WestVirginiaUniversity
THE RESEARCH REPOSITORY @ WVU

Graduate Theses, Dissertations, and Problem Reports

1999

Mission planning and remote operated vehicle simulation in a
virtual reality interface

Christopher Samuel Allport
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation

Allport, Christopher Samuel, "Mission planning and remote operated vehicle simulation in a virtual reality
interface" (1999). Graduate Theses, Dissertations, and Problem Reports. 940.
https://researchrepository.wvu.edu/etd/940

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/940?utm_source=researchrepository.wvu.edu%2Fetd%2F940&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Mission Planning and Remote Operated Vehicle Simulation in a
Virtual Reality Interface
by
Christopher Samuel Allport
B.S.E.E, West Virginia University

THESIS

Submitted to
the Department of Computer Science and Electrical Engineering of
the College of Engineering and Mineral Resources
at
WEST VIRGINIA UNIVERSITY
in partia fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering

Committee
Dr. Biswgjit Das
Dr. Wils Cooley
Dr. Mark Jerabek

Morgantown
West Virginia

1999

Copyright 1999 Christopher S. Allport

ABSTRACT

Mission Planning and Remote Operated Vehicle Simulation in a
Virtual Redlity Interface

Christopher S. Allport

Virtua redity smulations are finding applications in awide range of disciplines such as surgica
simulation, electronics training, and crime scene investigation. During the Mars Pathfinder
Mission, in summer 1997, NASA scientists unveiled a new application of virtua redlity for the
visualization of a planetary surface. The success of this application led to a more concentrated
effort for using virtual reality visualization tools during future missions. The thrust of this effort
was to develop a new interface which would alow scientists to interactively plan experimentsto
be performed by the mission robots. This thesis covers two of the primary aspects of
implementing this system. The first topic was to develop a kinematic model for one of NASA’s
roversfor usein avirtua reality smulation. The second aspect of thisthesisisthe
implementation of the tools required for the mission planning module, which are the interfaces
that the scientists use to plan the experiments for the rover.

Acknowledgments

| wish to acknowledge my advisor, Dr. B. Das, for his encouragement in pursuing this research. |
would aso like to thank the other members of my committee, Dr. W. Cooley and Dr. M. Jerabek.
| am grateful for their guidance and valuable suggestions in writing thisthesis. The Intelligent
Mechanisms Group at NASA-Ames Research Center in Mountain View, California, was
instrumental in introducing and getting me involved with this research. Special thanksto Dr.
Theodore Blackmon who worked to get me involved and keep me involved with this project. |
also wish to thank Erik Shreve and Paul Sinesfor their help. Specia thanks to my family for their

encouragement and support throughout my education.

Contents

Abstract i
Acknowledgments ii
List of Figures Vii
1 Introduction 1
2 Background 4
21 Overviewof Virtual Reality e 4
22 GoaAlsSOf ReSEarCh o 5

3 Implementation of Terrain Following 6
3.1 Methodsof Terrain Following e 6
3.2 ROVE KINBMAELICS . . . oottt it et e e e e e 9
3.3 RoverDrivelnterfaceo 14
3.4 Improvement Over theOriginal System i 16

4 Implementation of Mission Planning M odule 17
4.1 Modularity Of DESIgNot 17
4.2 Elementsof the Mission Control Module 18
4.2.1 General PropertiesUser Interface 18

4.2.2 Panoramalmage SequenceVisualizerc. i 19

iv

4.2.3 Navigation CameraVisualizer
424 Spectrometer Visualizer e
425 ArmTask Planner

5 Resaults& Conclusions
5.1 Accomplishment of Project Goalst
52 Vaidationatthe Field Test e e
5.3 Modularity
54 ColliSON DEECHONot

BE DISCUSSIONS . . o o v e e e e e e e e e e e

6 FutureWork & Suggestions
6.1 ColliSONDEECHiONo
6.1 Rover and Terrain, Objects,and Other Rovers
6.2 Improvementsin Collison Detection i,

6.2 Improvementsin TerrainFollowing i

Bibliography

Appendix

A Explanation of Virtual Reality Concepts
Al TheSceneGraph e
A2 ReferenCeFrames. e

A3 Progressive Transforms e

B Pan-Tilt Sequence Planner Source Code
B.1 Listingof panCam.h
B.2 Listing of panCam.Cot

26
26
27
28
28
28

31
31
32
35
37

38

40
40
42

C Spectrometer Planner Source Code 74

C.1 Listingof spectral.h 74
C.2 Listingof SPECral.Co 74
D Navigation Camera Planner Source Code 98
D.1 Ligtingof navCam.h 98
D.2 Listing of NAVCAIM.C . . . oottt e e e e e 98
E Terrain Following Source Code 112
E.1 Ligingof marsokhod.h. 112
E.2 Listingof marsokhod sm.h 115
E.3 Listingof marsokhod SIM.Cot 115

vi

List of Figures

1-1 TopView of MarsSMap e e e 2
3.1 "Moveand Settle” Terrain Following 7
3.2 Surface Determination and OcclusionProblemo i L 8
3.3 "DropinPlace" Tarain FollowingMethod 9
3.4 Degreesof Freedom of Marsokhod Rover 10
3.5 Cdculating Roll of the Marsokhod Rover 11
3.6 Cdculating Pitch of the Marsokhod Rover i 12
3.7 Ilustration of Small Angle ASSUMPLION ottt 12
3.8 Marsokhod DrivePanel 14
4.1 General Task UseriInterface. 18
4.2 Panoramiclmage Tool Control Panel 19
4.3 Panoramalmage Sequence TOOlt 20
4.4 Navigation CameraControl Panel i 21
4.5 Navigation Cameralmaging SEqQUENCEo vttt i e e e e 22
4.6 Spectrometer Visualization Tool Shown CapturingaRock 23
4.7 Spectrometer Visuaization Tool Shown Bending around the Corner of aBox 24
4.8 Spectrometer Visuaization Tool Showing Capture Areawith an Obstruction 24
49 ArmTask PlanningPanel 25
A-1 SampleScene Graph 41
A-2 Separator NOOE 42
A-3 lllustration of object moving dong local andworldaxes 44
A-4 Progressive Transformo 45

Vil

Chapter 1

| ntr oduction

“l haveto seeit to believeit.” These words encapsulate many individuals' thoughts about
progressive ideas. However, it is not aways feasible to actually show someone the idea or even a
physical model of it. On the other hand, it may be possible to create some illustrations or
presentation which would better expresstheidea. Visuaization is an important step for most to
understand complex concepts, and traditional computer technology has played an important role
in visuaization in the form of two dimensiona graphics, animations, and sound. Virtual reality
offers a much better solution to using computers as visualization tools. It creates an interactive,
three dimensional smulation which can be extremely redlistic in its appearance and level of
interaction; thus, it can play an important role in intelligent data gathering. Virtual redlity is

finding applications in disciplines ranging from surgical simulations to automobile design.

A recent application of virtual readlity is space exploration as demonstrated during the Mars
Pathfinder mission. The data received from the Pathfinder landing module and exploring rover
were used in avirtua redlity application to create a three dimensional reconstruction of the
Martian topography. This planetary visualization tool, developed for use at mission control
during the Mars Pathfinder mission, was named MarsMap. It enabled scientists to obtain data
about the Martian surface in a completely new way [1]; they were able to measure and view the
surface of Marsin three dimensions. Figure 1.1 shows an overhead view of the Pathfinder landing

site as visualized using MarsMap.

Figure1l.1 MarsMap view of Pathfinder Landing Ste

MarsMap was a revolutionary system, but fell short in many ways as a comprehensive mission
visualization tool. It alowed the scientists to make measurements and view the terrain in three
dimensions, but it did not provide any mission planning tools nor did it provide any rover
visualization. Based on these considerations, and the experience gained from the Pathfinder
mission, it was concluded that an intuitive and modular user interface that will allow geologists to
plan experiments in a virtual environment before performing the experiment with an actua robot
will be of significant value for future missions. There are additional concerns, however. Such an
interface would have to be flexible. Each mission has a different robot with a different set of tools
on board. How then, can such an interface be constructed so its use will transcend a specific

mission and be applicable to any mission?

The excitement inspired by MarsMap led NASA scientists to start working to expand upon its
interface [3] and add a rover smulation after the Pathfinder mission concluded. With the new
additions, it was possible to redlistically drive the mission rover, Sojourner, on the Martian surface

inrea-time. It also allowed the scientists to replay different parts of the mission by placing rover

models at locations of mission events. MarsMap was even used to compare the actual and
intended paths traversed by the rover. The rover could also be placed in different locations, and
billboards detailing the images captured by the rover at those points could be displayed [4, 5].
However, at mission control, scientists could not drive the virtual Sojourner model over the Mars
terrain nor did any of these additional features exist. These additions could have provided a better

method for optimized data gathering and an improved mission outcome.

The objective of this thesis was to address the shortcomings and improve upon the MarsMap
system. The original system had problems with its terrain following algorithms. Therefore, the
first task consisted of developing terrain following agorithms for the Marsokhod rover, the

NASA-Ames Intelligent Mechanisms Group’ s test-bed rover.

Additionally, the original interface only had mensuration tools alowing the scientists to gather
data about the surface. There existed no means to interact with the environment for the purpose
of planning. Thus, after the first phase, work shifted to devel oping a modular mission control
interface. Thiswork was responsible for the development of many of the tools and user interfaces

used in the mission control module.

Finally, this thesis served to develop ideas for collision detection. While these ideas were not
implemented, they do serve as a starting point for integrating collision detection into the

visuaization system that will be important for future missions.

Chapter 2

Background

This chapter provides a brief overview of the virtual reality technology and describes the
objectives of this research. For amore detailed description of virtual reality, please refer to

Appendix A of thisthess.

2.1 Overview of Virtual Reality

The virtua redlity (VR) technology was first proposed and demonstrated in the 1960's, where
individual display units were mounted to a common pole which allowed users to change the
position of their viewpoint of awireframe cube [2]. Ascomputer processing power increased, the
complexity of virtua reality systems aso increased. Modern VR systems have moved from
simple wireframe model s to thousands of complex, fully textured, shaded, and anti-aliased
polygons. While virtua reality still requires a significant amount of processing power, it has
started to reach the consumer market by way of video games. Although full scale virtua reality
has yet to hit mainstream technology, its value as a visualization tool, as aform of entertainment,

and as an unlimited source for exploration are easily recognized.

Virtual reality uses a combination of computer graphics, animation, hypertext, video, and sound
to create a highly interactive environment in which a person can interact with virtual objects[6,
13]. An excellent description of virtual redity is described by Howard Rheingold in his book,
Virtual Reality [7]. Rheingold says:

“Imagine awraparound television with three-dimensional programs, including three-
dimensional sound, and solid objects that you can pick up and manipulate, even feel with
your fingers and hands. Imagine immersing yourself in an artificial world and actively
exploring it, rather than peering in at it from afixed perspective through aflat screen.

Imagine that you are the creator as well as the consumer of your artificial experience.”

Rheingold enthusiastically describes virtual reality with somewhat fantastic stereotypes, but he
makes his point. Virtua reality is a multi-sensory, immersive computer interface bound only by

the imaginations of the creators.

Although this technology has been around for several years, it is still in itsinfancy because
computers have not been powerful enough to render virtua reality ssimulations. Now that
computers are significantly more powerful, it is conceivable to apply virtua reality to amost any

discipline, thus leaving a great deal of research to be undertaken.

2.2 Goals of Research

This thesis addresses two primary areas.
1. articulate the Marsokhod rover model so it will, with reasonable accuracy, traverse
over the model of the terrain at a mission site; and
2. assist in development of a modular mission goal planning interface which will alow
geological scientists to interactively plan mission experiments and obtain preliminary

visualization information about these experiments before they are ever performed.

In addition, this thesis also reports on the development of strategies for collision detection which

could ultimately be integrated to the interface for more realistic rover operation.

Chapter 3

| mplementation of Terrain Following

Terrain following is an important requirement for robotic exploration of a planetary surface; it is
desired that as the rover drives over the terrain it maintains a consistent height above the terrain.
For single or multiple independent points, thisis arelatively trivial problem. However, when
multiple points of one particular object are following the terrain, such as the wheels of arover, the
problem becomes quite complicated. To solve this problem, a clear understanding of the
kinematics of the terrain following object is necessary and ssimplifying assumptions need to be
made. In this part of the research, an algorithm for terrain following for the Marsokhod rover

was developed and implemented in virtua readlity.

3.1 Methods of Terrain Following

Thefirst goal of thisthesis was to incorporate a fully articulated (each individual piece moves)
model of the Marsokhod rover. In this simulation, the rover was to be able to drive over the
surface of the Martian data set, pitching and rolling as the physical rover would. Basicaly, each
of Marsokhod' s six wheels needs to be situated onto the data set. After the wheels are in place, it
iscritical to know if the rest of the rover can actually move to where it was trying to go [thisisa

separate problem which is handled independently].

The first step was to decide exactly how, algorithmically, the position of the wheels would be
calculated. The approach initially considered can be best described as “move and settle” Using

6

this method, the rover geometry is moved into its new position and then is settled onto the data
set. Figure 3.1 schematically shows the steps involved in the “move and settle” method. Figure
3.1(a) showstherover initsinitial state. As described above, the next step is to trandate the
rover forward, shown in Figure 3.1(b). Finaly, in Figure 3.1(c), the front, middle, and rear axles
are trandated (vertically) and rotated to fit the terrain.

[] it Fal Loy

Y L
{ | WP e |)}_ SR M, ¥ [I etk -
LY P Ry \ - Y e R \ e e g W
b T Y e b et S

- N = F.

7y) r o R e | - i
e e g e N

Figure3.1 “Move and Settle” Terrain Following

The primary advantage of the “move and settle” method is that it provides an incremental position
adjustment from frame to frame and ensures that the wheels will settle onto the proper surface.
This algorithm is difficult to implement, however. At each new position, it requires looking for
the terrain above and below the axis of the wheel and must make a determination which, if either,
isthe correct surface. For example, for the front axle in Figure 3.2, there is a surface above the
axis center as well as a surface below the axis center. While it may be perfectly clear to a human
on which surface the wheel should be placed, it is not obvious to the computer. After finding the
correct surface, the software must then determine if the wheel will fit into the new position. This
figure dso illustrates how a surface feature, like arock, may keep the wheel from fitting into
place.

Figure 3.2 Surface Determination and Occlusion Problem

While this method has some other benefits as discussed later [see Collision Detection], it was
abandoned for adightly less robust, hence smpler to implement, method. The technique used to

implement terrain following for the Marsokhod rover can be classified as “drop in place.”

Preliminary testing indicated that the “drop in place” method was the best immediate solution for
articulating the Marsokhod rover. In this method, the rover is lifted above the surface (NOTE: it
must be lifted a distance greater than or equal to the height of the highest local feature), the pan
and tilt of each axisis calculated from the distance of the center of the whesdl to the surface, and
then the rover is trandated down into the proper position. The front and rear axles were attached

to the middle axle thus allowing them to move with the middle axle.

The following figures illustrate how the “drop in place” method works. Figure 3.3(a) shows the
rover in aninitia settled position. In Figure 3.3(b), the rover is trandated up and the angles are
reset. Figure 3.3(c) shows the axle angles as set for the new terrain, and Figure 3.3(d), the rover

is lowered into its new position.

L — .ffﬂk\"‘.- A
NVAIR~
Y 72N
I 1 g :;:__ — A
" e g b ":- {-an.-';.--" &
A = (R = B el
— e R e
."Ih 7 ,-f';\'“\« -~
t_:""".'lf =, f? %/;2'3-
N s o \ 7 i
f Vo e T T L — 2 ! e
AT ey R T o S AT
_"‘-_Is\'_,_. ") Y o et — "'\-u._H_ 1 J o
L N o
€) (b) (© (d)

Figure3.3 “DropinPlace” Terrain Following Method

Although terrain following was the first goal, before it could be addressed a subroutine had to be
developed to load and build the articulated model of the Marsokhod rover. Work then continued

to implement the actual terrain following.

3.2 Rover Kinematics

To simulate the physical interaction of the rover with the terrain, the virtual rover had to be
programmed with its appropriate kinematic properties. Figure 3.4 shows a schematic of the axes
of rotation of the rover. The front and rear axles can pitch about the center axle, and the front

and rear axles can roll about the shaft connecting them to the center axle.

N

Figure 3.4 Degrees of Freedom of Marsokhod Rover

Several assumptions were made in the development of the kinematic equations to simplify and
speed up the calculations. The first assumption is that the rover can go to any location whereit is
placed. Thisis, of course, an inaccurate premise asit is clear that arover would be hard pressed
to climb, for example, an 80% grade. These problems, however, can be circumvented by
programming the physical limitations of the rover, but was not attempted for the sake of

smplicity.

Since the scene graph was built so the front and rear axles hinge on the middle axle, the middle
was taken to be the base axle. In the first smplifying assumption, the middle axle was initialy
considered to berigid, thus effectively never having any pitch. Inredlity, the middie axleis
cantilevered between the front and rear axles for stability, and its pitch does change. Since a
variety of scientific instruments are mounted on the mast, and since the virtual redlity is actualy
being used for experiment planning, this assumption would have introduced significant errorsin
the ssimulation. Therefore, it was corrected so that the pitch of the mast (middle axle) behavesin a

manner representative of the actual rover (the calculations will be covered below).

Given that the middle axle was the best one to choose as the primary axle, the other two axles
were added as children of the middle axle in the scene graph. Thefirst step in the process was to
find the distance of each wheel of the middle axle to the terrain. Thiswas done by projecting a
vertical line straight down from the center of each of the wheels until it intersected with the
terrain. This function returned the distance of the axle (at the middle of each wheel on each side

of the axle) to the terrain. The height of the middle axle, H,, can be calculated as shown:

10

where H,,, and Hy,, are the distances of the left and right wheels from the terrain, respectively.
The next step was to roll (not illustrated in Figure 3.3) the axle so that the two wheel s appeared
to be sitting on the terrain. The roll angle, g, can be calculated by:

1 HLW_H

We

0 = sn RW

where W, is a predefined constant representing the distance between the left and the right wheels.
Figure 3.5 corresponds to this calculation.

Figure3.5 Calculating Roll of the Marsokhod Rover

Theroll of the front axleisthen calculated. If H. isthe distance of the front axle from the terrain.

The pitch of the front axle can be determined by:

b = sn”

where W; is predefined as the distance between the front and middle axles. The rear axle was
modeled in the same fashion as the front axle, by substituting F ; and Hy for F - and H... Figure
3.6 illustrates this calculation.

11

Figure 3.6 Calculating Pitch of the Marsokhod Rover

The difference between F ; and F - when divided by two, gives the angle through which the

middle axle must be rotated to have the mast in the proper orientation.

After all the calculations are completed, the rover is trandated down to the surface. Itis
important to note that H,, is not the distance the axle will be translated down because of the

wheel; subtracting the radius of the wheel from H,, results in the proper trandation distance.

In addition to the rigid mast, some additional assumptions were made to smplify the kinematics.
Although front and rear axles rotate about the middle axle in an arc, the distance used in
calculations was for when the front/rear axles were in their initial states. It is possible, by this
assumption, that once the axle is rotated, the topology under the wheel will be different and the
wheel will not seat properly. Figure 3.7 illustrates this problem. A small amount of accuracy is
lost due to this assumption, however, since most of the angles that the rover will be facing are

small angles, the error introduced is expected to be quite small.

Figure 3.7 Illustration of Small Angle Assumption - the blue line represents the actual distance

12

measured, the red line represents the path along which the wheel rotates, and the violet arrow

indicates the pivot point.

Another assumption made introduces errors greater than those resulting from the previous
assumption. To significantly simplify the placement of the wheel on the terrain, only a single point
from the center of each wheel follows the terrain. In the simulation, it is not uncommon to see the
whesl roll through a small rock, or other surface feature. Since the outer half of the wheel is not
being tested, it is possible for the edge of the whed to drive straight through arock! However,
this assumption allows a significant reduction in the amount of programming and in processor
load. Also, in most situations, users will not be concentrating on the wheels, and these errors will

go unnoticed.

Thereis another error introduced by the small angle assumption. When an axle drives onto an
extremely steep lope, an oscillatory condition arises. In the first measurement, the wheels are
found to be further away from the ground than they actually are. Thismiscalculation is
propagated into the next measurement, which then detects the wheels to be too close to the
ground. A situation can occasionally be found where the oscillation is damped out after afew
cycles. Unfortunately, it isjust as possible to find a situation where the oscillation increases. Left

alone, thisis avery unstable system.

Although the above assumption does not introduce any substantial functional problems (in reality
the actual rover should never be driven on such a steep dope and these kinematics are exclusive
to thisrover), it needed to be addressed for the virtual system to be physically representative of
the actual system. Two approaches were considered to allay this problem: (@) rewrite the terrain
following system, or (b) implement a damping function for the rover. The first option was
eliminated due to time constraints. The idea of the damping function is similar to using a
capacitor to filter out unwanted oscillations in electronic circuits. A damping function was
introduced in the simulation to compensate for the oscillatory error. If the change in height from

one calculation to the next is greater than some constant, instead of being set to that height, the

13

axleis eased to that height by a small differentia amount, delta. This keeps the robot from
jumping from one height value to another, since it is changing by a small anount each time. In

the worst case, it should ultimately reach a point where it oscillates only by one delta.

Asin electrical systems, the use of damping slows down response of the system. If the virtual
rover isdriven over the terrain at top speed, it will, at times, appear to be immersed in (or floating
above) theland. Thisis due to the fact that the damping function has not caught up to the actual
position of the rover. Such situations will occur only in extreme cases and will not affect normal

operation of the rover.

3.3 Rover Drivelnterface

In order to navigate the rover over the surface of the terrain, a drive interface was implemented.
Of primary importance was to create a natural and intuitive interface which would allow a user to
drive the rover asit would physically move. Unlike Sojourner, Marsokhod is able to drive and
turn simultaneoudly. The drive panel, therefore, should reflect this feature. Figure 3.8 shows a
screen capture of the Marsokhod drive panel. This panel is displayed as an additional window

laying atop the main visualization window.

Figure 3.8 Marsokhod Drive Panel

14

The screen is setup as a Cartesian coordinate system with the center of the screen being the
origin. TheY-axisisthe vertical axis, and the X-axisis the horizontal axis. Any time the left

mouse button is depressed in the drive window, the rover will move with avelocity dictated by

the equations:
Vdrive = Ycursor * Vyscale
Vturn = xcursor * szcale

where V.. and V, ., are scale factors which adjust the screen coordinates to values respective
of the rover speed. Thelocal coordinate frame alows for smple positioning of the rover. The

difficulty arisesin trandating the mouse position on the screen into drive commands for the rover.

To enhance the realism of the ssimulation, the wheels were rotated as a function of the drive and
turn rates. The wheelsturn at the forward rate divided by the wheel radius. Since it is capable of
turning at the same time, the turn rate divided by the wheel radiusis added to the forward rate.
This feature makes the rover appear to be driving across the terrain, instead of being scooted

across.

A new feature added to the drive panel is the cameramode. Using the right mouse button, the
user is able to move the rover’s camera around in all directions without moving the rover. The
drive window holds the camera in whatever orientation the user sets. Thisis particularly useful if
the user is planning to look in a direction other than straight ahead while driving the rover. This
feature allows the user to see, in advance, what view will be given from the rover’s camera. The

position of the camera can be reset by clicking the center button.

15

3.4 Improvement Over the Original System

A significant problem that plagued the original system was holesin the data set. In the original
terrain following algorithms, the function which determined the heights of each wheel failed each
time a hole was encountered. The rover settle function would then try to pose the rover with
incomplete information, often causing a snowballing of errors until the program either crashed or
dowed the system to a near halt due to processor overhead. This problem needed to be
addressed in an effort to make the system more reliable. It was found that this problem could be
solved by keeping the previous position of the wheel in memory. If the new wheel position was
over ahole, it maintained its previous height. As soon as the center point moves over terrain, it
takes on its new height. This enhancement allowed the rover to be driven throughout the entire
simulation, irrespective of the presence or the absence of terrain. As an added bonus, this
improvement also allows the rover to be driven back onto the landing module, so scientists can
more accurately simulate the entire mission — from driving the rover off the lander, to its last

known position.

16

Chapter 4

| mplementation of Mission Planning Module

Although virtual reality had been demonstrated by NASA to be useful in a mission control
environment (Mars Pathfinder, 1997), it had yet to be used as a planning interface. This chapter
will discuss the user interface which allows scientists to plan experiments for the rover. This
interface was developed for and tested during the Intelligent Mechanisms Group’s 1998-1999
Field Test.

4.1 Modularity of Design

Since NASA typicaly uses different robots for different missions, it was clear from the onset of
the research that the interface would have to be designed in such away that it was modular and
independent of the rover for which the experiments were being planned. The actua development,
however, did not result in afully modular system. While the system had some components of
modularity, it was still hard-coded with the simulation of the Marsokhod rover. Astime passed,

the major planning tools were programmed into the system.

17

4.2 Elements of the Mission Control Module

The mission control module was comprised of severa parts. Of primary interest are the general
task planning interface and four of the instrument planning interfaces. Each instrument planning
interface has a general task planning user interface associated with it. All of the planning user
interfaces are dialog boxes (windows) that lay on top of the main application. Asthe parameters

in the panel are adjusted, the visualization system is updated.

4.2.1 General Properties User Interface

Since the rover can traverse across the data set to constantly allow the user to visualize and plan
in multiple locations, it isimperative that the rover be always mobile. To make the planning
visualization more clear, a copy of the rover model had to be added, or instanced, at each test site.
After arover isinstanced, any of the experiments can be performed. All experiments share a
common set of parameters. Therefore, a general user interface was developed for al experiments.

A screen capture of the General Task user interface is shown in Figure 4.1.

General Planning Tool

— Start Time _}
[End Time _j’
Ex Priority _;
DL Friority _i

Figure4.1 General Task User Interface

18

This general task user interface enables the scientists to set specific experimental parameters
which apply to all of the experiments. If applicable, a start and/or end time can be specified.
These are times for atask to either begin or to finish. The execution priority specifies the
importance of a particular task to be executed. The downlink priority supplies information to the
rover communication software regarding the importance of the information obtained by this task.
If it has alow downlink priority, and alarge demand for bandwidth, the data from the particular
task may be stored to be sent during a later communication cycle. The comments button opens a
text editor (selected by the user) to enter comments about the given task. The prerequisites
button, when implemented, will enable the scientists to state what tasks must be accomplished

before the current task can be performed.

4.2.2 Panorama | mage Sequence Visualizer

In order to help the scientists plan imaging sequences, a tool was developed for doing so in an
optimum fashion. Without thistool, it is very easy to overestimate the number of images that
needed to be taken to capture the desired region. The control panel, seenin Figure 4.2, allows

the user to set the pan and tilt extents, the pan and tilt resolutions, and some various imaging

parameters.
PanCam Planning Tool EEE|
CamiD Res comp
[Start Tirre I
=2 I I
i i
[End Time i Pan Res Tilt Res
Ex Friority | 1 1
| | i |
| Fan Min Tilt Min
DL Priority =10
Pre Reqgs I = BE = il
_Commerts o Ll
Ok i Fan Max Tilt M ax

Figure4.2 Panoramic Image Tool Control Panel

19

This control pandl is interfaced with the pan-cam tool. Asthe pan and tilt extents are adjusted,
the 3D representation of the imaging sequence is updated. Figure 4.3 shows the rover in the

middle of planning an image sequence.

Figure 4.3 Panorama Image Sequence Tool

In Figure 4.3, each of the blue vertices represents where an image will be taken. The red line
which outlines the blue surface patch represents the total imaging area. This facilitates
optimization since the blue vertices mark only the center of the imagesto be taken. The small red
sguare located in the center of the blue surface patch represents the size of one singleimage. This
gives the scientists an idea of how much overlap and coverage will exist between the images. In
order to generate this surface patch, each vertex had to be calculated. Thiswas done at each of
the desired pan and tilt stops. If the pan and tilt angles are designated as q and F , respectively.

In the world frame, the points are calculated as follows:
X = rsinBcosd
y = rsn®

Z = rcosfcos®

20

where r isthe radius of the surface patch to be generated. After generating this geometry in the

world frame, it was transformed to the rover’ s position.

4.2.3 Navigation Camera Visualizer

This tool was developed to help the scientists plan nav-cam imaging sequences and to see the

rover’sview. Figure 4.4 shows the interface for the nav-cam tool.

NavCam Planning Tool HE
Res comp
[~ Stat Time _!— Mavigation Camera
 Front Left
[End Time | — Front Right
= Front Stereo
iari |
Ex Priority) ~ Rear Left
DL Priority _i Wi
i Rear Sterea
Comrents | Pre Reas |
Shap YWiew to Camera
ok |

Figure4.4 Navigation Camera Control Panel

As shown in the figure, the user can select between the various cameras, and by selecting “ Snap

to Camera Position,” can view the world from the rover’ s viewpoint using the specified camera.

Figure 4.5(a) shows what the rover looks like while planning a navigation cameraimaging
sequence. The red and green projections represent the field of view for the two front cameras.
The view from the these cameras can be seen in Figure 4.5(b). The green and red lines are the

outlines of the fields of view of the cameras.

21

(b)

Figure4.5 Navigation Camera Imaging Sequence

4.2.4 Spectrometer Visualizer

The rover aso has a spectrometer mounted to it for gathering composition data about geol ogical
formations. The spectrometer has afield of view of 1°. Thisimplies that the size of the sampled
areais proportional to the distance of the surface from the spectrometer. The area captured by
the spectrometer is similar to the surface illuminated by aflashlight. Wherever the light is shown,
acircle of light (which grows with distance from the source) appears. If thelight isincident on a
feature such as a corner, or a step, the light appears on the first incident surface in its path. The

spectrometer operates in a similar manner.

Typical use of the spectrometer will be limited to capturing one small coherent surface, but the
imaging surface may not completely fill the field of view. Also, if the surface is not even, asin the

case of most rocks, it would be useful to see what is being imaged.

Thistool was developed to help the scientists to select the areas they would like to capture. It

22

projects a circle onto the first incident surface around the target point, at a radius proportional to

the field of view as shown in Figure 4.6.

Figure4.6 Spectrometer Visualization Tool shown capturing a rock

Since the circle is projected onto the first incident surface, it seemsto adhere to the imaging
surface. This graphically depicts the entire area being imaged. While the type of surface shown in
Figure 4.7 is not uncommon, there is one additional condition under which this tool helps enhance
visualization. It ispossible that a distant object is being captured and there is some obstruction in
the field of view of the spectrometer. Figure 4.8 depicts how the tool behaves when alocal
obstruction, i.e., the robot itself, interferes with the imaging field. If this occurs, the scientist can

adjust the rover (or spectrometer) so the data gathered will be from the proper surface.

23

Figure4.7 Spectrometer Visualization Tool shown bending around the corner of a box

Figure4.8 Spectrometer Visualization Tool showing capture area with an obstruction

The mathematics for the implementation of the spectrometer visualizer are difficult, but the
concept is quite easy to understand. First, aline is drawn from the origin to the center of the
target. This denotes the center of the acquisition region. Then, following a unit circle around the
point of origin, the distance to the land is calculated. Once each point is found around the circle,

the points are connected to draw the incident region.

24

4.25 Arm Task Planner

Planning an arm experiment is much like planning a rover task. Since the arm can do many

experiments from one location, it is necessary to instance the arm for each experiment. Figure 4.9

shows the interface developed for the arm planner.

| Arm Planning Toor ___________________HEEH]

I tlode Frame Tool

Lo _| Add Mowe | M Guarded
[~ End Time |—— e

Ex Priority

il

DL Priority |
Comments | Fre Regs |
ok |

Figure4.9 Arm Task Planning Panel

The graphical window acts as a navigational window for placing the arm in the proper position.

The “Add Move’ button instances the robot arm thus creating a new experiment.

25

Chapter 5

Reaults & Conclusions

5.1 Accomplishment of Project Goals

The goals set forth in this thesis were achieved, though not exactly as had been initialy planned.
The articulation of the Marsokhod rover was accomplished in three phases. The first phase
served to integrate the rover into the MarsMap environment so it may be driven around the
interface. Mathematical and physical assumptions were made to accelerate this integration
process. The result of this phase was a fully articulated rover which emulated the physical nature
of the Marsokhod rover. At this point, the accuracy of the virtual reality model was inadequate

for the rigorous planning that was envisioned.

In the next phase, some of the mathematical assumptions made in the first phase were eliminated.
The first refinement was to make the rover’ s mast properly articulate since it was previously
assumed that the mast was rigid and always perpendicular to the ground. Another problem which
was eliminated at this point was the fact that the complete visualization system would crash
whenever the rover would drive over a“hol€’ in the terrain. This problem was solved by having

the rover ignore the holes and proceed following the terrain asiif it was on even land.

From the first phase of rover integration, there was a significant problem which plagued the
simulation. When the rover would reach terrain with large height differences, it would enter an

unstable oscillatory condition. Upon reaching this state, three things could be expected. One, the

26

rover could smply oscillate at some initial amplitude (frequency was based on the speed of the
simulation loop and, therefore, remains constant for all three cases). In another case, considered
the most desirable case, the rover would oscillate at a decreasing amplitude, ultimately settling
into one resting position. The last case, considered to be the worst, resulted in the rover
oscillating at an increasing amplitude. The typical result of this last case was aterminal loading of

the visualization system to a point where it had to be restarted.

The problem was solved by imposing some real-world limitations on the previously unconstrained
rover. The problem of the oscillation (as previously described) resulted from the robot trying to
change heights too quickly. Many times this was a very transient problem, lasting while the rover
drove over arock or other sharp feature. The problem was solved by prohibiting the rover from
changing its height instantaneously. An intermediate variable was added so the robot could only

change its height incrementally until it reached the desired height.

5.2 Validation at the Field Test

The field test presented an excellent opportunity to test the planning tools implemented in this
system. Due to problemsincurred by the rover support team, there was less operationa rover
time than had been previously expected. Since time became a premium, there was less time to
utilize the MarsokhodVR system. At one point in the mission, however, the scientists needed to
take a panorama imaging sequence. It was at this point they first used the panorama camera
planning tool. Thisinterface brought a great deal of excitement to the scientists using it. Unlike
before, they were able to preview, firsthand, the images the rover would be capturing and sending
back. This provided them with the ability to capture the data they needed and eliminate ancillary
imaging. The vaue of thistool was immediately recognized by the mission geologists using the
tool.

27

5.3 Modularity

The most ambitious of al the goals set out to be accomplished was modularity of the system.
While the system is not locked into simulating one robot, the interface is not totally modular. The
system is modular to the extent that a complete software overhaul does not have to be done, and

that other rovers can be integrated with minor code changes.

As mentioned above, the system is not fully modular. All the planning tools, while not exclusive
to the Marsokhod rover, have parameters set to those on the Marsokhod rover. To add or
remove atool, asignificant amount of reprogramming would be needed. Adding additional
rovers would also require more work. First, the kinematics, and subsequently, the terrain
following algorithms, for the new rover would have to be incorporated. The results would then

have to be implemented into the visualization system.

5.4 Collision Detection

While several strategies for collision detection have been considered and discussed, collision
detection was not implemented in this system. Suggested methods to implement collision
detection are discussed in Chapter 6, under Future Work.

5.5 Discussions

Asvirtua reality becomes a more feasible technology, individuas and companies will undoubtedly
wish to exploit it for high-level visuaization systems. The work encompassed by this thesis has

unearthed several issues which must be considered for these systems.

28

Aswith any large software design project, a proper method of software engineering should be
selected. While it seemsfaster and easier to grow software, or keep building upon what exists
until the final product is reached, it can lead to complications and frustrations toward the middle
and end of the development process. Significant frustrations are often reached when there is no

defined goal, or end, of the design.

If an official software engineering process is not adopted, it would be of significant benefit to
create a requirements specification. The IEEE Standard 830, Software Requirements
Specifications [8], provides a breakdown of the contents of the document. When designing a user
interface, it is particularly important to expand on section 3.2.1 (External Interface Requirements,
User Interfaces). The standard suggests to provide ssimulated screen layouts of the appearance of
the user interface. This*“pre-design” that goes into the project allows more programmers to work

at once toward a common goal.

Projects like this also emphasize the need for physical modeling in virtual reality systems.
Trandating the physical world into a computer smulation is an ambitious task, and without a
sound background in mathematics, it is difficult to take this step. This rigorous mathematical
requirement demands highly trained programmers. For virtual reality simulation systemsto be
more accessible to the public, a higher level of kinematic specification needs to be implemented.
If a programmer could simply specify the degree of freedom constraints, mass, and solidity for a
collection of geometric objects which could be treated properly in asimulation, virtual reality will

be amuch easier tool to use.

During the field test, scientists wanted to test the robotic arm that is scheduled to go on the 2001
rover. With agood physics engine and modular rover interface, this could have been tested in
virtual reality, aswell. Not only that, but once added to the rover, the user interface could work
with that particular rover and that particular arm. [f the combination is found not to work,
another combination could be tried in virtual reality before costly refitting is done to mount the

part on another robot. Battelle Electronics and Avionics Systems has developed a bomb robot

29

simulation which allows budget constrained agencies to test a robot with various attachments

before purchase [9].

The cost of virtual redlity systems overshadows its value. If scientists take the time to survey
ways they can extend their capabilities for visualization, the importance of virtual reaity will out-
weight the cost. Before Pathfinder, the geol ogists used two dimensional images to measure the
size of various surface features. They were unable to change the viewpoint of the image for a
better view or perspective of the feature. The three dimensionality of the system eliminated this
problem. Thus, MarsMap revolutionized the way planetary science is conducted [1].

There are many other disciplines which could benefit significantly from the use of virtual reality
visualization systems. These applications range from design and layout of mass transportation
systems to construction site management to assembly line training and monitoring. The

possibilities for using virtual reality are endless.

30

Chapter 6

Future Work & Suggestions

This chapter provides suggestions and ideas for future work in this area based on the experience

of working with this and other virtua reality systems.

6.1 Collison Detection

Collision detection is an important requirement for realistic interaction with virtual reality
environments. It dictates the rules for how objects react to and interact with one another when
they intersect. In the physical world, it is not possible for two solid objects to be in the same
place at the sametime. In virtual reality, however, objects do not have the inherent characteristics
of mass, density, and al of the other values which comprise areal object. These computer
generated models are represented by a collection of three dimensional points, and those points
being filled in by a color or bitmap. With no physical value, these surfaces can easily pass through
each other, leaving no damage or sign of being there. Thisis useful for some type of smulations,

but it makes the physical redlity, collisions, difficult to implement.
There are basically three kinds of collisions that need to be addressed in rover simulation:

collisions with the terrain and associated objects, collisions with other independent objects, and

sdf-collisons.

31

6.1.1 Handling Collisions

The scene graph, described in Appendix A, alows for a hierarchical relationship of objectsin the
virtual reality smulation. It also alows the users to isolate specific subtrees for data processing,
or operations on the subtree. When the terrain isloaded into the scene graph, it isplaced in its
own subtree. It ispossible to load additional objects in this same subtree (i.e. the lander model
has the same parent as the terrain models, primarily because it is used the same way as the terrain
modelsin terrain following). The terrain and any object in the same subtree will be considered as

aterrain object. Of course, subtrees can be confined to be just one node.

The ideal situation would be if the computer is able to instantly indicate when two (or more)
polygons make contact and then indicate this to the program. Unfortunately, the current system
does not have this capability. Whileit is not out of the question for a system to have this ability, it
would create a significant amount of overhead for the processor since every object or polygon
would have to be checked against each other object or polygon in each simulation loop. The
number of tests that would have to be done for all objects can be calculated as follows:

n-1

intersection tests = Y i

i=0

where n is the number of objects. Generally, asmall subset (typically one, or any, moving set) of

objectsis being tested against al the others.

To perform collision detection, there are a couple of methods that can be used. The one which
offers the most fidelity is polygon level collision detection. This should be reserved for places
where accuracy isin high demand since this level is extremely computationally intensive. The
next level is bounding box collision detection. If the objects in the smulation are predominantly
cubic, thisis an excellent solution. An additional means for detection, amost a happy medium
between polygon and bounding box detection, isray detection. Inthisform, aray is extended

from asingle point in a particular direction and detects if the ray passes through a polygon in the

32

search tree. In each of these cases, nearly every single polygon (or other bounding boxes) must
be considered. Since computers do not have an inherent understanding of space, collision
detections are not localized to the area of the object under consideration — unless this feature is

programmed into the system.

As mentioned above, the ray detection method is currently used for terrain following for the
rover. Terrain following, discussed in chapter 4, is avery controlled version of collision
detection. It isavery specific problem which was addressed separately for clarity. It only checks
to see where the rover can be placed. It makes no provision for collision detection for the rover
with other objects.

Imagine alarge rock is sitting on the surface of the terrain. The most desirable result for the
simulation would be for the rover to stop moving once it comes into contact with that object. For
this to work, the software must determine what collisions are occurring. The ray detection
method is not suitable for this. The ray method is for detecting very localized or directiona
collisions and cannot reasonably detect all possible collisons. The next best option is the
bounding box. The bounding boxes of each object in the smulation can be defined by any subtree
as described above — it can be as simple as one node, or encompass severa nodes. Using the
bounding box, a quick and coarse detection can be done to determine whether or not thereis
proximal contact. If so, then a more exhaustive polygon level detection can be done. Once
colliding polygons are identified, aresponse can occur. This response may simply be that the
rover stops moving in that direction, or a part of the rover could be damaged (a complex
behavior). Therefore, polygon level detection can reasonably be used after arough estimate has
been developed from bounding box detection.

Chapter 3 briefly mentioned a benefit of using the “move and settle” method of terrain following.
If implemented, it could provide a reasonable solution to the problems encountered in terrain
following mentioned above. One of the downfalls to using the collision detection in this method,

or any iterative settling technique, is that once the collision is detected, that means that the model

33

has been transformed into a state where it isin collision. Therefore, the model must be
transformed back to its previous position. This can be handled in two different ways. The first
follows the method described above — move; test; if collide, backup; if not, repeat. The other
process requires changing the event order. In the virtual reality simulation software, the event
order isvery specific. By default, the ssimulation loop reads sensor input, calls a specific action
function, updates the objects using the sensor data, performs associated tasks, and renders the
universe [12]. This order can be edited so that the model isfirst updated and then the models are
updated with the sensor data. Thisis particularly useful because the last position of the object can
be stored. Then, if the object isfound to be colliding with another after sensor updates, the last

position can be restored. Both methods achieve effectively the same objective.

Colliding with non-terrain objects provides a challenge of itsown. As mentioned before,
collisons are typically tested against anything that is moving, the underlying assumption being
that non-moving objects are in an equilibrium state with the environment unaffected by collisions.
One problem that needs to be considered is if both non-terrain objects are moveable, are both
detecting collisions against the other? If thisis the case, aform of deadlocking or even mutual

exclusion may occur.

When dealing with terrain objects, it is assumed that the terrain isrigid and any articulation over it
does not affect it. (Clearly thiswould be an invalid assumption for a bulldozer ssimulation but is
suitable for the rover simulation.) It isnot logical to apply this assumption to non-terrain objects.
One rover driving over another could cause damage or even get stuck. The software must then be
programmed to handle contingencies. Consider the case where one rover drives onto the top of
another one. When the rover in contact with the ground moves, the rover on top should move
with the driving rover. The result that would be expected from a ssimple collision detection engine
would be that the bottom rover would drive out from under the other rover. The rover which was
previoudy atop the driving rover would then settle to the ground as the drive rover slides out
from underneath. These type of physical interactions relate back to the discussion in chapter 4

about the extent to which the environment needs to be modeled. If two rovers are never going to

34

be in close proximity to each other, there is no real need to smulate their interactions.

If thereis good reason to model multiple rover interactions, it would be difficult to model exactly
how they interact together in a physical environment. To make the simulation reasonable,
assumptions should be made to smplify the problem. One assumption which would allow
multiple roversto exist in one virtua environment with limited interaction problems would be to
prohibit the rovers from crossing another rover’s bounding box, or any arbitrary radius from each
rover. Thiswould eliminate modeling the interactions because there would be none. Another
possibility isto use the relative sizes of the rovers. If one rover is significantly larger than the
other, it will, in al likelihood, always drive over the other rover. If the smaller rover starts driving
while the large one is atop it, it might be reasonable for the smaller rover just to pull out because
the larger rover may be still in contact with the ground and be held back by its own weight.
Another simplification would be to paralyze movement of the smaller rover by the apparent

weight of the imposing rover.

Another issue to consider is when arover is intersecting with another part of itself. The
Marsokhod rover has severa possibilities for self intersection. The first condition which should
be addressed goes back to the installation of certain hard stops that the rover has. With a
physically accurate model of the rover, there should be no self intersecting of maor rover parts
(i.e. the axles and electronics boxes), unless the rover was poorly designed. If hard stops are not
used, it may be wise to check to seeif the new position is satisfactory, or else, to leaveit inits
previous position. On Marsokhod, the arm could very possibly intersect with the rover. A wise
approach would be to check the arm against the rover. If the arm is hitting the rover, do not let it

transform.

6.1.2 Improvementsin Collision Detection

A better collision detection scheme, and hence, better terrain following will ultimately stem from

35

using a significantly more sophisticated physics engine. Many video games do a very good job of
faking these physics but only on avery speciadized scale. The physics programmed into video
games are, for the most part, unique to that game. A generic physics engine could help solve
many of these problems. Again, the current limits seem bound by processor speed. Until the time

when such things are possible, there are severa things which can be done.

Since one of the problemsis that there is too much data to compare against for collisions, the
number can be intelligently reduced by proximity. For a small amount of processor overhead,
level-of detail nodes can be added. These nodes allow for various resolutions of models to be
loaded into memory and rendered at the resolution which corresponds to the distance from the
model to the viewpoint. One of the most effective uses of this node, yet not the most obvious, is
to have no object loaded for distances greater than a specified amount. Therefore, if the user is
not really close, thereis no model to betested. This could significantly reduce the number of
collisions that need to be tested.

Another solution goes back to using bounding boxes. Instead of a simple bounding box collision
detection on each object, a hierarchical bounding box collision detection scheme could be set up.
For example, arover’ s bounding box, if the rover is placed on the terrain, would be intersecting
with the bounding box of the terrain. Then, the rover’s robot arm could be tested against a rock.
If the arm is colliding, the rover’s position may need to be adjusted. On the other hand, if the
bounding box of the rover is not intersecting with the terrain’ s bounding box, there is no reason to
perform any further testing. This hierarchical approach directs alocalized collision detection
search. For some specific cases, it may take longer compared to a straight search, but on average,

this technique should yield a reasonable performance increase.

In addition to bounding boxes, there is some work currently in progress that involves
approximating objects with fundamental shapes, such as spheres[10]. Thiswould even increase
the fidelity of a system as simple as bounding box testing by letting the system test where the

contact is most localized.

36

6.2 Improvementsin Terrain Following

There are some areas in terrain following that require some attention. Of primary importance is
developing a genera method for terrain following. It may be possible to accomplish this by using
a successive settling algorithm which would iteratively adjust the rover until it was settled on the

terrain. This approach is very processor intensive and thus costly.

It isaso useful to start considering what complexities can be added with respect to ssimulating the
entire rover. Hard stops and other movement limitations should be able to be programmed. It
would even be feasible to consider power monitoring in avery limited manner. Considering all of
the additional subsystems would become very computationally intensive, but considering power
consumption due to the motors and on-board instruments (i.e. the pan-tilt head, whichisjust a

pair motors), would be a reasonabl e approximation.

The most significant problem is that the system developed is not general enough, and each time a
new robot is to be simulated, an entirely new set of kinematics needs to be worked out. One
solution currently under consideration is a file format which will contain all of the hierarchical and
articulation data. This file would have to be loaded by a specia program and would be associated
with a set of functions which would be able to interpret and manage the articulation. With this, a
library of parts could be included which could have power consumption models built-in and any
additional features which would be useful to ssimulate. Thiswould alow for quick prototyping

and design of virtual, as well as, rea rover systems.

37

Bibliography

[1] Ted Blackmon, Private Communication
[2] G. Burdea and P. Coiffet, Virtual Reality Technology, pp 5-7, John Wiley & Sons, Inc., 1994

[3] M. Mecham, “* Supervised Autonomy’ Pays Dividends From Mars’, Aviation Week & Space
Technology, McGraw Hill, August 11, 1997

[4] C. Stoker, E. Zbinden, T. Blackmon, B. Kanefsky, J. Hagen, P. Henning, C. Neveu, D.
Rasmussen, K. Schwehr, and M. Sims, “Analyzing Pathfinder Data using Virtual Redlity
and Super-resolved Imaging”, Journal of Geophysical Research, Specia Mars Pathfinder

Issue

[5] C. Stoker, T. Blackmon, J. Hagen, B. Kanefsky, D. Rasmussen, K. Schwehr, M. Sims, and E.
Zbinden, “MarsMap: An Interactive Virtual Reality Moddl of the Pathfinder Landing Site”

[6] C. Allport, B. Schreiner, P. Sines, and B. Das, Virtual Reality Semiconductor Laboratory: An
Advanced Training Tool for Teaching Complex Ideas, 1999 International Conference on
Visua Computing, (Goa, India March 1999)

[7] H. Rheingold, Virtual Reality, pg. 16, Simon & Schuster, 1991

[8] H. van Vliet, Software Engineering, pp. 515-518, John Wiley & Sons, Inc., 1993

[9] J. Lindwall, “ Sense8 News & Product Update’, March 1999

38

[10] P. Hubbard, “Time Critical Collision Detection”, Cornell University,
http://www.cs.brown.edu/stc/educati on/course95-96/TC-Collision-Detection/

[11] EAI Corporation, Mill Valey, Cdifornia, http://mwww.sense8.com

[12] Sense8 Corporation, WorldToolKit Reference Manual, pp 3.15-18, April 1997

[13] C. S. Allport, B. D. Schreiner, and P. B. Sines, Virtual Reality Semiconductor Laboratory,
|EEE 1997 Frontiers in Education Conference Program, p. 58, (Pittsburgh, PA November 1997)

Thisresearch received media cover age as listed below:

Media Service, Location Date
West Virginia University Media Services, Morgantown, WV February 1999
TheHerald, Hagerstown, MD e February 18, 1999
The Martinsburg Journal, Martinsburg, WV February 1999
The Charleston Gazette, Charleston, WV February 19, 1999
TimesWest Virginian, Fairmont, WV February 19, 1999
The Dominion Post, Morgantown, WV i, February 20, 1999
The Daily Athenaeum, West Virginia University, Morgantown, WV March 2, 1999
The Intermountain, EIKins, WV March 1999
The Moundsville Echo, Moundsville, WV March 1999
The Parkersburg Sentinel, Parkersburg, WV o i March 1999
KDKA, Rittshurgh, PA .. e March 12, 1999

39

Appendix A

Explanation of Virtual Reality Concepts

This purpose of this appendix is to provide some background information regarding virtual reality
concepts. Intermingled with the general virtua reality information will be some discussion about
how various utilities are implemented by EAI’s (formerly Sense8 Corporation) WorldToolKit
[11]. Thisreview isnot meant to be exhaustivein any way. It issimply meant to provide enough

understanding of the challenges faced by this project and the concepts applied.
A.1 The Scene Graph

A scene graph is a data structure which provides a hierarchical organization for objectsin avirtua
reality smulation. It inherently provides an organized explanation for how each object in the
scene is to be drawn, illuminated, and otherwise transformed. This data structure is typicaly
implemented as atree and traversal is usually done in a depth-first manner for reasons which will

soon be apparent.

In a scene graph, there are many types of nodes which can be added, but there are only five nodes
necessary for understanding the basic operation of a scene graph. The first type of node is aroot
node. All tree implementations have a root node, the topmost node in the tree, to which all other

nodes attach. There is only one root node per scene graph.

Another type of node isalight node. This node has different properties which specify how the

objectsit acts upon areto beilluminated. (Each object, as well, has information about how it

40

should respond to the light.) Construction of a scene graph cannot be done haphazardly. If not
done correctly, the resulting scene will not be representative of what the user hoped to see. One
of the most important pitfallsto be wary of in constructing a scene graph is that in order for any
type of transform to be applied to an object (or the rest of the scene), the nodes to be affected
must appear after the node which holds the transform information [12]. Figure A-1 shows some

different node relationships to illustrate this concept.

Figure A-1 Sample Scene Graph - all of the nodes in green are affected by the light node (they

come after the light node) whereas the red node is not (it comes before the light node)

A virtual environment would not be very interesting without objectsin it, so another type of node,
ageometry node, is provided for the objects. These nodes ssmply hold the geometry information
of the objects. Incorporated with this geometry information is the material information for the
object. The material information isall of the information about how the surfaceisto be
illuminated by applied light.

In order to actually move and rotate an object, another type of node is needed. Thistype of node
isatransform node. It contains al of the position and orientation information for the nodes it acts
upon. Transform nodes follow the same transform effect rules as the light node does (refer to
Figure A-1). Itispossible that the user will want to limit the transform applied by the transform
and light nodes. This ability is provided for in the last type of node to be discussed here.

41

Separator nodes prevent transforms, whether light or rotation-trand ation transforms, from
propagating up and across the tree. Figure A-2 shows a sample scene graph with separator nodes
added.

Root Node

Figure A-2 Separator Nodes isolate transforms and keep them from affecting the rest of the
scene. The blue nodes are separator nodes, the violet are transform nodes, the green are

geometry nodes, and the yellow is a light node.

In this figure, separator node SEP-1 keeps transform X1 from acting on anything except for
geometry G1. Transform X2 affects geometry G2 and everything else after it in the scene since it
isnot isolated in any way. Separator SEP-2 does not isolate transform X2 because it is not

hierarchically above X2. It does, however, isolate the light node to only illuminate geometry G3.

Scene graphs are not static constructs. During the ssmulation, many nodes are added to and
removed from it. The ability of the scene graph to change like this empowers the programmer to

make a more interactive virtual reality environment.

A.2 Reference Frames

In any interactive virtua reality smulation, something moves. Whether it be an object or a

viewpoint, something in the smulation is moving. Given the fact that virtual redlity is three-

42

dimensional, the direction in which the thing is moving has components in each of the three
directions. Tracking these movements as vectors and calculating new positions accordingly is
extremely tedious work. Itisdifficult in keeping track of the information and in the mathematics
— especially when it comesto rotations. It is for these reasons that various frames of reference
areused in VR. WorldToolKit provides four different frames, three of which will be described
below.

The coordinate system used by WorldToolKit follows the right-hand rule. The positive Y-axis
points straight down (as opposed to up which may be expected). Imagine standing at the origin
of the coordinate frame, the positive Z-axis would be extending straight out in front and the

positive X-axis would extend to the right. The coordinate system used is Cartesian.

The first reference frame is the world frame. These are the basic, untransformed, axesin a
simulation. The +X- and +Z-axes can be thought of as the cardinal directions (east and north,

respectively) for everything in the smulation.

The viewpoint frame is the reference frame which corresponds to the position of the viewpoint.
No matter what direction the viewpoint is facing (with respect to the world frame), the +Z-axis is
always forward. This alows the programmer to move the viewpoint forward by smply
trandating along the +Z-axis. In contrast, if the only frame available was the world frame, the
programmer would have to get the orientation of the viewpoint, calculate the corresponding
direction, add the starting location, and translate along that direction vector just to move the

viewpoint. A comparable frame is provided for objects.

Each object that isloaded has alocal frame. Thisisaframe of reference in which the object can
move “forward” by just trandating along its +Z-axis. Forward for the object is determined by the
orientation it had when it was created in an external program. For example, a car would be drawn
such that the headlights pointed down the +Z-axis. To really emphasis the use of these frames of

reference, consult Figure A-3.

43

(@ (b)

Figure A-3 lllustration of object moving along local and world axes. The cyan-violet axes
represent the world frame and the blue-red axes represent the local axes. In (a), the axes are

aligned, and only the world axes are shown.

In the first image, the car’ s direction is aligned with the world axis, or world frame, and moving

the car in the +Z direction would result in the car going forward (in both frames). In the second
image, the car is now pointing down the world’s negative X-axis. Moving the car down the +Z-
axisin the world frame would result in the car diding to itsright. Using itslocal frame, the car

would move forward asit is trandated down its local +Z-axis.

A.3 Progressive Transforms

One critical aspect of transforms was omitted in the discussion about scene graphs. The omission
was intentional because this topic requires a discussion of its own. In the discussion above, it was
mentioned that any transforms would be applied to any node after the transform. It isaso true
that other transform nodes at a later point in the scene graph are affected. Figure A-4 showsa
typical example of this occurrence. In thisimage, geometry G1 is rotated 120° around the X-axis

44

as specified by transform X1. Geometry G2 is rotated by -30° around the X-axis as specified by
transform X2 and by 120° as specified by transform X1. The ultimate transform for G2 is-30° +
120° = 90° around the X-axis.

rotate X = 120°

rotate X = -30°

Figure A-4 Progressive Transform — The blue nodes are separator nodes, the violet are
transform nodes, and the green are geometry nodes. The violet nodes could just as well be light

nodes providing a progressive lighting effect.

45

Appendix B

Pan-Tilt Sequence Planner Source Code

Thisis acomplete listing of the source code (in C) for the pan-tilt sequence planner. After the
primary implementation by Allport, additions were made by Ted Blackmon, head of rover
visudization, Intelligent Mechanisms Group, NASA-Ames, Mountain View, California

Blackmon’ s changes are included.

B.1 Listing of panCam.h

/***

** panCam.h - planning module for panorama Image camera for Marsokhod rover
***/
void panCam_init();

void panCam_loop();

void panCam_exit();

WTnode * panCam_newTask(WTnode *);

void panCam_editTask(WTnode *);

void panCam_seq(WTnode *node, FILE *file);

void panCam_displayMosaic(WTnode *, char *filepath);

B.2 Listing of panCam.c

/***

** panCam.c - planning & display module for panorama Image camera
*x on the Marsokhod rover

** Written by Theodore T. Blackmon & Chris Allport

** Copyright 1999.

***/

46

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <assert.n>

#include "wt.h"
#include "ims.h"
#include "image.h"
#include "overlay.h"
#include "text3d.h"

#include "rover_plan.h"
Il #include "panCam_sequence.h”
#include "marsokhod.h"

[*** These need to be variables, not hardcoded ***/
char imageFileBasename[2048];
char crlFilename[2048];

/***/

[*** PanCam planning functions ***/

void panCam_init();

void panCam_loop();

void panCam_exit();

WTnode * panCam_newTask(WTnode * marso);
void panCam_editTask(WTnode * node);

void panCam_seq(WTnode *node, FILE *crlFile);

[*** Map datafunctions ***/

/Ivoid panCam_displaylmages(WTnode *, char *filepath);

void panCam_displayMoasicDome(WTnode *, char *filepath);

void panCam_displayM osai cPlanimetric(WTnode * node, char *filepath);

/***/

typedef struct {
float pMin;
float pMax;
float pRes,
float tMin;
float tMax;
float tRes,
int camiD;

a7

int resolution;
int compression,
WTpqg camera_pose;

} PanCaminfo;

[*** Camera Definitions ***/

#define SCI_CAMERA _HRC LEFT 0
#define SCI_CAMERA_HRC RIGHT 1
#define SCI_CAMERA_HRC_STEREO 3
#define SCI_CAMERA_WM_LEFT 4
#define SCI_CAMERA_ WM _RIGHT 5
#define SCI_CAMERA_WM_STEREO 7
#define SCI_CAMERA_HRR _LEFT 8
#define SCI_CAMERA_HRR RIGHT 9
#define SCI_CAMERA_HRR_STEREO 11
#define SCI_CAMERA_HRG_LEFT 12
#define SCI_CAMERA_HRG_RIGHT 13
#define SCI_CAMERA_HRG_STEREO 15
#define SCI_CAMERA_HRB_LEFT 16
#define SCI_CAMERA_HRB_RIGHT 17
#define SCI_CAMERA_HRB_STEREO 19

#define HIRES_CAM 0
#define LORES_CAM 1

static int panCam_type=HIRES CAM,;
static char panCamld_text[256];

/*** Default Definitions ***/

[* high res color */

[* wide angle monochrome */

[* high resred */

[* high res green */

/* high res blue */

#define PAN_MIN -89

#define PAN_MAX 258

#define TILT_MIN -88

#define TILT_MAX 76

#define HIRES_FOVX 180.0f* (0.191136)/3.14159f
#define HIRES_FOVY 180.0f* (0.143352)/3.14159f
#define LORES_FOVX 180.0f* (0.608640)/3.14159f
#define LORES_FOVY 180.0f* (0.456480)/3.14159f
#define PAN_MIN_DEFAULT -30

#define PAN_MAX_DEFAULT 30

#define PAN_RES DEFAULT 10

#define TILT_MIN_DEFAULT -25
#define TILT_MAX_DEFAULT 25
#define TILT_RES DEFAULT 8

48

#define CAMERA_DEFAULT 3
#define RESOLUTION_DEFAULT 1
#define COMPRESSION_DEFAULT 8

[¥** pan-cam nodes ***/
static WTnode * panCam_taskNode;
static WTnode * panCam_node;

[*** Pan Cam Ul ***/

static WTui * pwtuiPanCam,

static WTui * pwtuiPanResSlider, * pwtui TiltResSlider;

static void BuildPanCamUI(WTui * pwtui);

static void PanCamSelectCamera(WTui *pStruct, void * pData);
static void PanCamSelectRes(WTui * pStruct, void *pData);
static void PanCamSelectComp(WTui * pStruct, void * pData);
static void PanCamPanResSlider(WTui *pStruct, void * pData);
static void PanCamTiltResSlider(WTui * pStruct, void * pData);
static void PanCamPanMinSlider(WTui * pStruct, void * pData);
static void PanCamPanMaxSlider(WTui * pStruct, void * pData);
static void PanCamTiltMinSlider(WTui * pStruct, void * pData);
static void PanCamTiltMaxSlider(WTui *pStruct, void * pData);
static void PanCamResetSliders(int panCamType);

static WTui * pwtuiPanMinSlider, * pwtui TiltMinSlider, * pwtuiPanMaxSlider,
*pwtui TiltMaxSlider;

[*** 2D & 3D overay functions for panCam planning ***/

static void panCam_image_projections(WTwindow *w, FLAG eye);
static void panCam_plan_readout(WTwindow *w, FLAG eye);
static void calculate_3d_point(float pan, float tilt, WTp3 p);

static float fPanCamProjectionDistance = 2.0f;

static float fPanCamRadius = 5.0f;

[*** Variables for time and data volume stats ***/

static int pan_count, tilt_count; [*** number of pan/tilt incrementsin a panorama
***/

static float panCam_estTime, [¥** in minutes ***/

static float panCam_estDataval, [¥** in mBits ***/

#define PANCAM_TIME_PER_PT 0.5f

#define PANCAM_MBITS PER_IMAGE 2.4

/**

** |nitialization function for pan cam planning

**/

49

void panCam_init()

{
WTui *ui;

sprintf(imageFileBasename," 21Jan99/downlink1/images/ip3_s00V/ip3_s001");
sprintf(crlFilename,"ip3_s001.crl");

WTmessage("Pan Cam [nit\n");
[*** activate rover planning tool ***/
tool_activate(roverPlan_control, TRUE);

/*** Build planning Ul for Pan Cam Imager ***/
ui = BuildGenera Ul ();

BuildPanCamuUl (ui);

WTui_manage(ui);

[*** add 3d overlay for panorama image projection window ***/
overlay3d_add(panCam_image projections);

[*** add 2d overlay for panoramaimage information ***/
overlay2d add(panCam_plan_readout);

}

void panCam_loop()

{
}

void panCam_exit()

{
[*** remove 3d overlay for panorama image projection window ***/
overlay3d_delete(panCam_image_projections);
[*** remove 2d overlay for panoramaimage information ***/
overlay2d delete(panCam_plan_readout);
WTmessage("Leaving Pan Can\n");

}

WTnode * panCam_newTask(WTnode * marso)
{

WTnode *xform:;
PanCaminfo *info;
WTp3 pos,

WTmessage("' Create a new pan-cam node!\n");
[*** make a sep, xform, and geom node ***/

50

}

panCam_taskNode = WTsepnode_new(NULL);

xform = WTxformnode_new(panCam_taskNode);

pog X] = 0.0f;

pog Y] = 0.0f;

pos[Z] = -1.6f;

WTnode_settrandation(xform, pos);

panCam_node = WTgeometrynode_new(panCam_taskNode,
WTgeometry newsphere(0.5, 8, 8, FALSE, TRUE));

WTnode_enable(panCam_node, FALSE);

[*** allocate memory for pan-cam info struct ***/
info = (PanCaminfo *)malloc(si zeof (PanCaminfo));
if(info == NULL) printf("malloc failed for PanCaminfo struct.\n");
info->pMin = PAN_MIN_DEFAULT;

info->pMax = PAN_MAX_DEFAULT;

info->pRes = PAN_RES DEFAULT;
info->tMin=TILT_MIN_DEFAULT,

info->tMax = TILT_MAX_DEFAULT,;
info->tRes=TILT_RES DEFAULT;
info->resolution = RESOLUTION_DEFAULT;
info->compression = COMPRESSION_DEFAULT;
info->camlD = SCI_CAMERA_HRC_STEREQ;
sprintf(panCamid_text, "Hi-Res, Stereo Color");

[*** Set Rover Camera Position ***/
marsokhod_panCam_xform(WTnode_getchild(marso,0), &info->camera pose);

[*** et default value of pan-cam info struct ***/
WTnode_setdata(panCam_node, (void *)info);

return(panCam_taskNode);

void panCam_editTask(WTnode * node)

{

}

WTmessage("Edit pan-cam node!\n");
panCam_node = WTnhode_getchild(node, 1);

void panCam_seq(WTnode *node, FILE *crlFile)

{

PanCaminfo *info;
panCam_node = WThode_getchild(node, 1);

51

info = (PanCaminfo *) WTnode_getdata(panCam_node);

fprintf(criFile," :featureimage\"\"\n");
fprintf(criFile, " :featurepx %f\n",-1.0);
fprintf(criFile, " :featurepy %f\n",-1.0);
fprintf(criFile, " ;for pancam\n™);

fprintf(criFile,” :camid %d \n",info->camiD);
fprintf(criFile," :pmin %f\n" radians(info->pMin));
fprintf(criFile,” :pmax %f\n" radians(info->pMax));
fprintf(criFile, " :pres %f\n" radians(info->pRes));
fprintf(criFile, " :tmin %f\n" radians(info->tMin));

fprintf(criFile, " :tmax %f\n",radians(info->tMax));
fprintf(criFile, " :tres %f\n" radians(info->tRes));
fprintf(criFile, " :resolution %d \n",info->resolution);
fprintf(criFile," :compression %d \n",info->compression);

fprintf(criFile, " :basefilename\"\"\n");

printf("PanCam sequence ...\n");
printf(" :featurelmage\"\"\n");
printf(" :featurePx %f\n",-1.0);
printf(" :featurePy %f\n",-1.0);
printf(" ;for panCam\n");
printf(" :camld %d \n",info->camID);
printf(" :pMin %f (%f deg)\n", radians(info->pMin), info->pMin);
printf(" :pMax %f (%f deg)\n" radians(info->pMax), info->pMax);
printf(" :pRes %f (%f deg)\n",radians(info->pRes), info->pRes);
printf(" :tMin %f (%f deg)\n",radians(info->tMin), info->tMin);
printf(" :tMax %f (%f deg)\n", radians(info->tMax), info->tMax);
printf(" :tRes %f (%f deg)\n" radians(info->tRes), info->tRes);
printf(" :resolution %d \n",info->resolution);
printf(" :compression %d \n",info->compression);
printf(" :baseFileName\"\"\n");

}

/**

** Create an image dome model using a mercator projection panorama
**/
void panCam_displayMosaicDome(WTnode * node, char *filepath)
{

Image_Dome_Info *dome _info;

PanCaminfo *info;

WTnode * panCam_dome;

WTnodepath * nodepath;

52

WTpq posel, pose2;

char *filename;

char panlmage_filename[256];
char panlmage_dateTime[256];
char panimage_basenamel WTPATHLEN];
WTdirectory *dir;

FILE *file;

char *fname;

char *parse_fname;

char pathlWTPATHLEN];

char *period;

char * plusChar,* nameChar;

char * offsetChar1,* offsetChar2,* offsetChar3,* offsetChar4;
char *date;

int px,py;

int row_size, col_size;

int subrow_size, subcol_size;

int subrow_offset, subcol_offset;
float pMin, pMax, tMin, tMax;
float pan, tilt, fovx, fovy;

char *|astbackdash,

WTmessage("Display pan-cam node!\n");

#Hifdef SGI

#endif

filename = strrchr(filepath, '/);

#Hifdef NT

#endif

filename = strrchr(filepath, '\\);

filename = filenamet+;
WTmessage("filename : %s\n" filename);

[*** allocate memory for pan-cam info struct ***/
info = (PanCaminfo *)malloc(si zeof (PanCaminfo));
if(info == NULL) printf("malloc failed for PanCaminfo struct.\n");

[*** open sub panorama image header file ***/
file = fopen(filepath, "r");
fscanf(file,"#name=%s\n",panimage _filename);
fscanf(file,"#date=%[\n]\n" ,panimage_dateTime);
fscanf(file,"#row_size=%d\n",&row_size);
fscanf(file,"#col _size=%d\n",& col _size);
fscanf(file,"#panMin=%f\n",& pMin);
fscanf(file,"#tiltMin=%f\n" ,& tMin);

53

fscanf(file,"#panMax=%f\n",& pMax);
fscanf(file,"#tiltMax=%f\n",& tM ax);

printf("#name=%s\n",panimage_filename);
printf("#date=%s\n" ,panlmage_dateTime);
printf("#row_size=%d\n",row_size);
printf("#col _size=%d\n",col_size);
printf("#panMin=%f\n",pMin);
printf("#iltMin=%f\n" ,tMin);
printf("#panMax=%f\n",pMax);
printf("#tiltMax=%f\n" tMax);

[* create an image dome model */
dome_info = (Image_Dome_Info *)malloc(sizeof(Image_Dome_Info));

[*** Set Rover Camera Position ***/
marsokhod_panCam_xform(node, & posel);

posel.p[X] -= 0.125f;

posel.p[Y] += 0.01f;

posel.p[Z] += 0.05f;

nodepath = WTnodepath_new(WTnode_getchild(node,0), ims_root, 0);
WTnodepath_gettrangl ation(nodepath, pose2.p);
WTnodepath_getorientation(nodepath, pose2.q);
WTnodepath_delete(nodepath);

WTpq_world2localframe(& posel, & pose2, &dome_info->pose);

[**** create new image dome node ***/
panCam_dome = image_dome_new(dome _info);
WTnode_addchild(node, panCam_dome);
WTnode_enable(panCam_dome, TRUE);

[*** set basename for image sub divisions ***/

period = strrchr(panimage_filename, '.");

*period = "\0';
sprintf(panimage_basename,"%s",panimage_filename);

[*** set path to image directory ***/
#ifdef SGI
lastbackdash = strrchr(filepath, '/");
WTinit_setimages(filepath);
#endif
#ifdef NT
lastbackdash = strrchr(filepath, \\');
#endif

[*** remove file selected to retain directory path ***/
*|astbackslash = '\0';
[*** open directory and read contents ***/
WTmessage(" Open directory %s\n." filepath);
dir = WTdirectory_open(filepath);
if (dir) {
WTui *noDirectoryM essageBox;
char buf[256];
sprintf(buf, "%s", filepath);
noDirectoryMessageBox =

WTui_newmessagebox(toplevel, buf, "Directory not found");

}

dse {
WTmessage(">> Load images from directory %s.\n" filepath);
while((fname=WTdirectory_getentry(dir)) '= NULL) {

if('strncmp(fname,panimage_basename,strlen(panimage_basename))) {

WTmessage("fname=%s\n",fname);
period = strrchr(fname, '.");
if('stremp(period, ".jpg")) {
[*** parse image subdivision pixel boundaries***/
WTmessage("file=%s\n",fname);
strepy(parse_fname, fname);

nameChar = strstr(parse_fname, panlmage_basename);
nameChar = nameChar + strlen(panimage_basename);

IIWTmessage("\nbasename %s\n NAMECHAR:
%s\n\n",panlmage_basename,nameChar);

plusChar = strchr(nameChar, ');

*plusChar ="\0';

offsetCharl = plusChar+1;

plusChar = strchr(offsetCharl, 'X');

*plusChar ="\0';

offsetChar2 = plusChar+1;

plusChar = strchr(offsetChar2, '+');

*plusChar ="\0';

offsetChar3 = plusChar+1,

plusChar = strchr(offsetChar3, '+');

*plusChar ="\0';

offsetChar4 = plusChar+1,

plusChar = strchr(offsetChar4, '.";

*plusChar = "\0';

subrow_size = atoi(offsetCharl);

subcol _size = atoi(offsetChar2);

subrow_offset = atoi(offsetChar3);

subcol_offset = atoi(offsetChar4);

55

WTmessage("subrow_size=%d subcol_size=%d subrow_offset=%d
subcol _offset=%d\n", subrow_size, subcol _size, subrow_offset,
subcol _offset);

[*** convert image boundaries to panitilt, fovx, fovy ***/

if((subrow_offset+subrow_size)>row_size)
subrow_size=row_size-subrow_offset;

pan = pMin + ((subrow_offset+0.5f* subrow_size) /row_size) *
(PMax-pMin);

if((subcol_offset+subcol _size)>col _size)
subcol_size=col_size-subcol _offset;

tilt = tMin + ((col_size-subcol _offset-0.5f* subcol _size)/col _size)*
(tMax-tMin);

fovx = ((float)subrow_size/(float)row_size)* (pMax-pMin);

fovy = ((float)subcol_size/(float)col _size)* (tMax-tMin);

WTmessage(" pan=%f tilt=%f fovx=%f fovy=%f\n",
degrees(pan), degrees(tilt), degrees(fovx), degrees(fovy));

[*** create a 3d image dome model wedge ***/
strcpy(path, filepath);
strcat(path, WTFILE_DELIM);
strcat(path, fname);
WTmessage("load image wedge fname: %s\n\n",path);
image_dome_addM (panCam_dome, fPanCamRadius,
degrees(pan), -degrees(tilt), degrees(fovx), degrees(fovy), path);
WTuniverse_gol();
}

}
}
WTdirectory_close(dir);
WTmessage("\n\n");

}
}

/**

** Create an image dome model using a mercator projection panorama
**/
void panCam_displayM osai cPlanimetric(WTnode * node, char *filepath)
{

Image_Planimetric_Info *p_info;

PanCaminfo *info;

WTnode * panCam_planimetric;

WTnodepath * nodepath;

WTpq posel, pose2;

56

char *filename;

char panlmage_filename[256];
char panimage_dateTime[256];
char panimage_basenamel WTPATHLEN];
WTdirectory *dir;

FILE *file;

char *fname;

char *parse_fname;

char pathlWTPATHLEN];

char *period;

char * plusChar,* nameChar;

char * offsetChar1,* offsetChar2,* offsetChar3,* offsetChar4;
char *date;

int px,py;

int row_size, col_size,

int subrow_size, subcol_size;

int subrow_offset, subcol_offset;
float pMin, pMax, tMin, tMax;
float pan, tilt;

float p1, p2, t1, t2;

char *|astbackdash,

WTmessage("Display pan-cam node!\n");

#Hifdef SGI

#endif

filename = strrchr(filepath, '/);

#Hifdef NT

#endif

filename = strrchr(filepath, '\\);

filename = filenamet+;
WTmessage("filename : %s\n" filename);

[*** allocate memory for pan-cam info struct ***/
info = (PanCaminfo *)malloc(si zeof (PanCaminfo));
if(info == NULL) printf("malloc failed for PanCaminfo struct.\n");

[*** open sub panorama image header file ***/
file = fopen(filepath, "r");
fscanf(file,"#name=%s\n",panimage _filename);
fscanf(file,"#date=%[\n]\n" ,panimage_dateTime);
fscanf(file,"#row_size=%d\n",&row_size);
fscanf(file,"#col _size=%d\n",& col _size);
fscanf(file,"#panMin=%f\n",& pMin);
fscanf(file,"#tiltMin=%f\n" ,& tMin);

57

fscanf(file,"#panMax=%f\n",& pMax);
fscanf(file,"#tiltMax=%f\n",& tM ax);

printf("#name=%s\n",panimage_filename);
printf("#date=%s\n" ,panlmage_dateTime);
printf("#row_size=%d\n",row_size);
printf("#col _size=%d\n",col_size);
printf("#panMin=%f\n",pMin);
printf("#iltMin=%f\n" ,tMin);
printf("#panMax=%f\n",pMax);
printf("#tiltMax=%f\n" tMax);

[* create an image dome model */
p_info = (Image_Planimetric_Info *)malloc(sizeof (Image_Planimetric_Info));

[*** Set Rover Camera Position ***/
marsokhod_panCam_xform(node, & posel);

posel.p[X] -= 0.125f;

posel.p[Y] += 0.01f;

posel.p[Z] += 0.05f;

nodepath = WTnodepath_new(WTnode_getchild(node,0), ims_root, 0);
WTnodepath_gettrangl ation(nodepath, pose2.p);
WTnodepath_getorientation(nodepath, pose2.q);
WTnodepath_delete(nodepath);

WTpq_world2localframe(& posel, & pose2, & p_info->pose);

p_info->camHeight = 1.5;
p_info->rMax = 25.0f;

[¥*** create new image planimetric node ***/
panCam_planimetric = image_planimetric_new(p_info);
WTnode_addchild(node, panCam_planimetric);
WTnode_enable(panCam_planimetric, TRUE);

[*** set basename for image sub divisions ***/

period = strrchr(panimage_filename, '.");

*period = "\0';
sprintf(panimage_basename,"%s",panimage_filename);

[*** set path to image directory ***/
#ifdef SGI
lastbackd ash = strrchr(filepath, '/');
WTinit_setimages(filepath);
#endif

58

#Hifdef NT

#endif

lastbackslash = strrchr(filepath, '\\');

[*** remove file selected to retain directory path ***/
*|astbackdash = \0;
[*** open directory and read contents ***/
WTmessage(" Open directory %s\n." filepath);
dir = WTdirectory_open(filepath);
if (dir) {
WTui *noDirectoryM essageBox;
char buf[256];
sprintf(buf, "%s", filepath);
noDirectoryMessageBox =
WTui_newmessagebox(toplevel, buf, "Directory not found");
}
dse {
WTmessage(">> Load images from directory %s.\n" filepath);
while((fname=WTdirectory_getentry(dir)) '= NULL) {
if('strncmp(fname,panimage_basename,strlen(panimage_basename))) {
WTmessage("fname=%s\n" ,fname);
period = strrchr(fname, .");
if('stremp(period, ".jpg")) {
[*** parse image subdivision pixel boundaries***/
WTmessage("file=%s\n",fname);
strepy(parse_fname, fname);
nameChar = strstr(parse_fname, panlmage_basename);
nameChar = nameChar + strlen(panimage_basename);
IIWTmessage("\nbasename %s\n NAMECHAR:
%s\n\n",panlmage_basename,nameChar);
plusChar = strchr(nameChar, ' ");
*plusChar ="\0';
offsetCharl = plusChar+1;
plusChar = strchr(offsetCharl, 'X');
*plusChar ="\0';
offsetChar2 = plusChar+1;
plusChar = strchr(offsetChar2, '+');
*plusChar ="\0';
offsetChar3 = plusChar+1;
plusChar = strchr(offsetChar3, '+');
*plusChar = "\0';
offsetChar4 = plusChar+1;
plusChar = strchr(offsetChar4, .");
*plusChar = "\0';
subrow_size = atoi(offsetCharl);

59

}

}

}

subcol _size = atoi(offsetChar2);

subrow_offset = atoi(offsetChar3);

subcol_offset = atoi(offsetChar4);

WTmessage("'subrow_size=%d subcol _size=%d subrow_offset=%d
subcol_offset=%d\n", subrow_size, subcol_size, subrow_offset,
subcol _offset);

[*** convert image boundaries to panitilt, fovx, fovy ***/

if ((subrow_offset+subrow_size)>row_size)
subrow_size=row_size-subrow_offset;

pl = pMin + ((float)(subrow_offset)/(float)row_size)* (pMax-pMin);

p2 = pMin + ((float)(subrow_offset+subrow_size)/(float)row_size)*
(PMax-pMin);

if((subcol_offset+subcol _size)>col _size)
subcol_size=col_size-subcol _offset;

t1 = tMin + ((float)(col_size-subcol _offset-subcol _size)/(float)col _size)*
(tMax-tMin);

t2 = tMin + ((float)(col_size-subcol_offset)/(float)col_size)* (tMax-tMin);

WTmessage(" pl=%f p2=%f t1=%f t2=%f\n", degrees(pl), degrees(p2),
degrees(t1), degrees(t2));

[*** create a 3d image dome model wedge ***/

strcpy(path, filepath);

strcat(path, WTFILE_DELIM));

strcat(path, fname);

WTmessage("load image wedge fname: %s\n\n",path);

image_planimetric_addM (panCam_planimetric, degrees(pl), degrees(p2),
degrees(t1), degrees(t2), path);

WTuniverse_gol();

WTdirectory _close(dir);
WTmessage("\n\n");

PanCaminfo *info;

/**

** 3D overlay function to draw panoramaimage projections

**/

void calculate 3d point(float pan, float tilt, WTp3 p)

60

info = (PanCaminfo *) WTnode_getdata(panCam_node);

p[X] = fPanCamProjectionDistance * sin(pan) * cos(tilt);
p[Y] = fPanCamProjectionDistance * sin(tilt);
p[Z] = fPanCamProjectionDistance * cos(pan) * cos(tilt);
WTp3_loca2worldframe(p, &info->camera _pose, p);

}

static void panCam_image_projections(WTwindow *w, FLAG eye)
{ . .
inti;
WTp3 vect[8], hvect[2], Ivect[2], vvect[2];
int pdiv, tdiv;
PanCaminfo *info;
float pMin, pMax, tMin, tMax, tRes, pRes;
float plBMin, pIBMax, tIBMin, tiIBMax;
float pan, tilt;
float xMid, yMid,
float fovx, fovy;

info = (PanCaminfo *) WTnode_getdata(panCam_node);
if(info==NULL) return,

switch(panCam_type) {
case HIRES_CAM:
fovx = HIRES _FOVX; fovy = HIRES _FOVY;
break;
case LORES CAM:
fovx = LORES FOVX; fovy = LORES FOVY;
break;

}
if(info->tRes<1.0 || info->pRes<1.0) return;

pMin = radians(info->pMin);
pMax = radians(info->pMax);
pRes = radians(info->pRes);
tMin = -radians(info->tMax);
tMax = -radians(info->tMin);
tRes = radians(info->tRes);

WTwindow_set3Dcolor(w, 0, 0, 255);
if ((pMin> pMax) || (tMin >tMax)) WTwindow_set3Dcolor(w, 255, O, 0);

61

WTp3_copy(info->camera_pose.p, vect[0]);
for(i=1i<4;i++){

WTp3_copy(vect[0], vect[2 * i]);
}

pdiv = (int) ((pMax - pMin) / pRes);
pMax = pMin + pRes* pdiv;

tdiv = (int) ((tMax - tMin) / tRes);
tMax = tMin + tRes * tdiv;

[*** Calculate Projection Border Lines***/

calculate 3d_point(pMax, tMin, vect[1]);

calculate _3d_point(pMax, tMax, vect[3]);
calculate_3d_point(pMin, tMax, vect[5]);
calculate_3d_point(pMin, tMin, vect[7]);
WTwindow_draw3Dlines(w, vect, 8, WTLINE_SEGMENTYS);

tilt_count=0;
[*** Calculate Projection Patch Lines ***/
for (tilt = tMin,; tilt <= tMax + 0.0001, tilt += tRes) {
calculate_3d_point(pMin, tilt, Ivect[Q]);
[¥** count # of images ***/
tilt_count++;
pan_count=0;
for (pan = pMin; pan <= pMax + 0.0001; pan += pRes) {
calculate_3d_point(pan, tilt, Ivect[1]);
WTwindow_draw3Dlines(w, Ivect, 2, WTLINE_SEGMENTY);
WTp3_copy(lvect[1], Ivect[0]);
pan_count++;
}
}

for (pan = pMin; pan <= pMax + 0.0001; pan += pRes) {
calculate 3d_point(pan, tMin, Ivect[0]);

for (tilt = tMin,; tilt <= tMax + 0.0001, tilt += tRes) {
calculate 3d_point(pan, tilt, [vect[1]);
WTwindow_draw3Dlines(w, Ivect, 2, WTLINE_SEGMENTYS);
WTp3_copy(lvect[1], Ivect[0]);
}
}

[*** Caculate Single Image Window Extents ***/

62

WTwindow_set3Dcolor(w, 255, 0, 0);
WTwindow_set3Dlinewidth(w, 2);
xMid = (pMax + pMin) / 2;

yMid = (tMax + tMin) / 2,

if (pdiv%2==1){
plBMin = xMid - radians(fovx);
pIBMax = xMid;
} else{
pIBMin = xMid - radians(fovx) / 2;
pIBMax = xMid + radians(fovx) / 2;
}

if (tdiv%2==1)({
tIBMin = yMid - radians(fovy);
tiIBMax = yMid,;
} else{
tIBMin = yMid - radians(fovy) / 2,
tiIBMax = yMid + radians(fovy) / 2;
}

[*** Calculate Image Border Lines***/
calculate_3d_point(plBMax, tIBMin, vect[Q]);
calculate_3d_point(plBMax, tiBMax, vect[1]);
calculate_3d_point(plBMin, tiIBMax, vect[2]);
calculate_3d_point(pIBMin, tIBMin, vect[3]);
WTwindow_draw3Dlines(w, vect, 4, WTLINE_CLOSE);

[*** Draw in Field of View around Outside Edge of Camera Center Points ***/
pIBMin = pMin - radians(fovx) / 2;
pIBMax = pMax + radians(fovx) / 2;

tIBMin = tMin - radians(fovy) / 2;
tiIBMax = tMax + radians(fovy) / 2;

calculate_3d_point(pIBMin, tiIBMin, lvect[0]);
calculate_3d_point(pIBMin, tiBMax, hvect[0]);

for (pan = pIBMin; pan <= pIBMax + 0.0001; pan += pRes) {
calculate_3d_point(pan, tIBMin, lvect[1]);
WTwindow_draw3Dlines(w, Ivect, 2, WTLINE_SEGMENTYS);
WTp3_copy(lvect[1], Ivect[0]);

63

calculate_3d_point(pan, tiIBMax, hvect[1]);
WTwindow_draw3Dlines(w, hvect, 2, WTLINE_SEGMENTYS);
WTp3_copy(hvect[1], hvect[0]);

}

[*** Closes Pan Display from pRes artifact***/
calculate_3d_point(plBMax, tiIBMin, Ivect[1]);
WTwindow_draw3Dlines(w, Ivect, 2, WTLINE_SEGMENTY);
calculate_3d_point(plBMax, tiBMax, hvect[1]);
WTwindow_draw3Dlines(w, hvect, 2, WTLINE_SEGMENTYS);

calculate_3d_point(pIBMin, tiIBMin, lvect[0]);
calculate_3d_point(plBMax, tiIBMin, hvect[0]);

for (tilt = tIBMin; tilt <= tIBMax + 0.0001; tilt += tRes) {
calculate_3d_point(pIBMin, tilt, Ivect[1]);
WTwindow_draw3Dlines(w, Ivect, 2, WTLINE_SEGMENTY);
WTp3_copy(lvect[1], Ivect[0]);

calculate_3d_point(plBMax, tilt, hvect[1]);
WTwindow_draw3Dlines(w, hvect, 2, WTLINE_SEGMENTYS);
WTp3_copy(hvect[1], hvect[0]);
}
[*** Closes Pan Display from tRes artifact***/
calculate_3d_point(plBMin, tiBMax, Ivect[1]);
WTwindow_draw3Dlines(w, Ivect, 2, WTLINE_SEGMENTY);
calculate_3d_point(plBMax, tiIBMax, hvect[1]);
WTwindow_draw3Dlines(w, hvect, 2, WTLINE_SEGMENTYS);

WTwindow_set3Dlinewidth(w, 1);
}

/**

** 2D overlay function to readout panorama parameters

**/

static void panCam_plan_readout(WTwindow *w, FLAG eye)
{

inti=1,

char buf[256];

PanCaminfo *info;

info = (PanCaminfo *) WTnode_getdata(panCam_node);
if(info==NULL) return,

64

WTwindow_set2Dfont(w,1);
WTwindow_set2Dcolor(window _id, font_color[0], font_color[1], font_color[Q]);
sprintf(buf,"cameralD -- %d (%s)" ,info->camlD,panCamld_text);
WTwindow_draw2Dtext(window_id, 0.025f, 0.95f- 0.025* (float)(7), buf);
sprintf(buf,"resolution 1/%d" info->resolution);
WTwindow_draw2Dtext(window _id, 0.025f, 0.95f- 0.025* (float)(8), buf);
sprintf(buf,"compression %d:1",info->compression);
WTwindow_draw2Dtext(window_id, 0.025f, 0.95f- 0.025* (float)(9), buf);
sprintf(buf,"Pan -- Min:%7.2f Max:%7.2f

Res:%7.2f" info->pMin,info->pMax,info->pRes);
WTwindow_draw2Dtext(window_id, 0.025f, 0.95f- 0.025* (float)(10), buf);
sprintf(buf,"Tilt -- Min:%7.2f Max:%7.2f Res.%7.2f" info->tMin,info->tM ax,info->tRes);

WTwindow_draw2Dtext(window_id, 0.025f, 0.95f- 0.025* (float)(11), buf);

[*** Compute data volume and time statistics ***/
panCam_estTime = pan_count*tilt_count* PANCAM_TIME_PER_PT,;
panCam_estDataV ol = pan_count*tilt_count* PANCAM_MBITS PER IMAGE;
[¥** x2 if stereo ***/
if(info->camID == SCI_CAMERA_HRC_STEREO ||
info->camlD == SCI_CAMERA_HRR_STEREO ||
info->camID == SCI_CAMERA_HRG_STEREO ||
info->camlD == SCI_CAMERA_HRB_STEREO ||
info->camlD == SCI_CAMERA_WM_STEREO)
panCam_estDataV ol=2.0f* panCam_estDataVol;
[*** x3if color ***/
if(info->camID == SCI_CAMERA_HRC_STEREO ||
info->camlD == SCI_CAMERA_HRC_LEFT ||
info->camID == SCI|_CAMERA_HRC_RIGHT)
panCam_estDataV ol=2.0f* panCam_estDataVal;
[*** factor in resolution ***/
panCam_estDataVol = panCam_estDataV ol/(info->resol ution* info->resol ution);
[*** factor in compression ***/
panCam_estDataVol = panCam_estDataV ol/(info->compression);

sprintf(buf,"#images: %d x %d",pan_count, tilt_count);

if(info->camID == SCI_CAMERA_HRC _STEREO ||
info->camID == SCI_CAMERA_HRR_STEREO ||
info->camID == SCI_CAMERA_HRG_STEREO ||
info->camID == SCI_CAMERA_HRB_STEREO ||
info->camID == SCI_CAMERA_WM_STEREO) {

strcat(buf, " x 2");
sprintf(buf,"%s = %d" ,buf ,pan_count*tilt_count* 2);

65

}

}
ese{

sprintf(buf,"%s = %d" ,buf,pan_count*tilt_count);
}

WTwindow_draw2Dtext(window_id, 0.025f, 0.95f- 0.025* (float)(12), buf);
sprintf(buf,"Est. time: %8.2f min." ,panCam_estTime);
WTwindow_draw2Dtext(window_id, 0.025f, 0.95f- 0.025* (float)(13), buf);
sprintf(buf,"Est. datavol: %f Mbits',panCam_estDataVol);
WTwindow_draw2Dtext(window_id, 0.025f, 0.95f- 0.025* (float)(14), buf);

/***

*** Pan Cam Ul

khkhkkkhhkhkkhhhkkhhhkhhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhkhhhkhhhkhhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhkhdhhkhdhhkhkkkhkkkkx*x

/

static void BuildPanCamUI(WTui * pwtui)

{

WTui *pwtuiCamSet, * pwtuiResSet, * pwtui ComSet;
WTui *pwtuiMenu;

WTui * pwtuiCamPop, * pwtui ResPop, * pwtui ComPop;
WTui *Cam;

WTui *Res;

WTui *Comp;

char * PanCamCamSetting = " Stereo Color";

char * PanCamResSetting = "1/1";

char * PanCamComSetting = "1:1";

float fovx, fovy;

PanCaminfo *info;

info = (PanCaminfo *) WTnode_getdata(panCam_node);

pwtuiPanCam = WTuiform_new(pwtui, "Pan Cam",

WTUIATT_LEFT, (int) (ui_scale* 311.0f), WTUIATT_TOP, 0,
WTUIATT_WIDTH, (int) (ui_scale* 309.0f), WTUIATT_HEIGHT, (int)

(ui_scale* 275.0f), NULL);

pwtuiMenu = WTuimenubar_new(pwtui PanCam);

pwtuiCamPop = WTuimenupopup_new(pwtuiMenu, "CamiD");

Cam = WTuimenuitem_new(pwtuiCamPop, "Hi-Res, Stereo Color");
WTui_setcallback(Cam, WTUIEVENT _ACTIVATE, PanCamSelectCamera, NULL);
Cam = WTuimenuitem_new(pwtuiCamPop, "Hi-Res, Stereo Mono (Red)");
WTui_setcallback(Cam, WTUIEVENT_ACTIVATE, PanCamSelectCamera, NULL);
Cam = WTuimenuitem_new(pwtuiCamPop, "Hi-Res, Stereo Mono (Green)");
WTui_setcallback(Cam, WTUIEVENT_ACTIVATE, PanCamSelectCamera, NULL);

66

Cam = WTuimenuitem_new(pwtuiCamPop, "Hi-Res, Stereo Mono (Blue)");
WTui_setcallback(Cam, WTUIEVENT_ACTIVATE, PanCamSelectCamera, NULL);
Cam = WTuimenuitem_new(pwtuiCamPop, "Hi-Res, Left Color");
WTui_setcallback(Cam, WTUIEVENT_ACTIVATE, PanCamSelectCamera, NULL);
Cam = WTuimenuitem_new(pwtuiCamPop, "Hi-Res, Left Mono (Red)");
WTui_setcallback(Cam, WTUIEVENT_ACTIVATE, PanCamSelectCamera, NULL);
Cam = WTuimenuitem_new(pwtuiCamPop, "Hi-Res, Left Mono (Green)");
WTui_setcallback(Cam, WTUIEVENT_ACTIVATE, PanCamSelectCamera, NULL);
Cam = WTuimenuitem_new(pwtuiCamPop, "Hi-Res, Left Mono (Blue)");
WTui_setcallback(Cam, WTUIEVENT_ACTIVATE, PanCamSelectCamera, NULL);
Cam = WTuimenuitem_new(pwtui CamPop, "Hi-Res, Right Color");
WTui_setcallback(Cam, WTUIEVENT_ACTIVATE, PanCamSelectCamera, NULL);
Cam = WTuimenuitem_new(pwtuiCamPop, "Hi-Res, Right Mono (Red)");
WTui_setcallback(Cam, WTUIEVENT_ACTIVATE, PanCamSelectCamera, NULL);
Cam = WTuimenuitem_new(pwtuiCamPop, "Hi-Res, Right Mono (Green)");
WTui_setcallback(Cam, WTUIEVENT_ACTIVATE, PanCamSelectCamera, NULL);
Cam = WTuimenuitem_new(pwtui CamPop, "Hi-Res, Right Mono (Blue)");
WTui_setcallback(Cam, WTUIEVENT_ACTIVATE, PanCamSelectCamera, NULL);
Cam = WTuimenuitem_new(pwtuiCamPop, "L o-Res, Stereo");
WTui_setcallback(Cam, WTUIEVENT_ACTIVATE, PanCamSelectCamera, NULL);
Cam = WTuimenuitem_new(pwtuiCamPop, "Lo-Res, Left");

WTui_setcallback(Cam, WTUIEVENT_ACTIVATE, PanCamSelectCamera, NULL);
Cam = WTuimenuitem_new(pwtui CamPop, "Lo-Res, Right");
WTui_setcallback(Cam, WTUIEVENT_ACTIVATE, PanCamSelectCamera, NULL);

pwtuiResPop = WTuimenupopup _new(pwtuiMenu, "Res');

Res = WTuimenuitem_new(pwtuiResPop, "1/1");

WTui_setcallback(Res, WTUIEVENT_ACTIVATE, PanCamSelectRes, NULL);
Res = WTuimenuitem_new(pwtuiResPop, "1/2");

WTui_setcallback(Res, WTUIEVENT_ACTIVATE, PanCamSelectRes, NULL);
Res = WTuimenuitem_new(pwtuiResPop, "1/3");

WTui_setcallback(Res, WTUIEVENT_ACTIVATE, PanCamSelectRes, NULL);
Res = WTuimenuitem_new(pwtuiResPop, "1/4");

WTui_setcallback(Res, WTUIEVENT_ACTIVATE, PanCamSelectRes, NULL);

pwtuiComPop = WTuimenupopup_new(pwtuiMenu, "Comp");

Comp = WTuimenuitem_new(pwtuiComPop, "1:1");

WTui_setcallback(Comp, WTUIEVENT_ACTIVATE, PanCamSelectComp, NULL);
Comp = WTuimenuitem_new(pwtuiComPop, "8:1");

WTui_setcallback(Comp, WTUIEVENT_ACTIVATE, PanCamSelectComp, NULL);

Comp = WTuimenuitem_new(pwtuiComPop, "16:1");
WTui_setcallback(Comp, WTUIEVENT_ACTIVATE, PanCamSelectComp, NULL);

67

Comp = WTuimenuitem_new(pwtuiComPop, "32:1");
WTui_setcallback(Comp, WTUIEVENT_ACTIVATE, PanCamSelectComp, NULL);

fovx = HIRES _FOVX; fovy = HIRES _FOVY;

pwtuiPanResSlider = WTuiscale_new(pwtuiPanCam, "Pan Res’, 10.0f*fovx / 2.2, 10.0f*fovx,
1, 10.0f*info->pRes,
WTUIATT_LEFT, (int) (ui_scale* 5.0f), WTUIATT_TORP, (int) (ui_scale* 50.0f),
WTUIATT_WIDTH, (int) (ui_scale* 140.0f), WTUIATT_HEIGHT, (int) (ui_scale*
20.0f), NULL);

pwtui TiltResSlider = WTuiscale_new(pwtuiPanCam, "Tilt Res", 10.0f*fovy / 2.2, 10.0f*fovy, 1,
10.0f*info->tRes,
WTUIATT_LEFT, (int) (ui_scale* 165.0f), WTUIATT_TORP, (int) (ui_scale * 50.0f),
WTUIATT_WIDTH, (int) (ui_scale* 140.0f), WTUIATT_HEIGHT, (int) (ui_scale *
20.0f), NULL);

pwtuiPanMinSlider = WTuiscale_new(pwtuiPanCam, "Pan Min", PAN_MIN, PAN_MAX, 0,
info->pMin,
WTUIATT_LEFT, (int) (ui_scale* 5.0f), WTUIATT_TORP, (int) (ui_scale * 115.0f),
WTUIATT_WIDTH, (int) (ui_scale* 140.0f), WTUIATT_HEIGHT, (int) (ui_scale *
20.0f), NULL);

pwtui TiltMinSlider = WTuiscale_new(pwtuiPanCam, "Tilt Min", TILT_MIN, TILT_MAX, O,
info->tMin,
WTUIATT_LEFT, (int) (ui_scale* 165.0f), WTUIATT_TORP, (int) (ui_scale* 115.0f),
WTUIATT_WIDTH, (int) (ui_scale* 140.0f), WTUIATT_HEIGHT, (int) (ui_scale *
20.0f), NULL);

pwtuiPanMaxSlider = WTuiscale_new(pwtuiPanCam, "Pan Max", PAN_MIN, PAN_MAX, 0,
info->pMax,
WTUIATT_LEFT, (int) (ui_scale * 5.0f), WTUIATT_TOP, (int) (ui_scale * 180.0f),
WTUIATT_WIDTH, (int) (ui_scale* 140.0f), WTUIATT_HEIGHT, (int) (ui_scale *
20.0f), NULL);

pwtui TiltMaxSlider = WTuiscale_new(pwtuiPanCam, "Tilt Max", TILT_MIN, TILT_MAX, 0,
info->tMax,
WTUIATT_LEFT, (int) (ui_scale* 165.0f), WTUIATT_TORP, (int) (ui_scale * 180.0f),
WTUIATT_WIDTH, (int) (ui_scale* 140.0f), WTUIATT_HEIGHT, (int) (ui_scale *
20.0f), NULL);

WTui_setcallback(pwtuiPanResSlider, WTUIEVENT_ACTIVATE, PanCamPanResSlider,

NULL);
WTui_setcallback(pwtui TiltResSlider, WTUIEVENT _ACTIVATE, PanCamTiltResSlider,

NULL);

68

WTui_setcallback(pwtuiPanMinSlider, WTUIEVENT _ACTIVATE, PanCamPanMinSlider,

WTuil\IS(LaJtlc_aI\I_ |) back(pwtuiPanMaxSlider, WTUIEVENT ACTIVATE, PanCamPanMaxSlider,

WTui_I\IS(LaJtl(;aIL |) back(pwtui TiltMinSlider, WTUIEVENT ACTIVATE, PanCamTiltMinSlider,

WTuil\IsrLeJtlgaI\I_ |) back(pwitui TiltMaxSlider, WTUIEVENT ACTIVATE, PanCamTiltMaxSlider,
NULL);

WTui_manage(pwtui PanCam);
}

static void PanCamSelectCamera(WTui *pStruct, void * pData)
{

PanCaminfo *info;

int old_panCamType;

char *camld_text;

old_panCamType = panCam_type;
camld_text = WTui_gettext(pStruct);
sprintf(panCamid_text,"%s",camlid_text);
info = (PanCaminfo *) WTnode_getdata(panCam_node);
if('stremp(panCamid_text,"Hi-Res, Stereo Color"))

{info->camID = SCI_CAMERA_HRC_STEREOQO; panCam_type=HIRES CAM;}
eseif(!stremp(panCamid_text,"Hi-Res, Stereo Mono (Red)"))

{info->camID = SCI_CAMERA_HRR_STEREOQO; panCam_type=HIRES CAM;}
elseif(!stremp(panCamid_text,"Hi-Res, Stereo Mono (Green)™))

{info->camID = SCI_CAMERA_HRG_STEREO; panCam_type=HIRES CAM;}
elseif(!stremp(panCamid_text,"Hi-Res, Stereo Mono (Blue)"))

{info->camID = SCI_CAMERA_HRB_STEREOQO; panCam_type=HIRES CAM;}
dseif(!stremp(panCamid_text,"Hi-Res, Left Color"))

{info->camID = SCI_CAMERA_HRC LEFT; panCam_type=HIRES CAM;}
elseif(!stremp(panCamid_text,"Hi-Res, Left Mono (Red)"))

{info->camID = SCI_CAMERA_HRR_LEFT; panCam_type=HIRES CAM;}
elseif(!stremp(panCamid_text,"Hi-Res, Left Mono (Green)"))

{info->camID = SCI_CAMERA_HRG_LEFT; panCam type=HIRES CAM;}
elseif(!stremp(panCamid_text,"Hi-Res, Left Mono (Blue)"))

{info->camID = SCI_CAMERA_HRB_LEFT; panCam_type=HIRES CAM;}
elseif(!stremp(panCamid_text,"Hi-Res, Right Color"))

{info->camID = SCI_CAMERA_HRC_RIGHT; panCam _type=HIRES CAM;}
elseif(!stremp(panCamid_text,"Hi-Res, Right Mono (Red)"))

{info->camID = SCI|_CAMERA_HRR_RIGHT; panCam_type=HIRES CAM;}
elseif(!stremp(panCamid_text,"Hi-Res, Right Mono (Green)"))

{info->camID = SCI_CAMERA_HRG_RIGHT; panCam_type=HIRES CAM;}

69

elseif(!stremp(panCamid_text,"Hi-Res, Right Mono (Blue)"))

{info->camID = SCI_CAMERA_HRB_RIGHT; panCam_type=HIRES CAM;}
elseif(!stremp(panCamld_text,"Lo-Res, Stereo™))

{info->camID = SCI_CAMERA_WM_STEREQO; panCam_type=LORES CAM;}
eseif(!stremp(panCamid_text,"Lo-Res, Left"))

{info->camID = SCI_CAMERA_WM_LEFT; panCam_type=LORES CAM;}
elseif(!stremp(panCamid_text,"Lo-Res, Right"))

{info->camID = SCI_CAMERA_WM_RIGHT; panCam_type=LORES CAM;}
WTmessage("'Camera '%s selected\n” ,panCamid_text);
WTmessage("CamiD = %d\n",info->camiD);
if(panCam _type != old_panCamType) PanCamResetSliders(panCam _type);

}

static void PanCamSelectRes(WTui * pStruct, void * pData)
{

PanCaminfo *info;

char *res_text;

res_text = WTui_gettext(pStruct);

info = (PanCaminfo *) WTnode_getdata(panCam_node);
if('stremp(res_text,"1/1")) {info->resolution=1;}
elseif(!stremp(res_text,"1/2")) {info->resolution=2;}
elseif(!stremp(res_text,"1/3")) {info->resolution=3;}
elseif(!stremp(res_text,"1/4")) {info->resolution=4;}
WTmessage("' Resolution = %s (%d)\n",res_text, info->resolution);

}

static void PanCamSelectComp(WTui *pStruct, void * pData)
{

PanCaminfo *info;

char *comp_text;

comp_text = WTui_gettext(pStruct);

info = (PanCaminfo *) WTnode_getdata(panCam_node);
if('strcemp(comp_text,"1:1")) {info->compression=1;}
elseif(!stremp(comp_text,"8:1")) {info->compression=8;}
elseif(!stremp(comp_text,"16:1")) {info->compression=16;}
elseif(!stremp(comp_text,"32:1")) {info->compression=32;}
WTmessage("' Compression = %s (%d)\n",comp_text, info->compression);

}

static void PanCamResetSliders(int panCamType)

{
float fovx, fovy;

70

}

float panRes_max, panRes_min;
float tiltRes_max, tiltRes min,
PanCaminfo *info;

info = (PanCaminfo *) WTnode_getdata(panCam_node);

WTui_delete(pwtui PanResSlider);
WTui_delete(pwtui TiltResSlider);
switch(panCamType) {
case HIRES_CAM:
fovx = HIRES _FOVX; fovy = HIRES _FOVY;
info->pRes=10; info->tRes=8;
break;
case LORES CAM:
fovx = LORES FOVX; fovy = LORES FOVY;
info->pRes=31.5; info->tRes=24.0;
break;
}
panRes min=10.0f*fovx / 2.2,
panRes_max=10.0f*fovx;
tiltRes min=10.0f*fovy / 2.2;
tiltRes_max=10.0f*fovy;
pwtuiPanResSlider = WTuiscale_new(pwtuiPanCam, "Pan Res', panRes_min,
panRes_max, 1, 10.0f*info->pRes,
WTUIATT_LEFT, (int) (ui_scale* 5.0f), WTUIATT_TORP, (int) (ui_scale *
50.0f), WTUIATT_WIDTH, (int) (ui_scale* 140.0f), WTUIATT_HEIGHT, (int)
(ui_scale* 20.0f), NULL);
pwtui TiltResSlider = WTuiscale_new(pwtuiPanCam, "Tilt Res’, tiltRes_min,
tiltRes_max, 1, 10.0f*info->tRes, WTUIATT_LEFT, (int) (ui_scale * 165.0f),
WTUIATT_TORP, (int) (ui_scale * 50.0f), WTUIATT_WIDTH, (int) (ui_scale*
140.0f), WTUIATT_HEIGHT, (int) (ui_scale* 20.0f), NULL);
WTui_setcallback(pwtuiPanResSlider, WTUIEVENT_ACTIVATE,
PanCamPanResSlider, NULL);
WTui_setcallback(pwtui TiltResSlider, WTUIEVENT_ACTIVATE,
PanCamTiltResSlider, NULL);

static void PanCamPanResSlider(WTui *pStruct, void * pData)

{

float *fPCM;
PanCaminfo *info;

info = (PanCaminfo *) WTnode_getdata(panCam_node);

71

fPCM = (float *) pData;

info->pRes = *fPCM;
}

static void PanCamTiltResSlider(WTui * pStruct, void * pData)

{
float *fPCM;

PanCaminfo *info;
info = (PanCaminfo *) WTnode_getdata(panCam_node);
fPCM = (float *) pData;

info->tRes = *fPCM;
}

static void PanCamPanMinSlider(WTui * pStruct, void * pData)

{
float *fPCM;

PanCaminfo *info;
info = (PanCaminfo *) WTnode_getdata(panCam_node);
fPCM = (float *) pData;

info->pMin = *fPCM;
}

static void PanCamPanMaxSlider(WTui *pStruct, void * pData)

{
float *fPCM;

PanCaminfo *info;
info = (PanCaminfo *) WTnode_getdata(panCam_node);
fPCM = (float *) pData;

info->pMax = *fPCM;
}

static void PanCamTiltMinSlider(WTui *pStruct, void * pData)

{
float *fPCM;

72

PanCaminfo *info;
info = (PanCaminfo *) WTnode_getdata(panCam_node);
fPCM = (float *) pData;

info->tMin = *fPCM;
}

static void PanCamTiltMaxSlider(WTui *pStruct, void * pData)

{
float *fPCM;

PanCaminfo *info;
info = (PanCaminfo *) WTnode_getdata(panCam_node);
fPCM = (float *) pData;

info->tMax = *fPCM;
}

73

Appendix C

Spectrometer Planner Source Code

Thisisacomplete listing of the source code (in C) for the spectrometer planner. After the
primary implementation by Allport, additions were made by Ted Blackmon. Blackmon’s changes

are included.

C.1Listing of spectral.h

/***
**

** gpectral.h - planning module for bore-sighted spectrometer on Marsokhod rover

**
***/
void spectral_init();

void spectral_loop();

void spectral_exit();

WTnode * spectral_newTask(WTnode *);

void spectral_editTask(WTnode *);

void spectral_seq(WTnode *node, FILE *file);

C.2 Listing of spectral.c

/***

** gpectral.c - planning module for bore-sighted spectrometer on Marsokhod rover

**

** Written by Christopher S. Allport & Theodore T. Blackmon
** Copyright 1999.

***/

#include <stdio.h>

74

#include <stdlib.h>
#include <math.h>

#include <string.h>
#include <assert.n>
#include <libgen.h>

#include "wt.h"
#include "ims.h"

#include "cursor3d.h"
#include "inputs.h"
#include "overlay.h"
#include "text3d.h"

#include "rover_plan.h"
#include "marsokhod.h"

/***/

void spectral_init();

void spectral_loop();

void spectral_exit();

WTnode * spectral_newTask(WTnode * marso);
void spectral_editTask(WTnode * node);

void spectral_seq(WTnode *node, FILE *file);

/***/

typedef struct {
int spectrometer|D;
int science_sSite;
WTpq featurePose;
char *featurelmage;
float featurePX;
float featurePy;
WTpq spectrometerPose;
float pan,
float tilt;
int pSteps, tSteps;
float pInc, tinc;
int camiD;
int returnSpectra;
int testCarbonate;
int ic_spectraDataFl ag;
int ic_hiReslmageFlag;

75

intic_traverseFlag;

int nc_spectraDataF ag;
int nc_hiResImageF ag;
int nc_traverseFlag;

int tn_reAcquireFlag;
int tn_spectraDataFlag;
int tn_hiReslmageFlag;
int tn_traverseFlag;

} Spectrainfo;
#define NEAR_IR 0
#define MID_IR 1

[*** gpectral nodes ***/
static WTnode * spectral_taskNode;
static WTnode * spectral_node;

[*** gpectral state machine ***/
static int spectral_state;
static int last_spectral_state;

#define SPECTRAL_IDLE 0
#define SPECTRAL_SELECT_FEATURE
#define SPECTRAL_ANCHOR_FEATURE

[*** Default Defines ***/

#define DEFAULT_PAN 0
#define DEFAULT _TILT 0
#define DEFAULT_SPEC ID

#define DEFAULT_PSTEPS 1
#define DEFAULT_PINC 1.0f
#define DEFAULT_TSTEPS 1
#define DEFAULT _TINC 1.0f
#define SPEC_FOV 1

#define SPECT_FOV 1

#define HOT_SPOT_TESS 16
#define SPECT_TESS 16

static void spectra_idle_entry();
static void spectra_idle loop();
static void spectral_idle_exit();

76

NEAR IR

static void spectral_selectFeature_entry();
static void spectral_selectFeature loop();
static void spectral_selectFeature exit();

[*** gpectral Ul ***/
static void BuildSpectralUI(WTui *pwtui);

WTui *pwtuildPop;
WTui *pwtui ExpPop;
WTui *pwtui SelectPop;

static void SpectralNearlR(WTui *pStruct, void * pData);
static void SpectraMidIR(WTui * pStruct, void *pData);
static void Spectral Cube(WTui * pStruct, void *pData);
static void Spectral Feature(WTui * pStruct, void * pData);
static void SpectralParams(WTui * pStruct, void *pData);

static void ParamsAlwaysReturn(WTui * pStruct, void * pData);
static void ParamsTestBit(WTui *pStruct, void * pData);

static void Paramsl CCompare(WTui * pStruct, void * pData);
static void ParamsNCCompare(WTui *pStruct, void * pData);
static void ParamsTNCompare(WTui *pStruct, void * pData);

static void ParamsDoCapture(WTui *pStruct, void *pData);
static void ParamsCameraSelect(WTui * pStruct, void * pData);
static void SetParamsClose(WTui * pStruct, void * pData);

static WTui *texture_form;

static WTwindow *texture_window;
static WTnode *texture_root=NULL;
static char *texture_buf=NULL;
static WTui * pwtui Shell;

float calculate 3d_point(WTp3 wtp30rigin, WTp3 wtp3Dir, float fDist, WTp3 wtp3Point, FLAG
delta);

static void spectral _projections(WTwindow *w, FLAG eye);
static void spectra_featureTexture _display(WTwindow *w, FLAG eye);
static void spectral_plan_readout(WTwindow *w, FLAG eye);

/**

** |nitialization function for pan cam planning

77

**********************************'k*********************************/

void spectral_init()

{
WTui *ui;

WTmessage(" Spectral Init Function Called\n”);
[*** activate rover planning tool ***/
tool_activate(roverPlan_control, TRUE);

/*** Build planning Ul for Pan Cam Imager ***/
ui = BuildGeneral Ul ();

BuildSpectral Ul (ui);

WTui_manage(ui);

[*** default interactivity isidle ***/
spectral_state = SPECTRAL_IDLE;

[*** add 3d overlay for panorama image projection window ***/

overlay3d add(spectral_projections);

[*** add 2d overlay function to read out spectral experiment parameters ***/
overlay2d add(spectra_plan_readout);

}

void spectral_loop()
{
if(spectral_state !'=last_spectral_state) {
switch(last_spectral_state) {
[* exit functions */
case SPECTRAL_IDLE:
printf(">> Exiting spectral IDLE mode ...\n");
spectra_idle_exit();
printf("done.\n\n");
break;
case SPECTRAL_SELECT FEATURE:
printf(">> Exiting spectral SELECT_FEATURE mode ...\n");
spectral_selectFeature exit();
printf("done.\n\n");
break;
}
switch(spectral_state) {
[* entry functions */
case SPECTRAL_IDLE:
printf(">> Entering spectral IDLE mode ...\n");

78

}

gpectral_idle_entry();
printf("done.\n\n");
break;
case SPECTRAL_SELECT FEATURE:

printf(">> Entering spectral SELECT_FEATURE mode ...\n");
spectral_selectFeature_entry();
printf("done.\n\n");
break;

}

last_spectral_state = spectral_state;

}
switch(spectral_state) {

case SPECTRAL _IDLE:
spectral_idle loop();
break;

case SPECTRAL_SELECT FEATURE:
spectral_selectFeature [oop();
break;

}

void spectral_exit()

{

}

[*** remove 3d overlay for spectral experiment projection window ***/
overlay3d delete(spectral _projections);

[*** remove 2d overlay function to read out spectral experiment parameters ***/
overlay2d delete(spectral_plan_readout);

[*** delete texture form window ***/

WTnode_delete(texture _root);

WTwindow_delete(texture_window);

WTmessage("Leaving Spectral\n");

WTnode * spectral_newTask(WTnode * marso)

{

WTnode *xform;

Spectrallnfo *info;

WTpq posel, pose2;

WTp3 pos,

WTmessage("' Create a new pan-cam node!\n");
[*** make a sep, xform, and geom node ***/

79

spectral_taskNode = WTsepnode_new(NULL);

xform = WTxformnode_new(spectral_taskNode);

pog X] = 0.0f;

pog Y] = 0.0f;

pos[Z] = -1.6f;

WTnode_settrandation(xform, pos);

spectral_node = WTgeometrynode _new(spectral_taskNode,
WTgeometry newsphere(0.5, 8, 8, FALSE, TRUE));

WTnode_enable(spectral_node, FALSE);

[*** allocate memory for pan-cam info struct ***/
info = (Spectrallnfo *)mall oc(si zeof (SpectralInfo));
if(info == NULL) printf("malloc failed for spectrallnfo struct.\n");

[*** Set up default values ***/
info->featurelmage = NULL,;
info->featurePx=-1.0f;
info->featurePy=-1.0f;

info->pan = DEFAULT_PAN;
info->tilt = DEFAULT _TILT,;
info->gpectrometerlD = DEFAULT_SPEC _ID;
info->pSteps=DEFAULT_PSTEPS;
info->plnc=DEFAULT_PINC;
info->tSteps=DEFAULT_TSTEPS;
info->tInc=DEFAULT_TINC;

info->camiID = O;
info->returnSpectra = TRUE;
info->testCarbonate = FAL SE;
info->ic_spectraDataFlag = TRUE;
info->ic_hiReslmageFlag = FALSE;
info->ic_traverseFlag = FALSE;
info->nc_spectraDataFlag = TRUE;
info->nc_hiResimageFlag = FALSE;
info->nc_traverseFlag = FALSE;
info->tn_reAcquireFlag = FALSE;
info->tn_spectraDataFlag = TRUE;
info->tn_hiReslmageFlag = FALSE;
info->tn_traverseFlag = FALSE;

[*** Set Rover Camera Position ***/
marsokhod_panCam_xform(WTnode_getchild(marso,0), & info->spectrometerPose);
WTpqg_init(&posel); WTpqg_init(& pose?);

pog[X] = 0.05f;

80

pog Y] = 0.01f;

pog[Z] = -0.125f;
WTq_copy(info->spectrometerPose.q, pose2.q);
WTp3_world2localframe(pos, & pose2, posel.p);
info->spectrometerPose.p[X] += posel.p[Z];
info->spectrometerPose.p[Y] -= posel.p[Y];
info->spectrometerPose.p[Z] += posel.p[X];

[*** et default value of pan-cam info struct ***/
WTnode_setdata(spectral_node, (void *)info);

return(spectral_taskNode);
}

/**

** Spectral task edit function

**/

void spectral_editTask(WTnode * node)

{
WTmessage(" Edit spectral node!\n");
spectral_node = WTnode_getchild(node, 1);

}

/**

** Spectral sequence generation function

**/

void spectral_seq(WTnode *node, FILE *file)
{
Spectrallnfo *info;
spectral_node = WTnode_getchild(node, 1);
info = (Spectralinfo *) WTnode_getdata(spectral_node);

fprintf(file," :featureimage \"%s\"\n"info->featurel mage);
fprintf(file," :featurepx %f\n",info->featurePXx);
fprintf(file," :featurepy %f\n" info->featurePy);
fprintf(file," ;for spectral\n”);

fprintf(file," :panl %f\n",info->pan);

fprintf(file, " :tiltl %f\n" info->tilt);

fprintf(file," :pSteps %d\n",info->pSteps);

fprintf(file," :plnc %f\n" radians(info->plnc));
fprintf(file," :tSteps %d\n",info->tSteps);

fprintf(file," :tInc %f\n" radians(info->tInc));
fprintf(file," :camid_list (%d)\n" info->camiD);
fprintf(file," :returnspectra %dO\n", info->returnSpectra);

81

fprintf(file," :testcarbonate %d\n", info->testCarbonate);

fprintf(file," :ic_spectradataflag %d\n", info->ic_spectraDataFlag);
fprintf(file," :ic_hiresmageflag %d\n", info->ic_hiResImageF ag);
fprintf(file," :ic_traverseflag %d\n", info->ic_traverseFlag);

fprintf(file," :nc_spectradataflag %d\n", info->nc_spectraDataFlag);
fprintf(file," :nc_hiresimageflag %d\n", info->nc_hiReslmageH ag);
fprintf(file," :nc_traverseflag %d\n”, info->nc_traverseFlag);
fprintf(file," :tn_reacquireflag %d\n", info->tn_reAcquireF ag);
fprintf(file," :tn_spectradataflag %d\n", info->tn_spectraDataFlag);
fprintf(file," :tn_hiresmageflag %d\n", info->tn_hiResImageF ag);
fprintf(file," :tn_traverseflag %d\n", info->tn_traverseFlag);
fprintf(file," :basefilename ""\n");

}

/*****************************

**** Spectral IDLE mode
*****************************/
static void spectra_idle_entry()

{

}

static void spectral_idle loop()

{
}

static void spectral_idle_exit()
{
}

/**********************************

***% Spectral SELECT_FEATURE mode

**********************************/

static void spectral_selectFeature_entry()

{

Il overlay2d add(info_readout);
[*** et cursor styleto invisible ***/
cursor3d_style set(INVISIBLE);
cursor3d_add();

}
static void spectral_selectFeature loop()
{

inti;

WTpq posg;

82

WTnode *info_node;
WTnodepath * npath;

char *node_name;

char *texname,

float texture u, texture v;
WTtextureinfo texinfo;
Spectrallnfo *info;

WTp3 p[3];

float uTex[3], vTex[3];

float d1,d2,d3,d12,d13,s1,2;

float uMin,uMax,vMin,vMax;
int iuMin,juMax,ivMin,ivMax;

cursor3d_update pos();
if(mouse_data.mbutton) {

}

spectral_state = SPECTRAL_ANCHOR_FEATURE;

for(i=WTnodepath_numnodes(poly_path)-1; i>0; i--) {
info_node = WTnodepath_getnode(poly_path,i);
if(WTnode_gettype(info_node) == WTNODE_GEOM) {

}

npath = WTnodepath_new(info_node, ims_root, 0);
WTnodepath_gettrand ation(npath, pose.p);
WTnodepath_getorientation(npath, pose.q);

if(WTnode_gettype(info_node) == WTNODE_SEP) {

node_name = WTnhode_getname(info_node);

info = (SpectralInfo *) WTnode_getdata(spectral_node);
WTpq_copy(& cursor3d.pose, &info->featurePose);

if (WTpoly_gettextureinfo(poly_intersected, & texinfo)) {

WTpoly _getuv(poly_intersected, uTex, vTex);
uMin = uMax = uTex[0]; vMin = vMax = vTex[0];
iUMin=0; iuMax=0; ivMin=0; ivMax=0;
for(i=1; i<3; i++) {
if(uTex[i]<uMin) {uMin=uTex[i]; iuMin=i;}
if(uTex[i]>uMax) {uMax=uTex[i]; iuMax=i;}
if(vTex[il<vMin) {vMin=vTex[i]; ivMin=i;}
if(vTex[i]>vMax) {vMax=vTex[i]; ivMax=i;}
}
WTgeometry getvertexposition(WTpoly getgeometry(poly_intersected),
WTpoly_getvertex(poly_intersected,0), p[Q]);
WTgeometry getvertexposition(WTpoly_getgeometry(poly_intersected),
WTpoly_getvertex(poly_intersected,1), p[1]);
WTgeometry getvertexposition(WTpoly_ getgeometry(poly_intersected),
WTpoly_getvertex(poly_intersected,2), p[2]);

83

WTp3_local2worldframe(p[0], & pose, p[0]);
WTp3_local2worldframe(p[1], & pose, p[1]);
WTp3_local2worldframe(p[2], & pose, p[2]);

dl =WTp3_distance(p[iuMin],cursor3d.pose.p);
d2 = WTp3_distance(p[iuMax],cursor3d.pose.p);
d12 = WTp3_distance(p[iuMin],p[iuMax]);

sl = (d1*dl + d12*d12 - d2*d2)/(2.0f*d12* d12);
texture_u = uMin + s1* (uMax-uMin);

dl =WTp3_distance(p[ivMin],cursor3d.pose.p);
d2 = WTp3_distance(p[ivMax],cursor3d.pose.p);
d12 = WTp3_distance(p[ivMin],p[ivMax]);

sl = (d1*dl + d12*d12 - d2*d2)/(2.0f*d12* d12);
texture v = vMin + s1* (vMax-vMin);

texture_buf = texinfo.name;

info->featurePx = texture u;

info->featurePy = texture v;

info->featurel mage = basename(texinfo.name);

}
return;
}
}
}
static void spectral_selectFeature_exit()
{

I overlay2d delete(info_readout);
[*** reset cursor styleto xhair ***/
cursor3d_style set(XHAIR);
cursor3d_remove();

}

/**********************************

***% Spectral ANCHOR FEATURE mode

**********************************/

static void spectral_anchorFeature_entry()

{
}

static void spectral_anchorFeature_loop()

{
}

static void spectra_anchorFeature_exit()
{

}

/**

** 3D overlay function to draw spectral experiment projections

**/

float calculate 3d_point(WTp3 wtp30rigin, WTp3 wtp3Dir, float fDist, WTp3 wtp3Point, FLAG
delta)
{

float fLen;

if(WTnode_rayintersect(ims_root, wtp3Dir, wtp30rigin, &fLen, NULL) == NULL)
fLen =fDigt;

[*** This makes the circle appear on the surface - linewidth doesn't work on WTKDirect ***/
if (delta) fLen -= 0.005f;

WTp3_mults(wtp3Dir, fLen);
WTp3_add(wtp3Dir, wtp30rigin, wtp3Point);

return fLen;

}

void calculate circle point(float dx, float dy, float dist, WTp3 p, WTp3 origin)
{

Spectrallnfo *info;

float fDistance;

WTp3 dir, dirSpec;

dirSpec[X] = sin(dx) * cos(dy);

dirSpec[Y] = sin(dy);

dirSpec[Z] = cos(dx) * cos(dy);

info = (SpectralInfo *) WTnode_getdata(spectral_node);
WTp3_loca2worldframe(dirSpec, & info->spectrometerPose, dir);
fDistance = dist/cos(radians(0.5f* SPEC_FOV));

p[X] = dirSpec[X]*0.975f* fDistance;

p[Y] = dirSpec[Y]*0.975f* fDistance;

p[Z] = dirSpec[Z]*0.975f*fDistance;

WTp3_local2worldframe(p, & info->spectrometerPose, p);

85

static void spectral_projections(WTwindow *win, FLAG eye)
{

inti;

float dx, dy, fLen;

WTp3 wtp3Origin, wtp3Dir, wtp3Temp;

WTq wtqOrigin, wtqQ;

WTp3 wtp3Vect[SPECT_TESS];

Spectrallnfo *info;

WTwindow_set3Dcolor(win, O, 255, 0);
WTwindow_set3Dlinewidth(win, 2.0f);

info = (SpectralInfo *) WTnode_getdata(spectral_node);
WTp3_copy(info->spectrometerPose.p, wtp30rigin);
WTp3_copy(info->featurePose.p, wtp3Temp);
WTp3_subtract(wtp3Temp, wtp30rigin, wtp3Temp);
WTp3_norm(wtp3Temp);

WTeuler_2q(wtp3Temp[X], wtp3Temp[Y], wtp3Temp[Z], wtqOrigin);
WTp3_copy(wtp30rigin, wtp3Vect[0]);

fLen = calculate_3d_point(wtp30Origin, wtp3Temp, 50.0f, wtp3Vect[1], FALSE);
WTwindow_draw3Dlines(win, wtp3Vect, 2, WTLINE_SEGMENTYS);

for (I =0; 1 < SPECT_TESS; i++) {

dx = (float) cos(radians(i * 360.0f / SPECT_TESS)) * SPECT_FOV / 2,
dy = (float) sin(radians(i * 360.0f / SPECT_TESS)) * SPECT_FOV / 2,

WTeuler_2q((float) radians(dx), (float) radians(dy), 0.0f, wtgQ);
WTp3_rotate(wtp3Temp, wtqQ, wtp3Dir);

calculate_3d_point(wtp3Origin, wtp3Dir, fLen, wtp3Vect[i], TRUE);
}

WTwindow_set3Dlinewidth(win, 3.0f);
WTwindow_draw3Dlines(win, wtp3Vect, SPECT_TESS, WTLINE_CLOSE);
WTwindow_set3Dlinewidth(win, 1.0f);

86

/**

** 2D overlay function to draw texture with spectral feature

**/

static void spectra_featureTexture_display(WTwindow *w, FLAG eye)

{

}

WTp2 xy[4];
WTp2 uv[4];

char buf[256];
Spectrallnfo *info;

info = (SpectralInfo *) WTnode_getdata(spectral_node);

[** set image and screen coordinates for selected texture **/

xy[0][X] = 0.0f; xy[Q][Y] = 0.0f; uv[O][X] = 0.0f; uv[Q][Y] = 0.0f;
xy[1][X] = 1.0f; xy[1][Y] = 0.0f; uv[1][X] = 1.0f; uv[1][Y] = 0.0f;
xy[2][X] = 1.0f; xy[2][Y] = 1.0f; uv[2][X] = 1.0f; uv[2][Y] = 1.0f;
xy[3][X] = 0.0f; xy[3][Y] = 1.0f; uv[3][X] = 0.0f; uv[3][Y] = 1.0f;

[** draw 2d texture in specified sub window **/
if(texture_buf!=NULL) {
WTwindow_draw2Dtexture(w, texture buf, FALSE, xy, uv);

}

[** draw spectral feature coordinates in image ***/

WTwindow_set2Dcolor(w,0,255,0);

WTwindow_draw2Dline(w, info->featurePx-0.1f, info->featurePy, info->featurePx+0.1f,
info->featurePy);

WTwindow_draw2Dline(w, info->featurePx, info->featurePy-0.1f, info->featurePX,
info->featurePy+0.1f);

[*** draw 2d text overlay for texture name ***/
WTwindow_set2Dcolor(w,0,0,255);
WTwindow_set2Dfont(w,1);

WTwindow_draw2Dtext(w, 0.10, 0.10, info->featurel mage);

/**

** 2D overlay function to readout panorama parameters

**/

static void spectral_plan_readout(WTwindow *w, FLAG eye)

{

inti=1;

87

}

char bufQO[256];
char buf[256];
Spectrallnfo *info;

info = (SpectralInfo *) WTnode_getdata(spectral_node);
WTwindow_set2Dfont(w,1);
WTwindow_set2Dcolor(window _id, font_color[0], font_color[1], font_color[Q]);

if(info->gspectrometerl D==NEAR_IR) sprintf(bufO, "Near IR");

else if(info->spectrometer D==MID_IR) sprintf(bufO, "Mid IR");
sprintf(buf,"spectrometer ID -- %d (%s)",info->spectrometer| D,buf0);
WTwindow_draw2Dtext(window_id, 0.025f, 0.95f- 0.025* (float)(7), buf);
sprintf(buf,"Image with target -- %s",info->featurel mage);
WTwindow_draw2Dtext(window _id, 0.025f, 0.95f- 0.025* (float)(8), buf);
sprintf(buf,"lmage coords (u,v) -- (%3.2f %3.2f)" info->featurePx, info->featurePy);

WTwindow_draw2Dtext(window_id, 0.025f, 0.95f- 0.025* (float)(9), buf);
sprintf(buf,"Pointing coords (deg) -- (%7.2f,%7.2f)" ,degrees(info->pan),
degrees(info->tilt));
WTwindow_draw2Dtext(window_id, 0.025f, 0.95f- 0.025* (float)(10), buf);
sprintf(buf," Target pos (m) -- (%7.2f,%7.2f,%7.2f)",
info->featurePose.p[X],info->featurePose.p[Y] ,info->featurePose.p[Z]);

WTwindow_draw2Dtext(window_id, 0.025f, 0.95f- 0.025* (float)(11), buf);
sprintf(buf," Target range (m) -- (%7.3f)",

WTp3_distance(info->featurePose.p, info->spectrometerPose.p));
WTwindow_draw2Dtext(window_id, 0.025f, 0.95f- 0.025* (float)(12), buf);
if(info->pSteps>1) {

sprintf(buf,"Cube size -- %d x %d", info->pSteps, info->tSteps);
WTwindow_draw2Dtext(window_id, 0.025f, 0.95f- 0.025* (float)(13), buf);

}
ese{

sprintf(buf," Spectral Point");

WTwindow_draw2Dtext(window_id, 0.025f, 0.95f- 0.025* (float)(13), buf);
}

[IWTwindow_draw2Dtext(window _id, 0.025f, 0.95f- 0.025* (float)(14), buf);
[[sprintf(buf,"Est. time: %8.2f min.",panCam_estTime);
//WTwindow_draw2Dtext(window_id, 0.025f, 0.95f- 0.025* (float)(15), buf);
[Isprintf(buf,"Est. data vol: %f Mbits',panCam_estDatavol);
[/WTwindow_draw2Dtext(window_id, 0.025f, 0.95f- 0.025* (float)(16), buf);

/******************/

88

J*** Spectral Ul ***/

/******************/

void BuildSpectral Ul (WTui *pwtui)

{
WTui *pwtui Spectral;
WTui *pwtuiMenu;
WTui *pwtuiNirUl, * pwtuiMirUl;
WTui *pwtui Spectral Cube;
WTui *pwtuiParams, * pwtuiFeature;
Spectrallnfo *info;

info = (Spectralinfo *) WTnode_getdata(spectral_node);

pwtui Spectral = WTuiform_new(pwtui, " Spectral”,
WTUIATT_LEFT, (int) (ui_scale* 311.0f), WTUIATT_TORP, 0O,
WTUIATT_WIDTH, (int) (ui_scale* 309.0f), WTUIATT_HEIGHT, (int)
(ui_scale* 275.0f), NULL);

pwtuiMenu = WTuimenubar_new(pwtuiSpectral);

pwtuildPop = WTuimenupopup_new(pwtuiMenu, "Type");

pwtuiNirUl = WTuimenuitem_new(pwtuildPop, "Near IR");
WTui_setcallback(pwtuiNirUl, WTUIEVENT_ACTIVATE, SpectralNearlR, NULL);
pwtuiMirUl = WTuimenuitem_new(pwtuildPop, "Mid IR");
WTui_setcallback(pwtuiMirUl, WTUIEVENT_ACTIVATE, SpectraMidIR, NULL);

pwtui ExpPop = WTuimenupopup_new(pwtuiMenu, "Cube");

pwtui Spectral Cube = WTuimenuitem_new(pwtui ExpPop, "1 x 1");
WTui_setcallback(pwtui Spectral Cube, WTUIEVENT _ACTIVATE, SpectralCube, NULL);
pwtui Spectral Cube = WTuimenuitem_new(pwtui ExpPop, "2 x 2");
WTui_setcallback(pwtui Spectral Cube, WTUIEVENT _ACTIVATE, SpectralCube, NULL);
pwtui Spectral Cube = WTuimenuitem_new(pwtui ExpPop, "3 x 3");
WTui_setcallback(pwtui Spectral Cube, WTUIEVENT _ACTIVATE, Spectral Cube, NULL);
pwtui Spectral Cube = WTuimenuitem_new(pwtui ExpPop, "4 x 4");
WTui_setcallback(pwtui Spectral Cube, WTUIEVENT _ACTIVATE, SpectralCube, NULL);
pwtui Spectral Cube = WTuimenuitem_new(pwtui ExpPop, "5 x 5");
WTui_setcallback(pwtui Spectral Cube, WTUIEVENT _ACTIVATE, Spectral Cube, NULL);

pwtui Sel ectPop = WTuimenupopup_new(pwtuiMenu, " Set");
pwtuiFeature = WTuimenuitem_new(pwtui SelectPop, "Feature");
pwtuiParams = WTuimenuitem_new(pwtui SelectPop, "Params’');

WTUi_setcallback(pwtuiNirUl, WTUIEVENT _ACTIVATE, SpectralNear|R, NULL);
WTUi_setcallback(pwtuiFeature, WTUIEVENT _ACTIVATE, Spectral Feature, NULL);

89

WTUi_setcallback(pwtuiParams, WTUIEVENT _ACTIVATE, SpectralParams, NULL);

[*** create rendering window to display selected 2d texture image ***/

WTmessage(" Create texture form and window.\n");

texture_form = WTui_newform(pwtui Spectral, "2D Texture Image”,
WTUIATT_LEFT, (int)(5.0f*ui_scale), WTUIATT_TORP, (int)((40.0f)* ui_scale),
WTUIATT_WIDTH, (int)(300*ui_scale), WTUIATT_HEIGHT,
(int)(235.0f* ui_scale), NULL);

texture_window = WTuiwtkwindow_new(texture_form, WTWINDOW_DEFAULT);

WTwindow_setbgrgb(texture_window,0,0,0);

if(texture_root!=NULL)

WTnode_delete(texture _root);

texture _root = WTrootnode new();

WTnode_setname(texture root, "Texture Root");

WTwindow_setrootnode(texture_window, texture root);

WTwindow_setfgactions(texture_window, spectral_featureTexture_display);

WTui_manage(texture_form);
WTui_manage(pwtui Spectral);

}
static void SpectralNearlR(WTui *pStruct, void * pData)
{
Spectrallnfo *info;
WTmessage("'Choose Near IR.\n");
info = (Spectralinfo *) WTnode_getdata(spectral_node);
info->gpectrometerl D=NEAR _IR;
}
static void SpectraMidIR(WTui * pStruct, void *pData)
{
Spectrallnfo *info;
WTmessage("'Choose Mid IR.\n");
info = (Spectralinfo *) WTnode_getdata(spectral_node);
info->gpectrometerD=MID_IR,;
}
static void Spectral Cube(WTui * pStruct, void * pData)
{

Spectrallnfo *info;
char *cube _text;

cube_text = WTui_gettext(pStruct);

90

info = (Spectralinfo *) WTnode_getdata(spectral_node);
if(!stremp(cube_text,"1 x 1")) {info->pSteps = info->tSteps = 1;}
elseif(!stremp(cube_text,"2 x 2")) {info->pSteps = info->tSteps = 2;}
elseif(!stremp(cube_text,"3 x 3")) {info->pSteps = info->tSteps = 3;}
dseif(!strcmp(cube text,"4 x 4")) {info->pSteps = info->tSteps = 4;}
elseif(!strcmp(cube_text,"5x 5")) {info->pSteps = info->tSteps = 5;}
WTmessage("' Cube size = %s\n",cube_text);

}
static void Spectral Feature(WTui * pStruct, void * pData)
{
cursor3d.type = XHAIR;
cursor3d.mode = INTERSECT_OBJ;
spectral_state = SPECTRAL_SELECT_FEATURE;
tool_activate(roverPlan_control, TRUE);
}

/****************************/

[*** Spectral Parameter Ul **/

/****************************/
static void Spectral Params(WTui * pStruct, void * pData)
{

WTui *pwtui SetParams,

WTui *pwtuiResRadio, * pwtuiResCheck;

WTui *pwtuiClose;

[*** Only Include The Following GUI Itemson NIR ***/
WTui *pwtuiCarbLabel;

WTui *pwtui AlwaysReturnCheck;

WTui *pwtui TestBitCheck;

char * pacCOptiong 4] = {"Mono-HiRes (Left)", "Stereo-HiRes", "Mono-LoRes (left)"”,
"Stereo-LoRes'};

WTui *pwtuiBY Label, * pwtuiBNLabel, * pwtui TNLabel;
WTui *pwtuiBY 1, *pwtuiBY 2, * pwtuiBY 3;
WTui *pwtuiBN1, *pwtuiBN2, * pwtuiBN3;
WTui *pwtuiTNL, *pwtuiTN2, * pwtuiTN3, * pwtui TN4;

Spectrallnfo *info;
int iGUIHeight = 200;

info = (SpectralInfo *) WTnode_getdata(spectral_node);

91

[*** Can put in ENABLE/DISABLE on Default Spectral Box if wanted ***/
WTui_dimitem(pwtuildPop, TRUE);

WTui_dimitem(pwtui ExpPop, TRUE);

WTui_dimitem(pwtui SelectPop, TRUE);

if (info->gpectrometerlD == NEAR_IR) {
iIGUIHeight = 650;
}

pwtuiShell = WTuiform_new(toplevel, "Set Parameters’,
WTUIATT _LEFT, (int) (ui_scale* 0.0f), WTUIATT_TOP, (int) (ui_scale* 40),
WTUIATT_WIDTH, (int) (ui_scale * 500.0f), WTUIATT_HEIGHT, (int)
(ui_scale* iGUIHeight), NULL);

pwtui SetParams = WTuiform_new(pwtuiShell, " Set Parameters’,
WTUIATT_LEFT, (int) (ui_scale* 0.0f), WTUIATT_TOP, (int) (ui_scale* 0),
WTUIATT_WIDTH, (int) (ui_scale * 500.0f), WTUIATT_HEIGHT, (int)
(ui_scale* iGUIHeight), NULL);

pwtuiResCheck = WTuicheckbutton_new(pwtui SetParams, " Capture Image(s) with spectral ...",
WTUIATT_LEFT, (int) (ui_scale* 10.0f), WTUIATT_TORP, (int) (ui_scale* 10),
WTUIATT_WIDTH, (int) (ui_scale* 525.0f), WTUIATT_HEIGHT, (int)
(ui_scale* 15.0f), NULL);

pwtuiResRadio = WTuiradiobox_new(pwtui SetParams, 4, pacCOptions,
WTUIATT _LEFT, (int) (ui_scale* 25.0f), WTUIATT_TOP, (int) (ui_scale*
35.0f), WTUIATT_WIDTH, (int) (ui_scale* 400.0f), WTUIATT_HEIGHT, (int)
(ui_scale* 80.0f), NULL);

/I WTui_check(pwtuiResCheck, TRUE);
WTui_setselected(pwtuiResRadio, info->camiD);

if (info->gpectrometerlD == NEAR_IR) {

pwtuiAlwaysReturnCheck = WTuicheckbutton new(pwtui SetParams,
"Return Spectral Data Always",
WTUIATT_LEFT, (int) (ui_scale* 10.0f), WTUIATT_TORP, (int) (ui_scale * 145.0f),
WTUIATT_WIDTH, (int) (ui_scale* 525.0f), WTUIATT_HEIGHT, (int) (ui_scale*
20.0f), NULL);

pwtui TestBitCheck = WTuicheckbutton _new(pwtui SetParams, "Test Carbonate Bit",
WTUIATT_LEFT, (int) (ui_scale* 10.0f), WTUIATT_TOP, (int) (ui_scale* 180.0f),
WTUIATT_WIDTH, (int) (ui_scale* 525.0f), WTUIATT_HEIGHT, (int) (ui_scale*
20.0f), NULL);

92

/I WTui_check(pwtui TestBitCheck, TRUE);

pwtuiCarbLabel = WTuilabel _new(pwtuiSetParams, " Carbonate Bit Options’, WTUI_TEXT,
WTUIATT_LEFT, (int) (ui_scale* 10.0f), WTUIATT_TOP, (int) (ui_scale* 215.0f),
WTUIATT_WIDTH, (int) (ui_scale* 270.0f), WTUIATT_HEIGHT, (int) (ui_scale*
20.0f), NULL);

pwtuiBY Label = WTuilabel _new(pwtuiSetParams, "if Carbonate ...", WTUI_TEXT,
WTUIATT_LEFT, (int) (ui_scale* 25.0f), WTUIATT_TORP, (int) (ui_scale * 240.0f),
WTUIATT_WIDTH, (int) (ui_scae* 210.0f), WTUIATT_HEIGHT, (int) (ui_scale *
20.0f), NULL);

pwtuiBY 1 = WTuicheckbutton_new(pwtui SetParams, "Return Full Spectra’,
WTUIATT_LEFT, (int) (ui_scale * 40.0f), WTUIATT_TOP, (int) (ui_scale * 265.0f),
WTUIATT_WIDTH, (int) (ui_scale* 255.0f), WTUIATT_HEIGHT, (int) (ui_scale *
20.0f), NULL);

pwtuiBY 2 = WTuicheckbutton_new(pwtuiSetParams, " Capture Images”,
WTUIATT_LEFT, (int) (ui_scale* 40.0f), WTUIATT_TORP, (int) (ui_scale* 295.0f),
WTUIATT_WIDTH, (int) (ui_scale* 255.0f), WTUIATT_HEIGHT, (int) (ui_scale *
20.0f), NULL);

/¥ pwtuiBY 3 = WTuicheckbutton _new(pwtui SetParams,
"Traverse to Target for Close-Up Image”,
WTUIATT_LEFT, (int) (ui_scale* 40.0f), WTUIATT_TOP, (int) (ui_scale * 325.0f),
WTUIATT_WIDTH, (int) (ui_scale* 255.0f), WTUIATT_HEIGHT, (int) (ui_scale*
20.0f), NULL);

*/

/[WTui_check(pwtuiBY 1, TRUE);

pwtuiBNLabel = WTuilabel_new(pwtuiSetParams, "if not Carbonate ...", WTUI_TEXT,
WTUIATT_LEFT, (int) (ui_scae* 25.0f), WTUIATT_TORP, (int) (ui_scale* 355.0f),
WTUIATT_WIDTH, (int) (ui_scale* 255.0f), WTUIATT_HEIGHT, (int) (ui_scale *
20.0f), NULL);

pwtuiBN1 = WTuicheckbutton_new(pwtui SetParams, "Return Full Spectra’,
WTUIATT_LEFT, (int) (ui_scale * 40.0f), WTUIATT_TOP, (int) (ui_scale * 380.0f),
WTUIATT_WIDTH, (int) (ui_scale* 255.0f), WTUIATT_HEIGHT, (int) (ui_scale*
20.0f), NULL);

pwtuiBN2 = WTuicheckbutton_new(pwtuiSetParams, " Capture Images”,
WTUIATT_LEFT, (int) (ui_scale* 40.0f), WTUIATT_TORP, (int) (ui_scale* 410.0f),
WTUIATT_WIDTH, (int) (ui_scale* 255.0f), WTUIATT_HEIGHT, (int) (ui_scale *
20.0f), NULL);

93

I* pwtuiBN3 = WTuicheckbutton_new(pwtui SetParams,
"Traverse to Target for Close-Up Image”,
WTUIATT_LEFT, (int) (ui_scale* 40.0f), WTUIATT_TOP, (int) (ui_scale * 440.0f),
WTUIATT_WIDTH, (int) (ui_scale* 255.0f), WTUIATT_HEIGHT, (int) (ui_scale*
20.0f), NULL);
*/
/[WTui_check(pwtuiBN1, TRUE);

pwtuiTNLabel = WTuilabel_new(pwtuiSetParams, "if too noisy ...", WTUI_TEXT,
WTUIATT_LEFT, (int) (ui_scae* 25.0f), WTUIATT_TORP, (int) (ui_scale* 470.0f),
WTUIATT_WIDTH, (int) (ui_scale* 210.0f), WTUIATT_HEIGHT, (int) (ui_scale *
20.0f), NULL);

pwtuiTN1 = WTuicheckbutton_new(pwtui SetParams, "Re-Acquire”,
WTUIATT_LEFT, (int) (ui_scale* 40.0f), WTUIATT _TOP, (int) (ui_scale * 495.0f),
WTUIATT_WIDTH, (int) (ui_scale* 150.0f), WTUIATT_HEIGHT, (int) (ui_scale*
20.0f), NULL);

pwtui TN2 = WTuicheckbutton_new(pwtui SetParams, "Return Noisy Full Spectra’,
WTUIATT_LEFT, (int) (ui_scale * 40.0f), WTUIATT_TOP, (int) (ui_scale * 525.0f),
WTUIATT_WIDTH, (int) (ui_scale* 300.0f), WTUIATT_HEIGHT, (int) (ui_scale*
20.0f), NULL);

pwtui TN3 = WTuicheckbutton_new(pwtui SetParams, " Capture Noisy Images’,
WTUIATT_LEFT, (int) (ui_scale * 40.0f), WTUIATT_TOP, (int) (ui_scale* 555.0f),
WTUIATT_WIDTH, (int) (ui_scale* 225.0f), WTUIATT_HEIGHT, (int) (ui_scale*
20.0f), NULL);

I* pwtui TN4 = WTuicheckbutton_new(pwtui SetParams,
"Traverse to Target for Close-Up Image”,
WTUIATT_LEFT, (int) (ui_scale* 40.0f), WTUIATT_TOP, (int) (ui_scale* 585.0f),
WTUIATT_WIDTH, (int) (ui_scale* 555.0f), WTUIATT_HEIGHT, (int) (ui_scale*
20.0f), NULL);

*/

/[WTui_check(pwtuiTN1, TRUE);

WTui_setcallback(pwtui AlwaysReturnCheck, WTUIEVENT_ACTIVATE,
ParamsAlwaysReturn, NULL);

WTui_setcallback(pwtui TestBitCheck, WTUIEVENT _ACTIVATE, ParamsTestBit, NULL);

WTui_setcallback(pwtuiBY 1, WTUIEVENT_ACTIVATE, Paramsl CCompare, NULL);

WTui_setcallback(pwtuiBY 2, WTUIEVENT_ACTIVATE, Paramsl CCompare, NULL);

/I WTui_setcalback(pwtuiBY 3, WTUIEVENT _ACTIVATE, ParamslCCompare, NULL);
WTui_setcallback(pwtuiBN1, WTUIEVENT _ACTIVATE, ParansNCCompare, NULL);
WTui_setcallback(pwtuiBN2, WTUIEVENT _ACTIVATE, ParansNCCompare, NULL);

/I WTui_setcalback(pwtuiBN3, WTUIEVENT_ACTIVATE, ParamsNCCompare, NULL);

94

WTUi_setcallback(pwtuiTNL, WTUIEVENT _ACTIVATE, ParamsTNCompare, NULL);

WTUi_setcallback(pwtuiTN2, WTUIEVENT _ACTIVATE, ParamsTNCompare, NULL);

WTUi_setcallback(pwtuiTN3, WTUIEVENT _ACTIVATE, ParamsTNCompare, NULL);
/I WTui_setcallback(pwtuiTN4, WTUIEVENT _ACTIVATE, ParamsTNCompare, NULL);

}

pwtui Close = WTuipushbutton_new(pwtui SetParams, "Close",
WTUIATT_LEFT, (int) (ui_scale* 10.0f), WTUIATT_TOP, (int) (ui_scale *
(iGUIHeight - 45.0f)), WTUIATT_WIDTH, (int) (ui_scale* 150.0f),
WTUIATT_HEIGHT, (int) (ui_scale* 40.0f), NULL);

WTui_setcallback(pwtuiResCheck, WTUIEVENT_ACTIVATE, ParamsDoCapture, NULL);
WTui_setcallback(pwtuiResRadio, WTUIEVENT_ACTIVATE, ParamsCameraSelect, NULL);

WTui_setcallback(pwtuiClose, WTUIEVENT ACTIVATE, SetParamsClose, NULL);

WTui_manage(pwtui SetParams);
WTui_manage(pwtuiShell);

}

static void ParamsAlwaysReturn(WTui * pStruct, void * pData)

{
Spectrallnfo *info;

WTmessage(" Toggle Return Full Spectra Always Option.\n");
info = (SpectralInfo *) WTnode_getdata(spectral_node);

info->returnSpectra = WTui_checkbuttonstate(pStruct);
}

static void ParamsTestBit(WTui *pStruct, void * pData)

{
Spectrallnfo *info;

WTmessage(" Toggle Carbonate Test Option.\n");
info = (SpectralInfo *) WTnode_getdata(spectral_node);

info->testCarbonate = WTui_checkbuttonstate(pStruct);
}

static void Paramsl CCompare(WTui * pStruct, void * pData)

{
Spectrallnfo *info;

char *text;

95

text = WTui_gettext(pStruct);
info = (SpectralInfo *) WTnode_getdata(spectral_node);

if ("stremp(text, "Capture Images')) {
info->ic_hiReslmageFlag = Wtui_checkbuttonstate(pStruct);
} eseif (!stremp(text, "Return Full Spectra')) {
info->ic_spectraDataFlag = Wtui_checkbuttonstate(pStruct);
} eseif (!stremp(text, "Traverse to Target for Close-Up Image™)) {
info->ic_traverseFlag = Wtui_checkbuttonstate(pStruct);
}

}

static void ParamsNCCompare(WTui *pStruct, void * pData)

{
Spectrallnfo *info;

char *text;
text = WTui_gettext(pStruct);
info = (Spectralinfo *) WTnode_getdata(spectral_node);

if ('stremp(text, "Capture Images")) {
info->nc_hiResImageFlag = Wtui_checkbuttonstate(pStruct);
} eseif (!stremp(text, "Return Full Spectra')) {
info->nc_spectraDataF ag = Wtui_checkbuttonstate(pStruct);
} eseif (!stremp(text, "Traverse to Target for Close-Up Image™)) {
info->nc_traverseFlag = Wtui_checkbuttonstate(pStruct);
}

}

static void ParamsTNCompare(WTui * pStruct, void * pData)

{
Spectrallnfo *info;

char *text;

text = WTui_gettext(pStruct);

info = (SpectralInfo *) WTnode_getdata(spectral_node);

if ('stremp(text, "Capture Noisy Images")) {
info->tn_hiResImageFlag = Wtui_checkbuttonstate(pStruct);

}elseif (Istremp(text, "Return Noisy Full Spectra")) {
info->tn_spectraDataFlag = Wtui_checkbuttonstate(pStruct);

96

} eseif (!stremp(text, "Re-Acquire”)) {
info->tn_reAcquireFlag = Wtui_checkbuttonstate(pStruct);
}elseif (!stremp(text, "Traverse to Target for Close-Up Image")) {
info->tn_traverseFlag = Wtui_checkbuttonstate(pStruct);

}

}

static void ParamsDoCapture(WTui * pStruct, void * pData)

{
Spectrallnfo *info;
WTmessage(" Toggle Capture Image(s).\n");
info = (Spectralinfo *) WTnode_getdata(spectral_node);
[*** 1f a camera was selected, it won't image, otherwise, it is set to the cameralD ***/
if (WTui_checkbuttonstate(pStruct) == 0)

info->camiD = 0;

elseinfo->camID = WTui_getsel ected(pStruct);

}

static void ParamsCameraSelect(WTui * pStruct, void * pData)

{
Spectrallnfo *info;
WTmessage("'Camera Select.\n");
info = (SpectralInfo *) WTnode_getdata(spectral_node);
info->camID = WTui_getsel ected(pStruct);

}

static void SetParamsClose(WTui * pStruct, void * pData)

{

WTui_dimitem(pwtuildPop, FALSE);
WTui_dimitem(pwtui ExpPop, FALSE);
WTui_dimitem(pwtui SelectPop, FALSE);

WTui_delete(pwtui Shell);
}

97

Appendix D

Navigation Camera Planner Source Code

Thisis a complete listing of the source code (in C) for the navigation camera planner. After the
primary implementation by Allport, additions were made by Ted Blackmon. Blackmon’s changes

are included.

D.1 Listing of navCam.h

/***
**

** navCam.h - planning module for navigation Image camera for Marsokhod rover

**

***/

void navCam_init();

void navCam _loop();

void navCam_exit();

WTnode * navCam_newTask(WTnode *);
void navCam_editTask(WTnode *);

void navCam_seq(WTnode *, FILE *file);

D.2 Listing of navCam.c

/***

** navCam.c - planning module for Navigation Image camera for Marsokhod rover

**

** Written by Chris Allport & Theodore T. Blackmon
** Copyright 1999.

98

***/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <assert.n>

#include "wt.h"
#include "ims.h"
#include "overlay.h"
#include "text3d.h"
#include "view.h"

#include "rover_plan.h"
#include "marsokhod.h"

/***/

void navCam_init();

void navCam_loop();

void navCam_exit();

WTnode * navCam_newTask(WTnode *);
void navCam_editTask(WTnode *);

void navCam_seq(WTnode *, FILE *);

/***/

typedef struct {
//sGenericTaskinfo gen;

int camiD;

int resolution;

int compression,

WTpg camera_pose fl;
WTpqg camera_pose fr;
WTpg camera_pose 1l;
WTpQg camera_pose_IT;

} NavCaminfo;

#define CAM_X_FOV 20
#define CAM_Y_FOV 15

99

#define FRONT_LEFT_CAM 26

#define FRONT_RIGHT _CAM 27
#define FRONT_STEREO CAM 29
#define REAR_LEFT_CAM 30
#define REAR_RIGHT _CAM 31
#define REAR_STEREO_CAM 33

[*** Default Definitions ***/

#define NAV_CAM_DEFAULT FRONT_LEFT_CAM
#define RESOLUTION_DEFAULT 1

#define COMPRESSION_DEFAULT 8

static char navCamld_text[256];

/*** nav-cam nodes ***/

static WTnode *navCam_taskNode,
static WTnode *navCam_node;

/*** Nav Cam UI **/

void BuildNavCamUI(WTui * pwtui);

static void NavCamCamSelect(WTui * pStruct, void * pData);
static void NavCamResolution(WTui * pStruct, void *pData);
static void NavCamCompression(WTui * pStruct, void *pData);
static void NavCamSnapCam(WTui * pStruct, void * pData);

/~k~k* 2d & 3D OveraysVariables*~k~k*****~k~k***************************/
static float fNavCamProjectionDistance = 2.0f;

void make 3d_projection(WTwindow *w, int camiD);

static void navCam_image_projections(WTwindow *w, FLAG eye);

static void navCam_plan_readout(WTwindow *w, FLAG eye);

[*** Variables for time and data volume stats ***/

static float navCam_estDataval; [¥** in mBits***/
#define NAVCAM_TIME_PER_PT 0.1f
#define NAVCAM_MBITS PER_IMAGE 2.4

/***/

[** Initiaization function for nav cam planning *xk |

/***/
void navCam_init()

{
WTui *ui;

100

}

WTmessage("Nav Cam Init Function Called\n™);
ui = BuildGeneralUl();

BuildNavCamuUI (ui);

WTui_manage(ui);

[*** add 3d overlay for navigation image projection window ***/
overlay3d_add(navCam _image projections);
overlay2d add(navCam_plan_readout);

void navCam_loop()

{
}

void navCam_exit()

{

}

[*** remove 3d/2d overlay for navigation image projection window ***/
overlay3d_delete(navCam_image projections);

overlay2d delete(navCam_plan_readout);

WTmessage("Leaving Nav Can\n");

WTnode * navCam_newTask(WTnode * marso)

{

WTnode *xform;

NavCaminfo *info;

WTp3 pos,

WTqrot, q1,92,93;

WTnodepath * pwtnpRover;
marsokhod_model_info *Marsolnfo;

WTmessage(" Create a new nav-cam node!\n");
[*** make a sep, xform, and geom node ***/

navCam_taskNode = WTsepnode_new(NULL);
xform = WTxformnode _new(navCam_taskNode);

pog X] = 0.0f;
pog Y] = 0.0f;
pos[Z] = -1.6f;

WTnode_settrangdation(xform, pos);

navCam_node = WTgeometrynode new(navCam_taskNode,
WTgeometry newcylinder(2.0, 0.1, 8, FALSE, TRUE));

WTnode_enable(navCam_node, FALSE);

101

[*** allocate memory for nav-cam info struct ***/
info = (NavCaminfo *)malloc(sizeof (NavCaminfo));
if (info==NULL) printf("malloc failed for NavCaminfo struct.\n");

info->camID = NAV_CAM_DEFAULT;
info->resolution = RESOLUTION_DEFAULT;
info->compression = COMPRESSION_DEFAULT;
sprintf(navCamld_text,"Front Left");

[*** Set Rover Camera Position ***/
Marsolnfo = (marsokhod_model_info *) WTnode _getdata(\WTnode_getchild(marso,0));
pwtnpRover = WTnodepath _new(

WTnode_getchild(Marsolnfo->frontaxle, 0), ims_root, 0);
WTnodepath _gettrand ation(pwtnpRover, pos);
WTnodepath_getorientation(pwtnpRover, rot);

WTeuler_2q(0.0f, radians(90.0f), 0.0f, gl);
WTeuler_2q(radians(90.0f), 0.0f, 0.0f, g2);
WTq_mult(ql, g2, g3);

WTeuler_2q(0.0f, 0.0f, radians(180.0f), ql);
WTqg_mult(gl, g3, g3);

WTq_mult(g3, rot, rot);

WTnodepath_delete(pwtnpRover);
WTp3_copy(pos, info->camera_pose fl.p);
WTq_copy(rot, info->camera_pose fl.q);
WTp3_copy(pos, info->camera_pose _fr.p);
WTq_copy(rot, info->camera_pose fr.q);

Marsolnfo = (marsokhod_model_info *) WTnode _getdata(\WTnode_getchild(marso,0));
pwtnpRover = Wtnodepath_new(

WTnode_getchild(Marsolnfo->rearaxle, 0), ims_root, 0);
WTnodepath_gettrand ation(pwtnpRover, pos);
WTnodepath_getorientation(pwtnpRover, rot);

WTeuler_2q(0.0f, radians(90.0f), 0.0f, gl);
WTeuler_2q(radians(90.0f), 0.0f, 0.0f, g2);
WTq_mult(ql, g2, g3);

WTeuler_2q(0.0f, 0.0f, radians(180.0f), ql);
WTq_mult(ql, g3, g3);

WTq_mult(g3, rot, rot);

WTnodepath_del ete(pwtnpRover);
WTp3_copy(pos, info->camera_pose rl.p);

102

}

WTq_copy(rot, info->camera_pose rl.q);
WTp3_copy(pos, info->camera_pose_ITt.p);
WTq_copy(rot, info->camera_pose rr.q);

pog[X] = -0.1f; pog Y] = -0.25f; pogZ] = 0.55f;
WTp3_local 2worldframe(pos, &info->camera_pose fl, info->camera_pose fl.p);

pog X] = 0.1f; pog Y] = -0.25f; pogZ] = 0.55f;
WTp3_loca2worldframe(pos, &info->camera_pose _fr, info->camera_pose fr.p);

pog[X] = -0.1f; pog Y] = -0.25f; pogZ] = -0.55f;
WTp3_loca2worldframe(pos, & info->camera_pose rl, info->camera_pose rl.p);

pog X] = 0.1f; pog Y] = -0.25f; pog[Z] = -0.55f;
WTp3_loca2worldframe(pos, &info->camera_pose rr, info->camera_pose _rr.p);

[*** et default value of nav-cam info struct ***/
WTnode_setdata(navCam_node, (void *)info);

return(navCam_taskNode);

void navCam_editTask(WTnode * node)

{

}

WTmessage("Edit nav-cam node!\n™);
navCam_node = WTnode_getchild(node, 1);

/***

*** Qutput navCam arameter list to crl-g file

***/

void navCam_seq(WTnode *node, FILE *file)

{

}

NavCaminfo *info;
navCam_node = WTnode_getchild(node, 1);
info = (NavCaminfo *) WThode_getdata(navCam_node);

fprintf(file,” ;for navCam\n");

fprintf(file,” :camld %d\n",info->camiD);
fprintf(file," :resolution %d\n"info->resolution);
fprintf(file," :compression %d\n",info->compression);

/***/

103

[*** 3D overlay function to draw navigation image projections *xkf
/***/
static void build_3d_projections(WTwindow *w, int camiD)
{. .

inti;

float x, y;

NavCaminfo *info;

WTp3 vect[§];

WTp3 p;

WTpq pose;

int iDir;

x =radians(CAM_X_FQV / 2);
y =radians(CAM_Y_FQV / 2);

info = (NavCaminfo *) WThode_getdata(navCam_node);

switch (camiID) {

case FRONT_LEFT_CAM :
WTwindow_set3Dcolor(w, 255, 0, 0);
WTpqg_copy(&info->camera pose fl, & pose);
iDir =1,
break;

case FRONT_RIGHT _CAM :
WTwindow_set3Dcolor(w, 0, 255, 0);
WTpq_copy(&info->camera_pose fr, & pose);
iDir =1,
break;

case REAR_LEFT_CAM :
WTwindow_set3Dcolor(w, 0, 0, 255);
WTpqg_copy(&info->camera_pose rl, &pose);
iDir =-1,
break;

case REAR_RIGHT _CAM :
WTwindow_set3Dcolor(w, 0, 0, 0);
WTpqg_copy(&info->camera_pose rr, &pose);
iDir =-1,
break;

default :
return;

}

for(i=0;i<4;i++){
WTp3_copy(pose.p, vect[2 * i]);

104

}

[*** Front Left ***/

p[X] = iDir * fNavCamProjectionDistance * sin(-x) * cos(-y);
p[Y] = iDir * fNavCamProjectionDistance * sin(-y);

p[Z] = iDir * fNavCamProjectionDistance * cos(-x) * cos(-y);
WTp3_loca2worldframe(p, & pose, p);

WTp3_copy(p, vect[1]);

[*** Front Right ***/

p[X] = iDir * fNavCamProjectionDistance * sin(x) * cos(-y);
p[Y] = iDir * fNavCamProjectionDistance * sin(-y);

p[Z] = iDir * fNavCamProjectionDistance * cos(x) * cos(-Y);
WTp3_loca2worldframe(p, & pose, p);

WTp3_copy(p, vect[3]);

[*** Rear Right ***/

p[X] =iDir * fNavCamProjectionDistance * sin(x) * cos(y);
p[Y] =iDir * fNavCamProjectionDistance * sin(y);

p[Z] = iDir * fNavCamProjectionDistance * cos(x) * cos(y);
WTp3_loca2worldframe(p, & pose, p);

WTp3_copy(p, vect[5]);

[*** Rear Left ***/

p[X] = iDir * fNavCamProjectionDistance * sin(-x) * cos(y);
p[Y] =iDir * fNavCamProjectionDistance * sin(y);

p[Z] = iDir * fNavCamProjectionDistance * cos(-x) * cos(y);
WTp3_loca2worldframe(p, & pose, p);

WTp3_copy(p, vect[7]);

WTwindow_draw3Dlines(w, vect, 8, WTLINE_SEGMENTYS);

WTp3_copy(vect[1], vect[0]);

WTp3_copy(vect[3], vect[1]);

WTp3_copy(vect[5], vect[2]);

WTp3_copy(vect[7], vect[3]);

WTwindow_draw3Dlines(w, vect, 4, WTLINE_CLOSE);
}

static void navCam_image_projections(WTwindow *w, FLAG eye)
{

NavCaminfo *info;

info = (NavCaminfo *) WThode_getdata(navCam_node);

105

switch (info->camiD) {

case FRONT_LEFT_CAM :
build_3d_projections(w, FRONT_LEFT_CAM);
break;

case FRONT_RIGHT _CAM :
build_3d_projections(w, FRONT_RIGHT_CAM);
break;

case FRONT_STEREO CAM :
build_3d_projections(w, FRONT_LEFT_CAM);
build_3d_projections(w, FRONT_RIGHT_CAM);
break;

case REAR_LEFT_CAM :
build_3d_projections(w, REAR_LEFT_CAM);
break;

case REAR_RIGHT _CAM :
build_3d_projections(w, REAR_RIGHT_CAM);
bresk;

case REAR_STEREO CAM :
build_3d_projections(w, REAR_LEFT_CAM);
build_3d_projections(w, REAR_RIGHT_CAM);
break;

default :
return;

}
}

/**

** 2D overlay function to readout panorama parameters

**/

static void navCam_plan_readout(WTwindow *w, FLAG eye)
{

inti=1,

char buf[256];

NavCaminfo *info;

info = (NavCaminfo *) WThode_getdata(navCam_node);

if(info==NULL) return,

WTwindow_set2Dfont(w,1);

WTwindow_set2Dcolor(window_id, font_color[0], font_color[1], font_color[2]);
sprintf(buf,"cameraID -- %d (%9)" ,info->caml D,navCamid_text);
WTwindow_draw2Dtext(window_id, 0.025f, 0.95f- 0.025* (float)(7), buf);
sprintf(buf,"resolution 1/%d" info->resolution);

106

WTwindow_draw2Dtext(window _id, 0.025f, 0.95f- 0.025* (float)(8), buf);
sprintf(buf,"compression %d:1",info->compression);
WTwindow_draw2Dtext(window_id, 0.025f, 0.95f- 0.025* (float)(9), buf);

[*** Compute data volume and time statistics ***/

navCam_estDataVol = NAVCAM_MBITS PER IMAGE;

if(info->camlD == FRONT_STEREO_CAM || info->cam|D == REAR_STEREO_CAM)
navCam_estDataVol += navCam_estDataval;

[*** factor in resolution ***/

navCam_estDataV ol = navCam_estDataV ol/(info->resol ution* info->resol ution);
[*** factor in compression ***/

navCam_estDataVol = navCam_estDataV ol/(info->compression);

sprintf(buf,"Est. time: %8.2f min.",NAVCAM_TIME_PER_PT);
WTwindow_draw2Dtext(window_id, 0.025f, 0.95f- 0.025* (float)(10), buf);
sprintf(buf,"Est. datavol: %f Mbits',navCam_estDataVol);
WTwindow_draw2Dtext(window_id, 0.025f, 0.95f- 0.025* (float)(11), buf);

}

/***

*** Nav Cam Ul

***/

void BuildNavCamUI(WTui * pwtui)
{
WTui *pwtuiNavCam,
WTui *pwtuiCamlIDLabel, * pwtuiCamRadio;
WTui *pwtuiMenu;
WTui *pwtuiResPop, * pwtuiComPop;
WTui *Res, *Comp;
WTui *pwtui SnapCamButton;
char *pacNavCamRadio[6] = { "Front Left",
"Front Right",
"Front Stereo”,
"Rear Left",
"Rear Right",
"Rear Stereo"}; I/l 6 Choices
NavCaminfo *info;

info = (NavCaminfo *) WThode_getdata(navCam_node);

pwtuiNavCam = WTuiform_new(pwtui, "Nav Cam",
WTUIATT_LEFT, (int) (ui_scale* 311.0f), WTUIATT_TOP, 0,
WTUIATT_WIDTH, (int) (ui_scale* 309.0f), WTUIATT_HEIGHT, (int) (ui_scale*

107

275.0f), NULL);

pwtuiCamIDLabel = WTuilabel _new(pwtuiNavCam, "Navigation Camerd’, WTUI_TEXT,
WTUIATT_LEFT, (int) (ui_scale * 50.0f), WTUIATT_TOP, (int) (ui_scale * 50.0f),
WTUIATT_WIDTH, (int) (ui_scale* 200.0f), WTUIATT_HEIGHT, (int) (ui_scale*
20.0f), NULL);

pwtuiCamRadio = WTuiradiobox_new(pwtuiNavCam, 6, pacNavCamRadio,
WTUIATT_LEFT, (int) (ui_scale* 60.0f), WTUIATT_TOP, (int) (ui_scale* 80.0f),
WTUIATT_WIDTH, (int) (ui_scale* 150.0f), WTUIATT_HEIGHT, (int) (ui_scale*
80.0f), NULL):

WTui_setcallback(pwtuiCamRadio, WTUIEVENT_ACTIVATE, NavCamCamSelect, NULL);

WTui_setselected(pwtuiCamRadio, info->camiD - 26);

pwtuiMenu = WTuimenubar_new(pwtuiNavCam);

pwtuiResPop = WTuimenupopup_new(pwtuiMenu, "Res');

Res = WTuimenuitem_new(pwtuiResPop, "1/1");

WTui_setcallback(Res, WTUIEVENT_ACTIVATE, NavCamResolution, NULL);
Res = WTuimenuitem_new(pwtuiResPop, "1/2");

WTui_setcallback(Res, WTUIEVENT_ACTIVATE, NavCamResolution, NULL);
Res = WTuimenuitem_new(pwtuiResPop, "1/3");

WTui_setcallback(Res, WTUIEVENT_ACTIVATE, NavCamResolution, NULL);
Res = WTuimenuitem_new(pwtuiResPop, "1/4");

WTui_setcallback(Res, WTUIEVENT_ACTIVATE, NavCamResolution, NULL);

pwtuiComPop = WTuimenupopup_new(pwtuiMenu, "Comp");

Comp = WTuimenuitem_new(pwtuiComPop, "1:1");

WTui_setcallback(Comp, WTUIEVENT_ACTIVATE, NavCamCompression, NULL);
Comp = WTuimenuitem_new(pwtuiComPop, "8:1");

WTui_setcallback(Comp, WTUIEVENT_ACTIVATE, NavCamCompression, NULL);

Comp = WTuimenuitem_new(pwtuiComPop, "16:1");
WTui_setcallback(Comp, WTUIEVENT_ACTIVATE, NavCamCompression, NULL);
Comp = WTuimenuitem_new(pwtuiComPop, "32:1");
WTui_setcallback(Comp, WTUIEVENT_ACTIVATE, NavCamCompression, NULL);

pwtui SnapCamButton = WTuipushbutton_new(pwtuiNavCam, "Snap View to Camera’,
WTUIATT_LEFT, (int) (ui_scale* 25.0f), WTUIATT_TOP, (int) (ui_scale* 240.0f),
WTUIATT_WIDTH, (int) (ui_scale* 250.0f), WTUIATT_HEIGHT, (int) (ui_scale*
25.0f), NULL);

WTui_setcallback(pwtuiCamRadio, WTUIEVENT _ACTIVATE, NavCamCamSelect, NULL);

108

WTui_setcallback(pwtui SnapCamButton, WTUIEVENT_ACTIVATE, NavCamSnapCam,
NULL);

WTui_manage(pwtuiNavCam);
}

static void NavCamCamSelect(WTui * pStruct, void * pData)
{

int buttonNum;

NavCaminfo *info;

info = (NavCaminfo *) WThode_getdata(navCam_node);

buttonNum = WTui_getsel ected(pStruct);
switch(buttonNum) {
case 0: info->camID=FRONT_LEFT_CAM,;
sprintf(navCamld_text,"Front Left");
break;
case 1. info->camID=FRONT_RIGHT_CAM,;
sprintf(navCamld_text,"Front Right");
break;
case 2: info->camID=FRONT_STEREO_CAM;
sprintf(navCamid_text,"Front Stereo");
break;
case 3: info->camID=REAR_LEFT_CAM;
sprintf(navCamld_text,"Rear Left");
break;
case 4. info->camID=REAR_RIGHT_CAM;
sprintf(navCamld_text,"Rear Right");
break;
case 5: info->camlD=REAR_STEREO_CAM;
sprintf(navCamid_text,"Rear Stereo");
break;
}
}

static void NavCamResolution(WTui * pStruct, void * pData)
{

NavCaminfo *info;
char *res_text;

res_text = WTui_gettext(pStruct);
info = (NavCaminfo *) WThode_getdata(navCam_node);
if('stremp(res_text,"1/1")) {info->resolution=1;}

109

elseif(!stremp(res_text,"1/2")) {info->resolution=2;}

elseif(!stremp(res_text,"1/3")) {info->resolution=3;}

elseif(!stremp(res_text,"1/4")) {info->resolution=4;}

WTmessage("' Resolution = %s (%d)\n",res_text, info->resolution);
}

static void NavCamCompression(WTui * pStruct, void * pData)
{

NavCaminfo *info;

char *comp_text;

comp_text = WTui_gettext(pStruct);

info = (NavCaminfo *) WThode_getdata(navCam_node);
if('stremp(comp_text,"1:1")) {info->compression=1;}
elseif(!stremp(comp_text,"8:1")) {info->compression=8;}
elseif(!stremp(comp_text,"16:1")) {info->compression=16;}
elseif(!stremp(comp_text,"32:1")) {info->compression=32;}
WTmessage("' Compression = %s (%d)\n",comp_text, info->compression);

}

static void NavCamSnapCam(WTui * pStruct, void * pData)
{

NavCaminfo *info;

WTpq posg;

WTqa;

WTeuler_2q(0.0f, radians(180.0f), 0.0f, q);
info = (NavCaminfo *) WThode_getdata(navCam_node);

switch (info->camiD) {

case FRONT_LEFT_CAM :
WTq_copy(info->camera_pose fl.q, pose.q);
WTp3_copy(info->camera_pose_fl.p, pose.p);
break;

case FRONT_RIGHT _CAM :
WTq_copy(info->camera_pose _fr.q, pose.q);
WTp3_copy(info->camera_pose_fr.p, pose.p);
break;

case FRONT_STEREO_CAM :
WTq_copy(info->camera_pose fl.q, pose.q);
WTp3_add(info->camera_pose fl.p, info->camera_pose fr.p, pose.p);
WTp3_mults(pose.p, 0.5f);
break;

110

case REAR_LEFT_CAM :
WTq_copy(info->camera_pose rl.g, pose.q);
WTp3_copy(info->camera_pose rl.p, pose.p);
WTq_mult(q, pose.q, pose.q);
break;

case REAR_RIGHT _CAM :
WTq_copy(info->camera_pose_rr.q, pose.q);
WTp3_copy(info->camera_pose rr.p, pose.p);
WTq_mult(q, pose.q, pose.q);
break;

case REAR_STEREO CAM :
WTq_copy(info->camera_pose rl.g, pose.q);
WTp3_add(info->camera_pose rl.p, info->camera_pose rr.p, pose.p);
WTp3_mults(pose.p, 0.5f);
WTq_mult(q, pose.q, pose.q);
break;

}
view_follow_rover = 0;

set_spacecraft_view(& pose);

111

Appendix E

Terrain Following Source Code

Thisisacomplete listing of the source code (in C) for Marsokhod' s terrain following agorithms.

E.1 Listing of marsokhod.h

/***

** marsokhod.h - Header file for Marsokhod rover.

* %

** Written by Theodore T. Blackmon & Chris Allport

** Copyright 1998.
***/
extern WTui *marsoGol;

#define MARSO MODEL_SCALE 1.0

// Numerical indexing - makes certain assignments easier

/] To access Right Front Wheel, use MARSO_RIGHT + MARSO_FRONT
#define MARSO_LEFT
#define MARSO _RIGHT
#define MARSO_FRONT
#define MARSO _MIDDLE
#define MARSO_REAR

NPF,OWO

/I Straight Number Whedl Indexing
#define MARSO _LF

#define MARSO_LM
#define MARSO_LR
#define MARSO_RF

#define MARSO_RM
#define MARSO_RR

ga b wdNhEFLO

/I Axle Designations for Easier Array Indexing

112

#define FRONT_AXLE 0

#define REAR_AXLE

[—

#define MIDDLE_AXLE 2

/I Whed Radii
#define MARSO_WHEEL_RAD
#define MARSO_WHEEL_RADINNER

0.16
0.10

/I Distances from Center of Rover to point on Wheel
#define MARSO_INNER_RAD
#define MARSO_CENTER_RAD
#define MARSO_OUTER_RAD

// Driving Constants borrowed from Sojo
#define STEERANG 45
#define ROVWIDTH 1.0

/I Drive Command Defs

#define MARSO_STOP

#define MARSO_DRIVE
#define MARSO_RESET
#define MARSO_MOVE

/I Marsokhod Model Information Structure

WNEFO

typedef struct {

/*

char label[256];

WTp3 pos,

WTp3 rot;

WTnode *marso_xform;

WTnodepath * camera path[3]; */
WTnode *camera xform,

WTnode *axle xform[3];
WTnode *wheel_xform[6];

0.07
0.30
0.48

// Position of Rover
// Heading of Rover
/I Transform Node of Rover

/I Doesn't appear to be needed -- not used
/I Rover Camera Transform Node

/I Xform nodes of front/middle/rear axles
/I Xform nodes of the Six Whedls

WTnode *frontaxle, *middleaxle, *rearaxle; // Sep Node of the front/middie/rear axles
WTnode*arm_1, *arm 2, *arm_3, *arm_4, *arm_5, *arm_6; // Xform Nodes of

WTnode *If, *Im, *Ir;
WTnode *rf, *rm, *rr;

WTnode * pantilt;
WTnode * xray;

/I MacDac Arm Pieces
Il Sep Nodes of the Left Wheels Front/Middle/Rear
/I Sep Nodes of the Right Wheels Front/Middle/Rear

/I Xform of Pantilt
/I Xform of Xray Unit

113

WTnode * carousd ; /I Xform of Carousdl

float middle_height; // Height of middle axle

float axle_angle[3]; /I Angle (Pitch) of Front/Rear Axleto Middle Axle
float wheel_angl€[3]; /I Angle (Roll) of Front/Rear/Middle Axles

float arm_angle[5]; /I Angles of Arm Pieces

int DriveCommand,; [* tells rover what to do: stop, fwd, back & left, right */
float DriveRate; [* units per simulation step to move */

float TurnRate; [* degs per simulation step to turn */

int CameraCommand,; [* tells rover how to move cam: stop,fwd,back,left, right */
float CameraPanRate; [* amt per smulation step to turn */

float CameraTiltRate; [* amt per smulation step to turn */

} marsokhod _mode_info;

externint view_follow_rover;
extern int roverOps,

WTnode *marsoNode_new(char roverLabel);

[*** Functions in marsokhod_cad.c ***/

void marsokhod_parts init();

WTnode * marsokhod_model_add(WTp3 marso_pos, WTp3 marso_rot, char *marso_|abel);
WTnode *marsokhod_arm_model _add(WTp3 marso_pos, WTp3 marso_rot, char *marso_label);
void marsokhod_panCam_xform(WTnode * marso, WTpq * pose);

void home_arm(WTnode *marso_node);

[*** Callback Function for Marsokhod Drive Panel ***/
void marso_panel_fnc(WTui *ui, void * pData);

[*** marsokhod_control functions ***/
void marsokhod_init();

void marsokhod_control();

void marsokhod_exit();

[*** Terrain following rover ***/
void marsokhod_terrainSim(WTnode * marso_node);

114

E.2 Listing of marsokhod_sim.h

/***

** marsokhod_sim.h - Marsmap Model for Simulation of Marsokhod rover

**

** Written by Christopher S. Allport & Ted Blackmon

** Copyright 1998.
***/
#define MIDDLE_HEIGHT 0.5

#define TOLERANCE 0.001;

char marsokhod_model _elevation(WTnode *marso_node, float height[6]);
void settle_marso(WTnode *marso_node);

E.3 Listing of marsokhod _sim.c

/***
**

** marsokhod_sim.c - Marsmap Model for Simulation of Marsokhod rover

**

** Written by Christopher S. Allport & Ted Blackmon

** Copyright 1998.
***/
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>

#include "wt.h"

#include "ims.h"

#include "marsokhod.h"
#include "marsokhod_sim.h"

/***

*** Pyblic variables and function prototypes

**/

extern WTnode * marsmap;
extern marsokhod_model_info *marso_info;
extern FLAG fFunky;

char marsokhod_model _elevation(WTnode *marso_node, float height[6]);

115

/***

*** Private variables and function prototypes

**/

#define MARSO_ WHEEL_BASE 0.9

#define FB_OFFSET 0.5

#define WHEEL _OFFSET 0.6
#define EDGE_TSCALAR 0.22
#define AXLE_TSCALAR 0.22
#define EDGE_NORMAL 2
#define AXLE_NORMAL 1
#define NO_NORMAL 0

void settle_marso(WTnode *marso_node);
void marsokhod_model _update(\WTnode *marso_node);
void marsokhod _arm_update(WTnode * marso_node);

void marsokhod_model_smStep(WTnode * marso_node)

{
}
void marsokhod_terrainSim(WTnode * marso_node)
{
settle_marso(marso_node);
}

/**

*** Update marsokhod node state
**/
void marsokhod_model _update(\WTnode * marso_node)
{

marsokhod _model_info *model _info;

WTpq pose;

WTqaq, qq;

WTq gx,qy,qz;

WTp3 pos,

[*** get internal data structure for marsokhod rover ***/
model_info = (marsokhod_model_info *) WTnode_getdata(marso_node);

[*** position and rotation of vehicle chasis ***/
[*** rotate marso node to align with ims coordinate system ***/

WTq_init(q);

116

WTnode_setorientation(model_info->marso_xform, q);
WTnode rotate(model_info->marso_xform, 0.0f, -90.0f, 180.0f, WTFRAME_PARENT);

[*** set marsokhod position™**/
WTp3_init(pos);
WTnode_settrandation(model_info->marso_xform, pos);

[*** st marsokhod position in Mars Coordinates***/

pos[X] = model_info->pog[Y];

pos Y] = model_info->pogZ];

pos[Z] = model_info->pog[X];
WTnode_trandate(model_info->marso_xform, pos, WTFRAME_PARENT);

[*** st marsokhod heading ***/
WTnode rotate(model_info->marso_xform, 0.0f, 0.0f, -90.0f + model _info->rot[Z],
WTFRAME_LOCAL);

WTnode_rotate(model_info->marso_xform, 0.0f, model_info->rot[X], 0.0f,
WTFRAME LOCAL);

WTnode_rotate(model_info->marso_xform, model_info->rot[Y], 0.0f, 0.0f,
WTFRAME LOCAL);

[*** Front Wheel/Axle Orientation ***/

if (fFFunky) {
[* EASTER EGG - Funky Chicken Dance - progressive Quaternion rotation */
WTnode_getorientation(model_info->axle xform[MARSO_FRONT], q);
WTeuler_2q(radians(model_info->wheel _anglef MARSO_FRONT]), 0.0f, 0.0f, qq);
WTaq_mult(q, qq, q);
WTeuler_2q(0.0, radians(model_info->axle anglef FRONT_AXLE]), 0.0, qq);

WTq_mult(q, qa, a);
WTnode_setorientation(model_info->axle xform[MARSO_FRONT], q);

ese{
WTeuler_2q(radians(model_info->wheel _anglefMARSO_FRONT]), 0.0f, 0.0f, q);
WTeuler_2q(0.0, radians(model_info->axle anglel FRONT_AXLE]), 0.0, qq);
WTaq_mult(q, qq, q);
WTnode_setorientation(model_info->axle xform[MARSO_FRONT], q);

}

[*** Middle Wheel/Axle Orientation ***/
WTeuler_2q(radians(model_info->wheel _anglefMARSO_MIDDLE]), 0.0f, 0.0f, g);
WTeuler_2q(0.0, radians(model_info->axle_anglefMIDDLE_AXLE]), 0.0, qq);

WTq_mult(q, qa, a);
WTnode_setorientation(model_info->axle xform[MARSO_MIDDLE], g);

117

[*** Rear Wheel/Axle Orientation ***/
WTeuler_2q(radians(model_info->wheel_anglef MARSO REAR]), 0.0f, 0.0f, q);
WTeuler_2q(0.0, radians(model _info->axle_anglefREAR_AXLE]), 0.0, qq);

WTq_mult(a, qq, 0);
WTnode_setorientation(model_info->axle xform[MARSO_REAR], q);

I marsokhod _arm_update(marso_node);
/**/
/** Adjust Arm Angles *xk |

/**/

void marsokhod _arm_update(WTnode *marso_node)

{
marsokhod_model_info *info;
WTqq;
[*** get internal data structure for marsokhod rover ***/
info = (marsokhod_model_info *) WTnode_getdata(marso_node);
WTq_init(q);
WTnode_setorientation(info->arm_2, q);
WTnode_setorientation(info->arm_3, q);
WTnode_setorientation(info->arm_4, q);
WTnode_setorientation(info->arm_5, q);
WTnode_setorientation(info->arm_6, q);
WTnode_rotate(info->arm_2, 0.0f, 0.0f, info->arm_angle[0], WTFRAME_LOCAL);
WTnode_rotate(info->arm_3, info->arm_angle[1], 0.0f, 0.0f, WTFRAME_LOCAL);
WTnode_rotate(info->arm_4, info->arm_angle[2], 0.0f, 0.0f, WTFRAME_LOCAL);
WTnode_rotate(info->arm_5, info->arm_angle[3], 0.0f, 0.0f, WTFRAME_LOCAL);
WTnode_rotate(info->arm_6, 0.0f, 0.0f, info->arm_angle[4], WTFRAME_LOCAL);
}

/**

*** get elevation of Marsokhod's six wheel pivots using terrain intersection

***/

[** return FALSE if one or more wheels don't intersect terrain **/

[** Alwaysreturnstrue! This alows an adjustment to be made everytime, **/
[** Fixes previous problem of crashing— CSA **/

char marsokhod_model _elevation(WTnode * marso_node, float height[6])

{
int whed, i;

118

char test_result = TRUE;
char cNormalize = NO_NORMAL;

WTp3 ray, origin[6], originA[6], originE[6], pV ector[6];
float distance;

float distanceA;

float distanceC;

float distanceE;

float fHeight;

WTpoly *intersected poly;
WTnodepath *np;

WTnodepath *intersected path;
WTnode *intersected node;
char *intersected_name;

WTpoly *intersected_polyA,;
WTnodepath *npA;

WTnodepath *intersected pathA;
WTnode *intersected nodeA;
char *intersected nameA,;

WTpoly *intersected polyE;
WTnodepath * npE;

WTnodepath *intersected pathE;
WTnode *intersected nodekE;
char *intersected nameE;

marsokhod _model_info *model _info;
WTp3_init(ray);
ray[Y] = 1.0;

[*** get internal data structure for marsokhod rover ***/
model_info = (marsokhod_model_info *) WTnode_getdata(marso_node);

[* raise rover above highest terrain elevation so only test down for intersection */
model_info->pog Z] = -10.0f;
marsokhod_model _update(marso_node);

[*** Set Line Vectors for Each Whedl ***/
for (wheel = MARSO_FRONT; wheel <= MARSO REAR; wheel++) {

119

}

[*** get accumulated tranglation to Marsokhod's wheel ***/
np = WTnodepath_new(model_info->wheel_xform[wheel], ims_root, 0);
WTnodepath_gettranslation(np, originfwhesel]);

[*** get accumulated tranglation to Marsokhod's wheel ***/
np = WTnodepath_new(mode_info->wheel_xform[wheel + 3], ims_root, 0);
WTnodepath_gettrandation(np, originfwheel + 3]);

[*** calculate vectors aong the axes ***/
WTp3_subtract(origin[wheel], originfjwheel + 3], pVector[wheel]);
WTp3_norm(pV ector[wheel]);

WTp3_subtract(originfwheel + 3], originjwheel], pVector[wheel + 3]);
WTp3_norm(pV ector[wheel + 3]);

[*** find additional rayintersect origins ***/
WTp3_copy(pVector[wheel], originA[wheel]);
WTp3_mults(originA[wheel], AXLE_TSCALAR);
WTp3_add(originA[whesdl], originjwheel], originA[whedl]);

WTp3_copy(pVector[wheel], originE[wheel]);
WTp3_mults(originE[wheel], -EDGE_TSCALAR);
WTp3_add(originE[whesel], origin[whesl], originE[wheel]);

WTp3_copy(pVector[wheel + 3], originA[wheel + 3));
WTp3_mults(originA[whedl + 3], AXLE TSCALAR);
WTp3_add(originA[wheel + 3], origin[wheel + 3], originA[wheel + 3)]);

WTp3_copy(pVector[wheel + 3], originE[wheel + 3));
WTp3_mults(originE[whed + 3], -EDGE_TSCALAR);
WTp3_add(originE[wheel + 3], origin[wheel + 3], originE[wheel + 3]);

for(wheel = MARSO_LF; whed <= MARSO_RR; wheel++) {

[*** intersect ray with terrain model ***/

intersected _poly = WTnode_rayintersect(iims_models, ray, originjwheel],
&distance, &intersected path);

distanceC = distance;

intersected_polyA = WTnode_rayintersect(ims_models, ray, originA[whedl],
&distanceA, &intersected pathA);

intersected_polyE = WTnode_rayintersect(ims_models, ray, originE[whesl],
&distanceE, &intersected pathE);

if (intersected poly || intersected polyA || intersected polyE) {

120

I

if (intersected_poly == NULL) distanceC = 10000.0;
if (intersected polyA == NULL) distanceA = 10000.0;
if (intersected_polyE == NULL) distanceE = 10000.0;

}

if (intersected poly) {
height[wheel] = (distance + originwhed][Y]);

if (fabs(height[wheel] - distance - originfwheel][Y]) > 0.05f)
height[wheel] = height[wheel] + (distance + originjwhed][Y] -
height[whedl]) / 4.0f;
else height[wheel] = (distance + originfwhedl][Y]);
}
}

return(test_result);

/**/

/** Settle Marsokhod Rover Function **x[

/**/

void settle_marso(WTnode * marso_node)

{

marsokhod _model_info *model_info;
static float fMid, fAx, fCalc;

[* absolute wheel elevations numbers front to back, left to right */
static float WheelElev[6] = {0.0f};

int axle

[** get marsokhod model node data structure with kinematic angles ***/
model_info = (marsokhod_model_info *) WTnode_getdata(marso_node);

[** Get height of each wheel pivot above terrain if intersection test success **/
if(marsokhod_model _elevation(marso_node, WheelElev)) {

model_info->wheel_anglefMARSO_FRONT] = degrees(-sin((
WheelElev[MARSO_FRONT + MARSO_LEFT] -
WheelElev[MARSO_FRONT + MARSO_RIGHT]) /
MARSO_WHEEL_BASE));

121

model_info->wheel_anglefMARSO_MIDDLE] = degrees(-sin((
WheelElev|[MARSO_MIDDLE + MARSO_LEFT] -
WheelElev[MARSO_MIDDLE + MARSO_RIGHT]) /
MARSO_WHEEL_BASE));

model_info->wheel _anglefMARSO_REAR] = degrees(-sin((
WheelElev[MARSO_REAR + MARSO_LEFT] -
WheelElev[MARSO_REAR + MARSO_RIGHT]) /
MARSO_WHEEL_BASE));

fMid = (WheelElev[MARSO_MIDDLE + MARSO_LEFT] +
WheelElev[MARSO_MIDDLE + MARSO_RIGHT]) / 2.0;

fAX = (Whee Elev[MARSO_FRONT + MARSO_LEFT] +
WheelElev[MARSO_FRONT + MARSO_RIGHT]) / 2.0;

fCac =fAx - fMid;

if (fabs(fCalc) > FB_OFFSET) fCac = FB_OFFSET * fabg(fCalc) / fCalc;

model_info->axle_anglel FRONT_AXLE] = degrees(asin((fCalc) / FB_OFFSET));

fAX = (WheelElev[MARSO_REAR + MARSO_LEFT] +
WheelElev|[MARSO_REAR + MARSO_RIGHT]) / 2.0;

fCdc =fMid - fAX;

if (fabs(fCalc) > FB_OFFSET) fCalc = FB_OFFSET * fabs(fCalc) / fCalc;

model_info->axle_anglefREAR_AXLE] = degrees(asin((fCalc) / FB_OFFSET));

[*** This Calculates the pitch of the Mast and accounts for it in the front and rear axles ***/

}

ese{
model_info->pog[Z] = fMid - MARSO_WHEEL_RAD;

}

model_info->axle_anglefMIDDLE_AXLE] =
(model_info->axle_anglefREAR_AXLE] +
model_info->axle_anglefFRONT_AXLE]) / 2;

model_info->axle_anglefFRONT_AXLE] -=
model_info->axle_anglefMIDDLE_AXLE];

model_info->axle_anglefREAR_AXLE] -=
model_info->axle_anglefMIDDLE_AXLE];

[* This compensates for the fact that the Middle Axle is already rotated */

model_info->wheel_anglefMARSO_FRONT] -=
model_info->wheel_anglefMARSO_MIDDLE];

model_info->wheel_anglef MARSO_REAR] -=
model_info->wheel_anglefMARSO_MIDDLE];

model_info->pogZ] = fMid - MARSO_WHEEL_RAD;

122

	Mission planning and remote operated vehicle simulation in a virtual reality interface
	Recommended Citation

	Mission Planning and Remote Operated Vehicle Simulation in a V

