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ABSTRACT 
 

Predictive Modeling of Freshwater Mussels (Unionidae) 
in the Appalachians 

 
Alison R. Mynsberge 

 
Freshwater mussels are in decline, particularly in the Appalachian region of North America.  
This region contains the world’s greatest diversity of freshwater mussels, but many species are 
now threatened or endangered.  Little is known of the basic ecology and distributions of species 
of freshwater mussels relative to other freshwater organisms.  The goal of this study was to use 
predictive modeling to predict distributions of freshwater mussels in the Appalachians and 
identify correlated factors using a watershed framework.  Models were developed in the upper 
Mid-Atlantic and Ohio drainage regions using subwatersheds and separately in the Tennessee 
region using catchments.  Models developed at this scale had low predictive ability because few 
surveys of freshwater mussels are available at the subwatershed scale and a regional extent.  
Independent data were unavailable to evaluate catchment-based models.  Additional mussel 
surveys are necessary to expand the potential for developing robust predictive models of most 
freshwater mussel species. 
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Chapter 1:  Literature Review 

Introduction 

Freshwater mussels contribute to the functioning of aquatic ecosystems in many ways.  

Mussels also rely on components of freshwater ecosystems for food, habitat, and reproduction.  

Because freshwater mussels are an important part of the ecosystems in which they occur, it is 

necessary to describe the state of these systems to understand the ecology of mussel communities 

and to discuss implications for their conservation and management.  This literature review 

focuses on freshwater mussels and their ecosystems in the eastern United States, along with 

techniques for modeling distributions of freshwater mussels and other aquatic species. 

Freshwater ecosystems 

Importance 

Diverse roles of freshwater ecosystems in society and in nature necessitate multiple uses 

for most freshwater systems.  Intact freshwater systems are ecologically necessary to conserve 

native species, which are valuable for their intrinsic worth and for human use (Naiman and 

Turner 2000).  Healthy freshwater ecosystems provide habitats for terrestrial and aquatic 

organisms and have ecological and aesthetic value; they include native aquatic communities and 

provide suitable water sources and even larval habitats for terrestrial organisms.  These systems 

are declining due to human uses, which can directly degrade water and habitat quality or lead to 

ecosystem changes by disrupting the water cycle (Jackson et al. 2001).  Balancing multiple uses 

across the landscape is therefore an important concern for modern management of freshwater 

ecosystems (Naiman and Turner 2000).   

Management concerns 

The downstream nature of flow in stream networks complicates management needs 

(Dudgeon et al. 2006).  The effects of channel alteration, pollution, and land-use changes to the 

watershed and riparian area can influence not only the immediate channel, but larger downstream 

systems (Gregory et al. 1991; Roth et al. 1996; Johnson and Gage 1997; Malmqvist and Rundle 

2002; Allan 2004).  Understanding the hydrologic connectivity that relates immediate stream 
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condition to upstream and downstream conditions is critical to conserving freshwater ecosystems 

(Frissell et al. 1986; Hitt and Angermeier 2008), but can be difficult to incorporate into 

management actions (Pringle 2001).  In the past, humans have altered the landscape with little 

consideration for the effects of changes across a broad extent (Schlosser 1991).  Consequently, 

anthropogenic changes to the environment have affected freshwater ecosystems in a number of 

ways, including degradation of water quality and habitat for freshwater organisms (Naiman and 

Turner 2000).   

Freshwater ecosystems are threatened in the United States (U.S.) and throughout the 

world (Nilsson et al. 2005).  Impoundments alone have fragmented over 75% of the main 

channel of three large river systems of the U.S., including the Columbia, the Connecticut, and the 

Mobile river systems, and a total of 26 large river systems in North America are strongly 

affected by fragmentation and flow regulation (Dynesius and Nilsson 1994; Nilsson et al. 2005).  

Ensuring the sustainability of freshwater ecosystems is therefore a difficult task (Dudgeon et al. 

2006).  In the U.S., federal and state regulations require monitoring and maintenance of water 

quality and of species listed under the Endangered Species Act, yet research indicates that 123 

freshwater animal species have been recorded as extinct in North America since 1900, and 

projected freshwater extinction rates are similar to the estimated rates of loss for tropical 

rainforest communities (Ricciardi and Rasmussen 1999).  Many experts believe that exotic 

species, contaminants, agricultural non-point source pollution, habitat removal, and habitat 

alteration limit the continued survival or recovery of more than 10% of freshwater faunal species 

in the U.S. (Richter et al. 1997).  Conserving functioning freshwater communities requires 

addressing these threats to aquatic systems. 

General threats 

Anthropogenic activities directly and indirectly threaten aquatic ecosystems.  The 

composition of aquatic communities is affected by chemical pollutants as well as physical habitat 

and community changes.  Point and non-point source pollution leading to sub-lethal or lethal 

levels of contaminants have decreased water quality and changed species richness and abundance 

in freshwater ecosystems (see Fleeger et al. 2003 for review).  Physical changes to watersheds, 

streams, and lakes have contributed to increased siltation and physical habitat degradation, which 

can affect the short- and long-term survival of aquatic organisms (Waters 1995).  The addition of 
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invasive species and extirpation of endemic species contribute to significantly altered aquatic 

communities, which can affect the normal functioning of freshwater ecosystems (Miller et al. 

1989; Gido and Brown 1999; Hakenkamp and Palmer 1999; Kelly et al. 2006).   A variety of 

human activities is responsible for these threats to aquatic ecosystems. 

Concentrated discharges of chemical pollutants from industrial sources have caused 

massive fish and mussel kills (Sheehan et al. 1989), which are the most obvious detrimental 

effects of water quality on aquatic fauna.  Although water quality may return to normal shortly 

after an industrial spill, aquatic species may take months or years to recover (Sietman et al. 

2001).  Lethal pollutants from point sources such as factories or accidents are relatively easy to 

identify and correct, but less obvious effects on freshwater ecosystems can be caused by sub-

lethal pollutants.  Pollution may not always cause immediate reductions in the health or 

fecundity of freshwater organisms, but may lead to chronic deleterious effects (Hanazato 2001).  

The discharge of sub-lethal levels of chemical pollutants may impair stream quality by reducing 

the health or fecundity of organisms downstream of the chemical release (Gagne et al. 2002).  

Because specific chemicals responsible for sub-lethal effects in aquatic ecosystems can be 

difficult to identify across large extents, analyses of chemical loads in indicator species have 

been used to determine the types and potential sources of pollutants affecting a system (Flessas 

et al. 2000; McKinney et al. 2002; Brown et al. 2005; Henderson 2007).  Acid mine drainage is a 

point source that is more difficult to address, and it is a common factor contributing to acidity 

and high metal concentrations in streams of the Appalachians because of mining activities in the 

Appalachian Basin coal field stretching from Pennsylvania to Alabama (Averitt 1975).   

Non-point source pollution, or pollution originating from runoff or atmospheric 

deposition, can also affect freshwater systems.  Examples of non-point source pollution include 

acid rain and increased levels of nitrogen and phosphorus from agricultural fertilizers, factors 

that can affect community composition and that can lead to eutrophication and the creation of an 

oxygen-limited environment for fish and macroinvertebrates (Miltner and Rankin 1998; 

Chambers et al. 2006).  Acidic streams resulting from acid mine drainage or acid rain in 

watersheds with low acid-neutralizing capacity are common in the Appalachians (Herlihy et al. 

1989) and have different assemblages of fish and macroinvertebrates and lower densities of 

benthic macroinvertebrates than healthy streams (Haines 1981), even following stream 

restoration (McClurg et al. 2007).  Reducing non-point source pollution is complicated by the 
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difficulty of regulating pollutants originating from diverse and potentially widespread sources 

(Carpenter et al. 1998). 

Physical changes to the environment can also affect freshwater ecosystems.  

Anthropogenic perturbations to ecosystems have affected stream habitats and general stream 

health through increased sedimentation and altered stream flow dynamics at every scale (Petts 

1984).  Increased sedimentation from erosion in the watershed due to roads, timber harvest, and 

farming activities can impact species by impairing habitat, altering the composition of aquatic 

communities, or changing food sources used by organisms (Ney and Van Hassel 1983; Aldridge 

et al. 1987; Berkman and Rabeni 1987; Newcombe and Macdonald 1991; Waters 1995; 

Sutherland et al. 2002).  Sediment contamination decreases species richness of benthic 

macroinvertebrates in some systems (de Lange et al. 2004), and siltation can decrease 

populations of some fish guilds (Rabeni and Smale 1995).  Dam construction, channelization, 

and some forms of dredging have altered habitat availability in freshwater ecosystems by 

changing the flow regime and sediment loads, influencing stream morphology and substrates and 

therefore affecting fish communities (Trautman and Gartman 1974; Allen and Hardy 1980; Petts 

1984; Poff et al. 1997).  Dams can also create barriers to dispersal that interfere with movements 

of diadromous species to and from spawning grounds and can disrupt gene flow between 

populations (Pringle 2001; Wissmar and Craig 2004; Katano et al. 2006).  Water released from 

dams and power plants at temperatures differing from an unregulated system can be sources of 

thermal pollution, causing changes in water temperatures that affect the fish and insect species 

living downstream, sometimes changing community composition (Petts 1984; Lessard and 

Hayes 2003).   

Changes to fish and invertebrate habitats due to physical and chemical alteration of 

ecosystems can not only affect the relative abundance of native species, but can also contribute 

to invasions by exotic or introduced species (Holden and Stalnaker 1975; Miller et al. 1989; Gido 

and Brown 1999; Jones III 1999).  The release of cold water from the hypolimnion of dams can 

lead to the extirpation of some native species (Edwards 1978) or change warm-water fisheries to 

cold-water communities, and in some cases, non-native species are deliberately introduced to 

these altered systems (Swink 1983).  Extirpation of endemic species as a result of chemical and 

physical alteration to the environment or invasion by non-native species can affect community 
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composition, which may ultimately affect the functioning of freshwater ecosystems (Simon and 

Townsend 2003; Kelly et al. 2006). 

All of these perturbations to the aquatic environment threaten freshwater ecosystems that 

have inherent importance as functioning biological systems with diverse aquatic flora and fauna.  

Minimizing anthropogenic threats to freshwater ecosystems and restoring impaired systems are 

necessary steps to preserve aquatic resources and to maintain and expand populations of 

threatened and endangered species (Allan and Flecker 1993; Lydeard and Mayden 1995; 

Saunders et al. 2002).  Increasing our knowledge of freshwater ecosystems and the effects of 

local, riparian, watershed, and upstream threats on organisms and their ecological roles in those 

systems are important steps toward developing conservation plans for aquatic organisms of 

concern (Moss 2000; Saunders et al. 2002; Moilanen et al. 2008). 

Freshwater mussels 

Life history and ecological importance 

Freshwater mussels can be useful indicators of freshwater ecosystem health for many 

reasons (Williams et al. 1993).  Mussels can be useful for studies of pollutants affecting 

freshwater ecosystems because their tissues can store chemicals present in the aquatic 

environment (e.g., Gagne et al. 2002; McKinney et al. 2002; O'Rourke 2004; Brown et al. 2005).  

Mussels perform an important function as filterers in freshwater ecosystems, as they can 

consume algae, zooplankton, rotifers, and detritus (Vaughn et al. 2008).  They are also a food 

source for a variety of terrestrial and aquatic species (Strayer et al. 1999; Vaughn and 

Hakenkamp 2001; Vaughn et al. 2008).  Although few studies have quantitatively examined the 

contributions of native freshwater mussels to their ecosystems, research by Vaughn et al. (2004) 

indicates that mussels can have large impacts on the ecosystem by removing algae and excreting 

nutrients and organic material at rates correlated with mussel biomass.  Because mussels can 

comprise the majority of benthic biomass in some freshwater ecosystems, living mussels and 

mussels that are consumed or that decompose can be substantial sources of nutrients and organic 

matter in an ecosystem (Negus 1966).   

Diverse freshwater mussel communities are generally limited to streams, rivers, and lakes 

that have been minimally altered by anthropogenic activities (Vaughn and Taylor 1999).  Many 
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freshwater mussel species have declined as freshwater ecosystems have become impaired.  North 

America is home to one of the most diverse assemblages of freshwater mussels in the world, 

making the conservation status of mussel species in the U.S. a reason for concern (Bogan 1993; 

Williams et al. 1993).  The U.S. and Canada contain 297 recognized native freshwater mussel 

species in the Margaritiferidae and Unionidae families (Turgeon et al. 1988), and the U.S. 

Endangered Species Act currently lists 72 mussel species as endangered or threatened (US FWS 

2006).  Nearly half of freshwater mussel species native to the U.S. can be found in the 

Appalachian region (Ortmann 1918), and many of these species are official species of concern 

by state or federal standards (US FWS2006). 

Although mussels are a critical part of freshwater ecosystems, they have generally been 

studied much less than both terrestrial organisms and most other components of freshwater 

ecosystems (Lydeard et al. 2004).  Because basic research on freshwater mussels is still in its 

early stages, specific knowledge of the functional roles, habitat requirements, and limitations to 

population growth for individual species is less understood than the ecology of mussels in 

general (Strayer et al. 1999; Vaughn and Hakenkamp 2001).  Reproductive ecology of unionids 

has been explored in some detail, although life history information on individual species requires 

additional study (Haag and Staton 2003).  Nearly all freshwater mussels in the family Unionidae 

require hosts, usually fish, to complete their reproductive cycle (Watters 1998).  Glochidia, 

which are larval unionid mussels, are parasitic on the gills or fins of fish until they develop to the 

juvenile stage (Howard and Anson 1922).  Specific fish and amphibian species capable of 

hosting glochidia have been identified for some mussel species (Watters 1998).  However, 

suitable fish hosts vary in their ability to transform large numbers of juvenile mussels, and 

laboratory studies frequently used to evaluate potential hosts may not identify the best host for a 

species (Khym and Layzer 2000; Rogers and Dimock 2003; Watters et al. 2005).  Since the 

absence of suitable host species could limit the development of juvenile freshwater mussels 

(Coker et al. 1921), the identification of host species for all mussel species is important for 

mussel conservation (Vaughn and Taylor 2000).   

Freshwater mussels are long-lived compared to most freshwater invertebrates, with most 

mussel species capable of living several decades (Bogan 1993).  Some evidence exists for 

reproductive senescence in older adults (Downing et al. 1993; Haag and Staton 2003), and some 

populations show no recent evidence of successful reproduction (Heinricher and Layzer 1999; 
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Bogan 1993; Strayer et al. 2004).  An extinction debt may exist for mussels because species that 

may appear to be stable based on the numbers of individuals can be limited by habitat 

destruction, habitat fragmentation, and loss of glochidial host species to isolated or non-

reproducing populations that may nonetheless be maintained for up to a century due to the 

longevity of individual mussels (Tilman et al. 1994; Heinricher and Layzer 1999; Strayer et al. 

2004).  The numbers or genetic diversity of these populations may be critical to the long-term 

viability of the species, but without successful reproduction, the extinction of the species will 

become apparent decades from now when existing individuals die (Tilman et al. 1994; Neves et 

al. 1997).   

Distribution and occurrences 

Knowledge of the locations of mussel populations is critical to the conservation of 

imperiled freshwater mussel species, and the National Native Mussel Conservation Committee 

has recognized the lack of information regarding mussel distribution as a barrier to 

understanding and conserving freshwater mussels (National Native Mussel Conservation 

Committee 1998).  Current data on the distributions of freshwater mussel species are collected 

primarily through localized research studies and larger Natural Heritage Surveys that use a 

variety of sampling protocols, including timed searches and bridge surveys (Andersen 2002; 

Strayer and Smith 2003), or that rely on incidental observations of species (Rushton et al. 2004).  

Individual states cooperate with The Nature Conservancy to collect and synthesize data on many 

species, including mussels, for the Natural Heritage Survey (Groves et al. 1995).  Most state 

natural heritage surveys record mussel occurrences, but some states only note occurrences of 

federal and state species of concern, and few states conduct regular scientific surveys for all 

mussels across the state.  In the Appalachian region, regular surveys for some freshwater mussels 

are conducted by state agencies or in cooperation with state agencies in Virginia, North Carolina, 

Georgia, Kentucky, Tennessee, and Maryland (Table 1).  State agencies in West Virginia, Ohio, 

Pennsylvania, and New Jersey also regularly monitor freshwater mussels, although the focus of 

surveys in these states has not normally been the collection of distribution data, and state 

agencies in New York conduct some monitoring activities (Table 1).  Thus, there is wide 

variation in the types and quality of mussel data collected by states, organizations, and 

researchers.   
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Several researchers have concentrated their studies on different regions within the 

Appalachians.  Watters has extensively researched the molluscan fauna of the Ohio drainage 

region (1995), and recent surveys have also been conducted by Hoggarth (1992) and Clarke and 

Clarke (1998).  Strayer’s work has focused on the Mid-Atlantic drainage region, including recent 

studies of mussels in the Hudson and Delaware regions (1993; 1996; 1999b; Strayer and 

Fetterman 1999).  Harman (1970) has also published research based in the Mid-Atlantic.  

Ortmann’s work included extensive studies of Pennsylvania, sampling both the Mid-Atlantic and 

Ohio drainage regions, and Ortmann also conducted research in the Tennessee Drainage (1913; 

1924; 1925).  Historic works of the Tennessee drainage region include Van der Schalie (1938; 

1939) and Wilson (1914).  There are many studies in the Tennessee drainage region, including 

those conducted by the Tennessee Valley Authority (TVA) and others related to TVA 

impoundments (Isom and Yokley 1968; Krenkel et al. 1979).  S.A. Ahlstedt has conducted 

studies since the 1970s concentrated on the Tennessee River system, including research in the 

Elk River and the Clinch River and its tributaries (e.g., Ahlstedt 1983, 1991).  Other researchers 

who have conducted studies in this region include Stansbery (1972), Isom (1973), Houp (1980), 

Neves (1982), Dennis (1984), and more recent students of malacology, primarily under Richard 

J. Neves at Virginia Polytechnic Institute and State University (e.g., Church 1997; Ostby 2005).  

A comprehensive bibliography of mollusk studies, including mussel research in the 

Appalachians, is available from the Freshwater Mollusk Conservation Society (2008).  Existing 

knowledge of mussel distributions has been summarized in texts focused on the fauna of specific 

states or regions.  Maryland, North Carolina, Ohio, Pennsylvania, and Tennessee have books on 

the distributions of mussels for the state (Starnes and Bogan 1988; Bogan and Proch 1995; 

Watters 1995; Parmalee and Bogan 1998; Bogan 2002).  Other states, including West Virginia 

and New Jersey, have outlined intentions of developing statewide guides to mussels and their 

distributions in state Comprehensive Wildlife Conservation Plans (Table 1), but these guides are 

not yet available throughout the Appalachians. 

Historic data on the distributions of mussels are necessary for the development of historic 

and potential ranges and extents, but these data are also limited in scope and accuracy.  Museum 

collections exist for numerous species of mussels; however, the collection date and location are 

not available for many records, and the geographic distribution of collections is not likely to 

represent the geographic range of the species because historic data are largely derived from 
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naturalists whose research may have focused on particular rivers or regions rather than on 

sampling efforts designed to determine the extent of a species’ range (e.g., Neel and Allen 1964).  

Furthermore, the taxonomy of freshwater mussels changes frequently (National Native Mussel 

Conservation Committee 1998) and species delineations are still under dispute (Hoeh and 

Gordon 1996), complicating efforts to incorporate historic data in modern analyses. 

Habitat requirements 

More information is necessary to determine specific habitat requirements for freshwater 

mussels (Brim-Box et al. 2002).  However, general relationships between freshwater mussel 

occurrences and aspects of the environment have been identified (Coker et al. 1921; Matteson 

1955).  Brim-Box et al. (2002) outlined three major factors influencing mussel communities: the 

distribution and availability of host fish, basin characteristics, and microhabitat variables.  Brim-

Box et al. (2002) reviewed numerous studies that have attempted to specify habitat requirements 

by comparing these factors to freshwater mussel communities with variable success, and 

Hornbach (2001) provided a review of studies that compared variables explaining freshwater 

mussel distributions at various scales.   

Several researchers have studied relationships between basin-scale variables and 

freshwater mussel communities.  Vaughn (1997) found evidence that processes occurring at the 

drainage basin scale affected freshwater mussels and hypothesized that host-fish interactions 

helped determine freshwater mussel communities.  Haag and Warren (1998) examined the 

influence of fish communities and microhabitat factors on mussel communities.  They found that 

at a drainage basin scale, the relationship between mussels and host fishes were most important 

in structuring mussel communities and that the influences of host fishes overwhelmed the effects 

of microhabitat variables.  They identified three groups of mussels that varied in their use of 

available habitat based on their mussel-fish host relationship: host-generalists (species with 

larvae that can develop on a variety of fishes), displaying host-specialists (species with larvae 

that require a specific host fish or fishes and rely on lures to attract hosts), and nondisplaying 

host-specialists (species with larvae that require a specific host fish or fishes but do not have 

mechanisms to attract the hosts).  There was a positive correlation between the abundance of 

nondisplaying host-specialists and the abundance of their fish hosts, and whereas host-generalists 

and displaying host-specialists are able to inhabit both small streams and larger streams, 
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nondisplaying host-specialists were limited to large streams (Haag and Warren 1998).  

Additional evidence for a strong effect of fish species richness on the number of mussel species 

in an area was provided by Watters (1992) in the Ohio drainage region and Vaughn and Taylor 

(2000) in the Red River drainage, Kentucky. 

Fish communities are not the only factors that affect freshwater mussel distributions.  

Strayer (1983) hypothesized that factors within the catchment are partially responsible for 

determining mussel distributions.  DiMaio and Corkum (1995) described mussel communities 

specific to drainage basins with high hydrological variability and identified differences from 

communities occurring in hydrologically stable drainage basins.  Their findings confirmed that 

hydrologic stability could predict mussel distributions, as suggested by Strayer (1983, 1993).  

Strayer (1983) found strong significant relationships for several mussel species to both surface 

geology and stream size in Michigan, concluding that hydrology is an important predictor of the 

distribution of many freshwater mussel species.  However, these variables explained less 

variation in mussel distributions in the northern Atlantic Slope region (Strayer 1993).  Morris 

and Corkum (1996) found differences in mussel communities between streams with forested 

riparian zones and streams with grassy riparian zones.  They hypothesized that temperature and 

chemical differences in these streams contributed to the differences in mussel communities.  At a 

macrohabitat scale (1-10 km), Strayer (1993) found that hydrological variability, physiographic 

province, calcium concentration, and stream gradient were weakly correlated with distributions 

of freshwater mussel species, but stream size was a strong predictor of mussel distributions. 

On a microhabitat scale (1 m2), patches of freshwater mussels (mussel beds) in streams 

and rivers may be linked to flow refugia, where flows change little during floods (Strayer and 

Ralley 1993; Strayer 1999b).  Other stream bed characteristics such as streambed substrate may 

also affect freshwater mussel distributions and have been used extensively to describe mussel 

habitat (e.g., Strayer 1981; Salmon and Green 1983; Strayer and Ralley 1993).  Mussel 

distributions may be determined to a lesser extent by river depth (Salmon and Green 1983) and 

by the number of aquatic plants in an area (Strayer and Ralley 1993). 

Threats specific to freshwater mussels 

Many factors impair freshwater ecosystem health, but an understanding of the 

mechanisms through which mussels are affected by specific threats is necessary to understand 



 

 11 

the steps that must be taken to restore the freshwater mussel fauna of the U.S.  Nearly half of 

freshwater mussel species in North America are now considered extinct, endangered, threatened, 

or species of concern, and reduced habitat quality has contributed to many of these declines 

(Bogan 1993).  Bogan (1993) determined that causes for extinction and local extirpation of 

mussels and other freshwater bivalves included damming, habitat destruction from siltation, and 

pollution such as acid mine runoff, and a recent review of the literature reiterates the influence of 

these factors on mussel populations (Strayer et al. 2004).  Anthropogenic effects such as 

harvesting, pollution, landscape alteration, and habitat destruction have been responsible for 

decreases in mussel diversity worldwide (Sheehan et al. 1989; Neves et al. 1997), but the 

southeastern region of the U.S. has experienced larger declines in populations and species 

richness than any other region over the last 150 years (Bogan 1993; Neves et al. 1997).  Experts 

believe that agriculture, exotic species, and altered nutrient impacts from hydrological dams and 

agricultural runoff are currently the most severe threats to freshwater mussels, but point source 

pollution was largely responsible for past extirpations of mussel fauna in the eastern U.S. 

(Richter et al. 1997), and some researchers believe that harvesting continues to contribute to 

population declines (Anthony and Downing 2001).   

Although mussel kills from point source pollution are a less severe problem now than in 

the past (Richter et al. 1997), both point and non-point source pollution may continue to 

contribute to the decline of some mussel populations by affecting recruitment and reducing 

viability.  Environmental conditions that limit the attachment and transformation of glochidia on 

host fishes or reduce survival of juvenile mussels into adulthood can limit the ultimate survival 

of a population (Heinricher and Layzer 1999).  Chemical pollutants are more harmful to juvenile 

freshwater mussels than adult freshwater mussels (Dimock and Wright 1993), so levels that are 

acceptable to adult mussels may be sufficient to prevent the persistence of the population.  

Juvenile freshwater mussels are vulnerable to acidity, a common threat in Appalachian streams, 

with a pH of 4.5 leading to mortality of 50% of juveniles after 96 hours (Dimock and Wright 

1993).  Freshwater mussels exposed to treated wastewater showed increased levels of heavy 

metals in their soft tissues and signs of stress from heavy metal exposure (Gagne et al. 2002).  

Populations of freshwater mussels downstream of effluent outlets also have unnaturally high 

proportions of mussels displaying primarily female characteristics, therefore reproduction may 
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be altered in populations exposed to estrogenic compounds and other pollutants (Blaise et al. 

2003). 

Alteration of the flow regime, hypolimnetic releases from dams, and changes in 

landcover within the riparian corridor from land-use practices such as logging, agriculture, and 

urban development can change the natural temperature of rivers and streams (Roberts and 

Barnhart 1999; Bigham 2002), which can affect availability of host fishes as well as mussel 

transformation success and juvenile survival (Matteson 1955; Dimock and Wright 1993; Bigham 

2002).  Heinricher and Layzer (1999) transferred adult freshwater mussels in the Cumberland 

River system from a population with no recruitment found in habitat below a dam to a lake with 

known reproducing populations.  They found evidence of reproduction by translocated 

individuals within two years and suggested that because suitable hosts were available for larval 

transformation at both sites, water temperature was the most likely factor inhibiting recruitment 

(Heinricher and Layzer 1999). 

Dams and other barriers affect freshwater mussel dispersal and survival both directly and 

indirectly (Watters 1996; Vaughn and Taylor 1999; Strayer 2006).  Habitat destruction from 

dredging and impoundments have reduced mussel species richness in affected stream segments 

(Ortmann 1924; Allen and Hardy 1980; Williams et al. 1992).  In addition to altering water 

temperatures, dams can change mussel communities by separating mussel species from 

compatible host fish (Layzer et al. 1993; Watters 1996).  Smaller physical barriers such as 

culverts at stream crossings can have the same effect by interfering with movements of hosts 

(Warren and Pardew 1998).  Streams with lethal levels of pollutants or temperatures can also act 

as barriers if water quality and aquatic communities are in better health upstream and 

downstream of the polluted area by inhibiting fish from traversing the polluted area (Wishart and 

Davies 2003; Maes et al. 2008), therefore limiting potential transport of glochidia across the 

chemical or thermal barrier. 

Dredging, channelization, and impoundments are some factors affecting freshwater 

mussel habitat, but alteration of in-stream habitat can occur through many mechanisms (see 

Watters 1999 for review).  Siltation is a known threat to freshwater mussel communities 

(Matteson 1955; Houp 1993); increased silt and sediment can occur upstream of impoundments 

or as a result of land use changes within the watershed (Houp 1993).  Agriculture, forestry 
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operations, and other anthropogenic land uses can contribute to habitat alteration through 

increased erosion in the watershed or riparian corridor, and agricultural land use can also affect 

stream conditions by increasing nutrient inputs from fertilized croplands and livestock 

operations.  Eutrophication of freshwater ecosystems from increased nutrient inputs impacts 

some freshwater mussels (Arter 1989; Strayer 1993), and anoxic conditions that may develop in 

the benthic zone negatively affect the survival of juvenile mussels (Dimock and Wright 1993; 

Sparks and Strayer 1998).   

Exotic species are a continuing problem for freshwater mussels.  Invasive exotic species 

such as zebra mussels (Dreissena polymorpha) and the Asian clam (Corbicula fluminea) 

continue to spread into large streams, rivers and lakes and contribute to declines in native mussel 

populations (Ricciardi et al. 1998; Strayer 1999a).  Zebra mussels can directly kill native mussels 

by attaching to their shells in large numbers, and the high densities of zebra mussels in many 

rivers may also indirectly affect native freshwater mussels by limiting food availability (Strayer 

and Smith 1996; Ricciardi et al. 1998).  Exotic fish may directly affect freshwater mussel 

populations through predation or may affect recruitment of native mussel species by displacing 

native fish hosts (Strayer 1999a).  An invasive molluscivore, the round goby, has invaded the 

Great Lakes and is becoming established in freshwater systems, where it could have an effect on 

native freshwater mollusks (French and Jude 2001; Carman et al. 2006).  Researchers speculate 

that introduced plants, animals, and diseases may indirectly affect freshwater mussel populations, 

but more research is necessary to explore the potential for indirect effects from exotic and alien 

species (Strayer 1999a; White et al. 2006). 

Conservation efforts 

A lack of basic knowledge limits the ability to identify priority areas for mussel 

conservation and restoration, as our knowledge of mussel distributions and the factors limiting 

their distributions is far behind that of terrestrial species (Lydeard et al. 2004; Strayer 2006).  

Some conservation plans focus on areas with high conservation value, which are areas containing 

high concentrations of endemic species threatened by anthropogenic activity, and often these 

areas have been selected based on the variety of terrestrial taxa without regard for aquatic 

diversity (e.g., Myers et al. 2000).  Studies have shown that these plans fail to include most areas 

with diverse freshwater mollusk communities (Lawler et al. 2003; Lydeard et al. 2004).  Recent 
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research has attempted to identify areas important to aquatic species (e.g., FitzHugh 2005), but 

these efforts have highlighted differences in existing knowledge between freshwater fish and 

freshwater invertebrates (Sowa et al. 2005).  Conservation efforts directed toward freshwater 

mussels require consideration of upstream and watershed conditions, as do efforts directed at 

conserving any freshwater organism (Dudgeon et al. 2006).  Long-term conservation plans are 

also necessary to ensure the recovery and maintenance of freshwater mussel populations because 

mussels are generally long-lived and some species have experienced declines over several 

decades (Bogan 1993; Strayer et al. 2004).  Extensive field surveys to determine species 

distributions and the composition of communities and studies of ecosystem functions will be 

necessary before conservation biology can fully accommodate nonmarine mollusks, including 

freshwater mussels (Lydeard et al. 2004).   

Outlines of the problems preventing the development of effective freshwater mussel 

conservation plans and guidelines toward conservation planning for mollusks and specifically for 

mussels have been published by Lydeard et al. (2004) and the National Native Mussel 

Conservation Committee (1998).  The National Native Mussel Conservation Committee (1998) 

indicated that establishing historic and current ranges of freshwater mussel species is a necessary 

step toward implementation of conservation efforts.  If conducted at an appropriate scale, this 

work can help identify range declines and allow researchers to relate distributions and declines to 

environmental factors that may affect freshwater mussels.   

Comprehensive wildlife conservation strategies (CWCS) required for the State Wildlife 

Grants Program and Wildlife Conservation and Restoration Program and designed and 

implemented at the state level have addressed monitoring and maintaining populations of 

freshwater mussels.  A review of CWCS for states in the eastern U.S. indicates that monitoring 

approaches are not consistent among states and that states differ in their assessments of the types 

of research necessary for conserving freshwater mussel diversity (Table 1).  Indiana’s CWCS 

anticipates implementing a rotating monitoring schedule that will resample streams for mussels 

every 10-12 years until national standards are enacted, while North Carolina has initiated 

cooperative programs with other agencies and universities to address diverse needs including fish 

host identification, ecology, systematics, and more detailed information on species distributions.  

Although a few states anticipate collecting quantitative information during surveys or repeating 

surveys at frequent intervals to address population trends, few state CWCS provided detailed 
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information regarding survey protocols and some states suggested the need to consult 

statisticians to develop sound study designs.  Annual surveys are the most frequent surveys 

discussed in CWCS, although more frequent surveys would be necessary to evaluate seasonal 

variation in detection probabilities for species.  Although the lack of information on freshwater 

mussels was addressed by most state CWCS, variable coordination across species ranges and 

differences among survey designs limit the potential effectiveness of CWCS research efforts in 

supporting the long-term conservation of freshwater mussels.  

Predictive modeling 

Species distribution models 

Models of species distributions can be used to fill in gaps in knowledge regarding the 

geographic range and habitats of a species.  Models can provide information that is too costly to 

collect, yet is valuable for evaluating the impacts of management decisions on species.  Before 

the widespread use of complex statistical models coupled with Geographic Information Systems 

(GIS), Habitat Suitability Indices were developed to determine the probability of species 

occurrence in various habitats on a landscape.  Calculation of a Habitat Suitability Index (HSI) 

relies on existing knowledge such as basic life-history information, the extent of known 

occurrences for the species, or the relationships between the species and components of its 

environment (US FWS 1981).  Habitat Suitability Indices have been developed for many species 

using U.S. Fish and Wildlife Service guidelines due to the ease with which they can be 

developed (US FWS 1981; Roloff and Kernohan 1999).  A summary of verified HSI models 

indicated that although models are simple to develop, details of implementation may affect 

model quality (Roloff and Kernohan 1999).  Habitat Suitability Indices can have relatively high 

predictive ability when the species of interest has strong, clearly understood relationships to 

readily definable habitat characteristics, when the relationships used to define the model are 

accurate within the study area, and when the model incorporates habitats ranging from suitable to 

unsuitable (Roloff and Kernohan 1999).  However, variability in input variables represented in a 

GIS, uncertainty in the application of variable ranks, difficulty in choosing the correct scale for 

analysis, and difficulty in obtaining validation data reduces the accuracy and applicability of 

HSIs (Bender et al. 1996; Roloff and Kernohan 1999; Johnson and Gillingham 2005). 
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With advances in technology, more techniques have become available to predict the 

probability that a species occurs in a specific area (Rushton et al. 2004; Phillips et al. 2006).  

Novel statistical techniques may be more complex than many earlier methods (Efron and 

Tibshirani 1991), allowing for various types and qualities of dependent and independent 

variables and more flexibility in the relationships between the independent and dependent 

variables (e.g., De'ath 2002).  The increasing computational power of personal computers gives 

more researchers access to complex modeling techniques and increases the potential to develop 

models for many species (Efron and Tibshirani 1991; Boone and Krohn 2002; Rushton et al. 

2004; Phillips et al. 2006).  Modeling techniques rely on a variety of input data, including 

abundance, presence/absence, and presence-only species data and categorical, ordinal, or 

continuous independent variables.  A review of available techniques is available in Guisan and 

Zimmermann (2000). 

Niche analyses, such as environmental niche factor analysis, (Hirzel et al. 2002), 

ecological distances (e.g., Clark et al. 1993), and maximum entropy (Phillips et al. 2006), rely on 

presence data to identify areas that potentially contain suitable habitat for the species of interest.  

Niche analyses correctly predict occupied species distributions when species locations are 

distributed throughout the range of the species, when the species occupies all of the available 

suitable habitat, and when the environment is represented by the variables used in the analysis 

(Browning et al. 2005).  Niche analyses usually overpredict species distributions when these 

conditions are not met, making these models unsuitable for species in decline (Engler et al. 

2004).  When a species is spreading into new areas, niche analyses may perform better than 

general linear models, such as stepwise linear regression (Hirzel et al. 2001).  

Presence-only models are preferred by some researchers because of the uncertainty 

associated with absence data (Anderson et al. 2002; Hirzel et al. 2002).  Assuming correct 

species identification and accurate recording of locations, researchers can have high confidence 

in the accuracy of species presences (Tyre et al. 2003; Brotons et al. 2004).  Models relying on 

both presence and absence data can be affected by false absences, which occur when a recorded 

absence of a species is actually a failure to detect a true occurrence of the species (Tyre et al. 

2003), or when true absences are unrelated to the environmental variables that describe habitat 

suitability in the model (Hirzel et al. 2001).  The probability of detecting a species over repeated 

surveys can be used to evaluate confidence in absence data or can be directly incorporated into 
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some presence-absence models to improve predictions (Tyre et al. 2003).  Methods to develop or 

improve absence data are the subject of many analyses (e.g., Engler et al. 2004; Lutolf et al. 

2006) because models incorporating absence or pseudo-absence data with presence data have 

been demonstrated to be more accurate than presence-only models (e.g., Brotons et al. 2004), 

although this is likely true only when observed absences are correlated with reduced habitat 

suitability (Hirzel et al. 2001). 

Many statistical techniques use both presence and absence data to create predictive 

models.  Both parametric and nonparametric techniques are available to create predictive models 

of species distributions using presence and absence data.  Most techniques predict species 

presence and absence with greater accuracy when there are approximately equal numbers of 

presence and absence locations, although class weights can be applied to adjust prediction error 

bias (Guisan and Zimmermann 2000).  Principal components analysis (PCA) creates factors from 

correlated and independent environmental variables and uses these factors in models predicting 

probability of occurrence (McGarigal et al. 2000).  However, PCA is not robust to violations of 

distributional assumptions and does not work well with independent data; therefore it is 

primarily used as a method of data exploration (McGarigal et al. 2000).  Multiple logistic 

regression predicts the probability of occurrence and can be used with categorical or continuous 

independent variables and is robust to non-normality (Hosmer and Lemeshow 2000; McGarigal 

et al. 2000).  Novel machine-learning methods such as artificial neural networks (ANN) and 

classification and regression trees (CART) have been used for exploratory data analysis, as these 

are nonparametric techniques that can be used to classify datasets (Olden and Jackson 2002).  

Classification and regression trees (CART) are nonparametric analyses that divide species 

occurrences into groups through successive dichotomous splits based on specific values for each 

environmental variable (Breiman et al. 1984).  Regression trees (RT) are used to predict species 

richness or probability of species occurrence, while classification trees (CT) are used to predict 

presence or absence (Breiman et al. 1984).  Classification and regression trees differ from most 

other modeling techniques because categorical, ordered, and continuous variables are compatible 

with this technique (Breiman et al. 1984).  Classification and regression trees are valuable for 

modeling ecological datasets (Vayssieres et al. 2000; De'ath 2002) because they make no 

assumptions about the distributions of the variables and they have been shown to be appropriate 

for modeling spatially autocorrelated data (Cablk et al. 2002). 
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Modeling aquatic species occurrences in stream networks 

Models of aquatic species occurrences have focused primarily on freshwater fishes.  

Sampling protocols for fishes have been established that have enabled researchers to collect data 

with known variance (Angermeier et al. 2002), and the accuracy of these datasets has proven 

suitable for model development.  Bayley and Peterson (2001) demonstrated the use of Bayesian 

methods to incorporate estimates of detection into models, improving predictions of presence 

and absence of species at study sites, although models addressing probability of detection for 

aquatic species remain rare.  Accurate datasets are especially important for riverine species 

because factors related to the distribution of these species introduce additional sources of error 

rarely encountered in models of terrestrial organisms.  Dispersal by freshwater aquatic organisms 

generally occurs along the stream network, which reduces the ability of organisms to occupy all 

available useable habitats (Angermeier et al. 2002; Hitt and Angermeier 2008).  If the species 

does not occupy all appropriate habitat in the study area, suitable habitat will be more difficult to 

define using environmental variables and the interpretation of the model results will be adversely 

affected (Hirzel et al. 2001).  Choosing appropriate scales can reduce the effect of this problem 

(Rieman and McIntyre 1995), and incorporating variables from a range of scales can also 

improve the understanding of relationships between aquatic species and their environments 

(Dunham and Vinyard 1997; Angermeier et al. 2002).   

Few studies of freshwater organisms have relied on presence-only modeling techniques 

to predict species occurrences.  Recent uses of presence-only data for modeling aquatic species 

include uses of the genetic algorithm for rule-set prediction (GARP), which creates pseudo-

absence data using random points (McNyset 2005; Dominguez-Dominguez et al. 2006).  

Dominguez-Dominguez et al. (2006) used topographic and climate data at a grid size of 

approximately 1km2 to predict distributions of freshwater fishes in central Mexico, but found 

strong evidence that the models over-predicted the current and historical distributions of most 

species.   

Many more studies of freshwater organisms have relied on presence and absence data.  

For example, Fransen et al. (2006) used logistic regression to determine the farthest upstream 

occurrence of fish in streams of western Washington based on variables derived from GIS layers, 

including variables of stream gradient upstream and downstream of each stream point, upstream 
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basin area, elevation, and mean annual precipitation.  The models did not include information on 

barriers to fish movements, which the authors determined was responsible for most of the 

variation in the ability of their model to predict the occurrence of fish in some areas (Fransen et 

al. 2006).   

In addition to traditional regression models, nonparametric techniques such as artificial 

neural networks (ANN), multivariate adaptive regression splines (MARS), and classification 

trees (CT) have been used in recent predictive models of aquatic species because they require 

fewer assumptions about the distributions of the data and the relationships between predictor and 

dependent variables, making them potentially well suited to ecological studies (De'ath and 

Fabricius 2000; Vayssieres et al. 2000).  Mastrorillo et al. (1997) used ANN and discriminant 

factorial analysis to predict occurrences of three small stream fish in rivers in France.  They 

incorporated distance to bank, instream cover, proportion of substrate types, depth, and water 

velocity into their models, which were created at the microhabitat scale (1 m2) using data from 

electrofishing points in four regions of a river.  Model performance on a random subset of the 

data withheld from analysis indicated that ANN results were an improvement over DFA results, 

although the models had similar prediction accuracy (Mastrorillo et al. 1997).   

At a larger study scale, or grain, researchers have created models of fish occurrence and 

fish and crayfish communities based on variables at catchment, segment, and reach scales 

variables using ANN, CT, and discriminant function analysis (DFA) (Joy and De'ath 2004; 

Oakes et al. 2005).  Joy and De’ath (2004) achieved 84% similarity between observed and 

modeled species assemblages with ANN.  Artificial neural networks had lower error rates than 

CT and DFA, and models of generalist species had lower overall accuracy than models created 

for all other fish in the Great Plains (Oakes et al. 2005).  Leathwick et al. (2005) used another 

machine-learning method, MARS, to predict distributions of diadromous fish at a grain of stream 

segments and found that distance to the sea, stream size, summer temperature, and catchment-

scale variables that likely influence variation in stream flow were important predictors of 

occurrence for most species; riparian shade and measures of downstream slope were also 

incorporated into models for some species.  The variables important to fish at this broader scale 

differ from analyses focused on microhabitats, and factors determining occurrences of 

diadromous fish likely differ from factors affecting aquatic species with more restricted ranges. 
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Researchers have also created models to predict presence or absence by watershed rather 

than stream reach.  Watersheds and catchments have been identified as suitable scales for 

analyses of freshwater systems because the landscape over which water flows can affect 

freshwater ecosystems (Hynes 1975; Moss 2000).  Studies on bull trout (Salvelinus confluentus) 

and brook trout (Salvelinus fontinalis) used CT analysis to predict watersheds where fish are 

likely to occur by modeling classifications of the status of trout populations (Rieman et al. 1997; 

Thieling 2006).  These trout studies modeled historic and present ranges of the species by using 

environmental data to predict classifications of present, absent, or reduced trout populations at a 

subwatershed scale, then used model results to predict distributions and create maps of those 

distributions as a guide to management activities (Rieman et al. 1997; Thieling 2006).  There are 

limitations to creating models at the scale of subwatersheds related to species data and analysis, 

as data are generally aggregated from several scales to the subwatershed scale and absences are 

difficult to assign to a subwatershed without extensive sampling or expert knowledge.  The 

studies by Thieling (2006) and Rieman et al. (1997) should be interpreted with caution because 

the models were not tested on completely independent datasets, but rather on a subset of the data.       

Modeling mussel species occurrences 

There is disagreement in the literature regarding the ability to predict mussel occurrence 

from specific environmental variables, as similar studies have had varying levels of success 

predicting freshwater mussel occurrences (Hornbach 2001; Brim-Box et al. 2002).  Zimmerman 

(2003) concluded that the lack of data and information available for freshwater mussels and their 

habitat requirements severely limits the ability to create HSI models and advocated the 

development of an ecological risk assessment to evaluate relative habitat suitability.  Other 

researchers have correlated environmental variables at small and large scales, ranging from 1 m2 

areas of the stream bed to catchments and watersheds, with distributions of freshwater mussel 

species (e.g., Strayer 1983, 1993, 1999b; Strayer and Ralley 1993). 

At a grain of 1 m2, current speed, spatial variation in current speed, percentage of 

medium sand, depth, and number of macrophytes were significant but weak predictors of mussel 

occurrence in a stream (Strayer and Ralley 1993).  Strayer and Ralley (1993) also suggested that 

the microhabitat scale may be inappropriate for predicting distributions of freshwater mussels, 

suggesting that factors within the catchment may influence occurrences of freshwater mussels.  
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At the larger scale of stream reaches, environmental characteristics, including riparian 

composition, water chemistry, stream shading, stream substrate, and stream width and depth 

have been used to model presence or absence of specific mussel species within a given reach 

(Poole and Downing 2004).  Bambarger (2006) combined variables representing the 

microhabitat, sub-segment, and riparian buffer scales and found that a factor related to sediment 

at the microhabitat scale, geology at the sub-segment scale, and land use at both the sub-segment 

and riparian buffer spatial scales was highly correlated with freshwater mussel abundance and 

species richness.  Studies of microhabitats or factors at the scale of stream segments over small 

extents define areas that are suitable for mussel populations and identify factors that may 

influence the persistence of mussel beds.   

Although few studies have found strong significant correlations between environmental 

variables and freshwater mussel distributions at a local scale, analyses conducted for a large 

extent across the range of a species may reveal environmental variables related to the distribution 

of the species.  As part of one of the most comprehensive efforts to model freshwater taxa at a 

regional extent, Sowa et al. (2005) georeferenced occurrence data and developed models of 67 

freshwater mussel species within the state of Missouri.  Their models were based on 1:100,000 

stream segments within 8-digit hydrologic units (HUs) as the scale of analysis and were limited 

to variables representing stream size, gradient, temperature, flow, and size difference in their 

models.  Although Sowa et al. (2005) developed what is currently the most comprehensive set of 

models for freshwater mussels by predicting distributions of every species known to occur 

Missouri, the model results are limited by several factors.  They created separate models for 

different regions within the state, therefore the relationships between occurrences and 

environmental variables are not likely accurate in other regions.  They also assumed that if a 

species had ever occurred in an 8-digit HU, the species had potential to occur in any suitable 

stream segment within the 8-digit HU, which may have led to errors of commission.  Most 

importantly, the models represent the potential distributions of mussel species rather than the 

current distributions because the researchers did not address threats and focused only on 

environmental variables describing stream segment conditions.  Spatially explicit research into 

mussel distributions and environmental and anthropogenic effects across a large extent may help 

to identify threats responsible for the broad decline in the ranges and number of species of 

freshwater mussels, as indirect evidence suggests that processes operating on a regional scale, 
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such as distributions and movements of host fishes within drainage basins may explain 

freshwater mussel distributions in North America (Vaughn 1997).   

To the best of the author’s knowledge, few studies have attempted to predict the current 

distributions of freshwater mussels using factors at a watershed extent over a large region, 

although researchers suggest that anthropogenic threats to mussels are important to examine at 

large spatial scales (Strayer et al. 2004).  Recent mussel research has been conducted on the 

spatial relationships between freshwater mussels and the surrounding landscape, but these studies 

have generally been limited to relatively small areas, with state boundaries comprising the 

maximum extent of the study area (Andersen 2002; Arbuckle and Downing 2002; Poole and 

Downing 2004; Bambarger 2006).  Anderson (2002) considered riparian, upstream, and local 

environmental conditions and found weak but significant correlations between sampled mussel 

communities and nearby urban or non-row crop agriculture land use.  However, her research was 

restricted to survey points within five watersheds of one drainage subbasin, therefore her results 

may not represent general trends (Andersen 2002).  Research conducted by Arbuckle and 

Downing (2002) across the state of Iowa considered variables on a watershed scale and identified 

variables related to sedimentation and pollution from agriculture as having a significant effect on 

mussel populations.  Although this information increases the body of knowledge regarding 

current threats to freshwater mussels, findings from local studies may not apply in other regions: 

for example, although agriculture is a major land use in Iowa, it is not common throughout the 

ranges of all freshwater mussels.  Furthermore, the response to perturbations by species that are 

present in Iowa may differ from responses of species in the eastern U.S., as differences in 

geology, land use, and other environmental and anthropogenic factors between regions could 

contribute to different patterns in freshwater mussel occurrences.   

Because the Appalachian region of the United States has a history of forest clearing, acid 

mine drainage, and acid rain, among other anthropogenic changes to the environment (Herlihy et 

al. 1990, Clarkston 1993), variables representing forestry practices, acid deposition, and other 

environmental concerns common to the region may be better landscape-level predictors of the 

suitability of streams for freshwater mussels (Sheehan et al. 1989).  Creating accurate predictive 

models of freshwater mussels in the Appalachians may elucidate factors affecting freshwater 

mussels in the region and will provide researchers and managers with information on 

distributions without incurring the costs associated with surveying all potential mussel habitats.  
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A successful model can also provide a coarse map of areas that can be surveyed to confirm the 

presence or absence of the mussel species and may allow managers to prioritize areas for 

restoration and conservation that are most likely to support any freshwater mussels.   

Freshwater mussel data 

Successful models of freshwater mussels require data suitable to model development.  

Sampling protocols for freshwater mussels vary considerably among agencies and individuals.  

Strayer and Smith (2003) have reviewed sampling techniques available for freshwater mussels 

and discussed in detail the techniques most suitable for the goals of a particular project.  Strayer 

and Smith (2003) included information on determining occurrences of freshwater mussels in a 

sampling guide designed to be accessible to researchers and managers who are interested in 

determining the range of a species.  They emphasized the importance of defining the spatial grain 

of a species dataset and the minimum density of mussels that must be present for mussels to be 

considered present at a site.  For mussel surveys, Strayer and Smith (2003) suggest defining an 

absence as when a species is not found during a timed search within the period of time 

determined from the minimum encounter rate, although they also suggest that catch-per-unit-

effort can be extremely variable.  Studies of other fauna may provide alternatives or 

improvements on these methods to determine presence or absence of a species, including 

estimates of detection probabilities for species collected using particular sampling methods 

(Bayley and Peterson 2001). 

A panel of experts on freshwater mussels were gathered at a meeting in May 2007 and 

assigned the task of suggesting mussels most suitable for the development of regional modeling 

efforts focused in the Appalachians (Figure 1, see Chapter 2 for model development)).  The 

experts identified Alasmidonta undulata, Alasmidonta varicosa, Alasmidonta viridis, Elliptio 

complanata, Elliptio dilatata, Epioblasma triquetra, Lasmigona subviridis, Plethobasus cyphyus, 

Pleurobema clava, and Villosa fabalis as species that represented the variation of freshwater 

mussel occurrences, ranging from limited to widespread in their habitat preferences, and 

including species considered common, rare, or declining as of May 2007 (see Table 1 of 

Appendix B for a summary of these species).  Data requests submitted to researchers, state 

agencies, organizations, and museums indicated that freshwater mussel data for the majority of 

these species are inadequate for regional modeling efforts (see Table 2 of Appendix B for 
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available mussel data).  Elliptio dilatata (spike), which is a widespread species common to the 

Ohio drainage region, and Elliptio complanata (Eastern elliptio), a widespread species common 

to the Mid-Atlantic drainage, were best represented by recent data readily incorporated into a 

GIS.   

Elliptio dilatata is an abundant species across its range and is actually increasing in some 

regions of the Appalachians (Houp 1993).  This species occurs throughout the Mississippi River 

drainage; in the Appalachians its range stretches from the St. Lawrence River south to Kentucky 

and west from West Virginia and central Pennsylvania and New York (Parmalee and Bogan 

1998).  Strayer (1983) indicated that the species resides in streams and rivers with drainages 

ranging from 50-30,000 km2.  This species is found primarily in streams on outwash plans and 

moraines in southeastern Michigan; the species never occurred in streams that drained only lake 

plain geologies.  Huehner (1987) found E. dilatata primarily in gravel substrate and never in 

sand.  He determined through laboratory tests of substrate preference and field collections that 

current velocity is likely more important than substrate in determining local occurrences of E. 

dilatata (Huehner 1987).  Houp (1993) suggested that E. dilatata is tolerant to sediment, as 

despite increasing sedimentation, populations nearly doubled in number from 1980-1991 in the 

North Fork Red River, Kentucky.  Hosts established for E. dilatata include gizzard shad 

(Dorosoma cepedianum), flathead catfish (Pylodictis olivaris), white crappie (Pomoxis 

annularis), and yellow perch (Perca flavescens) (Fuller 1974).  E. dilatata may be host-limited 

in some habitats (Lyons et al. 2007). 

Elliptio complanata is a ubiquitous species.  It is the most frequently occurring species in 

the Neuse River Basin of North Carolina (Andersen 2002) and in the northern Atlantic Slope, 

including the Susquehanna, Delaware, and Hudson River basins of Pennsylvania and New York 

(Strayer 1993), and its range stretches south into Virginia.  Strayer (1993) described the 

distribution of E. complanata in the northern Atlantic Slope using stream size and physiography 

in a stepwise discriminant analysis model.  Anderson (2002) observed a decline in E. complanata 

within the first 50 m downstream of bridges, indicating that the species may be sensitive to 

anthropogenic changes to the environment.  Hosts for E. complanata include bluegill (Lepomis 

macrochirus), pumpkinseed (Lepomis gibbosus), green sunfish (Lepomis cyanellus), 

orangespotted sunfish (Lepomis humilis), largemouth bass (Micropterus salmoides), white 

crappie (Pomoxis annularis), yellow perch (Perca flavescens), and banded killfish (Fundulus 
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diaphanus) (Matteson 1948; Watters 1994; Watters et al. 2005).  Amyot and Downing (1991) 

found that a population of E. complanata in a lake in Canada undergoes a seasonal vertical 

migration, with more than 60% of individuals, particularly those with smaller shells, migrating 

into the sediments by late fall.  They cautioned that sampling lake or streambed surfaces could 

therefore drastically underestimate the number of individuals occurring in an area, particularly 

when sampling is conducted during the late summer, fall, or winter; they further hypothesized 

that vertical migration is responsible for lower estimates of juvenile mussels in samples collected 

by hand than in samples collected with dredges and grabs (Amyot and Downing 1991).   

Summary 
Freshwater mussels pose a challenge to modeling efforts due to their dependence on more 

mobile species for recruitment and dispersal and their occurrence within stream networks.  

However, the large number of freshwater mussel species in the U.S. prohibits inventorying every 

species throughout its range.  The development of successful models of freshwater mussels and a 

detailed outline of the data required to develop models for mussel species would therefore give 

managers and scientists the ability to maximize the information available from limited mussel 

survey efforts.  Because of the value of models of freshwater mussel distributions and the factors 

affecting mussel species, studies of the feasibility of models at various scales are an important 

component of freshwater conservation efforts. 
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Tables 
 
Table 1.  Links to comprehensive wildlife conservation plans for states within the Appalachian region of the eastern 
U.S. 
 
State  Web Link (May 2008) 
Alabama  http://www.wildlifeactionplans.org/pdfs/action_plans/al_action_plan.pdf 
Georgia  http://www1.gadnr.org/cwcs/Documents/strategy.html 
Indiana  http://www.djcase.com/incws/manuscript/FINAL_CWS_MANUSCRIPT.pdf 
Kentucky  http://fw.ky.gov/kfwis/stwg/ 
Maryland  http://www.wildlifeactionplans.org/pdfs/action_plans/md_action_plan.pdf 
Mississippi  http://www.mdwfp.com/Level2/cwcs/Final.asp 
New Jersey  http://www.state.nj.us/dep/fgw/ensp/wap/pdf/wap_draft.pdf 
New York  http://www.wildlifeactionplans.org/pdfs/action_plans/ny_action_plan.pdf 
North Carolina  http://www.ncwildlife.org/pg07_wildlifespeciescon/WAP_complete.pdf 
Ohio  http://www.fws.gov/midwest/FederalAid/state_plans.html 
Pennsylvania  http://www.wildlifeactionplans.org/pdfs/action_plans/pa_action_plan.pdf 
Tennessee  http://www.state.tn.us/twra/cwcs/tncwcs2005.pdf 
Virginia  http://bewildvirginia.org/wildlifeplan/plan.asp 
West Virginia  http://www.wvdnr.gov/Wildlife/PDFFiles/wvwcap.pdf 
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Figures 

Figure 1.  Focus area for the development of predictive models for freshwater mussels in the 
Appalachians. 
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Chapter 2:  Predictive Models for the Freshwater Mussel Species 
(Mollusca: Unionidae) Elliptio complanata and Elliptio dilatata in the 
Appalachians  

Abstract 
Eastern North America contains the greatest diversity of freshwater mussels in the world.  

Additional information on threats and on habitat requirements and distributions of freshwater 
mussels is necessary to preserve diverse freshwater mussel communities, as many species are in 
decline.  Models of freshwater mussels can predict species distributions by determining 
environmental and anthropogenic factors within the watershed or riparian area or factors 
upstream that may determine occurrences.  Subwatershed-based models developed for Elliptio 
complanata and E. dilatata in the Mid-Atlantic and Ohio drainage regions using existing survey 
data performed well on training datasets, but did not accurately predict independent species 
occurrences  Additional studies are necessary to evaluate the quality of existing data, the utility 
of subwatershed-based models, and the feasibility of modeling freshwater mussel distributions 
across large extents. 

Introduction 

Research into the conservation and management of freshwater mussels is in its infancy 

compared to research on charismatic or commercially important species, such as many fish and 

mammals.  Past designs for conservation efforts directed at preserving ecosystems have focused 

on terrestrial species (e.g., Kerr 1997; Myers et al. 2000). Although newer approaches have 

focused on aquatic species (e.g., Sowa et al. 2005), these plans either identify gaps in available 

data for freshwater mussels or fail to ensure the conservation of freshwater invertebrates 

(Lydeard et al. 2004; Strayer 2006).   

There are many barriers to specifically addressing the conservation of freshwater 

mussels.  Unlike terrestrial ecosystems, streams and rivers are networked to each other and 

connected to the terrestrial landscape (Frissell et al. 1986), therefore freshwater ecosystems 

cannot be isolated from activities and land-use changes in the watershed.  Protecting freshwater 

species from extinction is therefore more complicated than terrestrial conservation efforts (Moss 

2000).  Only in recent years has there been national recognition of the need to conserve 

freshwater mussels, which historically were most diverse in the Appalachian region of the United 

States (National Native Mussel Conservation Committee 1998).  Researchers have made recent 

advances in the science of propagating and managing freshwater mussels at a local scale, and 

recent studies have begun to evaluate anthropogenic impacts on mussels at a regional scale 
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(Gatenby et al. 2006), but additional research is necessary to address gaps in knowledge of 

freshwater mussel distributions, ecology, life-history characteristics, and threats (Vaughn et al. 

2008).    

Conserving freshwater ecosystems requires aquatic ecologists to consider terrestrial 

impacts within the watershed and riparian corridor and upstream water quality as well as 

conditions immediately within a particular stream reach (Gregory et al. 1991; Allan & Johnson 

1997; Wang et al. 2003; Allan 2004; Schomberg et al. 2005).  Maintaining management-defined 

riparian zones can prevent or reduce impairment of freshwater ecosystems (Kiffney et al. 2003; 

Northington & Hershey 2006), and researchers have found that riparian zone conditions can 

affect freshwater mussel communities at a local scale (Morris & Corkum 1996).  Overland water 

flow and connectivity from headwater streams to large rivers also contribute to the conditions 

affecting freshwater ecosystems (Vannote et al. 1980; Hitt & Angermeier 2008).  Increasing 

anthropogenic influences upstream can negatively affect downstream aquatic communities by 

decreasing water quality or creating barriers to dispersal (Watters 1996; Freeman et al. 2007).  

Although techniques to incorporate upstream and riparian variables into analyses have been 

developed (FitzHugh 2005), few studies have incorporated measures of riparian area or 

cumulative anthropogenic impacts into analyses specific to freshwater mussels (see Strayer 2008 

for a review), particularly over a large extent (e.g., Arbuckle & Downing 2002; Poole & 

Downing 2004).  Previous studies have found that factors related to regional anthropogenic 

activities can partially explain the local distribution of freshwater mussel species in Iowa 

(Arbuckle & Downing 2002).  This suggests that modeling the regional distributions of declining 

mussel species may highlight regional or widespread factors that limit species occurrence or 

determine habitat suitability in the Appalachians, providing useful information for managers and 

scientists in areas with important molluscan fauna.   

Occurrences of freshwater mussels are more difficult to model than plants or vertebrate 

fauna for several reasons.  Modeling freshwater aquatic species requires consideration of habitat 

networks, which is a factor rarely considered in models of terrestrial species.  Freshwater 

networks differ from terrestrial habitat corridors because the linear and unidirectional nature of 

stream flow limits species movements and because upstream conditions may influence the 

system downstream (Hitt & Angermeier 2008).  Despite these difficulties, several models of 

freshwater fishes have been developed that adequately predict species occurrences (e.g., 
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Mastrorillo et al. 1997; Olden & Jackson 2002; Leathwick et al. 2005; Dominguez-Dominguez et 

al. 2006).  However, freshwater mussels are additionally difficult to model because although 

sampling techniques for freshwater fish are firmly established with tested accuracy and error for 

many species (Angermeier et al. 2002), fewer researchers have extensively tested sampling 

regimes necessary to determine occurrences of mussels (Strayer & Smith 2003).  Knowledge of 

the accuracy of research surveys can be incorporated into models to improve predictions for 

freshwater fishes (Bayley & Peterson 2001), but the paucity of mussel survey data and the need 

for research on the accuracy and error of existing mussel surveys may limit the development of 

predictive models for freshwater mussels. 

Models of freshwater mussels would ideally identify factors that limit the occurrences of 

rare species, as these species are most in need of conservation planning (Lydeard et al. 2004).  

Models of rare terrestrial species with specific habitat requirements have been created that define 

the extent of potentially suitable habitat (Hernandez et al. 2006).  However, rare freshwater 

species may violate modeling assumptions about the dependent variable because they are 

confined to a stream network (Hirzel et al. 2001).  Rare species are not likely distributed across 

all suitable habitats within a study region, and rare mussels are further limited from moving into 

suitable habitat by the linear movements of host fishes within a stream network.  When suitable 

habitat remains unoccupied by a species, the ability of the model to define factors determining 

suitable habitat is negatively affected (Hirzel et al. 2001).  Additionally, the probability of 

detecting a rare species is normally lower than the probability of detecting common species, so 

false absences are potentially more likely for rare species.  False absences may adversely affect 

model results by identifying areas where species actually occur as unsuitable (Hirzel et al. 2001).  

Data on common species are more likely to conform to model expectations and are easier to 

obtain than data for federally listed endangered and threatened species.  Because models of 

common mussel species should be affected by fewer potential limitations than rare freshwater 

mussels, common species were chosen for model development.   

By focusing on common, widespread species of freshwater mussels in the Appalachians, 

a region with a diversity of mussels, this research can highlight methods and potential outcomes 

associated with the development of models in an area where model development may be 

important for conserving species of concern.  The objectives of this research are to: 1) create and 

test models of freshwater mussel species distributions using watershed, riparian, and upstream 
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attributes, 2) predict the presence or absence of freshwater mussel populations in areas where 

data are lacking, and 3) identify the types of environmental variables and quality of species data 

suitable for the development of predictive models.  A successful model of common, widespread 

freshwater mussel species in the Appalachian study area will highlight the feasibility of this 

modeling technique for freshwater mussel research, allow managers to prioritize areas for 

restoration and conservation that are most likely to support any freshwater mussels, and provide 

a template for modeling additional mussel species.  A successful model will also provide a 

coarse map of areas that can be surveyed to confirm the presence or absence of modeled mussel 

species.   

Methods 

Study area 

The study area for this project is a watershed-based region that encompasses headwater 

and mid-order streams within the Appalachian Mountains (Figure 1).  The study area includes 

the upper portions of the Mid-Atlantic and Ohio drainages and stretches from northern Alabama 

and Georgia in the south to New York in the north.  Because hydrologic boundaries limit mussel 

distributions and drainage regions approximate mussel faunal provinces containing different 

communities of freshwater mussels, models were developed separately for each drainage region 

(Parmalee & Bogan 1998).  The study area was designed to facilitate comparisons of mussel 

distributions in the Appalachian region with conservation plans and studies for other species of 

concern (Link & Sauer 2002; Nuttle et al. 2003; Sauer et al. 2003; Buehler et al. 2006).  

The boundaries used to define relevant hydrological units for the majority of the study 

area were 11-, 12-, and 14-digit hydrological unit (HU) watershed data boundaries (hereafter 

subwatersheds) prepared for each state by the U.S. Geological Survey and the Natural Resources 

Conservation Service  (Seaber et al. 1987).  Boundaries at the desired scale are unavailable for 

New York, so the most detailed watersheds available in those areas, which are 10-digit HUs, 

were substituted.  The boundaries of these watersheds were edited to more approximately match 

the structure of 12-digit subwatersheds, which enclose rather than border streams and rivers.     

Drainage regions within the study area differ in size and level of hydrological 

modification.  The area of each drainage region included in the study area varies from 172,000 
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km2 to 266,000 km2.  The Mid-Atlantic region consists of 1,714 subwatersheds averaging 100.11 

km2 in size and drains to the Atlantic.  Large rivers in the Mid-Atlantic include the Hudson, 

Susquehanna, Delaware, Potomac, and Shenandoah.  The Hudson, Susquehanna, and Potomac 

Rivers are affected by damming over more than 25% of their length (Dynesius & Nilsson 1994).  

The Ohio region contains 3,168 subwatersheds averaging 84 km2 in size and includes the Ohio, 

Allegheny, Cumberland, and New Rivers.  Rivers within the Ohio drainage region vary 

considerably in conservation status.  The status of large rivers in the Ohio varies from the New 

River, which is a National River managed by the National Park Service, to the Ohio River, which 

is used extensively for navigation. 

Mussel data 

Mussel data were obtained for two widespread species, Elliptio dilatata (spike) and E. 

complanata (eastern elliptio) (Turgeon et al. 1988), which are common throughout their ranges 

(Houp 1993; Strayer 1993; Andersen 2002).   For each species, available data were compiled 

into either a presence-absence training dataset for model development or an independent 

presence-only test dataset for model evaluation.  The data contained in the presence-only datasets 

were derived from separate data sources to ensure independence from the training dataset.   

Regional mussel experts and state agencies provided freshwater mussel survey data 

(presences and absences) for sites across the study area (Table 1).  Survey data are differentiated 

from occurrence (presence-only) data because areas where researchers searched for mussels, but 

did not find them, are recorded.  Recent survey data were used to develop training datasets 

containing presence and absence locations for model development in each drainage region.  

Presence by subwatershed for the training dataset was derived from occurrences recorded in 

recent surveys, which are defined by river lengths, points, and subwatersheds.  Surveys with 

river miles were defined in a geographic information system (GIS) as point or line locations and 

were converted to the Albers Conical Equal Area projection used for environmental data.  

Presence data from survey lines that overlapped more than one subwatershed were omitted to 

avoid falsely assigning a presence to an unsurveyed area.  Absences were assigned to 

subwatersheds along recent survey routes when all surveys covering the subwatershed failed to 

locate the species.  The average nearest neighbor distance was calculated to test for clustering of 

survey data for each region (Table 3).   
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Recent mussel data were defined as any recorded surveys or occurrences since 1985 

(Table 1, 2).  Choosing a cutoff date creates a defined distinction between historic occurrences 

and recent occurrences.  Recent surveys would have a high likelihood of detecting individuals 

that have recolonized areas restored since the Clean Water Act of 1972 (Strayer et al. 2004) and 

earlier surveys were difficult to obtain.  A more recent cutoff date was not chosen because few 

mussel surveys have been conducted that span several subwatersheds.   

The training dataset for the Mid-Atlantic drainage region contained 143 subwatersheds in 

which E. complanata had been detected by surveys and 114 subwatersheds where E. complanata 

had not been located by available surveys (Table 2).  These data were derived from surveys 

covering the state of Pennsylvania and most of Maryland and were used to develop models for E. 

complanata in the Mid-Atlantic.  The training dataset for model development in the Ohio 

drainage region included 47 presences and 126 absences of E. dilatata by subwatershed derived 

from surveys in Pennsylvania and along the Ohio River (Table 2).   

Museums and state natural heritage surveys provided occurrence (presence-only) data for 

the species of interest (Table 1).  The presence-only datasets were developed separately from the 

survey (presence/absence) datasets to create an independent test dataset for each species.  The 

test dataset for each species contained mussel occurrences not included in model creation and 

was developed to enable an independent evaluation of model predictions (Hernandez et al. 

2006).  Presence in a subwatershed was assigned based on species occurrences since 1985 

recorded in museum and state natural heritage survey records (Table 1).  Because most state 

natural heritage surveys limit records to occurrences, these data were appropriate for the test 

(presence-only) dataset.  The Mid-Atlantic test dataset contained 40 presences of E. complanata 

by subwatershed based on presence-only data (Table 2).  The independent test dataset for the 

Ohio drainage region contained 205 presence-only subwatersheds for E. dilatata derived from 

state agency and museum records (Table 2).  The determination of species presence in the test 

dataset did not always correspond to the training (presence/absence) dataset; however, 

occurrences within a subwatershed recorded from presence-only data were not used to change an 

absence assigned to the training dataset based on survey data so that independence of the datasets 

could be preserved. 
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Although the training and test datasets were independently developed, geographic 

overlap occurred between the datasets for both species.  Some subwatersheds were therefore 

represented in both datasets (Table 2).  The test (presence-only) dataset for E. dilatata in the 

Mid-Atlantic contained three subwatersheds that overlapped the training dataset.  Surveys 

located E. dilatata two of these subwatersheds, but based on recent surveys, the species was 

classified as absent for the third subwatershed in the training dataset.  The presence-only dataset 

for the Ohio overlapped 14 subwatersheds where surveys recorded E. complanata and 17 

subwatersheds where E. complanata was not recorded by surveyors (Table 2). 

Independent variables 

Anthropogenic and environmental variables representing potential threats or limiting 

factors to freshwater mussels were selected.  Only variables at a resolution and extent that could 

be summarized for each subwatershed within a drainage region were considered for inclusion in 

model development.  These variables were derived from existing data available in a GIS (Table 

4). Metrics were calculated by subwatershed and by riparian corridor within the subwatershed 

following Hudy (2005).  The riparian corridor was defined as a 100 m buffer from streams, 

rivers, and lakes represented by the flowline, stream area, and waterbody layers in the improved 

National Hydrography Dataset (NHDPlus) (Horizon Systems 2006).  This riparian zone width is 

commonly used in mussel research and other aquatic studies (Richards et al. 1996; Andersen 

2002; McKinney et al. 2002; Thieling 2006) and is larger than the 30 m resolution of the 

remotely sensed environmental variables.  Although some legal stream buffer zones are smaller 

than 100 m (Willson & Dorcas 2003), a larger stream corridor is more suitable for the grain of 

the analyses in this study.   

A custom automated GIS routine in ArcView 3.2 (ESRI 2000) was used to define all 

subwatersheds upstream of each subwatershed.  Additional variables were derived using the 

cumulative values of environmental and anthropogenic variables by including data upstream of 

each subwatershed for variables that could logically be calculated cumulatively.  ArcGIS 9.1 and 

9.2 (ESRI 2002) was used for all other development and summarization of variables (Figure 2).  

More detailed information on methods and sources for environmental variables is available in 

Appendix A, and a complete listing of variables, summary statistics, and data sources are 

available in Appendix C.  
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Model development 

Models were developed using statistical techniques commonly used for presence and 

absence data.  All of the available mussel survey data aggregated by subwatershed for each 

drainage region were used as the training datasets for model development. The training datasets 

for E. complanata (Mid-Atlantic) and E. dilatata (Ohio) were entered into classification tree 

(CT) models (mvpart package, De’ath 2007) and multiple logistic regression models predicting 

the categories of presence or absence for each species (Breiman et al. 1984; Hosmer & 

Lemeshow 2000) in the R programming language (R Core Development Team 2007).   

Multiple logistic regression models and CT models differ in several aspects that can 

affect model outcomes.  Multiple logistic regression predicts the probability of occurrence and 

can be used with categorical or continuous independent variables (Hosmer & Lemeshow 2000; 

McGarigal et al. 2000).  Logistic regression requires the choice of a cutoff to predict the 

categories of species presence or absence from probability of occurrence, which can affect the 

outcome of the model (Fielding & Bell 1997).  Classification tree analysis is a nonparametric 

technique that has been used for exploratory data analysis because it is robust to large numbers 

of independent variables relative to the number of samples and it can use interactions between 

variables to classify datasets (Olden & Jackson 2002).  This technique summarizes results in an 

easily interpretable dichotomous key predicting class (such as presence or absence) based on 

values for the input variables (Breiman et al. 1984).  Classification trees differ from most other 

modeling techniques because categorical, ordered, and continuous variables are compatible with 

this technique (Breiman et al. 1984).  This method is valuable for modeling ecological datasets 

(Vayssieres et al. 2000; De'ath 2002) because it makes no assumptions about the distributions of 

the variables and it has been shown to be appropriate for modeling spatially autocorrelated data 

(Cablk et al. 2002). 

All variables available for a drainage region were entered into the CT model for the 

species in that drainage region.  The 154 variables in the Mid-Atlantic and 149 variables in the 

Ohio entered into the CT models included variables related to stream size (maximum and 

minimum Strahler and link order within each subwatershed, Strahler and maximum link order 

difference in the subwatershed, cumulative drainage area, maximum, minimum, and maximum 

difference in mean annual discharge within a subwatershed), land cover (proportion of 
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agriculture, forest, and other land cover types in the subwatershed, riparian area, and cumulative 

watershed), elevation (minimum, maximum and average elevation in the subwatershed, riparian 

area, and cumulative watershed, minimum, maximum, and average slope in the subwatershed, 

riparian area, cumulative watershed, and along streams), and other environmental and 

anthropogenic variables related to water quality represented in a GIS (Tables 4, 5).  Because 

multiple logistic regression can be affected by correlation among independent variables, subsets 

of the variables entered into CT models for each region were developed for logistic regression 

using the caret package (Kuhn et al. 2008) in R (2007) by omitting highly correlated variables 

until the largest correlation in the dataset for each region was 0.5 (Table 5).  A value of 0.5 was 

used as the cutoff for classifying subwatersheds as present or absent from logistic regression 

output, which ranges from zero to one (Hosmer & Lemeshow 2000).  The CT model 

automatically outputs classifications of presence or absence (Breiman et al. 1984) that can be 

evaluated against test data.  The presence-only dataset was withheld from model development as 

an independent test dataset for model evaluation (after Hernandez et al. 2006). 

Resulting models for each species were applied to subwatersheds across the modeled 

drainage region to create predictions of presence and absence for each species.  These 

predictions were compared against the presence-only test data obtained from museums and 

natural heritage surveys to evaluate the predictive ability of the models (Hernandez et al. 2006).  

Accuracy, errors of omission (where a species is known to occur but predicted absent, ranging 

from 0-100%) and commission (where a species is considered absent but predicted present, 

ranging from 0-100%), and kappa scores (ranging from negative one to one, with larger values 

indicating greater agreement between predicted and observed values) were used to evaluate the 

performance of logistic regression and CT models for both species on the training data.  Errors of 

omission were used to compare predictions with the presence-only test data.  Variables used in 

either model were tested for differences between subwatersheds with surveyed presences and 

subwatersheds with absences using the nonparametric Wilcoxon rank sum test (Zar 1998). 
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Results 

Modeled variables 

The logistic regression and classification tree models incorporated different variables to 

predict occurrences of the species, with classification trees retaining fewer variables in the 

models (Tables 5, 6).  The Wilcoxon rank sum test indicated that only the number of downstream 

dams, maximum nitrate deposition in the subwatershed, density of dams in the subwatershed, 

and maximum slope in the subwatershed were significantly different between surveyed 

subwatersheds classified as present and absent for E. complanata.  The number of downstream 

dams was the only predictor retained in the classification tree model for E. complanata; this 

model performed well upon cross-validation (Table 7). The Wilcoxon test indicated that the 

proportion of wetlands and the proportion of grass landcover in the subwatershed were the only 

variables that differed significantly between presence and absence subwatersheds for E. dilatata.    

Three variables were included in the classification tree model for E. dilatata, but only the 

cumulative proportion of shrub landcover was significantly different between absent and present 

surveyed subwatersheds.  This model performed poorly upon cross-validation (Table 7). 

Model predictions 

The logistic regression and the classification tree models performed well on the training 

datasets for both species, with accuracy ranging from 68.9 - 81.5% (Table 8).  None of the 

models accurately predicted the majority of the independent presence-only data for both species, 

as 62.4 - 97.5% of presences were incorrectly classified as absences by the models (Table 8).  

The logistic regression model for E. dilatata performed best on the independent dataset with 

37.6% of presence-only subwatersheds correctly classified as present.  

Discussion 

Models developed for E. complanata and E. dilatata include variables that research 

suggests may affect distributions of freshwater mussels (Tables 6, 7).  Dams affect freshwater 

mussels by destroying habitat and by affecting distributions of host fishes, which can limit 

dispersal and recruitment of freshwater mussels by reducing the chance that mussel larvae, or 

glochidia, will successfully attach to a host (Ortmann 1924; Williams et al. 1992; Layzer et al. 
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1993; Watters 1996; Heinricher & Layzer 1999).  Municipal effluents are also detrimental to 

freshwater mussels (Gagne et al. 2001; Blaise et al. 2003), and population density may be an 

effective estimate of municipal effluents in an area.  Although the proportion of grassland within 

the subwatershed is not known to predict occurrences of freshwater mussels, stream segments 

with grassy riparian areas have different mussel communities than segments with forested 

corridors (Morris & Corkum 1996).  Although species in the genus Elliptio were not included in 

that study, these species may be more likely to occur in communities such as those associated 

with grassy riparian areas. 

Model limitations 

The classification tree and logistic regression models developed for E. complanata and E. 

dilatata in the Mid-Atlantic and Ohio drainage regions generally performed well on the training 

datasets, but the models performed poorly on independent presence-only test data (Table 8).  The 

inability of models for either species to predict known species occurrences from an independent 

dataset indicates that model results are largely spurious.  Several factors likely contributed to the 

poor performance of the models on the independent data, including the predictive ability of 

variables available in a GIS, variable selection and model development techniques employed, 

and the quality of the data used for analysis at this scale. 

The variables developed for this modeling effort were restricted to those that could be 

calculated in a GIS from existing datasets at the scale of subwatersheds.  Variables were also 

summarized by riparian corridors and for cumulative area for each subwatershed in an attempt to 

examine factors upstream of each subwatershed that may determine mussel occurrences.  The 

scale for analysis was chosen because factors occurring within a watershed have been 

hypothesized to affect freshwater mussels, and variables entered into the models were considered 

potentially relevant to freshwater mussels.  However, the potential for these variables to predict 

freshwater mussels could have been affected by variable accuracy and scale.  Most datasets 

available in a GIS across a broad scale have a maximum resolution of 30 m and vary in temporal 

and positional accuracy and precision, affecting the accuracy of the variables derived from those 

datasets and their potential for predicting freshwater mussel distributions.  It is also possible that 

distributions of these mussel species are affected by the same variables used in this study, but 

that the variables are important at scales different from that used in this study.  Finally, mussel 
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distributions may depend on factors inadequately represented in a GIS.  If greater accuracy, 

different scales, or different variables are important to modeling freshwater mussels, these 

models would be expected to perform poorly. 

The models chosen for the logistic regression models were determined by removing 

variables most responsible for correlations in the dataset.  This automated process did not 

account for logical relationships between the explanatory variables and mussel occurrences, 

therefore models created from these variable subsets may lack valuable information that could 

have been derived from easily interpretable variables.  Because all available variables were 

entered into the classification tree models, these models selected the variables most responsible 

for distinguishing subwatersheds where species were present from those where species were not 

found in surveys.  Although the explanatory variables included in predictive models ideally have 

a logical relationship to the dependent variable, the variables selected as important by 

classification tree models for both the Mid-Atlantic and Ohio regions may not have direct effects 

on the occurrence of these species at the subwatershed scale.  Although variables relevant to 

distinguishing presences from absences may have been masked due to correlations with the 

variables preserved in the final classification tree models, the poor performance of the models on 

the independent test dataset indicate that other factors contributed to poor model performance.  

Modeling techniques may also affect the accuracy of predictions.  The classification tree 

procedure in the mvpart package (De’ath 2007) in R is a data-partitioning technique capable of 

identifying variables that best distinguish between presence and absence data.  Cross-validation 

of this technique should reduce overfitting so that models are not specific to the training dataset 

and are therefore able to predict new data accurately.  However, cross-validation is only effective 

at reducing overfitting if the data used in model development accurately represent the dependent 

variable of interest.  Because the training datasets for each species were highly clustered (Table 

3), it is unlikely that these datasets accurately represented the range of conditions in which these 

species occur across the study area.  

Several modeling considerations that may be responsible for poor performance on the test 

data have been explored, but the dependent variable may also contribute to poor model 

development.  Because prediction accuracy on the training dataset did not suggest overfitting, 

but model predictions remained more accurate on the training than the test dataset (Table 8), the 
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training dataset and the test dataset likely differ in their ability to capture true species 

occurrences.  Models created to explain presence and absence data work best when there is high 

confidence in both the presence and absence data.  However, the presence and absence data used 

in model development may have been limited in spatial distribution, precision, and accuracy 

(Table 3). 

Surveys for the species were biased geographically, and very few surveys were available 

for the Mid-Atlantic and Ohio drainage regions.  Survey data that were available for model 

development were limited to the central regions of each drainage and were not distributed 

randomly across the areas (Table 3).  The scale at which the data were analyzed and the scale at 

which data were collected further complicate the dependent variable considered in this study.  

Freshwater mussels are difficult to sample, and although a presence is almost certainly an actual 

presence, failure to detect a species in a stream does not necessitate absence.  The survey data 

available for the Mid-Atlantic region were biased toward large rivers, meaning that although a 

large river within the subwatershed may have been surveyed for mussels, tributaries were not 

necessarily searched.  It is unlikely that any surveys searched all potential mussel habitat in any 

subwatershed because these surveys were not conducted with subwatershed-scale analysis in 

mind.  This suggests that absences identified by surveys in the study areas may not correlate with 

absence of a species throughout the subwatershed.  It was not possible to develop a measure of 

confidence in the absence data because the available data indicated that only two of the surveyed 

subwatersheds were independently sampled more than once.  The size of the subwatersheds used 

in this study, although comparable with successful studies of other aquatic species (Rieman et al. 

1997; Thieling 2006), may be prohibitively large for thorough searches of the stream segments. 

At the subwatershed scale, the paucity of survey data from which models were created 

limited the ability to confidently apply model predictions to the entire drainage region, therefore 

areas where presence or absence of the species were predicted should be considered to be of 

unknown classification status until field surveys can further evaluate the accuracy of the 

predictions.  When absence data is not available, modelers have experimented with pseudo-

absence data created using random points (Engler et al. 2004), but model performance is 

inconsistent (Lutolf et al. 2006; Pearce & Boyce 2006; Tsoar et al. 2007).  Independent absence 

data were not available for either species and detection estimates are not known for the survey 
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data used to create the model, so it is not possible to reasonably assess the ability of modeling at 

this scale to predict absences of freshwater mussels. 

Absence data were difficult to confirm for both species, but the presence data for E. 

complanata may have also contained errors.  The models for E. complanata, none of which 

accurately predicted independent presence data, may have been complicated by taxonomic 

problems with the species.  Although experts suggested that identification was relatively simple 

in the Mid-Atlantic region and difficult only in the Atlantic Slope, E. complanata has been 

difficult for some researchers to identify. 

Previous studies that successfully modeled distributions of aquatic species using 

subwatersheds focused on species of fish in the salmonid family (Rieman 1997, Thieling 2006).  

These studies avoided many of the problems encountered in this study by focusing on species 

that are easily identified and whose habitat requirements are more commonly known.  Although 

individuals of these species can travel great distances and may reside in both small streams and 

large rivers during the course of their lives, knowledge of the timing and direction of movements 

make these life-history characteristics a benefit to distributional studies.  Because of the mobile 

nature of these fish, determining presence or absence at the scale of a subwatershed could be 

accomplished with a high degree of confidence by sampling a few stream segments in each 

subwatershed during appropriate times of the year.  This differs dramatically from mussels, 

which are difficult to identify during the mobile larval stage, and which move very little as 

juveniles and adults.  Sampling efficiencies of fish survey methods are therefore much higher for 

juvenile and adult fish than for juvenile and adult mussels.   The same degree of confidence in 

presence or absence data for mussels would require sampling a much larger proportion of stream 

segments in each subwatershed than is necessary for fishes.  Freshwater mussel research would 

benefit from studies of how sampling gear (hand sampling or grab sampling, for instance), 

sampling effort, and the timing of sampling events can affect the probability of detecting a 

species (Strayer & Smith 2003). 

Modeling directions 

The benefit of the subwatershed approach was the potential to examine the effects of 

cumulative and riparian variables on species occurrence, as landscape factors may affect the 

aquatic environment (Frissell et al. 1986).  However, this study demonstrated the difficulties of 
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modeling freshwater mussels at this scale.  Because absence and presence data at the 

subwatershed scale are difficult to obtain, presence-only modeling using smaller watershed 

boundaries may be best suited to future broad-scale studies of freshwater mussels.   

Defining presence by individual stream segments within a watershed framework would 

set a smaller sampling area for mussel data, environmental variables, and anthropogenic impacts.  

Segment-level watersheds (catchments) are available at the 1:100,000 scale for the U.S. through 

NHDPlus (Horizon Systems 2006) (Figure 2).  Because individual stream segments are much 

shorter stream lengths than the sum of the stream and river segments within a subwatershed, this 

approach to analysis would allow thorough, repeated sampling, as some researchers already do 

for monitoring studies, without sacrificing the ability to readily calculate upstream and riparian 

variables.  Sampling all potential mussel habitat within a stream segment to record presence or 

absence of a species rather than aggregating data collected at various scales to the subwatershed 

scale increases the probability of detecting a species in a catchment compared to the larger 

subwatershed.  Probabilistic sampling of freshwater mussels in stream segments can also aid in 

the calculation of sampling efficiencies and detection probabilities for some species (Bayley &

Peterson 2001), which could benefit general freshwater mussel research.  In the absence of funds

for additional sampling, studies could incorporate historic occurrence data with precise location

information into the explanatory variable of presence-only models to determine environmental 

variables that affect the distribution of a species.   

Catchments would be an appropriate modeling alternative for future studies of freshwater 

mussel distributions for several reasons.  Unlike grid cells or points, catchments preserve the 

ability to easily incorporate cumulative, riparian, and watershed variables into the analysis.  

Although finer-grained analyses using catchments at a regional extent is currently difficult using 

typical personal computers, the rapid advancement of technology should make these analyses 

possible in the near future.  Catchment analysis could provide better results not only by 

analyzing environmental variables at a scale more appropriate to freshwater mussels, but by 

supporting more precise mussel data associated with those environmental variables.     

Management implications 

Freshwater mussels are long-lived organisms that have declined due to short-term, local 

changes in the environment and have also been affected by diffuse perturbations (Gagne et al. 
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2001).  The models developed in this study rely on recent occurrences of freshwater mussels in a 

subwatershed, but may not accurately identify presence or absence of a species.  These models 

do not distinguish populations that are reduced or not recruiting from populations that are healthy 

or even expanding, and they do not incorporate the effects of local environmental changes on 

local freshwater mussel populations.  Because model predictions did not correspond to known 

presences of the species, the models and their results should be interpreted with caution.  These 

models and others created at this scale could be valuable for identifying variables that may be 

correlated with the occurrence of freshwater mussels at the scale of small watersheds in the 

Appalachians, but the concerns addressed above suggest that additional research is necessary to 

evaluate whether robust models of freshwater mussel distributions and factors affecting those 

distributions can be developed.   

A national or international georeferenced database of mussel occurrences and known 

absences and cooperative research-based survey efforts can improve the quality and availability 

of freshwater mussel data for research based on small sampling units compared over large 

drainage regions, including the development of current maps of freshwater mussel distributions.  

Current efforts are focused on developing a national atlas for mussels in the U.S. (Arthur Bogan, 

unpublished data) and on creating georeferenced databases of survey information to promote 

access to existing data (e.g., West Virginia Department of Natural Resources (WV DNR) 

Comprehensive Wildlife Conservation Strategy).  Although agencies and researchers developing 

mussel databases intend to provide data in a format useful for ecological and environment 

research, outlines of sampling and database plans for individual states suggest that databases will 

likely continue to differ among states, as earlier efforts have been limited by political boundaries 

or have aggregated data to different scales.  Databases that specify location, accuracy, and 

precision of sampled sites, define the sampling period (e.g., a single date or over the course of a 

year), and describe the purpose and type of sampling (e.g., abundance estimates of a single 

species or inventories of all species at a site) will be most valuable for modeling efforts, as 

combining data collected for different reasons with different techniques can limit the accuracy of 

models and model predictions.  For example, the usefulness of the WV DNR’s intended database 

identifying the length of stream occupied by mussel species at each recent occurrence will 

depend on whether the database describes the minimum length between mussel beds necessary to 

distinguish one occurrence from another and whether the database identifies areas where 
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particular species were absent.  The proposed development of an Atlas of Freshwater Mussels of 

the United States has the most potential to provide useful data for regional-scale modeling efforts 

because the researchers plan to georeference available species records for the entire United 

States and confirm identifications of mussel specimens in collections (Arthur Bogan, 

unpublished data).  However, if absence data are not included in this database, modeling 

applications based on this database would be limited to those techniques that do not require 

absence data. 

Although mussel researchers may choose to concentrate their survey efforts on areas 

known to contain suitable mussel habitat, models will benefit from the inclusion of unsuitable 

areas from which all or certain species of mussels are known to be absent.  Efforts to develop a 

database of areas where extirpations have occurred containing information on how long species 

remain absent from specific sites would promote development of models that can distinguish 

anthropogenic factors affecting mussel occurrences.  Finally, relatively frequent surveys for 

particular species will be particularly useful in evaluating how seasonal variation, weather 

patterns, or other factors affect sampling efficiency, or the probability that researchers detect 

species when they occur.   

Increasing the availability of recorded presences and absences for mussel species relevant 

to the segment scale can increase the potential to model rare or locally distributed mussel 

species.  Sowa et al. (2005) used 1,157 community records containing 12,304 mussel 

occurrences to successfully model potential habitat for 67 species at the 8-digit HU scale within 

a state; this research attempted to model species at the finer subwatershed scale throughout the 

Appalachians using fewer mussel occurrences (Appendix B).  Previous researchers have 

developed methods to determine when a watershed containing historic data remains 

undersampled (Sowa et al. 2005), and following efforts to assign coordinates to historic mussel 

collections, these methods can be adapted to analyzing the availability of mussel data at a 

regional extent.  Sampling can then be focused to address under-sampled regions and to ensure 

that data are available in a subset of catchments representing the range of environmental 

conditions and mussel communities across the drainage region.  These sampling efforts would 

require cooperation from universities, consultants, non-profits, and state and federal agencies, 

and could be incorporated into Comprehensive Wildlife Conservation Plans.   
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Cooperative sampling efforts and studies of freshwater mussels at a variety of scales 

using proven sampling techniques can address the concerns of the National Native Mussel 

Conservation Committee (1998) by increasing knowledge of freshwater mussel distributions, 

ecology, habitat requirements, and limitations while developing cooperative partnerships for 

mussel research and conservation.  By establishing sampling protocols for specific mussel 

species at a regional level, a freshwater mussel dataset can be developed that is valuable for 

estimating probability of detection and deriving predictive models that incorporate both local- 

and landscape-level effects on species of interest.  Novel field research could lead to findings 

related to minimum sampling efforts required to detect a species, sampling efficiencies of 

different sampling gear and methods, and temporal variation in sampling success.  Modeled 

distributions of species across their geographic ranges, if successful, could provide valuable 

information on species locations.  This information can provide a basis for future studies by 

establishing minimum sampling effort for species detections, defining relationships between 

season and sampling success, and by identifying factors that may affect species occurrences. 

The use of survey data to develop accurate, current distributional maps and to identify 

factors affecting freshwater mussels over a large extent at a scale relevant to scientists and 

managers would be an important first step toward addressing the many problems affecting our 

ability to conserve and manage freshwater mussels (National Native Mussel Conservation 

Committee 1998).  Although maps cannot replace sampling efforts for identifying local mussel 

populations, models and mapped distributions can be valuable for identifying priority areas for 

sampling and for summarizing species occurrences over large areas.  Agency efforts and funding 

opportunities promoting additional research on freshwater mussel distributions should improve 

our understanding of the diversity of native mussels in the Appalachians and throughout the 

United States. 
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Tables 
 
Table 1.  Available data and training and test data for models of Elliptio complanata and E. dilatata.  Total refers to the total number of records provided by each 
source.  The date range is determined from all records.  The number of recent records are found in the column ≥ 1985, the number of records with associated 
coordinates or area locations are found in the columns Coord or Area, and Both refers to the number of spatially explicit recent records from each source. 
 
    Elliptio dilatata  Ellipto complanata  No Mussels 

Point Records  Date Range ≥ 1985 Coord Both Total  Date Range ≥ 1985 Coord Both Total  ≥ 1985 Coord Both Total 
Carnegie Museum  1884-2006 30 42 15 365  1889-2005 7 6 4 196     N/A 
DE Museum  1898-2001 4 0 0 165  1856-1996 3 0 0 296     N/A 
IL Natural History Museum  1878-2006 550 87 79 733  1907-1998 50 14 9 107     N/A 
MD Biological Stream Survey  N/A 0 0 0 0  1995-1997 72 72 72 72  778 778 778 778 
NC Natural Heritage  1991-2006 94 69 69 94  2000-2002 2 2 2 2     N/A 
OH State U. Museum  1825-2001 322 1313 283 1740  1850-2002 53 46 37 284     N/A 
Smithsonian  1933-1974 0 0 0 17  1949-1991 20 19 0 60     N/A 
U. of MI Museum of Zoology  1863-1997 0 0 0 1126  1866-1979 0 0 0 1061     N/A 
WV Natural Heritage  1919-2001 113 581 113 581  1919-2000 55 141 55 141     N/A 
                  
Subwatershed Records  Date Range ≥ 1985 Area Both Total  Date Range ≥ 1985 Area Both Total  ≥ 1985 Area Both Total 
Western PA Conservancy  N/A 39 39 39 39  N/A 125 125 125 125  156 156 156 156 
                  
Stream Segment            
Records by Subwatershed  Date Range ≥ 1985 Area Both Total  Date Range ≥ 1985 Area Both Total  ≥ 1985 Area Both Total 
Ecological Specialists, Inc.   1969-1999 9 9 9 9  0 0 0 0 0  16 16 16 16 
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Table 2.  Number of subwatersheds in the study area with data for Elliptio complanata  (Mid-Atlantic region) and E. 
dilatata (Ohio region).  Presence and absence subwatersheds were determined from survey data.  The test dataset 
(presence-only) contains data derived from occurrence records.  The overlap between the two datasets is indicated 
by the number of subwatersheds with presence or absence data in the training dataset that are also represented in the 
test dataset by occurrence-derived presences. 

  Training Datasets  Test Datasets                    Test and Training Data Overlap 
  Presence Absence  Presence  Surveyed Present Surveyed Absent 
E. complanata  143 114    40    2      1 
E. dilatata    47 126  205  14  17 
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Table 3.  Nearest neighbor index (NNI) classification (clustered vs. dispersed) and scores measuring degree of 
clustering for the training (presence/absence) datasets for Elliptio complanata in the Mid-Atlantic and E. dilatata in 
the Ohio drainage regions.  P-values less than 0.05 indicate significant clustering.   
 

 Mid-Atlantic Ohio 
NNI clustered clustered 
z-score -2.27 -6.59 
p-value <0.05 <0.01 
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Table 4.  Data sources for variables included in model development.   

Variable 
Categories Data Source 

Scale or 
Resolution 

Relevant 
Time 
Period Source Details 

Presence/ 
absence data survey data subwatershed 1985-2007 Mussel data were compiled from the Maryland Biological Stream Survey, Ecological 

Specialists, Inc, and a database compiled by the Western Pennsylvania Conservancy 

Presence-
only data occurrences subwatershed 1985-2007 Mussel data were compiled from West Virginia DNR, Carnegie Museum of Natural History, 

The Ohio State University Museum, and Illinois Natural History Museum 

Zebra mussel 
occurrences NAS 1:2,000,000 1988-2007 Point locations for zebra mussels compiled by the Nonindigenous Aquatic Species (NAS) 

Program were downloaded from the National Atlas 

Dams NID 1:2,000,000 2002-2004 A shapefile containing locations of dams compiled by the National Inventory of Dams was 
downloaded from the National Atlas 

Roads and 
population 
data 

ESRI 1:100,000 2000 
U.S. Detailed Streets and U.S. Census Block Centroid Populations were obtained from 
Environmental Systems Research Institute, Inc. (ESRI) data CDs provided with ArcGIS 
software 

Metal and 
mining 
facilities 

USGS 1:2,000,000 2003 Shapefiles of locations of metal processing plants and mines compiled by the USGS were 
downloaded from the National Atlas 

Polluted 
streams USEPA 1:100,000 2002 303-D listed streams were obtained from the U.S. Environmental Protection Agency 

(USEPA) 

Stream data NHDPlus 1:100,000 2005 National Hydrography Dataset Plus (NHDPlus) data were downloaded from Horizon 
Systems, Inc.  

Elevation 
and slope  NED 30m varies The National Elevation Dataset (NED) was obtained directly from the USGS 

Sulfate and 
nitrate 
deposition 

NADP 2.5km 2005 Deposition data were obtained from the National Atmospheric Deposition Program (NADP) 

Soil acidity CONUS 1km 1998 Soil acidity was determined from upper soil layers in CONUS-SOIL data prepared by Miller 
and White (1998). 

Land use 
and land 
cover 

NLCD 30m 1999-2001 National Land Cover Database (NLCD) land use grids were downloaded from the Multi-
Resolution Land Characteristics Consortium (MRLC) by mapping zone (Homer et al. 2007. 
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Table 5.  Reduced variable subsets entered into logistic models of E. complanata and E. dilatata.  These subsets of variables were selected by removing the most 
highly correlated variables (r>0.5) from the full variable set.  NLCD values refer to land use/land cover classes for the 2001 National Land Cover Database. 
   
E. complanata  E. dilatata 
Variables Meaning  Variables Meaning 

NUMDSDAMS number of downstream dams  WET proportion of woody wetlands (NLCD 90) in 
the subwatershed 

NO3_MAX maximum NO3 deposition in subwatershed  DISTUSDAM upstream distance to nearest dam 

DAMDENAREA density of dams in the subwatershed  MAX_STMSLP maximum streamslope from NHDPlus 
streamflow data 

CU_HAY_RC cumulative proportion of pasture/hay in the riparian 
corridor  GRS proportion of grass (NLCD 71) in the 

subwatershed 

EMH_RC proportion of emergent herbaceous (NLCD 95) in the 
riparian corridor  CU_HDV cumulative proportion of high-intensity 

development in the subwatershed 

SLOPE_MAX maximum slope in subwatershed  NUMDSDAMS number of downstream dams 

CURIPAREA cumulative area of the riparian corridor of the 
subwatershed    

WET proportion of woody wetlands (NLCD 90) in the 
subwatershed    

CUMIDENAR cumulative density of mining facilities in the subwatershed    

MAFLOU_MIN minimum mean annual flow (unit runoff method, Research 
Triangle Institute 2001) from NHDPlus streamflow data    

CRP_RC proportion of cultivated crops (NLCD 82) in the riparian 
corridor    
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Table 6.  Variables and coefficients (BETA) for logistic regression models for freshwater mussel species E. 
complanata (ECOM) and E. dilatata (EDIL).  The level of parameter significance is indicated by the p-value.  
Significance of Wilcoxon tests for differences in the variables between presence and absence subwatersheds are 
given under WILC.   
 

Species Variables Beta P-value WILC 
     
ECOM NUMDSDAMS 0.1886 <0.0001 0.0004 
 NO3_MAX 0.9115 <0.0001 0.0142 
 DAMDENAREA -55.0468 0.0009 0.0064 
 CU_HAY_RC -1.1873 0.0022 0.1564 
 EMH_RC -46.2130 0.0123 0.3173 
 SLOPE_MAX 0.0229 0.0052 0.0074 
 CURIPAREA -0.00030 0.0157 0.1886 
 WET 56.0705 0.0130 0.3819 
 CUMIDENAR -68.3266 0.0338 0.0688 
 MAFLOU_MIN -57.2486 0.0226 0.3329 
 CRP_RC 4.8671 0.0449 0.2091 
     
EDIL WET 36.4601 0.0002 0.0032 
 DISTUSDAM -1.67E-7 0.0047 0.4477 
 MAX_STMSLP 0.3237 0.0083 0.6456 
 GRS 51.2941 0.0248 0.0057 
 CU_HDV -691369 0.0266 0.6414 
 NUMDSDAMS -0.0669 0.0308 0.5140 
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Table 7.  Variables and cross-validation error (CV Error) for classification tree models for Elliptio complanata 
(ECOM) and E. dilatata (EDIL).  CV Error > 1 indicates that the model did not perform well on the training dataset.  
The significance of differences between values in presence subwatersheds and values in absence subwatersheds 
calculated using the Wilcoxon test is given under WILC for each variable.  Significant WILC scores (p<0.05) 
indicates that subwatersheds with surveyed presences differ significantly from subwatersheds with surveyed 
absences for that variable. 
 

Species CV Error Variables WILC 
    ECOM 0.716 NUMDSDAMS 0.0004 
    
EDIL 1.25 CU_SHB <0.0001 
  LO 0.2469 
  POPDENAREA 0.7708 
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Table 8.  Summary of logistic regression (LOG) and classification tree (CT) models predicting training and 
independent test data for E. complanata (ECOM) and E. dilatata (EDIL).  Measures of model evaluation given for 
training data include accuracy (ACC), errors of omission (OMIT) and commission (COM) (%) for presences, and 
kappa; errors of omission equal accuracy for evaluation on the test data.  
 
  Presence/Absence Training Data  Presence-Only Test Data 
Species Model ACC  OMIT  COM  KAPPA  OMIT 
ECOM CT 68.87  34.21  35.96  0.371  87.50 
 LOG 72.80  24.80  30.40  0.541  97.50 
EDIL CT 81.50  59.57    8.51  0.444  91.22 
 LOG 76.30  20.30  40.00  0.367  62.44 
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Figures 
 

 
 
Figure 1.  Study area for modeling mussel distributions in the Appalachians. 
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Figure 2.   Variables are calculated by subwatershed, cumulative area (including upstream 
subwatersheds), riparian area, and cumulative riparian area (including upstream riparian areas).  
Stream segments are contained by catchments, which are subdivisions of subwatersheds. 
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Chapter 3:  Catchment-Scale Predictive Models for Freshwater 
Mussel Species (Mollusca: Unionidae) in the North Fork Holston 
River, VA 

Abstract 
Freshwater mussels are declining in species richness and abundance, particularly in the 

Appalachians in the eastern United States.  Developing effective ways to predict occurrences of 
freshwater mussels and to discern environmental factors associated with freshwater mussels or 
their absences are required to effectively manage the large diversity of mussels in the region.  
Models were developed from available mussel survey data and readily available digital 
environmental datasets to predict occurrences of freshwater mussels.  Significant models could 
not be developed for all species due to issues with small sample sizes, but results suggest that 
developing predictive models of mussel occurrences by catchments may be useful in future 
research. 

Introduction 

North America contains some of the most diverse assemblages of freshwater mussels in 

the world, with 297 recognized freshwater mussel species in the Margaritiferidae and Unionidae 

families (Turgeon et al. 1988).  This diversity of mussels is threatened in the United States, with 

72 mussel species federally listed as endangered or threatened (US FWS 2006).  Nearly half of 

freshwater mussel species native to the United States (U.S.) can be found in the Appalachian 

region, and many of these species are official species of concern by state or federal standards.  

The loss of this diversity deserves attention because freshwater mussels are an important 

component of freshwater ecosystems in North America, comprising a significant amount of the 

benthic biomass and contributing to water filtration and nutrient cycling in many systems (Negus 

1966).   

Although mussels are a critical part of freshwater ecosystems, they have generally been 

studied much less than both terrestrial organisms and most other components of freshwater 

ecosystems (Lydeard et al. 2004).  Because basic research on freshwater mussels is still in its 

early stages, complete information is unavailable regarding the ecology of many mussel species, 

including their functional roles, habitat requirements, and limitations to population growth 

(Strayer et al. 1999; Vaughn and Hakenkamp 2001), although researchers are beginning to 

address these information gaps (Vaughn et al. 2004).  The available ecological literature on 

freshwater mussels focuses primarily on the reproductive cycle and issues of stream quality, such 
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as invasive species or stream fragmentation, that affect species and communities (e.g. Diamond 

and Serveiss 2001; Hallac and Marsden 2000; Schneider et al. 1998; Watters 1996; Watters et al. 

2005).  More information is needed to determine specific habitat requirements for freshwater 

mussels.   

There is disagreement in the literature regarding the ability to predict mussel occurrence 

from specific environmental variables (Brim-Box et al. 2002; Hornbach 2001).  However, 

general relationships between freshwater mussel occurrence and aspects of the environment have 

been identified.  Many freshwater mussel studies have examined relationships between mussels 

and microhabitat variables or local water quality measures (e.g., Strayer 1981; Strayer and Ralley 

1993).  Other studies have examined factors at a broader scale.  Brim-Box et al. (2002) 

determined that basin characteristics such as distributions of host fishes are one of three major 

factors influencing mussel communities, and Morris and Corkum (1996) found differences in 

mussel communities between streams with forested riparian zones and streams with grassy 

riparian zones.  Strayer (1983) found a significant relationship between mussels and both surface 

geology and a measure of stream size, concluding that hydrology is an important predictor of the 

distribution of freshwater mussels.  DiMaio and Corkum (1995) described mussel communities 

specific to drainage basins with high hydrological variability and different communities specific 

to hydrologically stable drainage basins.   

Basin-scale research on freshwater mussels and research suggesting that factors related to 

the riparian area and the watershed of a stream segment can affect components of freshwater 

ecosystems within a given stream reach (Vannote et al. 1980) indicate that landscape 

components are important to include in studies of freshwater mussels.  For example, land use 

types within a watershed may alter the variability of water quality parameters, therefore research 

incorporating landscape factors in analyses of mussel occurrence may be more robust than 

analyses limited to highly variable stream-reach conditions assessed during one sampling effort.  

Because freshwater mussels occur in the network of freshwater ecosystems, assessing impacts of 

the terrestrial landscape on their occurrence can be difficult.  By summarizing components of the 

landscape comprising the watershed in which species occur or by calculating landscape factors 

upstream of sampled sites, both terrestrial and aquatic variables with local and cumulative 

impacts can be related to occurrences of freshwater organisms (Strayer et al. 2003).   
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Only recently have ecological studies of freshwater mussels incorporated broad landscape 

factors affected by human influences (Arbuckle and Downing 2002; Bambarger 2006; Poole and 

Downing 2004).  Bambarger (2006) used a hierarchical approach that combined variables 

representing the microhabitat, sub-segment, and riparian buffer scales and found that sediment 

measures at the microhabitat scale, geology at the sub-segment scale, and land use at both the 

sub-segment and riparian buffer spatial scales was highly correlated with freshwater mussel 

abundance and species richness.  Poole and Downing found evidence for watershed-level 

impacts of agriculture on mussel populations (Arbuckle and Downing 2002; Poole and Downing 

2004).  Although few studies have successfully correlated landscape or cumulative variables 

with metrics of mussel populations, additional research is necessary to fully explore these issues.  

This study will identify variables at catchment, upstream, and riparian scales that affect 

occurrences of freshwater mussels within stream reaches using a classification tree approach.  

Classification trees are appropriate for ecological studies because the analysis method is non-

parametric and outputs an easily interpretable tree, in the form of a dichotomous key, which uses 

values of the explanatory variables to split the data into separate classes (Breiman et al. 1984; 

De'ath and Fabricius 2000).  Results of the analyses of mussel occurrence at the catchment scale 

in the North Fork Holston River, VA, will be compared to findings from a similar study 

conducted at the subwatershed scale for mussel species in the Mid-Atlantic and Ohio regions.  

The results of this exploratory project can provide additional information on the importance of 

upstream, riparian corridor, and catchment landscape conditions to the occurrence of freshwater 

mussels, a list of variables that may affect mussel occurrences at the catchment scale, and the 

degree of spatial autocorrelation affecting analyses at this scale.  This project suggests an 

alternative to traditional studies of freshwater mussels at the microhabitat scale and identifies 

benefits and costs associated with attempts to broaden the focus of freshwater mussel research to 

include aspects of the terrestrial landscape.  

Methods 

Study area 

 The upper North Fork Holston River is located in western Virginia and flows southwest 

into the Holston and ultimately the Tennessee Rivers.  The uppermost reaches of the North Fork 

Holston River and its tributaries were the focus of this study, draining an area of approximately 
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560 km2 (Figure 1).  Tributaries of the North Fork Holston River in the region of analysis include 

Laurel Creek and Lick Creek.  Both the Holston and the nearby Clinch River systems within the 

Tennessee River System had historically diverse freshwater mussel communities, and these 

rivers have been impacted by point-source pollutants (Brown 2004).  Researchers have 

extensively studied the molluscan fauna of this region (Brown et al. 2005; Jones et al. 2001; 

Neves and Widlak 1988), therefore recent detailed surveys are available for the North Fork 

Holston River.   

Data 

Abundance data for fifteen species of freshwater mussels at sampling points along the 

upper North Fork Holston River and its tributaries in Virginia were obtained from the 

Department of Wildlife and Fisheries at Virginia Polytechnic Institute and State University 

(Table 1).  Data were aggregated to catchments (Figure 1) developed at the 1:100,000 scale for 

NHDPlus (Horizon Systems 2006) to facilitate landscape analysis in a geographic information 

system (GIS), and abundance data were converted to presence and absence for ease of analysis 

and interpretation (Table 2).  Presence was assigned to catchments containing at least one point 

with a recorded abundance greater than zero.  Absence was assigned when the species was not 

located at any survey point within the catchment.  Environmental data layers were converted to a 

common projection in a GIS.  Variables were calculated for the catchment, a 100-m riparian 

buffer around the stream segment within the catchment, and the catchments upstream of the 

stream segment comprising the cumulative area for the catchment using ArcView 3.2 and 9.1 

(ESRI 2000, 2002) (Figure 2, Table 2).  Mussel data were available for thirty catchments 

averaging 3.89 km2 in area and ranging from a minimum of 0.16 to 12.22 km2.  The 1:100,000 

scale stream segments making up these catchments varied in length from 0.27 to 7.06 km in 

length, with an average length of 3.06 km.  A complete listing of data sources and relevant GIS 

analysis methods used to derive environmental variables may be found in Appendix A.   

Statistical analyses 

The degree of clustering of catchments containing mussel data was determined using the 

Nearest Neighbor Index because clustering indicates that mussel data are not distributed 

randomly across the region of interest.  Correlations among variables were analyzed in the R 

programming language (2007) and a subset of variables were identified omitting correlations 
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greater than 0.8 (Thieling 2006).  Forward logistic regression was used to analyze presence and 

absence of mussel species using the reduced subset of independent variables with a p-value of 

less than 0.05 to enter the model.  Logistic regression results provide an estimate of the 

probability of occurrence.  This was converted to presence or absence for each species by 

classifying the species as present in catchments with a probability of species occurrence greater 

than 0.5 and absent for smaller probabilities of occurrence.  A nonparametric Wilcoxon rank sum 

test was used to compare values in present and absent catchments for variables included in 

species models.  The exact Wilcoxon test was used to adjust for a small sample size (Zar 1998). 

Additional models of freshwater mussel occurrences were based on cross-validated 

classification trees (CT).  Classification trees are non-parametric models with fewer assumptions 

than traditional statistical techniques; these models also predict a class such as presence or 

absence directly rather than calculating probability of occurrence (Breiman et al. 1984).  Trees 

perform well with categorical and continuous variables and are easily interpretable, therefore 

they have become valuable for the exploration of environmental datasets (Breiman et al. 1984; 

De'ath and Fabricius 2000).  The optimal tree can be selected from models created using a cross 

validation procedure, in which data are repeatedly split into k partitions, the model is created on 

k-1 partitions, and the model is tested on the kth partition (Breiman et al. 1984).  Cross-validated 

tree models were created using 10 partitions and 50 iterations for predictions of presence and 

absence of each mussel species at the catchment scale using all environmental variables.  Cross-

validation error estimates (CV error), which are calculated for trees by averaging error rates over 

the total number of partitions, were used to pick the optimal model for each species (within one 

standard error of the minimum CV error) and to determine if models were robust to cross-

validation (CV error < 1).  Variables that differed between logistic regression and CT models 

were evaluated for correlation.  Model evaluation statistics for logistic regression models and 

cross-validated trees were also calculated in R.   

Moran’s I was used to measure spatial autocorrelation for variables used in splits for 

cross-validated trees.  The Getis-Ord General G statistic was computed for spatially 

autocorrelated variables to identify whether high or low values clustered.  All spatial analyses 

were conducted in ArcGIS 9.2 (ESRI 2002).      
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Results 

Available mollusk data were significantly clustered based on the Nearest Neighbor Index 

(Table 3).  Forward logistic regression using the variable subsets failed to converge because of 

complete separation of the classes, although parameter estimates were calculated for thirteen of 

the fifteen models (Table 4).  Logistic regression and CT models failed for Elliptio dilatata and 

Strophitus undulatus because occurrence data were skewed to one class, either presence or 

absence (Tables 4 and 5).  Wilcoxon tests indicated that for some models, the forward-selection 

process incorporated variables that are not independently significantly different between classes 

(Table 4).  Catchments in which the species were present differed significantly from absence 

catchments for all the variables included in the models for Fusconaia barnesiana, Lasmigona 

costata, Pleurobema oviforme, Ptychobranchus fasciolaris, and Villosa iris (Table 4).  When 

considered independently, differences were insignificant for at least one variable in the logistic 

regression models for Villosa v. vanuxemensis, Ptychobranchus subtentum, Medionidus 

conradicus, Lexingtonia dolabelloides, Lampsilis ovata, and Fucsonaia cor (Table 4).  Many 

variables used in analyses were significantly clustered (Table 6). 

Classification trees created for the mussels Fusconaia barnesiana, Lexingtonia 

dolabelloides, Lampsilis ovata, Ptychobranchus subtentum, and Lasmigona costata performed 

poorly on cross-validation (CV error > 1) (Table 5).  Trees for the mussels Ptychobranchus 

fasciolaris, Medionidus conradicus, and Actinonaias pectorosa identified cumulative area as the 

only variable differentiating between predictions of presence and absence Table 5.  Presences 

and absences of Pleurobema oviforme were best separated by the maximum slope in the riparian 

corridor, Villosa v. vanuxemensis was best separated by the cumulative proportion of shrubland, 

and Fusconaia cor and Lampsilis fasciola were separated by minimum elevation in the 

catchment, and Villosa iris was split by the cumulative density of the population (Table 5).  

Many of the variables used in splits in classification trees were significantly clustered (Table 6). 

Discussion 

Model interpretation and limitations 

Independent data are not available to test these species models.  However, the overall 

predictive ability of the models can be inferred from the results.  Robust models were identified 
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as those with CV error < 1, but the cross-validation procedure itself is robust only when the data 

adequately represent the variable of interest.  In this case, the sampled catchments are a small 

subset of the ranges of the mussel species.  Models created with more environmental variables 

than dependent observations are prone to over-fitting the data with spurious relationships, and 

this is particularly likely given the geographic restriction of the catchments.  Classification tree 

models with CV error > 1 were created for eight of thirteen mussels we intended to model, but in 

all cases the best model contained only one split, and all of the variables defining model splits 

were significantly spatially autocorrelated.  These models should therefore be interpreted with 

caution until independent data are available to evaluate these findings. 

Although the results of these models may largely be spurious, some of the variables 

identified should be considered in future studies.  For instance, the proportion of grassland in the 

catchment was identified in the logistic regression model for Villosa iris.  A previous study by 

Morris and Corkum (1996) found differences in mussel communities between streams with 

forested riparian zones and streams with grassy riparian zones, indicating that changes in the 

terrestrial landscape related to greater amounts of grassy areas may affect freshwater mollusks.  

The frequent occurrence of cumulative area in models confirms previous findings that mussel 

communities change as stream size and basin area increase (Watters 1992; Myers-Kinzie et al. 

2001).  Although the lack of independent data limits confidence in the specific models created in 

this study, the inclusion in our models of variables identified by previous studies indicates that 

catchment-scale and cumulative land cover variables may be important in predicting occurrences 

of freshwater mollusks.  

Future study considerations 

Although the results from these models are not conclusive, models developed at a 

catchment scale aimed at predicting occurrences of freshwater mussels may be more appropriate 

than models based on larger or smaller sampling areas for several reasons.  Catchment analyses 

easily incorporate data obtained at the scale of stream segments, which can be easily searched for 

existing mussel populations.  Predictive studies based on point or quadrat sampling may be 

explored for modeling freshwater mussels because studies based on smaller sampling units 

would allow more precise incorporation of immediate habitat conditions, but several factors 

contribute to decreased suitability and utility of models developed for sampling units smaller 



 

87 

than the watershed-based catchments used as sampling units in this study.  Researchers studying 

freshwater mussels have questioned the importance of microhabitat variables for prediction 

occurrences (Strayer and Ralley 1993), incorporating cumulative, riparian, and watershed 

variables into models for smaller sampling units is computationally intensive, and the potential 

for increasing the resolution of mussel distributions is likely outweighed by the need for more 

precise species and environmental data.   

Analyses based on larger, hydrologically relevant sampling units, such as subwatersheds 

(see Chapter 2) and 8-digit hydrologic units (HUs) (Sowa et al. 2005), have also been conducted 

for freshwater mussels.  Freshwater mussel surveys or occurrences are normally conducted at a 

scale finer than subwatersheds, which can incorporate stream segments from more than one 

stream or river.  Aggregating survey or occurrence data to this scale of analysis limits the 

researcher’s ability to clearly and correctly associate mussel data with the environmental 

variables influencing its site of occurrence.  For instance, mussels located in a tributary near its 

mouth at a large river would be assigned to a subwatershed containing the large river; therefore, 

the occurrence would erroneously be associated with all of the variables directly associated with 

the subwatershed and cumulative variables associated with upstream tributaries of the large river 

(see Chapter 2).   

Because of the difficulties associated with sampling environmental conditions and 

species at smaller sampling units or of summarizing data from small or variable sampling units 

to larger sampling units, additional research should explore the suitability of catchment analyses 

for predicting occurrences of freshwater mussels.  Sampling for mussels in all potential habitats 

by segment is relatively easy, as the average segment length in this region of 3 km is much 

shorter than the total stream length with potential mussel habitat in a subwatershed.  Sampling at 

the segment scale would provide researchers with data appropriate for analyzing distributions at 

the catchment scale in a geographic information system (GIS).  Sampling performed in a subset 

of catchments representing the range of environmental and anthropogenic characteristics of a 

drainage region could be initiated with cooperation from universities, consultants, non-profits, 

and state and federal agencies.  By establishing uniform sampling protocols for specific mussel 

species at a regional level, a freshwater mussel dataset can be developed that is valuable for 

estimating probability of detection and deriving predictive models that incorporate both local- 

and landscape-level effects on species of interest.  Information on minimum sampling efforts 
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required to detect individuals of a species, temporal variation in sampling success, and 

distributions of species across their geographic ranges can provide a basis for future studies by 

establishing minimum sampling effort for species detections at the segment scale, defining 

relationships between season and sampling success, and by identifying factors that may affect 

species occurrences.   
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Tables 
 
Table 1.  Freshwater mussel species considered for model development. 
 
Abbreviation Scientific Name Common Name 
APEC Actinonaias pectorosa pheasantshell 
EDIL Elliptio dilatata spike 
FBARN Fusconaia barnesiana Tennessee pigtoe 
FCOR Fusconaia cor shiny pigtoe 
LFAS Lampsilis fasciola wavyrayed lampmussel 
LOVA Lampsilis ovata pocketbook 
LDOL Lexingtonia dolabelloides slabside pearlymussel 
LCOST Lasmigona costata flutedshell 
MCON Medionidus conradicus Cumberland moccasinshell 
POVI Pleurobema oviforme Tennessee clubshell 
PFAS Ptychobranchus fasciolaris kidneyshell 
PSUB Ptychobranchus subtentum fluted kidneyshell 
SUND Strophitus undulatus creeper 
VIRS Villosa iris rainbow 
VVAN Villosa v. vanuxemensis mountain creekshell 
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Table 2.  Dependent and independent variables considered in models. 
 

Variable Definition 
Scale or 
Resolution Data Source* 

Relevant 
Time Period 

VIRS Presence (23) and absence (7) of Villosa iris by catchment stream reach Survey data 1998-2006 
VVAN Presence (24) and absence (6) of V. v. vanuxemensis by catchment stream reach Survey data 1998-2006 
SUND Presence (1) and absence (29) of Strophitus undulatus by catchment stream reach Survey data 1998-2006 
MCON Presence (17) and absence (13) of Medionidus conradicus stream reach Survey data 1998-2006 
LOVA Presence (4) and absence (26) of Lampsilis ovata by catchment stream reach Survey data 1998-2006 
LFAS Presence (11) and absence (19) of L. fasciola by catchment stream reach Survey data 1998-2006 
FBARN Presence (9) and absence (21) of Fusconaia barnesiana by catchment stream reach Survey data 1998-2006 
FCOR Presence (6) and absence (24) of F. cor by catchment stream reach Survey data 1998-2006 
LDOL Presence (10) and absence (20) of Lexingtonia dolabelloides by catchment stream reach Survey data 1998-2006 
LCOST Presence (4) and absence (26) of Lasmigona costata by catchment stream reach Survey data 1998-2006 
PFAS Presence (19) and absence (11) of Ptychobranchus fasciolaris by catchment stream reach Survey data 1998-2006 
PSUB Presence (5) and absence (25) of P. subtentum by catchment stream reach Survey data 1998-2006 
POVI Presence (14) and absence (16) of Pleurobema oviforme by catchment stream reach Survey data 1998-2006 
EDIL Presence (2) and absence (28) of Elliptio dilatata by catchment stream reach Survey data 1998-2006 
APEC Presence (12) and absence (18) of Actinonaias pectorosa by catchment stream reach Survey data 1998-2006 
AREASQKM Area of the catchment (sq km) 1:100,000 NLCD 2001 1999-2001 
L_FLOW Length of stream centerlines (km) 1:100,000 NLCD 2001 1999-2001 
DENPOP Population density (people*km-2) 1:100,000 ESRI 2000 
DENRD Density of roads in the catchment (rds*km-2) 1:100,000 ESRI 2000 
DENINT Density of road-stream intersections (intersections*km-2) 1:100,000 ESRI 2000 
PROPINT Proportion of road-stream intersections (rd*stream km-1) 1:100,000 ESRI 2000 
DEN303D Density of 303-D listed streams (km*km-2) 1:100,000 US EPA 2002 
PROP303 Proportion of 303-D streams (km*stream km-1) 1:100,000 US EPA 2002 
DENFLOW Density of streams (stream km*km-2) 1:100,000 NHDPlus 2005 
WET Proportion of wetlands in the catchment (%) 30m NLCD 2001 1999-2001 
SHB Proportion of shrublands in the catchment (%) 30m NLCD 2001 1999-2001 
ODV Proportion of open development in the catchment (%) 30m NLCD 2001 1999-2001 
MXF Proportion of mixed forest in the catchment (%) 30m NLCD 2001 1999-2001 
MH Proportion of medium- and high-intensity development in the catchment (%) 30m NLCD 2001 1999-2001 
MDV Proportion of medium-intensity in the catchment (%) 30m NLCD 2001 1999-2001 
LO Proportion of open- and low-intensity development in the catchment (%) 30m NLCD 2001 1999-2001 
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Variable Definition 
Scale or 
Resolution Data Source* 

Relevant 
Time Period 

LDV Proportion of low-intensity development in the catchment (%) 30m NLCD 2001 1999-2001 
HUM Proportion of human land use in the catchment (%) 30m NLCD 2001 1999-2001 
HDV Proportion of high-intensity development in the catchment (%) 30m NLCD 2001 1999-2001 
HAY Proportion of hay in the catchment (%) 30m NLCD 2001 1999-2001 
H2O Proportion of water in the catchment (%) 30m NLCD 2001 1999-2001 
GRS Proportion of grasslands in the catchment (%) 30m NLCD 2001 1999-2001 
FOR Proportion of forest in the catchment (%) 30m NLCD 2001 1999-2001 
EVG Proportion of evergreen forest in the catchment (%) 30m NLCD 2001 1999-2001 
DEV Proportion of developed lands in the catchment (%) 30m NLCD 2001 1999-2001 
DEC Proportion of deciduous forest in the catchment (%) 30m NLCD 2001 1999-2001 
CRP Proportion of croplands in the catchment (%) 30m NLCD 2001 1999-2001 
BAR Proportion of barren lands in the catchment (%) 30m NLCD 2001 1999-2001 
AG Proportion of agriculture in the catchment (%) 30m NLCD 2001 1999-2001 
ELEV_MIN Minimum elevation in the catchment (m) 30m NED Varies 
ELEV_MAX Maximum elevation in the catchment (m) 30m NED Varies 
ELEV_AVG Average elevation in the catchment (m) 30m NED Varies 
SLOPE_MIN Minimum slope in the catchment (%) 30m NED varies 
SLOPE_MAX Maximum slope in the catchment (%) 30m NED varies 
SLOPE_AVG Average slope in the catchment (%) 30m NED varies 
CUMDRAINAG Cumulative drainage area (km2) 1:100,000 NHDPlus 2005 
MAFLOWU Mean annual flow calculated using the unit runoff method (Rsch. Tri. Inst. 1996) (cfs) 1:100,000 NHDPlus 2005 
MAVELU Mean annual velocity calculated using the Jobson method (Jobson 1996) (fps) 1:100,000 NHDPlus 2005 
MAXELEVSMO Maximum elevation along stream centerline (smoothed) (m) 1:100,000 NHDPlus 2005 
MINELEVSMO Minimum elevation along stream centerline (smoothed) (m) 1:100,000 NHDPlus 2005 
SLOPE Slope along stream centerline (%) 1:100,000 NHDPlus 2005 
STREAMLEVE Stream level 1:100,000 NHDPlus 2005 
STREAMORDE Strahler stream order 1:100,000 NHDPlus 2005 
CUAREASQK Cumulative area (upstream of the catchment) (sq km) 1:100,000 NHDPlus 2005 
CUDENPOP Cumulative population density (people*km-2) 1:100,000 ESRI 2000 
CUDENRD Cumulative density of roads (rd*km-2) 1:100,000 ESRI 2000 
CUDENINTAR Cumulative density of road-stream intersections (intersections*km-2) 1:100,000 ESRI 2000 
CUDEN303 Cumulative density of 303-D listed streams (km*km-2) 1:100,000 US EPA 2002 
CUWET Cumulative proportion of wetlands (%) 30m NLCD 2001 1999-2001 
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Variable Definition 
Scale or 
Resolution Data Source* 

Relevant 
Time Period 

CUSHB Cumulative proportion of shrublands (%) 30m NLCD 2001 1999-2001 
CUWET Cumulative proportion of wetlands (%) 30m NLCD 2001 1999-2001 
CUSHB Cumulative proportion of shrublands (%) 30m NLCD 2001 1999-2001 
CUODV Cumulative proportion of open development (%) 30m NLCD 2001 1999-2001 
CUMXF Cumulative proportion of mixed forest (%) 30m NLCD 2001 1999-2001 
CUMH Cumulative proportion of medium- and high-intensity development (%) 30m NLCD 2001 1999-2001 
CUMDV Cumulative proportion of medium-intensity (%) 30m NLCD 2001 1999-2001 
CULO Cumulative proportion of open- and low-intensity development (%) 30m NLCD 2001 1999-2001 
CULDV Cumulative proportion of low-intensity development (%) 30m NLCD 2001 1999-2001 
CUHUM Cumulative proportion of human land use (%) 30m NLCD 2001 1999-2001 
CUHDV Cumulative proportion of high-intensity development (%) 30m NLCD 2001 1999-2001 
CUHAY Cumulative proportion of hay (%) 30m NLCD 2001 1999-2001 
CUH2O Cumulative proportion of water (%) 30m NLCD 2001 1999-2001 
CUGRS Cumulative proportion of grasslands (%) 30m NLCD 2001 1999-2001 
CUFOR Cumulative proportion of forest (%) 30m NLCD 2001 1999-2001 
CUEVG Cumulative proportion of evergreen forest (%) 30m NLCD 2001 1999-2001 
CUDEV Cumulative proportion of developed lands (%) 30m NLCD 2001 1999-2001 
CUDEC Cumulative proportion of deciduous forest (%) 30m NLCD 2001 1999-2001 
CUCRP Cumulative proportion of croplands (%) 30m NLCD 2001 1999-2001 
CUBAR Cumulative proportion of barren lands (%) 30m NLCD 2001 1999-2001 
CUAG Cumulative proportion of agriculture (%) 30m NLCD 2001 1999-2001 
WET_100 Proportion of wetlands in a 100-m riparian buffer (%) 30m NLCD 2001 1999-2001 
SHB100 Proportion of shrublands in a 100-m riparian buffer (%) 30m NLCD 2001 1999-2001 
ODV100 Proportion of open development in a 100-m riparian buffer (%) 30m NLCD 2001 1999-2001 
MXF100 Proportion of mixed forest in a 100-m riparian buffer (%) 30m NLCD 2001 1999-2001 
MH100 Proportion of medium- and high-intensity development in a 100-m riparian buffer (%) 30m NLCD 2001 1999-2001 
MDV100 Proportion of medium-intensity in a 100-m riparian buffer (%) 30m NLCD 2001 1999-2001 
LO100 Proportion of open- and low-intensity development in a 100-m riparian buffer (%) 30m NLCD 2001 1999-2001 
LDV100 Proportion of low-intensity development in a 100-m riparian buffer (%) 30m NLCD 2001 1999-2001 
HDV100 Proportion of human land use in a 100-m riparian buffer (%) 30m NLCD 2001 1999-2001 
HAY100 Proportion of high-intensity development in a 100-m riparian buffer (%) 30m NLCD 2001 1999-2001 
H2O100 Proportion of hay in a 100-m riparian buffer (%) 30m NLCD 2001 1999-2001 
GRS100 Proportion of water in a 100-m riparian buffer (%) 30m NLCD 2001 1999-2001 
FOR100 Proportion of grasslands in a 100-m riparian buffer (%) 30m NLCD 2001 1999-2001 
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Variable Definition 
Scale or 
Resolution Data Source* 

Relevant 
Time Period 

EVG100 Proportion of evergreen forest in a 100-m riparian buffer (%) 30m NLCD 2001 1999-2001 
DEV100 Proportion of developed lands in a 100-m riparian buffer (%) 30m NLCD 2001 1999-2001 
DEC100 Proportion of deciduous forest in a 100-m riparian buffer (%) 30m NLCD 2001 1999-2001 
BAR100 Proportion of barren lands in a 100-m riparian buffer (%) 30m NLCD 2001 1999-2001 
AG100 Proportion of agriculture in a 100-m riparian buffer (%) 30m NLCD 2001 1999-2001 
MINSLP100 Minimum slope in a 100-m riparian buffer (%) 30m NED varies 
MAXSLP100 Maximum slope in a 100-m riparian buffer (%) 30m NED varies 
AVGSLP100 Average slope in a 100-m riparian buffer (%) 30m NED varies 
MINELEV100 Minimum elevation in a 100-m riparian buffer (m) 30m NED varies 
MAXELEV100 Maximum elevation in a 100-m riparian buffer (m) 30m NED varies 
AVGELEV100 Average elevation in a 100-m riparian buffer (m) 30m NED varies 
     
*The mussel dataset was compiled by Brett Ostby of Virginia Polytechnic Institute and State University from surveys conducted by himself, Jones and 
Neves (2001), and the Virginia Department of Game and Inland Fisheries.  The National Elevation Dataset (NED) for the eastern United States was 
obtained directly from the USGS.  National Land Cover Database (NLCD) land use grids were downloaded from the Multi-Resolution Land Characteristics 
Consortium (MRLC) by mapping zone.  National Hydrography Dataset Plus (NHDPlus) data were downloaded from Horizon Systems, Inc.  U.S. Detailed 
Streets and U.S. Census Block Centroid Populations were obtained from Environmental Systems Research Institute, Inc. (ESRI) data CDs provided with 
ArcGIS software. 
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Table 3.  Nearest neighbor index classification and scores for sampled catchments (N=30).   
 

 Catchments 
NNI clustered 
z-score -3.3 
p-value <0.01 
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Table 4.  Variables and coefficients (BETA) for logistic regression models for freshwater mussel species.  P-
VALUE indicates level of parameter significance.  Significance of Wilcoxon exact tests are given under WILC.  
Measures of model evaluation include percent accuracy (ACC), sensitivity (SENS), and specificity (SPEC) and the 
false-positive (F_POS) and false-negative (F_NEG) rates. 

SPECIES VARIABLES BETA P-VALUE WILC ACC SENS SPEC F_POS F_NEG 
          
APEC LDV 2790.3 <0.0001 0.0117 90 83.3 94.4 9.1 10.5 
 CUAREASQK 0.2046 <0.0001 <0.0001      
          
EDIL none         
          
FBARN CUBAR -1034.3 0.04709 0.078 60 11.1 81 80 32 
          
FCOR CUCRP 14387.3 0.0002 <0.0001 96.7 100 95.8 14.3 0 
 PROP303 -14.9632 0.0075 0.5569      
          
LFAS LDV -12.0986 0.0002 0.27 83.3 78.9 90.9 6.3 28.6 
 CUAREASQK 0.1145 0.0013 <0.0001      
 SLOPE 311.1 0.0008 0.0305      
          
LOVA CUAREASQK 0.1968 0.0007 0.0028 83.3 78.9 90.9 6.3 28.6 
 DENPOP -0.2711 0.0092 0.4185      
          
LCOST H2O 33727.7 <0.0001 0.0138 90 50 96.2 33.3 7 
 BAR 1196 0.0013 0.0189      
          
LDOL H2O -3058.9 0.0011 1 86.7 80 90 20 10 
 ELEV_AVG -0.3097 0.0177 0.0004      
 STREAMORDE 29.1841 0.0172 0.0005      
 PROP303 -33.827 0.0014 0.272      
          
MCON SLOPE_MIN 21.55 <0.0001 0.492 93.3 88.2 100 0 13.3 
 CUAREASQK 0.094 0.0001 <0.0001      
          
POVI STREAMLEVE -7.2815 0.0077 0.0092 93.3 100 87.5 12.5 0 
 LDV -14327.1 0.0245 0.0189      
 STREAMORDE 2.2944 0.0041 0.0233      
 CUAREASQK 0.0889 0.0063 0.0275      
          
PFAS CUAREASQK 0.2104 <0.0001 <0.0001 90 81.8 94.7 10 10 
 LDV 3007.7 <0.0001 0.0021      
          
PSUB WET 4211.9 0.0002 0.134 90 60 96 25 7.7 
 BAR 4382 0.0028 0.0969      
          
SUND none         
          
VIRS CUSHB -828.8 0.0003 0.0033 90 91.3 85.7 4.5 25 
 ELEV_AVG -0.3185 0.0055 0.0186      
 GRS 1254.6 0.0055 0.0017      
          
VVAN LDV -1738.3 0.0001 0.8522 90 91.7 83.3 4.3 28.6 

 CU_SHB -1223.3 <0.0001 <0.0001      
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Table 5.  Variables and cutoffs used to predict presence (PRES NODE) from classification trees developed for 
freshwater mussel species.  P-VALUE indicates level of parameter significance.  Cross-validation error (CV 
ERROR) indicates how well the model performed under cross-validation.  Measures of model evaluation include 
kappa, percent accuracy (ACC), sensitivity (SENS), and specificity (SPEC) and the false-positive (F_POS) and 
false-negative (F_NEG) rates. 
 
SPECIES VARIABLE PRES NODE CV ERROR ACC SENS SPEC F_POS F_NEG KAPPA 
          
APEC CUAREASQK >=243.2 0.203 96.67 91.7 100 0 5.26 92.96 
          
EDIL NO SPLITS POSSIBLE  93.33 0 NA N/A 6.67 0 
          
FBARN LO100 <0.0955 1.61 96.67 88.9 100 0 4.55 91.8 
 SHB100 <0.02615        
 HUM >=0.494        
          
FCOR ELEV_MIN <540.5 0.207 96.67 100 95.83 14.29 0 90.2 
          
LFAS ELEV_MIN <601.5 0.838 90 89.5 90.91 5.56 16.67 78.87 
          
LOVA CUAREASQK >=337.4 1.53 100 100 100 0 0 100 
 ODV <0.0682        
          
LCOST CRP >=0.03425 1.95 93.33 75 96.15 25 3.85 71.15 
          
LDOL GRS >=0.004 1.19 93.33 100 90 16.67 0 85.71 
          
MCON CUAREASQK >=119.2 0.185 93.33 88.2 100 0 13.33 86.67 
          
POVI MAXSLP100 >=100.5 0.786 83.33 64.3 100 0 23.81 65.75 
          
PFAS CUAREASQK >=257.4 0.182 96.67 90.9 100 0 5 92.68 
          
PSUB BAR >=0.00955 1.18 93.33 60 100 0 7.41 71.43 
          
SUND NO SPLITS POSSIBLE  96.67 0 100 N/A 3.33 0 
          
VIRS CUDENPOP >=2.515 0.64 96.67 100 85.71 4.17 0 90.2 
          
VVAN CUSHB <0.06065 0.673 96.67 100 83.33 4 0 88.89 
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Table 6.  Spatial autocorrelation and cluster analysis of variables used in classification trees.  Clusters of high or low 
values are significant at the α=0.05 level. 
 

 Moran’s I z-score Pattern 
General G 
z-score Pattern 

BAR 0.03 2.5 clustered 4.8 highs cluster 
CRP -0.04 0.1 random N/A  
DENPOP 0.04 1.9 random N/A  
ELEV_AVG 0.36 8.1 clustered -3.7 lows cluster 
ELEV_MIN 0.39 9.0 clustered -3.5 lows cluster 
GRS 0.26 5.8 clustered 6.2 highs cluster 
H2O -0.05 -0.6 random N/A  
HUM 0.03 1.4 random N/A  
LDV 0.09 3.8 clustered 2.6 highs cluster 
ODV -0.04 0 random N/A  
PROP303 0.02 1.3 random N/A  
SLOPE -0.09 -2 random N/A  
SLOPE_MIN -0.07 -0.8 random N/A  
STREAMORDE -0.08 2.4 clustered 2.2 highs cluster 
STREAMLEVE 0.01 1 random N/A  
WET 0.08 2.6 clustered 2.8 highs cluster 
CUAREASQK 0.26 5.3 clustered 4.7 highs cluster 
CUBAR -0.01 0.5 random N/A  
CUCRP 0.2 4.9 clustered 2 highs cluster 
CUDENPOP 0.13 3.6 clustered 2.3 highs cluster 
CUGRS 0.34 7.1 clustered 4.5 highs cluster 
CUSHB 0.04 1.6 random N/A  
LO100 -0.06 -0.5 random N/A  
MAXSLP100 -0.06 -0.4 random N/A  
SHB100 -0.03 0.1 random N/A  
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Figures 

 
Figure 1.  The study area includes 30 catchments (catches) along the North Fork Holston River and its 
major tributaries, Laurel Creek and Lick Creek, in western Virginia.
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Figure 2.  Upstream calculations and riparian area calculations for catchments within the study area.
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Appendices 

A. Data Layers 
Projection and Datum 
All vector data layers were clipped to the study area boundary and converted to 

the North American Datum of 1983.  Raster data layers were clipped to a buffered study 
area boundary.  All data layers were displayed in the Albers Conical Equal Area 
projection for data analysis in order to minimize distortion of area and obtain relatively 
accurate measures of area across the study region.  The minimum unit map scale for the 
project is equivalent to 1:100,000. 

Variable Development 
Anthropogenic and environmental variables were selected that represent potential 

threats or limiting factors to freshwater mussels and could be represented in a GIS 
(Appendix C).  Only variables that were at a resolution and extent that allowed values to 
be summarized for each subwatershed throughout at least one upper drainage regions 
within the study area were developed.  Metrics were calculated by subwatershed and by 
riparian corridor within the subwatershed following Theiling (2006).  The riparian 
corridor was defined as being within a distance of 100m from streams, rivers, and lakes 
represented by the stream area and waterbody layers in the improved National 
Hydrography Dataset (NHDPlus) (Horizon Systems 2006).  This distance is commonly 
used (Richards et al. 1996; Andersen 2002; McKinney et al. 2002; Thieling 2006) and is 
larger than the 30m resolution of the remotely sensed environmental variables.  Although 
some legal stream buffer zones are smaller than 100m (Willson & Dorcas 2003), a larger 
stream corridor is more suitable for the grain of the analyses in this study.   

A custom automated GIS routine was used to define all subwatersheds upstream 
of each subwatershed in the study area.  Additional variables were based on the 
cumulative values of environmental and anthropogenic variables upstream of each 
subwatershed for variables that could logically be calculated cumulatively (Table 4).  
ArcGIS 9.1 (ESRI, 2002) was used to develop and summarize all other variables. 

Mussel Surveys 
Regional mussel experts and state agencies provided freshwater mussel survey 

data for many sites across the study area (see Chapter 2, Table 1).  Additional occurrence 
data for the species of interest were obtained from museums (Table 2).  Surveys with 
river miles were converted to point or line locations using a script in ArcView 3.2 (ESRI 
2000), displayed in ArcMap 9.1 and 9. 2 (ESRI 2002), and exported to shapefiles for 
conversion into a common projection.  All shapefile occurrence or survey data were 
converted to a common projection to facilitate aggregation into a single dataset. 

Presence of a mussel species was defined for model development as any 
occurrence recorded in surveys conducted since 1985 within 11-, 12-, and 14-level 
subwatersheds.  Choosing a cutoff date creates a defined distinction between historic 
occurrences and recent occurrences.  This year was chosen because surveys conducted 
after this date would have a high likelihood of detecting individuals that have recolonized 
areas restored since the Clean Water Act and because earlier surveys proved more 
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difficult to obtain.  A more recent cutoff date was not selected because few mussel 
surveys that span more than one subwatershed have been conducted across the study area 
in the recent past.  Absences were assigned to subwatersheds along recent survey routes 
when all surveys covering the subwatershed failed to locate the species.  Survey lines that 
overlapped more than one subwatershed were omitted from analysis. 

Presence-only data provided independent test data for model predictions.  
Presence was assigned to a subwatershed for the test dataset based on any species 
occurrence recorded since 1985, excluding survey data included in the presence-absence 
dataset.  Presence-only data were assigned to surveyed subwatersheds when available, 
although the determination of species presence did not always correspond to the survey 
data. 

Zebra Mussels 
Zebra mussels are an invasive species that can affect native freshwater mussel 

communities.  Presence and absence of zebra mussel by subwatershed was calculated 
using a shapefile of zebra mussel occurrences developed by the Nonindigenous Aquatic 
Species (NAS) Program and downloaded from the National Atlas.  This dataset contained 
occurrences noted from 1988-2007 by several agencies rather than results of a formal 
survey effort for zebra mussels. 

Elevation and Derivatives 
Mean, maximum, and minimum elevation and slope were calculated within each 

watershed from 30m Digital Elevation Models developed by the USGS as part of the 
National Elevation Dataset.  These values were also calculated along flowlines (1:100K 
stream centerlines) obtained from the NHDPlus dataset using smoothed elevation values 
(Horizon Systems 2006).   

Basin Area 
The area of each subwatershed was calculated in ArcGIS 9.1.  The area of all 

upstream subwatersheds was also determined to create measures of the cumulative 
drainage area and local drainage area for each subwatershed. 

Riparian Area 
The area of the riparian corridor was calculated in ArcGIS 9.1 using a 100m 

perimeter around streams, rivers, and lakes represented by the stream area and waterbody 
layers in the improved National Hydrography Dataset (NHDPlus) (Horizon Systems 
2006).  The cumulative riparian corridor area was also derived for each subwatershed. 

Stream Flow and Discharge 
Enhanced NHDPlus grids developed from the National Hydrography Dataset and 

the National Elevation Dataset by the USGS, US EPA, and government contractors were 
used to extract min, max, and range of link and Strahler stream order, mean annual flow 
calculated with the unit runoff method (Research Triangle Institute 2001), and mean 
annual velocity calculated using the Jobson method (Jobson 1996) by subwatershed 
(Horizon Systems 2006). 
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Roads 
Roads were represented by ESRI’s 1:50,000 map scale U.S. Detailed Streets layer 

created using 2000 data (ESRI 2002).  Road density in kilometers of road per square 
kilometers of land area was calculated within the riparian corridor and across each 
subwatershed (Thieling 2006).  Point intersections of the road and flowline layers were 
derived to represent stream crossings and summarized as the density of stream crossings 
in the subwatershed and in the riparian corridor.  Cumulative sums of road-stream 
intersections and riparian zone intersections for each subwatershed were calculated and 
cumulative density was determined by dividing by cumulative subwatershed and riparian 
corridor area measures (Thieling 2006). 

Dams 
Locations of impoundments, which can alter water temperature and serve as 

barriers to mussel dispersal, were obtained from the U.S. Army Corps of Engineers 
National Inventory of Dams (2005).  The number of dams per kilometer of land within 
each subwatershed and the distance to the nearest downstream dam was calculated from 
this layer.  The cumulative proportion of dams per area was also calculated upstream of 
each subwatershed.   

Mining and Metal Operations 
Locations of metal and mineral processing plants and mining operations available 

via the U.S. Geological Survey Minerals Information web page were downloaded from 
the National Atlas.  Variables were calculated based on the density of metal operations 
and the density of mining operations in the subwatershed, in the riparian corridor, and in 
the cumulative area including upstream subwatersheds and the cumulative area including 
the upstream riparian corridor. 

Land Use 
Land use variables were derived from the 2001 National Land Cover Database 

(NLCD), which is based on Landsat 7 imagery (USGS 2006).  The NLCD land use 
coverages include 29 land cover classes and originally tested with a single-pixel land 
cover accuracy of 73-77% (Homer et al. 2004) with an average accuracy of 83.9% 
estimated using cross-validation techniques (Homer et al. 2007).  Individual and 
combined classes represent variables of interest.  Land cover classes were calculated as 
percentages within each subwatershed, upstream subwatersheds, riparian corridor, and 
upstream riparian corridor.   

Polluted Streams 
The proportion of impaired, 303(d)-listed stream kilometers within each 

subwatershed for the upper Mid-Atlantic and Tennessee drainages was determined.  This 
metric was omitted from models in the Ohio drainage where 303(d) stream miles cannot 
be determined by subwatershed due to inconsistent data for the state of Ohio (US EPA 
2002).  Although 303(d) listed streams are only impaired in relation to their designated 
use, these were the best available data representing impaired water quality at the extent of 
drainage basins. 
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Human Population 
The number of people per square kilometer (population density) in each 

subwatershed and within the riparian corridor was calculated using block centroids 
derived from 2000 Census data (US Census Bureau 2000) compiled by ESRI (2002).  
Population density and riparian corridor population density upstream of the watershed 
were also computed. 

Acid Deposition 
Mean wet deposition of sulfate and nitrate in kilograms per hectare was calculated 

using interpolated data available in a 2.5 km cell resolution grid from the National 
Atmospheric Deposition Program (2005).   

Soil Buffering Capacity 
An estimate of soil buffering capacity was developed following the method of 

Thieling (2006).  The pH soil dataset from the 1km-resolution CONUS-SOIL database 
(Miller & White 1998) was used to calculate the percentage of soil within the riparian 
corridor with a pH greater than or equal to 5.0.  These data were created from the 1992 
State Soil Geographic Data Base (STATSGO), which has a maximum map scale of 
1:250,000 (Miller & White 1998). 
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B. Species Information and Data 
 
Table 1.  Scientific and common names and information on distribution characteristics of species 
considered for model development. 
 

Scientific Name Common Name Occurrence Drainage Regions 
Alasmidonta undulata Triangle Floater Declining Mid-Atlantic 
Alasmidonta varicosa Brook Floater Declining Mid-Atlantic 
Alasmidonta viridis Slippershell Mussel Common Ohio/Tennessee 
Elliptio complanata Eastern Elliptio Common Mid-Atlantic/Tennessee 

Elliptio dilatata Spike Common Ohio/Tennessee 
Epioblasma triquetra Snuffbox Declining Ohio/Tennessee 
Lasmigona subviridis Green Floater Declining Mid-Atlantic/Ohio/Tennessee 
Plethobasus cyphyus Sheepnose Declining Ohio/Tennessee 

Pleurobema clava Clubshell Rare Ohio/Tennessee 
Villosa fabalis Rayed Bean Declining Ohio/Tennessee 
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Table 2.  Available point data for species suggested by expert panel.  Both refers to the number of spatially explicit recent records from each source.  Records 
≥1985 with coordinates are records with collection dates no earlier than 1985 that contain associated spatial reference data.  All recent records are identified as 
≥1985.  All records with associated coordinates are identified under the coordinates heading.  The total number of records includes all recent and historic records, 
with or without coordinates. 
 

 
Carnegie 
Museum 

DE 
Museum 

GA Nat Her 
Atl Slope 

GA Nat Her 
TN Basin 

IL Nat His 
Museum 

MD 
MBSS 

NC       
Nat Her 

OSU 
Museum 

Smith-
sonian 

U. of MI 
Museum Total 

>1985 with 
coordinates            
A. undulata 1 0 0 0 1 0 0 9 1 0 12 
A. varicosa 0 0 17 0 0 0 0 1 0 0 18 
A. viridis 0 0 0 0 49 0 87 152 0 0 288 
E. complanata 4 0 0 0 9 72 2 37 0 0 124 
E. dilatata 15 0 0 0 79 0 69 283 0 0 446 
E. triquetra 4 0 0 0 20 0 0 109 0 0 133 
L. subviridis 0 0 0 0 0 0 8 9 0 0 17 
P. cyphyus 0 0 0 0 14 0 0 19 0 0 33 
P. clava 11 0 0 0 28 0 0 166 0 0 205 
V. fabalis 5 0 0 0 1 0 0 66 0 0 72 
Absence 0 0 11 22 0 778 0 0 0 0 811 
            
>1985            
A. undulata 3 6 0 0 14 0 0 11 7 0 41 
A. varicosa 0 1 17 0 2 0 0 2 0 0 22 
A. viridis 0 0 0 0 253 0 111 158 0 0 522 
E. complanata 7 3 0 0 50 72 2 53 20 0 207 
E. dilatata 30 4 0 0 550 0 94 322 0 0 1000 
E. triquetra 13 0 0 0 113 0 0 113 0 0 239 
L. subviridis 1 0 0 0 10 0 8 10 5 0 34 
P. cyphyus 0 0 0 0 78 0 0 26 0 0 104 
P. clava 18 2 0 0 176 0 0 189 0 0 385 
V. fabalis 5 1 0 0 33 0 0 70 0 0 109 
Absence 0 0 11 22 0 778 0 0 0 0 811 
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Table 2 (cont).  Available point data for species suggested by expert panel.  Both refers to the number of spatially explicit recent records from each source.  
Records ≥1985 with coordinates are records with collection dates no earlier than 1985 that contain associated spatial reference data.  All recent records are 
identified as ≥1985.  All records with associated coordinates are identified under the coordinates heading.  The total number of records includes all recent and 
historic records, with or without coordinates. 
 

 
Carnegie 
Museum 

DE 
Museum 

GA Nat Her 
Atl Slope 

GA Nat Her 
TN Basin 

IL Nat His 
Museum 

MD 
MBSS 

NC       
Nat Her 

OSU 
Museum 

Smith-
sonian 

U. of MI 
Museum Total 

Coordinates            
A. undulata 1 0 0 0 1 0 0 10 16 0 28 
A. varicosa 0 0 17 0 0 0 0 1 8 0 26 
A. viridis 15 0 0 0 49 0 87 506 1 0 658 
E. complanata 6 0 0 0 14 72 2 46 19 0 159 
E. dilatata 42 0 0 0 87 0 69 1313 0 0 1511 
E. triquetra 9 0 0 0 20 0 0 476 1 0 506 
L. subviridis 0 0 0 0 0 0 8 13 12 0 33 
P. cyphyus 13 0 0 0 14 0 0 180 1 0 208 
P. clava 24 0 0 0 28 0 0 395 0 0 447 
V. fabalis 11 0 0 0 1 0 0 229 0 0 241 
Absence 0 0 13 22 0 778 0 0 0 0 813 
            
Total Records            
A. undulata 54 55 0 0 32 0 0 56 42 109 348 
A. varicosa 39 9 17 0 7 0 0 24 16 26 138 
A. viridis 56 23 0 0 304 0 111 580 1 601 1676 
E. complanata 196 296 0 0 107 72 2 284 60 1061 2078 
E. dilatata 365 165 0 0 733 0 94 1740 17 1126 4240 
E. triquetra 127 38 0 0 145 0 0 580 34 182 1106 
L. subviridis 37 7 0 0 14 0 8 74 51 31 222 
P. cyphyus 74 1 0 0 126 0 0 251 36 103 591 
P. clava 95 25 0 0 197 0 0 484 90 89 980 
V. fabalis 53 11 0 0 46 0 0 274 2 86 472 
Absence 0 0 13 22 0 778 0 0 0 0 813 
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C.  Model Variables 
 
Table 1.  Variables considered in the development of models for Elliptio dilatata and Elliptio complanata in the Ohio (OH) and Mid-Atlantic (M-A) drainage 
regions in the Appalachians.  NLCD derivatives are based on general classes (e.g., 2x includes 21, 22, 23, and 24).  Source is described in Table 2. 
 
Source Variable Meaning Units OH M-A 

1 PA_EDIL presence or absence of E. dilatata N/A x  
2 P_EDIL presence of E. dilatata N/A x  
1 PA_ECOM presence or absence of E. complanata N/A  x 
2 P_ECOM presence of E. complanata N/A  x 
3 ZEBRAPA presence or absence of zebra mussels in the subwatershed N/A x x 
4 AREA_KM2 area of the subwatershed km2 x x 
4 AREARC_KM2 area of the riparian corridor within the subwatershed km2 x x 
4 CUAREA_KM2 cumulative area of the subwatershed km2 x x 
4 CUAREARC cumulative area of the riparian corridor of the subwatershed km2 x x 
5 DAMDENAREA density of dams in the subwatershed dams*km-2 x x 
5 DAMDEN_RC density of dams in the riparian corridor dams*km-2 x x 
5 CUDAMDENAR cumulative density of dams in the subwatershed dams*km-2 x x 
5 CUDAMDENRC cumulative density of dams in the riparian corridor dams*km-2 x x 
5 DISTDSDAMS downstream distance to nearest dam km x x 
5 NUMDSDAMS number of downstream dams dams x x 
6 RDDENAR density of roads in the subwatershed km of roads*km-2 x x 
6 INTDENAREA density of road-stream intersections in subwatershed intersections*km-2 x x 
6 INTDENSTRM density of road-stream intersections per length of stream intersections*stream km-1 x x 
6 INTDENRC density of road-stream intersections in the riparian corridor intersections*km-2 x x 
6 CUINTDENAR cumulative density of road-stream intersections in subwatershed intersections*km-2 x x 
6 CUINTDENRC cumulative density of road-stream intersections in riparian corridor intersections*km-2 x x 
6 CURDDEN_STM cumulative density of roads per length of stream km of roads*stream km-1 x x 
6 CURDDENAR cumulative density of roads in the subwatershed km of roads*km-2 x x 
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Source Variable Meaning Units OH M-A 
6 CUINTDEN_SM cumulative density of road-stream intersections per length of stream intersections*km-2 x x 
6 POPDENAREA density of the human population in the subwatershed people*km-2 x x 
6 POPDEN_RC density of the human population in the riparian corridor people*km-2 x x 
6 CUPOPDENAR cumulative density of the human population in the subwatershed people*km-2 x x 
6 CUPOPDENRC cumulative density of the human population in the riparian corridor people*km-2 x x 
7 MINEDENAR density of mining facilities in the subwatershed mines*km-2 x x 
7 MINEDENRC density of mining facilities in the riparian corridor mines*km-2 x x 
7 METALDENAR density of metal facilities in the subwatershed metal facilities*km-2 x x 
7 METALDENRC density of metal facilities in the riparian corridor metal facilities*km-2 x x 
7 CUMIDENRC cumulative density of mining facilities in the riparian corridor mines*km-2 x x 
7 CUMIDENAR cumulative density of mining facilities in the subwatershed mines*km-2 x x 
7 CUMEDENRC cumulative density of metal facilities in the riparian corridor metal facilities*km-2 x x 
7 CUMEDENAR cumulative density of metal facilities in the subwatershed metal facilities*km-2 x x 
8 303DDEN_AR density of 303d streams in the subwatershed km of 303d streams*km-2 x 
8 303DDEN_RC density of 303d streams in the riparian corridor km of 303d streams*km-2 x 
8 CU303DENAR cumulative proportion of 303d streams in the subwatershed km of 303d streams*km-2 x 
8 CU303DENSM cumulative proportion of 303d streams per cumulative kilometer of streams km of 303d streams*stream km-1 x 
8 CU303DENRC cumulative proportion of 303d streams in the riparian corridor km of 303d streams*km-2 x 
8 PROP_303D proportion of 303-D streams in subwatershed %  x 
9 MIN_STMSLP minimum streamslope from NHDPlus streamflow data % x x 
9 MAX_STMSLP maximum streamslope from NHDPlus streamflow data % x x 
9 MAFLOU_MAX maximum mean annual flow (unit runoff method) from NHDPlus streamflow data m3*s-1 x x 
9 MAFLOU_MIN minimum mean annual flow (unit runoff method) from NHDPlus streamflow data m3*s-1 x x 
9 MAFLOU_DIF difference between maximum and minimum mean annual flow m3*s-1 x x 
9 MAVELU_MAX maximum mean annual velocity (Jobson method) from NHDPlus streamflow data m*s-1 x x 
9 MAVELU_MIN minimum mean annual velocity (Jobson method) from NHDPlus streamflow data m*s-1 x x 
9 MAVELU_DIF difference between maximum and minimum mean annual velocity m*s-1 x x 
9 LINK_MAX maximum link order within the subwatershed N/A x x 
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Source Variable Meaning Units OH M-A 
9 LINK_MIN minimum link order within the subwatershed N/A x x 
9 LINK_DIF difference between maximum and minimum link order within the subwatershed N/A x x 
9 STRAHL_MAX maximum Strahler stream order within the subwatershed N/A x x 
9 STRAHL_MIN minimum Strahler stream order within the subwatershed N/A x x 
9 STRAHL_DIF difference between maximum and minimum Strahler stream order within the 

subwatershed 
N/A x x 

9 MAXELEVSMO maximum of smoothed maximum elevation from NHDPlus streamflow data m x x 
9 MINELEVSMO minimum of smoothed minimum elevation of flowlines in the subwatershed from 

NHDPlus 
m x x 

10 ELEV_MIN minimum elevation in subwatershed m x x 
10 ELEV_MAX maximum elevation in subwatershed m x x 
10 ELEV_MEAN mean elevation in subwatershed m x x 
10 RC_EL_MIN minimum elevation in riparian corridor m x x 
10 RC_EL_AVG mean elevation in riparian corridor m x x 
10 RC_EL_MAX maximum elevation in riparian corridor m x x 
10 SLP_MIN minimum slope in subwatershed % x x 
10 SLP_MAX maximum slope in subwatershed % x x 
10 SLP_MEAN mean slope in subwatershed % x x 
10 RC_SLP_MIN minimum slope in riparian corridor % x x 
10 RC_SLP_AVG mean slope in riparian corridor % x x 
10 RC_SLP_MAX maximum slope in riparian corridor % x x 
11 NO3_MIN minimum NO3 deposition in subwatershed kg*ha-1 x x 
11 NO3_MAX maximum NO3 deposition in subwatershed kg*ha-1 x x 
11 NO3_MEAN mean NO3 deposition in subwatershed kg*ha-1 x x 
11 SO4_MIN minimum SO4 deposition in subwatershed kg*ha-1 x x 
11 SO4_MAX maximum SO4 deposition in subwatershed kg*ha-1 x x 
11 SO4_MEAN mean SO4 deposition in subwatershed kg*ha-1 x x 
12 PHSOIL proportion of subwatershed with soil pH <5.0 % x x 
13 FOR proportion of all forested land (NLCD 4x) in the subwatershed % x x 
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Source Variable Meaning Units OH M-A 
13 FOR_RC proportion of forested land in the riparian corridor % x x 
13 CU_FOR cumulative proportion of forested land in the subwatershed % x x 
13 CU_FOR_RC cumulative proportion of forested land in the riparian corridor % x x 
13 H2O proportion of all water (NLCD 1x) in the subwatershed % x x 
13 H2O_RC proportion of water in the riparian corridor % x x 
13 CU_H2O cumulative proportion of water in the subwatershed % x x 
13 CU_H2O_RC cumulative proportion of water in the riparian corridor % x x 
13 AG proportion of all agriculture (NLCD 8x) in the subwatershed % x x 
13 AG_RC proportion of agriculture in the riparian corridor % x x 
13 CU_AG cumulative proportion of agriculture in the subwatershed % x x 
13 CU_AG_RC cumulative proportion of agriculture in the riparian corridor % x x 
13 DEV proportion of all developed land (NLCD 2x) in the subwatershed % x x 
13 DEV_RC proportion of developed land in the riparian corridor % x x 
13 CU_DEV cumulative proportion of developed land in the subwatershed % x x 
13 CU_DEV_RC cumulative proportion of developed land in the riparian corridor % x x 
13 BAR proportion of all barren land cover (NLCD 3x) in the subwatershed % x x 
13 BAR_RC proportion of barren land cover in the riparian corridor % x x 
13 CU_BAR cumulative proportion of barren land cover in the subwatershed % x x 
13 CU_BAR_RC cumulative proportion of barren land cover in the riparian corridor % x x 
13 HUM proportion of all human impacts (NLCD 2x, 3x and 8x) in the subwatershed % x x 
13 HUM_RC proportion of human impacts in the riparian corridor % x x 
13 CU_HUM cumulative proportion of human impacts in the subwatershed % x x 
13 CU_HUM_RC cumulative proportion of human impacts in the riparian corridor % x x 
13 DEC proportion of deciduous forest (NLCD 41) in the subwatershed % x x 
13 DEC_RC proportion of deciduous forest in the riparian corridor % x x 
13 CU_DEC cumulative proportion of deciduous forest in the subwatershed % x x 
13 CU_DEC_RC cumulative proportion of deciduous forest in the riparian corridor % x x 
13 EVG proportion of evergreen forest (NLCD 42) in the subwatershed % x x 
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Source Variable Meaning Units OH M-A 
13 EVG_RC proportion of evergreen forest in the riparian corridor % x x 
13 CU_EVG cumulative proportion of evergreen forest in the subwatershed % x x 
13 CU_EVG_RC cumulative proportion of evergreen forest in the riparian corridor % x x 
13 MXF proportion of mixed forest (NLCD 43) in the subwatershed % x x 
13 MXF_RC proportion of mixed forest in the riparian corridor % x x 
13 CU_MXF cumulative proportion of mixed forest in the subwatershed % x x 
13 CU_MXF_RC cumulative proportion of mixed forest in the riparian corridor % x x 
13 GRS proportion of grass (NLCD 71) in the subwatershed % x x 
13 GRS_RC proportion of grass in the riparian corridor % x x 
13 CU_GRS cumulative proportion of grass in the subwatershed % x x 
13 CU_GRS_RC cumulative proportion of grass in the riparian corridor % x x 
13 HDV proportion of high-intensity development (NLCD 24) in the subwatershed % x x 
13 HDV_RC proportion of high-intensity development in the riparian corridor % x x 
13 CU_HDV cumulative proportion of high-intensity development in the subwatershed % x x 
13 CU_HDV_RC cumulative proportion of high-intensity development in the riparian corridor % x x 
13 MDV proportion of med-intensity development (NLCD 23) in the subwatershed % x x 
13 MDV_RC proportion of med-intensity development in the riparian corridor % x x 
13 CU_MDV cumulative proportion of med-intensity development in the subwatershed % x x 
13 CU_MDV_RC cumulative proportion of med-intensity development in the riparian corridor % x x 
13 LDV proportion of low-intensity development (NLCD 22) in the subwatershed % x x 
13 LDV_RC proportion of low-intensity development in the riparian corridor % x x 
13 CU_LDV cumulative proportion of low-intensity development in the subwatershed % x x 
13 CU_LDV_RC cumulative proportion of low-intensity development in the riparian corridor % x x 
13 ODV proportion of open development (NLCD 21) in the subwatershed % x x 
13 ODV_RC proportion of open development in the riparian corridor % x x 
13 CU_ODV cumulative proportion of open development in the subwatershed % x x 
13 CU_ODV_RC cumulative proportion of open development in the riparian corridor % x x 
13 LO proportion of low-intensity or open development (NLCD 21-22) in the subwatershed % x x 
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Source Variable Meaning Units OH M-A 
13 LO_RC proportion of low-intensity or open development in the riparian corridor % x x 
13 CU_LO cumulative proportion of low-intensity or open development in the subwatershed % x x 
13 CU_LO_RC cumulative proportion of low-intensity or open development in the riparian corridor % x x 
13 MH proportion of low-intensity or open development (NLCD 23-24) in the subwatershed % x x 
13 MH_RC proportion of low-intensity or open development in the riparian corridor % x x 
13 CU_MH cumulative proportion of low-intensity or open development in the subwatershed % x x 
13 CU_MH_RC cumulative proportion of low-intensity or open development in the riparian corridor % x x 
13 WET proportion of woody wetlands (NLCD 90) in the subwatershed % x x 
13 WET_RC proportion of woody wetlands in the riparian corridor % x x 
13 CU_WET cumulative proportion of woody wetlands in the subwatershed % x x 
13 CU_WET_RC cumulative proportion of woody wetlands in the riparian corridor % x x 
13 EMH proportion of emergent herbaceous (NLCD 95) in the subwatershed % x x 
13 EMH_RC proportion of emergent herbaceous in the riparian corridor % x x 
13 CU_EMH cumulative proportion of emergent herbaceous in the subwatershed % x x 
13 CU_EMH_RC cumulative proportion of emergent herbaceous in the riparian corridor % x x 
13 HAY proportion of pasture/hay (NLCD 81) in the subwatershed % x x 
13 HAY_RC proportion of pasture/hay in the riparian corridor % x x 
13 CU_HAY cumulative proportion of pasture/hay in the subwatershed % x x 
13 CU_HAY_RC cumulative proportion of pasture/hay in the riparian corridor % x x 
13 CRP proportion of cultivated crops (NLCD 82) in the subwatershed % x x 
13 CRP_RC proportion of cultivated crops in the riparian corridor % x x 
13 CU_CRP cumulative proportion of cultivated crops in the subwatershed % x x 
13 CU_CRP_RC cumulative proportion of cultivated crops in the riparian corridor % x x 
13 SHB proportion of shrub (NLCD 52) in the subwatershed % x x 
13 SHB_RC proportion of shrub in the riparian corridor % x x 
13 CU_SHB cumulative proportion of shrub in the subwatershed % x x 
13 CU_SHB_RC cumulative proportion of shrub in the riparian corridor % x x 
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Table 2.  Information on data sources for variables described in Table 1. 
  

 Data Source 
Scale or 
Resolution 

Relevant 
Time Period Source Details 

1 survey data subwatershed 1985-2007 
Mussel data were compiled from Western Pennsylvania Conservancy, Maryland Biological Stream 
Survey, and Ecological Specialists, Inc. 

2 occurrences subwatershed 1985-2007 
Mussel data were compiled from West Virginia DNR, Carnegie Museum, Ohio State University 
Museum, and Illinois Natural History Museum 

3 NAS 1:2,000,000 1988-2007 
Point locations for zebra mussels compiled by the Nonindigenous Aquatic Species (NAS) Program 
were downloaded from the National Atlas 

4 USGS/NRCS 1:100,000 varies 
Subwatershed boundaries were edited from USGS and Natural Resources Conservation Service 
(NRCS) boundaries 

5 NID 1:2,000,000 2002-2004 
A shapefile containing locations of dams compiled by the National Inventory of Dams was downloaded 
from the National Atlas 

6 ESRI 1:100,000 2000 
U.S. Detailed Streets and U.S. Census Block Centroid Populations were obtained from Environmental 
Systems Research Institute, Inc. (ESRI) data CDs provided with ArcGIS software 

7 USGS 1:2,000,000 2003 
Shapefiles of locations of metal processing plants and mines compiled by the U.S. Geological Survey 
(USGS) were downloaded from the National Atlas 

8 USEPA 1:100,000 2002 303-D listed streams were obtained from the U.S. Environmental Protection Agency (USEPA) 
9 NHDPlus 1:100,000 2005 National Hydrography Dataset Plus (NHDPlus) data were downloaded from Horizon Systems, Inc.  

10 NED 30m varies The National Elevation Dataset (NED) was obtained directly from the USGS 
11 NADP 2.5km 2005 Deposition data were obtained from the National Atmospheric Deposition Program (NADP) 

12 CONUS 1km 1998 
Soil acidity was determined from upper soil layers in CONUS-SOIL data prepared by Miller and White 
(1998). 

13 NLCD 30m 1999-2001 
National Land Cover Database (NLCD) land use grids were downloaded from the Multi-Resolution 
Land Characteristics Consortium (MRLC) by mapping zone (Homer et al. 2007). 
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Table 3.  Summary statistics for variables in the Mid-Atlantic (Mid-Atl.) and Ohio drainage regions.  
   All  Surveyed  Unsurveyed 
Region Variable  Mean StdErr Min Max  Mean StdErr Min Max  Mean StdErr Min Max 
Mid-Atl. AREA_KM2  100.11 1.9608 7.3903 1205.2  107.15 2.9499 23.948 502.46  98.867 2.246 7.3903 1205.2 
 AREARC_KM2 14.442 0.2765 1.2141 146.26  16.446 0.4762 2.5641 80.189  14.088 0.3133 1.2141 146.26 
 CUAREA_KM2  1714.7 156.19 15.745 71185  5508.4 806.56 32.078 71185  1045.5 107.41 15.745 70115 
 CUAREARC  246.59 22.571 1.2141 10261  791.96 116.07 2.5641 10261  150.39 15.648 1.2141 10092 
 DAMDENAREA 0.0027 0.0002 0 0.0765  0.0024 0.0004 0 0.0528  0.0028 0.0002 0 0.0765 
 DAMDEN_RC 0.0196 0.0015 0 0.7324  0.0164 0.003 0 0.3145  0.0202 0.0017 0 0.7324 
 CUDAMDENAR 0.0028 0.0002 0 0.0606  0.0022 0.0002 0 0.0348  0.0029 0.0002 0 0.0606 
 CUDAMDENRC 0.0207 0.0013 0 0.7324  0.0149 0.0016 0 0.2583  0.0217 0.0015 0 0.7324 
 DISTDSDAMS 811028 65956 -71.51 1E+07  2E+06 226571 -71.51 1E+07  679540 65951 -66.44 1E+07 
 NUMDSDAMS 9.1581 0.1742 0 27  6.7626 0.3651 0 22  9.5806 0.1924 0 27 
 RDDENAR  2033.6 28.239 165.76 11825  2368.8 76.171 879.33 11825  1974.5 30.129 165.76 11034 
 INTDENAREA  3.9662 0.0446 0.1705 15.862  4.2702 0.1014 1.3024 10.471  3.9126 0.0492 0.1705 15.862 
 INTDENSTRM  0.0008 9E-06 4E-05 0.0032  0.0008 2E-05 0.0003 0.0021  0.0008 1E-05 4E-05 0.0032 
 INTDENRC  0.5661 0.0068 0.023 2.1081  0.6509 0.0153 0.1498 1.4992  0.5512 0.0074 0.023 2.1081 
 CUINTDENAR 0.5523 0.0061 0.023 2.1081  0.6241 0.0119 0.1879 1.4992  0.5396 0.0068 0.023 2.1081 
 CUINTDENRC 3.9556 0.0393 0.1705 15.862  4.2218 0.079 1.4685 10.471  3.9086 0.0439 0.1705 15.862 
 CURDDEN_STM 2.8872 0.0456 0.2285 23.607  2.8114 0.0836 1.1828 12.205  2.9006 0.0516 0.2285 23.607 
 CURDDENAR 1878.3 22.689 165.76 9446.1  2042.9 51.219 879.33 7466.8  1849.3 25.045 165.76 9446.1 
 CUINTDEN_SM 0.0008 8E-06 4E-05 0.0032  0.0008 2E-05 0.0003 0.0021  0.0008 9E-06 4E-05 0.0032 
 POPDENAREA 84.592 5.8278 0 5258.7  117.59 16.935 0.6765 3520.7  78.771 6.1609 0 5258.7 
 POPDEN_RC 48.469 2.3618 0 1161.6  64.401 6.7454 0 1117.9  45.658 2.5046 0 1161.6 
 CUPOPDENAR 61.542 3.1522 0 1574.6  74.669 8.2431 0.9293 1122.7  59.227 3.4088 0 1574.6 
 CUPOPDENRC 39.34 1.8897 0 1117.9  44.047 5.7342 0 1117.9  38.509 1.9797 0 942.37 
 MINEDENAR  0.0048 0.0003 0 0.1775  0.0071 0.0011 0 0.1775  0.0044 0.0004 0 0.1553 
 MINEDENRC 0.0066 0.0049 0 7.6687  0 0 0 0  0.0077 0.0058 0 7.6687 
 METALDENAR 3E-05 3E-05 0 0.0566  0.0002 0.0002 0 0.0566  0 0 0 0 
 METALDENRC 0.0002 0.0002 0 0.2604  0.001 0.001 0 0.2604  0 0 0 0 
 CUMIDENRC 0.0066 0.0049 0 7.6687  0 0 0 0  0.0077 0.0058 0 7.6687 
 CUMIDENAR 0.0022 0.0002 0 0.1553  0.0016 0.0005 0 0.0493  0.0023 0.0003 0 0.1553 
 CUMEDENRC 0 0 0 0  0 0 0 0  0 0 0 0 
 CUMEDENAR 3E-05 2E-05 0 0.0249  4E-05 2E-05 0 0.0042  3E-05 2E-05 0 0.0249 
 303DDEN_AR 76.17 3.1 0 811.32  137.6 10.477 0 811.32  65.334 3.0592 0 788.71 
 303DDEN_RC 566.89 23.948 0 8244.2  922.3 71.957 0 4985.6  504.2 24.802 0 8244.2 
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   All  Surveyed  Unsurveyed 
Region Variable  Mean StdErr Min Max  Mean StdErr Min Max  Mean StdErr Min Max 
Mid-Atl. CU303DENAR 63.848 2.4786 0 811.32  91.14 6.8348 0 811.32  59.034 2.6359 0 788.71 
 CU303DENSM 0.0967 0.0039 0 1.0469  0.1268 0.0102 0 0.9885  0.0914 0.0042 0 1.0469 
 CU303DENRC 484.84 19.612 0 5320.3  640.02 51.459 0 4985.6  457.47 21.138 0 5320.3 
 PROP_303D  0.1118 0.0047 0 1.1331  0.1798 0.0139 0 0.9885  0.0999 0.0048 0 1.1331 
 MIN_STMSLP  0.001 6E-05 0 0.021  0.0002 6E-05 0 0.0117  0.0011 7E-05 0 0.021 
 MAX_STMSLP  0.4682 0.0627 0.0043 56.9  0.4725 0.106 0.0103 20.335  0.4674 0.0713 0.0043 56.9 
 MAFLOU_MAX 29.76 2.6396 0 1133  90.199 12.882 0.3084 1133  19.1 1.994 0 1117.9 
 MAFLOU_MIN  0.0181 0.0017 0 1.3505  0.0035 0.0004 0 0.0306  0.0206 0.002 0 1.3505 
 MAFLOU_DIF  29.742 2.6397 0 1133  90.196 12.882 0.3082 1133  19.079 1.9941 0 1117.9 
 MAVELU_MAX 0.4972 0.0048 0 2.47  0.6175 0.0187 0.3115 2.47  0.476 0.0044 0 2.0492 
 MAVELU_MIN 0.1119 0.0023 0 0.4054  0.0659 0.005 0 0.2625  0.12 0.0025 0 0.4054 
 MAVELU_DIF  0.3853 0.006 0 2.47  0.5516 0.0206 0.1064 2.47  0.356 0.0058 0 1.8824 
 LINK_MAX  5.0134 0.0269 2 9  4.786 0.0668 2 8  5.0535 0.0293 2 9 
 LINK_MIN  2.6628 0.0239 0 6  2.2374 0.0579 0 4  2.7378 0.0257 0 6 
 LINK_DIF  2.3506 0.0207 0 5  2.5486 0.0464 1 5  2.3157 0.0228 0 5 
 STRAHL_MAX  3.8226 0.0334 1 8  4.6887 0.0945 1 8  3.6699 0.0341 1 8 
 STRAHL_MIN  0.9959 0.0017 0 2  0.9767 0.0094 0 1  0.9993 0.0012 0 2 
 STRAHL_DIF  2.8267 0.0336 0 7  3.7121 0.096 0 7  2.6706 0.0342 0 7 
 MAXELEVSMO 496.17 5.3689 1.2629 1322.4  393.78 11.947 43.71 988.48  514.23 5.8287 1.2629 1322.4 
 MINELEVSMO 157.08 3.6767 0 760.46  78.277 7.1828 0 606.43  170.98 4.0279 0 760.46 
 ELEV_MIN  216.79 3.129 -68 775  147.62 6.2176 -68 638  228.99 3.4161 -8 775 
 ELEV_MAX  617.95 6.3634 0 1482  505.72 12.837 105 1063  637.75 7.0098 0 1482 
 ELEV_MEAN  367.63 4.2769 0 1083.7  270.93 9.153 24.531 846.28  384.69 4.6245 0 1083.7 
 RC_EL_MIN 217.74 3.1134 -24 775  148.51 6.1839 -24 639  229.96 3.398 -5 775 
 RC_EL_AVG 319.96 3.801 6.7557 995.25  231.35 8.1242 6.7557 791.65  335.59 4.1024 8.0591 995.25 
 RC_EL_MAX 525.45 5.5696 53 1348  421.47 12.235 67 1011  543.79 6.0622 53 1348 
 SLP_MIN  0 0 0 0  0 0 0 0  0 0 0 0 
 SLP_MAX  88.712 0.757 14 470  91.79 1.971 23 203  88.17 0.8193 14 470 
 SLP_MEAN  13.965 0.1665 1.2378 40.826  12.286 0.3692 2.1545 34.095  14.261 0.1837 1.2378 40.826 
 RC_SLP_MIN 0 0 0 0  0 0 0 0  0 0 0 0 
 RC_SLP_AVG 12.675 0.1436 0.922 42.292  11.919 0.3383 1.4529 34.289  12.809 0.1578 0.922 42.292 
 RC_SLP_MAX 77.759 0.6957 14 468  84.051 1.8798 17 203  76.649 0.7447 14 468 
 NO3_MIN  11.439 0.0362 7.4383 14.34  11.787 0.0943 7.4825 14.279  11.378 0.039 7.4383 14.34 
 NO3_MAX  11.718 0.0346 7.5564 14.81  12.042 0.0898 7.5564 14.346  11.661 0.0374 7.5674 14.81 
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   All  Surveyed  Unsurveyed 
Region Variable  Mean StdErr Min Max  Mean StdErr Min Max  Mean StdErr Min Max 
Mid-Atl. NO3_MEAN 11.579 0.0353 7.4653 14.49  11.914 0.0921 7.5041 14.326  11.52 0.0381 7.4653 14.49 
 SO4_MIN  16.503 0.0528 12.173 21.558  17.277 0.1579 12.375 21.267  16.366 0.0548 12.173 21.558 
 SO4_MAX  17.026 0.0524 12.361 21.602  17.779 0.1538 12.515 21.581  16.894 0.0546 12.361 21.602 
 SO4_MEAN 16.765 0.0524 12.222 21.584  17.523 0.156 12.419 21.453  16.631 0.0545 12.222 21.584 
 PHSOIL  0.7637 0.0074 0 1  0.7045 0.0187 0 1  0.7741 0.008 0 1 
 FOR  0.6035 0.0056 0.0083 0.9872  0.5 0.016 0.0185 0.953  0.6217 0.0059 0.0083 0.9872 
 FOR_RC  0.5825 0.005 0.0085 0.993  0.525 0.0131 0.0126 0.9495  0.5927 0.0053 0.0085 0.993 
 CU_FOR  0.6216 0.0052 0.0083 0.9872  0.5627 0.0139 0.0383 0.9307  0.632 0.0056 0.0083 0.9872 
 CU_FOR_RC 0.5918 0.0047 0.0085 0.993  0.5645 0.0113 0.0537 0.9267  0.5967 0.0051 0.0085 0.993 
 H2O  0.0109 0.0006 0 0.3158  0.021 0.0025 0 0.2816  0.0091 0.0005 0 0.3158 
 H2O_RC  0.0182 0.0006 0 0.2801  0.0309 0.0024 0 0.2801  0.0159 0.0006 0 0.2564 
 CU_H2O  0.0067 0.0002 0 0.0953  0.0068 0.0005 0 0.0633  0.0067 0.0003 0 0.0953 
 CU_H2O_RC 0.0115 0.0003 0 0.1192  0.0133 0.0007 0 0.0612  0.0112 0.0003 0 0.1192 
 AG  0.261 0.0048 0 0.8915  0.3488 0.0144 0.0026 0.8915  0.2456 0.005 0 0.8575 
 AG_RC  0.2371 0.0043 0 0.8679  0.2836 0.0123 0.0018 0.846  0.2289 0.0046 0 0.8679 
 CU_AG  0.2578 0.0045 0 0.8575  0.3249 0.0128 0.0014 0.8234  0.2459 0.0048 0 0.8575 
 CU_AG_RC  0.2414 0.0041 0 0.8679  0.283 0.0112 0.0014 0.814  0.2341 0.0044 0 0.8679 
 DEV  0.0917 0.0026 0.0002 0.9237  0.1121 0.007 0.0072 0.8547  0.0881 0.0028 0.0002 0.9237 
 DEV_RC  0.1073 0.0022 0.0004 0.8351  0.1173 0.0055 0.0034 0.721  0.1055 0.0024 0.0004 0.8351 
 CU_DEV  0.0791 0.0021 0.0002 0.8228  0.085 0.0045 0.0084 0.6077  0.0781 0.0023 0.0002 0.8228 
 CU_DEV_RC 0.0998 0.0017 0.0004 0.6411  0.0991 0.0032 0.0067 0.4532  0.0999 0.002 0.0004 0.6411 
 BAR  0.0034 0.0002 0 0.0809  0.0043 0.0004 0 0.0408  0.0032 0.0002 0 0.0809 
 BAR_RC  0.0024 0.0002 0 0.1508  0.0033 0.0004 0 0.0306  0.0022 0.0002 0 0.1508 
 CU_BAR  0.0033 0.0002 0 0.0809  0.0043 0.0004 0 0.0447  0.0031 0.0002 0 0.0809 
 CU_BAR_RC  0.0023 0.0002 0 0.1508  0.003 0.0003 0 0.0247  0.0021 0.0002 0 0.1508 
 HUM  0.3561 0.0056 0.0002 0.9878  0.4652 0.016 0.0171 0.9699  0.3369 0.0058 0.0002 0.9878 
 HUM_RC  0.3468 0.0048 0.0004 0.9899  0.4043 0.0125 0.0462 0.9322  0.3367 0.0051 0.0004 0.9899 
 CU_HUM  0.3401 0.0052 0.0002 0.9878  0.4141 0.0142 0.0456 0.9565  0.3271 0.0055 0.0002 0.9878 
 CU_HUM_RC 0.3435 0.0046 0.0004 0.9899  0.3852 0.0113 0.0496 0.9117  0.3361 0.005 0.0004 0.9899 
 DEC  0.4802 0.005 0.0082 0.9501  0.4264 0.0139 0.0182 0.8586  0.4897 0.0053 0.0082 0.9501 
 DEC_RC  0.4239 0.0043 0.0043 0.8848  0.4212 0.0109 0.0116 0.8848  0.4244 0.0047 0.0043 0.8775 
 CU_DEC  0.5002 0.0046 0.0082 0.9319  0.4798 0.012 0.0346 0.8143  0.5038 0.005 0.0082 0.9319 
 CU_DEC_RC 0.4323 0.004 0.0044 0.8775  0.4438 0.0094 0.05 0.8042  0.4303 0.0044 0.0044 0.8775 
 EVG  0.0508 0.0011 0 0.3237  0.03 0.0017 0.0003 0.1583  0.0545 0.0012 0 0.3237 
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   All  Surveyed  Unsurveyed 
Region Variable  Mean StdErr Min Max  Mean StdErr Min Max  Mean StdErr Min Max 
Mid-Atl. EVG_RC  0.0705 0.0016 0 0.4705  0.049 0.0034 0.0001 0.3218  0.0743 0.0017 0 0.4705 
 CU_EVG  0.0513 0.001 2E-05 0.2892  0.0359 0.0016 0.002 0.1583  0.054 0.0011 2E-05 0.2892 
 CU_EVG_RC 0.0734 0.0015 0 0.4705  0.0606 0.0031 0.002 0.3218  0.0756 0.0017 0 0.4705 
 MXF  0.0725 0.002 0 0.6206  0.0435 0.0048 0 0.508  0.0776 0.0022 0 0.6206 
 MXF_RC  0.088 0.0025 0 0.7046  0.0548 0.0054 0 0.5518  0.0939 0.0027 0 0.7046 
 CU_MXF  0.0701 0.0018 0 0.6206  0.047 0.0035 0 0.3278  0.0741 0.002 0 0.6206 
 CU_MXF_RC 0.0862 0.0023 0 0.7046  0.0601 0.0044 0 0.4157  0.0908 0.0026 0 0.7046 
 GRS  0.0034 0.0002 0 0.0837  0.0004 9E-05 0 0.0132  0.004 0.0002 0 0.0837 
 GRS_RC  0.0025 0.0002 0 0.0589  0.0002 6E-05 0 0.0089  0.0029 0.0002 0 0.0589 
 CU_GRS  0.0038 0.0002 0 0.0626  0.0015 0.0002 0 0.0171  0.0042 0.0002 0 0.0626 
 CU_GRS_RC  0.0028 0.0002 0 0.0589  0.0011 0.0002 0 0.0145  0.0031 0.0002 0 0.0589 
 HDV  0.0033 0.0003 0 0.3066  0.0051 0.0013 0 0.3066  0.003 0.0003 0 0.1589 
 HDV_RC  0.0024 0.0002 0 0.2001  0.0034 0.0009 0 0.2001  0.0022 0.0002 0 0.1579 
 CU_HDV  0.0021 0.0002 0 0.0921  0.0022 0.0003 0 0.0433  0.0021 0.0002 0 0.0921 
 CU_HDV_RC 0.0016 0.0001 0 0.1579  0.0015 0.0002 0 0.0239  0.0017 0.0002 0 0.1579 
 MDV  0.0092 0.0006 0 0.3194  0.0127 0.0017 0 0.29  0.0086 0.0006 0 0.3194 
 MDV_RC  0.0076 0.0005 0 0.2853  0.0098 0.0014 0 0.2039  0.0072 0.0005 0 0.2853 
 CU_MDV  0.0064 0.0004 0 0.1966  0.007 0.0008 0 0.1106  0.0063 0.0004 0 0.1966 
 CU_MDV_RC 0.0056 0.0003 0 0.1461  0.0055 0.0005 0 0.1043  0.0056 0.0003 0 0.1461 
 LDV  0.0241 0.001 0 0.4059  0.0342 0.0027 0 0.2694  0.0223 0.0011 0 0.4059 
 LDV_RC  0.0226 0.0008 0 0.242  0.0288 0.002 0 0.1652  0.0215 0.0009 0 0.242 
 CU_LDV  0.0191 0.0008 0 0.4059  0.0234 0.0018 0.0002 0.2066  0.0183 0.0009 0 0.4059 
 CU_LDV_RC 0.0189 0.0006 0 0.242  0.0209 0.0012 0.001 0.1348  0.0185 0.0007 0 0.242 
 ODV  0.0551 0.001 0.0002 0.4897  0.0601 0.0024 0.0032 0.3102  0.0542 0.0011 0.0002 0.4897 
 ODV_RC  0.0748 0.0011 0.0004 0.4024  0.0753 0.0024 0.0022 0.2052  0.0747 0.0012 0.0004 0.4024 
 CU_ODV  0.0515 0.0009 0.0002 0.4897  0.0524 0.0019 0.0068 0.3102  0.0513 0.001 0.0002 0.4897 
 CU_ODV_RC 0.0737 0.001 0.0004 0.4024  0.0712 0.0019 0.0046 0.1902  0.0742 0.0011 0.0004 0.4024 
 LO  0.0792 0.0019 0.0002 0.6259  0.0943 0.0048 0.0059 0.4966  0.0765 0.0021 0.0002 0.6259 
 LO_RC  0.0973 0.0017 0.0004 0.536  0.1041 0.0039 0.003 0.358  0.0961 0.0018 0.0004 0.536 
 CU_LO  0.0705 0.0016 0.0002 0.6259  0.0758 0.0035 0.0083 0.4966  0.0696 0.0018 0.0002 0.6259 
 CU_LO_RC  0.0926 0.0014 0.0004 0.536  0.0921 0.0027 0.0065 0.325  0.0927 0.0016 0.0004 0.536 
 MH  0.0125 0.0009 0 0.5966  0.0178 0.0029 0 0.5966  0.0116 0.0009 0 0.4697 
 MH_RC  0.01 0.0007 0 0.4254  0.0132 0.0022 0 0.4039  0.0094 0.0007 0 0.4254 
 CU_MH  0.0086 0.0005 0 0.2887  0.0092 0.001 1E-04 0.1539  0.0084 0.0006 0 0.2887 
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   All  Surveyed  Unsurveyed 
Region Variable  Mean StdErr Min Max  Mean StdErr Min Max  Mean StdErr Min Max 
Mid-Atl. CU_MH_RC 0.0072 0.0004 0 0.3041  0.007 0.0007 0 0.1282  0.0072 0.0005 0 0.3041 
 WET  0.0151 0.0009 0 0.5141  0.0079 0.0008 0 0.1071  0.0164 0.001 0 0.5141 
 WET_RC  0.0348 0.0015 0 0.486  0.0262 0.0021 0 0.2325  0.0363 0.0018 0 0.486 
 CU_WET  0.0159 0.0008 0 0.3101  0.0086 0.0008 0 0.0911  0.0172 0.0009 0 0.3101 
 CU_WET_RC 0.0356 0.0015 0 0.4698  0.0255 0.0019 0 0.182  0.0374 0.0017 0 0.4698 
 EMH  0.0022 9E-05 0 0.0382  0.0035 0.0003 0 0.0243  0.002 9E-05 0 0.0382 
 EMH_RC  0.0069 0.0003 0 0.0881  0.0113 0.001 0 0.0849  0.0061 0.0003 0 0.0881 
 CU_EMH  0.0018 6E-05 0 0.0275  0.0021 0.0001 0 0.0114  0.0017 7E-05 0 0.0275 
 CU_EMH_RC 0.0051 0.0002 0 0.0881  0.0062 0.0004 0 0.0458  0.0049 0.0002 0 0.0881 
 HAY  0.1807 0.0034 0 0.7066  0.2223 0.0095 0.0014 0.6916  0.1734 0.0037 0 0.7066 
 HAY_RC  0.1758 0.0034 0 0.8366  0.1903 0.0083 0.0015 0.6256  0.1732 0.0037 0 0.8366 
 CU_HAY  0.1781 0.0031 0 0.7066  0.2081 0.0079 0.0011 0.5562  0.1728 0.0034 0 0.7066 
 CU_HAY_RC 0.1811 0.0032 0 0.8366  0.195 0.0073 0.001 0.6256  0.1786 0.0036 0 0.8366 
 CRP  0.0803 0.0024 0 0.6655  0.1264 0.0067 0.0004 0.4232  0.0722 0.0025 0 0.6655 
 CRP_RC  0.0613 0.0018 0 0.5176  0.0933 0.005 0.0001 0.4404  0.0557 0.0018 0 0.5176 
 CU_CRP  0.0797 0.0023 0 0.6655  0.1168 0.006 0.0003 0.4528  0.0731 0.0024 0 0.6655 
 CU_CRP_RC  0.0604 0.0017 0 0.5176  0.0881 0.0045 0.0001 0.4182  0.0555 0.0018 0 0.5176 
 SHB  0.0088 0.0004 0 0.1769  0.002 0.0004 0 0.0398  0.01 0.0005 0 0.1769 
 SHB_RC  0.0083 0.0005 0 0.2103  0.0021 0.0005 0 0.077  0.0094 0.0005 0 0.2103 
 CU_SHB  0.0101 0.0005 0 0.1769  0.0042 0.0006 0 0.0486  0.0111 0.0005 0 0.1769 
 CU_SHB_RC 0.0097 0.0005 0 0.2103  0.0041 0.0006 0 0.077  0.0106 0.0005 0 0.2103 
Ohio AREA_KM2  84.01 0.7322 8.9306 763.95  104.02 2.8363 36.232 288.45  82.854 0.7517 8.9306 763.95 
 AREARC_KM2 13.665 0.1197 1.2024 84.572  16.989 0.4981 3.0852 35.546  13.473 0.1224 1.2024 84.572 
 CUAREA_KM2  3570 332.62 14.52 201624  17980 3078.1 43.24 182097  2737.7 296.84 14.52 201624 
 CUAREARC  584.06 55.064 2.1132 33412  2938 510.48 5.5728 30351  448.09 49.139 2.1132 33412 
 DAMDENAREA 0.0022 0.0001 0 0.1109  0.0036 0.0006 0 0.0684  0.0021 0.0001 0 0.1109 
 DAMDEN_RC 0.0135 0.0008 0 0.7168  0.0239 0.0044 0 0.4533  0.0129 0.0008 0 0.7168 
 CUDAMDENAR 0.002 0.0001 0 0.1109  0.002 0.0003 0 0.0355  0.002 0.0001 0 0.1109 
 CUDAMDENRC 0.0123 0.0007 0 0.7168  0.0121 0.002 0 0.2366  0.0123 0.0007 0 0.7168 
 DISTDSDAMS 28484 9457.7 -25 1E+07  38.775 3.1867 -13 176  30127 10003 -25 1E+07 
 NUMDSDAMS 18.677 0.2123 0 56  33.353 0.7273 10 52  17.829 0.2104 0 56 
 RDDENAR  1861.9 19.042 50.01 15394  2222.6 93.654 108.43 10729  1841.1 19.338 50.01 15394 
 INTDENAREA  0.6508 0.0061 0 4.5592  0.6463 0.0219 0.0604 1.7456  0.6511 0.0064 0 4.5592 
 INTDENSTRM  0.0008 8E-06 0 0.0093  0.0008 3E-05 4E-05 0.0025  0.0008 8E-06 0 0.0093 
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   All  Surveyed  Unsurveyed 
Region Variable  Mean StdErr Min Max  Mean StdErr Min Max  Mean StdErr Min Max 
Ohio INTDENRC  3.9627 0.0384 0 46.784  3.917 0.1313 1.0988 12.472  3.9653 0.0399 0 46.784 
 CUINTDENAR 0.6601 0.0054 0 2.6883  0.5937 0.0149 0.1418 1.3096  0.6639 0.0056 0 2.6883 
 CUINTDENRC 4.0309 0.0323 0 26.061  3.6785 0.0694 1.0988 7.6407  4.0513 0.0339 0 26.061 
 CURDDENAR 1737 13.655 50.01 13590  1844.9 35.63 882.62 4432.4  1730.8 14.288 50.01 13590 
 CUINTDEN_SM 0.0008 6E-06 0 0.0053  0.0007 1E-05 0.0002 0.0015  0.0008 7E-06 0 0.0053 
 POPDENAREA 61.619 2.8254 0 2605.8  84.301 13.876 0.6188 1716.5  60.309 2.8779 0 2605.8 
 POPDEN_RC 41.001 1.5314 0 1108.8  45.311 4.659 0 422.35  40.752 1.5974 0 1108.8 
 CUPOPDENAR 47.771 1.9149 0 2265  43.005 3.7204 2.9533 490.1  48.047 2.0141 0 2265 
 CUPOPDENRC 34.562 1.2019 0 1108.8  30.337 1.8871 0 202.38  34.807 1.2665 0 1108.8 
 MINEDENAR  0.0034 0.0002 0 0.1394  0.0075 0.0011 0 0.0739  0.0031 0.0002 0 0.1394 
 MINEDENRC 2E-09 3E-10 0 4E-07  4E-09 1E-09 0 1E-07  2E-09 3E-10 0 4E-07 
 METALDENAR 3E-05 1E-05 0 0.0183  0.0003 0.0001 0 0.0142  2E-05 1E-05 0 0.0183 
 METALDENRC 1E-11 1E-11 0 4E-08  0 0 0 0  1E-11 1E-11 0 4E-08 
 CUMIDENRC 2E-09 2E-10 0 2E-07  2E-09 4E-10 0 5E-08  2E-09 2E-10 0 2E-07 
 CUMIDENAR 3E-06 1E-06 0 0.0032  3E-05 2E-05 0 0.0032  2E-06 9E-07 0 0.0026 
 CUMEDENRC 0 0 0 0  0 0 0 0  0 0 0 0 
 CUMEDENAR 0 0 0 0  0 0 0 0  0 0 0 0 
 MIN_STMSLP  0.0003 2E-05 0 0.0104  9E-05 5E-05 0 0.007  0.0003 2E-05 0 0.0104 
 MAX_STMSLP  0.2067 0.0185 0.0006 30.847  0.3503 0.0789 0.0111 11.995  0.1984 0.019 0.0006 30.847 
 MAFLOU_MAX 58.812 5.3085 0.1421 3185.3  302.65 49.86 0.7218 2806.9  44.727 4.6976 0.1421 3185.3 
 MAFLOU_MIN  0.0151 0.004 0 12.623  0.0086 0.001 0 0.1325  0.0155 0.0042 0 12.623 
 MAFLOU_DIF  58.797 5.3086 0.0511 3185.3  302.64 49.86 0.715 2806.9  44.712 4.6977 0.0511 3185.3 
 MAVELU_MAX 0.4716 0.0037 0.2503 3.1759  0.6692 0.0263 0.2677 1.8557  0.4602 0.0035 0.2503 3.1759 
 MAVELU_MIN 0.1309 0.0015 0 0.3878  0.097 0.0059 0 0.2606  0.1328 0.0016 0 0.3878 
 MAVELU_DIF  0.3407 0.0043 0.0025 2.9387  0.5722 0.0282 0.0901 1.7394  0.3274 0.0041 0.0025 2.9387 
 LINK_MAX  6.6506 0.0222 3 13  5.9422 0.0962 4 10  6.6915 0.0226 3 13 
 LINK_MIN  4.233 0.0188 2 9  3.474 0.0874 2 7  4.2768 0.0189 2 9 
 LINK_DIF  2.4176 0.0136 0 6  2.4682 0.0496 1 5  2.4147 0.0141 0 6 
 STRAHL_MAX  3.9612 0.0219 1 8  4.896 0.134 2 8  3.9072 0.0215 1 8 
 STRAHL_MIN  1.0032 0.0017 1 5  1 0 1 1  1.0033 0.0018 1 5 
 STRAHL_DIF  2.958 0.022 0 7  3.896 0.134 1 7  2.9038 0.0215 0 7 
 MAXELEVSMO 435.24 3.9855 116.11 1530.8  481.77 12.668 232.13 878.24  432.55 4.1468 116.11 1530.8 
 MINELEVSMO 206.57 2.8164 0 954.69  211.78 13.066 0 728.42  206.27 2.8824 0 954.69 
 ELEV_MIN  274.18 2.3838 86 1086  316.44 9.9175 137 744  271.74 2.4485 86 1086 
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   All  Surveyed  Unsurveyed 
Region Variable  Mean StdErr Min Max  Mean StdErr Min Max  Mean StdErr Min Max 
Ohio ELEV_MAX  504.7 4.6311 159 1745  537.39 13.937 275 990  502.82 4.8302 159 1745 
 ELEV_MEAN  375.23 3.1149 119.43 1274.6  416.81 11.174 193.77 822.07  372.83 3.2259 119.43 1274.6 
 RC_EL_MIN 274.51 2.3822 90 1086  316.84 9.8697 144 744  272.06 2.4473 90 1086 
 RC_EL_AVG 341.24 2.8818 109.97 1177.1  385.19 10.712 179.78 792.74  338.71 2.9785 109.97 1177.1 
 RC_EL_MAX 464.08 4.1401 156 1545  501.95 12.696 259 922  461.9 4.3144 156 1545 
 SLP_MIN  0 0 0 0  0 0 0 0  0 0 0 0 
 SLP_MAX  77.283 0.5896 5 217  78.647 2.1659 17 154  77.204 0.611 5 217 
 SLP_MEAN  17.118 0.2006 0.2377 52.895  12.867 0.4555 0.2377 29.085  17.363 0.2097 0.3439 52.895 
 RC_SLP_MIN 0 0 0 0  0 0 0 0  0 0 0 0 
 RC_SLP_AVG 16.011 0.1706 0.7094 43.248  12.687 0.4444 1.4574 24.506  16.203 0.178 0.7094 43.248 
 RC_SLP_MAX 71.858 0.5501 5 178  72.746 2.0229 17 145  71.807 0.5701 5 178 
 NO3_MIN  12.089 0.0329 7.4822 16.775  12.158 0.1496 7.4822 15.684  12.085 0.0338 7.4822 16.775 
 NO3_MAX  12.401 0.0336 7.491 16.796  12.727 0.1445 7.501 16.042  12.382 0.0345 7.491 16.796 
 NO3_MEAN 12.245 0.0332 7.4833 16.789  12.441 0.1471 7.4845 15.878  12.234 0.0341 7.4833 16.789 
 SO4_MIN  18.651 0.0578 12.373 27.665  17.298 0.1945 12.373 24.682  18.729 0.0598 12.373 27.665 
 SO4_MAX  19.199 0.059 12.396 27.73  18.004 0.2059 12.4 26.473  19.268 0.061 12.396 27.73 
 SO4_MEAN 18.924 0.0584 12.376 27.718  17.647 0.1999 12.376 25.46  18.998 0.0604 12.377 27.718 
 PHSOIL  0.8357 0.0056 0 1  0.7011 0.0296 0 1  0.8435 0.0057 0 1 
 FOR  0.5923 0.0044 0.0055 0.9963  0.5985 0.0121 0.0095 0.9191  0.592 0.0046 0.0055 0.9963 
 FOR_RC  0.5834 0.0035 0.0092 0.9958  0.6059 0.0115 0.133 0.918  0.5821 0.0037 0.0092 0.9958 
 CU_FOR  0.0007 5E-06 7E-06 0.0011  0.0007 1E-05 0.0003 0.001  0.0007 5E-06 7E-06 0.0011 
 CU_FOR_RC 180.1 21.462 0.045 31028  691.18 124.25 1.7405 8878.8  150.58 21.419 0.045 31028 
 H2O  0.0111 0.0006 0 0.9665  0.0309 0.0059 0 0.9665  0.01 0.0005 0 0.3343 
 H2O_RC  0.0174 0.0006 0 0.5254  0.0331 0.0037 0 0.5254  0.0165 0.0006 0 0.4037 
 CU_H2O  6E-06 2E-07 0 0.0002  2E-05 2E-06 0 0.0002  5E-06 2E-07 0 0.0001 
 CU_H2O_RC 0.8388 0.0992 0 140.6  3.384 0.5958 0 41.82  0.6918 0.0985 0 140.6 
 AG  0.2622 0.0042 0 0.9492  0.2145 0.0094 0.0021 0.5595  0.2649 0.0044 0 0.9492 
 AG_RC  0.2282 0.0036 0 0.9408  0.1589 0.0078 6E-05 0.4023  0.2322 0.0037 0 0.9408 
 CU_AG  0.0003 5E-06 0 0.0011  0.0003 9E-06 6E-06 0.0006  0.0003 5E-06 0 0.0011 
 CU_AG_RC  10.264 1.1726 0 1674.2  29.905 5.7404 6E-05 409.1  9.1292 1.1922 0 1674.2 
 DEV  0.0968 0.0021 0.0009 0.9872  0.1189 0.0091 0.0082 0.7732  0.0955 0.0021 0.0009 0.9872 
 DEV_RC  0.1272 0.0019 0.0001 0.9189  0.1423 0.0088 0.0137 0.7336  0.1263 0.002 0.0001 0.9189 
 CU_DEV  1E-04 2E-06 1E-06 0.0011  9E-05 4E-06 1E-05 0.0005  1E-04 2E-06 1E-06 0.0011 
 CU_DEV_RC 0.13 0.0153 0 22.584  0.4104 0.0788 0 5.5593  0.1138 0.0155 0 22.584 
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   All  Surveyed  Unsurveyed 
Region Variable  Mean StdErr Min Max  Mean StdErr Min Max  Mean StdErr Min Max 
Ohio BAR  0.0034 0.0002 0 0.1636  0.0025 0.0004 0 0.0576  0.0034 0.0002 0 0.1636 
 BAR_RC  0.0026 0.0001 0 0.1728  0.0017 0.0003 0 0.0317  0.0026 0.0001 0 0.1728 
 CU_BAR  4E-06 2E-07 0 0.0001  3E-06 5E-07 0 6E-05  4E-06 2E-07 0 0.0001 
 CU_BAR_RC  0 0 0 0  0 0 0 0  0 0 0 0 
 HUM  0.3624 0.0046 0.0037 0.9894  0.3359 0.0116 0.0115 0.7771  0.3639 0.0048 0.0037 0.9894 
 HUM_RC  0.3579 0.0036 0.0017 0.9821  0.3029 0.0104 0.0138 0.7412  0.3611 0.0038 0.0017 0.9821 
 CU_HUM  0.0004 5E-06 4E-06 0.0011  0.0004 1E-05 2E-05 0.0008  0.0004 5E-06 4E-06 0.0011 
 CU_HUM_RC 16.459 1.9239 0.0042 2774.7  52.385 9.9317 0.0138 692.47  14.384 1.9462 0.0042 2774.7 
 DEC  0.5495 0.0043 0.001 0.9754  0.5485 0.011 0.0065 0.8677  0.5495 0.0045 0.001 0.9754 
 DEC_RC  0.5227 0.0033 0.0031 0.9432  0.5225 0.0108 0.098 0.782  0.5227 0.0034 0.0031 0.9432 
 CU_DEC  0.0006 5E-06 1E-06 0.0011  0.0006 1E-05 0.0003 0.001  0.0006 5E-06 1E-06 0.0011 
 CU_DEC_RC 25.63 3.1062 0.0031 4491.9  97.624 17.928 0.2505 1295.6  21.471 3.1021 0.0031 4491.9 
 EVG  0.0214 0.0006 0 0.3217  0.0228 0.002 0.0001 0.1396  0.0214 0.0006 0 0.3217 
 EVG_RC  0.0297 0.0009 0 0.4508  0.0441 0.0045 0.0001 0.332  0.0288 0.0009 0 0.4508 
 CU_EVG  2E-05 6E-07 0 0.0004  3E-05 2E-06 5E-07 0.0002  2E-05 6E-07 0 0.0004 
 CU_EVG_RC 1.5601 0.1835 0 253.28  7.0298 1.1769 0.0001 81.26  1.2441 0.1802 0 253.28 
 MXF  0.0214 0.0009 0 0.4807  0.0272 0.0046 0 0.4229  0.021 0.0009 0 0.4807 
 MXF_RC  0.0311 0.0013 0 0.7084  0.0393 0.0057 0 0.4777  0.0306 0.0013 0 0.7084 
 CU_MXF  3E-05 9E-07 0 0.0005  4E-05 4E-06 0 0.0003  2E-05 9E-07 0 0.0005 
 CU_MXF_RC 1.6258 0.1554 0 188.59  5.9264 0.9478 0 64.183  1.3774 0.1538 0 188.59 
 GRS  0.0244 0.0006 0 0.4209  0.0101 0.0007 0 0.0433  0.0252 0.0006 0 0.4209 
 GRS_RC  0.0254 0.0006 0 0.3168  0.0089 0.0007 0 0.0406  0.0264 0.0007 0 0.3168 
 CU_GRS  3E-05 7E-07 0 0.0005  1E-05 7E-07 0 4E-05  3E-05 7E-07 0 0.0005 
 CU_GRS_RC  1.0728 0.1175 0 169.67  2.1553 0.499 0 41.798  1.0103 0.1208 0 169.67 
 HDV  0.0031 0.0002 0 0.2624  0.0049 0.0011 0 0.1203  0.0029 0.0002 0 0.2624 
 HDV_RC  0.0025 0.0002 0 0.2772  0.0053 0.0012 0 0.1303  0.0024 0.0002 0 0.2772 
 CU_HDV  2E-06 1E-07 0 0.0002  1E-06 2E-07 0 2E-05  2E-06 1E-07 0 0.0002 
 CU_HDV_RC 0.1076 0.0136 0 18.635  0.4535 0.0823 0 5.3543  0.0876 0.0135 0 18.635 
 MDV  0.0086 0.0004 0 0.4447  0.0125 0.0022 0 0.2671  0.0083 0.0004 0 0.4447 
 MDV_RC  0.0091 0.0004 0 0.3441  0.0132 0.0021 0 0.2285  0.0089 0.0004 0 0.3441 
 CU_MDV  7E-06 3E-07 0 0.0003  5E-06 7E-07 0 0.0001  7E-06 3E-07 0 0.0003 
 CU_MDV_RC 0.4193 0.054 0 77.454  1.5577 0.2913 0 19.132  0.3536 0.0543 0 77.454 
 LDV  0.0237 0.0008 0 0.4653  0.0296 0.0035 0 0.2772  0.0233 0.0009 0 0.4653 
 LDV_RC  0.0258 0.0007 0 0.3234  0.0283 0.0029 0 0.2026  0.0257 0.0007 0 0.3234 
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   All  Surveyed  Unsurveyed 
Region Variable  Mean StdErr Min Max  Mean StdErr Min Max  Mean StdErr Min Max 
Ohio CU_LDV  2E-05 7E-07 0 0.0005  2E-05 2E-06 9E-08 0.0003  2E-05 8E-07 0 0.0005 
 CU_LDV_RC 1.185 0.1466 0 213.06  3.9292 0.7522 0 52.611  1.0265 0.1484 0 213.06 
 ODV  0.0615 0.0008 0.0008 0.5078  0.0718 0.0032 0.004 0.2884  0.0609 0.0008 0.0008 0.5078 
 ODV_RC  0.0897 0.001 0.0001 0.5394  0.0954 0.0038 0.0137 0.3042  0.0894 0.001 0.0001 0.5394 
 CU_ODV  6E-05 7E-07 1E-06 0.0005  7E-05 2E-06 1E-05 0.0002  6E-05 8E-07 1E-06 0.0005 
 CU_ODV_RC 4.3533 0.5306 0.0001 768.77  16.129 3.0147 0.0137 213.52  3.673 0.531 0.0001 768.77 
 LO  0.0852 0.0015 0.0009 0.8108  0.1014 0.0063 0.0061 0.5655  0.0842 0.0016 0.0009 0.8108 
 LO_RC  0.1155 0.0015 0.0001 0.7907  0.1237 0.0061 0.0137 0.5067  0.1151 0.0015 0.0001 0.7907 
 CU_LO  9E-05 1E-06 1E-06 0.0009  9E-05 3E-06 1E-05 0.0004  9E-05 1E-06 1E-06 0.0009 
 CU_LO_RC  5.5382 0.6768 0.0001 981.83  20.059 3.7634 0.0137 261.16  4.6995 0.6792 0.0001 981.83 
 MH  0.0116 0.0006 0 0.7071  0.0174 0.0032 0 0.3874  0.0113 0.0007 0 0.7071 
 MH_RC  0.0116 0.0006 0 0.6213  0.0185 0.0033 0 0.3588  0.0112 0.0006 0 0.6213 
 CU_MH  9E-06 4E-07 0 0.0005  7E-06 9E-07 0 0.0001  9E-06 5E-07 0 0.0005 
 CU_MH_RC 0.5269 0.0675 0 96.089  2.0112 0.3729 0 23.733  0.4412 0.0677 0 96.089 
 WET  0.0032 0.0002 0 0.1404  0.0128 0.0018 0 0.1404  0.0026 0.0002 0 0.1345 
 WET_RC  0.0092 0.0005 0 0.4028  0.0369 0.005 0 0.3665  0.0076 0.0004 0 0.4028 
 CU_WET  3E-06 2E-07 0 0.0001  2E-05 2E-06 0 9E-05  3E-06 1E-07 0 0.0001 
 CU_WET_RC 0.5609 0.0663 0 85.725  3.2664 0.4804 0 29.827  0.4046 0.0633 0 85.725 
 EMH  0.0005 3E-05 0 0.0677  0.0017 0.0002 0 0.0179  0.0004 3E-05 0 0.0677 
 EMH_RC  0.0015 9E-05 0 0.0749  0.0057 0.0008 0 0.071  0.0013 9E-05 0 0.0749 
 CU_EMH  5E-07 4E-08 0 8E-05  2E-06 2E-07 0 2E-05  4E-07 4E-08 0 8E-05 
 CU_EMH_RC 0.0824 0.01 0 12.835  0.4352 0.0653 0 4.1161  0.0621 0.0098 0 12.835 
 HAY  0.1497 0.0025 0 0.8581  0.1392 0.0057 0.0013 0.335  0.1503 0.0026 0 0.8581 
 HAY_RC  0.1377 0.0022 0 0.8268  0.1082 0.0057 0 0.3299  0.1394 0.0023 0 0.8268 
 CU_HAY  0.0002 3E-06 0 0.001  0.0002 5E-06 3E-06 0.0004  0.0002 3E-06 0 0.001 
 CU_HAY_RC 5.9945 0.6811 0 964.8  19.145 3.6147 6E-05 268.31  5.2349 0.6871 0 964.8 
 CRP  0.1125 0.0035 0 0.9411  0.0753 0.0055 1E-05 0.3124  0.1147 0.0037 0 0.9411 
 CRP_RC  0.0904 0.0029 0 0.9368  0.0507 0.0037 0 0.1904  0.0927 0.0031 0 0.9368 
 CU_CRP  0.0001 4E-06 0 0.001  0.0001 6E-06 2E-06 0.0004  0.0001 4E-06 0 0.001 
 CU_CRP_RC  4.2692 0.5117 0 709.4  10.76 2.1586 0 171.82  3.8943 0.526 0 709.4 
 SHB  0.0062 0.0003 0 0.163  0.01 0.0015 0 0.1137  0.0059 0.0003 0 0.163 
 SHB_RC  0.0051 0.0002 0 0.1556  0.0066 0.0009 0 0.0641  0.005 0.0002 0 0.1556 
 CU_SHB  7E-06 3E-07 0 0.0002  1E-05 2E-06 0 0.0001  7E-06 3E-07 0 0.0002 
 CU_SHB_RC 0.2607 0.0297 0 40.263  1.242 0.1883 0 11.541  0.2041 0.0292 0 40.263 
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