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ABSTRACT

Pulsar Populations in the Galaxy
and

Magellanic Clouds

Joshua P. Ridley

Pulsars are great tools for studying the Universe. From energetics to radio
emission, many of the properties of pulsars can be used to understand other physical
phenomena occurring throughout the Universe today. This dissertation examines
pulsars and their properties through the use of computer simulations, describes the
basic pulsar search procedure, and presents the results of a search for millisecond
pulsars (MSPs) and fast radio transients in the Small Magellanic Cloud (SMC).

Using Monte Carlo simulations, a working model of normal pulsars that accu-
rately represents the observed population was created. These simulations allow for
changes to be made to the initial spin period, luminosity, braking index, and mag-
netic field distributions (among others), and the resulting model can be compared to
the observed sample of pulsars. These simulations have shown that the luminosity
must have some dependence on the spin period and that the braking index has very
little effect on the overall pulsar population. Also, it was found to be not possible
to produce a self-consistent model of the pulsar population that includes magnetic
axis alignment in any of the currently known spin-down laws.

A practical use of these models is the prediction of the results of future pulsar
surveys. The model populations can be used to determine the number of pulsars that
could be found in a similar survey done with a real telescope. For the purposes of this
dissertation, the pulsar population of both the Large and Small Magellanic Clouds
(LMC and SMC) were simulated and then searched for pulsars. After accounting
for the low escape velocities of both Clouds, the estimated birthrate of pulsars in
either Cloud is 0.5–1.0 pulsars per century, and the estimated numbers of normal
pulsars are (1.79 ± 0.20) × 104 and (1.09 ± 0.16) × 104 for the LMC and SMC,
respectively. For the MSP populations, upper limits of 15,000 and 23,000 for the
LMC and SMC were obtained. The SMC simulations predicted that up to three
MSPs could be detected in a new, high-resolution survey performed at the Parkes
Telescope in Parkes, Australia.

The pulsar search procedure is mostly computerized and is very data inten-
sive. Fourier transforms are utilized in the search for periodic signals, and matched
filtering is used to search for single bursts of radio emission. Acceleration searches
attempt to find pulsars that are locked in binary orbits with other stars in which
the pulsars’ accelerations significantly affect the timing of the signals that telescopes



on the Earth detect. These search techniques were applied to a survey for pulsars
in the SMC that was executed at the Parkes Telescope in Parkes, Australia. This
survey has, to date, redetected three known pulsars, discovered three potential MSP
candidates, and placed an upper limit of 15 bursting sources in the SMC. The results
of this survey have now led to a similar survey of the Large Magellanic Cloud that
is currently in progress.
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Chapter 1

Introduction

1.1 A Brief History of Pulsars

Pulsars were accidentally discovered by Jocelyn Bell in 1967 (Hewish et al.,

1968). In a search for quasars in the radio portion of the electromagnetic spectrum

(centered at a frequency of 81.5 MHz with a bandwidth of 1 MHz), a periodic

signal, occurring every 1.337 seconds, was detected. At first, they were dismissed

as radio interference generated somewhere on the Earth. However, when the signals

disappeared on a daily basis and then reappeared 4 minutes earlier the next day, it

was determined that they must be of celestial origin.

The simplest model to explain the dynamics of a pulsar is the rotating neutron

star model. Born in supernovae, neutron stars (Baade & Zwicky, 1934) with very

high magnetic fields (> 108 G) and very short (< 12 s) spin periods are identified as

pulsars. Because the spin and magnetic field axes are misaligned, pulses of radiation

emitted at the spin frequency are observed, similar to how a lighthouse shines a beam

of light (see Figure 1.1).

Pulsars are named after their position in the sky. The pulsar’s right ascension,

in hours and minutes, and declination, in degrees and minutes, determine the pul-

sar’s name. Bell’s pulsar, for example, has the name J1921+1919, meaning that its

RA is 19h 21m and its declination is +19◦ 19′. Due to the precession and nutation

1



Figure 1.1: The misalignment of the rotation and magnetic field axes cause pulses
of emission to be observed each time the radio beam passes through the line of
sight of the observer. The radius of the light cylinder is defined by the point at
which magnetic field lines co-rotating with the pulsar are moving at the speed of
light. From this, closed field lines are magnetic field lines that close within the
light cylinder radius, while open field lines are ones that do not. For more details
regarding this model, see Lorimer & Kramer (2005).
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of Earth’s spin axis, apparent celestial positions are always changing. Therefore,

these positions refer to one of two different epochs, or reference dates. A letter “B”,

short for Besselian, in front of the position means that January 1, 1950 was used as

the epoch reference position, while a letter “J”, for Julian, signifies the position as

of January 1, 2000.

These pulsars can be broken into two main subcategories: millisecond pul-

sars (MSPs) and normal pulsars. Normal pulsars typically have higher magnetic

fields (∼ 1012 G) and spin periods from 20 ms to 10 s. These pulsars are usually

born in supernovae, slow down over time, and eventually cease their radio emission.

MSPs have slightly lower magnetic fields (108 − 109 G) and spin periods less than

20 ms. They are often found in binary systems with white dwarfs. They attain

their high spin rates and low magnetic fields due to the accretion of matter from its

companion star, in a process known as recycling (Bhattacharya & van den Heuvel,

1991). An additional class of neutron stars also exhibits similar behavior to those of

pulsars. Magnetars (Duncan & Thompson, 1992), or neutron stars with very high

magnetic fields (∼ 1015 G), are not as well understood as regular pulsars, mostly

because there are only 16 of them known today1. All told, there are currently about

1800 known pulsars, cataloged in the Australia Telescope National Facility (ATNF)

Pulsar Database2 (Manchester et al., 2005).

1See the McGill Online Catalog at http://www.physics.mcgill.ca/ pulsar/magnetar/main.html.
2Available at http://www.atnf.csiro.au/research/pulsar/psrcat.
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1.2 Pulsars Unfurled

There are many properties of pulsars that can be observed. For a detailed

description, see Lorimer & Kramer (2005). A few of the most relevant ones for this

thesis are discussed in the following sections.

1.2.1 Rotation Rates

Since pulsars rotate with a spin period P , an angular frequency of rotation,

Ω, can be measured. As will be discussed later, pulsars slow down over time, which

means that Ω will decrease. Pulsar timing observations measure the phase of the

pulse, φ(t), which can be modeled, in the simplest case, via a Taylor expansion of

pulse phase at time t as follows:

φ(t) = φ(t0) + Ω0(t − t0) +
1

2
Ω̇(t − t0)

2 + ... , (1.1)

where t0 is the initial time, Ω0 is the initial frequency measured at t = t0, and Ω̇ is

the time derivative of Ω. Frequently, these rotation rates are presented as the spin

period and the period derivative (Ṗ ), where Ω = 2π/P and Ω̇ = −2πṖ /P 2. Values

are between 1.39 ms and 11.8 s for P and 10−21 to 10−10 s/s for Ṗ .

The standard method of classifying pulsars is by plotting P and Ṗ on what is

known as the P − Ṗ diagram (see Figure 1.2). The normal pulsar population takes

up the majority of the diagram, the MSPs can be found in the lower left corner, and

magnetars are found in the upper right corner. Nearly 80% of all MSPs are found

4



Figure 1.2: A collection of known pulsars plotted on the P − Ṗ diagram. The period
is plotted with units of seconds, while Ṗ has units of s/s. The blue filled circles
represent pulsars in binary systems, while the green triangles are magnetars. Short
dotted lines represent lines of constant age, medium dashed lines show constant Ė,
and long dashed lines are lines of constant magnetic field.

5



in binary star systems, however, less than 1% of all normal pulsars have a binary

companion (Lorimer & Kramer, 2005).

1.2.2 Rotational Kinetic Energy

Pulsars have a substantial amount of rotational kinetic energy (Erot = 1
2
IΩ2)

due to their large moment of inertia and their very fast rotation rate, Ω. If the

pulsar is treated as a uniform sphere, then I = 2
5
MR2, where M is the mass of the

pulsar and R is its radius. Assuming canonical values of M = 1.4 M⊙ (Thorsett

& Chakrabarty, 1999) and R = 10 km (Lattimer & Prakash, 2001), the moment of

inertia can be estimated as 1045 g cm2, and thus Erot of a 1 s pulsar would be nearly

1046 ergs.

As pulsars slow down, they lose some of this rotational kinetic energy:

Ė = − d

dt
(Erot) = −IΩΩ̇. (1.2)

If the spin frequencies are converted to P and Ṗ and the above value of I is used,

this loss of energy can be represented as:

Ė = 3.95 × 1031 erg s−1

(

Ṗ

10−15

)

(

P

1 s

)−3

. (1.3)

As seen in Figure 1.2, most of the known pulsars have an Ė between 1030 and 1036

erg s−1. The Sun has a luminosity of 3.83 × 1033 erg s−1, meaning that the Sun’s

rate of energy loss is similar to that of a typical pulsar.

6



The lower Ė value of 1030 erg s−1 is very close to what is known as the pulsar

death line (Chen & Ruderman, 1993). Very few pulsars are found on the P − Ṗ

diagram below this line, and, theoretically, this is the point at which a pulsar ceases

to have radio emission. The emission process of pulsars is not entirely understood.

Pair production (creation of an electron and a positron from a photon) caused by

a rotating magnetic field is considered to be a possible means of generating radio

emission. The pulsar’s “death” occurs when it no longer spins fast enough to rotate

the magnetic field at a speed in which it is possible for pair production to occur.

1.2.3 Magnetic Field

The pulsar’s magnetic field strength, B, is very large when compared to the

Earth or Sun. If the loss of rotational kinetic energy is equated to the power radiated

from a magnetic dipole, Ostriker & Gunn (1969) found that the magnetic field at

the surface of the pulsar is

Bs =

√

3c3

8π2

I

R6sin2 χ
P Ṗ , (1.4)

where χ is the angle between the spin axis and the magnetic dipole axis, and c is

the speed of light. Assuming I = 1045 g cm2 and setting χ = 90◦, Manchester &

Taylor (1977) obtain a surface magnetic field of

B = 3.2 × 1019 G
√

PṖ , (1.5)
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where P is measured in seconds and Ṗ has units of s/s. Again, Figure 1.2 shows that

nearly all of the normal pulsars have a magnetic field between 1011 G and 1013 G.

MSPs have considerably weaker magnetic fields, while the magnetars have much

stronger fields.

1.2.4 Braking Index and Spin-down

The rotational frequency, ν, and frequency derivative, ν̇, can be related by a

more general model for the loss of rotational kinetic energy as follows:

ν̇ = −Kνn. (1.6)

Here, n is defined to be the braking index of the pulsar and K is a constant (Lorimer

& Kramer, 2005). The magnetic dipole model discussed above leads to a value of 3

for n. If Equation 1.6 is differentiated, the braking index can be represented by

n =
νν̈

ν̇2
. (1.7)

Typically, the braking index is calculated by timing the pulsar (i.e. measuring ν, ν̇,

and ν̈) and the six known pulsars with measured braking indices have values ranging

from 1.4 to 2.84 (see Livingstone et al. (2006) and Weltevrede et al. (2010)). The

major challenge of measuring a braking index is obtaining ν̈. Measuring the small

deviations of ν̈ require very spin high frequencies which explains why only young,

rapidly spinning pulsars have measured braking indices.
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1.2.5 Evolution on the P − Ṗ Diagram

The braking index dictates how quickly the pulsar moves across the P − Ṗ

diagram. As seen in Figure 1.3, the path a pulsar takes across the diagram depends

greatly on the braking index of the pulsar. A pulsar with a lower braking index will

generally attain a longer period before reaching the death line.

1.2.6 Dispersion Measure

The interstellar medium (ISM) significantly affects pulsar signals. Intuitively,

the more material through which the signal must propagate, the slower the signal

will arrive. Also affecting this is the fact that a larger distance generally means

more material through which to travel. This second effect can be represented by a

quantity known as the Dispersion Measure (DM). The DM can be defined as the

integrated column density of free electrons along the line of sight to the pulsar:

DM =

∫ d

0

ne dl, (1.8)

where d is the distance to the pulsar and ne is the electron density along the line of

sight to the pulsar. The DM is measured in units of pc cm−3 and can be calculated

by measuring the pulse arrival times at two different frequencies. This time delay,

∆t, can be represented as

∆t = 4.15 × 106 ms ×
[

(

f1

MHz

)−2

−
(

f2

MHz

)−2
]

×
(

DM

pc cm−3

)

, (1.9)
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Figure 1.3: Two evolutionary tracks across the P−Ṗ diagram are shown for a pulsar
with an initial period of 100 ms and Ṗ of 10−13 s/s and braking indices of 2.0 and
3.0. A lower braking index results in a greater “distance” traveled and allows the
pulsar to reach a longer period before ceasing radio emission. The death line is very
closely represented by a line of Ė = 1030 erg s−1.
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where f1 and f2 are the lower and upper frequencies. If the DM is known, then

Equation 1.8 can be numerically integrated to determine the distance to the pulsar.

Figure 1.4 shows how the electron density varies throughout the Galaxy as well

as how the currently known pulsars are positioned. As can be seen in Figure 1.4,

pulsars located near the center of the Galaxy are usually found by high frequency

surveys rather than low frequency ones. This is because the DM towards the center

of the Galaxy is usually quite high. The high DM, coupled with low frequency

observations, increases the time delay found in Equation 1.9 more than if a high

frequency observation is used, which makes the pulsar harder to detect.

1.2.7 Scattering

In addition to pulse dispersion, scattering also affects a pulsar’s detectability.

As a pulse travels through the interstellar medium, many of the waves become

scattered and therefore will have a different path length from the pulsar to the

detector. The delayed arrival times of these scattered waves result in the broadening

of the final pulse shape, many times with a scattering tail at the end of the pulse

(see Figure 1.5).

Generally, pulsars with high DMs are more likely to be affected by scattering.

In addition, the scattering time, τs, is proportional to f−4, meaning that scattering

is more severe at very low frequencies (Lorimer & Kramer, 2005).
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Figure 1.4: An X−Y plot of all pulsars in the plane of the Galaxy, with the Sun
circled and an X marking the center of the Galaxy, overlaid on the distribution of
electrons throughout the Galaxy (Lorimer & Kramer, 2005). Dark points are pulsars
that were discovered in low frequency (430 MHz) surveys, while the lighter points
are pulsars found in high frequency (1400 MHz) surveys.
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Figure 1.5: Observations at low frequencies show an exponential tail (shown by the
solid lines) in PSR B1831−03 due to the effects of scattering (Löhmer et al., 2004).
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1.2.8 Luminosity and Flux Density

One inherent property of a pulsar that can be indirectly observed is its radio

luminosity, L, or brightness, which is related to the energy loss of the pulsar. By

measuring the flux density, S, with a radio telescope, the luminosity can then be

calculated by

L = Sd2, (1.10)

where d is the distance to the pulsar. As seen by Equation 1.10, the relationship

between a pulsar’s luminosity and the observed flux obeys the inverse square law.

In general, the luminosity is defined as L = ωSd2, where ω =
∫

beam

dΩ is the solid

angle covered by the emission of the pulsar’s radio beam, with ω = 4π for isotropic

radiation and ω = 0 for no emission. Since the beam size of a pulsar’s radio emission

varies and is largely unknown, the factor of ω is usually omitted and this “pseudo-

luminosity” creates a standard reference point so that all pulsars can be easily

compared to each other, regardless of beam size.

Flux densities measured at 1400 MHz range from 3.4 µJy to 1.1 Jy, where

the unit of flux density is the Jansky (Jy), and 1 Jy = 10−26 W m−2 Hz−1. The

mean of the log of the luminosities (measured at a center frequency of 1400 MHz)

of all known pulsars is 1.21, which corresponds to a luminosity of 16.33 mJy kpc2,

based on pulsars found in the ATNF Pulsar Database. A statistical study of the

distances to and fluxes of all pulsars that have not crossed the death line (and hence

still have radio emission) has shown that pulsar luminosities are best represented

by a lognormal distribution with mean <log L >= −1.1 (equivalent to a luminosity
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of 0.07 mJy kpc2) for the normal pulsar population (Faucher-Giguère & Kaspi,

2006). As telescopes become more sensitive to pulsars with lower luminosities, the

average value of 16.33 mJy kpc2 is expected to approach the theoretical value of

0.07 mJy kpc2. Figure 1.6 shows a histogram of the observed 1400 MHz luminosities

plotted along with the mean luminosity distribution found by Faucher-Giguère &

Kaspi (2006).

1.3 Outline of Dissertation

The goals of this dissertation are to produce a working model of the normal

and MSP pulsar populations via computer simulations, predict the results of future

pulsar surveys, and present the results of one of these new pulsar surveys. With

the help of theoretical models relating to many of the previously mentioned pulsar

parameters, these computer simulations allow for the studying of pulsars in ways

that are otherwise unfeasible. The final survey for pulsars in the Small Magellanic

Cloud successfully ties together the simulated and predicted models with the actual

search results.

Chapter 2 shows the results of computer simulations of model pulsar popu-

lations. In these simulations, the various pulsar parameters mentioned above are

manipulated using Monte Carlo simulations to produce a sample distribution of

pulsars that mirrors the observed pulsar population. The code used for these simu-

lations is publically available (see Appendix A).

Chapter 3 takes this code and applies it to specific surveys of the Large and
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Figure 1.6: A histogram of the luminosities of known pulsars is shown along with
the normal distribution of luminosities (solid line) obtained from Faucher-Giguère
& Kaspi (2006). The histogram has mean <log L >= 1.21 (L = 16.33 mJy kpc2),
and the normal distribution is represented by a lognormal distribution with mean
<log L >= −1.1 (L = 0.07 mJy kpc2).

16



Small Magellanic Clouds (LMC and SMC). Here, past surveys were modeled and

an estimated number of normal pulsars was calculated for both the LMC and SMC.

After reproducing the results for the normal pulsars, the code was used to calculate

an upper limit on the number of MSPs that could be present. The results from

those simulations led to a survey of the SMC that was performed with the Parkes

Radio Telescope in 2009.

Chapter 4 introduces pulsar searching and search techniques and provides

motivation of why pulsars should be the focus of radio surveys. The basic search

method, including limitations of various instruments, will be discussed. Also, various

types of searches, optimized for the detection of period sources, single pulses, and

pulsars in binary systems will be examined in detail.

Chapter 5 presents the results of a radio survey of the SMC. This survey was

performed with the goals of detecting the first MSP in either the LMC or SMC and

to find giant pulse emitting sources. Observations, data processing, and other areas

involved with the survey are discussed.

The main conclusions from this work are presented in Chapter 6. Finally,

there are two appendices included. Appendix A shows the features of a website

that was designed to model previous and future surveys and compare various pulsar

populations. Appendix B presents the results of a search that was performed with

the Green Bank Telescope of the supernova remnant G1.9+0.3 with the goal of

detecting the youngest pulsar in the Galaxy.
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Chapter 2

Isolated Pulsar Spin Evolution on the P − Ṗ Diagram

This chapter was originally published as a refereed paper in the Monthly No-

tices of the Royal Astronomical Society (MNRAS) by J. P. Ridley and D. R. Lorimer

in April of 2010. Minor wording changes from the original accepted paper have been

made where appropriate.

2.1 Introduction

The statistical properties of the radio pulsar population provide valuable con-

straints on the birth properties, evolution and radio lifetimes of neutron stars and

have been the subject of many studies over the years (see, e.g., Gunn & Ostriker,

1970; Taylor & Manchester, 1977; Lyne et al., 1985; Narayan & Ostriker, 1990; Bhat-

tacharya et al., 1992; Johnston, 1994; Lorimer et al., 1997; Hartman et al., 1997;

Arzoumanian et al., 2002; Gonthier et al., 2002; Faucher-Giguère & Kaspi, 2006).

A key diagram to reproduce is the logarithmic plot of pulsar periods, P , and their

rates of slowdown, Ṗ , usually referred to as the P–Ṗ diagram. The many factors

that affect the distribution of pulsars on the P–Ṗ diagram include the evolution of

pulsars’ spin-down, luminosity, age, magnetic field, beaming, and the angle between

the magnetic field and the rotation axis. While each parameter individually affects

how pulsars evolve across the diagram, covariances between multiple parameters
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also influence the results.

The goal of this work is to compare two pulsar spin-down models using Monte

Carlo simulations of the Galactic young pulsar population. The first model that

is considered treats the pulsar as a rotating magnetic dipole from which there is a

simple relationship between the braking torque and the magnetic field (Gold, 1968;

Pacini, 1968). This model has been used extensively in pulsar population studies

in the past (see, e.g. Lyne et al., 1985; Narayan & Ostriker, 1990; Bhattacharya

et al., 1992) and has most recently been implemented by Faucher-Giguère & Kaspi

(2006), hereafter FK06. Here, a direct comparison of their results with new computer

simulations is carried out.

The other model considered, by Contopoulos & Spitkovsky (2006), hereafter

CS06, treats the pulsar as a combination of a misaligned magnetic dipole rotating

in vacuum and an aligned magnetic dipole rotating in an atmosphere with ideal

magnetohydrodynamic conditions. In addition to implementing these two models

with parameters as described in detail in FK06 and CS06, the effects of changing one

or more of the assumptions made by these authors are investigated in an attempt to

obtain a more accurate interpretation of the relationships between these parameters

and the resulting P–Ṗ diagram.

As described in Section 2.2, a computer simulation package has been developed

which implements the above models and allows the distribution of pulsars in the

Galaxy to be simulated and the individual properties of each one to be changed.

By “observing” this population with accurate models of completed pulsar surveys

(see Section 2.3), a simulated sample of pulsars can be created and its properties
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can be compared to those of the real observed sample. In Section 2.4, the method

for comparing two population samples is described. In Section 2.5, the main results

are presented and discussed. The main conclusions are summarized in Section 2.6.

To facilitate comparison with other studies, and provide a tool for the community,

a major feature of this work is to make the simulation code freely available on a

website which is discussed in Appendix A.

2.2 Modeling the Underlying Pulsar Population

The computer program that was developed for this work, EVOLVE, is an ex-

tension of the software package, PSRPOP, which was initially developed to study the

Galactic distribution of pulsars detected in the Parkes Multibeam surveys (Lorimer

et al., 2006). For that work, time-independent pulsar populations were synthesized

and compared to the observed sample. The main aim of this work is to develop a

time-dependent model of the population and is implemented through the EVOLVE

computer program. In this section, the logical flow of the program is described,

which determines first whether a model pulsar is potentially observable (i.e. is ra-

dio loud and beaming towards Earth) before computing any kinematic or spatial

parameters.

The first step is to randomly assign an age, t, and a magnetic field, B, to

each pulsar. The age is selected between 0 and tmax, with tmax being 109 years. As

per FK06, the magnetic field is determined by a log-normal distribution, centered

around a mean value, µlog B = 12.65, with a standard deviation σlog B = 0.55. The
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initial period, P0, is then randomly generated. Following FK06, P0 is chosen from

a Gaussian distribution centered around µP = 300 ms with a standard deviation

σP = 150 ms.

Next, the inclination angle between the magnetic field axis and spin axis, χ, is

computed. In implementations of the magnetic dipole model, it is usually assumed

(see, e.g., FK06) that χ = 90◦. However, a more realistic model would account for a

distribution of χ and use this information in a self-consistent way when calculating

the beaming fraction discussed below. A number of options are explored, first fixing

χ = 90◦, and subsequently considering a random distribution of angles by selecting

cos χ from a flat distribution between 0 and 1. The latter choice effectively orients

the magnetic axis as a uniform random vector over 4π sr. Finally, following recent

empirical evidence in favor of a secular decay of χ with time (Weltevrede & Johnston,

2008, hereafter WJ08), an exponentially decaying model is also considered, defined

as

sin χ = sin χ0 exp(−t/td), (2.1)

where χ0 is the initial angle (which again is chosen by selecting cos χ0 from a 0–1 flat

distribution), and td is the 1/e decay timescale. Note that this decay law is chosen

over the one considered by WJ08 for mathematical and computational convenience.

As shown in Figure 2.1, the two dependencies give similar results. The braking

index, n, is then assigned. In general, n is related to ν, the frequency of rotation,
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Figure 2.1: The time dependence of the alignment angle shown for Equation 2.1
(dotted curve) and the model used in WJ08 (solid curve). A reference of 60◦ is used
as roughly half of all angles will be above and half will be below that value for a
given random distribution of angles.
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ν = 1/P , and its time derivative

ν̇ = −Kνn, (2.2)

where K is a constant that depends on the pulsar’s moment of inertia and radius

(see, e.g. Lorimer & Kramer, 2005). A single index can be used for all pulsars, or one

can randomly be assigned to each pulsar. Specific choices depend on the spin-down

model under consideration which are described below.

Each spin-down model yields a time-dependent equation for the pulsar’s pe-

riod and period derivative. The pulsar’s period evolves in time depending on the

spin-down model, the magnetic field, the braking index, and the alignment angle.

Considering first the magnetic dipole model, the period dependence can be found

by solving

P n−2Ṗ = kB2 sin2 χ(t), (2.3)

where sin χ(t) is defined by Equation 2.1. The constant

k =
8π2R6

3Ic3
, (2.4)

where R is the radius of the neutron star, assumed to be 10 km, and I is the

moment of inertia, assumed to be 1038 kg m2. For this choice of parameters, k takes

the numerical value 9.768 × 10−40, B is in units of Gauss while P , P0 and t are in

seconds.

The implementation of this model in FK06 assumes n = 3 and χ = 90◦. In
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this case, the period dependence

P (t) =
√

P 2
0 + 2kB2t. (2.5)

More generally, for any braking index other than n = 1, and a constant value of χ,

it is found that

P (t) = [P n−1
0 + (n − 1)kB2t sin2 χ]

1

n−1 . (2.6)

Finally, extending this result for a time dependent inclination angle of the form

assumed in Equation 2.1, it is found that

P (t) =

[

P n−1
0 +

(n − 1)

2
tdkB2 sin2 χ0

(

1 − e−2t/td
)

]
1

n−1

. (2.7)

Depending on the model under consideration, one of Equations 2.5–2.7 is used

to calculate the pulsar’s current period, P . Equation 2.3 is then used to find the

corresponding value of Ṗ . At this point, a simple test is made to determine if the

pulsar has crossed the death line. The death line signifies when a pulsar becomes

radio-quiet, and Bhattacharya et al. (1992) quantified it as the locus of points for

which

B

P 2
= 0.17 × 1012 G s−2. (2.8)

If the pulsar has crossed the death line, the simulation marks the pulsar as dead

(i.e. radio quiet) and moves on to create the next pulsar. If the pulsar has not

crossed the line, then the simulation continues. It should be noted, however, that
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a small number of pulsars (e.g. J2144−3933; Young et al., 1999) have crossed this

theoretical line and are still observable at radio frequencies.

For the implementation of the CS06 model, the technique is slightly different.

The time evolved period and period-derivative are calculated by integrating and

then numerically solving

Ṗ = 3.3 × 10−16

(

P

P0

)2−n(
B

1012 G

)2(
P0

1 s

)−1(

1 − P

Pdeath

cos2 χ

)

, (2.9)

where

Pdeath =

[

0.81 ×
(

B

1012 G

)(

1 s

P0

)]
2

n+1

s. (2.10)

In this case, the pulsar is declared dead when the period becomes greater than Pdeath.

To account for the fact the pulsar radiation is only beamed to some fraction of

4π sr, a variety of beaming models have been implemented in EVOLVE. The default

model is from the work of Tauris & Manchester (1998), henceforth TM98, who found

an empirical relationship for the fraction of the whole sky illuminated by a pulsar:

f(P ) = 0.09

[

log

(

P

1 s

)

− 1

]2

+ 0.03. (2.11)

Other models from Biggs (1990), Lyne & Manchester (1988), and Narayan & Vivekanand

(1983), henceforth B90, LM88, and NV83 respectively, determine the beaming frac-

tion from the angular beam radius

ρ = ρ0P
γ, (2.12)
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where the constants ρ0 and γ are uniquely defined in each model. Assuming that

radio waves are emitted from both poles of the pulsar and that the beams are circular

beams, and following TM98 leads to a beaming fraction dependence on magnetic

inclination angle of

f(ρ, χ) =















































2 sin χ sin ρ χ > ρ, χ + ρ < π
2

cos (χ − ρ) χ > ρ, χ + ρ > π
2

1 − cos (χ + ρ) χ < ρ, χ + ρ < π
2

1 χ < ρ, χ + ρ > π
2
.

(2.13)

Also available is a simple period-independent beaming model that assumes f = 0.2

for all values of P . To determine whether a pulsar is beaming towards us or not, the

value of f computed in one of the above ways is compared with a random number

between 0 and 1. Only those pulsars for which this random number is less than or

equal to f are deemed to be beaming towards Earth and the simulation moves on

to the calculations of the final properties of the pulsar.

To describe the location of model pulsars in the Galaxy, a regular Cartesian

(x, y, z) coordinate system is used with the Galactic center at the origin and the

position of the Sun at (0, 8.5, 0) kpc, again identical to the procedure performed by

FK06. Each pulsar’s initial x and y positions on the Galactic plane are determined

by randomly choosing a point in the plane of the Galaxy along the spiral arms. The

procedure described by FK06 is followed to implement the spiral arm structure.

For the radial distribution, the form described by Yusifov & Küçük (2004) is used.
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Then, dispersion away from the plane is used to determine the initial z position.

For this, an exponential distribution with a mean z0=50 pc is used, and then a sign

is arbitrarily chosen.

To model pulsar birth velocities, the optimal model found in FK06 is used,

in which the initial velocity components of each pulsar in the x, y and z directions

are drawn from exponential distributions with a mean absolute value of 180 km s−1.

Although other distributions are available within EVOLVE, they are not investigated

any further here. To model the resulting evolution in the Galactic gravitational

potential, the method described by Lorimer et al. (1993) is followed, where the

integration in the gravitational galactic potential is done using a model described by

Carlberg & Innanen (1987). From the final position in the model galaxy, the pulsar’s

distance from the Sun, d, is computed and its expected dispersion measure (DM)

and scatter-broadening timescale at 1 GHz. The latter two quantities are derived

using the NE2001 model for the Galactic distribution of free electrons (Cordes &

Lazio, 2002).

The radio luminosity is calculated, following FK06, with a P and Ṗ power law

dependence, defined by

log L = log L0 + α log P + β log (Ṗ /10−15) + δL, (2.14)

where L0 is 0.18 mJy kpc2, and δL is randomly chosen from a normal distribution

with σδL
= 0.8. The program allows for α and β, two free parameters, to be varied

to determine the best functional dependence.
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For comparison, a simple model in which the luminosity is independent of all

other parameters is available in the code. Following FK06, the probability, p(L), of

a given luminosity is taken to be

p(L) ∝































0 L ∈ [0 mJy kpc2, 0.1 mJy kpc2)

L−
19

15 L ∈ [0.1 mJy kpc2, 2.0 mJy kpc2)

L−2 L ∈ [2.0 mJy kpc2, ∞).

(2.15)

2.3 Modeling the Observed Pulsar Population

The steps described above allow a population of synthetic pulsars that are

potentially observable to be created. That is, they are deemed to be beaming

towards the Earth and the spin-down models that are being investigated predict

that they are radio-loud. This population is then compared with those pulsars that

are potentially detectable by current surveys. Since the primary objective of this

work is to reproduce and extend upon the work of FK06, the main focus is on the

sample of pulsars detectable by the Parkes Multibeam (see Lorimer et al., 2006, and

references therein, hereafter PMB) and Swinburne (Edwards et al., 2001, hereafter

SMB) Multibeam pulsar surveys. By accurately modeling the detection thresholds

of these surveys as described below, and selecting only those model pulsars that are

theoretically detectable, samples of model observed pulsars can be formed. When

FK06 were carrying out their work, the sample of real pulsars detected in these

surveys was 1065. In this analysis, the sample of 1135 pulsars currently cataloged

will be used. All isolated pulsars not associated with a globular cluster and having
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both Ṗ < 10−12 and P > 30 ms are selected as part of this sample.

To form the model observed samples, the first step is to compute the apparent

flux density of each model pulsar, S. Following standard practice (see Chapter 1),

geometrical factors in the inverse square law relationship are neglected and S is

found from the pulsar’s distance, d, and radio luminosity, L (see Equation 1.10.

Note that this flux density is defined (following the definition of L in this work) to

be at an observing frequency of 1.4 GHz, the frequency at which the PMB and SMB

surveys were carried out. For the purposes of this work, no assumptions about the

pulsar spectral index distribution are necessary.

To model the detection threshold of the pulsar surveys, it is also necessary to

model the pulse widths. Following FK06, it is assumed that the intrinsic pulse width,

Wint, is 5% of the pulse period. The observed pulse width, Wobs, and signal-to-noise

ratio, S/N, are then calculated using the method described in Lorimer et al. (2006)

in their Equations 1–7. Pulse width models from recent papers (see, e.g., Smits

et al., 2009) have also been considered and are available for use in the code.

All pulsars which lie inside the sky boundaries covered by the two surveys,

have S/N> 9, and where Wobs < P are deemed detectable and saved for subsequent

analysis, as described in the following sections. This simulation proceeds until 1135

pulsars are detected, to match the combined sample found in the PMB and SMB

surveys.
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Table 2.1: Here, it is shown how the KS probability for the period distribution
behaves when given simulated samples that are generated by using parameters
that are exactly the same as, similar to, and completely different than an original
simulation’s parameters. See the text for details of the simulations.

TRIAL QP QP QP

# (SAME) (SIMILAR) (DIFFERENT)

1 0.1299 0.0296 < 10−12

2 0.8928 0.0094 < 10−12

3 0.7397 0.1098 < 10−12

4 0.6958 0.1744 < 10−12

AVG 0.6145 0.0808 < 10−12

2.4 Method for Comparison

To compare these trial results quantitatively, the Kolmogorov-Smirnoff (KS)

test, a non-parametric estimator based on the maximum deviation seen in the cumu-

lative distribution of two sample data sets (see, e.g., Press et al., 1992) is used. For a

given distribution, the KS test returns a statistic that is used to determine a proba-

bility, Q, that two samples came from the same underlying population. As described

below, this probability is used to investigate whether model pulsar populations are

inconsistent with the observed data.

To investigate the sensitivity of the KS test to changing model parameters, a

single simulation using the optimal parameters from the FK06 model is run. Next,

four further Monte Carlo realizations of the same model are generated and compared

to the original simulation using the KS probability for the period distribution, QP .

Then, a small modification is made, changing µP from 300 ms to 280 ms, four more

simulations are run, and QP is computed by comparing with the original simulation.
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Finally, a more significant change to the model is made, changing µP to 250 ms, σP

to 100 ms, and µlogB to 12.00. Four further simulations are run using these param-

eters and QP is recorded against the original simulation. From the results of these

simulations that are summarized in Table 2.1, it is concluded that individual KS

probabilities above 10% suggest that two populations are consistent with another,

while probabilities in the range 1–10% imply possible differences between popula-

tions. However, the steep decline in the KS probability when two populations differ

significantly suggest that it is a powerful metric to weigh one model against another.

In this work, it is desired to track multiple observed parameters relevant to

these simulations. Therefore, following Bhattacharya et al. (1992), a figure of merit

(FOM) is defined for each simulation:

FOM = log[QP × QṖ × Ql × Qb]. (2.16)

Here, the subscripts on each KS Q value refer to the distributions of period (P ),

period derivative (Ṗ ), Galactic longitude (l) and Galactic latitude (b).

2.5 Results and Discussion

In this section, the results are described and discussed. The main goal is

to compare the power law spin-down model (Equation 2.2) with the new spin-down

model proposed by CS06 (Equation 2.9) under a variety of assumptions. The logical

flow of the approach is summarized in Figure 2.2.

31



Figure 2.2: Schematic showing the logical flow of this approach to comparing the
power law (A) and CS06 spin-down (B) models. Model 1 begins by using the best
parameters from FK06. As described in the text, subsequent models then contain
additional complexity in an attempt to be more physically plausible representations
of the true population.

2.5.1 Simulation Models

The first simulation began by using the basic model parameters from FK06

and applied them to both spin-down laws which are called models 1A and 1B. In this

convention, “A” refers to the power-law spin-down model and “B” refers to the CS06

spin-down model. Model 2 attempts to improve the original model by changing the

luminosity law and using random inclination angles to better match the observed

sample. Subsequent models are motivated to be more physically realistic with the

incorporation of: angle-dependent beaming models and a range of braking indices

for models 3A and 3B, and inclination angle decay for models 4A and 4B.

Table 2.2 provides an overall summary of the results, showing base-10 log-
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arithms of the individual KS probabilities and the FOM for each model. Also

computed is the mean birth rate (R) of pulsars required to produce the observed

sample sizes for each model. This is defined as the ratio of the total number of

pulsars generated in each simulation to the maximum age of the population, tmax.

2.5.1.1 Model 1: FK06 Basic Parameters

Adopting the optimal parameters found by FK06, Model 1A was generated

and is shown in Figure 2.3. The histograms show a relatively accurate replication

of the original FK06 results. While the results of FK06 are generally able to be

reproduced, it is found that there are somewhat lower KS probabilities for P and Ṗ

for FK06. Obtaining an exact match to results obtained with a different simulation

is challenging, and the discrepancies that are found highlight the difference in the

implementation of the model in the two codes. Most of the major results are well

duplicated. Some other parameters, such as α and β, had to be changed slightly

from the values presented in FK06, but the majority of their results are obtained

by using this code. These changes are addressed in the remaining models.

For Model 1B, all of the parameters of Model 1A are retained, with the ex-

ception of the spin-down law, which is replaced by an implementation of CS06

described in Section 2.2. As evidenced by the results shown in Table 2.2, the P and

Ṗ distributions are not as well reproduced.

This model had mixed results. Many areas, such as the effect of the alignment

angle, the effect of having no angle dependence, and the underlying distribution of
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Figure 2.3: Histograms of some of the key properties from Model 1A. The solid
histograms represent the observed pulsar population. The dotted histograms are
the results of this simulation.
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Figure 2.4: The resulting P–Ṗ diagrams, with the adopted death line shown in each
plot for reference. Shown in the upper panels are the implementations of FK06
(model 1A, upper left) and CS06 (model 1B, upper right) using these simulations.
The lower panels show the improved simulation (model 2A, lower left), which is
based on an FK06 spin-down model, and the real observed sample of pulsars (lower
right).

pulsars lying below the death line (see Figures 1, 3, 6 of their paper), were replicated

with this code. However, the KS statistics were not as high as they are for the FK06

spin-down model. This applies not only to Model 1B, but to the rest of the B models

as well.
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Table 2.2: Summary of KS statistics, figures of merit (FOM), and birth rate (R, in
psrs/century) comparing FK06 with the four models considered in this work. See
text for details of the various models.

Model 1 Model 2 Model 3 Model 4
Parameter FK06 A B A B A B A B

P −2.15 −1.68 −12.0 −0.94 −7.00 −1.75 −12.0 −12.0 −10.7

Ṗ −1.20 −4.41 −5.35 −0.51 −0.67 −0.08 −1.76 −6.37 −2.21
l −0.90 −0.12 −0.12 −0.07 −0.09 −0.28 −0.40 −0.10 −0.25
b −1.14 −0.50 −0.13 −0.23 −0.30 −0.95 −1.87 −1.01 −1.56

FOM −5.39 −6.71 −17.6 −1.75 −8.06 −3.06 −16.0 −19.5 −14.7
R 2.8 3.85 1.97 3.56 2.84 2.97 3.75 5.31 3.68

2.5.1.2 Model 2: Modified Luminosity Law and Random Inclination

Angles

In an attempt to improve the low KS statistics seen in the P and Ṗ distri-

butions for Model 1, a range of different luminosity indices were searched. Using

Equation 2.14, α was varied from −1.9 to −0.8 and β from 0.1 to 0.9. The best

result occurred when α and β take the values of −1.0 and 0.5, while FK06 found

optimal values of −1.5 and 0.5. As discussed in FK06, simulation techniques vary

from model to model and small deviations may occur between models in the search

for optimal parameters.

So far, orthogonal rotators have been assumed in the spin-down models. A

more realistic and self-consistent approach is now followed by assigning random

inclination angles to all pulsars.

The results from Model 2 were significantly better than Model 1, as seen in
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Table 2.2. At this point, it can be seen how much improvement is gained by changing

only two parameters, so other parameters were tested to see if this improvement

continued.

2.5.1.3 Model 3: Beaming Model and Braking Index Variations

Motivated by the improvements seen in Model 2, the requirement for the

braking index n = 3 was relaxed, and a range of braking indices was allowed. Based

on the observed sample (see Section 1.2.4), a sensible choice was to select n from a

flat distribution in the range 1.5 < n < 3.0.

The previous models adopt the TM98 beaming model, which is used in FK06.

However, computing the beaming fraction based on a period-dependent opening

angle law is now considered.

These results were worse than the previous model in terms of KS statistics,

however, they were still better than the original model. For Model 3A, the birthrate

decreased from nearly 4 pulsars per century to 3 per century, which is closer to

the observed supernova rate of 2.5 per century (Tammann et al., 1994). However,

Model 3B had just the opposite trend: the birthrate changed from 3 to 4 pulsars

per century.

2.5.1.4 Model 4: Inclination Angle Decay

The final model was motivated by the recent results of WJ08, who found

evidence for alignment of the spin and magnetic axes. In both Models 4A and 4B,
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the initially random inclination angles decay according to Equation 2.1 with an

exponential decay timescale of td = 107 yr. Model 4A used the spin-down law found

in Equation 2.7 while Model 4B assumed the CS06 relation given in Equation 2.9.

As shown in Table 2, both models performed very poorly, with significantly lower

figures of merit than the earlier models without alignment. For the case of Model

4A, this poor agreement can be understood when it is seen that Equation 2.7 is

essentially equivalent to an exponential decay of the magnetic field — more generally,

an exponential decay of the braking torque. From the work of FK06, and preliminary

simulations that have been carried out here, a decaying braking torque is inconsistent

with the observations. For the case of Model 4B, the strong dependence on the spin-

down model (Equation 2.9) with χ is also the reason for the low figure of merit.

These results present a dilemma. On one hand, the empirical evidence for

alignment presented by WJ08 appears to be very robust. On the other hand, it

was found that magnetic dipole spin-down laws provide a good description of the

population without inclination angle decay. The spin-down laws that have been

implemented depend critically on this inclination angle. This implies that one way

to resolve the discrepancy is to modify the spin-down law so that inclination angles

are removed. While there is no physical basis for taking the sin2 χ term out of

Equation 2.3, a modified version of Model 4A which uses Equation 2.5 instead of

Equation 2.7 does produce improved results, though the overall FOM (–6) is still

lower than seen for the other models. In a future paper, this issue will be investigated

further. Based on these current results, however, it appears that the braking torque

on a pulsar is independent of its magnetic inclination angle.

38



Finally, for completeness, Models 2A, 3A, and 4A were compared with the

pulse width model mentioned in Smits et al. (2009). The birthrates for all three

trials remained consistent with each model, however, the KS statistic FOM was

generally worse. It was concluded that changing the way in which pulse widths are

modeled would not improve these results.

2.5.2 Individual Parameters

Separate from the optimal models, various pulsar parameters were tested by

themselves in order to gain a better understanding of how they affect the resulting

pulsar population. In this section, each of these parameters are examined.

2.5.2.1 Beaming

Multiple simulations were run to test the beaming models. For each trial, only

the beaming model which was to be tested was altered, and all other parameters

were left the same. The constant beaming fraction model, or one in which 20% of all

pulsars beam towards Earth, and the NV83 beaming model both gave poor results.

The KS statistics using these models were very close to zero for all simulations.

The beaming models of LM88, B90, and TM98 each gave much better results.

The TM98 model yielded the best population of pulsars, but it was not statistically

better than the other two models. Finally, a period-dependent model was tried,

similar to one described in WJ08. This gave the best overall result in terms of KS

statistics and birthrates.
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Based on these results, a requirement for the population is a period-dependent

beaming model, as well as small opening angles, similar to LM88, B90, and TM98.

These three beaming models, along with WJ08, are all statistically about the same.

2.5.2.2 Braking Index

As a test of braking indices, simulation Model 2A was used. Indices ranging

from 3.2 to 2.5 were tried, as well as a very realistic random model in which indices

were chosen at random between 1.5 and 3.0. There were very few differences found

when varying the braking indices, as shown in Table 2.3. Due to the lack of any

significant difference between various braking indices, the realistic random model

was adopted for use in these simulations.

It is useful to again look back at the A models from Table 2.2. There was a

decrease in birthrate when going from Model 2 to Model 3. The two parameters

that were altered between the two models were the braking index and the beaming

model. The results presented in Table 2.3 make it clear that this drop in birthrate

was not entirely due to the braking indices, and thus the angle-dependent beaming

model must affect the birth rate as well.

2.5.2.3 Luminosity

Many luminosity simulations were run by changing the power law indices of

P and Ṗ . The best result that was obtained yielded indices of −1.0 for P and 0.5

for Ṗ . The trials also included a simulation involving random luminosities, i.e. no
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Table 2.3: Results from 9 simulations with different values of the pulsars’ braking
indices are shown. This is an implementation of Model 2A, changing only the brak-
ing index during each simulation. The resulting birth rate, in units of pulsars born
per century, and FOM (as described previously) is shown for comparison purposes.

Braking Index R (psrs/century) FOM

n = 3.2 3.75 −3.78
n = 3.1 3.99 −4.09
n = 3.0 3.56 −1.75
n = 2.9 3.51 −1.63
n = 2.8 3.52 −2.27
n = 2.7 3.53 −3.66
n = 2.6 3.25 −1.41
n = 2.5 3.28 −2.74

1.5 < n < 3.0 3.05 −6.38

period dependence. The results were less than ideal, and not close to the results

that were obtained when using a period-dependent luminosity distribution. Thus,

there must be some period dependency for the luminosity. Similar conclusions were

reached by FK06, however, their optimal value for the P power law index was −1.5.

For the ideal simulations, the underlying luminosities have a distribution that

is very similar to the log-normal distribution found in Figure 15 of FK06. In this

regard, this distribution provides the best current estimate of the pulsar luminosity

function. Unlike previous power-law models (see, e.g., Lorimer et al., 2006), the log-

normal does not require a lower luminosity cutoff and is strongly recommended for

studies which require some reasonable assumption about the luminosity function.
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2.5.2.4 Covariances

With such a large number of model parameters in these simulations, it is

important to keep track of any interdependencies that might be expected. The

biggest covariances that were found involve the luminosity. Changing the braking

index along with the luminosity function can be done in such a way that two very

similar results can be obtained with two completely different luminosity distributions

and braking indices. For example, n=3.0 and power indices of −1.5 and 0.5 could

yield the same results as n=2.7 and indices of −1.2 and 0.8. A similar relationship

was found between the luminosity and the alignment angle. Running a simulation

with all angles equal to 90◦ might give similar results to another simulation with all

angles equal to 45◦ and having luminosity indices of −1.8 and 0.9. Most of these

covariances are beyond the scope of this work, simply due to the large matrix of

parameters that would be analyzed.

2.5.2.5 Death Line

For completeness, simulations of both models were run such that a death line

was not used. As one might expect, there was an overabundance of high period

pulsars that have very low luminosities. The results here confirmed that, within

the framework of the models that have been developed here, a death line is indeed

required when modeling a distribution of pulsars. While it might be possible to

construct a model in the future which does not require a death line, there is not

currently a straightforward means of achieving this.
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2.6 Conclusions

Two pulsar spin-down models have successfully been implemented and selec-

tion effects have been accounted for as far as possible to synthesize populations of

observable radio pulsars. From a statistical comparisons of various models, there is

now a better understanding of how their parameters affect the spin-down evolution

of pulsars on a P–Ṗ diagram. The main conclusions are as follows:

• The magnetic dipole spin-down model from FK06 works best with these simu-

lations. The FK06 results are able to be reproduced and a few results improved

by modifying some of their parameters. The model of CS06 produces poorer

results. Further modifications of this model appear to be required to improve

it.

• The braking index, n, does not have a significant impact on these results.

Having a braking index of n = 3.0 works just as well as the rather unphysical

scenario of n > 3.0. For the optimal simulation, the most realistic model is

used, which picks a random braking index between 1.5 and 3.0 for each pulsar.

• The optimal configuration for magnetic inclination angles is a random distribu-

tion. Models in which the inclination angle decays on timescales of ∼ 107 yr

do not reproduce the observations well. Further modifications to the spin-

down laws appear to be required in order to account for the strong empirical

evidence for alignment found by WJ08.

• Pulsar luminosities must have a period dependence. The use of a power law
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for the period and period derivative replicated the P–Ṗ diagram. By tweaking

the exponents in that law, the resulting distribution of pulsars can be altered

on this diagram. Even with period dependent luminosity laws and beaming

models, a death line is required to explain the dearth of pulsars in the lower

right of the P–Ṗ diagram.

Studying these relationships between the P–Ṗ diagram and the various pulsar pa-

rameters allowed covariances to be more apparent, eliminated a few parameter mod-

els, and overall obtained better insight to the behavior of pulsars as they evolve

across the P–Ṗ diagram. Future studies will be able to further narrow down some

parameter models and, in particular, allow for the investigation of the issue of mag-

netic alignment.

44



Chapter 3

Computer Simulations of the Magellanic Clouds Pulsar Population

This chapter was originally published as a refereed paper in the Monthly No-

tices of the Royal Astronomical Society (MNRAS) by J. P. Ridley and D. R. Lorimer

in June of 2010. Minor wording changes from the original accepted paper have been

made where appropriate.

3.1 Introduction

The closest neighboring galaxies to the Milky Way, the Large and Small Mag-

ellanic Clouds (henceforth LMC and SMC), contain 19 known radio pulsars (Manch-

ester et al., 2006). Since both the LMC and SMC represent a different star formation

environment compared to the Milky Way and its globular cluster system, it is in-

teresting to use these results to constrain the pulsar content in the clouds. So far,

no millisecond pulsars (MSPs) have been found, though this is in part a result of

the relatively low sampling rates and frequency resolutions of previous surveys (see

Table 3.1). The aim of this work is to use Monte Carlo simulations to reproduce

the results from previous LMC and SMC surveys, determine the most likely size of

the normal pulsar population, place upper limits on the MSP population, and make

predictions for future surveys of the clouds.

In Section 3.2, past surveys of the Magellanic Clouds are compared. Sec-
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Table 3.1: Observing parameters for the previous surveys considered in this
paper, as well as the parameters for a currently ongoing survey using the BPSR
(Berkeley-Parkes-Swinburne Data Recorder) pulsar backend at the Parkes Radio
Telescope.

Parameter McConnell et al. Crawford et al. Manchester et al. BPSR Survey
(1991) (2001) (2006) (2009)

tobs (s) 5000 8400 8400 8400
tsamp (ms) 5.000 0.250 1.000 0.064
Tsys (K) 60 21 21 20
f (MHz) 610 1374 1374 1374
∆f (MHz) 120 288 288 288
∆fchan (MHz) 2.5 3.0 3.0 0.1

tion 3.3 contains a detailed description of these simulations and how they are able

to reproduce results from the past surveys. From this model, the population of

normal pulsars in the LMC and SMC can be inferred. New limits from these MSP

simulations are presented in Section 3.4. Results are discussed and predictions are

presented for future Magellanic Cloud surveys in Section 3.5. Finally, in Section 3.6,

the main conclusions are drawn.

3.2 Previous Surveys of the Magellanic Clouds

Multiple radio surveys have been completed of both the Large and Small Mag-

ellanic clouds. The various features and results of each survey are discussed in this

section. The survey data acquisition parameters are summarized in Table 3.1.

The original pulsar survey of the clouds was by McConnell et al. (1991) which

detected three pulsars in the LMC and one in the SMC. After the success of the

Parkes Multibeam Pulsar Survey (Manchester et al., 2001), searches of the clouds
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Table 3.2: List of all spin-powered radio pulsars in the LMC and SMC. It should
be noted that the Crawford et al. survey did not observe the entire LMC, so their
LMC results are not considered in these simulations. Also, PSR B0540-69 is the
only currently known LMC pulsar that was not detected in any of these surveys.

PSR Name Location DM McConnell Crawford Manchester
(pc cm−3) (1991) (2001) (2006)

J0045−7319 SMC 105.4 X X X
J0455−6951 LMC 94.9 X X
J0502−6617 LMC 68.9 X X
J0529−6652 LMC 103.2 X X
J0113−7220 SMC 125.5 X X
J0535−6935 LMC 93.7 X
B0540−69 LMC 146.5
J0045−7042 SMC 70.0 X
J0111−7131 SMC 76.0 X
J0131−7310 SMC 205.2 X
J0449−7031 LMC 65.8 X
J0451−67 LMC 45.0 X
J0456−7031 LMC 100.3 X
J0519−6932 LMC 119.4 X
J0522−6847 LMC 126.5 X
J0532−6639 LMC 69.3 X
J0534−6703 LMC 94.7 X
J0543−6851 LMC 131.0 X
J0555−7056 LMC 73.4 X

TOTALS SMC 1 2 5
LMC 3 NA 12

with greatly increased sensitivity were performed. Crawford et al. (2001) surveyed

the SMC, finding two more associated pulsars. One is in the SMC while the second

is in the LMC, found while searching for radio pulsations from an LMC X-ray pulsar.

Manchester et al. (2006) extended this effort, surveying both the SMC and LMC.

For the SMC, this survey discovered 3 new pulsars, while the LMC survey discovered

9 more normal pulsars. Currently, there are a total of 19 known spin-powered radio

pulsars in the LMC and SMC.
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3.3 Modeling the Normal Pulsar Population

The goal is to create a working model of normal pulsars distributed throughout

the Magellanic Clouds that can accurately reproduce the results found in each of the

three surveys carried out so far. To do this, Monte Carlo simulations of the pulsar

population are performed using an adapted version of the freely available PSRPOP

software package1 (Lorimer et al., 2006).

The simulation begins by seeding each pulsar in the Magellanic Clouds. To do

this for the SMC, a sphere with a radius of 2.0 kpc centered at a Right Ascension of

0h 51m and a Declination of −73◦ 07′ is considered. This sphere is then populated

with pulsars using an exponential distribution (in the x, y, and z directions) having

a scale length of 1.25 kpc (Gonidakis et al., 2009). Similarly, the LMC simulations

create a sphere with a radius of 4.5 kpc centered at 05h 17m and −69◦ 02′ (Kim

et al., 1998) and use an exponential distribution with a scale length of 1.50 kpc (van

der Marel, 2001).

The dispersion measure (DM) is randomly selected in the range 70–210 cm−3 pc.

This is based on the DMs of other pulsars found in the Magellanic Clouds listed in

Table 3.2. For the distance to each pulsar, values of 51 kpc for the LMC (Koerwer,

2009) and 60 kpc for the SMC (Harries et al., 2003) are used.

The period of each pulsar is then randomly generated from a log-normal distri-

bution derived from a study of Galactic pulsars (Lorimer et al., 2006). For a period

in ms, the mean of the log of this distribution is 2.7 and the standard deviation is

1http://psrpop.sourceforge.net
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Table 3.3: Survey results for the three surveys considered in this work. The actual
detections are compared to what the sample pulsar distributions predict to be
detected. The first number is the actual number of pulsars detected, while the
second number is the expected number of detections.

SURVEY SMC LMC

McConnell 1/1 2/3
Crawford 2/2 NA
Manchester 5/5 12/12

0.34. Similarly, the radio luminosity is drawn from the log-normal function found

by Faucher-Giguère & Kaspi (2006); see also Chapter 2.

To determine the number of pulsars to generate, one set of survey parameters

is used and an attempt is made to replicate their results. For these trials, the

Manchester et al. (2006) survey is chosen because of its larger sample of detected

pulsars. A sample distribution is created for both the LMC and the SMC. PSRPOP

is run to generate enough SMC pulsars so that the Manchester survey would detect

5, and enough LMC pulsars so that it would detect 12. These two distributions are

then used to analyze the McConnell and Crawford surveys.

Table 3.3 shows how the results of all three surveys are compared with what

should be expected to detect. As can be seen, these results provide a self-consistent

model of the Magellanic Cloud pulsars. Now, any future survey using this distribu-

tion of pulsars can be modeled and predictions can be made regarding what results

should be obtained.

To determine the number of normal pulsars in the LMC and SMC, enough

pulsars are generated to detect the corresponding number of pulsars found in each
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Figure 3.1: Distributions of the number of pulsars generated to model the LMC
normal pulsars (solid), alongside the SMC pulsars (dashed).

cloud by the Manchester et al. survey. Repeating this process 1000 times creates

a mean value for each cloud. The LMC has a mean value of (1.79 ± 0.20) × 104

pulsars, while the SMC has a mean of (1.09 ± 0.16) × 104. Figure 3.1 shows the

distributions of normal pulsars produced by these simulations.
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3.4 Modeling the Millisecond Pulsar Population

Since no MSPs have been detected in the Magellanic Clouds, only an upper

limit on the number of MSPs that could lie in the clouds can be found. As before,

the Manchester et al. survey is used as a reference and a procedure similar to that

described in the previous section is followed. All pulsar parameters are kept the

same, with the exception of the period distribution. Here, a distribution of MSP

periods used in a recent study (Smits et al., 2009) is used. For each of the LMC

and SMC, PSRPOP is run again until the Manchester et al. survey detects one of

the MSPs. The number of pulsars generated to get one detection will be the upper

limit of the number of MSPs in the cloud.

To limit statistical noise and fluctuations, 1000 simulations are run, a his-

togram of the number of pulsars generated is created, and the mean is determined.

To further limit these variances, the simulations are run to detect 10 MSPs and

then the final number of pulsars generated is divided by 10. Figure 3.2 shows the

simulation results.

To determine upper limits from these distributions, a point below which 95% of

the simulations are contained is considered. For the LMC MSP population, an upper

limit of 15,000 pulsars was found with 95% confidence. The equivalent simulations

of the SMC yield somewhat higher numbers, presumably due to the fact that they

are located at a farther distance from the Earth. The corresponding 95% confidence

upper limit is 23,000.
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Figure 3.2: Similar to normal pulsar histograms, the distribution of pulsars gener-
ated for the MSP simulations of the LMC (solid) and SMC (dashed) are shown.
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3.5 Discussion

A self-consistent model of the normal pulsar population in the LMC and SMC

has been produced. Now, some straightforward inferences from these results are

discussed and the yields of future Magellanic Cloud surveys are predicted.

3.5.1 Birthrates of Normal Pulsars

To estimate the birthrate of normal pulsars in the Magellanic Clouds, the

results from Faucher-Giguère & Kaspi (2006) are used to obtain an average lifetime

for Galactic pulsars. When their estimated number of pulsars of (1.2± 0.3)× 106 is

divided by their Galactic pulsar birthrate of 2.8±0.1 pulsars per century, an average

radio lifetime of (4.3±0.1)×107 years is obtained. To calculate the birthrates in the

LMC and SMC, the respective number of pulsars is divided by this average lifetime,

and then multiplied by a factor to correct for those pulsars whose beams are not

visible due to beaming effects. This factor is approximately 10 when averaged over

the normal pulsar population (Tauris & Manchester, 1998). These calculations lead

to birthrates of 0.42 ± 0.03 and 0.25 ± 0.03 pulsars per century for the LMC and

SMC respectively.

These birth rates, however, are likely to be underestimates of the true value

due to the fact that both the LMC and SMC have relatively small escape velocities.

Using values for the mass and radius of the SMC from Bekki & Stanimirović (2009),

an escape velocity vesc =
√

2GM/R, of roughly 120 km s−1 is calculated. Similarly,

an escape velocity for the LMC of 157 km s−1 is found. Given the high birth
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velocities known for Galactic pulsars (e.g. Hobbs et al., 2005; Faucher-Giguère &

Kaspi, 2006), potentially a large number of pulsars that are born in the clouds will

eventually lie outside of the surveyed area within the age in which they are expected

to be radio loud.

To quantify the impact of this effect on the birthrates, a simple simulation was

run in which the velocity of each pulsar was chosen from a Maxwellian distribution

with a 1-D dispersion of 265 km s−1 (Hobbs et al., 2005). After randomly selecting

the age of the pulsar to be between 0 and 4.3 × 107 years, the distance the pulsar

has traveled was calculated by multiplying the age and the velocity. Assuming that

the pulsar starts at the center of either cloud, the final position is computed to

determine if the pulsar has remained within the surveyed area of the cloud (radii

of 5.6◦ and 2.2◦ for the LMC and SMC) for the duration of its lifetime. It was

found that nearly half of all pulsars born in the LMC (45.9%) escape the cloud,

while 67.2% of all pulsars born in the SMC escape. The population of ejected radio

pulsars that are active from both Magellanic Clouds is therefore substantial, of order

3.5 × 105 objects.

The above calculations lead to effective birthrates of 0.8 pulsars per century

for both the LMC and SMC. Given the uncertainties involved in making these

corrections, the best conclusion that can be reached from the data at hand is that

radio pulsar birth rates are comparable and likely to be somewhere in the range of

0.5–1 pulsar per century in both the LMC and SMC.

Tammann, Löffler & Schröder (1994) carried out an extensive study of the

Galactic and extragalactic supernova rate. They find a combined rate of type Ib and
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II supernovae of 0.45 and 0.11 per century in the LMC and SMC respectively. While

the rate for the LMC is consistent with the estimate above, the pulsar birthrate in

the SMC appears to be significantly higher than these supernova rates. In spite of

this discrepancy, a simple exercise using Poissonian statistics shows that both pulsar

and supernovae populations are consistent with the observation of one supernova in

the LMC and zero supernovae in the SMC during the past 300 years of observations.

3.5.2 Predictions for Future Surveys

Previous surveys were limited in their ability to detect millisecond and rapidly

rotating pulsars by the low data sampling rates and frequency resolution. A current

survey of the Magellanic Clouds is making use of a new data acquisition system,

BPSR, developed for the Parkes High Time Resolution Universe Legacy Survey2

(Keith et al., 2010) which is currently undertaking a large-scale search for pulsars

along the Galactic plane. The parameters of this new, high-resolution pulsar data

acquisition system for this new search of the Magellanic Clouds are summarized in

Table 3.1. As can be seen, the time resolution is improved by factors of 4 and 16 over

the Crawford et al. and Manchester et al. surveys, while the frequency resolution is

improved by a factor of 30.

With the MSP upper limits as references, sample distributions of the LMC and

SMC MSP populations are created, and an attempt is made to detect the pulsars us-

ing the new survey parameters. Using 8400 s integrations, these simulations predict

that the new survey will find at most 3 MSPs in each of the two Magellanic Clouds.

2http://astronomy.swin.edu.au/pulsar/?topic=hlsurvey

55



With a full survey of the LMC and SMC, the absence of MSP detections would

lower the upper limits on the number of MSPs to 5,500 and 8,000, respectively.

A pilot survey of the SMC began in May 2009 using this new system. The goal

of this new survey is to detect or place stringent limits on the population of MSPs and

giant-pulse emitting neutron stars in the Magellanic Clouds. Following the survey

pointings from Crawford et al. (2001), giant pulses from PSR B0540−69 have been

observed, and three previously known pulsars have been redetected. Further details

of this survey are given in Chapter 5.

Future predictions can be made that make use of the Square Kilometre Array

(SKA). Following the “A” implementation (Smits et al., 2009) of the SKA, survey

parameters are chosen that allow the LMC and SMC to be searched for both normal

and millisecond pulsars. With a sky coverage per pointing of nearly 250 deg2, the

LMC can be covered in only 4 pointings, while the SMC can be completely searched

with only 3. Using 10 minute integration times would keep the total survey time for

either region under 1 hour and results in 2,500 and 1,400 normal pulsar detections

in the LMC and SMC respectively. Additionally, this SKA survey could potentially

detect 850 and 800 MSPs in the LMC and SMC, which is a considerable improvement

over previous and current surveys of the Magellanic Clouds.

3.6 Conclusions

The results from three past Magellanic Cloud surveys were successfully repro-

duced, creating an accurate normal pulsar population for both the LMC and SMC.
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These populations provide estimates of the number of normal pulsars located in the

LMC and SMC of (1.79 ± 0.20) × 104 and (1.09 ± 0.16) × 104 pulsars respectively.

Taking into account pulsars whose beams do not intersect the Earth’s line of sight,

and the significant fraction of pulsars which escape both the LMC and SMC, it was

found that the mean radio pulsar birth rate is most likely to be in the range 0.5–1

pulsars per century in either cloud. This is consistent with historical observations of

supernovae in the Magellanic Clouds. It is also found that a substantial population

of radio pulsars will be ejected from the clouds and populate the local intergalactic

medium.

Extending the analysis to the MSP population yields upper limits of 15,000

for the LMC and 23,000 for the SMC. If the current SMC survey at Parkes produces

no MSP detections, that upper limit will be reduced to 8,000. Consequently, it can

realistically be expected that no more than 3 MSPs will be detected in that survey.

Also, if the current SMC survey extends to the LMC, a maximum of 3 MSPs would

be detected, but a lack of MSP detections would reduce the MSP upper limit to

5,500.

The results here, along with the future results of the ongoing BPSR survey

(see Chapter 5) will continue to constrain the number of pulsars, both normal and

millisecond, found in the Magellanic Clouds. With improved simulation techniques

and more sensitive surveys, the true pulsar population will be able to be modeled

with increased accuracy to allow for further research in this area. A logical extension

of this work would be a full dynamical model of the pulsar content in the Magellanic

Clouds as has been recently carried out for radio pulsars in the Milky Way Galaxy
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(Faucher-Giguère & Kaspi, 2006; Ridley & Lorimer, 2010).
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Chapter 4

Searching for Pulsars

4.1 Introduction

From choosing the correct telescope to accounting for various physical phe-

nomena, there is a considerable amount of time and work that is required to search

for pulsars. In this chapter, the most common pulsar searching techniques and

methods are explained. Figure 4.1 shows the main steps when searching for pulsars.

Particular attention will be given to the computational analysis performed on the

data and to the differences between each of the search techniques.

4.2 Obtaining and Formatting the Data

After observing a certain area of the sky, the data obtained by the telescope are

stored in filterbank files. These files contain a collection of frequency channels versus

time and are commonly referred to as “fil” files. Within the file, each frequency

channel shows the intensity of the signal measured at that particular frequency as

it varies over the length of the observation. Before these channels can be searched

for evidence of pulsars, the filterbank file must now be formatted to correct for the

presence of the interstellar medium (ISM) and, if desired, the motion of the Earth

around the Sun.
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Figure 4.1: The main steps in pulsar searching. Each step is discussed in more detail
later in this section.

4.2.1 Barycentering

The Earth’s motion around the Sun can distort the signal that is received

from the pulsar. To correct for this, the data files are barycentered, or adjusted

so that the time stamps in the file represent the time that the signal would have

been received at the Sun instead of at the telescope. This is especially important

for comparing observations taken at different times of year, when the location of the

Earth with respect to the Sun has changed significantly.

The barycentering process begins with a filterbank file and creates two running

clocks. The first clock ticks at equal intervals according to the sampling time of the
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Table 4.1: This is a fake time series for a 1.2 second observation. Having six
time samples in the topocentric data file would mean that the sampling time is
0.2 seconds. If the topocentric and barycentric clocks differed by greater than the
sampling time after every third sample, an additional time sample (with a value
of 0) would be added. After barycentering the data, the nine time samples would
create a sampling time of 0.13 seconds in the new filterbank file. This is a gross
exaggeration and is for demonstration purposes only, as most 30 min observations
would only have a few samples added or removed.

Time Sample Intensity Level Time Sample Intensity Level
(Topocentric) (arbitrary units) (Barycentric) (arbitrary units)

1 5842 1 5842
2 5495 2 5495
3 5486 3 0000
4 5684 4 5486
5 5247 5 5684
6 5364 6 0000

7 5247
8 5364
9 0000

observation and is known as the topocentric clock. The second, or barycentric

clock, ticks with intervals equal to the sampling time multiplied by a factor which is

calculated based on the position of the Earth and the Sun. If the topocentric clock

runs slower than the barycentric clock, then an additional time sample is added

to the resulting filterbank file. Similarly, if the topocentric clock runs faster than

the barycentric clock, a time sample is removed from the data. The end result

of barycentering a filterbank file is to create a new filterbank file with a slightly

different sampling time. Table 4.1 shows how the time samples are changed during

the barycentering process.
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4.2.2 De-dispersion

It was discussed earlier that Galactic signals get dispersed as they pass through

the ISM, resulting in higher frequencies arriving sooner than lower frequencies. To

compensate for this smearing, the data files must be de-dispersed. This is done by

shifting each frequency channel in time so that all signals in all channels will arrive

at the same time. The amount of the shift depends on the difference in frequency

between each channel and the DM that is being searched. Since the distance to

(and therefore the DM of) the pulsar is usually unknown, the standard practice is

to search through a range of DMs starting at 0 and continuing to a predetermined

maximum value which usually depends on the location of the sky that is being

searched.

The effect of choosing an incorrect DM value is that the Signal-to-Noise ratio

(S/N) of the pulsar’s signal will be significantly reduced. Additionally, pulsars with

very short periods (i.e. MSPs) are affected even more due to the DM smearing being

such a large fraction of the pulse width. The effective pulse width can be calculated

as

Weff =

√

√

√

√W 2
int +

[

(kDM) ×
(

∆DM

pc cm−3

)

×
(

∆f

MHz

)

×
(

f

MHz

)−3
]2

, (4.1)

where kDM = 8.3 × 106 ms, Wint is the intrinsic pulse width, ∆f is the channel

bandwidth, and f is the center observing frequency. The subsequent influence on
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the S/N due to the effective pulse width is:

S/N ∝
√

P − Weff

Weff

. (4.2)

In order to prevent a pulsar’s signal from being lost due to DM smearing, a DM step

size must be accurately chosen to both avoid redundant computer processing and

be sensitive to low period pulsars. Using Equations 4.1 and 4.2, Figure 4.2 shows

how the choice of DM affects the S/N of pulsars with varying periods.

The time delay, ∆t, that occurs due to 2 differing frequencies is given by

Equation 1.9 where f1 and f2 are the lower and upper frequencies. The minimum

amount of time delay that the observations are sensitive to is the sampling time,

tsamp, so if the bandwidth is defined as ∆f = f2 − f1 and the center frequency is

defined as f = (f1 + f2)/2, the minimum DM step size can be calculated to be

(

∆DM

pc cm−3

)

= 1.205 × 10−7

(

tsamp

1 ms

)(

f

1 MHz

)3(
∆f

1 MHz

)−1

. (4.3)

This will assure that the DM value to be searched will be close enough to the true

value so that the pulsar’s signal will not be missed. The original fil file has now

been transformed into one time series for each DM (each time series is known as a

“tim” file), which contain the de-dispersed data that will be searched.

Once the data files have undergone these processes, they are now ready to be

searched using one or more of the following pulsar search methods.
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Figure 4.2: The relative S/N ratio as a function of DM for 4 different pulse periods.
Assuming a 8 MHz bandwidth centered at 430 MHz, a pulsar with an intrinsic
pulse width of 5% and a true DM of 100 pc cm−3 will have a reduced S/N when
an incorrect DM value is chosen. This effect is most notable for pulsars with very
short periods.
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4.3 Periodicity Searches

The trademark signature of a pulsar is the periodicity of its signal. Pulsars

which rotate at the same rate (for the duration of a single observation) emit their sig-

nals at equally spaced intervals. The fact that the pulses arrive at these predictable

times make pulsars some of the most accurate clocks in the Universe. Periodicity

searches take advantage of these periodic signals to discover pulsars hidden by noise

in the data.

To perform a periodicity search, the properly formatted data file is run through

a program that sifts out all of the periodic signals. This is done by using a Fourier

transform (Bracewell, 1999). Typically, Fourier Transforms (FTs) transform a con-

tinuous data set from one domain into another. For example, the continuous Fourier

Transform can transform data from the time domain to the frequency domain using

g(ω) =

∫

∞

−∞

f(t) exp(−iωt) dt, (4.4)

where f(t) is the original time series and g(ω) is the transformed frequency domain

function. When performing a periodicity search, the FT will transform the time

domain into the frequency domain. A power spectrum can be created with the

transformed data in which each frequency will have a corresponding power level. The

frequencies with the highest signal strength will appear to have the highest power

level in the power spectrum. After a Fourier transform is performed, determining

the strongest signals is as easy as finding the tallest spikes on the power spectrum
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graph.

Since the time series, τn, generated by de-dispersing a filterbank file is com-

posed of individual data points, the Discrete Fourier Transform (DFT) can be used.

The xth component of the DFT can be represented as

Fx =
N−1
∑

n=0

τn exp(−2πixn/N), (4.5)

where i =
√
−1 and N is the number of time samples. Thus, the frequency of

the xth Fourier component, νx = x/T , where T = Ntsamp. The width of each

frequency bin is 1/T and the highest frequency component is the Nyquist Frequency,

νNyquist = 1/(2tsamp) (Lorimer & Kramer, 2005).

A major limitation of the DFT is that it requires N2 computations to complete

the transformation. To help reduce the amount of computing time, a fast Fourier

Transform (FFT) can be used. The FFT is an algorithm that computes the DFT

with a reduced number of computations, most notably being done with N log N

computations (Press et al., 1992).

Another drawback to the DFT is the scalloping effect. Since the DFT trans-

forms a time series into frequencies bins with center frequencies of νx = x/T and

width ∆ν = 1/T , it is not as sensitive to frequencies that differ from those center

frequencies. There are several methods available to help regain the sensitivity lost

from the non-central frequencies. For more information on these methods and how

the DFT has been modified for optimal use in pulsar searches, see Ransom et al.

(2002).
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Most signals (especially those with very small pulse widths) do not have all

of their Fourier power levels associated with a single, fundamental frequency. Much

of this power is divided across several harmonics. As a result, the power seen at

the fundamental frequency will be appearing at a somewhat lower level. One way

in which to recoup some of this power is to undergo a procedure called harmonic

summing (Taylor & Huguenin, 1969). With harmonic summing, the amplitudes of

higher harmonics are added to the power spectrum of the fundamental frequency.

This is done by stretching the spectrum by a factor of 2 and then adding this

stretched spectrum to the original spectrum. While this increases the noise by a

factor of
√

2, the addition of the harmonics (each nth harmonic gets a new spectrum

stretched by a factor of n) directly add to the peaks of the fundamental frequency

and significantly increase the S/N (Lorimer & Kramer, 2005).

After the time series has been completely transformed, all signals found (now

known as candidates) must be sorted according to their S/N. A typical minimum

threshold for S/N is between 7 and 10. This threshold is determined by calculating

the false−alarm probability that the S/N will exceed a minimum value. In the

presence of Gaussian noise, this minimum value can be approximated by:

S/Nmin ≈
√

ln(ntrials) − 0.88

0.47
, (4.6)

where ntrials is the number of independent S/N estimates in the search (Lorimer

& Kramer, 2005). All Fourier components that are analyzed from each trial DM

are counted to obtain the number of S/N estimates. Any candidates below this
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minimum value are deemed to be too insignificant to be completely distinguishable

from background noise, and thus only the higher S/N candidates will be considered.

After a candidate passes the S/N test, it must be filtered further, usually by

period and DM. Many low DM (< 5 pc cm−3) candidates can be written off as

radio interference, or Earth-generated signals. Also, periods of less than 1 ms are

generally ignored, as this is below the theoretical minimum period limit. When

the number of candidates reaches a number that can be realistically processed in a

timely manner (which varies, depending on the available computer processing power

and human work hours), they are then ready for the final processing stage.

Each candidate is now folded using the resulting DM and period. Folding

effectively breaks the “tim” file into time segments that are equal to the length of

the pulsar’s period. These segments are then added on top of each other in an

effort to amplify the signal and minimize the background noise. In general, a longer

observation will produce a more amplified signal. The end result of the folding

process is a plot that contains the pulse profile, S/N graphs, and various other

parameters, as described in Figure 4.3. Once this plot has been created, it is up to

the pulsar searcher to examine all areas of the plot by eye and determine whether or

not the candidate is indeed a pulsar. Some of the checks include making sure that

the signal is visible in all frequency channels and throughout the entire observation,

has believable periods, period-derivatives, and DMs, and has a pulse profile that

is similar to other known pulsars. If all of these tests have passed, then follow-up

observations of the candidate should be considered. Examples of candidates that

would not pass these tests are shown in Figures 4.4 and 4.5.
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Figure 4.3: A sample periodicity search result detecting the pulsar J0113 − 7220.
The top left plot shows two pulses of the best profile of the candidate so that the
entire pulse phase can be observed. Parameters of the candidate and the search
itself are found at the top right. The plot in the left column shows the intensity of
the signal has a function of pulse phase and time, as well as how the reduced χ2

varies with time. The central plot shows the signal intensity as a function of pulse
phase and frequency. The top sub-bands are missing because the receiver could
only sample the bottom 340 MHz (see Chapter 5). The bottom middle plot shows
the reduced χ2 varies with DM. The three plots in the right hand column show
reduced χ2 versus Ṗ and P , as well as Ṗ versus P . This plot was created using the
PRESTO2 processing suite.
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Figure 4.4: This candidate does not have a visible signal throughout the entire
observation, nor is the signal visible across the entire frequency band. Also, there
is not a clearly defined peak in the DM plot.

4.4 Single Pulse Searches

In addition to detecting pulsars based on the periodicity of their signals, it is

also possible to detect them if a few of their pulses are significantly brighter than the

underlying noise. These individual pulses are usually visible over a small range of

DM values. This so-called single pulse searching provides another tool for detecting

previously unknown pulsars.
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Figure 4.5: This candidate shows the result of the telescope detecting RFI from
a local source. Note that the signal is only visible for a small range of times, the
optimal DM is 0, and the frequency of the signal is very close to the frequency used
by the Australian power grid (50 Hz).

4.4.1 Matched Filtering

To detect individual pulses, one must look for signals that lie a few standard

deviations above the mean signal. Each previously generated time series is individ-

ually searched for these pulses and this is done by a process called matched filtering.

By convolving the time series with a predetermined pulse template (usually a Gaus-

sian) and successively adding adjacent time samples, matched filtering is able to

detect pulses of varying widths (Cordes & McLaughlin, 2003).

A sample single pulse plot for B0540−69 is shown in Figure 4.6. In this plot, a
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Figure 4.6: A single pulse plot showing the detection of a giant pulse emitted by
B0540−69, seen at a DM of 146.5 pc cm−3 and a time of 1400 s. The top plots
show the number of events at a given S/N ratio and a given DM, as well as the S/N
ratio of the events at their respective DMs. The bottom plot shows the DM of each
event as they appear in the time series. The size of each symbol is proportional to
the strength of the observed pulse.

single pulse is observed, among a significant amount of radio frequency interference

(RFI), near the 1400 s mark at a DM of 146.5 pc cm−3. This pulsar is known

to occasionally emit giant pulses such as these, which are much stronger than its

normal pulses (Johnston & Romani, 2003). Many periodicity searches would not

be able to detect this pulsar, as the normal pulse intensities are too weak to be

detected. A single pulse search, therefore, is sometimes the only way to detect a

pulsar (see, e.g. Deneva et al. (2009)).
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4.4.2 Radio Frequency Interference

As evidenced by the overwhelming display of detections in the single pulse plot

of B0540−69, RFI causes significant problems for pulsar searchers. Much of the RFI

is present at a DM of 0 pc cm−3 and is continually visible at all other DMs at that

given time. To alleviate this problem, RFI can be removed from the observations

by various methods. The simplest method is to remove all signals that appear to

originate at a DM of 0 pc cm−3 and carry through to all other DMs. The obvious

drawback of this is the loss of signal intensity, however, the gain is very apparent

when looking at a single pulse plot that has undergone an RFI removal procedure

(see Figure 4.7).

Another method of removing RFI from data is known as mean subtraction.

With mean subtraction, the average intensity from all frequencies for each time

sample is calculated. Then, this mean value is subtracted from each individual

frequency channel for that time sample. Since most RFI occurs at a DM of 0 pc cm−3

and is not dispersed, the added intensity from the RFI will be mostly removed when

the mean intensity is subtracted from the data (Eatough et al., 2009).

4.5 Acceleration Searches

Many pulsars are found in binary systems. With orbital periods on the order

of days or even hours, the pulsars undergo accelerations that significantly affect

how their signals are observed. Depending on whether the pulsar is moving away

from or toward the observer, the emitted signal will be Doppler shifted, making the
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Figure 4.7: A single pulse plot with the RFI removed from the same observation
of B0540−69. The detection looks much weaker, but is much more visible without
the overpowering nature of RFI. The pulse is now clearly visible in the S/N plots
with a value of 12.

observed period greater or smaller than the true period. An acceleration search is

performed to compensate for this phenomenon, which attempts to detect the pulsar

by transforming the observed signal in a reference frame which is ideally at rest with

respect to the pulsar.

To first order, the observed time interval, τ(t), is related to the time interval

in the reference frame of the pulsar, τ0, via the usual Doppler formula

τ(t) = τ0

(

1 +
V (t)

c

)

, (4.7)
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where V (t) is the radial velocity of the pulsar along the line of sight of the observer.

In principle, it is possible to calculate V (t) from the Keplerian orbital parameters

(see Lorimer & Kramer (2005)), but since those parameters are often unknown, a 5-

dimensional parameter space must be searched to accurately constrain the velocity.

Unfortunately, this method is very computationally intense, so an easier solution is

required. By assuming a constant orbital acceleration, a, the velocity can be written

as V (t) = a t. This simple approximation allows for a 1-dimensional search to be

performed.

Visiting the Doppler effect again, the true spin frequency of the pulsar, ν0,

and the observed spin frequency, ν(t), are related by

ν(t) = ν0

(

1 − V (t)

c

)

. (4.8)

Taking the time derivative of the observed spin frequency and recalling that V (t) =

a t, it is found that

|ν̇| =
aν0

c
. (4.9)

This change is frequency will cause the signal to drift across multiple Fourier bins

when analyzed by taking a Fourier transform. To calculate the number of bins across

which the signal drifts, consider an observation of length T , which then has Fourier

bins of size ∆ν = 1/T . The number of bins, Ndrift, that the signal will drift across is

just equal to the change in frequency of the pulsar due to the orbital motion divided
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by the width of one Fourier bin times the length of the observation, or

Ndrift =
ν̇

∆ν
T =

aν0T
2

c
. (4.10)

Ideally, the signal should drift by less than 1 bin, so ∆Ndrift < 1 requires that ∆a <

c/(T 2ν0), or ∆a = cP/T 2, where P is the spin period of the pulsar. With a fixed

observation length and a minimum period to be searched, this optimal acceleration

step size makes it possible to run normal periodicity searches across a wide range of

accelerations to detect pulsars that would previously be undetectable due to such

large changes in their spin periods.

Most binary pulsars have accelerations around to 5 m s−2. However, some

pulsars, such as B2127+11C (9.5 m s−2) and B1744−24A (33 m s−2), have been

found to have accelerations that are significantly greater (Camilo et al., 2000).

There are, however, a couple of limitations to this approach. First, consider

the line−of−sight velocity to a pulsar in a binary orbit,

v(t) = A ω sin i sin (ω t + φ), (4.11)

where ω = 2π/Pb, Pb is the orbital period, i is the inclination angle of the orbit, φ

is the starting phase of the orbit, and A is a constant derived from Kepler’s Laws:

A =
M2

M1 + M2

[

G(M1 + M2)P
2
b

4π2

]
1

3

. (4.12)

Here, M1 and M2 are the masses of the pulsar and its companion, respectively, and
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G is the gravitational constant. Equation 4.11 can be differentiated with respect to

time to give the acceleration that a pulsar in a binary orbit would undergo:

a(t) = A ω2 sin i cos (ω t + φ). (4.13)

As evidenced by this equation, a face−on orbit (i.e. i = 0◦) yields no acceleration,

while an edge−on orbit (i = 90◦) produces the maximum acceleration. It should

also be noted that very small orbital periods can produce very large accelerations,

which significantly affect the detectability of pulsars. Johnston & Kulkarni (1991)

simulated the range of detectable pulsars based on their orbital and spin periods

and quantified their results in a quantity known as γ. This value represents the

degradation of the S/N of an accelerated pulsar over a pulsar moving with constant

velocity. This means that

γ =
(S/N)binary

(S/N)isolated

, (4.14)

where a pulsar in a binary system would undergo acceleration and a pulsar in an

isolated system would have no acceleration. Figure 4.8 shows how γ varies over

orbital period and pulse period.
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Figure 4.8: A gray-scale plot of γ as a function of the orbital and spin periods when
a pulsar is observed for integrations of 1000 s. The dashed line shows the detection
limit when there is no correction for acceleration, while the solid line shows the
minimum detection limit for acceleration searches (Johnston & Kulkarni, 1991).
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Chapter 5

A Survey for Pulsars and Fast Transients in the Small Magellanic

Cloud

5.1 Introduction

Containing five spin−powered radio pulsars and located at a distance of 60 kpc

(Harries et al., 2003), the Small Magellanic Cloud (SMC) holds the most distant

pulsars ever detected. It has been surveyed multiple times for pulsars, most no-

tably by McConnell et al. (1991), Crawford et al. (2001), and Manchester et al.

(2006). These surveys have been successful in discovering new pulsars in both the

Large Magellanic Cloud (LMC) and the SMC, however, they did not yield any new

millisecond pulsars (MSPs). It is this lack of MSP detections and the opportunity

to detect single, giant pulses that provide the motivation to undergo a new, high

sensitivity search of the SMC.

The Berkeley-Parkes-Swinburne data recorder (BPSR) is a pulsar backend

located at the Parkes Telescope in Parkes, Australia (Keith et al., 2010). It makes

use of the 20 cm multibeam receiver (Staveley-Smith et al., 1996) and provides

up to 4 times better time resolution and 30 times better frequency resolution over

previous surveys of the Magellanic Clouds (e.g. Manchester et al., 2006). This

greater sensitivity is particularly helpful for detecting MSPs and was the driving
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Figure 5.1: The minimum detectable luminosity of the Manchester et al. survey
(dotted line) and the new BPSR survey (solid line). The luminosties of the
Galactic pulsars are shown for reference. The solid dots represent the five known
SMC pulsars, while the stars indicate the candidates from this survey. Note the
significant improvement in sensitivity at short spin periods.

force for undergoing this new survey of the SMC. Figure 5.1 shows the improvement

in sensitivity of this new survey over the last major survey of the Magellanic Clouds,

done by Manchester et al. (2006). This survey was performed with the intent to

search for bursting radio sources and to detect the first MSP in either the LMC or
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SMC.

5.2 Observations

Following the search procedures in Crawford et al. (2001), the central core

of the SMC was searched between 2009 May and 2009 November using the BPSR

pulsar backend. This survey made use of the Parkes 20 cm multibeam receiver

(Staveley-Smith et al., 1996), which has 13 receivers, allowing it to effectively point

at 13 different positions on the sky simultaneously. This survey consisted of 12

pointings, effectively covering the center of the SMC in 156 beams as shown in

Figure 5.2. This covers approximately 6.7 deg2 of the sky. Assuming that the SMC

is located 60 kpc from the Sun (Harries et al., 2003), this is equivalent to an area

of 7.3 kpc2.

The multibeam receiver operates at a center frequency of 1374 MHz, generally

has a system noise temperature of 24 K, and has a gain (G) of 0.67 K/Jy. The

BPSR backend has an available 400 MHz bandwidth and can be broken into 1024

different frequency channels, each having a channel bandwidth of 0.390625 MHz.

However, the actual bandwidth that is used for data processing is only 340 MHz,

the native bandwidth of the multibeam receiver (Keith et al., 2010).

Each pointing was observed for a total of 8600 s and the data were sampled

every 64 µs. Using the radiometer equation,

Smin =
β (S/N)minTsys

G
√

np tobs ∆f

√

W

P − W
, (5.1)
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J0057-7201

J0045-7319

J0113-7220

Figure 5.2: The central area of the SMC was searched using the multibeam receiver.
This figure, originally from Crawford et al. (2001), shows the positions of each beam
from all pointings on top of IRAS 60 µm emission. The 3 pulsars plotted are from
the Crawford et al. survey and were discovered in the direction of the SMC.
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yields a minimum flux density of 39.5 µJy for the observations. Values of β ≈ 1,

which is a correction factor, np = 2, which is the number of polarizations that

were summed, and W = 0.1 P were assumed, and the minimum S/N was 8. The

1400 MHz luminosity sensitivity for all pulsars is shown in Figure 5.1.

Data from each observation were archived on SDLT tapes and taken to West

Virginia University for off-line processing. Using a 64-node Beowulf cluster, each

beam was barycentered, de-dispersed, transformed using a Fast Fourier Transform,

and then searched for periodic signals and single pulses using freely available software

tools1 which implement the techniques described in Chapter 4. Dispersion measures

(DMs) in the range from 0 to 500 pc cm−3 were used in the de-dispersion process,

creating 959 trial DM values.

After the data underwent periodicity searches, the top candidates were filtered

for further processing. Candidates were required to have a S/N of at least 8, a DM

greater than 0 pc cm−3, and a period greater than 0.8 ms. After filtering, roughly

60 candidates from each beam were folded and inspected by eye using the PRESTO2

processing suite to determine if additional observations were required.

In addition to periodicity searches, the data were also searched for single pulses.

Using techniques discussed in Section 4.4, the data were searched for pulses ranging

in width from 64 µs to 65 ms. A minimum flux density threshold for a single pulse

1http://sigproc.sourceforge.net
2http://github.com/scottransom/presto
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search can be calculated (see Cordes & McLaughlin, 2003) as

Smin =
(S/N)min Ssys

W

√

W

np ∆f
, (5.2)

where (S/N)min is the minimum S/N, W is the maximum pulse width in seconds, np

is the number of polarizations, taken to be 2 here, and ∆f is the receiver bandwidth

in Hz. Ssys is the system sensitivity, which is 34 Jy for the multibeam receiver. As-

suming that (S/N)min = 5 and ∆f = 340 MHz, the minimum flux density threshold

for this survey is 30 mJy.

5.3 Results

Three known pulsars have been redetected in these observations. Two of these

are located in the core of the SMC while the third lies in the Milky Way Galaxy along

the line of sight of the SMC. Also, three pulsar candidates have appeared during

this search of the SMC. These candidates would all be MSPs, making them virtually

undetectable in previous surveys of the SMC. All redetections and candidates were

seen using periodicity searches. Single pulse searches of the entire SMC yielded zero

detections. The following sections describe these pulsars and candidates in more

detail.

5.3.1 Known Pulsars

Three known pulsars were redetected in this survey. Plots of each redetection

can be seen in Figures 5.3, 5.4, and 5.5.
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Table 5.1: A table of the 12 core pointings of the SMC, including observation
time, MJD, RA/Dec, whether or not a known pulsar or pulsar candidate has been
detected, and the minimum detectable flux density for a normal pulsar at 1400 MHz
within the center beam. Also included is a separate pointing (PSMC0099) centered
on a known pulsar. The RA has units of hours, minutes, and seconds, and the DEC
has units of degrees, arcminutes, and arcseconds.

Pointing ID tobs (s) MJD RA (J2000) DEC (J2000) Pulsar? Smin (mJy)

PSMC0025a 300 54968.978 00:50:31 −72:47:39 no 0.28
PSMC0025b 67 54969.030 00:50:31 −72:47:39 no 0.58
PSMC0025c 696 54969.190 00:50:31 −72:47:39 no 0.18
PSMC0025d 8619 54969.974 00:50:31 −72:47:39 no 0.04

PSMC0026 8622 54970.074 00:53:40 −72:48:06 no 0.04

PSMC0027 4423 54972.940 00:52:12 −72:35:47 no 0.07

PSMC0028a 1268 54973.011 00:49:04 −72:35:14 no 0.13
PSMC0028b 3794 54973.172 00:49:04 −72:35:14 no 0.08

PSMC0033 2633 54974.087 01:12:54 −73:11:13 yes 0.09

PSMC0034 2211 54974.175 01:16:08 −73:10:22 no 0.10

PSMC0035 8461 55022.945 01:14:21 −72:58:43 no 0.04

PSMC0036a 8622 55023.923 01:11:09 −72:59:26 no 0.04
PSMC0036b 8618 55148.506 01:11:09 −72:59:26 no 0.04
PSMC0036c 8617 55148.607 01:11:09 −72:59.26 no 0.04

PSMC0037a 252 55023.058 01:05:54 −71:35:23 no 0.30
PSMC0037b 8619 55224.194 01:05:54 −71:35:23 no 0.04

PSMC0038 8616 54977.814 01:08:51 −71:34:59 yes 0.04

PSMC0039 8620 54977.714 01:07:18 −71:23:05 no 0.04

PSMC0040a 5224 55024.024 01:04:23 −71:23:26 no 0.07
PSMC0040b 8622 55150.441 01:04:23 −71:23:26 no 0.04

PSMC0099 7055 55150.543 01:31:28 −73:10:09 yes 0.06
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Figure 5.3: Search output showing the first redetected pulsar, J0113−7220.

5.3.1.1 PSR J0113−7220

The first pulsar redetected was J0113−7220, which was originally discovered in

the Crawford et al. survey. With a period of 325.88 ms and a DM of 126.9 pc cm−3,

this is a normal pulsar located in the SMC. This pulsar was observed in pointing

PSMC0033 of this survey, which was only a partial pointing of 44 minutes, and had

a S/N of 20.6, as given by the seek pulsar search program3.

3http://sigproc.sourceforge.net
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Figure 5.4: Search output showing the second redetected pulsar, J0131−7310.

5.3.1.2 PSR J0131−7310

Pulsar J0131−7310 was also redetected. Although not in the surveyed region,

a separate pointing was performed centered on this pulsar. Originally discovered in

the Manchester et al. survey, it has a period of 348.12 ms and a DM of 205.2 pc cm−3,

making it another normal pulsar located within the estimated DM range (70−210)

of the SMC. This pulsar was observed in pointing PSMC0099 with a S/N of 20.5.
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Figure 5.5: Search output showing the third redetected pulsar, J0057−7201.

5.3.1.3 PSR J0057−7201

The final pulsar redetected in this survey was J0057−7201, which was origi-

nally detected in the Crawford et al. survey. Having a period of 738.06 ms and a DM

of 7.8 pc cm−3, this is a normal pulsar which lies in the direction of the SMC. The

DM value differs significantly from the previously published value of 27 pc cm−3.

The low DM and long period make it difficult to accurately determine the true DM,

especially in just a single observation. The S/N is most likely a very high value for a

large range of DMs. The low DM, however, means that the pulsar is located within

the Milky Way Galaxy. This pulsar was observed in pointing PSMC0038, which

was a full-length pointing, and had a S/N of 9.4.
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Figure 5.6: Search output showing MSP candidate SMC J0042−7300.

5.3.2 MSP Candidates

This survey of the SMC also produced multiple MSP candidates.

5.3.2.1 SMC J0042−7300

The first MSP candidate is located at an RA of 00h 42m 10s and a DEC of

−73◦00’16”, and has a period of 2.03 ms and a DM of 29.6 pc cm−3. This makes it

a possible foreground pulsar. This was observed in pointing PSMC0027, which was

74 minutes in length, and had a S/N of 8.2. This yields a flux density of 0.07 mJy

and a 1400 MHz luminosity of 265 mJy kpc2 using the assumed distance to the SMC

of 60 kpc. Figure 5.6 shows the original detection.
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Figure 5.7: Search output showing MSP candidate SMC J0045−7300. Note that
there appears to be a scattering tail in the pulse profile (see Section 1.2.7).

5.3.2.2 SMC J0045−7300

The second MSP candidate is located at an RA of 00h 45m 45s and a DEC of

−73◦00’20”, has a period of 2.80 ms, and a DM of 178.7 pc cm−3. This DM places

this candidate within the SMC. Observed in pointing PSMC0028b for slightly more

than 1 hour, the original detection can be seen in Figure 5.7. It had a S/N of

8.3, which translates to a flux density of 0.08 mJy and a 1400 MHz luminosity of

290 mJy kpc2.
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Figure 5.8: Search output showing MSP candidate SMC J0111−7350.

5.3.2.3 SMC J0111−7350

The final MSP candidate is located at an RA of 01h 11m 10s and a DEC of

−73◦50’12”, has a period of 6.82 ms, and a DM of 186.2 pc cm−3. Again, this DM

places it within the SMC. It had a S/N of 8.1, and a plot from pointing PSMC0036c

can be found in Figure 5.8. The flux density was found to be 0.05 mJy, giving it a

1400 MHz luminosity of 188 mJy kpc2.

5.3.2.4 Follow-up Observations

Each of the three MSP candidates will be observed a second time with a full

length pointing. The center beam of the multibeam receiver will be centered directly
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on each candidate to allow for the highest sensitivity possible. These observations,

to be carried out in the first few months of 2011, will be able to either confirm or

reject these candidates as being actual pulsars.

5.4 Discussion

5.4.1 Candidates Versus Known Pulsars

Known pulsars in the SMC have DMs ranging from 70−210 pc cm−3. Two of

the candidates produced from this survey fall within that range. The third has a

much lower DM, likely making it a foreground pulsar.

All three of the candidates have spin periods on the order of a few milliseconds.

Since all of the currently known SMC pulsars fall into the normal pulsar category,

these candidates are especially unique. They would be the first MSPs discovered

within either of the Magellanic Clouds.

5.4.2 Expected S/N

Using the catalog flux density of the known SMC radio pulsars and the ra-

diometer equation, the expected S/N can be calculated. Assuming that each pulsar

was observed with a full pointing, these values are shown in Table 5.2 along with

other pulsar properties, including spin period, DM, and 1400 MHz flux density.

The expected S/N for each pulsar appears to be reasonable, especially considering

that the observed S/N for the 2 observed SMC pulsars are both within 15% of the

expected values.
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Since J0113 was not observed with the center beam of the multibeam receiver,

the telescope gain was slightly lower (0.581 K/Jy). The values for the gains from

each beam can be found in Manchester et al. (2001). In addition, the pulsar was

not located at the center of the telescope beam, meaning that the observed flux was

slightly lower than it would be had the telescope been pointed directly at it (similar

to how pointing PSMC0099 pointed directly at J0131). To account for this, the

distance from the pulsar to the center of beam, r, was measured, and then a flux

degradation factor, δbeam, was calculated by

δbeam = exp

( −r2

f 2
beam

)

, (5.3)

where fbeam = b/(2
√

ln 2) for a telescope beamwidth of b degrees (Lorimer et al.,

1993). This model assumes that the telescope beam has a Gaussian power pattern.

5.4.3 Single Pulses

As mentioned earlier, there were no single pulses observed in the direction of

the SMC. A few of the reasons for the lack of detections will be discussed here.

First, the SMC is located nearly 60 kpc away from the Earth. This means that

the observed flux density from an average pulse of the pulsar will be much lower

than other pulsars (with previously observed single pulses) located within the Milky

Way. It is possible that the flux density of the pulses arriving at the Earth is too

weak to be observed using the parameters of this survey.

A related issue is that of giant pulses. A few pulsars (e.g. the Crab Pulsar)
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Table 5.2: A table showing the Period, DM, 1400 MHz flux density, and r values
of the 5 currently known SMC radio pulsars and the redetected foreground pulsar.
Values for the SMC pulsars were obtained from Manchester et al. (2006), while the
foreground pulsar values came from Crawford et al. (2001). Also included are the
observed and expected S/N values from this survey. The first two pulsars were not
redetected because they did not lie within a FWHM (full width half maximum) of
any of the beams from this survey, so their expected S/N values were calculated
assuming that they were observed with a full-length pointing using the center beam
of the multibeam receiver and an N/A was placed in the r column. J0111−7131
was within beam 8 of PSMC0038, however, due to its low flux density, it was not
detected.

Catalog DM S1400 Observed Expected r
JName P (s) (cm pc−3) (mJy) S/N S/N (arcmin)

J0045−7042 0.6323 70.0 0.11 N/A 17.1 N/A
J0045−7319 0.9262 105.4 0.30 N/A 46.6 N/A
J0111−7131 0.6885 76.0 0.06 N/A 6.9 4.1
J0113−7220 0.3258 125.4 0.40 20.6 23.6 1.9
J0131−7310 0.3481 205.2 0.15 20.5 19.3 < 0.5

J0057−7201 0.7381 27.0 N/A 9.4 N/A 0.6

are known to periodically emit pulses that are 10s–100s of times stronger than their

average pulses. If none of the SMC pulsars (or candidates) exhibit properties such

as the Crab Pulsar, then these bright giant pulses would not be detected in this

survey.

Finally, radio frequency interference (RFI) is also a possible explanation for the

lack of single pulse detections. As evidenced in the previous chapter, RFI removal

effectively involves completely zapping signals that appear to have originated on

the Earth, or equivalently at a DM of 0 pc cm−3. Single pulses that may be bright

enough to be detected could potentially be erased when the RFI is removed.

The lack of single pulse detections leads directly to a Bayesian analysis of the
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underlying population of bursting sources. Following methods discussed in Gregory

(2005) and Wall & Jenkins (2001), a probability density function (PDF) of the

number of bursting sources can be calculated. First, it is assumed that the rate of

bursts above a minimum flux density, S, can be represented as

R(> S) = KSα, (5.4)

where K is a constant and α is the spectral index. The predicted number of pulses

observed from a population of N sources in an observation of length T above a

minimum flux, Smin, is then just

npulses = KNSα
minT. (5.5)

Assuming the pulses follow Poissonian statistics, the probability of observing m

pulses given the model parameters N , α, and K can be written as

p(m|N, α, K) =
nm

pulses exp(−npulses)

m!
, (5.6)

where the | symbol denotes a conditional probability. Bayes’ theorem may now be

applied to find the joint posterior PDF for N , α, and K if m pulses are detected.

Neglecting normalizing factors, the joint posterior is simply

p(N, α, K|m) ∝ p(m|N, α, K)p(N, α, K). (5.7)
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Here, the first term on the right-hand side of this expression is the likelihood factor

and is given by our Poissonian expression above. The second term is the joint prior

PDF for N , α and K. For this case, where there are no detections, m = 0. Taking

the most conservative approach and assuming uniform (i.e. non-informative) priors

on the model parameters, the desired posterior PDF for N can be expressed by

marginalizing over α and K. In this way, it is found that

p(N |m = 0) ∝
∫ αmax

αmin

∫ Kmax

Kmin

exp(−npulses)dαdK, (5.8)

where Kmin and Kmax are the ranges considered for K, and similarly for αmin and

αmax. To get plausible ranges for K and α, the only known giant pulsing emitter

in the LMC known to date, PSR B0540−69 (Johnston & Romani, 2003), is consid-

ered, and from their Figures 2 and 3 it is found that Kmin = 0.01, Kmax = 0.02,

αmin = −2.0, and αmax = −1.0. The above double integral is evaluated numerically

assuming Smin = 30 mJy and T = 8600 s, and the resulting distribution is shown

as a histogram in Figure 5.9. From this distribution there is a 95% likelihood that

there are no more than 15 bursting sources (similar to B0540−69) in the SMC.

5.4.4 Survey Limitations

Aside from telescope limitations such as size, receiver temperature, and ob-

serving frequency, the biggest limitation is observation time. According to the ra-

diometer equation, the minimum observable flux density is directly affected by the

length of the observation. The longer the observation, the lower the minimum flux
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Figure 5.9: The probability density function of having a given number of bursting
sources when no pulses were observed in the SMC. The 95% upper limit lies at 15
sources.

97



density becomes.

For this survey, an observation time of nearly 2.5 hours was used. Since the

SMC is not a circumpolar source when viewed from the Parkes Observatory, there is

a maximum continuous observation time. Realistically, this maximum time would

be approximately 5 hours. Since this only reduces Smin to 27.3 µJy from 39.5 µJy,

this survey would not be significantly more sensitive if this maximum integration

time was used.

Another limitation is the acceleration search. To be sensitive to MSPs with

periods on the order of 2 ms using an observation time of nearly 9000 s, the ac-

celeration step size, ∆a = cP/T 2, is approximately 0.007 m s−2. Using steps of

0.02 m s−2, searching accelerations up to ± 10 m s−2 would require 1000 additional

searches at each DM, effectively increasing the processing time by a factor of 1000.

However, when this search is actually carried out, a smaller range of accelerations

(possibly out to ± 3 m s−2) and a specific DM range (70 − 210 pc cm−3) will be

used so that the actual increase in processing time will be around a factor of 4 or 5.

Other limitations of this survey, many relating to hardware and computer

issues, would make this survey more sensitive to sub-millisecond pulsars. As no

sub-millisecond pulsars have currently been detected, this would be an exciting

class of pulsars to discover and study.
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5.5 Conclusions

This survey has successfully redetected three SMC pulsars. A fourth known

SMC pulsar is located outside the bounds of this survey, and a fifth was too weak

to be observed in only a partial pointing.

Three new candidates have appeared from processing the data of this survey.

Two of them are located within the SMC, while the third lies in the foreground along

the line of sight. All of these candidates have periods in the millisecond range, which

would make them the first MSPs in the Magellanic Clouds. Based on the simulations

of Ridley & Lorimer (2010), also seen in Chapter 3, an upper limit of 8,000 MSPs

can now be placed on the SMC.

After successfully completing this survey of the SMC, the logical plan is to

extend the survey to cover the LMC. Currently, the central core of the LMC is

being surveyed using the same setup as the SMC survey discussed here. If the

central LMC survey yields promising results, then observations of the outer regions

of the LMC will be planned. In addition to surveying the LMC, acceleration searches

will be performed on the SMC survey data in an attempt to discover pulsars that

are in binary systems.
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Chapter 6

Conclusions

This work has introduced pulsars, described their properties, modeled their

population distributions, explained in detail how to search for them, and presented

the results of a survey of the Small Magellanic Cloud.

Chapter 1 began by laying the foundation of the fundamental pulsar properties,

from spin period to flux density to magnetic field. Specific attention was made to

distinguish between the two major types of pulsars, known as millisecond pulsars

(MSPs) and normal pulsars.

Chapter 2 took these properties and modeled the pulsar population within the

Milky Way Galaxy by performing various Monte Carlo computer simulations. These

simulations were able to recreate the observed pulsar population and thus create a

working model of pulsars that can be further studied for purposes of learning more

about individual or groups of pulsars, or even predicting how many pulsars should be

detected in a survey of the Galaxy. Specifically, there were three major parameters

that were constrained here. Magnetic alignment angles should have a random initial

distribution, pulsar luminosities should have a P and Ṗ dependence, and braking

indices, n, do not significantly affect the overall pulsar population.

Chapter 3 expanded on the simulations presented in Chapter 2 and carried out

a similar simulation of the Large and Small Magellanic Clouds (LMC and SMC). The
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pulsar populations generated by these simulations were able to accurately reproduce

the results of previous surveys of the Magellanic Clouds. Upper limits of 15,000

and 23,000 MSPs have been placed on the LMC and SMC, respectively. Taking

these models a step further, predictions were made regarding the potential pulsar

detections in a future survey of both the LMC and SMC.

Chapter 4 discussed the three major types of pulsar searches used today. Pe-

riodicity searches are effective at discovering the repeated signals that pulsars emit,

and sensitive to a wide range of periods. Single pulse searches can find pulses whose

intensity is significantly greater than the underlying noise. Some otherwise weak

pulsars have been discovered only due to these occasionally bright pulses that they

emit. Finally, acceleration searches are extremely useful when searching for pulsars

in binary orbits. By accounting for a range of possible accelerations, pulsars can be

detected even though their motion is oftentimes largely perturbed.

Finally, Chapter 5 presented the initial results of a survey of the Small Mag-

ellanic Cloud, performed in 2009. The survey redetected three previously known

pulsars (two in the SMC and one lying along the line of sight toward the SMC)

and yielded three potential MSPs. Further observations are being done on these

candidates with the hopes of confirming one or more of them as pulsars.

There are many areas for future work to be done. The pulsar parameter

analysis performed in Chapter 2 can be adapted to study even more parameters and

can even focus on covariances of multiple parameters. Extending the SMC survey

of Chapter 5 to the LMC will certainly redetect known LMC pulsars and should

uncover even more MSP candidates. Also, a fully dynamical model of both the LMC
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and SMC could be created, similar to the work in Chapter 2 done with the Milky

Way Galaxy.

There are also telescope improvements that will allow for further studies to be

done. The Square Kilometre Array will be up to an order of magnitude more sensi-

tive than current telescopes and this will allow for even more pulsars to be detected

while using a smaller amount of observing time. With surveys being completed

faster, more surveys can be performed which enables more pulsars to be detected

and studied. These new pulsars can help to understand individual groups of pul-

sars, such the young pulsars, the MSPs, and ones with low luminosities. Finding

additional pulsars in the Magellanic Clouds will also help compare that population

to that of the Galaxy.
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Appendix A

An Open-source Approach to Pulsar Population Synthesis

Following the initial version described by Lorimer et al. (2006), the source code

used in this work is freely available at http://psrpop.sourceforge.net. The new

features of the pulsar simulation package, PSRPOP, are described here, as well as the

announcement of the availability of a website, http://psrpop.phys.wvu.edu, used

to investigate past and future pulsar surveys.

The biggest new feature of the software package is the ability to evolve a

pulsar’s spin period in time. Currently, spin-down models from Faucher-Giguère

& Kaspi (2006) and Contopoulos & Spitkovsky (2006) are available for use in the

simulations. By having this evolution feature, a pulsar’s life cycle can now be viewed

from birth to death, and how its period changes with time can be observed. The

program also has the ability to use various beaming models, luminosity laws, and

alignment angle functions. These allow for further studying of the individual pulsars,

and a more complete understanding of pulsar populations as a whole.

The PSRPOP website currently has the capability of surveying any of the eight

model populations generated from Chapter 2 and future models will also be available

for use. The user can “search” these model populations using previous surveys such

as the Parkes Multibeam Survey, theoretical surveys such as one using the proposed

Square Kilometer Array, or they can create their own survey. One of the main
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Figure A.1: The website output of the PSRPOP website. Here, the normal pulsar
population was surveyed using the parameters from the Parkes Multibeam Survey.
The detected pulsars are displayed in a P−Ṗ diagram, and the overall distribution of
P , Ṗ , DM, and flux density of the simulated pulsars (in red) are shown in histogram
form against the observed distributions (in black).

benefits of running a custom survey is the ability to predict yields of future surveys.

After surveying one of the pulsar populations, the website outputs the total

number of pulsars detected, a P–Ṗ diagram, and a few comparison plots. These

plots contain histograms of the pulsar properties detected in the survey that overlay

histograms of the observed pulsar population. Some possible properties that can

be shown in the histogram plots are pulse period, period derivative, dispersion

measure, and flux density. Figure A.1 shows a sample output when the normal
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pulsar population is surveyed using the Parkes Multibeam Survey parameters.
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Appendix B

A Search for the Youngest Pulsar in the Galaxy

The young pulsar population in the Galaxy is not well understood, so search-

ing for and finding young pulsars would yield answers to many uncertainties, such

as their birth rates, luminosities, and beaming fractions. Since many pulsars are

believed to have been formed in supernovae, supernova remnants (SNRs) are logical

places in which to search for pulsars.

Supernova remnant G1.9 + 0.3 was discovered by Green & Gull (1984). Later

observations by Reynolds et al. (2008) using the Chandra X-ray Telescope (see Fig-

ure B.1) determined that the SNR was on the order of 100 years old. Currently, the

youngest known pulsar in the Milky Way Galaxy is J1846−0258, which is slightly

more than 700 years old (Gotthelf et al., 2000).

The area around G1.9+0.3 has been previously searched for pulsars in surveys

(such as the Parkes Multibeam Survey), however, no periodic or bursting sources

were discovered. Lower flux density limits at 1.4 GHz of 0.3 and 450 mJy, re-

spectively, were attained in those searches, meaning that the maximum 1.4 GHz

luminosity that a potential pulsar could have would be 20 mJy kpc2. Luminosities

higher than this should have made the pulsar visible in these searches.

With the use of the GUPPI backend at the Green Bank Telescope (DuPlain

et al., 2008), it is possible to improve the sensitivity of a pulsar search by at least an
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Figure B.1: The Chandra X-ray image showing SNR G1.9 + 0.3 (Reynolds et al.,
2008).

order of magnitude over the Parkes Multibeam Survey due to its larger bandwidth

and smaller frequency channels. This fact provided the motivation to undergo an

additional search for a pulsar in G1.9 + 0.3.

Using the assumed distance to the SNR of 8.5 kpc (Reynolds et al., 2008),

the Cordes-Lazio NE2001 electron density model predicts a DM of 700 pc cm−3.

The pulse broadening due to interstellar scattering at an observing frequency of

1.4 GHz is 14 ms. This is a significant fraction of the pulsar period for many of the

young pulsars in the Galaxy and would likely inhibit any detection at this frequency,
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including the Parkes Multibeam Survey. However, at a frequency of 5 GHz, the

scattering is only around 50 µs. Higher frequencies would reduce the amount of

scattering even further, but the steep spectral indices of pulsars (on average −1.8,

Maron et al. (2000)) would make observations at such high frequencies much less

sensitive.

In July 2009, a search of SNR G1.9 + 0.3 took place at the Green Bank Tele-

scope using the GUPPI backend. The C-band receiver, centered at a frequency of

5 GHz, was used for a single 7.5 hour observation. More than 130 DMs were searched

out to a DM of 3000 pc cm−3. The minimum S/N that was considered was 8, which

made the search sensitive down to a 1.4 GHz luminosity limit of 6.9 mJy kpc2. This

would make 70% of the known pulsars visible, however, no periodicities or single

bursts were observed.

The lack of any detections in this search yields three main conclusions regard-

ing the central compact object of SNR G1.9 + 0.3. First, it is possible that the

object is not a pulsar. It could be a central compact object (CCO) and thus no

periodic signals should be expected. Second, the object could be a pulsar that is

beaming away from the Earth. Estimates from Tauris & Manchester (1998) predict

that only around 10% of all pulsars are beaming in the direction of Earth. Finally,

it is possible that the object could be a pulsar that has a luminosity of less than

6.9 mJy kpc2, which would put it into a category along with 30% of all pulsars that

would not have been visible with these observations. Further observations of SNR

G1.9 + 0.3 could be even more sensitive, and thus possibly discover the youngest

pulsar in the Galaxy!
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