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ABSTRACT

Anatomical and Physiological Properties of the Superior Paraolivary Nucleus in the Rat

Randy J. Kulesza Jr.

The superior paraolivary nucleus (SPON) is a group of neurons located within the
superior olivary complex, a constellation of brainstem nuclei involved in auditory processing.
The major inputs to the SPON arise from the contralateral ear and SPON axons target primarily
the ipsilateral inferior colliculus.  However, little is known regarding the neurochemical
phenotypes present in the SPON and how these neurons respond to auditory stimuli.
Understanding the neurochemical and physiological properties of the constituent neurons will
provide insight into the functional role of the SPON and will contribute to our understanding of
the neural circuitry involved in hearing.  Immunocytochemical, stereological, physiological and
pharmacological techniques were used to characterize SPON neurons in the rat.  The presence of
inhibitory neurotransmitters was investigated with immunocytochemistry and provides evidence
that the SPON contains a morphologically homogeneous population of GABAergic neurons and
further that these neurons receive a robust inhibitory innervation in the form of glycinergic and
GABAergic inputs.  Stereological estimates of total neuron number in eighteen subcortical
auditory nuclei provide evidence that the SPON is a prominent brainstem cell group and a major
source of ascending inhibition to the inferior colliculus.  Extracellular in vivo recordings provide
evidence that nearly all SPON neurons respond to sound played in the contralateral ear with
spike activity timed to the stimulus offset and phase lock to amplitude modulations in complex
sounds.  Pharmacologically blocking glycinergic input abolished the offset response (indicating
that offset activity is a rebound from glycinergic inhibition); blockade of glycinergic and
GABAergic input simultaneously, resulted in broader receptive fields and reduced phase locking
capabilities.  Taken together, these data indicate the rat SPON is a prominent auditory cell group
that provides GABAergic inhibition to the ipsilateral inferior colliculus indicating the sound
offset.  GABAergic inhibition has been implicated in numerous aspects of auditory physiology,
including sound localization and sensitivity to stimulus duration.  Therefore, the SPON plays an
important role in auditory processing and offset inhibition may be involved in processing
complex sounds and in creating sensitivity to stimulus duration, both important features of
animal and human communication.
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Chapter One

Introduction
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LITERATURE REVIEW

Introduction

The mammalian auditory system consists of a peripherally located sound collecting

device (the pinna), a sound conducting system (the tympanic membrane and middle ear ossicles),

mechano-receptive hair cells in the cochlea, the auditory nerve and a complex neural circuitry

within the central nervous system (Kingsley, 1996).  The primary functions of the auditory

system are to detect and convert sound pressure waves collected by the external ear into action

potentials and through an elaborate neural circuitry to characterize the sound’s frequency,

intensity, envelope (fluctuations in amplitude) and location in the environment.  The auditory

system is organized by sound frequency place code, or tonotopy, which is first established in the

cochlea along the basilar membrane.  This organization is maintained throughout the auditory

pathways such that most (but not all) auditory nuclei have a tonotopic axis where frequency is

represented along a gradient.

Inhibitory neurotransmission, mediated by gamma-amino butyric acid (GABA) and

glycine, plays an important role in many auditory processes including sharpening receptive

fields, timing of action potentials, sound localization, and sensitivity to sound duration

(Schwartz, 1992; Casseday et al., 1994, Fuzessery and Hall, 1996; Park and Pollak, 1993,

LeBeau et al., 1996; Yang and Pollak, 1997).  Inhibitory neurons are numerous in the

mammalian central auditory pathways and are present at each level of the system (Mugnaini and

Oertel, 1985; Wenthold et al., 1987; Helfert et al., 1989; Ostapoff et al., 1990).

Superior Olivary Complex

The superior olivary complex (SOC) is the first level of the mammalian auditory pathway

that receives a major convergence of information from both ears onto individual neurons via

projections from the cochlear nuclei (Stotler, 1953; Harrison and Warr, 1962; Goldberg and

Brown, 1969; Guinan et al., 1972; Warr, 1972).  The convergence of information onto SOC

neurons is utilized by the nervous system to compare and extract information, such as differences

in arrival time and intensity of sounds at the two ears, used to localize sounds in the
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environment.  Aside from sound localization, the SOC also provides a descending, modulatory

projection to the cochlear nuclei and cochlea.

The SOC consists of up to thirteen distinct nuclei situated in the caudal pons of the

brainstem.  Three of these cell groups, the so-called principal nuclei, the medial nucleus of the

trapezoid body (MNTB), the lateral superior olive (LSO) and the medial superior olive (MSO)

(Ramón y Cajal, 1909; Morest, 1968) are conspicuous across mammalian species and as a result,

have been studied in detail.  The MSO and LSO receive and compare inputs from both ears and

have identified roles in sound localization (Stotler, 1953; Harrison and Irving, 1966; Goldberg

and Brown, 1968; Glendenning et al., 1985; Friauf and Ostwald, 1988; Brugge, 1991).  The

MSO and LSO are the main excitatory outflow of the SOC, and both nuclei project to the inferior

colliculus (IC; Kumoi et al., 1993; Beyerl, 1978; Coleman and Clerici, 1987; Adams, 1979;

Henkel and Spangler, 1983; Kelly et al., 1998).  However, the rodent LSO also contains a small

population of glycinergic neurons and GABAergic neurons that project to the IC (Saint Marie

and Baker, 1990; González-Hernández, 1996).  The MNTB is a monaural cell group that

receives its main excitatory input from the contralateral cochlear nucleus via the Calyx of Held.

The principal neurons of the MNTB use glycine as a neurotransmitter and are therefore

inhibitory (Peyert et al., 1987; Wenthold et al., 1987; Aoki et al., 1988; Helfert et al., 1989;

Bledsoe et al., 1990).  In rodents, the MNTB projects to the LSO, periolivary cell groups and

lemniscal nuclei (Banks and Smith, 1992; Sommer et al., 1993).  The inhibitory projection to the

LSO from the MNTB plays an important role in coding the sound intensity differences between

the two ears which is utilized to localize high frequency sounds (Boudreau and Tsuchitani, 1968;

Tsuchitani. 1988a,b; Tollin and Yin, 2002a,b).

Scattered throughout the mammalian SOC are up to ten additional nuclei whose

neurochemical phenotypes, afferent and efferent connections and physiological response

properties are poorly understood and whose contributions to hearing are unknown (Schofield and

Cant, 1991; Helfert and Aschoff, 1997).  These so-called periolivary nuclei exhibit considerable

interspecies variation but tract tracing and morphological studies provide evidence that each

periolivary cell group may form a distinct neuronal circuit with a potentially unique role in

hearing (Schofield and Cant, 1991; 1992).
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Superior Paraolivary Nucleus

The superior paraolivary nucleus (SPON) is located within the SOC, dorso-lateral to the

MNTB and dorso-medial to the MSO.  The size of the SPON varies considerably between

species but in rodents, many chiroptera (bats) and some lagomorphs (rabbits) the SPON is rather

large compared to other SOC nuclei.  It has been suggested that the relative size of the SPON

varies inversely with that of the MSO (Kuwabara and Zook, 1993; 1999).  The MSO, in many

mammals, is associated with low frequency sound localization and is well developed in species

with good low frequency hearing.  For example, cats can hear frequencies as low as 45 Hz and

have a large, well developed MSO, conversely rats have an almost rudimentary MSO and can

hear frequencies only as low as 1000 Hz.  This suggests that in a general sense, the SPON will be

more prominent in animals with diminished low frequency hearing and a small MSO.  In

carnivores, the cell group in the region of the SPON is reduced in size and neuronal density and

has been termed the dorsomedial periolivary nucleus (DMPO).  However, some authors consider

the DMPO and SPON homologous structures (Nordeen et al., 1983).  Despite some general

observations, anatomical and physiological features of the SPON have not been systematically

studied in any species.  Consequentially, the background information available at this time is

compiled from different species.

SPON: Intrinsic Organization

The morphology of SPON neurons has been examined in Golgi impregnated material in

mouse, guinea pig, and rat (Ollo and Schwartz, 1979; Schofield and Cant, 1991; Berrebi and

Saldaña, 1997).  Mouse SPON neurons have been described as multipolar with long dendrites

and appeared morphologically similar in coronal, sagittal and horizontal planes of section,

indicating a random dendritic geometry (Ollo and Schwartz, 1979).  The guinea pig SPON

contains a morphologically heterogeneous neuronal population, dominated by elongated neurons,

whose dendritic trees tend to remain within the boundaries of the cell group, and large multipolar

neurons (Schofield and Cant, 1991).  A detailed morphological examination of SPON cell bodies

and dendrites in the rat indicates that this cell group contains a homogenous population of
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multipolar neurons (Berrebi and Saldaña, 1997).  In some cases the dendritic trees of ventrally

located neurons extend a considerable distance and enter the subjacent ventral nucleus of the

trapezoid body (Berrebi and Saldaña, 1997).  Both the cell bodies and dendritic trees of rat

SPON neurons are flattened parasagittally, resulting in a medial to lateral laminar organization of

the nucleus (Saldaña and Berrebi, 2000).

Based on the available data from other species, the SPON appears to contain a

heterogeneous population of neurons, the majority of which are multipolar with randomly

oriented dendrites.  However, the rat SPON contains a homogenous population of multipolar

neurons with dendrites that extend for some distance, often leaving the nucleus and entering

other nuclei.  The dendritic trees of rat SPON neurons are flattened parasagittally, giving the

nucleus a laminar organization, a feature that appears necessary for maintaining the tonotopic

organization present throughout the auditory pathways.

SPON: Neurochemistry

Immunocytochemical surveys of the guinea pig SOC have revealed a GABAergic cell

population and a distinct glycinergic population in the SPON (Helfert et al., 1989; Benson and

Potasher, 1990; Ostapoff et al., 1990; Saint Marie and Baker, 1990).  Immunocytochemical

studies using antiserum against glutamic acid decarboxylase (GAD, the synthetic enzyme for

GABA) in rat and gerbil indicate that the SPON contains a population of GAD immunoreactive,

and therefore GABAergic neurons (Oertel et al., 1981; Mugnaini and Oertel, 1985; Moore and

Moore, 1987; Roberts and Ribak, 1987; Gonzalez-Hernandez et al., 1996).  In some species (cat,

gerbil, guinea pig and the Mexican free tailed bat) the SPON/DMPO contains cholinergic

neurons that presumably project to the cochlear nucleus and cochlea (Osen and Roth, 1969;

Warr, 1975; Nordeen et al., 1983; Thompson and Thompson, 1991a; Grothe et al., 1994).

However, cholinergic neurons have not been localized to the rat or mouse SPON (Brown and

Howlett 1972; Osen et al., 1984; Vetter et al., 1991; Yao and Godfrey, 1997).  Additionally, a

single, unconfirmed report of the rat SOC indicates a population of aspartate immunoreactive

neurons within the SPON, which presumably use glutamate and/or aspartate as neurotransmitter

and are therefore excitatory (Kumoi et al., 1993).
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Thus, in many species the SPON appears to contain GABAergic, glycinergic, cholinergc

and possibly excitatory neurons.  The rat SPON likely contains only GABAergic and glycinergic

neurons.  However, the distribution of inhibitory neurotransmitters and proportion of neurons

utilizing each neurotransmitter in the SPON has not been studied in detail and therefore remains

unclear.

SPON: Afferents

Most of what has been revealed regarding the sources of input to the SPON has been

uncovered with tract tracing experiments in mouse, rat and guinea pig.  The main excitatory

input to the SPON arises from the contralateral ventral cochlear nucleus (VCN; Friauf and

Ostwald, 1988; Kuwabara et al., 1991; Thompson and Thompson, 1991a,b; Schofield, 1995).

This projection arises from the octopus and multipolar cells (Friauf and Ostwald, 1988;

Schofield, 1995).  Rat SPON neurons also receive a projection from the ipsilateral VCN (also

arising from octopus and multipolar cells), however this projection is much smaller than the

contralateral projection (Friauf and Ostwald, 1988; Schofield, 1995).  Tract tracing evidence

suggests that the projection from the CN maintains topography and anterograde labeling of CN

axons indicates that this projection may be tonotopically organized (Friauf and Ostwald, 1988;

Thompson and Thompson, 1991; Schofield, 1995).  Additionally, recent tract tracing data

provide evidence that the multipolar cell projection to the SPON is sparse but also maintains

tonotopy (Doucet and Ryugo, 2002).  Some SPON/DMPO neurons in cat, but not rodents,

receive input from collaterals of calyciferous axons arising from globular bushy cells in the

contralateral VCN (Morest, 1968; Friauf and Ostwald, 1988; Kuwabara and Zook, 1991;

Schofield, 1991; Smith et al., 1991).  The projections from octopus, bushy and multipolar cells

are presumed to be excitatory; however, glycinergic multipolar cells have been described in the

VCN and so some proportion of the input arising from the cochlear nuclei may be inhibitory

(Wenthold et al., 1987; Kolston, 1992).  Neurons of the ipsilateral MNTB, carrying information

from the contralateral cochlear nucleus, send a strong, topographic projection to the SPON

(Morest, 1968; Browner and Webster, 1975; Spangler et al., 1985; Kuwabara and Zook, 1991;

Banks and Smith, 1992; Kuwabara and Zook, 1992; Sommer et al., 1993).  The MNTB
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projection to the SPON is glycinergic and therefore inhibitory (Helfert et al., 1989; Bledsoe et

al., 1990).  MNTB axons ramify within a number of nuclei, namely the SPON, LSO and ventral

nucleus of the lateral lemniscus in rat, however terminal arbors of MNTB axons in the SPON are

as extensive if not more extensive than those found in the LSO (Sommer et al., 1993).  This

provides evidence that the primary target of the rat MNTB is the SPON.  The gerbil SPON

reportedly receives a projection from the ipsilateral MSO (Kuwabara and Zook, 1993; 1999), a

projection reportedly absent in rat (Colombo et al., 1996).  A descending projection arising from

the inferior colliculus to the SPON has been described (Van Noort, 1969; Thompson and

Thompson, 1989; Spangler and Warr, 1991).  This finding, however, may be a matter of

interpretation as other authors have failed to find an IC-SPON projection in rat (Faye-Lund,

1986; Caicedo and Herbert, 1993; Colombo et al., 1996).  Recently, a group of cells situated in

the commissure of the inferior and superior colliculi, termed the tecto-commissural column

(TCC), has been shown to send a strong projection to the SPON in rats and may be at least

partially GABAergic (Mugnaini and Oertel, 1985; Viñuela and Saldaña, 2001).  The proximity

of the TCC to the IC makes it possible to label TCC neurons (and axons) from a large tract tracer

injection made into the IC.  Thus, it is likely that the descending projection described from the IC

to the SPON included labeled axons from TCC, not from neurons within the inferior colliculus

itself.  A descending projection to the SPON from the subparafasicular thalamic nucleus (SPF), a

cell group that receives projections from numerous cortical areas, has also been described in rat

(Yasui et al., 1992).  Axons from the SPF target, among other midbrain and hindbrain structures,

a number of auditory structures but send the strongest projection to the SPON.  The descending

projection from SPF is likely inhibitory as GABAergic SPF neurons innervate the IC (Moriizumi

and Hattori, 1992; Takada, 1993).  The TCC and SPF receive input related to other modalities

(somatosensory, visual, motor) and may provide an integrated mulitmodal input to the SPON.

Lastly, serotonin, enkephalin and substance P immunoreactive punctate profiles reportedly

contact SPON neurons (Thompson, 1994; Reuss et al., 1999).  These serotonin and peptidergic

inputs likely arise from neurons outside the auditory pathways and suggest that the neuronal

activity of the SPON may be modulated by non-auditory centers

The distribution of neurotransmitter receptors has been surveyed in the SOC using

immunocytochemistry and/or in situ hybridization.  In line with the known excitatory inputs to
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this cell group, SPON neurons contain NMDA and AMPA glutamate receptors (Sato et al., 1999;

Caicedo et al., 1999).  SPON neurons express receptors for serotonin (Thompson et al., 1994),

GABA (GABAA) and glycine (Friauf et al., 1997; 1998) in line with the known inhibitory inputs.

Interestingly, SPON neurons contain the highest level of the alpha 1 glycine receptor subunit out

of all brainstem nuclei, indicating a dense glycinergic innervation (Friauf et al., 1997).  SPON

neurons contain the enzyme guanylate cyclase, which serves as a target for nitric oxide (Bredt

and Snyder, 1992; Fessenden et al., 1999).  MNTB neurons are the only neurons in the rat SOC

to contain neuronal nitric oxide synthase and SPON neurons reportedly contain the highest levels

of guanylate cyclase in the SOC.  Nitric oxide reportedly inhibits NMDA receptor activity and is

involved in long term depression (Shibuki and Okade, 1991; Manzoni and Bockaert, 1993).

Thus, the inhibitory input arising from the MNTB may further attenuate excitatory responses in

SPON neurons through release of nitric oxide.

Deposits of the bi-directional (transported both anterograde and retrograde) tract tracer

biotinylated dextran amine (BDA) in the IC results in retrogradely labelled SPON neurons

ipsilateral to the injection site.  BDA-labeled punctate profiles, which presumably represent axon

terminals, are found apposed to BDA labeled SPON dendrites.  The source(s) of these terminals

are difficult to verify; however, it was hypothesized that they arise, in part, from SPON neurons

(Saldaña and Berrebi, 2000).  Thus, another potential source of input to the SPON is other SPON

neurons.

In summary, SPON neurons receive a breif onset excitation from octopus cells and a

sustained excitatory input from multipolar cells in the contralateral cochlear nucleus.  A

sustained glycinergic input arises from the MNTB, driven by the globular bushy cells in the

contralateral cochlear nucleus.  GABAergic inputs may arise from the TCC, SPF and other

SPON neurons and the spike pattens of these inputs is unknown.  Taken together, this suggests

that the rat SPON receives and integrates multiple excitatory and inhibitory inputs that arises

primarily from the contralateral ear.

SPON: Efferents
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The projections of the SPON have been studied mainly by way of retrograde tract tracing

experiments from potential targets.  However, anterograde tract tracing has not been utilized to

examine the projections of SPON axons.  As a result, there may be other potential targets of

SPON axons that have yet to be uncovered.  It is widely accepted that the SPON projects to the

ipsilateral inferior colliculus (Beyerl, 1978; Zook and Casseday, 1982; Adams, 1983; Moore,

1988; Coleman and Clerici, 1987; Nordeen et al., 1983; Saint Marie and Baker, 1990; Schofield,

1991).  The rat SPON projects primarily to the ipsilateral IC while the guinea pig SPON sends a

significant projection to the contralateral IC (Schofield, 1991; Saldana and Berrebi, 2000).

Placement of a retrograde tracer into the rat IC labels nearly all neurons contained within the

SPON ipsilateral to the injection (Saldaña and Berrebi, 2000).  Vertical columns of SPON

neurons have been shown to project to physiologically defined regions of the ipsilateral IC,

providing evidence that the SPON-IC projection maintains tonotopic order (Kelly et al., 1998;

Saldaña and Berrebi, 2000).  It has recently been shown that the guinea pig, gerbil and rat SPON,

much like the cochlear nuclei and ventral nucleus of the lateral lemniscus (VNLL), innervates all

subdivisions of the IC, suggesting that the SPON may be involved in numerous aspects of IC

processing (Fuentes et al., 1999; Cant and Schofield, 1999).  A bilateral projection from the

SPON to the TCC has recently been described (Vinuela and Saldaña, 2001) and a projection to

the dorsal nucleus of the lateral lemniscus (DNLL) has been demonstrated but a projection to the

VNLL has not been examined (Labelle and Kelly, 1997).  The guinea pig SPON has been shown

to send a descending projection to the cochlear nucleus and cochlea (Tokunaga, 1988; Schofield,

1991; Ostapoff et al., 1997).  However, retrograde tract tracing from the rat cochlea has yielded

mixed results.  Recent tract tracing experiments provide evidence indicating that the rat SPON

projects to the cochlea (Riemann and Reuss, 1998; Reuss et al., 1999), but numerous authors

have failed to localize olivocochlear neurons to the rat SPON (White and Warr, 1983; Osen et

al., 1984; Faye-Lund, 1986; Aschoff and Ostwald, 1987; Vetter et al., 1991; 1993; Vetter and

Mugnaini, 1992; Horváth et al, 2000).  In cat and ferret a projection from the SPON/DMPO to

the superior colliculus has been demonstrated (Edwards et al., 1979; King et al., 1998).  The

TCC is a group of cells that extends from the commissure of the IC to the commissure of the

superior colliculus, which in rat spans nearly four millimeters rostrocaudally.  A projection from

the SPON to the superior colliculus is supported by the recent evidence of a SPON projection to

the rostral extension of the TCC within the superior colliculus (Viñuela and Saldaña, 2001).
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The SPON, in some species, contributes to both the ascending and descending auditory

pathways through projections to the IC and cochlear nucleus.  However, the rat SPON

contributes only to the ascending pathway and the main projection targets of the rat SPON are

the DNLL, IC and TCC.

SPON: Physiology

To date, very little has been done to systematically characterize rat SPON responses to

sound.  The available data regarding SPON/DMPO physiology is gathered largely from

experiments in cat and gerbil.  A small number of SPON/DMPO neurons (n = 20) were recorded

in the cat SOC (Guinan et al., 1972a,b).  Of the twenty units recorded in this study, thirteen

(65%) were monaural.  Responses to pure tone stimuli were recorded for seventeen neurons,

about half of which responded at the stimulus offset, while the other half responded during the

stimulus.  It was noted that SPON/DMPO neurons had broad receptive fields.  Most VCN

neurons (multipolar) have narrow receptive fields, although octopus cells have wide receptive

fields.  Thus, wide receptive fields in SPON/DMPO neurons could result from octopus cell input

or partially overlapping, convergent input from multipolar cells.  In part of a larger work

focusing on interaural timing differences in gerbil MSO, recordings were made from a few

SPON neurons (Spitzer and Semple, 1995).   Onset and offset responses to pure tone stimuli

were observed and some neurons phase locked to low frequency tones and were sensitive to

interaural phase differences, implicating a potential role in sound localization.  The first in-depth

studies of SPON physiology were performed in gerbils (Behrend et al., 2002; Dehmel et al.,

2002) and these two studies contradict each other in many aspects.  For example, Dehmel found

that nearly 70 % of gerbil SPON neurons responded at the offset of pure tone stimuli, while

Behrend found that only 5 % of their neuronal population responded at the stimulus offset.

Further, Dehmel found that 9 % of gerbil SPON neurons were excited by both ears, while

Behrend found that 35 % of their population of gerbil SPON neurons were driven binaurally.

Because of the conflicting results, the work on the gerbil SPON is difficult to interpret and has

done very little to clarify the functional role of the SPON in hearing.  The discrepancies between

these two gerbil studies are likely due to problems with localization of recording sites, such that
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neurons recorded outside the SPON may have been included in their analyses.  Unfortunately, it

is difficult to say which data actually represents the gerbil SPON.  Interestingly, best frequencies

(BFs) of gerbil SPON neurons spanned the hearing range of this animal (700Hz to 37kHz),

however the vast majority of neurons had BFs below 6kHz (Behrend et al., 2002) and no clear

tonotopic organization of BFs was observed within the SPON (Dehmel et al., 2002).

Sinusoidally amplitude modulated pure tone stimuli (SAM) were used to assess phase locking

capabilities and sensitivity to the envelopes of complex sounds and many gerbil SPON neurons

followed SAM stimuli with high fidelity, suggesting a possible role in the processing of complex

auditory signals (Behrend et al., 2002).  Recordings from a small number of rat SPON neurons

have been reported (Finlayson and Adams, 1997).  In contrast to the gerbil and cat physiology

and the rat connectivity data, they indicate that SPON neurons are largely binaural, with 79% of

neurons receiving matched best frequency (BF) excitation from both cochlear nuclei.

Based on the available literature, is it difficult to draw any firm conclusions regarding

how SPON neurons respond to sound.  Despite the report of Finlayson and Adams, one might

expect that most rat SPON neurons would be responsive only to contralateral stimulation based

on the connectivity data.  Further, it is difficult to predict how SPON neurons will integrate onset

and sustained excitation from octopus and multipolar cells in the cochlear nucleus, a sustained

glycinergic input arising from the MNTB and GABAergic input from multiple sources.

Input to the Inferior Colliculus

The IC constitutes a considerable portion of the mammalian midbrain and is considered a

site of auditory integration, receiving input from virtually all ascending and descending auditory

projections.  The IC is typically divided into three main divisions, the central nucleus (CNIC),

and the dorsal and external cortices (DCIC and ECIC), all of which receive projections from the

SPON (Cant and Schofield, 1999; Fuentes et al, 1999).  Recently effort has been made to

simplify the divisions of the IC into medial (including the central nucleus and the dorsal cortex)

and lateral IC (similar to the external cortex) based on tract tracing data.  The rationale behind

this nomenclature is based on the finding that the inputs and outputs of the central nucleus and

dorsal cortex are nearly identical and distinct from those of the external cortex (Saldaña and



12

Merchán, 1992).

Inputs to the IC are both excitatory and inhibitory.  Inhibition, originating from lower

centers, has been shown to be essential for many aspects of collicular physiology.  GABAergic

and glycinergic inhibition have been shown to sharpen frequency tuning of individual cells and

to modify the timing of action potentials in responses to pure tone stimuli (Yang et al., 1992; Lu

and Jen, 2001).  In the IC, a population of neurons is excited by stimulation of the ipsilateral ear

and inhibited by stimulation of the contralateral ear; these cells are termed EI neurons.  Similar

responses are encountered in the LSO (Guinan et al., 1972b).  Extracellular recordings from the

IC provide evidence that indicates EI responses are not simply inherited from the LSO but

created de novo (Burger and Pollak, 2001).  EI neurons are thought to be involved in sound

localization and both GABA and glycine contribute to the contralaterally evoked inhibition,

which shapes sensitivity to interaural intensity differences (Klug et al., 1995; Park and Pollak,

1993).  Recently, GABAergic inhibition has been implicated in creating sensitivity to motion

cues, specifically interaural phase modulations (McAlpine and Palmer, 2002).  One strategy that

the auditory system uses to localize sounds is comparing timing differences between the two

ears.  Thus, the latency of a cell’s response can be crucial to sound localization, and inhibition

has been shown to significantly lengthen first spike latencies in IC neurons, thereby delaying the

neuron’s excitatory response (Park and Pollak, 1993).  The precedence effect, a phenomenon

where priority is given to a leading sound by suppressing the trailing sound, aids in localizing

sound in reverberant surroundings (Hartmann, 1983).  It has been hypothesized that a long-

lasting inhibition, evoked by the leading stimulus is essential for the precedence effect (Litovsky

and Yin, 1998).  Inhibition has been shown to affect responses to complex stimuli, such as

amplitude and frequency modulations (Koch and Grothe, 1998).  Amplitude modulations are

rapid fluctuations in the intensity of a stimulus and in the laboratory are usually sinusoidally

modulated; frequency modulations are changes in the frequency of the tone over time.  Blocking

both GABA and glycine expands the upper range of amplitude modulation that neurons can

follow but decreases the precision of synchronization.  Neurons in the bat IC have been shown to

display combination sensitivity, such that neurons respond preferentially to combinations of

spectral elements (O’Neill and Suga, 1982).  Recently it has been demonstrated that glycine is

essential for the facilitation observed in combination-sensitive neurons (Wenstrup and Leroy,
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2001).  One of the characteristics of biologically relevant sounds, such as vocalizations or

echolocation calls, is duration, and neurons tuned to specific durations (or range of durations)

have been described in the IC (Casseday et al., 1994; Ehrlich et al., 1997; Brand et al., 2000).

Integration of both excitatory and inhibitory inputs, verified by in vivo intracellular recordings,

are essential to the formation of duration tuned neurons (Casseday et al., 1994).  Additionally,

duration tuning is eliminated by application of bicuculline and strychnine, antagonists of

GABAA and glycine receptors (Casseday et al., 2000).

RATIONALE

The inhibition reaching the IC from lower auditory centers is complex and plays an

essential role in numerous aspects of auditory processing in the IC.  Thus, the inhibition arising

from the SPON has a potentially important role in hearing and justifies further study of this cell

group.  Understanding the functional role of the SPON will contribute to our understanding of

inhibitory mechanisms utilized in auditory processing.  A thorough understanding of the

excitatory and inhibitory circuits the auditory system utilizes to encode both simple and complex

sound is necessary to improve existing prosthetic hearing devices and the quality of life of those

requiring such devices.  Further, presbycusis or age-related hearing loss has been partially

attributed to diminished inhibition in the IC (Caspary et al., 1999) and an understanding of the

role of inhibitory circuits involved in collicular processing will be necessary as strategies to

combat presbycusis are developed.

Based on the literature, it is clear that the rat SPON relays information arising from the

contralateral ear to the ipsilateral IC, and the nature of this projection may be inhibitory.

However, it remains difficult to hypothesize a functional role for this cell group.  The fact that

the SPON relays inhibitory information to the IC implicates this cell group in a wide range of

functions.  Inhibition arising from the SPON may serve as lateral inhibition to sharpen frequency

response areas or may modulate temporal response properties.  Additionally, inhibitory

innervation of the IC is necessary for sound localization and processing complex sounds.  In

short, the SPON could be involved in any aspect of IC processing that relies on inhibitory input.

Regardless, elucidating the function of the SPON in any species awaits an in depth and
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systematic study of the neurochemical phenotypes and physiology of this cell group.

Therefore, the purpose of this dissertation is to use immunocytochemical, stereological,

physiological and pharmacological techniques to characterize rat SPON neurons in the rat with

the hope of clarifying the functional roles of this cell group.  Understanding the role of the SPON

in hearing will not only further our knowledge of how the auditory system works but will provide

insight into the functional role of inhibitory input to the inferior colliculus that may be useful in

clinical strategies.

OBJECTIVES

Study I: What neurochemical phenotypes are present in the SPON?

The literature provides evidence that the SPON contains populations of inhibitory

neurons.  However, the proportion of SPON neurons that are GABAergic and glycinergic (or

both) remains unclear.  We will utilize immunocytochemical techniques with antibodies directed

against glycine, GABA and glutamic acid decarboxylase (GAD, the synthetic enzyme for

GABA) to examine the presence of inhibitory neurotransmitters in SPON neurons and determine

the proportion of neurons utilizing each transmitter.  Additionally, we will characterize the

inhibitory innervation to the SPON by examining the presence of these neurotransmitters in

punctate profiles, presumably representing axon terminals.  This work will clarify the chemical

nature of the SPON output to the inferior colliculus and the degree to which SPON neurons

receive GABAergic and glycinergic input.

Study II: What is the relative contribution of the SPON to the rat auditory pathway?

The relative contribution of the SPON to the auditory pathway is unclear and this cell

group is often neglected as a source of inhibition to the inferior colliculus.  We will use unbiased

stereology, specifically the optical fractionator tool, to estimate the total number of neurons in

eighteen subcortical auditory nuclei.  The results from this study will elucidate the prominence of

the SPON relative to other auditory cell groups and will show how the number of neurons in this
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cell group relates to other sources of inhibitory input to the IC.

Study III: How do SPON neurons respond to sound stimuli?

How SPON neurons in the rat respond to sound stimuli is largely unknown.  We will

characterize responses of SPON neurons to simple (pure tones) and complex (noise and

amplitude modulated tones) sound stimuli with in vivo extracellular recordings.  A detailed

analysis of the physiological response properties of SPON neurons to sound will reveal what

types of auditory information this cell group is relaying to the IC and will provide considerable

insight into the functional role of this nucleus.

Study IV: How does inhibition shape SPON response properties?

The contribution of GABAergic and glycinergic inhibition to the physiological response

properties of SPON neurons remains unclear.  In the previous studies, we described the

prominence of inhibitory innervation to the SPON and typical responses of these neurons to

sound stimuli.  We will examine the effects of inhibitory input on the response properties of

SPON neurons through extracellular recordings in vivo with multibarrel electrodes to deliver

bicuculline (a GABAA anatagonist) and strychnine (a glycine receptor antagonist).  This

experimental design will allow us to dissect the effects of GABA and glycine on response

properties of SPON neurons and will provide further insight into the role of inhibitory circuits in

the auditory system.
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Chapter Two

The Superior Paraolivary Nucleus of the rat is a GABAergic nucleus

This work is published in the Journal of the Association for Research in Otolaryngology 01: 255-269

(2000)
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ABSTRACT

The presence of the inhibitory neurotransmitters glycine and GABA (gamma amino-

butyric acid) and GAD (glutamic acid decarboxylase), the synthesizing enzyme for GABA, was

examined by immunocytochemistry in the superior paraolivary nucleus (SPON) of the rat. Only

rarely were SPON neurons observed to be glycine-immunoreactive, but the majority were GABA-

immunoreactive.  Using unbiased stereological counting methods we estimated that this nucleus

contains approximately 2500 neurons.  Moreover, 90% of SPON neurons were immunolabeled by

antisera directed against either the 65kD or 67kD isoforms of GAD, or a third antiserum that

recognizes both GAD isoforms.  Morphometric analysis of GAD immunolabeled neurons

indicated that SPON neurons possess cell bodies and dendritic arbors that are elongated rostro-

caudally and relatively flattened parasagittally.  Abundant glycine, GABA and GAD

immunoreactive punctate profiles presumed to represent, for the most part, presynaptic axon

terminals, were observed in apposition to SPON neurons.  We conclude that the rat SPON

contains a homogeneous population of multipolar GABAergic neurons that receive abundant

GABAergic and glycinergic innervation. The vast majority of glycinergic inputs to SPON are

presumed to originate in the ipsilateral medial nucleus of the trapezoid body, but the source(s) of

its GABAergic innervation remains to be determined.
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INTRODUCTION

Inhibition plays a crucial role in the vertebrate nervous system, and glycine and gamma-

aminobutyric acid (GABA) are the major inhibitory neurotransmitters in the CNS (Nicholls

1994).  Although glycine is a common amino acid present in all proteins and cells, GABA is

synthesized from the amino acid glutamate by the enzyme glutamic acid decarboxylase (GAD)

(Roberts and Frankel 1950; Nicholls 1994).  Because GABA is a small, labile molecule that can

be difficult to localize with immunocytochemistry, GAD is widely considered a reliable marker

for GABAergic neurons (Wu et al. 1973; Oertel et al. 1981). Two isoforms of GAD, named

according to their differing molecular weights, have been isolated (Bayon et al. 1977; Spink et al.

1983; Denner and Wu 1985; Legay et al. 1987; Kaufman et al. 1991).  Although both GAD

isoforms are present in most GABAergic neurons, GAD 65 and GAD 67 (65 and 67 kDa

respectively) are transcribed from separate genes and have different affinities for the cofactor

pyridoxal 5'-phosphate (Erlander et al. 1991; Martin et al. 1991; Kaufman et al. 1991).  Recent

immunocytochemical studies suggest that the two isoforms may have different intracellular

distributions, with GAD 67 being widely distributed in somata, dendrites and axon terminals

while GAD 65 is located predominantly in axon terminals (Esclapez et al. 1994). GAD 67, which

is present as the active holoenzyme, is presumably responsible for utilizing glutamate, through the

GABA shunt, for metabolic needs or supplying basal levels of GABA for neurotransmission

(Denner and Wu 1985; Erlander and Tobin 1991).  In contrast, GAD 65 is active only in the

presence of cofactor and synthesizes GABA in terminals when there is increased demand (Martin

and Rimwall 1993).

The neurotransmitters GABA and glycine are found in abundance in central auditory

nuclei, and inhibitory neurotransmission plays a fundamentally important role in the function of

the mammalian auditory system (Helfert and Aschoff 1997).  Inhibition has been shown to

sharpen tuning curves and modulate discharge properties of auditory neurons, and is crucial to the

ability to localize high frequency sounds (Finlayson and Caspary 1989; Yang et al. 1992; Caspary

et al. 1994; Park and Pollak 1993; Klug et al. 1995; Le Beau et al. 1996; Koch and Grothe 1998).

GABAergic and glycinergic neurons are especially prominent in the superior olivary complex

(SOC) (Helfert et al. 1989; Spirou and Berrebi 1997; Saint Marie and Baker 1990; Ostapoff et al.

1990; Ostapoff et al. 1997). This auditory brainstem center contains three principal nuclei with
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identified roles in sound localization, the medial nucleus of the trapezoid body (MNTB), the

medial superior olive (MSO) and the lateral superior olive (LSO), and several accessory or

periolivary cell groups whose roles in audition are poorly understood (Schwartz 1992; Helfert and

Aschoff 1997).

The superior paraolivary nucleus (SPON) is a conspicuous periolivary nucleus in the

SOC of rodents and guinea pigs.  Situated medial to the LSO and dorsolateral to the MNTB, this

nucleus receives ascending inputs from the contralateral cochlear nucleus (Friauf and Ostwald

1988; Kuwabara et al. 1991; Thompson and Thompson 1991a,b; Schofield and Cant 1995), as

well as a substantial local inhibitory input from the ipsilateral MNTB (Kuwabara and Zook 1991,

1992a,b; Banks and Smith 1992; Sommer et al. 1993), and sends a prominent projection to the

ipsilateral inferior colliculus (IC) (Beyerl 1978; Adams 1983; Coleman and Clerici 1987; Moore

1988; Saint Marie and Baker 1990; Gonzalez-Hernandez et al. 1996; Fuentes et al. 1999; Saldaña

and Berrebi, 2000).  Notably, the SPON of the rat does not receive a descending projection from

the IC nor does it project to the cochlear nucleus or cochlea (White and Warr 1983; Osen et al.

1984; Faye-Lund 1986; Aschoff and Ostwald 1987; Vetter et al. 1991, 1993; Vetter and

Mugnaini 1992; Caicedo and Herbert 1993).

A number of immunohistochemical and retrograde transport studies have revealed

populations of GABA-immunoreactive (IR) and glycine-IR neurons in the guinea pig SPON,

suggesting that these two neurochemically defined cell groups have different projection targets

(Helfert et al. 1989; Thompson et al. 1985; Saint Marie and Baker 1990; Ostapoff et al. 1985,

1990).  Recent tract tracing data in rats, however, demonstrate a homogeneous neuronal

population with a purely ipsilateral ascending projection to the IC (Berrebi et al. 1997; Saldaña

and Berrebi 2000).  Using antibodies directed against GABA or an antiserum that recognizes

both isoforms of GAD, other investigators have suggested that the rat SPON contains a

substantial proportion of GABAergic neurons (Oertel et al. 1981; Mugnaini and Oertel 1985;

Roberts and Ribak 1987; Moore and Moore 1987; Gonzalez-Hernandez et al. 1996).  Gly-IR has

been described in the rat SOC (Campistron et al. 1986; Aoki et al. 1988; Pourcho et al. 1992),

but has not been systematically examined in the SPON or in other periolivary cell groups.
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In order to gain a better understanding of the functional role of SPON, we used

immunocytochemical methods to delineate the distribution of GABAergic and glycinergic

neurons and axon terminals within the nucleus.  We also obtained unbiased stereological

estimates of the percentage of SPON neurons that are GAD-IR, and performed a quantitative

morphometric assessment of SPON neuronal morphologies.  Some of the data contained herein

have been presented in abstract form (Kulesza et al. 1998; Kulesza and Berrebi 1999).

MATERIALS AND METHODS

Animals

Adult female Sprague-Dawley rats, weighing 230-285g, were deeply anesthetized by an

intramuscular injection of a mixture xylazine and ketamine (42mg xylazine and 57mg ketamine

per 100g body weight) prior to vascular perfusion.  A total of 36 animals were used for this study.

The West Virginia University Institutional Animal Care and Use Committee approved all animal

protocols used for this project.

Post-embedding immunocytochemistry for glycine and GABA

Twelve animals were perfused through the ascending aorta with a rinse of Ca++ free

Ringer’s variant followed by one liter of fixative composed of 2% paraformaldehyde and 2.5%

glutaraldehyde in 0.1M sodium phosphate buffer.  Animals were placed on ice and remained

undisturbed for 30 minutes before their brains were dissected and immersed in fixative overnight.

The brains were sectioned in the coronal plane using a Vibratome, into 100µm thick sections

which were postfixed in 1% osmium tetroxide, stained with 2% aqueous uranyl acetate,

dehydrated, and flat embedded in Epon (Polybed 812, Polysciences).  After polymerization,

sections containing the SOC were cut into a series of 1µm semithin sections, heat-dried onto glass

slides and prepared for immunocytochemistry (Spirou and Berrebi 1997).  Briefly, Epon was

etched from the sections using sodium ethoxide (absolute ethanol saturated with sodium

hydroxide).  The tissues were then rehydrated, first in ethanols and then in water.  Osmium was

subsequently removed with 1% aqueous sodium periodate.
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Adjacent pairs of 1µm sections were incubated in 5% normal donkey serum in 0.5M

Trizma base-HCl (Tris, pH 7.6) for 1 hour followed by overnight incubation in a primary

antiserum as follows: rabbit ant-glycine (Chemicon, Temecula, CA, diluted 1:1200), rabbit anti-

GABA (gift from Dr. D. Pow, University of Queensland, Brisbane, Australia, diluted 1:8000 or

purchased from HTI Bio-Products, Inc., Ramona, CA, now Strategic BioSolutions; diluted

1:1000).  Sections were then incubated in biotinylated secondary antiserum and further processed

using the ABC method (Vector, Burlingame, CA).  The chromogenic reaction took place in

0.05% diaminobenzidine (DAB) with 0.01% hydrogen peroxide in 0.5M Tris.

The specificity of the Chemicon glycine- and Pow GABA- antisera has been previously

established in our laboratory with preadsorbtion control experiments using an amino acid

inhibitor complex according to Storm-Mathisen and Ottersen (1990) (see figure 1 of Spirou and

Berrebi 1997).  The affinity purified, anti-GABA serum from HTI Bioproducts was reported to

display approximately 2% cross reactivity with glycine.  In the present experiments, we tested the

effects of antiserum preadsorption on intensity of immunoreactivity using an optical densitometric

procedure (see below).

Optical density

To classify individual cells according to their glycine and/or GABA immunoreactivities,

we performed optical densitometry in adjacent semithin (1µm thick) sections.  A total of six pairs

of sections (sections in each pair were within 2-3µm of each other) from the SOC of six animals

were used in this analysis.  Semithin sections were used because individual neurons could be

identified in sequential sections immunostained with either glycine or GABA antiserum.  We

evaluated every SPON neuron encountered in each section, as well as randomly selected MNTB

and MSO cells.  The immunostaining intensities of MNTB neurons served as a reference standard

for glycine-immunopositivity, and those of MSO cells as an indication of background

immunostaining levels.

Images were captured with a SONY video camera mounted on an Olympus BH-2
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microscope (40X objective, final magnification 980X).  Average pixel grey values were

measured from uniform regions of neuronal cytoplasm.  Care was taken so sampling regions

within the neuronal cytoplasm did not include the pale staining cell nuclei.  The grey value

intensity scale was calibrated for each pair of sections so that the darkest staining soma (i.e. a

glycine-IR MNTB neuron) was assigned a value of 255 and the lumen of a blood vessel was

assigned a value of 0. Data were entered into JMP (SAS Institute Inc., Cary, NC) and Statview

(Abacus Concepts, Inc., Berkeley, CA) data analysis software packages for statistical

comparisons and graphical output.

In one pair of sections, the glycine antiserum was preadsorped with 5mM GABA and the

GABA antiserum was preadsorbed with 10mM glycine before incubation with the tissue.  The

optical density data obtained from this pair of sections was statistically indistinguishable from the

remaining five pairs of sections which were not incubated in preabsorbed antisera (t=1.819,

p>.07 for GABA antiserum; and t=1.056, p>.29 for glycine antiserum).  Therefore, the effect of

preabsorption will not be considered further.  We also compared the immunostaining patterns

obtained with the GABA antiserum provided by Dr. Pow with the commercially available (HTI

Bioproducts) antiserum. Within the range of dilutions we tested, the latter resulted in somewhat

weaker staining intensities throughout the brain, but the pattern of immunostaining obtained

within nuclei of the SOC were judged to be qualitatively equivalent.  Therefore, the data obtained

from both GABA antisera were pooled for all analyses.

GAD immunocytochemistry on frozen sections

A total of twenty-four animals were perfused through the ascending aorta with a vascular

rinse of physiological saline, followed by a fixative composed of 4% commercial formaldehyde

and a zinc salt (0.5% zinc dichromate, pH 4.0, or 0.5% zinc salicylate, pH 6.5) in 0.9% saline

(Mugnaini and Dahl 1983; Berrebi and Mugnaini 1991).  The animals were placed on ice for 30

minutes before brains were dissected and immersed in cryoprotectant (30% sucrose in saline) for

at least 24 hours.  Brainstems were sectioned in series order, either coronally or parasagittally, at a

thickness of 30µm on a freezing microtome.
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Free-floating sections were rinsed in 0.5M Tris, blocked in 5% normal donkey serum and

incubated for 48 hours at 4°C in primary antiserum with gentle agitation.  To optimize the

immunostaining, different protocols were used depending on the primary antiserum.  GAD-1440

antiserum (Oertel et al. 1981; provided by Judith Harvey-White, NIH, Bethesda, MD and used at

a dilution of 1:1200) is a sheep polyclonal antiserum that recognizes both GAD isoforms. GAD-6

(Chang and Gottlieb 1988; purchased from Developmental Studies Hybridoma Bank, University

of Iowa and used at a dilution of 1:1000) is a mouse monoclonal antiserum directed against the

GAD 65 isoform.  Both of these antibodies were revealed using the PAP method (Sternberger

1979), although the best results with the GAD-6 antiserum were obtained with the double PAP

method (Ordronneau et al. 1981).  K2 antiserum (Kaufman et al. 1991, sold by Chemicon,

Temecula, CA and used at a dilution of 1:3000) is a rabbit polyclonal antiserum that primarily

recognizes GAD 67 and was revealed according to the ABC method.  The chromogenic reaction

for each antiserum took place in 0.05% DAB with 0.01% hydrogen peroxide in 0.5M Tris. For

reference, alternating sections were not immunoreacted, but stained for Nissl substance using

cresyl violet according to standard protocols.  All sections were mounted onto glass slides from

gelatin-alcohol, air-dried and coverslipped using Accumount.

Specificity assays (preabsorption controls and Western blots) using the GAD-6 and K2

antisera were performed previously by Esclapez and co-workers (1994) who indicate that the

GAD 67 specific K2 antiserum has a slight cross-reactivity with GAD 65 and that GAD-6

antiserum does not crossreact with GAD 67.  The specificity of the GAD-1440 antiserum for

GAD has been established (Oertel et al. 1981).  This antiserum localizes to both isoforms of the

enzyme (Kaufman et al. 1991).

Morphometric Analysis

Frozen sections immunoreacted with GAD-1440 or GAD-6 antiserum were sampled at

90µm intervals for further analysis.  A camera lucida was used to trace all labeled neurons

containing nuclei using a 100X oil immersion objective (final magnification of tissue 1100X).

Care was taken to estimate the cell body contour so that dendrites extending from the soma were

not included.  The drawings were scanned into a Power Macintosh computer, and NIH Image
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software (version 1.61, NIH, Bethesda, MD) was used to measure the area, perimeter and major

and minor diameters of each cell body.  An index of circularity (Yin et al. 1990) was then

calculated for each soma using the equation: Circularity = [4π Area / Perimeter 2], which yields

an estimate of cell shape that is independent of size.  Using this formula, a perfectly circular cell

body profile would be assigned a circularity value of 1.0, with increasingly elliptical profiles

resulting in decreasing values.  Statistical comparisons were performed using the Statview data

analysis software package.

Unbiased Stereology

We estimated the number of Nïssl stained and GAD-IR neurons in the SPON using

methods of unbiased stereology (Gundersen 1988a, b).  The Computer Assisted Stereological

Toolbox system (C.A.S.T.-Grid, Olympus, Denmark) was used to implement the optical

fractionator technique (Gundersen 1986), which incorporates the optical disector tool (Sterio

1984).  We randomly selected a slide caudal to the SPON as a starting point and sampled

uniformly spaced sections (every fourth or fifth section) through the nucleus using the optical

disector tool.  A counting volume (approximately 33,600µm3 ) was defined within the thickness of

the tissue section and only cells that were contained and in focus within the appropriate

boundaries of the counting frame were marked.  Our final estimates were calculated using the

equation:

N= [number of cells counted * area fraction * section fraction * disector fraction].

Quantitative Analysis of Puncta in Plastic Sections

The number of perisomatic puncta was quantified at 100X under oil immersion (final

magnification 1100X).  Measurements of puncta perimeter and long and short axis were made on

the computer monitor with the C.A.S.T.-Grid software package using the distance/boundary

function.  The area of punctate profiles was calculated by modeling them as ellipses using the

equation:

Areapuncta = [0.5Major Axis*0.5Minor Axis*π ].
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RESULTS

The subset of SOC sections stained with cresyl violet was used to assist in delineating the

boundaries of the SPON and other SOC nuclei.  A Nïssl stained coronal section of the rat pons at

a middle rostro-caudal level through the SOC is shown for reference in Figure 2.1.  At this level,

all three principal nuclei (LSO, MSO and MNTB) can be identified.  Several periolivary cell

groups, including the ventral (VNTB) and lateral nuclei of the trapezoid body (LNTB) and the

SPON are also present.  The SPON is identified as a prominently sized ovoid shaped nucleus

interposed between the LSO, MSO and MNTB.  In this material, the SPON appears to possess a

low density of neurons relative to the MNTB and LSO.

Overview of glycine and GABA immunoreactivities in the SOC

Postembedding immunocytochemistry for glycine and GABA revealed immunolabeled

somata, dendrites, fibers and punctate profiles, presumed to represent for the most part axon

terminals, throughout the SOC (Fig. 2.2).  Qualitatively, neurons of the MNTB appeared most

intensely glycine-IR, and the VNTB contained most of the intensely GABA-IR neurons.

Glycine- and GABA-IR cell bodies of varying staining intensities were also found scattered in

the LSO and LNTB, as well as other nuclei.  Cell bodies of the MSO appeared

immunonegative after incubation with either antiserum.

The boundary between the SPON and LSO was clearly identified by an

immunonegative fiber bundle coursing between these nuclei.  The medial border of the SPON

was somewhat more difficult to define precisely.  In some sections, we noted a thin wedge of

tissue located dorsolateral to the MNTB that contained a small number of neurons and a

densely immunoreactive neuropil (Fig. 2.2).  The morphological appearance of these cells

suggested that they belong to SPON, but we cannot exclude the possibility that displaced

neurons from the MNTB or the reticular formation were occasionally included with the limits

of SPON. Nonetheless, inclusive of these few peripherally located cell bodies, the SPON

contained only rare somata qualitatively judged to be glycine-IR, and such cells were lightly
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immunostained. Most SPON neurons appeared lightly to moderately GABA-IR, while a small

percentage were intensely immunolabeled (Figs. 2.2, 2.3).

Glycine-IR and GABA-IR puncta were observed throughout the SOC.  Glycine-IR

punctate profiles were densely distributed in the SPON, the middle and lateral limbs of the

LSO, the LNTB and the VNTB. GABA-IR punctate profiles were also abundant in the SPON,

although at a lower density than glycine-IR profiles (Fig. 2.3).

Quantitative analysis of glycine and GABA immunoreactivities

A quantitative densitometric method was used to classify the glycine- and GABA-

immunoreactivities of SOC neurons (Fig. 2.4). The IR intensity values representing MNTB

neurons were localized to the upper portion of the glycine-IR intensity scale and the lower

portion of the GABA-IR intensity scale, while values of MSO neurons were clustered at the

lower extreme of both intensity scales.  The IR intensity values associated with SPON neurons

were widely dispersed across nearly the entire GABA-IR intensity scale.

The densitometric data are summarized in Table 2.1.  For clarity of presentation, the

immunostaining intensity scales were subdivided into equal thirds roughly corresponding to 1)

immunonegative or light-IR, 2) moderate-IR or 3) dark-IR.  Eighty-nine percent of SPON

neurons were immunonegative or displayed light glycine-IR intensity, while 11% displayed

moderate glycine-IR intensity.  Approximately two-thirds of SPON cells displayed glycine-IR

intensities below, and GABA-IR intensities above those representing the most intensely

immunostained MSO cells. Only 9 SPON cells (<6%) displayed glycine-IR intensity values

greater than 100.  Nearly half of SPON neurons were immunonegative or displayed light GABA-

IR, 41% displayed moderate GABA-IR, and 10% displayed dark GABA-IR.

We then performed a logistic regression analysis with group membership (nucleus) as the

response and with glycine-IR and GABA-IR intensity values as predictors. Glycine-IR and

GABA-IR intensities were both significantly associated with group membership (p<.001 level,

likelihood ratio chi-square).  All MNTB neurons analyzed were assigned to the correct group



27

membership, while 72% of MSO neurons and 91% of SPON neurons were assigned to the proper

group.  The remaining MSO and SPON neurons, which could not be reliably categorized to

either group, all displayed low values for both glycine-IR and GABA-IR intensities.  Taken

together, we concluded from these data that the vast majority of SPONneurons in the rat express

light to moderate GABA immunoreactivity.

GABA-IR and glycine-IR puncta in the SPON

We also performed a quantitative comparison of the innervation densities of SPON

neurons by glycinergic and GABAergic puncta. To account for the variations in cross-sectional

area of SPON neurons and due to the limited thickness of the sections processed for

postembedding immunocytochemistry, we computed the innervation density relative to the

perimeter of the SPON neurons.  Uniformly throughout the nucleus, SPON somata were

apposed to an average of 19.42 ± 0.72 (S.E.M.) gly-IR puncta per 100µm of somal perimeter.

The cross sectional area of gly-IR puncta measured an average of 2.16 ± 0.13 µm2.  GABA-IR

punctate profiles measured an average of 1.57 ± 0.91 µm2 and were found in apposition to

somata throughout the SPON.  However, somata in the ventrolateral SPON were apposed to an

average of 15.04 ± 0.76 GABA-IR puncta, while neurons in the dorsomedial portion of the

nucleus were apposed to an average of 23.37 ± 0.96 puncta, per 100µm of somal perimeter.

This difference in innervation density was statistically significant by ANOVA (p<0.0001).

Overview of GAD-IR in the SOC

GABA is a small, labile molecule that can be difficult to localize with

immunocytochemistry and may not accumulate to detectable levels in somata of neurons that

utilize GABA as neurotransmitter (Ottersen and Storm-Mathisen 1984).  Moreover, optimal

conditions of tissue fixation and processing to reveal GABA by immunocytochemistry are most

conducive to post-embedding protocols on thin sections, which are not ideally suited to

quantitative morphological and stereological analyses.  For these reasons, we chose to employ

isoform specific antisera directed against GAD, the synthesizing enzyme for GABA and a

reliable marker of GABAergic neurons (Wu et al. 1973; Oertel et al. 1981; Oertel 1983).
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GAD immunocytochemistry revealed cell bodies, dendrites and punctate profiles

throughout the SOC (Figs. 2.5, 2.6).  The LSO contained a sub-population of IR neurons

situated among immunonegative neurons, and abundant GAD-IR punctate profiles.  More LSO

somata were immunolabeled by GAD-1440 (cross-reacts with both GAD isoforms) and K2

antisera  (specific for GAD-67; Figs. 2.5 and 2.6B) than with GAD-6 antiserum (recognizes the

65 kD isoform; Fig. 2.6A).  The MSO and MNTB contained no GAD-IR cells, but neurons in

both nuclei were surrounded by numerous GAD-IR puncta.  Among the periolivary nuclei, the

VNTB contained the most intensely labeled neurons and dense punctate labeling. The LNTB

also contained both GAD immunopositive and immunonegative somata as well as GAD-IR

punctate profiles.  The SPON contained many labeled neurons and a moderate density of GAD-

IR puncta.  Overall, the labeling of punctate profiles in the SOC was more intense with the

GAD 65 specific GAD-6 antiserum.

GAD-IR somata in the SPON

Regardless of the antisera used, immunolabeling of SPON neurons appeared as a dark

reaction product that filled the cytoplasm and often extended into proximal dendrites.  GAD-IR

neurons appeared to be evenly distributed throughout SPON and it was our impression that the

vast majority of SPON neurons were GAD-IR.  Unbiased stereology performed in five animals

indicated that the rat SPON contains approximately 2,555 neurons (revealed by cresyl violet

counterstaining) and 2,313 GAD-IR neurons (Table 2.2).  Thus, roughly 90% of SPON neurons

express GAD.  The 65kD and 67kD isoforms of the enzyme were present in equal numbers of

neurons (2,314 and 2,346 neurons, respectively), indicating a great degree of co-expression.

Neuronal Morphology

SPON neurons exhibited some variability in size and shape (Figs. 2.5, 2.6). In the

coronal plane of section, the majority of GAD-IR SPON neurons were either bipolar or oval

with a vertical orientation, while a small fraction appeared to have a multipolar morphology.

When viewed in the parasagittal plane, SPON neurons typically displayed a more



29

homogeneous multipolar appearance with multiple dendrites extending from the soma in

various directions (Fig. 2.7).  Parasagittally sectioned profiles of SPON somata (traced

separately from their dendrites) were significantly larger and less circular than coronally

sectioned profiles (Table 2.3).  These morphometric data, taken together, indicate that typical

GAD-IR SPON neurons are large (335.9±10.64µm2 average cross sectional area in the

parasagittal plane), multipolar cells whose somata and dendritic trees are flattened

parasagittally.

In both planes of section, GAD-IR dendrites were seen extending between the SPON

and the neuropil of the nearby VNTB (Figs. 2.6 and 2.7).  In coronal sections, these dendrites

appeared to form a single, narrow bundle.  In parasagittal sections it was possible to view a

considerable portion of the rostro-caudal extent of the SPON, and GAD-IR dendrites appeared

as several small bundles separated by distinct immunonegative fascicles of trapezoid body

fibers (Fig. 2.7).  In some cases it was evident that the GAD-IR dendrites belonged to SPON

neurons (Fig. 2.7B).

GAD-IR puncta density in the SPON

Each of the three antisera used revealed myriad GAD-IR punctate profiles in SPON,

which we interpret as largely representing axon terminals.  These puncta were apposed to

GAD-IR somata throughout the SPON, forming characteristic perisomatic and peridendritic

arrays (Fig. 2.8). Some of the puncta were connected by delicate fibers suggesting that they

were en passant boutons. GAD-IR puncta were uniform in cross-sectional area throughout the

nucleus, measuring an average of 1.58 ± 0.54µm2.
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DISCUSSION

Constituent neurons of the SPON

Previous studies of the rat SOC utilizing antisera to GABA or GAD have revealed a

GABAergic population of neurons within the SPON (Mugnaini and Oertel 1985; Li et al. 1995;

Gonazalez-Hernandez et al. 1996).  Mugnaini and Oertel (1985) did not focus on the SPON per

se but, using the same non isoform-specific GAD-1440 antiserum used in this study, estimated

that between 50 and 90% of the neurons in the rat SPON were GAD immunoreactive.  It has also

been reported that aspartate-IR neurons dominate in the rat SPON (Kumoi et al. 1993), but this

isolated finding has not been confirmed.  In contrast, immunocytochemical studies of guinea pig

SPON have described distinct GABAergic and glycinergic neuronal populations (Helfert et al.

1989; Saint Marie and Baker 1990; Ostapoff et al. 1990; Ostapoff et al. 1997).  These findings,

considered in combination with tract tracing studies in guinea pig, led Schofield (1991) to

suggest that somal morphology and neurochemical phenotype are correlated with efferent

projection target of SPON neurons.  Our data demonstrate remarkable homogeneity of the SPON

of the rat, in that the vast majority of rat SPON neurons are immunoreactive for GAD.

Moreover, it has been reported recently that virtually all SPON neurons in rat project to the

ipsilateral central nucleus of the IC (Saldaña and Berrebi 2000).  Taken together, these studies

suggest that the rat SPON represents a relatively simply organized nucleus with virtually all of

its cells providing a purely GABAergic innervation of the ipsilateral IC.  For these reasons, we

propose that the rat is an ideal species in which to study the physiology and pharmacology of

GABAergic projections.

Co-localization of GAD isoforms in SPON neurons

The fact that both the 65 and 67 kD isoforms of GAD colocalize in SPON somata is

noteworthy.  Esclapez and coworkers (1994) reported that in many neurons the two GAD

isoforms occupy different intracellular compartments, with GAD 65 being highly concentrated in

terminals and GAD 67 distributed in both somata and terminals.  However, there is molecular

evidence that GAD 65 and 67 can form heterodimers (Sheikh and Martin 1996), and biochemical
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data suggest that GAD 67 is targeted to the perikaryal Golgi membrane via an interaction with

GAD 65 (Dirkx et al. 1995).  The membrane-bound GAD 65-67 heterodimer is then presumably

shipped from the Golgi apparatus to nerve terminals, possibly resulting in the cell body and axon

terminal colocalization of GAD isoforms in our study.  The production and possible dimerization

of GAD 65 in somata may explain our localization of this isoform in SPON perikarya.  The

precise role of these isoforms in GABAergic neurotransmission and cellular metabolism is not

yet understood.  Based on counts of GAD-IR neurons we obtained by unbiased stereology, we

report that both isoforms were present in the vast majority of SPON neurons.  Even though it is

difficult to quantify immunolabeling intensity in our material, the intense labeling found with

both the GAD-6 and K2 antisera is suggestive that both isoforms are located in somata at

relatively high levels.  GAD 65 is inactive in the absence of cofactor (pyridoxal 5' phosphate;

PLP) and cannot synthesize GABA in cell somata since the cofactor is specifically localized to

nerve terminals (Nicholls 1994). Therefore, if GAD 67 is responsible for metabolic processes,

such as the GABA shunt which moves glutamate into the Krebs cycle (Baxter 1970), then pools

of GABA made by this enzyme are likely to be quickly converted to another metabolite (e.g.

succinic semialdehyde) and not be involved in neurotransmission.  The inactivity of GAD 65 and

the possible metabolic role of GAD 67 might contribute to the common difficulties in revealing

GABAergic cell bodies using antisera directed against GABA (e.g. Gonzalez-Hernandez et al.

1996; see also Ottersen and Storm-Mathisen 1994).

Glycinergic and GABAergic inputs to SPON neurons

Rat SPON neurons express GABA and glycine receptors on their membranes (Friauf et

al. 1997, 1998), and we observed abundant glycine-IR and GABA-IR in the neuropil of the

nucleus.  Our data and previous reports suggest an extremely dense glycinergic synaptic input to

SPON which arises, in large part, from MNTB (Morest 1968; Helfert et al. 1989; Kuwabara and

Zook 1991, 1992b; Banks and Smith 1992; Sommer et al. 1993).  Our results also coincide with

the high concentration of glycine reported in the rat SPON by high performance liquid

chromatography (Godfrey et al. 2000).

The prominent punctate labeling revealed by GABA and GAD immunocytochemistry
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indicates that SPON also receives GABAergic synaptic input, but the source or sources of this

innervation is not known.  One candidate is the nearby VNTB, which contains a population of

GABAergic neurons (Mugnaini and Oertel 1985; Moore and Moore 1987).  In rats, VNTB and

SPON display higher GABA concentrations than other SOC nuclei (Godfrey et al. 2000).

However, tract tracing studies in rat have failed to show such a projection (Warr and Beck 1996),

and we consider it unlikely that the VNTB represents a significant source of GABAergic puncta

in the SPON.

The lemniscal nuclei are also possible sources of GAD-IR puncta in the SPON.  Both the

dorsal and ventral nuclei of the lateral lemniscus (DNLL and VNLL) contain GABAergic

neurons (Thompson et al. 1985; Moore and Moore 1987; Roberts and Ribak 1987; Gonzalez-

Hernandez et al. 1996; Riquelme et al. 1998).  Tract tracing data provide evidence that the

DNLL innervates the SOC in rats, although it is uncertain if the SPON receives any of this input

(Bajo et al. 1993). The VNLL in cats has been shown to project to the dorsomedial periolivary

nucleus (DMPO) (Whitley and Henkel 1984), the presumed homologue of the SPON of rodents,

but we are not aware of reports of a similar projection in the rat.

It is also quite possible, in fact likely, that a proportion of GAD-IR puncta within the

SPON arises from branches of SPON axons. Preliminary intracellular labeling experiments from

our laboratory indicate that SPON axons collateralize before leaving the nucleus and contact

other SPON neurons (Kulesza et al. 2000).  Such an arrangement suggests that SPON neurons

may provide modulatory feedback to local targets in and around the nucleus.  We are particularly

interested in this possibility, especially given the recent demonstrations that the SPON of the rat

is tonotopically organized (Kelly et al. 1998; Saldaña and Berrebi 2000). Further, more refined

tracing studies are necessary to adequately resolve these local collaterals and their potential

impact on SPON function.

Morphology of SPON neurons

Our morphometric study complements previous tract-tracing work showing that the rat

SPON contains a population of multipolar neurons that project to the inferior colliculus and
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whose somata and dendritic arbors are elongated rostrocaudally and flattened parasagittally

(Saldaña and Berrebi 2000).  The present data also corroborate the observation that SPON

neurons appear different in size and shape depending on the sectioning plane in which they are

viewed.  Further, their anisotropic organization coincides with the expected geometric

arrangement of cells within a tissue displaying a lateral-to-medial tonotopic order of frequency

representation, as demonstrated for the SPON (Kelly et al. 1998; Saldaña and Berrebi 2000),

since each neuron is expected to receive synaptic inputs localized in mediolaterally restricted

territories.

We noted that some ventrally located SPON neurons possessed dendrites that appeared to

enter the VNTB, a feature previously demonstrated in retrogradely labeled SPON neurons

(Saldaña and Berrebi, 2000).   Neither the frequency of occurrence nor purpose served by this

outgrowth of dendritic processes is clear at this time. However, one can envision that selected

SPON neurons may be “sampling” some of the synaptic input received by VNTB cells, including

an excitatory descending projection originating in the IC which does not innervate the SPON

directly (Faye-Lund 1986; Rajan 1990; Vetter et al. 1993).

Functional implications

The SPON receives presumably excitatory projections from octopus and multipolar cells

of the ventral cochlear nucleus (Warr 1966; Friauf and Ostwald 1988; Saldaña et al. 1994;

Schofield 1995; Finlayson and Adam 1997).  Octopus cells display distinct physiological

characteristics, such as broad tuning curves and onset responses at characteristic frequency (CF),

and pronounced phase locking at low frequency (Godfrey et al. 1975; Rhode et al. 1983; Rhode

and Smith 1986).  The excitatory multipolar cells, on the other hand, would be expected to

provide a frequency tuned and sustained input to SPON (Smith and Rhode 1989).  The SPON

also receives excitatory input from collaterals of calyciferous bushy cell axons and collaterals of

MSO projections (Morest 1968; Smith et al. 1991; Kuwabara and Zook 1999).  The integration

of excitatory inputs could create a variety of response patterns in the SPON that are difficult to

predict.  Onset responses could be broadly (from octopus cells) or narrowly (from multipolar and

globular cells) tuned, and sustained responses (from multipolar cells) may be narrowly tuned and
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could reveal monaural or binaural (from MSO cells) interactions. These excitatory influences are

presumably balanced in SPON by finely tuned glycine-mediated inhibition arising in the MNTB

(Banks and Smith 1992; Sommer et al. 1993; Smith et al. 1998) and also by its own GABAergic

collateral innervation.

Despite broad tuning in some of its excitatory input, SPON provides a topographic and

presumably tonotopic projection to the inferior colliculus (Kelly et al. 1998; Saldaña and Berrebi

2000).  GABAergic and glycinergic inhibition originating from the SOC is reported to sharpen

tuning curves of IC neurons to certain types of sound (Yang et al. 1992, Koch and Grothe 1998),

influence the temporal firing patterns of IC units (LeBeau et al. 1996), and are involved in tuning

for duration of sound stimuli in the IC (Casseday et al. 1994).  GABA is also a powerful

mediator of interaural intensity disparity sensitivity in the colliculus (Park and Pollak 1993).

Thus, the inhibitory GABAergic projections of the SPON may influence midbrain auditory

circuitry in a manner that enables distinction of subtle changes in the frequency and/or temporal

characteristics of sounds. There are no published studies of the physiological response properties

of rat SPON neurons that shed light on their contribution to the above mentioned features of

collicular physiology.  There is evidence from other species that some DMPO and SPON

neurons are broadly tuned (Guinan et al. 1972 [cat]; Spitzer and Semple 1995 [gerbil]; Dehmel et

al. 1999 [gerbil]).  The placement of SPON in a clearer functional context awaits the

identification of the source or sources of its abundant GABAergic synaptic input and the

physiological response characteristics of its constituent neurons.
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Figure 2.1.  Organization of the rat superior olivary complex.  Cresyl violet stained coronal

section through the SOC at the level of the seventh cranial nerve (7n) root. The three principal

nuclei of the SOC, the lateral superior olive (LSO), medial superior olive (MSO) and the

medial nucleus of the trapezoid body (MNTB), can all be seen in this section, along with

several periolivary nuclei.  It is evident that the superior paraolivary nucleus (SPON) has a

relatively low density of neurons.  D, dorsal; LNTB, lateral nucleus of the trapezoid body; M,

medial; rf, pontine reticular formation; tb, trapezoid body; VNTB, ventral nucleus of the

trapezoid body. Scale bar = 200µm
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Figure 2.2.  Overview of glycine-IR and GABA-IR in the rat SOC.  Postembedding

immunocytochemistry performed on plastic embedded, semi-thin sections demonstrate glycine-IR

and GABA-IR within SOC nuclei.  (A) In glycine material, MNTB neurons are easily recognized

by their darkly immunostained somata.  The SPON contains only rare glycine-IR cell bodies but

the neuropil reveals a high density of glycine-IR fibers and punctate profiles.  (B) In sections

processed to reveal GABA, cell bodies and neuropil in VNTB are the most prominently

immunolabeled. SPON contains numerous GABAergic cell bodies, most of which are lightly to

moderately immunolabeled.  GABA-IR punctate profiles are distributed throughout the neuropil

of SPON.   Abbreviations as in Figure 1.  Scale bar = 100µm
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Figure 2.3.  Glycine-IR and GABA-IR of the SPON neurons.  High magnification

photomicrographs of coronal semithin sections show the range of immunolabeling intensities

observed in SPON and MNTB. (A-B)  Five neurons are shown, and the dashed line denotes the

boundary between MNTB and SPON.  The two MNTB neurons (m) are distinctly glycine-IR and

GABA-immunonegative.  One of the SPON cells (1) displays light glycine-IR while all three are

intensely GABA-IR.  (C-D) Two additional SPON cells are illustrated.  Cell 4 is glycine-

immunonegative and GABA-IR.  Cell 5 is lightly glycine-IR and GABA-immunonegative. Scale

bar = 20µm.
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Figure 2.4.  Assessment of glycine-IR and GABA-IR intensities in somata of the SOC. The same

neurons were immunolabeled with antiserum directed against glycine or GABA in adjacent semi-

thin sections from six animals.  IR intensity values for MSO cells (squares) cluster at the lower

end of both intensity scales.  In contrast, the IR intensity values representing MNTB neurons

(circles) cluster at the high end of the glycine-IR and the low end of the GABA-IR scales.  SPON

neurons (triangles) show a wide range of GABA-IR intensities, and are the most intensely

immunoreactive for GABA among the three nuclei.  Glycine-IR values of SPON neurons are

mostly distributed within the lower third of the glycine-IR intensity scale.  The number at the top

left of each panel indicates the experimental animal identification number.  The sections from all

animals were incubated with the commercial glycine antiserum (Chemicon) and the GABA

antiserum provided by Dr. David Pow, except those from animal 054/97 (top left panel) which

was incubated with the commercial GABA antiserum (HTI Bioproducts).  In animals 054/97 and

031/96, but not the remaining cases, the antisera were pre-absorbed as described in Methods.
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Figure 2.5.  Immunoreactivity for glutamic acid decarboxylase (GAD) in the SOC.  Frozen

coronal tissue section processed using the GAD-1440 antiserum, which cross-reacts with both

isoforms of GAD.  The LSO, SPON, VNTB and LNTB contain GAD-IR neurons.  MNTB and

MSO neurons are GAD-immunonegative, but receive GAD-IR innervation which outlines their

cell bodies and proximal dendrites.  In the coronal plane, most SPON neurons appear bipolar,

although round or multipolar forms are also seen occasionally.  Scale bar = 100µm
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Figure 2.6.  GAD 65-IR and GAD 67-IR in the SOC.  Coronal sections illustrate the distribution

of GAD isoforms in the SOC as revealed by antisera specifically directed against either GAD 65

(A) or GAD 67 (B).  Immunoreactive neurons are present in SPON, VNTB and LNTB.  Fewer

LSO neurons were immunolabeled for GAD 65 than for GAD 67.  GAD-IR dendrites

(arrowheads) appear to extend between the ventral SPON and the VNTB.  Scale bar = 100µm
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Figure 2.7.  GAD-IR in a parasagittal section through the SOC.  Frozen parasagittal tissue section

processed according to the PAP method using GAD 65 antiserum.  At this level through the

SOC, portions of the VNTB, MNTB and SPON (outlined by dashed border) are visible.  Bundles

of GAD-IR dendrites (arrowheads) are separated by immunonegative fascicles of trapezoid body

fibers.  (B) Higher magnification photomicrograph of the bracketed region in (A).  SPON

neurons appear distinctly multipolar when sectioned parasagittally.  Note also the dense axo-

somatic and axo-dendritic GAD-IR innervation of these neurons.  In some cases, the ventrally

directed GAD-IR dendrites (arrowheads) could be traced to their parent cell bodies in the SPON.

C, caudal; D, dorsal; rf, pontine reticular formation.  Scale bar = 100µm in A, 50µm in B.
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Figure 2.8.  GAD-IR puncta apposed to a GAD-IR neuron in the SPON.  SPON neuron

displaying a distinct multipolar morphology and strongly expressing the 65kD isoform of GAD.

Numerous GAD 65-IR punctate profiles can be seen apposed to the soma (arrowheads) and

dendrites (arrows) of this cell. Scale bar = 10µm.
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Table 2.1.  Classification of Glycine and GABA immunoreactivities in SOC neurons.

Nucleus

Glycine-IR intensity

Proportion of cells

GABA-IR intensity

Proportion of cells

Neg. - Light

(OD=0-85)

Moderate

(OD=85-170)

Dark

(OD=170-255)

Neg. - Light

(OD=0-85)

Moderate

(OD=85-170)

Dark

(OD=170-255)

MNTB

(n=60)

0% 43% 57% 95% 5% 0%

MSO

(n=60)

100% 0% 0% 100% 0% 0%

SPON

(n=154)

89% 11% 0% 49% 41% 10%
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Table 2.2.  Unbiased estimates of Nissl stained and GAD-IR neurons in the rat SPON

Estimated number of neurons

Animal # Isoform GAD Nissl

002/97a

002/97b GAD65&67

2,398

2,158      2,278

037/98 GAD65 2,314

024/98 GAD67 2,346

005/94 - 2,499

035/94 - 2,611

Overall estimates 2,313 2,555

To verify the reliability of the unbiased stereology method in our material, two separate

estimates of GAD-IR neurons were obtained from animal 002/97 using the GAD-1440

antiserum.  The number of GAD-IR neurons were then estimated from two other animals using

either the GAD-6 or the K2 antiserum.  We also estimated the number of Nissl stained cells in

the SPON of two additional animals.  Approximately 90% of SPON neurons are GAD-IR, and

each antiserum reveals essentially the same number of cells.
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Table 2.3.  Morphometric analysis of GAD labeled SPON neurons

Plane of

section

Mean Area

(µm2 ± S.E.)

Mean

Perimeter

(µm ± S.E.)

Mean

Maximum

Diameter

(µm ± S.E.)

Mean

Minimum

Diameter

(µm ± S.E.)

Mean

Circularity

(average ±

S.E.)

Coronal

(n=138)

184.89 ± 5.74 * 63.69 ± 1.22* 21.51 ± 0.43* 10.90 ± 0.24* 0.578 ± 0.01*

Sagittal

(n=108)

335.90 ±10.64* 113.81 ± 2.42* 29.64 ± 0.71* 14.61 ± 0.39* 0.336 ± 0.01*

*  = difference is significantly different (p<.05) by ANOVA.

GAD-immunoreactive cell bodies were larger and less circular when sectioned parasagitally

than when sectioned coronally, supporting the conclusion that SPON cell bodies are

multipolar, elongated rostrocaudally and flattened parasagittally.
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Chapter Three

Unbiased stereological estimates of neuron number in subcortical

auditory nuclei of the rat

This work is published: Hearing Research 3903 (2002) 1-12
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ABSTRACT

      The mammalian auditory system consists of a large number of cell groups, each containing

its own complement of neuronal cell types.  In recent years, much effort has been devoted to the

quantitation of auditory neurons with common morphological, connectional, pharmacological or

functional features.  However, it is difficult to place these data into the proper quantitative

perspective due to our lack of knowledge of the number of neurons contained within each

auditory nucleus.  To this end, we have employed unbiased stereological methods to estimate

neuron number in the cochlear nuclei, superior olivary complex, lateral lemniscus, inferior

colliculus and medial geniculate body.  Additionally, we generated a three-dimensional model of

the superior olivary complex.  The utility of unbiased stereological estimates of auditory nuclei is

discussed in the context of various experimental paradigms.
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INTRODUCTION

The structural complexity of the mammalian auditory system has been appreciated since

the early anatomists described the numerous nuclei that comprise the ascending pathways, and

also the great diversity of their constituent neurons’ morphologies.  Modern auditory

neurobiology relies heavily on the quantitative analyses of structure and function.  However,

limited knowledge of the structural composition of auditory nuclei renders the data produced in

many studies difficult to interpret.  To date, only a few investigations have attempted to

determine the number of neurons in nuclei of the central auditory system (see discussion), and

most of these have relied on biased and therefore potentially unreliable counting methods.

Therefore, a systematic investigation of neuron numbers in the central auditory system of a

mammalian species is warranted.

The goal of this study was to provide unbiased, accurate estimates of the total number of

neurons in subcortical auditory nuclei of the rat.  This species is commonly used for

physiological and anatomical investigations, and substantial background information pertaining

to its central auditory system is available (reviewed in Webster, 1995).  Knowledge of the

number of neurons located in auditory nuclei, coupled with an understanding of their

physiological response properties, connectivities and neurochemical phenotypes will enable the

formation of accurate quantitative models of auditory circuits.  This information may also prove

useful in a number of other ways.  Knowing the number of cells located in an auditory nucleus

enables an assessment of the percentage of cells that are visualized by selective labeling methods

such as immunocytochemistry, in situ hybridization, tract-tracing or experimental degeneration

approaches.  For instance, immunocytochemical probes commonly reveal a single neuron type in

a particular brain region, and occasionally even a sub-population of a cell type that expresses the

marker under investigation.  Well documented examples include the cartwheel cells of the dorsal

cochlear nucleus (DCN), which represent the only neurons in the guinea pig cochlear nuclear

complex that are immunoreactive for PEP-19 (Berrebi and Mugnaini, 1991), or the cartwheel

cells of the rat DCN, only a percentage of which are glycinergic (Gates et al., 1996).  Similarly,

in tract-tracing experiments the percentage of retrogradely labeled cells in a given nucleus is

influenced by the number of its neurons that actually participate in the pathway under study, and
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by various technical artifacts resulting from the effective size of the injection site and the

efficiency of the retrograde transport of the chosen tracer.  Thus, only with knowledge of the

entire population of cells contained within the structure under study can one make quantitative

assessments of cells expressing a particular marker or projecting to a particular brain region.  For

example, by combining immunohistochemical and retrograde tracing data with unbiased

stereological estimates of neuron number, it has recently been demonstrated that greater than

90% of neurons in the superior paraolivary nucleus (SPON) express glutamic acid decarboxylase

and project to the ipsilateral inferior colliculus (Saldaña and Berrebi, 2000; Kulesza and Berrebi,

2001).

Design-based stereology is a technique that provides reliable estimates of the number and

properties of neurons (Howard and Reed, 1998). The method has a rigorous mathematical

foundation and provides an indication of the precision of the estimates obtained.  Stereologically-

based estimates are considered ‘unbiased’ if the chosen test probe is employed using appropriate

rules for systematic random sampling of the structure of interest.  Once the so-called sampling

and systematic sources of bias are eliminated, no assumptions need to be made about the size,

shape or distribution of the elements under study. Implementing unbiased stereology is largely

automated, thus maximizing efficiency and eliminating human errors. Therefore, we have

applied design-based stereology to determine the number of neurons present in the cochlear

nuclei, superior olivary complex, lateral lemniscal nuclei, inferior colliculus and medial

geniculate body of the rat.  We also produced a three-dimensional structural model of the

superior olivary complex in this species.
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MATERIALS AND METHODS

Animals and Tissue Processing

Adult female Wistar rats (190-210 g body weight) were anesthetized with an

intraperitoneal overdose of sodium pentobarbital (120 mg/kg body weight) and perfused through

the ascending aorta with a vascular rinse composed of calcium-free Ringer's solution (pH 6.9).

Fixation was accomplished first with 4% freshly depolymerized paraformaldehyde and 0.1%

glutaraldehyde in 0.1 M phosphate buffer, followed by 4% freshly depolymerized

paraformaldehyde in the same buffer.  Brains were then dissected and cryoprotected in 30%

sucrose in saline.  Sectioning was performed on a freezing microtome at a thickness of 40 µm.

Sections were mounted in serial order onto glass slides, air-dried, stained for Nissl substance

using 1% cresyl violet and coverslipped with Entellan (Merck).

Unbiased Stereology

We selected for study three cases from our collection of cresyl violet-stained series of rat

brain sections.  This material was chosen because cresyl violet staining reveals all cells and

provides good resolution of the cytological features of neurons and glial cells.

Using two coronal series of sections, we estimated the number of neurons contained in

nineteen auditory structures (nuclei or subdivisions) bilaterally.  Because the precise rostral and

caudal borders of certain superior olivary complex (SOC) nuclei were sometimes difficult to

discern in coronal sections, we also counted neurons in SOC nuclei from one parasagittal series

of sections.  Stereo Investigator software (MicroBrightfield, Inc., Colchester, VT) was used to

implement the optical fractionator protocol, which encompasses the optical disector and

fractionator tools (Gundersen, 1988, Gundersen et al., 1988).  In order to minimize the

coefficient of error, we counted at least 100 neurons and sampled from ten or more sections in

each auditory structure.  To begin, we randomly selected a section containing the cell group of

interest and then sampled uniformly spaced sections, the frequency of which depended on the

size of the structure (section fraction).  Images of each selected section were captured by video
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camera and displayed on a computer monitor.  For every chosen section, a contour enclosing

each structure was traced on the monitor using a 4X or 10X objective lens.  To select the sample

from each contour drawn, the software created a two-dimensional counting frame (measuring

4,900 µm2) formed by two inclusion lines and two exclusion lines, and this frame was used to

sample from approximately twenty sites within each contour (area fraction).  The thickness of

each tissue section was determined to be between 20 and 23 µm by averaging the thickness

measured from several locations using a 100X oil immersion objective lens (NA 1.35; final

magnification on the screen was 2,680X).  For stereological counts, the top 5µm and the bottom

5-8µm (depending on the actual thickness) of the tissue sections were reserved as guard zones

(disector fraction) and only neurons that 1) first came into focus between the guard zones and 2)

did not intersect the forbidden boundary lines of the counting frame were included in the counts

(number of counted cells).  Cellular profiles displaying cytoplasmic staining of Nissl granules

surrounding a pale nucleus were classified as neurons and were included in our counts.  Cells

were identified as glia if they displayed limited cytoplasm and darkly-stained nuclei and were

excluded from our counts.  The very numerous granule cells of the cochlear nuclei were also

excluded from our counts because they were often difficult to distinguish from small glial cells.

In one cursory examination, we estimated that more than 50,000 granule cells reside within the

dorsal cochlear nucleus alone (DCN), which roughly coincides with a recent study of the mouse

DCN using the optical fractionator (Idrizbegovic et al., 2001).  Therefore, it must be noted that

the number of neurons involved in auditory processing in the cochlear nuclei is much higher than

the numbers presented here.

Our final neuronal estimates (Nest) were calculated using the equation:

Nest = number of counted cells X area fraction X section fraction X disector fraction

The three-dimensional reconstruction of the SOC was created with NeuroLucida and

NeuroExplorer software (MicroBrightField, Inc., Colchester, VT) by stacking the contours for

each nucleus and factoring in the appropriate spacing between sections before shrinkage.



54

All animal procedures were approved by the Institutional Animal Care and Use

Committee of West Virginia University, in accordance with existing regulations of the National

Institutes of Health.
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RESULTS

Stereological Estimates of Neuron Number

Cochlear Nuclei

The cochlear nuclei (CN) were subdivided into the anteroventral cochlear nucleus

(AVCN), the posteroventral cochlear nucleus (PVCN) and the dorsal cochlear nucleus (DCN) as

depicted in Figure 3.1.  In the case of this large complex, delineating the boundaries of the three

nuclei was easily accomplished by using the entry of the eighth nerve root, the taenia choroidea

and the granule cell lamina as guides (Osen, 1969, 1988; Brawer et al., 1974; Mugnaini et al.,

1980; Lorente de Nó, 1981). The counts from each subdivision are provided in Table 3.1.  We

estimate that the rat cochlear nucleus contains a total of 30,300 neurons (not including granule

cells), with 42% located in the AVCN with the remaining neurons roughly equally distributed

between the PVCN and DCN.

Superior Olivary Complex

Six structures within the superior olivary complex (SOC) were examined.  Our

determination of the borders of these nuclei is shown in a series of coronal sections in Figure 3.1

and in parasagittal sections in Figure 3.2.  In most sections, the borders of the medial nucleus of

the trapezoid body (MNTB), superior paraolivary nucleus (SPON) and medial superior olive

(MSO) were relatively easily discerned by the distinct morphologies, arrangement and/or

orientation of neurons contained in each nucleus.  The small MSO is identified as a narrow

vertical column of horizontally-oriented bipolar neurons.  We noted that in the rostral-most SOC,

the MSO expands dorso-ventrally and its cross-sectional area nearly triples in size.  In coronal

sections through the middle of the SOC (Fig. 3.1D), the lateral superior olive (LSO) is readily

recognized by its S-shape and its tightly packed bipolar neurons. However, the LSO is

considerably shorter in the rostro-caudal dimension than the other SOC nuclei (Fig. 3.2) and is

not present in rostral-most (Fig. 3.1C) or caudal-most sections (Fig. 3.1E).

The borders of the other two structures examined (the ventral and lateral nuclei of the
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trapezoid body [VNTB and LNTB, respectively]), were difficult to define in some coronal

sections, particularly at their rostral and caudal ends.  The LNTB contains neurons with

relatively large somata and darkly stained Nissl substance as compared to the smaller, paler

staining neurons that comprise the LSO.  This feature was useful in distinguishing these two

structures, especially in rostral sections where the LNTB extends dorsally and occupies a

position similar to that of the more caudal LSO.  The VNTB is located ventral to the MSO and

SPON and is composed of small, sparsely packed neurons situated among trapezoid body fibers.

This nucleus extends quite far rostrally into the midbrain, where it occupies a position very close

to the caudal tip of the VNLL (Fig. 3.2A).

According to our estimates derived from coronal sections, approximately 18,600 neurons

are located in the six SOC nuclei combined (Table 3.1).  The MNTB and VNTB, with 6,000

neurons and 4,500 neurons respectively, account for more than half of all SOC neurons.  The

SPON, LSO and LNTB each contain between 2,100 and 2,500 neurons, and 1,100 neurons are

found in the MSO.

The neuronal estimates for the MNTB, LSO and SPON obtained from the single

parasagittal series of sections were within 10% of the average estimate derived from the two

coronal series.  However, greater discrepancies were observed for those structures whose borders

were the most difficult to identify in rostral coronal sections, namely the LNTB, MSO and

VNTB (18%, 19% and 28% higher estimates derived from parasagittal than from coronal

sections, respectively).

Lateral Lemniscus

We estimated the number of neurons in the ventral and dorsal nuclei of the lateral

lemniscus (VNLL and DNLL), and in two adjacent structures: the nucleus sagulum and the

horizontal cell group (HCG) (Fig. 3.3).  The HCG is a group of small horizontally oriented and

loosely packed neurons situated between the DNLL and the VNLL (Ruiz-Gómez, 1988; Bajo et

al., 1993; Caicedo and Herbert, 1993; Merchán et al., 1994).  Altogether, these four structures

contain approximately 17,500 neurons, and by our estimate nearly 80% are situated in the
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VNLL.

Inferior Colliculus

We have adopted the parcellation of the inferior colliculus (IC) proposed by Saldaña et

al. (1996).  According to these authors, the IC consists of the medial IC (IC-m), which includes

the more commonly named dorsal cortex and central nucleus, and the lateral IC (IC-l), similar to

the external cortex of earlier subdivision schemes.  The divisions of the IC are shown in Figure

4, and the estimates of cell number in these subdivisions are given in Table 3.1.  We have also

estimated the number of neurons interspersed among the fibers of the brachium of the IC (bic).

Taken together, these auditory mesencephalic structures contain some 373,600 neurons, with

approximately 60% located in the IC-m, 35% found in the IC-l and 5% in the bic.

Medial Geniculate Body

We parcelled the rat medial geniculate body (MGB) into three subdivisions: ventral

(MGBv), dorsal (MGBd) and medial (MGBm) (LeDoux et al., 1987; Winer et al., 1999a, b). We

chose to exclude the so-called suprageniculate nucleus (LeDoux et al., 1987) because its

involvement in auditory circuits and processing has not been firmly demonstrated.  Figure 3.5

shows the three subdivisions of the MGB at two different rostro-caudal levels.  As a whole, the

MGB contains approximately 72,300 neurons, 65% of which are located in the MGBv (Table

3.1).

Three-Dimensional Reconstructions

Figure 3.6 depicts the three-dimensional renderings of the six SOC nuclei examined.  The

reconstructions convey the complex geometries of these tightly packed cell groups in a manner

that is difficult to appreciate in two-dimensional views.  In particular, individual coronal sections

through rostral levels of the SOC can lead to the confusion of the LNTB with the LSO and the

VNTB with the VNLL.  The reconstructions also clearly demonstrate the dorsal expansion of the

MSO at rostral levels.  This model can be rotated to achieve any view, which clarifies the
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borders of these structures as seen in any of the cardinal planes of section, or for that matter any

oblique plane.  The interested reader can access these reconstructions on the internet by visiting

the website of the Sensory Neuroscience Research Center of West Virginia University

(http://www.hsc.wvu.edu/snrc/berrebi.html).
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DISCUSSION

Choice of the optical fractionator tool

The field of stereology encompasses more than a dozen so-called “tools” for the study of

biological entities or other particulate structures.  When properly applied, each of these tools

renders quantitative estimates that are efficiently obtained, accurate, and unbiased (Howard and

Reed, 1998).  We selected the optical fractionator method in our study because this particular

tool is relatively simple, is unaffected by tissue shrinkage and can be applied to tissues processed

by most, if not all, conventional techniques.  Moreover, to employ the optical fractionator

requires knowledge of only the number of sections containing the area of interest and the actual

tissue thickness, but not the structure volume.  Perhaps most importantly, since all elements are

equally likely to be sampled using this procedure, the optical fractionator is considered to be

“assumption-free”, rendering the size, shape, orientation and spatial distribution of the neurons

irrelevant.  This represents a notable feature of this methodology, given the myriad different cell

types within the numerous nuclei of the central auditory system.

Unbiased neuronal estimates may prove crucial to the interpretation of studies of

convergence and/or divergence of neural pathways, as these represent important factors in the

formation of quantitative neural circuit models.  For stereology to be used precisely in this

context, however, requires knowledge of not only the number of each population or class of

neuron in the nuclei being investigated, but also of their afferent inputs and/or efferent

projections.  Given that the rodent cochlear nuclei alone contain nearly a dozen identified cell

types (reviewed by Cant, 1992) such an undertaking was well beyond the scope of this study.

Nonetheless, the simple procedures utilized herein can be applied to this end in the future.

Consideration of plane of section

We compared data from coronal and parasagittal sections of the SOC as an intrinsic

control.  The decision to include a parasagittal series of SOC sections was made in part because

our neuronal estimates from coronal SOC sections differed from previously published estimates
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(see below), and in part because of the difficulty in discerning the rostral and caudal boundaries

of certain SOC nuclei.  This difficulty is demonstrated by the fact that the standard errors of our

estimates were proportionally higher, on average, for SOC nuclei than for the other structures

included in this study.  For the MNTB, SPON and LSO, three nuclei that can be readily

recognized by their shape, size and position and by the morphology, density and/or special

arrangement of their neurons, the estimates obtained from coronal sections were very similar to

those derived from parasagittal sections. However, the MSO, VNTB and LNTB, which display

striking shifts and/or expansions in the rostral-most aspect of the SOC, appeared to contain

‘more’ neurons when sectioned parasagittally. As already mentioned, the estimates yielded by

the optical fractionator should be unaffected by the orientation of the neurons and therefore

should be similar in any plane of section. Consequently, we presume that the observed

differences were due to the borders of these nuclei being delineated differently in the two planes

of section.  Since most nuclei of the SOC are elongated rostrocaudally, the topographical

relationships between cell groups are better appreciated in the parasagittal or in the horizontal

perspective.  In fact, we analyzed in detail several series of horizontal sections through the SOC

not used for the stereological counts, and these observations confirmed our interpretation of the

boundaries of SOC nuclei derived from parasagittal sections.

Comparison with previous estimates of neuron number in auditory nuclei of the rat

Only a few previously published papers provide neuronal estimates for auditory nuclei in

rats (Table 2).  Agar and colleagues (1999) employed a stereological tool called the fractionator

(not to be confused with the optical fractionator) to estimate neuronal number in the CN of

Wistar rats.  Our estimate of ~9,000 cells in DCN is reasonably close to their report of 10,560

cells (both counts are exclusive of granule cells).  However, we report that the PVCN and AVCN

contain a combined 21,300 neurons compared to their estimate of 15,600 neurons.  We cannot

readily account for the discrepancy, and it is not clear whether the primary difference lies in the

estimates obtained from the AVCN or PVCN, as these authors did not separate the two nuclei.

Several groups have counted neurons in the rat SOC, but did not use stereological

methods.  To study the effects of aging on neuron numbers, Casey (1990) simply counted cell
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nuclei in rats between the ages of 3 and 30 months, using Abercrombie’s (1946) correction factor

to account for over-estimation due to split nuclei errors.  As shown in Table 2, their estimates of

cell number in the MNTB and LSO at 3 months, and for MSO at 30 months (which represent the

maximum estimates across their study), are lower than those reported by most other groups,

including ourselves.  The reports of Irving and Harrison (1967) and Okoyama et al., (1995), also

suggest that fewer neurons are found in the principal nuclei of the SOC than our data indicate.  In

contrast, two other reports (Reuss et al., 1999; Reimann and Reuss, 1999) indicate that

considerably more neurons are located in the MNTB and MSO than we counted in this study,

and their estimate of nearly 8,000 LSO cells is more than three times our estimate.  These

discrepancies may be due, at least in part, to the manner in which certain SOC structures were

delineated.  Reimann’s group adopted the nuclear borders depicted in the Paxinos and Watson

(1986) stereotaxic atlas of the rat brain, whose parcellation of the SOC differs considerably from

ours, particularly at rostral and caudal levels.  Although this atlas has demonstrated its usefulness

as a nearly universal stereotaxic reference, we relied on more specialized sources of information

and applied cytological and morphological criteria for accurate delineation of nuclear

boundaries.

Counts of SPON neurons have appeared in several previous reports (Reimann and Reuss,

1999; Reuss et al., 1999; Kulesza and Berrebi, 2000; Saldaña and Berrebi, 2000), and the

resulting estimates are quite consistent across studies.  Regarding other periolivary nuclei, we

cannot easily compare our LNTB and VNTB counts with the data of Reimann and Reuss (1999)

or Reuss et al. (1999) because these authors parcelled this territory into a ventral periolivary

region (VPO; which presumably corresponds to both the VTNB and LNTB) and a dorsal

periolivary region (DPO).  In any event, their estimate of 1,100 neurons in the VPO cannot be

reconciled with our count of more than 6,600 cells in the VNTB and LNTB combined.  We offer

the possibility that a significant number of neurons in the rostral and caudal extremes of the

SOC, which according to our data are dominated by VNTB and LNTB, were included in their

LSO counts.  Interestingly, the combined counts for LSO, LNTB and VNTB reported in our

study (9,100 neurons) compares favorably with the combined estimates for DPO, VPO and LSO

in the reports published in 1999 by Reimann and Reuss (10,100 neurons) and Reuss et al., (9,835

neurons).
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We are aware of one study in which the rat DNLL was reported to contain 9,000 neurons

(Bajo et al., 1993), but not enough procedural information was provided to determine how this

estimate was obtained.

Clearly, variability between studies in counting methods and in the criteria used to

determine nuclear borders represents a major source of the discrepancies in neuronal estimates.

However, other factors, such as the genetic strain or gender, which are known to affect the

growth rate of experimental animals (Svendsen and Hau, 1994; Klinke, 2000), may have also

contributed to the disparities noted.  For example, recent data provided by a commercial supplier

of laboratory rats indicate considerable variability in the growth rates of different background

strains (www.m-b.dk/Growthrates/out_inbred_rats.htm#SPRD).  Female Sprague-Dawley rats at

12 weeks of age weigh 260 g and males weigh 432 g, while Wistar rats of comparable age weigh

202 g [females] and 321 g [males].  It is known that, regardless of the strain, laboratory rats of

comparable weight tend to have brains of similar size (Paxinos et al., 1985), but it remains to be

ascertained whether differences in body weight are correlated with the number of neurons found

in the brain.  Therefore, systematic studies with unbiased counting procedures are needed to

determine how neuron number changes throughout the animal’s lifespan.  Until such information

is made available, inter-animal variability due to strain, gender and body weight remains an

important factor to consider when comparing across studies.

Convergence and divergence in the auditory pathway

The IC is a synaptic target of virtually all ascending projections from lower auditory

centers, and as such is considered a significant site of convergence in the auditory system.

However, our data seem to challenge this view.  According to our estimates the IC, with its

375,000 neurons, contains more than five times the number of neurons in all subcollicular

auditory nuclei combined.  Thus, it appears that divergence, rather than convergence, may be a

common feature of ascending projections to the IC.  Moreover, our estimates stress the relevance

of neural processing that takes place within the IC by virtue of its intrinsic and commissural

connections.  Interestingly, our data suggest that significant convergence of inputs likely occurs
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within the MGB of the thalamus, which represents the main target of IC projections but contains

only about 20% of the number of collicular neurons.

Sources of GABAergic projections to the Inferior Colliculus

It is well established that GABAergic synaptic inputs to the IC serve to modulate the

spectral and temporal response properties of IC neurons (Yang et al. 1992; Park and Pollak,

1993; LeBeau et al. 1996; Koch and Grothe 1998).  Our neuronal estimates also appear to expose

a widely held misconception concerning the relative abundance of GABAergic projections to the

IC arising from various subcollicular nuclei.  Specifically, the DNLL, whose neurons are almost

without exception GABAergic (Adams and Mugnaini, 1984; Zhang et al., 1998), is commonly

regarded as the main source of GABAergic inhibition to the IC; however, by our count this

nucleus contains only about 1,800 neurons.  In contrast, the VNLL contains nearly 14,000

neurons, all of which reportedly innervate the IC (Merchán and Berbel, 1996) and two-thirds of

which are GABAergic (Riquelme et al., 2001).  Therefore, the VNLL is, by far, the largest

source of ascending GABAergic projections to the IC.  The relative contribution of the SPON,

which contains approximately 2,400 GABAergic neurons that innervate the IC (Saldaña and

Berrebi, 2000; Kulesza and Berrebi, 2000), is at least comparable to that of the DNLL and

should not be overlooked.  It is also noteworthy that most, if not all, IC neurons possess local-

circuit connections (Oliver et al., 1991) and at least 15% of them are presumably GABAergic

(Mugnaini and Oertel, 1985).  This suggests that despite the multiple origins of their GABAergic

inputs, IC neurons themselves are likely the most abundant source of GABAergic synapses

within the IC.
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Figure 3.1.  Cochlear nuclei and superior olivary complex viewed in coronal sections.  A)

Caudal level of the CN containing the DCN and the PVCN.  B) More rostral level of the CN

depicts the caudal aspect of the AVCN at the level of the vestibulocochlear nerve (VIII).  A

small portion of the superficial granule cell layer (sgl) is present at this level.  C) This caudal

section of the SOC contains the MTNB, VNTB, LNTB, MSO and SPON.  Note the position of

the LNTB at this level.  D)  At a mid rostral-caudal level of the SOC, the LSO is now prominent

and shows its typical ‘S’ shape.  At this level, the LNTB is constricted and occupies a small

territory underneath LSO.  In the most rostral section (E), the LSO is absent and the LNTB is

expanded dorsally and shifted laterally.  cblm, cerebellum; D, dorsal; M, medial; tb, trapezoid

body.  Both scale bars = 500µm
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Figure 3.2.  Borders of SOC nuclei in parasagittal sections.  A parasagittal series of sections

shows the SOC at lateral (A), middle (B) and medial (C) levels.  Note the rostral extension of the

LNTB and VNTB and compare to Figure 1E.  7n, facial nerve, FN, facial nucleus, R, rostral.

Scale bar = 500µm
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Figure 3.3. Coronal sections through the nuclei of the lateral lemniscus. (A) The DNLL is

flanked by the nucleus sagulum laterally and the HCG ventrally. (B) The VNLL, which in most

sections appears as an unbroken and long column oriented more or les vertically, appears at this

caudal level as two separate clusters of cells.  CP, commissure of Probst; mcp, middle cerebellar

peduncle. Scale bar = 250 µm
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Figure 3.4.  Subdivisions of the inferior colliculus in coronal section.  A) The IC consists of

medial (IC-m) and lateral (IC-l) subdivisions.  The IC-m includes the classical dorsal cortex and

central nucleus, and the lateral IC corresponds to the classical external cortex.  B) A more rostral

section through the midbrain tectum showing the brachium of the IC (bic).  crtx, cortex; PAG,

periaqueductal gray.  Scale bar = 500µm
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Figure 3.5.  Subdivisions of the MGB.  The three subdivisions of the MGB (ventral [MGBv],

dorsal [MGBd] and medial [MGBm]) are depicted in coronal sections at caudal (A) and rostral

(B) levels.  Note the medial shift in the position of the cell groups caused by the dorsal lateral

geniculate body (LGBd) rostrally.  CA3, area CA3 of hippocampus.  Scale bar = 500µm.
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Figure 3.6.  Three-dimensional reconstructions of SOC nuclei.  This caudal view of the SOC has

been rotated slightly medially and dorsally to provide the clearest view of all nuclei.  The MNTB

is yellow, the SPON red, the VNTB is a semi-transparent light blue, the MSO is orange, the LSO

dark blue and the LNTB green.  Note the dorsal expansion of the MSO as the nucleus courses

rostrally and the manner in which the LNTB encapsulates the LSO.
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Table 3.1

Unbiased stereological estimates of the numbers of neurons (Nest) found in sub-cortical auditory
structures in the rat.  Mean values have been rounded to the nearest hundred.

Structure Abbreviation Nest ± S.E.M*�

Cochlear nuclei (excluding granule cells)
Anteroventral cochlear nucleus AVCN 12,800 ± 460
Posteroventral cochlear nucleus PVCN 8,500 ±   77
Dorsal cochlear nucleus DCN 9,000 ± 251

Total 30,300
Superior olivary complex

Medial nucleus of the trapezoid body MNTB 6,000 ± 141
Medial superior olive MSO 1,100 ±   18
Lateral superior olive LSO 2,500 ±   41
Superior paraolivary nucleus SPON 2,400 ±   46
Ventral nucleus of the trapezoid body VNTB 4,500 ± 224
Lateral nucleus of the trapezoid body LNTB 2,100 ± 108

Total 18,600
Lateral lemniscus

Ventral nucleus of the lateral lemniscus VNLL 13,800 ± 210
Horizontal cell group HCG 600 ±     6
Dorsal nucleus of the lateral lemniscus DNLL 1,800 ±   53
Sagulum Sag 1,300 ±   25

Total 17,500
Inferior colliculus

Medial inferior colliculus IC-m 227,000 ± 1,958
Lateral inferior colliculus IC-l 128,800 ± 3,943
Brachium of the inferior colliculus bic 17,800 ±    556

Total 373,600
Medial geniculate body

Ventral medial geniculate body MGBv 47,500 ± 777
Dorsal medial geniculate body MGBd 18,700 ± 730
Medial medial geniculate body MGBm 6,100 ± 126

Total 72,300

 *for systematic random samples, the standard error of the mean (S.E.M.) is calculated as
the standard deviation of the mean (S.D.)/ n (Gundersen and Jensen, 1987).
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Table 3.2

Comparison of present results with previously published estimates of the numbers of neurons in
central auditory structures of the rat.

Cochlear
nuclei*

Superior olivary complex
Lemniscal

nuclei

Study/Staining method
(strain/gender/age-weight)

DCN VCN MNTB MSO LSO SPON DNLL

Present study+

Cresyl Violet
(Wistar/female/190-210 g)

9,000 21,300 6,000 1,100 2,500 2,400 1,800

Agar et al., 1999++

Cresyl Violet
(Wistar/male/adult)

10,560 15,340

Casey, 1990
Cresyl Violet
(Fischer/male/-)

2,712 373 1,430

Irving and Harrison, 1967
Silver impregnation
(Albino/-/adult)

3,870 690 1,480

Okoyama et al., 1995
Cresyl Violet
(Sprague-Dawley/-/various)

690-760

Riemann & Reuss, 1999
Tract-tracing
(Sprague-Dawley/male/200-220 g)

7,432 1,731 7,780 2,025

Reuss et al., 1999
Cresyl Violet
(Sprague-Dawley/male/200-220 g)

7,230 1,610 7,980 2,240

Kulesza and Berrebi, 2000+

Cresyl Violet
(Sprague-Dawley/female/230-285 g)

2,555

Saldaña and Berrebi, 2000+

Cresyl Violet
(Albino/female/190-300 g)

2,633

Bajo et al., 1993
Cresyl Violet
(Wistar/female/200 g)

9,000

       * excludes cochlear nucleus granule cells
       + employed optical fractionator stereology tool
      ++ employed fractionator stereology tool

Where available, the genetic strain, gender and age or weight of the experimental animals are
provided.
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Chapter Four

Physiological Response Properties of Neurons in the

Superior Paraolivary Nucleus of the Rat

This work has been submitted for publication to the Journal of Neurophysiology
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ABSTRACT

The superior paraolivary nucleus (SPON) is a prominent nucleus of the superior olivary

complex.  In rats, this nucleus is composed of a homogeneous population of GABAergic neurons

that receive excitatory input from the contralateral cochlear nucleus and inhibitory input from the

ipsilateral medial nucleus of the trapezoid body.  SPON neurons provide a dense projection to

the ipsilateral inferior colliculus, where their GABAergic boutons are capable of exerting

profound modulatory influence on colliculus neurons.  Despite recent interest in morphological

and connectional features of SPON, little is presently known concerning the physiological

response properties of this cell group or its functional role in auditory processing.

We utilized extracellular, in vivo recording methods to study responses of SPON neurons

to broad band noise, pure tones and amplitude-modulated pure tone stimuli.  Localization of

recording sites within the SPON provides evidence for a medial (high frequency) to lateral (low

frequency) tonotopic representation of best frequencies within the nucleus.  The vast majority of

SPON neurons have very low rates of spontaneous activity.  The vast majority of SPON neurons

responded only to stimuli presented in the contralateral ear; a small population showed binaural

facilitation.  Nearly all SPON neurons responded at the offset of broad band noise and pure tone

stimuli.  Best frequencies of SPON neurons spanned the audible range of the rat and receptive

fields were narrow with V-shaped regions near threshold.  Approximately 50% of SPON neurons

displayed duration selectivity, a feature that has previously not been described below the level of

the inferior colliculus.   The majority of SPON neurons also display spike activity synchronized

to pure tones that are sinusoidally amplitude-modulated up to 200 Hz.  Taken together, these

findings suggest that the SPON is capable of encoding temporal features of complex sounds,

such as those contained in species-specific vocalizations.
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INTRODUCTION

The superior olivary complex (SOC) is a constellation of brainstem cell groups involved

in auditory processing.  The three principal SOC nuclei, the medial nucleus of the trapezoid body

(MNTB), medial superior olive (MSO) and lateral superior olive (LSO), have well-defined roles

in localization of sounds based on interaural timing and intensity difference cues.  The remaining

cell groups of the SOC are collectively termed periolivary nuclei, and their function in hearing is

poorly understood.  The superior paraolivary nucleus (SPON) is a prominent periolivary cell

group in rodents that receives an excitatory input from octopus and multipolar cells in the

contralateral cochlear nuclear complex (Friauf and Ostwald 1988; Thompson and Thompson

1991; Schofield and Cant 1995) and a substantial inhibitory innervation from the ipsilateral

MNTB that is mediated by the neurotransmitter glycine (Banks and Smith 1992; Bledsoe et al.

1990; Helfert et al. 1989; Moore and Caspary 1983; Schofield 1994; Sommer et al. 1993). While

recent reports indicate that in rats a substantial descending projection to the SPON originates in

the tectocommissural column, a recently identified structure situated within the commissures of

the inferior and superior colliculi (Viñeula et al. 2001), the central nucleus of the inferior

colliculus does not innervate the SPON (Faye-Lund 1986; Caicedo and Herbert 1993).

Projections of the rat SPON target the ipsilateral inferior colliculus and are topographically

organized (Kelly et al. 1998b; Saldaña and Berrebi 2000).  Given that virtually all of the

estimated 2,400 SPON neurons in rats participate in this projection and utilize GABA as their

neurotransmitter (Saldaña and Berrebi 2000; Kulesza and Berrebi 2000; Kulesza et al. 2002), the

nucleus is poised to exert profound inhibitory influence on neurons in the inferior colliculus.

In contrast to our understanding of SPON anatomy, the physiological response properties

of its neurons are not well studied.   Previous recordings from the SPON in gerbils indicate a

heterogeneous population of units with mixed binaural and monaural responses, wide ranging

rates of spontaneous activity, and both sustained and phasic discharges  (Behrend et al. 2002;

Dehmel et al. 2002; Spitzer and Semple 1995).  The few published recordings from the SPON of

cat (Guinan 1972) and rat (Finlayson and Adams 1997) support the notion of heterogeneous

responses to sounds.  Thus, based on the available data obtained from different species it is

difficult to discern a functional role for SPON in auditory processing.  We undertook a
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systematic study of auditory evoked responses of SPON neurons in the rat.  The choice of

species was based, in large part, on the previously demonstrated homogeneity of neuronal

morphologies, neurochemical phenotypes, and efferent projections of SPON neurons in rats

(Saldaña and Berrebi 2000; Kulesza and Berrebi 2000).
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METHODS

Stereotaxic surgery

This study employed 40 female albino rats (Sprague-Dawley strain) and 5 female hooded

rats (Long Evans strain) weighing between 250 and 320 grams.  Animals were anesthetized by

intramuscular injection of a mixture of xylazine and ketamine (8.6 mg and 57 mg per kg body

weight, respectively).   Once determined to be areflexic, the rats were placed into a stereotaxic

frame, their heads secured by a bite bar, and custom-made hollow brass earbars inserted into the

cartilaginous external auditory meatus.  A midline incision was then made in the scalp, a small

bone flap overlying the cerebellum was removed, and the dura matter was incised to permit

penetration of the electrode.  The anesthetic state of each animal was monitored throughout the

experiment and supplemental doses of the same anesthetics were given, as needed, at 2/5 the

original dose.

Sound stimuli and delivery

Acoustic stimuli were delivered via Stax speakers contained within custom built housings

(Sokolich, 1981) attached to the hollow ear bars.  To permit calibration of the sound delivery

system, the hollow ear bars were machined with a small calibration tube joining the sound

delivery tube at a 45o angle.  Prior to or immediately following each experiment, a B & K

microphone was placed into the calibration tube and the sound delivery system calibrated for

broad band noise (BBN) and pure tones between 1 and 40 kHz.  Stimulus intensities were

converted to dB SPL offline.

Sound stimuli were created digitally with SigGen or RP Visual Design Studio software

(Tucker-Davis Technologies, Gainesville, FL), and had 5 ms cos2 ramps.  Single- unit data was

collected using Brainware software (Tucker-Davis Technologies, Gainsville, FL) and analyzed

using Microsoft Excel and custom written Matlab scripts.

Physiological Recordings

Both tungsten and glass micropipette electrodes (8-20MΩ, filled with 3M KCl and 2.5 %
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biocytin) were used to record from 116 units in the SPON.  Electrodes were advanced into the

SPON from a dorsal approach with a Burleigh Inchworm (Burleigh Instruments, Inc., Victor,

NY) and using stereotaxic coordinates obtained from the atlas of Paxinos and Watson (1986).

The data obtained with tungsten and glass electrodes are identical and will therefore be

considered together.  Although not included in this report, units recorded with glass electrodes

filled with 0.45 % NaCl also yielded similar results.  Recording sites were marked with lesions

using tungsten electrodes (8 µA for 10 seconds) or deposits of biocytin (Sigma Chemical Co., St.

Louis, MO) using glass micropipettes (200 nA for 5 minutes, 50 % duty cycle).

Binaural BBN (50 msec in duration, 20 dB attenuation) was used as a search stimulus.

Responses were determined to be from a single unit if they had biphasic waveforms and constant

amplitude peaks.  Upon isolation of a single unit, its aurality was determined by examining

responses to twenty repetitions each of binaural, ipsilateral and contralateral BBN.  Neurons

were considered monaural if their firing rate in response to unilateral stimulation did not differ

significantly from their response to binaural stimulation, and considered to be binaurally

facilitated if they displayed significantly more spikes in response to the binaural presentation.

Response maps were generated from unit responses to presentations of numerous

frequency-intensity combinations of pure tones (each 50 ms in duration).  Best frequency (BF),

the frequency that elicited a response from the unit at the lowest sound intensity, was determined

from the response map.  Threshold was defined as the lowest intensity that elicited a response

from the unit.  Rate-level curves were recorded from 55 units.  Peri-stimulus time histograms

(PSTHs) were generated from 500 presentations of 50 ms BF tones at 20 dB above threshold.

Spontaneous activity was monitored in a 10 ms time window before stimulus presentation during

each of 500 sweeps, for total time of 5 seconds.

A subset of SPON units (n=22) were presented with twenty repetitions of their BF tone

(20dB above threshold) at varying durations (10, 25, 50, 100 and 200 ms).  If the spike count for

a particular duration was 50% greater than the spike counts for longer or shorter durations, the

unit was considered duration sensitive (Ehrlich et al. 1997).  A partially overlapping population

of cells was presented with sinusoidally amplitude-modulated (SAM) pure tones (100%
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modulation, n=30).  Each stimulus was presented 20 times and the carrier frequency was a 500

ms BF tone (20 dB above threshold) coupled with modulation frequencies of 50, 100, 200, 300

or 400 Hz.  Fidelity of phase locking was determined by calculating vectors strengths (VS;

Goldberg and Brown 1969) at each modulation frequency using the equation:

                          VS = sin(ai )∑[ ]2 + cos(ai)∑[ ]2
 / N

where ai is the phase of spike i relative to the frequency modulation and N is the total number of

spikes.  A vector strength of 1 indicates perfect synchrony between modulation phase and the

neuronal response, while a value of 0 indicates no correlation between modulation phase and the

response.  The unit response at the termination of the 500 ms SAM tone was not considered in

the calculation of vector strength.

Localization of recording sites

Upon completion of the recording session, each animal was given a supplemental dose of

xylazine and ketamine and perfused through the ascending aorta with a vascular rinse of normal

saline followed by a fixative composed of 4% paraformaldehyde and 0.1% glutaraldehyde in

0.12 M sodium phosphate buffer, pH 7.2.  The brain was then dissected from the cranium and

cryoprotected overnight in 30% sucrose in the same buffer.  Brainstems were coronally sectioned

on a freezing microtome at a thickness of 60 µm.   If recording sites in that animal were marked

by electrolytic lesions, the tissue sections were dry mounted onto glass slides from gelatin-

alcohol and stained for Nissl substance with cresyl violet using standardized protocols.  Sections

from animals that received biocytin injections were processed, free floating, according to the

ABC method (Vector Laboratories, Burlingame, CA) using 0.05% diaminobenzidine, 0.01%

hydrogen peroxide, 0.025% cobalt chloride and 0.02% nickel ammonium sulfate as the

chromogen.  The sections processed in this manner were then mounted onto glass slides and

counterstained with neutral red.

Camera lucida drawings were made of tissue sections containing biocytin deposits,

electrolytic lesions, or evidence of electrode passage.  The distance between any two landmarks
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(lesions or deposits of biocytin) along a recording track was measured and used to calculate

tissue shrinkage.  Using depth measurements taken directly from the Burleigh microdrive

readout and adjusting for tissue shrinkage, recording site locations along the electrode track were

plotted by superimposing the camera lucida drawings onto standardized templates of the rat SOC

(Paxinos and Watson 1986) at the appropriate rostrocaudal level and aligned to achieve the best

possible fit.
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RESULTS

Localization of units and tonotopic mapping of best frequencies

To elucidate the auditory evoked responses of SPON neurons, we recorded from a total

of 116 well-isolated single units from 45 rats.  Each electrode track was reconstructed and the

location of each unit within the SPON confirmed by biocytin deposition or lesion demarcation

(Fig. 4.1).

The BF of each single unit was then determined to reveal the representation of frequency

in the SPON and used to construct a tonotopic map of the nucleus.  In our recordings, BFs

ranged from 1.1kHz to 40kHz, which covers the most sensitive range of hearing in rats (Kelly

and Masterton 1977).  Moreover, we found that the BFs of SPON units varied in a systematic

fashion with the lowest BF units located laterally, units with middle BFs located in the central

portion of the nucleus, and those with the highest BFs located medially (Fig. 4.2).  When

multiple SPON units were encountered along a vertical penetration, the BF increased with depth,

suggesting the existence of curved or dorsomedially-to-ventrolaterally tilted isofrequency

contours.

Responses to broad band noise and pure tones

Aurality of responses

A total of fifty-three SPON units were presented with ipsilateral, contralateral and

binaural BBN.  All of the neurons tested responded to the BBN stimulus (Fig. 4.3).  The great

majority of neurons (96%) responded only at the BBN offset, one neuron responded only at the

BBN onset (2%) and one neuron responded at the onset and again at the offset of the BBN (2%).

Forty-six cells (87%) responded only to contralateral stimulation and gave rise to an equivalent

number of spikes in response to binaural BBN (p > 0.05, paired t-test).  These neurons were,

therefore, classified as 0E.   In seven neurons (13%) the binaural BBN presentation evoked

significantly more spikes than the contralateral stimulus (p ≤ 0.047, paired t-test), indicating
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binaural facilitation.  These seven neurons were classified as 0E-F, and all but one of these

responded only at the BBN offset.  None of the 53 neurons tested responded to ipsilateral

stimulation alone.  Spontaneous rates of activity in SPON neurons were generally very low (see

below), but in the few units with measurable spontaneous activity we noted a depression in the

spike rate during the contralateral BBN stimulus, suggesting the possibility of a contralaterally

derived inhibitory input.  However, since most neurons displayed virtually no spontaneous

activity, we cannot rule absolutely out the possibility of an ipsilaterally driven inhibitory input.

Response types

Peri-stimulus time histograms (PSTHs) were constructed for all 116 SPON unit responses

to BF pure tones at 20dB above threshold (Fig. 4.4).  Greater than 95% of all units were

characterized by spike activity primarily at the end or “offset” of the stimulus.  Distinguishing

features of these offset responses, however, enabled us to further sub-divide our sample into five

response classes including I) neurons that responded only transiently at the stimulus offset with

single spikes (average of 1.13 ± 0.55 spikes per stimulus), termed “offset-transient” responders

(Fig. 4.4A); II) units that responded only at the stimulus offset with two or more regularly spaced

spikes (average of 1.98 ± 0.82 spikes per stimulus), termed “offset-choppers” (Fig. 4.4B);  III)

units that responded only at the stimulus offset with spike activity that was sustained for more

than 20 ms (average of 2.01 ± 1.07 spikes per stimulus), termed “offset-sustained”  responders

(Fig. 4.4C);  IV) units that responded with a few spikes during the stimulus as well as offset

spikes, termed “on-offset” responders (Fig. 4.4D); and V) neurons that displayed a mixture of

onset and sustained responses during the stimulus but no offset spikes, termed “on-sustained”

responders.  Interestingly, members of this last response class, that accounted for only 5% of the

units, were all localized near the dorsomedial border of the SPON and all but one had BFs below

4 kHz.   For the remaining response classes, the range of BFs was from 1.2 to 40 kHz for offset-

transient neurons, from 2.7 to 20.2 kHz for offset choppers, from 2.8 to 11.7 kHz for offset-

sustained responders and from 3.5 to 26.9 kHz for the on-sustained units.

PSTHs in response to contralateral BBN were constructed for 74 units and compared to

the PSTHs derived in response to the BF pure tone stimuli.   The majority of units (64 of 74,
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86%) were classified similarly for both stimulus types, and 9 of the remaining 10 neurons whose

classification differed remained within offset classes I-III.

Response latencies

The first spike latency to 50 ms BF tones was determined for 78 SPON neurons in

response classes I-III and averaged 7.04 ± 3.56 ms from the stimulus offset.  The response

latencies of offset-transient units (n=35; 6.05 ± 2.33 ms) and offset-chopper cells (n=25; 6.62 ±

2.21 ms) were significantly equivalent, (p= 0.47, unpaired t-test), but both classes had

significantly shorter first spike latencies than offset-sustained units (n=18; 9.67 ± 5.28 ms; p<

0.02).  Furthermore, the first-spike latency within response classes I-III did not correlate with the

unit’s BF (r = -0.127) but did appear to be related to the stimulus duration.  Specifically, in 12 of

26 units so tested, response latency decreased with increasing duration (25, 50, 100, 200, 500

ms) of BF pure tones, in two units the latency increased with increasing tone duration, and in the

remaining twelve units, the latency remained relatively constant.

Spontaneous activity

Spontaneous rates of activity in SPON units averaged 2.65 ± 10.42 spikes per second.

More than half of the units (71 of 116; 62%) displayed no spontaneous activity at all, and only 6

cells (5%) had spontaneous firing rates above 6 spikes per second (Fig. 4.5).  For comparison,

the spontaneous firing rates we recorded from 16 MNTB units averaged 46.06 ± 27.37 spikes per

second.

Receptive fields

The next step in our experimental protocol was to present pure tone stimuli over a wide

range of frequencies and intensities.  Response maps were constructed for 54 SPON units with

BFs ranging from 2.3 to 40 kHz (Fig. 4.6).   Response maps typically had narrow V-shaped

peaks near BF and often had low frequency tails.  Generally, SPON units exhibited only offset

spikes throughout their response maps; very seldom were spikes observed during the BF tone
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presentation, and these were observed at high intensity, low frequency combinations (Fig. 4.7).

Sharpness of tuning of SPON units was determined by calculating Q values, which

provide a meaure of the width of the tuning curve relative to the neurons BF.  Q10 and Q30

values averaged 6.77 ± 3.30 and 1.64 ± 0.99 respectively (Fig. 4.8A). The Q10 values observed

for SPON are close to those reported for MNTB neurons in cat (Q10 = 7.02, Guinan 1968; Fig.

4.8B) and DNLL neurons in rat (Q10 = 7.9, Kelly et al. 1998).  Q values were not statistically

different across PSTH categories (p > 0.52, unpaired t-test).  There was a general trend of Q

values increasing with BF, but the statistical correlation was not significant (Q10 r= 0.307 and

Q30 r = 0.308).

Thresholds for SPON neurons at their BF averaged 25.41 ± 11.53 dB SPL and ranged

from 5 to 48 dB SPL (Fig. 4.9).  Thresholds were not significantly different across the BF pure

tone response classes (p > 0.25, unpaired t-test).

To determine the neuron’s responsiveness to sound intensity, rate level curves were

collected for 55 units and were classified as having wide dynamic ranges (greater than 20dB),

narrow dynamic ranges (less than 20dB), or as being unsaturated at the highest intensity

presented.  Since most neurons had little or no spontaneous activity (Fig. 4.5), dynamic range

was measured between the first sound intensity that generated a spike and the maximum

response generated by the cell.  The majority of offset-transient units (20 of 26, 77%), cells

typically firing only one spike per stimulus, had short dynamic ranges as did the majority of

offset-choppers (6 of 7, 85%).  However, the offset-sustained (n=15) and on/offset neurons (n=6)

were equally distributed among the three rate level classes.  These data indicate that 1) most

SPON neurons have short dynamic ranges; they are either unresponsive or maximally responsive

within a short window of sound intensity and 2) most offset-transient and offset-chopper units

are relatively unresponsive to sound intensity.

Duration selectivity

To determine whether SPON neurons displayed selectivity for stimulus duration, 22
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neurons were presented with BF tones of varying duration at 20 dB above threshold.  Neurons

were considered duration selective if the number of spikes evoked by any single duration, or a

range of durations, was at least 50% greater than the number of spikes evoked by longer or

shorter tone durations (Ehrlich et al. 1997).   At all the tone durations tested, these 22 SPON

units displayed responses only at the stimulus offset (Fig. 4.10A). Nine SPON units (41%) fired

more robustly at longer than at shorter durations and were classified as long duration selective

(Fig. 4.10B).  The BFs of these long duration selective cells ranged from 3.1 to 36 kHz.

Moreover, these cells were primarily from the offset-sustained (5 of 9) and the offset-chopper (3

of 9) response classes, with one unit from the offset-transient category.  One single unit tested

(4%), an offset-transient unit, fired more spikes at shorter than at longer durations and was

therefore classified as short duration selective. Twelve neurons (55%) were non-selective to

stimulus duration; they fired a relatively constant number of spikes across stimulus durations.  Of

these, 6 were offset-transient units, 2 were offset-choppers, 2 were offset-sustained responders

and 2 were on-offset units.

Responses to amplitude modulations

To examine the responses of SPON units to more complex sounds, sinusoidally

amplitude-modulated (SAM) pure tones were presented to 30 units.  The majority (25 of 30,

83%) of neurons tested responded to the envelope of SAM stimuli as if each wave of modulation

were being detected as a separate stimulus, and discharged to each modulation with single offset

spikes (Fig. 4.11).  Within this group, 14 units were offset-transients, 7 were offset-sustained

responders, 3 were offset-choppers and one was an on-offset unit.  Regardless of the modulation

frequency, the units displayed an offset response to each presentation of the 500 ms SAM

stimulus.  BFs for the units responding to SAM stimuli ranged from 1.2 to 35 kHz and all 25

cells responded at modulations up to 100Hz, with an average vector strength of 0.81 ± 0.02,

demonstrating high fidelity phase-locking.  At the lower modulation frequencies (25-100Hz),

SPON units followed the stimulus envelope faithfully, as indicated by vector strengths greater

than VS = 0.75.  However, at the higher modulation frequencies (200 to 400 Hz) vector strengths

decreased as discharge rates declined sharply.  However, as shown in the modulation transfer

function (Fig. 4.12), even at modulation rates of 200 and 400 Hz, the few remaining spikes were
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still phase-locked.  The neurons that did not respond to SAM stimuli had BFs that ranged from

6.6 to 17.1 kHz and fell into all PSTH response classes (offset-transient, offset-chopper, offset-

sustained and on-offset).
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DISCUSSION

This study represents the first systematic characterization of the auditory evoked

physiological responses of SPON neurons in the rat.  Our sample of 116 single units was nearly

exclusively monaurally activated, and always by contralaterally presented stimuli.  SPON units

responded at the offset of pure tone stimuli with a first spike latency on the order of 6-10 ms

from the stimulus offset.  Furthermore, many SPON units displayed stimulus duration selectivity

and impressive phase-locking to amplitude modulated tones.  The homogeneity of responses

observed in this study is consistent with the morphological, connectional and neurochemical

homogeneity previously reported for SPON neurons in the rat (Saldaña and Berrebi, 2000;

Kulesza and Berrebi, 2001). In light of reports indicating considerable variability and

interspecies diversity in the anatomical and physiological features of SPON neurons in other

species (Moore and Goldberg 1966; Guinan et al. 1972; Osen et al. 1984; Strutz and Spatz 1980;

Adams 1983; Covey et al. 1984; Saint Marie and Baker 1990; Schofield 1991; Spangler and

Warr 1991; Thompson and Thompson 1991; Spitzer and Semple 1995; Behrend et al. 2002;

Dehmel et al. 2002; Saldana and Berrebi 2000; Kulesza and Berrebi 2000), we suggest that

future attempts to understand the functional role of SPON-derived inhibition to the IC may be

most efficiently undertaken in rats.

Previous studies of SPON physiology

Kuwada and Batra (1999) described a population of neurons in the SOC of the

unanesthetized rabbit that exhibited offset responses and phase locked to SAM stimuli.

Although the nature of their chronic recording preparation precluded precise histological

localization of recording sites, these units were located medial to the MSO and likely represent

neurons of the SPON or its homologue in the rabbit.  In the mustached bat, the MSO contains a

population of GABAergic neurons (Winer et al. 1995) and units that demonstrate offset

responses to contralateral stimulation but do not respond to ipsilateral stimulation, and have very

low rates of spontaneous activity and low-pass filter characteristics for amplitude modulated

tones (Grothe 1994).  These findings have lead to the speculation that neurons which constitute
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the SPON in rodents may have merged into the MSO in the mustached bat (Grothe et al. 1992,

Vater, 1995).

Finlayson and Adams (1997) recorded from auditory brainstem neurons of Long-Evans

hooded rats anesthetized with a mixture of pentobarbital, xylazine and ketamine.  They reported

that SPON units were binaurally excited (“EE”) and received matching BF inputs from the two

ears.  In the course of the present study, we recorded from more than 250 neurons localized to

the SOC and reticular formation, but that were clearly not contained within SPON.  Only 21

units from within this sample had “EE” properties and 13 of these were localized to the reticular

formation.  It is not possible to fully reconcile this dramatic discrepancy, although differences in

anesthetic agents employed is one obvious factor that may have contributed to the disparate

results.  Furthermore, while we cannot exclude the possibility that there are substantial numbers

of “EE” neurons in the rat SPON that we were unable to isolate, it is more likely, in our opinion,

that at least some of the binaurally excited neurons described by Finlayson and Adams were

located outside the SPON,

Recently, two reports of physiological responses of SPON neurons in gerbil have

appeared in the literature and the results of these two studies are somewhat contradictory

(Behrend et al., 2002; Dehmel et al., 2002).  For example, Dehmel and colleagues indicate that

nearly 65% of SPON neurons responded at the stimulus offset, while Behrend and co-workers

reported that only 6% of their units displayed offset responses.  Dehmel and co-workers did not

utilize SAM stimuli in their protocol, but Behrend et al. indicates that the small population of

“off” responders they identified were not capable of phase-locking at all.  This finding is difficult

to reconcile with our demonstration that offset neurons in the rat SPON phase-lock exceptionally

well, at least to modulation frequencies up to 200 Hz.  One significant difference between the

SPON of gerbils and rats is the existence in the former of a population of neurons with

descending projections to the cochlear nuclei (Helfert et al. 1988’ Faye-Lund 1986; our

unpublished observations).  Therefore, we suspect that the majority population of sustained

SPON neurons recorded by Behrend et al. (2002) may serve a functional role in the descending

auditory pathway that is simply not performed by the rat SPON.
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Tonotopy in the SPON

We identified a tonotopic organization within the rat SPON, with high BFs represented

medially and low BFs laterally.  There also appeared to be a slight dorso-medial to ventro-lateral

tilt to the isofrequency contours, which was previously suggested on the basis of retrograde

tracing studies (Saldaña and Berrebi 2000).  Overall, the tonotopic mapping we report is

consistent with the topographic arrangement of inputs to SPON from the ipsilateral MNTB

(Banks and Smith 1992; Sommer et al. 1993) and the projections from SPON to the ipsilateral

inferior colliculus (Kelly et al. 1998; Saldaña and Berrebi 2000).  Thus, the SPON joins the

principal nuclei of the SOC in having a defined tonotopic axis

Duration sensitivity

Duration is a biologically important feature of natural sounds.  Indeed, neurons with

selectivity for certain sound durations have been described in the inferior colliculus (IC) of bats

(Casseday et al. 1994), frogs (Feng et al. 1990), and mice (Brand et al. 2000).  In their recent

model of duration tuning, Casseday and coworkers (2000) propose an important role for late

arriving or offset inhibition.  The fact that duration tuning in IC neurons can be abolished by

application of bicuculline indicates that GABAergic inhibition in particular is a crucial element

in the synaptic mechanisms underlying duration tuning.  SPON neurons of the rat are known to

utilize GABA as their neurotransmitter and they provide an impressive projection to the IC

(Kulesza and Berrebi 2000; Saldaña and Berrebi 2000).  It is possible, therefore, that SPON may

contribute to the generation of this collicular response property.  Our observation that nearly half

of SPON neurons were duration selective is, to our knowledge, the first demonstration of this

type of response selectivity below the level of the IC (Cassesday et al. 1994).  A recent study of

the mouse IC indicates that 55% of all neurons are duration tuned, including all IC neurons that

display offset responses, with approximately 70% displaying long duration sensitivity (Brand et

al., 2000). It would be interesting to know whether duration selective neurons in the SPON

project preferentially to duration tuned neurons in the IC, but the diffuse distribution of duration

sensitive neurons in both structures makes this a difficult question to address (Ehrlich et al.,

1997).  Nonetheless, even SPON neurons that are not duration selective may play a role in
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duration tuning of their synaptic targets in the IC by signaling the end of an acoustic stimulus.

Amplitude modulations

Another interesting feature of SPON physiology is that nearly all of its constituent

neurons respond to SAM tones by phase-locking to the end of each modulation cycle.  SPON

neurons follow low modulation frequencies (25-100 Hz) with high fidelity.  However, at higher

frequency modulation SPON neurons still displaying high vector strengths but fail to respond to

every modulation cycle, so that response rate during the stimulus falls off considerably.  At the

highest frequency modulation tested (200-400 Hz), many units only responded once at the offset

of the 500 ms SAM stimulus.

We suggest that the reduced phase-locking to the higher modulation frequencies was

caused by the glycine-mediated inhibition of SPON units that originates in the ipsilateral MNTB.

Indirect support for this notion comes from comparing SAM responses we recorded from MNTB

cells with those of SPON neurons.  Figure 4.13 depicts typical responses to 50 Hz SAM stimulus

for MNTB and SPON units with similar BFs.  MNTB neurons fired robustly during the stimulus,

with their PSTH pattern apparently carved out by the modulation frequency.  Only during the

short period between each wave of modulation were the MNTB neurons quiescent for a few

milliseconds.  Interestingly, it is during this same phase of the modulation cycle, corresponding

to the trough of the SAM stimulus waveform, that SPON neurons discharged their action

potentials.  This reciprocal temporal firing pattern suggests that SPON units are capable of

discharging only when released from their MNTB-derived inhibition, suggesting a inhibitory

rebound mechanism.  Along the same line of reasoning it is plausible that during stimulation at

high modulation rates SPON units may have insufficient time to recover from this inhibition, and

thus can respond only at the termination of the SAM stimulus.  An alternative explaination might

be that the inhibition reaching the SPON during high frequency amplitude modulations (200 –

400 Hz) may not be long enough to cause an inhibitory rebound during each modulation cycle.

Other known sources of input to the SPON, in particular cells located in the posteroventral

cochlear nucleus with onset PSTHs that presumably correspond to excitatory octopus neurons,

reportedly have superior phase-locking capabilities to SAM stimuli (Frisina et al. 1990).
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However, it is unclear at this point how input from octopus cells influences SPON neurons

during SAM stimulation.

Through the course of our experiments, we managed to record data from a population of

MNTB units.  MNTB neurons responded to SAM stimuli in a sustained manner; at low

modulation frequencies (50 Hz) PSTHs from MNTB neurons had peaks and valleys that

corresponded to the stimulus waveform.  At higher modulation frequencies (200 – 400 Hz),

MNTB neurons responded in a sustained manner with no correlation to the stimulus envelope

(figure 4.14).  Interestingly, MNTB neurons discharged with nearly the same number of spikes to

50 Hz and 400 Hz stimuli (45.6 ± 17.89 and 40.75 ± 18.10 spikes per stimulus respectively;

figure 4.14).  Additionally, vector strengths for MNTB were relatively low across all frequencies

tested and averaged 0.18 at 100 Hz.  This is in stark contrast to the 0.81 vector strength observed

in the SPON under similar conditions (100 Hz).  A comparision of the SPON and MNTB SAM

data raise some interesting points.  First, the MNTB-SPON circuit provides an example where a

poorly timed input (MNTB), relative to the SAM waveform, can form a temporally precise

response in another neuron through an inhibitory rebound mehanism.  Second, it appears that it is

not the number of MNTB spikes that produces the temporally precise response in the SPON, but

rather the timing of the MNTB spikes.

How is the offset response formed?

Neurons responding at the offset of a stimulus are not a rare finding in the mammalian

nervous system.  OFF neurons have been described in the retina and lateral geniculate nucleus

(Hubel and Wiesel 1961; Schiller and Malpeli 1978) and at several levels of the auditory

pathway including the MNTB and DMPO (Guinan et al. 1972), MSO (Grothe 1994), VNLL

(Guinan et al. 1972; Batra and Fitzpatrick 1999), DNLL (Bajo et al. 1998), IC (Faingold et al.

1986), medial geniculate nucleus (He 2001) and auditory cortex (He et al. 1997; He 2001).

Moreover, inhibition timed to the offset of acoustic stimuli has been reported in DNLL (Bajo et

al. 1989; Bauer et al. 2000) and IC (Faingold et al., 1986) and is at least partially mediated by

GABA (Faingold et al. 1986; Bauer et al. 2000).  Thus, it appears that offset synaptic activity

may play an important role in central processing of sensory information.
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We propose two possible mechanisms to account for the offset responses of SPON units.

First, the offset response may arise from a long latency excitatory input to SPON, or one that

arrives coincident with the offset.  A descending projection to SPON from the tectocommissural

column (TCC) of the midbrain has recently been described (Viñuela and Saldana 2001) which

could represent a long latency input to the nucleus.  However, preliminary observations suggest

that this projection is probably inhibitory (our own unpublished observation).  Furthermore,

when presented with long tone stimuli (one second in duration) SPON neurons maintained offset

activity, suggesting that a long latency excitatory input may not be involved in the offset

response.  Therefore, we favor the second possible mechanism:  that the offset response of SPON

neurons is caused by a rebound from inhibition during the stimulus.  Consistent with this idea are

immunocytochemical data showing that SPON neurons receive dense axo-somatic and axo-

dendritic glycinergic and GABAergic inhibition (Kulesza and Berrebi 2000).  The precise role of

each inhibitory neurotransmitter in the generation of the offset response is currently being

investigated through selective pharmacologic blockade of their receptors using a multi-barrel

recording electrode configuration.

In the basal ganglia and thalamus, so-called “off” neurons reportedly generate action

potentials following a hyperpolarization, and this phenomenon has been termed “post-inhibitory

rebound” (Plenz and Kital 1999; Bando et al. 1980; Grenier et al. 1998).  Post-inhibitory rebound

has been attributed to the opening of low-threshold, voltage-gated Ca2+ channels or to Ih, a

hyperpolarization-activated cationic current (Aizenman and Linden 1999; Cooper and Standford

2000).  Low-threshold, voltage gated Ca2+ channels are reportedly de-inactivated during

hyperpolarization, such as that which would be provided by a strong glycinergic inhibition, and

open on the return to more depolarized membrane potentials.  This results in an influx of calcium

and the generation of a Ca2+ spike that may be capped by Na+ spikes.  The calcium channels may

be required to generate the offset-chopper and offset-sustained responses in the SPON, while

sodium spikes may be sufficient to account for responses of offset-transient units.  Interestingly,

in the subthalamic nucleus of the rat, rebound bursts have been elicted in vivo by application of

GABA (Plenz and Kital, 1999), indicating that a hyperpolarizing inhibitory input alone is

sufficient to generate this response.
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Effects of GABA on response properties of inferior colliculus neurons

The multitude of synaptic inputs arriving at the central nucleus of the IC are both

excitatory and inhibitory, and it is well documented that GABAergic inhibition has a profound

impact on response properties of IC neurons.  For example, GABAergic inputs are required for

interaural intensity disparity coding, shape PSTH response properties and tuning curves (Yang et

al. 1992; Koch and Grothe 1998) and lengthen first-spike latencies of IC neurons (Park and

Pollak 1993; LeBeau et al. 1996).  GABA has also been shown to sharpen response maps and is

essential for duration tuning in the IC (Casseday et al. 1994; Fuzessery and Hall 1996).

Our data also correspond with previous reports of a contralaterally evoked offset

inhibition to the rat IC that appears to be mediated by GABA (Faingold et al. 1986).  When the

GABAA receptor antagonist bicuculline was applied to IC units, their responses were

transformed from “ON” neurons into “ON/OFF” neurons, suggesting that GABA normally

suppresses their offset activity.   Interestingly, “ON/OFF” neurons are more common in the IC of

the genetically epilepsy-prone rat, indicating compromised GABAergic inhibition in these

animals.  Faingold and colleagues (1986) deduce that the IC is a potential site of seizure foci in

genetically epilepsy-prone rats.  This suggests that SPON-derived GABAergic inhibition, timed

to the stimulus offset, may contribute to suppression of seizure activity in the IC.

Many naturally occurring rat vocalizations, including sounds elicited in threatening

situations or in the context of sexual behaviors, consist of a series of 2 to 20 constant frequency

calls in the 18-32kHz range of varying duration (ranging from 20 msec to nearly 4 seconds;

Brudzynski et al. 1993).  The combination of response features that we have described for the

SPON in this report suggests that this cell group is particularly well suited for a role in signaling

the end (offset-transient) or duration (offset-choppers and offset-sustained) of species-specific

vocalizations.

It also stands to reason from our data that SPON neurons may also serve to detect gaps

between closely placed sounds or components of sounds.  Detection of gaps or silent periods
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between stimuli plays an important role in processing complex sounds and in speech perception

(Barsz et al. 1998) and may be encoded by suppressing activity during gaps through inhibition.

Neurons in the mouse IC can detect gaps between two stimuli that are as short as 2 ms (Walton

et al. 1997).  Many IC neurons show post-stimulus suppression that is mediated by GABA and

lasting up to 270 ms after the stimulus (Finlayson 1999; Bauer et al. 2000).   These findings

indicate that existence of a GABAergic input to the IC that arrives at the end of a stimulus or

outlasts it by tens of milliseconds.  Two likely sources for gap detectors are the neurons of the

SPON and GABAergic offset neurons in the IC with intrinsic collateral projections.

The main sources of ascending inhibition reaching the IC are the SPON and the ventral

and dorsal nuclei of the lateral lemniscus (VNLL and DNLL).  Unbiased stereological estimates

indicate that the rat SPON contains approximately 2,400 neurons, the overwhelming majority of

which are GABAergic (Kulesza and Berrebi 2000; Kulesza et al. in press).  By comparison, the

rat’s DNLL contains approximately 1,800, presumably GABAergic neurons (Kulesza et al. in

press; Mugnaini and Oertel 1985), and the VNLL contains nearly 14,000 neurons, approximately

two-thirds of which are inhibitory (Kulesza et al. in press; Riquelme et al. 2001).  Thus, the

SPON represents a significant source of GABAergic inhibition to the IC.  Until now, the

potential for modulation of collicular physiology by the SPON has been largely overlooked.
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Figure 4.1.  Localization of recording sites.  Recording sites were marked with small deposits

of biocytin. Coronal sections through the superior olivary complex demonstrate two such

deposits (arrowheads).  In both cases neurons were retrogradely labeled within the SPON and

MNTB from the injection site.  D, dorsal; L, lateral; LSO, lateral superior olive; MNTB, medial

nucleus of the trapezoid body; MSO, medial superior olive; SPON, superior paraolivary nucleus;

VNTB, ventral nucleus of the trapezoid body.  Scale bar in A and B = 100µm.
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Figure 4.2.  Tonotopic arrangement of best frequencies in SPON.  Single unit recording sites

are plotted by BF on a series of standardized templates spanning the caudal-most (top left) to

rostral-most (bottom right) extent of the SOC.  The rostro-caudal spacing (number in upper right

of each figure) is indicated relative to the caudal end of the SOC.  BFs ranged from 1.2kHz to 40

kHz, and covered the rat’s audible range of hearing.  Neurons with low BFs (5-10 kHz) are

located laterally, those with high BFs (20-40 kHz) are located medially and neurons with

intermediate BFs (11-20 kHz) are interposed centrally within the nucleus.  LNTB, lateral nucleus

of the trapezoid body; M, medial.  Other abbreviations as in Figure 1.
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Figure 4.3.  Single unit responses to broad band noise.  Responses to 20 presentations of a 50

msec long broad band noise stimulus (20 dB attenuation) are shown for two SPON neurons.  The

overwhelming majority of SPON units did not respond to ipsilateral stimulation, but responded

only to contralateral inputs (left, OE).  Approximately 13% of neurons showed binaural

facilitation (0E-F), where the binaural response contained significantly more spikes than the

contralateral response (right).
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Figure 4.4.  SPON response types.  The vast majority of SPON neurons (100 of 116, 86%)

respond to BF tones only with offset responses.  These offset responses could be divided into

groups consisting of a single spike (A, 41% of units), those consisting of two or more equally

separated spikes (B, 23% of units) and those with activity lasting more than 20 milliseconds (C,

22% of units).  A total of 10 cells responded with an offset response that was preceded by a few

spikes during the stimulus presentation (D, 9% of units).  The remaining 6 cells displayed onset

or sustained responses during the tone (E, 5% of units).  A PSTH from an MNTB neuron (F)

displaying typical primary-like response is provided to show their high rate of spontaneous

activity, increase in activity during stimulation and quiescent period following stimulation.
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Figure 4.5. SPON units have very low rates of spontaneous activity.  The majority of SPON

units (closed circles) had spontaneous rates below five spikes per second.  Data from MNTB

units (open circles) are included for comparison.
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Figure 4.6.  Response maps.  Response maps of six SPON units, ranging in BF from 3.4 kHz

to 31kHz.  In most cases, the tuning curves display narrow, V-shaped peaks near BF and low

frequency tails.  For these six units, thresholds (Th) ranged from 22db to 45 dB.  Sharpness of

tuning for each unit was also determined by calculating Q10 and Q30 values.
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Figure 4.7.  Peristimulus time histograms demonstrate that offset responses occur throughout

the response maps of the units.  The left part of the figure depicts the response map of a unit

whose BF was 10.7 kHz, and whose threshold was 31 dB SPL.  At 10 locations within the unit’s

response map, we constructed a PSTH from its response to a single repetition of a 50 ms tone

(shown at right, stimulus parameters are given under each PSTH, vertical bars indicate the

stimulus duration).  Note that a consistent offset response is found; only at very high intensity

levels (90 dB; PSTH #3) did we observe onset spikes.
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Figure 4.8. SPON neurons have narrow tuning curves.  In the top panel, Q10 (closed circles)

and Q30 (open circles) values of tuning curve sharpness for the population of units are plotted

according to BF.  Average Q10 values were 6.77 ± 3.30 and average Q30 values were 1.64 ± 0.99.

In the bottom panel, Q10s are compared between SPON and MNTB (Guinan, 1968).  The trend

lines indicate that SPON neurons have only slightly wider receptive fields than MNTB neurons.
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Figure 4.9. Thresholds of SPON units.  The thresholds of 60 SPON units at BF averaged 25 ±

11.43 dB SPL and ranged from 5-48 dB SPL.  A behavioral audiogram for the albino rat,

determined from the literature (Kelly and Masterton, 1977), is included for comparison.
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Figure 4.10. Duration sensitivity.  Nearly half of all SPON neurons showed duration

sensitivity.  The PSTHs (top) are responses to 10, 50 and 200 msec from one neuron.  This

particular cell responded with 0.65 spikes per sweep for the 10 msec tone, but fired 3.15 spikes

per stimulus during the 100 msec tone.  Duration tuning curves (bottom) are shown for the nine

neurons that showed long duration sensitivity to pure tone stimuli, 20 dB above threshold and

plots the average number of discharges over twenty repetitions against tone duration.  This small

sample contains units from all offset response classes (mostly offset-choppers and offset-

sustained units).
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Figure 4.11.  SPON unit responses to amplitude modulated tones.  PSTHs for two units are

shown in response to 500 ms amplitude modulated tones at 50, 100, 200 and 400 Hz rates of

modulation.  Vector strengths (VS) are included with each PSTH.  At each modulation rate, note

the prominent offset response.  Both units (A and B) demonstrate high-fidelity phase-locking to

the stimulus envelope up to 100 Hz modulation, but vector strengths decline at higher

modulationrates (200 Hz for the unit depicted in B).  However, even at 400 Hz modulation many

units had relatively high vector strengths (A) because they fired well-timed, albeit fewer, spikes

to the SAM stimulus.
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Figure 4.12.  Plots of discharge rates and vector strengths for SAM stimuli for the population of

SPON units.  Discharge rates (dark circles) increase from 25 to 50Hz, then decline to near zero

spikes at 300 and 400Hz modulation.  Vector strengths (grey circles) are relatively high (>0.75)

for low frequency modulations (25-100Hz) but begin to fall at higher frequencies (200Hz).



111

Figure 4.13.  Comparison of MNTB and SPON responses to SAM   Responses to 20

presentations of a 50Hz modulated BF tone from similarly tuned pairs of MNTB and SPON units

are shown.  Below each pair, the stimulus is represented schematically.  The MNTB unit

responds during the entire length of the modulation cycle and is quiet only between cycles.  The

SPON unit only responds in between cycles, when the MNTB is inactive.



Figure 4.14 Responses of MNTB neurons to SAM  MNTB neurons were sensitive to low

frequency amplitude modulation and followed the envelope of SAM stimuli, up to 100

Hz.  At 200 Hz modulation frequency and higher, MNTB neurons responded in a

sustained manner that did not reflect the stimulus envelope.  The number of discharges to

amplitude modulated stimuli was relatively constant across modulation frequencies and

the sustained responses yielded relatively low vector strengths.
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Chapter Five

The effects of GABA and glycine on response properties of superior

paraolivary nucleus neurons in rat
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ABSTRACT

The rat superior paraolivary nucleus (SPON) is a group of neurons situated in the

superior olivary complex, a constellation of nuclei involved in auditory processing.  The SPON

contains multipolar, GABAergic neurons that receive both GABAergic and glycinergic

inhibitory innervation.  Most SPON neurons respond only to stimulation of the contralateral ear

with spike activity timed to the stimulus offset.  However, it remains unclear how the offset

response is formed and the effects of GABAergic and glycinergic inhibition on response

properties of SPON neurons are unknown.

To examine the role of inhibitory inputs on SPON response properties, we made

extracellular recordings in vivo with multibarrel electrodes before, during and after local

application of bicuculline (a GABAA receptor antagonist), strychnine (a glycine receptor

antagonist) and a cocktail of the two inhibitory antagonists.  Blockade of the GABAA receptor

resulted in an increase in the number of spikes occurring at the offset of pure tone stimuli; a few

neurons responded weakly during the stimulus.  Blocking the glycine receptor with strychnine

abolished the offset response to pure tones and transient responses timed to the stimulus onset

were observed.  When the GABAA and glycine receptors were blocked simultaneously, offset

responses were abolished and neurons responded throughout the duration of the stimulus.

Additionally, blockade of the GABAA and glycine receptors resulted in broader receptive fields

and responses to amplitude modulation were poorly timed.  These data provide evidence that

inhibition plays a prominent and essential role in the formation of SPON responses to sound and

that the offset response arises from a postinhibitory rebound mechanism.
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INTRODUCTION

In our immunocytochemical investigation for the presence of the inhibitory

neurotransmitters GABA and glycine (chapter 2) we showed that SPON neurons receive a strong

inhibitory innervation.  In the previous chapter (chapter 4) we demonstrated that SPON neurons

respond at the offset of pure tone and broad band noise stimuli.  However, spontaneous rates of

activity were very low, making the effects of inhibitory input difficult to study.  Thus, the effects

of the massive convergence of inhibitory inputs on the physiological responses of SPON neurons

remain unknown.  Moreover, the mechanism that leads to offset responses in the SPON is

unclear.  It is well established that the rat SPON receives its excitatory input from the octopus

and mulitipolar cells of the contralateral cochlear nucleus (Friauf and Ostwald, 1988; Kuwabara

and Zook, 1991; Thompson and Thompson, 1991; Banks and Smith, 1992; Schofield and Cant,

1995).  Octopus cells are described as responding only at the stimulus onset with fast, precisely

time spikes (Godfrey et al., 1975, Rhode et al., 1983); multipolar neurons are typically described

as having chopper responses, where the neurons fires a series of spikes with relatively constant

interspike intervals (Smith and Rhode, 1989).  The SPON also receives a strong, sustained

glycinergic input from the MNTB (Banks and Smith, 1992; Sommer et al., 1993; Schofield and

Cant, 1995) and a GABAergic input that arises partially from collaterals of SPON axons, the

tecto-commissural column and from other unidentified sources.  Thus, it is unclear if the offset

response simply reflects an undescribed input or results from integration of excitatory and

inhibitory inputs.  However, we have arrived at two possible mechanisms that might be involved

in creating offset responses.  1. The offset response may be generated by an excitatory input that

arrives with a long latency relative to the stimulus onset or arrives coincident with the stimulus

offset.  SPON neurons receive a descending input from the tectocommissural column (TCC), a

portion of which may be excitatory (Viñeula and Saldaña, 2001) and contribute a delayed or long

latency excitatory influence.  2. We propose that the offset responses recorded from SPON

neurons result from inhibitory rebound, where the removal of a hyperpolarizing, inhibitory input

(at the end of stimulus) can trigger rebound spikes.  In rat, SPON neurons receive massive

glycinergic and GABAergic inhibitory inputs (Kulesza and Berrebi, 2000).  Measurements of

amino acid concentrations in the SPON indicate that this region contains the highest levels of

GABA and glycine in the SOC (Godfrey et al., 2000).  Glycinergic input arises from the
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ipsilateral medial nucleus of the trapezoid body (MNTB), suggesting this inhibition has high

rates of spontaneous activity (providing inhibitory influence in the absence of sound), is

temporally precise and phase locked to amplitude modulations.

In this chapter, we examine the role of inhibition in SPON responses to pure tones, by

recording from neurons with multibarrel micropipettes, in the presence of bicuculline (a GABAA

receptor antagonist; Curtis et al., 1971b) and strychnine (a glycine receptor antagonist; Curtis et

al., 1971a) and comparing those results to control data from the same neuron.  In addition, we

examined the effect of inhibitory neurotransmission on receptive fields (response maps) and

responses to sinusoidally amplitude modulated pure tones (SAM).  By examining the spike rate

of SPON cells before, during and after stimulus presentation we can precisely dissect the effects

of different types of inhibition.  Our data provide evidence that GABAergic inhibition arrives

coincident with stimulus offset, observed as an increase in the number of spikes at the offset

without discharges during the stimulus.  However, offset activity was abolished in the presence

of strychnine suggesting that offset spikes are a rebound from glycinergic inhibition.

Additionally, responses recorded in the presence of both antagonists suggest that inhibition

sharpens response maps and that excitatory input to the SPON is sustained with long first spike

latencies relative to the stimulus onset.  Responses to SAM pure tones provide evidence that the

fine temporal sensitivity to the stimulus envelope observed in control conditions is at least in part

a result of inhibitory influence.
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METHODS

Stereotaxic surgery

Twenty-three female, Sprague-Dawley albino rats, weighing between 230 and 300 grams

were used for this study.  Animals were anesthetized with a mixture of xylazine and ketamine

(8.6 mg and 57 mg per kg body weight, respectively).  Once animals were areflexic, a midline

incision was made through the scalp and the pinnae were reflected bilaterally.  Animals were

restrained in a stereotaxic instrument and custom-built hollow brass earbars, serving as sound

delivery tubes, were inserted into the cartilaginous external auditory meatus.  A hole was drilled

through the postparietal bone, the dura mater was incised and the cerebellar tissue overlying the

floor of the fourth ventricle was removed by aspiration.  The anesthetic state of the animal was

monitored throughout the experiment and supplemental doses of the same anesthetics were given

at 2/5 the original dose, as needed.

Stimuli and recording

All recording procedures were performed inside a sound attenuated booth.  Stimuli were

created digitally using Tucker-Davis Technologies System III Virtual Design Studio (Tucker-

Davis Technologies, Gainsville, FL).  Digital stimuli were converted to analog signals with a

System 3 Real Time Processor (RP2, Tucker-Davis Technologies, Gainsville, FL), sent to a

programmable switch attenuator and then through a weighted summer.  Intensity (in dB

attenuation) of the right and left signals were controlled through separate attenuators.  The sound

signal was then relayed to amplifiers and presented via custom-built Stax speakers that fit onto

the ends of the brass earbars (Sokolich, 1981).  To permit calibration of the sound delivery

system, the hollow ear bars were machined with a small calibration tube that joined the sound

delivery tube at a 45o angle.  Prior to or following an experiment, a B & K microphone was

placed into the calibration tube and the sound delivery system calibrated for pure tones between

1 and 40 kHz.  Stimulus intensities were converted to dB SPL offline and corrected for

augmentation or attenuation caused by the B & K microphone.

Electrodes were advanced from outside the sound attenuated booth with a Burleigh
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Inchworm microdrive (Burleigh Instruments, Inc., Victor, NY).  Action potentials from single

units were fed through an amplifier to a spike conditioner, converted to a digital signal through

an A/D converter and displayed using Brainware software (RP2; Tucker-Davis Technologies,

Gainsville, FL).  All recordings were made with “piggyback” electrodes (Havey and Caspary,

1980).  Recording electrodes were pulled from single barrel glass micropipettes and tips were

broken back to an outside diameter of 2.5µm (10-20M�).  A five-barrel pipette (World Precision

Instruments, Sarasota, FL) was pulled to a total tip diameter of 10-20µm.  Recording electrodes

were mounted onto the five-barrel pipettes so the tip of the recording electrode extended

approximately 10µm past the tip of the five barrel pipette.  Recording pipettes were filled with a

solution of 3M KCl with 2.5% biocytin.  We used bicuculline, a selective antagonist at the

GABAA receptor to block GABAergic input (10mM, Sigma).  To block glycinergic input, we

used strychnine, a competitive antagonist at the glycine receptor (10mM, Sigma).  To block both

the GABAA and glycine receptors simultaneously, we used a cocktail of bicuculline and

strychnine (both 10mM).  Each drug was dissolved in 0.165 M NaCl, pH 3 and retained in one

barrel of the five barrel pipette with a –15 nA current.  Bicuculline was delivered with positive

currents that ranged from 15 to 25 nA, strychnine was delivered with positive currents that

ranged from 20 to 36 nA and the cocktail of bicuculline and strychnine was delivered with

positive currents ranging from 30 to 40 nA.  A second barrel of the five barrel pipette was used

as a ground channel and was filled with 0.9% NaCl.  We observed no effect on neuronal

discharge during iontophoresis of saline or drug vehicle (0.165M NaCl, pH 3).

Broad band noise bursts (containing frequencies from 20 Hz to 61 kHz, 50 ms duration)

were used to search for single units.  Response maps were compiled from single responses to

numerous frequency-intensity combinations of pure tone stimuli.  Best frequency (BF), defined

as the frequency to which the neuron responded at the lowest stimulus intensity, was derived

from the response map for each unit.  Threshold was determined visually while stepping through

a BF tone in 1 dB increments, and was defined as the lowest intensity at which the neuron

responded.  Q20 values were calculated by dividing a neurons BF by the bandwidth of the

response map (for that neuron) at 20 dB above the neurons threshold.  Peristimulus time

histograms (PSTHs) to BF tones, 20 dB above threshold (5ms cosine2 ramp; 50 ms duration)

were compiled from data collected over 100 repetitions.  Spontaneous activity was measured in a
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ten ms window prior to pure tone presentations, for a total time of one second.  Sinusoidally

amplitude modulated BF tones (100% modulation), 0.5 seconds in duration, were presented 20

times at each modulation frequency (50, 100, 200, 400 and 800Hz).  Synchronization of the

response to the modulation frequency was quantified by calculating vector strength (Goldberg

and Brown, 1969) at each modulation frequency using the following equation

                          VS = sin(ai )∑[ ]2
+ cos(ai )∑[ ]2

/ N .

where ai is the phase of spike i relative to the frequency modulation and N is the total number of

spikes.  A vector strength of 1 indicates perfect entrainment between the neurons response and

the modulation phase, while a vector strength of zero means there is no correlation between the

neurons response and the modulation phase.  Offset spikes were excluded from the calculation of

vector strength.

After baseline data were collected (response map, BF, threshold, pure tone and SAM

PSTHs) drugs were delivered to the neuron.  For each neuron, the number of discharges in

response to 100 repetitions of a BF tone, 20dB above threshold, was monitored every two to five

minutes until the discharge rate reached a plateau (between 10 and 25 minutes).  When the

neuron’s response reached this plateau, this was considered the maximal effect of the drug on the

neuron and response maps, PSTH and SAM data were collected again during pharmacological

manipulation.  Following data collection, the drug was again retained in the barrel and the

neuron was allowed to recover.  Full recovery could be as quick as 30 minutes (bicuculline) or as

long as 90 minutes (bicuculline and strychnine cocktail).  If the neuron failed to show any signs

of recovery after 60 minutes or was lost prior to recovery, we waited at least 30 minutes before

searching for another neuron to avoid recording control data from a neuron already

demonstrating drug effects.

Localization of recording sites

Electrode tracts that included recordings from a single unit before and during drug
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application were marked with small deposits of biocytin, applied by iontophoresis (from the

recording barrel, 400 nA for ten minutes).  For reference and to aid in accurate localization of

recording sites, a deposit was also made one or two millimeters dorsal to the recording site in the

reticular formation.  Upon the completion of a recording session, the animal was given a

supplemental dose (2/5 of the original dose) of xylazine and ketamine and perfused through the

ascending aorta with a vascular rinse of normal saline (0.9 % NaCl) followed by a fixative

composed of 4% paraformaldehyde and 0.1% glutaraldehyde in 0.12 M sodium phosphate

buffer.  Following perfusion, the brain was dissected from the cranium, post-fixed for at least 24

hours in 4% paraformaldehyde and 0.1% glutaraldehyde in 0.12 M sodium phosphate buffer and

cryoprotected overnight in 30% sucrose in 0.12 M sodium phosphate buffer.  Brainstems were

sectioned on a freezing microtome in the coronal plane at a thickness of 60 µm.  Free-floating

sections were incubated for one hour in the avidin-biotin complex (Vector Laboratories,

Burlingame, CA) and biocytin was revealed by incubating sections in a solution of 0.05%

diaminobenzidine, 0.01% hydrogen peroxide, 0.025% cobalt chloride and 0.02% nickel

ammonium sulfate for two to five minutes.  Sections were then mounted onto glass slides and

counterstained for Nïssl substance with neutral red.

Drawings of sections containing injection sites were made at a magnification of 41 X

using a drawing tube attached to an Olympus microscope.  The distance between the two

deposits of biocytin was measured and used to calculate tissue shrinkage.  This permitted the

precise determination of recording site locations along the electrode track, by using depth

measurements taken directly from the Burleigh microdrive readout and adjusting for tissue

shrinkage.
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RESULTS

Basic response properties of SPON neurons in rat have been described in the previous

chapter (chapter 4).  Briefly, SPON neurons discharge at the offset of pure tone and broad band

noise stimuli and synchronize to SAM stimuli up to 200 Hz.  The offset responses observed in

the SPON could be divided into three classes, offset-transient (neurons firing only once per

stimulus), offset-choppers (neurons firing two or more well timed spikes) and offset-sustained

(neurons with responses that lasted more than twenty ms).  Additionally, the vast majority of

SPON neurons respond only to contralateral stimulation and have very low rates of spontaneous

activity.

To ensure that the effects we observed on neuronal response properties with iontophoretic

application of drugs was truly a drug effect and not an effect of current injection or pH we

performed two controls.  We recorded from neurons while injecting saline (0.9 % NaCl) or drug

vehicle (0.165 M NaCl, pH 3).  We observed no change in the number of spikes or the timing of

those spikes with iontophoretic application of saline or vehicle (figure 5.1).  Additionally,

application of bicuculline and strychnine had drastically different effects on SPON response

properties, indicating that bicuculline and strychnine were acting at specific receptors (described

below).

Effects of blocking GABAA input

We recorded from twelve SPON neurons before, during and after application of the

GABAA receptor antagonist, bicuculline (BIC).  Control PSTHs from six of the neurons were

classified as offset-choppers, three as offset-transient and three as offset-sustained.  During

application of BIC, seven of the twelve neurons (58%) showed an increase in the total number of

spikes during the offset portion of the response, with little or no spike activity during the

stimulus (figure 5.2A).  During BIC application, five neurons (42%) responded weakly during

the stimulus and at the offset (figure 5.2B).  Of the five neurons that displayed spike activity

during the stimulus, two had offset transient and three had offset chopper PSTHs in control

recordings, indicating that GABAergic inhibition arriving during the stimulus has little effect on
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the classification of the offset response.  In all neurons tested (n=12) BIC caused a significant

increase (p < 0.05, ANOVA) in the total number of spikes in response to a 50 ms pure tone

(figure 5.3).  The increase in the total number of spikes for all twelve neurons ranged from 24.4

% to 417.4 % and averaged 129.1 %.  The average increase in the total number of spikes for the

seven neurons that had only offset discharges averaged (average ± SD) 92.42 ± 79.41 %, and

was 178.2 ± 152.91 % for the five neurons that responded during the stimulus and at the offset.

Spontaneous rates for the population of twelve SPON neurons before drug delivery

averaged 1.0 ± 2.13 spikes per second.  During application of BIC, four neurons showed an

increase in spontaneous activity and two showed a decrease.  Overall, the average spontaneous

rate in the presence of BIC was still very low, measuring 1.16 ± 1.33 spikes per second and was

not significantly different from control (p = 0.38, paired t test).

Effects of blocking glycinergic input

We tested the responses of twelve SPON neurons with application of the glycine receptor

antagonist, strychnine (STRYCH).  Control PSTHs from six of these neurons were classified as

offset-chopper, four as offset-transient and two as offset-sustained.  During STRYCH

application, the offset response was abolished in all twelve neurons and transient responses timed

to the stimulus onset were observed (figure 5.4), indicating that the offset response depends on

glycinergic input.  In the presence of STRYCH, first spike latencies averaged 13.07 ± 2.86 ms

from the tone onset.  The effect of STRYCH on the total number of spikes in response to a 50 ms

tone burst was variable (figure 5.5).  Seven of twelve neurons (58 %) showed a significant

increase (p < 0.006, ANOVA) in the total number of spikes; three neurons (25 %; 1 offset-

choppers, 1 offset-transient, 1 offset-sustained) showed a significant decrease (p < 0.001,

ANOVA) in the total number of spikes and two neurons showed no change in the total number

of spikes (p > 0.05, ANOVA) in response to a 50 ms tone burst.

The effects of STRYCH on the number of spontaneous discharges was variable.  For this

population of twelve neurons the rate of spontaneous discharges in the control condition

averaged 3.75 ± 6.79 spikes per second; in the presence of STRYCH, spontaneous rates averaged
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4.5 ± 8.83 spikes per second and this difference was not significant (p = 0.39, paired t test).

Response maps from ten neurons were collected before and during application of

STRYCH (figure 5.6).  BFs for this population ranged from 2.3 to 23.4 kHz.  SPON response

maps are typically V shaped with narrow regions near BF and long low frequency receptive

areas.  Overall, blockage of glycinergic inhibition resulted in response maps that still had narrow

peaks and low frequency tails but were generally broader with responses to frequencies that were

outside the original receptive field.  We quantified the width of the receptive fields at 20 dB

above the threshold by calculating Q20 values.  Q20 values for control response maps averaged

3.07 ± 1.82 compared to 1.55 ± 1.05 in the presence of STRYCH and this difference was

significant (p < 0.05, paired t test).

Effects of blocking GABAA and glycine inputs simultaneously

A total of fourteen neurons were tested with a cocktail of BIC and STRYCH.  Control

PSTHs from nine of these neurons were classified as offset-transient, three as offset-chopper and

two as on-offset.  The PSTHS during drug application in all cases were unlike those recorded in

the presence of BIC or STRYCH alone, providing evidence that both drugs were acting on target

receptors.  Application of the BIC/STRYCH cocktail abolished the offset response and resulted

in long sustained responses timed to the stimulus onset (figure 5.7).  In five neurons (35 %) the

PSTHs during BIC/STRYCH showed “chopper” like responses, characterized by three or more

regularly timed peaks resembling multipolar neurons in the cochlear nucleus (figure 5.7B).  In

five neurons (36 %) the response lasted longer than the stimulus (figure 5.7A).  Each of these

neurons had an excitatory response that overlapped the offset activity observed in the control

condition.  Of the control PSTHs from these five neurons with sustained excitation that

overlapped the inhibitory rebound, three had onset-transient and two had offset-chopper

responses, indicating that this persistant excitatory input does not contribute to the type of offset

response observed in control recordings.  During blockade of GABA and glycine the first spike

latency averaged 13.56 ± 3.13 ms from the stimulus onset.  As expected, all neurons showed a

significant increase (p < 0.05, ANOVA) in the total number of spikes in response to a 50 ms BF

tone burst (figure 5.8).  The increase in number of spikes ranged from 124 % to 2160 % and
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averaged 516 %.

For the population of fourteen neurons tested with the bicuculline and strychnine

cocktail, the number of spontaneous discharges before drug application averaged 0.78 ± 1.18

spikes per second and averaged 10.35 ± 14.67 spikes per second during application of

BIC/STRYCH.  The difference in spontaneous rates was significant between the two conditions

(p < 0.015, paired t test).  Of the fourteen neurons tested, eleven had an increase in the number of

spontaneous discharges, two neurons showed no change and one neurons had a decrease in the

number spontaneous discharges in the presence of BIC/STRYCH.

Response maps were collected for eleven neurons before and during application of

BIC/STRYCH.  BFs for these neurons ranged from 3.8 to 22.3 kHz.  As previously described,

SPON response maps are V shaped with narrow peaks near BF and low frequency tails.

Generally, control response maps were more narrow than response maps collected during

application of BIC/STRYCH as quantified with Q20 values (figure 5.9).  In all cases except one

(92 %), we noticed broader receptive fields and lower Q20 values when GABAA and glycine

receptors were blocked.  Control Q20 values averaged 3.91 ± 2.3 and BIC/STRYCH Q20s

averaged 2.54 ± 1.96 and this difference was statistically significant (p < 0.015, paired t test;

figure 5.10).  Thresholds were not significantly different between control and drug conditions

(29.08 ± 15.56 and 29.77 ± 15.48 respectively, p = 0.35, paired t test).

Twelve neurons were tested with SAM pure tones before and during application of

BIC/STRYCH; of the twelve neurons tested one neuron was inhibited for the entire 500 ms

presentation and was considered unresponsive to SAM.  SPON neurons typically synchronize to

the envelope of SAM stimuli with an upper cutoff between 100 and 200 Hz.  When GABAA and

glycine receptors were blocked, phase locking capabilities were reduced and poorly timed

sustained responses were typically observed (figure 5.11).  Synchrony of the response to the

modulation frequency (50 to 800 Hz) was quantified by calculating vector strength for the eleven

neurons that synchronized SAM stimuli.  Vector strengths for the population of eleven neurons

that responded to SAM are shown in figure 5.12.  When inhibition was blocked, there was a

significant decrease (p < 0.01, paired t test) in the vector strength at all modulation frequencies
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tested.



126

DISCUSSION

We have shown that GABAergic and glycinergic inhibition exert a powerful influence on

the response properties of SPON neurons and are essential for the formation of the offset

response.  Blocking GABAergic and glycinergic inhibition separately had very different effects

on response properties of SPON neurons, a phenomenon that has been described in the mustache

bat dorsal nucleus of the lateral lemniscus (Yang and Pollak, 1994).  The effects of blockade of

the GABA and glycine receptors will be discussed separately below.

Blockade of the GABAA receptor

Blocking the GABAA receptor with bicuculline resulted in an increase in the number of

offset spikes fired in response to a stimulus.  We interpret this data to mean that SPON neurons

receive a GABAergic inhibition that is timed to the stimulus offset.  The GABAergic inhibition

timed to the stimulus offset likely arises from other SPON neurons.  Indeed, our previous tract

tracing and intracellular labeling studies suggest that SPON axons provide intrinsic collaterals

that terminate within the nucleus and our pharmacology data is consistent with this observation

(Kulesza et al., 1999; Saldaña and Berrebi, 2000).  In some neurons, blocking the GABAA

receptor revealed spike activity during the stimulus presentation, indicating a second GABAergic

input may impinge on these cells during the stimulus.  A potential source of this input are the

neurons of tecto-commissural column, situated within the commissure of the inferior colliculus

(Viñuela and Saldaña, 2000).

Blockade of the glycine receptor

Blocking the glycine receptor with strychnine had variable effects on the number of

spikes fired in response to a stimulus but did have a major effect on the timing of the spikes.

Strychnine abolished the offset response in all neurons tested and we never observed the offset

activity seen in control recordings.  During strychnine application, SPON neurons responded

during the stimulus with first spikes timed to the stimulus onset.  The fact that offset responses

could be abolished by blocking glycinergic inhibition, indicates that the offset response results
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from a postinhibitory rebound mechanism (see below).

Blockade of both GABAA and glycine receptors

Blockage of both the GABAA and glycine receptors simultaneously, resulted in a

dramatic effect on the number of spikes and the timing of those spikes in response to a 50 ms

pure tone stimulus.  During application of bicuculline and strychnine, the offset response elicited

by SPON neurons was completely abolished and neurons instead fired in a sustained discharge

pattern for the duration of the stimulus.  In nearly half of SPON neurons, the sustained discharge

outlasted the stimulus such that excitatory activity was observed in the time window where offset

activity was evoked in the control condition (figure 5.7A).  Thus, for nearly half of our SPON

neurons we cannot rule out the possibility that inhibitory rebound coincides with excitatory input

and that both inhibitory rebound and excitatory input contribute to the offset response.

It has been established that the main excitatory input to the SPON arises from the octopus

and multipolar cells in the contralateral cochlear nucleus (Friauf and Ostwald, 1988; Schofield,

1995).  In the fourteen neurons studied with BIC/STRYCH, seven neurons (65%) had pure tone

PSTH patterns during drug application (presumably representing purely excitatory input) that did

not resemble responses described for octopus or multipolar cells in the ventral cochlear nucleus

(Godfrey et al., 1975; Rhode et al., 1983).  Interestingly, five neurons (35%) had PSTH patterns

with regularly spaced peaks and resembled the “chopper” pattern that has been described for

multipolar neurons in the ventral cochlear nucleus (Rhode et al., 1983).  The PSTH pattern

observed in these five neurons supports evidence that SPON neurons are driven by multipolar

cells.  Indeed, the sustained responses of SPON neurons (in the absence of inhibition) provide

evidence that all SPON neurons receive multipolar cell input.  However, since most SPON

neurons had sustained responses (when inhibition was blocked) with no noticeable onset

features, it is difficult to assess the contribution of onset excitation from octopus cells to SPON

physiology.

Our bicuculline data provide evidence that less than half of SPON neurons receive a

GABAergic input that arrives during the stimulus.  Interestingly, we observed many more spikes
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with BIC/STRYCH than with STRYCH alone.  A potential explaination for the large increase in

spike activity when both GABAA and glycine receptors are blocked is that a sustained

GABAergic input reaches most if not all SPON neurons during the stimulus.  The reason only a

few neurons showed excitatory responses during the stimulus when only GABAA receptors are

blocked, may be that glycinergic inhibition alone is strong enough to fully inhibit most neurons

during the stimulus.  Thus, it appears that there are at least two distinct GABAergic inputs that

innervate most if not all SPON neurons, one that arrives during the stimulus and one coincident

with the offset.

General effects of inhibition on SPON neurons

Blocking glycinergic inhibitory input to SPON neurons broadened response maps, a

feature that has been described for inferior colliculus neurons (Yang et al., 1992).  Response

maps of SPON neurons, which reflect rebound from glycinergic inhibition, are wider than

previously published response maps from cat MNTB neurons  (Guinan, 1968; Kulesza et al.,

submitted).  Since offset response maps are dictated by glycinergic input and SPON response

maps are wider than those in the MNTB, the MNTB must converge onto SPON neurons.  Our

response map data during pharmacological manipulation shows that the excitatory input reaching

the SPON from the contralateral cochlear nucleus is more broadly tuned than the glycinergic

input from the MNTB.  A broadly tuned excitatory innervation from the cochlear nucleus might

arise from the broadly tuned octopus cells or convergence of multipolar cell inputs (Godfrey et

al., 1975; Rhode and Smith, 1986).  If the excitatory input is more broadly tuned than the

glycinergic input causing rebound, what prevents SPON neurons from responding to the

excitatory input that arrives outside the typical V shaped receptive field in the control condition?

Our data show that receptive fields of SPON neurons were broadened during blockade of the

glycine receptor.  We interpret this data to indicate that a glycinergic input, also likely arising

from the MNTB but insufficient to cause inhibitory rebound innervates the SPON and prevents

the neurons from responding to the broadly tuned excitatory input.  If this is the case, it provides

evidence that there is some degree of converging and partial overlapping of MNTB inputs onto

SPON neurons.



129

SPON responses in the presence of BIC/STRYCH display a rather long first spike

latency, nearly 14 ms from the stimulus onset, compared to our own MNTB recordings where

first spike latency averaged 6.27 ms from the stimulus onset.  This is an interesting feature given

the known input from octopus and multipolar cells, which should arrive with a short latency.

Octopus cells have short first spike latencies (~ 3 ms from the stimulus onset) and also innervate

neurons in the ventral nucleus of the lateral lemniscus (Adams, 1997).  First spike latencies in

VNLL neurons average 7.0 ± 1.4 ms (Batra and Fitzpatrick, 1999).  Thus, there is a large

discrepancy in first spike latencies between the SPON and VNLL, both innervated by octopus

cells.  A possible reason for this discrepancy in first spike latency might be the arrangement of

the excitatory and inhibitory inputs on SPON neurons.  Ultrastructural analysis suggests that

nearly 70 % of the synapses on SPON somata are inhibitory (GABAergic or glycinergic) while

nearly 70 % of the synapses on dendritic profiles are excitatory (Holt and Berrebi, 1999).

Additionally, some ventrally directed dendrites of SPON neurons extend up to 430µm away

from the soma (Saldaña and Berrebi, 2000).  Therefore, much of the excitatory input reaching the

SPON arrives some distance from the soma.  Consequently, excitatory inputs arriving mainly on

the dendrites and far from the soma, may only weakly influence firing properties and the

temporal precision of these excitatory inputs may be lost by the time the neurons can fire an

action potential.  In a population of our own recordings from MNTB neurons, the first spike

latency averaged 6.27 ± 1.34 ms and first spike latency of excitatory input to the SPON averaged

13.56 ± 3.13 ms.  MNTB axons travel approximately 300 – 400 µm to targets in the SPON

(personal observations); assuming an axonal conduction velocity of 5 meters per second and a

synaptic delay of a few ms, inhibitory input from the MNTB reaches the SPON about 7 ms from

the sound onset, long before the SPON can respond to excitatory inputs.  Thus it appears, that the

differences in the arrival time of excitatory and inhibitory inputs are an important component of

the SPON circuit contributing to the formation of the offset response.

Response of SPON units to SAM

The ability of SPON neurons to phase lock to SAM stimuli appears to be mediated

largely by the inhibitory input to this cell group.  In the inferior colliculus, inhibition has been

shown to expand the range of amplitude modulation neurons were capable of synchronizing to



130

and to reduce vector strengths (Koch and Grothe, 1998).  In most of our SPON neurons,

removing inhibition abolished or greatly reduced the neurons ability to phase lock to amplitude

modulated stimuli.  The weak responses to SAM in the absence of inhibitory input indicates that

the excitatory inputs to the SPON respond weakly or not at all to SAM stimuli.  Responses to

SAM stimuli have been recorded from neurons in the cat and gerbil cochlear nuclei (Rhode and

Greenburg, 1994; Frisina et al., 1990).  Onset neurons (presumed to represent octopus cells) and

choppers (presumed to represent multipolar cells) synchronize to SAM up to 1000 and 600 Hz

respectively.  Thus, these inputs should provide excitatory, phase locked input to the SPON.

Interestingly, in both cat and gerbil, the ability of cochlear nucleus neurons to follow SAM at

high intensity (60 to 90 dB above threshold) is reduced (Rhode and Greenburg, 1994; Frisina et

al., 1990).  The average threshold for the twelve SPON neurons tested with SAM was 29.08 ±

15.56 dB SPL and SAM stimuli were presented at 20 dB above threshold.  Thresholds for onset

and chopper neurons in the cat cochlear nucleus are about 19 dB (Rhode and Smith, 1986) and

our stimuli were presented at about 30 dB above octopus and multipolar cell thresholds.  Thus,

one possible reason for the diminished SAM sensitivity of SPON neurons when both GABAA

and glycine were blocked is the high intensity of the stimulus (~50 dB SPL).  At this high

intensity level, the responses of cochlear nucleus neurons to SAM stimuli may begin to lose

temporal precision and this would be reflected in the poorly timed response of SPON neurons

when inhibition is blocked.  Another possible reason for the lack of SAM sensitivity in the

presence of BIC/STRYCH is the fact that most excitation is arriving on the dendrites and this

may act to smear any temporal acuity in the input.

Mechanism of the offset response

The generation of offset responses by post inhibitory rebound (PIR) is an interesting

feature of the nervous system and provides a mechanism where one input can provide both

inhibition and excitation.  Our data shows the offset response is abolished when glycinergic input

is blocked, indicating that it is a rebound from inhibition and rules out a descending or long

latency excitatory input as the source of offset activity.  In some neurons, when GABA and

glycine were blocked, the excitatory response outlasted the stimulus with a time course that even

outlasted the offset response.  Thus, in some neurons, postinhibitory rebound (PIR) coincident
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with excitatory input may be required for the offset response.  The mechanism that leads to PIR

is unclear.  However, in slice preparations PIR can be induced by a hyperpolarizing current pulse

and has been demonstrated in vivo by application of GABA (Aizenman and Linden, 1999; Plenz

and Kital, 1999).  Neurons displaying PIR have been reported in the rat IC and PIR was blocked

with TTX, a blocker of sodium channels, and in low calcium solutions, providing evidence that

calcium and sodium currents contribute to PIR (Sivaramakrishnan and Oliver, 2001).  PIR is

believed to be triggered by the opening of T type (low voltage activated) calcium channels

(Aizenman and Linden, 1999).  These channels are deinactivated during hyperpolarization of the

cell membrane and open on return to more depolarized membrane potentials, resulting in a large

influx of calcium (Aizenman and Linden, 1999).  The calcium influx presumably leads to the

depolarization that may lead to opening of deinactivated sodium channels resulting in sodium

spikes.  Another potential contributer to PIR is the Ih current (McCormick and Pape, 1990).  Ih is

a mixed cation current that is activated during hyperpolarization and drives the membrane

potential to more depolarized levels and has been implicated in postinhibitory rebound spikes

(Aizenman and Linden, 1999).

Conclusions

Our pharmacological data provide solid evidence that offset responses, at least in the

SPON, result from a postinhibitory rebound mechanism caused by removal of MNTB-mediated

glycinergic inhibition at the end of a sound stimulus.  Synchronized responses to SAM stimuli

are largely mediated by inhibition.  Our data also provide evidence that normal response features

of SPON neurons (offset responses, phase locking to SAM, receptive fields) are created through

an integration of membrane properties and glutamatergic, GABAergic and glycinergic

innervation.  Additionally, our data may provide some useful insight into how the arrangement of

inputs on a cell can affect neuronal response properties that may be applicable to other neuronal

circuits.

Future direction

Although we have examined the role of GABAA and glycine receptors in SPON response
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properties, some important questions remain.  We have used bicuculline to block the GABAA

receptor, but GABA is also acting on the metabotropic GABAB receptors.  The contribution of

the GABAB receptor to the physiological response properties of SPON neurons could be

examined with recordings made in the presence of the GABAB antagonist saclofen (Kerr et al.,

1989).  Additionally, it remains unclear if the offset response requires an excitatory input along

with the glycinergic inhibition.  The role of excitatory, glutamatergic input could be studied by

iontophoretic application of the non-selective glutamate receptor antagonist, kynurenic acid

(Perkins and Stone, 1982).  Preliminary data from two SPON neurons before, during and after

kynurenic acid application provide evidence that glutamatergic input is not required for the offset

response and further supports a post-inhibitory rebound mechanism.
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Figure 5.1 Offset responses in SPON neurons were unaffected by extracellular current injection

and vehicle pH.  In order to demonstrate a specific action of pharmacological manipulations, we

recorded from neurons while iontophoretically delivering normal saline (A) or drug vehicle (B)

with relatively high currents.  This did not affect neuronal discharges.
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Figure 5.2. Blockage of the GABAA receptor caused an increase in the number of offset spikes

and had little effect on temporal discharge pattern.  In most neurons (7/12), blockage of the

GABAA receptor did not change the temporal discharge patterns of SPON neurons, but did cause

an increase in the number of evoked spikes at the offset (A).  In a few neurons (5/12), blockage

of the GABAA receptor resulted in spike activity during the stimulus and at the offset (B).
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Figure 5.3.  Blockage of the GABAA receptor caused an increase in the number of evoked

spikes.  In all neurons tested, bicuculline caused a significant increase in the number of spikes

evoked by a 50 ms stimulus (100 sweeps).  In some cases there was a 200 % increase in the

number of spikes over the control.
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Figure 5.4. Blocking the glycine receptor abolished the offset response of SPON neurons.  In all

neurons tested, strychnine abolished the offset response and activity timed to the stimulus onset

was observed.  The resulting onset activity could be transient (A) or more sustained (B).
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Figure 5.5.  Blocking the glycine receptor had a variable effect on the number of evoked spikes.

In most neurons tested, strychnine caused an increase in the number of spikes discharged in

response to a 50 ms stimulus.  Approximately one-third of the neurons tested with strychnine

showed a decrease in the total number of spikes.
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Figure 5.6.  Blocking the glycine receptor broadened response maps.  Response maps collected

during strychnine application were generally broader than the offset response maps recorded

with control data (A).  Overall, Q20 values decreased significantly, indicating broader receptive

fields, in the presence of strychnine (B).



140

Figure 5.7.  Blockage of the GABAA and glycine receptors together changed temporal discharge

pattern and the number of evoked spikes.  In all neurons tested, BIC/STRYCH abolished the

offset and resulted in sustained discharges that could outlast the stimulus such that excitatory

activity occurred in place of the offset response (A).  Some neurons had chopper like PSTHs (B)
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Figure 5.8.  Blockage of the GABAA and glycine receptors together greatly increased the

number of evoked spikes.  In all neurons tested with bicuculline and strychnine we observed a

significant increase in the number of spikes.  In half of the neurons tested (6 of 12), there was a

greater than five-fold increase in the number of spikes to a 50ms stimulus.
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Figure 5.9.  Blockage of the GABAA and glycine receptors together broadened response maps.

Response maps are shown for two neurons before and during application of bicuculline and

strychnine.  For the neuron in A, the response maps from the control and drug condition are

similar near BF but when inhibitory input is blocked, the neuron becomes more sensitive on the

low frequency side of the response map.  In B, there is a noticeable broadening near BF when

inhibition is removed and the neuron has a much lower threshold to low frequency tones (1 to 10

kHz).



143

Figure 5.10.  Blockage of the GABAA and glycine receptors together resulted in lower Q20

values.  Q20 values for the eleven neurons before and during bicuculline and strychnine are

compared.  Overall, there was a significant decrease in Q values when inhibition was blocked.
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Figure 5.11.  Blockage of the GABAA and glycine receptors together reduced phase locking

capabilities to SAM stimuli.  Shown are responses to a 50 Hz modulated BF tone, 20 dB above

threshold from two neurons before and during application of bicuculline and strychnine.  Before

drug application the neuron in A responded to each modulation cycle with a single spike; during

drug application the cell failed to show any phase locking to SAM.  In B, some degree of phase

locking is retained during bicuculline and strychnine application.
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Figure 5.12.  Blockage of the GABAA and glycine receptors together caused a reduction in

vector strengths.  Average vector strengths from the ten neurons that responded to SAM stimuli

for 50, 100, 200, 400 and 800 Hz SAM pure tones before and during drug application are shown.

There was a significant decrease in the vector strength at all modulation frequencies tested when

inhibition was removed (p < 0.01, student t test).
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Chapter Six

General Discussion
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SUMMARY

The purpose of this dissertation was to characterize SPON neurons in the rat using

anatomical and physiological techniques, with the hopes of clarifying the functional role of this

cell group.  The literature, which is based on data from numerous species, provides evidence that

the SPON contains a morphologically heterogeneous population of neurons whose inputs,

projections and responses to sound vary with species.  The sparse amount of published data from

different species makes hypothesizing a functional role for the SPON difficult.  Understanding

basic features of the SPON such as neurochemical phenotype, connectivity and responses to

sound will lead to a testable hypothesis of the functional role of this cell group and clarify the

role of inhibitory circuits in hearing.  Further, an in depth study of the SPON is required in a

single species before generalities about this region of the superior olivary complex can be made.

To that end, the data included herein provides the first in depth study of the neurochemistry and

physiology of the SPON in any species.

Study I: SPON neurons are GABAergic

The immunocytochemical investigation of the presence of the inhibitory

neurotransmitters, glycine, GABA and the GABA synthetic enzyme GAD presented in chapter 2,

indicates that nearly 91 % of SPON neurons are GAD immunoreactive and therefore

GABAergic.  Additionally, our data indicates that SPON neurons receive abundant glycinergic

and GABAergic inhibitory input.  Analysis of neuronal morphology indicates that the rat SPON

contains a morphologically homogeneous population of neurons, which correlates with published

tract tracing data (Saldaña and Berrebi, 2000).  SPON somata are multipolar and are elongated

rosto-caudally with dendritic trees that are flattened parasagittally.

Study II: The SPON is a major source of inhibition to the IC

The VNLL, DNLL, SPON and LSO are all sources of inhibitory projections to the

inferior colliculus (González-Hernández et al., 1996).  Our unbiased stereological estimates of

neuronal number, in chapter three, indicate that the rat SPON contains approximately 2,400
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neurons, 91 % of which are GABAergic (Kulesza and Berrebi, 2000).  We estimate that the

VNLL contains approximately 13,800 neurons, two-thirds of which are inhibitory (Riquelme et

al., 2001).  Therefore, the VNLL contains about 9,000 inhibitory neurons that project to the IC.

The DNLL, often considered the major source of inhibition to the IC, contains approximately

1,800 neurons, all of which are reportedly inhibitory (Adams and Mugnaini, 1984; Zhang et al.,

1998).  The LSO contains 2,500 neurons, approximately 20 % of which are inhibitory (Mugnaini

and Oertel, 1985).  Our stereological estimates provide evidence that the VNLL is the major

source of ascending inhibition to the IC.  The SPON contains more inhibitory neurons than the

DNLL and LSO, and is therefore a major source of ascending inhibitory input to the IC.

Study III: SPON neurons respond at the sound offset and can encode sound envelopes

In chapter four, we present data from in vivo extracellular recordings from SPON

neurons.  These data indicate that the vast majority of SPON neurons are monaural, responding

only to contralateral stimuli.  SPON neurons respond with only a few spikes at the offset of pure

tone and broad band noise stimuli and synchronize to amplitude fluctuations in complex stimuli.

Nearly half of SPON neurons, mainly offset-sustained and offset-choppers, were sensitive to

stimulus duration and these neurons may function in duration tuning.  Additionally, mapping of

neurons best frequency provides evidence for a tonotopic representation of frequency in the

SPON.

Study IV: SPON response properties are formed largely by inhibitory input

In chapter five, we examined the effects of the inhibitory neurotransmitters GABA and

glycine on in vivo response properties of SPON neurons using pharmacological manipulations to

block GABAA and glycine receptors.  In most neurons, blocking GABAergic input resulted in an

increase in the number of spikes occurring at the stimulus offset, supporting the existence of

intrinsic collateral input from other SPON neurons.  Offset responses were abolished by

iontophoretic application of the glycine receptor antagonist strychnine, providing evidence that

offset responses arise from a postinhibitory rebound mechanism.  Blocking both GABAA and

glycine receptors resulted in broadened response maps and poorly timed responses to amplitude
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modulated stimuli.  Thus, inhibitory input plays an important role in SPON physiology and is

essential for normal response characteristics of SPON neurons.

The data contained in this dissertation, combined with the available literature, indicate the

rat SPON is a prominent source of GABAergic, offset inhibition to the IC.  This work has led us

to hypothesize that the SPON is involved in processing temporal features of sound, specifically

the offset and amplitude fluctuations.  Inhibitory inputs to the IC have been shown to be involved

in many aspects of auditory processing.  However, the role of offset inhibition is likely limited to

a few aspects of processing in the inferior colliculus.  The possible functional role that offset

inhibition might play in the IC will be the focus of the following section.

DISCUSSION

Model for the formation of offset responses

Our physiology and pharmacology data is consistent with the offset response arising from

a postinhibitory rebound mechanism.  Offset responses were abolished by blockade of glycine

receptors, providing evidence that offset activity is dependent on MNTB input.  Thus, response

maps of SPON neurons reflect glycinergic input and comparing Q values suggests that SPON

units have wider receptive fields than MNTB neurons.  We interpret this to mean that there is

some degree of convergence of MNTB input onto SPON neurons.  Responses to excitatory input

from the contralateral CN in the presence of GABAA and glycine receptor antagonists, come at

considerable delay relative to the stimulus onset.  This long latency is likely a result of the

distribution of excitatory inputs on the dendrites of SPON neurons and the location of excitatory

inputs distally may serve to attenuate excitatory drive to the cell.  Generation of offset spikes

also likely requires a particular complement of membrane channels, specifically T type (low

voltage activated) calcium channels and/or Ih channels.  These channels may serve to drive the

cell towards action potential threshold following a hyperpolarizing pulse (inhibitory input),

activating voltage gated sodium channels resulting in generation of action potentials.  Thus, our

model for the formation of offset responses in the SPON includes a convergent glycinergic input,

a late arriving excitatory input onto the dendrites and a particular complement of membrane

channels.  Upon stimulation with a pure tone, the contralateral SPON receives a glycinergic that
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hyperpolarizes the neuron.  Shortly thereafter, excitatory input from the CN arrives on the

dendrites, but is unable to depolarize the cell enough to elicite an action potential.  At the end of

the stimulus, the hyperpolarizing input is removed and there is a large influx of cations through

either T type (low voltage activated) calcium channels and/or Ih channels.  This influx of cations

activate voltage gated sodium channels and results in an action potential at the offset of a

stimulus.

Comparative issues

An interesting feature of the SPON, much like the MSO (Grothe, 2000), is that it appears

to exhibit considerable interspecies variation.  It has been well established that the SPON

projects to the IC (Coleman and Clerici, 1987; Saint Marie and Baker, 1990; Schofield, 1991).

In fact, the rat SPON almost exclusively projects to the ipsilateral IC (Saldaña and Berrebi,

2000).  The SPON, in some species (gerbil, guinea pig, cat), contain glycinergic and cholinergic

neurons that project to the cochlear nucleus and cochlea (Warr, 1975; Strutz and Spatx, 1980;

Robertson, 1985; Helfert et al., 1988; Winter et al., 1989).  Thus, in some species this cell group

has evolved to contain olivocochlear neurons that provide modulatory feedback to the cochlea

and cochlear nucleus.  The physiological response properties of SPON neurons appear to vary

somewhat between species.  Approximately half of gerbil SPON neurons are binaural and based

on responses to sound stimuli, the gerbil SPON contains at least two distinct populations of

neurons (Berhend et al., 2002, Dehmel et al., 2002).  The majority of cat SPON/DMPO neurons

are monaural (65 %) and about half respond only at the stimulus offset (53 %; Guinan et al.,

1972).  In contrast, the rat and rabbit SPON are largely monaural and nearly all of the neurons

respond at the stimulus offset (Kuwada and Batra, 1999).  Thus, the SPON may be a site within

the SOC capable of evolutionary plasticity that is capable of modification to fit the specific needs

of the animal.  This variability of the SPON is not likely a result of increased sensitivity to high

frequency sounds as the hearing range of rats (1 to 60 kHz), cats (30 Hz to 50 kHz) and gerbils

(100 Hz to 60 kHz) overlap considerably.  The differences in the anatomy and physiology of the

SPON in these species may reflect specific needs related to environmental pressures (avoiding

predators) or the particular patterns of species specific vocalizations.
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Potential functional roles

Neurons responding to the offset of pure tone stimuli have been recorded throughout the

mammalian auditory pathway from the cochlear nucleus to the auditory cortex but likely make

up a small fraction of auditory neurons (Guinan et al., 1972; Grinell, 1973; Aitkin and Prain,

1974; Grothe, 1994; Spitzer and Semple, 1995; Kuwada and Batra, 1997; He et al., 1997; He,

2001).  Offset responses have been recorded in the auditory pathway of different species, ranging

from mouse (Brand et al., 2000), rat (this study), rabbit (Kuwada and Batra, 1999), bat (Grothe,

1994) and cat (Guinan et al., 1972; He et al., 1997; He 2001).  Thus, offset responses are

widespread throughout the mammalian auditory system and likely carry information important to

auditory processing.  The offset activity that arises from the SPON is inhibitory, however offset

information from other levels (IC, thalamus and cortex) may be excitatory.  Nearly all (95%)

SPON neurons responded at the stimulus offset.  Thus, detecting the stimulus offset is a

distinguishing feature of the rat SPON and these neurons are very likely the major source of

ascending offset inhibition.  Although the role of offset responses in hearing is unclear, they

appear to be necessary for duration tuning, gap detection and the precedence effect (discussed

below).  Offset responses recorded in the rat and rabbit SPON phase lock to amplitude

modulated pure tones (Kuwada and Batra, 1999).  The transient nature of the offset response and

the sensitivity to temporal features of sound implicates a role in processing complex signals,

such as vocalizations or other behaviorally relevant sounds.

In the description of basic response properties of SPON neurons (chapter 4) we found

three different types of offset responses: offset-transient (responding to pure tones with only one

spike per stimulus), offset-choppers (responding with 2 or more regularly timed spikes) and

offset-sustained (responses that lasted more than 20 ms).  Offset-choppers and offset-sustained

neurons, which combined made up 46% of the population, displayed some sensitivity for

stimulus duration and intensity.  Thus, these two categories of SPON neurons may be directly

involved in duration sensitivity in the IC, which may also require intensity information.  The role

of offset transient neurons, which made up 41% of all SPON neurons and showed little

sensitivity for intensity or stimulus duration, may be limited to simply indicating the end of the

stimulus or fluctuations in amplitude.  Even though offset transient neurons did not show

duration selectivity, this does not exclude them from contributing to duration sensitivity in the
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IC.

The potential functional role of the SPON in auditory processing will be examined in the

following section.  The subsequent section will focus on gap detection and the potential role of

the SPON in detecting gaps between stimuli.  In addition, the potential role of the SPON in

duration tuning, coding amplitude modulation and the precedence effect will be examined.

Gap detection

Most adult rat vocalizations consist of between two and twenty short bursts of constant

frequency and variable duration (3 ms up to 2 seconds) separated by gaps of between 25 and 200

ms (Brudzynski et al., 1993; Brudzynski and Ociepa, 1992; Francis, 1977).  Since rats use

vocalizations with multiple short components for communication, it is crucial that the rat

auditory system detects and responds to each component of the call.  Having these short calls so

temporally close, might necessitate an inhibitory input that arrives at the end of a sound to “turn

off” an auditory neuron so that it can precisely detect the end of a sound and respond precisely to

the onset of the next incoming signal.  Offset inhibitory input might be especially important for

neurons with sustained responses, especially when the evoked spike activity outlasts the

stimulus.  Detection of gaps or silent periods between stimuli is thought to play an important role

in processing complex sounds and speech perception (Barsz et al., 1998).

The offset inhibition arising from the SPON may serve to detect gaps between closely

placed sounds or components of sounds.  Gap detection is often tested using a forward masking

paradigm, where a leading stimulus is presented and a lagging stimulus is played with some

variable delay.  Detection of gaps between stimuli means that a neuron or the animal detects two

stimuli even when the stimuli are only separated by a few milliseconds; a gap is detected

between the stimuli.  Thus, brief gaps in sound are detected in the nervous system by a cessation

in neuronal activity that may result from inhibitory innervation.

Mammalian auditory nerve fibers have been shown to detect gaps between sounds as

short as 2 ms (Zhang et al., 1990).  Interestingly, gap thresholds for neurons in the IC are slightly

higher than those described for the auditory nerve; minimal gap thresholds for IC neurons range

between 2 and 4.2 ms, and IC gap thresholds are very similar to behavioral gap thresholds



153

(Walton et al., 1997).  The longer minimal gap thresholds in IC neurons and in behavioral data

provide evidence for a mechanism that lengthens gap thresholds.  One potential mechanism that

could be involved in lengthening gap thresholds would be an inhibitory input arriving at the end

of a stimulus.   This brings about an interesting question: If the auditory nerve can detect short

gaps between sounds, why involve a mechanism to that lengthens gap thresholds?  The reason

for this may be to reduce some of the jitter present in detecting the end of a stimulus.  Having a

well-timed offset inhibition will allow a precise indication of the end of the stimulus and allow

the neurons to respond to the next stimulus within a very short timed period.  Accompanying an

inhibitory input at the end of the stimulus comes a decrease in gap sensitivity of 1 to 2 ms.

It is very likely that not all SPON neurons are involved in gap detection.  Offset choppers

and offset sustained neurons are unlikely candidates for gap detectors because of the length of

the offset response in these neurons.  The inhibition arising from offset choppers, consisting of

two or more regularly timed spikes and often lasting more than ten milliseconds, would not be

compatible with detection of a 2 ms gap in sound.  For the same reason, the input from offset

sustained neurons are not likely involved in gap detection.  By definition, offset-sustained

neurons have responses that last for longer than 20 ms.  The length of this inhibitory input makes

offset sustained neurons poor candidates for involvement in detecting short gaps between

sounds.  However, SPON neurons with offset transient responses could be involved in gap

detection because their response typically consists of a single spike to a BF tone.  This well-

timed and brief offset inhibition is well suited for a role in detecting gaps between stimuli.  Thus,

offset transient neuron may play a role in gap detection.

Presbycusis, or age related hearing loss, is described as a decline in auditory sensitivity

that occurs with the normal progression of age.  Moreover, presbycusis has been at least partially

attributed to a decrease in GABA in the IC (Caspary et al., 1999).  Minimum gap detection

thresholds are elevated in older animals and this has been described using both in vivo recordings

(Walton et al., 1998) and a behavioral paradigm (Ison et al., 1998).  This taken with the fact that

gap detection thresholds in older subjects can be lowered with application of drugs that elevate

GABA levels (Gleich et al., 2002) provides evidence of an inhibitory input that shapes gap

thresholds in the IC.  Additionally, GABA has been shown to increase sensitivity to gap
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detection by lowering minimal gap thresholds in the IC (Gleich et al., 2002) and ventral cochlear

nucleus (Backoff, 1997).  Moreover, many neurons in the rat IC show a poststimulus suppression

that can last up to 270 ms after the stimulus (Finlayson, 1999) and neurons in the bat IC also

show a poststimulus suppression that is mediated by GABA (Bauer et al., 2000).  This indicates

that IC neurons can detect short gaps between stimuli, but the response to the second stimulus (if

it occurs less that 270 ms after the first) is somewhat attenuated.  These data, taken together

indicate that there is a GABAergic input to the IC that is involved in gap detection.  The SPON is

a source of GABAergic inhibition to the IC and is therefore a candidate for a role in gap

detection.

 The minimal gap thresholds recorded from the auditory nerve provides evidence that

inhibition is not required to accurately detect short gaps between stimuli.  However, the literature

does provide some convincing evidence that inhibition does play a role in shaping gap detection

thresholds in the IC.  A role for the SPON in gap detection could be examined using an in vivo or

behavioral preparation.  In an in vivo preparation, spike activity of IC neurons would be

recorded.  In a behavioral paradigm, animals would have to be trained to detect gaps between

stimuli and respond appropriately.  Since there are numerous sources of GABA to the IC, the

SPON would have to pharmacologically inactivated or lesioned to study the effect of this cell

group in gap detection.  Ideally a reversible pharmacological inactivation would be utilized,

which would allow data to be collected before and after inactivation of the SPON.  The

appropriate stimulus would be a pair of tones played with varying gaps or delays between them.

Data relating to minimum gap detection thresholds would be collected before and after

inactivation of the SPON.  Our working hypothesis is that the offset inhibition arising from the

SPON is involved in shaping minimum gap detection thresholds in IC neurons and removing the

offset inhibition would significantly change gap detection thresholds, especially for those IC

neurons with sustained responses to tones.

SPON neurons may function as gap detectors to encode gaps between closely placed

sounds or components of sounds.  Brief gaps in sound are detected in the nervous system by a

cessation in neuronal activity that may result from inhibitory innervation.  Detection of gaps or

silent periods between stimuli is thought to play an important role in processing complex sounds

and speech perception (Barsz et al., 1998).  Neurons in the mouse IC can detect gaps between
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two stimuli as short as 2 ms (Walton et al., 1997).  Many neurons in the rat IC show poststimulus

suppression that can last up to 270 ms after the stimulus (Finlayson, 1999) and in the bat this

suppression is mediated by GABA (Bauer et al., 2000).   Additionally, GABA has been shown to

increase sensitivity to gap detection by lowering minimal gap thresholds (Gleich et al., 2002),

further implicating a role for GABA in gap detection.  These data, taken together indicate that

there is a GABAergic input to the IC that arrives at the end of a stimulus or outlasts it by tens of

milliseconds and that this input is involved in gap detection.  The SPON is a likely source for

this offset or persistent inhibition and is therefore a candidate for a role in gap detection.

Duration tuning

Naturally occurring sounds are characterized by the frequencies they contain, intensity,

location and duration.  Duration tuning is an auditory phenomenon where neurons respond

selectively to stimuli of particular durations.  Most adult rat vocalizations consist of between two

and twenty individual calls of constant frequency and variable duration (3 ms up to 2 seconds;

Brudzynski et al., 1992; Brudzynski and Ociepa, 1992; Francis, 1977).  The duration of each

individual call is likely an important aspect of the vocalization since frequency is relatively

constant and duration tuned neurons may be necessary for the animal to interpret each of the

individual calls.  Duration tuned neurons can be “short pass” (responding only to short stimuli

and not longer ones) or “band pass” (responding to a range of durations but not durations that are

longer or shorter).  Duration selective neurons respond weakly or not at all to short stimuli and

more robustly to longer stimuli but reach a plateau such that the increase in spikes is not linearly

related to the duration of the stimulus.  Tuning to specific durations has been implicated in

encoding vocalizations and may be necessary for separating biologically important sounds from

unimportant sounds.  For example, neurons in the frog midbrain have best durations that

correspond to durations of communication calls (Gooler and Feng, 1992).  A similar correlation

between best durations and vocalizations has been described for bat IC neurons (Pinheiro et al.,

1991; Casseday et al., 1994; Fuzessery, 1994).

Duration sensitivity is thought to be formed in the IC through a complex integration of

excitatory and inhibitory inputs.  About half (45%) of the SPON neurons we tested were

sensitive to duration and were long duration selective.  This is the first demonstration of duration



156

sensitivity below the level of the IC and means that some neurons in the IC may inherit duration

sensitivity from lower centers.  Slightly more than half (55 %) of mouse IC neurons are duration

sensitive and most of these neurons (~70 %) are selective for longer durations (sounds greater

than ~50 ms in duration) and respond at the stimulus offset (Brand et al., 2000).  This combined

with our SPON data, indicates that long duration selectivity (sounds 50 ms or longer) may be the

most important type of duration tuning in the rat.  Interestingly, few rat vocalizations are less

than 50 ms in duration (Brudzynski and Oceipa, 1992).  Duration tuning in IC neurons has been

shown, through intracellular in vivo recordings, to be formed by the integration of precisely

timed excitatory and inhibitory inputs (Casseday et al., 1994).  The most recent model for

duration tuned neurons requires: 1. excitatory and inhibitory input linked to the onset of the

stimulus, 2. an inhibitory input linked to the duration of the sound and 3. an excitatory event

linked to the sound offset.  The excitatory response linked to the stimulus offset can be a

response to an excitatory input or a rebound from inhibition.  Further, application of the GABAA

receptor antagonist bicuculline abolishes duration tuning in most IC neurons (Casseday et al.,

2000).  Offset inhibition arising from the SPON may directly relay duration sensitivity to IC

neurons, or may provide inhibition linked to the stimulus duration or cause an excitatory event at

the offset through a rebound mechanism.  Thus, the SPON may be an important part of the

circuitry used to detect stimulus duration.  However, the precise role that offset inhibition plays

in creating duration tuning in the IC remains to be tested and would require single unit

recordings from the IC during inactivation of the SPON.

Amplitude modulation

Interestingly, only about half of IC neurons are sensitive to duration (Brand et al., 2000;

Ehrlich et al., 2000) and nearly half of SPON neurons are duration sensitive.  However, the

SPON projects widely to the IC (Fuentes et al., 1999).  Thus, it is likely that SPON neurons

project to IC neurons that are not involved in duration coding and that a fraction (likely more

than half) of SPON neurons are dedicated to something other than duration sensitivity.  Many

naturally occurring sounds are characterized by rapid fluctuations in amplitude.  SPON neurons

respond to rapid amplitude fluctuations in SAM pure tones.  Thus, some SPON neurons may be

involved in coding the temporal structure of complex sounds, rather than duration.  IC neurons

are selective for particular communication calls and this selectivity is abolished with bicuculline
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(bat; Pollak et al., 2002). This suggests that there is an inhibitory input to the IC that is relaying

temporal information about sounds, particularly changes in amplitude.  Unfortunately, responses

to SAM have not been explored in the rat DNLL or VNLL.  The SPON, being a major source of

GABAergic innervation to the IC and sensitive to fluctuations in sound envelopes, is a candidate

for encoding complex features of sound.

Precedence effect

The precedence effect is a feature of the auditory system that suppresses echo perception

and is believed to play a role in localization of sound in a reverberant environment (Hartman,

1983).  When two stimuli arrive from different sources, priority is given to the leading sound and

the lagging sound is suppressed, provided the lagging sounds reaches the animal within a short

time window (1–20) ms after the leading sound.  If sufficient time separates both sounds,

neurons respond normally to both.  The suppression of the lagging sound is proposed to be the

result of a long lasting inhibitory input (Litovsky and Delgutte, 2002) and inhibition arising from

the DNLL has been implicated in the precedence effect (Litovsky and Yin, 1998).  In order to

suppress a lagging stimulus, the inhibition must outlast the stimulus by some period or arrive at

the offset.  However, few DNLL neurons have sustained responses to tones and the few

sustained responses last only as long as the stimulus (Bajo et al., 1998; Kelly et al., 1998).  Most

VNLL neurons have sustained responses but the sustained portion of the response only contains

few spikes and does not outlast the stimulus (Batra and Fitzpatrick, 1999).  Thus, the DNLL and

VNLL are not likely sources of long lasting inhibition to IC neurons.  Long lasting inhibition

might also arise from a persistent suppression caused by an inhibitory input during the stimulus.

More than likely though, offset inhibition is involved.  Thus, if an inhibitory input is responsible

for the precedence effect, it likely arises from the SPON.

Testing the role of the SPON

We now know a fair amount about the anatomy and physiology of the rat SPON.

However, it is unclear how this cell group impacts IC neurons and how this offset inhibition is

integrated with other inhibitory inputs.  Involvement of the SPON in duration and envelope
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coding leads us to the hypothesis that the SPON encodes temporal features of sounds and is

necessary to properly recognize vocalizations and other complex sounds important for

socialization and survival.  However, blocking GABAergic inhibition in the IC with bicuculline

will remove inhibition arising from all sources of GABA, including the SPON, DNLL, VNLL,

LSO and intrinsic inputs.  The role of offset inhibition in the IC can be tested with recordings

made from the inferior colliculus while inactivating the SPON with kynurenic acid (a

nonspecific antagonist of glutamate receptors) or blockers of sodium or calcium channels (TTX

or NiCl2, respectively), which would block action potentials in SPON neurons.  However, one

must be aware that a sodium channel blocker will also likely abolish action potentials in passing

axons.  This would require a somewhat cumbersome electrode arrangement: a multibarrel

electrode in the SPON and a single recording electrode in the ipsilateral IC.  Particular care

would be needed to ensure that pharmacological agents used to inactivate the SPON do not also

affect nearby nuclei, namely the MNTB and LSO.  Of particular interest would be how offset

inhibition affects duration selectivity and phase locking to SAM pure tones in IC neurons.  We

hypothesize that responses to SAM will be overall less well timed (resulting in lower vector

strengths) and duration sensitivity will be abolished during SPON inactivation.

SUGGESTIONS

Although this work has contributed to our knowledge of the SPON and provided

evidence for a potential functional role, some important questions remain.  First, it remains

unclear if inhibitory input alone can explain the responses observed to both pure tone and SAM

stimuli.  We have shown that the offset response requires glycinergic input, but is excitatory

input also required?  The literature provides evidence that postinhibitory rebound can be evoked

in vivo with application of GABA (Plenz and Kital, 1999), suggesting that excitatory input may

not be required for offset responses.  Consequently, we hypothesize that offset responses in

SPON neurons arise purely from inhibitory rebound.  To begin to explore this possibility, we

have recorded from two SPON neurons, using multibarrel electrodes, in the presence of

kynurenic acid.  In both neurons, offset activity was unchanged by kynurenic acid.  Interestingly,

one neuron had very weak onset activity that preceded the offset, presumably resulting from

excitatory input.  During application of kynurenic acid, these onset spikes were abolished, but

the offset activity was unchanged.  The few onset spikes did recover after kynurenic acid was
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removed.  This data provides evidence that kynurenic acid was in fact reaching the neuron and

that the offset response does not require activation of glutamate receptors.  Of course, additional

recordings from SPON neurons in the presence of kynurenic acid are needed to verify this

finding.  This question might more easily be addressed in a slice preparation that includes the

SPON–MNTB connection.  We hypothesize that shocks to the MNTB will elicit IPSPs and

postinhibitory rebound spikes in SPON neurons.  If this is the case, it provides further evidence

supporting the hypothesis that offset activity requires only inhibitory input.  However, the

occurrence of postinhibitory rebound spikes in the SPON after MNTB shocks does not rule out a

role for glutamaterigc input in generating offset spikes.

Secondly, it is unknown how SPON neurons respond to natural occurring sounds, such as

vocalizations.  Many rat vocalizations are essentially ultrasonic pure tones of varying duration

while others are more complex and contain large frequency modulations (Brudzynski et al.,

1999).  We hypothesize that SPON neurons will indicate the end of the quasi-pure tone

vocalizations.  However, responses to more complex stimuli may be more irregular and

unpredictable.  Studying the neuronal responses of SPON units to vocalizations may further

clarify our understanding of the functional role of this cell group.

Thirdly, the distribution of SPON axons in the IC remains unclear.  Our stereology data

indicate that the IC contains nearly 400,000 neurons and the SPON contains only 2,400.  Is the

projection from the SPON spread evenly over the 400,000 neurons in the IC?  Do SPON axons

target all IC neurons within a given frequency lamina or is this input selective?  For example,

does the SPON target a fraction of IC neurons, possibly only excitatory or duration tuned

neurons?  Additionally, to what extent does the SPON target any of the lemniscal nuclei?  The

question regarding projection targets could be addressed with small injections of the anterograde

tracer Phaseolus vulgaris-leucoagglutinin into the SPON, which will label SPON axons and

terminals.  The axons then could be followed into the IC and nuclei of the lateral lemniscus.

CONCLUSION

We have described the rat SPON as a prominent group of inhibitory neurons in the

auditory brainstem that relays information about the stimulus offset and amplitude fluctuations in
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complex sounds from the contralateral ear to the IC.  This work has provided us with enough

data about the SPON to propose a functional role in auditory processing.  Our data suggest that

the rat SPON, through its inhibitory projection to IC neurons, is involved in processing temporal

cues.  These cues may be involved in duration selectivity and coding of sound envelopes,

information necessary for understanding communication calls and other biologically relevant

sounds.  It is our hope that this work will contribute to our understanding of the auditory system

and the neural mechanisms used to encode sound.
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