
Graduate Theses, Dissertations, and Problem Reports

2007

Specifying security requirements improvement for IEEE Standard Specifying security requirements improvement for IEEE Standard

830 830

Jacob D. McCarty
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
McCarty, Jacob D., "Specifying security requirements improvement for IEEE Standard 830" (2007).
Graduate Theses, Dissertations, and Problem Reports. 1801.
https://researchrepository.wvu.edu/etd/1801

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230465752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1801&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1801?utm_source=researchrepository.wvu.edu%2Fetd%2F1801&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

SPECIFYING SECURITY REQUIREMENTS

IMPROVEMENT FOR IEEE STANDARD 830

Jacob D. McCarty

Thesis submitted to the College of Engineering and Mineral Resources at

West Virginia University in partial fulfillment of the requirements for the

degree of

Master of Science

in

Computer Science

Roy S. Nutter, Ph.D., Chair

John M. Atkins, Ph.D.

Cynthia D. Tanner, M.S.C.S.

Lane Department of Computer Science

and Electrical Engineering

Morgantown, West Virginia

2007

Keywords: IEEE std. 830, software engineering, SRS, software requirements

specifications, security, security legislation.

©2007 Jacob D. McCarty, All Rights Reserved

ABSTRACT

SPECIFYING SECURITY REQUIREMENTS

IMPROVEMENT FOR IEEE STANDARD 830

Jacob D. McCarty

This paper presents a concept on how the software requirements

specifications template provided by IEEE Standard 830 could be updated

to ensure that security is analyzed during the early stages of the software

development lifecycle. This improved security requirement in the

software requirements specifications will ensure that software developers

will have a more clear understanding of how to protect digital information.

iii

DEDICATED TO THE MEMORY OF

John Robert “Bob” Moran and Emma Teresa Moran,

their knowledge and inspiration

will forever be passed on from

generation to generation.

iv

ACKNOWLEDGEMENTS

I would like to thank the following people for their help:

Dr. Roy Nutter, for agreeing to be my chair and guiding me through the

thesis process,

Dr. John Atkins, for enlightening me where I should have been

enlightened,

Cindy Tanner, for providing me wisdom in my time of need,

Linda Kress and Tammy McDonald, for keeping me sane during my

graduate studies years.

I would also like to thank the senior design team that helped me redesign

BTM, which was the inspiration for this thesis:

Sarah Lovell

Nick Bialaszewski

Shawn Holstein

Last but not least, I would like to thank my family for encouraging me to

get the most out of my education.

v

TABLE OF CONTENTS

1 INTRODUCTION.. 1
1.1 Statement of the Problem .. 1

2 BACKGROUND ... 2
2.1 The Software Process.. 2

2.1.1 The Waterfall Model ... 4

2.1.2 The Spiral Model ... 5

2.1.3 The Unified Software Development Process 6

2.2 IEEE Standard 830 ... 7
2.2.1 Software Requirements Specifications Qualities 7

2.2.2 SRS: Security Requirements Evolution 11

2.3 Legislation and Regulations .. 11
2.3.1 United States Federal Legislation 11

2.3.2 United States State Legislation 13

2.3.3 Corporate Policies and Standards 14

2.4 Current Research in the Profession 16

2.5 Relevant Standards ... 18
2.5.1 ISO/IEC 9001:2000 ... 18

2.5.2 ISO/IEC 27001:2005 ... 19

2.5.3 NIST SP 800-100 .. 19

3 SECURING SENSITIVE INFORMATION 20

3.1 The Need for Secure Data ... 21
3.2 Digital Information and the Internet 22

3.3 IEEE Standard 830 Analysis ... 23
3.3.1 IEEE Standard 830 Security Analysis 24

3.3.2 Recommended Additions to IEEE Standard 830 .. 26

3.4 Sample Security Elicitation Questions 28
3.5 Sample Requirements Elicitation 29

3.5.1 Sample Security Requirements 30

3.5.2 Sample Function Specification 31

3.6 Technique for Specification of Data 32

3.6.1 Sample Classification of Data 32

3.7 IEEE Standard 830 and the Law 33

4 CONCLUSION .. 34
5 FUTURE WORK ... 35

vi

6 APPENDICES ... 36
6.1 APPENDIX A: Software Requirements Specifications ... 36

6.2 APPENDIX B: SRS Section 3 Templates 48
6.2.1 Organized by Mode [13] 48

6.2.2 Organized by Mode: Version 2 [13] 50

6.2.3 Organized by User Class [13] 52

6.2.4 Organized by Object [13] 54

6.2.5 Organized by Feature [13] 56

6.2.6 Organized by Stimulus [13] 58

6.2.7 Organized by Functional Hierarchy [13] 60

6.2.8 Showing Multiple Organizations [13] 63

7 BIBLIOGRAPHY .. 65

vii

TABLE OF FIGURES

Figure 1: The Waterfall Model [11] ... 4

Figure 2: The Spiral Model [11] ... 5
Figure 3: The Unified Software Development Process [11] 6

Figure 4: Security Breach Law Enactments [9] 14
Figure 5: Cost of a Security Breach [21] .. 22

1

1 INTRODUCTION
Professionals in the field of software engineering have taken many steps to

enhance the design of software to ensure secure information. Security has

traditionally been an afterthought of the computer software design process [16].

Current standards recommend that security be evaluated in the software

requirements specifications. “It is not that developers are incapable of producing

[secure] software … it is just that they are not sufficiently motivated to do so”

[15]. Developers generally do not understand the security requirements of

software systems that they are designing; therefore, such security requirements

are either ignored or not adequately fulfilled.

This paper presents a discussion of current software practices of developing the

software requirements specifications. This document begins by presenting a brief

background of software engineering processes and the phases in which software

requirements specifications are developed. Next it presents the Institute of

Electrical and Electronics Engineers, IEEE, standard for software requirements

specifications. Third it presents examples of current legislation and regulations

surrounding the use of sensitive information. Finally, a possible solution on how

to further define security in the software requirements specifications is presented.

1.1 Statement of the Problem
Current practices for developing software requirements specifications appear to

be inadequate. The current software requirements specifications standard does

not provide a clear description on how to specify security requirements. This

document provides a detailed method for improving the IEEE standard regarding

security. The present IEEE Standard 830 places security information in the

software attributes section and does not provide a clear description of how to

specify security requirements. This thesis will provide a suggested outline for

developing software requirements specifications with improved security visibility.

2

2 BACKGROUND
Software engineering can be described as a process in which a computer program

and its supporting documentation are developed. There are many types of

software process models that are used to manage how a software product is

developed. According to Ian Sommerville, “Most software process models are

based on one of three general models or paradigms of software development”

[11]. The three general models are: the waterfall approach, iterative development,

and component-based.

2.1 The Software Process
All of the software models produce many different types of documentation to

describe the software being developed. These documentation sets serve as

contracts between the users of the system, the client asking for the product being

developed, and the software development team. After development is completed,

testing of the software begins, based on the development documentation, to

ensure that all aspects of the software were developed to the software

requirements specifications. This paper will describe the IEEE standard to

developing software requirements specifications and make recommendations to

update the standard to meet the needs of organizations developing software. This

paper will explain the different models and techniques to developing software and

point out the specific location in which software requirements specifications are

created.

3

In 1968 and 1969, software engineering became the official practice for

developing computer software architectures and designs during two NATO

Software Engineering Conferences [10]. During these conferences, software

engineering was compared to computer science and practitioners of both

disciplines discussed how they could work together to develop better software

products. The discussion was completed by a group comprised of academic and

industry professionals. These conferences set the concept of computer software

development being a set of phases: conception, design, implementation, testing,

and maintenance [10]. Software models take a different approach to completing

these phases, but every model discussed hereafter contains the concepts of the

phases put forward at the conference.

In the forthcoming sections there is a brief description of three different software

lifecycle models. Note that in each of the descriptions there is a specific notation

stating which phase or phases the software requirements specifications are

developed.

4

2.1.1 The Waterfall Model
The waterfall model, created by W. W. Royce in 1970, is a set of

incremental steps. Each step is considered a phase in which its

predecessor must be completed prior to moving forward in the

development process. This lifecycle model includes the following phases,

listed in order: requirement definition, system and software design,

implementation and unit testing, integration and system testing, and

operation and maintenance. The waterfall model provides a means by

which developers can reevaluate a previous phase. If a problem is

discovered, the development team suspends the current phase and reenters

the previous phase to correct problems prior to moving forward with

development. Due to the specific set of phases and how they are to be

completed, the waterfall model is typically not a good model for use in

software design where the system requirements are not well understood or

are expected to rapidly change throughout the process. During the

development of the waterfall model, security was not an issue that needed

to be highlighted; therefore, it was left out of the model for analysis. The

software requirements specifications is completed in the second phase of

the waterfall model [11]. Figure 1 displays a graphical representation of

the waterfall model.

Software

requirements

specifications are

developed here.

Requirements

Definition

System and

Software Design

Implementation

and Unit Testing

Integration and

System Testing

Operation and

Maintenance

Figure 1: The Waterfall Model [11]

5

2.1.2 The Spiral Model
The spiral model, created by B. W. Boehm in 1988, is represented as a

series of spirals. The software process begins in the innermost spirals and

work outward. Each iteration of the spiral focuses on a different aspect of

the software being developed. The spiral model analyzes each cycle in

four ways: objective setting, risk assessment and reduction, development

and validation, and planning. The main focus of the spiral model is risk; if

risk is determined to be too high, then the project is ended and not

completed. During the risk assessment a security analysis should be

completed, if the security risk is too high then the project would be ended.

The software requirements specifications are completed in one cycle of the

spiral [11]. Figure 2 provides a graphical representation of the spiral

model.

Figure 2: The Spiral Model [11]

6

2.1.3 The Unified Software Development Process
The unified process, created by J. Rumbaugh, I. Jacobson, and G. Booch

in 1999, is divided into four areas of focus: inception, elaboration,

construction, and transition. The unified process is considered an iterative

process. Each of the specific phases is reviewed in an iterative fashion

followed by the complete process being iterated for the next component in

the system. Each iteration of the process focuses on a specific module in

the complete system based on the ranked business needs. This model

focuses on business concerns rather than technical concerns. The software

requirements specifications are completed throughout all phases, but the

majority of the specifications are developed during the inception and

elaboration phases. The unique factor in the unified process is that it

focuses on what it considers “six fundamental best practices.” These

fundamentals are: develop software iteratively, manage requirements,

develop user component-based architectures, visually model software,

verify software quality, and control changes to software [11]. During

development with the unified process model, security requirements would

be gathered as a step within each iteration of a phase. During the

inception phase security would be specified as an overview. During the

elaboration phase, security would be specified in software requirements

specifications. The construction phase would focus on how to code

securely, and in the transition phase physical security measures would be

placed into the system. Figure 3 provides a graphical representation of the

unified process model.

Figure 3: The Unified Software Development Process [11]

7

2.2 IEEE Standard 830
The Institute of Electrical and Electronic Engineers, IEEE, is a nonprofit

professional association that strives to advance technology. It is

comprised of industry professionals, academic professionals, and students.

IEEE has produced many standards for engineering by using a set of tested

and scrutinized methods. “Our standards are developed in a unique

environment that builds consensus in an open process based on input from

all interested parties” [7]. IEEE believes that by providing and defining

standards for the technology industry, organizations will have the

following benefits:

“...market growth for new and emerging technologies, reduced

development time and cost, sound engineering practices,

decreased trading costs and lowered trade barriers, increased

product quality and safety, reduced market risks, and protection

against obsolescence” [7].

There are currently three publications of the IEEE Standard 830: Release

1984, Release 1993, and Release 1998. These standards describe what a

high-quality software requirements specifications document should

contain and how it should be organized. The only main difference

between the three documents is how the information is visually presented

in each release, but the concepts and templates are essentially the same.

IEEE states that all of their standards must be reviewed every five years.

2.2.1 Software Requirements Specifications Qualities
The software requirements specifications should be an unambiguous,

verifiable base for an agreement between the customer and the developer

as to what is to be designed. This understanding should be based on the

following characteristics of good software requirements specifications:

“correct, unambiguous, complete, consistent, ranked for importance and/or

stability, verifiable, modifiable, and traceable” [13]. The main goal of the

document is to reduce the cost – both time and financial – of the

8

development process. During the later phases of the project, the software

requirements specifications is used to validate and verify that all

contractual agreements have been achieved by the development team, and

also serves as a reference to individuals or organizations performing

maintenance on the software product after it has been delivered to the

customer [2].

IEEE Standard 830 provides templates for the software requirements

specifications to the industry. A sample software requirements

specifications template is provided in section 6.1. This template shows

many aspects that are needed to properly specify requirements for a

software project; a description of the sections of the template is provided

in the following sections.

2.2.1.1 SRS: Introduction Section
The introduction section is designed to provide information to the user that

might be helpful while progressing through the software requirements

specifications document. The purpose section is to specify the reason for

the software requirements specifications as well as the target audience.

The scope section provides the names of the software products to be

designed and the main goals and objectives of the system. If there is

anything specific the software product will not accomplish, this is to be

clearly stated here. The definitions, acronyms, and abbreviations section

provides a reference area for the reader to refer to while reading the

document. This can be a bulleted list or in any format, but should explain

any unclear terms or technical aspects that either the customer or the

developer might not understand while reading the software requirements

specifications. The references section is expected to list any referenced

documents during the creation of the software requirements specifications.

The overview section should explain what the rest of the software

requirements sections either mean or entail [13].

9

2.2.1.2 SRS: Overall Description Section
The overall description area provides information on how each of the

factors of the system affects the software requirements specifications.

This section is not to include specific requirements; specific requirements

are placed in the specific requirements section of the document. The

product perspective section should describe the system in terms of other

products, either on the market or currently being used in the old

environment – the system being replaced. The product functions section is

to briefly describe the major components of the system being developed.

Graphical representation may be presented in this section to help the

reader understand each function’s relationship to other functions and the

system as a whole. User characteristics should describe the users’

knowledge base. This should not provide requirements the users will need

to use the system, but provide a better understanding as to why the system

is being designed in a specific manner. The constraints section is to

describe what constraints might be put on the system being designed. For

instance, if the software being designed is to be used on cellular devices;

then, the application will have less memory to operate in comparison to an

application being deployed on a desktop. Assumptions and dependencies

are listed in the software requirements specifications because most

systems do not perform correctly due to developers or users assuming that

the other party has a clear understanding of a requirement which might not

have been acknowledged by the other party. The items listed in the

assumptions and dependencies area are to explain requirements that might

affect the software requirements specifications [13]. For example:

“…an assumption may be that a specific operating system will

be available on the hardware designated for the software product.

If, in fact, the operating system is not available, the SRS

[software requirements specifications] would then have to

change accordingly” [13].

10

The apportioning of requirements section is used to explain certain

features or functionality that might be delayed for future releases or

versions of the software.

2.2.1.3 SRS: Specific Requirements
The specific requirements area is to specify the software requirements in a

clear and technical manner so the developers can complete development to

the needs of the customer. The external interfaces section provides a

detailed description of all inputs into the system and outputs returned by

the system. This is completed by breaking down all the data

inputs/outputs and describing the details about them. The functions

section should provide technical details about all of the functions provided

in the software. This is completed using both textual and graphical

descriptions of the following areas: validity checks on the inputs, exact

sequence of operations, responses to abnormal situations, effects of

parameters, and relationship of outputs to inputs. The performance

requirements section should provide system performance requirements.

For example, time expectations for specific operations, the number of

terminals to be supported, and the type of information to be handled. The

logical database requirements section provides a description of the

database, if necessary. The features that the section analyzes are: types of

information used by various functions, frequency of use, accessing

capabilities, data entities and their relationships, integrity constraints, and

data retention requirements. The standard compliance section provides

items that constrict the design to specific formats. These typically occur

during reporting of information in the system for audit purposes – a

specific report for a government organization. The software system

attributes section defines the reliability, availability, security,

maintainability, and portability of the system. External interface

requirements provide information to help the developers and users of the

system understand how the new software will interact with other entities

in the system’s environment. [13].

11

This paper will discuss in more detail suggested methods on improving the

IEEE standard concerning security. The standard places the majority of

security information into the software attributes section and does not

provide a clear understanding to what security requirements mean or how

they should be developed.

2.2.2 SRS: Security Requirements Evolution
Security Requirements in IEEE Standard 830 have not evolved during

each release. In all releases, IEEE Standard 830-1984, IEEE Standard

830-1993, and IEEE Standard 830-1998, the security requirements were

specified under the subsection of attributes in the specific requirements

section. The security specifications area stated that it should address

factors such as “accidental or malicious access, use, modification,

destruction, or disclosure” [2].

2.3 Legislation and Regulations
New legislation, regulations, and corporate policies affect how

information technology is used to secure sensitive information.

Legislation is currently being developed throughout the federal and state

levels of the United States government to ensure that personal information

is not disclosed without the explicit consent of the United States’

economic consumers. The forthcoming sections will describe some

examples of such regulatory efforts.

2.3.1 United States Federal Legislation
Information security is gaining momentum throughout the United States.

Federal legislation is pushing the information technology sector to secure

sensitive information. A few examples of these laws follow.

12

2.3.1.1 Family Educational Rights and Privacy Act
The Family Educational Rights and Privacy Act of 1974, also known as

FERPA, protects students’ education records. Information that is

considered private according to FERPA includes, but is not limited to,

academic performance and financial account information. This federal

regulation does permit directory information to be released to the public

under the guidelines that such information is public knowledge [5].

2.3.1.2 Health Insurance Portability and Accountability Act
The Health Insurance Portability and Accountability Act of 1996, also

known as HIPAA, provides regulatory standards on how electronic

medical information is to be handled by health care organizations. This

statute provides protection against many abuses in the health care industry.

It specifically states that if an individual or organization gains

unauthorized access to any unique health care identifier, personal

identifiable medical information, or discloses such information that the

individual or organization is punishable by fine and/or imprisonment [1].

2.3.1.3 Financial Services Modernization Act
The Financial Services Modernization Act of 1999, also known as the

Gramm-Leach Bliley Act, was designed to protect consumer financial

information. The Gramm-Leach Bliley Act provides a means for

enforcement agencies to enforce two regulations: the Financial Privacy

Rule and the Safeguards Rule [14]. The Financial Privacy Rule states that

financial institutions must inform consumers of the collection of personal

financial information, with whom it will be shared, and how the financial

information is going to be protected. This rule also provides a means by

which consumers can object to their information being shared with third

parties [6]. The Safeguards Rule clearly states that organizations that

collect financial information must take measures to protect the information

they are provided during transmission and storage [14].

13

2.3.1.4 Public Company Account Reform and Investor Protection Act
The Public Company Account Reform and Investor Protection Act of

2002, also known as Sarbanes-Oxley, sets forth a few parameters that are

pertinent to software design. One of the parameters requires financial

audit information to be kept securely for a period of five years. Another

parameter states that any mutilation or altering of information is

punishable by fine and/or imprisonment. One other parameter that can

directly affect how software is designed states that all communications,

physical or electronic, must be stored if it pertains to an audit/review or

financial information that would/could be audited [12].

2.3.2 United States State Legislation
There is currently Security Breach Legislation in more than half of the

United States. These legislative laws are not the only state laws that can

affect software engineering, but they provide a clear example how state

law can affect the design of software systems. Figure 4 provides a visual

understanding of the states with current security breach legislation and the

year their legislation went into effect.

The state laws regulating personal information are designed to force

industry to take measures to prevent personal information from being

stolen or disclosed to unauthorized individuals. The laws state that

personal information is, but not limited to: social security number, driver’s

license, credit card number, debit card number, financial account number,

passwords, personal identification numbers, security codes, access codes,

and et cetera [3]. All of the current legislation specifically states that if the

information disclosed was unencrypted that the individuals of said states

must be notified that their personal information may have been disclosed

without consent [9].

14

Figure 4: Security Breach Law Enactments [9]

2.3.3 Corporate Policies and Standards
Role-based access control policies are typically seen in corporate

regulations. Most organizations set a specific type of role for each of its

users. This role based access control policy provides specific credentials

to be met prior to permitting a user access to the digital information

requested. Information that corporate organizations store, manipulate, and

transmit is accepted as needing to be classified and secured.

15

2.3.3.1 Information Management Security Policy
One of the first steps to creating an information management security

policy is specifying the organization’s assets. These assets range from

employees to digital information. The next step is defining how to protect

the organization’s assets. A closer look at digital information is needed.

Digital information is typically stored in data centers within an

organization; users and systems that try to access the data must clearly be

authorized to have such access. These roles are defined based on the

confidentiality, integrity, and availability policies with which the digital

information must comply. The purpose for the role based access policies

are simple: if a user changes information that he/she is not authorized to

change, then the integrity and confidentiality of the information is

compromised. If a system cannot retrieve information that is needed, then

the availability is compromised. If proprietary information is disclosed to

persons who are not authorized to have access, then the confidentiality of

the information is compromised. Corporations must establish role-based

access controls for their information to retain all three qualities:

confidentiality, integrity, and availability [4].

2.3.3.2 Payment Card Industry Data Security Standard
The credit card industry in 2006 released the Payment Card Industry Data

Security Standard. This standard placed many restrictions on

organizations and corporations that accept credit cards as a form of

payment. If organization or corporations do not comply with said

standard, their status as credit card processor could be revoked and the

corporations could be fined. Some of the restrictions include the

following: build and maintain a secure network, protect cardholder data,

maintain a vulnerability management program, implement strong access

control measures, regularly monitor and test networks, and maintain an

information security policy [8].

16

2.4 Current Research in the Profession
Microsoft and Compuware worked together to perform a study of security

practices in the United States and Europe. On October 9, 2006, they

released the results of their study titled: How Secure is Your Application

Development? Their claim is that: “security is only as good as the

weakest link” [22]. They analyzed the completed breakdown of a web-

application to show that the weakest link is the development of the

application. Looking at the protection levels of a web-application there

can be five areas that security needs to be in place: desktop layer, transport

layer, access layer, network layer and application layer.

The desktop layer is where the end user is located. He or she decides to

access the web-application. At the desktop layer the end user would be

performing his or her part in the security process by having an anti-virus

program fully operational and up-to-date. The next layer during the

process of the end user accessing the web-application presents the

transport layer. The transport layer is represented by the World Wide

Web. The security measure at this stage in the process is an encrypted

connection. During the access layer a firewall verifies that the

communication passing through it to the web-application is an authentic

connection. An intrusion detection system would be deployed to monitor

the network layer. The user has now reached the application layer. This

layer has been developed and placed on the web for viewing. Therefore

the only security measures now in place are the built-in application

protections.

The problem with relying on built in application protection is that most

developers either don’t understand the security requirements or they see

security requirements as a limiting agent on the application [22].

Developers generally see security as a means by which to slow the

application down, or not provide the access that the developer feels the

17

application deserves. Compuware and Microsoft both claim that the

weakest link in this example is the application itself. “… security

vulnerabilities at the application level are a form of design or coding

defect…” [22]. Compuware and Microsoft have released a series of

security approaches for developers. These include: assess business risk,

develop the right architecture, code securely, test early and often, and

validate security.

Compuware and Microsoft felt that if everyone was deploying anti-virus

programs, firewalls, intrusion detection systems, then the weakest link had

to be the application. They claim that with all these security measures in

place, there should be no security breaches, but security breaches still

occur based on commonly exploited attack mechanisms: SQL injections

and buffer overflows [22]. These vulnerabilities in the software place the

application in danger of being attacked once the information is made

aware to the public. Compuware and Microsoft called for software

developers to take security measures during the design phase to mitigate

these risks [22].

18

2.5 Relevant Standards
There are numerous standards that are currently being referenced by

organizations that use sensitive information. Sections 2.5.1-2.5.3 provides

a description of three standards that can affect the software requirements

specifications. As discussed later in this document, the software engineers

developing the software requirements specifications must understand how

the customer’s organization needs to handle the data for their organization

as well as how to handle the development of the SRS. For example,

ISO/IEC 27001:2005 and NIST SP 800-100 both provide asset

classification. Assets, such as data, are defined in the organizations

information security management policies. These policies also provide

specifics on how the data is to be handled. The software requirements

specifications need to reflect a software design that will conform to the

handling of such data according to the organizations information security

management policies.

2.5.1 ISO/IEC 9001:2000
ISO/IEC 9001 provides requirements for quality management. It provides

development companies an organized guidance to create a quality

management system. The goal of a quality management system is to

provide the developing organization a set of steps to developing a project

and measurable guidelines to ensure that the customer receives a high

quality product [26]. Software engineering companies would use ISO/IEC

9001 to provide a structure for developing software. A specific stage in

this process might include develop software requirements specifications

using IEEE Standard 830.

19

ISO/IEC 9001:2000 addresses issues such as: how to control documents,

how to control records, how to perform internal audits, how to control

nonconforming products, how to take corrective actions, and how to take

preventative actions. All six of these categories, addressed by ISO/IEC

9001:2000, provide the quality management controls needed to maintain

the software requirements specifications.

2.5.2 ISO/IEC 27001:2005
Information Security Management Policies are becoming a common

practice. ISE/IEC 27001:2005 provides a template for developing an

information security management system (ISMS). Located in the

framework of an ISMS are: risk assessment and treatment, security policy,

organization of information security, asset management, human resources

security, physical and environmental security, communications and

operations management, access control, information system acquisition,

development, and maintenance, information security incident

management, business continuity management, and compliance [27]. The

software requirements specifications need to include references to the

information security management policies of an organization. Located in

the ISMS is detailed information about how assets are analyzed and

protected inside the organization.

2.5.3 NIST SP 800-100
The NIST information security management standard contains the

following aspects: information security management governance, system

development life cycle, awareness and training, capital planning and

investment control, interconnecting systems, performance measures,

security planning, information technology contingency planning, risk

management, certification, accreditation, and security awareness, security

services and products acquisition, incident response, and configuration

management. All of these policies, once created within an organization,

provide detailed instructions on certain business aspects are to be

addressed [25]. For example, in the awareness and training policy, a set of

20

specific guidelines will be specified as to how the training of a new system

or security policy will be conducted inside the organization. In the risk

management policy, an organization would specify specific risks that it

feels could harm the organizations wellbeing. An example of such risk

would be the risk of an unauthorized release of sensitive information. It

would provide a classification of the risk and possible ways to mitigate the

issue. Knowing what an organization believes are risks, during the

development of the software requirements specifications for the

organizations software, is a benefit software engineers will need to exploit.

The design of the new system can ensure that these risks are either

mitigated or eliminated.

3 SECURING SENSITIVE INFORMATION
Software engineers and computer scientists have progressively changed

their focus when creating new software. When software was first being

written it was focused on scientific and mathematical problems that could

be solved more easily by a computer than by hand. Machine code was

very tedious and difficult to write, with respect to today’s programming

languages. The focus during the beginning of computer programming was

ensuring that the program completed the task accurately. Once accuracy

was achieved, programmers began focusing on making their code more

efficient due to insufficient hardware resources, due to cost. When the

cost of hardware became low, programmers focused on developing large

scale systems to make the lives of humans easier by automating tasks that

would generally be tedious to users. Now that computers are so widely

used throughout humans’ lives, a new aspect of computer software has

come into the light. This aspect is security.

21

3.1 The Need for Secure Data
On March 29, 2007, The Boston Globe reported that TJX had reported that

45.7 million credit and debit card numbers were stolen during a security

breach [18]. This is the largest security breach publicly recorded. This

security breach has already cost TJX over $5 million, and the cost is

expected to continually rise. With a cost estimated at $90 per record

stolen, the potential expense that TJX will have to spend estimates at

nearly $4.1 billion dollars [19].

On April 7, 2007, NetworkWorld reported that the Chicago Public School

system had issued a bulletin stating that two laptops had been stolen from

their organization. Contained on the two laptops was nearly 40 thousand

current and past employees’ personally identifiable information. The

information compromised in this case was names and social security

numbers. A $10 thousand dollar reward has been offered for the arrest

and conviction of the felon who stole the information [20]. At the same

$90 per record stolen, the potential expense that the Chicago Public

School system may have to spend to resolve the issue is approximately

$3.6 million dollars [19].

Darwin Professional Underwriters performed a research study based on

news reports and survey groups to provide corporations with a calculator

to estimate the possible cost of a security breach. Darwin’s calculator

estimates approximately $166.20 per record breached. The costs

calculated into the overall cost includes: internal investigation,

notification/crisis management, and regulatory/compliance. Figure 5

provides a graphical representation based on Darwin’s calculator [21].

22

Figure 5: Cost of a Security Breach [21]

3.2 Digital Information and the Internet
Digital information being stored and transmitted throughout the world, via

the Internet, includes items such as: medical information, credit card

numbers, social security numbers, and recently, biometric information. As

computer users become more accustomed to the digital world, more and

more personal information will be stored in databanks of financial

institutions, academic institutions, private organizations, governments, and

corporations. During the creation of the Internet, security was not a high

concern, for the only groups that had access to it were trusted government

and educational entities. When the Internet became public domain and

began to be used for commercial purposes, the need for security began to

rise. The more persons that have access to a resource the less secure it

becomes. Predators, thieves, and other criminals begin to find ways to

exploit the new technology resources to advance their causes.

Computer software is not only a desktop application, which initial

computer users were accustomed, but also a means by which to share

information through large, multiregional corporations and entities, via the

Internet.

y = 166.2x

0

10

20

30

40

50

0 50 100 150 200 250 300

D

o

l

l

a

r

s

M
ill

io
n

s

Breached Records

Thousands

COST OF A SECURITY BREACH

Cost Linear (Cost)

23

Consumers trust their financial institutions to keep the personal

information provided to them private, but if the institution is sending

information across the Internet, is the information protected? During the

software design process, if the requirements specifications for the software

were to encrypt the data, then yes, but what if the specific security

measures that needed to be put into place were not understood by

developers?

3.3 IEEE Standard 830 Analysis
IEEE Standard 830 provides a template that is suggested to software

engineers and computer scientists for use when developing software. The

standard provides a location in the template to describe the security with

which the system needs to comply. Even this standard has taken the

afterthought approach to security. A generic description of the security

requirements can easily be misinterpreted. Note that the standard does not

insist that development organizations provide reasoning for the security of

the system.

24

3.3.1 IEEE Standard 830 Security Analysis
United States’ legislation is currently challenging the information

technology profession to ensure that personal information is protected. By

modifying the IEEE Standard 830 to include a section called security

requirements, software engineers and computer scientists could obtain a

better understanding of what security measures need taken in the software

they are developing. What should the security requirements section

contain? The security requirements section should begin by specifying

factors that “protect the software from accidental and malicious access,

use, modification, destruction, or disclosure” [13]. Notice that this is

exactly what the IEEE Standard 830 insists is in the general security

section that it provides. Following this description, it should provide a list

of legislation, regulations, policies, or standards that could affect the

corporation if the organization would experience an incident while using

the software. Along with each piece of legislation, regulation, policy, or

standard, a description of the statute or regulatory rule should be

described. This section may need to be completed in conjunction with

legal staff for either the developing company or the customer requesting

the software. Another addition to the security section includes the

organization’s classification of their digital information and the specific

requirements with which each classification must comply.

The legislation, regulations, policies, or standards should be provided by

the organization requesting the software, for these organizations have a

better understanding as to what regulations by which they have to abide.

Software engineers should work with the requesting organization to ensure

that all the details of these regulatory statutes are understood.

25

Another addition to the standard to help developers grasp a better

understanding requires how the digital information should be handled is to

be completed by placing a security section in each function description.

This security section would list the following items: how the digital

information the function is processing is classified inside the organization,

how the information should be handled, and a reference to any regulatory

standards that could affect the processing, storage, or transmission of such

data – in the newly created security section of the software requirements

specifications.

By providing this information to the developers of new software systems,

developers have all the knowledge they need to complete a sound design,

rather than adding patches to fix the problem after the software has been

released.

26

3.3.2 Recommended Additions to IEEE Standard 830
Sections 3.3.2.1 and 3.3.2.2 show the recommended additions the standard

with descriptions of what each section specifies.

3.3.2.1 SRS: Security Requirements Section
3.1. Security Requirements

It should be used to specify compliance regulations and policies as well

as define the organizations data classification.

3.1.1. Data Classifications

This is a suggested addition to the standard. It would include

information based on the requesting organizations data

classifications based on their information security policies.

3.1.1.1. Classification Levels

This would define the levels of classifications and what actions

must be performed to protect the data section. This will help

the development team to accurately manage the digital

information in the software.

3.1.2. Compliance Regulations

This is a suggested addition to the standard. This section provides

and overall view of what regulations or policies the software must

conform.

3.1.2.1. Regulation Name

This would be the actual name of the regulation.

3.1.2.1.1. Reference to Regulation

This section would provide information for researching the

regulation.

3.1.2.1.2. Regulation Description

This section would provide a detailed description of the

aspects of the regulation or policy that could affect the

software design.

27

3.3.2.2 SRS: Security Section
3.1.1.8. Security

This section will be used to provide information to the

developer about the handling of the data based on above

suggested addition to the standard.

3.1.1.8.1. Regulatory Statutes

This section states the statute that could affect the design of

the function.

3.1.1.8.2. Data Classification

This section states the classification of the data being

handled by the function.

3.1.1.8.3. Data Handling

This section specifies the specific means to manipulate the

data during processing to abide by the regulatory statute.

28

3.4 Sample Security Elicitation Questions
There are many different ways to elicit security requirements. One

possible way, if using the unified modeling language, is by taking the use

case diagrams developed during the specifying of the functional

requirements of the system and changing them into misuse case diagrams.

To do this, the diagrams are used to display what a user would not want to

occur during the scenario being documented. Below is a set of example

security elicitation questions that will help developers gain an

understanding of the current security needs of their customer.

 Does your organization have to comply with any specific

regulations or corporate policies?

 Would you provide us with a copy of these regulations or

corporate policies?

 Do you currently have an information security management

policy?

 If so, what data is classified inside your organization?

 How is this data classified?

 Are there any specific requirements for how the data shall be

handled (for example: storage, transmission, processing, et cetera)?

 What security measures do you currently employ in your

organization?

 Do you know or have a recommendation for the types of security

that shall be used throughout the design of the new system?

 Do you currently own a VeriSign Certificate, or any other digital

certificates?

 What business practices need to involve security?

 What aspects of the system being designed do you foresee needing

security?

 How are you currently implementing user access controls?

29

3.5 Sample Requirements Elicitation
For instance: Developers are informed by their customer that they need to

be able to process credit cards in their software. The customer also states

that they need the ability to store the credit card information for future

purchases of their customers. The developer would ask the following set

of questions to correctly specify the functionality of the software: Are

there any specific legislation, regulations or corporate policies pertaining

to how credit card information is handled? The customer would then

reply, yes, our organization has to comply with the Payment Card Industry

Data Security Standard, also known as the PCIDSS. For the purpose of

this example, it is assumed that this is the only regulatory statute with

which the organization needs to comply. The developer would then ask,

assuming that the developer already understands the organization’s digital

information classification and the requirements it must meet, how is the

credit card information classified? The organization representative

replies, the information is classified as red – the highest level of

classification in the organization. The developer then asks, are there any

specific ways that this information has to be handled? The organization

representative then replies, it must be encrypted at all times possible and

the complete number should never be displayed to any personnel within

our organization.

30

3.5.1 Sample Security Requirements
The software requirements specifications security section would appear as

follows:

<<ALL OTHER SPECIFICATIONS FROM SECTION 6.1>>

3.1 Security Requirements:

 <<ALL TEMPLATE FIELDS FROM SECTION 6.1>>

 0 Data Classifications

0 Red: Highest level of classification. This data should be

encrypted using X standard. This classification

holds information including: credit card

information, <<ALL OTHER INFORMATION IN

THIS CLASSIFICATION>>.

<<ALL OTHER DATA CLASSIFICATIONS>>

3.1.2 Compliance Regulations:

3.1.2.1 Payment Card Industry Data Security Standard,

PCIDSS

3.1.2.1.1 Reference to Regulation: See reference

1.1.1 in the references section.

3.1.2.1.2 Description: PCIDSS is a regulatory

statute placed on organizations and

corporations that accept credit cards as a

form of payment. It states that when

displaying credit card numbers either on

printed receipts or on the organizations user

displays that only one of the following three

items can be displayed: the first four

numbers, the last four numbers, or both.

 <<ALL OTHER COMPLIACE REGULATIONS>>

 <<ALL OTHER SPECIFICATIONS FROM SECTION 6.1>>

31

3.5.2 Sample Function Specification
The software requirements specification for the previously mentioned

example would appear as follows:

<<ALL OTHER SPECIFICATIONS FROM SECTION 6.1>>

3.3.1 FUNCTION X Specification

<<ALL TEMPLATE FIELDS FROM SECTION 6.1 >>

 3.3.1.8 Security

3.3.1.8.1 Regulatory Statutes: PCIDSS further defined in

section X.X

 3.3.1.8.2 Data Classifications: Credit Card Number – Red

3.3.1.8.3 Data Handling: The credit card number should not

be displayed to anyone in the organization. After

Credit Card number is read into the system encrypt

the information and store it into a masked field in

the database. Ensure that the hard drive the

information is stored on is encrypted using X

standard.

 <<ALL OTHER SPECIFICATIONS FROM SECTION 6.1>>

32

3.6 Technique for Specification of Data
ISO/IEC 11179-1 is a standard that is used to specify information about

data (metadata) [23]. This specification of the metadata is to be stored in a

metadata registry (MDR). The purpose of the standard is to specify data

so that it can be shared in a standard way across distributed or large scale

systems. By using ISO/IEC 11179-1, software engineers can ensure that

the data is being represented by a specific set of rules [23].

The data elements are classified by placing them in a conceptual domain.

A conceptual domain is further divided into a set of categories –

representation of the meaning and permissible values [23]. By using the

customers data classification based on their organizations information

security management policies, software developers can specify the

necessary information needed to utilize an MDR. This information serves

as a framework for what they data looks like and should be handled. An

example based on the previously mentioned scenario follows.

3.6.1 Sample Classification of Data
Conceptual Domain Name: CreditCards

Conceptual Domain Definition: Has a set of digits between 13 and 16

Conceptual Security Policy: Only the last 4 digits can be

displayed in the system.

--

Value Domain Name (1): MasterCard

Value Domain Description: Card prefix must be between 51-55

and have a total of 16 digits

Value Domain Name (2): Visa

Value Domain Description: Card prefix must be 4 and have

either 13 or 16 digits

33

3.7 IEEE Standard 830 and the Law
Most of the state security breach laws list specifically that organizations

and corporations must inform customers “…whose unencrypted personal

information was, or is reasonably believed to have been, acquired by an

unauthorized person” [17]. If developers are aware of this clause in the

state legislations, they could develop software that would automatically

encrypt information prior to storage or transmission and decrypt it upon

processing. This would minimize the risk of disclosing personal

information. Taking extra measurers to ensure that the software is more

secure will make the cost of the product more expensive – more

requirements, more elicitation, more coding, and more bandwidth – but it

will save the company from a long and involved legal battle, due to

disclosure of information under a legislative regulation that requires the

information secured.

Section 6.1 shows the aforementioned recommended changes to the

software requirements specifications outline.

34

4 CONCLUSION
Securing information in software engineering projects is becoming

increasingly necessary. Many United States federal and state governments

are enacting legislation to ensure that digital information provided to

financial institutions is protected. Corporations also have to set their own

policies and standards to ensure information that they need to complete

business is secure. An excellent example is the previously mentioned

PCIDSS.

The corporations and governments that are regulating how digital

information is handled are relying on the information technology

professionals, including computer scientists and software engineers, to

ensure that their regulations are upheld and audited. As new software

projects are defined and software requirements specifications are gathered,

more emphasis needs placed on security throughout the design phase,

rather than just at the end or from a very low level of security.

This paper presented a proposed change to the software requirements

specifications outline provided by IEEE Standard 830. This change would

help ensure that security is analyzed in an earlier stage of the software

development lifecycle. The new template will help the information

technology industry to develop more secure and legally compliant

software.

35

5 FUTURE WORK
This document will be provided to the Secretary, IEEE-SA Standards

Board, as a suggested change. After this document is presented to the

board, the board may make a decision to either: create a new standard,

create a revision to the current standard, amend the current standard,

correct any technical issues of the current standard, correct grammatical

errors in the current standard, or do nothing.

IEEE has set a specific set of guidelines that must be followed to invoke a

change to a standard. First, a project authorization request must be filed to

the New Standards Committee (NesCom). Once approved by NesCom a

working group will be developed. The working group is charged with the

task of developing a draft. After the draft is complete, the sponsor of the

working group will ballot the draft standard. If the ballot is successful,

then the draft is sent to the IEEE Review Committee (RevCom). RevCom

will make a recommendation to the IEEE-SA Standards Board. After the

Standards Board has approved the new standard, it enters the manage

phase. The first step of the manage phase is to publish the standard. Once

published, it will be reviewed every five years for relevance [24].

36

6 APPENDICES

6.1 APPENDIX A: Software Requirements Specifications
The following is a suggested requirements specifications template. The

modified sections of the IEEE Standard 830-1998 are highlighted [13].

There are many ways to organized section 3 of the template provided in

IEEE Standard 830-1998 and they are located in section 6.2.

1. Introduction

This section provides an overview of the entire SRS

1.1. Purpose

This section specifies the intended audience and provides the purpose of

the SRS

1.2. Scope

Identifies the software products being developed by name and provides a

brief description as to what each of the products will or will not do. This

section also provides the benefits and objectives of the developing

software.

1.3. Definitions, Acronyms, and Abbreviations

This section provides information that is needed to correctly interpret the

SRS.

1.4. References

This section provides a list of all sources used to create the document or

the citations for any documents that are referenced throughout the SRS.

1.5. Overview

Describes what the rest of the SRS contains. Ensure that in this section

a description of how the security information is presented in the SRS is

described.

2. Overall Description

This section describes factors that affect the product or the SRS.

37

2.1. Product Perspective

The product perspective relates the developing product to other products.

It also specifies how the system operates inside various constraints.

2.1.1. System Interfaces

This section lists the system interfaces and the functionality of the

software to accomplish the system requirement.

2.1.2. User Interfaces

This describes both the logical characteristics of each interface to

the user and the aspects of optimizing the interface with the person

who will be using the system.

2.1.3. Hardware Interfaces

This will provide protocols and supported devices for the developing

system. It also provides the configuration characteristics between

the software and hardware.

2.1.4. Software Interfaces

This provides information on how the developing software will

connect to other software products necessary. Items needed to

specify a software connection are: name, mnemonic, specification

number, version number, and source. A brief discussion should be

provided as to the reasoning for the connection to the other software

product.

2.1.5. Communications Interfaces

This provides information on the various communication protocols

the developing software will interface.

2.1.6. Memory

This specifies the limits on primary and secondary memory.

2.1.7. Operations

This specifies the normal and special operations required by the

user.

38

2.1.8. Site Adaptation Requirements

This provides information on the environment and mission of the site

where the software is being installed. It would provide special

requirements necessary for the specific location.

2.2. Product Functions

This provides a summary of the major functionality within the system.

Textual and graphical methods to specifying the functionality of the

software is encouraged.

2.3. User Characteristics

This provides a general description of the system users: technical

expertise, education level, language, or experience.

2.4. Constraints

This includes information that would limit the developer’s options. The

following subheadings (Regulatory Policies2.4.1-2.4.11) are some

possible constraints that may need considered.

2.4.1. Regulatory Policies

This describes corporate regulations that would limit the

developer’s options.

2.4.2. Hardware Limitations

This provides descriptions of any hardware limitations.

2.4.3. Interfaces to Other Applications

This describes interfaces to commercial off the shelf systems as well

as other previously developed systems.

2.4.4. Parallel Operations

This describes any required parallel operations the system may need

to perform.

2.4.5. Audit Functions

This describes any required audit or monitoring function necessary.

2.4.6. Control Functions

This describes any specific control functions that could limit the

developer’s options.

39

2.4.7. Higher-order Language Requirements

This describes specific language constraints due to the language of

the system.

2.4.8. Signal Handshake Protocols

For example: ACK-NACK or XON-XOFF.

2.4.9. Reliability Requirements

This describes any specific reliability requirements.

2.4.10. Criticality of the Applications

This describes the criticality of the system being developed.

2.4.11. Safety and Security Considerations

This provides an overview of any known safety or security issues that

would need to be known during the development phase.

2.5. Assumptions and Dependencies

This provides a list of factors that affect the requirements stated in the

SRS. These are not design constraints but any changes to these items

would inflict a necessary change to the SRS.

2.6. Apportioning of Requirements

This section identifies requirements that might be delayed for future

versions or releases.

3. Specific Requirements

This section is to define the specific technical details of the system so that

designers can develop the product and testers can test the product.

3.1. Security Requirements

It should be used to specify compliance regulations and policies as well

as define the organizations data classification. This section provides

overall security requirements for the system. Sections 3.1.3-0 are some

recommended evaluated areas, there are many others that could be

listed in this section.

40

3.1.1. Data Classifications

This is a suggested addition to the standard. It would include

information based on the requesting organizations data

classifications based on their information security policies.

3.1.1.1. Classification Levels

This would define the levels of classifications and what

actions must be performed to protect the data section. This

will help the development team to accurately manage the

digital information in the software.

3.1.2. Compliance Regulations

This is a suggested addition to the standard. This section provides

and overall view of what regulations or policies the software must

conform.

3.1.2.1. Regulation Name

This would be the actual name of the regulation.

3.1.2.1.1. Reference to Regulation

This section would provide information for researching

the regulation.

3.1.2.1.2. Regulation Description

This section would provide a detailed description of the

aspects of the regulation or policy that could affect the

software design.

3.1.3. Utilize Certain Cryptographical Techniques

This section would provide the specific technique or encryption

standard to be utilized during development.

3.1.4. Keep Specific Log or History Data Sets

This section would specify what information needs log and the

length of the logs (space or time).

3.1.5. Assign Certain Functions to Different Modules

This section would separate the functions into groups based on

security level or access level.

41

3.1.6. Restrict Communications between some Areas of the Program

This section would state where communication paths should be

restricted.

3.1.7. Check Data Integrity for Critical Values

This would specify algorithm to be used to compute checksums and

what aspects need checksums.

3.2. External Interfaces

This section provides a detailed description of all inputs into and outputs

from the system. Section 3.2.1 provides a breakdown as to specifying the

data inputs/outputs.

3.2.1. Name of Item

This contains the name of the input/output.

3.2.1.1. Description of Purpose

This section would describe why the input/output is needed.

3.2.1.2. Source of Input or Destination of Output

This section would state where the input is coming or where the

output is going.

3.2.1.3. Valid Range, Accuracy, and/or Tolerance

This section would set threshold values of the input/output.

3.2.1.4. Units of Measure

This would specify what units the input/output is in.

3.2.1.5. Timing

This would set threshold value for the length of time to receive

the input or provide the output.

3.2.1.6. Relationships to other inputs/outputs

This would describe how it interacts with other inputs/outputs.

3.2.1.7. Screen Formats/Organization

This section is to describe how the screen should be organized.

3.2.1.8. Window Formats/Organization

This section is to describe how the window should be organized.

42

3.2.1.9. Data Formats

This section defines the format or type of the input.

3.2.1.10. Command Formats

This section defines how the information is received/provided.

3.2.1.11. End Messages

This section defines the final state or message after processing

the data.

3.3. Functions

This section is used to specify the functions in the software product.

3.3.1. Function Name

This section specifically states the function name as it would appear

in the code.

3.3.1.1. Validity Checks on the Inputs

This section states what checks shall be performed on all inputs

into the function.

3.3.1.2. Exact Sequence of Operations

This section defines the steps of the function.

3.3.1.3. Responses to Abnormal Situations

This section defines how the system should handle abnormal

conditions. Sections 3.3.1.3.1-3.3.1.3.3 are some recommended

conditions to evaluate; there are many others that could be

added to this section.

3.3.1.3.1. Overflow

This section states how the system should handle an overflow

issue.

3.3.1.3.2. Communication Facilities

This section states how the system should handle

communication faults.

43

3.3.1.3.3. Error Handling and Recovery

This section describes specific error conditions and how the

system should recover. These will be specific to each system.

3.3.1.4. Effect of Parameters

This section should specify what each parameter’s purpose is in

the function.

3.3.1.5. Relationship of Outputs to Inputs

This section is used to show how the information is converted

from an input to an output.

3.3.1.6. Input/output Sequences

Provides the sequences by which to receive or produce an

input/output.

3.3.1.7. Formulas for Input to Output conversion

This section provides specific formulas for converting the input

to an output.

3.3.1.8. Security

This section will be used to provide information to the

developer about the handling of the data based on above

suggested addition to the standard.

3.3.1.8.1. Regulatory Statutes

This section states the statute that could affect the design

of the function.

3.3.1.8.2. Data Classification

This section states the classification of the data being

handled by the function.

3.3.1.8.3. Data Handling

This section specifies the specific means to manipulate the

data during processing to abide by the regulatory statute.

44

3.4. Performance Requirements

This section is used to provide performance requirements to the

developer during the coding phase. It provides numerical requirements

placed on the software or on human interaction with the software as a

whole.

3.4.1. Static Numerical Requirements

These are values that are set that should not change.

3.4.1.1. Number of Terminals to be Supported

This section provides the number of terminals that the software

will operate on.

3.4.1.2. Number of Simultaneous Users to be Supported

This section provides the number of users the system should be

able to support.

3.4.1.3. Amount and Type of Information to be Handled

This section provides information on the amount of information

and the type of information that the system will be processing.

3.4.2. Dynamic Numerical Requirements

These are values that are based on threshold values or a function of

time.

3.4.2.1. Number of Transactions to be Processed in a Given Time

Period

This provides the number of transaction to be processed and the

time they have to be processed in.

3.5. Logical Database Requirements

This section provides the requirements of anything to be placed or access

a database. Sections 3.5.1-3.5.6 are some suggested areas to consider

when specifying database requirements.

3.5.1. Types of Information used by Various Functions

This section specifies the types of data being used.

3.5.2. Frequency of Use

This specifies how frequently the database will be used.

45

3.5.3. Accessing Capabilities

This specifies how the functions will access the database.

3.5.4. Data Entities and their Relationships

This specifies what entities are located in the database and how they

are related to each other.

3.5.5. Integrity Constraints

This sets the requirements on how the database verifies that the

information is correct.

3.5.6. Data Retention Requirements

This specifies how long the data is to be kept.

3.6. Standards Compliance

This section specifies the developer’s standards for developing the

software. This is specified to ensure consistency.

3.6.1. Report Format

This specifies how the developers will provide reports to the

customers and what is to be located in them.

3.6.2. Data Naming

This section specifies the standard by which information is named in

the source code.

3.6.3. Accounting Procedures

This section specifies how functions will call each other.

3.6.4. Audit Tracing

This specifies how to trace processes that have occurred in the

system.

3.7. Software System Attributes

These are requirements that have not been elsewhere documented that the

system must conform. Sections 3.7.1-3.7.5 provides a list of suggested

areas to evaluate. There are many other evaluation methods that could

be listed in this section.

46

3.7.1. Reliability

This section specifies how reliable the software must be at the time of

delivery.

3.7.2. Availability

Specifies when the system should be available. It can analyze

checkpoints, recoveries, and restarts.

3.7.3. Security

This section provides overall security requirements for the system.

Sections 0-3.7.3.5 are some recommended evaluated areas, there

are many others that could be listed in this section.

3.7.3.1. Utilize Certain Cryptographical Techniques

This section would provide the specific technique or

encryption standard to be utilized during development.

3.7.3.2. Keep Specific Log or History Data Sets

This section would specify what information needs log and the

length of the logs (space or time).

3.7.3.3. Assign Certain Functions to Different Modules

This section would separate the functions into groups based

on security level or access level.

3.7.3.4. Restrict Communications between some Areas of the

Program

This section would state where communication paths should

be restricted.

3.7.3.5. Check Data Integrity for Critical Values

This would specify algorithm to be used to compute

checksums and what aspects need checksums.

3.7.4. Maintainability

This specifies requirements that relate to the ease of maintenance.

There may be some requirement for certain modularity, interfaces,

complexity, et cetera.

47

3.7.5. Portability

This section defines how portable the system must or should be.

3.7.5.1. Percentage of Components with Host-dependent Code

This is a threshold percentage based on total components.

3.7.5.2. Percentage of code that is host dependent

This is a threshold value based on all of the system code.

3.7.5.3. Use of a Proven Portable Language

This section specifies the use of a particular language that the

code is to be written in.

3.7.5.4. Use of a Particular Compiler or Language Subset

This section specifies the use of a particular compiler for the

code.

3.7.5.5. Use of a Particular Operating System

This section specifies what operating systems the software

should be able to operate on.

48

6.2 APPENDIX B: SRS Section 3 Templates
All of the following templates have been modified based on the templates

located in IEEE Standard 830-1998 [13].

6.2.1 Organized by Mode [13]
3. Specific Requirements

 3.1. External Interface Requirements

 3.1.1. User Interfaces

 3.2.1. Hardware Interfaces

 3.3.1. Software Interfaces

 3.4.1. Communications Interfaces

 3.2. Security Requirements

 3.2.1. Data Classifications

 3.2.1.1. Classification Levels

 3.2.2. Compliance Regulations

 3.2.2.1. Regulation Name

 3.2.2.1.1. Reference to Regulation

 3.2.2.1.2. Regulation Description

 3.2.3. Other Security Requirements

 3.3. Functional Requirements

 3.3.1. Mode 1

 3.3.1.1. Functional Requirement 1.1

 .

 .

 .

3.3.1.1.x. Security

 3.3.1.1.x.1. Regulatory Statutes

 3.3.1.1.x.2. Data Classification

 3.3.1.1.x.3. Data Handling

 .

 .

 .

 3.3.1.n. Functional Requirement 1.n

 .

 .

 .

3.3.1.n.x. Security

 3.3.1.n.x.1. Regulatory Statutes

 3.3.1.n.x.2. Data Classification

 3.3.1.n.x.3. Data Handling

 3.3.2. Mode 2

 .

 .

 .

49

3.3.m. Mode m

 3.3.m.1. Functional Requirement m.1

 .

 .

 .

3.3.m.1.x. Security

 3.3.m.1.x.1. Regulatory Statutes

 3.3.m.1.x.2. Data Classification

 3.3.m.1.x.3. Data Handling

 .

 .

 .

 3.3.m.n. Functional Requirement m.n

.

.

.

3.3.m.n.x. Security

 3.3.m.n.x.1. Regulatory Statutes

 3.3.m.n.x.2. Data Classification

 3.3.m.n.x.3. Data Handling

 3.4. Performance Requirements

 3.5. Design Constraints

 3.6. Software System Attributes

 3.7. Other Requirements

50

6.2.2 Organized by Mode: Version 2 [13]
3. Specific Requirements

 3.1. Functional Requirements

 3.1.1. Mode 1

 3.1.1.1. External Interfaces

 3.1.1.1.1. User Interfaces

 3.1.1.1.2. Hardware Interfaces

 3.1.1.1.3. Software Interfaces

 3.1.1.1.4. Communications Interfaces

 3.1.1.2. Security Requirements

 3.1.1.2.1. Data Classifications

 3.1.1.2.1.1. Classification Levels

 3.1.1.2.2. Compliance Regulations

 3.1.1.2.2.2. Regulation Name

3.1.1.2.2.2.1. Reference to Regulation

3.1.1.2.2.2.2. Regulation Description

 3.1.1.2.3. Other Security Requirements
 3.1.1.3 Functional Requirements

 3.1.1.3.1. Functional Requirement 1

 .

 .

 .

3.1.1.3.1.x. Security

 3.1.1.3.1.x.1. Regulatory Statutes

 3.1.1.3.1.x.2. Data Classification

 3.1.1.3.1.x.3. Data Handling

.

 .

 .

 3.1.1.3.n. Functional Requirement n

 .

 .

 .

3.1.1.3.1.x. Security

 3.1.1.3.1.x.1. Regulatory Statutes

 3.1.1.3.1.x.2. Data Classification

 3.1.1.3.1.x.3. Data Handling

51

3.1.1.4 Performance

3.1.2. Mode 2

 .

 .

 .

 3.1.m. Mode m

 3.2 Design Constraints

 3.3 Software System Attributes

 3.4 Other Requirements

52

6.2.3 Organized by User Class [13]
3. Specific Requirements

 3.1. External Interface Requirements

 3.1.1. User Interfaces

 3.1.2. Hardware Interfaces

 3.1.3. Software Interfaces

 3.1.4. Communications Interfaces

 3.2. Security Requirements

 3.2.1. Data Classifications

 3.2.1.1. Classification Levels

 3.2.2. Compliance Regulations

 3.2.2.1. Regulation Name

 3.2.2.1.1. Reference to Regulation

 3.2.2.1.2. Regulation Description

 3.2.3. Other Security Requirements
 3.3. Functional Requirements

 3.3.1. User Class 1

 3.3.1.1. Functional Requirement 1.1

 .

 .

 .

3.3.1.1.x. Security

 3.3.1.1.x.1. Regulatory Statutes

 3.3.1.1.x.2. Data Classification

 3.3.1.1.x.3. Data Handling

 .

 .

 .

 3.3.1.n Functional Requirement 1.n

 .

 .

 .

3.3.1.n.x. Security

 3.3.1.n.x.1. Regulatory Statutes

 3.3.1.n.x.2. Data Classification

 3.3.1.n.x.3. Data Handling

 3.3.2. User Class 2

 .

 .

 .

53

3.3.m. User Class m

 3.3.m.1. Functional Requirement m.1

 .

 .

 .

3.3.m.1.x. Security

 3.3.m.1.x.1. Regulatory Statutes

 3.3.m.1.x.2. Data Classification

 3.3.m.1.x.3. Data Handling

 .

 .

 .

 3.3.m.n. Functional Requirement m.n

.

.

.

3.3.m.n.x. Security

 3.3.m.n.x.1. Regulatory Statutes

 3.3.m.n.x.2. Data Classification

 3.3.m.n.x.3. Data Handling

 3.4. Performance Requirements

 3.5. Design Constraints

 3.6. Software System Attributes

 3.7. Other Requirements

54

6.2.4 Organized by Object [13]
3. Specific Requirements

 3.1. External Interface Requirements

 3.1.1. User Interfaces

 3.1.2. Hardware Interfaces

 3.1.3. Software Interfaces

 3.1.4. Communications Interfaces

 3.2. Security Requirements

 3.2.1. Data Classifications

 3.2.1.1. Classification Levels

 3.2.2. Compliance Regulations

 3.2.2.1. Regulation Name

 3.2.2.1.1. Reference to Regulation

 3.2.2.1.2. Regulation Description

 3.2.3. Other Security Requirements
 3.3. Classes/Objects

 3.3.1. Class/Object 1

 3.3.1.1. Attributes (direct or inherited)

 3.3.1.1.1. Attribute 1

 .

 .

 .

 3.3.1.1.1.x. Data Classification

.

 .

 .

 3.3.1.1.n. Attribute n

 .

 .

 .

 3.3.1.1.n.x. Data Classification

55

3.3.1.2. Functions (services, methods, direct or inherieted)

 3.3.1.2.1. Functional Requirement 1.1

 .

 .

 .

 3.3.1.2.1.x. Data Handling

 .

 .

 .

 3.3.1.2.m. Functional Requirement 1.m

 .

 .

 .

 3.3.1.2.m.x. Data Handling

 3.3.1.3. Messages (communications received or sent)

 .

 .

 .

3.3.1.3.x. Regulatory Statutes

 3.3.2. Class/Object p

 .

 .

 .

 3.3.p. Class/Object p

 3.4. Performance Requirements

 3.5. Design Constraints

 3.6. Software System Attributes

 3.7. Other Requirements

56

6.2.5 Organized by Feature [13]
3. Specific Requirements

 3.1. External Interface Requirements

 3.1.1. User Interfaces

 3.1.2. Hardware Interfaces

 3.1.3. Software Interfaces

 3.1.4. Communications Interfaces

 3.2. Security Requirements

 3.2.1. Data Classifications

 3.2.1.1. Classification Levels

 3.2.2. Compliance Regulations

 3.2.2.1. Regulation Name

 3.2.2.1.1. Reference to Regulation

 3.2.2.1.2. Regulation Description

 3.2.3. Other Security Requirements
3.3. System Features

 3.3.1. System Feature 1

 3.3.1.1. Introduction/Purpose of feature

 3.3.1.2. Stimulus/Response sequence

 3.3.1.3. Associated Functional Requirements

 3.3.1.3.1. Functional Requirement 1

 .

 .

 .

3.3.1.3.1.x. Security

 3.3.1.3.1.x.1. Regulatory Statutes

 3.3.1.3.1.x.2. Data Classification

 3.3.1.3.1.x.3. Data Handling

 .

 .

 .

 3.3.1.3.n. Functional Requirement n

 .

 .

 .

3.3.1.3.n.x. Security

 3.3.1.3.n.x.1. Regulatory Statutes

 3.3.1.3.n.x.2. Data Classification

 3.3.1.3.n.x.3. Data Handling

57

3.3.2. System Feature 2

 .

 .

 .

 3.3.m. System Feature m

 .

 .

 .

 3.4. Performance Requirements

 3.5. Design Constraints

 3.6. Software System Attributes

 3.7. Other Requirements

58

6.2.6 Organized by Stimulus [13]
3. Specific Requirements

 3.1 External Interfaces

 3.1.1. User Interfaces

 3.1.2. Hardware Interfaces

 3.1.3. Software Interfaces

 3.1.4. Communications Interfaces

 3.2. Security Requirements

 3.2.1. Data Classifications

 3.2.1.1. Classification Levels

 3.2.2. Compliance Regulations

 3.2.2.1. Regulation Name

 3.2.2.1.1. Reference to Regulation

 3.2.2.1.2. Regulation Description

 3.2.3. Other Security Requirements
 3.3. Functional Requirements

 3.3.1. Stimulus 1

 3.3.1.1. Functional Requirement 1.1

 .

 .

 .

3.3.1.1.x. Security

 3.3.1.1.x.1. Regulatory Statutes

 3.3.1.1.x.2. Data Classification

 3.3.1.1.x.3. Data Handling

 .

 .

 .

 3.3.1.n. Functional Requirement 1.n

 .

 .

 .

3.3.1.n.x. Security

 3.3.1.n.x.1. Regulatory Statutes

 3.3.1.n.x.2. Data Classification

 3.3.1.n.x.3. Data Handling

 3.3.2. Stimulus 2

 .

 .

 .

59

3.3.m. Stimulus m

 3.3.m.1. Functional Requirement m.1

 .

 .

 .

3.3.m.1.x. Security

 3.3.m.1.x.1. Regulatory Statutes

 3.3.m.1.x.2. Data Classification

 3.3.m.1.x.3. Data Handling

 .

 .

 .

 3.3.m.n. Functional Requirement m.n

 .

 .

 .

3.3.m.n.x. Security

 3.3.m.n.x.1. Regulatory Statutes

 3.3.m.n.x.2. Data Classification

 3.3.m.n.x.3. Data Handling

 3.4. Performance Requirements

 3.5. Design Constraints

 3.6. Software System Attributes

 3.7. Other Requirements

60

6.2.7 Organized by Functional Hierarchy [13]
3. Specific Requirements

 3.1. External Interface Requirements

 3.1.1. User Interfaces

 3.1.2. Hardware Interfaces

 3.1.3. Software Interfaces

 3.1.4. Communications Interfaces

 3.2. Security Requirements

 3.2.1. Data Classifications

 3.2.1.1. Classification Levels

 3.2.2. Compliance Regulations

 3.2.2.1. Regulation Name

 3.2.2.1.1. Reference to Regulation

 3.2.2.1.2. Regulation Description

 3.2.3. Other Security Requirements
 3.3. Functional Requirements

 3.3.1. Information Flows

 3.3.1.1. Data Flow Diagram 1

 3.3.1.1.1. Data Entities

 3.3.1.1.2. Pertinent Processes

 3.3.1.1.3. Topology

 3.3.1.2. Data Flow Diagram 2

 .

 .

 .

 3.3.1.n. Data Flow Diagram n

 3.2.1.n.1. Data Entities

 3.2.1.n.2. Pertinent Processes

 3.2.1.n.3. Topology

 3.3.2. Process Descriptions

 3.3.2.1. Process 1

 3.3.2.1.1. Input Data Entities

 3.3.2.1.2. Algorithm or Formula of Process

 3.3.2.1.2.1. Regulatory Statutes

 3.3.2.1.2.2. Data Handling

 3.3.2.1.3. Affected Data Entities

3.3.2.2. Process 2

 3.3.2.2.1. Input Data Entities

 3.3.2.2.2. Algorithm or Formula of Process

 3.3.2.2.2.1. Regulatory Statutes

 3.3.2.2.2.2. Data Handling

 3.3.2.2.3. Affected Data Entities

 .

 .

 .

61

3.3.2.m. Process m

 3.3.2.m.1. Input Data Entities

 3.3.2.m.2. Algorithm or Formula of Process

 3.3.2.m.2.1. Regulatory Statutes

 3.3.2.m.2.2. Data Handling

 3.3.2.m.3. Affected Data Entities

3.3.3. Data Construct Specifications

 3.3.3.1. Construct 1

 3.3.3.1.1. Record Type

 3.3.3.1.2. Constituent Fields

 3.3.3.2. Construct 2

 3.3.3.2.1. Record Type

 3.3.3.2.2. Constituent Fields

 .

 .

 .

 3.3.3.p. Construct p

 3.3.3.p.1. Record Type

 3.3.3.p.2. Constituent Fields

 3.3.4. Data Dictionary

 3.3.4.1. Data Element 1

 3.3.4.1.1. Name

 3.3.4.1.2. Representation

 3.3.4.1.3. Units/Format

 3.3.4.1.4. Precision/Accuracy

 3.3.4.1.5. Range

 3.3.4.1.6. Data Classification
 3.3.4.2. Data Element 2

 3.3.4.2.1. Name

 3.3.4.2.2. Representation

 3.3.4.2.3. Units/Format

 3.3.4.2.4. Precision/Accuracy

 3.3.4.2.5. Range

 3.3.4.2.6. Data Classification

 .

 .

 .

 3.3.4.q. Data Element q

 3.3.4.q.1. Name

 3.3.4.q.2. Representation

 3.3.4.q.3. Units/Format

 3.3.4.q.4. Precision/Accuracy

 3.3.4.q.5. Range

 3.3.4.q.6. Data Classification

62

3.4. Performance Requirements

 3.5. Design Constraints

 3.6. Software System Attributes

 3.7. Other Requirements

63

6.2.8 Showing Multiple Organizations [13]
3. Specific Requirements

 3.1. External Interfaces

 3.1.1. User Interfaces

 3.1.2. Hardware Interfaces

 3.1.3. Software Interfaces

 3.1.4. Communications Interfaces

 3.2. Security Requirements

 3.2.1. Data Classifications

 3.2.1.1. Classification Levels

 3.2.2. Compliance Regulations

 3.2.2.1. Regulation Name

 3.2.2.1.1. Reference to Regulation

 3.2.2.1.2. Regulation Description

 3.2.3. Other Security Requirements
 3.3. Functional Requirements

 3.3.1. User Class 1

 3.3.1.1. Feature 1.1

 3.3.1.1.1. Introduction/Purpose of Feature

 3.3.1.1.2. Stimulus/Response Sequence

 3.3.1.1.3. Associated Functional Requirements

 .

 .

 .

3.3.1.1.3.x. Security

 3.3.1.1.3.x.1. Regulatory Statutes

 3.3.1.1.3.x.2. Data Classification

 3.3.1.1.3.x.3. Data Handling

 3.3.1.2. Feature 1.2

 3.3.1.2.1. Introduction/Purpose of Feature

 3.3.1.2.2. Stimulus/Response Sequence

 3.3.1.2.3. Associated Functional Requirements

 .

 .

 .

3.3.1.2.3.x. Security

 3.3.1.2.3.x.1. Regulatory Statutes

 3.3.1.2.3.x.2. Data Classification

 3.3.1.2.3.x.3. Data Handling

 .

 .

 .

64

3.3.1.m. Feature 1.m

 3.3.1.m.1. Introduction/Purpose of Feature

 3.3.1.m.2. Stimulus/Response Sequence

 3.3.1.m.3. Associated Functional Requirements

 .

 .

 .

3.3.1.m.3.x. Security

 3.3.1.m.3.x.1. Regulatory Statutes

 3.3.1.m.3.x.2. Data Classification

 3.3.1.m.3.x.3. Data Handling

 3.3.2. User Class 2

 .

 .

 .

 3.3.n. User Class n

 .

 .

 .

 3.4. Performance Requirements

 3.5. Design Constraints

 3.6. Software System Attributes

 3.7. Other Requirements

65

7 BIBLIOGRAPHY
[1] 104th Congress. 1996. Public Law 104-191. Health Insurance

Portability and Accountability Act of 1996. [Online] August 21, 1996.

[Cited: March 18, 2007.] http://aspe.hhs.gov/admnsimp/pl104191.htm.

[2] American National Standard Institute. 1984. IEEE Guide to Software
Requirements Specifications. New York, NY : The Institute of Electrical

and Electronics Engineers, Inc., 1984. ANSI/IEEE Std. 830-1984.

[3] Apani Networks. 2006. The California Security Breach Information Act

(SB1386) and Its Impact on IT Security. Apani Knowledge Center.

[Online] July 19, 2006. [Cited: March 17, 2007.]
http://www.apani.com/pdf/Apani-sb1386.pdf.

[4] Barkley, John. 1995. Aspects of Security Policies. Role Based Access

Control. [Online] National Institute of Standards and Technology,
January 9, 1995. [Cited: March 18, 2007.]

http://hissa.ncsl.nist.gov/rbac/paper/node2.html.

[5] Family Policy Compliance Office. 2005. Family Educational Rights and

Privacy Act (FERPA). U. S. Department of Education: Promoting

educational excellence for all Americans. [Online] February 17, 2005.

[Cited: MArch 18, 2007.]
http://www.ed.gov/policy/gen/guid/fpco/ferpa/index.html.

[6] Federal Trade Commission. The Gramm-Leach-Bliley Act: The
Financial Privacy Rule. Privacy Initiatives: Financial Privacy. [Online]

Federal Trade Commission. [Cited: March 17, 2007.]

http://www.ftc.gov/privacy/privacyinitiatives/financial_rule.html.

[7] Institute for Electrical and Electronic Engineers. 2007. IEEE Standards.

IEEE The world's leading professional association for the advancement

of technology. [Online] IEEE, 2007. [Cited: March 17, 2007.]
http://www.ieee.org/web/standards/home/index.html.

[8] MasterCard International Inc. and Visa U.S.A. Inc. 2006. Payment Card
Industry (PCI) Data Security Standard. Welcome to PCI Security

Standards Council. [Online] September 2006. [Cited: March 19, 2007.]

https://www.pcisecuritystandards.org/pdfs/pci_dss_v1-1.pdf.

[9] Molsen. 2006. Chart of State Privacy and Data Security Rules. Kauffman

eVenturing. [Online] August 17, 2006. [Cited: March 17, 2007.]

http://eventuring.org/eShip/appmanager/eVenturing/ShowDoc/eShipWeb
CacheRepository/Documents/State_Privacy_and_Rules.xls.

[10] Software Engineering Techniques. NATO Science Committee. 1969.
[ed.] J. N. Buxton and B. Randell. Rome, Italy : NATO Science

Committee, 1969.

66

[11] Sommerville, Ian. 2007. Software Engineering. 8th Edition. Harlow :

Pearson Education Limited, 2007. ISBN: 0-321-31379-8.

[12] Spurzem, Bob. 2006. What is Sarbanes-Oxley Act? CIO Definitions.

[Online] TechTarget, November 21, 2006. [Cited: March 18, 2007.]

http://searchcio.techtarget.com/sDefinition/0,,sid19_gci920030,00.html.

[13] The Institute of Electrical and Electronics Engineers. 1998. IEEE

Standard 830-1998. New York, NY : The Institute of Electrical and

Electronics Engineers, Inc., 1998. ISBN: 0-7381-0332-2.

[14] US Federal Trade Commission. The Gramm-Leach Bliley Act. Privacy
Initiatives: Financial Privacy. [Online] Federal Trade Commission.

[Cited: March 17, 2007.]

http://www.ftc.gov/privacy/privacyinitiatives/glbact.html.

[15] Network Effects and Software Development - Implications for

Security. Raman, Jari. 2004. s.l. : IEEE, 2004. 37th Hawaii

International Conference on System Sciences. ISBN: 0-7695-2056-

1/04.

[16] Software Engineering for Security: A Roadmap. Devanbu,

Premkumar T. and Stubblebine, Stuart. 2000. Limerick, Ireland :

ACM Press, 2000. International Conference on Software

Engineering. pp. 227-239. ISBN: 1-58113-253-0.

[17] California State Senate. 2002. SB 1386 Senate Bill -

CHARTERED. California State Senate. [Online] September 26,

2002. [Cited: March 10, 2007.] http://info.sen.ca.gov/pub/01-

02/bill/sen/sb_1351-1400/sb_1386_bill_20020926_chaptered.html.

[18] Abelson, Jenn. 2007. Breach of data at TJX is called the biggest

ever. boston.com: Business. [Online] The Boston Globe, March 29,

2007. [Cited: April 12, 2007.]

http://www.boston.com/business/globe/articles/2007/03/29/breach

_of_data_at_tjx_is_called_the_biggest_ever/.

[19] McGregor, J. Patrick. 2007. How the TJX breach may change

security awareness. SC Magazine for IT Security Professional.

[Online] SC Magazine Australia, April 12, 2007. [Cited: April 12,

2007.] http://www.securecomputing.net.au/feature/3417,how-the-

tjx-breach-may-change-security-awareness.aspx.

[20] Doggs, Alpha. 2007. Chicago Public Schools latest to fess up to

data breach. Community: Security. [Online] NetworkWorld, April

7, 2007. [Cited: April 12, 2007.]

http://www.networkworld.com/community/?q=node/13573.

67

[21] Darwin Professional Underwriters. 2007. Tech//404 Data Loss

Cost Calculator . Tech//404 by Darwin. [Online] Darwin

Professional Underwriters, 2007. [Cited: April 12, 2007.]

http://www.tech-404.com/calculator.html.

[22] Compuware and Microsoft. 2006. Application Security: How Does

your Development Stack Up? Webcasts On-Demand. [Online]

October 9, 2006. [Cited: April 12, 2007.]

http://www.compuware.com/events/forms/app_security.asp?cid=7

01000000004mADAAY&focus=SecurityChecker&productfocus=

SecurityChecker&source=Web+-

+Webinar&offering=DevPartner&productfamily=DevPartner&des

c=Placement+of+sponsored+webcast+with+Computerworld+onto

+Compuware.com.+Speakers%3a+Michael+Leworthy+(Visual+St

udio)+%26+Ken+Cowan+(CPWR)&trk=200610-1751.

[23] ISO/IEC. 2004. ISO/IEC 11179, Information Technology --

Metadata Registries (MDR). ISO/IEC JTC1 SC32 WG2

Development/Maintenance. [Online] September 15, 2004. [Cited:

April 16, 2007.] http://metadata-standards.org/11179/#11179-5.

ISO/IEC 11179-1:2004(E).

[24] IEEE. 2007. IEEE Standards Development Online. IEEE

Standards Association. [Online] IEEE, April 4, 2007. [Cited: April

15, 2007.]

http://standards.ieee.org/resources/development/forms/index.html.

[25] National Institute of Standards and Technology. 2006. Information

Security Management: A Guide for Managers. NIST Special

Publications. [Online] NIST, October 2006. [Cited: April 23,

2007.] http://csrc.nist.gov/publications/nistpubs/800-100/SP800-

100-Mar07-2007.pdf.

[26] Praxiom Research Group Limited. 2006. ISO 9001 2000. [Online]

Praxiom, December 12, 2006. [Cited: April 22, 2007.]

http://www.praxiom.com/iso-9001-b.htm.

[27] Praxiom Research Group Limited. 2007. ISO IEC 27001 2005 .

[Online] April 7, 2007. [Cited: April 23, 2007.]

http://www.praxiom.com/iso-27001.htm.

	Specifying security requirements improvement for IEEE Standard 830
	Recommended Citation

		2007-05-01T17:34:47-0400
	John H. Hagen
	I am approving this document

