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ABSTRACT 

Investigation of Truckload Prices: Exploratory Analysis, Forecast Methods, and the 

Influences of Unemployment on Freight Prices. 

Alex M. Sanchez 

 

Truckload (TL) pricing is a major factor that influences the manufacturing and retail costs of 

products. In the U.S., trucks accounts for more than 90% of freight shipped based on value, and 

it is expected to grow in the following years. TL price setting is a very complex task for logistic 

companies as it depends on a number of factors including the logistics carriers’ business 

strategies and other social and economic variables. Understanding TL patterns across the U.S. is 

important not only for logistic companies, but also for policy makers. TL prices are commonly 

provided on a dollar per mile rate. Thus the total transportation costs on a route will be the 

product of the truckload price rate and the distance. More accurate prediction of TL price will 

enable logistic companies to develop more optimal strategies to operate their transportation 

activity across destinations and effectively allocate resources on potential demand locations. 

Freight and economic policy makers will also be able to use this information  to explore different 

potential economic scenarios. 

 This research analyses private data sets (TL rates), and publicly available data such as 

diesel cost, unemployment, wages, population, and gross state product to understand trends in 

TL prices. TL rates are evaluated through exploratory and visualization techniques to obtain 

useful insights. Time series analysis (TSA) and spatial econometric analysis (SEA) are 

conducted for forecasting TL prices. TSA provides with a general model based on time and 

delivery distance between origin and destination. Spatial econometric panel models incorporate 

the spatial dependency, being used for drawing inferences across space, and also for forecasting 

TL prices. Results indicate that TL prices are closely associated with unemployment, which links 

the consumer spending with transportation cost. Diesel cost has not impacted TL prices 

significantly during the last years, as is evidenced in the TSA and SEA. Moreover, in low 

demand condition such as high unemployment, carriers are likely to serve larger delivery 

distance in order to reduce TL prices, which impact TL prices in neighboring locations. 

Increasing the delivery distance by 1.00% was found to reduce the price in dollar-per-mile by 

about -0.25%, and raise prices in neighboring locations by about +0.05%. Similarly, 1% increase 

in unemployment rate was found to reduce prices by about -0.30% and  increase prices in 

neighboring locations by about +0.06%. Forecasting models indicate accurate TL price values, 

with MAPE values less than 10% for the TSA model for estimating an overall monthly price in 

the U.S.; and less than 20% for the SEA that consider spatial dependence for estimating a yearly 

price at each U.S. state. This research represents a benchmark in the analysis of freight prices, 

providing useful insights, identifying significant variables impacting TL prices, and potential 

methodologies for forecasting truckload prices. 
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CHAPTER 1 

1.0 INTRODUCTION 

1.1 Motivation 

 Truckload (TL) pricing is a major factor that influences the manufacturing and retail 

costs of products and affects the effectiveness and efficiency of freight transportation. In the 

U.S., trucks and rail account for 65% of the nation's domestic freight volume. Both have shown 

significant growth over the past 10 years. In 2005, U.S highways carried 77% of the freight 

based on tons shipped, and 92% of freight shipped based on value. “It has been said that the rail 

lines and highways across the country have become the nation’s largest warehouse” (AASHTO, 

2007). According to the Freight Analysis Framework (FAF) the movement of goods in term of 

tonnage has increased by about 13.6 percent from 2009 to 2010. From 2010 to 2040 is expected 

to increase at a rate of 1.1 percent per year (FHWA, 2011). This increase in freight volume has 

affected the truck volumes on roads, generating traffic congestion and uncertainty in delivery 

times. Moreover globalization and lean supply chain practices like “just-in-time delivery” and 

“collaborative logistics” have increased the demands on the freight systems. Over the past years, 

freight cost within US has varied significantly due different actors affecting carriers, e.g. 

consumer spending, and demand.  

 These freight cost variations have created large distress in a low margin business like 

groceries, and restaurants. Consumers are sensitive to price changes. Frequent changes in prices 

usually result in a drop of consumer demand since transportation links producer and consumer 

through production costs. It is a hard challenge to pass the increasing freight cost to end 

consumers without losing the consumer demand. Freight cost is an integral part of the price of 

any commodity. Empirical evidence indicates that transport cost accounts for 10% of the total 
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cost of a product, and the impact of increasing transport costs by 10% would reduce trade 

volumes by more than 20% (Rodrigue, 2009). The truckload industry is a very competitive 

market affected by various factors such as fleet availability, transportation connectivity, 

infrastructure condition, etc. Contracts between TL logistic companies and retail business are 

under a rate ($/mile) agreement, which may not represent exactly the real transport costs, and 

therefore these rates could create loss or profit for the carrier (Rodrigue, 2009). Under this 

circumstance, setting TL rate is a complex task for logistic companies, because it depends on 

external factors such as fuel cost, negotiation tactics, and also on the spatial distribution of  

demand that depends on the market size of  the freight company.  Logistic companies have price 

strategies focused on improving efficiency, reducing costs, and expanding their market size. 

Other aspects that influence TL rates is the type of goods being transported. Dry and refrigerated 

products are shipping in vehicles with similar characteristics. However, refrigerated vehicles 

required air conditioning unit to control the inside temperature of the trailer to allow deliveries of 

temperature-sensitive products. Reefer loads have a large variety of products e.g. wine, beer, 

nutritional supplements, pharmaceuticals , dairy products, meats, deli foods, fresh fruits, seafood 

and vegetables, which usually need extra attention in the route.  Dry loads vary from steel 

products to building materials, e.g. machinery, motor vehicles, sand, fertilizer, and road 

materials. Therefore, dry loads are expected to have lower transportation costs than reefer loads.  

The understanding of freight patterns such as movement activity, which allows for 

identifying locations under high and low demand of products, and the TL price behavior across 

locations are useful information for logistic companies and allow them to more accurately plan 

their operations across destinations. It helps logistic companies to effectively allocate resources 

on potential high demand locations. Developing accurate TL price forecasting models will allow 
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the freight operators to negotiate better contracts which more accurately reflect the actual 

transportation costs.  

 A few studies related to carrier pricing has been conducted; however, the underlying 

structure of the TL rates and potential variables that affects them has not been established. 

Methodologies such as regression analysis has been used for estimating freight rates, in both 

truckload (TL) transportation (Swenseth and Godfrey 1996) and in less-than-truckload (LTL) 

transportation (Hall 1985; Kay et al., 2009; Ozkaya et. al. 2010; Swenseth and Godfrey  2001). 

Results from these studies indicated forecast values overestimate the actual truckload prices in a 

range between fourteen to thirty seven percent. Therefore, the development of new methods that 

can provide more accurate predictions is required.  Studies that associates consumer spending 

with socioeconomic variables such as population, gross state product, fuel cost and 

unemployment are found in the literature (Thaiprasert, 2011). For instance, high unemployment 

rates reduce consumer demand of some commodities, and high fuel cost tends to reduce people's 

demand in non-essential services or activities. To date, the relationship between truckload prices 

and the economy of a region is still not well established, mainly due to the scarceness of data 

available. This research is an original study that provides important insights and modeling 

techniques for the TL market in the U.S. 

   

1.2 Transportation Industry 

 In the U.S. the freight transportation industry is a competitive business that serves the 

domestic and the international market through a supply chain network with various modes of 

transportation such as air, maritime, rail, and truck. This industry moved a total of $1.1 trillion in 

2009, which represented an average of 9.4 percent of the annual gross domestic product (GDP) 
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between 2000 and 2008 (SelectUSA, 2012). In 2009 motor carriers have moved 8.8 billion tons 

of freight, which represents the 68 percent of all domestic freight tonnage; and obtained $544 

billion of revenues, which represents the 81.9 percent of the total revenue from all domestic 

transport modes (ATA, 2011). Two major markets are under the trucking industry: less than 

truckload (LTL) and the truckload (TL). LTL provides partial-load shipments to multiple 

destinations with shipment's weights less than 10,000 pounds, LTL rates are based on shipment 

weight. TL provide trailer-full load deliveries to a single destination, limited to the available 

space in the trailer, characterized by shipment's weights of 10,000 pounds or more.  

The trucking industry has undergone a major transformation in the 1980’s due to the 

deregulation and with the culmination of the Interstate Highway System in 1991. After 

deregulation the structure of the trucking industry changed, the TL industry became more 

important than the LTL business. LTL is associated with unionized labor, and TL with non-

unionized labor, it makes TL rates lower and more competitive than LTL carriers. In general, 

deregulation has decreased truck transport costs in the U.S., and has improved carriers’ business, 

by being more efficient by reducing delivery times (RITA, 2009).  

TL prices are based on a per-mile rate plus a fuel surcharge. The fuel surcharge is either 

cents per mile rate or a percentage of the freight bill. In addition, the TL rate also depends on the 

way logistics operations are managed along the route from origin to delivery point. Logistic 

companies coordinate operations on specific routes with or without the help of third party 

logistics (3PL) companies to ensure efficient and reliable movement of goods. These routes are 

called managed lanes. Cost of managed lanes is more reliable than non-managed lanes since the 

logistic company is responsible for managing the day to day operations.  
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Freight carriers like other business normally operate by developing pricing strategies in 

order to preserve their market position, increase market size, and also to reduce their costs. Price 

strategies such as cross-subsidization are usually common in the trucking industry. In this 

research, truckload price database shows this characteristic. Freight rates vary from state to state, 

by type of commodity, and by origin and destination of the deliveries. TL rates can be 

significantly different from the same origin and destination for dissimilar commodity, and same 

commodity with equal delivery distances but different destinations. In economic theory the 

concept of cross-subsidization is pricing the same service differently in different locations so that 

the companies can increase their market size. Church and Ware (1999) state that cross-subsidy 

exists "if the revenues from a product are less than its costs of production". Similarly, “price 

discrimination,” which implies cross subsidization is mostly implemented by companies with 

high profits, because profits made in one market may allow companies to widen their market size 

by cross-subsidizing loss-making services in not economically attractive locations. In freight 

transportation, “product” refers to the services provided by carriers for transporting goods from 

origin to final destination; the price (dollar-per-mile) can be significantly different from and to 

particular locations.  

To date there is not much literature regarding TL carriers and price strategies. It seems 

that the majority of technical papers were published after truck deregulation took place, in the 

early 1980’s. Previous studies, before deregulation, attributed these variations to a non-

competitive behavior. However, Beilock (1986), after deregulation, investigated this pricing 

variation. Results from this study determined that pricing variations are associated with a 

competitive market in the trucking industry. A competitive market involves for instance the 

willingness to pay more for faster and more reliable deliveries when the product is a high value 
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or perishable. Low rates can be provided when carriers filled backhauls quickly. Thus, carriers 

can charge differently based on the type of product and service, and also when the availability of 

truck units is scarce, so the carrier has to prioritize the high price deliveries. Finally, variations of 

TL rates are likely due to a competitive market; thus, current market conditions of supply and 

demand takes an important part in pricing. 

 

1.3 Transportation and Geography 

 The relationship of spatial geography and transportation cost is still not considered in 

current methods for modeling the freight transportation activity. From the engineering 

perspective, geography is recognized as a major issue in the design and construction of 

transportation infrastructure. Topography, geology and hydrology play an important role in the 

spatial location of the transportation infrastructure. Generally, an optimal location is the one 

which reduces construction costs; provides an adequate level of service and connectivity across 

units. Moreover, the transportation engineering field is usually under the analysis of large data 

sets, and mostly geo-referenced data. For instance, traffic counts, travel time, and commodity 

flows fall into this category. The analysis of this unstructured data creates new challenges and 

approaches for making these data sets understandable and for identifying potential patterns that 

will become useful insights. Such insights cannot be obtained from traditional analysis methods.  

A few technical papers are available in the literature review that describe and illustrate the link 

between geography, freight transportation costs, and the economy of a region. One potential 

reason for the relatively few papers in this area might be due to the lack of data available and 

constraints of publishing private data.  
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 The major issue facing logistic companies is to improve the efficiency and reliability of 

the deliveries to reduce the cost of moving goods. Management techniques such as optimization 

of routes, and truckload collaboration are implemented for this purpose. These techniques rely on 

the spatial location of transportation infrastructure and accessibility between the origin and 

destination of shipments. Spatial location, infrastructure condition and availability, and adequate 

capacity to handle freight in seaports, roadways, and airports have impacted logistic costs. It is 

clearly noted that spatial location plays an important role in the analysis of freight transport but it 

is still not clear how to approach large data sets with the space dimension. Exploratory spatial 

data analysis helps to understand the link between the geography and transport activity, 

throughout visualization of data such as maps that allows users to perceive significant insights. 

This research provides novel approaches for displaying data sets across space, and interaction 

between locations, allowing for a comprehensive understanding of large data sets. 

 

1.4 Problem Statement 

The understanding of current freight patterns related to TL prices is critical for helping 

freight, logistic and supply chain agents in developing accurate forecasting models, reliable 

planning and operation management techniques to reduce transport costs. Fuel cost, shipping 

distance, type of commodity (dry/refrigerated), people spending, and correlation among these 

variables over time and space affect the TL prices in the U.S., but to-date there are no studies 

available in the published literature which study the impact of these factors on TL prices. 

Logistic companies and freight agents depend on reliable price forecasting, and in understanding 

the underlying structure of TL prices across locations when forming contracts. The total cost of 

truck route is computed as the product of the truckload price and the distance of the route. 
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Therefore, accurate estimates of the TL price will enable the logistic companies to determine 

optimal routes to reduce the transportation costs.  

There is a need to understand the TL price patterns, significant factors affecting them, 

and the distribution of truckload movements in the U.S. There is also a need to develop a 

methodology which can exploit the spatial and temporal nature of the data set to generate 

insights about the TL price variation and provide reasonably accurate forecasts. This research is 

the first to use advanced exploratory spatial data analysis tools to visualize and characterize the 

TL price variation across the U.S. Time series and spatial analysis based regression models are 

developed to accurately forecast  and to quantify the impact of factors such as unemployment 

and delivery distances on TL price.  

 

1.5 Research Objectives 

This research answers the following questions: 

1. Can we define an appropriate state group or cluster based on freight prices to determine 

regions in the U.S. which have similar patterns related to freight prices? 

2. How do factors such as spatial location, fuel price at origin and destination, delivery 

distance, and socioeconomic factors affects the truckload price in the U.S.? 

3. Does a spatial dependency and knowledge spillover in freight prices exist and can they be 

quantified?  

4. Can we accurately forecast future truckload freight prices based on variables such as 

delivery distance, fuel cost and socioeconomic factors? 
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1.6 Organization of the Research 

 The organization of this dissertation is as follows. Chapter 1 is the introduction of the 

research, where a background of the transportation industry in the U.S., and their relationship 

with geography is described, the problem statements and objectives are also given. This chapter 

is intended to provide readers with a broad picture of transportation and logistics industry 

basically in the truckload business. A literature follows as the subject of Chapter 2 to provide the 

related technical's papers on the topic as well as papers in related areas affecting truckload prices. 

Chapter 3 formulates the methods for formulating and modeling the models to forecast truckload 

prices into a mathematical form. Chapter 4 presents the exploratory data analysis (EDA), a 

univariate analysis of the truckload price database. Chapter 5 formulates the time series models, 

considering patterns found in chapter 4. Chapter 6 presents the exploratory spatial data analysis 

(ESDA), multiple maps are provided along with insights. Chapter 7 presents the spatial 

econometric analysis, where inference analysis is made between significant variables and TL 

price. Chapter 8 pointed out the contributions of this research, and concludes the research, 

providing issues for future study. The references and appendixes are attached at the end of the 

dissertation. 
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CHAPTER 2 

2.0 LITERATURE REVIEW 

2.1 Introduction 

 The advances in computing hardware in terms of memory and processing power and 

software during the last decades have allowed researchers to perform sophisticated and complex 

data analyses. Significant improvement in image processing capabilities of common desktop 

computers made visualization of millions of data possible, which has changed the way of 

approaching the analysis of large data sets. These changes have affected statistical analysis in 

diverse areas of sciences and engineering; especially domains where the spatial location plays an 

important role in the analysis such as geography, urban economics, public policy, environmental 

engineering, geology, and transportation engineering. In this section I will provide a detailed 

review of methodologies relevant to the scope of this dissertation.  

 

2.2 Exploratory Data Analysis (EDA) 

 Exploratory Data Analysis (EDA) is a specific approach of data analysis originating from 

the work of Tukey in the early 1970s. EDA is a preliminary exploratory examination of a data set 

with the aim of identifying structures or patterns within the data, checking for data quality, 

providing statistical summaries and plotting graphs to identify data characteristics (Chatfield, 

1986). EDA helps in hypothesis generation, formulating appropriate models and provides a basis 

for more sophisticated analysis. The objective of EDA is to identify suitable variables and trends 

to formulate a model (Cox and Jones, 1981). Different types of graphs are plotted depending on 

the number of available variables. For univariate data sets, the stem and leaf plot, bar-charts, 

box-plots, histograms, dot plots, residual plots, and time series plots can be used. For bivariate 
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data sets, scatter-plots, Q-Q plots, level and spread plots, and mean difference plots can be used 

to generate useful insights; and for multivariate data - matrix and trellis scatter plots, parallel 

coordinate plots, 3-D scatter plots, and conditioning scatter plots can be applied. Most of these 

graphic techniques are useful for displaying information about data measured at the interval or 

ratio scale (Haining, 2009). For instance, stem-and-leaf plots display quantitative data in a 

graphic format, providing a quick overview of distribution. Stem-and-leaf plots retain most of 

the data integrity and help in detecting outliers and define distribution properties in medium 

sample's sizes (20-100 points).  In large samples, stem-and-leaf plots become cluttered since 

each point is represented numerically and box plots may be a better option. Box plot displays 

five critical information about the data set - smallest observation, lower quartile, median, upper 

quartile, and the largest observation. In addition to detecting outliers, box plots can be quickly 

used to graphically compare distributions between data sets. More complex plots may be 

required for the analysis of multivariate data, as traditional descriptive statistics may only tell 

part of the story when dealing with multiple dimensions (Chatfield, 1986). EDA can help the 

analyst to identify patterns and generate insights which more rigorous classical tests cannot 

detect due to their stepwise nature and emphasis on specific models. However, care must be 

taken to ensure that the interesting patterns are not over analyzed and over interpreted (Bolker, 

2008).   

 

2.2.1 Robust Statistics 

Traditional statistical methods work under idealized assumptions which may not be met 

in practice. Robust methods include the application of resistant techniques that works under 

variety of conditions and not just only idealized specific conditions as is assumed in traditional 
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statistics. Resistant techniques provide results that are not extremely affected by outliers or 

departures from model assumptions. The basic concept of resistant techniques can be described 

as methods that provide results which are not affected significantly by the presence of atypical 

outlier observations (Besag, 1981). Classical methods perform poorly in the presence of outliers 

or when common assumptions (such as errors being normally distributed) are not met in the data. 

Consequently, a robust statistic, which is “resistant” to errors in the results, will produce "robust 

estimators" even when the assumptions are approximately met. These estimators commonly have 

reasonable efficiency and small bias. However they are asymptotically unbiased, and therefore 

the bias tends to zero as the sample size tends to infinity.  

Traditionally, graphical display is the most valuable way of detecting outliers and 

checking if some values were erroneously recorded. However, graphical display based outlier 

and erroneous data detection becomes more difficult and impractical as the number of data and 

variables increase. Robust methods provide automatic ways of detecting, removing, and flagging 

outliers, putting aside the need for manual screening. Robust techniques consider the measure of 

data sets by values that are not greatly affected by the presence of extreme or atypical data 

values.  It is now clearly known that the mean can perform very poorly with long-tailed 

distributions and that the median, among other estimators, is better with presence of long-tailed 

or outliers. Robust techniques use the “median” instead of the “mean” for measure of “location 

or center", and the inter-quartile range instead of standard deviation as an estimator of spread 

distribution of numbers (Cox and Jones, 1981). The motivation is to produce estimators that are 

not excessively affected by small departures from model assumptions.  
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2.2.2 The Smooth and Rough Part of the Data  

A fundamental concept in the exploratory approach is that data can be partitioned into 

smooth and the rough component, or the fit and the residual as known in descriptive statistics. 

The smooth component corresponds to the predictable part of the data set values which has a 

consistent and regular pattern. It may be represented by a straight line or a curve describing the 

relationship between variables. The smooth component must be extracted from the data to obtain 

the rough or the unpredictable component.  

Data = Smooth + Rough 

Different, linear and nonlinear smoothing techniques have been developed mainly based 

on moving medians because they are more resistant than moving averages. For example,  

methods proposed by Tukey for smoothing one-dimensional series are based on moving medians 

of successive trios of data values, often repeated until convergence. Hanning also proposed a 

linear smother with weights of 1/4, 1/2, 1/4 to smooth significant variation between variables. 

The objective of smoothing is to obtain a rough component with no additional pattern or 

structure. If the rough contains a structure not removed by the smooth, it is known as “not rough 

enough" and further smoothing should be conducted. This represents a difference between 

exploratory data analysis and classical analysis - the willingness to further smooth the rough to 

produce alternative models (Hartwig & Dearing, 1979). 

 

2.3 Time Series Analysis 

 Time series is a sequence of data values measured at specific periods of time. Time series 

analysis includes methods for analyzing time series data to obtain meaningful information. Time 

series analysis models are commonly used to predict future values based on previously observed 
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data. These methods of data analysis are often used to monitor industrial process or to track 

corporate business metrics. Time series models account for the fact that data points measured 

over time may have an internal structure such as autocorrelation, trend or seasonal variation that 

should be accounted for.  

 Time series analysis has been widely used in forecasting in various aspects of the 

transportation engineering.  Williams (2003) presents a theoretical basis for modeling short-term 

traffic condition streams as time series formulation using the seasonal autoregressive integrated 

moving average processes (ARIMA). This technique was utilized for data for two representative 

freeways. Prediction's results by the seasonal ARIMA process were compared to three heuristic 

forecasting methods: the random walk forecast, the historical average forecast, and the deviation 

from the historical average forecast using the mean absolute percentage error (MAPE). Seasonal 

ARIMA was found to outperform the other heuristic methods. Pitfield (2004) examined the 

competitive pricing behavior of airlines, by studying whether the prices offered by one airline are 

correlated to the prices of other airlines or its own past prices using an ARIMA model. The 

objective is to determine whether prices are more closely explained by the competitor’s actions 

or by own past price settings. Durango (2006) used time series analysis to estimate the 

performance of transportation infrastructure over time while accounting for the effect of 

maintenance, inspections and the use of technology on the life-cycle costs. Haire (2009) used 

time-series analysis to estimate ridership demand into the public transportation. To date there is 

no work on forecasting freight prices using time series analysis. Other methods such as linear 

and nonlinear regression analysis are primarily used. Particular studies, such as Ozkaya et. al. 

(2010) presents a regression methodology to estimate less-than-truckload (LTL) rates. They used 

an historical database of shipments in the U.S, and intangible factors such as negotiation power 
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in the model. Kay et. al. (2009) develops a nonlinear regression model to estimate LTL rates 

between origin-destination pairs in the U.S. They use public available rates as a dependent 

variable, and load density, shipment weight, and O–D pair distance as the explanatory variables. 

To date there is no work on applying time series analysis to predict truckload prices.  

 

2.4 Exploratory Spatial Data Analysis (ESDA)  

 Exploratory Spatial Data Analysis (ESDA) is a subset of Exploratory Data Analysis 

(EDA), which employs a combination of graphical and visual methods along with robust 

statistical techniques for exploring spatial data sets without the requirement of advance statistical 

knowledge. This exploration technique has the philosophy of staying close to the original data 

using only simple transformations and intuitive methods on the raw data without employing 

inference theory (Haining, 2009). ESDA helps analyst and researchers better understand the data 

by providing the big picture and guidance in obtaining inferences and insights. ESDA places 

emphasis on graphical representation of data allowing data linking and brushing, and provides a 

variety of views which helps the analyst determine the best method to apply. In general, the 

principal characteristic of ESDA is to discover spatial patterns of a data set, and should be the 

first and the most important step in the analysis of data (Tukey, 1977). 

ESDA follows the most direct approach of allowing the data itself to reveal its underlying 

structure and model rather than making specific assumptions regarding the model type which 

best fits the data (Engineering Statistics Handbook, 2006). ESDA attempts to discover the 

original structure of the data set by identification of data properties, important variables, pattern's 

detection, anomalies, spatial autocorrelation, spatial heterogeneity, etc. that will help to 

formulate spatial models (Anselin, 1998).  
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ESDA uses linkable numerical data and geographical maps to maximize the data 

visualization enabling the detection of remarkable patterns that are displayed on a map (Anselin, 

1999a). All these dynamical graphic methods, which began as improvements in displaying static 

data, e.g. scatter plots, histograms, bar charts, pie charts, etc., have allowed the user to directly 

manipulate of the data, which is immediately reflected into a graph or map. These graphical 

enhancements became likely by the availability of computer units with sufficient computational 

power to generate statistical graphs without delays and to allow interaction in the data through 

input devices, e.g. mouse, touch pen, and touch screen monitors. Furthermore, an ESDA’s 

principle is to involve the human factor more directly in the exploration of data, exploiting the 

natural capabilities of the brain to detect patterns and structure and thereby gain richer insights 

than possible with the traditional rigid and static display. ESDA achieved these principles by 

allowing the user to make changes into the data set that immediately are reproduced into a map, 

changes such as deleting anomalies, highlighting or brushing subsections of data, establishing 

links between the same data points in different graphs, manipulating and projecting higher 

dimensional of data, all of which have the purpose of better understanding the data structure to 

enhance the data analysis. 

 Developing a model involves three stages - model formulation, model estimation, and 

model validation. Usually researchers expend a majority of the time and effort on the model 

estimation stage in estimating parameters for a given model structure. In recent times a lot of 

attention has been paid to the model validation stage also with respect to performing diagnostic 

checks, analyzing the residuals etc.  However, in a lot of cases, the bigger issue is not estimating 

a model or validating it but identifying a model formulation. To date there is no clear procedure 
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for identifying the model formulation (Chatfield, 1986). ESDA can help in addressing this 

deficiency by providing insights for hypothesis formulation (Good, 1983).  

Geographic Information System (GIS) has enabled effective visualization of geographic 

data as they are capable of assembling, storing, manipulating, and displaying geographically 

referenced information. Gahegan (1999) described some barriers into the science of visualization 

such as computer graphs that should have the power to deal with many layers or variables 

simultaneously, and the complexity of mapping between geographic data sets and the visual 

domain. Nowadays, these barriers are being overcome with the implementation and 

enhancements of GIS systems. 

 

2.4.1 Geographic Information System (GIS) 

GIS allows handling large amount of data, detecting patterns, anomalies and spatial 

outliers automatically. It can now perform statistical analysis, modeling, and visual display of 

geographic data. Thus, GIS has provided a powerful new tool that has inspired researchers to use 

geographic concepts and consider spatial data characteristics by explicitly recognizing the key 

role that distances, location, proximity, neighborhood, and region play in the society. Because of 

the complexity of interactions that occur in space or between spatial units, the explanation of 

spatial patterns and characteristics are often hard to unravel. For these reasons, new theories 

which include spatial effects into the statistical theory have been developed that explicitly 

incorporate space for dealing with these complexities and for facilitating inferential judgments 

(Anselin et al. 2004a). 
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2.5 Data Visualization 

Visualization of the data sets is divided into three types of graphical representation: data 

mapping, flow maps, and autocorrelation maps. 

 

2.5.1 Data Mapping 

Data mapping can help identify unique characteristics in Truckload prices. For instance, there 

may be substantial difference in TL prices for the same delivery distance between pair of states 

at different locations. This difference in prices can be potentially due to cross-subsidization or 

price discrimination in the TL market at certain locations. Plotting data into a map helps to 

identify these characteristics, and answer important questions as described below.  

 Which states had been affected by high, low, and medium TL prices, considering the 

origin and destination states? 

 What states are subjected to large or short delivery distance?  

 

2.5.2 Representing Interaction between Origin-Destination Trips 

 It is a fact that geographical movements have a tremendous positive/negative impact at 

locations where they have occurred. For instance, the movement of people, money, commodities, 

could increase traffic congestion, improve business, decrease quality of life etc. Representation 

of geographical movement in statistical models is a complex process but  can help in interpreting 

significant characteristics across space. Understanding origin-destination interactions help in 

discovering travel behavior, providing knowledge of major and minor locations under supply and 

demand, which ultimately, can be aggregated for modeling purposes. Recently, graphical and 
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visualization maps have been developed which help in exploration of data interaction between 

origin and destination. 

In the truckload market, interaction of deliveries can be graphically represented by 

logistic lanes, from origin to destination U.S. states. A graphical representation of the origin 

destination interactions can help in identifying the surplus and deficit areas. Surplus areas are 

considered key production zones, usually, at these locations most of deliveries begin; deficit 

areas are locations where production is insufficient or does not meet local demand for specific 

commodities. Identifying these locations play an important role in economic studies, suggesting 

the attractiveness and unattractiveness of those locations for economic activities e.g. labor, 

migration, etc. Generally, freight movement of commodities across space are from surplus to 

deficit areas. It is important to point out the various constraints that roadway freight movement 

deals with across geographic space and periods of time over a year, e.g. climate, congestion, 

roadway closure, etc.  

In general, flows are represented by objects such as lines and arrows, where thickness 

represents the quantity of the flow, and arrows indicate the direction of the flow. In large data 

sets, these objects have negatively impacted the visualization and interpretation of maps, because 

they become clutter, and thus, it makes them unable for distinguishing important locations and 

patterns. Currently, alternative visual objects have been investigated to reduce density into the 

graph, improving the human perception.  

Tobler (1987) developed the pioneering software in this area on a Windows-based 

platform. It has an updated version, Flow Mapper 1.1, released in 2004 for The Center of 

Spatially Integrated Social Science (CSISS). Recent computer packages in this area are: 

Flowmap (2010) at the Utrecht University; FlowMapping (2010) for The Spatial Data Mining 
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and Visual Analytics Lab at the University of South Carolina; Jflowmap (2012) at the University 

of Fribourg. They allow users for visualizing and exploring data interactions, as well as, for 

performing data analysis. Jflowmap was selected in this research due to its large data handling 

capabilities, offering various visualization approaches for producing and analyzing flow maps. It 

effectively represents flows through good contrasted colors, which allows an outstanding human 

perception. The requirement for using Jflowmap is custom programming; the development of 

GIS shapes files and data preparation.  

Jflowmap represents flows by lines, instead of arrows, lines’ edges are red and green 

colored to represent the origin and destination respectively. The thickness indicates the volume 

of the flow, which in this research is the number of deliveries between locations. The largest 

number of trips are drawn above smaller flow volumes. Jflowmap allows users to customize data 

filtering to obtain detail visualization and summarization of relevant data. Also, it allows for 

highlighting and merging high spot locations (nodes) for aggregating and displaying purposes. 

Jflowmap uses a flow bundling technique to reduce visual clutter and make maps more 

understandable. The algorithm of bundling is based on attracting and putting together nearby 

flows with similar positions and orientations. Thus, flows turn into joint paths similar to 

electrical wires (Boyandin, 2010). This technique improves the users’ visualization, facilitating 

revealing significant patterns such as high and low consumer and demand locations, and also for 

identifying busy regions connected by trade. The use of multiple maps is advisable when 

working with large datasets recorded at different periods of time (Boyandin, 2011).  

This research develops flow maps for truckload movements for each year, from 2005 to 

2010, and for the total number of movements during the six year period. Flow maps help in 

responding important questions as described below. 
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 What are the major sources and destinations of the flows? 

 Where is the largest and the smallest flow? 

 In which direction and states are major movements? 

 What is happening within a specific area? 

 

2.5.3 Spatial Autocorrelation 

 The first law of geography states “everything is related to everything else, but near things 

are more related than distant things” (Tobler, 1970). This law highlights the concept of 

autocorrelation across space in data analysis. ESDA helps to measure the degree or significance 

in which near and distant observations are related. Based on statistical test and graphical 

representation, similarities among observation can be identified across locations. These 

similarities can be positive, negative or have zero relationship. Positive relationship occurs when 

similar values happen in nearby locations, negative relationships when dissimilar values happen 

in nearby locations, and zero when the relationship is by random chance. A prior knowledge of a 

spatial weight matrix (SWM) is required for this analysis. SWM creates a spatial relationship 

(weight) between observations, establishing which neighboring unit will be averaged. Selecting  

an appropriate SWM is an important and complex task for the spatial analysis formulation. It can 

be driven by a rational analysis, prior knowledge, or exploring the data sets to obtain insight 

regarding what type of connectivities fit best the data set. It is important to mention that the 

selection of an appropriate SWM is mostly related to modeling perspective, because the idea is 

captured both, the spatial and non-spatial effects of the dependent variable (GeoDa, 2012). 

ESDA can attempt to provide insights related to which SWM would be appropriate; therefore, 

for modeling purpose, it is advisable a sensitivity analysis of various SWM specifications 
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(Anselin, 2005). ESDA helps in identifying similarities and dissimilarities of the dependent 

variable at various locations. GIS tools allow for identifying and visualizing spatial 

autocorrelation into a map. GEODA software developed by Dr. Luc Anselin is used in this 

research for this purpose. It helps in displaying the dependent variable across locations, 

providing tools for univariate and bivariate statistical analysis, and allowing users for brushing 

and linking charts and maps.  

   

2.6 Spatial Econometric Analysis 

 Spatial econometric is a sub field of econometric with its origins in the early 1970s in 

Europe. The origin of spatial econometric theory recognizes that data collected at different 

locations may not be independent as usually is suggested in conventional statistics. These 

techniques were developed due to the need of taking into account spatial autocorrelation and 

spatial heterogeneity in regression models for cross-sectional and panel data (Paelinck and 

Klaassen, 1979; Anselin, 1988a). Initially, research that incorporated geographic factors in the 

models were primarily focused on specialized areas such as economic geography, regional 

sciences, urban and real estate economics Anselin (1999b). However, over the last decade spatial 

econometric methods have been applied to a wide variety of domains. Two major factors 

motivate the need to specify, estimate and test the presence of spatial interaction between 

variables: (i) the need for a method to deal with spatial interactions and (ii) the recognition of 

failure of standard econometric techniques when dealing with the presence of spatial 

autocorrelation (Anselin, 1999b). 

 The large progress in geographic information systems (GIS) and the availability of geo-

data in many disciplines have created the need of specialized methods to deal with geographic 
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data. The use of GIS with data collected at various locations, and spatial modeling techniques is 

a mutual place for various applied sciences in engineering, economics and policy analysis. 

Anselin (1999b) describes four areas of interest in spatial econometrics: (i) the correct 

incorporation of spatial effects in econometric models; (ii) the estimation of these models; (iii) 

the development of tests to determine the presence of spatial effects; and (iv) spatial forecasting 

or prediction. This study will be focused on the last three concerns, since they fall in the research 

questions of the study. 

 Various techniques are found in the literature to deal with spatial dependency and to 

specify spatial models. However, the two most prominent approaches are the spatial 

autoregressive model (SAR), in which the dependent variable is affected by the geographic 

location of the others dependent variables, and the spatial error model (SEM), in which the error 

term is affected by error correlations across space. In other words, autocorrelation can be 

modeled by considering correlation among the dependent variable (SAR) or by considering 

correlation among the error terms (SEM). Extensions of those models are developed by including 

higher order of dependency, and combined dependency across the dependent variable, 

independent variables, and residuals. For instance, the Spatial Durbin Model (SDM) is an 

extension of a SAR model, which considers spatial dependency in both, the dependent and 

independent variables. Spatial models incorporate a spatial weight matrix (SWM) to account for 

spatial dependency across neighborhood zones. The SWM attempts to capture the hidden effects 

that geographical location has over neighboring zones. The most common SWM encountered in 

the literature are: the contiguity matrix, the k-nearest neighbor’s matrix, a connectivity matrix, 

and a distance based matrix (LeSage and Pace, 2009). Other studies specify SWM in order to 

capture the origin and destination effects or both, for instance in interaction or flow models 
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(LeSage et al., 2009). Usually SWM is standardized to have a row sums equal to one; this is 

required to produce linear combinations of effects from neighboring regions of the model.  

 During the last decades the analysis of time series and cross-sectional data has been 

widely used in quantitative studies of comparative political economy (Podesta, 2000). This 

combination of cross-sectional data at specific interval of times such as having multiple 

snapshots was referred to pooled analysis (Pennings et al. 1999) or now commonly named panel 

data models. Panel models deal with various sizes of data in terms of periods of time and number 

of units. They also consider testing data by two dimensions, considering all units throughout 

time. 

In similar fashion, the spatial econometric literature includes a two dimensional analysis, 

considering dependency similar to the SAR and SEM models. These models are called spatial 

panel models, which are being developed and empirically tested by various authors such as 

Debarcy (2011), Elhorst (2011), Baltagi (2011), Yu (2011), LeSage et al. (2010), and Anselin et 

al. (2005). The main objective is developed a model which is able to examine simultaneously the 

space-time dimension.  

 Spatial econometric techniques have not been extensively applied in the freight 

transportation domain. LeSage and Pace (2005) provided a methodology to model origin-

destination commodity flows incorporating spatial dependence into the traditional gravity model 

used in international trade. LeSage and Polasek (2006) introduced a regression-based gravity 

model for commodity flows, incorporating information regarding the highway network by 

introducing a spatial weight connectivity matrix.  It includes information regarding the presence 

or absence of a major highway/train corridor that passes through the regions. Results indicated 

that this approach improves the model fit, providing higher likelihood values than using typical 
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spatial weight matrices, such as the described by LeSage and Pace (2005). Behrens et al. (2007) 

proposed a new version of the gravity equation, a dual model with cross sectional 

interdependence and spatially lagged error terms. An empirical application using trade data 

between Canada, and the U.S. is provided. Results indicated that controlling directly for spatial 

interdependence across trade flows, significantly reduces border effects, since it captures 

multilateral resistance. Novak et al. (2008) investigated freight generation models, using 

commodity data at the national level. By comparison of methods, results indicate that the spatial 

approach is a superior technique than the linear freight approach in order to specify freight 

generation models. This study concludes that the existence of spatial issues needs to be 

recognized and addressed in modeling efforts. Cho (2005) examines patterns of rural land 

development and density using spatial econometric models and Geographical Information 

System (GIS). The study infers that this type of spatial analysis can capture broader physical and 

social phenomena than traditional least squared analyses, which may miss. Results revealed that 

closer distance to roads and cities, greater access to streams and rivers, higher elevations, and 

greater proportions of a flat area are valued highly in rural land development. Yong (2006) 

applied spatial econometric to study the effect of investing in highway infrastructure has over the 

economy of Missouri. The study investigated the effect on retail trade, wages, employment 

growth in manufacturing, and in attracting people. Results indicated that highway investment 

does not provide significant positive evidence into attracts business or establish firms in the 

region. However, it has a favorable effect to increase wages rather than to increase labor supply. 

Quddus (2008) developed a series of relationships between many area-wide traffic casualties, 

and the contributing factors associated with ward characteristics in the Greater London 

metropolitan area. Both, non-spatial models and spatial models were developed to identify the 
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similarities and the differences among these relationships. Results suggested that since crash data 

are collected concerning location measured as points in space, spatial dependence exists between 

the area-level crash observations; therefore, spatial models are more appropriated for modeling 

those relationships. Safett (2009) conducted a global and local spatial regression analysis to 

evaluate the safety performance of roads in the provinces of Turkey. Road accident rates and 

death rates from 2001 to 2006 were used as dependent variables; and number of motor vehicles 

and length of roads, among others, were used as independent variables. Results indicated high 

concentration of fatal accidents related to roads connecting three biggest cities in Turkey. The 

predicted values of accident and death rates by spatial regression analysis showed better results 

than ordinary least regressions.  

Previous empirical studies using spatial econometric have concluded that since data in the 

transportation field is collected at various spatial locations, spatial econometric performs better 

than conventional statistics. Dealing with the spatial characteristics of a data set significantly 

helps in obtaining better results, and in capturing the spatial effects across locations. The 

disadvantage of this method in the transportation field may be centered on specified the 

appropriate SWM. Practitioners can define various types of SWM for dealing with spatial data, 

but results may not be unique and may vary accordingly with the SWM specification. Increase 

efforts to define an adequate SWM may be required  depending on the type of study. 

 

2.7 Spillover Impacts 

 Spatial spillover refers to a situation in which the alteration of one unit affects 

neighboring units. This is an indirect effect associated with an activity considered as an 

externality, which can be positive or negative to the neighbors. Neighbors can be defined by 
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geographic characteristics as distance or location, and also by social network. An important issue 

of analyzing spatial spillover is to identify the diffusion channels, how the externalities spreads 

across locations, which is considered a black box in the literature (Capello, 2009). Krugman 

(1991) states that “knowledge flows are invisible; they leave no paper trail by which they may be 

measured and tracked”. For instance, high unemployment rates tend to reduce consuming 

demand in a region, available income of consumers is affected; therefore, the purchase of goods 

and services is also reduced. It slows the economy of the region and consequently impact into 

neighboring regions. The last statement illustrates the propagation of effects across locations due 

to the alteration of one variable in a specific location. Spatial models have made possible of 

quantifying the spatial spillover impacts across locations. LeSage and Pace (2009) provides a 

methodology to measure these direct and indirect (spillover) impacts. They propose an N-by-N 

cross-partial derivative matrix; where the off-diagonal elements represent the indirect impact due 

to the change in the     explanatory variable in one region impacts the dependent variable in 

neighboring region. The diagonal elements represent the direct effects. They also propose a 

scalar summary measure for both effects. It is important to remark that this method is associated 

with spatial lag models, spatial correlation in the dependent variable, e.g. SAR or SDM. For 

SEM models the spillovers impacts are directly measured by the coefficient estimates in the 

same fashion as ordinary least squares.  

Studies that consider spatial econometric techniques for measuring the indirect impacts 

across neighboring locations have been conducted, primarily in the regional economic field. Rey 

(1999), in his US regional income converge study, investigated the impact of how a shock in one 

state replicates on surrounding states, complicating the convergence process. Baumont (2001) 

studied the spillovers effects of growth in European regions. This study indicates that the overall 
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growth of a region is positively influenced by neighboring regions, and by simulation showed the 

impact of a shock in one region disperses to all the regions of the sample. Crandall (2004) 

studied the spillover effects of poverty, results indicate that poverty is tied to wealth neighboring 

areas; thus, reducing poverty in particular areas will reduce poverty in neighboring locations. 

In the transportation field, there are few studies in the literature. Parent and LeSage 

(2010) quantify the spatial spillover effects in terms of commuter travel time when infrastructure 

capacity of a specific roadway segment is increased within the roadway network. Yang (2012) 

investigated the spillover impacts in inbound and domestic tourism flows. The study confirmed 

both impacts, and evokes that infrastructure and tourist attractions have a significant spillover 

impacts between cities in different regions. Zenhua (2012) quantifies the impact of surface 

transportation infrastructure such as highways, public railways and public transit in a region. 

This study confirms the significant impact of infrastructure to the economy of a region, mainly 

reached by the spillover effects from these facilities. Hu et al. (2010) quantifies the indirect 

effects of investing in transportation infrastructure in one region contributed to the GDP of 

neighboring regions, results indicate a significant contribution to the economic growth. 

 

2.8 Forecasting with Spatial Econometric 

 In the transportation engineering field, forecasting is an important part for designing and 

planning existing and future transportation facilities. The forecasting of movements of goods and 

people as well as prices take an important role in the design stage considerations. Little attention 

has been paid in defining appropriate forecasting methods, because of the assumption that state 

departments and local agencies are aware of the transportation needs for the future (Wells, 2009). 

The forecasting techniques vary from state to state and by local agencies, and usually these 
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standard statistics provide unsound results. Consequently, forecasting skills are becoming an 

important issue for federal transportation agencies. “Agencies will no longer be able to be 

agnostic about what forecasting techniques work and which do not” (Wells, 2009). For instance, 

prices in freight transportation are considered fixed for specific routes, and associated with 

factors such as fuel cost and delivery distance. Standard models consider them, but miss in 

considering economical and geographical factors such as the demand and supply associated with 

the transport activity and the indirect effects affecting other locations. 

 Forecasting using spatial panel models is not extensive in the spatial econometric 

literature. In the transportation field, no available studies have been found. Empirical and 

experimental studies have been conducted. Baltagi (2011) used Monte Carlo simulation to 

compare sixteen forecast panel data models and found that that ignoring spatial effect lead to 

inaccurate forecast outcomes. Miller (1997) investigated the accuracy of regional employment 

forecasts using spatial panel data models and found the forecast values to be very accurate at the 

state level with MAPE values less than 2.0 percent; where MAPE is the mean absolute 

percentage error, which is used to measure accuracy in terms of percentage, the lower the 

percentage values represent higher accuracy. Mayor (2012) evaluated short-run forecast of 

unemployment in Switzerland and Spain using spatial panel data models and obtained MAPE 

values less than 6.0 percent. 
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CHAPTER 3 

3.0 METHODOLOGY 

3.1 Introduction 

This research applies exploratory, statistical, and econometric techniques to answer the 

research questions. The analysis starts with the exploratory analysis. EDA and ESDA techniques 

will allow us to understand the data sets, providing insights on significant patterns and variations 

from past years in the truckload price market and help in determining correlations over space and 

time. The data set is checked for errors, missing values, and observations which are not 

consistent with the rest of the data. Exploratory analysis helps in providing insights regarding 

potential assumptions in data sets, such as normality and constant variance in a data set are at 

least not unreasonable assumptions. Spatial autocorrelation for the dependent variable TL price 

(price-per-mile) is tested by the Moran's I and LISA test. Scatter plots, matrix plots and maps 

help to visualize and understand patterns in freight truckload price per mile data. At the final 

stage of this process, descriptive summary statistics and graphs are supplied which provides 

useful insights regarding the relationships between the dependent and independent variables. 

Statistical methods such as time series analysis and robust techniques from EDA are applied to 

identify significant patterns and to estimate price-per-mile truckload. A comparison chart 

between methods is provided based on accuracy. Patterns discovered through ESDA approach 

are the starting point, providing insights with respect to clustering the states into regions. It helps 

us to formulate spatial econometric models that allow us to estimate TL prices at the state level 

and to quantify spillover impacts across states. 
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3.2 Time-Series Analysis 

 Truckload prices have large variations over time and are affected by other variables such 

as diesel cost and distance, which are noise or unpredictable variables. Diesel cost shows high 

fluctuations over months and years. Time series analysis can be used to analyze high noise data 

sets with data points obtained at fixed points over time because they can capture the underlying 

structure of the data providing a path to estimate future values. Changes and variations over time 

can be described as trends or cycles. In economics, it is conventional to decompose time series 

into a variety of components, some or all of which may be present in a particular instance as 

shown below. 

        

where:   are the observations over a specific time period,   is the slowly changing component or 

global trend;   is the periodic component or the seasonal variation; and   is the residual or the 

disturbance term. When the previous components, the trend and the seasonal are extracted from 

the observations, the noise or residual is obtained, which is the rough or irregular part for which 

no single explanation can be provided (Pollock, 1993). The residual may have some form of 

autocorrelation. Therefore, having some knowledge about the residuals in some observations can 

help to formulate better models and thus increase forecasting accuracy. 

 

3.2.1 Autoregressive and Moving Average Process 

 Autoregressive models and moving average are often used in the analysis of univariate 

time series data. AR(p) models follow the process shown in equation 1. 

                                   (1) 
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where    represents the dependent variable collected at specific period of time,    is the 

disturbance term,    are the parameters in the model, and   represents the constant term that 

captures the effects not obtained by the explanatory variables. In general, it is a linear regression 

considering as explanatory variables past dependent variables, which can be the most recently 

past observation or prior values of the series. The value of p: is called the order of the AR model. 

In the other hand, the moving average (MA) models follow the process shown in equation 2. 

                                    (2) 

where    represents the dependent variable, which follow a time series process, M  is the mean 

of the series,      , i = 0...p, are the disturbances and    are the parameters in the model. The 

term p is named the order of the MA model. MA follows a linear regression, but dissimilar to the 

AR models, the explanatory variables are the disturbance from past observations of the series. 

Disturbances are considered normally distributed with zero mean and constant variance. 

 

3.2.2 Autocorrelation Data Diagnostic 

 Diagnostic tests for autocorrelation can provide useful information about the "order" or 

the number of lags involved in the dynamic process of the data. The autocorrelation can be in the 

error terms or in the dependent variables. Understanding the degree of autocorrelation in the data 

helps in formulating the correct time series model. Equation 3 shows a simple first order 

autoregressive process (AR1) in error terms.  

           ;                (3)  

In the above equation is important to note that    is independent and identically distributed. 

Equation 4 shows a simple first order moving average (MA1) in error terms.  

               ;                (4)  
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Autocorrelation plots such as autocorrelation function (ACF) and partial autocorrelation (PACF) 

plots are developed by graphing the dependent variable. They help to examine how the 

dependent variable propagated over time, allowing for identifying the numbers of AR and/or MA 

terms or lags that explain better the dependent variable. For the time series analysis, the 

dependent variable is the truckload price per mile and the explanatory variables considered are 

diesel cost and delivery distance. The model is calibrated using data from a five-year time period 

from 2005 to 2009. The most recent year data of 2010 is used to validate the model. 

 

3.2.3 Forecasting Values Procedure 

 The dependent variable (price-per-mile) is averaged for similar months over the five-year 

period. The residuals are obtained by extracting the trend and the seasonal component.  The trend 

is obtained by ordinary least squares (OLS), by regressing the dependent variable over time. The 

trend provides a baseline for the value of the dependent variable, depicting the general way in 

which the price per mile fluctuates over the course of a year. The detrend values are obtained by 

subtracting the trend from the actual cost per mile for each month. The seasonal component 

captures the seasonal variation in the price per mile for each month. The seasonal values are the 

average of the detrend values, calculated for similar months, e.g. January 2005, January 2006… 

over the five-year period, 2005-2009. These seasonal factors are constant in the model for each 

month. Having the trend and seasonal factors, the residuals at each month can be obtained by 

subtracting those values from the dependent variable. After obtaining the residuals of each 

observation, the mean and variance can be calculated; they can be used to simulate future 

residuals.  
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 The simulation process is conducted assuming autocorrelation of the error term,    

          (error-lag) as shown in Equation 2. The   parameter and the standard deviation of 

the error (s) is estimated by regressing the residuals at time   to those at     over the five-year 

period. The error term (  ) is simulated from the normal distribution of zero mean and calculated 

standard deviation.  Therefore, by Equation 2, and using the mean and standard deviation of the 

residuals, will allow for forecasting residuals for future months. Finally, the model is completed 

after obtained the trend, the seasonal factors and the underlying structure of the residuals over 

time. MATLAB will be used to develop a routine to forecast residuals and to estimate the models 

for each of each datasets. 

  

3.3 Smoothing Techniques 

 Every time series                  can be split into a smooth structure component 

                  and a rough unstructured component                 . Examples of 

smoothing are the linear smoothers (equation 5), Hanning smoothers (equation 6) and median 

smoothers (equation 7). 

   
            

 
                   (5) 

   
 

 
     

 

 
   

 

 
      (6) 

                           (7) 

Note that the median smoothing can be conducted using 3 or 5 consecutive terms. Sometimes 

smoothing is applied multiple times. Applying one smoother to the results of a previous 

smoother is known as re-smoothing. A useful re-smoothing procedure is denoted as 3R where 3 

denotes that median smoothing using 3 consecutive terms is applied and R denotes that the 

smoothing is repeated until no further changes are noted.  
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 Sometimes running median smoothers remove interesting patterns. In such cases, the 

rough obtained by residual from the re-smoothing process is smoothed and added to the 

smoothed sequence. Often the same smoother is used in both smoothing, and re-roughing.  When 

this occurs, the smoother has been used “twice”, for example 3R twice. Flat segments may 

generate by two points; those will be smoothed by splitting (S). The idea is to replace each of the 

two points of the segment by a median calculated by considering the point itself and points from 

the right and left side.  

 In this study two smoothing techniques will be considered, the 4253 H twice, and the 

3RSS H twice. The 4253H twice consists of running medians of 4, then 2, then 5, then 3 

followed by Hanning smoothing. The result of this smoothing is then re-roughed by computing 

residuals, applying the same smoother to them and adding the result to the smooth of the first 

pass. The 3RSSH, twice consisting of running median of 3, two splitting operations named S to 

improve the smooth sequence, each of which is followed by a running median of 3, and finally, 

Hanning. The end points are dealt with using the method described by Velleman and Hoaglin 

(1981). The full smoother 3RSSH, twice is produced by re-roughing as described above. 

 

3.4 Model Validation and Accuracy 

 The withheld-data validation method is used in this study. The most recent available data 

for the year 2010 is used for validating purpose. The accuracy of the model will be obtained by 

comparing the forecast values and actual price-per-mile from the validation year. Mean Absolute 

Percent Error (MAPE) will be used to measure accuracy. This measure is generally used for 

time-series analysis and allows for comparing different models. MAPE is defined as: 

     
   

 
∑

      
  

  
 
     (8) 
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 where    is the actual value from the dataset and   
  is the forecasted value. Commonly, 

in the industry and business application, a model is considered to provide highly accurate 

forecasting if MAPE values are smaller than 10%, and the model is considered to provide good 

forecasting if the MAPE values are between 10% and 20% (Lewis, 1982). 

  

3.5 Exploratory Spatial Data Analysis (ESDA) 

ESDA approach is performed using the average of price-per-mile for each state and year. 

TL price data range from 2005 to 2010, and missing values exist for some states at each data set 

as described in the analysis. The objective of this analysis is to discover spatial patterns that help 

in identifying spatial clusters and formulating accurate forecasting models. The investigation 

regarding spatial autocorrelation in the data is also conducted as a part of ESDA; thus, a spatial 

weight matrix is defined for this purpose. 

 

3.5.1 Spatial Weight Matrix 

 To evaluate spatial autocorrelation, the closeness of observations must be defined based 

on different forms of vicinity such as near neighbors, contiguity, distance, etc. Normally the 

vicinity between various observations is captured using a spatial weight matrix (SWM) which 

defines the relationships between locations where measurements were made. For instance, if data 

is collected at    locations, then the spatial weight matrix will be of dimension     with zeros 

on the diagonal. The weight matrix can be specified in many forms such as constant weight for 

any two different locations, fixed weight for all observations within a specified distance, k-

nearest neighbors with a fixed weight, and all others zero, proportional weight to distance or 

inverse distance between zones. Variations of weight matrices such as squared distances or log-
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distance are also possible. The spatial weight matrix is row-standardized - the sum of the weights 

of a row is equal to one. The following is an illustration of a contiguity based weight matrix for 3 

regions as shown in figure 1. 

 

 

 

FIGURE 1: Region's Locations 

 The contiguity spatial weight matrix, indicate whether any pair of observations are 

neighbors, neighbors are defined when two regions share common borders. Therefore, if region i 

and region j are neighbors, then,       and zero otherwise. Using this illustration above, and 

the first-order contiguity definition, locations which share a border, the SWM have zeros on the 

main diagonal, avoiding of define an observation as neighbor to itself, and on position associated 

with non-contiguity. Ones in the matrix indicate contiguity neighbors. In order to normalize the 

influence across locations, the matrix often is row-standardized, in which the sum of each row is 

equal to one, providing proportional weights at each location. Figure 2 illustrates the first-order 

contiguity spatial weight matrix. 

 

 

 

 

FIGURE 2: Row-Standardized First-Order Contiguity Matrix  
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3.5.2 Measures of Spatial Autocorrelation 

 Moran's I (Moran 1950) tests for global spatial autocorrelation for continuous data. This 

test considers the null hypothesis: "observations are randomly distributed among locations" or in 

other words, the spatial process is a random chance; thus, a zero value indicates a random 

process. Equation 9 illustrates the cross-products of the deviations from the mean, which is 

calculated for   observations for a variable   collected at various locations (indexed by   and   ) 

as: 

  
 ∑ ∑         ̅      ̅   

  ∑      ̅     
   (9) 

where  ̅ is the mean of the variable   ,     are the elements of the weight matrix, and    is the 

sum of the elements of the weight matrix:     ∑ ∑      . Moran’s I varies from -1 to +1.  In the 

absence of autocorrelation the expectation of Moran’s I statistic is 1/( 1)n  , which tends to zero 

as the sample size increases, regardless of the specification of the weight matrix. For a row-

standardized spatial weight matrix, the normalizing factor    equals    (since each row sums to 

1), and the statistic simplifies to a ratio of a spatial cross product to a variance. A Moran’s I 

coefficient larger than 1/( 1)n   indicates positive spatial autocorrelation, and a Moran’s I less 

than 1/( 1)n   indicates negative spatial autocorrelation. Thus, Moran’s I of -1 and +1, indicates 

perfect dispersion and perfect correlation respectively, a zero value indicates random spatial 

pattern. Moran’s I is sensitive to extreme values, being a preferred measure of spatial 

autocorrelation. Cliff and Ord (1981) have shown that Moran’s I is consistently more powerful 

than other similar tests. This index is enhance when is used as Local Indicator of Spatial 

Autocorrelation (LISA) proposed by Anselin (1995). LISA considers breaking down Moran's 
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Index and assigns a LISA index to each location; thus, the sum of LISA's for all observations is 

proportional to the Moran's I.  

 LISA helps to interpret local spatial patterns, and to check for anomalies in the global 

spatial pattern. Moran’s I test and LISA are visualized on scatter plots and maps, respectively. 

These graphs provide a visual perception of local and overall patterns. The scatter plot is 

developed using the spatial lag on the vertical axis, and observations at each location in the 

horizontal axis. The slope of the regression line advocates the existence of global 

autocorrelation, and local autocorrelation is advocated by examining local trends in the scatter 

plot. The LISA map helps to observe clustering areas. This scatter plot has four quadrants; thus, 

observations are classified in four categories. Categories related to TL prices can be described as: 

High price states with High price neighbors (HH); Low price state surrounded by High price 

neighbors (LH); High price state with Low price neighbors (HL); and Low price states with Low 

price neighbors (LL). HH and LL correspond to positive forms of spatial dependence; HL and 

LH represent negative spatial dependence.  

 

3.6 Spatial Econometric Models 

 The spatial models are used for modeling cross-sectional data samples, considering the 

integration of effects due to the geographical location of the data. LeSage (1997) and Pace et al. 

(1998), LeSage (1999) provides a comprehensive treatment of these models from a maximum 

likelihood perspective. The most general statement of a spatial autoregressive model is shown in 

equation 10. 
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              (10) 

          

            

where   contains a      vector of cross-sectional dependent variables,   represents a      

matrix of explanatory variables and     and    are        spatial weight matrices, usually 

containing contiguity relations or functions of distance as previously described. Based on the 

general model, special models can be derived by imposing restrictions. Setting     and 

     produces a first-order spatial autoregressive model in the form of: 

           (11) 

            

This model attempts to explain variation in   as a linear combination of contiguous or 

neighboring units with no other explanatory variables. It represents a spatial analogy to the first 

order autoregressive model from time-series analysis,            ; where total reliance is on 

past period observations to explain variation in   . Setting       produces a mixed regressive-

spatial autoregressive model. This model is analogous to the lagged dependent variable model in 

time series. Equation 9 with additional explanatory variables (   to explain variation in   over 

the spatial sample of observations takes the form of equation 12.  

             (12) 

            

Letting      results in a regression model with spatial autocorrelation in the disturbances 

shown in equation 13.   

         (13) 
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A related model is known as the spatial Durbin model where a “spatial lag” of the dependent 

variable as well as a spatial lag of the explanatory variables matrix   is added to a traditional 

least-squares model. 

                   (14) 

            

As previously described this research considers the spatial dependence in the data; therefore, 

spatial econometric analysis is conducted for modeling TL prices. 

 

3.6.1 Spatial Panel Models  

 Panel data refer to the analysis of data sets that combine time series with cross-section 

dimensions; thus, the analysis considers the N cross-sections, e.g. states, regions, firms; and the 

T number of time periods. Panel data has the important characteristic that provides coefficient 

estimates with lower standard errors than a single cross-section data, because of the large number 

of observations throughout time. It allows for controlling each specific individual over time, and 

for controlling unobserved heterogeneity, which could generate bias coefficient estimates when 

using a standard ordinary least square (Soderbom, 2011). Panel data is categorized based on the 

number of cross sections and time periods in the data set. For instance, a data set with the same 

time periods for all individuals is called a balanced panel; and a data set with different lengths of 

the time period across individuals is called unbalanced panel, the last are the most usual type of 

data sets. A panel data with missing observation (unbalanced panel) can become a balanced 

panel by rejecting the missing observations on the dataset; however, it may decreases the 

efficiency and accuracy of the coefficients estimates. An important issue in modeling panel data 
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is how the unobserved individuals are considered in the model. They can be correlated with the 

regressors (fixed effects), or they can be distributed independently of the regressors (random 

effects). Equation 15 illustrates both concepts. 

               (15) 

where,     is the vector with the dependent variables for each cross section at the specific period 

of time t.     contains the explanatory variables ordered by cross-section and periods of time,     

is the unobservable variable (effect), and    is the error term.  

 Fixed effect assumes that     is correlated to     and it is time-invariant. Hence by 

subtracting equations     is eliminated, allowing consistent estimates of β. The random effect 

assumes that     is  iid[0,  ] and hence is uncorrelated with    . The random assumption is 

stronger to the fixed effect, which provides consistent coefficient estimates. However, if the true 

model involves fixed effects, the random effects will be inconsistent (Cameron and Triveddi, 

2005, 697). A standard test that helps identifying between fixed and random effects is the 

Hausman test, which is described in the next section.  

 The spatial panel model considers assumptions similar to the standard panel model, but 

adds the spatial dependency in either the dependent variable or the residuals comparable to the 

SAR and SEM models. Similarly, the Durbin model specification includes the constructed 

variable WX, which represents spatial dependency in the explanatory variables. Equation 16 and 

17 displays the general form of the spatial panel lagged Durbin model and spatial error Durbin 

models respectively. 

                           ;  (16) 
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In the above equations,     represents the dependent variables ordered by cross-section and by 

time period,     contains the k explanatory variables in the model, and   is the coefficient 

estimate for each explanatory variable. The parameter     represents either the random or fixed 

intercept in the spatial panel model,   is the spatial autoregressive parameter, and W is the SWM. 

                     ;  (17) 

       ; 

             

The spatial Durbin error model omitted spatial dependency in the dependent variable, but 

considers the spatial dependency in the residuals.   is the residual,   is the disturbance terms, the 

description of the other parameters and coefficients are similar to equation 16. 

 

3.7 Spatial Test for Spatial Dependency and Effects  

 Literature regarding spatial panel models identified two major tests that help analysts in 

specifying a model. The Lagrange Multiplier (LM) test examines dependency either in the 

dependent variable or in the residuals. The Hausman test helps in determining the most suitable 

effect in the model between fixed and random effects. 

 

3.7.1 The Lagrange Multiplier Test 

 Anselin (1988b) developed the Lagrange Multiplier (LM) diagnostic test for spatial 

dependence. LM test evaluates for spatial misspecification in the data in either the dependent 

variable or in the disturbance. It also tests for spatial heterogeneity, the existence of uneven 

distribution across space. The disadvantage of LM is that only one particular type of 

misspecification is tested, which may lead to erroneous information if the true model includes 



44 

 

both the presence of spatial lag and spatial autocorrelation in the residuals. Bera and Yoon 

(1993) developed a robust LM test under local miss-specification. This test basically corrects the 

mean and covariance matrix of the standard LM statistic, being simpler to compute. Anselin, 

Florax and Yoon (1996) introduce a similar test for spatial models, having the advantage of 

simple computations, and being suitable to identify spatial dependence in the response variable 

and in the disturbance. Anselin, Gallo and Jayet (2008) developed similar LM tests for spatial 

panel models. This research conduct the standard and robust LM tests to identify spatial-lag and 

spatial-error model formulations. In the case that both the LM-lag and LM-error test are 

significant, the model with the larger LM value (t-statistics) is selected, because it entails a better 

and more reasonable model (Anselin, 2005). LM test follows the χ
2 

distribution with one degree of 

freedom and it is asymptotic in nature.  The null hypothesis of the LM-lag test states that no 

significant presence of spatial autocorrelation exists in the dependent variable as is shown in equation 

18. 

      (
    

  )
 

     (18) 

where B takes the form of equation 19. 

  [       
(   (   )

  
  )     

  
]              (19) 

b is the OLS coefficient estimates (betas); X is the n×k matrix with explanatory variables; e is the 

residuals from the OLS; W is the spatial weight matrix,    is the OLS variance. The null 

hypothesis of the LM-error test states that no significant presence of spatial autocorrelation exists in 

the residuals as is shown in equation 20.  

        (
    

  )
 

             (20) 



45 

 

where e constitutes the OLS residuals; W is the SWM of n×n dimension, and tr is the matrix 

trace operator (sum of the elements of the main diagonal). The robust test as described before 

adjusted the mean and covariance matrix of the standard LM statistic. 

 

3.7.2 Random vs. Fixed Effects (Hausman Test) 

The null hypothesis of the Hausman test states that the effects (   ) are distributed 

independently from the explanatory variables (    , a random effect process. The main objective 

is to detect violation of the random effect assumption. Therefore, if no correlation exist between 

the explanatory variables and the effects, then the coefficient estimates in the fixed effects model 

( ̂    and in the random effects model ( ̂  ) should be similar. Equation 21 shows the null 

hypothesis (  ), a measure of the differences between the two coefficient estimates. 

   ( ̂    ̂  )
 
     ( ̂  )     ( ̂  )    ( ̂    ̂  )  (21) 

   is chi-square distributed with degrees of freedom equal to the number of regressors in the 

model. Therefore, if the null hypothesis is rejected (p-value<0.05), rejection of the random 

effects, indicates that the estimates for the two models are significantly dissimilar, in favor of the 

fixed effects model. The random effect will be biased and their coefficients estimates 

inconsistent and significantly different when compare to the fixed effects estimates (Dougherty, 

2007, pp417). Contrarily, accepting the null hypothesis (p-value>0.05) indicates rejection of 

fixed effects; thus, the coefficient estimates in the random and fixed effects are considerably 

similar. It this case, both the fixed and random effects are consistent, but fixed effects will be 

inefficient, because it includes unnecessary dummy variables that drop the degrees of freedom. 

However, it does not necessarily imply that these effects are the true effect in the model, free 

from bias, and therefore preferred over the fixed effects estimator. The Hausman test can 
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potentially fail due to the lack of statistical power to consistently determine departures from the 

null hypothesis (Clark, 2012). Empirical studies have shown the unlikeliness of obtaining  true 

zero correlation between exploratory variables and effects; thus, random effects will still be 

biased even if the Hausman test in in favor of the null hypothesis. Clark (2012) indicates that a 

biased estimator can provide a greater reduction of variance than an unbiased estimator; 

therefore, the former could the preferred. Analysis using spatial panel models requires working 

with data collected at different spatial locations, usually contiguous units across continuous 

periods of time, to provide with efficient and consistent results and to define a SWM. Elhorst 

(2011) indicates that under this situation, the fixed effect is the preferred effect in the model. He 

states that “the idea that a limited set of regions is sampled from a larger population must be 

rejected and therefore the random effects models”. In the spatial econometric literature, 

researchers usually report both effects attempting to compare coefficient estimates.  

 

3.8 Spatial Spillover Impacts 

The main contribution of the spatial econometric theory is that makes possible the 

measurement of spatial spillover impacts. It can quantify the impact of changing one explanatory 

variable in the model, attributed to a specific location or period of time, to the dependent variable 

in neighboring locations. Conventional linear regression models do not allow for measuring 

impacts across units. LeSage and Pace (2009) documented the theory behind the estimation of 

the direct and indirect effects for SAR models. It is important to mention that estimation of 

indirect impacts is exclusively for lagged models; SEM models do not allow this measure. The 

direct and indirect effects are measured through the matrix of partial derivative (M) of the 

dependent variable Y with respect to the k explanatory variable at specific n locations. The direct 
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effect is the average of the diagonal elements of M, and indirect effect is the differences between 

the direct effects and total effects, the latter is the average of either the sum of rows or sum of 

columns of the non-diagonal elements of M. In other words, the sum of the diagonal elements is 

the direct impacts due to changes in the     explanatory variable; and the sum of rows of the off-

diagonal elements is the indirect impact affecting neighboring locations. Equation 23 represents 

the matrix M. The valuable of this measure is that provides two scalar numbers for the direct and 

indirect effects across locations (LeSage and Pace, 2009). Interpreting and reporting results are 

less complicated with these numbers, since displaying the total M matrix of n-by-n elements is 

not required. 

 

                    (22) 

     ⁄                                       (23) 

 

Similarly, for the Durbin model the direct and indirect impacts come out from equation 25. 

 

                          (24) 

     ⁄                                        (25) 

 

LeSage and Pace (2009) described the advantage of the partial derivatives in Durbin 

models, being less restrictive by allowing deeper impacts across space than SAR models. 
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CHAPTER 4 

4.0 EXPLORATORY DATA ANALYSIS (EDA)  

4.1 Introduction 

 Truckload price data consists of an original database developed by a third party logistic 

(3PL) company. The data set is classified into four categories according to the type of goods  and 

the lane logistics management: (i) Dry-managed, goods are dry and lanes are managed (3PL 

manages the truckload logistics operations) (ii) Dry non-managed – goods are dry but other 3PL 

company is managing the truckload logistics operations, (iii) Reefer managed – non-dry goods 

and lanes managed, (iv) Reefer non-managed – non-dry goods and other 3PL company is 

managing the truckload logistics operations. The data sets include truckload price-per-mile from 

origins to destinations, average distance and the date recorded from 48 States in the U.S., 

between 2005 and 2010. In this research monthly average of truckload price-per-mile is used to 

conduct a time series based analysis. In addition, the impact of fuel price (diesel price) is 

considered; diesel price was obtained from the Energy Information Administration (EIA) for 

each state, month, and year (http://www.eia.gov). Table 1 illustrates a data sample. 
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TABLE 1: Data Sample 

Obs.# From To Year Month Day Distance Price/Mile Fuel_Ori Fuel_Dest 

1 AL FL 2005 1 1 404 1.89 1.801 1.821 

2 WI CO 2005 4 1 1224 1.55 2.171 2.212 

3 IL CO 2005 4 1 987 1.45 2.171 2.212 

4 IL CA 2005 4 1 2081 1.5 2.171 2.368 

..
. 

..
. 

..
. 

..
. 

..
. 

..
. 

..
. 

..
. 

..
. 

..
. 

1543 AL CA 2008 1 31 1997 1.2 2.316 2.274 

1544 OH GA 2008 1 31 658 1.6 2.279 2.351 

1545 GA IL 2008 2 8 630 0.98 2.333 2.235 

..
. 

..
. 

..
. 

..
. 

..
. 

..
. 

..
. 

..
. 

..
. 

..
. 

35564 GA IL 2009 2 13 724.8 0.98 2.333 2.235 

35565 NY FL 2009 2 20 1159 1.799 2.426 2.333 

..
. 

..
. 

..
. 

..
. 

..
. 

..
. 

..
. 

..
. 

..
. 

..
. 

43750 TX OR 2010 2 24 2192 1.43 2.231 2.340 

43751 KS TX 2010 2 27 790 1.5 2.235 2.231 

 

4.2 Descriptive Statistics 

Table 2 illustrates descriptive statistics for each data set over the five year period.  
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TABLE 2: Dataset Descriptive Statistics 

Type of 

Load 
Variable Mean 

SE 

Mean 
St Dev 

Coef. 

Var 
Minimum Median Maximum 

Dry Av. Cost 1.557 0.0295 0.2288 14.69 1.185 1.5066 2.3154 

Managed Av. Dist. 895.5 35.2 272.6 30.44 370.8 857.6 1725.4 

 
Fuel Ori. 2.854 0.0835 0.647 22.67 1.949 2.7047 4.7091 

 
Fuel Dest 2.889 0.0838 0.649 22.46 2.019 2.7562 4.8391 

Dry Av. Cost 1.559 0.0265 0.2051 13.15 1.1875 1.5507 2.206 

non-

Managed 
Av. Dist. 929.7 25.9 200.6 21.57 552 896.3 1506.2 

 
Fuel Ori. 2.861 0.0836 0.6479 22.64 1.9347 2.7296 4.744 

 
Fuel Dest 2.889 0.0825 0.6389 22.12 1.9981 2.7412 4.725 

Reefer Av. Cost 1.523 0.021 0.1624 10.66 1.1767 1.4831 1.9294 

Managed Av. Dist. 1282.7 35.9 278 21.67 657.5 1242.3 1974.8 

 
Fuel Ori. 2.861 0.0831 0.6437 22.49 1.9745 2.7057 4.7042 

 
Fuel Dest 2.897 0.082 0.6355 21.94 2.0255 2.7501 4.7592 

Reefer Av. Cost 1.560 0.0174 0.1351 8.66 1.2742 1.5685 2.0299 

non-

Managed 
Av. Dist. 1205 28.5 220.9 18.33 671.7 1167.7 1863.7 

 
Fuel Ori. 2.862 0.0833 0.6452 22.54 1.9792 2.7029 4.716 

 
Fuel Dest 2.896 0.0825 0.6388 22.05 2.0367 2.7123 4.7903 

 

Table 2 indicates that for the four types of data over the five year period, from 2005 to 2009, the 

average price-per-mile is around $1.55 per mile. The average delivery distance varies between 

900 for dry loads and 1,300 miles for reefer loads. Higher variability is observed in price-per-

mile of dry goods compared to reefer goods. Managed lanes data have higher variability in price-

per-mile when compared to the non-managed lanes data. Exploratory analysis of the raw data 

was conducted for each data set as shown in the next section.  
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4.3 EDA Plots 

Exploratory analysis of the raw data was conducted for each data set. A scatter plot of price vs. 

distance is shown in figure 3. The original four data sets consist of real price-per mile for 

115,201 origin-destination pairs. Dry managed accounts for 38.56 percent, Dry non-managed for 

14.18 percent, Reefer managed for 32.64 percent, and Reefer non-managed for 14.63 percent of 

the total number of observations. 

 

 

 

FIGURE 3: Scatter Plot- Price vs. Distance 

Figure 3 shows the relationship between price-per-mile and distance. It is observed that 

prices for distance smaller than 300 miles have large variation. TL prices are between $10.00 and 
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$30.00 per mile in delivery distances lower than 300-mile. This is because truckload prices over 

short distances vary significantly depending on local factors and supply chain practices. 

Normally a flat rate is charged for shorter distances based on the above mentioned factors. This 

section is focus on developing models for delivery distances greater than 300 miles. After 

removing distance greater than 300 miles, the data sets consist of 107,322 origin-destination pair 

observations. Dry managed accounts for 37.06 percent, Dry non-managed for the 12.20 percent, 

Reefer managed for the 35.03 percent, and Reefer non-managed for the 15.70 percent of the total 

number of observations. Based on the above scatter plot, two time series models were developed 

for  forecasting truckload prices. The first model (termed model A from now on) was for 

predicting truckload prices for distances greater than 300 miles. In addition, it is observed that 

most of the deliveries were made between the 300 and 1500 miles. Thus, a specific model for 

that range was developed (termed model B from now on), which is expected to provide higher 

forecasting accuracies. Note that because of the lack of data, a model associated with deliveries 

distances greater than 1500 miles can not be performed. The details of the time series models is 

provided in chapter 5. A distribution diagram and box plots of prices related to distances greater 

than 300miles is shown in figure 4. 
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FIGURE 4: Distribution Diagram and Boxplot of Price-per-Mile 

Figure 4 indicates positively long tail distribution (skewed) for all data sets. It displays 

the existence of extremely large or small observations in the data sets, which are affecting the 

mean. It suggests that robust techniques, which are resistant to outliers, could be an appropriate 

approach for modeling purposes. A monthly price-per-mile for each dataset over time is shown 

in Figure 5. 
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FIGURE 5: Price Fluctuation over Time 

Figure 5 indicates a large variations with different maximums and minimums at same 

periods of time for each dataset which validates the need for a specific model for each dataset. 

Figure 5 also shows a lot of random fluctuations over time which suggests the applicability of a 

time series based analysis. A multivariate scatter plot of Dry managed lanes with price-per-mile, 

fuel cost at origin, fuel cost at destination and delivery distance is shown in figure 6. 
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FIGURE 6: Multivariate Scatter Plot for Dry Managed 

Figure 6 indicates a linear relationship between fuel cost at origin and destination . It 

suggests the use of only one variable among fuel cost at origin and fuel cost at destination for 

modeling purposes to avoid collinearity problems. It is also observed that price has a random 

relationship with other variables, showing no specific pattern. Similar insights were obtained for 

the three data sets.  It is important to mention that fuel cost at origin and at destination were 

tested in the time series models, and both have shown similar results. Therefore, only the model 

with fuel cost at origin is reported. The matrix plot also indicates that the response variable 

(price-per-mile) does not have a linear relationship with other variables, displaying a random 

fluctuation. It suggests that considering data in the form of time series could be a good approach 

for modeling the data set. Figure 7 illustrates a steam-and-leaf plot for the dry managed data.  
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Stem-and-leaf of Price 

N  = 43751 
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FIGURE 7: Steam-and-Leaf Plot 

Figure 7 indicates that data is not symmetric showing a right-skewed distribution. 

Furthermore, descriptive statistics values as a median of 1.55, mean of 1.7593 and standard 

deviation of 1.297 were obtained. It suggests that a log transformation could be considered for 

normalizing the data set. Figure 8 illustrates a combined plot of box-plot and scatter-plot, by 

linking and brushing, it helps in visualizing the fluctuation of prices over delivery distance.   

 

 

 

 

 

 

 

FIGURE 8: Price-per-Mile vs. Distance Plots 
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 The scatter plot indicates that there is a relationship between distance and price-per-mile. 

Small price-per-mile is most likely for large distances. The brushing and linking tool indicates 

that prices for distance smaller than 300 miles are above $5.00 /mile. The scatter plot also 

indicates that the prices between $3.00 and $5.00 are spread out up to a maximum distance of 

1500 miles. It is as well observed that prices for distance smaller than 300 miles have large 

variation. The box plot and scatter plot of "distance" indicates that for distance greater than 1500 

miles the prices seem to be steadier.  In addition, it is observed that most of the deliveries were 

made between 300 and 1500 miles, thus, a specific model for that distance range could be led to 

provide high-accuracy estimate values. Therefore, the analysis suggests that data can be split into 

three groups, for distances between 0 and 300 miles, and distances between 300 and 1500, and 

distance larger than 1500 miles.  

 

4.4 Data Diagnostic Plots 

Diagnostic plots were developed for each data set. Autocorrelation function (ACF) and partial 

autocorrelation (PACF) plots are developed by graphing the truckload price-per-mile dependent 

variable. The plots help in identifying the numbers of lags that better explain the dependent 

variable. Figure 9 illustrates the ACF plots. 
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FIGURE 9: Autocorrelation Plots  

 Figure 9 displays the autocorrelation plots for the different data sets. The plots resemble 

an AR process as in almost all cases the ACF decreases as the lag increases. The dry and reefer 

non-managed appear to be under the lag (1) process, while the dry and reefer managed seems to 

be under no lag and lag (1) or lag (2) process respectively. In this dissertation, the AR(1) process 

was chosen, since it provides an adequate and consistent approximation of the real behavior of 

the dependent variable over the time period.   
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4.5 Discussion and Conclusion 

Results indicate an average price-per-mile around $1.55 per mile, and average delivery 

distance of 1,500 miles for each data set. Dry goods and managed lanes data have higher 

variability than reefer goods and non-managed lanes data, respectively. Delivery distances 

smaller than 300 miles have a large variability in prices, prices are above $5.00 per mile and 

most of the observations fall in between $10.00 and $30.00 per mile. Short delivery distances 

have higher prices, these deliveries produce less vehicle-mile-traveled, which increase cost of 

factors such as in vehicle storage. Thus, on short distance carriers usually have flat rates which 

depend on local conditions. A positive long tail was observed for each data set, suggesting a log 

transformation for normalizing the data for modeling purpose. It also displays the presence of 

extremely large or small observations in the data sets affecting the mean; thus, robust techniques 

resistant to outliers seem an appropriate approach for modeling purposes. Monthly data have 

shown a large variation with different maximums and minimums at the same periods of time for 

each dataset, it validates the need of a specific model for each dataset. The matrix plot indicates a 

non-linear relationship between the price-per-mile and other variables. The fuel cost either from 

the origin or the destination of the deliveries is not significant in the models. A random 

fluctuation over time between these data sets suggests the time series based analysis as an 

appropriated approach for modeling the data. In addition, the autocorrelation plots indicates the 

AR (1) process as the most adequate and consistent approximation of the real behavior of the 

dependent variable over the time period.  

Lanes with larger delivery distance were found to have lower TL prices. Plots displays 

prices between $3.00 and $5.00 for delivery distances smaller than 1500 miles. Most of the data 

fall within this range. At delivery distances greater than 1,500 miles prices look steadier; 
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however, the data points corresponding to this distance range is less. Results suggest the 

development of two models, model A for distances greater than 300 miles, and model B for 

deliveries distances between the 300 and 1500 miles. A model for distance greater than 1500 

miles is not feasible, because of the lack of data associated with these deliveries distances.  
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CHAPTER 5 

5.0 TIME SERIES ANALYSIS 

 The data used in this section is the same from the EDA analysis. Data were averaged on a  

monthly basis to conduct a time-series analysis. Data is separated into four categories: Dry 

managed lanes, Dry non-managed lanes, Reefer managed lanes, and Reefer non-managed lanes. 

In addition, the analysis has included the fuel price data (diesel price) obtained at monthly basis 

from the Energy Information Administration (EIA) for each state, month and year 

(http://www.eia.gov). This section investigates multiple methods for forecasting truckload price-

per-mile in the United States. The models developed were calibrated and validated on a real 

world truckload price-per-mile dataset. Two models were developed depending on the delivery 

distances as described in the previous chapter: (i) Model A which focuses on delivery distances 

greater than 300 miles and (ii) Model B which is calibrated and validated on delivery distances 

greater than 300 miles and lesser than 1500 miles.  

 

5.1 Autoregressive Model (AR), Model Calibration and Estimation 

First order autoregressive process AR (1), was calibrated for each dataset over the five 

years time period, from 2005 to 2009. The data for 2010, which is the most recent data available, 

was withheld to validate the model. The methodology process is described in section 3. The next 

section provides an overview of the robust techniques used for predicting truckload price-per-

miles. 

 

http://www.eia.gov/
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5.2 Smoothing Process 

 In addition to the autoregressive process, a smoothing process as described in the 

methodology section was conducted. Figure 10 illustrates the 4253 H twice and 3RSSH twice 

smoothing techniques of the TL price data over 5 years (60 months). The main idea of this 

process is attempted to visualize any pattern in the smooth and the rough part of the data. Two 

smoothing techniques were conducted, the 4253H twice and the 3RSSH twice.  

 

 

  

 

 

 

 

 

 

 

 

 

FIGURE 10: Smoothing Techniques 

 Figure 10 indicates that the 4253H seems to reduce more the jagged variations than the 

3RSSH twice smoothing technique, which present some flat segments. The 4253H follows best 
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the data points, smoothing the pick values, and at the end month (60) seems to have a best fit 

than the 3RSSH. The rough plots indicate that the 4253H has a noise that does not follow any 

interest pattern. The 4253H twice looks as the best approach among the techniques presented in 

the analysis.  

 

5.3 Results 

 In the forecasting process, similar to the time series, in the robust techniques, the data 

were separated based on distances. The first 60 months of data is used for calibrating the model 

and the last 12 months for validating the model. The data is first smoothed using two techniques 

the 4253H twice and the 3RSSH twice to obtain the smooth part. The autocorrelation plots of the 

smoothed time series were also found to show the presence of an AR (1) process. Therefore, the 

time series analysis techniques described in the previous section were applied to the smoothed 

data. Table 3 shows the calibration and validation performance for model A which contains data 

for all delivery distances greater than 300 miles for the following six model specifications. The 

first three model specifications use time index (months) to calculate the trends whereas the last 

three model specifications use time index (months) and the fuel cost ($/gallons) to calculate the 

trends. Within each model specification there are three types of models: (i) AR(1) time series 

model, (ii) AR(1) time series models applied on data smoothed using 4253H twice smoothing 

techniques, (iii) AR(1) time series models applied on data smoothed using 3RSSH twice 

smoothing techniques. Table 4 shows the same results for Model B which contains data for 

delivery distances between 300 and 1500 miles. The accuracy of the model was obtained by 

comparing the forecast values and actual price-per-mile from the validation year using the Mean 

Absolute Percent Error (MAPE).  
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TABLE 3: Model A Results Comparison 

 
Variables Time (Months) Time (Months) + Fuel Cost ($/gal) 

 
Technique 

Time Series Robust Robust Time Series Robust Robust 

AR-1 4253H 3RSSH AR-1 4253H 3RSSH 

Dry Cal (MSE) 0.0081 0.0329 0.0354 0.0088 0.0336 0.036 

Managed Val (MSE) 0.0396 0.0381 0.036 0.0374 0.0357 0.0323 

 
Val MAPE) 11.09% 10.75% 10.84% 10.73% 9.42% 9.24% 

Dry Cal (MSE) 0.0038 0.0185 0.0174 0.004 0.0187 0.0176 

non-Managed Val (MSE) 0.0277 0.0209 0.021 0.028 0.0216 0.0225 

 
Val (MAPE) 9.84% 8.57% 8.29% 10.20% 8.15% 8.07% 

Reefer Cal (MSE) 0.0038 0.0151 0.017 0.0036 0.0149 0.0168 

Managed Val (MSE) 0.0453 0.0383 0.029 0.0405 0.0347 0.028 

 
Val (MAPE) 11.09% 9.90% 9.19% 10.83% 9.75% 9.21% 

Reefer Cal (MSE) 0.0005539 0.006 0.0065 0.00069 0.0062 0.0066 

non-Managed Val (MSE) 0.0137 0.0135 0.0119 0.0147 0.0138 0.0118 

 
Val (MAPE) 5.94% 5.48% 5.32% 6.04% 5.53% 5.20% 
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TABLE 4: Model B Results Comparison 

 
Variables Time (Months) Time (Months) + Fuel Cost ($/gal) 

 
Technique 

Time Series Robust Robust Time Series Robust Robust 

AR-1 4253H 3RSSH AR-1 4253H 3RSSH 

Dry Cal (MSE) 0.0075 0.031 0.033 0.008 0.0315 0.0334 

AS Val (MSE) 0.0347 0.0333 0.0313 0.0308 0.031 0.0291 

 
Val (MAPE) 9.73% 9.41% 9.14% 9.07% 8.34% 8.15% 

Dry Cal. (MSE) 0.0042 0.0191 0.0195 0.0042 0.0191 0.0195 

non-AS Val (MSE) 0.0203 0.0144 0.0161 0.0219 0.0166 0.018 

 
Val (MAPE) 8.08% 6.31% 6.55% 8.34% 6.43% 6.73% 

Reefer Cal (MSE) 0.0036 0.0157 0.016 0.0032 0.0153 0.0156 

AS Val (MSE) 0.044 0.0386 0.0384 0.0407 0.0339 0.0345 

 
Val (MAPE) 10.40% 10.43% 10.18% 9.96% 9.53% 9.57% 

Reefer Cal (MSE) 0.00064 0.0079 0.0081 0.000721 0.008 0.0082 

non-AS Val (MSE) 0.0116 0.011 0.0104 0.0121 0.0122 0.0117 

 
Val (MAPE) 5.37% 5.45% 5.28% 5.53% 5.90% 5.70% 

 

5.4 Performance Evaluation of Methodologies 

Both the regular time series analysis and the combination of robust smoothing techniques 

with time series analysis provide satisfactory results in forecasting truckload prices. The 

application of robust smoothing techniques before performing the time series analysis was found 

to yield better forecasting accuracies. The MAPE using robust techniques were found to be less 

than 10% in all the cases when fuel cost was used as an explanatory variable in addition to the 

time index. When the only time index was used the MAPE for robust techniques was found to be 

less than 10% in all the cases except for Reefer managed data set. However, no significant 

improvements in MAPE were obtained using the extra explanatory variable. Therefore, if it is 
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difficult to forecast the future diesel cost, it might be prudent to not to include it as an 

explanatory variable. The application of 3RSSH smoothing technique was found to marginally 

outperform the 4253H smoothing technique. Higher forecasting accuracies were obtained for 

Model B. This is expected due to the use of prices for lanes which have delivery distances 

between 300 miles to 1500 miles which negates the impact of outliers. This result also validated 

the idea of splitting the data set into two categories based on distances and developing separate 

models. Note that for Model A which contained all delivery distances greater than 300 miles, the 

data set contained a number of outliers and had higher variability leading to lesser accuracies. 

Highest accuracies were obtained for reefer non-managed lanes. This is potentially a reflection of 

the fact that in the original data, reefer and non-managed lane prices had the lowest variability.  

 

5.5 Conclusion 

 Two types of models were developed. One where the regular time series method was 

applied to the raw data and the second where the data was first smoothed using robust smoothing 

techniques and then time series analysis methods were applied.  The application of robust 

smoothing techniques before performing the time series analysis was found to yield better 

forecasting accuracies. The application of 3RSSH smoothing technique was found to marginally 

outperform the 4253H smoothing technique. Smoothing the datasets before applying the AR (1) 

process appears to be a  convenient technique for avoiding irregularities or anomalies in a 

dataset. The variable fuel cost slightly improves forecasting results; however, univariate models 

developed with price-per-mile as the dependent variable and a time index (months) has shown 

comparable results in all cases. The models developed in this section can be easily adopted by 

freight and logistics companies to obtain reasonably accurate forecasts of TL prices.   
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CHAPTER 6 

6.0 EXPLORATORY SPATIAL DATA ANALYSIS (ESDA) 

6.1 Introduction 

The main objective of the ESDA is to obtain insights from the dependent variable, TL 

price-per-mile, at the state level. The U.S. state level scale was chosen, since at lower scale 

visualization of maps become dense and blurry, making it difficult for human perception to 

capture information from the maps. U.S. states have dissimilarities such as regulations, taxes, 

fuel cost, number of logistic companies, number of tolls, topography, and transportation 

infrastructure condition. ESDA attempts to discover patterns that could be directly related to the 

uniqueness among locations. The illustration of large data sets in a simplified form such as a 

map, makes the exploratory analysis a very valuable and complex task in this research. Maps 

allow for a rapid interpretation of the data, but its conception relies on the ability and ideas of the 

creator to best represent a data set. “Maps are models of reality, by definition of models they are 

a simplified representation of the world” (Groff, 2006). Graphical representation of spatial data 

helps analysts in identifying potential clusters for modeling purposes. Significant patterns that 

have occurred over the last years in the truckload transportation market can be identified. This 

chapter performs the ESDA for the four data sets: managed, non-managed lanes and by type of 

commodity. Manage and non-managed data for type of commodity is described together, since 

alike patterns were encountered by type of commodity. 
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6.2 Exploratory Maps 

6.2.1 Dry Loads   

The data set of dry load managed lanes consists of 43,742 observations. After removing 

observations with delivery distance shorter than 300-mile; 39,776 observations were obtained. 

Dry load non-managed lanes consists of 16,332 observations. After removing observations with 

distance shorter than 300-mile; 13,116 observations were obtained. Data is from six years, from 

2005 to 2010. Figure 11 displays the six-year averaged TL price for dry loads. The upper graphs 

are for managing lanes, and the lower graphs are for non-managing lanes. 

 

 

 

 

 

FIGURE 11: Dry Load - Six Years Averaged 

Figure 11 shows TL prices at the origin and destination perspective. States are colored with blue, 

gray and red, indicating states under low, medium and high TL prices, respectively. The states 

Destination Perspective Origin Perspective 

Non-Managed 

Managed 

Non-Managed 

Managed 
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where no data was recorded are white colored. This type of notation goes throughout this 

chapter. From the origin perspective, data is not available on the following states; for managing 

lanes in: Delaware, Connecticut, Montana and Wyoming; thus, available data accounts for a total 

of 43 states. For non-managing lanes data is not available in: Montana, Wyoming, South Dakota, 

New Hampshire, and Rhode Island, available data is on 44 states. From destination perspective, 

data is not available on the following states; for managing lanes in: Idaho, Wyoming, North 

Dakota, South Dakota, West Virginia, Delaware, Maine, New Hampshire, Vermont, Arkansas, 

and Indiana, data available is on 37 states. For non-managing lanes in: Idaho, Wyoming, North 

Dakota, South Dakota, West Virginia, Delaware, Maine, New Hampshire, Vermont, and Kansas, 

available data is on 38 states.  

Figure 11 indicates that both datasets, from the origin and destination perspective show 

similar patterns. From the origin perspective, high TL prices are observed in the eastern and 

central U.S., except for Florida and Colorado. Low TL prices are observed in western U.S. 

except for California and Nevada. The highest TL prices are observed in Maine, Virginia and 

West Virginia. The lowest TL prices are observed in Florida and Colorado. From the destination 

perspective, high TL prices are observed in the northeastern U.S. and Florida. Low TL prices are 

observed in western and central U.S. states, except for Utah, Colorado, Arizona, and New 

Mexico. Contrasting both maps from the origin and destination perspective, it seems that 

destinations with high TL prices are the origins of the deliveries with low TL prices. It is also 

noted that states with small area displays high TL prices from both the origin and destination 

perspective. In general, low TL prices are indicated in the western U.S., medium TL prices in the 

central U.S. and high TL prices in the eastern U.S.; the northeastern U.S has shown the highest 

prices, and the south central states the lowest TL prices. Figure 12 illustrates the TL price over 
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the six year period. N in the graphs indicates the number of observations in each year. Results in 

this analysis for managing and non-managing lanes data were encountered to have significant 

similarities; therefore, only the map for managing lanes data is shown in this section. The graphs 

for non-managing lanes are attached in Appendix A. 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 12: Dry Load Managed & Non-Managed by Year 

Figure 12 indicates similar patterns during the study period. In the years 2007 and 2008, TL 

prices were higher, mainly in the northeastern U.S. This high price may be attributed to 

increments of diesel cost or for more demand of commodities in those years. It is also indicated 

that lower U.S. states: Arizona, New Mexico, and Texas (U.S. border states of Mexico); and 

Louisiana, Mississippi, Alabama, and Florida have shown low and medium TL prices. It 

suggests that these states are less susceptible to changes of external variables affecting TL prices. 

Managed 
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Figure 13 shows the average of TL price over the six year period divided into nine delivery 

distance intervals. 

 

 

 

 

 

 

 

 

 

FIGURE 13: Averaged TL price for Dry Load Manage 

 

Figure 13 shows that greater delivery distances tends to low TL prices. For short delivery 

distances, between 300 and 500 miles, California, Nevada, and northeastern U.S. resemble the 

highest prices. For delivery distances greater than 1,500 miles TL prices are steadier. U.S border 

state of Mexico: Arizona, New Mexico, and Texas have shown low TL prices in all delivery 

distances. Figure 14 illustrates the TL prices for deliveries between origin and destination states. 
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FIGURE 14: Average TL Price for Dry Load Managed by O-D State 

In figure 14, the first map on the upper left part, which is Alabama (AL), indicates trips from 

Alabama to other US. States. The perception of contiguity is provided to the reader by describing 

figure 14 into two categories: i) high, and low TL prices between O-D states and ii) the number 

of states required to cross for obtaining the destination state, which is indicated in parenthesis. 

The latter provides to the reader the notion of neighboring in the data description. High TL 

prices, as expected, are mostly related to closest states or when at least one state is crossed. The 

unforeseen values are for deliveries from Arizona to Florida (6), and Illinois to Montana (2) with 

a delivery distance greater than 1,000 miles. Low TL prices, as expected, are mostly related to 

deliveries that require crossing more than one state. The unforeseen values are for deliveries 
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from Maryland to Ohio (1), Florida to Alabama (0), Florida to Georgia (0), Georgia to Tennessee 

(0), Indiana to Illinois (0), New Mexico to Oklahoma (0), Alabama to Missouri (1), and from 

Georgia to Kentucky (1); all of them with delivery distances shorter than 600 miles. 

The previous description introduces the idea of neighboring in the analysis. It provides 

insights regarding the relationship (weight) among states, helping for specifying an appropriate 

spatial weight matrix in the modeling stage. The motivation behind this analysis and for 

considering the number of states between the origin and destination of the deliveries is made 

because of the inherent effect of crossing borders as an artificial barrier of transportation trade. 

As described before, dissimilarities among states have an imperceptible impact to TL prices, 

these characteristics are complex to capture in a model; however, having knowledge of the data 

helps to formulate a model. 
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6.2.2 Reefer Loads 

This data set consists of 37,596 observations, after removing observations with delivery 

distance shorter than 300-mile; 35,916 observations are obtained. This data is from six years, 

from 2005 to 2010. Reefer load non-managed lanes consist of 16,854 observations, after 

removing observations with distance shorter than 300-mile; 15,329 observations were obtained. 

Data is from six years, from 2005 to 2010. Figure 15 displays the six-year averaged TL price for 

reefer loads. The upper graphs are for managed lanes, and the lower graphs are for non-managed 

lanes. 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 15: Reefer Load Managed - Six Years Averaged 
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From the origin perspective, managing lanes data is not available in the following states: 

Montana, Wyoming, New Mexico, West Virginia, New Hampshire, and Rhode Island. There is 

data available for the remaining 42 states. For non-managing lanes, data is not available in the 

following states: Wyoming and West Virginia; there is data available in 46 states. From the 

destination perspective, managing lanes data is not available in the following states: Maine, New 

Hampshire, Vermont, Delaware, West Virginia, North Caroline, South Carolina, Wyoming, and 

Nevada; there is data available in 39 states. For non-managing lanes, data is not available in the 

following states: Maine, New Hampshire, Vermont, North Dakota, and South Dakota; there is 

data available in 43 states.   

 Figure 15 indicates that from the origin and destination perspective both data sets show 

similar patterns. From the origin perspective, high TL prices are observed in the northeast central 

U.S., and in California. Low TL prices are observed in northeastern U.S and in Florida. The 

highest TL prices are in Wisconsin, Nebraska, Iowa and California. The lowest TL prices are in 

Massachusetts, Rhode Island, and Connecticut. From the destination perspective, high TL prices 

are in the northeastern U.S. and in Florida. Low TL prices are in northeastern central U.S., and 

California and Nevada. The highest TL prices are in northeastern states, Florida and Montana. 

The lowest TL prices are shown in the northeastern central U.S. states. Contrasting both maps, 

from origin and destination perspective, it seems that destination with high TL prices are the 

origins of deliveries with low TL prices. It is also noted that states with small territory areas have 

low TL prices from the origin perspective. In general, from the origin perspective, low TL prices 

are in eastern U.S., medium and high TL prices in the western and central U.S; the northeast 

central U.S. has shown the highest TL prices, and the northeastern states the lowest TL prices. 

Figure 16 illustrates the TL price over the six year period. Results in this analysis for managing 
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and non-managing lanes have significant similarities; therefore, only the map for managing lanes 

data is shown in this section. The graphs for non-managing lanes are attached in the Appendix A. 

 

 

 

 

 

 

 

FIGURE 16: Reefer Load Managed by Year  

Figure 16 indicates similar patterns during the study period. In the years 2007 and 2008, TL 

prices were higher than other years; mainly in the north central U.S. Similar to the dry loads, 

these high prices may attributed to higher diesel cost or more demand of goods during these 

years. It is also observed that lower U.S. states: Arizona, New Mexico, and Texas (U.S. border 

states of Mexico); Louisiana, Mississippi, Alabama, and Florida have shown low and medium 

TL prices. It suggests that these states are less susceptible to changes of external variables 

affecting TL prices. Figure 17 shows the average of TL price over the six year period divided 

into nine delivery distance intervals. 
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FIGURE 17: Averaged TL price for Reefer Load by Distance  

 

Figure 17 shows that greater delivery distances tends to reduce TL prices. For short delivery 

distances, between 300-mile and 500-mile, New York is the only state with high prices. For 

delivery distances greater than 1,500-mile TL prices are low and steady. U.S. border state of 

Mexico: Arizona, New Mexico, and Texas have shown low TL prices in all delivery distances. 

Figure 18 illustrates the TL prices for deliveries between origin and destination states. 
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FIGURE 18: Average TL Price for Reefer Load Managed by O-D State 

Figure 18 shows high TL prices associated with neighboring states or when one state is required 

to cross. The unforeseen values are for deliveries from Arizona to Louisiana (2); California to 

Montana (2); Illinois to New York (2), Kansas to Michigan (2); Arizona to Missouri (3); 

Wisconsin to New York (4); Nebraska to West Virginia (4); all of them with delivery distances 

greater than 1,000-mile. Low TL prices are mostly related to deliveries that require crossing 

more than one state. The unforeseen values are for deliveries from Pennsylvania to Ohio (0); 

Alabama to Missouri (1); New Jersey to Ohio (1); Alabama to Missouri (1); Arkansas to 

Kentucky (1); Georgia to Kentucky (1); Pennsylvania to Kentucky (1); all of them with delivery 

distance shorter than 600-mile. 
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6.3 Interaction Maps 

Flow maps are developed for deliveries between origin and destination during each year 

for the four data sets. Each type of commodity has shown similar patterns for the managed and 

non-managed attribute; moreover, persistent patterns have been seen over the last years. The 

maps for each type of commodity at each year are documented in Appendix A, and the flow 

maps for the total number of deliveries during the six years of data are displayed in figure 19 and 

figure 20. Figure 19 indicates the states under light, medium and heavy volume of in-out 

movements; and figure 20 illustrates the bundled version of those deliveries for each type of 

commodity. These exploratory maps simplified and make easier for identifying major suppliers 

and consumer states formed by the total number of deliveries during the six year period. The 

reader should note that the author is reading these maps from a computer monitor, which have a 

better sizable image for visualization and description of data than the presented below.  
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FIGURE 19: Flow Map for Total number of Deliveries 

Figure 19 shows similar flow patterns over the years for dry-managed and dry-non 

managed, as well as, for the reefer managed and non- managed data. For dry load, it is observed 

that California, Florida and Texas are large consumer states, mainly from the eastern and central 

U.S. For reefer load is observed that California, and Florida are large consumer, mainly from the 

central and northeastern U.S. For both types of commodities, California is the major supplier of 

Oregon, and Illinois is shown as the major supplier of California, Texas, New York, and Florida. 

U.S. states serving as local suppliers for their neighboring states are Illinois, Kansas, and 

Arkansas. 
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Reefer non-Managed Reefer Managed 
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FIGURE 20: Bundle Map for Total Deliveries in the U.S. 

Figure 20 shows California, Florida, Texas and New York as the large dense areas in both types 

of commodities, which indicates major trade zones in the U.S. Strong accumulation of hosts are 

observed in the bundle map, on the eastern and western U.S, which suggests three remarkable 

regions based on truckload movements: the eastern, central and western U.S. Busy trade 

directions are also observed from the eastern to the western U.S. states, and between states from 

the lower to upper eastern U.S. states. From figure 19 and 20 significant patterns for each type of 

commodity is described below.  

Dry loads 

 Major suppliers are: Illinois, New Jersey, Pennsylvania, Kansas, Kentucky, New 

Hampshire, Vermont, Maine, North Dakota, and South Dakota, California, Wisconsin, 

Ohio, Maine, Rhode Island, Idaho, and Washington.  

Reefer non-Managed

Dry Managed

Reefer Managed

Dry non-Managed
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 Major consumer states are: Florida, New York, Minnesota, Oregon, Colorado, Arizona, 

Nebraska, Michigan, Massachusetts, Montana, Texas, and North Caroline.  

 States with large volume of incoming and out coming flows are: California, Texas, 

Georgia, Ohio, Missouri, Illinois, Minnesota, Wisconsin, and Alabama. 

 Large volume of deliveries are indicated from California to Oregon, Texas, and Arizona; 

from Texas to California, Florida, Colorado; from Illinois to California, Texas, New 

York, Florida and Minnesota; from Pennsylvania to New York, California, and Texas. 

Reefer Loads 

 Major suppliers are: Texas, Georgia, Illinois, Arkansas, Wisconsin, Minnesota, North 

Dakota, and Idaho.  

 Major consumer states are: California, Florida, Colorado, Nebraska, Montana, and North 

Caroline.  

 States with large volume of incoming and out coming flows are: New York, Texas and 

Ohio. 

 Large volume of deliveries are indicated from California to Oregon; from Texas to 

California, Florida, Arizona, and New York; from Illinois to California, Texas, New 

York,  and Florida; from Minnesota to Texas, California and Illinois; from Idaho to 

surrounding states, from Wisconsin to surrounding states.  

Figure 21 illustrates the exploratory TL price maps and the flow maps to observe patterns 

regarding TL price and the state’s attribute of being a producer or a consumer state. 
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FIGURE 21: Flow and Exploratory Map 

 

Figure 21 shows the flow maps for dry and reefer managed lane data, the exploratory map on the 

right hand is based on the origin perspective. Figure 21 indicates that for dry and reefer loads, 

consumer states are most likely to have low TL prices. For instance, Florida, Colorado, Utah, 

Arizona, New Mexico has shown persistent low TL prices through the analysis. High TL prices 

are mostly associated with producer states, for instance, it is observed in the north central U.S., 

where maps are mostly colored red. States that have shown dissimilar patterns are California and 

Nevada, consumer states with high TL prices. 

 

Dry Managed 

Reefer Managed 

FLOW  MAPS EXPLORATORY MAPS 

Reefer Managed 
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6.4 Spatial Autocorrelation 

Spatial autocorrelation analysis was evaluated throughout the Moran’s I test for each data 

set. From previous analysis, a notion regarding to an appropriate SWM for the datasets was 

assessed. The main characteristic in all data sets is the relationship between delivery distance and 

TL price, larger distance are associated with lower TL prices. Therefore, neighboring proximity, 

as well as, distance between neighbors has shown as a feasible alternative for developing an 

appropriate SWM.  

The first nearest-neighbor SWM was considered in this analysis. It considers the matrix 

wij=1, if “j” is one of the first nearest neighbors, and 0 otherwise. This type of SWM is usually 

used when spatial interaction is associated with neighbor proximity (Lee, 2009). Other SWM 

specifications such as queen, rook, and contiguity were also tested, showing comparable results; 

therefore, only results for first-nearest neighbor is reported in this section.  

For each year spatial autocorrelation was evaluated  (from 2005 to 2010) to investigate 

the behavior of each state over the years, by observing its position on the Moran's I scatter plot at 

each year. Then, each state was assigned to one of the four categories: HH, LL, LH, and HL 

(quadrant position in the scatter plot), on the basis of its likelihood of being in a specific location 

in the scatter plot. The same analysis was performed, but now using the average of TL price for 

the six years of the study period. Results from both analyses have shown comparable results in 

terms of the location of each state in the scatter plot. Therefore, the analysis using the average of 

TL price was conducted for the univariate plot, and including the inverse distance variable for 

the bivariate plot.  
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Figure 22 illustrates the univariate Moran's I scatter plot for each data set. It is important 

to note that these scatter plots were developed using the available states in the four datasets, thus, 

a missing state in one data set was deleted in the others.   

 

FIGURE 22: Moran's I Scatter Plot for each Dataset 
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Figure 22 shows positive spatial autocorrelation for the four data sets. For illustration purpose, a 

few states were highlighted in the scatter plot to perceive resemblances among the four data sets 

by observing their location on each scatter plot. For instance is observed that Maryland, 

Pennsylvania, and North Carolina are mostly located in quadrant I (High-High); and Idaho, 

Nevada and California in quadrant III (Low-Low) for all data sets. These two groups of states 

have shown positive spatial autocorrelation. Similarly, New Jersey, Massachusetts and New 

Mexico are in the quadrant II (Low-High), and New York, Colorado and Kansas in the quadrant 

IV (High-Low) in all the data sets. These last groups of states showed negative spatial 

autocorrelation.  

 Figure 23 illustrates the univariate and bivariate Moran's I scatter plot for dry managed 

lanes data. This analysis includes all the states with data available. Comparable results, and 

persistent patterns were found for the other data sets; thus, only dry managed lane data are 

reported. The univariate plot was developed by using the average TL price-per-mile (upper 

plots), and bivariate plots was developed with the addition of the variable delivery distance in its 

inverse form  (lower plots), a regression line on each plot is also shown. The first nearest-

neighbors SWM was used in the analysis. It was created using a Geoda tool, setting k=1. Figure 

23 also displays brushing values as yellow points in the Moran’s I scatter plots, which are 

reproduced on the map as hatched states.  
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FIGURE 23: Moran’s I test: Univariate and Bivariate Scatter Plot  

Figure 23 displays that most of the states fall into quadrants I (High-High) and III (Low-

Low), which indicate a positive spatial autocorrelation. States with positive correlation, quadrant 

I and III are associated with the eastern and the western U.S, respectively. States showing 

negative spatial autocorrelation, quadrant II and IV, are associated with the central U.S. As 

previously mentioned, comparable results were found in the four data sets. A description 

regarding the location of each state in the Moran’s I scatter plot is described below. 

 

 Quadrant I: Iowa, Pennsylvania, Indiana, Ohio, Maryland, Kentucky, Virginia, Missouri, 

North Caroline, Tennessee, Arkansas, and Michigan.  
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 Quadrant II: New Jersey, Illinois, Kansas, Texas, New Mexico, and Georgia 

 Quadrant III: Washington, Idaho, Oregon, Nevada, Utah, California, Arizona, Oklahoma, 

Alabama, Mississippi, Louisiana, and Rhode Island. 

 Quadrant IV: New York, Colorado, Oklahoma, Florida, and Massachusetts 

 

It is observed that most of the states in quadrant I and III belong to the eastern and western U.S. 

(positive spatial autocorrelation), and quadrant II, and IV to the central U.S. (negative spatial 

autocorrelation). Also, the location of Kansas and Massachusetts differs from the one obtained in 

figure 23; however, in both, they have shown negative autocorrelation. In addition, GeoDa 

allows users to brush for outliers and automatically recalculated the Moran's I value. This 

process was conducted by brushing states on the quadrant II, and quadrant IV, and it is shown on 

the scatter plots in the right hand of figure 23. It is observed that by excluding these states from 

the analysis, the Moran's I test goes from 0.362 to 0.598 in the univariate analysis, and in the 

bivariate analysis from 0.302 to 0.509, indicating strong positive autocorrelation. The previous 

analysis evidences three main regions: the east, west, and central U.S. It is confirmed by 

observing the Lisa multivariate plots illustrated in figure 24. 
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FIGURE 24: LISA Cluster and Significance Map 

Figure 24 illustrates the LISA cluster and significance map. The randomization was applied for 

999 random values to obtain the significance at 5% of confidence level. The randomization is 

conducted to generate results with some degree of stability. It indicates that Oregon, Idaho, and 

Utah have low TL prices and are surrounding for states with low TL price; Pennsylvania and 

Virginia, which have high TL prices are surrounding to states with high TL price. These states 

are hatched in the graphs since they are significant at 5% of confident level. This analysis also 

evidences and confirm that surrounding states at those locations (red and blue) have similar high 

and low TL prices, which are not by random chance, they have some degree of spatial 

autocorrelation.  



90 

 

6.5 Conclusion 

Significant patterns are described in this analysis for dry and reefer commodities in the 

U.S territory at the state scale level. For dry commodities, high TL prices are observed in the 

eastern U.S; the northeastern states exhibit the highest prices. Medium and low TL prices are 

observed in the central and western U.S., respectively. The lowest TL prices are in the southwest 

U.S. The exploratory analysis for reefer commodities indicates that high TL prices are in the 

central U.S.; the north-central U.S. exhibits the highest TL prices, medium and low TL prices are 

in the western and eastern U.S. Particular zones: eastern, central and western are identified from 

the exploratory maps associated with TL prices.  

The TL prices for dry and reefer commodities indicate that high prices are related to 

deliveries between neighboring states, or when one state separates the origin and the destination. 

Low TL prices are associated with deliveries when the origin and destination are separated for 

more than one state. Lower U.S. states such as the U.S. states border of Mexico have shown low 

and steady TL prices over the study period. The territory area of the state reveals a positive 

relationship with TL price; small size states are most likely to high TL prices from the origin 

perspective. The last statement also could indicate that low density states, usually low 

consumers, are likely to have high TL prices. Moreover, destinations with high TL price are 

likely to be the origins of deliveries with low TL prices. Major trade zones in the U.S. are 

identified in California, Florida, Texas and New York; these zones are under a large volume of 

deliveries as shown in the flow maps.  

Consumer and producer states were identified for both commodities, from the origin 

perspective, consumer states are mostly associated with low TL prices, and producer states are 

associated with high TL prices. Strong accumulation of movements in the eastern and western 
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U.S is identified, similar to the exploratory maps, flow maps reveal three zones in the U.S. with 

high, medium and low TL prices in the central, western and eastern U.S. The Moran's I test and 

Lisa plots of TL prices has revealed strong evidence of spatial autocorrelation, the majority of 

states falls into quadrants I and III, which indicates a positive association. It also evidences 

similar remarkable regions in the U.S. as shown in the other exploratory maps; the eastern, 

central and western U.S. 

The analysis also has shown insight regarding state under the disfavorable conditions for 

truckload deliveries. For dry commodities, Arizona and Illinois, as the origin of the deliveries, 

exhibit the major constraints or barriers for truckload deliveries, they present higher TL prices 

even in suitable situations such as large delivery distances. Maryland, Florida, Georgia, Indiana, 

New Mexico, and Alabama, as the origin of the deliveries, exhibit favorable conditions for 

truckload deliveries, they have shown low TL prices even in unfavorable situations such as short 

delivery distance. For reefer commodities, Arizona, California, Illinois, Kansas, Wisconsin, 

Nebraska, as the origin of the deliveries, exhibit the major constraints for truckload deliveries; 

and Pennsylvania, Alabama, New Jersey, Arkansas, Georgia, and Pennsylvania, as the origin of 

the deliveries, exhibit favorable conditions for truckload deliveries. 

 The analysis also indicates specific characteristics for some states. For instance, Florida 

and Oregon appear as an exclusive consumer state for both commodities with Texas and 

California as their major supplier states, respectively. California, as expected, resembles the 

largest consumer in the U.S. for both types of commodities with Texas and Illinois as its major 

supplier. California, Florida, Texas and New York shows the highest incoming and outcoming 

volumes of deliveries, indicating major areas of domestic trades in the U.S. Texas and Illinois 

have exhibited as the major producer states for both commodities.  
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The three regions found in this analysis can also be subdivided into sub-regions such as the 

north, south and mid sub-region; thus, the similarities encountered in their TL prices can be 

aggregated. These regions are shown below. 

 

East Region 

 North-East (NE): Connecticut, Delaware, Massachusetts, Maine, New Jersey, New York, 

Pennsylvania, Rhode Island, Vermont;  

 South-East (SE): Alabama, Florida, Georgia, Maryland, Mississippi, North Caroline, 

South Caroline, Tennessee, Virginia, West Virginia;  

Central Region 

 North-Central (NC): Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming;  

 South-Central (SC): Arizona, Louisiana, Oklahoma, Texas;  

 Mid-Central  (MC): Iowa, Illinois, Indiana, Kansas, Kentucky, Michigan, Minnesota, 

Missouri, Nebraska, Ohio, Wisconsin; 

West Region 

 North-West (NW): Arkansas, Idaho, Oregon, Washington;  

 South-West (W): Arizona, California, New Mexico, Nevada. 
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FIGURE 25: U.S. Regional Map Associated with TL Prices 
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CHAPTER 7.0 

7.0 SPATIAL ANALYSIS 

7.1 Introduction 

Spatial econometric analysis was conducted for the database. The literature review 

section described the motivations and important relationship between the transportation activity 

and geography, and their combined effects to the society. This relationship is confirmed in the 

EDA and ESDA section, where TL prices and geographical space are investigated. Therefore, 

this association should be considered in the analysis. The main objective of this chapter is 

developing a model at the state scale, which incorporates geographic features, allowing to draw 

inferences throughout explanatory variables, and to forecast TL prices considering different 

scenarios. Conventional approaches are only focused on capturing the linear relationship 

between the dependent and explanatory variables, and fail to adequately address the space 

effects. For instance, inadequate transportation infrastructure conditions and deficient 

connectivity between locations could hamper freight movements. It generates congested roads, 

delay shipping, add cost and unreliability to the deliveries. The proposed model differs from 

traditional models, because it does not provide a single output based on the inputs. It allows for 

creating different scenarios across space. The analyst can test different inputs under various 

modeling parameters, and visualize into a map. A valuable feature of the proposed model is its 

capability of measuring the direct and indirect impacts across units. The proposed model can  

calculate the impact on the dependent variable in a specific location, when changing an 

independent variable at one specific location. 

In the process of formulating a model, various spatial specifications documented in the 

spatial econometrics literature were considered. The TL price database consists of cross-sectional 
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data collected at different locations and periods of time. The dependent variable is the yearly 

average of TL prices for each state, considering the origin state of the deliveries. Hence, the 

present analysis is at the state scale level with TL prices of the origin of the deliveries from 2005 

to 2010 as the dependent variables. The spatial panel models include a SWM which was selected 

by ESDA insights, and by testing various SWM specifications. The selected SWM has the ability 

of producing expected signs of coefficient estimates, and acceptable forecast values in the four 

data sets.  

In addition, the Lagrange multiplier and Hausman test are used, the first test for 

evaluating spatial autocorrelation either in the dependent variable or in the residuals, and the 

latter test for helping in selecting between fixed and random effects in the spatial model. This 

section begins by testing the data sets for spatial autocorrelation in the dependent variable or in 

the residuals, which helps in selecting an appropriate SAR or SEM specification. Then, models 

are tested between the fixed or random effects. The most significant effect is incorporated in the 

model based on the Haussman test. After obtaining the appropriate model specification and 

effect, different explanatory variables were tested to obtain the final model. The final model is 

used for estimating the direct and indirect effects across locations, as well as, for forecasting TL 

price values for the year 2010. The MAPEs values are calculated and reported. 

 

7.2 Database 

 The data used in this analysis are a mix of private data (truckload rates) and publicly 

available datasets (socioeconomic variables). The database for this analysis consists in TL prices 

for deliveries between states. TL prices are for deliveries between the 48 contiguous U.S. states; 

however, not all states have available data in the four data sets. The socioeconomic variables 
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tested in this analysis are gross domestic product (GDP), population, unemployment rates, hourly 

truck wages, and personal income. The previous variables were obtained in the Bureau of 

Economic Analysis (www.bea.gov) and the truck driver wages in the Bureau of Labor Statistics 

(www.bls.gov).  

 

7.3 Spatial Weight Matrix 

The selected SWM is the first-nearest neighbor, considering the 48 contiguous U.S. 

states. The SWM are standardized to have row sums of unity, which allows for producing linear 

combinations of observations from neighbors in the model. 

 

7.4 Spatial Autocorrelation 

Spatial autocorrelation is conceptually more difficult to understand than time series 

autocorrelation, mainly because the ordering assumption is not held (Dubin, 1998). Usually, time 

series assumes that earlier observations affect later observations, this assumption allow 

researchers for testing and developing time series models. This ordering assumption is not valid 

for cross-sectional data and autocorrelation among them, because whether unit 1 effects unit 2 is 

possible that the reverse happens and also affects neighboring observations. The Moran's I test 

conducted in a previous chapter confirmed the spatial autocorrelation in the data sets, but the 

association of this autocorrelation with either the dependent variable or the residuals is not 

established. The Lagrange multiplier test helps in determining the most appropriate structure of 

the model. The residuals are tested for evaluating their significance under SAR or SEM models. 

The test for the most significant effects, between fixed and random effects is reported in the next 

section. 
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7.4.1 The Lagrange Multiplier Test 

 The Lagrange Multiplier (LM) test is the major diagnostic tests for spatial dependence 

either in the dependent variable or in the residuals. The test is estimated by maximum likelihood, 

assuming normality for the perturbations. The LM lag test and the LM error test evaluate spatial 

autocorrelation in the dependent variable and in the residuals, respectively. These tests do not 

consider the presence of the alternative form of spatial dependence e.g. autocorrelation in both, 

the dependent variable and the residuals. Therefore, robust LM tests are also conducted to 

observe any form of dependence (Anselin et al, 1996). Florax, Folmer and Rey (2003) indicates 

that when the null hyphotesis of no spatial autocorrelation is rejected, additional tests which 

evaluate spatial correlation in the residuals in presence of spatial lag or spatial correlation in the 

dependent variable in the presence of spatial error dependence should be considered. LM test 

results for each data set is displayed in table 5. 

 

TABLE 5: Lagrange Multiplier Test for Spatial Panel Data 

 
Dry  

Managed 

Dry  

non-Managed 

Reefer 

Managed 

Reefer  

non-Managed 

LM lag test for omitted spatial lag 

LM value 20.783 32.089 7.597 30.049 

Marginal Probability 0.000 0.000 0.006 0.000 

Chi (1) .01 value 6.640 6.640 6.640 6.640 

LM error test for spatial correlation in residuals 

LM value 17.085 26.121 6.206 22.992 

Marginal Probability 0.000 0.000 0.013 0.000 

Chi (1) .01 value 6.640 6.640 6.640 6.64 

Robust LM lag test for omitted spatial lag 

LM value 6.711 8.947 8.873 11.597 
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Marginal Probability 0.009 0.003 0.003 0.000 

Chi (1) .01 value 6.640 6.640 6.640 6.640 

Robust LM error test for spatial correlation in residuals 

LM value 3.014 2.978 7.482 4.540 

Marginal Probability 0.083 0.084 0.006 0.033 

Chi (1) .01 value 6.640 6.640 6.640 6.640 

 

 Results indicate that the LM-Lag, Robust LM-Lag, and LM-Error tests are significant at 

5% of confident level for the four data sets. However, the Robust LM-Error test is only 

significant for the reefer managed data sets. It is also noted that the LM values for the Lag tests 

are higher than the Error tests in all the data sets. These tests suggest lags in the dependent 

variable or SAR models for all data sets 

 

7.5 Spatial Econometric Model Specification 

 Spatial econometric models were conducted for each data set. The models were 

developed under the spatial econometric panel model theory. The main objective is capturing the 

spatial effects in the model. The spatial econometric specification is designed with the 

incorporation of the spatial autocorrelation parameters and the selected SWM. The spatial lag 

model is the basis formulation with the variables in their log form. Various model’s versions are 

developed by considering a set of explanatory variables, and considering dependency across 

space and time. The final model selected is one that provides the expected sign and reasonable 

coefficient estimates, which provides the most accurate forecast values.   
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7.5.1 Spatial Autoregressive Model (SAR) 

 The spatial econometric model selected is a spatial-lag model, which have spatial 

dependency in the dependent variable as shown in equation 26. This type of model was 

considered due to the four data sets falls under this specification according to table 5. However, 

additional analysis under the SEM specification were also tested and reported in this section.   

                                 ;  (26) 

             

The variables in the models are in their log forms. The dependent variable,    represents the TL 

price at period of time t= 2005...2010. The significant explanatory variables in the model are 

delivery distance and unemployment. The parameter     represents either the random or fixed 

intercept in the spatial panel model,   is the spatial autoregressive parameter,   and   are the 

coefficients associate with the explanatory variables; delivery distance and unemployment, 

respectively; and W is the SWM. 

 

7.5.2 Fixed v.s. Random Effects (Hausman Test) 

The intercept term    in the model capture the effects of omitted variables. These effects 

could be considered as a constant effect across units, called fixed effects or act randomly called 

random effect. The random effect model, consider a stochastic variable that can be attributed to a 

known distribution, and that variable is uncorrelated with the explanatory variables. The fixed 

effects consider a constant but random variable, which is allowed to be correlated with the 

explanatory variables. Differences of opinions and consideration between the uses of these two 

effects in a model are described in the literature review. The Hausman test helps analyst to 

evaluate which effect, fixed or random, is suitable for the model by calculating the likelihood of 
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each effect in the model. This computation is performed by comparing coefficient estimates from 

two models, each one with one particular effect. The likelihood is provided by the t-statistic and 

p-value. A MATLAB routine developed by Elhorst (2010) was used in the analysis, results for 

each data set is shown in table 6. 

 

TABLE 6: Hausman Test between Fixed and Random Effects  

 
T-Statistic Degree of Freedom Probability 

Dry managed 70.6284 2 0.000 

Dry non-managed 449.1351 2 0.000 

Reefer managed 41.286 2 0.000 

Reefer non-managed 6.330 2 0.042 

  

Table 6 indicates that at 5% of confident level dry data sets and reefer managed data are 

associated with fixed effects, a constant parameter for each unit. Reefer non-managed lanes fall 

into the random effects at 5% of confident level, at 10% of confident level, all data sets falls into 

the fixed effect hypothesis. It is important to highlight that this test uses a one-sided chi-squared 

curve, which means that probability lower than 0.025 involve rejection of the random effects 

(null hypothesis) in favor to the fixed effects. As previously described, this test helps analysts to 

discern between the fixed and random effect in the model; however, the inclusion of one or the 

other effect is by the discretion and judgment of the researcher as indicated in the literature part 

of this research. 
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7.5.3 Parameter Estimation 

 The estimation of parameters in the models considers the maximum likelihood method as 

described by Elhorst (2010). A preliminary analysis was conducted using all the explanatory 

variables in the study: delivery distances, unemployment, fuel cost, population, truck driver 

wage, and gross domestic product. This analysis considers the spatial panel model of the SAR, 

SDM, SEM and SDEM specification, which are documented in the Appendices B and C. 

 Results indicate that SAR random and fixed effects produce similar coefficient estimates 

for the significant variables: delivery distance and unemployment in the four data sets. Delivery 

distances have a greater impact in the managed data than in the non-managed data, while 

unemployment behaves in the opposite direction, a greater impact to the non-managed data in 

dry loads. In the reefer loads delivery distance and unemployment have greater impact in the 

non-managed lanes data. Unemployment is not a significant variable for the reefer managed data, 

being fuel cost, a statistically significant variable for this dataset. In all the models the 

coefficients present the expected signs. The coefficients from the SAR models are larger than the 

ones in the SEM model, but both keep the same expected signs. The intercept is only significant 

in the SEM model with random effects.  

 As a result from the preliminary analysis, delivery distances seem statistically significant 

in all datasets, while unemployment is for all, except for reefer managed lanes data, where fuel 

cost shows of being significant. The spatial Durbin models (SDM, SDEM) do not display any 

improvement in the models based on comparing the standard deviation of the models. SAR and 

SEM show better results. Comparing SAR and SEM models, between the random and fixed 

effects, shows similar results; however the SAR model provides better coefficient estimates 

based on the t-statistics and p-values. The SAR, SEM, SDM, SDEM, with fixed and random 
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effects were developed using these explanatory variables for the four data sets. Table 7 illustrates 

the SAR model with spatial fixed effects and table 8 with random effects.  

 

TABLE 7: Spatial Panel Autoregressive Models (SAR_F) with Spatial Fixed Effects 

Parameter 
Dry  

Managed 

Dry  

non-Managed 

Reefer 

Managed 

Reefer  

non-Managed 

R-squared 0.2767 0.2429 0.2668 0.2049 

corr-squared 0.1616 0.3215 0.1360 0.2378 

   0.0288 0.0331 0.0175 0.0185 

  -- -- -- -- 

  (dist) -0.255 (0.000) -0.19794 (0.000) -0.19198 (0.000) -0.22943 (0.000) 

  (unempl) -0.1820 (0.000) -0.3662 (0.000) -0.02357 (0.4264) -0.209338 (0.000) 

  (W.yt) -0.2361 (0.000) -0.2361 (0.000) -0.2361 (0.000) -0.2361 (0.000) 

p-value in parenthesis 

 

Effects 
Dry  

Managed 

Dry  

non-Managed 

Reefer 

Managed 

Reefer  

non-Managed 

Direct 
-0.2633 (-5.4763)* 

-0.1892 (-4.9202)* 

-0.2043 (-3.6351)* 

-0.3829 (-8.3689)* 

-0.1978 (-5.7592)* 

-0.0241 (-0.7548)* 

-0.2375 (-5.1774)* 

-0.2175 (-7.0955)* 

Indirect 
0.0576 (3.5617)* 

0.0416 (3.2248)* 

0.0454 (2.8848)* 

0.0857 (3.8004)* 

0.0427 (3.5159)* 

-0.0052 (0.7258) 

0.0514 (3.5833)* 

0.0473 (3.7947)* 

Total 
-0.2057 (-5.3656)* 

-0.1476 (-4.9914)* 

-0.1588 (-3.6019)* 

-0.2972 (-9.0331)* 

-0.1551 (-5.7973)* 

-0.0189 (-0.7545) 

-0.1861 (-5.0811)* 

-0.1702 (-7.4155)* 

t-statistics in parenthesis; *1% significance; ** 5% significance; *** 10% significance 

 

Table 7 displays coefficient estimates significantly different from zero and with the expected 

signs. Results indicate that greater delivery distances tend to reduce the TL price in terms of 

dollars-per-mile, similarly higher unemployment rates tend to reduce prices. It suggests that in 

low demand market conditions, carriers are likely to provide discount in their prices. It is also 

observed that unemployment is not significant for the reefer managed lanes data. An additional 

analysis has shown fuel cost as significant as seen in Appendix B. The elasticity of the delivery 
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distance variable for the four data sets drives from 0.198 (reefer managed) to 0.264 (dry 

managed). The elasticity of the unemployment rate for the four data sets drives from 0.189 (dry 

managed) to 0.383 (dry non-managed); reefer non-managed lanes have a elasticity of 0.2175. It 

is important to remark that the direct effects are slightly different from the coefficient estimates 

(β, and θ) due to the feedback effects that affects neighbor locations and return to the own 

location. Both explanatory variables; delivery distance and unemployment show positive indirect 

effects. The spatial autoregressive parameter (ρ) is statistically significant, negative and 

relatively large, -0.236, which indicates that changes in TL prices in neighboring location 

impacts in the opposite direction to the owning location.  It suggests that greater delivery 

distance tends to reduce TL price in the own state, but it attempts to raise TL prices in 

neighboring states.  

The logical interpretation of the last statement is explained in the scenario of having a 

particular trucking company, which usually provides services without the restriction of providing 

services to short or large delivery distances. Therefore, under low demanding conditions, the lack 

of services is expected, reducing the production of vehicle-mile-traveled-per-year for the carrier. 

Therefore, this carrier is anticipated to reduce its TL price by prioritizing large delivery distance, 

since it makes possible a reduction of prices accordingly as shown in the model. In this scenario, 

neighboring carriers are most likely to serve the short and medium delivery distances, which 

have higher TL prices. A similar interpretation can be provided in the high unemployment rate 

scenario, because high unemployment rates will reduce the consumption of products, reducing 

the production of transportation services. Thus, carriers are more likely to implement strategies 

such as prioritize services to large deliveries distances. The results of the spatial lagged model 

with random effect are reported in table 8. 
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TABLE 8: Spatial Panel Autoregressive Models (SAR_R) with Spatial Random Effects 

Parameter 
Dry  

Managed 

Dry  

non-Managed 

Reefer 

Managed 

Reefer  

non-Managed 

R-squared 0.1299 0.0820 0.1199 0.0302 

corr-squared 0.1747 0.2487 0.1503 0.2154 

   0.0288 0.0334 0.0175 0.0188 

  (effect) 2.4692 (0.000) 2.4929 (0.000) 2.0229 (0.000) 2.4078 (0.000) 

  (dist) -0.2475 (0.000) -0.2117 (0.000) -0.2013 (0.000) -0.22456 (0.000) 

  (unempl) -0.1574 (0.000) -0.2901 (0.000) -0.0294 (0.257) -0.151453 (0.000) 

  (W.yt) -0.2361 (0.000) -0.2361 (0.000) -0.2361 (0.000) -0.2361 (0.000) 

theta 0.7307 (0.000) 0.9973 (0.000) 0.7974 (0.000) 0.9972 (0.000) 

p-value in parenthesis 

 

Effects 
Dry  

Managed 

Dry  

non-Managed 

Reefer 

Managed 

Reefer  

non-Managed 

Direct 
-0.2559 (-6.6008)* 

-0.1645 (-4.6231)* 

-0.2173 (-4.9696)* 

-0.3006 (-7.8574)* 

-0.2062 (-7.288)* 

-0.0297 (-1.099) 

-0.2309 (-6.625)* 

-0.1556 (-6.046)* 

Indirect 
0.0556 (3.8637)* 

0.0359 (3.0882)* 

0.0478 (3.5049)* 

0.0665 (3.8597)* 

0.0444 (3.930)* 

-0.0063 (1.058) 

0.0496 (3.794)* 

0.0335 (3.611)* 

Total 
-0.2003 (-6.4752)* 

-0.1285 (-4.7743)* 

-0.1695 (-4.8865)* 

-0.2340 (-8.2775)* 

-0.1619 (-7.261)* 

-0.0234 (-1.095) 

-0.1813 (-6.652)* 

-0.1221 (-6.182)* 

t-statistics in parenthesis; *1% significance; ** 5% significance; *** 10% significance 

 

Table 8 displays coefficient estimates significantly different from zero and with the expected 

signs. The coefficients are similar to the ones obtained for the fixed effects analysis (table 7). 

Comparing results between fixed and random effects, the coefficient associate to the delivery 

distance variable indicates a 4% variation, and 20% for the unemployment rate variable. Theta is 

the parameter of the log-likelihood function. It is important to point out that the random effects 

are drawn from a normal distribution.  

 

 



105 

 

TABLE 9: Spatial Error Models (SEM_F) with Spatial Fixed Effects 

Parameter 
Dry  

Managed 

Dry  

non-Managed 

Reefer 

Managed 

Reefer  

non-Managed 

R-squared 0.4077 0.4177 0.4135 0.3781 

corr-squared 0.2023 0.3419 0.1601 0.2595 

   0.0213 0.0204 0.0128 0.0119 

  -- -- -- -- 

  (dist) -0.14913 (0.000) -0.155625 (0.000) -0.15016 (0.000) -0.174866 (0.000) 

  (unempl) -0.127585 (0.000) -0.2590 (0.000) -0.011568 (0.7022) -0.143518 (0.000) 

  (W.yt) 0.2139 (0.000) 0.298995 (0.000) 0.196985 (0.000) 0.2989 (0.000) 

p-value in parenthesis 

 

Table 9 displays coefficient estimates significantly different from zero and with the 

expected signs. The coefficient estimates are smaller than the ones obtained in the SAR_F 

models. A similar interpretation of the coefficients can be provided. Similar to the previous 

analyses, unemployment is not significant for reefer managed data. The elasticity of the delivery 

distance variable for the four data drives from 0.149 (dry managed) to 0.175 (reefer non-

managed). The elasticity of the unemployment rate for the four data sets drives from 0.127 (dry 

managed) to 0.259 (dry non-managed); elasticity of reefer non-managed lanes is 0.143. Both 

variables show positive indirect effects. Similar interpretation as the previous analysis can be 

considered. The spatial autoregressive parameter (ρ) is statistically significant, positive and 

relatively large, between 0.20 and 0.29, which indicates that changes in TL prices in neighboring 

location impacts in the same direction to the owning location. These models lack of measuring 

the indirect impacts to neighboring locations. This model indicates that reduced prices in one 

state influences prices attempt to reduce prices in other states, which is anticipated in a 

competitive market. This model lacks of providing the spillover impacts of price changes to 



106 

 

neighboring locations, a more general interpretation of the results. Table 10 reports the results of 

the error model with random effect. 

  

TABLE 10: Spatial Error Models (SEM_R) with Random Effects 

Parameter 
Dry  

Managed 

Dry  

non-Managed 

Reefer 

Managed 

Reefer  

non-Managed 

R-squared 0.3538 0.4455 0.3576 0.3896 

corr-squared 0.2053 0.2798 0.1774 0.2416 

   0.0214 0.0202 0.0128 0.0118 

  1.8425 (0.000) 1.9937 (0.000) 1.6294 (0.000) 1.8165 (0.000) 

  (dist) -0.179030 (0.000) -0.181988 (0.000) -0.15809 (0.000) -0.16455 (0.000) 

  (unempl) -0.115677 (0.000) -0.183508 (0.000) -0.037644 (0.130147) -0.11556 (0.000) 

  (W.yt) 0.21598 (0.000) 0.301221 (0.000) 0.1871 (0.000) 0.307185 (0.000) 

     0.0553 (0.2003) 0.056011 (0.1837) 0.27622 (0.000) 0.116628 (0.0204) 

p-value in parenthesis 

 

 Table 10 displays coefficient estimates significantly different from zero and with the 

expected signs. The coefficients associated with distance are smaller than the one obtained with 

the SEM_F, but higher estimates associated with unemployment. The variation in the coefficient 

estimates between the fixed and random effects is about 20% in delivery distance, and 17% for 

unemployment. Theta is only significant for the reefer data sets.  
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7.5.4 Forecasting Results 

The main objective of this analysis is forecasted short term TL prices, in this case one 

year ahead. Similar to the non-spatial model, the year 2010 was held for validating purpose. It is 

important to mention that for calibrating the spatial models in this process not consider data for 

the 2010 year. MAPE values are shown in table 11. 

 

TABLE 11: Accuracy of State Level TL Price Forecasting 

DATA 
SAR_F 

MAPE 

SAR_R 

MAPE 

SEM_F 

MAPE 

SEM_R 

MAPE 

Dry 

Managed 
18.79% 16.50% 18.48% 18.62% 

Dry 

non-Managed 
18.15% 17.07% 19.62% 18.89% 

Reefer 

Managed 
10.69% 11.06% 13.19% 10.48% 

Reefer 

non-Managed 
7.66% 8.59% 10.11% 9.56% 

 

Table 11 indicates good forecast results with MAPE values less than 20% for all models. The 

highest accuracy is for the reefer non-managed data with MAPE values less than 11%, highly 

accurate forecasts.  The SAR model with fixed and random effects seems that provides the 

lowest MAPE values. 

 

7.6 Summary and Conclusions 

A spatial analysis was conducted testing various explanatory variables: population, state 

gross domestic product, fuel cost, driver wages, and unemployment. The t-statistics indicates 

delivery distance and unemployment as the significant variables in all data sets, except for reefer 

managed lane, where fuel cost is significant. The coefficient estimates are not highly affected 

when considering either fixed or random effects in all data sets. Results indicate that greater 
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delivery distances as well as higher unemployment rates tend to reduce the TL prices in terms of 

dollars-per-mile. In low demand market conditions, the analysis suggests that carriers are more 

likely to reduce their prices, which sounds reasonable. Results from the SAR with fixed effects 

provides the most significant estimates and also good forecast outcomes. SAR model indicates 

that for a 1.00 percent change of delivery distance the TL price is affected in about -0.25 percent, 

and for a 1.00 percent change in unemployment the TL price is affected in -0.30 percent. It 

suggests that unemployment has greater impact than the delivery distance variable to TL price. 

Positive signs for the direct effects were obtain for delivery distance and unemployment. The 

indirect effects indicates that for 1.00 changes in delivery distance or unemployment tends to 

reduce TL prices in neighboring regions in about +0.05 percent and +0.06 percent respectively. 

Results suggests that greater delivery distance reduce prices in the own location, but tends to 

raise prices in neighboring locations due to the spillover effects. The forecasting models provide 

good forecasts with MAPE values less than 20% for all models. The reefer non-managed lane 

data have the highest accuracy with MAPE values less than 11%.  
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CHAPTER 8 

8.0 CONCLUSION AND FUTURE WORK 

8.1 Findings 

This research uses original methods for approaching and analyzing truckload prices in the 

U.S. Exploratory analyses from the non-spatial and spatial perspective have been conducted and 

evaluated, which allows for a superior visual exploration and interpretation of data, enhancing 

modeling decisions during the analysis. The efficient use and operation of these tools take part in 

the contribution of this research. The spatial analysis incorporates the unemployment rate 

variable in the model as a proxy of the consumer demand for each state. This analysis indicates 

that TL prices are closely associated with the demand of services that links economic carriers’ 

market conditions. Consequently, demand takes an important role when setting prices. Results 

indicate and validate that splitting the data into two categories, according to delivery distances, is 

convenient for forecasting purpose. Separate models, considering distance greater than 300 

miles, reduce the impact of outliers in the datasets and the higher variability leading to lesser 

accuracies. TL rates between $10.00 and $30.00 per mile are observed when trucking companies 

work under 300 miles delivery distances as shown in the EDA chapter. Models developed by the 

time series techniques can be easily adopted by freight and logistics companies to obtain 

reasonably accurate TL price forecasts. 

The exploratory spatial data shows high, medium and low TL prices in the eastern, 

central and western U.S. for dry loads; the highest prices are in the northeastern, and the lowest 

in the southwest U.S. For reefer loads: high, medium and low TL prices are in the central, 

western and eastern U.S., respectively; the highest prices are in the north-central U.S. The 

analysis reveals the relationship between territory area and TL prices. Small states have high 
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prices, and large states usually are associated with low TL prices. Major trade zones are 

California, Florida, Texas and New York; strong accumulation of incoming and outcoming 

volumes of deliveries is in these states as shown in the flow maps. Florida and Oregon are large 

consumers of goods for dry and reefer loads. Major suppliers are Texas, Illinois and California. 

California is the largest consumer in the U.S. as was expected. Flow maps also display strong 

accumulation of movements in the eastern and western U.S. Busy trade directions is perceived 

from the eastern to the western U.S. states, and between states from the lower to upper eastern 

U.S. states as shown in the bundle maps. The three types of visualization maps; exploratory 

maps, flow maps, and spatial autocorrelation maps evidence three remarkable U.S. zones, the 

eastern, western and central U.S. These zones can also be divided into seven regions as shown in 

figure 24.  

Another important finding is based on how I described the data, which considers location 

that provides to the reader with the sense of proximity, in this case, the number of states required 

to cross between the origin state and the destination state. This analysis finds the routes with 

more barriers, which have higher prices than other routes with similar distances. By this method, 

origin and destination states have shown disfavor conditions for truckload deliveries. For 

instance, when Arizona and Illinois are the origin of the deliveries for dry loads, these states 

exhibit the major constraints or barriers for truckload deliveries with the highest TL prices.  

Delivery distance is the most significant variable associated with TL prices in all models. 

The unemployment rate variable is statistically significant in all datasets, except for reefer- 

managed lane. The coefficients estimates of the spatial models are not substantially affected 

when considering between fixed and random effects in all models. The Hausman test favors the 

fixed effects for all data sets, except for the reefer non-managed lanes. However, fixed effect is 
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preferred since it provides similar or better results than the random effect in all models. The 

spatial model displays that larger delivery distances and higher unemployment rates implicate 

lower TL prices. Therefore, during low demand market conditions such as high unemployment 

rate, carriers are likely to reduce prices, and they are most likely to serve larger delivery distance 

to reduce cost and to be more competitive. The inferences analysis indicates that +1.00% 

increase in delivery distance tends to decrease TL price by about -0.25%; this drop affects 

neighboring locations by increasing TL price by about +0.05%. For instance, if we consider the 

average delivery distance of 1,500 miles and the average TL price of $1.55-per-mile, a 150 miles 

increase in delivery distance tends to decrease the prices-per-mile by about 0.039 cents, and this 

discount tends to raise prices in neighboring locations by about 0.008 cents. Moreover, the 

analysis suggests a +1.00% change in the unemployment rate tends to decrease TL price by 

about -0.30%, and this will increase the price of neighboring locations by about +0.06%. In other 

words, serving larger delivery distance tends to decrease TL price in the immediate location, but 

it attempts to raise TL prices in neighboring locations.  

Forecasting methods conducted in this research has shown acceptable accuracy results. A 

striking finding in the non-spatial and spatial analysis is that diesel cost was not a significant 

variable for TL price setting during the last years. The economic market condition seems to be 

the major issue when prices are setting. Robust methods resistant to outliers have shown 

outstanding results in the non-spatial models for forecasting TL prices in the U.S. MAPE values 

were less than 10% in all cases. The spatial lagged model with fixed effects provides better 

forecasting performance than other models. MAPE values were less than 20% in all cases. The 

lowest variability is in the reefer non-managed data, which shows the highest accuracies in both 

models. 



112 

 

8.2 Discussion 

The negative effects of high unemployment rates on consumer demand and their impacts 

on the economy of a region are well understood. In the U.S., unemployment rates have been 

increasing since 2006 (BLS, 2012), altering the U.S. economy, and the consumer behavior 

associated with demand for services and products. These changes have impacted TL patterns in 

comparison with previous years. Usually, people reduce spending on non-essential services and 

on long-lasting manufactured products such as vehicles, furniture, electronics, and also 

vacations. Saving money and reducing debt is the priority of people. High unemployment rates 

drop the demand of goods, mainly non-essential dry products, because reefer products are 

considered most essential for people. The drop in consumption reduces production of services for 

trucking companies, usually calculated in terms of vehicle-mile-traveled-per-year, impacting TL 

rates as has been shown in this research. In a low demand scenario, carriers are willing to offer 

price discounts seeking strategies for being more competitive and less economically impacted. 

This price reduction allows carriers to attract more services, to keep their vehicles out of storage, 

and to enable to cover their fixed costs e.g. vehicle insurances, license, loans, etc. The particular 

question of how TL carriers will respond to high or low consumer demand is important for 

logistic companies, policy makers and transportation planners. This question is addressed in this 

research, and also exposes this price reduction and its impact on neighboring locations. 

 

8.3 Contribution of Dissertation 

This study is the first to introduce, displays and document truckload price patterns in the 

U.S. It would be considered as a starting point for understanding truckload patterns related to 

prices and movements across the U.S. An original truckload price database in the U.S. was 
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investigated in this research. This research empirically proves the relationship of TL prices with 

consumer spending throughout the unemployment rate variable as a proxy of consumer demand. 

This work provides various perspectives that expand the understanding of patterns, incorporating 

important and original information to the literature, and also potential methodologies and 

insights for forecasting truckload prices in the U.S. The use of private and publicly available data 

makes this research particularly important, since it allows for integrating data from different 

sources. The use of exploratory data techniques and tools, and how to handle and display large 

data sets in the transportation field is also a contribution of this research.  

Original methods, which have not been tested in the freight transportation domain 

provides valuable results. These methods allow for obtaining data insights, for adjusting the 

spatial and time dependence, for drawing significant inferences from the data, and for providing 

accurate forecast TL prices. The information documented in this research will allow practitioners 

in the freight transportation field for visual interpretation of the truckload market related to prices 

and movements in the U.S. It provides the big picture of the distribution of shipments across U.S. 

states. Logistic companies can improve their managing techniques to enhance the allocation of 

resources across geographic space. The natural relationship between transportation price, 

geography and the economy in a region that has been addressed in this study does not have 

empirical evidence in the current literature on this topic. The research questions have been 

answered by original methodologies. Pertaining to freight prices, the definition of cluster, the 

impact of external factors, the examination and measure of spillover effects, and testing original 

methods to accurately forecast truckload prices among others were formally addressed, 

documented and are the main contribution of this research. Finally, this work establishes a 

benchmark in the truckload freight transport that will aid not only logistic companies, but also 
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public transportation planners to understand truckload patterns in the U.S. and reliable 

forecasting approaches.  

 

8.4 Limitations and Recommendation for Future Research 

 This section describes some limitations and indicates potential directions for further 

research and extensions. The availability of data and the missing information in some U.S states 

have limited the results. In addition data is for a third logistic company that does not involve all 

carriers in the U.S. Unfortunately, due to the lack of data this analysis does not provide a more 

specific linkage between consumer demand and TL prices except for the use of the 

unemployment variable. Another limitation is that the analysis uses the prices of the origin of the 

deliveries instead of both the origin and destination prices. Future research can be accomplished 

from this study, the following are recommended for future research. 

 

1. An analysis considering both the origin and destination of the deliveries such as an 

interaction model between origin and destination states can be constructed to observe any 

advantage from previous models, and for comparing coefficient estimates. The 

availability of data may limit the number of states in the analysis, and the construction of 

the panel data structure. In addition, a regional structure determined in this study could be 

used for an origin-destination analysis at the regional level.  

2. An exploratory and modeling analysis that considers the largest or important cities e.g. 

Los Angeles, New York, Houston, Tampa, Miami, etc, can be conducted. This study may 

be limited by the availability of data in those cities from all the years. 
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3. An analysis, which considers a spatial weight matrix, based on high and low demand 

locations of commodities for dry and reefer in the U.S. could be investigated. The 

exploratory analysis in this research provides information regarding those locations. 

Therefore, different weights can be assigned to the high, low, and medium demand 

locations of commodities.  

4. An interesting research would be to study the connection between today’s distribution of 

TL movements and wealth and/or income inequality in the U.S. states. Additional data 

sources will be required.  

5. The time series analysis can be extended. A future research could check for the presence 

of clusters based on distances and geographic region and conduct time series data for 

different clusters.  

 

8.5 Concluding Remarks 

Currently, big data analysis is a critical matter discussed by multiple researchers and 

consulting business. However, the way of dealing with data differs from research fields. In the 

transportation field usually data is spatially collected and this issue must be considered in the 

analysis. Transport and geography have an important role in the economy of any region. This 

research provides important information for practitioners in the trucking business and provides 

how to deal with large transportation data sets, in this case in the roadway freight transport. 

Certainly, there are many plausible approaches for forecasting prices but this research has shown 

how original methods perform well in the transportation field. Successful methods for 

forecasting TL prices are given, as well as, methods for pattern recognition. This work provides 
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useful insights related to TL prices, the impact of the economy in TL prices, and methods to 

forecast TL prices in the U.S.  
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APPENDIX A: Exploratory Maps 

A.1. Dry Load Managed Lanes 

 

Figure A.1.1 Dry Load Managed - Six Years Averaged 

 

Figure A.1.2: Dry Load Managed by Year 

 

Destination Origin 



126 

 

Figure A.1.3: Averaged TL price for Dry Load Managed by Distance 

 

Figure A.1.4: Average TL Price for Dry Load Managed by O-D State 

 



127 

 

2005 2006

2007
2008

2009

2010

 

Figure A.1.5: Flow Map over the Years: Dry Load Managed 

 

Figure A.1.6: Flow Map - Total: Dry Load Managed 
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A.2 Dry Loads non-Managed Lanes 

 

Figure A.2.1: Dry Load Non-Managed - Six Years Averaged 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2.2: Dry Load Non-Managed by Year  
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Figure A.2.3: Averaged TL price for Dry Load Non-Managed by Distance 

 

Figure A.2.4: Average TL Price for Dry Load Non-Managed by O-D State  

 



130 

 

 

Figure A.2.5: Flow Map over Years: Dry Load non-Managed 

 

Figure A.2.6: Flow Map - Total: Dry Load non-Managed 
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A.3 Reefer Loads - Lane Managed 

 

Figure A.3.1: Reefer Load Managed - Six Years Averaged 

 

 

Figure A.3.2: Reefer Load Managed by Year  
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132 

 

 

Figure A.3.3: Averaged TL price for Reefer Load Managed by Distance 

 

Figure A.3.4: Average TL Price for Reefer Load Managed by O-D State 
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Figure A.3.5: Flow Map over Years: Reefer Load Managed 

 

Figure A.3.6: Flow Map - Total: Reefer Load Managed 
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A.4. Reefer Load non-Managed Lanes 

 

Figure A.4.1: Reefer Load Non-Managed - Six Years Averaged 

 

 

Figure A.4.2: Reefer Load Non-Managed by Year  
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Figure A.4.3: Averaged TL price for Reefer Load Non-Managed by Distance 

  

Figure A.4.4 Average TL Price for Reefer Load Non-Managed by O-D State  
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Figure A.4.5: Flow Map over Years: Reefer Load non-Managed 

 

Figure A.4.6: Flow Map - Total: Refeer Load non-Managed 
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A.5 U.S. Unemployment Maps 

Figure A.5: U.S. Unemployment from 2005 to 2010 
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A.6 U.S. Unemployment vs. TL Prices 

 

Figure A.6: U.S. Unemployment v.s TL Prices 

Figure A.5.2 shows the average unemployment rate in the U.S. along with the exploratory maps 

for the dry and reefer product (managed lanes data). By visual inspection is noted that the TL 

prices follow the patterns for the dry commodities TL prices. The central north east of the U.S is 

dissimilar when compared with the reefer TL prices. 

Dry Reefer 
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APPENDIX B: Spatial Panel SAR and SDM 

B.1 SAR Fixed Effects 

B.1.1 Dry Managed 

 

R-squared 0.3034 

corr-squared 0.1946 

sigma^2 0.0277 

 

Variable Coefficient t-stat z-probability 
 

direct t-stat indirect t-stat total t-stat 

Distance -0.22047 -4.653999 0.000003 
 

-0.2295 -4.8254 0.0496 3.3793 -0.1798 -4.7195 

Unemployment -0.254415 -3.938282 0.000082 
 

-0.2604 -3.9776 0.0568 2.863 -0.2037 -4.0381 

Fuel -0.055605 -0.60771 0.54338 
 

-0.054 -0.5778 0.0115 0.5555 -0.0425 -0.5785 

Population -0.702584 -0.648634 0.516575 
 

-0.7479 -0.6912 0.1631 0.6696 -0.5848 -0.69 

Gross State Product 0.436732 0.970359 0.331868 
 

0.4549 0.9737 -0.0989 -0.9294 0.356 0.9734 

Wage 0.713826 1.344737 0.17871 
 

0.724 1.3462 -0.1581 -1.256 0.5659 1.3478 

W*dep.var. -0.236068 -4.789534 0.000002 
       

 

B.1.2 Dry non-Managed 

R-squared 0.2612 

corr-squared 0.3241 

sigma^2 0.0323 

 

Variable Coefficient t-stat z-probability 
 

direct t-stat indirect t-stat total t-stat 

Distance -0.20792 -3.704322 0.000212 
 

-0.2182 -3.7622 0.0478 3.0463 -0.1704 -3.6655 

Unemployment -0.417512 -6.253914 0 
 

-0.4354 -6.1976 0.0963 3.4796 -0.3391 -6.4695 

Fuel -0.174104 -1.335529 0.181703 
 

-0.1883 -1.3947 0.0415 1.3119 -0.1469 -1.3907 

Population 1.754947 1.512088 0.130511 
 

1.8364 1.4951 -0.4031 -1.4159 1.4333 1.4854 

Gross State Product 0.077693 0.154908 0.876894 
 

0.0635 0.1281 -0.0137 -0.1255 0.0497 0.1281 

Wage -0.323132 -0.572932 0.566691 
 

-0.2949 -0.5316 0.0649 0.521 -0.23 -0.5305 

W*dep.var. -0.236068 -4.896176 0.000001 
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B.1.3 Reefer Managed 

 

R-squared 0.3796 

corr-squared 0.243 

sigma^2 0.0148 

 

Variable Coefficient t-stat z-probability 
 

direct t-stat indirect t-stat total t-stat 

Distance -0.152124 -5.03108 0 
 

-0.1568 -5.0795 0.034 3.4639 -0.1228 -5.076 

Unemployment -0.066626 -1.51579 0.129572 
 

-0.0667 -1.4187 0.0144 1.3603 -0.0523 -1.4119 

Fuel 0.195023 3.082624 0.002052 
 

0.203 3.1247 -0.0442 -2.516 0.1588 3.1431 

Population -0.313099 -0.396457 0.691768 
 

-0.324 -0.3985 0.0711 0.3961 -0.2529 -0.3963 

Gross State Product -0.139073 -0.455153 0.648999 
 

-0.1271 -0.4116 0.0265 0.3949 -0.1006 -0.4133 

Wage 0.995 2.857664 0.004268 
 

1.0032 2.7502 -0.2173 -2.3831 0.7859 2.736 

W*dep.var. -0.236068 -4.911202 0.000001 
       

 

B.1.4 Reefer non-Managed 

 

R-squared 0.2349 

corr-squared 0.2532 

sigma^2 0.0178 

 

Variable Asymptot t-stat z-probability 
 

direct t-stat indirect t-stat total t-stat 

Distance -0.205754 -4.594621 0.000004 
 

-0.2114 -4.4787 0.0452 3.223 -0.1662 -4.4714 

Unemployment -0.245861 -5.184134 0 
 

-0.2536 -5.2045 0.0544 3.3938 -0.1992 -5.3054 

Fuel 0.058107 0.548953 0.583038 
 

0.0605 0.5594 -0.013 -0.5377 0.0475 0.5613 

Population -0.043397 -0.050433 0.959778 
 

-0.0111 -0.0123 0.0033 0.0171 -0.0078 -0.0109 

Gross State Product 0.291193 0.892973 0.371872 
 

0.2915 0.8584 -0.0632 -0.8374 0.2284 0.8563 

Wage 0.200135 0.538077 0.590524 
 

0.1957 0.5039 -0.0416 -0.4859 0.1541 0.5054 

W*dep.var. -0.236068 -5.006741 0.000001 
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B.2 SAR Random Effects 

B.2.1 Dry Managed 

R-squared 0.1497 

corr-squared 0.2291 

sigma^2 0.0282 

Variable Coefficient t-stat z-probability 
 

direct t-stat indirect t-stat total t-stat 

Intercept -0.073447 -0.066581 0.946915 
 

-0.0261 -0.0218 0.0015 0.0056 -0.0246 -0.0262 

Distance -0.239623 -6.499916 0 
 

-0.2503 -6.466 0.0546 3.9336 -0.1957 -6.3385 

Unemployment -0.21164 -4.877073 0.000001 
 

-0.2186 -4.7972 0.0477 3.429 -0.1709 -4.7578 

Fuel 0.008945 0.118218 0.905895 
 

0.0062 0.0822 -0.0017 -0.1009 0.0045 0.0762 

Population 0.140779 1.039124 0.298747 
 

0.1436 0.9528 -0.0309 -0.9341 0.1127 0.9474 

Gross State Product -0.079902 -0.626081 0.531262 
 

-0.0807 -0.5644 0.0171 0.5517 -0.0636 -0.5635 

Wage 0.47552 1.898635 0.057612 
 

0.4839 1.8273 -0.1046 -1.7565 0.3793 1.8036 

W*dep.var. -0.236068 -5.019537 0.000001 
       

teta 0.850427 7.199674 0 
       

 

B.2.2 Dry non-Managed 

R-squared 0.1112 

corr-squared 0.2786 

sigma^2 0.0323 

Variable Coefficient t-stat z-probability 
 

direct t-stat indirect t-stat total t-stat 

Intercept 0.126466 0.114257 0.909034 
 

0.0874 0.0766 -0.0201 -0.078 0.0673 0.0757 

Distance -0.19706 -4.623877 0.000004 
 

-0.2025 -4.5538 0.0446 3.3503 -0.1579 -4.4144 

Unemployment -0.335566 -7.680373 0 
 

-0.352 -7.7272 0.0781 3.7977 -0.2739 -8.0548 

Fuel -0.033851 -0.324803 0.74533 
 

-0.0338 -0.3053 0.0072 0.2861 -0.0267 -0.3087 

Population 0.31109 2.399361 0.016424 
 

0.3244 2.3759 -0.072 -2.0603 0.2524 2.3799 

Gross State Product -0.276053 -2.247798 0.024589 
 

-0.2874 -2.2286 0.0637 1.9591 -0.2237 -2.2314 

Wage 0.332443 1.352561 0.176196 
 

0.3532 1.3976 -0.0774 -1.3344 0.2758 1.3886 

W*dep.var. -0.236068 -4.970733 0.000001 
       

teta 0.996782 7.731628 0 
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B.2.3 Reefer Managed 

 

R-squared 0.2309 

corr-squared 0.1781 

sigma^2 0.0153 

Variable Coefficient t-stat z-probability 
 

direct t-stat indirect t-stat total t-stat 

Intercept 0.50951 0.550845 0.58174 
 

0.5081 0.5346 -0.1096 -0.5325 0.3985 0.5313 

Distance -0.180649 -6.550777 0 
 

-0.1865 -6.6773 0.0399 3.847 -0.1465 -6.6709 

Unemployment -0.036465 -1.111966 0.266153 
 

-0.0373 -1.0812 0.0079 1.0385 -0.0294 -1.0791 

Fuel 0.215913 3.862012 0.000112 
 

0.2217 3.8572 -0.0477 -2.8504 0.174 3.9354 

Population 0.105216 0.932509 0.351074 
 

0.1109 0.9736 -0.0237 -0.9517 0.0872 0.9689 

Gross State Product -0.105314 -0.981392 0.3264 
 

-0.111 -1.0193 0.0237 0.9942 -0.0873 -1.0143 

Wage 0.292152 1.44114 0.149545 
 

0.3051 1.4621 -0.065 -1.3928 0.2401 1.4558 

W*dep.var. -0.236068 -5.016402 0.000001 
       

teta 0.68939 7.072028 0 
       

 

B.2.4 Reefer non-Managed 

R-squared 0.062 

corr-squared 0.2165 

sigma^2 0.0181 

Variable Asymptot t-stat z-probability 
 

direct t-stat indirect t-stat total t-stat 

Intercept 1.241961 1.600861 0.109408 
 

1.3208 1.6946 -0.2861 -1.5776 1.0347 1.6935 

Distance -0.216468 -6.307851 0 
 

-0.2255 -6.2505 0.0488 3.8724 -0.1767 -6.229 

Unemployment -0.182748 -5.802873 0 
 

-0.1886 -5.8234 0.041 3.6436 -0.1476 -5.9414 

Fuel 0.12556 1.42889 0.153036 
 

0.1318 1.4195 -0.0285 -1.3573 0.1033 1.413 

Population 0.118127 1.309014 0.19053 
 

0.1211 1.3357 -0.0264 -1.2728 0.0947 1.3338 

Gross State Product -0.091186 -1.070193 0.284533 
 

-0.0933 -1.0872 0.0203 1.0495 -0.073 -1.0849 

Wage 0.117727 0.692013 0.488929 
 

0.1137 0.6491 -0.0245 -0.6308 0.0892 0.6492 

W*dep.var. -0.236068 -5.108726 0 
       

teta 0.997291 8.050233 0 
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B.3 SDM Fixed Effects 

B.3.1 Dry Managed 

R-squared 0.3742 

corr-squared 0.2952 

sigma^2 0.0249 

Variable Coefficient t-stat z-probability 
 

direct t-stat indirect t-stat total t-stat 

Distance -0.20378 -4.39933 0.000011 
 

-0.2103 -4.2284 0.0459 2.881 -0.1644 -4.3292 

Unemployment -0.098533 -0.82932 0.406921 
 

-0.1012 -0.8297 0.0223 0.7987 -0.0789 -0.8282 

Fuel 0.030361 0.236851 0.812773 
 

0.0302 0.2315 -0.0064 -0.2205 0.0238 0.2328 

Population -0.953783 -0.81339 0.415996 
 

-0.9529 -0.779 0.204 0.7365 -0.7488 -0.7823 

Gross State Product 0.179779 0.304248 0.760939 
 

0.1497 0.2389 -0.034 -0.2464 0.1157 0.235 

Wage 0.447749 0.798865 0.424369 
 

0.4345 0.7599 -0.0926 -0.7248 0.3418 0.7614 

W*Distance -0.148356 -3.27506 0.001056 
 

-0.1538 -3.3438 0.0337 2.5284 -0.1201 -3.4108 

W*Unemployment -0.166974 -1.37952 0.167736 
 

-0.1752 -1.442 0.0378 1.3453 -0.1373 -1.4403 

W*Fuel -0.21562 -1.66323 0.096267 
 

-0.2195 -1.7058 0.0474 1.5792 -0.1721 -1.6956 

W*Population 0.942315 0.735144 0.462252 
 

0.9937 0.7374 -0.2135 -0.6988 0.7802 0.7412 

W*Gross State Product 0.910777 1.445034 0.148448 
 

0.9515 1.424 -0.2057 -1.3401 0.7458 1.4178 

W*Wage -0.737687 -1.3947 0.163106 
 

-0.7287 -1.4224 0.1576 1.3373 -0.5711 -1.4169 

W*dep.var. -0.236068 -4.63881 0.000004 
       

 

B.3.2 Dry non-Managed 

R-squared 0.3169 

corr-squared 0.3988 

sigma^2 0.0298 

Variable Coefficient t-stat z-probability 
 

direct t-stat indirect t-stat total t-stat 

Distance -0.219151 -3.93598 0.000083 
 

-0.2308 -4.0188 0.051 2.8949 -0.1799 -4.0219 

Unemployment -0.249017 -1.92824 0.053825 
 

-0.2524 -1.8879 0.0558 1.7014 -0.1967 -1.8862 

Fuel -0.069996 -0.46032 0.645286 
 

-0.0703 -0.4513 0.0155 0.445 -0.0549 -0.4493 

Population 0.79159 0.59775 0.550007 
 

0.8044 0.5886 -0.1784 -0.575 0.626 0.5868 

Gross State Product 0.263529 0.410662 0.68132 
 

0.2996 0.4661 -0.0664 -0.4591 0.2332 0.4629 

Wage -0.006387 -0.01044 0.991672 
 

0.0297 0.046 -0.0036 -0.0252 0.0261 0.0516 

W*Distance -0.079206 -1.49901 0.133872 
 

-0.0782 -1.3958 0.0177 1.286 -0.0605 -1.4014 

W*Unemployment -0.181655 -1.3541 0.175706 
 

-0.1991 -1.4718 0.0444 1.3482 -0.1547 -1.4761 

W*Fuel -0.187176 -1.27736 0.201474 
 

-0.1985 -1.3232 0.0443 1.2426 -0.1541 -1.3212 

W*Population 2.263892 1.668156 0.095285 
 

2.363 1.6841 -0.5272 -1.4936 1.8358 1.6984 

W*Gross State Product 0.304838 0.449818 0.652842 
 

0.2718 0.389 -0.0613 -0.3844 0.2105 0.3867 

W*Wage -1.294176 -2.34752 0.018899 
 

-1.3335 -2.2704 0.2939 2.005 -1.0395 -2.2556 

W*dep.var. -0.236068 -4.73299 0.000002 
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B.3.3 Reefer Managed 

R-squared 0.4088 

corr-squared 0.282 

sigma^2 0.0141 

 

Variable Coefficient t-stat z-probability 
 

direct t-stat indirect t-stat total t-stat 

Distance -0.126316 -3.83619 0.000125 
 

-0.1307 -3.7084 0.0283 2.7574 -0.1024 -3.7562 

Unemployment -0.077309 -0.86635 0.386297 
 

-0.0796 -0.8517 0.0172 0.8154 -0.0624 -0.8527 

Fuel 0.354889 3.009801 0.002614 
 

0.372 3.0044 -0.0797 -2.56 0.2923 2.9584 

Population -0.068395 -0.07156 0.942949 
 

-0.0845 -0.0856 0.0191 0.0889 -0.0654 -0.0841 

Gross State Product -0.369161 -0.95665 0.338744 
 

-0.367 -0.9194 0.0784 0.8889 -0.2886 -0.9173 

Wage 0.761716 2.084529 0.037112 
 

0.8096 2.1147 -0.1753 -1.877 0.6343 2.1135 

W*Distance -0.038224 -1.15149 0.249529 
 

-0.0378 -1.0898 0.0083 1.032 -0.0295 -1.0916 

W*Unemployment -0.03095 -0.33561 0.737168 
 

-0.0324 -0.3416 0.0071 0.3394 -0.0253 -0.3397 

W*Fuel -0.212497 -1.81311 0.069815 
 

-0.2232 -1.8676 0.0474 1.7387 -0.1757 -1.8506 

W*Population -0.487759 -0.51144 0.609043 
 

-0.4996 -0.5142 0.107 0.4995 -0.3926 -0.5142 

W*Gross State Product 0.120759 0.276658 0.782043 
 

0.0973 0.213 -0.0195 -0.1964 0.0777 0.216 

W*Wage 0.732928 1.938061 0.052616 
 

0.7538 1.9215 -0.1633 -1.7095 0.5905 1.9319 

W*dep.var. -0.236068 -4.74422 0.000002 
       

 

B.3.4 Reefer non-Managed 

R-squared 0.2753 

corr-squared 0.3074 

sigma^2 0.0168 

Variable Coefficient t-stat z-probability 
 

direct t-stat indirect t-stat total t-stat 

Distance -0.187728 -4.04876 0.000051 
 

-0.1918 -3.9498 0.0412 2.9837 -0.1506 -3.9011 

Unemployment -0.084783 -0.89009 0.373419 
 

-0.0846 -0.8697 0.0183 0.8449 -0.0663 -0.8655 

Fuel 0.003661 0.033765 0.973065 
 

0.0034 0.0308 -0.0007 -0.0308 0.0026 0.0307 

Population -0.222317 -0.21921 0.826489 
 

-0.2207 -0.2142 0.0495 0.2157 -0.1712 -0.2124 

Gross State Product 0.168923 0.416907 0.676746 
 

0.178 0.424 -0.0391 -0.4232 0.1389 0.4208 

Wage 0.104307 0.268714 0.788149 
 

0.1035 0.2606 -0.0223 -0.2565 0.0812 0.2599 

W*Distance -0.046256 -1.11837 0.263408 
 

-0.0469 -1.0768 0.0105 1.0241 -0.0364 -1.078 

W*Unemployment -0.170526 -1.75407 0.079419 
 

-0.1766 -1.7558 0.0384 1.6166 -0.1382 -1.7556 

W*Fuel 0.132494 1.256491 0.208938 
 

0.1383 1.3149 -0.0296 -1.2429 0.1087 1.309 

W*Population 0.341755 0.340987 0.733113 
 

0.3399 0.3323 -0.0743 -0.3341 0.2655 0.3296 

W*Gross State Product 0.247195 0.537902 0.590645 
 

0.2438 0.5241 -0.0523 -0.5135 0.1916 0.5228 

W*Wage -0.149145 -0.36574 0.714562 
 

-0.1462 -0.3393 0.0309 0.3209 -0.1152 -0.342 

W*dep.var. -0.236068 -4.77879 0.000002 
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B.4 SDM Random Effects 

B.4.1 Dry Managed 

R-squared 0.2016;  corr-squared 0.2987; sigma^2 0.0265 

Variable Coefficient t-stat z-probability 
 

direct t-stat indirect t-stat total t-stat 

Intercept -0.736462 -0.46078 0.644954 
 

-0.8243 -0.4891 0.1836 0.4797 -0.6407 -0.4877 

Distance -0.19821 -5.34647 0 
 

-0.2052 -5.2577 0.0452 3.3428 -0.16 -5.2558 

Unemployment -0.202605 -2.79276 0.005226 
 

-0.2098 -2.7281 0.0461 2.3073 -0.1636 -2.709 

Fuel 0.075013 0.610383 0.541608 
 

0.0853 0.6554 -0.0185 -0.638 0.0668 0.654 

Population 0.089933 0.615453 0.538255 
 

0.0945 0.6125 -0.0212 -0.5972 0.0734 0.6107 

Gross State Product -0.04164 -0.30438 0.760837 
 

-0.0443 -0.3043 0.0101 0.3043 -0.0342 -0.3019 

Wage 0.502256 2.119904 0.034014 
 

0.5196 2.0913 -0.1149 -1.8435 0.4048 2.0898 

W*Distance -0.123769 -3.28846 0.001007 
 

-0.1288 -3.2636 0.0288 2.3707 -0.1 -3.4054 

W*Unemployment -0.042499 -0.54521 0.585609 
 

-0.045 -0.5478 0.0104 0.5591 -0.0346 -0.5399 

W*Fuel -0.114234 -0.92986 0.352443 
 

-0.1257 -0.9749 0.0275 0.9259 -0.0982 -0.9768 

W*Population 0.154454 1.068044 0.2855 
 

0.164 1.076 -0.0362 -1.0346 0.1278 1.0723 

W*Gross State Product -0.1124 -0.83001 0.406531 
 

-0.1194 -0.8412 0.0262 0.8175 -0.0931 -0.8385 

W*Wage 0.191813 0.7287 0.466185 
 

0.2118 0.7801 -0.0475 -0.7627 0.1643 0.7774 

W*dep.var. -0.236068 -4.60581 0.000004 
       

teta 0.890872 7.31208 0 
       

 

B.4.2 Dry non-Managed 

R-squared 0.1488; corr-squared 0.3211; sigma^2 0.031 

Variable Coefficient t-stat z-probability 
 

direct t-stat indirect t-stat total t-stat 

Intercept 0.744967 0.448732 0.653625 
 

0.7649 0.4561 -0.1704 -0.4494 0.5944 0.4542 

Distance -0.179659 -4.11344 0.000039 
 

-0.1866 -3.9422 0.0414 2.9699 -0.1452 -3.9024 

Unemployment -0.242802 -3.20033 0.001373 
 

-0.2516 -2.9889 0.0559 2.4513 -0.1956 -2.9811 

Fuel 0.01821 0.133754 0.893597 
 

0.0243 0.1716 -0.006 -0.1876 0.0182 0.1657 

Population 0.205003 1.470159 0.141519 
 

0.211 1.4835 -0.0467 -1.3837 0.1643 1.483 

Gross State Product -0.181214 -1.38014 0.167544 
 

-0.1868 -1.3879 0.0413 1.3048 -0.1455 -1.3863 

Wage 0.335091 1.357177 0.174725 
 

0.3394 1.3044 -0.0748 -1.2489 0.2646 1.2964 

W*Distance -0.067849 -1.50451 0.13245 
 

-0.0722 -1.5429 0.0164 1.4009 -0.0559 -1.5542 

W*Unemployment -0.101553 -1.22103 0.222075 
 

-0.1083 -1.1765 0.0245 1.1123 -0.0838 -1.1776 

W*Fuel -0.04049 -0.31314 0.754175 
 

-0.0467 -0.3478 0.0108 0.3522 -0.0359 -0.3439 

W*Population 0.078869 0.52062 0.602632 
 

0.0892 0.559 -0.0205 -0.5597 0.0687 0.5537 

W*Gross State Product -0.037267 -0.26111 0.794009 
 

-0.0451 -0.3012 0.0107 0.3147 -0.0344 -0.295 

W*Wage -0.194701 -0.72203 0.470275 
 

-0.192 -0.6783 0.0418 0.6531 -0.1501 -0.6789 

W*dep.var. -0.236068 -4.71998 0.000002 
       

teta 0.997133 7.732233 0 
       



146 

 

B.4.3 Reefer Managed 

R-squared 0.264; corr-squared 0.2549; sigma^2 0.0146 

Variable Coefficient t-stat z-probability 
 

direct t-stat indirect t-stat total t-stat 

Intercept -0.827157 -0.62161 0.534196 
 

-0.8012 -0.5804 0.1679 0.5575 -0.6333 -0.5823 

Distance -0.152088 -5.20899 0 
 

-0.1578 -5.2519 0.034 3.4685 -0.1238 -5.269 

Unemployment -0.106485 -1.76476 0.077605 
 

-0.1087 -1.7494 0.0233 1.6168 -0.0854 -1.7468 

Fuel 0.296684 2.660288 0.007807 
 

0.3111 2.817 -0.0667 -2.4246 0.2444 2.799 

Population 0.205493 1.680035 0.09295 
 

0.2099 1.6614 -0.0451 -1.5279 0.1649 1.6646 

Gross State Product -0.201986 -1.75706 0.078908 
 

-0.206 -1.7342 0.0442 1.5886 -0.1618 -1.7368 

Wage 0.254233 1.296983 0.194637 
 

0.251 1.2582 -0.054 -1.1976 0.197 1.256 

W*Distance -0.062007 -2.08707 0.036881 
 

-0.0626 -1.9935 0.0138 1.7324 -0.0488 -2.0278 

W*Unemployment 0.030427 0.465944 0.641255 
 

0.0319 0.4648 -0.0068 -0.4557 0.0251 0.4639 

W*Fuel -0.124741 -1.12117 0.262216 
 

-0.134 -1.2118 0.0283 1.1573 -0.1057 -1.2087 

W*Population 0.044247 0.33773 0.735567 
 

0.0416 0.3053 -0.0089 -0.2957 0.0327 0.3062 

W*Gross State Product -0.041587 -0.34191 0.732418 
 

-0.039 -0.3056 0.0084 0.2969 -0.0306 -0.3062 

W*Wage 0.4337 1.952573 0.05087 
 

0.444 1.9401 -0.0949 -1.7994 0.3491 1.9264 

W*dep.var. -0.236068 -4.74401 0.000002 
       

teta 0.724526 7.160024 0 
       

 

B.4.4 Reefer non-Managed 

R-squared 0.1432; corr-squared 0.3029; sigma^2 0.0166 

Variable Coefficient t-stat z-probability 
 

direct t-stat indirect t-stat total t-stat 

Intercept 0.586764 0.516259 0.605674 
 

0.5919 0.4877 -0.1303 -0.4864 0.4617 0.4843 

Distance -0.180714 -5.01289 0.000001 
 

-0.1883 -5.0415 0.0407 3.4324 -0.1475 -4.9922 

Unemployment -0.125029 -2.35029 0.018759 
 

-0.1286 -2.4089 0.0279 2.1054 -0.1007 -2.4071 

Fuel 0.097077 1.059184 0.289516 
 

0.0965 1.0397 -0.0211 -1.016 0.0753 1.0338 

Population 0.132367 1.330473 0.183362 
 

0.1384 1.3259 -0.0299 -1.2589 0.1085 1.3236 

Gross State Product -0.114709 -1.23218 0.21788 
 

-0.1199 -1.2331 0.0259 1.1777 -0.094 -1.2306 

Wage 0.077271 0.46642 0.640915 
 

0.0849 0.4884 -0.0187 -0.485 0.0663 0.4856 

W*Distance -0.068316 -2.00156 0.045332 
 

-0.0695 -1.9404 0.0154 1.6923 -0.0541 -1.9731 

W*Unemployment -0.086191 -1.50107 0.133338 
 

-0.0907 -1.6104 0.0198 1.4949 -0.0709 -1.6095 

W*Fuel 0.163515 1.908255 0.056358 
 

0.1724 1.8883 -0.0373 -1.7192 0.1352 1.8875 

W*Population 0.085865 0.798923 0.424335 
 

0.0868 0.7819 -0.0188 -0.7609 0.068 0.7793 

W*Gross State Product -0.047916 -0.47924 0.631772 
 

-0.0487 -0.4716 0.0106 0.4646 -0.0381 -0.4697 

W*Wage 0.088792 0.461279 0.644598 
 

0.098 0.4786 -0.0214 -0.472 0.0766 0.4767 

W*dep.var. -0.236068 -4.79035 0.000002 
       teta 0.997204 8.049504 0 
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APPENDIX C: Spatial Panel SEM and SDEM 

C.1 SEM Fixed Effects 

C.3.1 Dry Managed 

R-squared 0.4259 

corr-squared 0.2215 

sigma^2 0.0201 

log-likelihood 126.23746 

Variable Asymptot t-stat z-probability 

Distance -0.118874 -2.925687 0.003437 

Unemployment -0.189078 -3.063183 0.00219 

Fuel 0.041172 0.456251 0.64821 

Population -0.913571 -0.911337 0.362118 

Gross State Product 0.008803 0.021589 0.982776 

Wage 1.111834 2.428572 0.015158 

spat.aut. 0.233979 4.538282 0.000006 

 

C.3.2 Dry non-Managed 

R-squared 0.4191 

corr-squared 0.3438 

sigma^2 0.02 

log-likelihood 127.29688 

Variable Asymptot t-stat z-probability 

Distance -0.155377 -3.670674 0.000242 

Unemployment -0.322753 -5.346767 0 

Fuel -0.078129 -0.666957 0.504799 

Population 0.637488 0.619715 0.535445 

Gross State Product -0.280867 -0.658947 0.50993 

Wage 0.581294 1.305896 0.191588 

spat.aut. 0.312982 6.580618 0 
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C.3.3 Reefer Managed 

R-squared 0.4798 

corr-squared 0.2541 

sigma^2 0.0118 

log-likelihood 200.4651 

 

Variable Asymptot t-stat z-probability 

Distance -0.135249 -4.83798 0.000001 

Unemployment -0.029351 -0.689588 0.490453 

Fuel 0.177397 2.828569 0.004676 

Population -0.330062 -0.43685 0.66222 

Gross State Product -0.11946 -0.427017 0.669367 

Wage 0.628239 2.005694 0.044889 

spat.aut. 0.150997 2.895615 0.003784 

 

 

C.3.4 Reefer non-Managed 

R-squared 0.3893 

corr-squared 0.2729 

sigma^2 0.0117 

log-likelihood 202.02521 

Variable Asymptot t-stat z-probability 

Distance -0.179204 -4.74031 0.000002 

Unemployment -0.186152 -4.137153 0.000035 

Fuel -0.064033 -0.723303 0.469494 

Population 0.383944 0.486886 0.626339 

Gross State Product 0.049971 0.181331 0.856108 

Wage 0.235128 0.776312 0.437565 

spat.aut. 0.298997 6.294831 0 
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C.2 SEM Random Effects 

C.2.1 Dry Managed 

R-squared 0.3687 

corr-squared 0.262 

sigma^2 0.0209 

log-likelihood 101.95452 

Variable Asymptot t-stat z-probability 

Intercept 0.9535 0.922593 0.356219 

Distance -0.18319 -5.512344 0 

Unemployment -0.149604 -3.575248 0.00035 

Fuel 0.029953 0.400654 0.688675 

Population -0.019704 -0.143894 0.885584 

Gross State Product 0.051258 0.390176 0.696406 

Wage 0.213382 1.015601 0.309819 

spat.aut. 0.186906 3.43558 0.000591 

teta 0.041319 1.018699 0.308346 

 

C.2.2 Dry non-Managed 

R-squared 0.4627 

corr-squared 0.2997 

sigma^2 0.0195 

log-likelihood 108.39845 

Variable Asymptot t-stat z-probability 

Intercept -0.947713 -0.956645 0.338746 

Distance -0.167898 -4.929651 0.000001 

Unemployment -0.248989 -5.933773 0 

Fuel -0.032417 -0.329086 0.742091 

Population 0.353201 2.832133 0.004624 

Gross State Product -0.323811 -2.703456 0.006862 

Wage 0.521593 2.50859 0.012121 

spat.aut. 0.301832 6.277132 0 

teta 0.037572 0.983639 0.325293 
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C.2.3 Reefer Managed 

R-squared 0.3968 

corr-squared 0.1996 

sigma^2 0.012 

log-likelihood 160.59395 

Variable Asymptot t-stat z-probability 

Intercept 1.805385 2.008202 0.044622 

Distance -0.148121 -5.600937 0 

Unemployment 0.001727 0.051385 0.959018 

Fuel 0.195909 3.453846 0.000553 

Population -0.012917 -0.110967 0.911642 

Gross State Product -0.014966 -0.130862 0.895884 

Wage -0.040163 -0.20352 0.838728 

spat.aut. 0.173692 3.123657 0.001786 

teta 0.269253 3.432726 0.000598 

 

C.2.4 Reefer non-Managed 

R-squared 0.3892 

corr-squared 0.2322 

sigma^2 0.0118 

log-likelihood 171.20695 

Variable Asymptot t-stat z-probability 

Intercept 2.275139 2.895183 0.003789 

Distance -0.169272 -5.180506 0 

Unemployment -0.102317 -3.004022 0.002664 

Fuel -0.019301 -0.240093 0.810258 

Population -0.070522 -0.725241 0.468304 

Gross State Product 0.067077 0.712138 0.476379 

Wage -0.057226 -0.338116 0.735276 

spat.aut. 0.311743 6.467401 0 

teta 0.108655 2.224955 0.026084 
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C.3 SDEM Fixed Effects 

C.3.1 Dry Managed 

R-squared 0.4891 

corr-squared 0.3053 

sigma^2 0.0183; log-likelihood 136.59518 

Variable Asymptot t-stat z-probability 

Distance -0.154645 -3.82752 0.000129 

Unemployment -0.034705 -0.380357 0.70368 

Fuel 0.034296 0.344608 0.730389 

Population -1.015141 -1.043856 0.296552 

Gross State Product 0.101118 0.215367 0.829481 

Wage 0.683958 1.41156 0.15808 

W*Distance -0.102785 -2.639899 0.008293 

W*Unemployment -0.186288 -1.937623 0.052669 

W*Fuel -0.141337 -1.450028 0.147051 

W*Population 1.05044 0.972909 0.330598 

W*Gross State Product 0.638316 1.287381 0.197961 

W*Wage -0.702598 -1.532958 0.125286 

spat.aut. 0.214998 4.126812 0.000037 

 

C.3.2 Dry non-Managed 

R-squared 0.4716 

corr-squared 0.399 

sigma^2 0.0182; log-likelihood 137.42636 

Variable Asymptot t-stat z-probability 

Distance -0.207945 -4.434371 0.000009 

Unemployment -0.14891 -1.666582 0.095598 

Fuel -0.043496 -0.379626 0.704223 

Population 0.722369 0.715089 0.474554 

Gross State Product 0.328231 0.697351 0.485583 

Wage 0.266477 0.538968 0.589909 

W*Distance -0.041332 -0.943393 0.34548 

W*Unemployment -0.160104 -1.640843 0.10083 

W*Fuel -0.12402 -1.111385 0.266403 

W*Population 1.38615 1.317186 0.187776 

W*Gross State Product 0.120692 0.246945 0.804951 

W*Wage -1.337457 -2.98779 0.00281 

spat.aut. 0.307968 6.449451 0 
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C.3.3 Reefer Managed 

R-squared 0.5024 

corr-squared 0.2865 

sigma^2 0.0113; log-likelihood 205.45475 

Variable Asymptot t-stat z-probability 

Distance -0.131541 -4.565083 0.000005 

Unemployment -0.052489 -0.699174 0.484443 

Fuel 0.36317 3.74445 0.000181 

Population -0.362249 -0.438056 0.661345 

Gross State Product -0.155097 -0.469425 0.638766 

Wage 0.610621 1.874341 0.060883 

W*Distance -0.008133 -0.283869 0.776511 

W*Unemployment -0.001224 -0.015482 0.987647 

W*Fuel -0.25254 -2.62439 0.00868 

W*Population -0.343963 -0.413464 0.679267 

W*Gross State Product 0.053997 0.144223 0.885324 

W*Wage 0.369345 1.094203 0.273866 

spat.aut. 0.151975 2.915416 0.003552 

 

C.3.4 Reefer non-Managed 

R-squared 0.4253 

corr-squared 0.3117 

sigma^2 0.011; log-likelihood 209.63297 

Variable Asymptot t-stat z-probability 

Distance -0.176559 -4.595427 0.000004 

Unemployment -0.067173 -0.9773 0.328421 

Fuel -0.042454 -0.471643 0.637181 

Population 0.304743 0.377623 0.70571 

Gross State Product 0.013137 0.042046 0.966462 

Wage 0.142118 0.444824 0.656447 

W*Distance 0.015197 0.445301 0.656102 

W*Unemployment -0.123511 -1.67339 0.094251 

W*Fuel 0.172732 2.007867 0.044657 

W*Population -0.528151 -0.646827 0.517744 

W*Gross State Product 0.2243 0.640345 0.521948 

W*Wage 0.004713 0.014166 0.988698 

spat.aut. 0.300997 6.34692 0 
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C.4 SDEM Random Effects 

C.4.1 Dry Managed 

R-squared 0.3962; corr-squared 0.2961; sigma^2 0.02; log-likelihood 107.78658 

Variable Asymptot t-stat z-probability 

Intercept 0.322156 0.201415 0.840374 

Distance -0.177843 -5.389978 0 

Unemployment -0.173169 -3.076798 0.002092 

Fuel 0.08181 0.83218 0.405308 

Population -0.099478 -0.661508 0.508287 

Gross State Product 0.125768 0.873706 0.382278 

Wage 0.320021 1.516189 0.129471 

W*Distance -0.088176 -2.792843 0.005225 

W*Unemployment -0.003313 -0.053268 0.957518 

W*Fuel -0.099736 -1.040116 0.298286 

W*Population 0.176513 1.149521 0.250341 

W*Gross State Product -0.152665 -1.058132 0.289995 

W*Wage 0.149166 0.613857 0.53931 

spat.aut. 0.172557 3.161612 0.001569 

teta 0.031764 0.819686 0.412395 

 

C.4.2 Dry non-Managed 

R-squared 0.4799; corr-squared 0.3188; sigma^2 0.0189; log-likelihood 111.69086 

Variable Asymptot t-stat z-probability 

Intercept -0.985962 -0.625722 0.531497 

Distance -0.174359 -4.800857 0.000002 

Unemployment -0.186306 -3.486741 0.000489 

Fuel -0.024039 -0.237624 0.812173 

Population 0.303216 2.337349 0.019421 

Gross State Product -0.275856 -2.215333 0.026737 

Wage 0.537648 2.487098 0.012879 

W*Distance -0.022879 -0.614422 0.538936 

W*Unemployment -0.09993 -1.601857 0.109187 

W*Fuel -0.010642 -0.11255 0.910387 

W*Population 0.103698 0.759776 0.447389 

W*Gross State Product -0.07874 -0.609485 0.542203 

W*Wage -0.067588 -0.284147 0.776298 

spat.aut. 0.304234 6.339129 0 

teta 0.038827 1.010093 0.312451 
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C.4.3 Reefer Managed 

R-squared 0.4136; corr-squared 0.249; sigma^2 0.0117; log-likelihood 167.37376 

Variable Asymptot t-stat z-probability 

Intercept 0.688963 0.51591 0.605918 

Distance -0.141217 -5.317198 0 

Unemployment -0.110123 -2.14222 0.032176 

Fuel 0.324396 3.520932 0.00043 

Population 0.146884 1.080676 0.279841 

Gross State Product -0.157956 -1.206966 0.227445 

Wage -0.043421 -0.231431 0.81698 

W*Distance -0.021703 -0.856252 0.391858 

W*Unemployment 0.099281 1.799325 0.071967 

W*Fuel -0.172015 -1.890676 0.058668 

W*Population -0.068599 -0.498982 0.617792 

W*Gross State Product 0.065403 0.504635 0.613815 

W*Wage 0.286868 1.269713 0.204187 

spat.aut. 0.163004 2.933298 0.003354 

teta 0.198603 3.019479 0.002532 

 

C.4.4 Reefer non-Managed 

R-squared 0.4159; corr-squared 0.291; sigma^2 0.0113; log-likelihood 180.63399 

Variable Asymptot t-stat z-probability 

Intercept 0.390346 0.332283 0.739676 

Distance -0.168329 -5.31797 0 

Unemployment -0.084566 -1.899403 0.057511 

Fuel 0.014454 0.181276 0.856151 

Population 0.018397 0.167541 0.866945 

Gross State Product -0.027554 -0.261471 0.793729 

Wage -0.008364 -0.051433 0.958981 

W*Distance -0.009554 -0.340545 0.733446 

W*Unemployment -0.083775 -1.737777 0.08225 

W*Fuel 0.174115 2.517036 0.011835 

W*Population 0.1124 1.055891 0.291018 

W*Gross State Product -0.093342 -0.924521 0.355215 

W*Wage 0.320909 1.657983 0.097321 

spat.aut. 0.28525 5.837377 0 

teta 0.067494 1.634099 0.102238 
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