rise_fall_rules 
global PHONEME_SET 
global pitch 
global speed 
  
pitch = 1; 
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speed = 1; 
set(gcf,'Color',[0 0 0]); 
 
linguist_variables{1} = {'useless' 'semi' 'important' 'none'}; 
linguist_variables{2} = {'small' 'medium' 'large' 'none'}; 
linguist_variables{3} = {'start' 'middle' 'end' 'none'}; 
linguist_variables{4} = {'dead-on' 'near' 'far' 'none'}; 
linguist_variables{5} = {'zero' 'low' 'mid-low' 'mid' 'mid-high' 'high' 
'peak'}; 
  
%System default rules 
yes_no_question_rules = {[1 0 1 0 3] [2 0 1 0 4] [2 3 1 0 3] [0 0 1 2 
5] [0 0 1 1 5]... 
        [1 0 2 0 3] [1 3 2 0 2] [2 0 2 0 4] [3 0 2 1 5] [0 0 2 1 4] [0 
2 2 0 4] [0 3 2 0 3]... 
        [0 0 3 1 6] [0 0 3 2 5] [0 3 3 2 6] [1 0 3 2 5]  [3 0 3 1 6]}; 
  
declarative_sentence_rules = {[1 0 1 0 2] [2 0 1 0 3] [2 3 1 0 4] [0 1 
1 1 6] [0 0 1 1 7]  [0 1 1 0 4]... 
        [ 1 0 2 0 2] [1 3 2 0 3] [2 0 2 0 3] [2 3 2 1 4] [0 0 2 1 5] [0 
2 2 0 4] ... 
        [ 0 0 3 1 2] [3 0 3 2 3] [0 2 3 0 2] [1 0 3 0 2]}; 
  
wh_question_rules = {[0 0 1 0 3] [3 0 1 0 4] [2 3 1 0 4] [0 1 1 1 4] [0 
0 1 1 5] [0 1 1 0 3] ... 
        [ 1 0 2 0 4] [1 3 2 0 3] [0 0 2 2 4] [2 3 2 1 5] [0 0 2 1 5] [3 
0 2 1 6] [0 2 2 0 3] ... 
        [ 0 0 3 1 3] [0 0 3 2 1] [0 2 3 0 2] [1 0 3 0 1]}; 
  
main_menu = uimenu('Label','Options'); 
uimenu(main_menu,'Label','View Rules','Callback',@Rule_Viewer); 
uimenu(main_menu,'Label','Close','Callback','close'); 
  
[dummy_variable excel_file_phoneme] = xlsread('Word 
Data\phoneme_set.xls'); 
PHONEME_SET = excel_file_phoneme(:,1); 
  
% --- Executes during object creation, after setting all properties. 
function input_screen_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to input_screen (see GCBO) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'))
; 
end 
  
  
  
function input_screen_Callback(hObject, eventdata, handles) 
% hObject    handle to input_screen (see GCBO) 
% --- Executes on button press in TTS. 
  
function TTS_Callback(hObject, eventdata, handles) 
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% hObject    handle to TTS (see GCBO) 
  
global listbox_handles 
global declarative_sentence_rules 
global yes_no_question_rules 
global wh_question_rules 
global rise_fall_rule  s
global MF_descriptors 
global MF_descriptors_rise_fall 
global test_axes 
global PHONEME_SET 
global pitch 
global speed 
  
%Membership functions decsriptors 
MF_descriptors{1} = [-5 0 5; 0 5 10; 5 10 15]; 
MF_descriptors{2} = [-5 0 5; 0 5 10; 5 10 15]; 
MF_descriptors{3} = [-5 0 5; 0 5 10; 5 10 15]; 
MF_descriptors{4} = [-5 0 5; 0 5 10; 5 10 15]; 
MF_descriptors{5} = [-2 0 2; 0 2 4; 2 4 6; 4 6 8; 6 8 10; 8 10 12; 10 
12 14]; 
  
typed_input = get(handles.input_screen,'String'); 
wh_words = {'how' 'what' 'when' 'where' 'who' 'whom' 'whose' 'why' }; 
  
if isempty(typed_input) == 1 
    return; 
end 
  
%Find the sentence type, depend on pucutation and the first word 
if isempty(strfind(typed_input,'?')) == 0 
question_marks = strfind(typed_input,'?'); 
typed_input(question_marks) = ' '; 
rule_list = yes_no_question_rules; 
for count = 1:length(wh_words) 
    if isempty(strfind(lower(typed_input),wh_words{count})) == 0 
       rule_list = wh_question_rules;  
       break; 
    end 
end 
  
else 
rule_list = declarative_sentence_rules; 
end 
  
%Load the trained Back Propagation 85 epoch mat file 
loaded_data = load('BPU85epochs.mat'); 
hidden_weights = loaded_data.hidden_weights; 
output_weights = loaded_data.output_weights; 
  
hidden_size = size(hidden_weights); 
HIDDEN_NEURONS = hidden_size(1); 
  
  
typed_input(isspace(typed_input)) = '%'; 
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for count=1:length(typed_input) 
    input_letters{count} = typed_input(count); 
end 
  
global COMMAS 
COMMAS = strfind(typed_input,','); 
  
%Converts words to individual cell strings 
actual_words = find_sentence_words(input_letters,COMMAS); 
  
%Find acronyms, words like NASA or FBI 
actual_words = find_acronyms(actual_words); 
  
%Find orthographic words like Mr. Mrs. and numbers 
actual_words_normalized = orthographic_converter(actual_words); 
  
  
sentence_words = ''; 
output_phonemes = ''; 
  
%For each word within the cellstring, calculate the weight output 
for main_count=1:length(actual_words_normalized) 
word = char(actual_words_normalized{main_count}); 
  
%Set the front string to 7 silences (for alignment purposes) 
input_size = length(word); 
input_string = {'%' '%' '%' '%' '%' '%' '%'}; 
for count=1:input_size 
input_string(7+count) = cellstr(word(count)); 
end 
  
%Place seven silences at the beginning of the input string  
size_string = 7 + input_size; 
input_string(size_string+1:size_string+7) = {'%'}; 
%Send input string, weights, and the other variables to the function 
BP_calculate 
phonetic_word = 
lower(BP_calculate(input_string,output_weights,hidden_weights,PHONEME_S
ET,HIDDEN_NEURONS)); 
spaces = strmatch('%',phonetic_word); 
phonetic_word(spaces) = ''; 
sentence_words{main_count} = phonetic_word; 
output_phonemes = [output_phonemes {'%'} sentence_words{main_count}]; 
end 
  
% Call this function to remove double phonemes 
[output_phonemes sentence_words]  = 
double_phoneme_handler(output_phonemes,sentence_words); 
sentence_size = find_sentence_size(output_phonemes); 
  
  
seperated_sentence_indexes = 0; 
all_phonemes = ''; 
temp_output_phonemes = output_phonemes; 
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intonation_count = 1; 
if length(sentence_words) > 0 
for count=1:length(sentence_words) 
     
    word = sentence_words{count}; 
    real_word = actual_words_normalized(count); 
    %Find importance 
    [word_def, word_importance] = word_type(real_word); 
    %Find sentence position 
    offset = 10/length(sentence_words); 
    sentence_position = count*offset; 
    phonemes = sentence_words{count}; 
     
    for phoneme_count=1:length(sentence_words{count}) 
    
        %Find distance from stress 
        distance = 
distance_from_stress(sentence_words(count),{phonemes},phonemes{phoneme_
count}); 
        %With all of the inputs calcualted, they are are sent to the 
fuzzy 
        %controller with rules to produce a crisp output 
        f0_output = 
f0_calculator(word_importance,sentence_size,sentence_position,distance,
rule_list); 
  
        if isempty(f0_output) == 0 
        plotting_data{intonation_count} = f0_output*pitch; 
        all_phonemes{intonation_count} = phonemes{phoneme_count}; 
        else 
        plotting_data{intonation_count} = []; 
        all_phonemes{intonation_count} = phonemes{phoneme_count}; 
        end 
  
        f0_data{intonation_count} = f0_output*pitch; 
        intonation_count = intonation_count + 1; 
        spot = strmatch(phonemes(phoneme_count),temp_output_phonemes); 
        spot = spot(1); 
         
        temp_output_phonemes(1:spot) = {'*'}; 
        phonemes{phoneme_count} = '/'; 
         
    end 
  
     
end 
  
else 
        return; 
end 
f0_contour = 0; 
%data =  smooth_f0_contour(f0_contour,f0_data); 
data =  smooth_f0_contour(f0_data); 
spaces = strmatch('%',output_phonemes,'exact'); 
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phoneme_spot = 1:length(output_phonemes); 
phoneme_spot(spaces) = ''; 
real_intonation_data(1:length(output_phonemes)) = {''}; 
real_intonation_data(spaces) = {''}; 
real_intonation_data(phoneme_spot) = data; 
  
phoplayer_text = 
phoneme_duration_rules(output_phonemes,real_intonation_data,seperated_s
entence_indexes,speed); 
  
%Plotting the f0 contour 
h = figure; 
for count=1:length(plotting_data)-1 
    point = plotting_data{count}; 
    next_point = plotting_data{count+1}; 
    if isempty(point) == 0 & isempty(next_point) == 0 
    plot_one = plot([count count+1],[point 
next_point],'bs:','MarkerFaceColor','c','MarkerEdgeColor','k'); 
    elseif isempty(point) == 0 
    plot_one = 
plot(count,point,'bs:','MarkerFaceColor','c','MarkerEdgeColor','k'); 
    end     
    hold on; 
end 
 
%useless stuff  
limit_data = plotting_data; 
 
ax = gca; 
  
if length(limit_data) > 1 
set(ax,'xlim',[1 length(limit_data)]); 
end 
if length(limit_data) > 1 & isempty(cell2mat(limit_data))== 0 
set(ax,'ylim',[min(cell2mat(limit_data))-1 
max(cell2mat(limit_data))+1]); 
end 
  
set(ax,'XTick',1:length(limit_data)); 
set(ax,'XTickLabel',all_phonemes); 
title('Output Phonemes vs. Fundamental Frequency'); 
ylabel('Fundamental Frequency (Hz)'); 
 
  
  
% --- Executes on button press in clear. 
function clear_Callback(hObject, eventdata, handles) 
% hObject    handle to clear (see GCBO) 
set(handles.input_screen,'String',''); 
  
  
  
% --- Executes during object creation, after setting all properties. 
function pitch_slide_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to pitch_slide (see GCBO) 
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usewhitebg = 1; 
if usewhitebg 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
else 
    
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'))
; 
end 
  
  
% --- Executes on slider movement. 
function pitch_slide_Callback(hObject, eventdata, handles) 
% hObject    handle to pitch_slide (see GCBO) 
global pitch 
pitch = 1.5 - get(handles.pitch_slide,'Value'); 
  
% --- Executes during object creation, after setting all properties. 
function speed_slide_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to speed_slide (see GCBO) 
usewhitebg = 1; 
if usewhitebg 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
else 
    
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'))
; 
end 
  
  
% --- Executes on slider movement. 
function speed_slide_Callback(hObject, eventdata, handles) 
% hObject    handle to speed_slide (see GCBO) 
global speed 
speed = 1.5 - get(handles.speed_slide,'Value'); 
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%---------------------------------------------------------------------- 
% Function: phoneme_duration_rules.m 
% Purpose: Calculate segmental duration 
% Description:  This program calculates the phonetic segmental  
% duration. 
% This done using the Klatt duration rules ("From Text to Speech: The 
% MiTalk").  Each section below shows which rule corresponds to which 
% section.  The program computes the segmental duration and then calls 
% the MBROLA program with the segments, intonation, and phonemes 
% Outputs: text(unused) 
%---------------------------------------------------------------------- 
function phoplayer_text = 
phoneme_duration_rules(old_output_phonemes,intonation_data,seperated_se
ntence_indexes,speed) 
  
phoplayer_text = ''; 
sentence_words = ''; 
  
num_of_phonemes = length(old_output_phonemes); 
%Vowels an consonants 
VOWELS_DIPHTHONGS = {'a' 'e' 'i' 'u' 'ah' 'aw' 'ay' 'ee' 'ie' 'oi' 'oo' 
'oh' 'ow' 'ue' 'uh' 'ur'}; 
CONSONANTS = {'b' 'd' 'f' 'g' 'h' 'j' 'k' 'l' 'm' 'n' 'p' 'r' 's' 't' 
'v' 'w' 'y' 'z' 'ch' 'ng' 'sh' 'th' 'xh' 'zh'}; 
  
%Manner of articulaion classes for consonants 
NASALS = {'m' 'n' 'ng'}; 
LIQUIDS = {'r' 'l'}; 
GLIDES = {'w' 'y'}; 
SONORANT_CONSONANTS = {'h' 'l' 'r' 'w' 'y'}; 
SYLLABIC_CONSONANTS = {'n' 'l' 'r'}; 
VOICED_FRICATIVE = {'v' 'th' 'z' 'zh'}; 
VOICED_PLOSIVE = {'b' 'd' 'g'}; 
VOICEDLESS_PLOSIVE = {'p' 't' 'k'}; 
  
DURATION_COLUMN = 2; 
  
[excel_file_durations excel_file_phonemes] = xlsread('Word Data\Phoneme 
Duration.xls'); 
[dummy_data text_data] = xlsread('Word Data\Phoneme Convert List.xls'); 
phoneme_conversion_list(:,1) = text_data(:,1); 
phoneme_conversion_list(:,2) = text_data(:,4); 
  
%Rule #1  All Pauses at end of sentence or phrase need to be length 200 
MS 
phoplayer_text{1} = '_  200'; 
  
%Find the initial values for the phoneme durations 
silent_count = 1; 
for count=1:length(old_output_phonemes) 
    
    spot = 
strmatch(lower(old_output_phonemes(count)),excel_file_phonemes,'exact')
; 
    duration_list(count) = excel_file_durations(spot,DURATION_COLUMN); 
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end 
%duration_list 
  
%Find the words in the sentences 
sentence_words = find_sentence_words(old_output_phonemes); 
  
  
%Rule #2  Vowels in the last syllable before the end needs to be 
lengthened 
syllables = 
convert_phonemes_to_syllable(sentence_words{length(sentence_words)}); 
last_syllable = syllables{length(syllables)}; 
vowel_spot = 0; 
for count=1:length(last_syllable) 
    if 
isempty(strmatch(lower(last_syllable(count)),VOWELS_DIPHTHONGS,'exact')
) == 0 
        vowel_spot = count; 
   nd  e
end 
if vowel_spot > 0 
spot = strmatch(lower(last_syllable(vowel_spot)),old_output_phonemes); 
spot = spot(end); 
duration_list(spot) = duration_list(spot)*1.1; 
if spot+1 <= length(old_output_phonemes) 
if 
isempty(strmatch(lower(old_output_phonemes(spot+1)),CONSONANTS,'exact')
) == 0   
   duration_list(spot+1) = duration_list(spot+1)*1.4;  
end; 
end; 
end; 
  
%Rule #3 Vowels are shorted by .60 if not in a phrase final syllable 
%A phrase final postvocalic liquid or nasal is lengthend by 1.4 
temp_sentence_words = sentence_words; 
temp_old_output_phonemes = old_output_phonemes; 
final_word = sentence_words{length(sentence_words)}; 
  
if length(sentence_words) > 1 
temp_sentence_words(length(sentence_words)) = ''; 
final_word_offset = length(temp_old_output_phonemes); 
for word_count=1:length(temp_sentence_words) 
word = temp_sentence_words{word_count}; 
    for letter_count=1:length(word) 
        if 
isempty(strmatch(lower(word(letter_count)),VOWELS_DIPHTHONGS,'exact')) 
== 0   
        real_location = 
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact'); 
        real_location = real_location(1); 
        duration_list(real_location) = 
duration_list(real_location)*.60; 
        temp_old_output_phonemes(1:real_location) = {'/'}; 
        end; 
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    end; 
end  ;
end 
if isempty(strmatch(old_output_phonemes(end),NASALS)) == 0 | 
isempty(strmatch(old_output_phonemes(end),LIQUIDS)) == 0 
   spot = length(old_output_phonemes); 
   duration_list(spot) = duration_list(spot)*1.4; 
end 
     
  
  
%Rule #4  Vowels are shorten by .85 if not in a word final syllable 
temp_sentence_words = sentence_words; 
temp_old_output_phonemes = old_output_phonemes; 
temp_phoneme_letter_spots = find(strcmp('%',temp_old_output_phonemes) 
== 0); 
temp_phoneme_spot = temp_phoneme_letter_spots(1); 
temp_phoneme_space_spots =  find(strcmp('%',temp_old_output_phonemes) 
== 1); 
temp = find(temp_phoneme_space_spots > temp_phoneme_spot); 
if isempty(temp) == 0 
temp_phoneme_spot = temp_phoneme_space_spots(temp(1)); 
end 
%Take into account 2 spaces ina row 
SKIP = 1; 
if SKIP == 0 
for word_count=1:length(temp_sentence_words) 
   
original_word = temp_sentence_words{word_count}; 
word_syllables = convert_phonemes_to_syllable(original_word); 
if length(word_syllables) > 1 
word_syllables(length(word_syllables)) = ''; 
word = ''; 
for count=1:length(word_syllables) 
word = [word word_syllables{count}]; 
end 
  
    for letter_count=1:length(word) 
        if 
isempty(strmatch(lower(word(letter_count)),VOWELS_DIPHTHONGS,'exact')) 
== 0   
        real_location = 
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact'); 
        real_location = real_location(1); 
        temp_old_output_phonemes(real_location) 
        pause; 
        duration_list(real_location) = 
duration_list(real_location)*.85; 
        temp_old_output_phonemes(1:real_location) = {'/'}; 
        end; 
    end; 
end; 
temp_old_output_phonemes(1:temp_phoneme_spot) = {'/'} 
temp_phoneme_starting_point = find(strcmp('%',temp_old_output_phonemes) 
== 1 & strcmp('/',temp_old_output_phonemes) == 0) 
pause; 
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end; 
  
end 
%Rule #5 Vowels are shorten by .80 in all words with multiple syllables 
%I think it's fixed! 
temp_old_output_phonemes = old_output_phonemes; 
for word_count=1:length(sentence_words) 
word = sentence_words{word_count}; 
syllables = convert_phonemes_to_syllable(word); 
if length(syllables) > 1 
    for letter_count=1:length(word) 
        if 
isempty(strmatch(lower(word(letter_count)),VOWELS_DIPHTHONGS,'exact')) 
== 0   
        real_location = 
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact'); 
        real_location = real_location(1); 
        duration_list(real_location) = 
duration_list(real_location)*.80; 
        temp_old_output_phonemes(1:real_location) = {'/'}; 
        end; 
    end; 
else 
real_location1 = 
strmatch(lower(word(end)),temp_old_output_phonemes,'exact'); 
if length(word) > 1  
real_location2 = strmatch(lower(word(end-
1)),temp_old_output_phonemes,'exact'); 
else 
real_location2 = real_location1 - 1; 
end 
real_location = real_location1(find(real_location1 - 1 == 
real_location2(1))); 
temp_old_output_phonemes(1:real_location) = {'/'}; 
end; 
end; 
  
%Rule #6 Consonants that are not the first letter of the word are 
shorten by .85  
temp_old_output_phonemes = old_output_phonemes; 
for word_count=1:length(sentence_words) 
word = sentence_words{word_count}; 
if length(word) > 1 
    for letter_count=2:length(word) 
        if 
isempty(strmatch(lower(word(letter_count)),CONSONANTS,'exact')) == 0   
        real_location = 
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact'); 
        real_location = real_location(1); 
        duration_list(real_location) = 
duration_list(real_location)*.85; 
        temp_old_output_phonemes(1:real_location) = {'/'}; 
        else 
        real_location = 
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact'); 
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        real_location = real_location(1); 
        temp_old_output_phonemes(1:real_location) = {'/'}; 
        end; 
    end; 
end; 
end; 
  
%Rule #7 Unstressed segments are compressed compared to stressed 
elements 
temp_old_output_phonemes = old_output_phonemes; 
for word_count=1:length(sentence_words) 
word = sentence_words{word_count}; 
stresses = english_stress_rules(word); 
for letter_count=1:length(word) 
    if 
isempty(strmatch(lower(word(letter_count)),VOWELS_DIPHTHONGS,'exact')) 
== 0 & (stresses(letter_count) == 0 | stresses(letter_count) == 2) 
        real_location = 
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact'); 
        real_location = real_location(1); 
        duration_list(real_location) = duration_list(real_location)*.9; 
        temp_old_output_phonemes(1:real_location) = {'/'}; 
    else 
        real_location = 
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact'); 
        real_location = real_location(1); 
        temp_old_output_phonemes(1:real_location) = {'/'}; 
    end   
end 
end 
  
  
%Rule #8 An emphasized vowel is lengthend by 1.  4
temp_old_output_phonemes = old_output_phonemes; 
for word_count=1:length(sentence_words) 
word = sentence_words{word_count}; 
stresses = english_stress_rules(word); 
for letter_count=1:length(word) 
    if 
isempty(strmatch(lower(word(letter_count)),VOWELS_DIPHTHONGS,'exact')) 
== 0 & stresses(letter_count) == 1 
        real_location = 
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact'); 
        real_location = real_location(1); 
        duration_list(real_location) = 
duration_list(real_location)*1.10; 
        temp_old_output_phonemes(1:real_location) = {'/'}; 
    else 
        real_location = 
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact'); 
        real_location = real_location(1); 
        temp_old_output_phonemes(1:real_location) = {'/'}; 
    end   
end 
end 
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%Rule #9 Alter duration of vowels that are affected by postvocalic 
consonants 
temp_old_output_phonemes = old_output_phonemes; 
for word_count=1:length(sentence_words) 
word = sentence_words{word_count}; 
for letter_count=1:length(word) 
    if 
(isempty(strmatch(lower(word(letter_count)),VOWELS_DIPHTHONGS,'exact')) 
== 0 | 
isempty(strmatch(lower(word(letter_count)),SONORANT_CONSONANTS,'exact')
) == 0) & letter_count + 1 <= length(word) 
        %Before a voiced fricative 
        if 
isempty(strmatch(lower(word(letter_count+1)),VOICED_FRICATIVE,'exact')) 
== 0 
        real_location = 
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact'); 
        real_location = real_location(1); 
        duration_list(real_location) = 
duration_list(real_location)*1.40; 
        temp_old_output_phonemes(1:real_location) = {'/'}; 
        end 
        %Before a voiced plosive 
         if 
isempty(strmatch(lower(word(letter_count+1)),VOICED_PLOSIVE,'exact')) 
== 0 
        real_location = 
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact'); 
        real_location = real_location(1); 
        duration_list(real_location) = 
duration_list(real_location)*1.20; 
        temp_old_output_phonemes(1:real_location) = {'/'}; 
        end 
        %Before a nasal 
        if 
isempty(strmatch(lower(word(letter_count+1)),NASALS,'exact')) == 0 
        real_location = 
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact'); 
        real_location = real_location(1); 
        duration_list(real_location) = 
duration_list(real_location)*.85; 
        temp_old_output_phonemes(1:real_location) = {'/'}; 
        end 
        %Before a voiceless plosive 
        if 
isempty(strmatch(lower(word(letter_count+1)),VOICEDLESS_PLOSIVE,'exact'
)) == 0 
        real_location = 
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact'); 
        real_location = real_location(1); 
        duration_list(real_location) = duration_list(real_location)*.7; 
        temp_old_output_phonemes(1:real_location) = {'/'}; 
        end 
         
    else 
        real_location = 
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact'); 
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        real_location = real_location(1); 
        temp_old_output_phonemes(1:real_location) = {'/'}; 
    end   
end 
end 
  
  
%Rule #10 Alter duration of vowel-vowel combinations and consonant-
consonant combinations 
%Vowel-vowel combinations 
temp_old_output_phonemes = old_output_phonemes; 
for word_count=1:length(sentence_words) 
word = sentence_words{word_count}; 
for letter_count=1:length(word) 
    if 
isempty(strmatch(lower(word(letter_count)),VOWELS_DIPHTHONGS,'exact')) 
== 0 & letter_count + 1 <= length(word) 
    if 
isempty(strmatch(lower(word(letter_count+1)),VOWELS_DIPHTHONGS,'exact')
) == 0 
        real_location = 
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact'); 
        real_location = real_location(1); 
        duration_list(real_location) = 
duration_list(real_location)*1.20; 
        duration_list(real_location+1) = 
duration_list(real_location+1)*.7; 
        temp_old_output_phonemes(1:real_location) = {'/'}; 
    end 
    else 
        real_location = 
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact'); 
        real_location = real_location(1); 
        temp_old_output_phonemes(1:real_location) = {'/'}; 
    end   
end 
end 
%Consonant-consonant combinations 
temp_old_output_phonemes = old_output_phonemes; 
for word_count=1:length(sentence_words) 
word = sentence_words{word_count}; 
for letter_count=1:length(word) 
    if isempty(strmatch(lower(word(letter_count)),CONSONANTS,'exact')) 
== 0 & letter_count + 1 <= length(word) 
    if 
isempty(strmatch(lower(word(letter_count+1)),CONSONANTS,'exact')) == 0 
        real_location = 
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact'); 
        real_location = real_location(1); 
        duration_list(real_location) = 
duration_list(real_location)*1.20; 
        duration_list(real_location+1) = 
duration_list(real_location+1)*.7; 
        temp_old_output_phonemes(1:real_location) = {'/'}; 
    end 
    else 
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        real_location = 
strmatch(lower(word(letter_count)),temp_old_output_phonemes,'exact'); 
        real_location = real_location(1); 
        temp_old_output_phonemes(1:real_location) = {'/'}; 
   nd    e
end 
end 
  
  
%Rule #11 My rule, if there are two silences in a row the reduce the 
second silence 
temp_old_output_phonemes = old_output_phonemes; 
for phoneme_count=1:length(old_output_phonemes)     
    if 
isempty(strmatch(temp_old_output_phonemes(phoneme_count),'%','exact')) 
== 0 & phoneme_count + 1 <= length(old_output_phonemes) 
    if 
isempty(strmatch(temp_old_output_phonemes(phoneme_count+1),'%','exact')
) == 0 
        duration_list(phoneme_count+1) = 
duration_list(phoneme_count+1)*.4; 
        temp_old_output_phonemes(1:phoneme_count) = {'/'}; 
    end 
    else 
        temp_old_output_phonemes(1:phoneme_count) = {'/'}; 
    end   
end 
  
  
  
%Create the file *pho ouput file 
for count=1:length(old_output_phonemes) 
    index = 
strmatch(lower(char(old_output_phonemes(count))),phoneme_conversion_lis
t(:,2),'exact'); 
    output_phonemes(count) = phoneme_conversion_list(index,1); 
end 
  
%adjust the speed 
duration_list = duration_list*speed*1.15; 
  
for count=1:length(old_output_phonemes) 
phoplayer_text{count+1} = [char(output_phonemes(count)),'  
',num2str(duration_list(count)),' ', num2str(intonation_data{count})]; 
end 
  
phoplayer_text = [phoplayer_text cellstr('_  210')]; 
  
fid = fopen('output.pho','w'); 
for count=1:length(phoplayer_text) 
fprintf(fid,'%s\n',char(phoplayer_text(count))); 
end 
OK = fclose(fid); 
  
dos('mbrola us1 output.pho output.wav'); 
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[wav_data,FS,NBITS,OPTS]= wavread('output.wav'); 
wavplay(wav_data,FS);  
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%---------------------------------------------------------------------- 
% Function: BP_calculate.m 
% Purpose: Weights Back Propgation Calculation 
% Description: Function calculates the network output with inputs and  
% weights. The for loop finds the actual output of the weights 
% the maximum of the weights are supposed to be the correct output  
% and phonemes 
% Outputs: calculated phonemes 
%----------------------------------------------------------------------
function output = 
BP_calculate(input_string,output_weights,hidden_weights,PHONEME_SET,HID
DEN_NEURONS) 
  
alphabet_size = 27;  
INPUT_SIZE = alphabet_size*7; 
OUTPUT_NEURONS = 43; 
  
NUM_CHARACTERS = length(input_string); 
  
converted_input_string = 
convert_to_numbers(input_string,NUM_CHARACTERS); 
input_vector = converted_input_string(1:INPUT_SIZE); 
%reshape(converted_input_string,27,NUM_CHARACTERS) 
%reshape(input_vector,27,7) 
character_count = 8; 
count = 1; 
output_string = ''; 
while  character_count <= NUM_CHARACTERS; 
    for hide = 1:HIDDEN_NEURONS; 
    hidden_layer_output(hide) = 1/(1 + exp(-
1*sum(input_vector.*hidden_weights(hide,:)))); 
    end 
  
    for out = 1:OUTPUT_NEURONS; 
    output_layer_output = 
sum(output_weights(out,:).*hidden_layer_output); 
    output(out) = 1/(1 + exp(-output_layer_output)); 
    end; 
     
output_phoneme_number = find(output == max(output)); 
output_string{count} = char(PHONEME_SET(output_phoneme_number)); 
input_vector = 
BP_calculate_moving_window(input_vector,converted_input_string,characte
r_count); 
character_count = character_count + 1; 
count = count + 1; 
%input_string_count = input_string_count + 1; 
end 
output = output_string(5:end-3);  
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%---------------------------------------------------------------------- 
% Function: english_stress_rules.m 
% Purpose: Assigns Stress 
% Description: Function places stress using the Halle and Keyer stress 
% rules from the MITalk System.  The rules are just numbered.  The  
% actual rules are located in the book "From Text to Speech: The MITalk 
% System" 
% Outputs: array of stresses for the inputted word 
%---------------------------------------------------------------------- 
function stresses = english_stress_rules(unstressed_word) 
stresses(1:length(unstressed_word)) = 0; 
stress_count = 1; 
syllable_list = ''; 
%Vowels an consonants 
VOWELS_DIPHTHONGS = {'a' 'e' 'i' 'u' 'ah' 'aw' 'ay' 'ee' 'ie' 'oi' 'oo' 
'oh' 'ow' 'ue' 'uh' 'ur'}; 
CONSONANTS = {'b' 'd' 'f' 'g' 'h' 'j' 'k' 'l' 'm' 'n' 'p' 'r' 's' 't' 
'v' 'w' 'y' 'z' 'ch' 'ng' 'sh' 'th' 'xh' 'zh' '%'}; 
%Short and Long Vowels 
SHORT_VOWELS = {'a' 'e' 'i' 'u'}; 
LONG_VOWELS = {'ah' 'aw' 'ay' 'ee' 'ie' 'oi' 'oo' 'oh' 'ow' 'ue' 'uh' 
'ur'}; 
  
%First find all of the vowels 
syllables = convert_phonemes_to_syllable(unstressed_word); 
num_of_syllables = length(syllables); 
no_vowel = 0; 
for count=1:length(unstressed_word) 
if isempty(strmatch(lower(unstressed_word{count}),VOWELS_DIPHTHONGS)) 
== 1 
    no_vowel = no_vowel + 1; 
end 
end 
if no_vowel == length(unstressed_word) 
    return; 
end 
  
%Rule #1 A and B 
BEEN_STRESSED = 0; 
last_syllable_has_short = 0; 
vowel = ''; 
last_syllable = syllables{end}; 
for count=1:length(last_syllable) 
if isempty(strmatch(lower(last_syllable(count)),SHORT_VOWELS,'exact')) 
== 0 
   last_syllable_has_short = 1; 
end 
end 
        if num_of_syllables >= 3  
        if length(syllables{end-1}) == 1 & length(syllables{end}) >= 1 
& last_syllable_has_short == 1 
        silly = syllables{end-2}; 
        for letter_count=1:length(silly) 
          if 
isempty(strmatch(lower(silly(letter_count)),VOWELS_DIPHTHONGS,'exact')) 
== 0   
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          vowel = silly(letter_count); 
          end 
        end 
         
        if isempty(vowel) == 0 
        vowel_spots = strmatch(vowel,unstressed_word,'exact'); 
        silly_spots = 0; 
        for count=1:length(silly) 
            silly_spots = [silly_spots 
strmatch(lower(silly(count)),unstressed_word,'exact')']; 
        end 
      
        final_vowel_location = find(vowel_spots(1) == silly_spots); 
        stresses(silly_spots(final_vowel_location)) = 1; 
        BEEN_STRESSED = 1; 
        end 
        end 
        end 
%Rule #1 C and D 
         
        if num_of_syllables >= 2 & BEEN_STRESSED == 0 
        if length(syllables{end}) >= 1 & last_syllable_has_short == 1 
        silly = syllables{end-1}; 
        for letter_count=1:length(silly) 
          if 
isempty(strmatch(lower(silly(letter_count)),VOWELS_DIPHTHONGS,'exact')) 
== 0   
          vowel = silly(letter_count); 
          end 
        end 
         
        if isempty(vowel) == 0 
        vowel_spots = strmatch(vowel,unstressed_word,'exact'); 
        silly_spots = 0; 
        for count=1:length(silly) 
            silly_spots = [silly_spots 
strmatch(lower(silly(count)),unstressed_word,'exact')']; 
        end 
      
        final_vowel_location = find(vowel_spots(1) == silly_spots); 
        stresses(silly_spots(final_vowel_location)) = 1; 
        BEEN_STRESSED = 1; 
        end 
        end 
        end 
         
  %Rule #2 A and B   
  any_syllable_has_short = 0; 
  if num_of_syllables >= 2 & BEEN_STRESSED == 0 
  for syl_count=2:num_of_syllables 
      syl = syllables{syl_count}; 
      for letter_count =1:length(syl) 
        if 
isempty(strmatch(lower(syl(letter_count)),SHORT_VOWELS,'exact')) == 0 
        any_syllable_has_short = 1; 
        short_vowel_syl = syl_count; 
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        break; 
        end 
        if any_syllable_has_short == 1 
            break; 
        end 
  end 
  end 
   
        if num_of_syllables >= 2 & any_syllable_has_short == 1 
        silly = syllables{short_vowel_syl-1}; 
        for letter_count=1:length(silly) 
          if 
isempty(strmatch(lower(silly(letter_count)),VOWELS_DIPHTHONGS,'exact')) 
== 0   
          vowel = silly(letter_count); 
          end 
        end 
         
        if isempty(vowel) == 0 
        vowel_spots = strmatch(vowel,unstressed_word,'exact'); 
        silly_spots = 0; 
        for count=1:length(silly) 
            silly_spots = [silly_spots 
strmatch(lower(silly(count)),unstressed_word,'exact')']; 
        end 
      
        final_vowel_location = find(vowel_spots(1) == silly_spots); 
        stresses(silly_spots(final_vowel_location)) = 1; 
        BEEN_STRESSED = 1; 
        end 
        end; 
        end 
         
   %Rule #3 Place Stress on last vowel and syllable       
    
        if num_of_syllables >= 1 & BEEN_STRESSED == 0 
        silly = syllables{num_of_syllables}; 
        for letter_count=1:length(silly) 
          if 
isempty(strmatch(lower(silly(letter_count)),VOWELS_DIPHTHONGS,'exact')) 
== 0   
          vowel = silly(letter_count); 
          end 
        end 
         
        if isempty(vowel) == 0 
        vowel_spots = strmatch(vowel,unstressed_word,'exact'); 
        silly_spots = 0; 
        for count=1:length(silly) 
            silly_spots = [silly_spots 
strmatch(lower(silly(count)),unstressed_word,'exact')']; 
        end 
      
        final_vowel_location = find(vowel_spots(1) == silly_spots); 
        stresses(silly_spots(final_vowel_location)) = 1; 
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        %return; 
        end 
        end 
        
  %Stress Exceptions  
  %Rules #1-3 Place Stress on First Syllable 
        if num_of_syllables >= 2 
        silly = syllables{1}; 
        for letter_count=1:length(silly) 
          if 
isempty(strmatch(lower(silly(letter_count)),VOWELS_DIPHTHONGS,'exact')) 
== 0   
          vowel = silly(letter_count); 
          end 
        end 
         
        if isempty(vowel) == 0 
        vowel_spots = strmatch(vowel,unstressed_word,'exact'); 
        stresses(vowel_spots(1)) = 1; 
        %return; 
        end 
        end 
  
  %Compond Stress Rules (Retaining Rules) 
  %Rules #1 
  if isempty(strmatch(lower(last_syllable(end)),'ee','exact')) == 0 & 
num_of_syllables >= 3 & length(find(stresses == 1)) >= 2 
      stress_spots = find(stresses == 1); 
      stresses(stress_spots(2)) = 2; 
  end 
  %Rule #2 and Rule #3 Retain 1-stress vowel if it is followed by a 
string of syllable 
  %without primamry stresses.  If only one syllable or stress skip 
  if num_of_syllables >= 2 & length(find(stresses == 1)) >= 2 
  temp_unstressed_word = unstressed_word; 
  temp_unstressed_word(1:length(syllables{1})) = {'/'}; 
  stress_spots = find(stresses == 1); 
  second_syllable = syllables{2}; 
  for count=1:length(second_syllable) 
  spots = strmatch(lower(second_syllable(count)),temp_unstressed_word); 
  second_syllable_spots(count) = spots(1);     
  end 
  second_stress_spot = stress_spots(2); 
  if isempty(find(second_stress_spot == second_syllable_spots)) == 0 
      stresses(stress_spots(1)) = 2; 
  else 
      stresses(stress_spots(2)) = 2; 
  end      
  end 
   
%Strong first syllable rules 
%Rule #1 assign 2-stress to the first vowel of the word if it is long 
if num_of_syllables >= 2 & length(find(stresses == 1)) >= 2 
for count=1:length(unstressed_word) 
  if isempty(strmatch(lower(unstressed_word(count)),VOWELS_DIPHTHONGS)) 
== 0 
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      if isempty(strmatch(lower(unstressed_word(count)),LONG_VOWELS)) 
== 0 
      stresses(count) = 2; 
      end 
  break; 
  end 
end 
end 
  
%Rule #1 assign 2-stress to the first vowel of the word if it is 
followed by two syllables 
if num_of_syllables >= 2 & length(find(stresses == 1)) >= 2 
for count=1:length(unstressed_word) 
  if isempty(strmatch(lower(unstressed_word(count)),VOWELS_DIPHTHONGS)) 
== 0 & count+2 <=length(unstressed_word) 
      if isempty(strmatch(lower(unstressed_word(count+1)),CONSONANTS)) 
== 0 & isempty(strmatch(lower(unstressed_word(count+2)),CONSONANTS)) == 
0 
      stresses(count) = 2; 
      end 
  break; 
  end 
end 
end 
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%---------------------------------------------------------------------- 
% Function: convert_phonemes_to_syllable.m 
% Purpose: Syllable Parser 
% Description: This function parses a string into syllables.   
% The output to this function is the syllable arrainged into a cell 
% string 
% Outputs: syllables (cell string) 
%----------------------------------------------------------------------
function syllable = convert_phonemes_to_syllable(word) 
  
syllable = ''; 
WORD_CONSONANT_LOCATE_ARRAY = 0; 
WORD_VOWEL_LOCATE_ARRAY = 0; 
word = lower(word); 
VOWELS = {'a' 'e' 'i' 'u'}; 
CONSONANTS = {'%' 'b' 'd' 'f' 'g' 'h' 'j' 'k' 'l' 'm' 'n' 'p' 'r' 's' 
't' 'v' 'w' 'y' 'z' 'ch' 'ng' 'sh' 'th' 'xh' 'zh'}; 
DIPHTHONGS = {'ah' 'aw' 'ay' 'ee' 'ie' 'oi' 'oo' 'oh' 'ow' 'ue' 'uh' 
'ur'}; 
SHORT_VOWELS = {'a' 'e' 'i' 'u'}; 
  
WORD_BEGINS_WITH_VOWEL = 0; 
INITIAL_VOWEL_IS_SHORT = 0; 
  
  
%Count the number of vowels and diphthongs in the word 
vowel_count = 0; 
syllable_count = 0; 
word_length = length(word); 
  
for count=1:word_length 
    if isempty(strmatch(lower(word(count)),VOWELS,'exact')) == 0 
        vowel_count = vowel_count + 1; 
    end 
end 
  
  
for count=1:word_length 
    if isempty(strmatch(lower(word(count)),DIPHTHONGS,'exact')) == 0 
        vowel_count = vowel_count + 1; 
    end 
end 
  
%Number of syllables equal the number of vowels and dipthongs 
syllable_count = vowel_count; 
if syllable_count == 1 | syllable_count == 0; 
   syllable{1} = word; 
   return; 
end 
  
  
%Check to see if the word begins with a vowel 
WORD_BEGINS_WITH_VOWEL = 
isempty(strmatch(word(1),CONSONANTS,'extact')); 
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%Find all and locate of the consonants in the word 
word_c_count = 1; 
for count=1:length(word) 
    CON = strmatch(lower(word(count)),CONSONANTS,'extact'); 
    if isempty(CON) == 0 
        WORD_CONSONANT_LOCATE_ARRAY(word_c_count) = count; 
        word_c_count = word_c_count + 1; 
   nd  e
end 
  
%Find and locate all of the vowels in the word 
word_v_count = 1; 
for count=1:length(word) 
    VOW = strmatch(lower(word(count)),VOWELS,'extact'); 
    DIP = strmatch(lower(word(count)),DIPHTHONGS,'extact'); 
    if isempty(VOW) == 0 | isempty(DIP) == 0 
        WORD_VOWEL_LOCATE_ARRAY(word_v_count) = count; 
        word_v_count = word_v_count + 1; 
    end 
end 
  
%Check to see if there are two vowels in a row and subtract from the 
total count of syllables 
syllable_count = syllable_count - 
length(find(diff(WORD_VOWEL_LOCATE_ARRAY) == 1)); 
if syllable_count == 1 | syllable_count == 0; 
   syllable{1} = word; 
   turn; re
end 
  
  
%Splitting two middle consonants 
MIDDLE_C = find(diff(WORD_CONSONANT_LOCATE_ARRAY) == 1); 
if isempty(MIDDLE_C) == 0 & syllable_count == 2 & length(MIDDLE_C) == 1 
    syllable{1} = word(1:WORD_CONSONANT_LOCATE_ARRAY(MIDDLE_C)); 
    syllable{2} = word(WORD_CONSONANT_LOCATE_ARRAY(MIDDLE_C+1):end); 
return; 
end     
  
  
%Test to see if the first vowel is short or long 
if syllable_count == 2  
    if isempty(strmatch(word(1),SHORT_VOWELS,'extact')) == 0 | 
isempty(strmatch(word(2),SHORT_VOWELS,'extact')) == 0 
    INITIAL_VOWEL_IS_SHORT = 1; 
   nd  e
end 
%Splitting before single middle consonant in a 2 syllable word 
%Intital vowel is not short 
if INITIAL_VOWEL_IS_SHORT == 0 & syllable_count == 2 
if isempty(MIDDLE_C) == 1 & WORD_BEGINS_WITH_VOWEL == 0  
    syllable{1} = word(1:WORD_CONSONANT_LOCATE_ARRAY(2)-1); 
    syllable{2} = word(WORD_CONSONANT_LOCATE_ARRAY(2):end); 
return; 
end;     
if isempty(MIDDLE_C) == 1 & WORD_BEGINS_WITH_VOWEL == 1  
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    syllable{1} = word(1); 
    syllable{2} = word(2:end); 
return; 
end;   
end; 
%Splitting before single middle consonant in a 2 syllable word 
%Intital vowel is short 
if INITIAL_VOWEL_IS_SHORT == 1 & syllable_count == 2 
if isempty(MIDDLE_C) == 1 & WORD_BEGINS_WITH_VOWEL == 0  
    syllable{1} = word(1:WORD_CONSONANT_LOCATE_ARRAY(2)); 
    syllable{2} = word(WORD_CONSONANT_LOCATE_ARRAY(2)+1:end); 
return; 
end;     
if isempty(MIDDLE_C) == 1 & WORD_BEGINS_WITH_VOWEL == 1  
    syllable{1} = word(1:2); 
    syllable{2} = word(3:end); 
return  ;
end;   
end; 
  
%Seperate word syllables that have more than 2 syllables or do not 
follow 
%the above criteria 
if syllable_count >= 2 
  
if WORD_BEGINS_WITH_VOWEL == 0 
    %If the word begins with consonant syllable is 3 letters long 
initally 
    syllable_starting_point = 1; 
    syllable_ending_point = 3; 
else 
    %If the word begins with vowel syllable is 2 letters long  
    syllable_starting_point = 1; 
    syllable_ending_point = 2; 
end 
  
num_of_syllables = syllable_count; 
for syl_cell_count=1:num_of_syllables 
     %Initially store the syllable from the starting and ending letters 
     %syllable_starting_point 
     %syllable_ending_point 
%     word(syllable_starting_point:syllable_ending_point) 
     if syllable_ending_point <= length(word) 
     syllable{syl_cell_count} = 
word(syllable_starting_point:syllable_ending_point); 
     end 
         %Find the location of the next two letters 
     next_letter = syllable_ending_point + 1; 
     next_next_letter = syllable_ending_point + 2; 
     next_next_next_letter = syllable_ending_point + 3; 
     if syl_cell_count == 1 
     %For the first iteration, check to see if the next letter at the 
end of the 3 letter long syllable is a vowel.  
     %If so, then make the first syllable only 2 letters long and set 
the location for the next syllable 
     %If not then set the location for the next syllable; if the word 
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     %begins with a vowel then automatically goto this step 
     if isempty(find(next_letter == WORD_VOWEL_LOCATE_ARRAY)) == 0 & 
WORD_BEGINS_WITH_VOWEL == 0 
         syllable = ''; 
         syllable{syl_cell_count} = 
word(syllable_starting_point:syllable_ending_point-1); 
         syllable_starting_point = syllable_ending_point; 
         syllable_ending_point = syllable_ending_point + 1; 
          
     else 
        syllable_starting_point = syllable_ending_point + 1; 
        syllable_ending_point = syllable_ending_point + 2; 
     end 
     end 
      
     if syl_cell_count > 1 
     %For the rest of rest of the iterations, check to see if the 
second 
     %letter after the lat letter in the 2 letter syllable is a vowel 
     %If so, then update the syllable location for the next syllable 
     %If the letter is a consonant then make the syllable 3 letters 
long 
     %and update the syllable location for the next syllable 
     if isempty(find(next_next_letter == WORD_VOWEL_LOCATE_ARRAY)) == 0 
        syllable_starting_point = syllable_ending_point + 1; 
        syllable_ending_point = syllable_ending_point + 2; 
     else 
        if syllable_starting_point < length(word) & 
syllable_ending_point+1 <= length(word) 
        syllable{syl_cell_count} = 
word(syllable_starting_point:syllable_ending_point+1); 
        syllable_starting_point = syllable_ending_point + 2; 
        syllable_ending_point = syllable_ending_point + 3; 
         
        if syllable_ending_point > length(word) 
        syllable_starting_point = syllable_starting_point - 1; 
        syllable_ending_point = syllable_ending_point - 1; 
        syllable{syl_cell_count} = 
word(syllable_starting_point:syllable_ending_point-1); 
        end 
         
        end 
     end 
     end 
      
%for loop 
end 
  
output_length = 0; 
syllable_start = ''; 
for count=1:length(syllable) 
output_length = output_length + length(syllable{count}); 
syllable_start{count} =  output_length - length(syllable{count}); 
end 
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if output_length < word_length 
temp_word = word(syllable_start{end}+1:word_length); 
syllable{end} = temp_word; 
end 
  
  
%syllable_count > 2 
end     
  
  
%END OF PROGRAM 
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%---------------------------------------------------------------------- 
% Function: orthographic_converter.m 
% Purpose: Orthographic Converter 
% Description: This program handle numbers and abbreviations for the  
% TTS program.  It converts these orthgraphic words into regular text 
% Outputs: words 
%---------------------------------------------------------------------- 
function actual_words = orthographic_converter(actual_words); 
  
[abbreviations regular_words] = textread('Word 
Data\Abbreviations.txt','%s%s'); 
  
%Abbreviations Conversion 
for count=1:length(actual_words) 
    word = word_normalizer(actual_words{count}); 
    spot = strmatch(word,abbreviations,'exact'); 
    if isempty(spot) == 0 
    actual_words{count} = {regular_words{spot}}; 
    end 
end 
  
  
%Numeric Conversion 
[numbers numeric_words] = textread('Word Data\Numbers.txt','%s%s'); 
  
%temp_actual_words = actual_words; 
temp_actual_words = ''; 
%temp_actual_words{1:end} 
count = 1; 
temp_count = 1; 
  
while count <= length(actual_words) 
     
    word = char(word_normalizer(actual_words{count})); 
    %if isempty(str2num(word)) == 0 
    if sum(isletter(word)) == 0 
    %if isnumeric(word) == 1 
         
    numbered_word = floor(str2num(word)); 
     
    if numbered_word < 0  
    temp_actual_words{temp_count} = 'negative'; 
    temp_count = temp_count + 1; 
    numbered_word = floor(abs(str2num(word))); 
    end 
     
    if numbered_word == 0 
    temp_actual_words{temp_count} = 'zero'; 
    end 
     % For words between 1 and 10 
    if numbered_word >= 1 & numbered_word <= 10 
        worded_number = num2str(numbered_word); 
        temp_actual_words{temp_count} = 
numeric_words{strmatch(worded_number,numbers,'exact')}; 
    end 
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    % For words between 10 and 100 
    if numbered_word > 10 & numbered_word < 100 
        worded_number = num2str(numbered_word); 
        spot = strmatch(worded_number,numbers,'exact'); 
            if isempty(spot) == 0 
            temp_actual_words{temp_count} = numeric_words{spot}; 
            else 
            temp_actual_words{temp_count} = 
numeric_words{strmatch([worded_number(1),'0'],numbers,'exact')};     
            temp_actual_words{temp_count+1} = 
numeric_words{strmatch(worded_number(2),numbers,'exact')};      
            temp_count = temp_count + 1; 
            end  
    %End for words between 10 and 100 
    end 
     
     
    % For words between 100 and 1000 
    if numbered_word >= 100 & numbered_word < 1000 
        worded_number = num2str(numbered_word); 
        % hundreds place 
        temp_actual_words{temp_count} = 
numeric_words{strmatch(worded_number(1),numbers,'exact')}; 
        temp_actual_words{temp_count+1} = 'hundred'; 
        temp_count = temp_count + 1; 
         
        %tens and ones place 
        tens_place_number = str2num(worded_number(2:3)); 
         
            % For words between 1 and 10 
            if tens_place_number >= 1 & tens_place_number <= 10 
            worded_number = num2str(tens_place_number); 
            temp_actual_words{temp_count+1} = 
numeric_words{strmatch(worded_number,numbers,'exact')}; 
            temp_count = temp_count + 1; 
            end 
     
            % For words between 10 and 100 
            if tens_place_number > 10 & tens_place_number < 100 
            worded_number = num2str(tens_place_number); 
            spot = strmatch(worded_number,numbers,'exact'); 
            if isempty(spot) == 0 
            temp_actual_words{temp_count+1} = numeric_words{spot}; 
            temp_count = temp_count + 1; 
            else 
            temp_actual_words{temp_count+1} = 
numeric_words{strmatch([worded_number(1),'0'],numbers,'exact')};     
            temp_actual_words{temp_count+2} = 
numeric_words{strmatch(worded_number(2),numbers,'exact')};      
            temp_count = temp_count + 2; 
            end         
            end     
  
    %end for words between 100 and 1000          
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    end 
     
    %between 1000 and 1,000,0000 
    if numbered_word > 1000 & numbered_word < 1000000 
        worded_number = num2str(numbered_word); 
        % hundreds thousand place 
        temp_actual_words{temp_count} = 
numeric_words{strmatch(worded_number(1),numbers,'exact')}; 
        temp_actual_words{temp_count+1} = 'hundred'; 
        temp_count = temp_count + 1; 
         
        %tens and ones thousand place 
        tens_place_number = str2num(worded_number(2:3)); 
         
            % For words between 1 and 10 
            if tens_place_number >= 1 & tens_place_number <= 10 
            worded_number = num2str(tens_place_number); 
            temp_actual_words{temp_count+1} = 
numeric_words{strmatch(worded_number,numbers,'exact')}; 
            temp_count = temp_count + 1; 
            end 
     
            % For words between 10 and 100 
            if tens_place_number > 10 & tens_place_number < 100 
            worded_number = num2str(tens_place_number); 
            spot = strmatch(worded_number,numbers,'exact'); 
            if isempty(spot) == 0 
            temp_actual_words{temp_count+1} = numeric_words{spot}; 
            temp_count = temp_count + 1; 
            else 
            temp_actual_words{temp_count+1} = 
numeric_words{strmatch([worded_number(1),'0'],numbers,'exact')};     
            temp_actual_words{temp_count+2} = 
numeric_words{strmatch(worded_number(2),numbers,'exact')};      
            temp_count = temp_count + 2; 
            end         
            end     
            
            temp_actual_words{temp_count+1} = 'thousand'; 
             
             
    %end for words between 100 and 1000          
    end 
     
     
     
    %Decimal points 
    if abs(rem(str2num(word),1)) > 0 
        decimal_word = num2str(abs(rem(str2num(word),1))); 
        temp_actual_words{temp_count+1} = 'point'; 
        temp_count = temp_count + 1; 
        for decimal_count = 3:length(decimal_word) 
        temp_count = temp_count + 1;     
        temp_actual_words{temp_count} = 
numeric_words{strmatch(decimal_word(decimal_count),numbers,'exact')}; 
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        end 
    %End to Decimal points 
    end 
     
     
    %Else to the first if statement in the while loop   
    else 
  
        temp_actual_words{temp_count} =  word; 
    %End of the first if statement in the while loop      
    end 
     
     
     
count = count + 1; 
temp_count = temp_count + 1; 
%End of the while loop 
end 
  
actual_words = temp_actual_words; 
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%---------------------------------------------------------------------- 
% Function: f0_calculator.m 
% Purpose: Fuzzy Inference Computation 
% Description: Function calculates the f0 output.  The is basically the 
% fuzzy interference system with calls to the MF-Calculator. Using the  
% MF decsriptior (global) and input variables the function calculates 
% the crisp f0 output for a given phoneme 
% Outputs: f0 (fundamental frequency) output  
%---------------------------------------------------------------------- 
function f0_output = 
f0_calculator(variable1,variable2,variable3,variable4,rules) 
  
global MF_descriptors 
global test_axes 
  
variables(1) = variable1; 
variables(2) = variable2; 
variables(3) = variable3; 
variables(4) = variable4; 
  
GRAPH = 0; 
  
%Get each rule in from the lis  t
for rule_count=1:length(rules) 
  
%First get the numberes that represent the linguist variables of the 
rule 
rule_numbers = rules{rule_count}; 
  
MF_count = 1; 
%Then for each linguistic variable excpet the output, get the MF for 
that 
%input, the calculate the output that variable produces with that input 
%If the rule number is 0 then that means that input has no bearing on 
the 
%rule. 
for count=1:length(rule_numbers)-1     
if rule_numbers(count) > 0  
membership_functions = MF_descriptors{count}; 
MF(MF_count) = 
MF_calculator(variables(count),membership_functions(rule_numbers(count)
,:)); 
MF_count = MF_count + 1; 
end 
end 
  
rule_output_numbers(rule_count) = min(MF); 
  
end 
  
output_MF = MF_descriptors{5}; 
  
fired_rules = find(rule_output_numbers > 0); 
      
if isempty(fired_rules) ==  0 
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         for fire_count=1:length(fired_rules) 
         firing_strength = 
rule_output_numbers(fired_rules(fire_count)); 
         rule_spot = rules{fired_rules(fire_count)}; 
         triangles = output_MF; 
         output_tri = triangles(rule_spot(5),:); 
         trapezoid = 
create_MF_trapezoid(firing_strength,output_tri(1),output_tri(2),output_
tri(3),12); 
         all_trapezoids(fire_count,:) = trapezoid; 
        end 
         
 else    
        f0_output = []; 
        return; 
 end 
          
 if length(fired_rules) > 1 
 trape_max = max(all_trapezoids); 
 centroid = sum((0:.1:12).*(trape_max))/sum(trape_max); 
 f0_output =  130 + centroid*9; 
else 
 trape_max = all_trapezoids; 
 centroid = sum((0:.1:12).*(trape_max))/sum(trape_max); 
 f0_output =  130 + centroid*9; 
end 
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%---------------------------------------------------------------------- 
% Function: find_acronyms.m 
% Purpose: Find the Acronyms 
% Description: This program handle acronyms. It converts these acronyms 
% words into regular text 
% Outputs: ACRONYMS converted into words 
%---------------------------------------------------------------------- 
function actual_words = find_acronyms(actual_words) 
  
[capital_letters column1 column2] = textread('Word Data\Capital Letter 
to Sound List.txt','%s%s%s'); 
word_count = 1; 
temp_word_count =  1; 
FOUND_ALL_CAPS = 0; 
number_of_words = length(actual_words); 
temp_actual_words = actual_words; 
  
while word_count <= number_of_words 
  
    word = actual_words{word_count}; 
    upper_count=0; 
for another_count=1:length(word) 
    if isempty(strmatch(word{another_count},capital_letters)) == 0 
    upper_count = upper_count + 1;     
    end 
end 
  
if upper_count==length(word) 
    for capital_count=1:length(word) 
    letter_spot = strmatch(word(capital_count),capital_letters); 
    temp_actual_words{(temp_word_count + capital_count)-1} = 
column1(letter_spot); 
    %temp_word_count = temp_word_count + 1; 
        if letter_spot == 23 
        temp_actual_words{(temp_word_count + capital_count)} = 
column2(letter_spot); 
        %word_count = word_count + 1; 
        end 
    end 
     
temp_word_count = temp_word_count + length(word) - 1; 
%end to if statement 
else     
temp_actual_words{temp_word_count} = actual_words{word_count}; 
end 
%number_of_words = length(actual_words); 
%actual_words{word_count+1} 
word_count = word_count + 1; 
temp_word_count = temp_word_count + 1; 
end 
  
actual_words = temp_actual_words; 
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%---------------------------------------------------------------------- 
% Function: word_type.m 
% Purpose: Find the type of word 
% Description: This program finds the word importance of a given word.  
% The input is the word and the program first checks to see if it is a  
% function or content word. Then it assigns a value between 1 and 10  
% based on the word size. 
% words into regular text 
% Outputs: interger (1-10) and word type (function or content) 
%---------------------------------------------------------------------- 
function [word_type, word_importance] = word_type(first_word) 
word_type = 'CONTENT'; 
  
ARTICLES = {'a' 'an' 'the' 'some'}; 
CONJUNCTIONS = {'and' 'but' 'or' 'so' 'because'  'although' 'nor' 
'neither' 'either'}; 
OTHER_FUNCTIONS = { 'about' 'across' 'against' 'am' 'among' 'any' 
'anybody' ... 
        'anyone' 'anything' 'are' 'around' 'as' 'at' 'be' 'been' 
'before' 'behind' 'below'... 
        'beneath' 'beside' 'between' 'beyond' 'by' 'can' 'could' 'did' 
'do' 'does' 'down' 'during' ... 
        'each' 'ever' 'every' 'everybody' 'everyone' 'everything' 'for' 
'from' 'going' 'had' ... 
        'has' 'have' 'he' 'her' 'hers' 'herself' 'him' 'himself' 'his' 
'however' 'I' 'if' 'in' ... 
        'into' 'is' 'it' 'its' 'itself' 'like' 'may' 'me' 'might' 
'mine' 'my' 'myself' 'never'... 
        'no' 'nobody' 'noone' 'not' 'nothing' 'off' 'on' 'onto' 'or' 
'ought' 'our' 'ours' 'ourselves' ... 
        'over' 'shall' 'she' 'should' 'since' 'so' 'somebody' 'someone' 
'something' 'than' 'that' 'the' ... 
        'their' 'them' 'themselves' 'then' 'therefore' 'therfore' 
'these' 'they' 'this' 'those' 'though' 'through' ... 
        'to' 'under' 'unless' 'until' 'up' 'us' 'was' 'we' 'were' 
'whatever' 'whenever' ... 
        'wherever' 'whether' 'which' 'while' 'whose'  'will' 'with' 
'without' 'would' 'you' ... 
        'your' 'yours' 'yourself'};  
  
%empty_cells = strmatch('',prep_size2,'exact'); 
%double_word_start = empty_cells(end) + 1; 
  
%'how' 'what' 'when' 'where' 'who' 'whom' 'whose' 'why'  
  
%single_prepositions = prep_size1(1:double_word_start-1); 
%double_prepositions = [prep_size1(double_word_start:end) 
prep_size2(double_word_start:end)]; 
%Check to see if the word is an article 
for count=1:length(ARTICLES) 
    if isempty(strmatch(lower(first_word),ARTICLES(count),'exact')) == 
0 
       word_type = 'FUNCTION'; 
       word_importance = length(first_word{1}) - 1; 
       if word_importance > 1.5 
          word_importance = 1.5; 
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       end 
      eturn;  r
   end 
end    
  
  
%check for conjunctions 
for count=1:length(CONJUNCTIONS) 
    if isempty(strmatch(lower(first_word),CONJUNCTIONS(count),'exact')) 
== 0 
       word_type = 'FUNCTION'; 
       word_importance = length(first_word{1}); 
       if word_importance > 2.5 
          word_importance = 2.5; 
       end 
        
       return; 
   end 
end    
  
%Check to see if word is a other function words 
for count=1:length(OTHER_FUNCTIONS) 
    if 
isempty(strmatch(lower(first_word),OTHER_FUNCTIONS(count),'exact')) == 
0 
       word_type = 'FUNCTION'; 
       word_importance = length(first_word{1})+.15; 
       if word_importance > 2.75 
          word_importance = 2.75; 
       end 
       return; 
   d en
end 
  
  
word_importance = length(first_word{1}) + 1.75; 
if word_importance > 10; 
    word_importance = 10; 
end 
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%---------------------------------------------------------------------- 
% Function: distance_from_stress.m 
% Purpose: Find the word distance from stress 
% Description: This program finds the word distance form stress and   
% then it assigns a value between 1 and 10  
% Outputs: interger (1-10)  
%---------------------------------------------------------------------- 
function stress_distance = 
distance_from_stress(sentence_word,temp_phonemes,phoneme) 
  
VOWELS = {'a' 'e' 'i' 'u'}; 
CONSONANTS = {'b' 'd' 'f' 'g' 'h' 'j' 'k' 'l' 'm' 'n' 'p' 'r' 's' 't' 
'v' 'w' 'y' 'z' 'ch' 'ng' 'sh' 'th' 'xh' 'zh'}; 
DIPHTHONGS = {'ah' 'aw' 'ay' 'ee' 'ie' 'oi' 'oo' 'oh' 'ow' 'ue' 'uh' 
'ur'}; 
  
phoneme_spot = strmatch(phoneme,temp_phonemes{1},'exact'); 
phoneme_spot = phoneme_spot(1); 
phoneme_word_stresses = english_stress_rules(sentence_word{1}); 
primary_stresses = find(phoneme_word_stresses == 1); 
if isempty(primary_stresses) == 1 
   stress_distance = 10; 
   return; 
end 
     
if primary_stresses(1) == phoneme_spot 
    stress_distance = 0; 
    return; 
end 
  
if length(sentence_word) == 1 
   offset = 10/length(sentence_word{1}); 
   stress_distance = (abs(primary_stresses(1) - 
phoneme_spot)+1)*offset; 
   turn; re
end 
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%---------------------------------------------------------------------- 
% Function: distance_from_stress.m 
% Purpose: Calculates position in sentence 
% Description: Calculates position in sentence and then it assigns a  
% value between 1 and 10  
% Outputs: interger (1-10)  
%---------------------------------------------------------------------- 
 
function sentence_position = 
find_sentence_position(output_phonemes,phoneme) 
  
sentence_size = length(output_phonemes); 
offset = 10/sentence_size; 
  
found_letter = strmatch(phoneme,output_phonemes,'exact'); 
found_letter = found_letter(1); 
  
sentence_position = found_letter*offset; 
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%---------------------------------------------------------------------- 
% Function: distance_from_stress.m 
% Purpose: Calculates sentence size  
% Description: Calculates sentence size and then it assigns a  
% value between 1 and 10  
% Outputs: interger (1-10)  
%---------------------------------------------------------------------- 
 
function sentence_size = find_sentence_size(output_phonemes); 
  
sentence_words = find_sentence_words(output_phonemes); 
syllable_count = 0; 
  
for count=1:length(sentence_words) 
    word = sentence_words{count}; 
    syllable = convert_phonemes_to_syllable(word); 
    syllable_count =  syllable_count + length(syllable); 
end 
off_set = .5; 
sentence_size = syllable_count*off_set; 
if sentence_size > 10 
    sentence_size = 10; 
end 
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%---------------------------------------------------------------------- 
% Function: distance_from_stress.m 
% Purpose: Finds the words in sentence  
% Description: Finds the words in sentence based on the spaces. 
% Outputs: cell string of sentence words  
%---------------------------------------------------------------------- 
function sentence_words = 
find_sentence_words(old_output_phonemes,COMMAS); 
  
spaces = strmatch('%',old_output_phonemes,'exact'); 
if isempty(spaces) == 0; 
temp_phonemes = old_output_phonemes; 
spaceless_word = old_output_phonemes; 
spaceless_word(spaces) = ''; 
for count=1:length(spaceless_word); 
spot = strmatch(spaceless_word(count),temp_phonemes); 
non_space_letter_indices(count) = spot(1); 
temp_phonemes(1:spot(1)) = {'\'}; 
end 
  
word_spot = 1; 
word_count = 1; 
word{word_spot} = 
char(old_output_phonemes(non_space_letter_indices(1))); 
word_spot = word_spot + 1; 
differences = diff(non_space_letter_indices); 
  
  
for count=1:length(differences) 
if differences(count) == 1; 
word{word_spot} = 
char(old_output_phonemes(non_space_letter_indices(count+1))); 
word_spot = word_spot + 1; 
else 
sentence_words{word_count} = word; 
word_count = word_count + 1; 
word = ''; 
word_spot = 1; 
word{word_spot} = 
char(old_output_phonemes(non_space_letter_indices(count+1))); 
word_spot = word_spot + 1; 
end 
end 
  
sentence_words{word_count} = word; 
end 
  
if isempty(spaces) == 1; 
sentence_words{1} = old_output_phonemes; 
end 
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