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ABSTRACT 

 

Fish communities as indicators of ecological health in West Virginia Rivers 

 

Alison M. Anderson 

 
  Anthropogenic altered landscapes from the extraction of natural resources, urbanization, 

agricultural development, dam construction, and general conversion from forested to non-forested 

landscape have resulted in the loss of biodiversity and changes in ecosystem function for aquatic 

environments.  The hierarchical structure of stream ecosystems, in which sites are nested in streams, and 

streams are nested in watersheds (at multiple spatial scales), provides a unique opportunity for evaluating 

the influence of both natural and anthropogenic impacts on aquatic communities.  In essence, landscape 

alterations at one scale of the hierarchical structure of stream ecosystems can ultimately impact the 

distribution of an organism or assembly of the stream community.  Throughout this research, we have 

used detailed landscape data and a large fish community dataset to develop management tools and 

analyses in order to evaluate the condition of rivers and streams in West Virginia. 

For Chapter 1, we developed a fish-based Index of Biotic Integrity (IBI), a common ecological 

tool for assessing the health of fish communities, in order to inform state and federal regulatory agencies 

of the impairment status of warm water, wadeable stream and rivers in West Virginia.  Based on fish 

distributions and assemblage metrics within reference sites, we identified 5 distinct biomonitoring regions 

for which we constructed separate warm water IBIs.  Final lists consisting of 7 – 9 metrics were retained 

within each region for the inclusion into a final IBI.  Common metrics retained in the final IBIs included 

measures of benthic associated species, total species richness, clean-gravel spawning species, tolerance to 

stressors, feeding classification (e.g., invertivores, omnivore-herbivores) and taxonomic group 

membership (e.g., Family Cyprinidae, Family Cottidae, darters, and madtoms).  In general, final IBI 

scores from each of the biomonitoring regions were sensitive to at least one anthropogenic stressor, such 

as surface mining, agriculture, and urbanization.  The Mon CA-RV region had the highest correlation 

between IBI score, benthic macroinvertebrate indices (West Virginia Stream Condition Index and Genus-

Level Indicator of Most Probable Stream Status), total fish abundance, Mid-Atlantic Highlands IBI 

scores, and specific conductance.  The Ohio CA biomonitoring region had the highest correlation between 

IBI scores and % surface mining. Patterns of IBI and metric response in most regions were consistent 

with other studies showing negative impacts of anthropogenic land-use on stream condition.  However, 

the differential response of IBIs to land-use patterns and other measures of biotic condition indicate that 

stressor responses are region and organism specific.  Using both a fish and benthic macroinvertebrate 

measure together should enhance current biomonitoring and assessment criteria in addition to providing 

multiple avenues for evaluating current and future land-use practices. 

   In the remaining chapters, we evaluated alternative methods for portions of IBI development 

and relationships of the final IBI and metrics to both natural and anthropogenic landscape characteristics.  

Specifically for Chapter 2, we used a modeling framework (i.e., boosted regression tree modeling) in 

order to generate an anthropogenic condition gradient based on currently defined reference sites.  We 

used the reference condition probabilities to locate additional reference sites that span a gradient of 

natural environmental conditions to be used in bioassessment development as well as define regions of 

high quality for future sampling or conservation efforts.  We then used this larger sample of reference 



sites to model the expected condition of trait-based fish community metrics using a variety of natural 

landscape variables (i.e., drainage area, elevation, and distance from a source river) in chapter 3.  In order 

to generate predictive models, we used a boosted regression tree (BRT) framework in which we also 

analyzed the effectiveness of BRT models by developing thresholds of model use using Monte Carlo 

simulations.  Overall, the metrics analyzed for chapter 3 showed distinct regional difference in their 

natural condition BRT models as well as their correlations with anthropogenic stressors within each 

biomonitoring region.  Using predictive models in bioassessment development has allowed for the 

production of IBIs and metrics that are sensitive to landscape and fish community alterations. 

Finally, for Chapter 4, we recognized the importance of the hierarchical nature of aquatic systems 

in determining local fish community structure.  We evaluated different measures of fish community 

assembly (species richness, diversity, WV IBI scores, and proportion of tolerant individuals) and how 

local and neighborhood level landscape structure in additional to natural variables, can impact stream 

community health in Central Appalachian watersheds.  In order to account for the nested structure of our 

data, we employed a mixed-effects modeling approach, which has the ability to incorporate non-

independent sampling locations by establishing a fixed-effect grouping variable.  For our analysis, we 

used neighborhood (HUC 12 watershed) as a grouping variable.  Generally, each community variable, 

with exception of % tolerant individuals, was responsive to local landscape structure.  These variables 

demonstrated decreases with increase in measures of surface mining intensity.  However, they also 

demonstrated increases with increases in residential development indicating that residential development 

in the Central Appalachians may serve as a refuge from mining related stressors by providing increased 

levels of nutrients and release from degraded water quality.  Interestingly, we observed no landscape 

control on % tolerant individuals within this region.  The lack of anthropogenic and natural controls on 

tolerant individuals may point to increased homogenization of fish communities dominated by tolerant 

individuals in this degraded landscape.    
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CHAPTER 1: FISH BASED INDEX OF BIOTIC INTEGRITY FOR WARM WATER 

WADEABLE STREAMS IN WEST VIRGINIA  
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Abstract 

Despite persistent efforts to protect stream water quality, approximately 41% of West Virginia (WV) 

streams and rivers have been classified as impaired based either on water quality or benthic 

macroinvertebrate-based biological criteria.  However, WV lacks a formal fish based index of biotic 

integrity (IBI), and this limits our ability to unambiguously identify biologically impaired waterbodies.  

The over-riding objective of this research was to construct and validate a fish based IBI for warm water 

wadeable West Virginia streams.  Specifically, we: 1) compiled a comprehensive traits table for all fish 

species in the state; 2) identified fish biomonitoring regions; 3) identified reference/least disturbed sites; 

and 4) identified fish assemblage metrics that were responsive to anthropogenic stressors.  Based on fish 

distributions and assemblage metrics within reference sites, we identified five distinct biomonitoring 

regions for which we constructed separate warm water IBIs.  These regions included: Monongahela River 

Central Appalachian-Ridge and Valley (Mon CA-RV), Ohio and Monongahela River Western Allegheny 

Plateau (Ohio-Mon WAP), Ohio River Central Appalachians (Ohio CA), Upper Kanawha River drainage 

(UK), and Potomac River drainage (Potomac).  All fish assemblage metrics were evaluated within each 

biomonitoring region for their overall range, correlation with drainage area, discrimination between 

reference and stressed conditions, correlations with land-use, and redundancy with other metrics.  Final 

lists consisting of 7 – 9 metrics were retained within each region for the inclusion into a final IBI.  

Common metrics retained in the final IBIs included measures of benthic associated species, total species 

richness, clean-gravel spawning species, tolerance to stressors, feeding classification (i.e., invertivores, 

omnivore-herbivores) and taxonomic group membership (i.e., Family Cyprinidae, Family Cottidae, 

darters, and madtoms).  In general, final IBI scores from each of the biomonitoring regions were sensitive 

to at least one anthropogenic stressor, such as surface mining, agriculture, and/or urbanization.  The 

strongest correlations were observed in the Mon CA-RV and Ohio CA biomonitoring regions between 

IBI scores and specific conductance and % surface mining, respectively.  Correlations between IBI scores 

in all regions and the density of point-source pollution discharges was low, however each region showed 



3 

 

variable responses to IBI scores and anthropogenic land-use variables.  When compared to other measures 

of biotic integrity, the IBIs showed varying results among regions.  The Mon CA-RV region had the 

highest correlation between IBI score, benthic macroinvertebrate indices (West Virginia Stream 

Condition Index and Genus-Level Indicator of Most Probable Stream Status), total fish abundance, and 

Mid-Atlantic Highlands IBI scores.  The other regions also showed a positive correlation with Mid-

Atlantic Highland IBI scores and total fish abundance, however their relationships with benthic 

macroinvertebrate index scores were lacking.  Patterns of IBI and metric response in most regions were 

consistent with other studies showing negative impacts of anthropogenic land-use on stream condition.  

However, the differential response of IBIs to land-use patterns and other measures of biotic condition 

indicate that stressor responses are region and organism specific.  Using both a fish and benthic 

macroinvertebrate measure together should enhance current biomonitoring and assessment criteria in 

addition to providing multiple avenues for evaluating current and future land-use practices.            
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1.0 Introduction 

Community assemblages have been widely used as aquatic bioindicators for a variety of state (see Lyons 

et al., 2001; Schleiger 2000), federal (e.g., U.S. EPA Environmental Monitoring and Assessment 

Program), and international (see Lyons et al., 1995; Bozzetti and Schulz 2004) biomonitoring programs.  

Measures of community composition (e.g., species richness and biotic indices) have been adopted to 

evaluate the response and condition of streams to environmental degradations.  Those relationships, in 

combination with traditional water quality monitoring, then get used to inform management decisions 

such as impairment listings, establishment of conservation areas (Karr, 1990), or implementation of 

remediation efforts (Merovich et al., 2013).   

The index of biotic integrity (IBI; Karr, 1981) was developed in order to monitor and evaluate the 

condition of streams in the United States using fish community assemblages.  The IBI summarizes the 

composition of the fish community by incorporating measures of species richness or composition, trophic 

composition, life history strategies, and individual fish abundances or conditions.  The evaluation of 

community assemblages leads to a more ecologically relevant analysis of environmental stressors due to a 

multispecies response, integrating the impacts from multiple ecosystems stressors over long periods of 

time (Attrill, 2002).   

Currently multimetric indices are used to assess biologic response to anthropogenic effects have largely 

been developed using benthic macroinvertebrates.  Both benthic macroinvertebrates and fish species are 

relatively easy to collect with standardized methods.  However, their differences in life-history strategies 

and dispersal patterns lead to differences in their responses to environmental changes.  Fishes, due to their 

relatively high mobility and long life, are thought to represent watershed scale and chronic stressors while 

benthic macroinvertebrates represent local degradation (Freund and Petty, 2007).  The differences 

between assemblage groups allow biomonitoring programs to utilize groups concurrently or one 

assemblage over another in systems where diversity in one is lacking (Griffith et al., 2004).   
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Anthropogenic impacts in West Virginia have a long and diverse history from large scale surface and 

underground mining and timber harvest operations to rural and urban development and acid precipitation.  

These alterations on the landscape have profound impacts on the aquatic ecosystems. The West Virginia 

Stream Condition Index (WVSCI; Gerritsen et al., 2000) currently is the primary bioassessment tool that 

determines biological stream impairment for West Virginia.  The response of WVSCI to anthropogenic 

stressors is well-documented with negative responses to increases in acid mine drainage (AMD) or acid 

precipitation (Freund and Petty, 2007; Merovich and Petty, 2010) as well as negative responses to 

residential development and mountain-top/valley-fill operations (Merriam et al., 2011; Merriam et al., 

2013).  A recently developed genus-level benthic macroinvertebrate index (GLIMPSS; Pond et al., 2012) 

responds to landscape stressors in a similar fashion as WVSCI, with decreases in index scores as 

residential development increases (Merriam et al., 2011; Merriam et al., 2013) and is currently being 

evaluated for use in bioassessment due to its increased sensitivity due to taxonomic refinement.   

Acid mine drainage from legacy coal mining operations in conjunction with increased acid precipitation 

from elevated concentrations of sulfur and nitrogen dioxides has lead to increased dissolved solids (e.g., 

Ca2+ and Mg2+)  and acidity in stream systems (Skousen et al., 2000; Driscoll et al., 2001). Increases in 

stream acidity have resulted in reduced productivity and biodiversity within aquatic ecosystems (Driscoll 

et al., 2001) as well as decreases in a family level benthic macroinvertebrate multimetric index (WVSCI; 

Freund and Petty, 2007; Merovich and Petty, 2010) and fish-based index of biotic integrity scores (Freund 

and Petty, 2007). Within West Virginia the impacts from AMD and acid precipitation alone have resulted 

in approximately 12% (~1400 miles) of streams becoming impaired by low pH (<6.0; WVDEP, 2014).   

Actively mined regions of West Virginia have differing water quality characteristics and impacts on 

aquatic ecosystems than the historic impacts associated with acid mine drainage.  The southern coalfields 

(i.e., Mountain-top/valley-fill mining region) of West Virginia are characterized by an alkaline mine 

drainage which is high in sulfates and total dissolved solids, but neutral, or slightly alkaline, in pH 

(Hartman et al., 2005).  Large scale surface mining conducted in this region has lead to significant 
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alterations in the benthic macroinvertebrate community through decreases in sensitive taxa and overall 

WVSCI scores (Merriam et al., 2011).  Regardless of the mining type, approximately 17% of all stream 

miles in West Virginia are impacted by mine drainage which was indicated by elevated sulfate levels 

(>50 mg/L; WVDEP, 2014).  

These mining activities can alter detrital processing, shifting food webs from allochthonous to 

autochthonous organic inputs as forested headwaters are removed and primary production is increased 

(Hill et al., 1995, US EPA, 2011).  Degradation, or alteration, at the base of the food web may have 

effects on the trophic structure resulting in reduced biomass of fishes and other stream organisms (US 

EPA, 2011). For example, Daniel et al., (2014) detected low mining density threshold responses which 

have negative effects on fish assemblage diversity and eveness, and abundances of species with specific 

life history strategies, or habitat preferences.  US EPA (2003) found similar findings in that Mid-Atlantic 

Highlands IBI (MAHIBI; McCormick et al., 2001) scores downstream of valley fills and surface mining 

operations, were an average of 10 points less than their unmined counterparts.  

Within West Virginia, regulatory agencies have been using benthic macroinvertebrates, paired with water 

quality, to enforce environmental laws and regulations.  The addition of a fish based bioassessment tool 

could provide a more ecologically holistic measure of stream impairment while helping preserve the 

integrity of some of the larger scenic rivers where benthic macroinvertebrate data are lacking.  Currently, 

fisheries biologists within the state rely on the Mid-Atlantic Highlands IBI (McCormick et al., 2001), or 

its modification (Detenbeck and Cincotta, 2008), to assess the condition of fish assemblages.  However, 

the diverse geology and large scale anthropogenic land use changes across the state may require a finer 

scale index of biotic integrity to accurately quantify these impacts.  Consequently, due to the lack of a 

cohesive IBI at the state level, the primary objective of this research was to develop a fish based index of 

biotic integrity for warm water wadeable streams in West Virginia.  In order to accomplish this objective 

we: 1) compiled a comprehensive traits table for fish species in the state; 2) identified reference 

conditions across a wide range of naturally occurring contexts (e.g., stream size, drainage basin); and 3) 
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integrated metrics that were responsive to anthropogenic into region-specific fish based indices of biotic 

integrity for wadeable West Virginia streams. 

2.0 Methods 

2.1 Sources of Data 

Statewide fish community data were combined from various sampling sources (Table 1). Sampling sites 

were selected for years 1997, 1998, and 2000 – 2013.  Only electrofishing (backpack, parallel wires, and 

barge) sampling types were used (N=1089). Fish community data consisted of identification of each fish 

captured to species and their abundances.  Since IBI development relies on the classification of individual 

species, any individual not identified to species was removed from the sample.  In addition, hybrid 

species were also removed because they could not be classified into trait groups.   If additional 

environmental (habitat and/or water quality) or benthic macroinvertebrates samples were taken at the time 

of sampling (paired samples) those data were also included in the dataset.  Additional benthic 

macroinvertebrate, habitat, and water quality data were added to the dataset if they matched sampling 

locations and were sampled within two years of the fish collection.  Benthic macroinvertebrate data were 

in the form of stream condition indices developed for West Virginia based on family (WVSCI; Gerritsen 

et al., 2000; N=148) or genus-level (GLIMPSS; Pond et al., 2012; N=123) identification. Habitat data 

consisted of a total habitat score from the EPA’s Rapid Bioassessment Protocol Visual-Based habitat 

assessment (RBP-VBHA; N=367).  Water quality data, when available, primarily consisted of specific 

conductance (µS/m; N=610), pH (N=548), fecal coliform density (colonies/L; N=222), and dissolved 

oxygen (mg/L; N=335).   

Each fish species encountered within the state (N=171), encompassing all stream sizes, were classified 

based on several natural history based traits. The traits included life history aspects such as spawning, 

trophic guild, distribution, tolerance, and family classification.  Traits for each individual species were 

collected from a variety of sources: Fish Traits Database (Frimpong and Angermeier, 2010), Freshwater 
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Fishes of Virginia (Jenkins and Burkhead, 1994), EPA’s Rapid Bioassessment Protocols for Streams and 

Rivers (Barbour et al., 1999), with input from professionals from West Virginia Department of 

Environmental Protection, W.V. Division of Natural Resources, and U.S. Environmental Protection 

Agency (Region 3).  Appendix A lists the classification of all species into trait categories used to calculate 

fish community metrics. 

Sampling locations were then input to ArcGIS and joined with segment level watersheds (1:24,000 scale).  

Locations of sampling points were evaluated against the National Hydrography Dataset (NHD-24 K) to 

ensure site locations were attributed to the correct segment-level watershed. In order to reduce replication 

of the community data, sampling locations were further reduced by selecting the most recent sampling 

event within each segment level watersheds and by using only wadeable streams (7 – 400 km
2
).  Each 

sampling location was assigned local and cumulative landscape attributes, major drainage basin 

(Monongahela, Ohio, Potomac, and Upper Kanawha), and Level III Ecoregion (Omerick, 1987). 

Landscape characteristics for all 1:24,000 segment-level watersheds (SLWs) within the state of West 

Virginia were quantified using spatial analysis functions in ArcGIS ArcMap 10.0 (Environmental 

Systems Research Institute, Redlands, California). Segment-level watersheds are inter-confluence based 

watersheds. Measures of several landscape attributes for each segment-level watershed were quantified at 

the local (i.e., within individual SLWs) and cumulative (i.e., all SLWs upstream of a given sampling 

location) scale for each SLW (Strager et al., 2009).  Land cover classifications were derived from the 

2009 and 2010 National Agriculture Imagery Program (NAIP) orthophotography with a 1-meter pixel 

resolution at a scale of 1:10,000.  Land cover types included open water, forest, grass and agricultural 

lands, and barren development.  The mining-permit boundaries layer developed by the Technical 

Applications in GIS (TAGIS) office within WVDEP enabled further differentiation into mining-related 

open water (i.e., slurry impoundments), barren (i.e., active mine lands) and grasslands (i.e., reclaimed 

mine lands) from non-mining land cover.  All mining-related cover classes were summed into a measure 

of total surface mining.  The density (#/km
2
) of surface mining, underground mining, sewage, and septic 
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national pollution discharge elimination system (NPDES) permits were calculated from data obtained 

from WVDEP.  The West Virginia Statewide Addressing and Mapping Board structures layer (WV 

SAMB) was used to calculate the density of residential and commercial structures (#/km
2
).   Natural 

landscape variables for each SLW were summarized including basin area (km
2
), mean elevation (m), and 

swim distance (km).  Swim distance was defined as the minimum downstream distance (km) from the 

outflow of a SLW to the inflow of a SLW with a basin area ≥200 km
2
 (Hitt and Angermeier, 2011). 

2.2 Site Classification 

Stream ecological assessments rely on two major components: measurement of some ecological resource 

and a reference condition (Hawkins et al., 2010).  A reference condition is considered a benchmark 

condition to which all other measurements are compared.  Without a baseline condition, little can be 

inferred about the ecological condition due to natural variation among sites (Stoddard et al., 2006; 

Whittier et al., 2007; Hawkins et al., 2010).  Identification of reference sites by the WVDEP were 

determined by a series of water quality and habitat characteristics along with identification of surrounding 

and upstream sources of pollution (Table 2; Pond et al., 2012).  A short list of reference sites (N=55) 

using these criteria were determined prior to any analysis of the fish community datasets for IBI 

development. 

Since most reference sites currently in WVDEP’s database are on first and second order streams, a 

concerted effort was made to select some candidates on streams with larger watershed areas from the fish 

database being used for IBI development.  In order to address large streams and areas where reference 

sites are difficult to identify, WVDEP established additional levels of reference condition (Level II & 

Level III).  While Level I reference sites meet all reference site criteria (Table 2), Level II reference sites 

fail to meet one or more of them by a narrow margin.  For example, Level II reference sites may be 

deficient in one RBP habitat parameter.  Level III reference site designations are generally reserved for 

rivers and large streams (≥155.4 km
2
).  Level III reference sites generally meet RBP habitat and water 

quality criteria at the assessment site, but because of their size generally have point source discharges 
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within their drainage or more land development and human disturbances than would be allowed for 

smaller streams designated as Level I or Level II.  Level III reference sites were generally located in least 

disturbed segments of rivers and streams where local and upstream disturbances are minimized or distant 

to the site.  It should be noted that best professional judgment by experienced personnel is an important 

part of the initial and final selection of Level I, Level II, and Level III reference sites. Additional 

reference sites were selected, after community classification into biomonitoring regions, from the 

remaining pool of sites that were previously sampled in order to establish a regional reference condition 

and to increase the reference sample sizes in each region.  The final pool of reference sites would be 

characterized as minimally to least disturbed reference condition (Stoddard et al., 2006). 

All fish sampling data were divided into reference, stressed, and non-reference sites.  Stressed sites were 

defined as meeting at least one of the abiotic criteria (physical or chemical) shown in Table 2.  These 

criteria are similar to the original WVSCI and GLIMPSS stress site criteria and cover a broad range of 

potential stressor variables across WV.  Non-reference included all sites that were not classified as either 

reference or stressed due to either lack of abiotic data or did not meet the requirements to be classified as 

either site type.  These non-reference sites were used in combination with reference and stressed sites for 

evaluating metric response to stressors, metric correlations, and standardizing metric values. 

Sites were identified as being either warm water or cold water by an evaluation of the fish community 

data.  Warm/cold water designation and criteria were determined by West Virginia Department of 

Environmental Protection.  The threshold for the number of coldwater species present depended on 

overall richness.  If species richness was less than or equal to five, then the presence of one cold indicator 

species resulted in the site being identified as a cold water site; if richness was between 5 and 10 then the 

presence of two cold water indicator species were required to be identified as cold water; if richness was 

greater than ten, then 3 cold water indicator species were required.  Additionally, if sculpin species 

(Cottus spp.) were amongst the top three most numerous, the site was deemed to be cold water.  All other 

comparable samples were identified as warm water.   Cold water indicator species used for this exercise 



11 

 

were brook trout (Salvelinus fontinalis), mountain redbelly dace (Chrosomus oreas), longnose dace 

(Rhinichthys cataractae), and any sculpin species (Cottus spp.).  

2.3 Data Analysis 

2.3.1 Community Classification into Biomonitoring Regions 

The variability in fish community distributions in West Virginia is relatively unknown.  McCormick et al. 

(2001) found no regional differences; however Detenbeck and Cincotta (2008) detected ecoregional 

differences in fish IBI metrics and final scores.  In order to evaluate the influences of ecoregion and 

drainage basin on community similarity, fish community assemblages were grouped into natural classes 

based on inferences generated from community similarity analyses.  Combinations of geographical 

classification factors were evaluated in order to help explain the natural variability in fish communities 

found at the reference sites.  Analysis of similarity (ANOSIM; Clarke, 1993) was conducted in order to 

evaluate the differences among the major classification groupings.  The differing classifications were then 

evaluated with mean similarity analysis (MEANSIM; Van Sickle, 1997).  The following combinations of 

strata were used: Level III ecoregion (Central Appalachian, Ridge & Valley, and Western Allegheny 

Plateau); major drainage basin (Ohio, Monongahela, Potomac, and Upper Kanawha); ecobasin (combined 

level III ecoregions X major drainage basin). 

Classification strength was determined using a Bray-Curtis similarity matrix of the reference site fish 

communities and MEANSIM by comparing the average within-class similarity (W) to the average 

between-class similarity (B).  A final classification strength (CS) was calculated (W-B). A dendrogram 

was generated based on MEANSIM to evaluate the clustering of similar sites based on fish community 

composition.  Each analysis was performed using the original set of reference sites defined by WV DEP, 

commonly occurring fish species (>2.5% occurrence), log(x+1) transformed fish abundances, and Bray-

Curtis distances. Significance for analysis was based on 1,000 permutations.  Final biomonitoring regions 
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were determined based on dendrogram grouping, available fish data, and to include distinct watershed 

boundaries (e.g., HUC8 or HUC12 boundaries).   

2.3.2 Metric Selection and Index Construction 

An extensive list of fish community trait and taxonomic based metrics (N=128) were compiled from the 

Mid-Atlantic Highland IBI (McCormick et al., 2001), its modification (Detenbeck and Cincotta, 2008), 

and selected traits from the Fish Traits Database (Frimpong and Angermeier, 2010).  Modifications were 

made to several of the metrics to exclude tolerant or specific species (see Appendix B for complete list 

and description of all metrics).  All metric calculations were conducted in program R version 3.1.2 (R 

Core Team, 2014) using matrix algebra and package vegan version 2.0-6 (used for richness calculations, 

Oksansen et al., 2013). Metrics for consideration in the IBI were then assigned an expected response to 

stressors: positive metrics decrease with increases in stressors, while negative metrics increase with 

increases in stressors.   

Metric evaluation for consideration in a final index followed traditional techniques (e.g., Stoddard et al., 

2008; Pond et al., 2012). After species classification and determination of biomonitoring regions, metrics 

were evaluated within each biomonitoring region using a step-wise selection process.  The overall process 

of metric selection included: evaluating to insure metrics had sufficient range; relationship with drainage 

area; responsiveness (i.e., ability to distinguish between reference and stressed sites); response to human 

disturbance; and redundancy with other metrics.   

The first step in this process, each metric was evaluated for their range. A metric was retained in the 

metric pool if it had a non-zero 25
th
 percentile over all sites sampled.  This evaluation was conducted in 

order to ensure rare metrics were not being evaluated for inclusion in a final IBI.   

The second step in the selection process, evaluated the relationship of each metric with drainage area at 

reference sites only. Within West Virginia, other studies have demonstrated the importance of stream 

temperature, ecoregion, and distance to a source to fish community structure (Detenbeck and Cincotta, 
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2008; Hitt and Angermeier, 2011).  Predictive models used in bioassessment programs allows for the 

comparison of observed fish community assemblages of a sampling location to what is expected in the 

absence of human disturbance (Observed:Expected; Flotemersch et al., 2006). The expected assemblage 

is generated using linear models based on regionally specific reference sites.  Specifically, fish 

community metrics can be predicted for all wadeable streams in West Virginia using reference site based 

models generated using surrounding landscape characteristics.  This approach is based on the concept that 

any significant departure from the baseline reference condition (i.e. expected value under natural 

landscape conditions only) is indicative of a disturbed system.  Metrics were adjusted for natural variables 

after the range test to allow rare metrics (i.e. metrics with too many zeros) within each region to be 

excluded and to ensure metrics have high enough variability to discriminate among sites in different 

conditions (Stoddard et al., 2008).   Fish community based metrics are commonly adjusted for watershed 

area during Index of Biotic Integrity construction (e.g. McCormick et al., 2001).  Some fish community 

metrics were also transformed (e.g. arc-sine or log10(x+1)) depending on its check for normality with a 

Shapiro-Wilks test.  Metrics with significant (p-value <0.05) relationships with drainage area were then 

predicted based on the linear model equation.  Those metrics were then adjusted using an 

observed/expected formula. 

Raw (i.e., metrics not adjusted using linear models) and adjusted (observed/expected) metrics were then 

evaluated for their discrimination efficiency (DE).  Discrimination efficiency (i.e. responsiveness) was 

calculated as the number of stressed sites that fell below the 25
th
 percentile (for positive metrics,) or fell 

above the 75
th
 percentile (for negative metrics,) of the reference distribution in each biomonitoring region 

(Blocksom and Johnson, 2009).  A metric had to exhibit discrimination efficiency above 60% prior to 

further evaluation with anthropogenic stressors.  

Each metric was then evaluated for their relationship with environmental stressors using Spearman’s 

correlation.  Metrics were correlated with % cumulative surface mining, structure density, total 

agriculture, development, and total forest along with pH, and specific conductance.  Redundancy of 
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metrics was evaluated with Spearman correlation. Any metric which was highly correlated (>|0.90|) with 

another metric was considered for removal from IBI development.  This procedure produced a pool of 

potential metrics that are either correlated with human disturbance, were highly discriminatory, or both.  

From this pool, a selection of metrics, or all metrics, could be scored and combined to produce a final IBI.   

2.3.3 Metric scoring and aggregation into final indices 

A final set of metrics within each biomonitoring region was selected to be aggregated into an index of 

biotic integrity.  Metrics within each region were selected to represent diversity, spawning, and trophic 

diversity, or feeding guild of the fish communities.  In addition, at least one “negative” metric (increases 

with increases in stress) was selected in most biomonitoring regions.  Since raw proportional and richness 

metrics, in addition to adjusted metrics, were selected each metric was normalized (scored) in order to 

convert each metric to the same scale.  Metrics were scored following Blocksom (2003) in which the 5
th
 

and 95
th
 percentiles for all sites with fish present in each region were calculated and used as the floor and 

ceiling, respectively.  For positive metrics scoring was based on the following equation: (metric value-

floor)/(ceiling-floor)*100.  For negative metrics, scoring was based on the following equation: (ceiling-

metric value)/(ceiling-floor)*100.  Again, these formulas normalized each metric to be dimensionless, and 

ranging from 0 – 100, so they could be combined into a final, unit-less, index value.  For sites that exceed 

the 95
th
 percentile of the full distribution of sites, resulting in normalized metrics to be greater than 100, 

those values were corrected to the maximum score of 100.  Similarly, if a site had metric values below the 

5
th
 percentile, above 95

th
 percentile for negative metrics, received a score of zero.  Final index values for 

each region were calculated as the average of all the metrics for that region with final IBI scores ranging 

from 0 – 100.   

Finally, four categories of impairment (excellent, good, fair, poor) were created based upon the reference 

distribution.  For three of the biomonitoring regions (Ohio CA, Upper Kanawha, and Ohio-Mon WAP), 

the final impairment thresholds (between good and fair) were based upon the 25
th
 percentile of the 

reference distribution.  Due to the high number and high quality condition of the reference pool in the 



15 

 

Mon CA-RV region, the 10
th
 percentile of the reference distribution was used to determine stream 

impairment.   

2.3.4 Index Performance 

Differences in IBI scores between each site type classification (reference vs. stressed vs. other) was 

evaluated with an analysis of variance (ANOVA) within each biomonitoring region.  It was expected that 

reference sites, on average, would score higher than stressed sites.  However, the response of the non-

reference sites, would span the full range of conditions seen at both the reference and stressed sites in 

each region since they could potentially contain reference and stressed quality streams.  Therefore, no 

significant differences between other-reference sites and other-stressed sites were expected.  

Final IBI score responses in each biomonitoring region were evaluated against anthropogenic landscape 

variables, water quality parameters, and other measures of biotic stream condition such as the West 

Virginia Stream Condition Index (WVSCI), Genus-Level Indicator of Most Probable Stream Status 

(GLIMPSS), and the Mid-Atlantic Highlands Index of Biotic Integrity (MAH IBI).  In addition, low 

numbers of duplicate samples (sites visited again during the sampling time frame) were retained in some 

of the regions.  Due to the low sample sizes, IBI scores were only visually compared to an expected 1:1 

relationship line.   

3.0 Results 

3.1 Community Classification into Biomonitoring Regions 

Analysis of similarity (ANOSIM) indicated that classification using Major Basin, Ecoregion, and 

Ecoregion-Major Basin combinations all produced significant differences (p<0.05) between groups 

(Table 3). However, Ecoregion-Major Basin combinations produced the highest classification percentage 

(CS%), followed by Major Basin and then Ecoregion (13.5, 9.1, and 7.2%, respectively).  This indicates 

that classification based solely on Basin or Ecoregion would be insufficient.  Mean similarity analysis 

(MEANSIM) based on the Ecoregion-Major Basin classifications then indicated which groups were more 
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similar based on their fish community structure (Table 3).  Upon evaluation of the MEANSIM 

dendrogram (Figure 1), general regions were selected for Index of Biotic Integrity development. Those 

regions include: Upper Kanawha (UK); Potomac; Ohio-Monongahela Western Allegheny Plateau (Ohio-

MonWAP); Monongahela Ridge/Valley-Central Appalachian (Mon CA-RV); and Ohio Central 

Appalachians (Ohio CA).  However, this initial classification resulted in regional boundaries that 

intersected watershed boundaries and were difficult to distinguish on the landscape.  In order to make the 

regionalization more biologically relevant and amiable to interest groups that may utilize the index, either 

whole HUC8 watersheds were combined or distinct dividing lines were used, such as HUC12 outflows, 

based on which general region they intersected in order to form the biomonitoring regions (Table 4; 

Figure 2).  The only HUC8 that was split based on a distinct dividing line was the Elk watershed.  The 

dividing line for this watershed occurred at the outflow of Suttons Dam, a HUC 12 outflow. Due to the 

low sample size (N=105) and uncertainty of reference condition, the Potomac biomonitoring region was 

removed from further analysis and IBI development.  Final sample sizes and site type classification are 

given in Table 5 – 8 with summaries of natural landscape variables. 

3.2 Metric evaluation and selection 

The metric selection process resulted in final West Virginia warm water IBI models that incorporated 7 

fish community metrics for the Mon CA-RV, Ohio CA, and Upper Kanawha biomonitoring regions.  The 

Ohio-Mon WAP had a total of 8 metrics selected for inclusion in a final IBI.  Table 9 summarizes species 

metric performance within each biomonitoring region.  See Appendix C for biomonitoring region specific 

results from all metric testing and evaluations.  Within each region, at least one measure of trophic 

structure, spawning preference, tolerance, and diversity were selected to evaluate stream conditions. 

Thresholds for each scoring method for final metrics within the Mon CA-RV, Ohio CA, Ohio-Mon WAP, 

and Upper Kanawha are presented in Tables 10 – 13.  For each region, final IBI scores were calculated 

based on the 5
th
 (floor) and 95

th
 (ceiling) of the full distribution of sites, excluding sites with zero 

individuals. 
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3.3 Index performance 

The final IBI scores within each region were compared between known reference, stressed, and non-

reference sites to determine the ability of the IBI to discriminate between site types.  The Upper Kanawha 

region had the highest range of IBI scores across all site types (0 – 100).  Reduced maximum scores were 

exhibited in the Mon CA-RV (max = 97), Ohio CA (max = 92), and Ohio Mon-WAP (max = 82) across 

all site types. A post-hoc test (TukeyHSD) showed which site types were statistically different based on 

ANOVA results.  The Mon CA-RV region has distinct separation in mean IBI scores between reference-

stressed and reference-non-reference sites with no statistical distinction between stressed and non-

reference sites (Figure 3).  The Ohio CA and Ohio and Mon WAP biomonitoring regions found all three 

groups to be statistically different from one another (Figure 3).  However, the Upper Kanawha 

biomonitoring region showed no significant difference between any of the site types due to the high 

variability of IBI scores within each site type (Figure 3).  

Spearman correlations for final IBI scores within biomonitoring region against stream characteristics 

indicate that in some regions the IBI is responsive to anthropogenic land use patterns as well as to other 

measures of biotic conditions (Table 14).  The Mon CA-RV region showed the strongest positive 

correlation, among all the regions, with biotic measures of stream conditions (WVSCI, GLIMPSS, Fish 

Abundance, and MAH IBI).  All regions exhibited negative relationships, of varying strength, with 

specific conductance (SPC), as well as cumulative percentages of surface mining (C. Surface Mining) and 

development (C. Development).  Strong relationships with drainage area and elevation were not detected 

in any of the regions, indicating that IBI scores are not biased towards large or low elevation streams.  All 

regions exhibited positive relationships, of varying strength, with cumulative percent forest (C. Forest).  

Duplicate samples (i.e., samples within the same segment level watershed) were retained within the Mon 

CA-RV (N=12), Ohio CA (N=4), and Ohio-Mon WAP (N=4) biomonitoring regions to evaluate the 

temporal variation in IBI scores between years.  These duplicate samples were taken in different years 

and were not used to construct the final IBIs.  The Mon CA-RV duplicate samples deviate strongly from 
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the 1-to-1 relationship that was expected (Figure 4).  Three of the 12 samples in the Mon CA-RV had 

initial IBI scores of 0 due to no fish being captured during the original sampling.  Duplicate samples were 

taken in 2013 following chemical stream restoration of acid mine drainage (AMD) in the Three Forks 

watershed.  The resulting data captured an increase in IBI scores following restoration efforts indicating 

that the IBI for the Mon CA-RV region is sensitive to stream improvements. The duplicate samples in the 

Ohio CA and Ohio-Mon WAP show little deviation from the 1-to-1 relationship that was expected 

(Figure 4).  No duplicate samples were located in the Upper Kanawha biomonitoring region.  Due to the 

small sample size of replicate sites within each region a statistical test could not be constructed with any 

reliability. 

IBI scores exceeding the 75
th
 percentile of the reference distribution in the Ohio CA (IBI ≥ 76.82), Ohio 

and Mon WAP (IBI ≥ 64.44), and Upper Kanawha (IBI ≥ 67.89) were classified as having “Excellent” 

biotic integrity.  Scores between the 75
th
 and 25

th
 percentiles for the Ohio CA (76.82 – 46.12), Ohio and 

Mon WAP (64.44 – 50.92), and Upper Kanawha (67.89 – 39.79) were identified as having “Good” biotic 

integrity.  For the Ohio CA, Ohio and Mon WAP, and Upper Kanawha, any site exceeding the 25
th
 

percentile of the reference distribution was considered not impaired.  Any IBI score below the 25
th
 

percentile, for each region, was considered impaired.  Impaired sites were divided into two categories, 

“Degraded” and “Severely Degraded” based on the 5
th
 percentile of the reference distribution within each 

biomonitoring region.  The Mon CA-RV had a larger sample size of high quality reference sites than the 

other region, due to increased sampling efforts in 2013, therefore the 10
th
 percentile of the reference 

distribution was used as the impairment threshold for this region (≤ 56.15 is impaired). 

4.0 Discussion 

The IBIs developed within most of biomonitoring regions are robust and practical tools for evaluating the 

impacts to water quality and aquatic wildlife.  Strong regional differences in fish community assemblages 

allowed us to account for some of the natural variation on the landscape which enabled the development 
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of IBIs sensitive to anthropogenic disturbances.  Regional differences in metric and overall IBI response 

to anthropogenic stressors further demonstrated the importance and need for region specific definitions of 

reference and stressed conditions.  Even though the IBIs developed span a wide range of stream sizes 

across the state, there are still a large number of streams the IBIs cannot assess.  These stream types 

include headwater streams (<7 km
2
), large rivers (>400 km

2
), cold water streams, and Potomac River 

tributaries.  Until more reliable methods of accounting for the natural variability associated with these 

different site types are incorporated into IBI development, then segregation into bioassessment groups 

will continue to be important. 

The development of IBIs for West Virginia warm water, wadeable streams followed common 

standardized techniques for selecting fish community metrics (Stoddard et al., 2008).  Attempts were 

made to select metrics from key ecological categories (i.e. trophic, reproduction, and tolerance) in order 

to generate IBIs that give an overall view of stream condition.  Metrics were selected if they exhibited a 

predictable relationship with at least one anthropogenic landscape or water quality variable.  In addition, 

metrics needed to demonstrate an ability to distinguish between reference and stressed streams.  These 

criteria ensured that the final indexes in most of the biomonitoring regions were sensitive and responsive 

to the anthropogenic impacts evaluated.  Several surrounding state water agencies have also incorporated 

IBIs into their routine of water quality monitoring as well as impairment delineation.  Many of these 

programs have calibrated, or developed, regionally specific IBIs using their own data (e.g., Ohio EPA, 

1987; Roth et al., 2000; Compton et al., 2003).  Even though state-specific IBIs are becoming more 

common for regulatory purposes, region (Lyons et al., 1995; Daniels et al., 2002; Bozzetti and Schulz 

2004; Pont et al., 2006), watershed (Kimmel and Argent, 2006), or habitat (Lyons, 2006; Mohamed, 

2014) specific IBIs also exist.  The metrics selected for this study, when compared to other state, regional, 

and international studies, demonstrate that similar fish assemblage groups (e.g., Family Cyprinidae and 

Darter-Madtom-Sculpin assemblages) and traits (e.g., gravel spawning and tolerance) are important in 

assessing integrity of aquatic systems.  
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Regionalization and stratification of sites used in bioassessment development has made fish-based 

multimetrics a practical tool for evaluating the impacts of water quality, habitat modification, and land-

use changes on stream fish communities.  Large scale, regional processes, such as catchment extent and 

physiography, has resulted in substantial variation in fish community structure (Angermeier et al., 2000).  

This variation in fish distribution and trait-based assemblage structure has lead to a push for the 

development of regionally adjusted criteria for fish indices of biotic integrity (Smogor and Angermeier, 

1998).  In some cases, large scale process can have such a strong influence on fish assemblage structure 

that the effects of in-stream processes (i.e., local habitat and water quality) may not be detected 

(Angermier and Winston, 1999).  Segregating sites based on major drainage basin and physiogeographic 

region (i.e., ecoregion) removed some of the confounding responses due to latitude, longitude, and 

elevation.  The incorporation of drainage area in metric responses effectively removed any stream size 

dependence of the final IBIs.  In addition, the removal of strictly cold water streams from our analysis 

relatively increased the homogenization of natural variables within each region while still maintaining 

differences between biomonitoring regions.  By effectively removing portions of the natural variation 

known to influence fish community structure, the IBIs can now be used to assess the effects of land-use 

changes and remediation, or mitigation, efforts, on fish community health.   

Segregation of stream types into temperature classes are common in IBIs that are developed in regions 

with high geographic variation and stream temperature regimes (see Lyons et al., 1996 and Lyons, 2012).  

Models predicting in-stream temperatures have found that there are several local and regional 

environmental factors controlling stream temperature.  These variables can include elevation, watershed 

precipitation, slope, riparian cover, aspect, and air temperature (Segura et al., 2015).  These 

measurements, in conjunction with continuous stream temperature data, could be used to generate 

predictions of maximum daily mean water temperature for all wadeable streams in West Virginia.  

The immediate need for stream temperature modeling becomes important when evaluating the current 

classification of stream temperature classes using species assemblages.  There were two duplicate stream 
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samples that shifted from cold water streams in one year to a warm water stream in the following years 

(Mon CA-RV biomonitoring region).  One of these shifts has been attributed to the addition of a top-

release dam upstream of the sampling location.  However, the reason for the shift of the second site from 

a cold water species assemblage to a warm water assemblage is unknown.  These shifts demonstrate the 

need to develop non-fish based classification criteria or a priori expectations of stream temperature 

regimes prior to sampling in order to evaluate temperature impaired cold water streams that can no longer 

support a cold water fish assemblage.  In addition, the biological status and locations of current cold water 

streams are unknown.  Monitoring these locations for economically valuable natural resources (i.e. trout 

fishing) in the face of increased anthropogenic and climate changes will be important as the development 

of a bioassessment program progresses.   

Of all the streams assessed in West Virginia, increased fecal coliforms, increased iron, and degraded 

biological condition, based on the West Virginia Stream Condition Index (WVSCI) scores, are the top 

three leading causes of impairment.  Despite the vast efforts in protecting designated stream uses, 

approximately 41% of streams and rivers in West Virginia are considered impaired and have been placed 

on West Virginia’s 303(d) impaired streams list (WV DEP, 2014).  Even though the benthic 

macroinvertebrate-based WVSCI scores have proven useful in determining stream impairment due to its 

high correlation with aquatic stressors and contaminants, it may not represent the entire stream ecosystem.  

Outside of the Mon CA-RV region, there was no correlation between WVSCI and WV IBI scores, 

indicating the stressors within each region have potential to influence assemblages differently.  Benthic 

macroinvertebrate-based multimetric indices can be highly responsive to relatively low levels of acid 

mine drainage while fish IBI scores are much less responsive (Freund and Petty, 2007).  Similarly, 

macroinvertebrates are able to better detect small increases in nutrient concentrations than fish 

communities (Justus et al., 2010).  However, fish communities are more responsive to watershed level 

disturbances and flow regime changes.   
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Selecting which index to use to assess stream health can be difficult since assemblage groups respond 

differently to anthropogenic impacts.  However, multimetric indices allow for a wide range of responses 

to ecosystem stressors since each metric may behave differently providing different information regarding 

the type and duration of stressors (Herman and Nejadhashemi, 2015).  Metrics selected within each region 

for the WV IBIs each performed differently when compared to anthropogenic land-use and water quality 

measures allowing for IBIs to be responsive to a variety of stream characteristics.  Of the sites evaluated 

for IBI development statewide, a portion had associated benthic macroinvertebrate data (N=148) in which 

35.8% of the sites were impaired based on WVSCI scores (impairment<68).  However, using the 

thresholds for impairment based on IBI scores in each region, 54.7% of the sites with benthic 

macroinvertebrate data are considered impaired, with only 23.6% of those sites being impaired under both 

criteria.   

As would be expected, the least-impacted, or reference, sites had the higher IBI scores within each region.  

However, when site types were compared within each region, some questions about the uncertainty of the 

IBI were formed.  For example, the Mon CA-RV biomonitoring region did not exhibit a significant 

difference between stressed and non-reference sites.  This lack of a significant difference did not come as 

a surprise due to the definition of the non-reference site type.  Non-reference sites were placed there 

because there was either insufficient data to elevate the site to reference or to classify it as a stressed site, 

or the site was of intermediate quality and did not meet the standards of reference or stressed sites.  Either 

outcome should produce a category of sites that span a wide range of environmental conditions and may 

not be statistically different from either reference or stressed sites, because it may contain both.   

 The Upper Kanawha region however, demonstrates no significant difference between any of the site 

types.  The exact cause for the lack of difference is unknown.  This region is known for its high quality 

streams and the majority of the streams in this region are historically cold water systems.  The criteria 

used to classify sites into reference/stressed and cold/warm should be closely evaluated for this region in 

order to ensure streams are being stratified appropriately, which may not be the same criteria used for the 
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other regions.  Additionally, the high landscape heterogeneity in this region may indicate that the 

recommended reference site sample size (N=34 – 40; Yoder and Rankin, 1995) be met for IBI 

development in this region.   Based on this information, it was determined that until more sufficient 

classification criteria are developed for this region, the IBI will continue to be evaluated.     

Among-year variability between IBI scores within each biomonitoring region should continue to be 

evaluated as duplicate samples are generated.  Even though there were duplicate samples within each 

biomonitoring region, the temporal variability among years, or within a year, with these low numbers of 

duplicate samples, cannot be accurately determined.  The Mon CA-RV biomonitoring region had the most 

duplicate samples due to increased sampling efforts by the West Virginia DEP in 2013.  However, this 

region also demonstrated the highest variation between duplicate samples due to chemical stream 

restoration efforts.  The increase in IBI scores in the Mon CA-RV biomonitoring region demonstrates the 

sensitivity of the IBI in detecting in-stream improvements.  However, the impacts of chemical and 

physical restoration efforts provide an additional source of variability in IBI development since the 

influence and extent of these efforts are largely unknown in West Virginia.   

Osbourne et al. (1992), Osbourne and Wiley (1992), and Hitt and Angermeier (2011) have suggested that 

the influence of stream order, or size, and stream location in the drainage network can all have impacts on 

species richness resulting in differences in IBI scores.  The effects of drainage area on metric values were 

evaluated and adjusted appropriately resulting in final IBI scores that were uncorrelated with drainage 

area.  However, the influence of stream position in the drainage network, in addition to the condition of 

neighboring streams, was not considered during IBI development for West Virginia.  However, the 

influence of drainage position (i.e., swim distance) was evaluated in relation to final IBI scores within 

each region with no effect detected.  The influence of the overall condition of surrounding streams and 

anthropogenic changes on the landscape on local IBI scores will continue to be evaluated.   
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Tables 

Table 1: A total of 1089 fish community samples were collected statewide from the sources listed. 

Data Sources Number of Samples 

West Virginia University 128 

West Virginia DEP 266 

West Virginia DNR 

(Stream Classification Survey, REMAP) 

525 

Federal  

(MAHA, MAIA, NRSA, PEIS, EMAP) 

38 

Reports from Consulting Companies 135 

 

Table 2: Water and habitat quality criteria used to identify reference and stressed site types in each region based on Pond et al. 

(2012).  Level I reference met all criteria, while Level II could be deficient in 1 criterion.  Level III reference site criteria could 

fall deficient in the numbers of point source discharge permits which is typical of large streams and rivers. 

Criteria Reference Stressed 

NPDES Point Source None  

Dissolved Oxygen (mg/L) ≥5.0  

pH (Std. Units) 6.0 – 9.0 < 5.0 

Specific Conductance (µmhos/cm) < 500  

Fecal Coliform Bacteria (colonies/100mL) <800  

State WQ Violations none  

U. S. EPA-RBP VBHA metric scores:   

Epifaunal substrate, channel alteration, 

sediment deposition 

≥11  

Bank vegetative protection, riparian 

vegetative zone width 

≥6  
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Total RBP habitat score ≥130  

Table 3: ANOSIM and MEANSIM results of the reference site analysis for region selection. The number of classification groups 

(n groups), within group similarity (W), and between group similarity (B) for each classification scenario.  Classification strength 

(CS%) represents the difference of within group and between group similarities. The significant (p <0.05) model with the highest 

R statistic was selected as the grouping structure. 

Classification  n groups W B W-B (CS%) p R 

Major Basin  4 0.35 0.26 9.10 0.001 0.26 

Ecoregion  3 0.33 0.26 7.20 0.001 0.21 

Ecoregion-Basin  9 0.40 0.27 13.50 0.001 0.38 

 

Table 4: Final biomonitoring region classifications by HUC8 watershed name (HUC8 number) with total sample sizes (N=1089 

statewide). 

Mon CA & RV 

(N=253) 

Ohio CA 

(N=254) 

Ohio & Mon WAP 

(N=279) 

UK 

(N=198) 

Potomac 

(N=105) 

Cheat 

(5020004) 

Coal 

(5050009) 

Big Sandy 

(5070204) 

Gauley 

(5050005) 

S. Branch Potomac 

(2070001) 

Elk 

(5050007) 

Elk 

(5050007) 

Little Kanawha 

(5030203) 

Greenbrier 

(5050003) 

N. Branch Potomac 

(2070002) 

Tygart Valley 

(5020001) 

Tug 

(5070201) 

Little Muskingum-

Middle Island 

(5030201) 

Lower New 

(5050004) 

Cacapon 

(2070003) 

Youghiogheny 

(5020006) 

Upper 

Guyandotte 

(5070101) 

Lower Guyandotte 

(5070102) 

Middle New 

(5050002) 

Potomac 

(2070004) 

 

Upper 

Kanawha 

(5050006) 

Lower Kanawha 

(5050008)  

Shenandoah Hardy 

(2070006) 

  

Lower Monongahela 

(5020005)  

Shenandoah Jefferson 

(2070007) 

  

Raccoon-Symmes 

(5090101)  
 

  

Twelvepole 

(5090102)  
 

  

Upper Monongahela 

(5020003)  
 

  

Upper Ohio 

(5030101)  
 

  

Upper Ohio-Shade 

(5030202)  
 

  

Upper Ohio-Wheeling 

(5030106)  
 

  

West Fork 

(5020002)  
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Table 5: Natural landscape summary statistics and sample sizes for all site types in Mon CA and RV region. Values are 

presented as mean (minimum-maximum). 

Site Type N Drainage Area (km
2
) Swim Distance (km) Elevation (m) 

Reference 23 82.76 (8.07 – 343.85) 51.91 (0 – 208.06) 628.58 (419 – 984) 

Non-Reference 111 56.89 (7.95 – 357.60) 28.53 (0 – 120.08) 604.75 (320 – 1166) 

Stressed 30 41.10 (7.47 – 234.63) 20.82 (0 – 81.11) 523.89 (354 – 1006) 

Cold 77 29.31 (8.38 – 248.57) 41.37 (0 – 175.18) 725.37 (414 – 1232) 

 

Table 6: Natural landscape summary statistics and sample sizes for all site types in Ohio CA region. Values are presented as 

mean (minimum-maximum). 

Site Type N Drainage Area (km
2
) Swim Distance (km) Elevation (m) 

Reference 18 53.77 (7.34 – 307.98) 31.35 (0 – 66.98) 440.00 (251 – 703) 

Non-Reference 202 73.48 (7.29 – 392.99) 27.85 (0 – 112.59) 364.72 (190 – 790) 

Stressed 24 34.46 (7.34 – 154.18) 41.62 (1.7 – 109.5) 365.58 (249 – 575) 

Cold 2 13.85 (13.45 – 14.25) 77.11 (59.37 – 94.84) 581.06  

 

Table 7: Natural landscape summary statistics and sample sizes for all site types in Ohio and Mon WAP region.  Values are 

presented as mean (minimum-maximum). 

Site Type N Drainage Area (km
2
) Swim Distance (km) Elevation (m) 

Reference 21 79.20 (9.73 – 390.57)   32.10 (0 – 78.36) 310.97 (210 – 493) 

Non-Reference 227 93.92 (7.38 – 384.85) 30.57 (0 – 137.51) 271.79 (175 – 506) 

Stressed 27 98.68 (8.04 – 357.76) 24.89 (0 – 110.43) 302.56 (183 – 528) 

 

Table 8: Natural landscape summary statistics and sample sizes for all site types in Upper Kanawha region.  Values are presented 

as mean (minimum-maximum). 

Site Type N Drainage Area (km
2
) Swim Distance (km) Elevation (m) 

Reference 21 74.02 (9.55 – 335.09) 37.39 (0 – 135.93) 745.38 (399 – 1035) 

Non-Reference 147 96.81 (8.09 – 392.90) 35.95 (0 – 134.68) 645.95 (223 – 1074) 

Stressed 11 65.74 (7.01 – 351.70) 21.21 (0 – 49.78) 632.98 (395 – 954) 

Cold 19 42.75 (7.63 – 133.71) 66.22 (2.52 – 118.57) 931.20 (518 – 1137) 
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Table 9: Final metrics selected for inclusion in IBIs for each biomonitoring region and their correlation coefficients with 

cumulative surface mining (%), development (%), grassland (%), agriculture (%), forest (%), and structure density (#/km2).  

Metrics were also correlated with specific conductance (SPC) and pH.  Discrimination efficiency (%DE) was also calculated. 

Metric SM Develop Grass. Agri. Forest SD SPC pH DE 

Mon CA-RV          

Adj.R_Cyprinid -0.324 -0.185 -0.098 -0.195 0.190 0.034 -0.437 0.408 70.00 

Adj.P_IN -0.225 -0.239 -0.282 -0.149 0.249 0.123 -0.361 0.321 73.33 

Adj.P_Fish2 -0.218 -0.282 -0.337 -0.265 0.350 -0.034 -0.407 0.197 76.67 

Adj.R_Benthic -0.323 -0.214 -0.106 -0.236 0.237 -0.001 -0.502 0.438 86.67 

Adj.R_Fish2 -0.302 -0.197 -0.118 -0.211 0.225 0.032 -0.543 0.354 86.67 

Adj.R_McC_CGS -0.304 -0.303 -0.198 -0.300 0.306 -0.150 -0.601 0.320 90.00 

P_Benthic2 -0.363 -0.208 -0.167 -0.202 0.253 -0.010 -0.575 0.314 93.33 

Ohio CA          

Adj.R_Richness2 -0.482 -0.040 0.316 0.229 0.291 0.474 -0.325 -0.102 79.17 

Adj.R_DMS -0.516 -0.084 0.331 0.264 0.311 0.430 -0.379 -0.074 95.83 

Adj.R_RGS -0.446 -0.029 0.332 0.239 0.250 0.427 -0.352 -0.065 70.83 

Adj.R_NGL2 -0.349 0.060 0.306 0.223 0.171 0.409 -0.240 -0.002 58.33 

Adj.P_IN -0.221 -0.235 0.001 0.128 0.276 0.234 -0.192 -0.114 58.33 

Adj.P_Tol 0.022 0.192 0.177 -0.007 -0.209 -0.056 0.016 -0.018 50.00 

SW Trophic -0.227 -0.073 0.064 0.138 0.257 0.367 -0.015 -0.034 75.00 

Ohio-Mon WAP          

Adj.R_DMS -0.081 -0.388 -0.245 -0.193 0.297 -0.301 -0.176 -0.125 88.89 

Adj.R_Cyp -bndseat -0.122 -0.198 -0.072 -0.199 0.237 -0.104 -0.122 -0.120 81.48 

Adj.R_RGS 0.021 -0.279 -0.171 -0.239 0.249 -0.174 -0.139 -0.048 77.78 

Adj.R_Int -0.136 -0.293 -0.161 -0.161 0.290 -0.191 -0.209 -0.107 70.37 

Adj.R_Richness2 -0.212 -0.265 -0.137 -0.159 0.284 -0.195 -0.162 -0.167 70.37 

P_OH_CAAN  -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 62.96 

Adj.P_Tol -0.014 0.089 0.041 0.016 -0.040 -0.044 0.177 0.173 51.85 

Adj.P_NGL2 0.120 -0.162 -0.115 -0.042 0.054 -0.196 -0.074 -0.109 51.85 

Upper Kanawha          

Adj.R_Int -0.354 -0.307 -0.082 -0.007 0.287 -0.133 -0.399 0.056 63.64 

Adj.P_Tol 0.155 0.425 0.271 0.323 -0.418 0.400 0.318 0.091 63.64 

R_Benthic -0.220 -0.220 -0.220 -0.220 -0.220 -0.220 -0.220 -0.220 54.55 

Adj.R_FISH     -0.225 -0.217 -0.219 0.094 0.032 -0.140 -0.199 0.172 45.45 
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Adj.P_IN -0.059 -0.394 -0.280 -0.293 0.327 -0.406 -0.228 0.010 45.45 

Adj.R_Cyprinid -0.241 -0.164 -0.173 0.149 0.025 -0.065 -0.214 0.158 45.45 

Adj.R_CGS_RGS -0.214 -0.316 -0.328 -0.035 0.120 -0.288 -0.340 0.068 54.55 
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Table 10: Final metrics selected for the Mon CA-RV region with metric description and direction.  Metrics direction is either 

positive (decreases with increases in stress) or negative (increases with increases in stress). The Ceiling (95th percentile) and 

Floor (5th percentile) were used for scoring criteria. 

Metric Description Direction Ceiling  Floor  

P_Benthic2.DEP Proportion of benthic individuals minus tolerant Positive 0.683 0 

Adj.R_Fish2.DEP Adjusted species richness minus tolerant Positive 1.215 0 

Adj.R_McC_CGS Adjusted clean gravel spawner richness Positive 1.326 0 

Adj.P_Fish2.DEP Adjusted proportion of non-tolerant individuals Positive 1.537 0 

Adj.P_IN Adjusted proportion of invertivore individuals Positive 1.506 0 

Adj.R_Benthic Adjusted benthic species richness Positive 1.370 0 

Adj.R_Cyprinid Adjusted Cyprinidae richness Positive 1.326 0 

 

Table 11: Final metrics selected for the Ohio CA region with metric description and direction.  Metrics direction is either 

positive (decreases with increases in stress) or negative (increases with increases in stress). The Ceiling (95th percentile) and 

Floor (5th percentile) were used for scoring criteria. 

Metric Description Direction Ceiling  Floor  

Adj.R_Fish2.DEP Adjusted non-tolerant species richness Positive 1.766 0 

Adj.P_IN Adjusted proportion invertivore individuals Positive 1.751 0 

Adj.R_DMS Adjusted darter-madtom-sculpin richness Positive 1.325 0 

Adj.P_Tol Adjusted proportion of tolerant individuals Negative 1.702 0.413 

Adj.R_RGS Adjusted rock-gravel spawner richness Positive 1.447 0 

Adj.R_NGL2 Adjusted non-guarding lithophils minus tolerant richness Positive 1.950 0 

SW_TROPHIC  Shannon-Weaver Trophic diversity index Positive 3.455 1.689 
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Table 12: Final metrics selected for the Ohio-Mon WAP region with metric description and direction.  Metrics direction is either 

positive (decreases with increases in stress) or negative (increases with increases in stress). The Ceiling (95th percentile) and 

Floor (5th percentile) were used for scoring criteria. 

Metric Description Direction Ceiling Floor 

Adj.R_Fish2.DEP Adjusted non-tolerant species richness Positive 1.339 0.371 

Adj.R_DMS Adjusted darter-madtom-sculpin richness Positive 1.158 0.265 

Adj.R_Int Adjusted intolerant species richness Positive 1.640 0 

Adj.P_Tol Adjusted proportion tolerant individuals Negative 1.675 0.726 

Adj.R_RGS Adjusted rock-gravel spawner richness Positive 1.191 0.358 

Adj.R_NGL2 
Adjusted non-guarding lithophil richness 

minus tolerant species 
Positive 1.454 0 

P_OH_CAAN 
Proportion of omnivore-herbivore minus 

Central Stoneroller 
Negative 0.655 0.119 

Adj.R_Cyprinid_BNDSEAT 
Adjusted Cyprindae richness minus 

Blacknose Dace and Creek Chub 
Positive 1.412 0.276 
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Table 13: Final metrics selected for the Upper Kanawha region with metric description and direction.  Metrics direction is either 

positive (decreases with increases in stress) or negative (increases with increases in stress). The Ceiling (95th percentile) and 

Floor (5th percentile) were used for scoring criteria. 

Metric Description Direction Ceiling  Floor  

Adj.P_IN Adjusted proportion of invertivore individuals Positive 1.808 0.011 

Adj.R_Int Adjusted intolerant species richness Positive 2.952 0 

Adj.P_Tol Adjust proportion of tolerant individuals Negative 2.412 0.269 

R_Benthic Benthic species richness Positive 1.850 10 

Adj.Richness Adjusted total species richness Positive 2.001 0.405 

Adj.R_CGS_RGS Adjusted clean and rock-gravel spawning species richness Positive 1.735 0.354 

Adj.R_Cyprinid Adjusted Cyprinidae species richness Positive 2.067 0.426 
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Table 14: Spearman correlation coefficients for final IBI scores within each biomonitoring region against stream characteristics.  

Biotic variables include the West Virginia Stream Condition Index (WVSCI), Genus-Level Index of Most Probable Stream 

Status (GLIMPSS), total fish abundance, and the Mid-Atlantic Highlands Index of Biotic Integrity scores (MAH IBI).  In stream 

characteristics compared were specific conductance (SPC) and pH, along with cumulative percentages of surface mining (C. 

Surface Mining), development (C. Development), agriculture (C. Agriculture), and total forest (C. Forest).  Relationships with 

cumulative densities of structures (C. Structure Density) and National Pollution Discharge Elimination System Permits (C. 

NPDES Permit Density) were also evaluated. 

Variable Mon CA-RV Ohio CA Ohio-Mon WAP Upper Kanawha 

WVSCI 0.7922 -0.0793 0.0721 0.3980 

GLIMPSS 0.7746 -0.1078 -0.053 0.3186 

Fish Abundance 0.7707 0.5269 0.3174 0.5155 

MAH IBI 0.7859 0.6866 0.6434 0.6256 

SPC -0.6640 -0.2736 -0.1983 -0.2949 

pH 0.1110 -0.1065 -0.1842 0.1355 

Drainage Area 0.2617 0.2372 -0.0995 0.0968 

Elevation 0.1111 -0.3009 0.1342 0.1976 

C. Surface Mining -0.2026 -0.4148 -0.1348 -0.2585 

C. Development -0.2656 -0.1187 -0.3558 -0.3463 

C. Agriculture -0.3110 0.2083 -0.2003 0.0007 

C. Structure Density -0.0007 0.4265 -0.2103 -0.2628 

C.  Forest 0.3374 0.3326 0.3149 0.1816 

C. NPDES Permit Density -0.0412 0.1394 -0.1968 -0.2687 
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Table 15: Impairment category thresholds for each biomonitoring region based on the distribution of the reference sites.  The 

25th percentile within the Ohio CA, Ohio-Mon WAP, and Upper Kanawha and the 10th percentile in the Mon CA-RV were used 

to make the distinction between impaired (i.e. Degraded and Severely Degraded) and non-impaired (Good and Excellent) 

streams.   

Condition Mon CA-RV Ohio CA Ohio-Mon WAP Upper Kanawha 

Excellent ≥ 62.36 ≥ 77.92 ≥ 66.63 ≥ 69.30 

Good 62.36 – 56.15 77.92– 48.13 66.63 – 53.16 69.30 – 47.48 

Degraded 56.15 – 45.38 48.13 – 23.64 53.16 – 43.21 47.48– 39.34 

Severely Degraded < 45.38 < 23.64 < 43.21 < 39.34 

  



39 

 

Figures

Figure 1: MEANSIM dendrogram groups based on fish species abundances at all reference sites.  Based on the 

dendrogram grouping and available samples biomonitoring regions were determined.  We grouped the nine classifications 

listed into five biomonitoring regions.  These regions include: 1) Upper Kanawha Central Appalachians (UK CA) and 

Upper Kanawha Ridge/Valley (UK RV); 2) Monongahela Ridge/Valley (MON RV) and Monongahela Central 

Appalachians (MON CA); 3) Potomac Ridge/Valley (POT RV) and Potomac Central Appalachians (POT CA),; 4) 

Monongahela Western Allegheny Plateau (MON WAP) and Ohio Western Allegheny Plateau (OH WAP); and 5) Ohio 

Central Appalachians (OH CA). 
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Figure 2: Final fish IBI biomonitoring regions based on similarity analysis and arrangement to include 

distinct watershed boundaries from whole HUC8 or HUC12 (Elk watershed) watersheds.  The final 

biomonitoring regions include the Upper Kanawha, Ohio and Monongahela Western Allegheny Plateau 

(Ohio & Mon WAP), Potomac, Ohio Central Appalachians (Ohio CA), and Monongahela Central 

Appalachians and Ridge and Valley (Mon CA & RV). 
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Figure 3: Final IBI scores for each biomonitoring region. Different lowercase letters indicate a significant 

difference between groups (Reference, Non-Reference, or Stressed) based on ANOVA results for Mon CA-

RV, Ohio CA, Ohio-Mon WAP, and Upper Kanawha (UK). 

Mon CA-RV Ohio CA 

Ohio-Mon WAP UK 
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Figure 4: Final IBI scores for original (y-axis) and duplicate (x-axis) samples within the Mon CA-RV, Ohio CA, and 

Ohio-Mon WAP biomonitoring regions.  The solid line represents a 1:1 relationship. 

Mon CA-RV 

Ohio-Mon WAP 

Ohio CA 
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Appendix A 1 

All 171 species occurring in the dataset were classified based on native status, spawning, feeding, tolerance values, and other data.  Native status 2 

consists of only species native to the Ohio, Monongahela (Mon), Potomac, and Upper Kanawha (UK) drainages or all drainages (WV). Spawning 3 

consisted of rock-gravel spawners (RG), gravel-sand spawners (GS), non-guarding lithophils (NGL), cavity spawners (CAV), and clean gravel 4 

spawners (CGS).  The feeding (trophic) category consisted of invertivore-piscivore (IP), invertivore (IN), macro-omnivore (MO), and omnivore-5 

herbivore (OH).  Tolerance values ranged from intolerant (I), moderate tolerance (M), and tolerant (T).  Other classifications included benthic 6 

species (B), game species (G), and cold water species (C). Lithophilic spawners in sand to rock (LSR) is consisted of any species that was 7 

classified as either RG or GS, or showing no substrate preference. Species are listed in alphabetical order according to their scientific name. 8 

Common Scientific Code Family Native Spawning Trophic Tolerance Other 

Skipjack herring Alosa chrysochloris ALCH Clupeidae Ohio  IP M  

Rock bass Ambloplites rupestris AMRU Centrarchidae Mon, Ohio  IP M G, B 

Black bullhead Ameiurus melas AMME Ictaluridae Ohio  MO, OH M G, B 

Yellow bullhead Ameiurus natalis AMNA Ictaluridae WV  MO, OH T G, B 

Brown bullhead Ameiurus nebulosus AMNE Ictaluridae WV  MO, OH T G, B 

Western sand 

darter 

Ammocrypta clara AMCL Percidae Ohio LSR IN, IP I B 

Eastern sand 

darter 

Ammocrypta pellucida AMPE Percidae Ohio LSR IN, IP I B 

American eel Anguilla rostrata ANRO Anguillidae Potomac, 

Ohio, UK 

 IP T  

Freshwater 

drum 

Aplodinotus grunniens APGR Sciaenidae Ohio  IN, IP M G, B 

Central 

Stoneroller 

Campostoma anomalum CAAN Cyprinidae WV RG, CGS MO, OH T B 

Goldfish Carassius auratus CAAU Cyprinidae None  MO, OH T  

River 

carpsucker 

Carpiodes carpio CACA Catostomidae Ohio, Mon  MO, OH M B 

Quillback Carpiodes cyprinus CACY Catostomidae Mon, Ohio  MO, OH T B 

Highfin 

carpsucker 

Carpiodes velifer CAVE Catostomidae Ohio  MO, OH I B 

Longnose sucker Catostomus catostomus CACT Catostomidae Mon RG, NGL MO, OH I B, C 

White sucker Catostomus 

commersonii 

CACO Catostomidae WV GS, NGL MO, OH T B 
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Southern 

redbelly dace 

Chrosomus 

erythrogaster 

PHER Cyprinidae Ohio  MO, OH M  

Mountain 

redbelly dace 

Chrosomus oreas PHOR Cyprinidae UK RG MO, OH I C 

Redside dace Clinostomus elongatus CLEL Cyprinidae Mon, Ohio RG IN, IP I  

Rosyside dace Clinostomus funduloides CLFU Cyprinidae WV RG IN, IP I  

Mottled sculpin Cottus bairdii COBA Cottidae Mon, Ohio, 

UK 

CAV IN, IP M B 

Blue Ridge 

sculpin 

Cottus caeruleomentum COCA Cottidae Potomac  IN, IP M B 

Banded sculpin Cottus carolinae COCR Cottidae UK CAV IN, IP M B 

Slimy sculpin Cottus cognatus COCO Cottidae Potomac CAV IN, IP I B, C 

Potomac sculpin Cottus girardi COGI Cottidae Potomac CAV IN, IP M B 

Kanawha 

sculpin 

Cottus kanawhae COKA Cottidae UK  IN, IP I B, C 

Checkered 

Sculpin 

Cottus cf. cognatus CORO Cottidae Potomac  IN, IP M B, C 

Bluestone 

sculpin 

Cottus sp. COBL Cottidae UK  IN, IP M B 

Diamond darter Crystallaria cincotta CRCI Percidae Ohio  IN, IP I B 

Grass carp Ctenopharyngodon 

idella 

CTID Cyprinidae None  MO, OH M B 

Satinfin shiner Cyprinella analostana CYAN Cyprinidae Potomac CAV OH T  

Whitetail shiner Cyprinella galactura CYGA Cyprinidae UK CAV IN, IP M  

Spotfin shiner Cyprinella spiloptera CYSP Cyprinidae WV CAV IN, IP T  

Steelcolor shiner Cyprinella whipplei CYWH Cyprinidae Mon, Ohio CAV IN, IP M  

Common carp Cyprinus carpio CYCA Cyprinidae None  MO, OH T G 

Gizzard shad Dorosoma cepedianum DOCE Clupeidae Mon, Ohio  MO, OH T  

Threadfin shad Dorosoma petenense DOPE Clupeidae Ohio  MO, OH M  

Appalachia 

darter 

Percina gymnocephala PEGY Percidae UK GS, CGS IN, IP I B 

Streamline chub Erimystax dissimilis ERDI Cyprinidae Ohio, UK RG, NGL OH I B 

Creek 

chubsucker 

Erimyzon oblongus EROB Catostomidae Potomac GS, NGL MO, OH I B 

Grass pickerel Esox americanus ESAM Esocidae Potomac, 

Ohio 

 IP M  
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Northern Pike Esox lucius ESLU Esocidae None NGL IP I G 

Muskellunge Esox masquinongy ESMA Esocidae Mon, Ohio  IP I G 

Chain pickerel Esox niger ESNI Esocidae Potomac  IP M G 

Greenside 

darter 

Etheostoma blennioides ETBL Percidae Mon, Ohio, 

UK 

RG, NGL IN, IP I B 

Rainbow darter Etheostoma caeruleum ETCA Percidae Mon, Ohio, 

UK 

RG, CGS IN, IP M B 

Bluebreast 

darter 

Etheostoma camurum ETCM Percidae Mon, Ohio, 

UK 

GS IN, IP I B 

Fantail darter Etheostoma flabellare ETFL Percidae WV RG, CAV IN, IP M B 

Longfin darter Etheostoma longimanum ETLO Percidae None  IN, IP I B 

Spotted darter Etheostoma maculatum ETMA Percidae Ohio CAV IN, IP I B 

Johnny darter Etheostoma nigrum ETNI Percidae Mon, Ohio, 

UK 

RG, CAV IN, IP M B 

Tessellated 

darter 

Etheostoma olmstedi ETOL Percidae Potomac CAV IN, IP M B 

Candy darter Etheostoma osburni ETOS Percidae UK GS IN, IP I B 

Snubnose darter Etheostoma simoterum ETSI Percidae None RG IN, IP M B 

Tippecanoe 

darter 

Etheostoma tippecanoe ETTI Percidae Ohio RG IN, IP I B 

Variegate darter Etheostoma variatum ETVA Percidae Mon, Ohio GS, NGL IN, IP M B 

Banded darter Etheostoma zonale ETZO Percidae Mon, Ohio NGL IN, IP I B 

Tonguetied 

minnow 

Exoglossum laurae EXLA Cyprinidae Mon, UK RG, CGS IN, IP M  

Cutlips minnow Exoglossum maxillingua EXMA Cyprinidae Potomac RG, CGS IN, IP I  

Northern 

studfish 

Fundulus catenatus FUCA Fundulidae None  IN, IP I  

Banded killifish Fundulus diaphanus FUDI Fundulidae Potomac, 

Mon, Ohio 

 IN, IP T  

Mosquitofish Gambusia affinis GAAF Poeciliidae None  IN, IP T  

Eastern 

mosquitofish 

Gambusia holbrooki GAHO Poeciliidae None CGS IN, IP T  

Goldeye Hiodon alosoides HIAL Hiodontidae Ohio NGL IN, IP I B 

Mooneye Hiodon tergisus HITE Hiodontidae Mon, Ohio  IN, IP I  

Eastern silvery 

minnow 

Hybognathus regius HYRE Cyprinidae Potomac  MO, OH I B 
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Bigeye chub Hybopsis amblops HYAM Cyprinidae Mon, Ohio GS, NGL IN, IP M  

Northern 

hogsucker 

Hypentelium nigricans HYNI Catostomidae WV RG, CGS, 

NGL 

IN, IP M B 

Ohio lamprey Ichthyomyzon bdellium ICBD Petromyzontidae Ohio RG MO, OH M B 

Northern Brook 

lamprey 

Ichthyomyzon fossor ICFO Petromyzontidae Ohio RG MO, OH I B 

Mountain brook 

lamprey 

Ichthyomyzon greeleyi ICGR Petromyzontidae Ohio GS, CGS MO, OH I B 

Silver lamprey Ichthyomyzon unicuspis ICUN Petromyzontidae Ohio GS MO, OH M B 

Channel catfish Ictalurus punctatus ICPU Ictaluridae Mon, Ohio, 

UK 

 MO, OH T B, G 

Smallmouth 

Buffalo 

Ictiobus bubalus ICBU Catostomidae Ohio  OH M B 

Bigmouth 

buffalo 

Ictiobus cyprinellus ICCY Catostomidae Ohio  OH M B 

Black Buffalo Ictiobus niger ICNI Catostomidae Ohio  MO, OH M B 

Brook silverside Labidesthes sicculus LASI Atherinopsidae Mon, Ohio  IN, IP I  

Least brook 

lamprey 

Lampetra aepyptera LAAE Petromyzontidae Mon, Ohio GS, CGS MO, OH I B 

Longnose gar Lepisosteus osseus LEOS Lepisosteidae Mon, Ohio  IP M G 

Redbreast 

sunfish 

Lepomis auritus LEAU Centrarchidae Potomac GS IP M G 

Green sunfish Lepomis cyanellus LECY Centrarchidae Mon, Ohio  IP T G 

Pumpkinseed Lepomis gibbosus LEGI Centrarchidae Potomac, 

Mon, Ohio 

 IN, IP M  

Warmouth Lepomis gulosus LEGU Centrarchidae Ohio  IP M  

Orangespotted 

Sunfish 

Lepomis humilis LEHU Centrarchidae Ohio GS IP M  

Bluegill Lepomis macrochirus LEMA Centrarchidae Potomac, 

Mon, Ohio 

 IN, IP T G 

Longear sunfish Lepomis megalotis LEME Centrarchidae Potomac, 

Mon, Ohio 

 IN, IP M G 

Redear sunfish Lepomis microlophus LEMI Centrarchidae None  IN, IP M  

American brook 

lamprey 

Lethenteron appendix LAAP Petromyzontidae Ohio GS, CGS MO, OH I B 

White shiner Luxilus albeolus LUAL Cyprinidae UK RG IN, IP M  
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Striped shiner Luxilus chrysocephalus LUCH Cyprinidae Mon, Ohio RG OH T  

Common shiner Luxilus cornutus LUCO Cyprinidae Potomac GS OH M  

Rosefin shiner Lythrurus ardens LYAR Cyprinidae UK RG IN, IP M  

Redfin shiner Lythrurus umbratilis LYUM Cyprinidae Mon, Ohio  IN, IP T  

Speckled chub Macrhybopsis aestivalis MAAE Cyprinidae Ohio  IP I B 

Shoal chub Macrhybopsis hyostoma MAHY Cyprinidae Ohio  IN, IP I  

Silver chub Macrhybopsis storeriana MAST Cyprinidae Mon, Ohio  IN, IP I B 

Pearl dace Margariscus margarita MAMA Cyprinidae Potomac, 

Mon 

GS, NGL IN, IP M  

Smallmouth 

bass 

Micropterus dolomieu MIDO Centrarchidae Mon, Ohio  IP M G 

Spotted bass Micropterus punctulatus MIPU Centrarchidae Mon, Ohio, 

UK 

 IP M G 

Largemouth 

bass 

Micropterus salmoides MISA Centrarchidae Potomac, 

Mon, Ohio 

 IP M G 

Spotted sucker Minytrema melanops MIME Catostomidae Ohio RG, NGL OH M B 

White Perch Morone americana MOAM Moronidae None  IP M G 

White bass Morone chrysops MOCH Moronidae Ohio  IP T G 

Striped bass Morone saxatilis MOSA Moronidae None  IP I G 

Silver redhorse Moxostoma anisurum MOAN Catostomidae Mon, Ohio RG, NGL IN, IP M B 

Smallmouth 

redhorse 

Moxostoma breviceps MOBR Catostomidae Ohio  IN, IP M B 

River redhorse Moxostoma carinatum MOCA Catostomidae Ohio RG, NGL IN, IP I B 

Black redhorse Moxostoma duquesni MODU Catostomidae Ohio RG, NGL IN, IP I B 

Golden redhorse Moxostoma erythrurum MOER Catostomidae Potomac, 

Mon, Ohio 

GS, CGS, 

NGL 

IN, IP I B 

Shorthead 

redhorse 

Moxostoma 

macrolepidotum 

MOMA Catostomidae Potomac RG, NGL IN, IP M B 

Bluehead chub Nocomis leptocephalus NOLE Cyprinidae UK RG, CGS MO, OH M  

River chub Nocomis micropogon NOMI Cyprinidae Potomac, 

Mon, Ohio 

RG, CGS IN, IP M  

Bigmouth chub Nocomis platyrhynchus NOPL Cyprinidae UK RG IN, IP M  

Golden shiner Notemigonus 

crysoleucas 

NOCY Cyprinidae Potomac, 

Mon, Ohio 

 MO, OH T  

Comely shiner Notropis amoenus NOAM Cyprinidae Potomac RG IN, IP T  

Popeye shiner Notropis ariommus NOAR Cyprinidae Mon, Ohio RG, NGL IN, IP I  
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Emerald shiner Notropis atherinoides NOAT Cyprinidae Mon, Ohio  MO, OH M  

River shiner Notropis blennius NOBL Cyprinidae Ohio GS, NGL IN, IP M  

Bigeye shiner Notropis boops NOBO Cyprinidae Ohio GS, NGL IN, IP I  

Silverjaw 

minnow 

Notropis buccatus NOBU Cyprinidae WV GS, NGL IN, IP T  

Ghost shiner Notropis buchanani NOBC Cyprinidae Mon, Ohio GS, NGL IN, IP M  

Spottail shiner Notropis hudsonius NOHU Cyprinidae Potomac GS, NGL OH M  

Silver shiner Notropis photogenis NOPH Cyprinidae Mon, Ohio, 

UK 

 IN, IP T  

Swallowtail 

shiner 

Notropis procne NOPR Cyprinidae Potomac GS, NGL IN, IP M  

Rosyface shiner Notropis rubellus NORU Cyprinidae WV RG, NGL IN, IP I  

New River 

shiner 

Notropis scabriceps NOSC Cyprinidae UK GS, NGL IN, IP I  

Sand shiner Notropis stramineus NOST Cyprinidae Ohio, UK LSR OH M  

Telescope shiner Notropis telescopus NOTE Cyprinidae None GS, NGL IN, IP M  

Mimic shiner Notropis volucellus NOVO Cyprinidae Mon, Ohio, 

UK 

 IN, IP M  

Channel shiner Notropis wickliffi NOWI Cyprinidae Ohio  IN, IP M  

Mountain 

madtom 

Noturus eleutherus NOEL Ictaluridae Ohio CAV IN, IP I B 

Stonecat Noturus flavus NOFU Ictaluridae Mon, Ohio, 

UK 

CAV IN, IP M B 

Margined 

madtom 

Noturus insignis NOIN Ictaluridae Potomac, 

UK 

CAV IN, IP M B 

Brindled 

madtom 

Noturus miurus NOMU Ictaluridae Ohio, UK CAV IN, IP M B 

Northern 

madtom 

Noturus stigmosus NOSG Ictaluridae Ohio CAV IN, IP I B 

Rainbow trout Oncorhynchus mykiss ONMY Salmonidae None  IP I G, C 

Cheat minnow Pararhinichthys bowersi PABO Cyprinidae Mon  IN, IP M B 

Yellow perch Perca flavescens PEFL Percidae None  IP M G 

Logperch Percina caprodes PECA Percidae Mon, Ohio GS, CGS IN, IP M B 

Channel darter Percina copelandi PECO Percidae Ohio RG IN, IP I B 

Gilt darter Percina evides PEEV Percidae Ohio GS, CGS IN, IP I B 

Longhead darter Percina macrocephala PEMA Percidae Ohio RG, NGL IN, IP I B 
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Blackside darter Percina maculata PEMC Percidae Mon, Ohio GS, CGS IN, IP M B 

Stripeback 

darter 

Percina notogramma PENO Percidae None CGS IN, IP I B 

Sharpnose 

darter 

Percina oxyrhynchus PEOX Percidae Mon, Ohio, 

UK 

GS IN, IP I B 

Slenderhead 

darter 

Percina phoxocephala PEPH Percidae Ohio GS IN, IP I B 

Roanoke darter Percina roanoka PERO Percidae None GS, CGS IN, IP M B 

Dusky darter Percina sciera PESC Percidae Ohio GS IN, IP M B 

River darter Percina shumardi PESH Percidae Ohio GS, CGS IN, IP M B 

Trout-perch Percopsis omiscomaycus PEOM Percopsidae Ohio  IN, IP M B 

Suckermouth 

minnow 

Phenacobius mirabilis PHMI Cyprinidae Ohio GS, NGL OH M B 

Kanawha 

minnow 

Phenacobius teretulus PHTE Cyprinidae UK RG, NGL OH I B 

Bluntnose 

minnow 

Pimephales notatus PINO Cyprinidae WV CAV MO, OH T  

Fathead minnow Pimephales promelas PIPR Cyprinidae Ohio CAV MO, OH T  

Bullhead 

minnow 

Pimephales vigilax PIVI Cyprinidae Ohio CAV MO, OH M  

Paddlefish Polyodon spathula POSP Polydontidae Ohio NGL MO, OH I G 

White crappie Pomoxis annularis POAN Centrarchidae Mon, Ohio  IP T G 

Black crappie Pomoxis nigromaculatus PONI Centrarchidae Mon, Ohio  IP M G 

Flathead catfish Pylodictis olivaris PYOL Ictaluridae Mon, Ohio, 

UK 

CAV IP M G, B 

Eastern 

Blacknose dace 

Rhinichthys atratulus RHAT Cyprinidae WV GS, CGS MO, OH T B 

Longnose dace Rhinichthys cataractae RHCA Cyprinidae WV CGS IN, IP M B, C 

Western 

blacknose dace 

Rhinichthys obtusus RHOB Cyprinidae Ohio CGS MO, OH T B, C 

Brown trout Salmo trutta SATR Salmonidae None CGS IP I G, C 

Brook trout Salvelinus fontinalis SAFO Salmonidae WV CGS IP I G, C 

Sauger Sander canadensis SACA Percidae Mon, Ohio  IP M G, B 

Walleye Sander vitreus SAVI Percidae Mon, Ohio  IP M G, B 

Creek chub Semotilus atromaculatus SEAT Cyprinidae WV GS IP T  

Fallfish Semotilus corporalis SECO Cyprinidae Potomac RG IP M G 
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Torrent sucker Thoburnia rhothoeca THRH Catostomidae Potomac, 

UK 

RG, CGS, 

NGL 

MO, OH I B 

 9 
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Appendix B 

Metrics evaluated for fish IBI development for biomonitoring regions in West Virginia and their brief 

descriptions.  Each metric had a richness component (R_) and a proportion (P_) that was evaluated 

separately.  The expected response of each metric was determined using expert knowledge and consisted 

of positive (+) metrics that decreased with increases in stress and negative (-) metrics that increased with 

increases in stress.   

Metric 
Expected 

Response 
Description 

Richness + Richness 

Native + Native Status 

Game + Classified Game fish from WV DNR 

RGS + Rock and gravel spawning 

GSS + Gravel and sand spawning 

LSR + Lithophilic spawning 

NGL + Non-guarding lithophilic spawning 

MO + Macro-omnivore 

IN + Invertivore 

IP + Invertivore-Piscivore 

ISEAT + Invertivore-Piscivore minus creek chub (SEAT) 

Benthic + Benthic 

Benthic_CACO + Benthic minus white sucker (CACO) 

Cottid + Cottidae 

Cyprinid + Cyprinidae 

Cyprinid_BNDSEAT + Cyprinidae Family minus blacknose dace (RHOB & RHAT) and creek chub (SEAT) 

Cyprinid_N + Native Cyprinidae 

Cyprinid_NBNDSEAT + 
Native Cyprinidae Family minus blacknose dace (RHOB & RHAT) and creek chub 

(SEAT) 

BND_CACO_SEAT - Blacknose Dace (RHOB & RHAT), white sucker (CACO), and creek chub (SEAT) 

OH - Omnivore-Herbivore 

OH_CAAN - Omnivore-Herbivore minus central stoneroller (CAAN) 

OH_CAAN_CACO - Omnivore-Herbivore minus central stoneroller (CAAN) and white sucker (CACO) 

Cold + Cold water specialists 

Cold_SATR_ONMY + Cold water specialists minus brown (SATR) and rainbow (ONMY) trout 

GameC + Reduced list of game fish 

OH_NG - Non-game omnivore-herbivore 

IBenthicNG + Benthic and non-game invertivore-piscivore 

INonGameNB + Non-game and non-benthic invertivore-piscivore 

DMS + Darter-madtom-sculpins 

Percidae + Family Percidae 

Sunfish + Sunfish (Family Centrarchidae) 

Catfish + Family Ictaluridae 
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Metric 
Expected 

Response 
Description 

Catostomidae + Family Catostomidae 

McC_CGS + Clean Gravel Spawning (Mc Cormick) 

CGS_RGS + Clean Gravel & Rock-gravel Spawning 

CavitySpawn + Cavity Spawning 

Fish2.DEP + Fish minus tolerant 

Native2.DEP + Native Status minus tolerant 

RGS2.DEP + Rock and gravel spawning minus tolerant 

GSS2.DEP + Gravel and sand spawning minus tolerant 

LSR2.DEP + Lithophilic spawning minus tolerant 

NGL2.DEP + Non-guarding lithophilic spawning minus tolerant 

IP2.DEP + Invertivore-Piscivore minus tolerant 

Benthic2.DEP + Benthic minus tolerant 

Cyprinid2.DEP + Family Cyprinidae minus tolerant 

Cyprinid_N2.DEP + Native Family Cyprinidae minus tolerant 

OH2.DEP - Omnivore-Herbivore minus tolerant 

Cold2.DEP + Cold water specialist minus tolerant 

Game2.DEP + Game fish minus tolerant 

DMS2.DEP + Darter-madtom-sculpins minus tolerant 

Tol.DEP - Tolerant 

Mod.DEP + Moderate Tolerance 

Int.DEP + Intolerant 

Tol_Benthic.DEP - Tolerant Benthics 

Int_Benthic.DEP + Intolerant Benthics 

Tol_Cyprinid.DEP - Tolerant Family Cyprinidae 

Int_Cyprinid.DEP + Intolerant Family Cyprinidae 

Int_RGS.DEP + Intolerant Rock-gravel spawning 

Int_GSS.DEP + Intolerant gravel-sand spawning 

Int_LSR.DEP + Intolerant lithophilc spawning 

Int_NGL.DEP + Intolerant non-guarding lithophilc spawning 

McC_CGS2.DEP + Clean gravel spawning minus tolerant (Mc Cormick) 

CGS_RGS2.DEP + Clean gravel and rock-gracel spawning minus tolerant 

CavitySpawn2.DEP + Cavity Spawning minus tolerant 

SW-Trophic + Shannon-Weaver Trophic Diversity Index 
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Appendix C 

Metric specific responses and results from the step-wise selection process. Metrics listed also passed a range test.  Each set of metrics evaluated for 

each region are presented in separate tables. 

Table 1: Spearman correlation coefficients for all metrics in the Mon CA-RV region with surface mining (%), development (%), grassland (%), 

agriculture (%), forest (%), structure density (#/km
2
; SD), specific conductance (SPC), and pH.  Discrimination efficiency (%; DE) and 25

th
 and 

75
th
 percentiles (reference distribution) were also calculated for each metric. Table is sorted by descending discrimination efficiency. 

Metric 
Surface 

Mining 
Development Grassland Agriculture Forest SD SPC pH DE 25th 75th 

P_IP_BenthicNG -0.352 -0.199 -0.158 -0.195 0.244 -0.011 -0.591 0.350 93.33 0.34 0.47 

P_Benthic2.DEP -0.363 -0.208 -0.167 -0.202 0.253 -0.010 -0.575 0.314 93.33 0.35 0.47 

Adj.P_Benthic -0.324 -0.194 -0.106 -0.183 0.182 -0.142 -0.597 0.442 90.00 0.74 1.20 

Adj.R_McC_CGS -0.304 -0.303 -0.198 -0.300 0.306 -0.150 -0.601 0.320 90.00 0.84 1.18 

P_DMS -0.337 -0.161 -0.151 -0.160 0.210 0.035 -0.544 0.381 90.00 0.21 0.38 

P_DMS2.DEP -0.337 -0.161 -0.151 -0.160 0.210 0.035 -0.544 0.381 90.00 0.21 0.38 

Adj.P_Benthic_CACO -0.351 -0.234 -0.139 -0.213 0.222 -0.149 -0.609 0.417 86.67 0.73 1.20 

Adj.P_CavitySpawn2.DEP -0.321 -0.181 -0.142 -0.134 0.199 -0.005 -0.564 0.359 86.67 0.62 1.38 

Adj.R_Fish2 -0.310 -0.235 -0.201 -0.254 0.300 -0.015 -0.494 0.335 86.67 0.84 1.12 

Adj.R_IP2 -0.312 -0.232 -0.199 -0.251 0.298 -0.014 -0.493 0.337 86.67 0.85 1.13 

Adj.R_Benthic -0.323 -0.214 -0.106 -0.236 0.237 -0.001 -0.502 0.438 86.67 0.85 1.14 

Adj.R_Fish2.DEP -0.302 -0.197 -0.118 -0.211 0.225 0.032 -0.543 0.354 86.67 0.89 1.11 

P_McC_CGS -0.223 -0.327 -0.189 -0.247 0.250 -0.176 -0.516 0.390 86.67 0.35 0.51 

Adj.R_Native2 -0.277 -0.193 -0.169 -0.209 0.263 0.076 -0.512 0.338 83.33 0.74 1.21 

Adj.P_McC_CGS2 -0.195 -0.256 -0.185 -0.204 0.252 -0.063 -0.460 0.224 83.33 0.61 1.36 

Adj.R_IP_SEAT -0.287 -0.122 -0.080 -0.146 0.162 0.106 -0.476 0.364 83.33 0.87 1.11 

Adj.R_IP2.DEP -0.307 -0.198 -0.123 -0.208 0.228 0.037 -0.548 0.354 83.33 0.89 1.13 

P_Benthic2 -0.364 -0.220 -0.193 -0.200 0.265 -0.044 -0.578 0.312 83.33 0.23 0.46 

Adj.R_CGS_RGS -0.320 -0.250 -0.145 -0.238 0.260 0.006 -0.518 0.365 80.00 0.91 1.18 

Adj.P_McC_CGS2.DEP -0.184 -0.252 -0.185 -0.220 0.260 -0.050 -0.451 0.224 80.00 0.66 1.43 

Adj.R_IP -0.306 -0.156 -0.102 -0.182 0.193 0.064 -0.450 0.370 80.00 0.84 1.12 

Adj.R_Benthic_CACO -0.325 -0.170 -0.077 -0.209 0.207 0.070 -0.545 0.428 80.00 0.85 1.11 
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Adj.R_Mod -0.291 -0.192 -0.153 -0.160 0.237 0.061 -0.424 0.322 80.00 0.78 1.20 

Adj.R_Native2.DEP -0.298 -0.186 -0.117 -0.197 0.222 0.090 -0.529 0.351 76.67 0.78 1.20 

Adj.P_Native2 -0.201 -0.295 -0.352 -0.274 0.363 -0.028 -0.441 0.221 76.67 0.83 1.17 

Adj.P_Native2.DEP -0.202 -0.282 -0.321 -0.266 0.343 -0.002 -0.430 0.215 76.67 0.84 1.13 

Adj.P_Fish2 -0.220 -0.295 -0.366 -0.271 0.368 -0.064 -0.418 0.207 76.67 0.84 1.17 

Adj.P_IP2 -0.220 -0.295 -0.366 -0.271 0.368 -0.064 -0.418 0.207 76.67 0.84 1.17 

Adj.P_Tol 0.074 0.071 0.145 0.125 -0.156 0.196 -0.047 0.386 76.67 0.65 1.31 

Adj.P_CGS_RGS -0.252 -0.352 -0.230 -0.284 0.306 -0.076 -0.448 0.471 76.67 0.85 1.12 

Adj.P_CGS_RGS2 -0.199 -0.294 -0.227 -0.256 0.304 -0.035 -0.437 0.269 76.67 0.59 1.30 

Adj.P_Fish2.DEP -0.218 -0.282 -0.337 -0.265 0.350 -0.034 -0.407 0.197 76.67 0.88 1.13 

Adj.P_IP2.DEP -0.219 -0.283 -0.338 -0.265 0.350 -0.037 -0.408 0.198 76.67 0.86 1.13 

Adj.P_IN -0.225 -0.239 -0.282 -0.149 0.249 0.123 -0.361 0.321 73.33 0.86 1.16 

Adj.P_Tol.DEP 0.055 0.053 0.102 0.110 -0.127 0.151 -0.066 0.404 73.33 0.70 1.26 

Adj.R_IN -0.298 -0.141 -0.110 -0.149 0.181 0.158 -0.440 0.404 73.33 0.75 1.14 

Adj.R_Mod.DEP -0.252 -0.176 -0.104 -0.158 0.206 0.180 -0.477 0.359 73.33 0.81 1.13 

P_Mod.DEP -0.165 -0.262 -0.288 -0.223 0.309 0.000 -0.464 0.180 73.33 0.39 0.67 

Adj.P_CavitySpawn -0.327 -0.118 -0.056 -0.019 0.101 0.125 -0.471 0.327 70.00 0.69 1.29 

Adj.R_FISH -0.318 -0.127 -0.076 -0.156 0.162 0.090 -0.438 0.388 70.00 0.82 1.16 

Adj.R_LSR -0.297 -0.157 -0.113 -0.189 0.203 0.053 -0.431 0.373 70.00 0.77 1.17 

Adj.R_Cyprinid -0.324 -0.185 -0.098 -0.195 0.190 0.034 -0.437 0.408 70.00 0.68 1.13 

P_Mod -0.185 -0.230 -0.303 -0.185 0.291 -0.011 -0.408 0.192 70.00 0.32 0.54 

Adj.P_CGS_RGS2.DEP -0.213 -0.257 -0.151 -0.214 0.230 0.066 -0.403 0.324 66.67 0.58 1.28 

Adj.R_CyprinidN -0.330 -0.180 -0.089 -0.177 0.168 0.029 -0.427 0.384 63.33 0.68 1.20 

Adj.P_RGS2.DEP -0.114 -0.103 -0.198 -0.207 0.296 0.160 -0.351 0.180 63.33 0.40 1.19 

Adj.R_Native -0.313 -0.116 -0.061 -0.137 0.141 0.119 -0.419 0.379 60.00 0.78 1.18 

R_IP_NonGameNB -0.237 -0.153 -0.142 -0.187 0.225 0.059 -0.416 0.324 60.00 2.00 5.00 

SW_TROPHIC -0.281 -0.108 -0.018 -0.073 0.098 0.109 -0.443 0.432 60.00 2.76 3.24 

Adj.P_MO -0.232 -0.071 0.074 0.010 -0.018 0.013 -0.421 0.452 56.67 0.47 1.56 

P_Catostomidae -0.114 0.027 0.050 -0.001 0.039 0.110 -0.329 0.363 56.67 0.02 0.08 

Adj.P_Cyprinid_NBNDSEAT -0.192 -0.181 -0.143 -0.129 0.203 0.241 -0.315 0.360 53.33 0.74 1.26 

Adj.P_RGS -0.182 -0.198 -0.179 -0.180 0.256 0.265 -0.314 0.383 53.33 0.57 1.25 
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Adj.P_Cyprinid_BNDSEAT -0.191 -0.179 -0.141 -0.128 0.202 0.243 -0.314 0.358 53.33 0.74 1.27 

Adj.P_NGL -0.217 0.021 0.084 -0.032 0.012 0.100 -0.276 0.437 50.00 0.57 1.35 

P_Cyprinid 0.005 -0.200 -0.022 -0.081 0.048 -0.008 -0.215 0.446 50.00 0.47 0.70 

Adj.P_IP_SEAT -0.121 -0.215 -0.325 -0.192 0.279 0.068 -0.245 0.124 43.33 0.86 1.15 

R_Game -0.201 -0.023 -0.024 -0.046 0.057 0.095 -0.295 0.285 43.33 2.00 5.00 

R_GSS -0.176 -0.059 0.107 -0.024 -0.036 -0.008 -0.396 0.317 43.33 2.00 3.00 

R_Game2 -0.217 -0.112 -0.085 -0.123 0.142 -0.013 -0.358 0.263 43.33 2.00 4.00 

Adj.P_CyprinidN -0.006 -0.181 0.016 -0.064 0.010 -0.011 -0.176 0.409 40.00 0.82 1.13 

Adj.P_LSR 0.003 -0.144 -0.022 -0.088 0.029 0.006 -0.179 0.445 40.00 0.78 1.21 

Adj.P_Tol_Cyprinid -0.029 -0.033 0.075 0.023 -0.048 0.071 -0.226 0.499 40.00 0.60 1.43 

Adj.P_Tol_Cyprinid.DEP -0.050 -0.033 0.080 0.024 -0.050 0.073 -0.232 0.499 40.00 0.68 1.31 

Adj.P_GSS -0.021 -0.043 0.120 0.012 -0.095 -0.068 -0.265 0.317 40.00 0.58 1.32 

P_GameC -0.064 -0.110 -0.193 -0.043 0.141 0.026 -0.167 0.206 40.00 0.01 0.04 

Adj.P_IP_NonGameNB -0.004 -0.106 0.032 0.020 -0.043 0.112 -0.183 0.390 30.00 0.50 1.29 

Adj.P_IP 0.024 -0.136 -0.217 -0.118 0.150 0.040 -0.138 0.086 30.00 0.90 1.12 

P_Game2.DEP -0.114 -0.049 -0.098 -0.053 0.112 0.116 -0.151 0.257 30.00 0.02 0.04 

R_Tol.DEP -0.241 0.044 0.066 0.024 -0.029 0.195 -0.293 0.380 30.00 3.50 6.00 

Adj.P_BND_CACO_SEAT -0.060 -0.127 0.061 -0.025 -0.018 -0.122 -0.330 0.308 26.67 0.31 1.39 

P_Game2 -0.031 -0.008 -0.089 -0.078 0.108 0.106 -0.080 0.157 23.33 0.02 0.05 

P_Sunfish -0.024 0.037 0.002 0.031 -0.044 0.207 0.024 0.172 23.33 0.00 0.02 

Adj.P_OH_CAAN -0.180 -0.129 0.021 0.039 0.001 0.072 -0.334 0.496 20.00 0.60 1.36 

P_Game 0.011 -0.008 -0.109 -0.056 0.076 0.141 -0.030 0.144 20.00 0.02 0.05 

R_Tol_Cyprinid.DEP -0.309 -0.057 0.002 -0.052 0.058 0.159 -0.373 0.436 20.00 3.00 4.00 

Adj.R_Tol_Benthic -0.288 -0.118 0.017 -0.135 0.116 0.065 -0.460 0.380 16.67 0.86 1.18 

R_Tol -0.246 -0.010 0.032 -0.042 0.029 0.171 -0.352 0.412 16.67 5.00 8.00 

R_Tol_Cyprinid -0.282 -0.075 -0.017 -0.069 0.069 0.149 -0.379 0.463 16.67 3.00 4.00 

Adj.P_OH -0.206 -0.092 0.040 0.012 0.007 0.075 -0.371 0.495 13.33 0.55 1.47 

Adj.P_OH_NG -0.205 -0.099 0.036 0.008 0.012 0.070 -0.370 0.497 13.33 0.55 1.47 

Adj.P_OH_CAAN_CACO -0.193 -0.174 0.003 0.011 0.035 0.066 -0.346 0.480 10.00 0.50 1.44 

Adj.P_Tol_Benthic.DEP -0.231 -0.099 -0.005 -0.077 0.058 -0.097 -0.465 0.468 10.00 0.45 1.72 

P_Native 0.019 -0.097 -0.058 -0.024 -0.003 0.084 -0.177 0.227 10.00 0.94 1.00 
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R_OH -0.272 -0.017 0.036 -0.029 0.020 0.145 -0.357 0.400 10.00 2.00 4.00 

R_OH_NG -0.270 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 10.00 2.00 4.00 

P_FISH -0.121 -0.199 -0.174 -0.122 0.158 0.082 -0.409 0.534 0.00 1.00 1.00 

P_Tol_Benthic -0.252 -0.089 0.037 -0.084 0.045 -0.026 -0.458 0.505 0.00 0.16 0.34 
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Table 2: Spearman correlation coefficients for all metrics in the Ohio CA region with surface mining (%), development (%), grassland (%), 

agriculture (%), forest (%), structure density (#/km
2
; SD), specific conductance (SPC), and pH.  Discrimination efficiency (%; DE) and 25

th
 and 

75
th
 percentiles (reference distribution) were also calculated for each metric. Table is sorted by descending discrimination efficiency. 

Metric 
Surface 

Mining 
Development Grassland Agriculture Forest SD SPC pH DE 25th 75th 

Adj.R_DMS -0.516 -0.084 0.331 0.264 0.311 0.430 -0.379 -0.074 95.83 0.61 1.30 

Adj.R_Benthic2.DEP -0.508 -0.055 0.315 0.242 0.300 0.462 -0.343 -0.052 95.83 0.66 1.32 

Adj.R_DMS2.DEP -0.516 -0.084 0.331 0.264 0.311 0.430 -0.379 -0.074 95.83 0.61 1.30 

Adj.R_IP_BenthicNG -0.496 -0.029 0.336 0.277 0.271 0.470 -0.334 -0.016 91.67 0.66 1.28 

R_CavitySpawn  -0.528 0.315 0.315 0.315 0.315 0.315 0.315 0.315 91.67 2.00 5.00 

Adj.P_CavitySpawn -0.394 -0.079 0.301 0.296 0.215 0.325 -0.331 -0.096 87.50 0.76 1.18 

Adj.R_GSS -0.473 -0.133 0.342 0.163 0.263 0.291 -0.344 -0.166 83.33 0.62 1.27 

Adj.R_Benthic_CACO -0.482 -0.025 0.369 0.241 0.248 0.433 -0.348 -0.047 83.33 0.74 1.26 

Adj.R_IP2.DEP -0.474 -0.046 0.293 0.225 0.296 0.461 -0.316 -0.076 83.33 0.60 1.33 

Adj.R_Mod.DEP -0.478 -0.043 0.276 0.219 0.283 0.430 -0.306 -0.114 83.33 0.71 1.24 

Adj.R_IN -0.462 -0.054 0.323 0.226 0.259 0.450 -0.349 -0.120 79.17 0.62 1.39 

Adj.R_IP -0.471 -0.057 0.292 0.204 0.298 0.431 -0.296 -0.093 79.17 0.61 1.31 

Adj.R_IP_SEAT -0.473 -0.048 0.287 0.206 0.304 0.448 -0.290 -0.095 79.17 0.56 1.32 

Adj.R_Percidae -0.491 -0.062 0.340 0.242 0.293 0.438 -0.349 -0.087 79.17 0.53 1.36 

Adj.R_Richness2.DEP -0.482 -0.040 0.316 0.229 0.291 0.474 -0.325 -0.102 79.17 0.58 1.30 

Adj.R_Native2.DEP -0.469 -0.042 0.312 0.210 0.277 0.453 -0.331 -0.114 79.17 0.60 1.33 

Adj.R_RGS -0.446 -0.029 0.332 0.239 0.250 0.427 -0.352 -0.065 70.83 0.65 1.33 

Adj.R_Benthic -0.484 -0.010 0.406 0.268 0.230 0.461 -0.327 -0.020 70.83 0.68 1.24 

R_Tol_Benthic.DEP -0.233 0.123 0.413 0.152 0.009 0.345 -0.151 0.023 70.83 1.50 2.00 

Adj.Richness    -0.466 -0.035 0.352 0.212 0.251 0.422 -0.307 -0.103 66.67 0.65 1.29 

Adj.R_Native   -0.457 -0.042 0.348 0.196 0.245 0.402 -0.312 -0.110 66.67 0.66 1.29 

R_CGS_RGS -0.402 0.024 0.321 0.290 0.218 0.577 -0.223 0.023 66.67 4.00 11.00 

P_Percidae -0.157 -0.054 0.029 0.182 0.180 0.358 0.035 0.124 66.67 0.09 0.19 

Adj.R_NGL -0.397 0.031 0.363 0.215 0.189 0.459 -0.289 -0.035 62.50 0.58 1.32 

P_DMS -0.125 -0.099 -0.017 0.166 0.191 0.280 0.044 0.154 62.50 0.18 0.27 

Adj.R_NGL2.DEP -0.349 0.060 0.306 0.223 0.171 0.409 -0.240 -0.002 58.33 0.65 1.70 

Adj.P_IN -0.221 -0.235 0.001 0.128 0.276 0.234 -0.192 -0.114 58.33 0.81 1.29 
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Metric 
Surface 

Mining 
Development Grassland Agriculture Forest SD SPC pH DE 25th 75th 

Adj.P_IP_SEAT -0.070 -0.185 -0.171 0.045 0.238 0.146 0.068 0.035 58.33 0.80 1.23 

Adj.Proportion2.DEP -0.074 -0.141 -0.099 0.119 0.207 0.241 0.006 0.055 58.33 0.80 1.21 

Adj.P_Native2.DEP -0.073 -0.139 -0.101 0.111 0.195 0.234 -0.039 0.040 58.33 0.82 1.22 

P_IP 0.084 -0.151 -0.340 -0.096 0.198 -0.023 0.118 -0.026 58.33 0.58 0.80 

P_IP2.DEP -0.043 -0.068 -0.125 0.153 0.194 0.340 0.097 0.159 58.33 0.27 0.64 

Adj.P_NGL -0.257 -0.020 0.186 0.079 0.206 0.369 -0.092 0.020 54.17 0.58 1.43 

Adj.P_RGS2.DEP -0.136 -0.128 -0.007 0.095 0.187 0.212 -0.012 0.050 54.17 0.71 1.35 

Adj.P_CGS_RGS2.DEP -0.139 -0.148 -0.007 0.082 0.199 0.196 0.003 0.061 54.17 0.71 1.35 

R_McC_CGS -0.287 0.079 0.271 0.262 0.139 0.543 -0.064 0.135 54.17 2.50 5.00 

R_RGS2.DEP -0.425 -0.005 0.297 0.308 0.255 0.572 -0.256 -0.007 54.17 2.50 8.00 

P_OH -0.084 -0.084 -0.084 -0.084 -0.084 -0.084 -0.084 -0.084 54.17 0.20 0.42 

P_OH_NG  -0.083 -0.083 -0.083 -0.083 -0.083 -0.083 -0.083 -0.083 54.17 0.20 0.42 

P_IP_BenthicNG -0.030 -0.040 -0.091 0.135 0.140 0.276 0.131 0.211 54.17 0.21 0.32 

Adj.P_NGL2.DEP -0.191 0.038 0.074 0.091 0.169 0.297 -0.065 0.018 50.00 0.32 2.24 

Adj.P_Tol.DEP 0.022 0.192 0.177 -0.007 -0.209 -0.056 0.016 -0.018 50.00 0.81 1.17 

Adj.P_Tol_Cyprinid.DEP 0.014 0.177 0.187 0.010 -0.205 -0.054 -0.042 -0.037 50.00 0.84 1.18 

P_Catostomidae -0.088 0.075 0.009 0.093 0.130 0.386 0.162 0.194 50.00 0.02 0.06 

Adj.R_MO -0.340 0.068 0.446 0.169 0.071 0.294 -0.266 -0.077 45.83 0.85 1.35 

P_IP_NonGameNB  -0.020 -0.154 -0.154 -0.154 -0.154 -0.154 -0.154 -0.154 45.83 0.26 0.50 

Adj.R_LSR -0.378 -0.036 0.335 0.194 0.181 0.344 -0.244 -0.085 41.67 0.60 1.33 

Adj.R_LSR2.DEP -0.341 -0.022 0.300 0.183 0.183 0.378 -0.182 -0.058 41.67 0.48 1.44 

Adj.P_RGS -0.113 0.023 0.072 0.021 0.083 0.100 -0.017 0.028 41.67 0.64 1.38 

Adj.P_McC_CGS2.DEP -0.081 -0.016 -0.017 0.060 0.144 0.221 0.265 0.220 41.67 0.31 1.74 

Adj.P_CGS_RGS 0.069 -0.042 0.062 0.001 -0.127 -0.083 -0.013 0.091 37.50 0.85 1.13 

Adj.P_LSR2.DEP -0.100 -0.011 0.009 0.182 0.130 0.282 0.034 0.183 37.50 0.03 1.46 

R_CGS_RGS2.DEP -0.409 -0.003 0.285 0.298 0.242 0.577 -0.216 0.026 37.50 2.50 8.50 

Adj.R_Cyprinid -0.299 -0.032 0.330 0.083 0.116 0.191 -0.237 -0.134 33.33 0.72 1.37 

Adj.R_Cyprinid_BNDSEAT -0.250 0.032 0.261 0.130 0.095 0.222 -0.149 -0.047 33.33 0.28 1.93 

Adj.R_CyprinidN -0.301 -0.047 0.325 0.075 0.118 0.178 -0.257 -0.141 33.33 0.72 1.37 
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Metric 
Surface 

Mining 
Development Grassland Agriculture Forest SD SPC pH DE 25th 75th 

Adj.R_Cyprinid_NBNDSEAT -0.253 0.129 0.129 0.129 0.129 0.129 0.129 0.129 33.33 0.28 1.93 

Adj.R_IP_NonGameNB -0.215 0.002 0.002 0.002 0.002 0.002 0.002 0.002 33.33 0.53 1.26 

Adj.P_GSS -0.113 -0.079 0.071 -0.090 0.084 -0.136 -0.073 -0.239 33.33 0.54 1.25 

Adj.P_Benthic 0.153 0.158 -0.054 0.068 -0.113 0.186 0.254 0.301 33.33 0.79 1.12 

Adj.P_Benthic_CACO 0.169 0.159 -0.089 0.051 -0.108 0.184 0.251 0.298 33.33 0.80 1.14 

Adj.P_Cyprinid_BNDSEAT -0.188 0.054 0.219 0.077 0.053 0.096 -0.136 0.006 33.33 0.31 1.43 

Adj.P_Cyprinid_NBNDSEAT -0.190 0.080 0.080 0.080 0.080 0.080 0.080 0.080 33.33 0.31 1.43 

R_Catostomidae -0.261 0.133 0.278 0.220 0.082 0.553 -0.087 0.127 33.33 1.00 2.00 

P_Cyprinid -0.004 0.016 0.153 -0.068 -0.138 -0.213 -0.211 -0.240 33.33 0.63 0.75 

P_CyprinidN   -0.012 0.011 0.159 -0.057 -0.139 -0.223 -0.247 -0.219 33.33 0.63 0.75 

Adj.P_BND_CACO_SEAT 0.075 0.052 0.133 -0.030 -0.187 -0.170 -0.040 -0.061 29.17 0.38 1.19 

P_OH_CAAN -0.162 -0.162 -0.162 -0.162 -0.162 -0.162 -0.162 -0.162 29.17 0.15 0.40 

P_OH_CAAN_CACO -0.154 -0.154 -0.154 -0.154 -0.154 -0.154 -0.154 -0.154 29.17 0.15 0.32 

P_LSR 0.006 0.006 -0.104 0.006 0.065 0.074 0.128 -0.011 20.83 0.38 0.71 

P_MO 0.017 0.131 0.247 0.008 -0.227 -0.104 0.018 0.105 20.83 0.09 0.39 

Adj.R_OH -0.344 0.050 0.431 0.174 0.076 0.311 -0.263 -0.095 16.67 0.71 1.28 

Adj.P_McC_CGS 0.241 0.153 -0.061 -0.025 -0.214 0.002 0.327 0.290 16.67 0.64 1.37 

Adj.R_OH_CAAN -0.376 -0.044 0.406 0.161 0.117 0.306 -0.294 -0.133 12.50 0.74 1.25 

Adj.R_OH_CAAN_CACO -0.351 -0.053 0.358 0.124 0.112 0.220 -0.289 -0.148 12.50 0.65 1.30 

R_OH_NG -0.362 0.100 0.414 0.252 0.123 0.521 -0.179 -0.016 12.50 2.00 4.50 

R_McC_CGS2.DEP -0.281 0.038 0.178 0.258 0.176 0.541 -0.042 0.132 12.50 1.00 4.00 

Adj.R_BND_CACO_SEAT -0.196 0.089 0.349 0.175 0.009 0.336 -0.039 0.079 8.33 0.74 1.37 

Adj.R_Tol.DEP -0.330 0.033 0.375 0.117 0.112 0.283 -0.233 -0.079 8.33 0.79 1.35 

Adj.R_Tol_Cyprinid.DEP -0.289 0.010 0.360 0.074 0.081 0.176 -0.227 -0.095 8.33 0.71 1.38 

P_Native 0.024 -0.041 0.041 -0.120 -0.063 -0.158 -0.111 -0.129 8.33 1.00 1.00 
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Table 3: Spearman correlation coefficients for metrics in the Ohio and Mon WAP region with surface mining (%), development (%), grassland 

(%), agriculture (%), forest (%), structure density (#/km
2
; SD), conductivity (SPC), and pH. Discrimination efficiency (%; DE) and 25

th
 and 75

th
 

percentiles indicated. 

Metric 
Surface 

Mining 
Development Grassland Agriculture Forest SD SPC pH DE 25th 75th 

Adj.R_CyprinidN -0.196 -0.198 -0.111 -0.239 0.271 -0.118 -0.153 -0.090 92.59 0.930 1.169 

Adj.R_CavitySpawn2.DEP -0.201 -0.317 -0.259 -0.235 0.342 -0.218 -0.234 -0.146 88.89 0.906 1.183 

Adj.R_CyprinidN2.DEP -0.127 -0.223 -0.132 -0.263 0.267 -0.119 -0.129 -0.040 88.89 0.822 1.560 

Adj.R_DMS -0.081 -0.388 -0.245 -0.193 0.297 -0.301 -0.176 -0.125 88.89 0.903 1.147 

Adj.R_DMS2.DEP -0.082 -0.390 -0.244 -0.194 0.297 -0.302 -0.176 -0.125 88.89 0.903 1.147 

Adj.R_IP_BenthicNG -0.195 -0.380 -0.215 -0.145 0.280 -0.317 -0.198 -0.141 88.89 0.928 1.142 

Adj.R_NGL2.DEP -0.140 -0.301 -0.152 -0.098 0.227 -0.232 -0.158 -0.150 88.89 0.758 1.305 

Adj.P_CyprinidN2.DEP -0.166 -0.258 -0.188 -0.204 0.265 -0.105 -0.191 0.087 85.19 0.343 1.789 

Adj.P_Int_LSR.DEP -0.152 -0.290 -0.250 -0.250 0.291 -0.214 -0.217 -0.137 85.19 0.405 1.805 

Adj.R_CavitySpawn -0.241 -0.250 -0.208 -0.197 0.295 -0.157 -0.235 -0.091 85.19 0.928 1.071 

Adj.R_Int_Benthic.DEP -0.184 -0.332 -0.223 -0.129 0.317 -0.254 -0.201 -0.195 85.19 0.812 1.162 

Adj.R_Int_RGS.DEP -0.064 -0.360 -0.220 -0.216 0.317 -0.263 -0.196 -0.058 85.19 0.791 1.159 

Adj.R_RGS2.DEP 0.019 -0.292 -0.176 -0.221 0.248 -0.179 -0.157 -0.022 85.19 0.786 1.192 

Adj.R_Cyprinid_BNDSEAT -0.122 -0.198 -0.072 -0.199 0.237 -0.104 -0.122 -0.120 81.48 0.918 1.144 

Adj.R_Cyprinid2.DEP -0.018 -0.196 -0.072 -0.234 0.219 -0.083 -0.098 0.009 81.48 0.859 1.145 

Adj.R_Int_LSR.DEP -0.181 -0.331 -0.267 -0.254 0.370 -0.274 -0.194 -0.134 81.48 0.728 1.141 

Adj.R_Benthic -0.169 -0.307 -0.196 -0.158 0.275 -0.254 -0.209 -0.133 77.78 0.905 1.155 

Adj.R_Benthic2.DEP -0.202 -0.359 -0.222 -0.147 0.307 -0.299 -0.192 -0.223 77.78 0.812 1.188 

Adj.R_RGS 0.021 -0.279 -0.171 -0.239 0.249 -0.174 -0.139 -0.048 77.78 0.815 1.181 

Adj.P_Int_RGS.DEP -0.014 -0.235 -0.163 -0.081 0.180 -0.097 -0.120 -0.178 74.07 0.626 1.432 

Adj.R_Benthic_CACO -0.190 -0.287 -0.160 -0.101 0.242 -0.225 -0.178 -0.176 74.07 0.874 1.188 

Adj.R_CGS_RGS2.DEP -0.117 -0.350 -0.215 -0.176 0.288 -0.281 -0.209 -0.112 74.07 0.840 1.150 

Adj.R_Cyprinid -0.105 -0.144 -0.036 -0.184 0.197 -0.062 -0.146 -0.064 74.07 0.895 1.115 

Adj.R_IP_NonGameNB -0.137 -0.216 -0.085 -0.220 0.257 -0.113 -0.171 -0.082 74.07 0.824 1.252 

Adj.R_IP2.DEP -0.213 -0.284 -0.146 -0.174 0.284 -0.209 -0.154 -0.150 74.07 0.814 1.188 

Adj.R_LSR2.DEP -0.103 -0.370 -0.247 -0.253 0.352 -0.293 -0.170 -0.156 74.07 0.691 1.147 

Adj.R_NGL -0.152 -0.274 -0.125 -0.124 0.216 -0.214 -0.153 -0.132 74.07 0.771 1.299 
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Metric 
Surface 

Mining 
Development Grassland Agriculture Forest SD SPC pH DE 25th 75th 

Adj.P_CavitySpawn2.DEP -0.145 -0.109 -0.120 0.014 0.104 -0.122 -0.111 -0.178 70.37 0.570 1.105 

Adj.R_CGS_RGS -0.100 -0.295 -0.196 -0.195 0.280 -0.232 -0.225 -0.112 70.37 0.877 1.181 

Adj.R_Int.DEP -0.136 -0.293 -0.161 -0.161 0.290 -0.191 -0.209 -0.107 70.37 0.626 1.270 

Adj.R_Mod.DEP -0.208 -0.181 -0.059 -0.109 0.201 -0.155 -0.113 -0.147 70.37 0.827 1.275 

Adj.R_Native2.DEP -0.251 -0.294 -0.171 -0.170 0.309 -0.236 -0.171 -0.176 70.37 0.769 1.306 

Adj.R_Percidae -0.067 -0.335 -0.214 -0.129 0.248 -0.303 -0.150 -0.110 70.37 0.811 1.119 

Adj.R_Richness2.DEP -0.212 -0.265 -0.137 -0.159 0.284 -0.195 -0.162 -0.167 70.37 0.768 1.291 

Adj.P_Cyprinid_NBNDSEAT -0.140 -0.121 -0.049 -0.198 0.212 -0.050 -0.128 -0.013 66.67 0.927 1.161 

Adj.P_Cyprinid2.DEP -0.008 -0.184 -0.111 -0.096 0.157 -0.023 -0.169 0.166 66.67 0.301 1.747 

Adj.P_Native2.DEP -0.053 -0.152 -0.131 -0.091 0.108 -0.069 -0.177 -0.197 66.67 0.747 1.171 

Adj.R_Cyprinid_NBNDSEAT -0.189 -0.240 -0.133 -0.243 0.299 -0.148 -0.148 -0.148 66.67 0.641 1.225 

Adj.R_GSS -0.230 -0.242 -0.199 -0.176 0.295 -0.257 -0.163 -0.202 66.67 0.780 1.129 

Adj.R_GSS2.DEP -0.275 -0.325 -0.310 -0.179 0.377 -0.327 -0.223 -0.276 66.67 0.660 1.305 

Adj.R_IN -0.207 -0.304 -0.122 -0.144 0.266 -0.223 -0.176 -0.167 66.67 0.795 1.152 

Adj.R_LSR -0.083 -0.304 -0.181 -0.267 0.301 -0.242 -0.117 -0.121 66.67 0.802 1.174 

P_Native -0.358 -0.236 -0.245 -0.273 0.319 -0.276 -0.129 -0.157 66.67 1.000 1.000 

Adj.P_CGS_RGS2.DEP 0.104 -0.179 -0.144 -0.143 0.139 -0.116 -0.140 -0.220 62.96 0.765 1.291 

Adj.P_Int.DEP 0.086 -0.245 -0.214 -0.207 0.210 -0.209 -0.134 -0.074 62.96 0.549 1.738 

Adj.P_IP2 -0.184 -0.213 -0.130 -0.190 0.160 -0.118 -0.099 -0.091 62.96 0.468 1.434 

Adj.R_Int_NGL.DEP -0.157 -0.268 -0.098 -0.039 0.196 -0.211 -0.165 -0.117 62.96 0.708 1.662 

Adj.R_IP -0.255 -0.247 -0.114 -0.108 0.245 -0.199 -0.156 -0.173 62.96 0.780 1.181 

Adj.R_IP_SEAT -0.267 -0.252 -0.117 -0.106 0.249 -0.199 -0.158 -0.176 62.96 0.758 1.199 

P_CyprinidN -0.146 -0.131 -0.110 -0.217 0.234 -0.070 -0.070 0.162 62.96 0.674 0.762 

P_OH_CAAN  -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 62.96 0.142 0.301 

Adj.P_Cyprinid_BNDSEAT -0.058 -0.078 0.005 -0.113 0.139 0.000 -0.107 0.048 59.26 0.928 1.128 

Adj.P_GSS2.DEP -0.130 -0.220 -0.254 -0.145 0.247 -0.321 -0.115 -0.255 59.26 0.627 1.348 

Adj.P_RGS 0.042 -0.146 -0.045 -0.166 0.149 -0.039 0.016 -0.022 59.26 0.731 1.220 

Adj.R_Native -0.276 -0.203 -0.094 -0.099 0.220 -0.175 -0.134 -0.168 59.26 0.839 1.163 

Adj.R_Tol_Benthic.DEP 0.080 0.183 0.163 0.157 -0.201 0.177 0.019 0.188 59.26 0.830 1.298 
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Metric 
Surface 

Mining 
Development Grassland Agriculture Forest SD SPC pH DE 25th 75th 

P_Int_Benthic.DEP 0.019 -0.111 -0.140 0.017 0.066 -0.154 -0.074 -0.198 59.26 0.083 0.162 

P_LSR 0.037 -0.141 -0.125 -0.194 0.191 -0.014 -0.030 0.099 59.26 0.623 0.708 

Adj.P_Int_NGL.DEP 0.095 -0.153 -0.055 0.008 0.022 -0.193 -0.125 -0.051 55.56 0.553 1.338 

Adj.P_IP_SEAT -0.020 -0.117 -0.069 -0.016 0.041 -0.041 -0.076 -0.235 55.56 0.718 1.132 

Adj.P_LSR2.DEP 0.146 -0.239 -0.208 -0.231 0.231 -0.102 -0.162 -0.018 55.56 0.654 1.535 

Adj.P_RGS2.DEP 0.109 -0.143 -0.071 -0.106 0.103 -0.035 -0.100 -0.161 55.56 0.645 1.332 

Adj.R_McC_CGS2.DEP -0.053 -0.203 -0.182 -0.136 0.195 -0.213 -0.165 -0.137 55.56 0.752 1.188 

Adj.Richness        -0.234 -0.166 -0.045 -0.068 0.173 -0.129 -0.124 -0.151 55.56 0.823 1.199 

P_IP 0.025 -0.054 -0.088 -0.005 -0.003 -0.002 -0.030 -0.200 55.56 0.498 0.692 

P_IP_NonGameNB -0.024 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 55.56 0.247 0.471 

P_OH 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 55.56 0.308 0.502 

P_OH_CAAN_CACO  -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 55.56 0.103 0.301 

P_OH_NG -0.024 0.018 0.018 0.018 0.018 0.018 0.018 0.018 55.56 0.308 0.502 

Adj.P_BND_CACO_SEAT 0.034 0.084 0.023 0.052 -0.122 0.012 0.107 0.056 51.85 0.561 1.286 

Adj.P_NGL2.DEP 0.120 -0.162 -0.115 -0.042 0.054 -0.196 -0.074 -0.109 51.85 0.665 1.306 

Adj.P_Tol.DEP -0.014 0.089 0.041 0.016 -0.040 -0.044 0.177 0.173 51.85 0.788 1.135 

Adj.P_Tol_Cyprinid.DEP 0.021 0.009 -0.028 -0.074 0.043 -0.085 0.093 0.192 51.85 0.765 1.162 

Adj.Proportion2.DEP 0.070 -0.085 -0.058 0.009 0.006 0.010 -0.166 -0.125 51.85 0.746 1.161 

Adj.R_BND_CACO_SEAT 0.132 0.172 0.088 0.055 -0.145 0.095 -0.065 0.173 48.15 0.811 1.386 

P_CGS_RGS 0.096 -0.143 -0.085 -0.149 0.107 -0.057 0.106 0.070 48.15 0.415 0.671 

P_Cyprinid -0.053 -0.075 -0.057 -0.126 0.157 -0.007 -0.059 0.190 48.15 0.674 0.787 

Adj.P_GSS -0.013 -0.032 -0.146 -0.049 0.050 -0.121 0.022 -0.026 44.44 0.732 1.076 

Adj.P_IP2.DEP 0.043 -0.131 -0.077 -0.080 0.049 -0.047 -0.082 -0.196 44.44 0.648 1.192 

P_DMS 0.171 -0.017 -0.048 -0.012 -0.034 -0.044 -0.063 -0.166 44.44 0.120 0.244 

P_DMS2.DEP 0.171 -0.017 -0.048 -0.012 -0.034 -0.044 -0.063 -0.166 44.44 0.120 0.244 

P_IP_BenthicNG 0.153 -0.036 -0.050 -0.002 -0.060 -0.071 -0.066 -0.132 44.44 0.173 0.287 

SW_TROPHIC.cor -0.097 -0.072 -0.025 0.041 0.009 -0.037 0.004 -0.225 44.44 2.720 2.982 

Adj.P_IN -0.014 -0.174 -0.049 -0.019 0.103 -0.049 -0.160 -0.141 40.74 0.810 1.137 

Adj.P_McC_CGS2.DEP 0.196 -0.069 -0.096 -0.154 0.049 -0.070 -0.055 -0.053 40.74 0.538 1.336 
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Metric 
Surface 

Mining 
Development Grassland Agriculture Forest SD SPC pH DE 25th 75th 

P_Benthic2.DEP 0.158 -0.048 -0.068 -0.018 -0.043 -0.098 -0.063 -0.179 40.74 0.180 0.293 

P_McC_CGS 0.116 -0.063 -0.033 -0.131 0.017 -0.025 0.125 0.092 40.74 0.204 0.334 

P_Percidae 0.201 -0.014 -0.038 0.038 -0.012 -0.057 -0.057 -0.166 40.74 0.100 0.216 

R_McC_CGS 0.007 -0.097 -0.125 -0.082 0.115 -0.112 -0.157 0.009 40.74 4.000 6.000 

Adj.P_Benthic 0.115 -0.048 -0.041 -0.051 -0.044 -0.041 0.125 0.024 37.04 0.715 1.182 

Adj.P_NGL 0.026 -0.028 0.041 -0.025 -0.056 -0.023 0.073 -0.030 37.04 0.704 1.120 

Adj.P_Tol_Benthic.DEP -0.014 -0.020 0.018 -0.012 -0.024 0.015 0.177 0.161 37.04 0.687 1.206 

P_Benthic_CACO 0.074 -0.105 -0.063 -0.101 0.030 -0.068 0.097 -0.041 37.04 0.301 0.542 

P_CavitySpawn -0.074 0.058 0.054 -0.003 -0.049 -0.050 -0.127 -0.090 37.04 0.124 0.233 

R_Catostomidae -0.205 -0.160 -0.051 0.002 0.096 -0.160 -0.144 0.016 37.04 2.000 3.000 

Adj.P_Catostomidae -0.136 -0.039 0.022 -0.013 -0.040 -0.026 -0.014 -0.143 33.33 0.657 1.429 

Adj.R_MO -0.016 0.148 0.100 0.065 -0.098 0.092 0.008 0.098 33.33 0.822 1.150 

P_Mod.DEP 0.055 0.059 0.029 0.155 -0.129 0.087 -0.136 -0.072 33.33 0.199 0.342 

P_OH2.DEP -0.005 -0.098 -0.063 0.049 0.089 -0.094 -0.124 0.009 25.93 0.000 0.089 

R_Tol.DEP -0.162 0.098 0.117 0.148 -0.109 0.032 -0.015 0.021 25.93 6.000 9.000 

P_MO -0.044 0.107 0.130 -0.030 -0.064 0.048 0.131 0.154 22.22 0.177 0.411 

R_Tol_Cyprinid.DEP -0.134 -0.014 0.026 0.032 0.024 -0.022 -0.166 0.038 22.22 5.000 6.000 

P_Game -0.141 0.075 0.072 0.194 -0.079 0.020 0.124 -0.148 11.11 0.001 0.030 

R_OH -0.074 0.066 0.088 0.009 -0.003 0.050 -0.050 -0.001 11.11 4.000 7.000 

R_OH_CAAN -0.087 0.066 0.093 0.021 -0.006 0.050 -0.061 -0.007 11.11 3.000 6.000 

R_OH_CAAN_CACO -0.076 0.056 0.064 0.031 -0.002 0.040 -0.044 -0.011 11.11 2.000 5.000 

R_OH_NG -0.080 -0.003 -0.003 -0.108 0.122 -0.020 -0.134 -0.040 11.11 4.000 6.000 

R_Game -0.171 0.090 0.081 0.198 -0.094 0.010 0.048 -0.046 3.70 1.000 4.000 

Adj.P_GameC -0.230 0.074 0.116 0.137 -0.036 0.067 0.129 -0.164 0.00 0.000 2.232 

Adj.R_Game2.DEP -0.284 0.002 0.049 0.004 0.095 0.015 -0.058 -0.194 0.00 0.000 1.658 

P_Game2.DEP -0.198 0.035 0.050 0.106 -0.009 0.020 0.071 -0.163 0.00 0.000 0.020 

P_Sunfish -0.195 -0.027 -0.021 0.121 0.044 -0.111 0.035 -0.188 0.00 0.000 0.010 

R_GameC -0.123 0.148 0.084 0.136 -0.104 0.035 0.047 0.021 0.00 0.000 2.000 

R_OH2.DEP -0.058 -0.100 -0.054 -0.037 0.138 -0.082 -0.085 -0.030 0.00 0.000 2.000 
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Table 4: Spearman correlation coefficients for metrics in the Upper Kanawha region with surface mining (%), development (%), grassland (%), 

agriculture (%), forest (%), structure density (#/km
2
; SD), conductivity (SPC), and pH. Discrimination efficiency (%; DE) and 25

th
 and 75

th
 

percentiles indicated. Table is sorted by descending discrimination efficiency. 

Metric 
Surface 

Mining 
Development Grassland Agriculture Forest SD SPC pH DE 25th 75th 

Adj.P_Cold -0.010 -0.082 -0.021 -0.022 0.137 0.034 -0.123 -0.165 81.82 0.638 1.404 

P_Int_RGS.DEP -0.188 -0.359 -0.182 -0.147 0.351 -0.363 -0.255 -0.173 81.82 0.128 0.324 

Adj.P_Cold_SATR_ONMY -0.022 -0.107 -0.043 -0.030 0.128 0.000 -0.139 -0.193 72.73 0.370 1.494 

P_Native2 -0.176 -0.258 -0.067 -0.041 0.274 -0.146 -0.102 0.192 72.73 0.216 0.368 

P_IP_BenthicNG -0.048 -0.391 -0.316 -0.168 0.189 -0.390 -0.100 0.049 72.73 0.192 0.396 

Adj.R_IP_BenthicNG -0.249 -0.404 -0.376 0.000 0.167 -0.294 -0.218 0.083 63.64 0.594 1.357 

Adj.R_Int -0.340 -0.370 -0.185 0.058 0.251 -0.123 -0.336 0.006 63.64 0.441 1.645 

Adj.R_Int.DEP -0.354 -0.307 -0.082 -0.007 0.287 -0.133 -0.399 0.056 63.64 0.555 1.464 

Adj.R_Int_Benthic.DEP -0.319 -0.490 -0.333 0.006 0.223 -0.396 -0.326 -0.058 63.64 0.708 1.210 

Adj.P_Tol.DEP 0.155 0.425 0.271 0.323 -0.418 0.400 0.318 0.091 63.64 0.577 1.166 

P_Cyprinid2 -0.127 -0.164 -0.026 -0.065 0.260 -0.121 -0.142 0.138 63.64 0.124 0.317 

P_CyprinidN2 -0.119 -0.154 -0.014 -0.059 0.246 -0.113 -0.137 0.137 63.64 0.124 0.317 

P_DMS -0.128 -0.439 -0.377 -0.146 0.193 -0.421 -0.165 -0.006 63.64 0.108 0.370 

P_RGS2.DEP -0.043 -0.340 -0.279 -0.314 0.295 -0.467 -0.283 -0.028 63.64 0.233 0.484 

P_Benthic2.DEP -0.026 -0.354 -0.284 -0.167 0.159 -0.378 -0.084 0.061 63.64 0.192 0.396 

P_CyprinidN2.DEP -0.144 -0.167 -0.005 -0.045 0.249 -0.104 -0.142 0.159 63.64 0.124 0.317 

P_DMS2.DEP -0.128 -0.439 -0.377 -0.146 0.193 -0.421 -0.165 -0.006 63.64 0.108 0.370 

P_Int_Benthic.DEP -0.246 -0.449 -0.297 -0.118 0.292 -0.491 -0.309 -0.176 63.64 0.066 0.179 

Adj.R_Native  -0.262 -0.332 -0.323 0.066 0.117 -0.236 -0.267 0.101 54.55 0.755 1.154 

Adj.R_IN -0.245 -0.308 -0.300 0.019 0.111 -0.234 -0.218 0.079 54.55 0.668 1.298 

R_Benthic -0.220 -0.220 -0.220 -0.220 -0.220 -0.220 -0.220 -0.220 54.55 4.000 6.000 

Adj.R_Benthic_CACO -0.236 -0.340 -0.343 0.026 0.118 -0.254 -0.226 0.134 54.55 0.626 1.278 

Adj.R_CGS_RGS -0.214 -0.316 -0.328 -0.035 0.120 -0.288 -0.340 0.068 54.55 0.703 1.214 

Adj.R_CGS_RGS2.DEP -0.248 -0.354 -0.302 -0.060 0.170 -0.303 -0.368 0.002 54.55 0.732 1.224 

Adj.P_Cyprinid2.DEP -0.252 -0.204 -0.055 -0.063 0.307 -0.086 -0.163 0.052 54.55 0.744 1.536 

R_CyprinidN -0.221 -0.132 -0.124 0.156 0.043 -0.038 -0.205 0.226 54.55 3.000 5.000 

P_Fish2 -0.165 -0.191 -0.014 -0.049 0.254 -0.081 -0.072 0.197 54.55 0.217 0.444 
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Metric 
Surface 

Mining 
Development Grassland Agriculture Forest SD SPC pH DE 25th 75th 

P_Tol 0.132 0.185 0.029 0.074 -0.232 0.101 0.072 -0.197 54.55 0.556 0.783 

P_Percidae -0.086 -0.397 -0.388 -0.293 0.205 -0.539 -0.281 -0.144 54.55 0.078 0.233 

P_CGS_RGS2 -0.098 -0.119 0.017 -0.115 0.277 -0.099 -0.201 0.116 54.55 0.131 0.289 

P_Native2.DEP -0.114 -0.396 -0.230 -0.206 0.307 -0.389 -0.223 0.059 54.55 0.321 0.589 

P_Int.DEP -0.196 -0.196 0.024 -0.083 0.319 -0.081 -0.292 0.068 54.55 0.015 0.270 

P_CGS_RGS2.DEP -0.013 -0.313 -0.219 -0.298 0.307 -0.411 -0.265 -0.040 54.55 0.269 0.545 

P_CavitySpawn2.DEP -0.224 -0.443 -0.266 0.017 0.264 -0.330 -0.149 -0.039 54.55 0.072 0.243 

Adj.R_FISH     -0.225 -0.217 -0.219 0.094 0.032 -0.140 -0.199 0.172 45.45 0.764 1.212 

Adj.R_Benthic2 -0.211 -0.253 -0.206 0.098 0.071 -0.088 -0.043 0.204 45.45 0.645 1.619 

Adj.R_Cyprinid -0.241 -0.164 -0.173 0.149 0.025 -0.065 -0.214 0.158 45.45 0.791 1.136 

Adj.R_Cyprinid_BNDSEAT -0.240 -0.173 -0.152 0.151 -0.003 -0.052 -0.213 0.126 45.45 0.747 1.496 

Adj.R_McC_CGS -0.131 -0.248 -0.306 -0.032 0.079 -0.224 -0.283 0.067 45.45 0.646 1.455 

Adj.R_Native2.DEP -0.347 -0.398 -0.320 0.055 0.189 -0.270 -0.311 0.067 45.45 0.580 1.255 

Adj.R_IP2.DEP -0.276 -0.286 -0.233 0.015 0.119 -0.189 -0.257 0.059 45.45 0.721 1.294 

Adj.R_Benthic2.DEP -0.228 -0.356 -0.349 -0.008 0.122 -0.272 -0.205 0.088 45.45 0.541 1.281 

Adj.R_McC_CGS2.DEP -0.086 -0.263 -0.295 -0.111 0.077 -0.274 -0.300 -0.064 45.45 0.649 2.176 

Adj.P_IN -0.059 -0.394 -0.280 -0.293 0.327 -0.406 -0.228 0.010 45.45 0.671 1.372 

Adj.P_Benthic_CACO -0.016 0.079 0.019 0.142 -0.142 0.126 0.126 0.195 45.45 0.799 1.186 

Adj.P_Catostomidae 0.324 -0.006 -0.149 -0.179 -0.022 -0.122 0.121 0.232 45.45 0.148 1.925 

Adj.P_Fish2.DEP -0.201 -0.397 -0.225 -0.229 0.382 -0.317 -0.270 -0.028 45.45 0.771 1.309 

Adj.P_Mod.DEP -0.114 -0.348 -0.257 -0.200 0.231 -0.300 -0.164 0.032 45.45 0.587 1.482 

Adj.P_Tol_Cyprinid.DEP 0.135 0.391 0.243 0.330 -0.408 0.369 0.284 0.125 45.45 0.618 1.199 

R_RGS -0.237 -0.229 -0.274 0.065 0.072 -0.192 -0.235 0.203 45.45 3.000 6.000 

R_RGS2.DEP -0.271 -0.273 -0.273 0.053 0.117 -0.217 -0.258 0.169 45.45 2.000 5.000 

P_Benthic2 -0.053 -0.157 -0.064 0.004 0.096 -0.079 0.083 0.290 45.45 0.042 0.177 

P_Cyprinid_NBNDSEAT -0.062 0.140 0.166 0.210 -0.173 0.198 0.132 0.397 45.45 0.129 0.362 

P_Tol_Cyprinid 0.062 0.297 0.174 0.247 -0.262 0.328 0.150 -0.029 45.45 0.385 0.613 

P_CGS_RGS 0.018 0.018 -0.031 -0.103 0.046 -0.040 -0.119 -0.019 45.45 0.598 0.780 

P_CavitySpawn -0.209 -0.330 -0.152 0.155 0.088 -0.222 -0.071 0.048 45.45 0.072 0.243 
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Metric 
Surface 

Mining 
Development Grassland Agriculture Forest SD SPC pH DE 25th 75th 

 Adj.R_Native2 -0.328 -0.363 -0.267 0.070 0.194 -0.186 -0.262 0.087 36.36 0.533 1.223 

Adj.R_Game -0.018 0.126 0.161 0.187 -0.177 0.094 0.000 0.259 36.36 0.000 1.445 

Adj.R_NGL -0.028 -0.183 -0.280 -0.007 0.028 -0.121 -0.115 0.101 36.36 0.616 1.393 

Adj.R_IP -0.224 -0.243 -0.201 0.011 0.084 -0.184 -0.215 0.092 36.36 0.673 1.263 

Adj.R_Cyprinid2 -0.308 -0.223 -0.146 0.107 0.138 -0.088 -0.233 0.074 36.36 0.509 1.210 

Adj.R_CyprinidN2 -0.297 -0.217 -0.141 0.106 0.136 -0.086 -0.231 0.073 36.36 0.468 1.233 

Adj.R_Mod -0.097 -0.132 -0.171 0.052 -0.018 -0.057 -0.021 0.198 36.36 0.614 1.702 

Adj.R_Fish2.DEP -0.336 -0.304 -0.237 0.070 0.121 -0.173 -0.265 0.094 36.36 0.590 1.248 

Adj.R_Cyprinid2.DEP -0.361 -0.212 -0.106 0.159 0.142 -0.036 -0.241 0.091 36.36 0.626 1.513 

Adj.R_CyprinidN2.DEP -0.326 -0.196 -0.083 0.159 0.120 -0.033 -0.218 0.094 36.36 0.615 1.614 

Adj.P_NGL 0.000 -0.225 -0.288 -0.139 0.135 -0.166 -0.040 0.074 36.36 0.141 1.838 

Adj.P_Cyprinid_BNDSEAT -0.106 0.017 0.040 0.148 -0.067 0.133 0.054 0.248 36.36 0.716 1.365 

Adj.P_OH -0.083 0.269 0.162 0.415 -0.301 0.385 0.162 0.207 36.36 0.611 1.318 

Adj.P_OH_NG -0.084 0.268 0.161 0.415 -0.300 0.385 0.160 0.208 36.36 0.611 1.318 

Adj.P_IP2.DEP -0.084 -0.345 -0.194 -0.297 0.338 -0.329 -0.207 -0.030 36.36 0.686 1.422 

Adj.P_Tol_Benthic.DEP -0.005 0.245 0.120 0.239 -0.208 0.320 0.156 0.126 36.36 0.685 1.473 

R_LSR -0.180 -0.168 -0.253 0.049 0.067 -0.129 -0.195 0.250 36.36 3.000 6.000 

R_MO -0.192 -0.081 -0.140 0.252 -0.118 0.033 -0.069 0.186 36.36 2.000 4.000 

R_Percidae -0.237 -0.330 -0.305 -0.033 0.150 -0.300 -0.275 0.046 36.36 1.000 2.000 

R_Catostomidae 0.134 -0.024 -0.197 0.003 -0.092 -0.067 0.000 0.302 36.36 1.000 1.000 

R_CavitySpawn2.DEP -0.358 -0.464 -0.348 0.096 0.213 -0.319 -0.241 0.024 36.36 1.000 2.000 

P_Native 0.079 0.051 0.062 -0.024 -0.136 -0.079 0.190 0.166 36.36 0.586 0.795 

P_RGS -0.028 -0.035 -0.093 -0.054 -0.041 -0.101 -0.057 0.230 36.36 0.233 0.536 

P_IP2 -0.028 -0.107 0.026 -0.116 0.205 -0.080 -0.012 0.240 36.36 0.131 0.343 

P_Cyprinid 0.021 0.252 0.233 0.182 -0.097 0.319 0.074 -0.013 36.36 0.573 0.796 

P_Mod -0.080 -0.079 -0.048 0.048 0.052 0.011 0.066 0.278 36.36 0.007 0.154 

P_McC_CGS2.DEP 0.099 -0.019 -0.110 -0.133 -0.017 -0.136 -0.065 0.164 36.36 0.007 0.199 

SW_TROPHIC 0.086 -0.093 -0.097 -0.050 0.022 -0.176 -0.101 0.072 36.36 2.360 3.068 

Adj.R_Fish2 -0.310 -0.263 -0.180 0.064 0.146 -0.090 -0.211 0.117 27.27 0.514 1.331 
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Metric 
Surface 

Mining 
Development Grassland Agriculture Forest SD SPC pH DE 25th 75th 

Adj.R_IP2 -0.162 -0.224 -0.173 -0.029 0.118 -0.160 -0.211 0.103 27.27 0.788 1.500 

Adj.R_IP_SEAT -0.237 -0.242 -0.197 0.011 0.092 -0.167 -0.215 0.041 27.27 0.708 1.289 

Adj.R_GameC -0.036 0.100 0.133 0.171 -0.112 0.074 -0.032 0.269 27.27 0.000 1.632 

Adj.R_Game2 0.022 0.058 0.077 0.101 -0.104 0.028 -0.060 0.261 27.27 0.000 1.501 

Adj.R_IP_NonGameNB -0.161 -0.165 -0.145 -0.036 0.111 -0.157 -0.266 0.008 27.27 0.644 1.423 

Adj.R_CGS_RGS2 -0.228 -0.232 -0.118 0.025 0.131 -0.114 -0.290 0.068 27.27 0.691 1.549 

Adj.R_Game2.DEP 0.009 0.036 0.055 0.077 -0.086 -0.008 -0.099 0.277 27.27 0.000 1.545 

Adj.R_Mod.DEP -0.240 -0.178 -0.196 0.114 -0.017 -0.104 -0.131 0.104 27.27 0.501 1.318 

Adj.P_MO -0.096 0.258 0.174 0.407 -0.283 0.390 0.166 0.191 27.27 0.616 1.321 

Adj.P_IP_SEAT -0.075 -0.326 -0.191 -0.298 0.337 -0.322 -0.251 -0.086 27.27 0.682 1.412 

Adj.P_Benthic -0.014 0.082 0.022 0.133 -0.134 0.130 0.161 0.183 27.27 0.752 1.253 

Adj.P_BND_CACO_SEAT 0.166 0.035 0.019 -0.119 0.023 -0.046 0.046 -0.294 27.27 0.436 1.262 

R_RGS2 -0.264 -0.161 -0.145 0.129 0.078 -0.052 -0.187 0.226 27.27 1.000 3.000 

R_LSR2 -0.245 -0.213 -0.185 0.079 0.122 -0.103 -0.213 0.250 27.27 1.000 3.000 

R_Cold_SATR_ONMY -0.155 -0.199 -0.113 0.020 0.161 -0.072 -0.237 0.014 27.27 1.000 2.000 

R_DMS -0.332 -0.370 -0.326 0.066 0.163 -0.265 -0.214 0.132 27.27 1.000 3.000 

R_Tol_Cyprinid -0.094 -0.021 -0.126 0.145 -0.099 -0.002 -0.075 0.311 27.27 2.000 3.000 

R_CavitySpawn -0.338 -0.365 -0.261 0.176 0.105 -0.193 -0.163 0.134 27.27 1.000 2.000 

R_LSR2.DEP -0.260 -0.211 -0.225 0.068 0.121 -0.113 -0.199 0.223 27.27 1.000 4.000 

R_DMS2.DEP -0.332 -0.370 -0.326 0.066 0.163 -0.265 -0.214 0.132 27.27 1.000 3.000 

P_GSS 0.041 -0.081 -0.096 -0.093 0.137 -0.121 0.032 -0.110 27.27 0.073 0.312 

P_RGS2 -0.163 -0.163 -0.085 -0.120 0.244 -0.158 -0.195 0.177 27.27 0.022 0.270 
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CHAPTER 2: LANDSCAPE BASED MODELS FOR IDENTIFYING LEAST 

IMPACTED STREAMS IN CENTRAL APPALACHIAN WATERSHEDS 
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Abstract 

In heavily impacted regions, such as the central Appalachians, finding marginally impacted or reference 

streams to sample for bioassessment programs can be difficult.  As a consequence, reference sites often 

are biased towards small headwater catchments on federally or state protected lands, and extrapolation to 

the broader region may be unwarranted.  Our objective in this study was to use land-cover data to identify 

streams across a broad range of natural contexts (drainage area, elevation, distance to large mainstem) 

that have a high probability of serving as a reference site for bioassessment.  Boosted Regression Tree 

models were developed using an existing sample of previously defined reference sites and anthropogenic 

landscape variables in order to predict the probability of being in reference condition for all wadeable 

stream segments in the study region.  Combined with in-stream water quality measures, the probability 

was then used as a flexible selection criterion for the evaluation of potential reference sites.  The analysis 

of current reference sites produced a strong Boosted Regression Tree model (ROC=0.998; CV 

ROC=0.978) and contained a variety of cumulative and local landscape variables.  Cumulative percentage 

of forest, surface mining, and development accounted for the majority of the variance explained.  Other 

important variables included measures of local percentages of forest and development and structure 

density in addition to cumulative densities of structures and surface mining permits and percentage of 

grassland.  Depending on the fish biomonitoring region, we were able to include an additional 16 – 57 

reference sites spanning a wide range of drainage areas using a probability threshold of 90%.  Within the 

Ohio CA region, there is a large presence of surface mining activities, resulting in the majority of larger 

streams having elevated levels of mining above what would be expected of a traditional reference stream.  

In order to select larger streams representative of this region, a least disturbed reference condition 

approach was utilized by reducing the probability criterion for larger streams in this region.  The addition 

of these reference sites increased the maximum drainage area from 85 to 357 km
2
 in the Mon CA-RV, 60 

to 250 km
2
 in the Ohio CA, 143 to 295 km

2
 in the Ohio-Mon WAP, and 150 to 383 km

2
 in the Upper 

Kanawha biomonitoring regions.  These methods allow increased levels of human disturbance in larger 
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streams and rivers in order to generate accurate models of expected condition as a function of stream size 

for bioassessment development.  Using flexible criteria for larger streams encouraged the selection of 

these streams in the reference pool, not only increasing the range of drainage areas for bioassessment but 

also generating a more holistic picture of least disturbed reference condition in remote or highly disturbed 

landscapes.  The hierarchical classification of reference condition probabilities demonstrates geographical 

clustering of high quality segment-, HUC 12-, and HUC 8-scale watersheds within and between 

biomonitoring regions.  The nested structure of watershed conditions provides a unique framework for 

evaluating reference condition and the influence of anthropogenic stressors on aquatic communities at 

multiple spatial scales.     

Keywords: Boosted Regression Tree models, Reference Condition, Bioassessment 
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1.0 Introduction 

Aquatic monitoring programs collect and analyze data in order to evaluate the health and resource status 

of the nation’s waterways.  However, in order to assess the resource conditions, benchmark values are 

needed for comparison.  Numeric criteria are typically generated based on the distribution of abiotic (i.e., 

physical or chemical criteria) or biotic (i.e., indicator species or multimetric indices) measurements.  

These numeric criteria, or thresholds, are generally developed using a reference condition approach (Karr 

and Chu, 1998).  A reference condition is developed by evaluating the condition gradient of every stream 

or river ranging from pristine and free from human influence to completely degraded and potentially 

devoid of life.  Ideally, the reference condition is based on pristine sites.  However, these stream types 

constitute a very small proportion of all the streams in the United States.  Since pristine streams are 

relatively rare outside of headwater systems, a “minimally” or “least” disturbed definition of the reference 

condition is used.  A “minimally disturbed” condition is typically reserved for streams or rivers where 

there is very little evidence of human disturbance (Stoddard et al., 2006).  However, a “least disturbed” 

condition is applied to streams and rivers that have the best condition given the current status of the 

human-dominated landscape (Stoddard et al., 2006).   

Several types of bioassessment programs use the reference condition approach in order to quantify 

anthropogenic effects on freshwater ecosystems.  Index of Biotic Integrity (IBI;Karr, 1986), Biological 

Condition Gradient (BCG; Davies and Jackson, 2006), and River InVertebrate Prediction and 

Classification Systems (RIVPACS; Wright et al., 1984) modeling are all methods of assessing freshwater 

ecosystems.  Regardless of the underlying statistical techniques used to determine stream health (e.g., 

narrative criteria, index values, or species presence predictions), they all use a reference condition as the 

foundation of their programs.  The reference condition approach allows sites to serve as replicates instead 

of comparing to the pre-impact condition of a stream, which can be unknown in most regions and is not 

important in assessing stressors or current ecosystem condition (Reynoldson et al., 1997).   
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The reference condition approach takes a pool of sites minimally exposed to anthropogenic stressors in 

order to account for the natural variation exhibited in the model organism (Reynoldson et al., 1997; 

Bailey et al., 1998; Bowman and Somers, 2005).  Generally, test (non-reference) sites are exposed to 

some degree of anthropogenic stressors and the deviation away from the reference condition can be a 

quantifiable indicator of ecological stress under this approach.  Regional reference conditions have been 

used to evaluate both indicators of biological condition and for predictive modeling.  These reference sites 

are used to quantitatively predict the expected conditions at non-reference sites across ranges of natural 

conditions.  For example, the influence of drainage area on diversity of stream fishes is widely known 

(Minshall et al., 1985), and reference sites can be used to account for this natural variation in order to get 

an accurate representation of how the fish community is responding to stressors regardless of stream size 

(Fausch et al., 1984).  Large sample sizes of reference sites covering large regional extents are important 

for modeling expected conditions because they contain wide variations in fish communities as well as a 

wide range in natural conditions allowing for increased sensitivity in detecting responses to stressors 

(Riseng et al., 2006). 

During reference site selection at the onset of a bioassessment program, it is important that the sites cover 

a wide range of natural variation as well as be exposed to the lowest levels of anthropogenic impacts for 

that region.  Stringent reference site selection criteria are utilized in order to increase detection of 

anthropogenic impacts.  However, the selection of sites can be difficult when the reference condition, or 

least disturbed condition, has not been defined or is extremely rare in heavily disturbed regions.  In order 

to combat some of the ambiguity surrounding reference site selection, bioassessment programs generate a 

list of acceptable and unacceptable measurements of ecosystem stress in order for a site to be added to the 

reference pool.  For example, the Mid-Atlantic Highlands Index of Biotic Integrity (MAH-IBI; 

McCormick et al., 2001) uses three different reference definitions (least, moderately, and most restrictive) 

to determine reference sites used in setting metric scoring thresholds and expectations.  The least 

restrictive was based on chemical criteria and Rapid Bioassessment Protocol habitat measures with 
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watershed land-use, road density, and watershed condition criteria added as you progress to more 

restrictive reference sites. Similarly, the benthic macroinvertebrate genus-level index of most probable 

stream status (GLIMPSS; Pond et al., 2012) uses a strict set of water quality, local habitat measures 

(Rapid Bioassessment Protocol), and upstream point and nonpoint source discharges to select high quality 

reference sites (Pond et al., 2012).  However, in regions where very few sites meet all criteria best 

professional judgment was used to determine the inclusion of a site into the reference pool, even though it 

failed one criterion, generating a reference pool of least and minimally disturbed sites.        

Reliability in bioassessment programs assumes that the expected conditions based on the reference pool 

can accurately predict conditions and are unbiased (Hawkins et al., 2010b).  However, the restrictive 

nature of screening criteria and strict focus on local habitat measures for reference site selection coupled 

with a probabilistic survey design, may unintentionally bias reference sites towards small streams. The 

high cost of ecological monitoring has led to the need for highly efficient sampling designs that are 

scientifically defensible, can characterize the regions ecological condition, meet project goals, and affect 

policy decisions.  Even though probabilistic based sample design programs are able to make direct 

inferences about the target population and eliminate bias associated with site based criteria sampling high 

amounts of variability between samples can occur.  This high variability can be influenced by geographic 

heterogeneity such as land use, stream size, and ecoregion.   

Landscape and land-use data are frequently being used to screen sites by quantifying the relative human 

influence at the watershed scale (Whittier et al., 2007; Wang et al., 2008; Angradi et al., 2009; Yates and 

Bailey, 2010).  A landscape-scale approach allows for the combination of multiple stressors in order to 

generate a stressor gradient.  During reference site selection, focus has typically been placed on the 

number and types of point-source pollution discharges such as industrial and municipal wastewater 

systems.  However, the importance of non-point source pollution as a result of complex interactions from 

industrial, agricultural, commercial, and residential land use practices is becoming more evident as major 

contributors of stream health (Merriam et al., 2011, 2013).  Measurements of water quality can be used as 
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surrogates for overall anthropogenic land-use practices, however sampling can be costly, time consuming, 

and may require previous knowledge of potential stress.  The use of remotely sensed landscape data 

would help inform, or reduce the need for, extensive water quality monitoring in reference site selection.         

In most regions of West Virginia, historic data were not collected prior to anthropogenic impacts.  

Consequently, determining the health of stream is dependent on the reference condition.  Candidate 

reference sites are evaluated based on past and present land-use disturbances followed by a field 

assessment examining all chemical, habitat, biological information as well as professional judgment from 

trained personnel.  Like other bioassessment programs, West Virginia uses different levels of reference 

condition in which Level I sites meet all criteria, while Level II sites fail to meet one or more criteria by a 

narrow margin.  Finally, Level III sites are reserved for larger rivers and streams (> ~150 km
2
) which due 

to their size, may have some levels of point source discharges but generally meet RBP habitat and water 

quality criteria.  Like other bioassessment programs that use probabilistic sampling designs and restrictive 

selection criteria, West Virginia reference sites may not capture a wide range of natural variation 

occurring on the landscape and may under represent larger rivers and streams.  For example, the current 

reference sites used for fish bioassessment has an average drainage area approximately half (32.73 km
2
) 

the size of the average wadeable stream in the state (61.15 km
2
) and does not cover the full range of 

drainage areas (7 – 150 km
2
) that the bioassessment program covers (7 – 400 km

2
).  This bias towards 

smaller streams in the reference pool may have important impacts on the expectations extrapolated to 

larger streams and rivers throughout the state.   

In this study we demonstrate how we derived landscape based stressor gradient for wadeable streams of 

West Virginia and how we used those gradients to select region specific reference sites for bioassessment 

development.  The goal of this study was to evaluate landcover/land-use of the current reference sites 

used in West Virginia in order to generate a list of candidate reference sites, representing the full range of 

natural variation seen on the landscape, and describe the distribution of stream conditions using spatial 

modeling techniques across the study region. Specifically, we are using known, pre-defined, reference 
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sites to identify the reference condition in remote, or under sampled, regions of West Virginia.  This 

model will be used to address our 3 research objectives: 1) to identify potential reference sites within a 

pool of previously sampled sites; 2) to identify targeted sampling priorities along a continuum of 

predicted stream condition; and 3) to evaluate the distribution of stream conditions at multiple spatial 

scales.  

2.0 Methods 

In order to identify candidate reference sites, we used the landscape condition observed at current 

reference sites to model the reference condition probability using Boosted Regression Tree modeling.  

The model was then used to predict reference condition probability statewide.  Modeled probabilities, in 

conjunction with water quality data (i.e., specific conductance and pH), were used to determine the final 

reference pool for West Virginia streams.  Finally, the hierarchical spatial structure of stream condition 

based on the reference condition probability was mapped to evaluate the geographical arrangement of 

reference conditions throughout the state.   

2.1Landuse/landcover data  

Landscape characteristics for all 1:24,000 segment-level watersheds (SLWs) within the state of West 

Virginia were quantified using spatial analysis functions in ArcGIS ArcMap 10.0 (Environmental 

Systems Research Institute, Redlands, California). In conjunction with flow tables, cumulative measures 

of several landscape attributes for each segment-level watershed (Strager et al., 2009) were quantified at 

the local (i.e., within individual SLWs) and cumulative (i.e., all SLWs upstream of a given sampling 

location) scale for each SLW.  Land cover classifications were derived from the 2009 and 2010 National 

Agriculture Imagery Program (NAIP) orthophotography with a 1-meter pixel resolution at a scale of 

1:10,000.  Land cover types included open water, forest, grass and agricultural lands, and barren 

development.  The mining-permit boundaries layer developed by the Technical Applications in GIS 

(TAGIS) office within WVDEP enabled further differentiation into mining-related open water (i.e., slurry 
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impoundments), barren (i.e., active mine lands) and grasslands (i.e., reclaimed mine lands) from non-

mining land cover.  All mining-related cover classes were summed into a measure of total surface mining.  

The density (#/km
2
) of surface mining, underground mining, sewage, and septic national pollution 

discharge elimination system (NPDES) permits were calculated from data obtained from WVDEP.  The 

West Virginia Statewide Addressing and Mapping Board structures layer (WV SAMB) was used to 

calculate the density of residential and commercial structures (#/km
2
).    

Natural landscape variables, such as drainage area (km
2
), elevation (m), and swim distance (km), were 

also generated in a GIS framework.  Cumulative drainage area was generated in a similar fashion to 

cumulative landscape variables listed above; however we used segment level watershed area in 

conjunction with the stream flow tables in the stream accumulation tool.  Digital Elevation models were 

generated for West Virginia in 2003 by the United States Geological Survey (USGS) and the Statewide 

Addressing and Mapping Board (SAMB) at a 3-meter (1/9
th
 arc-second) resolution.  We used this data to 

summarize the maximum elevation for each segment level watershed used in this study.  Swim distance 

was defined as the in-stream distance from the outflow of any segment level watershed to the inflow of a 

downstream segment level watershed of 200 km
2
 or greater (Hitt and Angermeier, 2011).  Measures of 

swim distance were generated for every segment level watershed in West Virginia using accumulated 

flow tables and the swim distance calculator located in the stream accumulation tool provided by NRAC 

and West Virginia University.  Because, some river systems originate outside of West Virginia, the 

analysis was reduced to wadeable streams and rivers that have less than 1% of their cumulative drainage 

area outside of the state boundary.  

2.2 Current reference pool  

A set of 848 stream segments were sampled using electrofishing (e.g., backpack, boat, parallel wires) 

from 2000 – 2013 for fish biomonitoring from a variety of data sources (e.g. West Virginia Department of 

Environmental protection, West Virginia Department of Natural Resources, and West Virginia 

University).  A portion of the sites were evaluated after sampling, by West Virginia Department of 
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Environmental Protection (WVDEP) to be considered a reference site based on strict water quality 

standards used for environmental regulation along with habitat assessment (Table 2).  Each site passing 

the water quality and habitat standards was evaluated in terms of local landscape disturbances and known 

point-source discharges upstream and final inclusion into the reference pool was determined by best 

professional judgment. The reference pool (N=54) used for model building spans across the Ohio, 

Monongahela, and Upper Kanawha drainages as well as over 3 different ecoregions (i.e. Central 

Appalachian, Western Allegheny Plateau, and the Ridge and Valley).   

The spatial positioning of the reference sites leads to great variability in the natural and anthropogenic 

landscapes surrounding these streams making it difficult to set a statewide reference condition.  Based on 

previous research done in this region (Chapter 1), the state has been divided into five fish biomonitoring 

regions based on fish community composition and natural landscape variation in order to get a more 

accurate representation of the reference condition at a smaller spatial extent.  The five regions include: 

Ohio Central Appalachians (Ohio CA), Ohio-Monongahela Western Allegheny Plateau (Ohio-Mon 

WAP), Monongahela Ridge and Valley (Mon CA-RV), Upper Kanawha (UK) and the Potomac (not 

included in analysis due to low sample sizes) (Figure 1).       

2.3 Boosted Regression Tree Models 

Boosted regression tree (BRT) modeling is an additive regression model technique which combines 

iteratively fit simple regression trees using a boosting algorithm (Elith et al., 2008).   The incorporation of 

a boosting algorithm when fitting successive models increases predictive performance allowing modeling 

technique to be well suited for modeling ecological and landscape datasets with a complex covariance 

structure (Elith et al., 2008).  Statewide boosted regression tree models were constructed relating presence 

of a reference site and both cumulative and local (i.e. segment level watershed scale) anthropogenic land 

cover and use data.  Initial models were used to predict probability of the presence of a reference site to 

each wadeable (7 – 400 km
2
) segment level watershed (N=16,118) in the study region. Initial BRT 

models were constructed statewide based on the anthropogenic landscape differences between reference 
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(N=54) and stressed sites (N=80).  The BRT model was built using a bag fraction of 0.50 with a learning 

rate of 0.001. A tree complexity of two was used to allow for one-way interactions between variables 

used in the model in order to more accurately predict in a complex landscape structure.  Model predictive 

performance was assessed by calculating the mean model deviance and cross-validation predictive 

deviance from ten folds of the data (Elith et al., 2008). Predictor variables were removed if the removal of 

the variable did not increase the cross-validation error rate.  Finally, relative importance of each variable 

retained in the simplified model was generated using an out-of-bag procedure outlined in Elith et al. 

(2008).  Only anthropogenic variables were used in order to reduce any bias towards specific stream sizes 

or elevations that may have occurred during the best professional selection process of the initial reference 

sites.  The model was then used to predict to all wadeable segment level watersheds statewide.  

Landscape modeled reference probabilities were then mapped to show the pattern of condition across the 

region hierarchically at the SLW, HUC 12, and HUC 8 scales.  Conditions were established for both the 

HUC 12 and HUC 8 catchment scales by averaging the probability of reference for all wadeable segment-

level watersheds within each scale.  We recognize the importance of region specific reference sites 

however; due to sample size limitations within each region we were not able to generate region specific 

models.  BRT models were constructed in the R environment (version 2.15.0; R Development Core 

Team, Vienna, Austria) with functions in package gbm and those provided by Elith et al. (2008).  

2.4 Site Selection 

In order to reduce the cost associated with large scale field collections, candidate reference sites were 

selected from all the sites that have been previously sampled in the past 10 years.   A pool of candidate 

reference sites were generated based on probabilities (≥ 0.90) determined by the BRT model.  These sites 

were then elevated to a reference site status if they met the following water quality criteria: 1) 

conductivity <500 and 2) 6>pH<9 in order to ensure the highest quality sites were being selected.  If no 

large (>150 km
2
) sites were selected using the methods listed previously, then the probability of reference 

criteria was relaxed in a stepwise fashion, in 0.10 increments for every 100 km
2
 increase in drainage area, 
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for each region until representatives across all stream sizes were selected.  Reducing the probability of 

reference criteria across drainage areas allowed for the inclusion of least disturbed sites given stream size 

in all regions so the reference pool is not biased towards small streams.  Additional sites were identified 

as field collection priorities and were selected along a drainage area and stream condition (i.e. probability 

of reference) continuum in order to guarantee a gradient of all anthropogenic stressors and all stream sizes 

occur within the fish biomonitoring database.  The reference pool within each region were compared 

based on drainage area, elevation, and swim distance before and after the inclusion of additional reference 

sites as well as to the average wadeable stream for that region. 

3.0 Results 

3.1 Boosted Regression Tree Models 

BRT fit 5,150 trees for the statewide model predicting the occurrence of reference sites and made use of 

six cumulative and three local land-use predictor variables.  The model provided an adequate fit to the 

data with training receiver operating characteristic (ROC) curve score of 0.998 and a cross-validation 

ROC curve score of 0.978 (standard error 0.011).  The most influential variable in the model was 

cumulative % forest (relative influence of 45.19) with cumulative % surface mining having the second 

highest relative influence (27.10) followed by cumulative % development (9.31).  The remaining six 

variables: local % forest, cumulative % grassland, cumulative surface mine permit density, local % 

development, cumulative structure density, and local structure density, all had similar relative influences 

ranging from 3.22 to 2.75.  Upon examination of the partial dependence plots for the final set of variables 

included in the model (Figure 2), the probability of a segment level watershed being a reference site 

increases with both local and cumulative % forest and decreases sharply with slight increases in the other 

anthropogenic variables. For example, probability of a reference site does not increase until local % forest 

reaches approximately 85%.  The final model was then used to predict reference condition probabilities to 

all wadeable segment level watersheds (Figure 3) based on their anthropogenic landscape structure.  All 

segment level watersheds (N=16,118) were evaluated for their probability of a reference site. Only 
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29.79% (N=4,822) of those segment level watersheds met the initial reference site criteria of having a 

predicted reference probability ≥ 0.90, which spans approximately 759 different streams and rivers 

throughout the study area.   

3.2 Reference Site Selection  

From sites previously sampled, 187 (22.05%) had probabilities of reference ≥ 0.90 in addition to 

measures of specific conductance and pH.  These potential reference sites were further evaluated on their 

water quality measurements, in which 116 (13.68%) sites that had not previously been identified as a 

reference met all selection criteria.  The addition of these sites increased the number of sites in the 

reference pool from 54 to 170 statewide.  The addition of sites across drainage areas (Figure 4) has 

increased the drainage size range of sites that can be evaluated (7 – 393 km
2
) and has increased the 

average drainage area (61.00 km
2
) to more closely resemble the average wadeable stream in West 

Virginia (61.15 km
2
).   

Upon analysis of reference sites within each region (Table 3), the number of reference sites in the Mon 

CARV region increased from 17 to 74 sites, which was the greatest increase in any of the regions.  The 

addition of 57 sites resulted in a small increase in the average drainage area from 30.94 km
2
 to 49.96 km

2
.  

However, the range of the drainage areas increased (8.07 – 357.6 km
2
) to more closely represent the range 

of stream segments in this region (7.01 – 399.6 km
2
).  In this region, there is also high variation in stream 

temperatures due to rapid elevation changes.  Adding these reference sites also increased the range of 

elevation of the reference pool (555 – 1432 m) as well as including sites that are close proximity to larger 

streams (i.e. swim distance of 0.00 km) as well as more remote systems (i.e. swim distance of 208 km).       

The Ohio Central Appalachian biomonitoring region exhibited an increase of 16 additional reference sites 

selected for inclusion in the original reference pool (10 sites).  We were unable to select any previously 

sampled large sites using the same criteria used in other regions.  By reducing the selection criteria to a 

probability of being a reference site to 0.80, we were able to select two additional large reference sites 
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while still meeting strict water quality criteria.  The addition of these sites increased the average drainage 

area of the reference pool from 25.70 km
2
 to 52.41 km

2
, which more closely resembles the average stream 

segment (55.05 km
2
) in this region.       

In the remaining two biomonitoring regions, Ohio Mon WAP and Upper Kanawha, we were able to add 

23 and 20 additional references sites to the original reference pools, respectively.  In the Ohio Mon WAP 

region, we were able to dramatically increase the average drainage area (29.37 km
2
) of the small reference 

pool (N=9) to an average drainage area (69.84 km
2
) and range (7.38 – 295.6 km

2
) to more closely 

resemble stream segments in this region (drainage area average= 54.45 km
2
; range= 7.0 – 399.45 km

2
).  

The addition of reference sites also increased the variety of network positions to include sites adjacent to 

larger streams.  The Upper Kanawha region exhibited similar patterns as the Ohio Mon WAP with 

increases in drainage areas from 44.92 to 81.41 km
2
.   

3.3 Sampling Priority Selection 

Boosted regression tree model probability of reference site occurrence generated a gradient on which 

sampling sites can be selected.  Upon examining the distribution of sites across drainage areas, gaps in the 

data distribution have been located that should be filled in order to get an accurate representation of the 

effects stressors have on stream fish communities (Figure 4).  For example, there is a need for large 

reference sites in the Ohio Central Appalachian biomonitoring region.  Using the results generated from 

the BRT modeling, we were able to select large stream segments that have a high probability of reference 

(≥ 0.90; Table 4).  Using these criteria, we were able to locate 16 segment level watersheds in this region 

with a high probability of reference and were between 150 and 250 km
2
, however these segments only 

occurred on two different streams.  For streams larger than 250 km
2
, we had to reduce the probability 

criteria to 0.60 in order to pick up three additional segment level watersheds, which all occur on the same 

stream, for targeted sampling.  Additional large streams with high probability of reference were also 

identified in the other regions (Table 4) in order to aid future sampling efforts.   A total of 593 stream 
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segments in the other three regions, covering approximately 44 different streams, were selected as future 

sampling priorities for monitoring efforts (Table 4).   

In addition to the need of large reference sites, all regions were lacking large (>150 km
2
) streams with an 

intermediate (0.20—0.60) probability of reference.  Using the results generated from BRT for all segment 

level watersheds in the state, we are able to pinpoint 45 stream segments, on approximately seven 

streams, for future targeted sampling in the Ohio Central Appalachian region (Table 5).  A total of 205 

stream segments, covering approximately 29 streams, in the other 3 regions were identified as large 

streams of intermediate quality (Table 5). 

3.4 Hierarchical classification of reference condition 

We mapped reference condition probability at the SLW-scale (Figure 3) to identify potential reference 

sites and to evaluate environmental quality across the study region.  There were distinct patterns and 

differences in SLW-scale probabilities at multiple spatial scales.  Outside of the Ohio CA region, most 

regions contain clusters of probability sites within one or two HUC 8 watersheds, typically occurring in 

the upper reaches of catchments.  However, there are isolated stream reaches within each biomonitoring 

region that are of both high and poor quality.   

When we averaged reference condition probabilities from the SLW scale to the HUC 12 scale (Figure 5), 

the spatially clustering of high and low quality catchments across the study area become more apparent.  

For example, the upper catchments of the Elk, Cheat, and Tygart HUC 8 watersheds have high numbers 

of HUC 12 watersheds representing the best stream conditions in the study region.   Consequently, these 

three HUC 8 watersheds make up the entirety of the Mon CA-RV biomonitoring region. Similarly, the 

Upper Kanawha biomonitoring region has clustering of HUC 12 watersheds with high reference condition 

probabilities occurring in the Greenbrier and Gauley HUC 8 watersheds.  The Ohio-Mon WAP region 

also exhibits concentrations of HUC 12 watersheds with high reference condition probabilities in the 

Little Kanawha and Middle Ohio North HUC 8 watersheds.  Outside of the lower portion of the Elk 
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watershed, the Ohio CA region displays many isolated HUC 12 watersheds of high reference condition 

probability.      

 When we averaged the SLW-scale reference condition probabilities to the HUC 8-scale (Figure 5), 

similar patterns of geographic clustering of high quality watersheds are apparent.  At this scale, HUC 8 

watersheds with clustering of high quality HUC 12 watersheds in their upper reaches typically have 

higher average reference condition probabilities.  All biomonitoring regions have at least one, or a portion 

of one, HUC 8 watershed with a high average reference condition probability.  Regardless of 

biomonitoring region, there are high-quality segment-level watersheds found in even the poorest quality 

HUC 12 watershed, nested in a range of HUC 8 watershed conditions.             

4.0 Discussion 

Anthropogenic landscape disturbances within a watershed can influence instream habitat and water 

quality conditions, ultimately impacting biological assemblages and overall stream health (Allan, 2004; 

Wang et al., 2008; Petty et al., 2010; Merriam et al., 2013).  Most stream health assessments focus on 

instream habitat, water quality, and biological condition and their relationships with point-source 

pollution or specific land-use practices.  However, with the expanded use and precision of remotely 

sensed land-use data, the use of the complex landscape structure in determining stream health and 

identifying reference streams and evaluating overall stream condition is becoming more feasible (Wang et 

al., 2008; Yates and Bailey, 2010; Merovich et al., 2013; Hughes et al., 2015).    

We found that a large number of wadeable segment level watersheds within each region were in good 

condition (29.92%) based on their reference condition probabilities.  Once larger streams were evaluated 

for their reference condition, the difference in the stressor gradients between regions became more 

apparent.  The negative influence that small levels of surface mining had on the reference condition 

probability made it very rare that a large stream in the Ohio Central Appalachian region could be 

evaluated as a reference site since most have some measure of surface mining in their watershed.  By 
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reducing the reference probability criteria, we are recognizing the need for regionally appropriate 

reference sites and that elevated levels of surface mining may need to be acceptable for generating a least 

disturbed reference condition in this region, especially for larger streams.     

Our approach to identifying reference sites and establishing a stressor gradient has advantages relative to 

other methods.  Most aquatic bioassessment programs summarize results based on site-specific data (i.e., 

point data).  Our analysis attributes each point to a segment-level watershed, linking the cumulative 

landscape to monitoring data.  Analyzing the data in a spatial framework then allows predictions to be 

made and evaluated for unsampled portions of the study regions.  Probability based survey designs are 

useful since they improve accuracy and precision of regional assessments and are able to make 

generalized estimates of stream health throughout a region.  However, predictions or generalizations 

about unsampled areas cannot be made using a randomized sampling design.  In addition, our approach 

allowed us to generate a priori conditions for all wadeable stream reaches across each region.  We were 

able to use the landscape condition at all wadeable segment level watersheds to establish a least-disturbed 

reference condition in each region rather than quantifying the effects of one or two dominant 

disturbances.  Merovich et al. (2013) developed landscape-based BRT models to evaluate stream 

condition in watersheds heavily influenced by coal mining.  Their evaluation of conditions at broad 

spatial scales provided insight on prioritizing sites for restoration based on hierarchical stream conditions.  

Evaluating our reference condition probabilities at multiple spatial scales allows us to make informed 

decisions about reference site selection and impacts broader spatial scales may have on aquatic 

community structure.     

Much of the current discussion of reference site selection has been put in the context of human 

disturbance gradients to insure that least-disturbed sites are evaluated.  However, the natural variability of 

the reference condition is one of the main determining factors in the success of bioassessment programs 

(Hawkins et al., 2010a).  The availability of natural landscape variables, such as drainage area, remove 

the relative ambiguity of the 1
st
 – 3

rd
 order stream criteria of most bioassessment plans by placing distinct 
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thresholds on the size of streams that the program can accurately evaluate.  For example, the Mid-Atlantic 

Highlands Index of Biotic Integrity (McCormick et al., 2001) indicate that their bioassessment tool is 

appropriate for 1
st
 – 3

rd
 order streams, which only ranges on average from 2.2 km

2
 to 67 km

2
 (Leopold et 

al., 1964), making it inappropriate for any larger streams in that region.  Including elevation and stream 

network position to the natural variables that are considered during reference sites selection, more 

accurate bioassessment predictions under the reference condition can be generated rather than using 

solely drainage area.  The exclusion of natural variables from our boosted regression tree model allowed 

us to generate a human disturbance gradient giving us the capacity to select reference sites across a range 

of natural conditions without incorporating any bias that might be associated with the original reference 

pool.  Remotely sensed landscape data, like the ones used in this study, not only give us a clear picture of 

the anthropogenic and natural landscape, but we are also able to use this data in a statistical framework to 

quantify the effect on stream systems.          

There are also several potential shortcomings associated with our approach to reference site selection.  

Even though the land-use dataset used in our analysis was extensive and the best available to us, there are 

some human disturbances that could not be accurately mapped, or their stressor relationship with stream 

health may be unknown.  For example, the extent of acid mine drainage or acid precipitation was not 

evaluated at the landscape scale.  Both stressors have been shown to reduce aquatic community health in 

central Appalachia (Freund and Petty 2007; Petty et al., 2010), but their impacts were not used in our 

models.  However, the importance of these variables in structuring stream communities are well known, 

so we used water quality measures (i.e., pH and specific conductance) to evaluate “unknown” impacts 

that might be occurring on the landscape.  In addition, the influences of legacy land-use practices can still 

have an impact on stream quality today, especially in regions with a diverse history of natural resource 

extraction (Foster et al., 2003).   

The primary focus of this study has been on landscape-scale processes and factors controlling stream 

health.  However, localized human activities can also have a dramatic impact on stream health.  For 
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example, channelization, dredging, or bank erosion can have significant impacts on fish and benthic 

macroinvertrebrate communities, ultimately impacting overall stream health (Wang et al., 2002).  On the 

other hand, localized improvements to stream health were also not considered.  The implementation of 

best management practices (BMPs), which are meant to reduce or minimize human impacts, cannot be 

taken in consideration so all measures of agricultural, surface mining, and urban development are treated 

equally.  Similarly, instream mitigation efforts from habitat modifications and chemical restoration cannot 

be taken into consideration either.  The inability to incorporate localized impacts demonstrates the need to 

evaluate, or field validate, the local condition of reference sites prior to bioassessment development in 

order to help account for some of the smaller scale processes.         
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Tables 

Table 1: Mean (Standard Deviation) for all wadeable segment level watersheds for local and cumulative 

variables evaluated in initial Boosted Regression Tree models. 

Variable Local (SD) Cumulative (SD) 

Structure Density (#/km
2
) 30.74 (63.55) 13.79 (19.76) 

NPDES Permit Density (#/km
2
) 0.8811 (8.119) 0.3422 (0.6064) 

Surface Mine Permit Density (#/km
2
) 0.0345 (0.6401) 0.0502 (0.1104) 

Underground Mine Permit Density 

(#/km
2
) 

0.0447 (0.6829) 0.0502 (0.1304) 

Sewage & Septic Service Density (#/km
2
) 0.3878 (3.456) 0.2122 (0.4213) 

Development (%) 2.251 (6.403) 0.8913 (2.059) 

Surface Mining (%) 0.5909 (3.587) 1.664 (5.392) 

Forest (%) 75.13 (23.32) 84.11 (12.59) 

Grassland (%) 10.55 (10.79) 6.576 (4.832) 

Agriculture (%) 9.278 (15.59) 6.158 (8.130) 
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Table 2: Criteria used to identify reference (Bailey 2009) and stressed sites for generating a Boosted 

Regression Tree model. 

Criteria Reference Stressed 

NPDES Permits None -- 

Non-point source pollution None -- 

Dissolved Oxygen (mg/L) ≥ 5.0 -- 

pH Between 6.0 & 9.0 ≤ 5.0 

Conductivity (µmhos/cm) < 500 -- 

Fecal Coliform bacteria < 800 colonies/100 mL -- 

U.S. EPA-RBP Habitat scores ≥ 11 for epifaunal substrate, 

channel alteration, and 

sediment deposition 

-- 

 ≥ 6 for bank vegetation 

protection and riparian 

vegetation zone width 

-- 

 ≥ 130 for Total RBP habitat 

score 

-- 
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Table 3: Reference site summary statistics for original, additionally selected, and combined (original + 

additional) reference sites compared to all segment level watersheds (All SLW) in each region.  Data are 

presented as minimum – maximum (mean).  

Reference # Sites Drainage Area (km
2
) Elevation (m) Swim Distance (km) 

MonCARV         

Original 17 12.14 – 84.91 (30.94) 555 – 1120 (858.56) 7.19 – 104.53 (43.97)  

Additional 57 8.07 – 357.6 (55.63) 662 – 1432 (839.11) 0 – 208.06 (39.73) 

Combined 74 8.07 – 357.6 (49.96) 555 – 1432 (843.69) 0 – 208.06  (40.70) 

All SLW 2425 7.01 – 399.66 (77.44) 291 – 1457 (784.55) 0 – 217.55 (40.04) 

Ohio CA         

Original 10 7.34 – 60.97 (25.70) 488 – 802 (660.80) 22.26 – 66.98 (42.66) 

Additional 16 9.64 – 250.26 (67.24) 347 – 899 (471.83) 2.7 – 88.75 (30.99) 

Combined 26 7.34 – 250.26 (38.99) 348 – 899 (553.21) 2.7 – 88.75 (37.87) 

All SLW 3486 7.01 – 385.68 (55.07) 180 – 1050 (538.89) 0 – 129.52 (35.89)  

Ohio Mon WAP         

Original 9 9.73 – 143.74 (29.37) 268 – 448 (381.37) 10.01 – 78.36 (45.52) 

Additional 23 7.38 – 295.6 (85.67) 272 – 454 (367.89) 0 – 75.88 (27.52) 

Combined 32 7.38 – 295.6 (69.84) 268 – 454 (371.55) 0 – 78.36 (32.58) 

All SLW 6707 7.0 – 399.45 (54.45) 163 – 754 (348.08) 0 – 188.4 (40.24) 

Upper Kanawha         

Original 18 8.93 – 150.62 (44.92) 448 – 1334 (914.00) 3.56 – 135.93 (48.6)  

Additional 20 9.5 – 383.0 (114.26) 600 – 1268 (885.44) 0 – 132.37 (26.27)  

Combined 38 8.93 – 383.0 (81.41) 451 – 1334 (898.86) 0 – 135.93 (36.85)  

All SLW 3500 7.0 – 395.69 (56.97) 267 – 1476 (803.15)  0 – 158.39 (38.24) 

 

 



93 

 

Table 4: Summary statistics for segment level watersheds (SLW) identified as large (>150 km
2
) and of 

reference condition within each region.  Data are presented as minimum – maximum (mean). 

 

Table 5: Summary statistics for segment level watersheds (SLW) identified as large (>150 km
2
) and of 

intermediate condition within each region.  Data are presented as minimum – maximum (mean). 

Intermediate # SLW Drainage Area (km
2
) Elevation (m) Swim Distance (km) 

MonCARV 57 152.56 – 395.76 (271.96)  512 – 1193 (785.30) 0 – 36.35 (3.73) 

Ohio CA 45 153.67 – 357.74 (260.09)  277 – 661 (460.43) 0 – 35.61 (6.07) 

Ohio Mon WAP 113 151.64 – 396.63 (227.03)  173 – 477 (308.71)  0 – 72.54 (13.81) 

Upper Kanawha 35 150.55 – 395.69 (235.39) 467 – 978 (747.09)  0 – 30.23 (2.72) 

 

  

 

 

  

Reference # SLW Drainage Area (km
2
) Elevation (m) Swim Distance (km) 

MonCARV 264 150.06 – 399.65 (270.81)  443 – 1322  (831.04) 0 – 51.18 (4.62)  

Ohio CA 16 171.39 – 212.99 (191.94)  356 – 440  (400.01)  0 – 35.45 (11.56) 

Ohio Mon WAP 146 152.26 – 354.57 (228.71)  200 – 524  (357.77) 0 – 47.71 (5.71)  

Upper Kanawha 183 150.48 – 390.97 (226.88)  583 – 1176  (893.68)  0 – 59.27 (15.30) 
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Figures  

Figure 1: Fish biomonitoring regions for West Virginia Index of Biotic Integrity and site locations available for analysis.  The 

regions consist of the Upper Kanawha, Ohio and Monongahela Western Allegheny Plateau (Ohio & Mon WAP), Potomac River, 

Ohio Central Appalachians (Ohio CA), and Monongahela Central Appalachians and Ridge-Valley (Mon CA & RV). 
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Figure 2: Relative function curves for the final variables selected to determine reference condition in order of highest relative influence (Rel. Inf.) from left to 

right. 
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Figure 3: Probability of reference for all wadeable segment level watersheds in the study region 

generated from the final BRT model. 
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Figure 4: Gradient of probability of reference and drainage area for all sampled sites in the study area. 
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HUC 12 Watersheds 

HUC 8 Watersheds 

Figure 5: Average probability of reference at the HUC12 and HUC 8 watershed 

scale.  Averages were generated from all wadeable segment level watersheds within 

each HUC 12 or HUC 8 watershed to generate a overall condition. 
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CHAPTER 3: MODELING THE NATURAL VARIATION OF TRAIT-BASED FISH 

COMMUNITY STRUCTURE IN WEST VIRGINIA  
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Abstract 

The trait-based structure of fish assemblages varies with the spatial extent and the heterogeneity of 

landscapes. Understanding the natural variation between fish assemblages will provide new insights on 

how community traits are controlled on the landscape as well as evaluate the response of these 

communities to environmental alterations.  Accounting for complex natural gradients during 

bioassessment development can increase sensitivity of the final multimetric index to fish community 

alterations. We developed spatial Boosted Regression Tree (BRT) models to account for the natural 

variation observed in trait-based fish community assemblage structure.  We used regionally defined 

reference sites to predict fish community metrics as a function of elevation, drainage area, and the 

distance from a stream site to potential riverine source populations (i.e. swim distance).  We then evaluate 

the need to use BRT models by developing a criteria threshold using a randomization technique (Monte 

Carlo analysis) for selected community metrics based on 10,000 model iterations.  The majority of fish 

community metrics evaluated with BRT produced a wide range of deviance explained using at least two 

of the natural landscape variables, most commonly drainage area and elevation.  We evaluated the 

individual model results for metrics selected for use in the region-specific West Virginia Index of Biotic 

Integrity and adjusted metric values (observed:expected values) based on BRT predictions.  Most metrics 

demonstrated thresholds with elevation and drainage area in which decreases in metric values were 

observed between 400 – 600 m and increases were observed from 25 – 100 km
2
, respectively.  Adjusted 

metric values were correlated with known landscape and water quality stressors associated with surface 

mining and residential development.  Even though, there were generally negative responses of all metrics 

in the Mon CARV and Ohio CA to mining related stressors (% surface mining, pH, specific 

conductance), the remaining regions exhibited no correlations with any of the anthropogenic variables 

analyzed.   Evaluating the response and use of predictive modeling on fish community assemblage 

structure using boosted regression tree modeling sets the stage for developing bioassessment programs 

that are more sensitive to anthropogenic stressors when the appropriate community metrics are selected. 
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In addition, the predictive models allow for a wider variety of natural stream conditions to be evaluated 

under fewer assessment criteria.  However, care should be taken in order to select trait-based indices that 

are responsive to major stressors of a region and to establish predictive model thresholds.  Accounting for 

larger environmental processes and considering the influences of natural variation on fish trait assemblage 

structure, the deviations from the expected natural condition can now be linked directly to anthropogenic 

degradation.         
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1. Introduction 

Local community assembly is a product of several biotic and abiotic hierarchical filters operating at 

multiple spatial and temporal scales (Poff, 1997).  There are studies designed to investigate which types 

of factors (local vs. regional) are most important when evaluating community assembly (Resetarits, 2005; 

Hoeinghaus et al., 2007; Blanchet et al., 2014; Pease et al., 2015).  Local factors, such as stream flow and 

morphology, and regional factors, such as ecoregion and climate, can impact the structure of fish 

communities (Wang et al., 2003; Pease et al., 2015). The debate over local versus regional processes has 

demonstrated that the main driving factors of community assembly can depend on the organisms being 

studied, the extent of anthropogenic disturbances, and natural landscape heterogeneity.  For example, in 

undisturbed streams and watersheds, fish assemblages are influenced by reach-scale variables (i.e., 

channel morphology, fish cover, and substrate types) and as disturbance increases, the watershed-scale 

variables become increasingly important (Wang et al., 2003; Oliveira et al., 2012).  However, in urban 

and agricultural dominated systems, land-use practices at the watershed scale are the main factors 

influencing stream fish communities over local-scale habitat features (Wang et al., 2001, 2002).  Knowing 

the relative importance of natural and anthropogenic environmental variables occurring at multiple spatial 

scales is important moving forward in stream conservation and restoration efforts.  However, little 

attention is given to studies evaluating the impacts of these landscape factors on the functional trait 

organization of fish assemblages.         

Trait-based approaches in ecology are commonly used to evaluate patterns of species invasions, evaluate 

community response to habitat alterations, and explore the mechanisms driving community assembly. 

The first mention of a trait-based approach culminated with the guild concept in which species were 

combined if they exploited the same resource type (Root, 1967).  Species are assigned functional groups, 

or guilds, based on different life-history traits such as spawning preference, feeding behavior, 

morphology, and behavioral adaptations to their environment.   Aggregating individual species into 

measurable trait-based groups can help reduce the dimensionality of community level data providing 
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increased explanatory power over taxonomic data when evaluating ecosystem functions (Gagic et al., 

2015).  In addition, species traits can be used to examine complex relationships between the ecological 

functions of a stream and the environmental variables impacting them, both natural and anthropogenic.  

Commonly these classifications have been reserved for plants (Johnson, 1981), birds, and more recently 

fish species with the introduction of biological monitoring and assessment (Austen et al., 1994).  Trait-

based summaries of the fish community are the foundation for the development of multi-metric indices, 

like the Index of Biotic Integrity (IBI; Karr, 1981).     

Fish community based biomonitoring programs aim to combine both the importance of functional 

diversity while attempting to capture changes in ecosystem function and species diversity.  Overall, trait-

based approaches perform better than traditional taxonomic approaches (e.g., number and abundances of 

species) in predicting ecosystem functions (Gagic et al., 2015).  Traditionally, it was thought that trait-

based groups are less geographically constrained when compared to individual species, allowing them to 

be easily compared across large geographic scales (Ibanez et al., 2009).  However, more recent studies 

have demonstrated that trait-based functional diversity can differ along longitudinal stream gradients 

(Pease et al., 2012) as well as across physiogeographic regions (Pease et al., 2015).  Biomonitoring and 

assessments of stream ecosystems using fish as a model organism cannot evaluate intra- and inter-specific 

variation in functional traits across large geographic extents. Instead these programs generate expectations 

of species assemblage as a function of natural variables (e.g. drainage area/volume, distance from source 

populations) in order to account for a portion of that variation.  Understanding the baseline functional 

diversity and trait-based structure of fish communities along natural environmental gradients would 

enable bioassessment programs to effectively measure the community level response to anthropogenic 

disturbances across broad geographical areas. 

 Within West Virginia, there are extensive anthropogenic landscape alterations occurring due to natural 

resource extraction as well as low intensity residential development and agriculture that can have impacts 

on the fish communities.  These large scale anthropogenic impacts have potential to shift community 



104 

 

assemblage structure; however the high amount of natural variation across the landscape makes it difficult 

to evaluate the magnitude of these impacts.  Overall, correcting for natural gradients using predictive 

modeling prior to multimetric development or analysis of community structure decreases the among-site 

variability allowing final measures of trait-based community composition and resulting multimetric 

indices to be sensitive to alterations (Hawkins et al., 2010; Esselman et al., 2013).  The main objective of 

this study was to construct and validate spatial models predicting trait-based metrics of fish community 

composition as a function of natural landscape variables using a reference condition approach for streams 

and rivers in West Virginia.  In order to accomplish this objective we developed region specific models 

for a variety of trait-based community metrics using natural landscape variables and compared deviations 

of selected trait-based metrics from expected natural conditions to anthropogenic landscape and water 

quality stressors.       

2. Methods 

This study focused on the development of spatial Boosted Regression Tree (BRT) models to generate a 

baseline condition and assess impacts from anthropogenic landscape stressors on trait-based measures 

stream fish communities in West Virginia.  Regionally defined reference sites were used to predict fish 

community metrics as a function of elevation, drainage area, and the distance from a stream site to 

potential riverine source populations (i.e., swim distance).  In order to evaluate the effectiveness or the 

need to use BRT models to predict community composition metrics, we generated null models of BRT 

performance. A null hypothesis was generated by producing a Monte Carlo estimate of  p-values by 

randomizing the fish community metric prior to running a boosted regression tree model (Gotelli and 

Ellison, 2004).  Thresholds of % variance explained were generated from significant (p-value <0.05) 

simulated Monte Carlo models. Fish community metrics were predicted if they met the required threshold 

for their biomonitoring region and adjusted (observed:expected).  Finally, the deviation of selected 

adjusted metrics, based on their natural expected condition, was evaluated by relating them with known 

anthropogenic stressors.     
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2.1 Landscape Data 

Natural landscape variables, such as cumulative drainage area (km
2
), elevation (m), and swim distance 

(km), were generated in a GIS framework on a segment level watershed (National Hydrology Dataset 

1:24K) basis using accumulated stream flow tables and the stream accumulation tool for ArcGIS provided 

by NRAC at West Virginia University (Strager et al., 2009).  Digital Elevation Models were generated for 

West Virginia in 2003 by the United States Geological Survey (USGS) and the Statewide Addressing and 

Mapping Board (SAMB) at a 3-meter (1/9
th
 arc-second) resolution.  We used this data to summarize the 

maximum elevation for each segment level watershed used in this study.  Swim distance was defined as 

the in-stream distance from the outflow of any segment level watershed to the inflow of a downstream 

segment level watershed of 200 km
2
 or greater (Hitt and Angermeier, 2011).  Measures of swim distance 

were generated for every segment level watershed in West Virginia using accumulated flow tables and the 

swim distance calculator located in the stream accumulation tool provided by NRAC and West Virginia 

University.  Since some river systems originate outside of West Virginia, we reduced our analysis to 

wadeable streams and rivers (7 – 400 km
2
) that have less than 1% of their cumulative drainage area 

outside of the state boundary.  

2.2 Fish Community Data & WV IBI Metrics  

A set of 937 stream segments were sampled using either backpack or boat electrofishing, or parallel wires 

from 2000 – 2013 for fish biomonitoring from a variety of institutions (e.g. West Virginia Department of 

Environmental protection, West Virginia Department of Natural Resources, and West Virginia 

University).  Sampling locations were attributed to segment level watersheds in ArcGIS. In cases in 

which multiple sampling events occurred in a single segment level watershed, the most recent event was 

selected to characterize that stream segment.  For all sampling events, individual fishes were identified to 

species either in the laboratory or in the field.  Fish community data for each site was summarized 

according to feeding guild, spawning characteristics, habitat preference, tolerance to stressors, and species 

composition according to both their richness and proportions.  Classifications of species into traits were 
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based on traits outlined in the West Virginia Index of Biotic Integrity (Chapter 1).  Additional water 

quality data collected during fish sampling and remotely sensed and accumulated landscape data (Strager 

et al., 2011) were retained for further analysis.  Only a portion of the fish sampling locations had 

additional water quality measures (specific conductance and pH) associated with them.  Approximately 

140 proportion and richness based community metrics were analyzed for their relationship with natural 

variables.  The metrics utilized in West Virginia IBIs were used for additional analyses within their 

respective biomonitoring region.         

2.3 Reference sites 

The spatial positioning of the reference sites leads to great variability in the natural and anthropogenic 

landscapes surrounding these streams making it difficult to set a statewide reference condition.  Based on 

previous research done in this region (Anderson and Petty 2015, Chapter 1), the state has been split into 

five fish biomonitoring regions based on fish community composition and natural landscape variation in 

order to get a more accurate representation of the reference condition at a smaller spatial extent.  The five 

regions include: Ohio Central Appalachians (Ohio CA), Ohio-Monongahela Western Allegheny Plateau 

(Ohio Mon WAP), Monongahela Ridge and Valley (Mon RV), Upper Kanawha (UK) and the Potomac 

(not included in analysis due to low sample sizes) (Figure 1).       

A portion of the sampled sites were evaluated after sampling to be considered a reference site based on 

strict water quality standards used for environmental regulation along with habitat assessment (Table 1).  

However, each site passing the water quality and habitat standards were evaluated in terms of local 

landscape disturbances and known point-source discharges upstream and final inclusion into the reference 

pool was determined by best professional judgment (N=54). Additional reference sites (N=153) were 

identified using the methods outlined in Anderson and Petty (2015, Chapter 2) in order to ensure the full 

range of drainage areas of wadeable streams in each biomonitoring region was represented (Table 2).  

Since a reference condition approach is being used, summary statistics of natural landscape variables for 

reference (N=207) and non-reference (N=730) sites in each biomonitoring region are provided (Table 2).  
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2.4 Statistical Analyses 

Boosted regression tree (BRT) models are additive regression models which combines iteratively fit 

simple regression trees  using a boosting algorithm in order to increase predictive performance (Elith et 

al., 2008).  This technique has proven to be well suited for modeling ecological and landscape datasets 

with a complex covariance structure (Merovich et al., 2013; Fleishman et al., 2014). Prior to BRT 

modeling of community metrics, each metric was evaluated on its range (maximum value – minimum 

value) to ensure proper variation in the data to warrant further analysis.  Any metric with a range of at 

least 5 species (richness metric) or 5% (proportion metric) was further evaluated with a BRT model.  In 

order to prevent over-application of BRT models, we also developed a guideline for model acceptance by 

calculating Monte Carlo estimates of p-values and variance explained (%) for each biomonitoring region.  

Using these thresholds, predictions of selected metrics were generated and the deviation of each metric 

from expected condition was evaluated against known landscape stressors.   

2.4.1 Modeling Expectations 

All fish community composition metrics at reference sites were analyzed in a boosted regression tree 

framework for their relationship with natural landscape features such as cumulative drainage area (km
2
), 

elevation (m), and swim distance (km) within each fish biomonitoring region.   For all models, tree 

complexity and learning rate were held constant at 2 and 0.001, respectively. A tree complexity of two 

was used to allow for one-way interactions between variables used in the model in order to more 

accurately predict in a complex landscape structure. The learning rate, or shrinkage parameter, determines 

the contribution of each tree to the model and was held constant in order to allow for comparisons among 

community metrics within a region.  However, bag fraction varied between regions depending on sample 

size.  The Mon CARV region was assigned the lowest bag fraction (0.50) while the other three regions 

used a higher bag fraction (0.75) due to a relatively lower sample size (~40 reference sites).  Initial BRT 

models were generated using all 3 landscape variables.  Model predictive performance was assessed by 

calculating the mean model deviance and cross-validation predictive deviance from ten folds of the data 
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(Elith et al., 2008). Predictor variables were removed if the removal of the variable did not increase the 

cross-validation error rate.  Finally, relative importance of each variable retained in the simplified model 

was generated using an out-of-bag procedure outlined in Elith et al., (2008).   

2.4.2 Monte Carlo Analysis 

In order to evaluate the effectiveness or the need to use BRT models to predict community composition 

metrics, we generated null models of BRT performance. The model with the highest total deviance 

explained for richness and proportion based metrics in each region was used to generate region specific 

thresholds for model use.  A null hypothesis was generated by producing a Monte Carlo estimate of a p-

value by randomizing the fish community metric prior to running a BRT model (Gotelli and Ellison, 

2004).  Each randomized boosted regression tree model was performed using the same predictive 

variables and parameters as the initial predictive model. A final histogram of the total deviance explained 

(%) from each randomized BRT model was produced and the 95
th
 percentiles of the distributions were 

calculated based on 10,000 iterations of the model.  The 95
th
 percentile of the total deviance explained for 

the simulated models served as conservative thresholds to determine whether an individual model would 

be used to predict community composition metrics within that region for that metric type.  Only 

thresholds from significant (simulated p-value < 0.05) Monte Carlo simulations were evaluated. 

2.4.3 Evaluation of Adjusted Metric Performance 

Metrics utilized in regionally developed Indices of Biotic Integrity for wadeable warm water West 

Virginia streams (WV IBI; Chapter 1) were evaluated against known landscape and water quality 

stressors.  The metrics evaluated in the Monongahela Central Appalachians-Ridge and Valley (Mon CA-

RV) included proportion benthic individuals minus tolerant (% Benthic-Tol), species richness minus 

tolerant (Richness-Tol), richness of clean gravel spawners (CGS), proportion of non-tolerant individuals 

(% Fish-Tol), proportion invertivores (% IN), benthic species richness (Benthic), and Cyprinidae species 

richness (Cyprinid).  The metrics evaluated in the Ohio Central Appalachians included species richness 

minus tolerant (Richness-Tol), proportion invertivores (% IN), Shannon-Weaver Trophic Diversity (SW-
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Trophic), darter-madtom-sculpin species richness (DMS), proportion of tolerant individuals (% Tol), 

rock-gravel spawner richness (RGS), and non-guarding lithophilic spawner richness minus tolerant 

(NGL-Tol).  The Ohio and Monongahela Western Allegheny Plateau IBI consisted of species richness 

minus tolerant (Richness-Tol), darter-madtom-sculpin species richness (DMS), proportion of tolerant 

individuals (% Tol), rock-gravel spawner richness (RGS), and non-guarding lithophilic spawner richness 

minus tolerant (NGL-Tol), intolerant species richness (Int), and proportion of omnivore-herbivores minus 

Central Stonerollers (Campostoma anomalum; %OH-CAAN).  Finall, the Upper Kanawha region IBI 

consisted of proportion invertivores (% IN), benthic species richness (Benthic), Cyprinidae species 

richness (Cyprinid), total species richness (Richness), and clean-gravel plus rock-gravel spawner richness 

(CGS+RGS).Within each regional WV IBI, portions of the metrics selected were adjusted for drainage 

area (log base10 transformed) using the linear relationship within the reference sites.  For this analysis, 

we used the BRT predictions to adjust metric values using the same observed/expected approach outlined 

in the WV IBI.  Only metrics with significant (i.e., % variance explained exceeds Monte Carlo simulation 

threshold) BRT models were adjusted.  Trait-based metrics within each region were correlated using 

Pearson’s correlation against specific conductance, pH, and cumulative measures of anthropogenic land-

use (i.e., structure density, % surface mining) (Bernhardt and Palmer 2011; Merriam et al., 2011).    

3. Results 

3.1 Description of Reference Sites 

Prior to statistical analysis, reference sites were evaluated in each region to ensure reference sites spanned 

the range of the natural variables observed at all the sites (Table 2).  Each biomonitoring region had at 

least 40 reference sites used to model fish community structure given natural variables.  The average 

drainage area represented in each biomonitoring region ranged from a minimum of 55.22 km
2
 in the Ohio 

CA to a maximum of 87.72 km
2
 in the Upper Kanawha with the Mon CA-RV (56.21 km

2
) and Ohio-Mon 

WAP (74.35 km
2
) falling in between (Table 2).  The non-reference sites followed a similar pattern with 

Mon CA-RV sites having the lowest average drainage area (43.69 km
2
) followed by the Ohio CA (55.22 
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km
2
), Upper Kanawha (84.72 km

2
), and Ohio-Mon WAP (91.24 km

2
).  Even though the ranges of 

drainage areas were similar among biomonitoring regions, there were distinct differences in average 

elevations between regions.  The Mon CA-RV and Upper Kanawha biomonitoring regions demonstrated 

a larger range and higher average elevations than the Ohio CA and Ohio-Mon WAP regions (Table 2).  

Swim distance values between reference and non-reference sites within and among biomonitoring regions 

was highly variable with large ranges, however the average swim distances did not exhibit any distinct 

patterns. 

3.2 Boosted Regression Tree Models 

3.2.1 Modeling Expectations 

The relative influence of natural variables on trait-based community metrics within West Virginia varied 

between regions.  For the IBI metrics in the Mon CA-RV region, drainage area was the only variable used 

in all seven models (Table 3).  However, it was also found to be the least important variables in predicting 

two (%Benthic-Tol and %Fish-Tol) of the response variables with swim distance being the most 

important.  Within the Ohio CA region, six of the seven metrics within the WV IBI were evaluated using 

BRT (Table 3).  The Shannon-Weaver Trophic Diversity index was not evaluated since it is already an 

abstraction of the assemblage structure.  In this region, drainage area was found to be the most important 

variable in all but one of the models (RGS).  In that model, maximum elevation was the most important 

variable, followed by drainage area.  The two proportional metrics evaluated used all three landscape 

variables.  Models used to evaluate the influence of natural landscape variables on selected metrics in the 

Ohio-Mon WAP found drainage area to be important to each of the response variables (Table 3).  

However, one model (%OH-CAAN) had maximum elevation as the most important variable followed by 

drainage area.  The Upper Kanawha region had similar patterns with the selected metrics evaluated (Table 

3) in which drainage area was the most important variable in all models.  In this region, maximum 

elevation was also found to be influential in all the models generated for the selected metrics.  Model 

results for all of the other fish community metrics evaluated are presented in Appendix A.  The Ohio CA 
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IBI region had two of the IBI metrics evaluated perform the best out of all the metrics in that region and 

were used for the Monte Carlo Analysis.  Fitted function curves for selected metrics were evaluated for 

patterns in metric response to drainage area, elevation, and swim distance.  Drainage area and maximum 

elevation were the two most common variables used in predicting trait-based community metrics 

regardless of the biomonitoring region. Generally, most metrics exhibited a similar pattern as rock-gravel 

spawner richness in the Ohio CA biomonitoring region (Figure 2) in which metrics increased sharply in 

value from ~25 – 75 km
2
 in drainage area and decreased sharply at ~ 400 – 600 m in elevation. 

3.2.2 Monte Carlo Analysis 

Initial models of trait-based metrics were evaluated regionally and by metric type (i.e. richness vs. 

proportion) in order to select two metrics with the highest total deviance explained.  These metrics were 

then used in a Monte Carlo randomization analysis (i.e., community metric randomized and BRT model 

generated) using 10,000 iterations.  After each Monte Carlo iteration, the total deviance explained was 

retained and the 95
th
 percentile of the simulated distribution was used as a conservative threshold.  We 

determined if BRT models should be used to predict trait-based community composition metrics based on 

these thresholds. Overall, models exceeding thresholds were determined to exhibit a relationship with 

natural variables that was better than random and were further used to predict community structure given 

natural variables for all wadeable streams in West Virginia. 

For the Mon CA-RV, %Lithophilic spawning individuals minus tolernat (%LSR-Tol) and invertivore-

piscivore species richness minus Creek Chub (Semotilus atromaculatus; IP-SEAT) had initial total 

deviances explained of 65.85% and 65.71%, respectively (Table 4).  The proportional metric utilized 

drainage area and swim distance while the richness metric used drainage area and elevation.  The average 

Monte Carlo simulated total deviance explained for the Mon CA-RV was less than 5 % for both metrics 

resulting in p-values < 0.0001.  The 95
th
 percentiles of the metrics based on the full distribution of total 

deviation explained over the 10,000 simulations were approximately 21% for both metrics (Table 4). 
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For the Ohio CA biomonitoring region, % Invertivore (% IN) and species richness minus tolerant 

(Richness-Tol) had initial total deviances explained of 81.25% and 78.88%, respectively (Table 4).  The 

proportional metric utilized all 3 landscape variables while the richness metric used drainage area and 

elevation.  The average Monte Carlo simulated total deviance explained for the Ohio CA was 6.3% and 

4.8% for the proportion and richness metrics, respectively, resulting in p-values ≤0.00005 for both 

metrics.  The 95
th
 percentiles of the metrics based on the full distribution of total deviation explained over 

the 10,000 simulations were approximately 32.5% and 25.9% (Table 4).   

Metrics measuring the proportion of native Cyprinidae individuals minus Blacknose Dace (Rhinichthys 

atratulus) and Creek Chub (%Cyprinid-BNDSEAT) and invertivore-piscivore richness minus tolerant (IP-

Tol) had initial total deviances explained of 86.36% and 80.77%, respectively, in the Ohio-Mon WAP 

region (Table 4).  All three natural landscape variables were found to be important in predicting both 

metrics.  The average Monte Carlo simulated total deviance explained for the Ohio-Mon WAP was 6.2% 

and 6.1% for the proportion and richness metrics, respectively, resulting in p-values ≤0.00005 for both 

metrics.  The 95
th
 percentiles of the metrics based on the full distribution of total deviation explained over 

the 10,000 simulations were approximately 32.1% and 30.8% (Table 4).   

For the Upper Kanawha biomonitoring region, % non-guarding lithophils minus tolerant (%NGL-Tol) 

and invertivores-piscivore richness (IP) had initial total deviances explained of 72.97% and 76.00%, 

respectively (Table 4).  Both BRT models utilized drainage area. In addition to drainage area, the richness 

model used elevation while the proportion model used swim distance.  The average Monte Carlo 

simulated total deviance explained for the Upper Kanawha was 5.8% and 5.2% for the proportion and 

richness metrics, respectively, resulting in p-values 0.0000 for both metrics.  The 95
th
 percentiles of the 

metrics based on the full distribution of total deviation explained over the 10,000 simulations were 

approximately 30.3% and 27.6% (Table 4).  
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3.3 Evaluation of Adjusted WV IBI Metrics 

The WV IBI metrics evaluated within each region were adjusted if they exceeded the 95
th
 percentiles for 

their metric type (Richness vs. Proportion).  One WV IBI metric in the Mon CA-RV, % non-tolerant 

individuals (%Fish-Tol), and the Ohio-Mon WAP, rock-gravel spawner richness (RGS), regions did not 

meet the required thresholds for their region to be adjusted using BRT models.  These metrics were still 

evaluated for their correlation with known stressors, but they were not adjusted.  The remaining WV IBI 

metrics were adjusted and correlated with anthropogenic landscape stressors and water quality measures 

(Table 5).   

The correlations of WV IBI metrics to known landscape and water quality stressors (Table 5) in West 

Virginia showed strong regional differences.  Overall, the Mon CA-RV region metrics demonstrated a 

strong negative correlation with specific conductance and strong positive correlations with pH.  However, 

few patterns were evident with structure density and cumulative surface mining (%).  Darter-madtom-

sculpin richness and rock-gravel spawner richness metrics in the Ohio CA were the only metrics that 

showed a negative response to specific conductance.  Overall, trait-based metrics in this region showed a 

stronger negative correlation with surface mining (%) but did not show any correlation with pH.  We also 

observed a positive correlation of all metrics in the Ohio CA with structure density.  The Ohio-Mon WAP 

and Upper Kanawha regions showed little response of their WV IBI metrics to any of the measures of 

anthropogenic stress.    

4.0 Discussion 

A wide range of natural landscape conditions lead to high variation in natural fish community structure 

within and between biomonitoring regions.  A full understanding of the patterns and processes of fish 

community structure in a natural or reference condition is an important step is successful ecosystem 

management.  Bioassessment programs depend on the reference condition to set baseline expectations so 

the impacts of anthropogenic alterations can be accurately evaluated.  However, unbiased assessments of 
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stream quality are difficult to develop due to confounding landscape variables.  To help distinguish 

between the effects of natural and anthropogenic variables, highly stratified bioassessment programs are 

developed.  Multimetric indices have been developed for different states (Roth et al., 1998), regions 

(McCormick et al., 2001; Daniels et al., 2002), stream sizes (Lyons et al., 2001; Lyons 2006), stream 

temperature classes (Lyons et al., 1996; Lyons et al., 2012), and individual rivers (Emery et al., 2003) or 

watersheds (Kimmel and Argent, 2006).  Predictive models could be used to set baseline reference 

conditions using natural landscape variables that are known to drive the characterization of the strata used 

to distinguish groups for IBI development (Pont et al., 2009). 

The separation of West Virginia into fish biomonitoring regions was established based on differences in 

fish community structure due to large scale environmental processes such as ecoregion and major 

drainage basin (Chapter 1).  For example, the differences in drainage network patterns and underlying 

geology associated with ecoregions can ultimately lead to differences in trait-based structures of fish 

communities by favoring gravel associated spawners in the Ridge and Valley and Central Appalachian 

systems (Detenbeck and Cincotta, 2008).  Differences in fish assemblage structure due to large scale 

ecoregional processes have been observed in other studies (Pease et al., 2011; Pond et al., 2012; Pease et 

al., 2015).    

Early multimetric indices were developed at relatively small spatial scales and relied on best professional 

judgment to determine reference condition expectations.  As the spatial extent of bioassessment programs 

have expanded, the need to control for natural abiotic variation has increased in order to detect differences 

between disturbed and undisturbed conditions (Esselman et al., 2013).  Evaluating the expected trait-

based community structure within each biomonitoring region removed some of the environmental 

variation associated with large scale processes. Our results from this study demonstrate general threshold 

responses of selected metric values to both elevation and drainage area.  Between 400 – 600 m in 

elevation, we observed decreases in metric values within the Mon CA-RV, Ohio CA, and Ohio-Mon 

WAP biomonitoring regions.  Even though elevation was an important predictor variable for metrics in 
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the Upper Kanawha region, highly variable relationships were observed.  Drainage area on the other hand, 

exhibited similar relationships regardless of the metric or the biomonitoring region.  Most metrics 

evaluated demonstrated a strong increase in metric value between drainage areas of 25 – 100 km
2
.  These 

results correspond with other studies that have indicated that large, lower elevation streams typically 

harbor higher numbers of species, and in turn, a higher trait-diversity (Pease et al., 2012).   Migration of 

fish species can occur from mainstem habitats into smaller adjacent streams increasing the overall 

species, and trait, diversity (Hitt and Angermeier, 2011).  Even though no differences in multimetric 

index scores were observed between mainstem and headwater tributatires, metric values did differ 

between the two especially for intolerant, benthic, and cyprinid species richness (Hitt and Angermeier, 

2011).  For our study, swim distance was important in predicting benthic associated species, gravel 

spawning individuals, invertivores, and tolerant species across all biomonitoring regions.     

Our study adds to the growing literature using BRT modeling with ecological datasets.  BRT modeling, 

and other machine learning techniques, has proven beneficial in evaluating ecological data due to its 

ability to evaluate non-linear responses to predictors and incorporate multiple interactions and data types 

(De’ath, 2007).  Cao et al., (2007), Esselman et al., (2013), and Daniel et al., (2014) used classification 

and regression, or boosted regression, trees to account for the natural environmental variation of trait-

based community metrics.  These studies found that adjusted metrics estimated the natural environmental 

gradient with higher precision compared to studies using traditional linear regression.  Furthermore, these 

studies were then able to also evaluate the influence of anthropogenic processes on the remaining 

variance.  Since natural differences in elevation, temperature, network position, and stream size are 

important factors in driving fish assemblages, they should all be taken into consideration when evaluating 

fish community response to anthropogenic stress.  During IBI development, rather than using solely 

drainage area adjustments, more programs are using a predictive modeling approach similar to the 

methods used in this study which are based on several natural gradients.  In fact, predictive based IBIs 
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have been developed for the western (Pont et al., 2009) and conterminous (Esselmand et al., 2013) United 

States, France (Oberdorff et al., 2002) and parts of Europe (Pont et al., 2007). 

With the increased use of BRT modeling, we took additional precautions in our statistical analysis and 

evaluations of model results.  The “significance” of each BRT model was evaluated by developing 

thresholds of the deviance explained using Monte Carlo simulations for each metric type within each 

region.  Based on the results of the Monte Carlo analysis, care must be taken when making inferences 

using BRT models with less than 30 – 35% deviance explained since it may not be better than random.  In 

addition, thresholds for model use may be region, or data, specific so thresholds should be developed 

based on the distribution and relationships in the data being analyzed.  To our knowledge, this is one of 

the first studies to evaluate the statistical significance, or effectiveness, of boosted regression tree models 

in predicting ecological data by comparing it to a randomized data set.     

Metrics adjusted based on expectations given their natural conditions showed region specific responses to 

anthropogenic stressors. The metrics evaluated in the Mon CA-RV and Ohio CA demonstrated overall 

negative responses to specific conductance.  The causes of elevated specific conductance in these two 

regions can be linked to current (Hartman et al., 2005; Bernhardt and Palmer, 2011) and legacy coal 

mining (i.e., abandoned mine lands; Herlihy et al., 1990).  Decreases in fish community metrics in acid 

mine drainage (AMD) impacted regions can be linked to decreased survival of juvenile and larval fish 

populations (Hafs et al., 2010).  Even though the impacts of elevated mountain top/valley fill mining on 

population dynamics is unknown, temporal changes in both taxonomic and functional diversity of fish 

communities have been observed (Hitt and Chambers, 2014).  Specifically, streams exposed to surface 

mining effluents had lower diversity than reference streams in addition to lower abundances and overall 

biomass, despite similarities in physical habitat conditions.     

Unlike the other regions, the adjusted metrics evaluated in the Ohio CA exhibited an increase with 

increases in structure density.  The narrow floodplains and steep topology of the region restricts the 
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expansion of development resulting in low overall percentages of land-use while densities of residential 

and commercial structures are high.  The increased nutrients associated with residential development 

maybe augmenting aquatic systems, ultimately restructuring the food quality and quantity available to 

stream fishes (Wang et al., 2007).  In a region dominated by current and legacy surface mining activities 

it is possible that the shift to a primary production dominated system with influxes of excess nutrients can 

lead to an inflation of fish production (Taylor et al., 2014) and potentially provide refuge from other 

surface mining related stressors.  

The use of trait-based indices of community structure is a promising approach to help establish 

relationships between landscape stressors and fish community response.  Predictive modeling of fish 

community assemblage structure, using boosted regression tree modeling, can be used to establish a more 

accurate reference condition for bioassessment development.  In addition, the predictive models allow for 

a wider variety of natural stream conditions to be evaluated under fewer assessment criteria.  However, 

care should be taken in order to select trait-based indices that are responsive to major stressors of a region 

and to establish predictive model thresholds.  Accounting for larger environmental processes and 

considering the influences of natural variation on fish trait assemblage structure, the deviations from the 

expected natural condition can now be linked directly to anthropogenic degradation.    
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Tables 

Table 1: Water quality and habitat based selection criteria were used to determine the reference pool. 

Primary criteria were used in the initial reference site selection conducted by the West Virginia DEP.  

Secondary criteria were used in order to selection additional reference sites from the pool of previously 

sampled sites following the methods of Anderson and Petty (2015, Chapter 2).  

Reference Criteria Primary Secondary 

NPDES Point Source None -- 

Dissolved Oxygen (mg/L) ≥5.0 -- 

pH (Std. Units) 6.0 – 9.0 6.0 – 9.0 

Specific Conductance (µmhos/cm) < 500 < 500 

Fecal Coliform Bacteria (colonies/100mL) <800 -- 

State WQ Violations none -- 

U. S. EPA-RBP VBHA metric scores:   

Epifaunal substrate, channel alteration, 

sediment deposition 

≥11 -- 

Bank vegetative protection, riparian 

vegetative zone width 

≥6 -- 

Total RBP habitat score ≥130 -- 

Probability of Reference -- ≥0.90 
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Table 2:  Summary statistics and samples sizes (# Sites) for all reference and non-reference sites within 

each biomonitoring region.   

Reference # Sites Drainage Area (km
2
) Elevation (m) Swim Distance (km) 

Mon CARV     

Reference 83 8.07 – 357.6 (56.21) 554 – 1428 (831.09) 0 – 208.06  (42.25) 

Non-Reference 155 7.47 – 309.4 (43.69) 397 – 1419 (701.28) 0 – 120.08 (29.57) 

Ohio CA     

Reference  40 7.34 – 307.98 (55.22) 301 – 897 (525.68) 0 – 88.75 (32.47) 

Non-Reference 206 7.29 – 363.50 (64.89) 216 – 880 (521.62) 0 – 112.59 (31.19) 

Ohio Mon WAP     

Reference 40 7.38 – 301.6 (74.35) 268 – 602 (385.74) 0 – 78.36 (31.11) 

Non-Reference 217 7.43 – 384.85 (91.24) 201 – 603 (361.08) 0 – 137.51 (31.05) 

Upper Kanawha     

Reference 44 8.93 – 383.0 (87.72) 447 – 1330 (911.32) 0 – 135.93 (37.35) 

Non-Reference 152 7.01 – 392.9 (84.72) 267 – 1314 (785.79) 0 – 134.68 (37.62) 
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Table 3:  Boosted Regression Tree model results for selected metrics within each biomonitoring region.   

Metrics 

Drainage Area 

(km2) 

Elevation 

(m) 

Swim Distance 

(km) Dev. Exp. 

CV 

Dev. 

Mon CA-RV      

% Benthic-Tol 30.42 34.44 35.14 0.225 0.000 

% Fish-Tol 26.38 -- 73.62 0.157 0.059 

% IN 53.78 22.30 23.92 0.296 0.127 

Benthic 80.48 19.52 -- 0.442 0.305 

Cyprinid 82.00 18.00 -- 0.346 0.191 

Richness-Tol 82.56 17.44 -- 0.637 0.515 

CGS 71.45 -- 28.55 0.280 0.129 

Ohio CA      

% IN 64.13 25.55 10.32 0.813 0.594 

% Tol 65.77 23.16 11.06 0.787 0.532 

DMS 73.71 26.29 -- 0.664 0.449 

Richness-Tol 72.27 27.73 -- 0.789 0.654 

NGL 73.07 26.93 -- 0.677 0.413 

RGS 46.47 53.53 -- 0.555 0.239 

Ohio-Mon WAP      

% OH-CAAN 30.56 69.44 -- 0.462 0.192 

% Tol 60.56 39.44 -- 0.483 0.241 

Cyprinid-BNDSEAT 83.92 16.08 -- 0.678 0.506 

DMS 94.15 -- 5.85 0.736 0.589 

Richness-Tol 88.04 11.96 -- 0.713 0.532 

Int 95.73 2.37 1.90 0.454 0.270 
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NGL-Tol 89.90 3.58 6.52 0.505 0.301 

RGS 88.19 6.54 5.27 0.305 0.146 

Upper Kanawha      

% IN 71.21 13.57 15.22 0.563 0.282 

% Tol 53.76 15.84 53.76 0.444 0.048 

Benthic 89.22 5.00 5.78 0.476 0.355 

CGS+RGS 84.93 15.07 -- 0.631 0.451 

Cyprinid 69.35 30.65 -- 0.661 0.354 

Richness 76.46 23.54 -- 0.753 0.381 

Int 71.54 28.46 -- 0.518 0.245 
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Table 4: Boosted Regression Tree model results (Predictive Models) and Monte Carlo (MC) Simulation 

results for the top trait-based metrics within each biomonitoring region.  The 95
th
 percentile of the MC 

simulations were used a thresholds to determine if predictive models were used for each metric type.   

 

Predictive Models Monte Carlo Simulation 

Metrics 

Total Deviance 

Explained 

C.V. Deviance 

Explained 

Average Total 

Dev. Explained 

Average C.V. 

Dev. Explained p-value 

95th 

Percentile 

Mon CARV 

      % LSR-Tol 0.6585 0.3659 0.0430 0.0009 0.0001 0.2135 

IP-SEAT 0.6571 0.5201 0.04186 0.0010 0.0000 0.2095 

Ohio CA 

      % IN 0.8125 0.5938 0.0629 0.0004 0.0000 0.3246 

Richness-Tol 0.7888 0.6535 0.04828 -0.0004 0.0000 0.2587 

Ohio Mon WAP 

      % Cyprinid-BNDSEAT 0.8636 0.6818 0.0623 0.0008 0.000 0.3218 

IP-Tol 0.8077 0.556 0.0606 0.0014 0.0000 0.3087 

UK 

      % NGL-Tol 0.7297 0.5676 0.0576 -0.0001 0.0001 0.3032 

IP 0.76 0.5209 0.0522 0.0009 0.0000 0.2769 
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Table 5:  Selected metrics within each biomonitoring regions were correlated against specific 

conductance (SPC), pH, structure density (Str. Density) and % surface mining. Metrics were adjusted 

(observed/expected) using their expected condition given natural variation based on BRT models. 

WV IBI Metrics SPC pH Str. Density % Surface Mining 

Mon CA-RV     

%Benthic-Tol -0.3372 0.0038 -0.1889 -0.2998 

%Fish-Tol* -0.1885 -0.1611 -0.2581 -0.1969 

% IN -0.0248 -0.0019 -0.0844 -0.0823 

Benthic -0.4105 0.4176 -0.0201 -0.2526 

Cyprinid -0.3409 0.4245 0.0535 -0.2183 

Richness-Tol -0.4244 0.4186 -0.0734 -0.2823 

CGS -0.4599 0.3925 -0.1759 -0.2896 

Ohio CA     

% IN -0.0344 0.1135 0.2385 -0.1293 

% Tol -0.1034 -0.2026 -0.1618 0.0751 

DMS -0.4101 0.0824 0.3841 -0.4665 

Richness-Tol -0.2914 0.1395 0.4861 -0.4221 

NGL -0.1998 0.2118 0.5174 -0.3369 

RGS -0.3037 0.1822 0.4361 -0.3862 

SW-Trophic 0.0478 0.1111 0.3389 -0.2742 

Ohio-Mon WAP     

% OH-CAAN 0.0085 0.1291 0.0636 -0.0014 

% Tol 0.0506 0.1695 0.0407 -0.0778 

Cyprinid-BNDSEAT -0.1432 -0.0389 -0.0947 -0.1571 

DMS -0.2628 -0.1036 -0.2826 -0.0868 

Richness-Tol -0.2715 -0.1390 -0.1916 -0.1696 
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Int -0.2368 -0.0572 -0.2490 -0.1090 

NGL-Tol -0.2027 -0.0823 -0.1949 -0.1250 

RGS* -0.1607 -0.0386 -0.2291 -0.1307 

Upper Kanawha     

% IN -0.0538 0.0427 -0.1605 0.0330 

% Tol 0.1412 0.0257 0.2410 -0.0070 

Benthic -0.1560 0.1113 -0.1576 0.0138 

CGS+RGS -0.1769 0.1158 -0.0968 0.0729 

Cyprinid -0.0464 0.1301 0.0370 -0.0213 

Richness -0.0185 0.1366 -0.0139 -0.0129 

Int -0.1785 0.1928 0.0001 -0.2415 

*Trait-based metric was not adjusted using BRT model predictions.  
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  Figures 

Figure 1: Fish biomonitoring regions of West Virginia with sampling locations (sites) indicated. 
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Figure 2:  Fitted function curves for elevation (m) and drainage area (km2) from fitted boosted regression 

tree model for predicting rock-gravel spawner richness in the Ohio CA biomonitoring region.  
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Appendix A 

Table 1: Full Boosted Regression Tree model results for each metrics evaluated in the Mon CA-RV 

region. 

Metrics 

Drainage 

Area (km2) 

Elevation 

(m) 

Swim Distance 

(km) 

Dev. 

Exp. 

CV 

Dev. se 

P_Benthic 48.02 -- 51.98 0.200 0.014 0.014 

P_Benthic_CACO 49.02 -- 50.97 0.290 0.044 0.010 

P_Benthic2.DEP 30.42 34.44 35.14 0.225 0.000 0.006 

P_BND_CACO_SEAT 38.71 -- 61.29 0.360 0.200 0.005 

P_Catfish -- -- -- -- -- -- 

P_Catostomidae -- -- -- -- -- -- 

P_CavitySpawn 31.79 36.03 32.17 0.209 0.023 0.005 

P_CavitySpawn2.DEP 30.84 35.27 33.89 0.205 0.023 0.005 

P_CGS_RGS -- 47.09 52.91 0.213 0.021 0.007 

P_CGS_RGS2.DEP 58.05 23.13 18.82 0.037 0.000 0.013 

P_Cold 51.63 23.37 24.99 0.372 0.167 0.016 

P_Cold_SATR_ONMY 48.44 24.63 26.93 0.423 0.225 0.012 

P_Cold2.DEP 51.28 23.11 25.62 0.244 0.073 0.017 

P_Cottid 34.29 32.88 32.82 0.250 0.023 0.005 

P_Cyprinid 39.32 29.22 31.46 0.214 0.036 0.007 

P_Cyprinid_BNDSEAT 67.89 16.67 15.44 0.537 0.352 0.004 

P_Cyprinid_NBNDSEAT 70.36 15.89 13.75 0.509 0.359 0.004 

P_Cyprinid2.DEP 71.36 16.55 12.09 0.406 0.250 0.003 

P_CyprinidN 58.57 19.92 21.51 0.231 0.062 0.007 

P_CyprinidN2.DEP 77.03 22.97 -- 0.406 0.219 0.003 

P_DMS -- -- -- -- -- -- 

P_DMS2.DEP 30.02 38.37 31.61 0.150 0.000 0.005 

P_Fish2.DEP 26.38 -- 73.62 0.157 0.059 0.006 

P_Game -- -- -- -- -- -- 

P_Game2.DEP -- -- -- -- -- -- 

P_GameC -- -- -- -- -- -- 

P_GSS -- -- -- -- -- -- 

P_GSS2.DEP -- -- -- -- -- -- 

P_IN 53.78 22.30 23.92 0.296 0.127 0.009 

P_Int.DEP 24.38 39.36 36.27 0.167 0.000 0.011 

P_Int_Benthic.DEP -- -- -- -- -- -- 

P_Int_Cyprinid.DEP 63.33 17.85 18.82 0.400 0.100 0.004 

P_Int_LSR.DEP 69.77 30.23 -- 0.400 0.200 0.003 

P_Int_NGL.DEP -- -- -- -- -- -- 

P_Int_RGS.DEP 72.15 

 

27.85 0.500 0.250 0.002 

P_IP 19.22 15.64 65.14 0.120 0.120 0.007 
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Metrics 

Drainage 

Area (km2) 

Elevation 

(m) 

Swim Distance 

(km) 

Dev. 

Exp. 

CV 

Dev. se 

P_IP_BenthicNG -- -- -- -- -- -- 

P_IP_NonGameNB 81.71 9.46 8.82 0.317 0.171 0.113 

P_IP_SEAT 13.60 14.24 72.16 0.093 0.093 0.006 

P_IP2.DEP 15.35 16.52 68.13 0.118 0.020 0.004 

P_LSR 63.98 18.27 17.75 0.342 0.190 0.006 

P_LSR2.DEP 69.16 -- 30.84 0.659 0.366 0.006 

P_McC_CGS 38.33 30.01 31.66 0.212 0.039 0.006 

P_McC_CGS2.DEP -- -- -- -- -- -- 

P_MO 35.85 -- 64.15 0.231 0.058 0.007 

P_Mod.DEP -- 44.58 55.42 0.291 0.091 0.008 

P_Native 31.11 21.05 47.85 0.420 0.140 0.005 

P_Native2.DEP 30.12 -- 69.88 0.120 0.000 0.006 

P_NGL 66.96 -- 33.04 0.333 0.333 0.001 

P_NGL2.DEP 82.16 17.84 -- 0.333 0.333 0.001 

P_OH 16.88 15.54 67.59 0.080 0.080 0.005 

P_OH_CAAN 26.81 13.46 59.73 0.205 0.045 0.005 

P_OH_CAAN_CACO 32.13 13.81 54.07 0.209 0.047 0.007 

P_OH_NG 16.78 14.29 68.94 0.080 0.000 0.004 

P_OH2.DEP -- -- -- -- -- -- 

P_Percidae -- -- -- -- -- -- 

P_RGS 74.09 12.37 13.54 0.578 0.391 0.005 

P_RGS2.DEP 69.83 

 

30.17 0.651 0.395 0.005 

P_Sunfish -- -- -- -- -- -- 

P_Tol.DEP -- 27.84 72.16 0.177 0.059 0.003 

P_Tol_Benthic.DEP 38.89 -- 61.11 0.231 0.077 0.005 

P_Tol_Cyprinid.DEP 32.64 -- 67.36 0.160 0.040 0.004 

R_Benthic 80.48 19.52 -- 0.442 0.305 0.212 

R_Benthic_CACO 82.77 17.23 -- 0.450 0.289 0.209 

R_Benthic2.DEP 82.47 10.56 6.97 0.555 0.426 0.113 

R_CavitySpawn 63.35 19.03 17.62 0.231 0.462 0.123 

R_CGS_RGS 83.47 16.53 -- 0.457 0.347 0.172 

R_CGS_RGS2.DEP 84.69 8.45 6.86 0.487 0.361 0.187 

R_Cold 31.79 27.27 40.94 0.309 0.060 0.095 

R_Cold2.DEP 51.03 -- 48.97 0.223 0.041 0.087 

R_Cyprinid 82.00 18.00 -- 0.346 0.191 0.079 

R_Cyprinid_BNDSEAT 84.84 8.08 7.09 0.419 0.296 0.274 

R_Cyprinid_NBNDSEAT 88.97 11.03 -- 0.418 0.300 0.175 

R_Cyprinid2.DEP 84.66 -- 15.34 0.364 0.251 0.105 

R_CyprinidN 82.47 17.53 -- 0.387 0.261 0.216 

R_CyprinidN2.DEP 83.98 8.94 7.08 0.320 0.202 0.129 

R_DMS 80.97 10.32 8.71 0.498 0.317 0.176 
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Metrics 

Drainage 

Area (km2) 

Elevation 

(m) 

Swim Distance 

(km) 

Dev. 

Exp. 

CV 

Dev. se 

R_DMS2.DEP 79.87 10.73 9.40 0.508 0.368 0.119 

R_FISH 76.11 23.89 -- 0.580 0.437 0.231 

R_Fish2.DEP 82.56 17.44 -- 0.637 0.515 0.176 

R_Game 52.60 47.40 -- 0.505 0.341 0.109 

R_Game2.DEP 52.73 47.27 -- 0.384 0.202 0.112 

R_GameC 53.05 46.95 -- 0.321 0.118 0.108 

R_GSS 58.30 41.70 -- 0.254 0.096 0.108 

R_GSS2.DEP -- -- -- -- -- -- 

R_IN 85.86 14.14 -- 0.536 0.414 0.351 

R_Int.DEP 76.13 12.84 11.02 0.361 0.208 0.072 

R_Int_Benthic.DEP 81.91 10.97 7.11 0.464 0.267 0.130 

R_Int_LSR.DEP 88.94 -- 11.06 0.279 0.175 0.053 

R_Int_RGS.DEP 86.56 13.44 -- 0.469 0.355 0.062 

R_IP 77.18 22.82 -- 0.630 0.443 0.202 

R_IP_BenthicNG 86.83 7.87 5.30 0.468 0.350 0.158 

R_IP_NonGameNB 81.47 18.53 -- 0.309 0.193 0.178 

R_IP_SEAT 79.26 20.74 -- 0.658 0.534 0.095 

R_IP2.DEP 79.84 20.16 -- 0.648 0.514 0.120 

R_LSR 79.29 20.71 -- 0.363 0.227 0.179 

R_LSR2.DEP 85.80 14.20 -- 0.415 0.309 0.130 

R_McC_CGS 71.45 -- 28.55 0.280 0.130 0.077 

R_McC_CGS2.DEP 74.01 -- 25.99 0.342 0.210 0.088 

R_MO 52.54 22.99 24.47 0.175 0.036 0.089 

R_Mod.DEP 79.83 20.17 -- 0.623 0.505 0.083 

R_Native 79.07 20.93 -- 0.545 0.397 0.252 

R_Native2.DEP 82.02 17.98 -- 0.585 0.465 0.180 

R_NGL 74.71 25.29 -- 0.396 0.279 0.165 

R_NGL2.DEP 75.58 24.42 -- 0.444 0.288 0.127 

R_OH 54.98 26.64 18.39 0.273 0.107 0.112 

R_OH_CAAN 40.79 30.54 28.66 0.223 0.026 0.096 

R_OH_CAAN_CACO 47.36 33.60 19.04 0.173 0.042 0.065 

R_OH_NG 57.31 25.75 16.94 0.251 0.072 0.130 

R_Percidae 87.72 12.28 -- 0.491 0.376 0.187 

R_RGS 83.93 16.07 -- 0.474 0.355 0.191 

R_RGS2.DEP 86.01 13.99 -- 0.491 0.385 0.170 

R_Tol.DEP 63.59 36.41 -- 0.331 0.183 0.099 

R_Tol_Cyprinid.DEP 68.72 31.28 -- 0.251 0.112 0.148 
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Table 2: Full Boosted Regression Tree model results for each metrics evaluated in the Ohio CA region. 

Metrics 

Drainage 

Area (km2) 

Elevation 

(m) 

Swim 

Distance (km) 

Dev. 

Exp. 

CV 

Dev. se 

P_Benthic 31.94 47.03 21.03 0.500 0.121 0.009 

P_Benthic_CACO 30.64 48.46 20.89 0.397 0.103 0.011 

P_Benthic2.DEP -- -- -- -- -- -- 

P_BND_CACO_SEAT 58.4 31.56 10.04 0.784 0.602 0.008 

P_Catfish -- -- -- -- -- -- 

P_Catostomidae -- -- -- -- -- -- 

P_CavitySpawn -- -- -- -- -- -- 

P_CavitySpawn2.DEP 49.35 50.65 -- 0.188 0.000 0.007 

P_CGS_RGS 41.61 13.78 44.61 0.180 0.020 0.013 

P_CGS_RGS2.DEP 57.38 42.62 -- 0.625 0.300 0.006 

P_Cold 16.09 60.58 23.32 0.549 0.294 0.014 

P_Cold_SATR_ONMY 14.89 66.79 18.32 0.500 0.208 0.015 

P_Cold2.DEP -- -- -- -- -- -- 

P_Cottid -- -- -- -- -- -- 

P_Cyprinid -- -- -- -- -- -- 

P_Cyprinid_BNDSEAT 63.36 36.64 -- 0.812 0.635 0.006 

P_Cyprinid_NBNDSEAT 63.06 36.94 -- 0.800 0.647 0.004 

P_Cyprinid2.DEP 74.88 25.12 -- 0.737 0.526 0.004 

P_CyprinidN -- -- -- -- -- -- 

P_CyprinidN2.DEP 73.58 26.42 -- 0.737 0.526 0.005 

P_DMS -- -- -- -- -- -- 

P_DMS2.DEP -- -- -- -- -- -- 

P_Fish2.DEP 66.73 22.62 10.65 0.787 0.489 0.005 

P_Game -- -- -- -- -- -- 

P_Game2.DEP -- -- -- -- -- -- 

P_GameC -- -- -- -- -- -- 

P_GSS 88.46 -- 11.54 0.429 0.262 0.008 

P_GSS2.DEP 15.92 84.08 -- 0.500 0.000 0.000 

P_IN 64.13 25.55 10.32 0.813 0.594 0.005 

P_Int.DEP 93.51 6.49 -- 0.467 0.333 0.003 

P_Int_Benthic.DEP -- -- -- -- -- -- 

P_Int_Cyprinid.DEP 85.85 14.15 

 

0.417 0.167 0.002 

P_Int_GSS.DEP -- -- -- -- -- -- 

P_Int_LSR.DEP 86.32 13.68 

 

0.500 0.250 0.002 

P_Int_NGL.DEP -- -- -- 0.000 0.000 0.000 

P_Int_RGS.DEP 89.45 -- 10.55 0.286 0.071 0.004 

P_IP 24.47 45.09 30.44 0.463 0.146 0.007 

P_IP_BenthicNG -- -- -- -- -- -- 

P_IP_NonGameNB 28.77 52.42 18.8 0.395 0.070 0.008 
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Metrics 

Drainage 

Area (km2) 

Elevation 

(m) 

Swim 

Distance (km) 

Dev. 

Exp. 

CV 

Dev. se 

P_IP_SEAT 66.43 23.24 10.33 0.790 0.597 0.004 

P_IP2.DEP 65.28 23.73 10.99 0.500 0.783 0.004 

P_LSR 8.91 91.09 -- 0.431 0.255 0.011 

P_LSR2.DEP 60.37 39.63 -- 0.778 0.578 0.004 

P_McC_CGS -- -- -- -- -- -- 

P_McC_CGS2.DEP 41.89 58.1 -- 0.412 0.235 0.002 

P_MO 24.95 43.11 31.94 0.488 0.122 0.008 

P_Mod.DEP 54.58 31.53 13.89 0.680 0.320 0.005 

P_Native 76.11 -- 23.89 0.565 0.326 0.007 

P_Native2.DEP 64.54 24.05 11.41 0.792 0.542 0.005 

P_NGL 55.29 34.39 10.32 0.800 0.400 0.001 

P_NGL2.DEP 76.25 

 

23.75 0.500 0.250 0.001 

P_OH -- -- -- -- -- -- 

P_OH_CAAN -- -- -- -- -- -- 

P_OH_CAAN_CACO -- -- -- -- -- -- 

P_OH_NG 24.36 46.56 29.08 0.439 0.146 0.008 

P_OH2.DEP -- -- -- 0.000 0.000 0.000 

P_Percidae -- -- -- -- -- -- 

P_RGS 57.01 42.99 -- 0.613 0.307 0.012 

P_RGS2.DEP 57.53 42.47 -- 0.600 0.300 0.005 

P_Sunfish -- -- -- -- -- -- 

P_Tol.DEP 65.77 23.16 11.06 0.787 0.532 0.004 

P_Tol_Benthic.DEP 19.94 49.65 30.41 0.478 0.174 0.010 

P_Tol_Cyprinid.DEP 64.71 22.38 12.91 0.781 0.512 0.005 

R_Benthic 60.86 39.14 -- 0.673 0.467 0.181 

R_Benthic_CACO 61.61 38.39 -- 0.725 0.482 0.242 

R_Benthic2.DEP 69.37 30.63 -- 0.721 0.478 0.238 

R_Catostomidae 74.85 25.15 -- 0.182 0.037 0.089 

R_CavitySpawn 45.66 39.44 14.89 0.494 0.224 0.185 

R_CGS_RGS 42.51 57.49 -- 0.606 0.331 0.223 

R_CGS_RGS2.DEP 49.77 50.23 -- 0.574 0.285 0.292 

R_Cyprinid 41.7 45.11 13.19 0.721 0.422 0.118 

R_Cyprinid_BNDSEAT 48.12 36.04 15.84 0.683 0.482 0.280 

R_Cyprinid_NBNDSEAT 48.03 36 15.97 0.677 0.415 0.430 

R_Cyprinid2.DEP 40.28 19.85 39.87 0.715 0.353 0.192 

R_CyprinidN 41.24 45.99 12.77 0.721 0.470 0.094 

R_CyprinidN2.DEP 40.12 20.23 39.65 0.692 0.321 0.212 

R_DMS 73.71 26.29 -- 0.664 0.449 0.167 

R_DMS2.DEP 75.75 24.25 -- 0.642 0.408 0.245 

R_FISH 61.7 38.3 -- 0.745 0.544 0.174 

R_Fish2.DEP 72.27 27.73 -- 0.789 0.654 0.167 
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Metrics 

Drainage 

Area (km2) 

Elevation 

(m) 

Swim 

Distance (km) 

Dev. 

Exp. 

CV 

Dev. se 

R_Game 72.8 27.2 -- 0.446 0.236 0.128 

R_Game2.DEP 84.15 15.85 -- 0.587 0.424 0.111 

R_GameC 66.97 33.03 -- 0.418 0.181 0.121 

R_GSS 25.86 74.14 -- 0.517 0.297 0.154 

R_GSS2.DEP 40.29 59.71 -- 0.662 0.458 0.200 

R_IN 66.41 33.59 -- 0.746 0.533 0.316 

R_Int.DEP 85.45 9.4 5.15 0.497 0.273 0.116 

R_Int_Benthic.DEP 53.54 34.08 12.38 0.661 0.326 0.108 

R_Int_RGS.DEP 54.76 24.59 20.64 0.473 0.204 0.132 

R_IP 72.2 27.8 -- 0.774 0.619 0.134 

R_IP_BenthicNG 72.38 27.62 -- 0.676 0.479 0.220 

R_IP_NonGameNB 51.96 34.12 13.92 0.736 0.500 0.155 

R_IP_SEAT 74.14 25.86 -- 0.773 0.541 0.234 

R_IP2.DEP 76.91 23.09 -- 0.783 0.615 0.151 

R_LSR 49.06 50.94 -- 0.707 0.465 0.195 

R_LSR2.DEP 62.55 37.45 -- 0.729 0.557 0.138 

R_McC_CGS 38.25 61.75 -- 0.564 0.301 0.100 

R_McC_CGS2.DEP 44.67 55.33 -- 0.523 0.287 0.236 

R_MO 15.64 84.36 -- 0.313 0.045 0.074 

R_Mod.DEP 64.46 35.54 -- 0.763 0.595 0.198 

R_Native 58.36 41.64 -- 0.742 0.545 0.202 

R_Native2.DEP 67.89 32.1 -- 0.768 0.550 0.566 

R_NGL 73.07 26.93 -- 0.677 0.413 0.199 

R_NGL2.DEP 68.85 14.7 16.45 0.683 0.447 0.298 

R_OH 23.61 76.39 -- 0.503 0.208 0.123 

R_OH_CAAN 22.08 77.92 -- 0.426 0.171 0.203 

R_OH_CAAN_CACO 20.37 79.63 -- 0.556 0.305 0.191 

R_OH_NG 19.86 80.14 -- 0.280 0.040 0.053 

R_Percidae 53.48 31.83 14.69 0.645 0.337 0.179 

R_RGS 46.47 53.53 -- 0.555 0.239 0.321 

R_RGS2.DEP 45.08 43.79 11.13 0.597 0.308 0.264 

R_Tol.DEP 32.29 67.71 

 

0.414 0.153 0.103 

R_Tol_Benthic.DEP -- -- -- -- -- -- 

R_Tol_Cyprinid.DEP 38.14 61.86 -- 0.590 0.314 0.092 
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Table 3: Full Boosted Regression Tree model results for each metrics evaluated in the Ohio-Mon WAP 

region. 

Metrics 

Drainage 

Area (km2) 

Elevation 

(m) 

Swim 

Distance (km) 

Dev. 

Exp. 

CV 

Dev. se 

P_Benthic 90.26 4.29 5.45 0.286 0.143 0.003 

P_Benthic_CACO 86.77 5.47 7.76 0.250 0.100 0.003 

P_Benthic2.DEP 97.00 1.76 1.24 0.167 0.083 0.006 

P_BND_CACO_SEAT 94.31 3.25 2.44 0.767 0.651 0.006 

P_Catfish -- -- -- -- -- -- 

P_Catostomidae -- -- -- -- -- -- 

P_CavitySpawn -- -- -- -- -- -- 

P_CavitySpawn2.DEP -- -- -- -- -- -- 

P_CGS_RGS 31.79 54.11 14.09 0.095 0.048 0.006 

P_CGS_RGS2.DEP 32.17 67.83 

 

0.556 0.278 0.003 

P_Cold 69.00 

 

31.00 0.375 0.125 0.005 

P_Cold_SATR_ONMY 65.80 10.27 23.93 0.375 0.125 0.005 

P_Cold2.DEP -- -- -- -- -- -- 

P_Cottid -- -- -- -- -- -- 

P_Cyprinid 90.71 4.56 4.72 0.182 0.000 0.006 

P_Cyprinid_BNDSEAT 93.58 -- 6.42 0.837 0.698 0.003 

P_Cyprinid_NBNDSEAT 89.08 5.01 5.91 0.864 0.682 0.004 

P_Cyprinid2.DEP 82.66 17.34 -- 0.556 0.333 0.003 

P_CyprinidN 90.51 4.79 4.70 0.182 0.000 0.006 

P_CyprinidN2.DEP 81.97 18.03 -- 0.556 0.333 0.003 

P_DMS 9.41 90.59 -- 0.231 0.000 0.008 

P_DMS2.DEP 7.33 92.67 -- 0.231 0.077 0.007 

P_Fish2.DEP 59.28 40.72 -- 0.483 0.276 0.008 

P_Game -- -- -- -- -- -- 

P_Game2.DEP -- -- -- -- -- -- 

P_GameC -- -- -- -- -- -- 

P_GSS 98.28 -- 1.72 0.517 0.276 0.009 

P_GSS2.DEP -- -- -- -- -- -- 

P_IN 75.63 24.37 -- 0.711 0.489 0.007 

P_Int.DEP 57.88 42.12 -- 0.615 0.385 0.002 

P_Int_Benthic.DEP -- -- -- -- -- -- 

P_Int_Cyprinid.DEP 52.06 47.94 -- 0.571 0.143 0.002 

P_Int_GSS.DEP -- -- -- -- -- -- 

P_Int_LSR.DEP 59.48 40.52 -- 0.429 0.143 0.002 

P_Int_NGL.DEP 68.25 31.75 -- 0.500 0.500 0.000 

P_Int_RGS.DEP 33.50 66.50 -- 0.556 0.333 0.002 

P_IP 37.30 62.70 -- 0.381 0.191 0.003 

P_IP_BenthicNG 1.74 97.17 1.09 0.167 0.083 0.007 

P_IP_NonGameNB 75.50 24.50 -- 0.118 0.000 0.002 
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Metrics 

Drainage 

Area (km2) 

Elevation 

(m) 

Swim 

Distance (km) 

Dev. 

Exp. 

CV 

Dev. se 

P_IP_SEAT -- -- -- -- -- -- 

P_IP2.DEP 63.11 36.89 -- 0.516 0.258 0.006 

P_LSR -- -- -- -- -- -- 

P_LSR2.DEP 77.55 22.45 -- 0.667 0.444 0.002 

P_McC_CGS -- -- -- -- -- -- 

P_McC_CGS2.DEP 27.73 72.27 -- 0.500 0.250 0.001 

P_MO 36.72 63.28 -- 0.381 0.095 0.003 

P_Mod.DEP -- -- -- -- -- -- 

P_Native2.DEP 60.66 39.34 -- 0.483 0.207 0.005 

P_NGL 41.00 38.71 20.29 0.375 0.125 0.005 

P_NGL2.DEP 76.81 23.19 -- 0.667 0.333 0.001 

P_OH 19.88 80.12 -- 0.438 0.125 0.005 

P_OH_CAAN 30.56 69.44 -- 0.462 0.192 0.003 

P_OH_CAAN_CACO 35.98 64.02 -- 0.500 0.250 0.004 

P_OH_NG 36.95 63.05 -- 0.381 0.143 0.004 

P_OH2.DEP 31.78 48.83 19.39 0.500 0.000 0.001 

P_Percidae -- 96.42 3.58 0.333 0.167 0.001 

P_RGS 57.47 42.53 -- 0.333 0.100 0.005 

P_RGS2.DEP 26.19 73.81 -- 0.556 0.333 0.002 

P_Sunfish -- -- -- -- -- -- 

P_Tol.DEP 60.56 39.44 -- 0.483 0.241 0.006 

P_Tol_Benthic.DEP 68.76 20.27 10.97 0.412 0.118 0.003 

P_Tol_Cyprinid.DEP 54.16 45.84 -- 0.444 0.222 0.006 

R_Benthic 85.99 14.01 -- 0.598 0.429 0.077 

R_Benthic_CACO 89.30 10.70 -- 0.654 0.451 0.127 

R_Benthic2.DEP 94.19 5.81 -- 0.627 0.460 0.137 

R_Catostomidae 45.16 40.25 14.60 0.444 0.146 0.094 

R_CavitySpawn 83.32 16.68 -- 0.680 0.466 0.072 

R_CavitySpawn2.DEP 82.28 9.68 8.03 0.743 0.528 0.030 

R_CGS_RGS 78.96 21.04 -- 0.568 0.320 0.076 

R_CGS_RGS2.DEP 84.36 15.64 -- 0.538 0.329 0.096 

R_Cyprinid 75.03 24.97 -- 0.709 0.492 0.057 

R_Cyprinid_BNDSEAT 83.92 16.08 -- 0.678 0.506 0.140 

R_Cyprinid_NBNDSEAT 83.49 16.51 -- 0.690 0.512 0.119 

R_Cyprinid2.DEP 69.83 13.70 16.47 0.571 0.336 0.200 

R_CyprinidN 72.16 27.74 -- 0.748 0.528 0.080 

R_CyprinidN2.DEP 67.59 16.93 15.48 0.619 0.361 0.156 

R_DMS 94.15 -- 5.85 0.736 0.589 0.036 

R_DMS2.DEP 96.66 -- 3.34 0.715 0.582 0.050 

R_FISH 80.91 19.09 -- 0.714 0.467 0.206 

R_Fish2.DEP 88.04 11.96 -- 0.713 0.532 0.253 
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Metrics 

Drainage 

Area (km2) 

Elevation 

(m) 

Swim 

Distance (km) 

Dev. 

Exp. 

CV 

Dev. se 

R_Game 47.72 52.28 -- 0.300 0.052 0.348 

R_Game2.DEP 51.13 38.47 10.39 0.446 0.125 0.145 

R_GameC 38.31 61.69 -- 0.379 0.100 0.225 

R_GSS 78.16 21.84 -- 0.427 0.266 0.078 

R_GSS2.DEP 89.93 -- 10.07 0.553 0.380 0.101 

R_IN 86.21 8.51 5.28 0.788 0.574 0.205 

R_Int.DEP 95.73 2.37 1.90 0.454 0.270 0.139 

R_Int_Benthic.DEP 94.72 3.19 2.07 0.370 0.225 0.094 

R_Int_LSR.DEP 67.99 27.74 4.27 0.302 0.085 0.223 

R_Int_NGL.DEP 90.05 6.32 3.63 0.510 0.230 0.185 

R_Int_RGS.DEP 87.67 12.33 -- 0.261 0.051 0.103 

R_IP 86.34 13.66 -- 0.750 0.581 0.187 

R_IP_BenthicNG 90.28 5.67 4.05 0.739 0.538 0.108 

R_IP_NonGameNB 88.79 6.18 5.03 0.716 0.574 0.116 

R_IP_SEAT 86.10 13.90 -- 0.753 0.564 0.285 

R_IP2.DEP 81.60 11.10 7.30 0.808 0.556 0.197 

R_LSR 72.07 19.36 8.57 0.634 0.342 0.126 

R_LSR2.DEP 86.13 9.49 4.39 0.642 0.433 0.135 

R_McC_CGS 72.68 27.32 -- 0.402 0.173 0.073 

R_McC_CGS2.DEP 87.09 12.91 -- 0.409 0.247 0.095 

R_MO 53.80 46.20 -- 0.393 0.129 0.076 

R_Mod.DEP 80.33 19.67 -- 0.754 0.567 0.121 

R_Native 76.54 23.46 -- 0.747 0.538 0.257 

R_Native2.DEP 86.58 13.42 -- 0.721 0.562 0.212 

R_NGL 74.69 10.24 15.06 0.523 0.273 0.110 

R_NGL2.DEP 89.90 3.58 6.52 0.505 0.301 0.268 

R_OH 8.15 84.21 7.64 0.232 0.071 0.081 

R_OH_CAAN 86.94 6.90 6.16 0.191 0.034 0.101 

R_OH_CAAN_CACO 26.11 73.89 -- 0.281 0.069 0.117 

R_OH_NG 50.74 38.46 10.81 0.374 0.129 0.080 

R_OH2.DEP 21.45 67.06 11.49 0.320 0.263 0.146 

R_Percidae 94.54 -- 5.46 0.650 0.481 0.041 

R_RGS 88.19 6.54 5.27 0.305 0.146 0.058 

R_RGS2.DEP 82.79 8.72 8.48 0.301 0.148 0.064 

R_Sunfish 37.65 48.52 13.83 0.230 0.006 0.265 

R_Tol.DEP 52.07 47.93 -- 0.614 0.185 0.072 

R_Tol_Benthic.DEP 65.71 34.29 -- 0.316 0.092 0.065 

R_Tol_Cyprinid.DEP 67.32 32.68 -- 0.552 0.185 0.095 
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Table 4: Full Boosted Regression Tree model results for each metrics evaluated in the Upper Kanawha 

region. 

Metrics 

Drainage 

Area (km2) 

Elevation 

(m) 

Swim Distance 

(km) 

Dev. 

Exp. 

CV 

Dev. se 

P_Benthic -- 21.49 78.51 0.578 0.310 0.012 

P_Benthic_CACO -- 22.15 77.85 0.565 0.391 0.013 

P_Benthic2.DEP -- 27.52 72.48 0.424 0.212 0.005 

P_BND_CACO_SEAT 33.11 13.27 53.62 0.620 0.139 0.017 

P_Catfish -- -- -- -- -- -- 

P_Catostomidae -- -- -- -- -- -- 

P_CavitySpawn -- 16.41 83.59 0.576 0.455 0.006 

P_CavitySpawn2.DEP -- 14.99 85.01 0.588 0.471 0.005 

P_CGS_RGS 10.10 14.19 75.70 0.389 0.167 0.009 

P_CGS_RGS2.DEP -- -- -- -- -- -- 

P_Cold 29.99 

 

70.01 0.359 0.141 0.019 

P_Cold_SATR_ONMY 28.99 

 

71.01 0.422 0.172 0.015 

P_Cold2.DEP -- -- -- -- -- -- 

P_Cottid -- 19.05 80.95 0.272 0.091 0.010 

P_Cyprinid 50.03 28.19 21.78 0.340 0.085 0.011 

P_Cyprinid_BNDSEAT 71.09 11.70 16.21 0.713 0.483 0.007 

P_Cyprinid_NBNDSEAT 90.99 9.01 -- 0.229 0.086 0.005 

P_Cyprinid2.DEP 78.67 10.39 10.94 0.656 0.406 0.006 

P_CyprinidN 13.11 32.60 54.28 0.296 0.000 0.010 

P_CyprinidN2.DEP 84.55 15.45 -- 0.208 0.083 0.005 

P_DMS -- 15.57 84.43 0.438 0.250 0.004 

P_DMS2.DEP 12.98 17.90 69.12 0.500 0.281 0.006 

P_Fish2.DEP 29.45 17.55 53.00 0.508 0.079 0.011 

P_Game 38.56 12.04 49.40 0.457 0.143 0.013 

P_Game2.DEP 38.58 16.56 44.86 0.516 0.032 0.019 

P_GameC 40.70 19.54 39.76 0.452 0.161 0.014 

P_GSS 10.91 19.84 69.24 0.259 0.093 0.014 

P_GSS2.DEP 57.40 -- 42.60 0.730 0.487 0.005 

P_IN 71.21 13.57 15.22 0.563 0.282 0.007 

P_Int.DEP -- -- -- -- -- -- 

P_Int_Benthic.DEP 

 

13.04 86.96 0.400 0.200 0.003 

P_Int_Cyprinid.DEP -- -- -- -- -- -- 

P_Int_GSS.DEP -- -- -- -- -- -- 

P_Int_LSR.DEP -- -- -- -- -- -- 

P_Int_NGL.DEP -- -- -- -- -- -- 

P_Int_RGS.DEP 17.06 -- 82.94 0.400 0.200 0.004 

P_IP 18.12 19.69 62.19 0.462 0.077 0.010 

P_IP_BenthicNG -- 22.96 77.04 0.471 0.294 0.006 

P_IP_NonGameNB 50.99 25.91 23.10 0.646 0.354 0.011 
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Metrics 

Drainage 

Area (km2) 

Elevation 

(m) 

Swim Distance 

(km) 

Dev. 

Exp. 

CV 

Dev. se 

P_IP_SEAT 27.26 17.95 54.78 0.583 0.222 0.008 

P_IP2.DEP 28.03 18.18 53.79 0.549 0.143 0.010 

P_LSR 27.16 25.96 46.88 0.506 0.230 0.011 

P_LSR2.DEP 56.61 22.27 21.12 0.750 0.333 0.009 

P_McC_CGS -- -- -- -- -- -- 

P_McC_CGS2.DEP -- -- -- -- -- -- 

P_MO 17.86 15.28 66.87 0.404 0.058 0.012 

P_Mod.DEP 61.81 12.32 25.88 0.522 0.209 0.005 

P_Native -- -- -- -- -- -- 

P_Native2.DEP -- 27.71 72.29 0.222 0.056 0.009 

P_NGL 60.72 -- 39.28 0.722 0.556 0.004 

P_NGL2.DEP 58.56 -- 41.44 0.730 0.568 0.004 

P_OH 23.09 -- 76.91 0.346 0.039 0.011 

P_OH_CAAN 19.25 -- 80.75 0.455 0.146 0.015 

P_OH_CAAN_CACO 16.87 13.02 70.11 0.529 0.196 0.012 

P_OH_NG 17.28 18.78 63.95 0.442 0.096 0.010 

P_OH2.DEP -- -- -- -- -- -- 

P_Percidae 18.51 18.36 63.13 0.214 0.000 0.004 

P_RGS -- -- -- -- -- -- 

P_RGS2.DEP -- -- -- -- -- -- 

P_Sunfish 19.36 -- 80.64 0.500 0.000 0.001 

P_Tol.DEP 53.76 15.84 53.76 0.444 0.048 0.013 

P_Tol_Benthic.DEP 26.79 -- 73.21 0.435 0.109 0.017 

P_Tol_Cyprinid.DEP 26.76 16.45 56.79 0.475 0.051 0.015 

R_Benthic 89.22 5.00 5.78 0.476 0.355 0.237 

R_Benthic_CACO 89.00 6.80 4.22 0.528 0.425 0.212 

R_Benthic2.DEP 90.46 -- 9.54 0.592 0.443 0.135 

R_CavitySpawn 46.47 37.18 16.35 0.536 0.223 0.131 

R_CavitySpawn2.DEP 46.35 43.67 9.98 0.385 0.195 0.074 

R_CGS_RGS 84.93 15.07 -- 0.631 0.451 0.202 

R_CGS_RGS2.DEP 90.64 9.36 -- 0.606 0.466 0.203 

R_Cold 30.22 47.11 22.67 0.537 0.255 0.195 

R_Cold2.DEP 34.70 65.30 -- 0.570 0.247 0.149 

R_Cyprinid 69.35 30.65 -- 0.661 0.354 0.225 

R_Cyprinid_BNDSEAT 81.27 18.73 -- 0.624 0.431 0.305 

R_Cyprinid_NBNDSEAT 81.52 18.48 -- 0.535 0.348 0.332 

R_Cyprinid2.DEP 86.97 13.03 -- 0.495 0.342 0.181 

R_CyprinidN 79.65 20.35 -- 0.435 0.248 0.144 

R_CyprinidN2.DEP 80.07 19.93 -- 0.448 0.264 0.174 

R_DMS 76.33 13.48 10.19 0.464 0.224 0.214 

R_DMS2.DEP 77.99 22.01 -- 0.479 0.330 0.195 
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Metrics 

Drainage 

Area (km2) 

Elevation 

(m) 

Swim Distance 

(km) 

Dev. 

Exp. 

CV 

Dev. se 

R_FISH 76.46 23.54 -- 0.753 0.381 0.321 

R_Fish2.DEP 83.35 9.61 7.04 0.682 0.455 0.313 

R_Game 57.52 -- 42.48 0.597 0.355 0.147 

R_Game2.DEP 69.32 -- 30.68 0.543 0.347 0.193 

R_GameC 61.87 21.03 17.11 0.551 0.225 0.102 

R_GSS 89.01 10.98 -- 0.258 0.130 0.173 

R_GSS2.DEP 86.15 -- 13.85 0.509 0.317 0.258 

R_IN 90.76 9.24 -- 0.628 0.479 0.307 

R_Int.DEP 71.54 28.46 -- 0.518 0.245 0.244 

R_Int_Benthic.DEP 85.27 -- 14.73 0.539 0.281 0.122 

R_Int_LSR.DEP 71.01 28.99 -- 0.282 0.031 0.217 

R_Int_RGS.DEP 51.14 24.55 24.31 0.393 0.021 0.185 

R_IP 82.00 17.00 -- 0.760 0.521 0.282 

R_IP_BenthicNG 91.78 -- 8.22 0.559 0.412 0.194 

R_IP_NonGameNB 71.02 28.98 -- 0.643 0.360 0.205 

R_IP_SEAT 88.61 5.36 6.03 0.710 0.529 0.306 

R_IP2.DEP 88.35 5.57 6.09 0.683 0.506 0.236 

R_LSR 67.27 32.73 -- 0.602 0.241 0.316 

R_LSR2.DEP 91.16 5.70 3.14 0.438 0.280 0.444 

R_McC_CGS 78.48 21.52 -- 0.589 0.393 0.102 

R_McC_CGS2.DEP 92.21 7.79 -- 0.586 0.409 0.147 

R_MO -- -- -- -- -- -- 

R_Mod.DEP 68.32 13.25 18.42 0.718 0.498 0.155 

R_Native 79.55 20.45 -- 0.563 0.355 0.226 

R_Native2.DEP 85.70 14.30 -- 0.564 0.405 0.181 

R_NGL 92.78 3.71 3.51 0.389 0.213 0.149 

R_NGL2.DEP 91.38 -- 8.62 0.513 0.324 0.210 

R_OH -- -- -- -- -- -- 

R_OH_CAAN -- -- -- -- -- -- 

R_OH_CAAN_CACO -- -- -- -- -- -- 

R_OH_NG -- -- -- -- -- -- 

R_Percidae 88.14 -- 11.86 0.459 0.318 0.089 

R_RGS 67.37 32.63 -- 0.609 0.342 0.322 

R_RGS2.DEP 85.82 14.18 -- 0.435 0.258 0.171 

R_Tol.DEP 34.12 34.67 31.21 0.569 0.053 0.163 

R_Tol_Cyprinid.DEP 29.33 39.79 30.88 0.623 0.097 0.093 
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CHAPTER 4:  LOCAL AND NEIGHBORHOOD SCALE CONTROLS ON FISH 

COMMUNITY STRUCTURE IN CENTRAL APPALACHIAN WATERSHEDS 
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Abstract 

The hierarchical structure of watersheds and stream networks leads to a variety of landscape filters that 

can ultimately structure fish communities.  Varying responses of measures of community structure 

demonstrate the need to evaluate multiple responses while taking into consideration the hierarchical 

importance of landscape scale processes.  In West Virginia, current surface mining and residential 

development land-use practices have the potential to drastically alter the hierarchical filters governing 

species distribution and community assembly.  In addition, natural variation due to large scale landscape 

patterns (i.e., ecoregional differences), spatial autocorrelation, and a long history of land-use alterations 

make understanding factors controlling fish community composition troublesome.  Using a mixed-effects 

modeling approach, we evaluated the influence of local (cumulative segment-level watershed scale), 

neighborhood (HUC12 watershed scale), and natural landscape (i.e., drainage area, elevation, and swim 

distance) factors on species richness, diversity, community condition (West Virginia Index of Biotic 

Integrity), and composition (proportion of tolerant individuals).  Both natural (i.e., drainage area and 

elevation) and local anthropogenic landscape factors were important in controlling species richness, 

Shannon-Weaver diversity, and WV IBI scores.  Overall, increased measures of cumulative mining 

activity resulted in decreases in species richness, diversity, and IBI scores, while increases were observed 

with increases in cumulative local residential development.  No local or neighborhood scale 

anthropogenic landscape variables were observed to influence the proportion of tolerant individuals 

instead, only a drainage area effect was detected.  In a neighborhood context, the anthropogenic landscape 

structure did not significantly influence fish community variables.  However, using the neighborhood as 

the random effects structure in the models incorporated the influences of potential dispersal process, the 

spatial configuration of sampling locations, and allowed for different relationship between local landscape 

structure and fish community variables on a HUC 12 basis.  So, the quality of the neighborhood may not 

influence community structure per se, but sites within the same neighborhood respond to local landscape 

structure differently than sites within other neighborhoods.  These results indicate the importance of 
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evaluating the hierarchical structure of watersheds for environmental management since not all stream 

communities respond similarly to anthropogenic stressors.  In addition, the lack of measured 

anthropogenic controls on tolerant individuals may indicate community homogenization in these highly 

degraded watersheds.        
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1.0 Introduction 

Numerous streams and rivers remain impaired despite the recognition of the threats and stressors that 

impact aquatic resources. Local threats, such as flow alterations, channelization, connectivity, and point-

source pollution, and their influences on stream fish community health are well documented (Wang et al., 

2003; Karr and Yoder, 2004; Pichon et al., 2006).  Findings from research have directed numerous 

management efforts to manage and restore local instream habitats and riparian zone improvement to 

mediate the impacts of local stressors.  However, streams and their associated communities are products 

of the larger landscape they occupy in addition to their local environments (Allan, 2004).  In the 

riverscape context of stream health, the importance of changes at the catchment scale is increasingly 

considered as major threats and stressors to stream ecosystems (Allan, 2004).  Furthermore, in order to 

interpret patterns in fish distribution and community assembly, the effects of stressors to aquatic 

communities needs to integrate both local and larger scale process.      

Stream fish community composition is influenced by ecological “filters” at multiple spatial and temporal 

scales (Tonn et al., 1990; Poff, 1997).  Local in-stream factors, such as biotic competition and predation, 

can affect species abundances while habitat characteristics (i.e., substrate, available cover, and water 

chemistry) and regional environmental factors (i.e., climate, landscape composition) can determine 

species presence.  The overall distribution of a species can be determined by large scale historical 

processes dealing with speciation, extinction, and dispersal.  In order to accurately evaluate the combined 

effects of anthropogenic changes on stream communities, multiple levels of community assembly need to 

be considered.  For example, differences in community diversity, species presence, or species richness 

can be linked to historical processes as seen by differences between ecoregion (i.e., terrestrial, 

geographical, and vegetation patterns) and major drainage basin (i.e., zoogeography).  Evaluations of 

local and regional influences are typically reserved for individual species distribution models or to 

evaluate species diversity.  However, other important community attributes such as functional community 
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composition, respond to the hierarchical structure of stream networks differently than species richness or 

presence (Hoeinghaus et al., 2007).  

Differing responses of species in the same community to anthropogenic landscape changes can be linked 

to species specific life history traits.  In order to maintain a functionally stable community in 

heterogeneous landscapes, species specific responses to stressors must be highly variable (Gonzalez and 

Loreau, 2009).  This makes evaluating life history traits at the community level important for providing 

insight into the processes that shape community structure.  For example, an increased sediment load from 

landscape disturbances can have negative impacts on the relative abundances of clean-gravel spawning 

fish (Sutherland et al., 2002).  The overall reduction of these specialist species due to increases in 

environmental disturbance leads to a community of organisms dominated by generalists species (Clavel et 

al., 2011).        

Ongoing anthropogenic changes and increases in environmental stress can cause local species extinction 

or shifts in the distributions and abundances of species (Suttle et al., 2007).  The shift of a forested 

watershed to an unforested watershed can lead to increased sedimentation and turbidity, which negatively 

influences primary production, as well as invertebrate and fish diversity (Dudgeon et al., 2000; Sutherland 

et al., 2002).  Increased urban development can lead to an increase in the flashiness of stream flows, 

concentrations of nutrients and contaminants, and altered channel morphology ultimately leading to a 

reduced biotic richness dominated by tolerant taxa (Walsh et al., 2005).  Increases in nutrients (i.e., 

nitrogen and phosphorous) due to agriculture have similar impacts on community structure by decreasing 

the percentage of intolerant taxa and reducing Index of Biotic Integrity scores (Wang et al., 2007).  

Similar to urbanization and agriculture, coal mining can cause an increase in hydrologic flashiness and 

sedimentation (Bernhardt and Palmer, 2011).  In addition, regions with valley-fill operations can be 

shifted to a primary production dominated ecosystem as headwater streams are lost (Hill et al., 1995).  

Unlike other anthropogenic impacts, coal mining can also become a source of water contamination 



148 

 

indicated by elevated metals and sulfates (Hartman et al., 2005).  Overall, coal mining contamination can 

reduce both benthic macroinvertebrate and fish-based IBI scores (Freund and Petty, 2007).     

The increasing intensity of mountain top removal/valley fill (MTM/VF) coal mining and residential 

development within West Virginia has great potential to impact the 45,000 km of streams that drain the 

state.  The Ohio Central Appalachian biomonitoring region in particular overlaps the majority of the 

MTM/VF region in West Virginia and has increasing residential development.  However, these 

watersheds also harbor some of the highest numbers of native species in West Virginia (Stauffer et al., 

1995) making them important in the evolution and speciation of North American freshwater fishes.  Even 

though the effects of land-use practices such as MTM/VF mining and residential development have been 

studied for their impacts on stream communities (Merriam et al., 2013; Hitt and Chambers, 2014), the 

combined overall effects of land-use patterns on stream fish assemblages in this region are poorly 

understood (but see Daniel et al., 2014).   

The objective of this research was to evaluate the influences of local and neighborhood level landscape 

conditions on local fish community structure.  We measured local species richness, diversity (Shannon-

Weaver diversity), fish community condition, and dominance of tolerant individuals.  The West Virginia 

Index of Biotic Integrity (WVIBI; Chapter 1) was included in the analysis in order to evaluate if larger 

landscape processes were influencing local fish community condition and impairment status.  The 

proportion of tolerant individuals was evaluated to see if large scale disturbances have forced 

communities from intolerant to tolerant species dominated assemblages.  In order to accomplish this 

objective, a mixed modeling approach was utilized.  A mixed modeling approach allowed for effects to be 

partitioned among spatial scales.  Recognizing the presence of spatial autocorrelation in ecological data 

due to proximity of sampling locations is important since it may lead to statistical bias (i.e., lack 

independence).  A mixed-modeling approach also allowed us to account for measures of spatial 

autocorrelation, if it was present.     



149 

 

2.0 Methods 

2.1 Study Area  

The Ohio Central Appalachian biomonitoring region (Figure 1; Chapter 1) consists of four 8-digit 

watersheds (Coal, Tug, Upper Guyandotte, and Upper Kanawha) and the lower portion of one additional 

8-digit watershed delineated by a 12-digit watershed boundary (Elk).  Land cover for this region is 

predominately forested. However, coal mining and residential development are the most common 

anthropogenic land-use practices.  Residential development does not constitute a high percentage of the 

land-use but the topology of this region constricts development to narrow floodplains adjacent to streams 

(Figure 1).  This region was selected as our study area due to its high anthropogenic impacts from 

residential development and overlap with the mountain top/valley fill surface mining region (Figure 1).   

2.2 Fish community variables 

Statewide fish community data were combined from various sampling sources including state and federal 

organizations, universities, and consulting companies.  Sampling sites were selected for years 1997, 1998, 

and 2000 – 2013.  Only electrofishing (backpack, parallel wires, and barge) sampling types were used 

(N=250). Fish community data consisted of identification of each fish captured to species and their 

abundances.  Hybrid species and individuals not identified to species were removed from the sample. 

Sampling locations were then input to ArcGIS ArcMap 10.0 (Environmental Systems Research Institute, 

Redlands, California) and joined with segment level watersheds (1:24,000).  Locations of sampling points 

were evaluated against the National Hydrography Dataset (NHD-24 K) to ensure site locations were 

attributed to the correct segment-level watershed. In order to reduce pseudoreplication, sampling locations 

were further reduced by selecting the most recent sampling event within each segment level watersheds 

and by using only wadeable streams (7 – 400 km
2
).  Total species richness and a Shannon-Weaver 

Diversity index was calculated using package vegan (Oksanen et al., 2013) in R statistical program (R 

Core Team 2014).  West Virginia Index of Biotic Integrity (WVIBI; Chapter 1) scores for the Ohio 
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Central Appalachian biomonitoring and the proportion of tolerant individuals were calculated based on 

species classification for the WVIBI.     

 2.3 Landscape attributes 

Landscape characteristics for all 1:24,000 segment-level watersheds (SLWs) within the state of West 

Virginia were quantified using spatial analysis functions in ArcGIS ArcMap 10.0 (Environmental 

Systems Research Institute, Redlands, California). In conjunction with flow tables, cumulative (i.e., all 

SLWs upstream of a given sampling location) measures of several landscape attributes for each segment-

level watershed were quantified (Strager et al., 2009). 

 Land cover classifications were derived from the 2009 and 2010 National Agriculture Imagery Program 

(NAIP) orthophotography with a 1 meter pixel resolution at a scale of 1:10,000.  Land cover types 

summarized included grass and agricultural (i.e., crops and pasture) lands and barren development.  The 

mining-permit boundaries layer developed by the Technical Applications in GIS (TAGIS) office within 

WVDEP enabled the differentiation between all mining related land-cover forms (i.e., slurry 

impoundments and active and reclaimed mine lands) from non-mining land cover.  All mining-related 

cover classes were summed into a measure of total surface mining.  The density (#/km
2
) of surface 

mining, underground mining, sewage and septic serviced structures, and National Pollution Discharge 

Elimination System (NPDES) permits were calculated from data obtained from WVDEP.  The 2003 West 

Virginia Statewide Addressing and Mapping Board (WV SAMB) structures layer was used to calculate 

the density of residential and commercial structures (#/km
2
).   Natural landscape variables for each SLW 

were summarized including basin area (km
2
), mean elevation (m), and swim distance (km).  Swim 

distance was defined as the minimum downstream distance (km) from the outflow of a SLW to the inflow 

of a SLW with a basin area ≥200 km
2
 (Hitt and Angermeier, 2011).    Local landscape measures consisted 

of the cumulative landscape at the segment level watershed scale, while neighborhood landscape 

consisted of the cumulative landscape at the outflow of the 12-digit scale watershed (HUC 12).   Local 

and neighborhood-level landscape data were used in further statistical analyses. 
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2.4 Statistical analyses 

Principal Components Analysis (PCA) was used to summarize the patterns of co-variation in the 

cumulative separately for wadeable local and neighborhood-level watersheds. Specifically, PCA was 

utilized in order to reduce dimensionality and collinearity among variables.   Cumulative land-use 

variables were transformed to approximate normality.  The land-use variables used were structure density, 

NPDES permit density, septic and sewage density, underground and surface mine permit densities, % 

development, % grassland, % agriculture, and % surface mining.  Density measures were log10(x+1) 

transformed while proportional measures were arc-sine square root transformed prior to analysis in order 

to approximate normality.  Principal components (PCs) were retained for future analysis if the 

eigenvalues >1 (McCune and Grace, 2002).  Factor loadings were calculated as the correlation of PC 

scores to original landscape data and were regarded as statistically important contributors to the PC if the 

factor loading > |0.40| (McCune and Grace, 2002).   The first two important PC axes (eigenvalues >1) for 

the neighborhood and local analysis were used as predictor variables in all models along with mean 

elevation (m), drainage area (km
2
), and swim distance (km).  Drainage area was log-10 transformed prior 

to analysis.  Prior to model evaluation, each predictor variable was evaluated for redundancy with other 

variables by calculating a variable inflation factor (VIF; Zuur et al. 2009) using the vif function in 

package usdm (Naimi, 2013).   A VIF value is used to detect collinearity between variables in which 

highly collinear variables were removed.  A predictor variable with a VIF >2 was removed from analysis.   

Mixed-effects models were selected as the modeling framework due to the hierarchical, or nested, 

structure of the local and neighborhood landscape attributes and the fish community response variables 

(Venables and Dichmont, 2004). The community response variables were 1) taxonomic richness (i.e., 

number of species); 2) taxonomic diversity (Shannon-Weaver Diversity Index); 3) Index of Biotic 

Integrity scores; and 4) proportion of tolerant individuals.  

The responses of fish to local and neighborhood land-use composition were analyzed using linear mixed-

effects (LME) models, or generalized linear mixed models, for each response variable following 
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guidelines from Zuur et al. (2009).  The first step in the model selection process was to evaluate the need 

to use a more complex model structure.  Fully parameterized models (i.e., all predictor variables with 

meaningful interaction terms) were generated using both generalized least squares (GLS) regression and 

LME with a random intercept term only and compared using an Analysis of Variance (ANOVA).  If 

models were significantly different (p<0.05), the model with the lowest Akaike Information Criterion 

(AIC) value was selected as the “best” model.  If the linear mixed effect model was selected as the top 

model, the selection of the best random effects structure was evaluated.  For this selection process, the 

same fully parameterized fixed effect structure was used with varying random effects structure, fitted 

using restricted maximum likelihood estimation (REML).  For the mixed models, the HUC 12 watershed 

was assigned as the random intercept effect since individual sampling locations are nested within HUC 12 

watersheds and some HUC12 watersheds have multiple sampling locations located within. All models 

compared had the same random intercept effect, but variables for the random slope effect differed 

between models.  The best random effects structure was determined using AIC scores in which the model 

with the lowest value was retained.   

Once a random effect was established, the model was re-fit using a maximum likelihood estimation 

(MLE) and the fixed effect structure was evaluated by sequentially dropping one variable, starting with 

interactions.  Variables were dropped until only significant variables remained in the model and the 

resulting models were compared using ANOVA.  The influence of spatial autocorrelation was also 

evaluated for each response variable by visually examining correlograms of the residuals for the GLS and 

final linear mixed effects models.   Species richness response to local and neighborhood level landscape 

was evaluated with a generalized linear mixed model (GLMM), assuming a poisson distribution, 

following the same step-wise model selection process as the linear mixed models.  Proportion of tolerant 

individuals (% Tol) was arc-sine square-root transformed prior to analysis in order to better approximate 

normality.  Transformation was selected over using a binomial distribution because generalized linear 

mixed models currently do not have the capacity to accurately evaluate proportional data under this 
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distribution.  Linear mixed effects and generalized linear mixed effects models were generated using the 

nlme (Pinheiro et al., 2014) and glmmADMB (Skaug et al., 2014) packages in R statistical program, 

respectively.  Significance of results was determined using an alpha=0.05, but marginal differences (p < 

0.10) were noted.  

3.0 Results 

3.1 Local and Neighborhood Landscape Principal Components Analyses 

Local and regional landscape characteristics varied across the study sites.  The local PCA identified three 

significant PC axes (eigenvalue >1), which accounted for 63.4% of the variation in the wadeable segment 

level watersheds in this region (Table 1).  For the local condition, PC1 accounted for 33.6% of the 

variation in the landscape structure among all wadeable segment level watersheds (Table 1). The first axis 

represents a residential and agricultural gradient that included structure density, NPDES permit density, 

septic and sewer serviced structure density, % development, % grassland, and % agriculture (Figure 2).  

PC2 accounted for an additional 17.1% of the variation while representing a mining and development 

gradient (Table 1).  Variables that showed a contribution to this axis included surface and underground 

mine permit densities, % development, and % surface mining (Figure 2).  The third axis represented an 

additional residential development axis while accounting for an additional 13% of the variation in the 

landscape dataset.  Variables that showed significant contributions to this axis included NPDES permit 

density, septic and sewage serviced structure density, and % grassland.    

The neighborhood PCA also identified three significant PC axes (eigenvalue >1) accounting for a total of 

77.1% of the variation exhibited in the landscape at the outflows of HUC 12 watersheds (neighborhoods) 

in this region (Table 1).  PC1 characterizes a mining and residential development axis accounting for 

40.3% of the variation in the landscape data set.  All of the landscape variables analyzed, with the 

exception of % development, demonstrated a significant contribution to PC1 (Figure 2).  Similarly, PC2 

also demonstrated a gradient of residential development and mining while accounting for an additional 
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23.6% of the variation in the data set.  Variables with significant contribution to PC2 included structure 

density, surface and underground mining permit densities, % surface mining, and % development (Figure 

2).  The final axis (PC3) accounted for an additional 13.2% of the variation in the landscape data set 

representing a residential development gradient.  Only septic and sewage serviced structure density, % 

development, and % grassland contributed to the loadings of PC3.  In the neighborhood and local PCAs 

the first two principal components accounted for the majority of the variation in their landscape data sets, 

therefore, only these axes were used in further analysis of fish community structure.  All PC axes had 

loadings of anthropogenic landscape variables in the negative direction generating local and 

neighborhood human disturbance gradients.   

3.2 Spatial autocorrelation of fish community variables 

The correlogram of the residuals of GLM model for species richness indicated that there was spatial 

autocorrelation (Moran’s I correlation) after accounting for natural and anthropogenic landscapes 

variables (Figure 3).  However, when a linear mixed model was used, the same spatial autocorrelation 

was no longer present in the residuals. The analysis of spatial autocorrelation of the residuals also 

indicated little spatial structure for the Shannon-Weaver diversity index (Figure 4).  In addition, an 

evaluation of the model residuals for spatial autocorrelation for WV IBI scores indicated that a spatial 

structure was still present after a GLS was applied, but no longer existed in the linear mixed model 

residuals (Figure 5).  The GLS correlogram for the proportion of tolerant individuals indicates small 

spatial autocorrelation after the model was applied (Figure 6).  However, the same spatial autocorrelation 

is not present in the LME correlogram. 

3.3 Responses of fish community to local and neighborhood land-use 

Model structures were evaluated using all natural landscape variables and anthropogenic land-use PC 

axes since none of the variables had a variable inflation factor ≥ 2.0.  General linear model (GLM; 

AIC=1533.0) and general linear mixed model (GLMM; AIC=1492.7) were compared using AIC, 

indicating that a mixed model structure was needed to evaluate the influence of neighborhood and local 
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landscape conditions on total species richness (Table 2).  When differing random effects structure were 

evaluated, the model with a random slope (SLW PC2) and intercept (HUC 12) was selected as the top 

model (AIC=1490.35; Table 2).  The stepwise selection of the fixed effects structure produced a top 

model (AIC=1478.98), which included elevation, drainage area, and SLW PC1 and PC2 after accounting 

for differing relationships of SLW PC2 within each HUC 12 watershed (Table 3).  The results of the final 

model indicate that total species richness increases with drainage area and SLW PC2 (mining-

development gradient).  However, there were negative responses of species richness with mean elevation 

and SLW PC1 (development gradient).  These results indicate that increases in mining intensity and 

elevation, leads to a decrease in overall species richness while increases in residential development and 

drainage area leads to increases in species richness.    

The comparison of the generalized least squares (AIC=451.05) and linear mixed effects model 

(AIC=452.65) for Shannon-Weaver Diversity showed no significant difference (p=0.5233; Table 2) 

between model structures.  Even though there was no statistical difference between the GLS and LME, 

we chose to continue the analysis of Shannon-Weaver Diversity using a linear mixed effects model due to 

the hierarchical structure of the sampling design.  The optimal random effects structure for this analysis 

was a random intercept model with HUC 12 as the grouping variable (Table 2).  The top final model 

(AIC=408.48) consisted of mean elevation, drainage area, SLW PC1 and PC2, and neighborhood PC2 as 

fixed effects (Table 3).  Shannon-Weaver diversity was found to decrease with increases in mean 

elevation and SLW PC1 (residential development gradient).  However, increases in diversity were seen 

with increases in drainage area, SLW PC2 (mining disturbance gradient), neighborhood PC2 (mining and 

residential development gradient).  These results indicate that increases in local mining intensity and 

elevation, leads to a decrease in overall species diversity while increases in local residential development 

and drainage area leads to increases in species diversity.  In addition, increases in neighborhood-level 

mining and residential development leads to decreases in species diversity.          
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West Virginia Index of Biotic Integrity scores were initially evaluated with a generalized least squares 

regression and compared to a random intercept linear mixed model using Analysis of Variance 

(ANOVA).  The ANOVA results indicate that the linear mixed model was significantly different 

(p=0.0114; Table 2) from the generalized least squares model.  These results signify that the assumption 

of independence is violated for the GLS and a more complex model (i.e., linear mixed models) was 

needed to help account for the presence of spatial structure.  The results of model comparisons indicate 

that a model with a random intercept of the HUC 12 watershed while allowing for different SLW PC2 

slopes within each HUC 12 performed the best of the models evaluated (Table 2).  The final model for 

WVIBI scores indicate that SLW PC1 and PC2 and mean elevation are the main driving factors when 

differing relationships of SLWPC2 within each HUC 12 are accounted for (Table 3).  Specifically, IBI 

scores were found to decrease with increases in both elevation and SLWPC1 while increases were 

observed with increases in SLWPC2.  These results indicate that increases in local mining intensity and 

elevation, leads to a decrease in IBI scores while increases in local residential development leads to 

increases in IBI scores.   

A marginal difference was observed between the generalized least squares and linear mixed effects 

models when the relationship of local and neighborhood landscape conditions were evaluated for the 

proportion of tolerant individuals (p=0.053; Table 2).  The optimal random effects structure  was 

determined to be a random intercept model with HUC 12 as the grouping factor (AIC=308.83; Table 2).  

The only variable selected as a fixed effect was drainage area.  An increase in drainage area resulted in a 

decrease in the proportion of tolerant individuals (Table 3).  These results indicate that there was no local 

or neighborhood landscape influences on the distribution and proportion of tolerant individuals in this 

region.  In addition, the marginal difference between GLM and LME models may indicate that there is no 

hierarchical structure in terms of the proportion of tolerant individuals within this region.   

4.0 Discussion     
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Stream fish communities within Ohio Central Appalachian watersheds are structured by a combination of 

natural and anthropogenic landscape factors.  Patterns in fish assemblage structure were partially 

dependent on the type of biological data used.  Taxonomic and diversity measures were primarily driven 

by local landscape conditions in addition to natural variables.  The multimetric index (WV IBI) was 

controlled by similar processes, except the effects of drainage area were removed.  Finally, no local or 

regional anthropogenic landscape variables were determined to impact the proportion of tolerant 

individuals.    For this analysis we recognized and accounted for 2 spatial scales apparent in riverine 

networks while evaluating the influence of both natural and anthropogenic impacts on the structure of fish 

communities (Swan and Brown, 2011).   

The mixed effects modeling approach was better suited for our data due to the hierarchical structure of the 

landscape variables. The spatial autocorrelation present in some of the response variables could have 

resulted in statistical bias using a generalized linear model approach.  Using a mixed effects structure, we 

accepted that the dynamics of local fish community structure is a function of larger landscape processes, 

including dispersal, resulting in a nested sampling design.  For all models generated, the same random 

intercept grouping factor (HUC 12 watershed) was used.  In this analysis, it is likely that sites within the 

same HUC 12 watershed are more similar, either due to spatial autocorrelation or due to the overall 

condition of the watershed.  The use of a grouping variable allowed us to account for multi-level structure 

in the fish community data and avoids an assumption violation that sampling locations are independent of 

one another (Wagner et al., 2006).   

The primary source of land-use change in the central Appalachians is a result of mountain-top mining 

(Bernhardt and Palmer, 2011).  Other studies conducted in this region have also demonstrated a decrease 

in taxonomic and functional species richness (Hitt and Chambers, 2014), species occurrence (Hopkins 

and Roush, 2013), community trait assemblage diversity (Daniel et al., 2014), and biotic conditions of 

fish (USEPA, 2003) and invertebrate communities (Merriam et al., 2013) in streams receiving run-off 

from surface mining operations.  Based on the models generated, we can expect nearly a four point 
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decrease in WV IBI scores with increases in the PC axis associated with surface mining activities.  

Similarly, we can also expect slight decreases in both species richness and diversity.  However, in this 

region we also see an inflation of WV IBI scores, species richness, and diversity as a result of increases in 

residential development.  Residential development within the Ohio Central Appalachian region is 

confined to narrow floodplains, resulting in a close association with streams, leaving little room for the 

proper installation of septic systems (Cook et al., 2013).  The increased nutrients associated with 

residential development maybe augmenting aquatic systems, ultimately restructuring the food quality and 

quantity available to stream fishes (Wang et al., 2007).  In a region dominated by current and legacy 

surface mining activities it is possible that the shift to a primary production dominated system with 

influxes of excess nutrients can lead to an inflation of fish production and potentially provide refuge from 

other surface mining related stressors.           

Our results add to the growing literature evaluating the importance of natural landscape controls on fish 

community structure.  The majority of the response variables analyzed exhibited responses to at least one 

natural landscape variable (drainage area, mean elevation, or swim distance). The influence of drainage 

area on fish community structure has been well documented (Angermeier and Schlosser, 1989; Osborne 

and Wiley, 1992). The WVIBI model was the only model that did not include drainage area in the fixed 

effects structure.  This was to be expected since the WVIBI was developed with the effects of drainage 

area removed (Chapter 1).  It is likely that elevation in this study acted as a surrogate for stream 

temperature in which higher elevation generally indicates cooler stream temperatures.  Elevation was an 

important predictor variable in three (Richness, Shannon-Weaver diversity, and WVIBI) of the models 

evaluated.  Decreases in species richness and Shannon-Weaver diversity correspond to current literature 

regarding longitudinal community changes with elevation and stream temperatures (Rahel and Hubert, 

1991).  The shift from a cold water species dominated community to a minnow-sucker dominated 

community over a longitudinal elevation gradient can happen over relatively short distances and are 

mainly due to the addition of new species downstream (Rahel and Hubert, 1991).  The WV IBI was 
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developed exclusively for warm water streams and even though strictly cold water streams were not 

evaluated in this study, an elevation effect was still present.      

Dispersal of fishes from adjacent streams, due to mass effects, can have major implications on 

biomonitoring programs by altering the local assemblage structure. Specifically, immigrating fishes can 

bias biomonitoring assessments towards false identification of local degradation or failure to detect 

degradation due to inflation of local species (Hitt and Angermeier, 2011). Swim distance (i.e., distance to 

a drainage area of ≥200km
2
) was evaluated as a predictor variable during model development in an 

attempt to account for the influence of stream position and potential mass effects. However, this variable 

was not retained in any of the models evaluated.  The use of random effects models accounted for some of 

the spatial autocorrelation present in our response variables.  More importantly, using HUC 12 watershed 

as a grouping factor we built the importance of spatial structure into our models by indicating that sites 

within the same HUC 12 watershed may be more similar.     

Pease et al. (2015) examined the functional-trait structure of stream fish assemblages and found that local 

reach and catchment scale environmental variables were significantly associated with functional trait 

composition.  They also found strong larger scale ecoregional controls on both taxonomic and functional 

assemblage structure.  However, overall environmental disturbance and land-use patterns were ecoregion 

dependent making it difficult to separate historical controls on fish distributions from current 

environmental controls.  In the study presented here, broad scale physiographic controls on fish 

assemblage structure were already taken into consideration by using one biomonitoring region (Ohio 

Central Appalachians) which was determined by fish assemblage similarity (Chapter 1).  After accounting 

for larger regional controls and recognizing the importance of the hierarchical structure of stream 

networks (Frissell et al., 1986), the numerical landscape characteristics of the neighborhood scale was 

found to be unimportant in structuring the majority of the response variables.      
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The lack of local and neighborhood level controls on the proportion of tolerant individuals could point to 

the increased homogenization of tolerant fish species within the Ohio Central Appalachian region.  

Homogenization of ecosystems occurs when increased anthropogenic impacts decrease habitat suitability 

for a large number of specialized species while simultaneously increasing suitability for a small number 

of generalist species (Smart et al., 2006).  Typically, biotic homogenization is reserved for evaluating the 

colonization and spread of exotic species over native species.  The Ohio Central Appalachian region, and 

West Virginia as a whole, has few exotic species. Instead the expansion in the distribution of tolerant 

native species is becoming more prevalent.  The evaluation of long-term trends of fish distribution will 

need to be conducted in order to determine the extent of homogenization of fish communities in highly 

impacted regions of West Virginia.     
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Tables 

Table 1: Principal Components Analysis results for segment level watershed (SLW) and HUC12 

Neighborhood (Neigh.) scales conducted with cumulative landscape variables.  All landscape variables 

were transformed prior to analysis in order to approximate normality. Density values were log10(x+1) 

transformed and proportional (%) variables were arc-sine square root transformed. Bold numbers indicate 

a significant (≥|0.40|) contribution to Principal Component axis. 

Components SLW PC1 SLW PC2 Neigh. PC1 Neigh. PC2 

Std. Deviation 1.738 1.244 1.904 1.456 

Prop. Var. 0.336 0.172 0.403 0.236 

Cum. Prop. 0.336 0.508 0.403 0.638 

Structure Density -0.751 0.010 -0.580 -0.501 

NPDES Permit Density -0.772 0.144 -0.872 -0.242 

SM Permit Density 0.087 -0.672 0.480 -0.671 

UM Permit Density 0.039 -0.509 0.416 -0.638 

Septic/Sewage Density -0.755 0.198 -0.849 -0.122 

% Development -0.594 -0.415 -0.289 -0.636 

% Grassland -0.716 -0.148 -0.613 -0.335 

% Agriculture -0.639 -0.085 -0.815 0.079 

% SM 0.081 -0.759 0.531 -0.645 
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Table 2: Model construction results from the step-wise selection process outlined by Zuur et al., 2009.  

Response variables were initially compared using generalized least squares (GLS) or generalized linear 

models (GLM; Richness) and linear mixed effects models (LME) or generalized linear mixed models 

(GLMM; Richness) using Analysis of Variance (ANOVA) and evaluating AIC values. The random 

structure of each model (random str.) was evaluated using a full model and varying random slope 

components, all with the same random intercept.  The best random structure was determined using AIC.  

Fixed effect structure (fixed str.) was determined using a deletion test until only significant variables 

remained.  These models were then compared using ANOVA and AIC values.   

Response Variable Model Structure df AIC 

Richness GLM Full model
A
 249 1533 

 GLMM  Full model + HUC12 14 1492.7 

 GLMM (random str.) Full model + HUC12 14 1494.04 

  +Neigh. PC1|HUC12 -- -- 

  +Neigh. PC2|HUC12 15 1496.04 

  +SLW PC1|HUC12 -- -- 

  +SLW PC2|HUC12 15 1490.35 

 GLMM (fixed str.) -Interactions 10 1483.81 

  -Neigh. PC2 9 1481.98 

  -Swim Distance 8 1480.17 

  -Neigh. PC1 7 1478.98 

S. W. Diversity GLS Full Model 250 451.05 

 LME Full Model + HUC12 14 452.65 

 LME (random str.) Full Model + HUC12 15 477.84 

  +Neigh. PC1|HUC12 17 481.61 

  +Neigh. PC2|HUC12 17 481.84 

  +SLW PC1|HUC12 -- -- 

  +SLW PC2|HUC12 -- -- 

 LME (fixed str.) -Interactions 10 369.20 

  -Swim Distance 9 367.47 

  -Neigh. PC1 8 367.44 

WV IBI Scores GLS* (L ratio=6.4; p=0.0114) Full Model 250 2208.59 

 LME Full Model + HUC12 14 2204.19 

 LME (random str.) Full Model + HUC12 15 2221.61 

  +Neigh. PC1|HUC12 17 2225.14 

  +Neigh. PC2|HUC12 17 2224.88 

  +SLW PC1|HUC12 17 2219.68 
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  +SLW PC2|HUC12 17 2218.18 

 LME (fixed str.) -Interactions 12 2210.23 

  -Neigh. PC2 16 2213.04 

  -Drainage Area 15 2212.38 

  -Neigh. PC1 14 2210.38 

  -Swim Distance 13 2208.38 

% Tolerant Ind. GLS* (L ratio=3.74; p=0.053) Full Model 250 284.44 

 LME Full Model + HUC12 14 282.70 

 LME (random str.) Full Model + HUC12 15 308.83 

  +Neigh. PC1|HUC12 17 312.83 

  +Neigh. PC2|HUC12 17 312.83 

  +SLW PC1|HUC12 17 312.64 

  +SLW PC2|HUC12 17 310.87 

 LME (fixed str.) -Interactions 10 191.02 

  -Neigh. PC2 9 189.02 

  -Elevation 8 187.02 

  -Neigh. PC1 7 185.08 

  -SLW PC1 6 184.22 

  -SLW PC2 5 183.05 

  -Swim Distance 4 182.73 

 

  

A
Full model structure: SwimDist_KM*MEAN+log10(CUMU_DA_KM2)+SLW PC1*SLW PC2+Neigh. 

PC1*Neigh. PC2+ SLW PC2* Neigh. PC1+ SLW PC2* Neigh. PC2+ SLW PC1* Neigh. PC1+ SLW PC1* 

Neigh. PC2 

*Indicates significant (p<0.05) or marginal (p<0.10) differences between model structures 
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Table 3: Final models selected using the step-wise approach outlined by Zuur et al., 2009.  Species 

richness was evaluated with a generalized linear mixed model (GLMM) while other variables were 

evaluated with a linear mixed model.  The test statistic (Statistic) for species richness was a z-value while 

the others used a t-value.  Significance of each variables was determined using p<0.05.   

A 
Variable was arc-sine square root transformed prior to analysis. 

  

Response Variable Coefficient SE DF Statistic P 

Species Richness Intercept 1.550 0.178 -- 8.70 0.0000 

 Elevation 0.001 0.000 -- -5.52 0.0000 

 Drainage Area 0.938 0.064 -- 14.69 0.0000 

 SLW PC1 -0.092 0.028 -- -3.27 0.0000 

 SLW PC2 0.242 0.053 -- 4.59 0.0000 

S-W Diversity Intercept 0.981 0.177 166 5.56 0.0000 

 Elevation -0.001 0.000 166 -4.98 0.0000 

 Drainage Area 0.767 0.070 166 10.95 0.0000 

 SLW PC1 -0.112 0.031 166 -3.59 0.0004 

 SLW PC2 0.130 0.040 166 3.27 0.0013 

 Neigh. PC 2 0.057 0.029 78 1.98 0.0513 

WV IBI Intercept 71.457 5.544 167 12.89 0.0000 

 Elevation -0.020 0.004 167 -4.96 0.0000 

 SLW PC1 -3.977 1.348 167 -2.95 0.0036 

 SLW PC2 6.510 2.072 167 3.14 0.0020 

% Tolerant Ind.
A
 Intercept 1.509 0.078 169 19.44 0.0000 

 Drainage Area -0.306 0.048 169 -6.38 0.0000 
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Figures 

 

Figure 1: Extent of surface mining permit boundaries (Permit Boundary) and residential 

structures (Structures) in the Ohio Central Appalachian (Ohio CA) biomonitoring region 

in West Virginia. 
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Figure 2: Fish sampling locations with loadings from segment level watershed (Segment Level) and 

HUC12 (Neighborhood) level Principal Components Analyses.  Landscape variables were considered as 

significant contributors to the PC axes if loading ≥|0.40|.  
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Figure 3:  Correlogram of the residuals from the generalized linear model for species richness. 
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Figure 4:  Correlograms comparing the residuals of the generalized least squares (GLS) and linear mixed 

effects models (LME) for Shannon-Weaver diversity.  Both correlograms indicate no spatial 

autocorrelation in diversity after the models were applied. 
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Figure 5: Correlograms comparing the residuals of the generalized least squares (GLS) and linear mixed 

effects models (LME) for WV IBI scores.  The GLS correlogram indicates small spatial autocorrelation 

after the model was applied.  The same spatial autocorrelation is not present in the LME correlogram. 
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Figure 6: Correlograms comparing the residuals of the generalized least squares (GLS) and linear mixed 

effects models (LME) for the proportion of tolerant individuals.  The GLS correlogram indicates small 

spatial autocorrelation after the model was applied.  The same spatial autocorrelation is not present in the 

LME correlogram. 
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