
Graduate Theses, Dissertations, and Problem Reports 

2015 

Spatializing the Soil-Ecological Factorial: Data Driven Integrated Spatializing the Soil-Ecological Factorial: Data Driven Integrated 

Land Management Tools Land Management Tools 

Travis Nauman 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Nauman, Travis, "Spatializing the Soil-Ecological Factorial: Data Driven Integrated Land Management 
Tools" (2015). Graduate Theses, Dissertations, and Problem Reports. 6299. 
https://researchrepository.wvu.edu/etd/6299 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F6299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/6299?utm_source=researchrepository.wvu.edu%2Fetd%2F6299&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


 

 

Spatializing the Soil-Ecological Factorial: Data Driven Integrated 

Land Management Tools 
 

 

 

Travis Nauman 

 

 

 
Dissertation submitted 

to the Davis College of Agriculture, Natural Resource and Design 

at West Virginia University 

 

 

in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in 

Plant and Soil Sciences 

 

 

 

 

Committee: 

James A Thompson, Ph.D., Chair 

Louis McDonald, Ph.D. 

James Rentch, Ph.D. 

Brenden McNeil, Ph.D. 

Timothy Warner, Ph.D. 

 

Division of Plant and Soil Sciences 

 

 

 

Morgantown, West Virginia 

2015 

 

 

 

 

Keywords: soil survey, disaggregation, ecological site, digital soil mapping, podzolization, 

red spruce, O-horizons, soil organic carbon 

Copyright 2015 Travis Nauman



 

 

 

ABSTRACT 

 

Spatializing the Soil-Ecological Factorial: Data Driven Integrated 

Land Mangement Tools 

 

Travis Nauman 
 

Soils form the dynamic interface of many processes key to the function of terrestrial 

ecosystems. Many soil properties both influence and are influenced by activity of flora and 

fauna.  Interactions between soils, biota, and climate determine the potential ecosystem services 

that a given unique ecological site (ES) can support, and how resilient a site is to various 

pressures and disturbances. Soil data are needed to fully understand how these factors interact, 

but because this data is difficult to obtain, existing soil maps are sometimes not detailed enough 

to fully explore relationships. Environmental raster GIS data layers were used to increase the 

detail of maps by representing soil forming factors and associated ecological pedomemory 

legacies important to understanding ecological potential. This dissertation presents methods and 

tools to help create these new soil maps at appropriate resolution and theme for field scale 

assessment of ecological sites that enable land managers to plan and implement appropriate 

management decisions.  

USDA-NRCS soil surveys were disaggregated to higher resolution maps using a semi-

automated expert training routine to implement a random forest classification model.  This  

transformed soil map polygons of variable thematic and spatial resolution (soil map unit 

concepts) to a consistent 30-meter raster grid of unified theme (soil taxa).  Disaggregated maps 

(DM) showed highly variable accuracy (25-75% overall validation accuracy) that mirrored that 

of the original soil surveys evaluated in Arizona (AZ) and West Virginia (WV). However, 

disaggregated maps expressed the soil data at a much more detailed spatial scale with a more 

interpretable legend. The WV surveys exhibited much lower accuracy than the AZ survey 

evaluated. This lower accuracy in WV is likely due to the forested setting and highly dissected 

landscape, two factors that create more intrinsic soil variability that is harder to explain with 

spatial covariates. 

Ecological site descriptions (ESD) document soil-ecosystem groups that produce unique 

amounts and types of biological constituents and respond similarly to disturbance and 

environmental variation. ESD are linked to soil map unit components in USDA-NRCS soil 

surveys and are used as the basis for land management planning on rangelands and forestlands. 

The component level connection makes DM a good way to spatialize ESD because both are 

spatially represented at the same thematic level, whereas conventional soil maps have polygons 

that often have multiple components linked to a delineation.  

However, in the evaluation of mapping ESD via DM, the DM turned out not to document 

the key difference in spodic soil properties that distinguished the important ecotone between 

northern hardwood and alpine red spruce conifer ESDs in Pocahontas and Randolph counties, 



 

 

 

WV. So, to adjust, spodic soil properties were mapped directly using digital soil mapping 

approaches. A strong spatial model of spodic soil morphology presence was developed from a 

random forest probability model and showed correspondence to red spruce and hemlock 

occurrences in local historic land deed witness trees from records between 1752 and 1899. From 

this result, areas with spodic soil properties were assumed to be associated with historic red 

spruce communities, although 68% of those areas in the WV study area are currently under 

hardwood cover. This would seem to indicate that hardwoods have encroached on the historic 

extent of spruce, which is consistent with other recent studies. O-horizon thickness was also 

observed to be one cm thicker for every 10% greater importance value of red spruce or hemlock 

versus that of hardwood species at field sites. From these observations, it was calculated 

conservatively that at least 3.74-6.62 Tg of C have likely been lost from red spruce influenced 

ecological sites in WV due to historic disturbance related conversions of forest to hardwood 

composition. These results highlight the value of working within a soil-ecological factorial 

framework (e.g. an ESD) to contextualize land management options and potential derived 

services or negative consequences of each available action. 
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2 INTRODUCTION  

2.1 Document Summary 

This dissertation is organized around four peer reviewed journal manuscripts. Preceeding 

these articles is an introduction (Ch. 2) that outlines the broader proposed project. Chapters 3-6 

are unformatted journal articles, three of which were published and one submitted for review at 

the time this dissertation was put together. The first two papers document disaggregating soil 

surveys in WV and AZ. The third and fourth paper document i) the spatial modeling of spodic 

soils and their connection with red spruce, and ii) the carbon implications of the current status of 

red spruce ecological sites in WV. All are in press except the carbon implications paper which 

was submitted to Soil Sci. Soc. Am. Journal on 2/10/15. 

2.2 Conceptual Rational 

Effective management of scarce natural resources demands data that is both accurate and 

precise. In most ecosystems, soil is a crucial interface for water and nutrient cycling, which we 

rely on for clean water and vegetation production. Understanding both the current spatial 

distribution of soils and how they function in the most accurate and detailed fashion is important 

to making decisions about the implications of various management options for land. Soil 

inventory surveys have been completed for many parts of the world, but have received criticism 

for their scope and spatial structure as users include soils data in more technical modeling 

(Burrough, 1989; Burrough et al., 1997; McBratney et al., 2003; Grunwald, 2009; Grunwald et 

al., 2011). The main criticism is that these conventional soil maps (CSM) use polygon 

delineations that enforce crisp boundaries that often do not reflect the more gradual nature of soil 
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spatial distributions.  CSM also often lump more than one soil type into one mapping unit 

leaving users the task of ‘disaggregating’ the soil map within those polygon delineations 

(McBratney, 1998; Bui et al., 1999; de Bruin et al., 1999; Wielemaker et al., 2001; Bui, 2004; 

Thompson et al., 2010). The first portion of this dissertation will aim to help build methods to 

disaggregate CSM into more realistic and continuous raster maps of soil distribution that require 

less interpretation by users. Researchers have already laid a foundation for these methods (Zhu et 

al., 1996, 2010; Zhu, 1997; Bui et al., 1999; Bui and Moran, 2001; Qi et al., 2006; Smith et al., 

2010; Thompson et al., 2010; Wei et al., 2010; Goovaerts, 2011; Haring et al., 2012; Kerry et al., 

2012; Nauman et al., 2012, 2014; Nauman and Thompson, 2014 ), but there is still a need to 

provide more standardized and pragmatic procedures accessible to broader soil science 

professionals (e.g. CH 3: Nauman and Thompson, 2014). The first section of the proposed 

dissertation will focus on developing disaggregation methods using pilot studies in West Virginia 

and in Arizona to show applicability across a wide physiographic range. 

The second section of the dissertation will focus on how to use disaggregated higher 

resolution soil maps to create detailed maps of soil-ecosystem states and communities for use in 

conservation planning. Ecological Site Descriptions (ESD) (Grazing Lands Technology Institute, 

2003; USDA-NRCS, 2014) have been used by the USDA Natural Resources Conservation 

Service (NRCS) for use in conservation planning across the western U.S., and are being 

expanded to the eastern US. ESD are linked to soils mapped in CSM for purposes of providing a 

framework for conservation planning, but because of the problems with sometimes coarse and 

aggregated soil map units, conservation planners often have to remap lands when building a 

conservation plan (e.g., for grazing rotations or vegetation management). So, to spatially 

combine high resolution disaggregated soil maps (DM) maps with ESD data could provide a 
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much more efficient product to planners (Bestelmeyer et al., 2011). A pilot study to evaluate the 

feasibility and coherency of producing DM-ESD maps for conservation planning purposes was 

carried out in the Monongahela National Forest. The demands on the resources in this area for 

timber, mining, biodiversity conservation, and recreation provide an opportunity for use and trial 

of ESD. Co-located soil descriptions, forestry metrics, vegetative composition, and digital soil 

mapping covariates needed to carry out this production will also offer opportunity for insightful 

analysis of classic pedology questions in an ecological context. The data and ESD structure 

should help reveal systematic information about how the soils and vegetation have been co-

evolving over time through massive area disturbances (Hopkins, 1899; Pielke, 1981) and climate 

change (NCADAC, 2013) in the last two centuries. 

2.3 Field scale conservation: integrating updated soil survey and forest ecology 

2.3.1 Overview 

Linking more detailed DM to ESD (Grazing Lands Institute, 2003, Chapter 3; USDA-

NRCS, 2014) could provide an appropriate spatial platform for better use in conservation 

planning. DM were compared to point based soil predictive models and ESD groupings in forest 

vegetation communities near Cheat Mountain, and surrounding areas representative of the 

Allegheny Highlands, WV. Analysis focused on areas thought to be historically dominated by 

red spruce (Picea rubens) communities and the associated organic-rich Spodosol and Histosol 

soils that are thought to be typical of historic climax communities in the area (Byers et al., 2010).  

Signatures in observed soils common in Spodosols will be used to help determine how red 

spruce were distributed prior to timber exploitation and associated fires in the last 200 years 
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(Pielke, 1981; Hopkins, 1899). Fixed area plots collecting forest stand production, stand basal 

area by species, stand age, stand regeneration, canopy structure, vegetative composition, surface 

cover and debris, and soil profile data were co-located in field work (See Appendix A). These 

data were used to build ES descriptions to help determine trends and management frameworks as 

well as provide insight into ecosystem services such as wildlife habitat, water quality, and carbon 

sequestration. These data were modeled spatially by correlating field data with digital terrain 

data, remotely sensed imagery, and other environmental spatial data. The data produced helped 

support area needs for habitat management of sensitive species including the northern flying 

squirrel (Glaucomys sabrinus fuscus) (Odom et al., 2001; Ford et al., 2004; Menzel et al., 2004; 

Menzel et al., 2006), Cheat Mountain Salamander (Plethodon nettingi) (Dillard et al., 2008a; 

Dillard et al., 2008b; Pauley, 2008), and general restoration efforts for red spruce communities 

(Byers et al., 2010; Rentch et al., 2007; Rentch et al., 2010; Schuler et al., 2002). 

2.3.2 Background 

The connections between the soil, flora, and fauna in ecosystems are often poorly 

documented by researchers who sometimes study each of these components separately due to a 

high degree of specialization amongst scientists. In the case of the Central Appalachians, we also 

have to consider the implications of widespread disturbance due to high intensity timber harvest 

and wildfire that often followed. Researchers have estimated that red spruce dominated forests 

once covered ~200,000 - 500,000 ha in West Virginia and Virginia before the middle 19
th

 

century, but have been reduced to current extents of roughly 20,000 ha in scattered patches 

(Hopkins, 1899; Pielke, 1981; Adams and Stephenson, 1989; Byers, 2010; Rollins et al., 2010). 

The almost complete cut-over and associated fires in the high elevation conifer forests in West 

Virginia and Virginia make it hard to determine how the historic forest functioned with respect 
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to wildlife habitat, carbon stocks, nutrient cycling, and sustainable forest productivity. This 

leaves great uncertainty in attempts to create management plans for these forests with regards to 

ecological services or resource harvest in the future.  

 

Figure 1. Photos of Spodosols in the Allegheny Mountains of West Virginia. Photo on right is 

from the Pocahontas Soil Survey report (Flegel, 1999). 

2.3.2.1 Vegetation links to podzolization 

The small areas of forest in West Virginia that still have red spruce (Picea rubens), 

eastern hemlock (Tsuga Canadensis), and/or balsam fir (Abies balsamea) give us some clues into 

the structure and function of those past communities. Generally, these tree species, along with 

ericaceous shrubs like Rhododendron, and mountain laurel (Kalmia latifolia) favor a process of 
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reactions in the soil called podzolization that result in soils called Spodosols in U.S. Soil 

Taxonomy (see Figure 1; Soil Survey Staff, 1999). Spodosols are usually found in subalpine and 

boreal zones and are common in Canada and across New England, but also can be found in 

sandier soils of warmer humid regions like Florida, and in alpine regions of lower latitudes 

(Schaetzl and Isard, 1996; Lundström et al., 2000; Sauer et al., 2007). These soils generally form 

where low-base substrate favors vegetation types that produce nutrient poor litter (e.g., spruce). 

With these conditions, when ample moisture and cooler temperatures persist, these factors cause 

organic carbon build-up in the soil resulting in acidification that mobilizes Al, Fe, and sometimes 

Si in organometallic complexes and other forms. The mobilization of these compounds creates 

unique horizons or layers in the soil that persist for various lengths of time (Stanley and 

Ciolkosz, 1981; Lundström et al., 2000). We are proposing to use the more persistent and long-

lived parts of these horizons as markers that can help to indicate the past influence of red spruce 

alpine conifer communities before the region was disturbed and often replaced by hardwood 

forest or grasslands. 

Research has suggested that the process of podzolization is reversible, but that different 

parts of the resultant horizons degrade faster than others. Specifically, organic carbon and 

organometallic components of podzol horizons were observed to be lower in podzol soils that 

had lost white pine/northern hardwood forests in the northern Michigan peninsula as compared 

to similar areas that had regenerated that forest type (Barrett and Schaetzl, 1998). This region 

was logged and burned at a similar time to the Central Appalachians, and we think that a similar 

process of ‘depodzolization’ may be an influence in both locations. 

Although depodzolization is thought to occur in areas that have lost the 

conifer/ericaceous carbon inputs, the large quantities of sesquioxides in B horizons (Barrett and 
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Schaetzl, 1998) and acid mycorrhizal weathering of sand particle pores (Jongmans et al., 1997; 

van Breemen et al., 2000; Schöll et al., 2008) are signatures that appear to be much longer lived 

than the organic molecules lost in Barrett and Schaetzl’s (1998) findings. These properties could 

act as tracers for areas of relic Spodosol soils that formed under the pre-harvest conifer forests.  

2.4 Summary of Research Objectives 

2.4.1 Modernizing Soil Information 

The overarching goal with this work is to help modernize soil mapping data for better 

integration into land management and modeling applications. Modern computing abilities and 

the proliferation of environmental raster spatial data have opened up new possibilities for 

precision land management. The difficulty and expense of sampling soils, and the complicated 

spatial distribution of soils, has historically limited map detail in CSM, and thus any analysis that 

needs soil data. A goal of this project is to promote a vision of efficient use of scarce field data to 

update soil maps via robust digital soil mapping techniques (e.g., Kempen et al., 2009; Yang et 

al., 2011; Kempen et al., 2012; Nauman et al., 2012; Nauman and Thompson, 2014), and to 

make updates in a pragmatic and multidisciplinary fashion that can be used by the widest 

possible audience. Updated soil maps of the project study area will be produced as a deliverable 

for this research and will be documented with appropriate reports to help others repeat this 

process. These maps will be independent validated with field data, and have associated measures 

of uncertainty in mapping predictions produced by these methods. 

Another goal of this research is to improve soils data for conservation planning using 

Ecological Site Descriptions (ESD). ESD integrate rangeland management, forestry, ecology, 

wildlife, soils, hydrology, geology, and land management practices into descriptive frameworks 
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to guide decision making. This kind of integrated approach to natural resource management is a 

powerful tool that can not only help us make good decisions locally for the land, but help us to 

better understand how global trends in climate, societal growth, and resource demand might 

affect the diverse lands we have claimed stewardship over. 

Local concerns regarding historic spruce-conifer community dynamics were clarified 

based on current spodic soil spatial models for comparison with other articles documenting 

Central Appalachian red spruce habitat (e.g., Pielke, 1981; Byers et al., 2010; Thomas-Van 

Gundy and Strager, 2012). The spatial extent and expression of spodic sesquioxide horizons 

were used to corroborate other research on historic red spruce community spatial distribution. It 

was hypothesized that timber harvest, fires and other factors facilitated loss of large areas of 

alpine conifer and resulted in significant carbon dioxide release into the atmosphere from the 

associated organic soils and burnt woody remains. 
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3 SEMI-AUTOMATED DISAGGREGATION OF CONVENTIONAL SOIL MAPS USING 

KNOWLEDGE DRIVEN DATA MINING AND CLASSIFICATION TREES 

3.1 Citation 

Nauman, T.W., and J.A. Thompson. 2014. Semi-automated disaggregation of conventional soil 

maps using knowledge driven data mining and classification trees. Geoderma 213:385-

399. Reprinted from Geoderma under license #3603870298207 with permission from 

Elsevier. 

3.2 Highlights 

 Multiple conventional soil maps were disaggregated to a digital soil series map with no 

new field observations. 

  Disaggregation and original soil maps had similar accuracies with validation pedon soil 

series matching at 39%-44% of locations within 60-meter neighborhoods. 

 Uncertainty was characterized spatially for updated map. 

 We present a repeatable methodology for updating and harmonizing conventional soil 

maps. 

3.3 Abstract 

Disaggregation of conventional soil surveys has been identified as a potential source for 

much of the next generation of model-ready digital soil spatial data. This process aims to 

apportion vector soil surveys into raster (gridded) representations of the component soils that are 

often aggregated together in map unit designs. Most soil surveys are published with some 

description of the soil-landscape relationships that distinguish component soils within map units. 

We used these descriptions found in the Soil Survey Geographic (SSURGO) database of 

Webster and Pocahontas Counties in West Virginia, USA, to build a set of representative training 
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areas for all soil components by using 1-arc second digital elevation data and derived 

geomorphic indices. These training areas were then used in classification tree ensembles with a 

more extensive environmental database to transform the original SSURGO map into a gridded 

soil series map. We created underlying prediction frequency surfaces from the models that can 

be used for creating continuous representations of soil class and property distributions. 

Disaggregation models matched training sets in 71%-74% of pixels and matched 

components in original SSURGO map units in 56%-65% of the study area. We evaluated both 

the original SSURGO data and our models using 87 independent pedons not used in model 

building. Validation pedons matched components in SSURGO map units at 39% of sites, but in 

map units that only included one named component (as opposed to multiple soils that could be 

matched to validation pedons) only 27% of sites matched. Disaggregation predictions matched 

validation pedon classes 22-24% of the time using nearest neighbor spatial matches, and these 

rates increased to 39-44% for correct predictions within a 60-meter radius of the pedon. To 

characterize uncertainty, we compared relative ensemble prediction frequency (probability) of 

final hardened model classes at validation sites. Sites with correct predictions had generally 

higher prediction frequencies; which lead us to use them to create an uncertainty model. 

Uncertainty was calculated by determining the rate of correct predictions at validation sites 

within different intervals of prediction frequencies using nearest neighbor validation results. We 

were able to discern four uncertainty classes with values of 7%, 18%, 20% and 43%, which we 

called “ground truth probabilities”. We present the methods to create these models with the aim 

of making them more accessible to soil science professionals, and we think there is much 

potential to use them to aid in updating national soil survey inventories. 
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3.4 Introduction 

Soil properties and soil functions influence many of the problems facing society today. Soil is a 

primary storage mechanism for carbon and nutrients that control how vegetation grows and how 

our climate is changing. However, our knowledge of soils is imprecise, with estimates of global 

soil carbon stocks in the top meter of soil that range from 1400 to 3250 petagrams (Grunwald et 

al., 2011). In light of the projected challenges of global warming and maintaining natural 

resource services like crops and clean water (IPCC, 2007), high quality soils information is key 

to making sustainable decisions. Although many soil inventories have been carried out around 

the world, the scope and spatial structure of these have been criticized (Burrough, 1989; 

Burrough et al., 1997; McBratney et al., 2003; Grunwald, 2009; Grunwald et al., 2011) as more 

and more researchers use soils data in environmental, agricultural, and engineering related 

models. Many studies try to improve on past soil inventories using digital soil mapping and 

related methods (Cook et al., 1996; Zhu, 1997; Zhu et al., 1997, 2001; Bui et al., 1999, 2006, 

2009; de Bruin et al., 1999; Bui and Moran, 2001; Moran and Bui, 2002; Hansen et al., 2009; 

Kempen et al., 2009; Thompson et al., 2010; Yang et al., 2011; Häring et al., 2012; Kerry et al., 

2012; Nauman et al., 2012). The GlobalSoilMap project (www.globalsoilmap.net) is a recent 

effort to help produce standard basic soil property maps for the whole world that can be used in 

more modern contexts (Sanchez et al., 2009; Hartemink et al., 2010). The GlobalSoilMap 

consortium has recognized that methods to best utilize old maps for production of new digital 

models is one of the best ways to begin creating new and more detailed soil maps (Minasny and 

McBratney, 2010). 
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One of the main challenges to providing appropriate data is that the classic paradigm of 

soil survey is management based, and properties attributed to soils are most often estimates 

based on sparse data at representative locations, not quantifications based on statistics. A large 

part of the goals of the original design of these maps was to determine suitability or hazards to 

human activities. These interpretations provide pragmatic initial guidance to developers, farmers, 

and other land management institutions for issues like road building, septic tank evaluations, and 

many other uses (Soil Survey Staff, 1993). The soil survey was supposed to be a starting point in 

planning and general management, but more current users have stretched far beyond these 

original concepts (Soil Survey Staff, 1993; Bouma, 1989). 

Many studies have used soil survey spatial data with property estimates as inputs into 

models (e.g., Wilson et al., 1993; Lineback Gritzner et al., 2001; Bandaragoda et al., 2004; 

Causarano et al., 2008; Gatzke et al., 2011; Zhang et al., 2011). In the U.S., both the U.S. 

General Soil Map (STATSGO2: 1:250,000 to 1:1,000,000 scale) and the Soil Survey Geographic 

(SSURGO: usually close to 1:24,000 scale, but varies between roughly 1:1,000 and 1:250,000 

depending on land use) databases often aggregate multiple soil classes into spatial polygon 

delineations used in maps (Soil Survey Staff, 1993; Thompson et al., 2012). The data model for 

SSURGO, which is the primary high resolution  soil inventory for the US, includes polygonal 

map units with generally one to four named soil series (soil taxonomic class) per map unit, plus 

minor inclusions of soils or non-soil areas, which are sometimes but not always fully 

documented. This aggregation, and the inherently crisp breaks that choropleth style mapping 

imposes on spatial data, make spatial representation of estimated soil properties (e.g., soil 

texture, organic matter, pH) somewhat convoluted and predisposed to artifacts. For example, 

there are often distinct changes in property values between polygons or at survey project 
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boundaries that do not make logical sense (Loerch, 2012; Thompson et al., 2012). The problem 

that now emerges is how to use the wealth of information in legacy soil surveys in an appropriate 

way. Part of the answer might be to restructure the data to more appropriately address current 

applications, and one basic step to doing that is to spatially disaggregate the information into its 

component parts in a manner that better represents how soils truly occur in the field. This paper 

illustrates a technique to use widely available elevation, lithology, and remote sensing data to 

disaggregate two existing adjacent soil surveys in West Virginia, USA, into one continuous soil 

series class map using no new soil field data. This process potentially reveals much more 

information about spatial soil distribution and spatially harmonizes somewhat disjoint mapping 

projects that have artifacts along their boundaries (Thompson et al., 2010, 2012; Nauman et al., 

2012). 

3.4.1 Soil Survey Spatial Disaggregation 

The primary focus of soil survey disaggregation is to express the spatial distribution of 

soil individuals in cases where older soil maps have lumped them into one spatial unit (Table 1). 

Another way to describe it would be the enhancement of a prior generalized soil map to produce 

a more detailed map that spatially distinguishes soil properties or types at a greater level of 

detail. Generally these techniques also tend to translate the data from object-based polygon maps 

to grid-based raster formats by using new point or environmental maps (e.g. DEM or Satellite 

Imagery) as predictors to map within polygons. Disaggregation has been identified as a 

conceptual approach to translate current data into formats compatible with modern needs and 

with pedologic concepts of soil formation (McBratney, 1998; Bui et al., 1999; de Bruin et al., 

1999; Bui and Moran, 2001; Wielemaker et al., 2001; Bui, 2004). Generally, approaches use new 

pedon data and/or environmental covariate data to determine how soils within polygon map units 
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vary spatially. Approaches tend to draw from digital soil mapping frameworks (McBratney et al., 

2003; Scull et al., 2003; Grunwald, 2009; Grunwald et al., 2011) that employ a state-factor 

theory of soil formation summarized by Jenny (1941). 

Spatial disaggregation of multi-component soil map polygons into individual component 

soil classes has been demonstrated in attempts to universally update soil maps (Bui and Moran, 

2001; Hansen et al., 2009; Wei et al., 2010; Smith et al., 2012), and to create class distinctions 

within the bounds of original survey map units (e.g. Bui and Moran, 2001; Thompson et al., 

2010; Häring et al., 2012). Other studies have looked at disaggregating polygons for specific soil 

properties using conventional soil survey. Goovaerts (2011) evaluated geostatistical methods that 

can combine point data with choropleth data to look at intra-polygon variation in a specific 

variable, and Kerry et al. (2012) applied parts of these methods to soil organic carbon mapping in 

northern Ireland. Fuzzy logic has been used in disaggregation through applications like SoLIM 

(Zhu et al., 1996, 2010; Zhu, 1997; Qi et al., 2006) to help organize and implement soil-

landscape relationships for mapping soils. SoLIM has been used in coordination with both expert 

knowledge (Smith et al., 2010) and statistical approaches (Yang et al., 2011) to implement 

discovered soil-landscape relationships used in updating and disaggregating soil maps. Other 

fuzzy knowledge systems have leveraged landform element classifications to better disaggregate 

landscapes into units with similar soils (MacMillan et al., 2000).  Landform elements have also 

been combined with other ecological mapping and environmental maps using expert fuzzy logic 

rules to create ecosystem maps that incorporate soils information (MacMillan et al., 2007). 

Classification and regression trees have also been a prominent technique used in disaggregation. 

Bui et al. (2001) and Wei et al. (2010) both used ensembles of decision trees and Haring et. al. 

(2012) used random forests to refine soil and surficial geology classes. Tree-based models have 
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also been used extensively in general digital soil mapping applications and seem to have the 

greatest flexibility of common modeling methods (McKenzie and Ryan, 1999; Moran and Bui, 

2002; Scull et al., 2005; Saunders and Boettinger, 2007; Schmidt et al., 2008; Bui et al., 2009; 

Behrens et al., 2010a,b; Lemercier et al., 2011). 

The objective of this research was to identify a pragmatic and repeatable method for 

systematic disaggregation of legacy soil maps. This technique addresses the common situation 

where an older soil map is available, but more detailed soil spatial data is needed, and too few 

new soil observations are available to use in geostatistical approaches or for building empirical 

models. We utilize soil-landscape rules that are usually present in soil survey database map unit 

descriptions in combination with a classification tree ensemble with different randomization 

schemes to universally disaggregate two adjacent soil survey projects into one harmonized soil 

series map. This approach captures both implicit and explicit expert knowledge about soil-

landscape relationships in SSURGO and pairs that with available elevation, imagery, and 

geology data in a classification tree ensemble model. We selected methods and data sources 

based on repeatability, transparency, and manageability in an effort to make them accessible to 

soil science professionals in government and consulting. 

3.5 Materials and Methods 

We demonstrate and evaluate disaggregation methods in two adjacent county soil surveys 

in West Virginia. Soil-landscape rules were first extracted from the SSURGO database from 

every component (soil) of every map unit in the surveys. The landscape rules were then matched 

to value ranges of different DEM-based topographic metrics (e.g., slope position, landform 

element) to identify representative areas in each map unit for each component. These 

representative areas were then used as training sets for randomized classification tree ensembles. 
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We created several different randomized sampling techniques for balancing the relative sizes of 

training sets of different soil classes so that the training set size distribution was not too skewed, 

which facilitated detection of less extensive soil types. We evaluated three different ensemble 

models using an independent set of 87 geo-referenced pedons gathered from other local projects. 

Prediction frequencies from the most balanced ensemble model were also evaluated for use as an 

empirical proxy of prediction uncertainty.. 

3.5.1 Study Area 

The study area is located in the Appalachian mountains of West Virginia, USA, and covers 

approximately 3,877 km
2
 (Fig. 1). It includes data from two separate soil surveys completed by 

the USDA-NRCS for Webster (Delp, 1998) and Pocahontas (Flegel, 1998) counties. It includes 

parts of two U.S. Major Land Resource Areas: the Eastern Allegheny Plateau and Mountains and 

the Southern Appalachian Ridges and Valleys (Flegel, 1998). The Eastern Allegheny Plateau and 

Mountains makes up roughly the northwestern two thirds of the area, and is a highly dissected, 

level-bedded sedimentary plateau that includes the highest mountains in West Virginia. The 

Ridge and Valley province is a sequence of trellis ridges and valleys that run south-southwest to 

north-northeast consisting of more altered and folded sedimentary rocks. Soils in the study area 

generally form in residual sedimentary rocks and colluvial deposits along slope sequences (Delp, 

1998; Flegel, 1998). The area is generally a rolling to steep terrain with only smaller flat areas 

along drainages and in limited areas where ridge tops or mountain tops are flat. There are alluvial 

soils along drainages, but most alluvial valleys are less than a mile wide. Most drainages in these 

areas are steep and narrow valleys that do not promote much alluvial deposition. 

Soil profile descriptions at 87 locations classified according to U.S. Soil Taxonomy (Soil 

Survey Staff, 2010) were used to independently validate model results. Of these, 62 came from a 
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previous study (S. Roecker, unpublished data), and 25 came from the USDA-NRCS national 

pedon database (National Cooperative Soil Survey, 2012). The NRCS pedons come from a 

variety of collection dates and project and thus have somewhat variable spatial accuracy (some 

points were digitized from old manual topographic map notes). The pedon locations used from 

Roecker’s work were likely more accurate as they were collected with a Trimble GeoXT, but 

were also still collected in a forest setting where accuracies are probably at least two meters. 

These observations were used solely for validation and not in any part of the model building 

process. 

3.5.2 SSURGO Training Areas 

The SSURGO dataset consists of a polygon format vector map attributed with a map unit label 

and a relational database that connects the map units to information about the soils and survey 

area. There is usually an associated hardcopy survey manuscript that was published for survey 

project areas (usually counties). The mapping infrastructure in SSURGO includes multiple types 

of map units that generally have one to four named soil series components as well as ‘inclusions’ 

of other soils or non-soil areas. Each of these component soil series can have different property 

distributions that must be generalized or aggregated somehow if a user wants to display a soil 

property using SSURGO polygons (e.g., Bliss et al., 1995; Thompson and Kolka, 2005). 

In SSURGO, each component of every map unit has information regarding soil properties 

and environmental context attributed to it (Tables 2, 3, and 4; rule-matching examples shown in 

Section 2.2.2). By querying the geomorphic and landform related attributes in SSURGO, soil-

landscape relationship descriptions were extracted from the database to help determine where 

within a map unit a component is expected to occur (e.g., Gilpin series exists on the upper third 

of mountain flanks). The language in these queried descriptions was then matched to values in 
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environmental rasters that represent hillslope position (0-100 index; Hatfield, 1996), landforms 

(Schmidt and Hewitt, 2004), terrace height (relative elevation with reference to local minimum 

in alluvial map-units; described below), percent slope gradient, slope aspect, and catchment areas 

(Tarboton, 1997) within each map unit. As an example, the descriptor ‘upper third of mountain 

flanks’ was associated with a hillslope position index (Table 4) raster by specifying that the soil 

exists on hillslope index values between 66 and 95. This essentially translates soil-landscape 

relationship records in the database to environmental raster values. This rule translation 

streamlines the approach Thompson et al. (2010) used to create soil-landscape rulesets. All rules 

identified typical landscapes for respective component soils within each map unit. These areas 

were added to a training set that was compiled for all soil series and other named survey 

components (e.g., rock outcrops or higher taxa such as Fluvaquents) in the study area. A reas 

from all map units that were typical of a given soil series were combined into one training class. 

All environmental rasters used in rule-matching were derived from the 1-arc second USGS 

national elevation dataset (NED) (Gesch et al., 2002; Gesch, 2007). Final maps and other raster 

data used in later steps were co-registered to the NED grid in a North American Datum of 1983 

Universal Transverse Mercator projection in Zone 17-North. 

3.5.3 Terrace Height Raster Construction 

For the SSURGO rulesets described in section 2.2, a terrace raster was built from the 

NED data for distinguishing alluvial soils by using a combination of neighborhoods to look at 

the difference of each pixel from local minimum elevations depending on slope position, slope 

gradient, and Morphometric Protection Index (PI) using a 2000-meter radius (Yokoyama et al., 

2002; Conrad and Wichmann, 2011). This approach uses differing neighborhood sizes in similar 

ways to other soil mapping studies (Moran and Bui, 2002; Hansen et al., 2009; Behrens et al., 
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2010, 2010b). Different neighborhoods were used to distinguish terraces in wider alluvial 

systems versus terraces in narrow high gradient drainages (Fig. 2). The ‘terrace’ raster created is 

actually a stratified relative elevation index that determines how high a pixel is in relation to its 

neighbors within the context of its slope position, slope gradient, and PI (e.g., for a headwater 

stream, a smaller neighborhood radius is used for calculating relative elevation than a wide 

floodplain). This terrace height raster was created mainly to distinguish levels of terraces in 

alluvial areas during training area selection for alluvial map units, but also was used for decision 

tree modeling because it seemed to capture variations in landforms well in non-alluvial areas. 

The relative elevation calculations used in the terrace served to distinguish finer scale high spots 

or benches in upland locations making it useful beyond the alluvial units. 

3.5.4 Rule Matching for Training Area Identification 

Four main tables in the SSURGO database can be queried to develop geomorphic and 

hillslope profile descriptors. These were used to create two logic strings per geomorphic 

description for rule creation (Tables 2, 3, and 4). Table 2 shows an example of how these 

descriptors are queried from these tables using joins for the Dekalb soil series in the Gilpin-

Dekalb complex map unit. In this case the geomorphic descriptors from the CoGeomorphDesc 

and CoSurfMorphGC tables indicate that mountain tops on ridges are typical locations for 

Dekalb.  The curvature and hillslope descriptors from the CoSurfMorphSS and CoSurfMorphPP 

similarly indicate that Dekalb is found on summits with linear curvatures. All unique 

combinations of records from the cogeomorphdesc and cosurfmorphgc tables were linked 

together to create general landform element descriptions that were used for all mapped 

components (Table 4). Tables cosurphmorphss and cosurfmorphhpp were also combined in 

unique cominations to create hillslope position and curvature descriptions (Table 3). One logic 



 

26 

 

string of envivronmental raster value ranges was created for each of these two descriptions. 

Value ranges for all rasters that pertained to each description were strung together in an ‘AND’ 

statement that required any grid cell to meet all the rules for each raster to become a training cell. 

Then the logic statements from each description were linked together in an ‘OR’ logic string 

allowing inclusion of pixels that met either of the ‘AND’ strings. Many soil series had more than 

one ruleset for both the general landform and/or hillslope position and curvature descriptions 

either due to presence of the soil as a component in multiple map units or because a component 

of that soil type had more than one set of landform or hillslope descriptions linked in the 

database. The logic strings that came out of these descriptions within linked records were 

combined with a logical ‘OR’ so that a cell could meet one set of rules (e.g., general landform) 

or the other (e.g., hillslope position and curvature) to become a potential training cell for the 

component linked to those descriptions in the database. The multiple strings of logic were put 

into single statements by soil series (same component name) by constraining each ‘AND’ 

statement to the original map unit of the respective component and then stringing common soil 

series rules together by logical ‘OR’ connectors. The translation of these rules to raster values 

was done by creating a list of unique instances of the descriptions that occurred for all the 

components through the study area. Fifty eight unique rules were created for geomorphic 

landforms (Table 4) and thirty two from the hillslope profile and curvature (Table 3) logic sets. 

Once a list of rules was created for all the components in the survey area, training areas 

were created for all uniquely named components. Training areas were created for 50 soil series, 4 

higher taxa classes, and two non-soil areas (water and rock outcrops) for Pocahontas and 

Webster counties in West Virginia, USA. There were three soils (Sees, Lodi, and Medihemists) 

that were mapped as single-component map units in limited areas that did not produce enough 
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training pixels to be detectable in preliminary single tree models. For these cases, the full extent 

of all of the map unit delineations for each of these soils was used for training. Because each soil 

series training set was built independently of the others, much of the training areas in multi-

component map units overlapped, and this was addressed with the sampling design used for the 

decision tree ensemble method in the modeling stage of the project. 

3.5.5 Model Implementation 

Series training areas were randomly sampled with replacement to train 100 decision tree 

models to produce an ensemble model. To address a range of training class sizes and    overlap in 

some of the training areas between soil series, it was deemed necessary to adjust the number of 

pixels selected from the training set for tree building  for each soil series or class to be 

proportional to the original relative area of each series computed from the SSURGO component 

percentages similar to Moran and Bui (2002). We sampled at 1% of the SSURG0 derived 

proportional areas for tree building. Class sample sizes averaged 24,595 pixels with a large 

standard deviation of 50,372 due to a wide range of soil class area extents. 

Based on experimental trials with data and the use of plurality in decision tree algorithms 

(Breiman, 1984), we suspected that proportionality would influence detectability of classes. For 

this reason we tested three different sampling schemes to detemine how scaling the relative 

training area proportions of the classes to be predicted would affect results. We transformed the 

original SSURGO area estimations of soil class extents to a square root (SqRt: ave. class size = 

21454 pixels; st. dev. = 21638) and base-ten logarithm (Log10: ave. class size = 20079 pixels; st. 

dev. = 2027) to allocate proportions of training class sizes to create two more ensemble models 

to compare results with the ensemble using original class proportions (Orig). The SqRt and 
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Log10 transformed proportions were multiplied into the total study area size and then divided by 

100 to produce new sample size for each class. 

A more exhaustive set of environmental rasters were used for the classification (Table 5). 

The imagery chosen for use, Landsat Geocover, is a mosaic Landsat product offered by the 

USGS for 1990 (MDA, 2004b) and 2000 (MDA, 2004a) with Band 7 (mid-infrared), Band 4 

(near-infrared), and Band 2 (visible green) spectra. These mosaics were summarized using 

principal components analysis in Erdas Imagine (Erdas, 2010) into two components per image 

that represented almost all of the variance in each scene. All terrain-based rasters were derived 

from the 1 arc-second USGS National Elevation Dataset (Gesch et al., 2002; Gesch, 2007). 

3.5.5.1 Decision Tree Classification 

Tree-based machine learning techniques have shown great potential in the modeling of ecology 

and soil systems (Bui and Moran, 2001; Moran and Bui, 2002; Henderson et al., 2005; Bui et al., 

2006; Minasny and McBratney, 2007; Schmidt et al., 2008; Hansen et al., 2009; Behrens et al., 

2010b). Generally, these algorithms recursively split a dataset by picking breaks in covariate data 

that help to purify or increase the information content of the model nodes (branches) (Breiman, 

1984; Pedregosa et al., 2011). The Scikit Machine Learning Tree module was used in Python for 

decision tree implementation and follows a CART implementation (Pedregosa et al., 2011). The 

algorithm as we implemented in the Tree module uses Gini’s impurity to measure the quality of 

splits for tree building. Gini impurity is a measure of the heterogeneity of classes at a node and is 

minimized in the tree building process to try and create leaf nodes with just one class, or a Gini 

impurity value of zero (Breiman,1984).  We conducted an informal sensitivity analysis with the 

parameters controlling maximum tree depth and minimum node split sample size to try and 

balance model agreement with training data without over-fitting the tree (with too many 
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branches).With consideration for the large number of training classes and a complicated and 

geologically stratified study area, a maximum tree depth of 20, a minimum number of samples to 

attempt a split of 20, and a minimum leaf size of 5 were chosen for tree building. 

3.5.6 Model Performance and Validation 

Evaluation of the model was done with (i) training set agreement, user’s accuracies, and 

producer’s accuracies (Congalton, 1991) of individual trees, (ii) overall comparison of 

predictions to SSURGO, and (iii) an independent validation dataset of spatially referenced soil 

pedon data. Our predictions and SSURGO were both compared to the independent pedons to 

gauge accuracy. Simple point sampling (nearest neighbor) and 60-meter radius neighborhood 

spatial supports were used in comparisons to allow for some error in the spatial referencing of 

covariates, SSURGO, and pedons. 

Validation in these spatial supports also included determining if predictions were of 

morphologically similar soils. A similar soil was defined by the following criteria: same parent 

material type (i.e., alluvium colluvium, residuum, or mine fill), same soil depth class (or within 

10 cm), same texture class in control section or within 15% for all fractions (including rock 

fragments), same or similar drainage class (within one class), and similar horizonation. All 

criteria were based on U.S. Soil Taxonomy definitions (Soil Survey Staff, 2010). 

Predictions of the individual grid cell coregistered with each validation pedon were 

evaluated for agreement and also for confidence based on the number of trees (out of 100)that 

predicted the majority class reported for final classification. The agreement between pedon series 

and the final ensemble predicted series is a strict evaluation of overall classification accuracy. 

Evaluating the number of correct underlying tree predictionswas used to try to estimate 

uncertainty. We expected prediction counts referred to henceforth as prediction frequencies, to 
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be higher for correctly predicted pixels. We tested to see if correct ensemble predictions had 

higher prediction frequencies, a scenario we thought would support using the counts to create 

ground-truth probabilities that represent confidence or uncertainty in each grid cell ensemble 

prediction. This use of prediction frequencies essentially amounted to creating an empirical 

uncertainty model. 

3.6 Results 

3.6.1 Training Set Agreement 

Overall tree model agreements with training data averaged 74% for the original (Orig) 

sampling design, 71% for the square root (SqRt) sampling design, and 72% for the base ten 

logarithm (Log10) sampling design. These represent the average overall training accuracy for all 

100 trees in each design. These agreements were consistent among trees in each ensemble, with 

all three having standard deviations of the agreements under 0.1%. These consistent accuracies 

indicate that the approach taken was able to distinguish a considerable amount of pattern in the 

covariates from the training areas. User’s accuracies ([# correctly predicted class x] / [total # 

predicted of class x])  were more consistently high than producer’s accuracies ([#correctly 

predicted class x] / [total # actual instances of class x]) , which tended to have a few lower 

classes (Fig. 3). The transformed designs tended to predict more of the classes well, although 

those schemes did not increase overall accuracy. The author’s thought that the ability to predict 

more of the classes well at similar accuracy made the SqRt and Log10 models more useful. Upon 

visual analysis of output maps, SqRt was chosen over Log10 as the optimal model due to the 

occurrence of inflated areal extent of minor soils not thought to exist in such extents (Fig 5).   
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For all three models, the classes with the highest combined user’s and producer’s 

accuracies were residual soils which tended to have accuracies near 90%, although there were 

some residual classes that were predicted with less success (Fig. 3). However, there were some 

groupings in accuracy based on sample size and parent material (Fig. 4). Residual soils with a 

larger training area tend to have the most consistently high user’s and producer’s accuracy. A 

training area size disparity in producer’s accuracies is primarily seen in the Orig model. The 

smaller classes show a much larger range of producer’s accuracies in this model; whereas larger 

classes all have producer’s accuracies around 80% (Fig. 4, top right). This pattern is somewhat 

lost in the SqRt model and almost reverses in the Log10 model, but in all cases residual classes 

seem to perform the best in general. Colluvial and mine spoil classes were predicted the next 

best, and alluvial classes seemed to have consistently lower accuracy than other parent materials. 

The three models also show some visual differences with more heterogeneity of classes in the 

Log10 and SqRt models, whereas the Orig model appeared more dominated by a few larger 

classes (Fig. 5). 

3.6.2 SSURGO versus Disaggregation 

Visual comparison of SSURGO and disaggregation results shows that disaggregation 

predictions follow SSURGO lines much of the time, but also show some differences from 

delineations, likely map unit inclusions, and county line harmonization (Fig. 6). This is 

illustrated for a small portion of the study area (Fig. 7) where two multi-component map units, 

Pineville-Gilpin-Guyandotte association (PLF) and Gilpin-Dekalb complex (GdE), were mapped 

dominantly. In these map units the disaggregated map highlights all the named components and 

also shows inclusions, such as areas of Dekalb, Laidig, and Craigsville in PLF. Although these 

are not listed in the SSURGO database to be present in PLF, they are listed in the hardcopy 
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manuscript as inclusions (Delp, 1998). In SSURGO, these would fall into “Other soils” 

components and would not be referenced. This result demonstrates that the decision tree 

ensemble detected these subtle inclusion areas based on the actual soil-landscape properties of 

these soils in other areas of the survey without having specific information on included soils in 

the SSURGO database. 

When we compared SSURGO and disaggregation maps directly we recorded agreements 

of 65.1% for the Orig model, 61.9% for the SqRt model, and 56.4% for the Log10 model. 

Conceptually, these values are probably low estimates because all map units contain 10%-25% 

“other soils”, or inclusions, to which we cannot match predictions unless all inclusions from all 

map units are added to the database from old soil survey manuscripts that vary with age in 

format and content. Therefore, we saw these as quite high amounts of correspondence between 

the original survey and the disaggregated soil-landscape patterns. We also noted that the 

disaggregated map is much more harmonized across the county line because it is actually 

mapping soil series, the common unit to both surveys as opposed to map units (Fig 6).  This 

consistency within the study area is an advantage of training a model across both surveys. 

3.6.3 Validation using independent pedons 

Model predictions agreed with independent validation pedons 22%-24% of the time when 

compared using nearest neighbor spatial sampling. Model predictions agreed with validation 

39%-44% of the time when comparing using a 60-meter radius sampling to check for matches 

(Table 6). The SqRt and Log10 models tended to have slightly higher accuracies than the Orig 

model through most of the measures. Validation pedons matched any of the named components 

in SSURGO map units 39% of the time for the nearest neighbor sampling and 41% of the time 

for the 60-meter radius sampling (Table 6). However, if we constrain validation of SSURGO to 
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just map units with one named component to make it more conceptually comparable to 

disaggregation predictions, the agreement rate drops to 27%, much closer to that of the nearest 

neighbor validation of disaggregation models (22-24%). 

From the results (Table 6), it appears that the ensemble match rates nearly double when 

we expand from a nearest neighbor match to a 60-meter radius match, whereas the SSURGO 

matching rates were relatively unaffected by the matching approach. Although we expected 

slightly higher agreement rates by expanding the search radius, this large increase for the 

prediction models seems to indicate that there might have been spatial mismatches in the 

georeferencing of validation pedons to that of the model spatial data. Thus, the predictions on the 

covariate data likely represent the validation soil, but did not always line up exactly with 

validation sites due to spatial error. In general, the 60-meter validations were very similar 

between original SSURGO and the disaggregation models with even a slight improvement in the 

Log10 model performance. Even for the nearest neighbor evaluation (Table 6), we see that 

underlying tree models (any tree or 5+ tree) are detecting the correct soil with similar accuracy to 

that of SSURGO just not consistently enough for it to make the plurality required to be 

represented in the final hardened ensemble. 

Again, it should be noted that 54% of the SSURGO matches to the validation pedons 

occurred in multi-component map units where the validation pedon could match any one of the 

multiple components and be counted as a match. If the validation pedons are evaluated just for 

the sites located in single component map units where there is only one soil to match, the 

accuracy for SSURGO falls to 27% using the nearest neighbor sampling. This is much more 

comparable to the disaggregation results. The validation pedons must also be used with caution 

because many of them were classified to taxadjunct or family equivalent level by NRCS staff. 
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Only 37 of the 87 pedons were fully matched to a soil series, the rest were used as the closest soil 

series if they fit the general concepts for that soil. 

3.6.4 Uncertainty in Predictions 

An advantage to the randomized sampling in the 100-tree ensemble models is that the 

prediction frequencies, or number of trees that predict a given grid cell outcome can be used as 

an estimator of confidence in that prediction. So, to see if these frequencies  might reflect the 

likelihood of a correct prediction we compared their valuesat correctly predicted validation sites 

to those at sites that were incorrectly classified to see if higher values were associated with 

correct predictions. We evaluated the SqRt prediction model, which we deemed most the 

consistent performer over all evaluation metrics (Table 6), for the nearest neighborhood spatial 

validation. We found that correctly predicted sites did indeed have higher prediction frequencies 

in general (Wilcoxon rank sum test, W = 883, p-value = 0.016, one-sided, Fig. 8). The estimated 

shift in prediction frequencies from incorrect to correctly predicted validation sites was 

computed as 10.99 from sample estimates (95% C.I.: 2.0 to infinity) (R Core Development 

Team, 2008). This 11% probability shift is not of a large magnitude, but it does provide evidence 

that you can be less uncertain of predictions with higher prediction frequencies. 

In further examination, 12 of 67 missed predictions had frequencies between 90 and 100, 

while a much higher proportioned 9 of 20 correct predictions had frequencies between 90 and 

100. Reshuffled, 9 of 21 sites with prediction frequencies between 90 and 100 were correctly 

predicted, which translates into a ground truth probability of 43% for making a correct prediction 

at sites in that interval (Fig. 8d). This same approach was applied to the rest of the data in 

prediction frequency ranges of 0-0.5, 0.5-0.7, 0.7-0.9 and 0.9-1.0 to create a ground truth 

probability step function to represent uncertainty (Fig. 8). If more validation data were available 
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this could be modeled more continuously with an empirical function. However, our simple 

function enabled mapping of estimated ground truth probabilities because the prediction 

frequencies are available for every grid cell. 

Although the ground truth probabilities we calculated are rather coarse, it can still give us 

an idea of where we are making better predictions without needing complicated calculations. 

Such a map of uncertainty is illustrated for a small portion of the study area (Fig. 9). For context, 

the PLF is a sideslope map unit, the GdE and DrF are summit and ridgetop map units, and the 

LdE is a footslope and small drainageway map unit. In this uncertainty map, we see that concave 

higher positions of PLF tend to have higher uncertainty (lower probabilities), while the more 

linear to convex and lower positions of PLF tend to have less uncertainty in predictions (higher 

probabilities) (Fig. 9). 

3.6.5 Environmental Covariate Influence on Decision Tree Models 

Variable importance values help to determine the most influential environmental 

covariates used in the models, thus providing insight into the original soil survey paradigm. 

Bedrock geology and elevation were consistently the most used variables in decision tree breaks 

(Table 7). The importance of geology and elevation were expected as the study area has strong 

topographic gradients (Fig. 1) and a variety of contrasting geologic strata (West Virginia 

Geologic and Economic Survey, 1968). In initial research, local soil scientists stressed the 

importance of geology and how the wide range of local geologic grain size and base cation 

content tended to produce distinctly different groupings of soil types. This area also includes a 

large range in elevation (254 to 1466 m). Slope gradient and slope position were consistently the 

third and fourth most used variables, whereas the rest of the variables had slightly greater 

differences among relative order of importance between models. In the less used variables, the 
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2000 Geocover PC1 and profile curvature showed the most difference in usage between models 

suggesting that the effects of training class sample sizes effected how these co-varied with soil 

classes. 

Standard deviations of importance values in the ensembles were all generally low, with a 

maximum of 1.35%. This indicates that the individual trees within ensembles were relatively 

similar and stable. However, when comparing the different ensemble sampling approaches, the 

Orig model shows markedly higher deviation in some variables than the SqRt and Log10 

models. These higher deviations are seen almost entirely in the top four most important variables 

(geology, elevation, slope gradient, and slope position). So, even with the overall stability in all 

the ensemble models, the original model showed less stability than the others. This instability 

might have been due to the much larger disparity between the sizes of training classes, making 

patterns in covariates harder to detect. 

3.7 Discussion 

The disaggregation approach presented in this study integrates the conceptual themes of legacy 

soil survey into a coherent method to quantitatively refine documented pedologic patterns. This 

is done while maintaining a similar accuracy to the original product, but doing so with increased 

spatial and thematic resolution, and in a more continuous and field-oriented raster format. Our 

goal was to do this in a repeatable fashion with data and software that is widely available; a goal 

we felt was met. The disaggregation maps we produced may serve as a first step in soil survey 

update or distributed as an additional digital soil map product that could be useful in projects like 

GlobalSoilMap. The underlying prediction frequencies can be used in cell-by-cell weighted 

averaging of soil class properties to create fuzzy soil property maps similar to other recent 

studies (Zhu et al., 2010; Nauman et al., 2012). The underlying tree ensembles used also help us 
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understand where predictions are better and where new data may be needed in efforts to create 

more accurate maps. 

We attempted to leverage prior mapping work by directly matching environmental rasters like 

slope position, slope gradient, and other geomorphic metrics to actual published descriptions of 

soil-landscape relationships. By propagating the expert knowledge contained in the original 

mapping through to new updated digital mapping products, we can test it and try to model it with 

modern computing methods. The rule-matching process also provides a direct and 

understandable way for soil scientists to help tweak these models by refining training areas. In 

this case, decision trees performed well in interpreting these rules, supporting theories describing 

a hierarchal nature of many spatial-environmental soil patterns (de Bruin et al., 1999; Bui and 

Moran, 2001; Wielemaker et al., 2001). 

We also observed that adjusting the proportionality of soil class sampling for model 

training can influence how consistent individual classes are predicted. With a highly skewed 

distribution of class sizes, smaller classes are predicted poorly, or not detected at all. Using the 

original sample proportions (Orig model), there were three orders of magnitude of difference 

between the large and small class sizes, which allowed the larger, more generalized soils to 

dominate classifications. However, the transformed classifications tended to promote better 

predictions of smaller classes, and the square root sampling (SqRt model) in particular seemed to 

maintain the dominance of soils that were mapped extensively while still including less dominant 

soils. Validation results seemed to confirm that the SqRt and Log10 models showed slightly 

better accuracies across most of the metrics, although these results only showed slight and not 

entirely conclusive differences. 
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3.7.1 Uncertainty 

Uncertainty and validation of digital soil maps has been addressed by various researchers 

(e.g., Lark and Bolam, 1997; Brus et al., 2011; Malone et al., 2011; Bishop et al., 2001, 2006), 

and has been identified as a critical evaluation tool to provide for soil map end-users by the 

GlobalSoilMap consortium (Hartemink et al., 2010; Minasny and McBratney, 2010; 

GlobalSoilMap, 2012). Fully characterizing the error and uncertainty in predictive models is 

challenging because there are many potential sources of error. Any comprehensive assessment of 

predictive models must have some independent data to test against that is properly sampled (Brus 

et al., 2011), some way to keep track of how error of input variables propagates through a model 

(e.g., Lagacherie and Holmes, 1997; Hengl et al., 2004; Bishop et al., 2006), and some way to 

put the errors together into an uncertainty representation (e.g., Malone et al., 2011). This process 

is quite tedious, and our simple uncertainty result lacks a truly representative sampling scheme 

and does not comprehensively address all potential error in covariates used. However, it is an 

informative and understandable approach to help determine where predictions worked better or 

worse. 

Our findings relating model prediction frequencies to ground truth accuracies showed the 

power of randomized ensemble sampling in estimating uncertainty in predictions. We looked 

only at the nearest neighbor based validation agreements in our uncertainty calculations (see 

Table 6), which had lower validation match rates than using a local neighborhood around 

validation sites to look for matches (which acknowledges that there is spatial error in all data 

being used). Incorporating the neighborhood validation data to create a ground truth might result 

in overall higher ground truth probabilities of one finding the predicted soil within a given 

neighborhood radius of a prediction. This will be an object of future research as it requires more 
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detailed calculations and assumptions beyond the scope of this investigation. The situation of 

having limited validation sites and modeling data with varying degrees of spatial resolution and 

error is a common problem (e.g. Yang et al. 2010; Smith et al., 2012) and difficult to address in a 

manner that fully integrates error at all steps of modeling. This is especially true with the large 

number of spatial referencing and raster calculation steps done in GIS when preparing covariates. 

3.7.2 Future Soil Survey Applications 

From a practical perspective, if we can successfully disaggregate legacy soil maps to field 

scale continuous representations, then they can be better used for management and understanding 

ecological processes and associated dynamics. Disaggregation also offers a way to help aid in the 

process of harmonizing the large number of soil survey projects into more contiguous and 

consistent products. Just having more consistent soil series distribution maps across the U.S. with 

a disaggregated SSURGO product would aid in better understanding and interpretation of soils in 

the environment. With SSURGO currently, all that has to be represented on a map unit basis that 

does not actually spatially represent the underlying soil series directly (See Fig. 6). So just in the 

translation of the spatial symbology we can help better our geographic understanding of soil 

populations.  

In the United States, ecological site descriptions (ESD) are often built to describe how 

soil components are linked to sets of ecological communities (Grazing Lands Technology, 2003). 

ESD are built into conceptual frameworks that describe how potential soil-vegetation-wildlife 

communities respond to different natural and anthropogenic pressures. Currently, ESD are linked 

to SSURGO components in soil maps in the western U.S. and being expanded east, but are 

difficult to use on the ground because much of the soil mapping is coarser than many 



 

40 

 

conservation plans. So, if disaggregation can produce maps on a scale more appropriate for 

conservation plans that use ESD, then these efforts can be streamlined quicker. 

There is also the potential to start implementing dynamic representations of soil health 

within soil maps if ESD state and transition models can be integrated directly into soil map 

databases. This would move soil mapping into the temporal region where soils can be looked at 

as a series of properties changing at different rates as a result of real-time environmental inputs, a 

framework that would help meet calls from others for more dynamic soil information in the 

digital soil mapping community (Grunwald et al., 2011). This could be represented well in a 

disaggregated soil survey-ESD mapping framework. With better links between management, 

vegetation, soil, and wildlife documented in ESD, soil change can be modeled as resultant to 

disturbance or change in other parts of the system, and that could all be mapped spatially as an 

assessment of interdisciplinary ecological health. 

3.8 Conclusions 

This work demonstrates a method that combines soil-landscape knowledge, data-mining, 

and machine learning to disaggregate legacy soil surveys into soil component level maps. 

Although the technique uses the original survey spatial data to help determine typical areas for 

each soil to use in training, the original mapping polygon lines are not used for the final 

modeling. This technique also does not require any new field data to create the disaggregated 

model. However, sparse field data available for validation was used to help determine 

performance and attempt to determine uncertainty in a spatial representation from classification 

tree ensemble probabilities. 

The geomorphic inputs that help determine training areas represent a direct use of the 

original expert knowledge used to produce soil surveys. Thus if those geomorphic rule inputs are 
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updated, this offers a route to be able to iteratively refine the disaggregation product. Other 

modeling techniques (e.g., random forest, boosted classification trees) could also be tested on 

these training sets. In the surveys used for this study, we noticed that the rules in the SSURGO 

database tend to be less specific than those published in the original hard copy manuscript as was 

used by Thompson et al. (2010). This is especially important as countries like the U.S. try to 

harmonize and update soil surveys (Loerch, 2012; Thompson et al., 2012) because new 

refinements can then be rerun into updated disaggregation products using the approach 

presented. 

Our results also offer a small insight into the true accuracy of legacy soil data. Both 

disaggregation results and original survey data showed approximately 40% agreement with an 

independent validation when some spatial error is allowed in matching validation sites to 

predictions. These results were from a spatially limited validation set from multiple sources and 

dates, and as such must be interpreted with caution. However, these results leave much to be 

desired, and give us insight into the future work required to update soils data to standards 

deemed acceptable for modern applications. The uncertainty maps produced from these efforts 

are likely to be valuable in helping establish targeted field collection of new samples to help 

increase accuracies in the next generation of digital soil maps that might use disaggregation 

results as inputs into new models. 
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3.10 Tables and Figures 

Table 1. Two multi-component map units recorded in the Webster County soil survey, West 

Virginia (Delp, 1998). 

Map unit (MU) name MU kind Components Parent material % of MU 

Gilpin-Laidig association, very 
steep, extremely stony 

Association 

Gilpin Residuum 45 

Laidig Colluvium 35 

Included soils n/a 20 

Pineville-Gilpin-Guyandotte 
association, very steep, 
extremely stony 

Association 

Pineville Colluvium 35 

Gilpin Residuum 25 

Guyandotte Colluvium 15 

Included soils n/a 25 
 

 

 

Table 2. Tables used from SSURGO for training set rule matching. An example of the language 

used to match with digital terrain raster values is shown. 

SSURGO table 

Upwards 
SSURGO link 
table Table concept Example Rulematch  

Mapunit Legend 
Spatial unit 
attribute (polygon 
types) 

Gilpin-Dekalb 
complex, 15 to 35 
percent slopes, 
extremely stony 

n/a 

Component Map Unit 
Soil series and 
other components  

Dekalb Series, 35% of 
map unit 

CoGeomorDesc Component 
Geomorphic 
description: 
landform 

Ridges 
Geomorphic 

element 
Rules: Slope 
Position >= 

95 
CoSurfMorphGC CoGeomorDesc 

Geomorphic 
component 

Mountaintop 

CoSurfMorphSS CoGeomorDesc Surface shape Linear linear 
Hillslope 
context 

Rules: Slope 
Position >= 

75 and a 
‘Plain’  

CoSurfMorphPP CoGeomorDesc Hillslope profile Summit 
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Table 3. Hillslope profile and curvature rule matches derived from the SSURGO database. Slope 

position is a 0-100 index of how far up a slope a location is with 100 being a summit and 0 being 

valley floor. 

SSURGO descriptions Raster rules 

Slope 
shape 

(up/down) 

Slope shape 
(across) 

Hillslope 
profile 

Slope 
position 

Landform (Schmidt and Hewitt, 
2004) 

Concave Concave Backslope 
 

Hollow foot 

Concave Concave Footslope <50 Hollow foot or pit 

Concave Concave Shoulder 50-95 Hollow foot or pit 

Concave Concave Summit >=75 Pit 

Concave Convex Backslope 
 

Spur foot 

Concave Convex Footslope <50 Spur foot or saddle 

Concave Convex Shoulder >=50 Spur foot or saddle 

Concave Convex Summit 
 

Saddle 

Concave Linear Backslope 
 

Footslope 

Concave Linear Footslope <50 Footslope or channel 

Concave Linear Shoulder >50 Footslope or channel 

Concave Linear Summit >=75 Channel 

Convex Concave Backslope 
 

Hollow shoulder 

Convex Concave Footslope <50 Hollow shoulder 

Convex Convex Backslope 
 

Nose 

Convex Convex Footslope <50 Nose 

Convex Convex Shoulder >=50 Nose 

Convex Convex Summit 
 

Peak 

Convex Linear Backslope 
 

Shoulder slope 

Convex Linear Footslope <50 Shoulder slope 

Convex Linear Shoulder 50-95 Shoulder slope 

Convex Linear Summit 
 

Ridge 

Convex Linear Toeslope <10 Ridge 

Linear Concave Backslope 
 

Hollow 

Linear Concave Footslope <50 Hollow or channel 

Linear Concave Summit >=75 Channel 

Linear Convex Backslope 
 

Spur 

Linear Linear Backslope 
 

Planar slope 

Linear Linear Footslope <50 Planar slope or plain 

Linear Linear Shoulder >=50 Planar slope or plain 
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Linear Linear Summit >=75 Plain 

Linear Linear Toeslope <10 Plain 
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Table 4: Component general landform descriptions from SSURGO and the interpreted environmental raster value rules for the 

landform descriptions. All unique combinations of the SSURGO geomorphic description queries are shown with on the left along with 

the translated rules for the terrain rasters used to select training areas. 

SSURGO Descriptions Raster Rules 

Feature name Feature modifier 
Geomorphic component 

Hillslope 
position 

Slope 
gradient 

(%) 

Slope 
aspect 
(deg) 

Contrib. 
area (m

2
) 

Terrace 
(m) 

Landform† 
Mountains Hills Terraces 

           

reclaimed lands v. steep; mostly 
coal & high - 
carbon shale 

Mountainflank     10<=x<=95           

alluvial fans mouth of hollows     Tread 1<=x<=5 >1       101, 111, 100, 
120, or 10 

coves   Upper third of 
mountainflank 

    66<=x<=95         21 or 1 or 11 

coves lower elevations Center third of 
mountainflank 

    33<=x<=66         21,  1, or 11 

coves lower elevations Lower third of 
mountainflank 

    10<=x<=33          21 ,  1, or 11 

coves northern facing Mountainbase     1<=x<=10    270<=y<=36
0 or 

0<=y<=90 

    21, 1, 11, 101 

coves northern facing Mountainflank     10<=x<=95         21, 1, or 11 

depressions upland depressions 
on mountains 

Mountaintop     >95         111 or 121 

drainageways along 
drainageways and 
on head slopes 

Mountaintop     >95     or >75000   101 

drainageways along 
drainageways and 
on head slopes 

Upper third of 
mountainflank 

    66<=x<=95     or 
>100000 

  101 

flats   Mountaintop     >95         100 

flood plains       Tread <5         100 or 101 

flood plains high bottom land     Tread 0<=x<=5       >2 100 or 101 

flood plains nearly level     Tread <5 < 3       100 or 101 
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flood plains nearly level & 
poorly drained 

    Tread <5 < 3       100 or 101 

flood plains nearly level & well 
drained 

    Tread <5 < 3      >0.5 100 or 101 

hillslopes     Side Slope   10<=x<=95         22, 20 ,  21 ,  2 ,  
0 ,  1 ,  12 ,  10 ,  

or 11 

mountain 
slopes 

  Lower third of 
mountainflank 

    10<=x<=33         22 ,  20 ,  21 ,  2 
,  0 ,  1 ,  12 ,  10 

,  or 11 

mountain 
slopes 

  Mountainflank     10<=x<=95         22 ,  20 ,  21 ,  2 
,  0 ,  1 ,  12 ,  10 

,  or 11 

mountain 
slopes 

  Upper third of 
mountainflank 

    66<=x<=95           

mountain 
slopes 

benches Center third of 
mountainflank 

    33<=x<=66 <25         

mountain 
slopes 

benches Mountainflank     10<=x<=95 <25         

mountain 
slopes 

benches Upper third of 
mountainflank 

    66<=x<=95 <25         

mountain 
slopes 

benches on low 
elevation 
mountains and hills 

Center third of 
mountainflank 

    33<=x<=66 <25         

mountain 
slopes 

benches on low 
elevation 
mountains and hills 

Upper third of 
mountainflank 

    66<=x<=95 <25         

mountain 
slopes 

benches; > 3400 ft. 
elevation 

Upper third of 
mountainflank 

    66<=x<=95 <25         

mountain 
slopes 

concave sideslopes 
of uplands 

Mountainflank     10<=x<=95         21 ,  1 ,  11 ,  10 
,  12 

mountain 
slopes 

disected uplands - 
convex 

Mountainflank     10<=x<=95         20 ,  22 ,  2 ,  12 
,  120 ,  122 

mountain 
slopes 

disected uplands - 
convex and 
benches 

Mountainflank     10<=x<=95         20 ,  22 ,  2 ,  12 
,  100 ,  120 ,  

122 

mountain 
slopes 

disected uplands - 
convex; & benches 

Mountainflank     10<=x<=95         20 ,  22 ,  2 ,  12 
,  100 ,  120 ,  

122 

mountain 
slopes 

drainageways & 
footslopes 

Mountainbase     1<=x<=10     or 
>350000 

  101 ,  10 ,  11 
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mountain 
slopes 

drainageways & 
footslopes 

Mountainflank     10<=x<=95     or 
>150000 

  10 ,  11 ,  101 

mountain 
slopes 

elevations > 3400 
ft. 

Upper third of 
mountainflank 

    66<=x<=95         22 ,  20 ,  21 ,  2 
,  0 ,  1 ,  12 ,  10 

,  or 11 

mountain 
slopes 

lower sideslopes & 
footslopes 

Center third of 
mountainflank 

    33<=x<=66         22 ,  20 ,  21 ,  2 
,  0 ,  1 ,  12 ,  10 

,  or 11 

mountain 
slopes 

lower sideslopes & 
footslopes 

Lower third of 
mountainflank 

    10<=x<=33         22 ,  20 ,  21 ,  2 
,  0 ,  1 ,  12 ,  10 

,  or 11 

mountain 
slopes 

northern facing Mountainbase     1<=x<=10   270<=y<=36
0 or 

0<=y<=90 

    22 ,  20 ,  21 ,  2 
,  0 ,  1 ,  12 ,  10 

,  or 11 

mountain 
slopes 

northern facing Mountainflank     10<=x<=95   270<=y<=36
0 or 

0<=y<=90 

    22 ,  20 ,  21 ,  2 
,  0 ,  1 ,  12 ,  10 

,  or 11 

mountain 
slopes 

side slopes & 10s Mountainflank     10<=x<=95         2 ,  0 ,  1 ,  11, 
10 ,  or 12 

mountain 
slopes 

steep & very steep 
slopes and 
benches; very 
stony 

Mountainflank     10<=x<=95           

mountain 
slopes 

steep and very 
steep slopes and 
benches 

Mountainflank     10<=x<=95           

mountain 
slopes 

upper Center third of 
mountainflank 

    33<=x<=66         22 ,  20 ,  21 ,  2 
,  0 ,  1 ,  12 ,  10 

, or  11 

mountain 
slopes 

upper Mountainflank     33<=x<=95         22 ,  20 ,  21 ,  2 
,  0 ,  1 ,  12 ,  10 

,  or 11 

mountain 
slopes 

upper Upper third of 
mountainflank 

    66<=x<=95         22 ,  20 ,  21 ,  2 
,  0 ,  1 ,  12 ,  10 

,  or 11 

mountain 
slopes 

upper; > 3400 ft. 
elevation 

Mountainflank     33<=x<=95         22 ,  20 ,  21 ,  2 
,  0 ,  1 ,  12 ,  10 

,  or 11 

mountain 
slopes 

very steep uplands; 
extremely stony 

Mountainflank     10<=x<=95           

ridges   Mountaintop     >95            
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ridges braod; > 3400 ft. 
elevation 

Mountaintop     >95         100 

ridges broad Mountaintop     >95         100 

ridges broad; > 3400 ft 
elevation 

Mountaintop     >95         100 

ridges broad; > 3400 ft. 
elevations 

Mountaintop     >95         100 

ridges narrow - low 
elevation 
mountains and hills 

Mountaintop     >80          120 or 122 or 
121 

ridges narrow ridgetops 
on low elevation 
mountains and hills 

Mountaintop     >80          120 or 122 or 
121 

ridges narrow; low 
elevation 
mountains & hills 

Mountaintop     >80          120 or 122 or 
121 

sinkholes   Lower third of 
mountainflank 

    10<=x<=33         111 

stream terraces       Tread 0<=x<=50       1<=z<=5 100 or 101 

streams headwaters of Lower third of 
mountainflank 

    10<=x<=33     or 
>150000 

  101 or 1 or 11 

streams headwaters of Mountainbase     1<=x<=10     or 
>350000 

  101 or 1 or 11 

terraces low stream     Tread 0<=x<=10       >1 100 or 101 
† Landform key: 0 = backslope, 1 = hollow, 2 = spur, 10 = footslope, 11 = hollow foot, 12 = spur foot, 20 = shoulder, 21 = hollow shoulder, 22 = nose, 100 = plain, 101 = channel, 111 = pit, 120 = ridge, 121 = 
saddle, 122 = peak (Schmidt and Hewitt, 2004) 
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Table 5. List of environmental variables used for classification tree ensembles. 

Layer name Description Reference 

Slope position 0 to 100 index of hillslope position (Hatfield, 1996) 

% slope gradient slope gradient of pixel in percent (ESRI, 2011) 

Southness north/south aspect; -1 is north; 1 is south cosine(aspect - 180); (ESRI, 2011) 

Eastness east/west aspect: -1 is west; 1 is east cosine(aspect - 90); (ESRI, 2011) 

Planar curvature curvature parallel to contour line (ESRI, 2011) 

Profile curvature curvature parallel to slope fall-line (ESRI, 2011) 

log10(catchment area) upstream catchment area log10 transformed (Tarboton, 1997) 

Elevation elevation in meters (Gesch, 2007; Gesch et al., 2002) 

Terrace/relative height stratified relative elevation index Figure 2; Section 2.2.1 

1990 Landsat Geocover 

PC1 

1990 Landsat scene principal component 1 (MDA, 2004b); (Erdas, 2010) 

1990 Landsat Geocover 

PC2 

1990 Landsat scene principal component 2 (MDA, 2004b); (Erdas, 2010) 

2000 Landsat Geocover 

PC1 

2000 Landsat scene principal component 1 (MDA, 2004a); (Erdas, 2010) 

2000 Landsat Geocover 

PC2 

2000 Landsat scene principal component 2 (MDA, 2004a); (Erdas, 2010) 

Bedrock formations Different bedrock lithology formations (West Virginia Geologic and 

Economic Survey, 1968) 
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Table 6. Validation agreement rates for different spatial neighborhoods matching criteria. 

‘Series’ matches indicate exact class matches in the final ensemble prediction, ‘series or like’ 

means the percent of predictions that either matched the validation series or were a similar soil as 

defined in Section 2.4, ‘any tree’ refers to at least one of the trees in the ensemble predicting the 

correct series, and both the 5+ and 33+ refer to at least that many trees predicting the correct 

series. SSURGO matches compared validation pedons to the original SSURGO map units. If the 

validation pedon matched any of the named components in a map unit, it was deemed a match. 

  
Data Model 

  
Original Square root Log10 SSURGO 

Nearest 
neighbor 

Series 22% 24% 24% 39% 

Series or like 38% 36% 32% 52% 

Any tree 47% 51% 49% -- 

5+ trees 33% 39% 37% -- 

33+ trees 24% 25% 24% -- 

60-
meter 
radius 

Series 39% 41% 44% 41% 

Series or like 61% 64% 62% 56% 

Any tree 59% 56% 56% -- 

5+ trees 44% 51% 51% -- 

33+ trees 38% 41% 44% -- 
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Table 7. Importance values showing how often all covariates were used in each disaggregation model. All models are averaged in 

right column. Standard deviation values indicate how much variation there was within the 100 tree ensembles. Variables are ordered 

from highest (top) to lowest by the averaged column (right). 

 
Original model Square root model Log10 model All 

Variables Importance St. dev Importance St. dev. Importance St. dev. Average 

Bedrock geology 30.70% 1.35% 25.27% 0.08% 21.47% 0.09% 25.81% 

National Elev. Dataset 23.41% 1.13% 20.03% 0.07% 25.07% 0.09% 22.84% 
Slope position 12.91% 0.42% 14.64% 0.10% 15.27% 0.05% 14.28% 
% slope 6.57% 0.18% 8.32% 0.13% 8.40% 0.12% 7.76% 
2000 Geocover PC2 2.79% 0.04% 7.68% 0.03% 4.45% 0.05% 4.98% 
log(catchment area) 4.74% 0.34% 5.11% 0.04% 4.80% 0.06% 4.88% 
Profile curvature 6.15% 0.03% 2.50% 0.04% 2.54% 0.06% 3.73% 
1990 Geocover PC2 2.56% 0.04% 3.03% 0.04% 3.20% 0.05% 2.93% 
2000 Geocover PC1 1.81% 0.03% 2.83% 0.04% 3.27% 0.05% 2.64% 

Planar curvature 2.57% 0.05% 2.56% 0.03% 2.37% 0.04% 2.50% 
Terrace 1.57% 0.06% 2.56% 0.06% 3.35% 0.09% 2.49% 
Eastness 1.76% 0.03% 2.26% 0.03% 2.42% 0.04% 2.15% 
Southness 1.49% 0.03% 2.03% 0.03% 2.18% 0.04% 1.90% 
1990 Geocover PC1 0.97% 0.02% 1.16% 0.03% 1.21% 0.03% 1.11% 
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Figure 1. Study area in West Virginia, USA. Points show pedon locations used in the validation 

of disaggregation results. Black outlines delineate the Pocahontas and Webster County soil 

surveys used to train the model. Results were extrapolated to nearby areas with consistent 

covariate data to incorporate more validation points. (Inset: Location of Pocahontas and Webster 

Counties in West Virginia.) 
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Figure 2. The ruleset used to create the terrace raster from relative elevation layers of various 

neighborhoods. This was used for training area selection and in decision tree models. 
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Figure 3. User’s versus producer’s accuracy summary figures. Values are expressed in fractions. 

Note the generally lower values of producer’s accuracy that require a larger x-axis scale in plots. 

Each class is represented by its parent material type as indicated in the legend. 
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Figure 4. Bivariate plots comparing training accuracies versus the size of class training samples 

for different sampling schemes. Each class is symbolized by general parent material type. 
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Figure 5. Maps created from the models created from original proportions, square root, and base-

ten logarithm sampling ensembles. Soil types are symbolized by unique colors and are consistent 

across all three maps. 
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Figure 6. Maps  comparing the SqRt model and the original soil survey map units for Webster 

and  Pocahontas County Soil surveys. Soil types (SqRt model) and map units (surveys) are 

symbolized by unique colors. 
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Figure 7. Map with SSURGO map units overlaying disaggregation predictions for the SqRt 

(square rootsampled) model for part of the study area. 
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Figure 8. Distributions of prediction frequencies for pixels that correctly predicted (matches) soil 

series and misclassified (misses) soil series for the nearest neighbor validation of the square root 

disaggregation model: (a) boxplots of all data; (b) distribution of prediction frequencies for 

misclassified points; (c) distribution of prediction frequencies for correctly classified points; (d) 

plot of ground truth probabilities for different ranges of prediction frequencies. 
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Figure 9. Maps showing translation of prediction frequencies to ground truth probabilities using 

the step function from Fig. 8. This extent covers some of the same data (SqRt model) extent as 

Figure 7. 
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4 SEMI-AUTOMATED DISAGGREGATION OF A CONVENTIONAL SOIL MAP USING 

KNOWLEDGE DRIVEN DATA MINING AND RANDOM FORESTS IN THE SONORAN 

DESERT, USA 

4.1 Citation 

Nauman, T.W., J.A. Thompson, and C. Rasmussen. 2014. Semi-Automated Disaggregation of a 

Conventional Soil Map Using Knowledge Driven Data Mining and Random Forests in 

the Sonoran Desert, USA. Photogrammetric Engineering & Remote Sensing 80:353-366. 

Reproduced with permission from the American Society for Photogrammetry and 

Remote Sensing, Bethesda, MD, www.asprs.org. 

4.2 Abstract 

 Conventional soil maps (CSM) have provided baseline soil information for land use 

planning for over 100 years. Although CSM have been widely used, they are not suitable to meet 

growing demands for high resolution soil information at field scale. We present a repeatable 

method to disaggregate CSM data into ~30-meter resolution rasterized soil class maps that 

include continuous representation of probabilistic map uncertainty. Methods include training set 

creation for original CSM component soil classes from soil-landscape descriptions within the 

original survey database. Training sets are used to build a random forest predictive model 

utilizing environmental covariate maps derived from ASTER satellite imagery and the USGS 

National Elevation Dataset. Results showed agreement at 70% of independent field validation 

sites and equivalent accuracy between original CSM map units and the disaggregated map. 

Uncertainty of predictions was mapped by relating prediction frequencies of the random forest 

model and success rates at validation sites. 
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4.3 Introduction 

The increased availability of both digital elevation data and remote sensing data have prompted 

many studies that use these data to improve soil property prediction and inventory in a field that 

has been coined ‘digital soil mapping’ (DSM) (Grunwald et al., 2011; Grunwald, 2009; 

McBratney et al., 2003; Scull et al., 2003). Many of these studies use elevation data and remotely 

sensed imagery to represent one or more soil forming factors  that include climate, organisms, 

relief, parent material, and time (Jenny, 1941). In this form, soil classes or properties are 

predicted from topographic or spectral indices derived from elevation and imagery. 

Soil properties and functions influence many societal challenges particularly the response of 

ecosystem services such as carbon and nutrient cycling, water storage, purification, and cycling, 

pollutant transport, and vegetation growth to climate change (Brady and Weil, 2008). However, 

our knowledge of soils is imprecise as demonstrated by estimates of global soil carbon stocks in 

the top meter of soil that range from 1400 to 3250 petagrams (Grunwald et al., 2011). In light of 

the projected challenges that climate change presents to ecosystem services (IPCC, 2007), high 

quality soil information is central to natural resource management and land use planning. 

Although many soil inventories in the form of CSM have been carried out around the world, the 

scope and coarse spatial resolution of many soil databases have been criticized as limitations to 

effective incorporation of soil information into models of ecosystem services and other earth 

surface processes (Burrough, 1989; Burrough et al., 1997; Grunwald, 2009; Grunwald et al., 

2011; McBratney et al., 2003). The field of DSM has responded to this challenge with concerted 

efforts to quantitatively improve CSM soil information using a wide array of statistical, spatial, 

and information technology (Bui et al., 2009; Bui et al., 2006; Bui et al., 1999; Bui and Moran, 

2001; Cook et al., 1996a; Cook et al., 1996b; de Bruin et al., 1999; Häring et al., 2012; Kempen 
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et al., 2009; Kerry et al., 2012; McBratney, 1998; Minasny and McBratney, 2010; Nauman and 

Thompson, 2014; Nauman et al., 2012; Thompson et al., 2010; Yang et al., 2011; Zhu, 1997; 

Zhu et al., 1997, 2001). 

One of the main challenges to improving CSM data representation is that the original intent of 

CSM was management oriented, and properties attributed to soils were often estimates based on 

sparse data at representative locations and not quantifications based on rigorous statistical 

sampling and interpolation (USDA-NRCS, 2013). A large part of the goals of the original design 

of CSM was to provide somewhat qualitative interpretations intended to provide pragmatic initial 

guidance to developers, farmers, and other land management institutions (Soil Survey Staff, 

1993). However, many current users of soil information, particularly those not familiar with 

CSM history and evolution, have attempted to use CSM data beyond their original purposes 

leading to the potential for spurious relationships and possible incorrect data and process 

interpretation. 

Various models and analyses have been developed using spatial soil information from CSM 

(e.g., Gatzke et al., 2011; Lineback Gritzner et al., 2001; Thomas-Van Gundy et al., 2012; 

Thomas-Van Gundy and Strager, 2012). In the U.S., both the U.S. General Soil Map 

(STATSGO2) and the Soil Survey Geographic (SSURGO) database aggregate multiple soil 

classes into spatial map unit polygon delineations (Soil Survey Staff, 1993; Thompson et al., 

2012). The data model for SSURGO includes polygon map units with generally one to four 

named soil series (soil taxonomic class) per map unit, plus minor inclusions of soils or non-soil 

areas. This aggregation, and the inherently crisp breaks that choropleth style mapping impose on 

spatial data, make spatial representation and analysis of soils somewhat convoluted and 

predisposed to improper interpretation. For example, there are often abrupt changes in property 
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values between polygons or at survey project boundaries that do not follow natural breaks in the 

landscape (Loerch, 2012; Thompson et al., 2012). The emerging challenge is how to use the 

wealth of information in CSM in an appropriate way. We believe that part of the answer is to 

restructure the data by spatially disaggregating the information in soil map units into component 

parts in a manner that better represents the continuous nature of soil data in the field.   

4.3.1 Soil Survey Spatial Disaggregation 

The primary focus of soil survey spatial disaggregation is to express a realistic spatial 

distribution of soil individuals in cases where CSM aggregate multiple soils or create unrealistic 

crisp boundaries between soil classes. This can be considered an enhancement of a prior 

generalized soil map to produce a more consistent and detailed map that spatially distinguishes 

soil types and/or properties at a finer resolution. These techniques also tend to translate the data 

from polygonal maps to gridded raster formats. Disaggregation has been identified as a 

conceptual approach to translate current data into new higher resolution products better suited for 

modern applications (Bui, 2004; Bui et al., 1999; Bui and Moran, 2001; de Bruin et al., 1999; 

McBratney, 1998; Wielemaker et al., 2001). Generally, approaches use new pedon data and/or 

environmental covariate data in a DSM framework to determine how soils within polygon map 

units vary spatially.  

Spatial disaggregation of CSM has been demonstrated in attempts to recreate soil maps 

without the original polygons, which we call universal soil map updates (Bui and Moran, 2001; 

Hansen et al., 2009; Moran and Bui, 2002; Nauman and Thompson, 2014; Smith et al., 2012; 

Wei et al., 2010; Yang et al., 2011). Others have updated CSM within the bounds of original 

survey map units (Bui and Moran, 2001; Thompson et al., 2010; Häring et al., 2012). Other 

studies have looked at disaggregating CSM for specific soil properties (Goovaerts, 2011; Kerry 
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et al., 2012; Nauman et al., 2012). Goovaerts (2011) evaluated geostatistical methods that can 

combine point data with choropleth data to look at intra-polygon variation of a specific variable, 

and Kerry et al. (2012) applied parts of these methods to soil organic carbon mapping in northern 

Ireland. Fuzzy logic has been used in disaggregation through applications like SoLIM (Qi et al., 

2006; Zhu, 1997; Zhu et al., 1996) to help organize and implement soil-landscape relationships 

for mapping soils. SoLIM has been used in coordination with both expert knowledge (Smith et 

al., 2010) and statistical approaches (Yang et al., 2011) to implement discovered soil-landscape 

relationships for updating and disaggregating soil maps. Other fuzzy knowledge systems have 

leveraged landform element classifications to better disaggregate landscapes into units with 

similar soils (MacMillan et al., 2000). Classification and regression trees have also been a 

prominent technique used in disaggregation. Bui et al. (2001) and Wei et al. (2010) both used 

ensembles of decision trees and Haring et. al. (2012) used random forests to refine soil and 

surficial geology classes. Tree-based models have also been used extensively in general DSM 

applications and seem to have the greatest flexibility of common modeling methods (Behrens et 

al., 2005; Behrens et al., 2010a; Behrens et al., 2010b; Bui et al., 2009; Lemercier et al., 2012; 

McKenzie and Ryan, 1999; Moran and Bui, 2002; Saunders and Boettinger, 2007; Schmidt et al., 

2008; Scull et al., 2005). 

The objective of this research was to address the common situation where an older CSM 

is available, but more detailed soil spatial data is needed and few soil observations are available. 

We also compare the usefulness of a variety of ASTER satellite imagery and USGS 1 arc-second 

National Elevation Dataset (NED) derived data layers for use in CSM disaggregation. We utilize 

soil-landscape rules that are usually present in soil survey database map unit descriptions in 

combination with a random forest to universally disaggregate a CSM to a ~30-meter resolution 
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raster soil class map without collecting new field data. This approach leverages both the implicit 

information of the SSURGO spatial data (the standard CSM data product), and explicit expert 

knowledge about soil-geomorphology relationships attributed in the SSURGO database to create 

a training set. It pairs the training set with elevation and imagery in a random forest classification 

tree ensemble model. We selected methods and data sources based on repeatability, 

transparency, and manageability in an effort to make them more accessible to soil science 

professionals in government and consulting.  

4.4 Methods 

4.4.1 Study Area 

Organ Pipe Cactus National Monument (ORPI) is located in the Basin and Range 

physiographic province of southern Arizona, USA. The area is characterized by alternating 

mountain ranges of diverse lithology and broad alluvial valleys with bajada and basin floor 

systems (Hendricks, 1985). The mountain ranges within ORPI include both intrusive and 

extrusive igneous rocks as well as sedimentary and meta-sedimentary materials with a wide 

variety of mineral assemblages (Fig. 1) (Bezy et al., 2000; Eddy et al., 1991).The geologic 

history of the area includes four distinct periods of volcanism starting 1.6 billion years ago and 

ending with the last episode 26 to 14 million years before present (Bezy et al., 2000; Eddy et al., 

1991). Tectonic uplift and erosion have worked and reworked the landscape during this time to 

produce a complicated arrangement of mountains rising up to 1,465 meters in elevation with an 

intricate assemblage of associated alluvial outwash landforms (Bezy et al., 2000). Current area 

geomorphology is a result of Pleistocene and Holocene aggradations and entrenchment cycles 

leaving complex arrangements of deposits with varying dissection and escarpment patterns that 
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differ between lithologic source materials (Bezy et al., 2000; McAuliffe, 1994; Parker, 1991; 

Parker, 1995; Simpson, 1991). 

 

Figure 1. ASTER satellite image of Organ Pipe Cactus National Monument and validation 

locations. 

The area spans the transition from the Arizona Upland to Lower Colorado River Valley 

subdivision of the Sonoran Desert. This includes a variety of vegetation communities including 

juniper woodland in the high Ajo Mountains, desert scrub columnar cacti communities on 
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Bajadas, and sparsely vegetated creosote flats in the Growler Valley (Fig. 1) (Parker, 1991).  

Average annual precipitation at the ORPI headquarters is reported to be 251 mm with a strong 

bimodal distribution characterized by summer monsoon precipitation and a moderate winter 

rainy season (NOAA, 2004). The mean annual temperature from 1971 to 2000 was 21.6°C with 

a range of -10 to 47.8°C (NOAA, 2004). A precipitation gradient exists within ORPI decreasing 

from 342 mm in the high elevation Ajo Mountains to 190 mm in the western areas of the 

monument (Parker, 1991).  Soils in ORPI were all classified as having an aridic soil moisture 

regime and hyperthermic soil temperature regime (USDA-NRCS, 1972).  However, high 

elevation areas characterized by juniper woodland may include ustic soil moisture and thermic 

soil temperature regimes. 

4.4.2 Training Set Creation 

The CSM dataset used here includes a SSURGO dataset  that consists of a polygon format vector 

map attributed with a map unit label and a relational database that attaches soil information to the 

map units. SSURGO includes multiple types of map units that generally have one to four named 

soil series components as well as ‘inclusions’ of other soils or non-soil areas. Each of these 

component soil series can have different property distributions that must be generalized or 

aggregated somehow if a user wants to display a soil property using SSURGO polygons (e.g. 

Bliss et al., 1995; Thompson and Kolka, 2005). 

In SSURGO, each component of every map unit has information regarding soil 

properties, as well as geologic and geomorphic characteristics, attributed to it (Table 1). After 

reviewing an extensive set of environmental rasters and SSURGO attributes for potential use in 

training models, we determined that a simple scheme that matches DEM derived layers to 

geomorphology attributes would be effective. By querying the geomorphic landform tables in 
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SSURGO (cogeomorphdesc and cosurfmorphgc), soil-landscape relationship descriptions were 

extracted from the database to help determine where within a map unit a component is expected 

to occur, e.g., Growler series exists on the convex portions of valley floors. The geomorphic 

landform descriptions in these queries were then matched to values in environmental rasters that 

represent topographic wetness index (TWI) (Yang et al., 2007), created using Tarboton’s (1997) 

surface flow routing algorthim, and to relative elevation metrics within different neighborhoods 

to help distinguish components within map units (Table 1).  

Rule sets were developed to match the descriptive language from the geomorphology 

queries as well as delineate small washes present in map units as inclusions. In most single 

component map units this only involved trying to eliminate small washes that were inclusions by 

setting a TWI cutoff of 17. This threshold was chosen by draping the TWI layer onto high 

resolution USGS 1-meter DOQQ imagery and matching a TWI value to delineate visible washes. 

Single component map units with younger soils that still flood, e.g. Gilman very fine sandy 

loam, were left alone for training selection because they were deemed acceptable as is.  

For multi-component map units, each component geomorphic description was examined, 

and DEM variables were selected on the basis of which variable best distinguished the labeled 

differences. This was often difficult because the language in SSURGO can seem contradictory. 

For example, the Growler series in the Growler-Antho complex is described on ‘valley floors in 

convex portions’, and Antho is described on ‘flood plains in dips’ or on ‘alluvial fans’ in areas 

with ‘terrace tread’ (Table 1). This seems to indicate that there are areas of flood plain, alluvial 

fan and valley floor in the map unit. However, when these map units were examined in the field 

and in aerial photography, they appeared to be alluvial fan shaped delineations that also have 

very subtle topography more like a valley floor with slightly lower areas that still flood, and 
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other slightly higher areas that do not receive much overland flow. Based on this observation, we 

decided to use the TWI raster to split these areas apart into lower wetter areas and higher convex 

locations. We also checked the original hardcopy soil survey manuscript for clarification which 

indicated that “Growler soils lie on slightly elevated convex areas” and are “easily recognized” 

by “varnished desert pavement and sparse vegetation”. Similarly, the report states that “Antho 

soils lie between the Growler areas and along shallow drainage ways” (USDA-NRCS, 1972). 

Based on this we found that the TWI raster distinguished drainage patterns in Growler-Antho 

complex in such a way as to delineate subtle washes and varnished surfaces based on comparing 

TWI breaks with visual inspection of 1-meter USGS DOQQ aerial photography.  Following this 

process, we translated soil-landscape relationship records in the SSURGO database to 

environmental raster values. This rule translation attempted to emulate and streamline the 

approach Thompson et al. (2010) used to create spatial soil-landscape rule-sets. We simply 

employ these rule-sets as a means to create a model training set.  

 All rules were presumed to identify typical landscapes for respective component soils 

within each map unit. The areas selected by each component rule were added to a training set 

that was compiled for all soil series and other named components (e.g., rock outcrops or higher 

taxa such as Torrifluvents). In other words, areas from all map units that were ‘typical’ of a 

given soil series were combined into one training set for each respective soil series. All 

environmental rasters used in rule-matching were derived from the 1-arc second USGS national 

elevation dataset (NED) (Gesch, 2007; Gesch et al., 2002). Final maps and other raster data used 

in later modeling steps were co-registered to the NED grid with the North American Datum of 

1983 Universal Transverse Mercator projection in Zone 12-North. 
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4.4.3 Model Building 

Training areas for each soil series/component were randomly sampled proportionally to 

component areal extent in the original CSM (following Moran and Bui, 2002) to produce two 

ensemble models. Random forest classifications were built from the training sets using a more 

exhaustive set of environmental covariate rasters than were used in the original training rule-

matching (Table 2). Variables used by Nauman (2009) for unsupervised soil-landscape 

classifications were used for one model (‘Original’ model) to compare with that study, and a set 

of new variables that highlight subtle topographical differences were added to that dataset to 

build an ‘Updated’ model. The Updated model added a suite of relative elevation metrics to help 

with classification based on results from recent studies that show that varying neighborhood 

sizes of terrain indices can improve spatial prediction of soils (Behrens et al., 2010a; Behrens et 

al., 2010b).
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Table 1. Component level rule matching for training set creation. Some components have more than one geomorphic description. 

Map Unit Name 
Component         
(% of map unit) 

SSURGO Component Geomorphic 
Descriptions* 

Raster rules  
 

TWI** H3** R20** 

Ajo very cobbly sandy loam, 2 to 5 percent slopes Ajo (90%) terrace tread on alluvial fans  twi < 17     

Ajo very gravelly loam, 1 to 5 percent slopes Ajo (90%) terrace tread on alluvial fans twi < 17     

Antho fine sandy loam Antho (95%) terrace tread on alluvial fans no rules***     

Antho fine sandy loam Antho (95%) dips in flood plains no rules***     

Antho soils, very gravelly variants Antho (85%) terrace tread on alluvial fans twi < 17     

Cherioni gravelly very fine sandy loam, 0 to 8 
percent slopes 

Cherioni (95%) low beveled side slopes of hills twi < 17     

Cipriano gravelly loam Cipriano (90%) terrace tread on bajadas twi < 17     

Cipriano gravelly loam Cipriano (90%) terrace tread on alluvial fans twi < 17     

Gachado extremely cobbly loam, 2 to 8 percent 
slopes 

Gachado (75%) toe slopes of hills twi < 17     

Gachado extremely cobbly loam, 2 to 8 percent 
slopes 

Gachado (75%) mountainflank toe slopes twi < 17     

Gilman very fine sandy loam Gilman (90%) alluvial fans, lower, terrace tread no rules***     

Gilman very fine sandy loam Gilman (90%) dips in flood plains no rules***     

Gilman very fine sandy loam, saline Gilmansaline (90%) terrace tread on lower alluvial fans no rules***     

Gilman very fine sandy loam, saline Gilmansaline (90%) dips in flood plains no rules***     

Growler-Antho complex Antho (45%) dips in flood plains twi >= 14.5     

Growler-Antho complex Antho (45%) terrace tread on alluvial fans twi >= 14.5     

Growler-Antho complex Growler (35%) convex portions of valley floors twi < 14.5     

Gunsight very gravelly loam, 0 to 2 percent slopes Gunsight (75%) 
terrace tread on lower portions of 
alluvial fans 

twi < 17     

Gunsight very gravelly loam, 2 to 15 percent 
slopes 

Gunsight (80%) 
terrace tread on lower portions of 
alluvial fans 

twi < 17     

Harqua very cobbly loam, 0 to 8 percent slopes Harqua (90%) 
terrace tread of degrading surface on 
plains 

twi < 17     

Harqua very gravelly loam, 0 to 3 percent slopes Harqua (90%) 
terrace tread of degrading surfaces 
on plains 

twi < 17     
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Map Unit Name 
Component         
(% of map unit) 

SSURGO Component Geomorphic 
Descriptions* 

Raster rules  
 

Harqua-Gunsight complex Gunsight (40%) 
terrace tread on lower portions of 
alluvial fans 

twi < 17   r20 > 0 

Harqua-Gunsight complex Harqua (40%) 
terrace tread on degrading surfaces 
of plains 

twi < 17   r20 <= 0 

Laveen loam Laveen (85%) tread of old terraces twi < 17     

Lomitas extremely stony loam, 8 to 40 percent 
slopes 

Lomitas (75%) hills, Side Slope twi < 17     

Lomitas extremely stony loam, 8 to 40 percent 
slopes 

Lomitas (75%) mountainflanks twi < 17     

Perryville very cobbly fine sandy loam, 0 to 8 
percent slopes 

Perryville (80%) terrace tread of old alluvial fans twi < 17     

Rillito gravelly sandy loam Rillito (75%) terrace tread on alluvial fans twi < 17     

Rock land Rock land (90%) mountain slopes twi < 17     

Rock outcrop Rock outcrop (90%) mountain slopes and peaks twi < 17     

Stony land-Rock outcrop association Rock outcrop (30%) mountain peaks twi < 17 h3 > 45   

Stony land-Rock outcrop association Stony land (65%) hill side slopes twi < 17 h3 <= 45   

Stony land-Rock outcrop association Stony land (65%) mountainflanks twi < 17 h3 < 45   

Torrifluvents Torrifluvents (90%) 
dips with eroded overflow stream 
channels 

original map units or twi > 17 (any 
map unit)  

* These are interpretations that take the original nouns in the SSURGO database and link them using prepositions to create meaningful context. 
** twi = topographic wetness index, 

h3 = relative elevation above local 3-pixel minimum 
r20 = relative elevation w/ respect to 20 pixel local average  

*** No rules were included for these soils because they exist on floodplains effectively eliminating the need for exclusion of washes by twi. 
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Table 2. List of raster covariate layers used for building tree models from selected training sets. 
Variable 
Symbol 

Name 
Original or 
Updated* 

Explanation 

b1 ASTER Band 1 Original VNIR Reflectance (0.52-0.6 μm) 

b2 ASTER Band 2 Original VNIR Reflectance (0.63-0.69 μm) 

b3 ASTER Band 3 Original VNIR Reflectance (0.76-0.86 μm) 

b4 ASTER Band 4 Original SWIR Reflectance (1.6-1.7 μm) 

b5 ASTER Band 5 Original SWIR Reflectance (2.145-2.185 μm) 

b6 ASTER Band 6 Original SWIR Reflectance (2.185-2.225 μm) 

b7 ASTER Band 7 Original SWIR Reflectance (2.235-2.285 μm) 

b8 ASTER Band 8 Original SWIR Reflectance (2.295-2.365 μm) 

b9 ASTER Band 9 Original SWIR Reflectance (2.360-2.430 μm) 

b2b1 ASTER Ratio 2/1 Original Reflectance Ratio Bands 2/1 

b2b4 ASTER Ratio 2/4 Original Reflectance Ratio Bands 2/4 

b2b5 ASTER Ratio 2/5 Original Reflectance Ratio Bands 2/5 

b2b6 ASTER Ratio 2/6 Original Reflectance Ratio Bands 2/6 

b2b7 ASTER Ratio 2/7 Original Reflectance Ratio Bands 2/7 

b2b8 ASTER Ratio 2/8 Original Reflectance Ratio Bands 2/8 

b2b9 ASTER Ratio 2/9 Original Reflectance Ratio Bands 2/9 

b2sd14 Band 2 Std. Dev - 14-pixel Original Std Dev of Band 2 in a 14-pixel radius 

b2sd3 Band 2 Std. Dev - 3-pixel Original Std Dev of Band 2 in a 3-pixel radius 

b2sd5 Band 2 Std. Dev - 5-pixel Original Strd Dev of Band 2 in a 5-pixel radius 

b3b2 ASTER Ratio 3/2 Original Reflectance Ratio Bands 3/2 

b4b3 ASTER Ratio 4/3 Original Reflectance Ratio Bands 4/3 

b4b5 ASTER Ratio 4/5 Original Reflectance Ratio Bands 4/5 

b4b6 ASTER Ratio 4/6 Original Reflectance Ratio Bands 4/6 

b4b7 ASTER Ratio 4/7 Original Reflectance Ratio Bands 4/7 

b4b8 ASTER Ratio 4/8 Original Reflectance Ratio Bands 4/8 

b4b9 ASTER Ratio 4/9 Original Reflectance Ratio Bands 4/9 

b4sd14 Band 4 Std. Dev - 14-pixel Original Std Dev of Band 4 in a 14-pixel radius 

b4sd3 Band 4 Std. Dev - 3-pixel Original Std Dev of Band 4 in a 3-pixel radius 
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Variable 
Symbol 

Name 
Original or 
Updated* 

Explanation 

b4sd5 Band 4 Std. Dev - 5-pixel Original Strd Dev of Band 4 in a 5-pixel radius 

dem Elevation - meters Original 1-arc sec. Nat'l Elev. Dataset (Gesch et al., 2002) 

ca Contributing Area Original Upstream surface area contributing flow to pixel  

twi Topographic Wetness Index Original Calc: ln(ca / tan(slope)) 

wetness_tn Modified twi Original Calc: ln(ca / (meandiff25 / range of meandiff25)) 

curvx Horizontal Curvature Original 2nd-derivative across slope contour 

diff25 Difference from Max - 25-pixel Original Max elevation in 25-pixel radius minus the cell value   

meandiff25 Mean difference - 25-pixel Original Mean elevation in 25-pixel radius minus the cell value 

slppos25 Slope Position - 25-pixel  Original (Max elevation in 25-pixel radius minus the cell value)/(range) 

swness Southwestness Original A -1 to 1 index of how southwest a slope faces: cos(aspect -225°) 

plen Longest Upslope Length Original Length of longest flow path above each cell 

tlen Total Upslope Length Original Additive length of all upslope flowpaths for each cell 

rel_ht_3 Local Height - 3-pixel Updated Height of cell above the local minimum elevation in 3-pixel radius 

rel_ht_5 Local Height - 5-pixel Updated Height of cell above the local minimum elevation in 5-pixel radius 

rel_ht_10 Local Height - 10-pixel Updated Height of cell above the local minimum elevation in 10-pixel radius 

rel_ht_20 Local Height - 20-pixel Updated Height of cell above the local minimum elevation in 20-pixel radius 

rel_ht_30 Local Height - 30-pixel Updated Height of cell above the local minimum elevation in 30-pixel radius 

rel_ht_50 Local Height - 50-pixel Updated Height of cell above the local minimum elevation in 50-pixel radius 

rel_ht_70 Local Height - 70-pixel Updated Height of cell above the local minimum elevation in 70-pixel radius 

rel_meanht3 Local Relief - 10-pixel Updated Height of cell relative to local mean elevation in 3-pixel radius 

rel_meanht5 Local Relief - 10-pixel Updated Height of cell relative to local mean elevation in 5-pixel radius 

rel_meanht10 Local Relief - 10-pixel Updated Height of cell relative to local mean elevation in 10-pixel radius 

rel_meanht20 Local Relief - 20-pixel Updated Height of cell relative to local mean elevation in 20-pixel radius 

rel_meanht30 Local Relief - 30-pixel Updated Height of cell relative to local mean elevation in 30-pixel radius 

rel_meanht50 Local Relief - 50-pixel Updated Height of cell relative to local mean elevation in 50-pixel radius 

rel_meanht70 Local Relief - 70-pixel Updated Height of cell relative to local mean elevation in 70-pixel radius 

*Original refers to variables that were used directly from Nauman (2009), and Updated refers to variables that were added to the ‘Updated’ model 
beyond those from the 2009 study. 
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4.4.3.1 Covariate Data Sources 

 ASTER satellite imagery (Abrams, 2000) and the 1 arc-second USGS National 

Elevation Dataset (NED) (Gesch, 2007; Gesch et al., 2002) were used for covariate layers. All 

terrain-based rasters were derived from NED after re-projection to NAD83-UTM12N using a 

bilinear interpolation (Table 2). An ASTER scene from December 18, 2001, was chosen for clear 

conditions and spatial coverage of ORPI. The ASTER On-Demand L3 Orthorectified imagery 

was acquired from LP-DAAC (http://edcimswww.cr.usgs.gov/pub/imswelcome/). Radiance at 

the sensor was calculated from the original imagery scaled radiance (DN values) based upon 

ASTER coefficients published at the LP-DAAC website (Abrams et al., 2001). These radiance 

values were subsequently modified using a ground based correction coefficient supplied by the 

University of Arizona Optical Sciences Remote Sensing Group (Buchanan, 2007). Radiance 

images were then converted to reflectance values using the COST method (Chavez, 1996; 

instructions  in Appendix A of Nauman, 2009). Inputs for this conversion included an average of 

two commonly used solar irradiation models for ASTER bands, World Radiation Center (WRC) 

and ‘MODTRAN4’ (Thome et al., 2001, p. 264). Earth-sun distances were obtained online from 

the NASA horizons web-server (Giorgini et al., 1996). ASTER reflectance bands were used for 

all imagery variables (Table 2). 

4.4.3.2 Decision Tree Classification 

Tree-based machine learning techniques have shown great potential in the modeling of ecology 

and soil systems (Bui and Moran, 2001; Henderson et al., 2005; Bui et al., 2006; Minasny and 

McBratney, 2007; Schmidt et al., 2008; Behrens et al., 2010b). Generally, these algorithms 

recursively split a dataset by picking breaks in covariate data that help to purify or increase the 

http://edcimswww.cr.usgs.gov/pub/imswelcome/
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information content of the model branches (Breiman, 1984; Pedregosa et al., 2011). The Scikit 

Machine Learning Tree module was used in Python for decision tree implementation and follows 

a Classification and Regression Tree (CART) implementation which allows for numerical and 

categorical variables to be used as inputs as well as for a target variable (Pedregosa et al., 2011; 

Scikit-learn.org, 2013). The algorithm as we implemented in the Tree module uses Gini’s 

impurity to measure the quality of splits for tree building and randomizes variable selection at 

each node to implement a Random Forest (Breiman, 2001). We conducted an informal 

sensitivity analysis with the parameters controlling maximum tree depth and minimum node split 

sample size to try and balance fit with tree complexity. Due to the large number of training 

classes and a complicated and geologically stratified study area, we felt that trees needed to be 

allowed to grow relatively large. A maximum tree depth of 20 splits and a 20-pixel minimum 

sample size to attempt a split were selected for simple tree pruning parameters. At each split in 

all trees, 18 variables were randomly chosen from the greater suite for possible use in rule 

creation. Fifty percent of the training set was randomly sampled with replacement for use in each 

tree. In each tree training sample, individual component class sizes were trimmed down so that 

all components retained the same relative proportions as in the original SSURGO survey. A 500-

tree ensemble was generated for both models.   

4.4.4 Validation of Disaggregated Maps 

 Disaggregated maps were validated with independent field data from 10 USDA-

NRCS pedon database locations (National Cooperative Soil Survey, 2012), and 53 field checks 

in 2006 and 2007 (Fig. 1). Access to ORPI is very difficult due to the remoteness of the area and 

active smuggling issues along the international border with Mexico. Due to these logistical 

challenges, field checks were only allowed in limited areas along certain roads. As such, 
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validation points were not randomly allocated and were located to best represent the units where 

access was granted. We were able to get points in 17 of 23 SSURGO map units and 16 of 18 

disaggregated components (Updated model) given the field limitations (see Table 3). Field 

checks were determined by small hole and/or auger check of diagnostic soil features (e.g., 

argillic horizon) and basic soil morphology (i.e., rock content, texture, carbonates, surface rock, 

and color) to match with the nearest soil series. These field locations were intersected with 

disaggregation results to estimate overall classification accuracy, and  to determine uncertainty 

based on the underlying ensemble model frequencies. 

 

Table 3. Summarizes the distribution of validation points in original SSURGO map units (left), 

and the Updated disaggregation model (right).  

SSURGO Map Unit                                                              
(Plate 1a) 

# 
Validation 

Points 

# 
Correct 

% 
Correct 

Predicted 
Component in 
Updated Model 
(Plate 1b) 

# 
Validation 

Points 

# 
Correct 

% 
Correct 

Ajo very gravelly loam, 1% to 5% slopes 6 3 50.0% Ajo 6 3 50.0% 

Antho fine sandy loam 7 6 85.7% Antho 7 6 85.7% 

Cherioni gravelly very fine sandy loam, 0% to 8% slopes 3 3 100.0% Cherioni 3 3 100.0% 

Cipriano gravelly loam 3 3 100.0% Cipriano 3 3 100.0% 

Gachado extremely cobbly loam, 2% to 8% slopes 1 1 100.0% Gachado 1 1 100.0% 

Gilman very fine sandy loam 4 4 100.0% Gilman 6 5 83.3% 

Gilman very fine sandy loam, saline 1 0 0.0% Gilmansaline 1 0 0.0% 

Growler-Antho complex 4 4 100.0% Growler 2 2 100.0% 

Gunsight very gravelly loam, 2% to 15% slopes 9 6 66.7% Gunsight 18 10 55.6% 

Harqua very cobbly loam, 0% to 8% slopes 3 2 66.7% Harqua 4 2 50.0% 

Harqua-Gunsight complex 7 5 71.4% Laveen 1 1 100.0% 

Laveen loam 1 1 100.0% Lomitas 4 2 50.0% 

Lomitas extremely stony loam, 8% to 40% slopes 4 3 75.0% Perryville 1 1 100.0% 

Perryville very cobbly fine sandy loam, 0% to 8% slopes 1 1 100.0% Rillito 3 3 100.0% 

Rillito gravelly sandy loam 3 3 100.0% Rock land 1 0 0.0% 

Rock land 1 0 0.0% Torrifluvents 2 2 100.0% 

Torrifluvents 5 2 40.0% Total 63 44 69.8% 

Total 63 47 74.6%      
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4.5 Results 

 The two disaggregation models performed well with training accuracies of 80% 

for the Original model and 85% for the Updated model. Corresponding validation accuracies 

were 66.7% for the Original model and 69.8% for the Updated model (Table 3). At validation 

sites, the original SSURGO map units listed one of the correct validation soils 74.6% of the time. 

Although this agreement is higher than the disaggregation models, the multi-component map 

units inflate the accuracy because they offer more than one possible class that can count for a 

match in a polygon. In contrast, the disaggregation models always predict one soil for one pixel, 

so a comparison to the validation of SSURGO map units with multinomial themes is not 

objective. To better compare performance between the original CSM and disaggregated maps, 

we looked at validation points that fell into single-component soil consociation SSURGO map 

units (52 total sites) to see if that affected agreement rates. In consociations, SSURGO matched 

at 73.1% of sites and the Updated disaggregated map at 75.0% of those same locations indicating 

very similar accuracies. The resulting disaggregated map presents a single consistent theme (i.e. 

one soil component per pixel; Plate 1b) whereas the SSURGO map units sometimes aggregate 

multiple components in map units and also sometimes delineate multiple map units with the 

same soil by breaking out general slope gradient classes (Plate 1a). 
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Plate 1. (a) Map of original soil survey map units. Percentages indicate slope gradient ranges 

attributed to map units. (b) Updated disaggregated map of soil series components. 
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4.5.1 Uncertainty Map 

 Prediction frequencies of classes in the best performing random forest model 

(Updated) were compared between pixels that both matched and did not match validation site 

soil observations to create a simple field data derived uncertainty surface. Figure 2 shows how 

validation site prediction probabilities (derived from model prediction frequencies) were 

compared and translated to an uncertainty surface. Prediction probabilities were found to be 

higher at sites where validation matched predictions (Wilcoxon rank sum test w continuity 

correction, W = 571.5, 1-sided p = 0.0187, 2-sided p = 0.0373; Fig. 2a). Although match rates 

seem to increase with prediction probabilities, there is a small drop in field data agreement rates 

in the highest bin (0.9-1.0) that does not follow the positive trend (Fig. 2d). It is difficult to make 

any detailed conclusions beyond the overall positive relationship between field data probabilities 

and prediction probabilities because the actual sample sizes of the step function bins are all less 

than twenty and are variable in size. These small sample sizes mean that a change of just one 

validation match would influence any bin by more than 1/20, or 5%. In this case, the difference 

in bin sample size between the 0.8-0.9 bin (n=11) and 0.9-1.0 bin (n=19) makes it difficult to 

determine if the drop in the 0.9-1.0 probability (Fig. 2d) is due to the difference in bin sample 

sizes or the predictive ability of the model. However, the overall field data accuracies still are all 

above 0.56, indicating a good deal of predictive ability across all prediction probabilities. It also 

appears clear that above a prediction probability of 0.70 the field data probability also goes up to 

above 0.70. Field data probabilities were mapped by translating prediction probabilities produced 

from the random forest using the step function shown in Figure 2d in order to create a map that 

can serve to represent uncertainty in predictions (Fig. 3). 
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Figure 2. Validation site probabilities compared for Updated model showing the higher tendency 

of prediction probabilities at matches or correctly predicted sites (a), histograms of prediction 

probabilities at missed sites (b) and matched sites (c), and the empirical relationship relating 

prediction probabilities and field data probabilities (d).  



 

  92 

 

Figure 3. Field data probability representation of uncertainty for the Updated model based on 

step function in Fig. 2d. 
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Figure 4. Mean field data probabilities with standard deviation bars summarized by Updated 

model disaggregation components (left) and SSURGO map units (right). 

 Examination of field data probability (uncertainty) values among original 

SSURGO map units and Updated disaggregation model components did show some variability 

between classes, but all class means were between 0.65 and 0.74 (Fig. 4). Variation is evident 

within classes when SSURGO and Updated model maps are overlaid on the field data probability 

map. Visually, there were lower probability areas around some of the SSURGO map unit 

boundaries where the model appears to transition between classes (unpublished map). Other 

lower probability areas followed landscape attributes that didn’t track any one component type or 

map unit but tended to occur on certain lower alluvial fan sequences, mountain footslopes, or fan 

and wash scarps. Delineations of the Growler-Antho complex in the Valley of the Ajo (Fig.1) 

were a good example of lower alluvial fan units that had lower probability values (Fig. 3). 
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However, the large area of the Growler-Antho complex in the Growler Valley (Fig. 1) had 

generally higher probabilities (Fig. 3) suggesting that there might be some kind of difference 

between Growler-Antho units in the different valleys. Areas of valley floor (e.g. Gilman), 

Torrifluvents (in the Updated model), middle bajadas (e.g. Gunsight), upper alluvial fans (e.g. 

Ajo), and non-soil components of the larger mountains (e.g. Rock land) tended to have higher 

field data probabilities. We also observed that in both the Updated model and SSURGO that 

classes with less than 10,000 pixels (e.g. Gachado, Gilman-saline, Laveen, and Perryville) all 

had lower field data probability averages while the largest classes (e.g. Antho, Gilman, Gunsight, 

Lomitas, Rock land, and Stony land) with 100,000 or more pixels had generally higher means.  

We are cautious about over-interpretation of this uncertainty data because the field data 

probability values are means of discretized probability classes created from 63 validation points, 

and this analysis is generalizing 1.6 million pixels. The large sample sizes (number of pixels) in 

individual classes would likely result in statistical differences between probability class means in 

both the SSURGO and Updated model maps. This would mainly be a result of the large class 

sample sizes that produce extremely low standard errors and hence greater statistical detectability 

that may not be meaningful. For example, the largest class standard error of field data probability 

values for all SSURGO maps units or Updated model components was 0.002.   

4.5.2 Important Variables for Models 

 Variable usefulness was evaluated based on the relative frequency of each 

variable’s use in the random forests. In both the Original and Updated models, NED derived 

variables were generally used more than ASTER variables (Fig. 5). The variables dem and diff25 

were in the top three used for tree building in both models, suggesting a strong influence from 

watershed-scale elevation gradients. The Original model, which included fewer NED derived 
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variables, tended to rely more evenly on ASTER and NED variables, whereas the Updated model 

uses more NED based layers with 10 of the 14 newly added NED relative elevation variables 

being used quite frequently. This might suggest that the relative height metrics added to the 

Updated model provided more consistent predictive power than the ASTER variables they 

appear to replace in the Original model. However, considering that the Original model was only 

3.1% less accurate at validation sites than the Updated model, the differences in variable use may 

not be that significant. Frequently used ASTER derived layers span a wide scope of types in the 

Original model including three reflectance layers, one band ratio, and three band neighborhood 

variation layers. In contrast, the Updated model only includes Band 4 and Band 2 neighborhood 

variation layers from ASTER. Overall, the dem variable and relative elevation surfaces that 

integrate more than 10 pixels seem be used most often in trees possibly indicating more 

predictive power than the other included variables. 
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Figure 5a. Average frequency of use of covariate layers (See Table 2 for definitions) used on 

average in more than 2% of tree nodes in the 500 trees in the Updated model. Black brackets 

give standard deviations of the frequencies to show how these varied over all ensemble trees. 
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Figure 5b. Same as 7a, but for the variables used from Nauman (2009). 

 

Table 4. Layers chosen by PCA data reduction to most efficiently represent soil-landscape 

variability for soil mapping (from Nauman, 2009) 

Fluvial Strata 
Layers 

Mountain 
Strata Layers 

dem dem 

meandiff25 swness 

b2sd3 b4sd14 

b2sd14 b4b5 

b2b1 b4b8 

b1 b1 

 
In comparing the principal components analysis (PCA) unsupervised data reduction 

variable selection from Nauman (2009) to the random forest use of same data in the Original 
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disaggregation model, eight of the 10 variables used were selected in both of the studies as 

important (Fig. 5, Table 4). This commonality drops to four of 10 when comparing with the 

Updated random forest model. It is interesting that the diff25 variable was not selected in 

Nauman (2009) as it is a more important variable in both of the random forest models. Of the 

ASTER derived variables, neighborhood standard deviation of reflectance layers are the only 

variables that show up as important in both disaggregation models as well as the PCA 

unsupervised data reduction (Nauman, 2009).   

4.6 Discussion and Conclusions 

Our assessment is that both versions of random forest models worked well to 

disaggregate the CSM of ORPI, and that the near equivalent accuracy of SSURGO and the 

Updated model indicated that the models were able to reproduce much of the information 

captured by the survey. The accuracy at validation points in ORPI was higher than 

implementation of this same general methodology in the dissected Allegheny Plateau and 

Mountains of southern West Virginia (WV) (Nauman and Thompson, 2014) where classification 

validation accuracies ranged from 24% to 44% depending on spatial supports used in validation. 

However, similar to the ORPI results, the reported accuracy of the original CSM used in the WV 

study was also lower (27%-41%). It is encouraging that in both studies this method seems to 

produce a higher spatial resolution soil map at accuracies similar to the original soil surveys. The 

field validation accuracy in ORPI (69.8%) was also similar to results of similar studies in New 

Brunswick, Canada (64.9% to 67.6%, Yang et al, 2011), the African dambo (75.5%, Hansen et 

al., 2009), and in the Bavarian forests of Germany (70%, Haring et al., 2012). 

The relationship between ensemble model prediction frequency (prediction probabilities) 

and validation accuracies allowed for a simple representation of classification uncertainty in both 
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ORPI and WV (Nauman and Thompson, 2014) studies, indicating some degree of consistency 

across different physiographic regions using these approaches. This relationship might also prove 

useful in future studies for using prediction probabilities in tree ensembles for creating fuzzy 

membership classifications. This scenario would involve using the proportion of tree predictions 

as membership functions where multiple soils are predicted for the same pixel in different trees 

within the ensemble model. This should be investigated in future disaggregation attempts as it 

would allow for continuous fuzzy thematic representations of soil classes (e.g. Burrough, 1989; 

Burrough et al., 1997; De Gruijter et al., 1997; Hodza, 2010; Lagacherie et al., 1997; McBratney 

and Odeh, 1997; Qi et al., 2006; Zhu, 1997; Zhu et al., 1996, 2001, 2010)  that could be 

translated into soil property maps (e.g. Malone et al., 2011; Nauman et al., 2012; Qi et al., 2006; 

Zhu et al., 1997, 2001, 2010). 

4.6.1 Thematic Issues in Disaggregation 

Disaggregated maps create a singular and consistent theme of one soil class (or non-soil 

component, e.g. rock outcrops) per pixel. This is different than SSURGO maps units which can 

have multiple soil classes, slope gradient modifiers, and soil taxonomic variants. Soil series 

variants can be dealt with in these disaggregation approaches if they are included as classes at the 

training stage, but care should be taken because they might be so closely related to the non-

variant soil series that the environmental covariates used in modeling might not be able to 

discern the two. Slope gradient modifiers have also been used to help with management 

interpretations in SSURGO (Soil Survey Division Staff, 1993). However, because slope gradient 

maps can be made at such high resolutions with modern digital elevation models, perhaps it is a 

better option to overlay a true soils themed map with a slope map for such purposes in modern 

contexts. 
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In ORPI, variants of soil series were mapped for the Ajo, Antho, Harqua, and Gilman soil 

series. Variants of Ajo and Harqua were split out based on the presence of cobble sized rock 

fragments at the surface and slightly different surface texture (both only in the top 5 cm), and 

Antho variants were distinguished based on variations of rock content at depth. A saline variant 

of the Gilman series was also mapped. Among these variants, we chose to only split out the 

Gilman saline variant for disaggregation because it was the only series where we had validation 

points in both the original series and the variant. Saline variants of the Gilman series also have a 

very unique ecology with Atriplex (saltbrush) dominated vegetation communities and a 

particular susceptibility to erosion (USDA-NRCS, 1972). We do feel that all of these variants 

could likely be identified in disaggregation models based on how well our models were able to 

match the original survey concepts, but due to our lack of ability to validate this and concerns 

about how different these soils truly are from a soil genesis perspective, we chose not to separate 

variants of the Ajo, Antho, and Harqua soil series. Thematic choices at the training stage of these 

models are difficult because soil series variants are generally only locally defined; so if results 

from ORPI were compared to other CSM, concepts will be more consistent at the soil series 

taxonomic level. Even among soils series there is often inconsistent degrees of detail because 

formal classification within U.S. Soil Taxonomy ends at the family level (Soil Survey Staff, 

2010, 1999).  

4.6.2 Uncertainty Assessment 

Map accuracy and spatial represention of uncertainty are not offered with the SSURGO 

product. We aimed to produce these with a simple approach using pragmatic means with a 

limited validation set. Our results demonstrated that areas where the ensemble trees predicted 

classes the most consistently also tended to have higher validation aggreements. Using this 
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relationship, we were able to represent this spatially to display where accuracies were higher or 

lower. In analyzing the uncertainty data we observed a few basic patterns in how estimated 

uncertainty was distributed. Specifically, small zones of higher uncertainty (lower field data 

probability) ran along SSURGO map unit boundaries in some areas, possibly representing 

transitions between soils along those boundaries. We also observed relatively higher 

uncertainties that seem to follow geomorphic patterns that sometimes, but not always, follow 

certain soil types as mapped in SSURGO and the disaggregated map (Updated model). These 

geomorphic differences might indicate that there are certain groups of soils or landforms that 

either have variability not represented in the maps, or that the differences between soils is those 

areas may be so subtle that they were not easily distinguished in classifications. Further, we 

observed distinctly higher uncertainty values (lower probabilities) among individual delineations 

of certain map units (e.g. Growler-Antho complex), possibly suggesting that the more uncertain 

delineations were incorrectly correlated in mapping. In these cases, a field update of the more 

uncertain delineations would be prudent. As the Growler-Antho example shows, the uncertainty 

map, in addition to being a gauge of accuracy, can help to identify potential inconsistencies in 

soil maps and aid in the development of priorities for additional field work. 

In these results there was also a small, but systematic difference between smaller classes 

with higher uncertainty and large classes with lower uncertainty. This result might be related to 

the effects of class proportionality on tree model results as has been reported by previous studies 

(Moran and Bui, 2002; Nauman and Thompson, 2014). Moran and Bui (2002) showed that 

sampling classes proportionally for tree building improved results. Nauman and Thompson 

(2014) showed that sampling proportionally can degrade accuracy of smaller classes if there is a 

wide disparity between the size of small and large classes. They showed that this can be 
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somewhat mitigated by transforming the proportionality of sample sizes to have less disparity 

between the larger and smaller class sample sizes during tree building. This would appear to be a 

limitation of tree-based methods because the results indicate a need to experiment with class 

sample proportionalities to find an optimum for sampling training classes. 

4.6.3 Covariate Comparisons   

 Overall results indicate that both NED elevation data and ASTER provide 

predictive power for soil survey disaggregation modeling. Variable importance values showed 

that the layers derived from the elevation data were likely more useful in soil classifications in 

this environment. Based on the dominance of the top four variables in both random forest models 

by the dem and other topographic variables, it would seem ASTER might not perform well 

without NED data to supplement predictions. The presence of the dem variable as dominant in 

both the fluvial and mountain areas in the PCA analysis (Table 4) (Nauman, 2009) also seems to 

support this. However, the PCA variable selection also selected more ASTER layers overall, 

which does support ASTER as a viable predictor. It would be useful in the future to generate a 

model just using ASTER or similar imagery and comparing that to models using only DEM 

derived covariates to better test the predictive power of both data sources based on classification 

success as opposed to variable importance values within models as presented here. 

 The dominance of elevation and relative height metrics seem to relate to the 

relief-driven topographic sequence of landforms in ORPI. These landforms include relatively 

young mountains with rugged outcrops at summits and limited soil development on side-slopes. 

Lower in the topographic sequence sets of alluvial fans are arranged in step-wise patterns 

moving away from the mountains, with basin floor deposits at the valley bottom. Soils tend to 

follow these step patterns because each riser between alluvial fans represents erosion cutting into 
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an older aged deposit with the oldest soils (i.e. Ajo - Argic Petrocalcids) being the closest to the 

mountains and representing past basin base levels (USDA-NRCS, 1972; Parker, 1995). These 

fans seem to have relatively distinct drainage patterns with some having mainly deep gullies 

whereas others include reticulating washes with depositional areas, which were likely detected 

by the relative height metrics (e.g. rel_ht_20 in Fig. 5, Table 2) based on the height of fan treads 

above the drainage cuts. 

 The only ASTER layers used on average in more the 2% of tree nodes in both 

models were neighborhood standard deviation of reflectance layers of ASTER band 4 (lower 

wavelength short-wave infrared) and band 2 (red visible). Generally, these layers highlight areas 

that have more active geomorphic or hydrologic dynamics. They distinguish areas with higher 

densities of washes; especially where drainages reticulate or have greater vegetation cover. 

These layers also highlight areas where mountain and alluvial landforms adjoin. The lack of 

influential band ratios and reflectance bands in the Updated model was unexpected. We were 

expecting more of the ASTER covariates to possibly distinguish mineralogy or albedo 

differences based on the diverse lithology sources in ORPI. It was also perplexing that both band 

ratio and reflectance layers were highlighted in the Original disaggregation model and the PCA 

data reduction done by Nauman (2009), but not in the Updated model where more topography 

variables were introduced. However, examination of the original SSURGO map units reveals 

that soil series in ORPI were often mapped across areas sourced from multiple types of lithology, 

possibly indicating that mineralogy was not influential in distinguishing map units. This is 

supported by the SSURGO mineralogy classes, which is mixed for all soils in ORPI except for 

Perryville, which was attributed as carbonatic (USDA-NRCS, 1972).       
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We found that our model covariate importance values shared considerable similarities to 

the PCA-driven unsupervised soil-landscape classification in ORPI done previously (Nauman, 

2009). Our Original disaggregation model used the same variables in the random forest 

classification as used by Nauman (2009) to see if similar variables would be used more 

frequently in the random forest. The previous study used a PCA-based approach to try to identify 

the most useful variables for soil mapping without any a priori knowledge of an area from a 

large suite of possible DEM and ASTER variables. The similar selection of variables by our 

Original random forest disaggregation model and the PCA-based method used by Nauman 

(2009) seems to confirm that the PCA-based approach can help select covariates from large 

datasets effectively for initial soil mapping at a site. 

4.6.4 Future Efforts  

 The success with these general methods for disaggregating CSM at ORPI and in 

WV (Nauman and Thompson, 2014) seem to demonstrate that a consistent general approach can 

be taken to updating CSM around the United States. The key to this method is finding suitable 

initial variables in raster format to match with soil-landscape descriptions published in soil 

surveys to properly train a model. We would point out that this does not need to be limited to the 

terrain metrics used in ORPI and WV. There are vegetation and geologic attributes in SSURGO 

that could also be matched to imagery or other data sources for training. The main differences 

between the WV and ORPI studies included: (i) using different initial rule matching variables, 

(ii) inclusion of hillslope position descriptions (e.g. footslope, backslope, shoulder, etc.) in 

addition to the geomorphic table in the WV study, (iii) implementation of a full random forest 

algorithm in ORPI rather than just a classification tree ensemble, and (iv) inclusion of a larger set 
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of covariate rasters in ORPI. The use of the random forest model in ORPI was more appropriate 

given the larger number of covariates being used (Breiman, 2001).  

Based on the higher accuracies at ORPI, updating the work in WV to incorporate more 

variables and a random forest framework might help results there. However, both disaggregation 

studies showed similar accuracies to the original CSM from which they were derived; which 

might indicate that the slight differences in methods were not as important as the original CSM 

accuracy in the reported differences in disaggregation accuracy. There are many factors that 

might influence these original CSM accuracies, but the scale of soil variation and the actual 

mapping scale are likely responsible for this in large part. The dominant soils in ORPI follow 

more contiguous patterns of alluvial sediments that might have less intrinsic variability than the 

forested and highly dissected plateaus and mountains in the WV study. We think the general 

workflow presented here and in Nauman and Thompson (2014) offers an opportunity to both 

improve and harmonize large CSM databases into more useful modern data products. 
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5 GHOSTS OF THE FOREST: MAPPING PEDOMEMORY TO GUIDE FOREST 

RESTORATION 

5.1 Citation 

 Nauman, T.W., J.A. Thompson, S.J. Teets, T.A. Dilliplane, J.W. Bell, S.J. Connolly, H.J. 

Liebermann, and K.M. Yoast. 2015. Ghosts of the forest: Mapping pedomemory to guide 

forest restoration. Geoderma 247:51-64. Reprinted from Geoderma under license 

#3603861273405 with permission from Elsevier. 

5.2 Highlights 

 Pedomemory mapping demonstrated as a restoration tool. 

 Spodic soil morphology linked to historic red spruce (Picea rubens) forests. 

 Mapped spodic morphology occurrence with 70-78% accuracy. 

 Maps provide direct guidance for red spruce restoration efforts. 

 Conifer composition showed strong relationship to O-horizon thickness. 

5.3 Abstract 

Soil morphology can provide insight into how ecosystems change following periods of 

extensive disturbance. Soils properties can often be linked to historic environmental influences 

(e.g. vegetation or climate) to provide a record of pedomemory. Identification and mapping of 

soil pedomemory properties shows promise in providing context for ecological restoration. We 

have developed a novel use of digital soil mapping of spodic morphology to estimate historical 

forest composition in the high-elevation forests of the Central Appalachians. This region was 

extensively disturbed by clear-cut harvests and related fires during the 1880’s-1930’s. Hardwood 

forest species recovered much better than local conifers and generally encroached into historic 

populations of red spruce (Picea rubens) and eastern hemlock (Tsuga canadensis). Spodic soil 

morphology, which is often associated with subalpine and boreal conifer forests, was mapped 
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using a random forest probability model and showed correspondence to red spruce – eastern 

hemlock distribution, as derived from local historic property deed witness tree records from 

1752-1899. These data and resulting models indicate a greater spatial extent of spodic soil 

properties than documented in previous soil maps, which is more consistent with general theories 

of much more extensive historic spruce populations. The resulting maps and models provide 

guidance for field scale restoration planning for historically disturbed spruce-hemlock forests. 

Our results suggest that historic Euro-American disturbance probably induced conifer-to-

hardwood state transitions at mid to high elevation coniferous ecological sites within the 

Appalachians. Where transitions have occurred, there appears to have been dramatic losses in 

forest floor thickness (O-horizons) and associated soil organic carbon stocks into atmospheric 

carbon pools. Spatial modeling of similar pedomemory properties and other soil-ecology 

linkages is likely to be a powerful tool to guide restoration in other regions as well.  

 

 

Key words: podzolization, pedomemory, digital soil mapping, soil organic carbon, forest 

restoration, red spruce 
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5.4 Introduction 

5.4.1 Soil pathways and pedomemory 

Soil properties can help reveal the history of interactions between abiotic and biotic 

drivers at the Earth’s surface. In soil science, this has been conceptualized as a state factor model 

where the state or properties of a soil are a result of interactions between climate, organisms, 

relief, and parent material over time (clorpt) (Dokuchaev, 1899; Jenny, 1941). The state factor 

model evolved to an ecosystem level model where soils and organisms have some parallel 

drivers, but also interact strongly ( Amundson and Jenny, 1997; Jenny, 1961,  1980). Equation 1 

reformats Jenny’s (1941) ‘clorpt’ model into an ecological equation where different groups of 

the original soil forming factors interact over time to result in a set of ecosystem properties 

(including soil) at a given point in time. 

 l, s, v, a = f(L0, Px, t)[Eq. 1: Ecological factorial; Jenny, 1961] 

The dependent factors in this case include ecosystem properties (l), soil properties (s), 

vegetation (v), and animals (a). The related state factors in an ecosystem based approach include 

the initial state (L0) and external potentials (Px), and time (t). Initial state L0 includes the parent 

material (bedrock or substrate), initial relief, and water table. Climate and organism changes are 

grouped as the Px variable, which represent the primary energy sources (sun), receptors (plants), 

and catalysts (e.g. water) that drive processes (Jenny, 1961). Amundson and Jenny (1991, 1997) 

have introduced these conceptual models into ecological sciences, with humans included in the 

factorial equation. In an ecosystem, soils bear the imprint and help record the history of 

organisms—including humans— as well as the climate. For conceptual and measurement 
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purposes, we define an ecosystem as the living organisms and physical environment of a defined 

unit space or a plot (e.g. 20x20 meters) that we can sample in the field. 

Climatic and biological factors drive processes in soils that involve additions, removals, 

translocations, and transformations (Simonson, 1959) of materials in the soil column that have 

associated energies (Nikiforoff, 1959; Runge, 1973). When environmental drivers remain 

relatively constant over a period of time they can direct a soil down a developmental pathway 

toward expressions of specific horizonation (Johnson and Watson-Stegner, 1987). Changes in 

climate and/or organisms can alter the balance of processes and thus the pathway of a soil. At 

any one time, many processes are occurring in a soil, which can create complicated 

superimposed distributions of soil properties within a soil profile (Burrough, 1983).  

The properties observed in soils reflect a record of information, often called soil memory 

or pedomemory, where the specific patterns of reorganization and transformation of the original 

soil parent material into new physical and chemical distributions in the soil profile can often be 

attributed to how historic climate and vegetation promote soil processes that result in a specific 

morphology (Hole, 1975; Lin, 2011; Targulian and Goryachkin, 2004). Related studies have 

linked mottling, iron chemistry, and other morphology to historic soil-water-landscape models 

(Coventry et al., 1983; Coventry and Williams, 1984; Fritsch and Fitzpatrick; 1994 ; 

Schwertmann, 1988). Others have found that vegetation communities interact with the soil over 

time to create soil property signatures recorded in the pedomemory useful in determining a site 

history (Hole, 1975;  Phillips and Marion, 2004; Willis et al., 1997). Thus, a soil property like 

spodic materials can potentially provide a time-space record that can help decipher historic 

ecosystem vegetative reference conditions, which are an accepted basis for ecological restoration 

to a certain target community type and condition (Higgs et al., 2014; SER, 2004; 
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http://www.ser.org/resources/resources-detail-view/ser-international-primer-on-ecological-

restoration). Linking soil types with historic reference communities has become the basis for 

land management frameworks such as ecological site descriptions (ESD) (Caudle et al., 2013; 

NRCS, 2014). We aim to show how mapping key pedomemory properties linked to vegetative 

communities can inform restoration at a field ecosystem scale. We demonstrate this using an 

example along the ecologically important transition between northern hardwood and spruce-

hemlock forest types in the Central Appalachian mountains of the eastern US (Byers et al., 

2010). 

For distinguishing the historic transition between northern hardwood and spruce-

hemlock, we chose the podzolization pathway (Lundström et al., 2000a,, 2000b; Sauer et al., 

2007; Schaetzl and Harris, 2011) as our pedomemory indicator because of its association with 

similar moist conifer forest and heathland species composition globally (Hole, 1975; Miles, 

1985; Willis et al., 1997; Lundström et al., 2000a; Sauer et al., 2007). In a typical cool, moist 

conifer site where Spodosols form as a result of podzolization, the soil morphology generally is a 

sequence of Oi-Oe-Oa surface horizons forming a mor forest floor, then a leached E horizon, and 

a sequence of Bh-Bhs-Bs-BC subsurface horizons (Fig. 1) (Soil Survey Staff, 1999; Soil Survey 

Staff, 2010). The podzolization pathway includes multiple soil processes that promote aluminum, 

iron, and organic matter mobilization and translocation to deeper soil depths in acidic, permeable 

parent materials. Thick surface O horizons also frequently form at the soil surface in these 

typically moist conifer systems (Hix and Barnes, 1984; Lietzke and McGuire, 1987; Lundström 

et al., 2000a). Leaching is usually associated with soluble organic acids from the forest floor and 

actively mining ectomycorrhizal communities causing mineral weathering and the ultimate 

transport of aluminum, iron, and organic matter from near surface soil horizons (O, A, E) into 

http://www.ser.org/resources/resources-detail-view/ser-international-primer-on-ecological-restoration
http://www.ser.org/resources/resources-detail-view/ser-international-primer-on-ecological-restoration
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subsurface (B) soil horizons (Blum et al., 2002; Giesler et al., 2000; Hoffland et al., 2004; 

Jongmans et al., 1997; Lundström et al., 2000b; Schaetzl and Harris, 2011; Schöll et al., 2008; 

Van Breemen et al., 2000).  

Much of the organic carbon distribution in Spodosols  can be lost in 30-100 years just by 

converting cool, moist acidic conifer forest stands to  differing species compositions (prairie or 

hardwood) that favor more decomposition (Barrett and Schaetzl, 1998; Hix and Barnes, 1984; 

Hole, 1975; Miles, 1985). The most pronounced losses in organic carbon occur in the forest floor 

O horizons, which generally get thinner in conversions. Conversely, studies have also 

demonstrated that conversion from mesic hardwood forests (mostly Quercus spp., Betula spp., 

and Fagus spp.) to Norway spruce (Picea abies) and/or scots pine (Pinus sylvestris) initiates O 

horizon buildup and podzolization within a century (Herbauts and Buyl, 1981; Miles, 1985; 

Ranger and Nys, 1994; Sohet et al., 1988). Common garden experiments studying replanted 

monoculture plots of various tree species have also documented tree species gradients of 

influence on soil organic matter accumulation and acidity. On the two extremes,  Acer spp.  and 

Tilia spp. promote increased base cation activity which favors heterotrophic organic matter 

decomposition, whereas Pinus spp. and Larix decidua enhances acidic Al and Fe activity which 

limit decomposition of soil organic matter (Hobbie et al., 2007). Garden experiments also 

showed higher tree litter calcium content appeared to increase pH, decomposition, and 

earthworm activity that resulted in less forest floor mass (Reich et al., 2005; Hobbie et al., 2006). 

Hobbie et al., (2006) also recorded that plots with spruce and fir species had lower mean annual 

soil temperatures and less litter decomposition. Although general differences in litter chemistry 

exist between angiosperms (basic) and gymnosperms (acidic), these studies showed that there is 

significant variation within these tree groups. Another recent common garden study in New York 
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documented a similar influence of worms under northern red oak (Quercus rubra.) and sugar 

maple (Acer saccharum), but not under Norway spruce, which had a thicker forest floor (Melvin 

and Goodale, 2013). Although Ca
2+

 content was similar under all three species, pH was lower 

under the spruce, suggesting that base cation activity might not be the only factor to examine. 

Other studies of tree species interactions with soil have recorded similar trends (Finzi et al., 

1998; Van Breeman and Finzi, 1998). Overall, these studies tell a story where heterotrophic 

forest litter decomposition and O horizon accumulation are intricately linked to dominant tree 

species at a site. 

Autotrophic mycorrhizal partnerships are another important consideration in 

understanding carbon and nutrient cycling in soils (Högberg and Read, 2006). Studies have 

demonstrated intensive ectomycorrhizal (ECM) colonization of E horizons that appear to be a 

significant nutrient acquisition adaptation strategy of conifers in acidic Al-dominated soil 

environments, thereby overcoming conditions that might otherwise be toxic (Blum et al., 2002; 

Giesler et al., 2000; Hoffland et al., 2004; Högberg and Read, 2006; Jongmans et al., 1997; 

Lundström et al., 2000b; Van Breemen et al., 2000). Giesler et al., (2000) were able to show that 

the expansion of mineral-boring ECM hyphae looking for other nutrients is a likely mechanism 

for Al, Fe and Si transport to, and subsequent flux out of, O horizons. The buildup of autotrophic 

root hypha in the forest floor and associated host carbon allocation seem to be much more 

dominant processes than the classic heterotrophic model of litter and fine root decomposition and 

respiration in acid conifer systems (Högberg and Read, 2006). The development of deep O 

horizons under acidic conifer must, by definition, mean that heterotrophic communities are either 

suppressed or very inefficient in cycling carbon in these systems, which is also consistent with 

the results of gardenstudies (Reich et al., 2005; Hobbie et al., 2006; Hobbie et al., 2007). 
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Red spruce is one of the most acidophilic conifers, producing nutrient-poor litter 

(especially low in Ca
2+

) relative to other North American trees (compare from: Berg and 

McClaugherty, 2008; Côté and Fyles, 1994; Friedland et al., 1988; Rustad and Fernandez, 1998). 

This implies that red spruce should promote podzolization and O horizon accumulation 

(Herbauts and Buyl, 1981; Lundström et al., 2000a; Miles, 1985; Ranger and Nys, 1994; Sauer et 

al., 2007; Sohet et al., 1988). Conversely, we expect that where spruce was converted to base-

promoting hardwoods, like red maple (Acer rubrum), black cherry (Prunus serotina), and 

American beech (Fagus grandifolia), organic material loss has probably occurred from O and B 

horizons (Hix and Barnes, 1984; Miles, 1985 Hole, 1975). O horizon loss was probably initially 

exacerbated by the large-scale fires documented in these parts of West Virginia (WV) after mass 

clearcutting between 1860 and 1920 (Clarkson, 1964; Hopkins, 1899; Pauley, 2008). Well-

developed Spodosols often take 1000-6000 years to form in areas similar to red spruce 

ecosystems (Lundström et al., 2000a; Schaetzl and Harris, 2011). Loss of Spodosol morphology 

is not as well documented, but was reported to disapear from a watershed in Hungary in 1000 

years after a change in  climate triggered a sequence of fires that likely converted forest stands 

from conifer to hardwood (Willis et al. 1997). However, the Fe and Al sesquioxide 

accumulations (spodic soil materials in US soil taxonomy; Soil Survey Staff, 1999) in the 

subsurface soil should still be observable as these are more stable and persistent in soils within 

the 150-250 year timeframe in this study (Barrett and Schaetzl, 1998; Lundström et al., 2000b; 

Parfitt, 2009). Indeed, Al-protoimogolite, the major diagnostic sesquioxide solid compound in 

Spodosols, is relatively stable in soils for many millennia when soils maintain a pH greater than 

four (Parfitt, 2009). We hypothesized that Fe and especially Al sesquioxide accumulation found 
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in Bhs and Bs (spodic) soil horizons should be good pedomemory evidence for pre-Euro-

American spruce-hemlock influence. 

Recent work related to ESD development in the Monongahela National Forest (MNF)in 

WV for the purpose of linking management strategies to pre-settlement vegetation and site 

potential has suggested that spodic soil properties are linked to past red spruce and eastern 

hemlock distributions (Nowacki and Wendt, 2010; Teets, 2013). In the most impacted sites 

where O horizons were probably lost and E horizons were likely transformed or lost due to 

hardwood conversion, erosion, and/or fires, we think remnant Bs horizons could be a good 

indicator of past spruce influence. Although we think historic podzolization of these areas was 

due in large part to the red spruce acidic foliar chemistry, shallow root distribution, and acid 

producing mycorrhizal activity (Blum et al., 2002; Glenn et al., 1991), there are also climatic 

parallels between red spruce and eastern hemlock physiological requirements and podzolization. 

Both require cold and moist environments and are favored by longer winter snowpacks and thus 

should follow analogous topographic patterns (Lietzke and McGuire, 1987; Schaetzl and Isard, 

1996; Nowacki and Wendt, 2010; Nowacki et al., 2010; Stanley and Ciolkosz, 1981). Published 

modern soil surveys for counties of the MNF only delineate Spodosols on the highest sandstone 

ridges where red spruce has more successfully regenerated from past disturbance (Delp, 1998; 

Flegel, 1998; USDA-SCS and USDA-FS, 1982), but not down into siltstone and shale parent 

materials at slightly lower elevations that are still within the local range of red spruce based on 

current inventories and related models (Beane et al., 2013; Byers et al., 2010; Nowacki and 

Wendt, 2010) as well as historic witness tree species related species distribution models from 

historic county property boundary records (Thomas-Van Gundy et al., 2012). However, an older 

soil survey (Williams and Fridley, 1931) supports existence of a much larger area of podzol 
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soils, which we believe corresponds to the more extensive historical distribution of red spruce 

forest communities prior to the regional harvest and fire disturbance of the late 19
th

 and early 20
th

 

centuries. The vast majority of the harvest and fires occurred between 1880 and 1930, but site 

specific dates are hard to find. It is thought that very few places were not harvested in this period, 

and that fires also affected the vast majority of the landscape, but historic records are somewhat 

general in descriptions (Hopkins, 1899; Clarkson, 1964; Pauley, 2008). 

5.4.2 Importance of Red Spruce Forests in the Central Appalachians 

Vast forests of red spruce (Picea rubens), either singly or in association with northern 

hardwoods, once covered the higher elevations of the central Appalachians (Hopkins, 1899). 

This assemblage is thought to have spanned the last 4-5 millenia (Watts, 1979), and strong 

associations developed between these forests and various animals, with sensitive species 

becoming somewhat reliant on red spruce habitat, such as the Virginia northern flying squirrel 

(Glaucomys sabrinus fuscus) and Cheat Mountain salamander (Plethodon nettingi) (Dillard et 

al., 2008a, 2008b; Menzel et al., 2004, Menzel et al., 2006a, 2006b; Pauley, 2008). Wind and ice 

storms were the principal disturbance agents in presettlement times as the prevailing cool, moist 

climate greatly retarded fire (Rentch et al., 2010). As such, the natural disturbance regime was 

probably driven by periodic light-to-moderate severity storms rather than by catastrophic 

blowdowns and old-growth conditions were abundant. The Euro-American disturbances of the 

late-1800s to early 1900s were in stark contrast to this naturally low-disturbance environment. 

As a valuable timber species, red spruce was quickly liquidated by industrial clear-cut logging 

once railroad technologies afforded access to mountainous areas (Clarkson, 1964, Lewis, 1998, 

Nowacki and Wendt, 2010). Thereafter, uncontrolled wildfires burned through the remaining 

slash, largely consuming red spruce regeneration in the process. The rapidity and voracity of 
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these disturbances completely devastated red spruce, causing significant contraction to its 

population and range. 

Due to its ecological and economic importance, red spruce restoration has received much 

attention in the central Appalachian region (e.g., Central Appalachian Spruce Restoration 

Initiative; http://www.restoreredspruce.org/). Unfortunately, efforts to restore red spruce are 

thwarted by the fact that its former range is so poorly documented at the field scale—although 

recent attempts through modeling (Beane et al., 2013; Byers et al., 2010; Nowacki and Wendt, 

2010) and witness-tree analyses (Thomas-Van Gundy et al., 2012) have provided greater clarity 

on its original distribution. 

In West Virginia, historical accounts indicate that the current extent (~20,000 ha) of 

alpine red spruce forest communities is greatly reduced from estimates prior to railroad era 

disturbance (~200,000 ha) (Hopkins, 1899; Pauley, 2008; Pielke, 1981; Nowacki and Wendt, 

2010). Local studies, along with regional analysis of red spruce distribution (Nowacki et al., 

2010), show that the main restriction on red spruce is warmer temperatures (with elevation as a 

surrogate) and lower precipitation. However, recent work in compiling and analyzing witness-

tree databases from the MNF indicate a lower minimum elevation historically (lowest recorded 

red spruce at 509 meters) than previous models, and more specificity to topographic controls in 

respect to slope steepness, slope position, slope aspect, and landforms (Thomas-Van Gundy et 

al., 2012). These subtleties in the pre-settlement distribution of red spruce might indicate historic 

affinity for topographically-driven cool and moist microclimates that included the highest 

ridgelines, cooler aspects not in rain shadows, and narrow valleys that foster cold air drainage 

and foggy inversions. 

http://www.restoreredspruce.org/
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Human disturbance and pollution have drastically impacted red spruce populations, but 

climate change and warming temperatures may have also affected populations—and these 

phenomena are hard to distinguish (Hamburg and Cogbill, 1988). Theoretically, global warming 

will drive boreal conifer ecosystem species like red spruce higher in elevation and further north, 

putting large pools of soil organic carbon at risk for further atmospheric release (Lal, 2005; 

Tarnocai et al., 2009). It is also hard to account for climate-vegetation feedbacks as well, and 

restoring to more historic communities could mitigate these potential feedbacks. Studies have 

shown that convectively driven precipitation patterns and radiative dynamics are influenced by 

changing vegetation type and structure which is likely to mean warmer and drier soil conditions 

for former spruce sites (Pielke, 1981, 2001; Pielke et al., 2002). Other concerns about acid 

deposition on red spruce health have been studied (Johnson, 1983; Hornbeck and Smith, 1985; 

Adams and Eagar, 1992), but might be difficult to discern from the impact of historic disturbance 

and climate change (Hamburg and Cogbill, 1988). Indeed, red spruce is projected by different 

climate change scenarios to disappear from West Virginia by the end of the century (Butler et al., 

2014; Byers et al., 2010; Iverson et al., 2008; Prasad et al., 2007). However, there are signs that 

red spruce is recovering from historic disturbance and could be further restored despite climate 

change (Nowacki et al., 2010; Rentch et al., 2007; Rentch et al., 2010; Rollins et al., 2010). At 

this time, its future remains uncertain, which has prompted this effort to try to better understand 

its historic distribution and dynamics. 

5.4.3 Digital soil mapping of podzolization 

Digital soil mapping (DSM) of soil properties often utilizes digital elevation model 

(DEM) derivatives, remotely sensed imagery, and climate surfaces as predictive soil forming 

factor surrogates using geographic information systems (GIS) and computer-based statistical 
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modeling (Grunwald, 2009; Grunwald et al., 2011; McBratney et al., 2003; Scull et al., 2003). 

Although many DSM studies are aimed at predicting certain soil classes or soil properties at 

specified depths (e.g., Behrens et al., 2014; Yang et al., 2011), the same general structure can be 

applied to predicting a soil pathway such as podzolization because the active soil formation 

factors being represented by topography and imagery (climate and organisms) drive the 

processes that produce spodic soil properties. We postulated that an effective spatial model of  

spodic morphology  should spatially correlate to the distribution of red spruce and eastern 

hemlock in the MNF witness tree database (Thomas-Van Gundy et al., 2012). Our aim was to 

test use of current spodic morphology as a pedomemory proxy to portray the extent of red spruce 

and eastern hemlock influence in forests before mass industrial timber harvest and subsequent 

wildfire. Furthermore, we think these same spatial models of podzolization can be used to 

connote how red spruce restoration could lead to the buildup of surface O horizons and increased 

forest carbon stocks and other ecosystem services. 

5.5 Materials and Methods 

5.5.1 Study area 

We examined sites in the Chemung and Hampshire geologic formations across the 

regional transition between temperate northern hardwood and subalpine spruce communities 

within the MNF (Fig. 2). These are acid geologies primarily composed of shale and siltstone 

parent materials with minor inclusions of sandstone (WVGES, 1968). The area is relatively 

moist, with mean annual precipitation ranging from 1118-1524 mm (44-60 inches; NOAA-

NCDC, 2014), which is likely controlled by elevation and orographic effects. Mean annual 

temperature ranges from 6.0 to 8.3 degrees Celsius (NOAA-NCDC, 2014), which reflect 

elevation, slope aspect, and cold air drainage patterns. The elevations of sites examined ranged 
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from 880-1320 meters, which spans the approximate elevation boundary (~1100 m) between the 

mesic and frigid soil temperature regimes cited as an important boundary by other regional 

podzol studies (Lietzke and McGuire, 1987; Stanley and Ciolkosz, 1981). The topography in the 

area includes flat narrow ridgetops, steep mountainsides, occasional rock outcrops, and deep and 

narrow river valleys. Within slopes there are benches, hollows, and spurs along with cradle-knoll 

micro-relief that affect how water, energy, and materials are distributed in the soil system 

(Schaetzl, 1990). 

Current vegetation in the study area in Figure 2 grades from northern hardwoods to 

spruce-hemlock forests, with mixed conifer-northern hardwood areas between. Common tree 

species observed in the study area include red maple, sugar maple, mountain maple (Acer 

spicatum), striped maple (Acer pennsylvanicum), red spruce, eastern hemlock, yellow birch 

(Betula alleghaniensis), sweet birch (Betula lenta), American basswood (Tilia americana ), 

white ash (Fraxinus americana ), northern red oak, black cherry, American beech, mountain 

magnolia (Magnolia fraseri), and cucumber magnolia (Magnolia acuminata). Commonly seen 

shrubs include mountain holly (Ilex montana), mountain laurel (Kalmia latifolia), and 

rhododendron (Rhododendron spp.), as well as shrubby root sprouts as a result of the beech bark 

disease complex (Shigo, 1972). Common herbaceous and ground cover species observed include 

New York fern (Thelypteris noveboracensis), intermediate woodfern (Dryopteris intermedia), 

hypnum moss (Hypnum imponens), liverwort (Bazzania trilobata), three Lycopodium species, 

Viola spp., and three Carex species. 

5.5.2 Data collection and analysis 

Three types of soils data were collected as part of this research: (i) extensive point 

observations of soil morphological properties, (ii) detailed pedon descriptions with 
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comprehensive laboratory characterization of soil physical and chemical properties at selected 

sites, and (iii) fixed-area forest vegetation plots with detailed pedon descriptions and limited soil 

laboratory characterization data. Data collected at all visited locations included detailed field 

descriptions of the soil morphology at hand-excavated pits with a focus on podzol morphology. 

We express podzol morphology as a ‘spodic intensity’ (SI; Table 1) based on color, horizon 

characteristics, and smeariness observations typical of ‘spodic soil materials’ in US Soil 

Taxonomy (Schoeneberger et al., 2002; Soil Survey Staff, 1999). Data were collected by a 

variety of local soil scientists associated with the USDA-NRCS, USDA-Forest Service (FS), and 

West Virginia University (WVU). Soil descriptions were made consistent with U.S. national soil 

survey standards (Schoeneberger et al., 2012). Site locations were selected to evaluate soils 

derived from Devonian-age shale parent materials on upland landscape positions for the purpose 

of soil survey update and preliminary ESD reconnaissance. Specific soil map units were 

associated with three common soil series: Mandy (Loamy-skeletal, mixed, active, frigid Spodic 

Dystrudepts), Berks (Loamy-skeletal, mixed, active, mesic Typic Dystrudepts), and Dekalb 

(Loamy-skeletal, siliceous, active, mesic Typic Dystrudepts). Overstory and understory 

vegetation species lists were also noted at every location. 

The extensive point observations were obtained from 2010-2012 at 322 locations 

throughout the study area. Sampling locations were allocated in small watersheds identified by 

the FS for examination. Specific sample locations were identified using a stratified random 

sampling technique in each watershed. From within the specified Mandy, Berks, and Dekalb map 

units, strata were created based upon vegetation (spruce dominated or other; Lammie, 2009), 

slope curvature (convex, linear, or concave), and slope gradient (>35% or <35%). Slope 

curvature and slope gradient were calculated in ArcGIS Spatial Analyst (ESRI, 2011) using a 
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publicly-available 3-meter resolution DEM 

(http://www.wvgis.wvu.edu/data/dataset.php?ID=261). These criteria were concatenated to 

produce individual strata classes (e.g., spruce-convex-<35% slope). Points were randomly 

located within each stratum using the ArcGIS random points generator. The number of points 

allocated to each stratum was weighted based on the relative areal amount of each stratum in the 

watershed. In the watersheds, the soil profiles were examined at an approximate density of one 

every 25 hectares. A variety of handheld GPS units were used to record actual locations in the 

field, which makes estimating spatial error of these data difficult. 

At seven locations within the study area soil pits were excavated, described, and sampled, 

and the samples were sent to the NRCS Kellogg Soil Survey Laboratory (KSSL) in Lincoln, NE, 

for full characterization of soil physical and chemical properties using standard soil laboratory 

procedures (Soil Survey Staff, 2004) to document the re-classification of the Mandy soil series 

from Typic Dystrudepts to Spodic Dystrudepts, and the establishment of Wildell, a new soil 

series classified as Typic Haplorthods. Soil depth profiles of acid oxalate extractions of Al and 

Fe were compared from Mandy (n = 4) and Wildell (n = 3) as well as three similar, but non-

podzolized, soils (analyzed at WVU) from the area thought to be associated with historic 

hardwood communities. Acid oxalate primarily extracts amorphous to poorly crystalline material 

including Al (e.g., Al rich allophane and imogolite type materials) and Fe (e.g., ferrihydrite) 

sesquioxides diagnostic of Spodosols (Soil Survey Staff, 2004). U.S. Soil Taxonomy (Soil Survey 

Staff, 1999) uses the percent weight of aluminum plus half of that of iron (Al+0.5Fe) as one 

criterion of spodic materials, and we provide depth profiles demonstrating consistency between 

field spodic intensity (SI, Table 1) observations of color, spodic horizon expression, and soil 

smeariness (Schoeneberger et al., 2012, page 2-65) with laboratory depth profiles of Al+0.5Fe. 

http://www.wvgis.wvu.edu/data/dataset.php?ID=261
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Additionally, in 2013, 24 fixed-area forest plots centered on new soil pit observations 

were observed to quantitatively compare tree species composition to spodic properties and O 

horizon thickness. Plots were located near a subset (n = 15) of the 322 original locations that 

were easily accessible and representative of the range of variability recorded. Of the nine 

remaining new sites, three were located at ridgetop sites that were not represented well in the 

original sample, and six were randomly located in the study area. Of the 15 revisited sites only 

two fell within the same pixels as the 2010-2012 observations used for spatial modeling 

predictions, which makes even these revisited sites pseudo-independent of the original 

observations for validation purposes. Plot locations were all recorded with a Magellan 

MobileMapper Pro (v 6.52) GPS unit allowed to record in WASS mode for at least 30 minutes at 

ground level just upslope of the soil pit face at roughly the center of the plot.  

Fixed, 20x20 m area plots were oriented with the slope contour. Diameter at breast height 

(dbh) was measured on all trees greater than 7 cm dbh. From measured dbh values and species 

tallies, importance values (IMP) were calculated for red spruce and eastern hemlock (Eq. 2; 

following Rollins et al., 2010). 

IMP = 0.5((species basal area/plot tree basal area) + (species count/plot tree count))    [Eq. 2] 

Importance values are proportional measures of relative composition of a specific species that 

range from zero to one. To compare with IMP values within plots, O horizon thicknesses were 

observed at the soil profile as well as at the center of each plot quadrant (n = 5 per plot). The 

importance of red spruce and hemlock were added to get a ‘conifer importance’ (CNIMP), which 

we hypothesized would show strong correlation with O horizon thickness.  

We expected that conifer importance would trend positively with both spodic intensity 

(SI) as well as O horizon thickness. However, because reviewed studies indicate that current 
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conifer communities are much reduced compared to pre-settlement conditions (e.g., Thomas-Van 

Gundy et al., 2012), we believed that CNIMP values would have a stronger relationship with O 

horizon thickness because the Al and Fe accumulations reflected in SI visual cues and 

smeariness observations are longer lived than organic carbon and O horizons in similar soils 

(Barrett and Schaetzl, 1998; Hix and Barnes, 1984; Lundström et al., 2000b; Parfitt, 2009). We 

suspected that O horizons have adjusted much more quickly to forest composition changes, and 

thus would maintain closer correspondence to the current forest state. 

5.5.3 Spatial modeling using DSM 

A binary random forest probability model (Breiman, 2001; Liaw and Wiener, 2002; 

Niculescu-Mizil and Caruana, 2005) was implemented to relate a suite of DEM and remotely 

sensed variables (Table 2) to soils that showed no sign of podzolization (SI = 0) versus those that 

did (SI > 0). All DEM variables were computed from the 1-arc second USGS National Elevation 

Dataset (Gesch et al., 2002; Gesch, 2007) in SAGA GIS (Conrad and Wichmann, 2011). Landsat 

Geocover imagery from 2000 (MDA, 2004) was also included as a potential predictor source 

representing current vegetation and land use. Tabulated soil observations and spatial predictor 

data were intersected using nearest neighbor spatial support and exported from SAGA into the R 

computing software (R Core Developement Team, 2008) for model creation and implementation. 

Underlying random forest probabilities (relative ensemble votes) were exported as an xyz 

formatted comma delimited file and imported into SAGA GIS to map spodic morphology 

probability (probability of SI > 0). 

Validation of the probability model was evaluated using three approaches. First, the 

randomForest R package out of bag error (oob) was reported for a model built with the full 322 

field point observations. Secondly, a model of a random 2/3 subset of the field points was created 
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and predicted onto the withheld 1/3 of the points for an independent validation. The 

classification accuracy and confusion matrix of the withheld data was then reported for the 

probability threshold that maximized overall accuracy in the validation set by trial and error. 

Thirdly, the 24 plots examined in 2013 were tested against the predicted surface created by the 

model created from the full 322 field points. Agreements between predictions and plots were 

reported for (i) all plots (n = 24), (ii) completely independent new observations (n = 9), and (iii) 

the pseudo-independent sites that were revisited, but fell into different pixels than the original 

2010-2012 GPS points (n = 13). 

The spodic probability model created from the full field observation set (n = 322) was 

then compared to the MNF witness tree database (Thomas-Van Gundy et al., 2012). Points that 

intersect the predictive model data footprint (n = 1031) were tested to see if witness sites where 

spruce or hemlock were reported had higher spodic probability values compared to sites with 

neither species recorded. Both a Welch two-sample t-test and a Wilcoxon rank sum test with 

continuity correction were used to test this hypothesis against a null of no difference in the R 

statistical computing program (R Core Development Team, 2008). We expected areas predicted 

to have spodic morphology (higher probabilities) should correspond with areas that had more 

spruce and hemlock historically. We then compared our map of spodic properties with a current 

forest inventory (Byers et al., 2013) to determine how much of the modeled area of spodic 

expression is currently under hardwood dominated cover congruent with the reported historic 

conversion of large areas out of spruce cover. 
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5.6 Results 

5.6.1 Soil profile data 

Acid oxalate extractable Al and Fe in soil depth profiles clearly distinguished field SI 

observations representing the gradient of spodic soil morphologies seen in the study area (Fig. 3). 

Analyzed profiles exhibited distinct depth profiles of Al + 0.5Fe acid oxalate extract, which is 

one of the criteria for Spodosol classification in U.S. Soil Taxonomy. Some variation in depth 

ranges and intensity of peaks within the classes existed, but overall graphed patterns appeared to 

separate soils by SI class well. The lack of an increase in Al+0.5Fe in the subsoil of the non-

spodic data contrasts strikingly to other sites, which provides evidence supporting our decision to 

separate these sites from the others in our spatial models of spodic expression presence. 

5.6.2 Spatial models of spodic probability 

Spodic probability spatial models (Fig. 4) had overall error rates of 30% for both out-of-

bag error and the one-third withholding validation. The validation results using withheld data 

indicated a maximum classification agreement at a 0.57 probability threshold to separate spodic 

from non-spodic predictions and indicated that predictions of spodic sites were more reliable 

than those of non-spodic sites (Table 3). The weaker prediction agreement of non-spodic sites 

(46.3% user error, 61.3% producer error, Table 3) with a lower user error rate indicates that non-

spodic sites were over predicted relative to spodic sites. At fixed area forest plots the error rate 

was 12.5% for all plots (n = 24), 22.2% for strictly independent plots (n = 9), and 7.7% for the 

pseudo-independent site revisits that fell into separate pixel predictions than original soil 

descriptions. Based on these different metrics, 70% seems to be a consistent conservative 

estimate of overall prediction accuracy. 
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5.6.3 Environmental controls on spodic probabilities 

Slope aspect, mid-infrared (MIR) band of Landsat Geocover, and topographic flow 

convergence calculated in SAGA GIS were the four most important variables in the 

randomForest analysis of mean decrease in accuracy when these variables were omitted from 

model building. Specifically, the EASTNESS and NWNESS slope aspect variables were the 

most important followed by MIR, and CONVERGENCE. Visual evaluation of the map output 

(Fig. 4) indicated that W-NW aspects had higher spodic probability, but other factors were more 

subtle. A highly pruned classification tree was built in rpart (Therneau et al., 2010) to further 

help interpretations (Fig. 5). Tree structure shows very similar results to the random forest 

model, with western aspects most favoring spodic development followed by lower MIR values 

where imagery picks up conifer canopy (usually in lower slope positions of deep narrow valleys 

that cut into the mountains). The LS_Factor is a water flow energy term from the Universal Soil 

Loss Equation that SAGA will calculate from a DEM. It is very similar to the CONVERGENCE 

variable and both mainly distinguish areas that likely concentrate overland water runoff energy. 

The LS_Factor split might be indicative of past erosion eliminating some areas of spodic 

expression that might not represent historic spruce preferences, and only isolates 4.2% of the 

spodic sites. The confusion matrix of the classification fit shows that these three environmental 

variable splits correctly classify 75% of the soil descriptions. 

5.6.4 Witness tree comparison 

Comparisons of spodic probabilities at witness tree points showed a positive shift in the 

distribution of values at sites where hemlock or spruce were listed (Wilcoxon rank sum, 

p=0.0052; Welch 2-sample t-test, p=0.0077; Fig. 6). This shift was highly significant 

statistically, and while the magnitude of the shift is visible in the distribution, it still exhibits 

considerable distribution overlap. However, this area represents a transitional gradient between 
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hardwood and conifer that we think produces a concurrent gradient of spodic expression and thus 

considerable overlap in distribution would be expected logically. Witness tree records are also 

not exhaustive species listings, and an omission of a species does not indicate that it was not 

present. We must also account for the imperfect spodic spatial model, which does not account for 

~30% of the soil variability. 

5.6.5 Conifer importance and soil morphology 

Conifer importance at forest plots shows positive associations with both the thickness of 

O horizons and SI values. However, the trends with O horizon thickness are much more 

consistent indicating support for our hypothesis of a quick O-horizon response to forest change 

(Fig. 7). Both graphs of O horizon response have a positive trend with conifer importance, with 

overall responses of 0.96 to 1.1 cm of O horizon thickness increase per 10% of conifer 

importance increase. It is important to note that conifer importance does not include any 

calculation of site productivity, it is solely based on the relative composition of tree species. 

Therefore, this association is somewhat independent of site productivity. Interestingly, for our 

conifer dominated plots older than 100 years in averaged tree core ring counts (n = 3 per plot), O 

horizon thickness averages 18.8 cm compared to the overall regression average of 15.8 cm, 

suggesting that over time O horizons may get even thicker similar to the findings of Schaetzl 

(1994). At those older plots, we observed only one site with no charcoal evidence of past fire, 

and the average O horizon thickness there was 26.8 cm with a maximum of 37 cm. This might be 

suggestive of the true old growth condition; however, relatively undisturbed sites are hard to find 

due to the prolific extent of historic disturbance and thus it is difficult to establish a 

representative sample. 
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5.7 Discussion 

Our results demonstrate the importance of understanding the ecological soil factorial (Eq. 

1; Amundson and Jenny, 1991, 1997; Jenny 1961, 1980) and its relationship to pedomemory. 

Soil process pathways driven by vegetative influences that manifest themselves in soil 

morphology can inform our understanding of the ecological history and plausible management 

responses of a site (Higgs, et al., 2014; Johnson and Watson-Stegner, 1987; Phillips and Marion, 

2004; Schaetzl and Anderson, 2005; Schaetzl and Schwenner, 2006; Lin, 2011; Simonson, 1959; 

Targulian and Goryachkin, 2004). We demonstrate this in the Central Appalachian northern 

hardwood-red spruce transition using models of spodic morphology tested against historic land 

deed witness tree data.  

We think our findings are also important globally because they bring together 

independent evidence supporting use of soil properties to map historic reference communities. 

The concept of carefully selecting pedomemory or pedogenic attributes to help understand 

vegetation dynamics over time is not limited to these systems. For example, recent studies in 

Australia have shown geochemical pedogenic linkages to vegetative and hydrological dynamics 

and diversity that generally relate to pH, mineralogy, and redoximorphic features (Bui et al., 

2014; Coventry et al., 1983, 1984; Fritsch and Fitzpatrick, 1994; Laliberté et al., 2014; Mücher 

and Coventry, 1993). There are many ecosystems that promote certain soil morphologies that 

have been converted to other land uses with different influences on soil (Goldewijk, 2001; 

Hansen, 2013; Johnson and Watson-Stegner, 1987; Karhu, 2011; Miles, 1985). These land use 

changes include deforestation, forest type conversions, agricultural expansion, and urbanization. 

Changes are often complex and hard to recreate when detailed historic records don’t exist, which 

makes soils invaluable recordings of site histories (Targulian and Goryachkin, 2004). 
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Our results suggest that the disturbance in the mountains of WV resulting from extensive 

past industrial timber harvest and related fire, and resulting forest composition changes, probably 

caused large losses of soil carbon stocks in the forest floor. However, the fact that O-horizons 

seem to have already somewhat adjusted to current forest composition seems to indicate that red 

spruce restoration has the potential for re-accumulation of large amounts of forest floor (and thus 

organic carbon). Earlier work on the spruce-hardwood ecotone in Vermont also showed a 

correspondence between more acidic soils with deeper forest floors and red spruce dominated 

areas, but didn’t report as much specificity between spruce and spodic properties (Siccama, 

1974; Young, 1934). However, modern studies must account for the possibility that the vast 

harvest disturbance of forests associated with European colonization has favored hardwood 

incursion into formerly conifer influenced areas (Nowacki et al., 2010; Pielke, 1981) that might 

be reflected in spodic soils currently under hardwood cover.  

When our spodic probability map was overlaid on a current forest inventory map recently 

completed by Byers et al. (2013), much of the modeled spodic areas were under hardwood cover 

(<10% conifer). Of areas of the spodic model with >70% probability (26% of study area), 68% 

were mapped by Byers et al. (2013) as hardwood. This represents a large area of forest currently 

dominated by hardwoods that we postulate were dominant or co-dominant spruce or hemlock 

cover before railroad era disturbance. The 70% threshold was chosen because at that probability 

level we had even greater confidence in our prediction of spodic property presence (77% using 

withheld validation set), and the vast majority of fully expressed Spodosols (SI = 2) observed at 

forest plots (100% of plots with Spodosols) and field validation sites (71% of field transect sites 

with Spodosols) were also seen at probabilities >70%.  
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5.7.1 Understanding historic red-spruce community distribution and spodic soil properties 

Other studies of the red spruce – northern hardwood ecotone have often focused on the 

elevation of the transition and the associated ecological changes (Siccama, 1974; Beckage et al., 

2008). Late twentieth century decreases in the growth of red spruce and upward shifts of the 

ecotone have largely been attributed to climate warming, but cannot rule out pollution and 

competition as co-factors (Beckage et al., 2008; McLaughlin et al., 1987). Hamburg and Cogbill 

(1988) were able to show that climate was probably more influential than air pollution (e.g. acid 

rain) in red spruce decline since 1800. However, all of these changes in red spruce population are 

superimposed upon the historic harvest impacts, and make determining pre-industrial population 

distribution estimates quite complex. This complex history makes a plausible pedomemory proxy 

attractive. 

Although we were able to demonstrate strong statistical evidence of spatial 

correspondence between modeled spodic soil properties and historic witness tree red spruce and 

hemlock occurrences, the underlying spatial model covariates also seemed to indicate similar 

climate-related topographic controls to those of red spruce witness trees. We compared analysis 

from Thomas-Van Gundy et al. (2012) with our models and found similar topographic 

relationships. Our field data were taken from the Northern High Allegheny Mountain (NHAM) 

area, but the spodic model footprint we tested also included areas and witness tree locations from 

smaller areas of the Southern High Allegheny Mountain (SHAM) and Western Allegheny 

Mountain (WAM) areas as analyzed by Thomas-Van Gundy et al. (2012). In their analysis of 

spruce locations in NHAM, SHAM, and WAM, Thomas-Van Gundy and co-authors showed 

spruce associations with northern slope aspects, with northwest slope aspects being specifically 

being favored more in NHAM and SHAM. They also found that relative elevation and landform 

preferences were for higher ridgetops in SHAM, more cove-like settings in NHAM, and lower 
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valley bottoms in WAM. Our models showed that spodic soils were most probable on west-

northwest slope aspects, similar to the witness tree database. Spodic morphology was also 

associated with low MIR pixel values that corresponded with conifer-dominated plots 

(Wilcoxcon rank sum test, W=89, p=0.0324, alternative of MIR being lower at sites with conifer 

importance >50%). These same low MIR values were also associated with lower slope positions 

that typically depict coves and narrow valleys (SLOPEPOS in Table 2; Wilcoxon rank sum test, 

W=108, p=0.013, alternative of lower MIR at lower slope positions). These areas with low MIR 

values seem to be representing remnant spruce populations in coves and at lower elevation 

narrow valley bottoms analogous to the landform analysis seen at lower elevations by Thomas-

Van Gundy et al. (2012). We summarize our postulated topographic-climate relationships in 

Figure 8. It includes an elevation gradient that starts with dominant spruce on the high ridgelines, 

and grades into spruce microclimates on cool-wet aspects at mid-elevations, and strongly 

sheltered cold air drainages at lower elevations.  

 

It is important to recognize that our observations only cover a part of the NHAM area 

analyzed by Thomas-Van Gundy et al. (2012). Our points cover the more rugged ridges and 

narrow valleys of the upper Greenbrier River watershed and Middle Mountain that run in a 

mostly S-SW to N-NE direction. Other parts of NHAM, like Canaan Valley, which sits on top of 

the Blackwater Falls anticline and weathered limestone, have a variety of ridge orientations and 

more open topography. We also included eastern hemlock as a red spruce associate in witness-

tree comparison, which could also be slightly shifting our model results relative to Thomas-Van 

Gundy et al. (2012), whose analysis was specific to red spruce. 
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Overall, we feel that these topographic controls probably indicate cooler and wetter 

climatic niches. Middle elevations (~1000-1250 m) in the WV historic red spruce range seem to 

have narrower climate windows that exclude spruce-hemlock conifer dominated stands from 

southeast-east aspects that are warmer and drier, which is likely a result of orographic rain-

shadows and greater solar insolation. We also think that the presence of spruce preferentially in 

narrow valley bottoms and toeslopes at lower elevations is probably related to cold air drainages 

where we also observed more persistent fog that probably favors spruce. Recent maximum 

entropy (MaxEnt) models of red spruce habitat suitability indicate that cooler temperatures 

(especially summer temperatures) and higher snowfall and precipitation were most important in 

predicting potential red spruce habitat, but did not identify slope aspect as a major driver 

(Nowacki and Wendt, 2010; Beane et al., 2013). It is difficult to determine if slope aspect-related 

climate variability was detected in the climate layers used by these studies because the base data 

for those spatial layers had 400-meter and 1-km resolution, and was probably too coarse to pick 

out many fine scale topographic aspect patterns. These MaxEnt models also did not detect the 

lower valley bottom populations of red spruce found down to below 600 meters in the witness 

tree database. However, our model did extrapolate spodic predictions into those lower areas, and 

a significant portion of the witness-tree points we tested against were located below 800 meters 

in areas near Bowden, WV (upper left corner of Fig. 4), which seems to indicate that our spodic 

model detected these areas of historic spruce found at lower elevations.  

Interestingly, soil variables were included in the MaxEnt models as well as the witness-

tree studies. In all studies, USDA-NRCS soil surveys, including the more generalized State Soil 

Geographic (STATSGO2) database and the more detailed Soil Survey Geographic (SSURGO) 

database soil maps, were summarized by map unit, which can produce interpretation issues 
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where multiple soils are grouped into one map unit (Nauman and Thompson, 2014; Nauman et 

al., 2012; Thompson et al., 2012). However, the Mandy soil series was identified as associated 

with spruce witness tree locations, and was recently reclassified to include recognition of spodic 

properties based on data used in this study. Many of the other soils identified by Thomas-Van 

Gundy et al. (2012) are also likely to be cool-moist variants of Inceptisols and Ultisols that might 

need to be re-evaluated for re-classification as spodic subgroups or Spodosols. For example, the 

Shouns soil series was found to be associated with spruce in parts of MNF. We found a Shouns 

soil profile sampled on the southern side of Spruce Knob and characterized by the NSSC that had 

a discernable depth peak in acid-oxalate extracted Al and Fe (Pedon ID S03WV-071-001, NCSS, 

2014). Notably, the two Spodosols previously mapped in WV (Leetonia and Gauley), which are 

almost exclusively associated with current red spruce stands (Delp, 1998; Flegel, 1998; Losche 

and Beverage, 1967; Williams and Fridley, 1931; USDA-SCS and USDA-FS, 1982), were not 

mentioned in the witness tree paper. Beane et al. (2013) did note associations with STATSGO2 

soil map units that included Gauley as well as other similar soils to the witness tree results. 

Nowacki and Wendt (2010) noted associations with shallower soils and fragipans, which makes 

intuitive sense because red spruce is shallow rooted and perhaps better adapted to fragipans than 

other species. Nowacki and Wendt (2010) also discussed the likelihood of spodic soil properties 

being associated with red spruce, which partially inspired this study, but the SSURGO data 

available for their analysis at that time did not reflect that relationship. 

5.7.2 Future implications 

More laboratory corroboration and wider spatial sampling would provide greater 

certainty for our conclusions regarding historic forests and restoration projections in WV. We did 

not include data describing soil organic carbon dynamics in mineral soil horizons (A, Bh, and 
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Bhs) at these sites to see how restoration might affect those pools, but we think that they could 

also represent a significant potential flux after disturbance. Others have shown that mineral 

horizon organic carbon stocks can be lost via depodzolization after disturbance and vegetation 

conversion in similar systems (Barret and Schaetzl, 1998; Hole, 1975). Soil pools, along with 

calculations from forest growth model scenarios (e.g., Krankina et al., 2012; Schulze et al., 2012) 

could provide a more interdisciplinary illustration of carbon sequestration potential and will 

likely provide evidence of even greater ability of these forests and soils to mitigate climate 

change.  

We also hope that other researchers will further investigate subalpine/boreal conifer to 

temperate hardwood ecotones throughout other comparable zones of the world to see if similar 

scenarios exist where prior disturbance has caused compositional and biogeochemical shifts. We 

also expect that that future work with quantitative analysis of translocated soil sesquioxides in 

WV and similar areas, especially Al-rich allophanes and proto-imogolites, could potentially 

provide a spatially explicit map of quantitative estimates of pre-disturbance forest composition 

since these compounds have longer residence times in the soil than other spodic properties 

(Lundström et al., 2000b; Parfitt, 2009). 

5.8 Conclusions 

Soil properties and morphology can reveal pedomemory insights into past vegetative 

dynamics. The key to this is understanding the time scale and mechanisms associated with 

different vegetation related soil processes that manifest in soil development. In cool, moist, and 

acidic conifer forests, persistent subsurface sesquioxide horizons reside in soils for long periods 

and can serve as indicators of those forest communities. Contrastingly, organic carbon pools can 

shift quickly when forest composition is changed due to disturbance. Carbon pools that respond 
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quickly to forest restoration represent an important potential avenue of carbon sequestration and 

habitat renewal. Although there is uncertainty regarding future effects of climate change on red 

spruce, there might be a significant mitigation potential in red spruce restoration. Alternatively, if 

red spruce is lost, similar species that promote podsolization including other selected Tsuga, 

Larix, Picea, Pinus, and Abies species could serve as alternatives. Restoration of red spruce and 

similar carbon-sequestering species represents one of many potential climate and ecological 

degradation mitigation options that society will need to evaluate in our efforts to balance our 

global carbon pools and disturbance footprint. 
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5.11 Tables 

Table 1. Description of spodic intensity (SI) classes based on observable field morphology. 

SI Class Description 

0.0 No evidence of podzolization. 

0.5 Very weak expression of podzolization. There is only slight physical evidence of podzolization. A 

slightly redder hue and higher value is present at the top of the B horizon, but the hue is less than 

one Munsell hue redder than an underlying horizon. The soil is non-smeary*. 

1.0 Weak expression of podzolization (spodic intergrade, very close to Spodosol). Spodic 

materials are present, but they might not meet the criteria for a diagnostic spodic horizon. A weakly 

expressed Bs horizon is present. The Bs horizon is one Munsell hue redder than an underlying 

horizon. Bhs material is usually absent. An albic E horizon is not present. The spodic materials are 

sometimes weakly smeary. 

1.5 Moderate expression of podzolization (Spodosol). Spodic materials are present as a diagnostic 

spodic horizon. A moderately expressed Bs horizon is present, often with pockets of Bhs material. 

An albic E horizon is not present. The spodic materials are often weakly smeary 

2.0 Strong expression of podzolization (well-expressed Spodosol). A diagnostic spodic horizon is 

present usually underlying an albic E horizon. A Bhs or Bh horizon is continuous across at least 85 

percent of the pedon. The spodic materials are often moderately smeary. 

* Smeariness (Shoeneberger et al, 2012, page 2-65) is a physical observation about how moistened soil 

samples fail when they are squeezed and rubbed between the thumb and forefinger. Smeariness can 

help identify spodic soil materials.
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Table 2. Spatial variables used to model spodic probability. 

Variable Name Description 

National Elevation Dataset (~27.5-meter resolution) 

NWNESS Index from 1 to -1 of how northwest (1) or southeast (-1) a site faces  

EASTNESS Index from 1 to -1 of how east (1) or west (-1) a site faces  

SOUTHNESS Index from 1 to -1 of how south (1) or north (-1) a site faces  

NENESS Index from 1 to -1 of how northeast (1) or southwest (-1) a site faces  

ELEVm Elevation in meters 

PLAN_CURV Curvature perpendicular to the slope direction 

PROF_CURV Curvature parallel to the slope direction 

LS_FACTOR Slope-length factor from USLE as calculated in SAGA GIS 

CONVERGENCE Overall measure of concavity 

SLOPEPOS Index from 0 (valley floor) to 100 (ridgetop) of slope position (Hatfield, 1996) 

SLOPE Slope gradient (rise/run) in fraction units 

MRRTF Multiple resolution ridgetop flatness index 

MRVBF Multiple resolution valley bottom flatness index 

TWI Topographic wetness index  

ALT_OVER_STREAM Altitude above local stream channel 

BASELEVEL Elevation of nearest channel point to each pixel in its given watershed 

CONTRIBAREA Upstream contributing area 

REL_HT_1 Height of cell above the local minimum elevation in 1-pixel radius 

REL_HT_2 Height of cell above the local minimum elevation in 2-pixel radius 
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REL_HT_3 Height of cell above the local minimum elevation in 3-pixel radius 

REL_HT_5 Height of cell above the local minimum elevation in 5-pixel radius 

REL_HT_10 Height of cell above the local minimum elevation in 10-pixel radius 

REL_HT_20 Height of cell above the local minimum elevation in 20-pixel radius 

REL_HT_30 Height of cell above the local minimum elevation in 30-pixel radius 

REL_HT_50 Height of cell above the local minimum elevation in 50-pixel radius 

REL_HT_70 Height of cell above the local minimum elevation in 70-pixel radius 

Landsat Geocover 2000 (14.5-meter resolution, resampled to 27.5-m) 

NIR Near Infrared band in 8-bit digital number units 

MIR Middle Infrared band in 8-bit digital number units 

GREEN Green visible band in 8-bit digital number units 

MIRNIR Ratio of MIR/NIR 

GREENNIR Ratio of GREEN/NIR 

GREENMIR Ratio of GREEN/MIR 
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Table 3. Confusion matrix from withheld 1/3 validation set for spodic probability predictions 

using a 0.57 threshold for classification as ‘spodic’. 

     
 o

b
se

rv
ed

 
  

 predicted   
  non spodic spodic   
non spodic 19 12 61.3% 
spodic 22 61 73.5% 
  46.3% 83.6%  70.2% 
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5.12 Figures 

 
Figure 1. Well expressed podzol soil morphology in a red spruce forest in WV. 
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Figure 2. Study area and data collection locations overlaid on ArcGIS 10 National Geographic 

mapping baselayer of local features (roads, shaded relief, cities, landmarks).
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Figure 3. Examples of site conditions, soil profiles, and acid oxalate data of the non-spodic 

hardwood ecological site (SI=0), spodic integrademixed forest (SI=1), and spodic conifer forest 

(SI=2). Green line within graphs represent pictured soil profile. Pictures are of current vegetation 

at the pictured profile. 
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Figure 4. Spodic morphology probability map with witness tree points overlaid. 
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Figure 5. Classification tree showing how GIS variable splits can isolate more and less spodic 

groups of soil observations. Correct predictions over total node set size are shown under 

classification labels (e.g. spodic, 153/195 on upper right leaf). The confusion matrix of the fitted 

data is shown under the tree. 
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Figure 6. Spodic model probabilities at witness tree sites where no spruce or hemlock were 

recorded (top), and where spruce or hemlock were observed (bottom). 
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Figure 7. Relationships between conifer importance (CN) with spodic intensity (top) and O 

horizon 
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Figure 8. Conceptual diagram of how climatic and topographic controls of red spruce appear to 

change over elevation.       
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6 PEDOECOLOGICAL MODELING TO GUIDE FOREST RESTORATION USING 

ECOLOGICAL SITE DESCRIPTIONS  

6.1 Citation 

Nauman, T.W., J.T. Thompson, S.J. Teets, T.A. Dilliplane, J.W. Bell, S.J. Connolly, H.J. 

Liebermann, and K.M. Yoast. In revision. Pedoecological modeling to guide forest 

restoration using ecological site descriptions. Soil Science Society of America Journal. 

6.2 Abstract 

The U.S. Department of Agriculture (USDA)-Natural Resources Conservation Service 

(NRCS) uses ecological site descriptions (ESD) to help incorporate interactions between local 

soil, climate, flora, fauna, and humans into schema for land management decision-making. We 

incorporate ESD and digital soil mapping tools to (i) map areas in alternative states that can be 

targeted for restoration, and (ii) estimate potential forest floor C stock accumulation in the high-

elevation forests of the Central Appalachians in West Virginia. This region was extensively 

disturbed by clear-cut harvests and related fires during the 1880’s-1930’s. We combined spodic 

soil property maps, recently linked to historic red spruce – eastern hemlock (Picea rubens – 

Tsuga canadensis) forest communities, with current forest inventories to provide guidance for 

restoration to a historic reference state. This allowed mapping of alternative hardwood states 

within areas of the Spodic shale uplands conifer forest ESD (SCF) along the regional conifer-

hardwood transition of the Appalachian Mountains.  Plots examined in these areas suggest that 

spruce-hemlock dominated stands in West Virginia converted to a hardwood state by historic 

disturbance have lost at least 10 centimeters of O horizon thickness, and possibly much more. 

Based on this conservative 10 cm estimate, we calculate that at least 3.74-6.62 Tg of C were lost 

from areas above 880 meters elevation in West Virginia due to historic disturbance of O 

horizons, and that much of these stocks and related ecosystem functions could potentially be 
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restored within 100 years under focused management, but more practical scenarios would likely 

require closer to 200 years. 

 

Key words: red spruce, podzolization, O horizon, digital soil mapping, ecological sites, 

ecological site descriptions, soil organic carbon 
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6.3  Introduction 

Soils are a dynamic interface between abiotic and biotic drivers and the Earth’s crust. In 

soil science this has been conceptualized as a state factor model where the state or properties of a 

soil are a result of interactions between climate, organisms, relief, and parent material over time 

(Dokuchaev, 1899; Jenny, 1941). The state factor model evolved to an ecosystem level model 

where soils and organisms have some parallel drivers, but also interact strongly (Eq. 1, 

Amundson and Jenny, 1997; Jenny, 1961; Jenny, 1980). 

l, s, v, a = f(L0, Px, t)      [Eq. 1] 

The dependent factors in this case include ecosystem properties (l), soil properties (s), 

vegetation (v), and animals (a). The related state factors in an ecosystem based approach include 

the initial state (L0) and external potentials (Px), and time (t). Initial state L0 includes the parent 

material (bedrock or substrate), initial relief, and water table. Climate and organisms are grouped 

as the Px variable, which represent the primary energy sources that drive processes (Jenny, 

1961). Amundson and Jenny (1991; 1997) have introduced these conceptual models into 

ecological sciences, with humans included in the factorial equation. Soils bear the imprint and 

help record the story of organisms—especially humans—and the climate as pedomemory signals 

in biogeochemical and physical properties that can be valuable in understanding the history of 

sites (Lin, 2011; Nauman et al., In Press; Phillips and Marion, 2004; Targulian and Goryachkin, 

2004). 

 Within the context of the multi-factorial soil system, understanding the 

relationship between soils and associated ecosystems has been incorporated into different land 

management schemes. Ecological site descriptions (ESD) are a framework used by various U.S. 
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government agencies to help land managers employ sound science in taking appropriate 

management actions in the rangelands of the western United States (Bestelmeyer et al., 2011; 

Bestelmeyer et al., 2009; Briske et al., 2005; Caudle et al., 2013; Grazing Lands Technology, 

2003; Herrick et al., 2006). Recently the USDA-NRCS, the government agency behind most 

ESD development, has put more emphasis into applying this framework in the eastern United 

States and has released a new handbook to help incorporate appropriate methods for inclusion of 

eastern forested systems (USDA-NRCS, 2014). The conceptual importance of ESD is in 

recognition of how soils both influence and are influenced by the productive potential of a site by 

documenting ecological states and transitions associated with different pressures on a site. There 

is also recognition of connections between groups of floral and faunal species and specific soil 

properties. Put more specifically by the USDA-NRCS (2014), an ecological site is “a distinctive 

kind of land based on recurring soil, landform, geological, and climate characteristics that differs 

from other kinds of land in its ability to produce distinctive kinds and amounts of vegetation and 

in its ability to respond similarly to management actions and natural disturbances.” This relates 

well to how a set of ecosystem factors (Eq. 1) driving soil-biota process pathways often result in 

specific soil morphologic expression that can provide an insightful narrative of a site’s history. 

6.3.1 Podzolization Pathway and Soil Organic Carbon 

 In West Virginia, there has been debate over the extent of Spodosols and 

associated spruce-hemlock forest communities down into shale geologies due to contrasting 

reporting in soil mapping projects (Losche and Beverage, 1967; USDA-SCS and USDA-FS, 

1982; Williams and Fridley, 1931). Spodosols are a result of soil development along the 

podzolization pathway (Lundström et al., 2000a; Lundström et al., 2000b; Sauer et al., 2007), 

which has been shown to often relate to forest species composition (Miles, 1985; Willis et al., 
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1997). The podzolization pathway includes multiple evolutionary soil processes that promote 

aluminum, iron, and organic matter mobilization and translocation to deeper soil depths in acidic 

and permeable and usually (but not always) sandy parent materials. There also is often formation 

of thick surface O horizons (mor forest floor) at the soil surface, especially in more moist conifer 

systems (Hix and Barnes, 1984; Lietzke and McGuire, 1987; Lundström et al., 2000a). Ample 

soil solution leaching along with soluble organic acid inputs from the forest floor and actively 

mining ectomycorrhizal communities cause mineral weathering and the ultimate transport of 

aluminum, iron, and organic matter from near surface soil horizons (O, A, E) into subsurface (B) 

soil horizons (Blum et al., 2002; Giesler et al., 2000; Hoffland et al., 2004; Jongmans et al., 

1997; Lundström et al., 2000b; Schöll et al., 2008; van Breemen et al., 2000).  

 Much of the organic C in Spodosols can be lost in 30-100 years just by converting 

cool, moist acidic conifer forest stands to  differing species compositions (prairie or hardwood) 

that favor more decomposition (Barrett and Schaetzl, 1998; Hix and Barnes, 1984; Hole, 1975; 

Miles, 1985). This is most prominent in the forest floor O horizons, which get thinner in the 

conversion (Barrett and Schaetzl, 1998; Hix and Barnes, 1984; Miles, 1985). Studies have also 

shown that conversion from mesic hardwood forests (e.g. Quercus spp., Betula spp., and Fagus 

spp.) to Norway spruce (Picea abies) and/or scots pine (Pinus sylvestris) causes O horizon 

buildup and increased podzolization (Herbauts and Buyl, 1981; Miles, 1985; Ranger and Nys, 

1994; Sohet et al., 1988). Forest common garden plot studies that isolate tree species on 

individual plots have also shown a gradient among species that promote base cation activity and 

heterotrophic organic matter decomposition (e.g., Acer spp. and Tilia spp.), and those that favor 

acidic Al and Fe activity (e.g. Pinus spp. and  Larix decidua) which were associated with less 

decomposition of soil organic matter (Hobbie et al., 2007). In these garden plots, higher tree 



 

  178 

litter calcium content appeared to control pH, decomposition, and stimulate earthworm activity 

which resulted in less forest floor mass (Hobbie et al., 2006; Reich et al., 2005). Hobbie et al., 

(2006) also showed that spruce and fir species were associated with lower mean annual soil 

temperatures that were associated with less litter decomposition. Although influential general 

differences in litter chemistry were seen between angiosperms (basic) and gymnosperms (acidic), 

these studies showed that there is significant variation within these groups of species. Another 

recent common garden study in New York showed a similar influence of worms under northern 

red oak (Quercus rubra.) and sugar maple (Acer saccharum), but not under Norway spruce 

which formed deeper forest floor (Melvin and Goodale, 2013). Although Ca
2+

 was similar under 

all three species, pH was lower under the spruce, suggesting that base cation activity might not 

be the only factor to examine. Overall, these studies tell a story where heterotrophic forest litter 

decomposition and O horizon accumulation are intricately linked with each tree species present 

at a site. 

 Mycorrhizal partnerships are another important consideration in understanding C 

and nutrient cycling in soils especially in regards to systematic C balance (Högberg and Read, 

2006). Intensive ectomycorrhizal (ECM) colonization of E horizons appear to be a significant 

nutrient acquisition adaptation strategy of conifer systems in acidic Al-dominated soil exchange 

complexes of Spodosols that might otherwise be toxic to tree roots (Blum et al., 2002; Giesler et 

al., 2000; Hoffland et al., 2004; Högberg and Read, 2006; Jongmans et al., 1997; Lundström et 

al., 2000b; van Breemen et al., 2000). Averrill et al. (2014) demonstrated that ECM and ericoid 

mycorrhizae (ERM) promote SOC accumulation on a global scale, and concluded that this is 

likely because they can effectively compete for nitrogen in organic matter with saprotrophic 

bacteria. The buildup of forest floor mycorrhizal fine root hypha and associated host C allocation 
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now appear to be as important as more established C-cycling models of heterotrophic litter and 

fine root decomposition and respiration (Högberg and Read, 2006). The development of deep O 

horizons under acidic ECM-associated conifer must, by definition, mean that heterotrophic 

communities are either suppressed or very inefficient in cycling C in these systems which is also 

consistent with the results of garden plot studies (Hobbie et al., 2007; Hobbie et al., 2006; Reich 

et al., 2005). Species specificity to ECM and ERM should also make it possible to use forest 

composition as further predictors of SOC stocks (Averill et al., 2014; Binkley and Fisher, 2012; 

Brundrett, 2009). 

6.3.2 Forest History and Ecological Change in the Allegheny Mountains of West Virginia 

 In West Virginia, historical accounts indicate that the current extent (~20,000 ha) 

of red spruce forest communities is drastically reduced from its range before extensive logging 

and fires between 1860 and 1920 (~200,000 ha) (Hopkins, 1899; Nowacki and Wendt, 2010; 

Pauley, 2008; Pielke, 1981). Maximum entropy modeling efforts have similarly shown that the 

suitable habitat for red spruce in West Virginia is much more extensive than current distributions 

(Beane et al., 2013; Byers et al., 2010; Nowacki and Wendt, 2010). These studies, along with 

broader analysis of red spruce habitat (Nowacki et al., 2010) show temperature and precipitation 

as the main controls on extent. However, recent work in compiling and analyzing witness tree 

databases from the Monongahela National Forest (MNF) indicate a lower minimum elevation 

historically (lowest recorded red spruce at 509 meters) than previous models, and more 

specificity controls linked to topographic position preferences in respect to slope aspect and 

relative slope positions (Thomas-Van Gundy et al., 2012). Nauman et al., (In Press) found that 

the spatial distribution of spodic soil properties is associated with the occurrence of red spruce 

and eastern hemlock witness trees (recorded from 1752-1899), and follow similar topographic 
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controls to analysis by Thomas-Van Gundy et al. (2012). These results indicate that spodic soil 

properties are much more widespread in West Virginia than previously thought, and concluded 

that this also likely represents a much greater extent of conifer historically (Nauman et al., In 

Press; Thomas-Van Gundy et al., 2012). The subtleties in the pre-disturbance spatial distribution 

of red spruce might indicate historic affinity for topographically driven cool and moist 

microclimates that included the highest ridgelines, cooler slope aspects not in rain shadows, and 

narrow valleys that foster cold air drainage and foggy inversions (Nauman et al., In Press; 

Thomas-Van Gundy et al., 2012). 

 Human disturbance, pollution, and climate change are thought to have contracted 

red spruce populations, but are somewhat hard causations to distinguish (Hamburg and Cogbill, 

1988). A warming climate is pushing cooler conifer ecosystem species like red spruce higher in 

elevation and higher in latitude, putting large pools of soil organic C at risk for further 

atmospheric release (Lal, 2005). Acid deposition damage to red spruce health has also been 

studied (Adams and Eagar, 1992; Hornbeck and Smith, 1985; Johnson, 1983), but might be hard 

to separate from the impact of a changing climate and overall warming (Hamburg and Cogbill, 

1988) as well as extensive historic clear cutting and associated fires and pest outbreaks 

(Clarkson, 1964; Hopkins, 1899; Pauley, 2008; Stephenson and Clovis, 1983). Indeed, red spruce 

is projected by different climate change scenarios to disappear from West Virginia by the end of 

the century (Butler et al., 2014; Byers et al., 2010). However, there are signs that red spruce is 

recovering from historic disturbance and could be further restored despite climate change 

(Nowacki et al., 2010; Rentch et al., 2007; Rentch et al., 2010; Rollins et al., 2010). At this time, 

its future remains uncertain. 
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 Red spruce is both one of the most acidophilic conifer species and an ECM 

associate, suggesting that it should promote SOC accumulation. Red spruce produces quite 

nutrient-poor litter (especially in Ca
2+

) relative to other North American tree species (compare 

from: Berg and McClaugherty, 2008; Côté and Fyles, 1994; Friedland et al., 1988; Rustad and 

Fernandez, 1998). So we hypothesized that red spruce should promote podzolization and O 

horizon accumulation based on findings from previously discussed forest composition effects on 

soils (Herbauts and Buyl, 1981; Lundström et al., 2000a; Miles, 1985; Ranger and Nys, 1994; 

Sauer et al., 2007; Sohet et al., 1988). We would also expect that the extensive areas of historic 

red spruce converted to non-ECM/ERM associated and more basic cation promoting species like 

red maple (Acer rubrum) and black cherry (Prunus serotina) in West Virginia have probably lost 

organic material from O horizons and B horizons (Averill et al., 2014; Barrett and Schaetzl, 

1998; Brundrett, 2009; Comas and Eissenstat, 2009; Hix and Barnes, 1984; Miles, 1985). This 

was exacerbated by the large scale fires documented in West Virginia after areas were clear-cut 

(Hopkins, 1899; Pauley, 2008). However, the Fe and Al sesquioxide accumulations in the 

subsurface soil are still observable as these are more stable and persistent in soils (Barrett and 

Schaetzl, 1998; Lundström et al., 2000b; Nauman et al., In Press; Parfitt, 2009). 

 Recent work related to ESD development in the MNF for the purpose of linking 

soil management strategies to historic site potential vegetation communities has suggested that 

spodic soil morphology in the MNF was linked to past red spruce and commonly associated 

eastern hemlock distribution (Nauman et al., In Press; Nowacki and Wendt, 2010; Teets, 2013). 

Nauman et al. (In Press) were able to map this using spodic soil properties to help delineate the 

Spodic shale uplands conifer forest (SCF) ecological site. They also showed that there was a 

positive linear relationship between the current relative conifer composition and the thickness of 
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O horizons. We hypothesize that the areas of northern hardwood on the SCF ecological site are 

alternative states that were converted from a spruce-hemlock dominated state by the railroad era 

timber harvest disturbance. We think this disturbance and conversion has resulted in large losses 

of O horizon material and associated C stocks. We aim to build on the analysis of Nauman et al. 

(In Press) to (i) connect the relationship between O horizon depth and forest composition to 

ecological site state and transition models, (ii) spatialize the SCF state and transition model using 

detailed current forest inventories, and (iii) estimate the potential C stocks in West Virginia that 

could be accumulated by restoring areas in alternative SCF ecological states to a conifer-

dominated state according to the prescribed SCF ecological site description (Teets, 2013). 

6.4 Materials and Methods 

6.4.1 Study Area 

 The study extended across the higher elevations of the Chemung and Hampshire 

geologic formations in parts of the MNF (Fig. 1). These are acid geologies primarily composed 

of shale and siltstone parent materials with minor inclusions of sandstone (WVGES, 1968). The 

area is a moist udic to perudic soil moisture regime, with annual precipitation ranging from 

1118-1524 mm (44-60 inches; NOAA-NCDC, 2014), which is likely controlled by elevation and 

topographic rain shadow effects. Mean annual temperature ranges from 6 to 8.3°C (NOAA-

NCDC, 2014), which we think follows elevation, slope aspect, and cold air drainage patterns. 

The elevations of sites examined ranged from 880-1320 m, which spans the approximate 

elevation boundary (~1100 m) between the mesic and frigid soil temperature regimes cited by 

other regional podzol studies (Lietzke and McGuire, 1987; Stanley and Ciolkosz, 1981). The 

topography in the area includes flat narrow ridgetops, steep mountainsides, occasional rock 
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outcrops, and deep and narrow river valleys. Within slopes there are benches, hollows, and nose 

slopes along with cradle-knoll micro-relief that mitigate how water, energy, and materials are 

distributed in the soil system. 

 Vegetation observed in these areas consists of northern hardwood and spruce-

hemlock dominated stands as well as mixed composition stands where hardwood and spruce-

hemlock co-dominate. Common tree species observed in the study area include red maple, sugar 

maple, mountain maple (Acer spicatum), striped maple (Acer pensylvanicum), red spruce, eastern 

hemlock, yellow birch (Betula alleghaniensis), sweet birch (Betula lenta), American basswood 

(Tilia americana ), white ash (Fraxinus americana ), northern red oak, black cherry, American 

beech (Fagus Grandifolia), mountain magnolia (Magnolia fraseri), and cucumber magnolia 

(Magnolia acuminata). Commonly seen shrubs include mountain holly (Ilex montana), mountain 

laurel (Kalmia latifolia), and rhododendron (Rhododendron spp.), as well as shrubby root sprouts 

as a result of the beech bark disease complex (Shigo, 1972). Common herbaceous and ground 

cover species include New York fern (Thelypteris noveboracensis) intermediate woodfern 

(Dryopteris intermedia), hypnum moss (Hypnum imponens), liverwort (Bazzania trilobata), 

three Lycopodium species, Viola spp., and three Carex species. 

6.4.2 Data Collection and Analysis 

 Three types of soils data were collected as part of this research: (i) extensive point 

observations of soil morphological properties (n = 322), (ii) detailed pedon descriptions at 

selected sites with associated comprehensive laboratory characterization of soil physical and 

chemical properties (n = 7), and (iii) fixed-area forest vegetation plots with detailed pedon 

descriptions and limited soil laboratory characterization data (n = 24). Data collected at all 

visited locations included detailed field descriptions of the soil morphology at hand-excavated 
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pits with a focus on spodic morphology expression (i.e. spodic intensity; Table 1). Spodic 

intensity (SI) was determined on a  zero (non-spodic) to two (well-expressed Spodosol) scale by 

0.5 increments based on based on colors, horizon characteristics, and smeariness observations 

(See Table 1) typical of ‘spodic soil materials’ in US Soil Taxonomy (Schoeneberger et al., 2002; 

Soil Survey Staff, 1999) . Data were collected by a variety of local soil scientists associated 

mostly with the USDA-NRCS, USDA-Forest Service (FS), and West Virginia University 

(WVU). Soil descriptions were made consistent with U.S. national soil survey standards 

(Schoeneberger et al., 2002). Site locations were selected to evaluate soils derived from 

Devonian shale parent materials on stable upland landscape positions for the purpose of soil 

survey update and preliminary ESD reconnaissance. Soil map units sampled were associated 

with three common soil series: Mandy (Loamy-skeletal, mixed, active, frigid Spodic 

Dystrudepts), Berks (Loamy-skeletal, mixed, active, mesic Typic Dystrudepts), and Dekalb 

(Loamy-skeletal, siliceous, active, mesic Typic Dystrudepts). Overstory and understory 

vegetation species lists were also noted at every location. Additional details about the sampling 

design and laboratory analysis details can be found in Nauman et al. (In Press). 

 Given the fire history in the study area, efforts were made to search for charcoal 

within the exposed soil profile and the four satellite O horizon observation points. When 

charcoal was found, the depth was noted and a representative sample was collected. In the 

laboratory, the size and shape of the charcoal pieces were recorded before sending them for 
14

C 

analysis at the Northern Institute of Applied Climate Science (Michigan Tech. University, 

Houghton, MI) following the methods of Vogel et al. (1987), with a δ
13

C correction applied to 

account for isotopic fractionation (Stuiver and Polach, 1977). 



 

  185 

 Fixed area forest plots employed for data collection were 20 by 20 meters in 

shape and oriented with the slope aspect. Diameter at breast height (dbh) was measured on all 

trees greater than 7 cm dbh. From measured dbh values and species tallies, importance (IMP) 

values (Eq. 2; e.g., Adams et al., 2010) were calculated for red spruce and eastern hemlock. 

IMP = 0.5*((species basal area/plot tree basal area) + (species count/plot tree count))

 [Eq. 2] 

At plots, O horizon thicknesses were observed at the soil profile as well as at the center of 

each plot quadrant (n = 5 per plot). We added the importance of red spruce to that of hemlock to 

get a ‘conifer importance’ (CNIMP), which Nauman et al., (in Press) showed was likely the 

primary long term ‘organism’ soil formation driver for podzolization and forest floor thickness in 

these areas. We also summarized forest types at plots as ‘conifer’ (CNIMP > 0.75), ‘mixed’ 

(CNIMP 0.25-0.75), and hardwood (CNIMP < 0.25) to help in plotting data. 

 Studies indicate that current conifer communities are much reduced compared to 

historic pre-disturbance conditions (e.g., Thomas-Van Gundy et al., 2012), and that current 

conifer relationship with SI is not as consistent as that with O horizon depth (Nauman et al., In 

Press). We contend that the Al and Fe accumulations reflected in SI visual cues and smeariness 

observations are longer lived signs of past vegetation than organic C and O horizons in similar 

soils (Barrett and Schaetzl, 1998; Hix and Barnes, 1984; Lundström et al., 2000b; Parfitt, 2009). 

Therefore, we suspected that O horizons have adjusted much more quickly to forest composition 

changes, and thus would maintain closer correspondence to the current forest state. 

6.4.3 Pedoecological Mapping and Restoration Carbon Sequestration Estimates 

 O horizon development in the MNF represents a potentially large pool of C 

sequestration. Based on our hypotheses that (i) disturbance-based forest conversion to hardwood 
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and, conversely conifer restoration, will result in changes to O horizon thickness, and (ii) the 

ability to map those areas using digital mapping methods, we wanted to make estimates of O 

horizon C stocks that could be restored by returning Spodic areas to the hypothesized historic 

reference conifer forest state. This could be accomplished by managing hardwood sites with 

spruce in the understory with overhead spruce release (Rentch et al., 2007; Rentch et al., 2010) 

or underplanting with spruce and later release if no spruce recruitment is currently present. 

Figure 2 shows the state and transition model created for the Spodic shale upland conifer forest 

(SCF) ESD (Teets, 2013). We aimed to estimate the areas in the two logged states (boxes 2 and 3 

in Fig.2) and estimate how much O horizon C would be added to the sites when restored to the 

reference state (box 1 in Fig. 2). To do this we combine analysis of the field point observations, 

detailed pedon data, plot data, and a forest inventory map (Byers et al., 2013) to map ecological 

states of the SCF and determine how much O horizon carbon can be restored by managing back 

to a reference state (Fig. 3). 

 Areas of SCF were estimated by choosing a spodic probability threshold value of 

0.7 from the spatial model in Nauman et al. (In Press), which predicted Spodosol distribution 

with a reasonable degree of confidence (62-72% user accuracy from transect validation points 

and forest plot data). Then areas within the SCF currently in a logged hardwood state were 

estimated in three ways. First, a current forest inventory (Byers et al., 2013) was overlaid with 

areas in spodic probabilities above the threshold to determine proportion of areas in a hardwood 

state or mixed conifer-hardwood. We present a map of the overlaid ecological states from the 

forest inventory and the SCF map as an example of a pedoecological map that provides field 

scale management prescription units for land managers. 
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Secondly, field observation sites from the 1/3 withheld validation set in Nauman et al. (In 

Press) were compared with the validation model spodic probabilities above the threshold to see 

what proportion of sites had no conifer in the forest overstory species list (i.e., logged state 

proportion). Thirdly, the fixed-area forest vegetation plots determined to belong to the SCF in 

Fig. 2 were analyzed to see what proportion fell into alternative logged states and areas that were 

in transition to the reference state (i.e., mixed composition). The proportions found in these three 

methods were then multiplied by the area above the spodic probability threshold in the map units 

sampled by field description locations to determine potential restorable areas in those map units. 

We also scaled the proportions in the study area out to all areas in WV at elevations above the 

minimum elevation of our study (880 m) to make extrapolative estimates regarding how much C 

accumulation might result from restoration of spruce in similar areas in the state. This 

extrapolative estimate is heavily weighted on assumptions of relationships and proportions being 

consistent outside of our study area, but we feel it is a conservative estimate based on even 

thicker O horizons being associated with conifer states on the higher ridgelines in WV (Nauman, 

, unpublished data, 2013), and also because Byers et al. (2013) show overall conifer composition 

proportions consistent with our study area across their entire spatial estimate of historic WV red 

spruce extent. Byers et al. (2013) delineate a more conservative total area of historic red spruce 

range (532,116 ha) than our 880 meter elevation extrapolation (645,438 ha). However, when 

compared to the lower elevation observations in witness tree records (Thomas-Van Gundy et al., 

2012), we think both these estimates are probably smaller than the true red spruce range. 

 Once potential restoration areas were identified, we used O horizon laboratory 

organic C (Method 4H2a; Soil Survey Staff, 2004) and frame bulk density (Method 3B5a; Soil 

Survey Staff, 2004) estimates of the seven representative pedons sampled for laboratory analysis 
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for calculating potential new C stocks. Total organic C estimates were averaged for Oi, Oe, and 

Oa horizons from soil profiles analyzed at the Kellog Soil Survey Laboratory (Table 3). Average 

proportions of Oi, Oe, and Oa in O horizons in the three reference state Spodosol profiles 

sampled were assumed as the proportions in new O horizon formation (Table 2). Total weighted 

average volumetric C (grams organic C per cubic cm) was used to estimate C additions from a 

given accrual of O horizon thickness over a certain area. Potential accrual of new O horizon 

depth was based on the slope of the linear relationship in forest plots between conifer importance 

and average plot O horizon depth reported by Nauman et al. (In Press). 

 We set restoration targets to the relative conifer (spruce + hemlock) basal area of 

84.4% calculated by averaging the high and low listings in the ESD reference community basal 

area descriptions (Teets, 2013). Because relative basal area and conifer importance in our data 

were essentially the same (R
2
 = 0.99, slope = 0.96) with the best agreement above 80%, we 

translated the target to a conifer importance (CNIMP) of 84.4% because CNIMP had a better 

overall relationship with O horizons than relative basal area, although both were significantly 

correlated to O horizon thickness. We assumed that to reach this target, hardwood sites would 

need to increase in CNIMP by 76.3% because these sites averaged 8.1% in our corresponding 

forest plots. Because mixed transition plots averaged 53.1%, we used a 31.3% CNIMP increase 

for the target. Total areas of logged states and mixed transitions were multiplied by the estimated 

O horizon depth accruals for those states based on restoration targets and the slope of the O 

horizon-CNIMP relationship to get a total O horizon accumulation volume. The volume was then 

multiplied by the total weighted average of C volumetric density of O horizons (0.0572 g/cm
3
; 

Table 3) to get a total mass of C predicted to be added to O horizons by meeting those restoration 

targets. The Oa/A horizons encountered in two laboratory profiles were assumed to be 66% Oa, 
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and one A/Oa horizon recorded was assumed to be 33% Oa for calculating O horizon depth 

proportions, and bulk densities were scaled down by those factors as well. To adjust Oa C 

percentages in these same horizons, which are higher than A horizons in general, the C values 

were multiplied by 1.33 in Oa/A and 1.66 in A/Oa, which in all cases produced C percentages 

slightly lower (conservative estimate) than the one uniquely measured Oa horizon C percentage 

of 47.3%. 

6.5 Results 

6.5.1 Plot Data 

 Plot data supported the choice of the 0.7 probability threshold as a basis for 

inclusion into the SCF ecological site with the vast majority of Spodosols falling above that 

value (Fig. 4). The plot data shows a positive trend between observed SI and the predicted spodic 

property probability. Most plots currently under conifer dominated and mixed hardwood-conifer 

also fall into the SCF. A few high outliers of SI 0.5, 1.0, and 1.5 fall into the SCF, and one 

outlier in the SI 2.0 fell out of the SCF. However, the laboratory data suggests that almost all of 

the field soil descriptions described as an SI≥1.5 classify as Spodosols, and up to half of the 

profiles with an SI of 1.0 would barely classify as Spodosols. This seems to suggest that the high 

outliers are still mostly consistent with the SCF concept. The low outlier plot was examined and 

has an incorrect slope aspect value attributed to it by the GIS model used in Nauman et al. (In 

Press) when compared with the field observed aspect. Slope aspect was heavily weighted in the 

modeling and likely caused an errant probability to be attributed. 
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6.5.2 Conifer Importance and O horizons 

  Conifer importance at SCF forest plots show positive correlation with the 

thickness of O horizons (Fig. 5). O horizon response to conifer importance appears to be 0.96 cm 

of O horizon thickness increase per 10% of conifer importance expansion on average. It is 

important to note that conifer importance does not include any calculation of site productivity or 

herbaceous composition; it is solely based on the relative composition of red spruce and hemlock 

versus other tree species with dbh values greater than seven cm. Therefore, this association is 

somewhat independent of site productivity and a range of other potential site variability. This 

relationship was chosen for restoration C sequestration calculations as it was based solely on 

sites with SI values of 1-2, where we think the reference spruce-hemlock dominated stands 

described by the SCF ecological site would have been most likely present historically based on 

the work of Nauman et al. (In Press). 

 What the O horizon relationship in Figure 5 does not address is the timeframe 

necessary for O horizon to adjust to forest composition changes. Fortunately, two of the forest 

plots we sampled were dense, even-aged red spruce stands (CNIMP = 86.3% and 100%) with 

charcoal evidence of burning after historic harvest. Breast height tree cores of the three biggest 

spruce at both sites averaged 65 and 60 growth rings with a range of 52 to 70, suggesting stand 

ages of roughly 60 to 80 years old. Abundant subangular charcoal was found at the interface 

between the O and E horizons at both sites, indicating that the O horizon had likely burned off 

before this cohort was established, which is consistent with historic post-logging accounts of 

long lasting fires in the area (Pauley, 2008). Radiocarbon dates of the charcoal at these sites were 

205±25 years and 90±30 years. These dates support modern fires that we postulate followed 

post-railroad disturbance. Both sites had very similar O horizon thickness averages of 12.1 and 
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12.5 cm. This contrasts with O horizons at sites in the SCF that are currently under exclusively 

hardwood cover with similar or older ages (5.4 cm average). 

 Interestingly, within conifer dominated plots older than 100 years in average tree 

core counts (n = 3 per plot), the average O horizon thickness increases to 18.8 cm, suggesting 

that over time O horizons may get even thicker. At these older plots, we observed only one site 

with no charcoal evidence of past fire, and the average O horizon depth there was 26.8 cm with a 

maximum of 37 cm. This might be suggestive of a climax condition; however, relatively 

undisturbed sites are hard to find due to the vast extent of historic disturbance and thus it is 

difficult to establish a representative sample. 

6.5.3 Pedoecological Mapping and O horizon Carbon Accumulation  

 From the spodic probability threshold of 0.7 chosen to represent the SCF 

ecological site, a map was made to determine areas that could be potentially restored from 

logged alternative states to the reference spruce-hemlock conifer state (Fig. 6). The map created 

delineated 31% of the study area map units that were originally sampled as SCF. The red spruce 

cover map (Byers et al., 2013) was intersected with these areas to determine that it was 16.5% 

conifer, 73.6% hardwood (or small patches of pasture), and 9.9% in mixed conifer-hardwood. 

Model validation sites from the withheld 1/3 of data points from Nauman et al. (In Press) with 

greater than 70% spodic probability were analyzed to find that 53.3% of sites had no conifer 

species in the overstory, which were assumed to be in a hardwood state. Mixed states were not 

decipherable at these sites due to the qualitative species list observations. Hardwood sites made 

up 36.4% of SCF forest plots, mixed sites made up 18.25% of plots, with the remaining plots 

being conifer. The percentages were multiplied by the total area of the study area map units to 

get estimates of hardwood state and mixed transition areal extents (Table 3). 
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 Potential C sequestration estimates based on restoring to reference state conifer 

importance levels combined areal estimates with new expected O horizon accumulation (Table 

3). We estimated that between 0.29 and 0.52 Tg of C would accumulate in the sampled study 

area soil map units. This approximation was extrapolated to all areas in WV with an elevation 

higher than 880 m (the minimum elevation of the study observations) by calculating the ratio of 

the greater WV area to the area of the study map units and multiplying our study area estimates 

by that ratio (12.73). Totals for the >880 meter area ranged from 3.74 to 6.62 Tg (Table 3). 

These estimates are based on the calculation that, on average, areas in hardwood states would 

add 7.32 cm of O horizon material and mixed transition sites would add 3.0 cm. 

6.6 Discussion 

 Our results demonstrate that understanding how the ecological soil factorial (Eq. 

1) drives soil processes can inform our understanding of the ecological history and plausible 

management responses of a site. We demonstrate how ESD can provide the framework for 

interpreting these links between site ecology, soil genesis and pedology in eastern U.S. forest 

systems, just as it has in western U.S. rangelands (Bestelmeyer et al., 2011; Bestelmeyer et al., 

2009; Briske et al., 2005; Caudle et al., 2013; Herrick et al., 2006; NRCS, 2014; Teets, 2013). In 

this case, we build on the link between spodic morphology and historic reference spruce-

hemlock communities (Nauman et al., In Press), to show how O horizons have likely changed 

since railroad era timber harvest related disturbance. The industrial timber harvest and related 

fire, and resulting forest composition changes, probably caused large losses of soil C stocks in 

the forest floor, which have somewhat returned in areas where spruce and hemlock have 

recolonized. However, results also seem to indicate more potential for red spruce restoration 

which would add potential for accumulation of large amounts of O horizon (and thus C).  



 

  193 

We acknowledge that considerable assumptions are made by summarizing all this data 

into one average across our study area and the state. Further research on using ESD to create 

these types of restoration potential estimates should address propagating errors through these 

calculations. This would include errors from the O-horizon thickness regression, O-horizon 

laboratory data averages, bulk density measurements, and spatial data error (forest inventory and 

spodic probability surface).  

6.6.1 Timing of O horizon Accumulation 

From the charcoal data at the two even aged red spruce sites, we feel that the most 

plausible conclusion is that in the 65-80 years of development these stands, a large portion of the 

~12 cm of O horizon material has accumulated on top of the charcoal. This seems to match well 

with the conifer importance relationships with O horizon depth. This would imply that 

restoration of red spruce at these sites is associated with significant O horizon buildup within a 

century based on the differing O horizon depths at exclusively hardwood stands (5.4 cm 

average). This general timeframe is similar to that observed by Schaetzl in O-horizon buildup 

after fire in northern hardwoods (1994). We acknowledge that there are alternative 

interpretations of these results, and are uncertain as to how spruce were able to regenerate so 

dominantly after what appeared to have been an intense fire based on the nearly continuous layer 

of charcoal found at the O-E horizon interfaces at these plots. Our first impression of these sites 

was that they were planted, but no records of red spruce plantations exist in the area during that 

time period to our knowledge. It should also be noted that this is a quicker timeframe than might 

be expected for successional regeneration of spruce in other many other local areas where they 

are in the understory beneath hardwood species of mainly red maple, yellow birch, sweet birch, 

and black cherry. Only very intense, and somewhat unreasonable management actions could set 
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many areas on a direct course for a similar monoculture and even-aged red spruce stand 

structure, which would probably not be very desirable for other ecological reasons. More 

reasonable timeframes of 200+ years are likely for release based restoration as presented in 

Rentch et al. (2010). However, nearby areas like Cheat Mountain were observed to have thick 

monoculture spruce thickets recruiting in many areas that will likely produce similar stands, and 

thus similar forest floor accumulation rates and should be considered in C balance projections for 

those areas. 

6.6.2 Implications of Red Spruce Restoration for Wildlife and Climate Change 

 Restoring hardwood areas of the SCF ecological site to the reference conifer state 

will potentially produce significant habitat for rare species in addition to significant C 

sequestration benefits. The endangered Cheat Mountain salamander (Plethodon nettingi) has 

been associated with red spruce forest communities in parts of our spodic probability model 

footprint and could benefit from restoration (Dillard et al., 2008a; Dillard et al., 2008b; Pauley, 

2008). The formerly endangered Virginia northern flying squirrel (Glaucomys sabrinus fuscus) 

has also been linked to forests with influential red spruce components (Menzel et al., 2004; 

Menzel et al., 2006a; Menzel et al., 2006b; Odom et al., 2001) and would likely benefit from 

restoration efforts. 

 Potential C sequestration calculations associated with ESD restoration scenarios 

(Table 3) for just the study area map units sampled represent the C equivalent of combusting 4.4 

million barrels of oil according to the EPA C equivalents calculator (EPA, 2014). This amounts 

to about 23% of the 18.89 million barrels of oil used in US in one day 

(http://www.eia.gov/tools/faqs/faq.cfm?id=33&t=6). When this potential is scaled up to all areas 

above an elevation of 880 meters in WV, this amount increases almost 13-fold to 56.4 million 
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barrels of oil. We think this represents a conservative estimate of potential C fixation in O 

horizons because initial data from Cheat Mountain, a higher and wetter area of WV, indicates 

that conifer composition influence might have twice the impact on O horizon accumulation (i.e., 

~2.1 cm O horizon accumulation per 10% increase in conifer importance, r
2
 = 70, p=0.0001, 

Nauman, unpublished data, 2013). Earlier work on the spruce-hardwood ecotone in Vermont 

also showed a correspondence between more acidic soils with thicker forest floors and red spruce 

dominated areas, but didn’t report as much specificity between spruce and spodic properties 

(Siccama, 1974; Young, 1934). However, modern studies must account for the possibility that 

the vast harvest disturbance of forests associated with European colonization has favored 

hardwood incursion into formerly conifer influenced areas (Nowacki et al., 2010; Pielke, 1981) 

that might be reflected in spodic soils currently under hardwood cover. 

Our estimates also do not include mineral subsurface C storage, which is significant in 

Spodosols and can respond quickly to disturbance (Barrett and Schaetzl, 1998; Hix and Barnes, 

1984; Hole, 1975; Hole, 1976). Data presented here does not include biomass estimates of 

carbon stock which may vary with composition and productivity of sites. Further research should 

be done to fully quantify how all these carbon pools might change in these restoration scenarios 

within the warmer and wetter climate projections expected (Iverson et al., 2008). Although our C 

sequestration estimates in WV account for a small portion of global emissions, it is indicative of 

how temperate forest encroachment into cooler subalpine and boreal conifer systems is a 

significant potential contributor to atmospheric CO2 through combinations of human disturbance, 

as seen in this study, and climate change (e.g., Hamburg and Cogbill, 1988). Lal (2005) showed 

that the boreal and tundra systems represent significantly larger organic C pools than temperate 

forests, and that they are potentially the most vulnerable to climate change. Lal (2005) also 
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points out that as much as two thirds of forest C stocks are in soil organic C, and that in boreal 

systems this ratio is even higher. 

Different studies have indicated that red spruce will mostly disappear from the central 

Appalachians within the century under even the best climate change scenarios (Butler et al., 

2014; Iverson et al., 2008; Prasad et al., 2007; Young et al., 2010) implying that debate regarding 

the benefits of red spruce restoration is moot. Studies of the red spruce – northern hardwood 

ecotone in New England have often focused on the elevation of the transition and the associated 

ecological changes (Siccama, 1974; Beckage et al., 2008). Late twentieth century decreases in 

the growth of red spruce and upward shifts of the ecotone have largely been attributed to climate 

warming, but cannot rule out pollution and competition as co-factors (Beckage et al., 2008; 

McLaughlin et al., 1987). Hamburg and Cogbill (1988) were able to show that climate was 

probably more influential than air pollution (e.g. acid rain) in red spruce decline since 1800.   

However, our results do suggest red spruce restoration could play a role in climate 

change mitigation and that it might be difficult to discern the effects of climate change on red 

spruce range because so much of the northeastern U.S. has been intensively disturbed since the 

industrial revolution. Indeed both the MNF witness tree database (Thomas-Van Gundy et al., 

2012) and historical accounts (Hopkins, 1899) indicate that the red spruce range stretched much 

lower in elevation (500-700 meters) in certain topographies than current distributions would 

indicate. Several other recent studies show that red spruce populations are actually recovering 

and expanding (Nowacki et al., 2010; Rollins et al., 2010). Red spruce restoration may also 

become increasingly important where it co-dominates with eastern hemlock due to the projected 

loss of hemlock to the hemlock woolly adelgid (Adelges tsugae) (Hessl and Pederson, 2013). 
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Tree cover and species also have an effect on ambient air temperature and soil 

temperatures. Data from Hobbie et al. (2006) showed that spruce and fir species were associated 

with lower mean annual soil temperatures and decreased litter decomposition in a common 

garden experiment with a variety of tree species. Pielke (1981) reported on how the vast 

destruction of forests circa 1900 increased regional temperature, which then began to lower again 

around 1940 with the return of the mostly hardwood forest. It is also unclear how large of a role 

in climate change that land use change surface radiative dynamics play (Pielke, 2001; Pielke et 

al., 2002).The potential effect of forest mitigation of surface warming should be further 

investigated with respect to historically native conifer communities, and might uncover further 

resilience of red spruce communities against warming temperatures, and potential carbon cycle 

feedbacks. 

6.7 Conclusions 

 Understanding how soil properties relate to ecosystem dynamics can help tell the 

story of a site when current vegetation may not reflect the past due to anthropogenic disturbance. 

ESD help provide the framework to understand these concepts in a pragmatic manner. In the 

higher elevation areas of West Virginia, ESD related to spodic soil properties reflect a much 

different forest composition before the vast ecological disturbance wrought on the land by the 

railroad timbering era. The key to this understanding is knowing the time scale required for 

differing soil processes to react to changes in environment. In spodic conifer forests, longer lived 

subsurface sesquioxide horizons can persist for longer periods than soil organic pools which can 

shift quickly with disturbance and forest composition change. Carbon pools that respond 

relatively quickly to forest restoration represent an important potential avenue of C sequestration 

and habitat renewal in areas where disturbance has caused loss of species that promote soil C 
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buildup.  Although climate change is a daunting challenge and species like red spruce seem to be 

ill-fated from some perspectives, they also might represent a significant mitigation potential as 

new data emerges. Alternatively, if red spruce is lost, similar species that promote podsolization 

and C accumulation including other selected Tsuga, Larix, Picea, Pinus, and Abies species could 

serve as alternatives. Restoration of red spruce and similar species represents one of many 

potential climate mitigation and ecological restoration options that society will need to evaluate 

in our efforts to balance our global sustainability. 

 

6.8 Acknowledgements 

 We would like to acknowledge the large group of scientists who contributed to 

the field soil description efforts for this project. These individuals came from diverse institutions 

including USDA-NRCS, USDA Forest Service, West Virginia University, West Virginia State 

University, and Virginia Polytechnic Institute and State University. We also acknowledge the 

dedicated fieldwork at forest plots by WVU research associate Aaron Burkholder, and the input 

and assistance from Shane Jones, MNF Biologist. Portions of this research were supported by the 

United States' Department of Agriculture Natural Resources Conservation Service. 



 

  199 

 

 

6.9 Literature Cited 

Adams, H.S., S. Stephenson, A.W. Adams, and M.B. Adams. 2010. The isolated red spruce communities 

of Virginia and West Virginia, pp. 1-12 The conference on the ecology and management of high-

elevation forests in the central and southern Appalachian Mountains, Vol. WV. Gen. Tech. Rep. 

NRS-P-64. Department of Agriculture, Forest Service, Northern Research Station, Slatyfork, 

WV. 

Adams, M.B., and C. Eagar. 1992. IMPACTS OF ACIDIC DEPOSITION ON HIGH-ELEVATION 

SPRUCE-FIR FORESTS - RESULTS FROM THE SPRUCE-FIR RESEARCH 

COOPERATIVE. Forest Ecology and Management 51:195-205. 

Amundson, R., and H. Jenny. 1991. THE PLACE OF HUMANS IN THE STATE FACTOR THEORY 

OF ECOSYSTEMS AND THEIR SOILS. Soil Science 151:99-109. 

Amundson, R., and H. Jenny. 1997. On a State Factor Model of Ecosystems. BioScience 47:536-543. 

Averill, C., B.L. Turner, and A.C. Finzi. 2014. Mycorrhiza-mediated competition between plants and 

decomposers drives soil carbon storage. Nature 505:543-545. 

Barrett, L.R., and R.J. Schaetzl. 1998. Regressive Pedogenesis Following a Century of Deforestation: 

Evidence for Depodzolization. Soil Science 163(6):482-497. 

Beane, N.R., J.S. Rentch, and T.M. Schuler. 2013. Using Maximum Entropy Modeling to Identify and 

Prioritize Red Spruce Forest Habitat in West Virginia, USFS Northern Research Station. 

Beckage, B., B. Osborne, D.G. Gavin, C. Pucko, T. Siccama, and T. Perkins. 2008. A rapid upward shift 

of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proceedings 

of the National Academy of Sciences 105:4197-4202. 

Berg, B., and C. McClaugherty. 2008. Plant litter Springer. 

Bestelmeyer, B.T., D.P. Goolsby, and S.R. Archer. 2011. Spatial perspectives in state-and-transition 

models: a missing link to land management? Journal of Applied Ecology 48:746-757. 

Bestelmeyer, B.T., A.J. Tugel, G.L. Peacock Jr, D.G. Robinett, P.L. Shaver, J.R. Brown, J.E. Herrick, H. 

Sanchez, and K.M. Havstad. 2009. State-and-transition models for heterogeneous landscapes: a 

strategy for development and application. Rangeland Ecology & Management 62:1-15. 

Binkley, D., and R. Fisher. 2012. Ecology and management of forest soils John Wiley & Sons. 

Blum, J.D., A. Klaue, C.A. Nezat, C.T. Driscoll, C.E. Johnson, T.G. Siccama, C. Eagar, T.J. Fahey, and 

G.E. Likens. 2002. Mycorrhizal weathering of apatite as an important calcium source in base-

poor forest ecosystems. Nature 417:729-731. 

Briske, D.D., S.D. Fuhlendorf, and F.E. Smeins. 2005. State-and-transition models, thresholds, and 

rangeland health: A synthesis of ecological concepts and perspectives. Rangeland Ecology & 

Management 58:1-10. 

Brundrett, M. 2009. Mycorrhizal associations and other means of nutrition of vascular plants: 

understanding the global diversity of host plants by resolving conflicting information and 

developing reliable means of diagnosis. Plant and Soil 320:37-77. 

Butler, P.R., L. Iverson, F.R.T. III, L. Brandt, S. Handler, M. Janowiak, P.D. Shannon, C. Swanston, J. 

Bartig, S. Connelly, W. Dijak, K. Karriker, C. Randall, S. Bearer, S. Blatt, A. Brandon, E. Byers, 

C.Coon, T. Culbreth, J. Daly, W. Dorsey, D. Ede, C. Euler, N. Gillies, L. Lyte, D. McCarthy, D. 

Minney, D.l. Murphy, C. O’Dea, D. Hix, C. Johnson, R. Orwan, M. Peters, J. Reed, C. Sandeno, 

T. Schuler, L. Sneddon, B. Stanley, A. Steele, R. Swaty, S. Stout, J. Teets, T. Tomon, J. 

Vanderhorst, J. Whatley, and N. Zegre. 2014. Central Appalachians ecosystem vulnerability 

assessment and synthesis: a report from the Central Appalachians Climate Change Response 



 

  200 

Framework project. Department of Agriculture, Forest Service, Northern Research Station., 

Newtown Square, PA. 

Byers, E.A., J.P. Vanderhorst, and B.P. Streets. 2010. Classification and Conservation Assessment of 

Upland Red Spruce Communities in West Virginia, In W. V. D. o. N. R. West Virginia Natural 

Heritage Program, (ed.). Wildlife Resources Section. 

Byers, E.A., K.C. Love, K.R. Haider, E.J. Burks, and J.E. Rowan. 2013. Red Spruce (Picea rubens) Cover 

in West Virginia, Version 1.0. West Virginia Division of Natural Resources, Central Appalachian 

Spruce Restoration Initiative, Appalachian Forest Heritage Area Americorps, Monongahela 

National Forest, and U.S. Fish and Wildlife Service. 

Caudle, D., H. Sanchez, J. DiBenedetto, C. Talbot, and M. Karl. 2013. Interagency Ecological Site 

Handbook for Rangelands. USDA-NRCS, USDA-FS, & DOI-BLM. 

Clarkson, R.B. 1964. Tumult on the mountains: lumbering in West Virginia, 1770-1920 McClain Printing 

Company. 

Comas, L.H., and D.M. Eissenstat. 2009. Patterns in root trait variation among 25 co-existing North 

American forest species. New Phytologist 182:919-928. 

Côté, B., and J.W. Fyles. 1994. Nutrient concentration and acid-base status of leaf litter of tree species 

characteristic of the hardwood forest of southern Quebec. Canadian Journal of Forest Research 

24:192-196. 

Dillard, L.O., K.R. Russell, and W.M. Ford. 2008a. Macrohabitat models of occurrence for the threatened 

Cheat Mountain salamander, Plethodon nettingi. Applied Herpetology 5:201-224. 

Dillard, L.O., K.R. Russell, and W.M. Ford. 2008b. Site-level habitat models for the endemic, threatened 

Cheat Mountain salamander (Plethodon nettingi): the importance of geophysical and biotic 

attributes for predicting occurrence. Biodiversity and Conservation 17:1475-1492. 

Dokuchaev, V.V. 1999. On the concept of natural zones - St. Petersburg, 1899. Eurasian Soil Science 

32:726-727. 

EPA, U.S. 2014. Greenhouse Gas Equivalencies Calculator [Online] 

http://www.epa.gov/cleanenergy/energy-resources/calculator.html. 

Friedland, A.J., G.J. Hawley, and R.A. Gregory. 1988. Red spruce (Picea rubens Sarg.) foliar chemistry in 

Northern Vermont and New York, USA. Plant and Soil 105:189-193. 

Giesler, R., H. Ilvesniemi, L. Nyberg, P. van Hees, M. Starr, K. Bishop, T. Kareinen, and U.S. 

Lundström. 2000. Distribution and mobilization of Al, Fe and Si in three podzolic soil profiles in 

relation to the humus layer. Geoderma 94:249-263. 

Grazing Lands Technology, I. 2003. National range and pasture handbook [computer file], 2003 Revision 

ed. [Fort Worth, Tex.] : U.S. Dept. of Agriculture, Natural Resources Conservation Service, 

Grazing Lands Technology Institute, [1997]. 

Hamburg, S.P., and C.V. Cogbill. 1988. Historical decline of red spruce populations and climatic 

warming. Nature 331:428-431. 

Herbauts, J., and E. Buyl. 1981. The relation between spruce monoculture and incipient podzolisation in 

ochreous brown earths of the Belgian Ardennes. Plant and Soil 59:33-49. 

Herrick, J., B. Bestelmeyer, S. Archer, A. Tugel, and J. Brown. 2006. An integrated framework for 

science-based arid land management. Journal of Arid Environments 65:319-335. 

Hessl, A., and N. Pederson. 2013. Hemlock Legacy Project (HeLP) A paleoecological requiem for eastern 

hemlock. Progress in Physical Geography 37:114-129. 

Hix, D.M., and B.V. Barnes. 1984. Effects of clear-cutting on the vegetation and soil of an eastern 

hemlock dominated ecosystem, western Upper Michigan. Canadian Journal of Forest Research 

14:914-923. 

Hobbie, S., M. Ogdahl, J. Chorover, O. Chadwick, J. Oleksyn, R. Zytkowiak, and P. Reich. 2007. Tree 

Species Effects on Soil Organic Matter Dynamics: The Role of Soil Cation Composition. 

Ecosystems 10:999-1018. 



 

  201 

Hobbie, S.E., P.B. Reich, J. Oleksyn, M. Ogdahl, R. Zytkowiak, C. Hale, and P. Karolewski. 2006. Tree 

species effects on decomposition and forest floor dynamics in a common garden. Ecology 

87:2288-2297. 

Hoffland, E., T.W. Kuyper, H. Wallander, C. Plassard, A.A. Gorbushina, K. Haselwandter, S. 

Holmström, R. Landeweert, U.S. Lundström, and A. Rosling. 2004. The role of fungi in 

weathering. Frontiers in Ecology and the Environment 2:258-264. 

Högberg, P., and D.J. Read. 2006. Towards a more plant physiological perspective on soil ecology. 

Trends in Ecology & Evolution 21:548-554. 

Hole, F. 1975. Some relationships between forest vegetation and polzol B horizons in soils of Menominee 

tribal lands, Wisconsin, USA. Soviet soil science. 

Hole, F.D. 1976. Soils of Wisconsin University of Wisconsin Press. 

Hopkins, A.D. 1899. Report on Investigations to Determine the Cause of Unhealthy Conditions of the 

Spruce and Pine from 1880-1893, In W. V. A. E. Station, (ed.), Vol. Bulletin 56. Fairmont Index 

Steam Print, Morgantown, WV. 

Hornbeck, J.W., and R.B. Smith. 1985. Documentation of red spruce growth decline. Canadian Journal of 

Forest Research 15:1199-1201. 

Iverson, L.R., A.M. Prasad, S.N. Matthews, and M. Peters. 2008. Estimating potential habitat for 134 

eastern US tree species under six climate scenarios. Forest Ecology and Management 254:390-

406. 

Jenny, H. 1941. Factors of Soil Formation McGraw-Hill, New York, New York. 

Jenny, H. 1961. Derivation of state factor equations of soils and ecosystems. Soil Science Society of 

America Journal 25:385-388. 

Jenny, H. 1980. ECOLOGICAL STUDIES ANALYSIS AND SYNTHESIS VOL. 37. THE SOIL 

RESOURCE ORIGIN AND BEHAVIOR, p. XXI+377P-XXI+377P Jenny, H. Ecological 

Studies: Analysis and Synthesis, Vol. 37. The Soil Resource: Origin and Behavior. Xxi+377p. 

Springer-Verlag: New York, N.Y., USA; Berlin, West Germany. Illus. Maps. 

Johnson, A.H. 1983. Red Spruce Decline in the Northeastern U.S.: Hypotheses Regarding the Role of 

Acid Rain. Journal of the Air Pollution Control Association 33:1049-1054. 

Jongmans, A.G., N. van Breemen, U. Lundstrom, P.A.W. van Hees, R.D. Finlay, M. Srinivasan, T. 

Unestam, R. Giesler, P.A. Melkerud, and M. Olsson. 1997. Rock-eating fungi. Nature 389:682-

683. 

Lal, R. 2005. Forest soils and carbon sequestration. Forest Ecology and Management 220:242-258. 

Lietzke, D.A., and G.A. McGuire. 1987. Characterization and Classification of Soils with Spodic 

Morphology in the Southern Appalachians. Soil Sci. Soc. Am. J. 51:165-170. 

Lin, H. 2011. Three Principles of Soil Change and Pedogenesis in Time and Space. Soil Sci. Soc. Am. J. 

75:2049-2070. 

Losche, C.K., and W.W. Beverage. 1967. Soil survey of Tucker County and part of Northern Randolph 

County, West Virginia. Soil Survey Reports. United States Department of Agriculture. 

Lundström, U.S., N. van Breemen, and D. Bain. 2000a. The podzolization process. A review. Geoderma 

94:91-107. 

Lundström, U.S., N. van Breemen, D.C. Bain, P.A.W. van Hees, R. Giesler, J.P. Gustafsson, H. 

Ilvesniemi, E. Karltun, P.A. Melkerud, M. Olsson, G. Riise, O. Wahlberg, A. Bergelin, K. 

Bishop, R. Finlay, A.G. Jongmans, T. Magnusson, H. Mannerkoski, A. Nordgren, L. Nyberg, M. 

Starr, and L. Tau Strand. 2000b. Advances in understanding the podzolization process resulting 

from a multidisciplinary study of three coniferous forest soils in the Nordic Countries. Geoderma 

94:335-353. 

McLaughlin, S., D. Downing, T. Blasing, E. Cook, and H. Adams. 1987. An analysis of climate and 

competition as contributors to decline of red spruce in high elevation Appalachian forests of the 

eastern United States. Oecologia 72:487-501. 



 

  202 

Melvin, A.M., and C.L. Goodale. 2013. Tree species and earthworm effects on soil nutrient distribution 

and turnover in a northeastern United States common garden. Canadian Journal of Forest 

Research 43:180-187. 

Menzel, J.M., W.M. Ford, J.W. Edwards, and M.A. Menzel. 2004. Nest tree use by the endangered 

Virginia northern flying squirrel in the central Appalachian mountains. American Midland 

Naturalist 151:355-368. 

Menzel, J.M., W.M. Ford, J.W. Edwards, and L.J. Ceperley. 2006a. A habitat model for the Virginia 

northern flying squirrel (Glaucomys sabrinus fuscus) in the central Appalachian Mountains US 

Department of Agriculture, Forest Service, Northeastern Research Station. 

Menzel, J.M., W.M. Ford, J.W. Edwards, and T.M. Terry. 2006b. Home range and habitat use of the 

Vulnerable Virginia northern flying squirrel Glaucomys sabrinus fuscus in the Central 

Appalachian Mountains, USA. Oryx 40:204-210. 

Miles, J. 1985. The pedogenic effects of different species and vegetation types and the implications of 

succession. Journal of Soil Science 36:571-584. 

Nauman, T.W., J.T. Thompson, J. Teets, T. Dilliplane, J. Bell, S.J. Connolly, H.J. Liebermann, and K. 

Yoast. In Press. Ghosts of the forest: mapping pedomemory to guide forest restoration. 

Geoderma. 

Rentch, J.S. and T. M. Schuler (ed.) 2010. Proceedings from the conference on the ecology and 

management of high-elevation forests in the central and southern Appalachian Mountains., 

Slatyfork, WV. USDA-FS Northern Reseach Station. 

Rentch, J.S. and T. M. Schuler (ed.) 2010. Proceedings from the conference on the ecology and 

management of high-elevation forests in the central and southern Appalachian Mountains, Slaty 

Fork, WV. USDA - Forest Service, Northern Research Station. 

USDA-NRCS. 2014. National Ecological Site Handbook. 

Odom, R.H., W.M. Ford, J.W. Edwards, C.W. Stihler, and J.M. Menzel. 2001. Developing a habitat 

model for the endangered Virginia northern flying squirrel (Glaucomys sabrinus fuscus) in the 

Allegheny Mountains of West Virginia. Biological Conservation 99:245-252. 

Parfitt, R.L. 2009. Allophane and imogolite: role in soil biogeochemical processes. Clay Minerals 44:135-

155. 

Pauley, T.K. 2008. The Appalachian Inferno: Historical Causes for the Disjunct Distribution of Plethodon 

nettingi (Cheat Mountain Salamander). Northeastern Naturalist 15:595-606. 

Phillips, J.D., and D.A. Marion. 2004. Pedological memory in forest soil development. Forest Ecology 

and Management 188:363-380. 

Pielke, R.A. 1981. The Distribution of Spruce in West-Central Virginia before Lumbering. Castanea 

46:201-216. 

Pielke, R.A. 2001. Influence of the spatial distribution of vegetation and soils on the prediction of 

cumulus convective rainfall. Reviews of Geophysics 39:151-177. 

Pielke, R.A., G. Marland, R.A. Betts, T.N. Chase, J.L. Eastman, J.O. Niles, and S.W. Running. 2002. The 

influence of land-use change and landscape dynamics on the climate system: relevance to 

climate-change policy beyond the radiative effect of greenhouse gases. Philosophical 

Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering 

Sciences 360:1705-1719. 

Prasad, A., L. Iverson, S. Matthews, and M. Peters. 2007. A climate change atlas for 134 forest tree 

species of the eastern United States [database]. Northern Research Station, USDA Forest Service, 

Delaware, Ohio. 

Ranger, J., and C. Nys. 1994. The effect of spruce (Picea abies Karst.) on soil development: an analytical 

and experimental approach. European Journal of Soil Science 45:193-204. 

Reich, P.B., J. Oleksyn, J. Modrzynski, P. Mrozinski, S.E. Hobbie, D.M. Eissenstat, J. Chorover, O.A. 

Chadwick, C.M. Hale, and M.G. Tjoelker. 2005. Linking litter calcium, earthworms and soil 

properties: a common garden test with 14 tree species. Ecology Letters 8:811-818. 



 

  203 

Rentch, J.S., T.M. Schuler, W.M. Ford, and G.J. Nowacki. 2007. Red spruce stand dynamics, simulations, 

and restoration opportunities in the central Appalachians. Restoration Ecology 15:440-452. 

Rentch, J.S., T.M. Schuler, G.J. Nowacki, N.R. Beane, and W.M. Ford. 2010. Canopy gap dynamics of 

second-growth red spruce-northern hardwood stands in West Virginia. Forest Ecology and 

Management 260:1921-1929. 

Rollins, A.W., H.S. Adams, and S.L. Stephenson. 2010. Changes in Forest Composition and Structure 

across the Red Spruce-Hardwood Ecotone in the Central Appalachians. Castanea 75:303-314. 

Rustad, L.E., and I.J. Fernandez. 1998. Soil Warming: Consequences for Foliar Litter Decay in a Spruce-

Fir Forest in Maine, USA. Soil Sci. Soc. Am. J. 62:1072-1080. 

Sauer, D., H. Sponagel, M. Sommer, L. Giani, R. Jahn, and K. Stahr. 2007. Podzol: Soil of the Year 2007. 

A review on its genesis, occurrence, and functions. Journal of Plant Nutrition and Soil Science 

170:581-597. 

Schaetzl, R.J. 1994. Changes in O horizon mass, thickness and carbon content following fire in northern 

hardwood forests. Vegetatio 115:41-50. 

Schoeneberger, P.J., E. Wysocki, and S.S. Staff. 2002. Field book for describing and sampling soils, 

Version 3.0 Government Printing Office. 

Schöll, L., T. Kuyper, M. Smits, R. Landeweert, E. Hoffland, and N. Breemen. 2008. Rock-eating 

mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant and Soil 303:35-47. 

Shigo, A.L. 1972. The beech bark disease today in the northeastern US. Journal of Forestry 70:286-289. 

Siccama, T.G. 1974. Vegetation, soil, and climate on the Green Mountains of Vermont. Ecological 

Monographs:325-349. 

Sohet, K., J. Herbauts, and W. Gruber. 1988. CHANGES CAUSED BY NORWAY SPRUCE IN AN 

OCHREOUS BROWN EARTH, ASSESSED BY THE ISOQUARTZ METHOD. Journal of Soil 

Science 39:549-561. 

Soil Survey Laboratory Staff. 2004. Soil Survey Laboratory Methods Manual. USDA-NRCS, Lincoln, 

NE. 

Soil Survey Staff. 1999. Soil Taxonomy A Basis System of Soil Classification for Making and 

Interpreting Soil Surveys, In USDA-NRCS, (ed.), 2nd Edition ed. U.S. Government Printing 

Office, Washington. 

Stanley, S.R., and E.J. Ciolkosz. 1981. Classification and Genesis of Spodosols in the Central 

Appalachians. Soil Sci. Soc. Am. J. 45:912-917. 

Stephenson, S.L., and J.F. Clovis. 1983. Spruce Forests of the Allegheny Mountains in Central West 

Virginia. Castanea 48:1-12. 

Stuiver, M., and H.A. Polach. 1977. Discussion; reporting of C-14 data. Radiocarbon 19:355-363. 

Targulian, V.O., and S.V. Goryachkin. 2004. Soil memory: Types of record, carriers, hierarchy and 

diversity. Revista Mexicana de Ciencias Geológicas 21. 

Teets, J. 2013. Ecological Site Descrition: Spodic Shale Upland Conifer Forest (Draft), In USDA-NRCS, 

(ed.), Morgantown, WV. 

Thomas-Van Gundy, M., M. Strager, and J. Rentch. 2012. Site characteristics of red spruce witness tree 

locations in the uplands of West Virginia, USA. The Journal of the Torrey Botanical Society 

139:391-405. 

USDA-SCS, and USDA-FS. 1982. Soil Survey of Randolph County Area, Main Part, West Virginia. 

van Breemen, N., U.S. Lundström, and A.G. Jongmans. 2000. Do plants drive podzolization via rock-

eating mycorrhizal fungi? Geoderma 94:163-171. 

Vogel, J.S., J.R. Southon, and D.E. Nelson. 1987. Catalyst and binder effects in the use of filamentous 

graphite for AMS. Nuclear Instruments and Methods in Physics Research Section B: Beam 

Interactions with Materials and Atoms 29:50-56. 

West Virginia Geologic and Economic Survey.1968. Surface Geology - Rock Units, pp. Online Digitized 

Map: Available at http://wvgis.wvu.edu/, In T. U. West Virginia DEP, (ed.). William and Heintz 

Map Corporation. 

Williams, B.H., and H.M. Fridley. 1931. Soil Survey of Randolph County, West Virginia. 



 

  204 

Willis, K.J., M. Braun, P. Sumegi, and A. Toth. 1997. Does soil change cause vegetation change or vice 

versa? A temporal perspective from Hungary. Ecology 78:740-750. 

Young, B., E. Byers, K. Gravuer, K. Hall, G. Hammerson, and A. Redder. 2010. Guidelines for using the 

NatureServe climate change vulnerability index. NatureServe, Arlington, VA. 

Young, V.A. 1934. Plant distribution as influenced by soil heterogeneity in Cranberry Lake region of the 

Adirondack Mountains. Ecology 15:154-196. 

 

 

 



 

  205 

6.10 Tables 

Table 1. Description of spodic intensity (SI) classes based on observable field morphology. 

SI Class Description 

0.0  No evidence of podzolization. 

0.5 Very weak expression of podzolization. There is only slight physical evidence of 

podzolization. A slightly redder hue and higher value is present at the top of the B horizon, 

but the hue is less than one Munsell hue redder than an underlying horizon. The soil is non-

smeary*. 

1.0 Weak expression of podzolization (spodic intergrade, half of profiles key to Spodosols). 

Spodic materials are present, but they do not always meet the criteria for a diagnostic 

spodic horizon. A subtle Bs horizon is present. The Bs horizon is one Munsell hue redder 

than an underlying horizon. Bhs material is usually absent. An albic E horizon is not 

present. The spodic materials are sometimes weakly smeary. 

1.5 Moderate expression of podzolization (Spodosol). Spodic materials are present as a 

diagnostic spodic horizon. A moderately expressed Bs horizon is present, often with 

pockets of Bhs material. An albic E horizon is not present. The spodic materials are often 

weakly smeary 

2.0 Strong expression of podzolization (well-expressed Spodosol). A diagnostic spodic horizon 

is present usually underlying an albic E horizon. A Bhs or Bh horizon is continuous across 

at least 85 percent of the pedon. The spodic materials are often moderately smeary. 

* Smeariness (Shoeneberger et al, 2002,  page 2-65)  is a physical observation about how moistened soil 

samples fail when they are squeezed and rubbed between the thumb and forefinger.  Smeariness 

can help identify spodic soil materials. 
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Table 2. Organic C calculations for O horizons from laboratory analysis used in restoration 

predictions of C sequestration. Standard deviations of averaged values are in parentheses. 

Horizon 

Average 

Organic C 

(wt) 

Average 

Bulk Density 

(g/cm
3
) 

Average %  

of O depth 
g C per cm

3
 

Total weighted 

average 

(g C/cm
3
) in O 

horizons 

Oi 
48%       

(8.0%) 

6.3E-2    

(1.8E-2) 

21%      

(6.1%) 
3.0 E-2 

5.7E-2 Oe 
44%       

(9.8%) 

8.8E-2   

(4.1E-2) 

44%       

(11%) 
3.9E-2 

Oa 
43%       

(5.2%) 

2.2E-1   

(1.0E-1) 

35%      

(8.7%) 
9.6E-2 
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Table 3. Organic C accumulation calculations for SCF restoration scenarios. Estimates of total 

organic C stored in O horizons above 880 m, assuming the same areal proportions of states 

across those areas and same proportion of spodic areas (31%). 

State Area Estimate Source 
Hardwood State 

(ha) 

Mixed 

Transition (ha) 

Total C seq. (Tg*) in 

study map units 

Total C seq (Tg*) in 

WV above 880m 

Byers et al. (2013) 11758 1581 0.52 6.6 

1/3 Validation Set 8513 n/a 0.36 4.5 

2013 plots 5814 2907 0.29 3.7 

Conifer IMP deficit est. 0.76 0.31 
  

O horizon increase (cm) 7.3 3.0 
  

* Teragrams = 10
12

 grams         
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6.11 Figures 

 

 

Figure 1. Study area soil map units (MU), areas of the Spodic Shale Uplands Conifer Forest 

(SCF) ecological site, and data collection locations overlaid on ArcGIS 10 National 

Geographic mapping baselayer. 
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Figure 2. State and transition model from spodic shale upland conifer forest (SCF) (Teets, 2013). 
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Figure 3. Flow chart of data analysis to create pedoecological areal estimate of SCF extent (Point 

data) and alternative states (Byers et al., 2013) as well as O-horizon accumulation (Pedon data 

and Plot Data). 
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Figure 4. Graph of fixed area plot SI values (x-axis) versus probabilities from the random forest 

spodic probability model (y-axis). The outlined area at the top of the plot delineates the SCF 

ecological site, and letters represent dominant tree composition groups (C = conifer, M = mixed, 

H = hardwood). 
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Figure 5. Relationships between conifer importance (CNIMP) with O horizon depth in at plots 

with SI of 1-2. 
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Figure 6. Pedoecological map of the different vegetative states within the spodic shale uplands 

conifer forest (SCF) ecological site. States are denoted by the different colors.   
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7 CHAPTER 6: CONCLUSIONS 

These studies all aim to leverage the predictive aspects of linkages between soils and 

their surrounding environment. These predictive links enable use of mapping technologies to 

combine ecological and soils data with available geospatial data sources to create management 

scale (~10-100 m) raster maps of ecological status and potential using ESD (as one approach) 

that can be leveraged into other models. In some cases there are very definite connections 

between soils and factors like vegetation or topography, and these are much easier to map. In 

other cases, mapping was not able to characterize the variability seen at validation sites. A 

sizeable contrast in validation accuracies was seen between soil maps (SSURGO and DM) in 

Arizona (~70%) and West Virginia (25-40%). The updated DM maps showed utility in 

increasing spatial resolution and creating more transparent keys, but only produced equivalent 

accuracy to the original soil surveys.  

Differences in accuracies between the two DM trials could potentially be from many 

sources. The mapping intensity and methods could be inconsistent because of the differing eras 

when the various county soil surveys were completed. Although both areas are relatively remote, 

the AZ survey is on a National Park Service property where more detail was possibly desired by 

the client. Or more likely, the soil-landscape relationships were better defined in AZ. The AZ 

map units generally followed alluvial surface ages of deposits that are relatively easy to identify 

and generally have discrete breaks along geologic erosional fronts working upslope to the 

mountains. The WV study area was densely forested with high relief and complicated landforms. 

There are also aspects of peri-glacial landforms that have shaped some areas creating short order 

variability. All of these are factors that potentially intensify field scale soil variability in WV. 

 The variability and uncertainty in soil properties in WV became a barrier to mapping 

ESD using the DM maps. This was overcome by examining the soil processes dominating the 
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different ecological sites present. This research uncovered the potential imprint of historic 

conifer in the form of spodic soils properties as a pedomemory indicator. Pedomemory is a 

property of the soil that can be linked to and used as a surrogate for a past condition, event, or 

ecosystem. Spodic soil properties could be mapped due to covariation with slope aspect, surface 

geometry, and satellite imagery. So a spodic soils map was used in place of the DM and 

modified to spatialize ESD states and transitions. The states and transitions were then analyzed 

under assumed restoration scenarios to determine how much historic disturbance related O-

horizon loss could potentially be recovered (3.7-6.6+ Tg of C). Further efforts should be 

undertaken to evaluate the uncertainty in these estimates as well as how they fit into the greater 

carbon cycle. Although we suspect these values would help shift carbon out of atmospheric 

pools, carbon pools in biomass and subsurface mineral surface horizons also need to be 

considered. There are also potential feedbacks between changes in forest composition and soil 

temperature and moisture that could affect the carbon cycle that merit further investigation in 

future research. 
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8 APPENDIX A: PLOT DIAGRAM AND RELATED DATA COLLECTION 

 
 

A. 20x20 meter fixed area sample plot 

a. Forest Site Index: height and age of trees by species 

i. Core 3-4 of each dominant or co-dominant species for site index 

1. Use red spruce growth curves as site ‘reference’ if there is 

evidence of podzolization. 

ii. If necessary core other species for stand age estimates (will be done on 

minimal basis). 

b. Basal Area: diameter breast height 

c. Overall species list (also including plants within visible surroundings) 

d. Crown Class: dominant, co-dominate, intermediate, suppressed 

e. Overall canopy cover by spherical densiometer 

f. Canopy Cover by species by height strata (ocular estimate) 

i. Stratum breaks (m): 0.5, 1, 5, 10, 20 

ii. Estimate for larger species: trees, shrubs, dominant herbaceous 



 

  217 

g. Soil Cover Estimates: large debris (e.g. woody debris, large rocks) 

B. Soil pit at plot center 

a.  Full field description (NRCS 232) 

i. Describe and sample horizons 

ii. Estimate ‘Spodic Intensity’ as defined by Tim Dilliplane and Skip Bell 

(WV NRCS) 

iii. Pay extra attention to horizon topography and consistency for looking at 

regressive vs progressive organizational patterns (Johnson and Watson-

Stegner, 1987; Minasny et al., 2008).  

b. Samples analyzed in lab 

i. Particle size, pH, EC, OC, nutrients, extractions for different groups of 

sesquioxides (primary Spodic indicator), others? 

C. Vegetation quadrat-primary regeneration quadrat at center of plot quadrants 

a. Soil cover for smaller types (e.g. bryophytes, bare ground, smaller rock 

fragments, organic litter, plant basal) 

b. Canopy cover by species (include all species, but meant to detect smaller 

organisms) 

c. Tree regeneration counts. 

d. O-horizon depth observation (1 just outside of each quadrat) 

D. Secondary regeneration sampling unit. Only necessary if regeneration is sparse/not 

present in primary regeneration quadrat. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  218 

9 APPENDIX B CHAPTER 3 DATA 

 

Table B.1 Soil classes at validation sites used to evaluate the disaggregation models in Chapter 3. 

 

NRCS_SITEID Field_Class SQRT_Model_Class LOG_Model_Class ORIG_Model_Class X_UTM_E Y_UTM_N 

78WV083003 Berks Kaymine Kaymine Gilpin        571896 4265537 

79WV067002 Ernest Craigsville Craigsville Laidig 535578 4232927 

79WV067006 Laidig Gilpin Gilpin Gilpin 540966 4239426 

79WV067007 Ernest Laidig Laidig Laidig 541282 4239428 

79WV067008 Buchanan Gilpin Gilpin Gilpin 532051 4239756 

81WV067001 Laidig Laidig Kaymine Laidig 543543 4234507 

81WV067002 Laidig Gilpin Gilpin Gilpin 537321 4234538 

81WV101001 Cookport Fenwick Fenwick Gilpin 544584 4244007 

95WV075001 Gauley Gauley Gauley Gauley 565228 4239801 

95WV075002 Gauley Leatherbark Leatherbark Leatherbark 593141 4256352 

F06WV071001 Gauley Mandy Udorthents Mandy 627384 4282821 

FS06WV081002 Meckesville Cateache Snowdog Cateache 569224 4239814 

S03WV-025-001 Cateache Kaymine Kaymine Gilpin 527696 4203325 

S03WV-025-002 Shouns Laidig Fluvaquents Laidig 532583 4205852 

S03WV071001 Shouns Mandy Gauley Mandy 626191 4282167 

S03WV075001 Cateache Cateache Belmont Cateache 599775 4267370 

S03WV-083-008 Cateache Cateache Cateache Cateache 594381 4279297 

S03WV-101-001 Shouns Cateache Cateache Cateache 561319 4259456 

S03WV-101-002 Cateache Cateache Cateache Cateache 561301 4259262 

S06WV067002 Fenwick Fenwick Fenwick Gilpin 529717 4228504 

S06WV067003 Laidig Gilpin Gilpin Gilpin 528947 4228831 

S06WV067004 Fenwick Fenwick Fenwick Fenwick 538592 4234690 

S06WV067005 Laidig Gilpin Gilpin Gilpin 536970 4234258 

S06WV101-001 Gilpin Laidig Laidig Laidig 534125 4250763 

S06WV101-002 Fenwick Fenwick Fenwick Gilpin 544463 4245327 

UG06WV075043 Laidig Mandy Mandy Mandy 565228 4247323 

UG06WV075084 Cateache Laidig Craigsville Laidig 564104 4246103 

UG06WV075101 Shouns Snowdog Snowdog Snowdog 568980 4245673 

UG06WV075126 Macove Cateache Cateache Cateache 568146 4243186 

UG06WV075130 Shouns Sensabaugh Holly Sensabaugh 569246 4242079 

UG06WV075136 Calvin Shouns Shouns Shouns 568943 4238136 

UG06WV075137 Hazleton Cateache Cateache Cateache 568153 4237397 

UG06WV075138 Laidig Cateache Cateache Cateache 568975 4236913 

UG06WV075140 Shouns Cateache Udorthents Cateache 569002 4235624 

UG06WV075142 Berks Cateache Medihemists Cateache 570966 4234692 
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UG06WV075143 Shouns Cateache Cateache Cateache 569477 4234522 

UG06WV075144 Gilpin Cateache Cateache Mandy 569333 4234451 

UG06WV075146 Shouns Cateache Cateache Cateache 571549 4234167 

UG06WV075147 Cateache Shouns Shouns Cateache 571753 4230584 

UG06WV075150 Laidig Cateache Cateache Cateache 568818 4240488 

UG06WV075151 Cateache Cateache Cateache Cateache 567640 4237003 

UG06WV075153 none Cateache Cateache Cateache 567140 4233748 

UG06WV075155 Shouns Cateache Shouns Cateache 567370 4236468 

UG06WV075158 Cateache Shouns Shouns Shouns 569991 4233918 

UG06WV075159 Shouns Shouns Shouns Shouns 569996 4233834 

UG06WV075161 Shouns Shouns Shouns Shouns 569186 4233573 

UG06WV075164 Trussel Snowdog Snowdog Snowdog 566146 4239962 

UG06WV075166 Macove Mandy Cateache Mandy 568142 4239133 

UG06WV075168 Gilpin Mandy Mandy Mandy 567076 4237125 

UG06WV075169 Laidig Cateache Udorthents Cateache 568417 4239667 

UG06WV075172 Shouns Mandy Udorthents Mandy 567025 4235634 

UG06WV075173 Shouns Cateache Cateache Cateache 566803 4234743 

UG06WV075174 Shouns Cateache Shouns Cateache 568184 4232055 

UG06WV075175 Gilpin Mandy Udorthents Mandy 568728 4231013 

UG06WV075181 Shouns Cateache Cateache Cateache 569297 4230319 

UG06WV075420 Cateache Cateache Cateache Cateache 570877 4241852 

UG06WV075432 Laidig Snowdog Snowdog Snowdog 569972 4246952 

UG06WV075436 Laidig Gilpin Gilpin Gilpin 559142 4246005 

UG06WV101003 Dekalb Gilpin Gilpin Gilpin 549437 4248690 

UG06WV101008 Dekalb Mandy Simoda Mandy 552949 4247457 

UG06WV101010 Laidig Gilpin Snowdog Gilpin 551742 4247180 

UG06WV101011 Dekalb Mandy Gauley Mandy 554960 4246529 

UG06WV101074 Snowdog Mandy Simoda Mandy 548098 4245016 

UG06WV101080 Laidig Laidig Snowdog Laidig 552194 4243019 

UG06WV101085 Fenwick Cateache Meckesville Cateache 552067 4244610 

UG06WV101086 Macove Gilpin Cedarcreek Gilpin 550130 4249619 

UG06WV101087 Gilpin Laidig Meckesville Laidig 547174 4249162 

UG06WV101089 Laidig Laidig Laidig Laidig 549433 4248467 

UG06WV101090 Macove Gilpin Gilpin Gilpin 549720 4247992 

UG06WV101092 Laidig Gilpin Gilpin Gilpin 557832 4246085 

UG06WV101093 Macove Gilpin Gilpin Gilpin 554702 4245140 

UG06WV101094 Laidig Gilpin Kaymine Gilpin 555224 4244739 

UG06WV101096 Macove Mandy Snowdog Mandy 562739 4248059 

UG06WV101097 Macove Gilpin Laidig Laidig 547861 4247814 

UG06WV101105 Gilpin Gilpin Gilpin Gilpin 551280 4244996 

UG06WV101107 Atkins Cotaco Cotaco Pope 554131 4243226 

UG06WV101110 Gilpin Gilpin Gilpin Gilpin 548340 4247227 

UG06WV101113 Gilpin Gilpin Gilpin Gilpin 544678 4246132 
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UG06WV101114 Dekalb Gilpin Gilpin Gilpin 545256 4244922 

UG06WV101121 Macove Shouns Cateache Cateache 562026 4247701 

UG06WV101199 Gilpin Gilpin Gilpin Gilpin 550831 4245630 

UG06WV101400 Gilpin Gilpin Gilpin Gilpin 547912 4249045 

UG06WV101401 Gilpin Gilpin Gilpin Gilpin 548845 4247902 

UG06WV101431 Laidig Gilpin Gilpin Gilpin 549333 4246742 

UG06WV101434 Dekalb Gilpin Dekalb Gilpin 544863 4246566 

UG06WV101435 Laidig Gilpin Gilpin Gilpin 550799 4246075 

UG06WV101437 Guyandotte Laidig Laidig Laidig 555531 4246744 
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10 APPENDIX C CHAPTER 4 DATA 

Table C.1 Validation site data from Chapter 4 validation of disaggregated soil survey. 

 
Validation Taxa SSURGO Map Unit Name DM Taxa DM 

Probability 

X UTM E Y UTM N 

Gachado taxdjunct Gachado extremely cobbly loam, 2 to 8 percent 

slopes 

Gachado 0.63800001 329303 3539929 

Gunsight Gunsight very gravelly loam, 2 to 15 percent 

slopes 

Gunsight 0.99000001 330297 3536882 

Cipriano Cipriano gravelly loam Cipriano 0.94599998 335249 3538580 

Cipriano Cipriano gravelly loam Cipriano 0.91799998 336960 3539232 

Lomitas taxadjunct Ajo very gravelly loam, 1 to 5 percent slopes Ajo 0.71600002 338077 3545915 

Cipriano Ajo very gravelly loam, 1 to 5 percent slopes Ajo 0.71200001 335669 3541854 

Gunsight Harqua-Gunsight complex Gunsight 0.75000000 330323 3546071 

Cipriano Cipriano gravelly loam Cipriano 0.96200001 333198 3551698 

Ajo Ajo very gravelly loam, 1 to 5 percent slopes Ajo 0.93800002 336826 3549754 

Cipriano taxadjunct Ajo very gravelly loam, 1 to 5 percent slopes Ajo 0.95800000 336884 3549779 

Ajo Ajo very gravelly loam, 1 to 5 percent slopes Ajo 0.98199999 333971 3551006 

Rillito Rillito gravelly sandy loam Rillito 0.74800003 333635 3558643 

Rillito Rillito gravelly sandy loam Rillito 0.85600001 334209 3563683 

Antho Antho fine sandy loam Antho 1.00000000 330631 3562527 

Antho Antho fine sandy loam Antho 0.95599997 328557 3563306 

Gilman Gilman very fine sandy loam Gilman 0.81599998 326980 3563679 

Laveen Laveen loam Laveen 0.87400001 321226 3564188 

Gilman Torrifluvents Gilman 0.54600000 320850 3564164 

Cherioni Cherioni gravelly very fine sandy loam, 0 to 8 

percent slo 

Cherioni 0.88200003 319428 3562915 

Cherioni Cherioni gravelly very fine sandy loam, 0 to 8 

percent slo 

Cherioni 0.84600002 319098 3562786 

Lomitas Lomitas extremely stony loam, 8 to 40 percent 

slopes 

Lomitas 0.52200001 320809 3545372 

Gunsight Gunsight very gravelly loam, 2 to 15 percent 

slopes 

Gunsight 0.75599998 319441 3545951 

Torrifluvents Lomitas extremely stony loam, 8 to 40 percent 

slopes 

Lomitas 0.91600001 317937 3545498 

Lomitas Lomitas extremely stony loam, 8 to 40 percent 

slopes 

Lomitas 0.45400000 314952 3544674 

Harqua Gunsight very gravelly loam, 2 to 15 percent 

slopes 

Gunsight 0.52999997 314853 3544679 

Lomitas Lomitas extremely stony loam, 8 to 40 percent 

slopes 

Gunsight 0.54799998 314952 3544468 

Gachado taxadjunct Harqua-Gunsight complex Lomitas 0.51800001 315370 3543878 

Harqua Harqua-Gunsight complex Gunsight 0.64999998 315322 3543858 

Harqua Harqua-Gunsight complex Gunsight 0.90399998 314839 3543798 

Torrifluvents Harqua-Gunsight complex Gunsight 0.44600001 314478 3543796 

Gunsight Harqua-Gunsight complex Gunsight 0.47000000 314098 3543772 
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Gunsight Torrifluvents Gunsight 0.47200000 313569 3543193 

Torrifluvents Torrifluvents Torrifluvents 0.77600002 313482 3543301 

Gunsight Gunsight very gravelly loam, 2 to 15 percent 

slopes 

Gunsight 0.75800002 319460 3545892 

Harqua Harqua very cobbly loam, 0 to 8 percent slopes Harqua 0.51200002 314960 3533661 

Gilmansaline Harqua very cobbly loam, 0 to 8 percent slopes Harqua 0.45199999 314925 3533616 

Antho Antho fine sandy loam Antho 0.75800002 309841 3536616 

Antho Antho fine sandy loam Antho 0.46799999 309848 3536224 

Gunsight Gunsight very gravelly loam, 2 to 15 percent 

slopes 

Gunsight 0.87599999 326034 3530811 

Gunsight Torrifluvents Gunsight 0.74400002 328502 3530054 

Gilman Gilman very fine sandy loam Gilman 0.69000000 324603 3564179 

Gilman Gilman very fine sandy loam Gilman 0.85399997 326716 3563525 

Gilman Gilman very fine sandy loam Gilman 0.87000000 326920 3563607 

Antho Antho fine sandy loam Antho 0.65600002 328026 3563224 

Growler, Harqua* Harqua-Gunsight complex Harqua 0.76400000 333186 3555192 

Cherioni Cherioni gravelly very fine sandy loam, 0 to 8 

percent slo 

Cherioni 0.66399997 319036 3562739 

Growler, Harqua, 

Cipriano** 

Antho fine sandy loam Antho 0.53200001 316097 3561232 

Antho Antho fine sandy loam Antho 0.97200000 310658 3560197 

Torrifluvents Torrifluvents Torrifluvents 0.64600003 308876 3559551 

Antho, Growler* Growler-Antho complex Gilman 0.61799997 305501 3557651 

Antho Growler-Antho complex Harqua 0.23000000 303285 3556843 

Growler Growler-Antho complex Growler 0.98600000 308683 3559372 

Growler Growler-Antho complex Growler 0.97200000 307299 3558290 

Perryville Perryville very cobbly fine sandy loam, 0 to 8 

percent slo 

Perryville 0.85200000 339095 3524608 

Harqua Harqua very cobbly loam, 0 to 8 percent slopes Gunsight 0.65600002 336484 3525758 

Harqua Gunsight very gravelly loam, 2 to 15 percent 

slopes 

Gunsight 0.92400002 335024 3526551 

Lomitas Gilman very fine sandy loam, saline Gilmansaline 0.81000000 333719 3527096 

Gunsight Gunsight very gravelly loam, 2 to 15 percent 

slopes 

Gunsight 0.99800003 334702 3529390 

Harqua Gunsight very gravelly loam, 2 to 15 percent 

slopes 

Gunsight 0.86199999 328438 3530418 

Gunsight Gunsight very gravelly loam, 2 to 15 percent 

slopes 

Gunsight 0.94199997 328439 3530510 

Gachado Rock land Rock land 0.92000002 329176 3540016 

Ajo Ajo very gravelly loam, 1 to 5 percent slopes Ajo 0.77399999 335019 3550609 

Rillito Rillito gravelly sandy loam Rillito 0.98400003 333261 3556984 

* Site where multiple soils could be identified within the pixel using high resolution imagery to distiguish desert varnish, and 

corroborating with field notes  

* Site where field notes could only narrow series down to a multiple possiblities. 

 



 

  223 

11 APPENDIX D CHAPTERS 5 AND 6 DATA 

Table D.1 Field transect observations used to train spodic probability model. 

UTM East UTM North Overstory Species Understory Species 
Spodic 
Intensity 

610423 4287489 ACRU,PRSE2,FAGR FAGR 0 

610879 4287350 PRSE2,FAGR,ACRU,BELE FAGR 1 

610527 4275805 BEALA,TSCA,PIRU,FAGR RHODO,KALA,TSCA 2 

618191 4304293 MAFR,PRSE2,ACRU TSCA,FAGR 2 

618161 4304522 PRSE2,MAFR,ACRU,TSCA TSCA,FAGR,PIRU,BELE 1.5 

617961 4304786 ACRU,PRSE2,BELE,FAGR TSCA,ACRU,PIRU,BELE 2 

609123 4287532 ACRU,PRSE2 FAGR,ACRU 2 

618758 4304025 ACSA3,QURU,TIAM,BELE,FAGR,PRSE2 FAGR,BELE,ACSA3,TSCA 0 

609832 4287632 PRSE2,ACRU,ACSA3,MAAC ACRU,ACPE,FAGR 1 

610378 4287784 PRSE2,FAGR,ACRU,BELE,MAAC FAGR 1 

609588 4287283 ACRU,PRSE2,BELE,FAGR,MAFR FAGR,ACRU,ACPE 1 

610913 4287819 PRSE2,BELE,ACSA3,FAGR FAGR 0.5 

610946 4287570 PRSE2,ACRU,MAAC, ACSA3,ACRU,FAGR,PIRU 1 

610965 4280342 PIAB (plantation) -- 0 

618189 4303902 PRSE2,LITU,FRAM2,ACSA3 ACSA3,FAGR,TSCA 0 

609558 4274529 TSCA, PIRU,PRSE2 -- 2 

611686 4276254 TSCA,PIRU RHODO,FAGR 2 

610100 4282778 TSCA,PIRU,FAGR -- 2 

612764 4259104 BELE,BEALA,QUVE PRSE2,ACPE,BELE 0 

612823 4259765 QURU,FAGR ACPE,PRSE2,BEALA 1 

613345 4260916 ACSA3,BEALA,FAGR,PRSE2 ACSA3,HAMAM,TSCA 0 

612047 4258925 ACSA3,PRSE2,PRSE2,QURU ACPE,FAGR 0.5 

612792 4259179 ACRU,ACSA3,BELE FAGR,PIRU 0 

613844 4259897 QURU,ACRU,FAGR,PIRU FAGR 1 

612583 4258750 ACSA3,BEALA,FAGR,PRSE2 ACPE,FAGR 1 

612867 4259201 PRSE2,BEALA,TIAM,ACSA3 ACPE,ACSA3,BEALA 0 

613016 4260446 QUPR2,ACRU,QURU,CARYA KALA,ILMO 0 

613236 4258997 TSCA,PIRU,BEALA PIRU,ILMO,TSCA 2 

613157 4259243 PIRU,BELE,TSCA PIRU,BELE,ACPE 2 

613078 4259258 TSCA,PIRU,BEALA PIRU,TSCA,ACPE 0 

612102 4259181 PIRU,ACRU,PRSE2 FAGR,ILMO,PIRU 1 

611856 4259258 PIRU,FAGR,ACSA3 ACPE,PRSE2,PIRU 1 

617660 4273403 PIRU,BEALA,TSCA,QURU FAGR,ACPE,PIRU 1 

612579 4260233 ACRU,QURU,BELE,QUPR2 RHODO,ACPE,ILMO 1 

613354 4259039 PIRU,BEALA,TSCA ACPE,ILMO,PIRU 1 

612058 4259212 PIRU,BELE,TSCA,ACRU TSCA,FAGR 1 

612917 4258930 PIRU,TSCA,BEALA TSCA,PIRU,PRSE2,ILMO 1 
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603918 4276074 BEALA,PRSE2 FAGR 0 

605519 4276832 PRSE2,TSCA,BEALA FAGR,TSCA 0 

607618 4278563 FAGR,ACRU,PRSE2 FAGR 0 

607999 4279066 ACRU,PRSE2,FAGR FAGR 0 

605047 4276878 PRSE2,ACSA3 FAGR 0 

607385 4278874 PIRU,TSCA,PRSE2 ACRU,FAGR 0 

604365 4275913 PRSE2 FAGR,ACPE 0 

605191 4276581 PRSE2,TSCA TSCA,FAGR 0 

616295 4297332 PRSE2,MAFR,ACRU FAGR 0 

606957 4278328 ACSA3,PRSE2,BEALA ACPE,ACSA3,PRSE2 0 

606374 4278375 FAGR,PRSE2,ACSA3 ACPE,PRSE2,ACSA3 1 

610651 4287751 PRSE2,ACSA3 FAGR,ACRU 0 

604366 4276206 BEALA,FAGR,TSCA -- 2 

604843 4276891 ACSA3,PRSE2 FAGR 0 

606096 4277653 ACSA3,BEALA,PRSE2,ACRU FAGR 1 

606421 4277368 ACSA3,BEALA,TSCA,PRSE2 FAGR 0 

611767 4290419 PRSE2,ACRU,MAAC,PRSE2 FAGR,AMARA4 0 

605434 4279050 FAGR,TSCA,ACRU,PIRU FAGR,TSCA 0.5 

606396 4278141 FAGR,BEALA,ACSA3 PIRU,PRSE2,ACPE 0 

606707 4278423 ACSA3,BEALA,PRSE2,MAFR FAGR,ACSA3,PIRU 0 

604435 4278174 PIRU,TSCA,MAFR,ACRU -- 1 

623132 4284893 PRSE2,ACSA3,ACRU,PRSE2 FAGR 1 

622806 4285042 FRAM2,ACSA3,PRSE2 FAGR,ACPE,ACSA3 0 

604572 4277828 PIRU,TSCA,ACRU,BEALA MAFR,PRSE2,PIRU 2 

604774 4278499 PIRU,TSCA,BEALA,FAGR FAGR,PIRU,BEALA 2 

605876 4274297 PRSE2,FRAM2,QURU,BELE FAGR 0 

604365 4279095 TSCA,PIRU,ACRU,PRSE2 RHODO 2 

605452 4277497 PIRU,TSCA,FAGR,BEALA ACPE,PRSE2,BEALA 0 

605766 4274345 PRSE2,BELE -- 1 

604980 4277358 TSCA,PIRU,BEALA,MAFR FAGR,TSCA 2 

606133 4273954 TSCA PIRU,FAGR 2 

611455 4291133 PRSE2,MAFR,ACRU MAFR,FAGR,ACRU 1 

611710 4290936 ACRU,PRSE2,FAGR FAGR,ACRU 1 

612011 4291022 PRSE2,ACRU FAGR,ACPE 1 

616077 4297676 MAFR,PRSE2,BEALA FAGR 1 

616372 4299356 BELE,PRSE2,FAGR FAGR,BELE,PRSE2,TIAM 0 

612100 4291283 ACSA3,PRSE2,TIAM,FRAM2 ACSA3,FAGR 0 

616259 4299545 FRAM2,PRSE2ACRU,PIRU FAGR,PIRU,ACRU 1 

611950 4291479 FAGR,BEALA,ACRU,PRSE2 FAGR 1 

611929 4291508 PRSE2,ACRU,TSCA,PIRU,FAGR,BEAL2 
 

1 

612379 4290351 FAGR,PRSE2,BEALA,ACRU FAGR 0 

609975 4287941 BEALA,ACSA3,ACRU FAGR,ACPE,ACRU,TSCA 0 

616327 4299550 PRSE2,BELE,ACRU,PIRU BELE,FAGR,PIRU 1 
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612750 4289255 PRSE2,ACSA3 ACPE,FAGR 1 

612769 4289636 MAFR,PRSE2,BEALA,ACRU FAGR 2 

613631 4291046 PRSE2,TIAM,ACSA3 BEALA,ACSA3,FAGR 0 

614638 4292431 PRSE2,ACSA3,MAFR FAGR 0 

615382 4294245 PRSE2,ACRU,MAFR FAGR 2 

615223 4295122 CARYA, FRAM2 ACSA3,FAGR,ACPE 0.5 

614702 4295654 FAGR,BEALA,ACSA3 FAGR,ACPE 2 

613962 4296079 FAGR,ACSA3,PRSE2 FAGR 0 

614719 4296279 ACRU,MAFR,BEALA,BELE ACRU,BELE,BEALA,PRSE2,TSCA 2 

615688 4296330 PRSE2,MAFR,BEALA,ACRU TSCA,ACRU,FAGR 2 

615192 4296709 FAGR,ACSA3,PRSE2 KALA,PIRU 0.5 

614639 4296774 FAGR,MAFR,ACSA3 ACPE,PIRU 0 

617727 4303482 PRSE2,TSCA,FAGR,PIRU PIRU 1.5 

615444 4296824 PRSE2,FAGR,ACRU FAGR 0 

616520 4301738 PRSE2,MAFR,BELE,PIRU PIRU,TSCA 0.5 

617112 4302307 nhardwoods TSCA,PIRU 0.5 

616406 4298237 ACRU,PRSE2,BEALA,BELE ACPE,FAGR 1 

616266 4298302 PRSE2,TSCA,PIRU,ACRU ACPE,PRSE2,PIRU,TSCA 0 

615801 4298420 PRSE2,MAFR,TSCA,ACRU TSCA,BELE,PIRU 2 

613935 4298515 PRSE2,FAGR,TIAM,TP,MAAC -- 0 

615390 4297765 PRSE2,FAGR,BELE,ACRU,MAFR -- 1 

611992 4291014 PRSE2,FAGR,ACSA3 FAGR 1 

615960 4299817 BELE,PRSE2,FAGR FAGR,ACPE 1 

618408 4302279 PRSE2,TSCA,BEALA -- 0 

618476 4300599 MAFR,ACRU,FAGR BELE,MAFR,ACRU 1 

623098 4285775 FAGR FAGR 1 

623624 4284963 nhardwoods (old pasture) -- 1 

617725 4302374 nhardwoods TSCA,FAGR,PIRU 0.5 

617234 4299619 nhardwoods, PIRU, TSCA PIRU,TSCA,FAGR 1 

615118 4295232 nhardwoods,PIRU -- 0 

614645 4295978 nhardwoods,PIRU,TSCA PIRU,TSCA 1 

622730 4284200 nhardwoods PIRU 1 

623577 4285375 ACRU,ACSA3 FAGR,ACPE 0 

610440 4285889 PRSE2,BEALA,ACRU,ACSA3 ACPE,FAGR 0 

610832 4286696 ACSA3,MAFR,PRSE2,ACRU FAGR,ACSP2 0 

623347 4284962 FAGR,PRSE2,ACSA3 FAGR 0 

611355 4287872 PRSE2,FAGR,ACSA3 FAGR 2 

611457 4288320 PRSE2,ACSA3,FRAM2 ACSA3,FAGR 0 

609624 4288353 PRSE2,BEALA,ACSA3 FAGR,PIRU 0 

610709 4288800 ACSA3,PRSE2,FAGR FAGR 1 

609834 4289226 PRSE2,ACSA3 FAGR 0 

622480 4284419 ACSA3,PRSE2 FAGR 0 

612232 4291307 PRSE2,BELE,ACSA3,PRSE2 ACSA3,FAGR 0 
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612234 4291562 PRSE2,PRSE2,BELE,TSCA FAGR,ACSA3 0 

609596 4289643 PRSE2,FAGR,ACSA3 FAGR 0.5 

610088 4290948 PRSE2,FAGR,MAFR FAGR,BELE 2 

609585 4289900 PRSE2,FAGR,ACSA3 FAGR,ACPE 0.5 

609963 4290445 FAGR,ACSA3,PRSE2 FAGR 0.5 

609399 4290857 PRSE2,FRAM2,BELE ACSA3,ACSP2,FAGR 0.5 

609562 4290921 MAFR,PRSE2,BELE FAGR 1 

609398 4291001 PRSE2,BEALA,ACRU FAGR,ACSA3,PIRU 1 

610251 4291160 MAFR,PRSE2,ACSA3 FAGR 2 

608250 4285909 FAGR, ACRU, PRSE2 PIRU,ACSP2 1.5 

618149 4299502 FAGR,PRSE2,ACRU,BEALA,PIRU -- 2 

618766 4299212 PRSE2,FAGR,ACRU -- 2 

617234 4296416 ACRU,PRSE2,MAFR,ACSA3 ACPE,ACSA3,FAGR 0 

617957 4296850 PRSE2,ACSA3,ACRU,BELE FAGR,ACRU 0 

617847 4297094 clearcut area FAGR,PRSE2,ACPE 0 

617287 4297151 PRSE2,MAFR,ACRU FAGR 2 

617276 4297228 MAFR,FAGR,PRSE2,ACRU FAGR,MAFR 1 

618106 4297246 PRSE2,BELE,ACRU,TSCA FAGR,ACRU 0 

618238 4297253 PRSE2,BELE,ACRU TSCA,FAGR,PIRU 0 

617647 4297277 PRSE2,ACSA3,MAFR FAGR 0 

616945 4297413 PRSE2,ACRU,FAGR FAGR 0 

616982 4297530 FAGR,PRSE2,ACSA3,BEALA FAGR 0 

617734 4298075 PRSE2,ACRU,ACSA3,MAFR FAGR,ACPE,PIRU 1 

614765 4299247 ACRU,BELE,TSCA,PIRU PIRU,RHODO,FAGR,TSCA 2 

614143 4299369 BELE,PRSE2,ACRU,MAFR FAGR,PIRU 1 

614133 4299538 BELE,PRSE2,ACRU,BEALA RHODO,FAGR,PIRU 2 

614391 4299798 PRSE2,BELE,MAFR,TSCA,PIRU,LITU FAGR,PIRU 0.5 

614588 4299943 PRSE2,BELE,ACRU,LITU,MAAC FAGR,BELE,PIRU 1 

614915 4299921 PRSE2,BELE,LITU, FAGR FAGR,BELE,PRSE2 1 

615072 4299921 PRSE2,FAGR,BELE,ACRU,MAFR FAGR 1 

615825 4293131 PRSE2,ACRU,MAFR FAGR 0 

616271 4292872 ACRU,PRSE2,MAFR FAGR,MAFR 2 

616517 4292697 PRSE2,ACSA3,ACRU FAGR,ACSA3 0 

616811 4292433 PRSE2,ACRU,BELE FAGR,BELE 1.5 

616231 4292477 ACRU,ACSA3,PRSE2,BELE FAGR,ACPE 0 

616022 4292381 PRSE2,BELE,ACRU MAFR,FAGR 2 

615386 4292492 ACRU,PRSE2,BELE,MAAC FAGR 0 

615121 4292421 ACSA3,FAGR,PRSE2 FAGR,ACPE 0 

624060 4285316 FAGR,ACSA3,ACRU,ACPE FAGR,ACSA3,ACRU,ACPE 1 

612889 4258785 PRSE2,FAGR,BELE,TSCA ACPE,FAGR 1 

613267 4259119 PIRU,BEALA,TSCA,PRSE2,BELE -- 2 

609496 4273861 PIRU,TSCA,MAFR,FAGR,BELE PIRU 2 

609515 4286127 PRSE2,MAFR,ACRU,BELE,FAGR ACRU,FAGR 1 
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608488 4285853 PIRU,TSCA,PRSE2,MAFR,ACRU,BELE -- 2 

616664 4301718 PRSE2,MAFR,ACRU,FAGR PIRU,ACPE,FAGR,TSCA 1 

618330 4274056 ACSA3,PRSE2,MAFR,PIRU PIRU,KALA,PRSE2 1 

623018 4285527 nhardwoods PIRU,FAGR 1 

617326 4273718 PRSE2,PIRU,BELE PIRU,FAGR 0 

623953 4286037 nhardwoods FAGR 1 

623114 4285879 FAGR FAGR 1 

624083 4285303 nhardwoods FAGR 1 

624263 4285303 nhardwoods FAGR 0 

623705 4284930 nhardwoods (old pasture) -- 1 

624353 4285099 pasture -- 1 

616889 4274620 FAGR,ACSA3,PRSE2 FAGR 0 

616662 4272726 PIRU, PRSE2 ACPE,ACSA3,PIRU 1 

623928 4285441 PRSE2 FAGR 1 

622157 4284838 PRSE2,ACSA3 ACSA3,FAGR,ACPE 1 

619395 4274394 PIRU,ACSA3 TSCA 0 

610004 4275144 ACSA3,PRSE2,ACRU FAGR 0 

622824 4285502 BEALA,ACSA3,PRSE2,PRSE2 FAGR,ACSP2 1 

622868 4284127 old pasture FAGR 0 

608278 4285784 FAGR, ACRU, PRSE2 PIRU,ACSP2 1.5 

616747 4273868 PIRU,ACSA3,PRSE2 FAGR,ACSA3 1 

623497 4285088 PRSE2,ACSA3 FAGR 0 

622712 4283607 PRSE2,ACRU FAGR 1.5 

622149 4283158 BEALA,PRSE2,ACRU ACPE 0 

620335 4281006 -- PIRU 1 

621855 4281060 PIRU -- 1 

621541 4281833 PIRU,FAGR -- 1 

622379 4285836 BEALA,TSCA,ACRU FAGR,PIRU 2 

620866 4287116 BELE,ACRU,TSCA ACPS2,PIRU,ACRU,TSCA,FAGR 2 

620265 4286857 BELE,ACRU,FAGR,PRSE2 BELE,ACRU,ACPS2 2 

622405 4285609 BEALA,FAGR PIRU,TSCA 2 

621873 4285869 FAGR,MAFR,PIRU FAGR,ACRU 2 

621050 4286876 FAGR,ACRU,PRSE2,TSCA, BELE BELE,ACPS2 2 

621253 4286472 FAGR,ACRU,PRSE2 FAGR,PIRU,ACPS2 0 

621253 4286472 PRSE2,ACSA3,FAGR,ACRU FAGR,ACRU,ACPS2 0 

622087 4285843 FAGR,PRSE2,BEALA ACPS2,FAGR,PIRU 1 

621992 4285371 ACRU,PIRU,FAGR PIRU,ACRU,FAGR 2 

620491 4286848 PRSE2,ACRU,BEAL2,PIRU FAGR,ACPE 2 

622564 4285299 FAGR,ACRU,PRSE2 FAGR 1 

621687 4285578 ACSA3,PRSE2 ASCA3,BEALA,FAGR 1.5 

621071 4286326 FAGR,PRSE2,ACSA3 FAGR 0 

621153 4286393 FAGR,PRSE2,ACRU,PIRU,MAAC PIRU,FAGR 1 

620569 4286589 TSCA,BELE,ACRU FAGR 2 
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622008 4285598 ACRU,BELE,BEAL2 FAGR,ACPS2,BELE 2 

621736 4285868 ACRU,FAGR,PRSE2,BELE,MAAC FAGR,BELE,BEALA,ACRU 1 

620735 4286489 PIRU,ACSA3,MAFR,PRSE2 FAGR,PIRU,ACPS2 1 

621533 4285888 ASCA3,FAGR ACPS2,FAGR,PIRU,PRSE2 2 

621847 4286085 TSCA,ASCA3,ACRU,BEALA PIRU,ACRU 2 

621049 4286718 TSCA,PIRU,PRSE2 FAGR 2 

608357 4285684 FAGR, ACRU, PIRU PIRU, FAGR 2 

608547 4285157 FAGR,MAAC,ACSA3 FAGR 0 

605072 4277143 BEALA,ACSA3 FAGR 2 

608430 4285081 FAGR,PRSE2,FRAM2,ACSA3 FAGR 0 

607585 4286148 BELE FAGR,BELE,PIRU 1 

607719 4287294 PRSE2,ACSA3,FAGR,BEALA FAGR,PIRU 2 

608102 4287561 PRSE2,ACSA3,FAGR,BEALA FAGR 0 

609636 4285421 FAGR,PRSE2,BEALA,ACSA3 FAGR,MAFR 2 

606645 4285456 TSCA,BEALA,PRSE2 PIRU,FAGR,ACSA3 2 

606142 4278869 PIRU,TSCA,ACRU,MAFR MAFR,BEALA,PIRU,ACPE 2 

605184 4278453 PIRU,TSCA,FAGR,ACRU -- 2 

607383 4285908 PRSE2,BEALA,FRAM2 ACSA3,ACPE,BEALA 0.5 

609153 4286071 BEALA,BELE,PRSE2,ACSA3 BEALA,ACSA3 0 

607676 4287106 FAGR,PRSE2,ACSA3,BEALA TSCA,FAGR 1 

607853 4287865 PRSE2,ACSA3,FAGR PIRU,FAGR 1 

607289 4283853 PRSE2,FAGR,PRSE2 FAGR 2 

609404 4285511 BEALA,MAFR,PRSE2 PIRU 2 

609640 4285610 FAGR,BELE,ACSA3 ACPE 0 

606483 4284271 PRSE2,ACSA3,BEALA FAGR,PIRU 2 

605879 4284649 BEALA,PIRU,ACSA3 ACSA3,PIRU 1 

607605 4287426 PRSE2,FAGR,BEALA,ACSA3 PIRU,FAGR 0 

606865 4285405 PRSE2,BEALA,ACSA3 ACPE,TSCA 1 

608881 4286155 BEALA,PRSE2 BEALA 0 

605140 4283310 TSCA,PIRU,PRSE2,ACSA3 RHODO 2 

605665 4283723 TSCA,ACSA3,BEALA,MAFR PIRU,FAGR,BEALA 0.5 

605207 4283256 TSCA -- 0 

605731 4284539 PIRU,TSCA,BEALA,PRSE2 PIRU 2 

606859 4285668 PIRU,TSCA,BEALA PIRU 2 

608487 4285851 PIRU,TSCA,BEALA,ACRU PIRU,TSCA 2 

606937 4285773 PIRU,TSCA,BEALA PIRU 2 

607036 4283875 PIRU,FAGR,TSCA,PRSE2 PIRU,FAGR 2 

606198 4285196 PIRU,TSCA,BEALA FAGR,PIRU,TSCA 2 

606709 4285480 PIRU,TSCA,FAGR,BEALA FAGR,BEALA 2 

617660 4273403 PRSE2,ACSA3 -- 2 

616247 4273554 ACSA3,PRSE2,TIAM FAGR,ACSA3 0 

606375 4278628 FAGR,ACSA3,PRSE2,MAFR FAGR,PIRU 2 

616729 4274651 FAGR,BEALA,PRSE2,ACSA3 PIRU,FAGR 0 
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615566 4274729 MAFR,ACSA3,PRSE2 PRSE2,ACPE 0 

615643 4275067 ACRU,FAGR,PRSE2,ACSA3 FAGR,ACSA3 0 

616940 4273069 ACSA3,PRSE2,BEALA KALA,ACPE 0 

607241 4278800 TSCA,PIRU,FAGR,ACRU TSCA,PIRU,FAGR 2 

617320 4274570 PRSE2,FAGR,ACSA3 ACPE,FAGR 1 

614957 4274684 PRSE2,ACSA3,BEALA,MAFR PRSE2,ACPE 0 

615216 4274687 -- -- 0 

614774 4274777 ACSA3,BEALA,PRSE2 BEALA,FAGR 1 

616939 4272662 ACSA3,FAGR,QURU,BEALA ACPE 0.5 

615130 4274002 PRSE2,FAGR,ACRU,BEALA FAGR,ACSP2 2 

618849 4274049 QURU,PRSE2,PIRU,TSCA PRSE2,TSCA,PIRU 0 

617740 4273988 ACSA3,PIRU,PRSE2 FAGR,ACSP2 2 

616570 4274725 PIAB,ACSA3 FAGR 0 

604406 4277585 PIRU,TSCA,BEALA,MAFR PRSE2,TSCA,MAFR 2 

616242 4273544 PRSE2,TSCA,FAGR,ACSA3 FAGR,ACSA3 0 

617090 4274388 ACSA3,PRSE2,BEALA,PIRU ACPE,PRSE2,BEALA 0 

607558 4278943 TSCA,PIRU,BEALA,FAGR TSCA,ACRU 2 

611973 4288794 PRSE2,ACRU,FAGR ACPE,PRSE2,ACRU,PRSE2 2 

617597 4272786 ACSA3,PIRU,PRSE2,BEALA LIBE3,HAVI4 1 

617206 4274380 PIRU,ACSA3,PRSE2 PIRU,FAGR 1 

615705 4296774 PRSE2,ACRU,MAFR FAGR,MAFR 2 

615778 4274964 PIRU,ACSA3 PIRU,FAGR 1 

615819 4274924 PIRU,ACSA3,TSCA KALA 1 

616441 4274610 PIRU,TSCA,ACSA3 -- 0 

614927 4274763 PIRU,FAGR,BEALA PIRU,PRSE2,BEALA 0 

615520 4275068 PIRU,FAGR,BEALA,ACSA3 PIRU,FAGR 1 

608426 4272178 ACRU,QURU,FAGR,PRSE2 ACPE,PIRU,FAGR 0 

608833 4273568 ACRU,NYSY,PRSE2,FRAM2 FAGR,NYSY,ACPE 0 

609854 4274781 ACSA3,ACRU ACSP2,FAGR,ACSA3 0.5 

608542 4272522 BEALA,TSCA,FAGR,QURU ACPE,FAGR,TSCA 1 

608785 4272815 FAGR,QUVE,BEALA,ACRU FAGR,TSCA 0.5 

608534 4272756 QURU,FAGR,ACRU FAGR,ACPE,PIRU 0 

610284 4274454 TSCA,FAGR,ACRU,MAAC TSCA,FAGR,ACPE 1 

610659 4275420 PRSE2,TSCA,FAGR TSCA,BEALA,FAGR 1 

609318 4275973 PRSE2,BEALA,TSCA,QURU FAGR,ACRU,BEALA 2 

609505 4272030 QURU(clearcut) FAGR,BEALA,PIRU 0 

608774 4273274 ACRU,NYSY ACRU,PRSE2,FRAM2 0 

609701 4272168 PRSE2,ACSA3,QURU,MAFR FAGR, ACPE 0 

622936 4285487 nhardwoods PIRU 2 

610075 4271902 QURU,QUPR2,ACSA3,PRSE2 FAGR,ACRU 0 

608713 4273329 LITU,ACRU,NYSY ACPE,ACRU 0.5 

610616 4276182 FAGR,TSCA,PIRU,BEALA ACPE,TSCA,FAGR 1 

609584 4274904 TSCA,FAGR,BEALA PIRU,KALA,TSCA 2 
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609713 4272510 PIRU,TSCA,BEALA,ACRU BEALA,PIRU,PRSE2,ACPE 1 

609455 4273876 PRSE2,TSCA,ACRU,PRSE2,BEAL2 TSCA,FAGR 2 

609402 4274193 TSCA,PRSE2,BEALA FAGR,TSCA,KALA 2 

606743 4283670 FAGR,MAAC,ACSA3,PRSE2 FAGR,ACSP2 2 

609763 4272393 PIRU,ACRU,BEALA,TSCA BEALA,PRSE2,PIRU,ACPE 1 

609104 4273026 MAAC,TSCA,FAGR,PRSE2,ACRU FAGR,TSCA,MAAC 2 

610709 4276769 PIRU,TSCA,BEALA FAGR,PIRU 1 

609500 4274678 BEALA,FAGR,TSCA PIRU,TSCA,RHODO 2 

610952 4280393 PIAB (plantation) -- 2 

609936 4279177 PIRU,ACRU ACPS2 2 

609849 4279269 ACRU,PRSE2, BEALA FAGR, PIRU, SMILA2 1 

607752 4276779 PRSE2,ACSA3,QURU, FRAM2,TIAM FAGR,ASCA3, POAC4 0 

611344 4289817 PRSE2,ACSA3,ACRU -- 1 

610829 4289686 PRSE2,ACRU,MAAC FAGR,ACRU 1 

610933 4289512 PRSE2,ACRU,ASCA3 -- 1 

610900 4289453 PRSE2,MAFR,ACRU,ASCA3 -- 1 

610829 4289314 PRSE2,MAFR,ACRU,PIRU,TSCA 
PIRU,ACRU,TSCA,FAGR, 
SMILA2 2 

611370 4289748 clearcut area -- 1 

611391 4289735 clearcut area -- 1 

611402 4289711 clearcut area -- 0.5 

611454 4289688 clearcut area -- 0.5 

611505 4289674 clearcut area -- 1 

611525 4289651 clearcut area -- 0 

611577 4289741 clearcut area -- 1 

611565 4289744 clearcut area -- 1.5 

611652 4289707 clearcut area -- 1 

616733 4274290 -- -- 1 
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Table D.2 Forest plot data 

 

Spodic 
Probability 

Soil 
Series 

Forest 
Composition 

Conifer 
Importance 

Charcoal 
presence 

Spodic 
Intensity 

Tree 
rings low 

Tree rings 
high 

Tree rings 
ave 

Ave O-horizon 
thickness (cm) 

UTM East UTM North 

0.76 Wildell CN 0.98 0 2 106 130 120 11.1 609520 4273882 

0.78 Wildell MX 0.46 0 2 80 103 95 11.5 621071 4286720 

0.68 Hazleton HW 0.10 0 1 53 108 79 3.4 608391 4272192 

0.81 Kinzua MX 0.47 0 1 107 184 141 8.3 606174 4273927 

0.29 Carrollton HW 0.00 0 0 101 109 106 2.3 605875 4274308 

0.58 Macove HW 0.00 0 1 90 103 96 6.9 607829 4276852 

0.56 Kinzua HW 0.15 0 1 68 77 74 5.7 618835 4274041 

0.68 Carrollton HW 0.00 1 1 82 99 91 7.7 617669 4273382 

0.46 Carrollton HW 0.26 0 0 82 99 90 2.6 606866 4274929 

0.77 Gauley CN 0.86 1 2 52 72 65 12.1 615788 4274931 

0.89 Blandburg HW 0.22 0 2 82 96 88 7.4 612341 4275296 

0.97 Blandburg CN 0.82 0 2 143 158 151 18.4 604411 4277561 

0.66 Mandy MX 0.44 0 1 94 121 108 7.3 605444 4277486 

0.86 Wildell HW 0.03 1 2 98 111 105 14.5 621634 4279795 

0.91 Blandburg MX 0.66 1 2 103 266 166 6.5 610595 4276185 

0.90 Mandy HW 0.00 0 1 47 65 56 3.0 620331 4281008 

0.71 Wildell CN 0.86 0 2 105 110 110 26.8 607563 4278901 

0.40 Hazleton HW 0.00 0 0 39 41 40 2.5 606699 4278411 

0.78 Gauley CN 1.00 1 2 55 64 60 12.5 616716 4278160 

0.66 Wildell HW 0.00 0 2 82 127 103 8.6 612338 4276414 

0.52 Mandy HW 0.02 0 1 0 0 0 4.8 608534 4273436 

0.64 Mandy HW 0.00 1 1 0 0 0 2.4 608752 4275088 

0.43 Gauley MX 0.69 1 2 109 153 132 14.0 608760 4274340 

0.53 Macove HW 0.00 1 0 0 0 0 2.7 619513 4277167 
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Table D.3 Laboratory data documenting Al and Fe acid oxalate extractions for different spodic 

intensity classes. 

 

Pedon ID 
Horizon 

Middle depth 
(cm) 

Al+0.5Fe 
(% mass) 

Spodic 
Intensity 

Analysis 
Location 

S12WV075002 14 0.08 2 NRCS NSSL 

S12WV075002 22 1.38 2 NRCS NSSL 

S12WV075002 36 1.23 2 NRCS NSSL 

S12WV075002 57 0.2 2 NRCS NSSL 

S12WV075002 79.5 0.19 2 NRCS NSSL 

S12WV075002 100 0.16 2 NRCS NSSL 

S12WV075003 5.5 0.27 2 NRCS NSSL 

S12WV075003 13.5 0.14 2 NRCS NSSL 

S12WV075003 22.5 1 2 NRCS NSSL 

S12WV075003 30 1.15 2 NRCS NSSL 

S12WV075003 52.5 0.96 2 NRCS NSSL 

S12WV075003 88 0.58 2 NRCS NSSL 

S12WV075005 15 0.38 2 NRCS NSSL 

S12WV075005 26 0.47 2 NRCS NSSL 

S12WV075005 33 1.99 2 NRCS NSSL 

S12WV075005 43.5 1.79 2 NRCS NSSL 

S12WV075005 57 0.73 2 NRCS NSSL 

S12WV075005 70.5 0.57 2 NRCS NSSL 

S12WV075005 98 0.41 2 NRCS NSSL 

S12WV083001 6 0.73 1 NRCS NSSL 

S12WV083001 18 0.96 1 NRCS NSSL 

S12WV083001 40 0.8 1 NRCS NSSL 

S12WV083001 65 0.34 1 NRCS NSSL 

S12WV083001 100 0.3 1 NRCS NSSL 

S12WV075001 4.5 0.53 1 NRCS NSSL 

S12WV075001 10 0.76 1 NRCS NSSL 

S12WV075001 16 0.7 1 NRCS NSSL 

S12WV075001 30 1.39 1 NRCS NSSL 

S12WV075001 73.5 0.4 1 NRCS NSSL 

S12WV075001 100 0.24 1 NRCS NSSL 

S12WV075004 6.5 0.39 1 NRCS NSSL 

S12WV075004 11.5 0.71 1 NRCS NSSL 

S12WV075004 30.5 0.94 1 NRCS NSSL 
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S12WV075004 65 0.37 1 NRCS NSSL 

S12WV071001 5 0.5 1 NRCS NSSL 

S12WV071001 10 0.99 1 NRCS NSSL 

S12WV071001 23.5 1.16 1 NRCS NSSL 

S12WV071001 46 1.32 1 NRCS NSSL 

S12WV071001 75 0.57 1 NRCS NSSL 

130611-0900 18.5 0.299 0 WVU 

130611-0900 42.0 0.491 0 WVU 

130611-0900 80.0 0.383 0 WVU 

130611-0900 115.0 0.301 0 WVU 

130710-1000 9 0.750 0 WVU 

130710-1000 18.5 0.761 0 WVU 

130710-1000 37 0.805 0 WVU 

130710-1000 61.5 0.848 0 WVU 

130710-1000 87.5 0.673 0 WVU 

130710-1000 121.5 0.199 0 WVU 

130910-0900 6.5 0.802 0 WVU 

130910-0900 23.5 0.689 0 WVU 

130910-0900 51.0 0.569 0 WVU 

130910-0900 78.0 0.420 0 WVU 
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Table D.4 O-horizon carbon stock data 

 
Pedon ID 

  Horiz
on 

s12wv08
3001 

s12wv07
5005 

s12wv07
5004 

 s12wv07
5003 

 s12wv07
5002 

s12wv07
5001 

s12wv07
1001 

  
Organic Carbon (OC) (fraction of sample mass) average OC OC Std. Dev. 

Oi 0.402 0.335 0.543 0.540 0.440 0.572 0.494 0.475 0.0800 

Oe 0.307 0.545 0.475 0.352 0.540 
  0.444 0.0977 

Oa 0.473 0.404 0.359 0.487       0.431 0.0521 

Bulk Density (BD) (g/cm
3
) average BD BD Std. Dev. 

Oi 0.080 0.050 0.040 0.050 0.090 0.070 
 0.063 0.0180 

Oe 0.090 0.100 0.130 0.110 0.010 
  0.088 0.0412 

Oa 0.170 0.106 0.231 0.383       0.222 0.1027 

Thicknesses (cm) 

  Oi 3 6 1 1 2 1 3 

  Oe 0 7 4 3 3 1 0 

  Oa 0 7 2 2 5 0 0     

total 3.000 19.600 7.000 5.650 10.000 2.000 3.000     

  
Fraction of O total horizon thickness Averages 

g C/ cm
3
 

soil 
weighted g C/ 

cm
3
 soils 

wt ave g C 
/cm

3
 soil 

Oi 
 

0.306 0.143 0.177 0.200 0.206 0.0301 0.0062 0.0573 

Oe 
 

0.357 0.571 0.531 0.300 0.440 0.0390 0.0172 
 Oa 

 
0.337 0.286 0.292 0.500 0.354 0.0958 0.0339 

       Std. Dev.    

     Oi 0.061    

     Oe 0.114    

     Oa 0.087    
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