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1 ABSTRACT 

The objective of this study was to evaluate tools for in-field, on-board engine 

emissions measurements, namely, a Signal Model 3030PM hydrocarbon analyzer and 

McCrometer’s V-Cone flow meter.   The Signal Model 3030PM analyzer uses a heated 

flame ionizing detection scheme to measure hydrocarbons.  The V-Cone is an 

obstructive, differential pressure flow meter that reshapes the flow profile, therefore 

conditioning the flow.   

The Signal Model 3030PM analyzer was found to perform as well or better than 

the HC analyzers currently used in the FTP test cell.  Besides the portability feature, the 

Signal Model 3030PM demonstrated better response, being able to capture the high and 

low concentrations better.  Concerns for the Signal are its ability to measure raw diesel 

engine exhaust, hydrocarbon hang-up, and the non-essential features that are currently 

part of the instrument.   

When compared with an Annubar® flow meter, the V-Cone measured consistently 

higher than the Annubar® for the flow rates and this translated into higher mass rates.  

After recalculating the V-Cone values using the correction factor, the V-Cone had 

integrated errors of less than 5% for transient tests and 10% for steady state tests when 

compared to the Annubar.  The V-Cone needs more testing to ensure the accuracy of the 

V-Cone with the Laboratory; those studies should include the Annubar®.  Other concerns 

of the V-Cone include:  the weight of the instrument does not lend itself to mobile 

emissions measurements; also mode-8 of the steady state tests gave erroneous flow rates.  

If these concerns could be addressed, the V-Cone could be a viable option as an exhaust 

flow meter for in-field, on-board emissions measurements. 
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Chapter 1  INTRODUCTION 

In October 1997, the Environmental Protection Agency (EPA) adopted new 

emission standards for model year 2004 and later heavy-duty diesel truck and bus 

engines. These standards reflect the provisions of the Statement of Principles (SOP) 

signed in 1995 by the EPA, California Air Resources Board (ARB), and the 

manufacturers of heavy-duty diesel engines. The goal was to reduce NOX emissions from 

highway heavy-duty engines to levels approximately 2.0 g/bhp·hr beginning in 2004. 

Manufacturers have the flexibility to certify their engines to one of the two options shown 

in Table 1.2.  All emission standards other than non-methane hydrocarbons (NMHC) and 

NOX applying to 1998 and later model year heavy duty engines will continue at their 

1998 levels. 

Table 1.1 1998 Emissions standards for heavy-duty diesel engines, g/bhp-hr. 

Heavy-Duty Diesel Truck Engines HC CO NOX PM 

1998 1.3 15.5 4.0 0.10 

Urban Bus Engines     

1998 1.3 15.5 4.0 0.05 

 

Table 1.2 Options for certification of heavy-duty diesel engines for 2004 and later 
standards. 

Option NMHC + NOx NMHC 
1 2.4 n/a 
2 2.5 0.5 
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In October of 1998, a court settlement was reached between the EPA, Department 

of Justice, California ARB and engine manufacturers (Caterpillar, Cummins, Detroit 

Diesel, Volvo, Mack Trucks/Renault and Navistar) over the issue of high NOX emissions 

from heavy-duty diesel engines during certain driving modes. When the engines were 

tested for conformance with the emissions standards, the manufacturer would cause the 

ECU to operate in the “urban mode,” which would allow the engine to pass the 

certification test.  However, on road, the engine would produce greater emissions than the 

standards because the ECU would switch the engine to the “highway mode.” 

Provisions of the Consent Decree included the following: 

• Civil penalties for engine manufacturers and requirements to allocate funds for 

pollution research;  

• Upgrading existing engines to lower NOX emissions;  

• Certification of engines on both the transient FTP and the Supplemental Steady-

State Test;  

• Meeting the 2004 emission standards by October 2002, 15 months ahead of time.  

From the consent decrees, the allocation of money to fund pollution research 

allowed institutions to develop real-time, on-board emissions measurement systems.  

WVU developed what they termed the MEMS system, a mobile, real-time emissions 

measurement system.  WVU designed, fabricated, and tested the MEMS system, 

comparing the emissions data to their in-house Engine Emissions Research Laboratory 

(EERL).  Extensive tests were conducted on the MEMS and the emissions sensors it 
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used.  The criteria for the sensors for MEMS were robustness, accuracy, and 

compactness.  Also, different flow meters were tested and compared. 

The MEMS system uses emissions sensors to measure NOX and CO2 

concentrations from raw exhaust.  Sample conditioning systems such as chillers were 

tested and integrated into MEMS to dry the sample stream prior to the sensors.  

Emissions of CO from diesel engines are at such low concentration levels that it was not 

considered as a target pollutant for MEMS.  This decision was made in concurrence with 

the settling- Heavy Duty Diesel Engine Manufacturers (HDDE) and the EPA.  The 

MEMS system was designed to be robust, to be able to handle on-road testing and the 

problems associated with on-road testing, such as vibration issues, temperature variation, 

humidity variations, etc.   

The first generation MEMS was large and oversized approximately (24” by 24” 

by 12”).  It was more of a “bread board.” The pumps were larger than they needed to be 

to ensure proper sampling; the NOX converter was purchased and therefore large and 

bulky.  For the second generation MEMS, the NOX converter and the chiller were 

designed in-house to reduce their size and thus the size of MEMS.  The second 

generation MEMS system was more compact, and the equipment was resized or 

redesigned to ensure the MEMS system didn’t have any reductions in its capabilities. 

Other engine emissions are produced by the engine but are not measured by 

MEMS.  Possible reasons for not measuring them are the accuracy is poor for the sensors, 

the capability of instruments limits the applications of an on-board measurement system, 

or the emissions are produced in low concentrations such that they are negligible.   
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As seen previously, the 2004 regulations require the measurement of NOX plus 

HC.  Therefore, the measurement of hydrocarbons is involved for emissions 

measurements in the future.  Any real-time, on-board emissions measurement system 

would need to measure hydrocarbons in addition to NOX for engines under the 2004 

regulations.  Therefore, there is a need for a portable hydrocarbon analyzer that is 

accurate and precise in its measurements during an on-board testing application. 

Currently, hydrocarbon analyzers are cumbersome and bulky, not suitable for on-board 

measurements.   

Most flow meters need long straight pipe to ensure fully developed flow.  Fully 

developed flow is needed for accurate flow rate measurements.  The size of the pipe 

because of the dimensions of the pipe needed for fully developed flow is the limitation. 

The objective of this study was to evaluate a portable flame ionization detector 

(FID) for the measurement of hydrocarbons and to evaluate a novel flow meter for in-

field, on-board emissions measurement.  Also, in the scope of this study, is to investigate 

the integration of these instruments in to a mobile emissions measurement system. The 

portable hydrocarbon analyzer evaluated is Signal Groups Model 3030PM analyzer; and 

the flow meter evaluated is McCrometer’s V-Cone. 

The Signal Group developed a portable, heated  flame ionizing detection (HFID) 

hydrocarbon analyzer (Model 3030PM) for portable hydrocarbon measurements and 

McCrometer developed the V-Cone, a flow measurement device that measures flow rates 

without the need for fully developed flow.  
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The Signal Model 3030PM uses HFID technology to measure total HC.  The 

analyzer is designed as a portable instrument; thus it was designed to be robust and 

compact for ease of transportation.  Small gas bottles are included as well so that the FID 

fuel and span gases are also portable.  Figure 1.1 shows the Signal Model 3030PM with 

the FID fuel and span gas bottle underneath. 

 

Figure 1.1 Signal Model 3030PM portable hydrocarbon analyzer. 

 

McCrometer’s V-Cone is an obstructive, differential pressure, flow measurement 

device that conditions the flow, eliminating the need for fully developed flow and the 

length of pipe associated with it.  A conical mass located in the center of the flow profile 

forces the high velocity and low velocity flow to mix, conditioning the flow.  Static 

pressure measurements are taken before the cone and on the downstream side of the cone, 

as can be seen in Figure 1.2. 
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Figure 1.2 A cutout of the V-Cone showing the conical mass in the center of the flow, 
and the pressure ports. 
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Chapter 2  LITERATURE REVIEW 

2.1     Introduction 

Actual emissions measurement in driving situations is becoming the accepted way 

to measure emissions.  Previously, the engine was pulled from the vehicle and put into a 

test laboratory, operated through cycles trying to simulate real-world driving conditions, 

and the emissions were measured.  In the real world, the driving conditions change 

constantly.  In addition, humidity, temperature, pressures all are constantly changing.  

Therefore, the ability to measure emissions on-board vehicles is becoming more 

important.  Therefore, new emphasis has gone into developing an accurate, on-board 

emissions measurement system to record real world emissions. 

This chapter describes the steps that were taken to arrive at real- time, on-board 

emissions measurement.  Other institutions have also developed and tested numerous 

systems, applying them to some aspect of on-board measurement.  From the results and 

conclusions from these studies, new studies and new equipment were used to achieve 

greater accuracies for the measurement systems.  The applications of this knowledge 

continue to expand and new systems are developed.  

2.2   In-Field Emissions Measurement 

2.2.1 Southwest Research Institute 

Southwest Research Institute developed a system to test diesel engines in mining 

atmospheres between the years of 1978 to 1983 [5].  The system developed consisted of a 

portable engine dynamometer, laboratory-grade emissions instruments, volumetric fuel 

flow meter, and a laminar air meter.  The emissions measurement instruments consisted 
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of a heated ionizing flame detector (HFID) for hydrocarbons, a non-dispersive infrared 

(NDIR) for CO and CO2, a heated chemiluminescent analyzer (CLA) for NOX, and a 

polar graphic analyzer for O2.  Particulate matter was also measured using a mini-dilution 

tunnel.  Calibrations needed to be done in the field, so the calibration gases were brought 

as part of the system.   

The capabilities of this system were limited.  The system was portable, but the 

level of portability for this system was low.   

2.2.2 Michigan Technological University 

Michigan Technological University researchers developed an Emissions 

Measurement Apparatus (EMA) system and reported results from underground mining 

equipment tests [8].  The EMA consisted of instruments to measure both PM and gaseous 

emissions.  A dilute bag sampling system, a mini-dilution tunnel for gravimetric analysis 

of PM, battery powered portable emissions analyzers (for off- line bag analysis), and 

heated sample lines were used in the EMA.   

Comparing the EMA system to laboratory grade instruments showed that the 

EMA was within 5% for CO2, within 10% for CO, and within 5% for NO. PM was within 

7% of the laboratory grade instruments.  

2.2.3 University of Minnesota 

The University of Minnesota Researchers developed an emissions-assisted 

maintenance procedure (EAMP) for diesel-powered mining equipment [38]. A main 

design criterion for the EAMP system was portability.  The EAMP was designed to be 

more portable than the systems developed by Southwest Research Institute or Michigan 
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Technological University, and was designed to detect engine faulting.  Electrochemical 

gas sensor (EGS) technology was determined to be a rugged and portable technology.  

The sensor accuracy was determined to be 5% of the measured value of NO, NO2, CO, 

CO2, and O2.   

Comparing the EAMP with laboratory grade instruments showed that, for a diesel 

engine on a dynamometer, the Ecom-AC analyzer emissions reading were within 5%.  

The Ecom-AC analyzer was slightly higher than the laboratory grade instruments.  A 

curve fit to known gases was employed to minimize the analyzer measurement errors.   

2.2.4 University of California, Riverside 

The University of California, Riverside, Bournes College of Engineering-Center 

for Environmental Research and Technology (CE-CERT) has developed a Mobile On-

Road Heavy-Duty Emissions Laboratory.  The centerpiece of the Emissions Laboratory is 

a 53-foot insulated trailer in which CE-CERT has installed analytical equipment for 

measurement of gaseous and particulate emissions from the tractor's exhaust stack. Like 

an emissions laboratory (and unlike other portable systems), the trailer is equipped with 

the analytical instrumentation necessary to accurately measure emissions in grams per 

mile and appropriate atmospheric conditions [40].  The Laboratory consists of 

instruments to measure NOX, HC, CO, CO2, methane, and total particulate matter.  The 

laboratory grade emissions instruments used in the trailer are listed in Table 2.1.   
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Table 2.1 Emissions equipment used in the CE-CERT Mobile Laboratory [40]. 

Parameter Instrument 
Model 

Detection 
Method 

Operating Ranges Sensitivity Response 
Time 

Sample Flow 
and 
Pressure 

Hydro 
carbons  

Horiba FIA -
34A 

Flame Ionization 0-10/100/500/1000 ppm 
C1 standard 

0.5% full scale .5 sec to 90% 3 lpm 

 Horiba 
OPE-415 

 optional ranges to 30,000 
ppm C1 

(0.05 ppm-C1)  at 3" HG 

Oxides of 
Nitrogen 

Horiba 
CLA22A 

Chemiluminesce
nt 

0 to 10/25/100/400 ppm 0.5% full scale 3 sec for NO< 
10ppm 

5 lpm @ 6 psig 

 Horiba 
OPE-235 

   2 sec for NO> 
10ppm 

 

 Horiba 
OZG-UV-01 

     

 Horiba 
COM-11-HRB 

     

 Horiba 
GC-12 

     

Carbon 
Monoxide  

Horiba 
CFA-26 
 

Nondispersive 
Infrared 

0-50/250/1,000/5,000 
ppm 

0.5% full scale 2 seconds to 
90% 

5 lpm 

 Horiba 
OPE-144 

Optical filter, 
dual-source gas-
filled capacitive 
detector 

    

Carbon 
Dioxide 

Horiba 
AIA-23 

Nondispersive 
Infrared 

0-0.5/2/8/16 percent 0.5% full scale 0.5 to 15.5 sec  2 lpm 

 Horiba 
OPE-135 

Flow modulation     

Methane  Pierburg 
PM 2000 

Flame Ionization 
thermo- chemical 
converter for 
oxidizing HC's 
with C-C bonds 
 

0-10 to 10,000 ppm C1 1% of full scale 5 seconds 5 lpm 

Dew Point 
Tunnel 

General 
Eastern 
HYGRO-M1 

Chilled Mirror -10 to +85 degrees 
Celsius 

+/-0.03 deg C <7 seconds for 1 lpm 

 General 
Eastern SIM-
12H 

Heated case 
sensor 

  45°C step 
change 

 

Dew Point/ 
Temperature 
Ambient 

General 
Eastern 
1200MPS 

Chilled Mirror -50 to +50 degrees 
Celsius 

+/-0.03 deg C  1 lpm 

 General 
Eastern 
1211HX 

Platinum RTD 
temperature 

-50 to +50 degrees 
Celsius 

   

       
Barometric 
Pressure 

Vaisala 
PTB101B 

silicon capacitive 600 to 1060 hPa +/-0.1hPA 0.3 seconds N/A 

       
Position Garmin III Plus Global 

Positioning 
System 
DCI RDS 3000 

3 axis position plus 
velocity 
FM receiver of correction 
info. 
with differential 
for horiz. axes  

+/-10 meters 
+/- 1 meter 

2 second 
update 

N/A 

Vehicle  
Parameters 

Dearborn 
Group 
DG-DPA II-RS 

Access to vehicle 
J1708 ,CAN, etc. 
network 

full range of transmitted 
data 

N/A N/A N/A 
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2.3   On-Board Measurements 

2.3.1 Caterpillar Inc. 

Caterpillar deve loped a portable bag collection system to quantify fuel specific 

NOX emission level from in-use diesel engines [14]. The system consisted of two dilution 

bags where the water vapor was removed from the sample stream before entering the 

bags.  The system was powered by an on-board supply.  The system was portable enough 

that the driver could operate the system while driving.   

The size of the system was about the size of a small suitcase.  Comparing the 

portable bag collection sys tem with laboratory grade instruments showed that the system 

was within 10% for concentrations measured in ppm. This system showed that collecting 

on-board fuel specific data was possible.  

2.3.2 Southwest Research Institute 

A portable system was developed at Southwest Research Institute to measure 

exhaust emissions from diesel buses and to compare the data against the EPA’s data base 

of transient engine emissions [21]. This system was designed to collect emissions data 

without using a chassis dynamometer.  Test cycles were developed to run the engine 

while the vehicle was parked.  Cycles included idles, no-load testing to loading the 

engine against the transmission through accelerator pedal set points.  Only automatic 

transmission vehicles could be used.   

An Energy Efficiency Systems, Inc. Enerac 2000E was used to measure raw 

emissions, CO, CO2, NOX, and O2 from a bag sample.  PM was measured using a mini-
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dilution tunnel.  The size of this system was about the size of a suitcase.  Comparing the 

Enerac 2000E with laboratory grade instruments showed that the Enerac 2000E was 

within 5%.   

2.3.3 General Motors 

General Motors outfitted a 1989 gasoline fueled passenger vehicle with emissions 

instrumentation and was driven by the researchers through city and highway routes to 

obtain real-world emissions data [30]. The instrumentation for this study weighed 400 lbs 

and consisted of five 12-volt batteries, inverters, computers, and five different emissions 

analyzers.  The gaseous emissions being measured and their analyzers were CO2 and 

hydrocarbons (Horiba Mexa 311GE), CO and hydrocarbons (Horiba Mexa 324GE), CO 

and hydrocarbons (Siemens Ultramat 22P), NO (Siemens analyzer), and ambient CO 

(Draeger analyzer).  The redundant CO and HC measurements were made in order to 

measure different levels of concentration.   

The exhaust flow rate was inferred from the intake flow rate.  The exhaust flow 

rates, taken by a Kurz flow meter, were correlated with the intake flow rates, which were 

derived from stock mass flow meter signals.    

2.3.4 Ford Motor Company 

A series of reports from Ford Motor Company detail the emissions results from 

three different gasoline-fueled passenger vehicles [6, 18, 32, and 34].  An on-board 

emissions (OBE) system was housed in an Aerostar van for these tests.  The OBE 

consisted of an FTIR and a dilution tunnel.  There were two aspects of comparing this 

OBE system. The first was a comparison of the systems for a vehicle operated on a 
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chassis dynamometer.  The second was an on-road test.  When the OBE was compared to 

Horiba laboratory grade instruments, for the dynamometer testing, it showed that the 

OBE was within (on average) 2% for CO2, 3% for CO, 10% for NOX, and 7% for HC.  

For the on-road tests, the OBE was within (on average) 10% for CO, 1% for CO2, 6.6% 

for NOX, and 1% for HC. 

Also a Ford Taurus was instrumented with infrared-based analyzers 

(manufactured by MPSI) for measuring CO, CO2, HC, and O2, and an unspecified fast 

response non-dispersive ultraviolet (NDUV) system.  The fast response NDUV system 

had a response of 1.1 seconds for measuring NO.  Laboratory grade instruments were 

compared to the on-board NDIR analyzer for measuring NO.  A correlation o 0.97 with a 

slope of 0.8 was found between the NDUV and chemiluminescent instruments.   

2.3.5 U.S. Coast Guard 

A 1992 SAE technical paper and a 1997 report describe the on-board emissions 

testing of a U.S. Coast Guard Cutter for non-road emissions as part of the 1990 Clean Air 

Act [3, 4]. The emissions measured for these reports were CO, CO2, NO, NO2, SO2, O2, 

and HC.  An Enerac 2000E was used to measure all gaseous emissions except CO2.  CO2 

was inferred from the measured emissions.  The monitoring system incorporated air and 

fuel flow measurements and provided for inference of engine-out torque via driveshaft-

mounted strain gauges.   

2.3.6 University of Pittsburgh 

An on-board emissions measurement system for I/M was developed for natural 

gas-powered passenger van at the University of Pittsburgh [39].  HC, CO, CO2, NO, and 
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O2 were measured using a RG240 five-gas analyzer from OTC SPX.  Engine data was 

recorded using the on-board diagnostic equipment.  The emissions measurement 

instruments were designed for gasoline fueled vehicles, therefore some results are biased. 

2.3.7 VITO, The Flemish Institute for Technological Research 

Vito, the Flemish Institute for Technological Research, performed on-board 

emissions measurements using the emissions measurement system they developed, 

VEOM (Vito’s on-the-road emissions and energy measurement system).  NDIR analyzers 

were used for gaseous measurements of CO2 and CO, an FID was used for hydrocarbon 

concentrations, and a chemiluminescent analyzer was used to measure NO.  A nitrogen-

driven injector was used to draw a sample of the exhaust from the tailpipe and dilute it to 

prevent water condensation.  Heated sample lines were used to prevent the loss of 

hydrocarbons for diesel engine tests.  Tests were conducted on both gasoline and diesel 

fueled vehicles.  The partial dilute exhaust measurements were combined with fuel 

consumption, engine speed, and lambda value determination in order to present gaseous 

emissions on a g/km and g/s basis. 

The system, when compared on a fixed chassis dynamometer, was within 10% for 

all emissions except 20% for CO and 25% for HC for the diesel engine testing. 

2.3.8 Northeast States for Coordinated Air Use Management 

A study by the Northeast States for Coordinated Air Use Management 

(NESCAUM) evaluated in-use emissions from diesel-powered off-road construction 

vehicles and explored the effects of various emissions control devices [9].  The system 

that they used was comprised of  a computer controlled sampling system, a mini-dilution 
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tunnel, heated lines, and a MPSI five-gas portable gas analyzer to measure emissions, a 

Tedlar bag, and a filter for PM measurement.  The emissions analysis was found to be 

unreliable.  There was a 27% difference between the system and laboratory collections. 

2.3.9 Office of Mobile Sources: USEPA 

The Office of Mobile Sources at the US EPA has developed a mobile 

measurement system called Rover.  Rover was developed for light-duty vehicles with 

some experimentation into heavy duty vehicles.  The Rover system uses NDIR to 

measure CO, CO2, and HC, and electrochemical cells to measure O2 and NO 

concentrations, and an Annubar® with differential pressure sensor is used for exhaust 

flow measurement.  Vehicle speed and distance was measured by either the ECM or a 

GPS (global positioning system) [36].   

2.3.10 Ford Motor Company and WPI-Microprocessor Systems, Inc 

Ford Motor Company and WPI-Microprocessor Systems, Inc. are 

developing/have developed a Portable Real-Time Emissions Vehicular Integrated 

Engineering Workstation (PREVIEW) that will sample water- laden exhaust [7].  The 

design of PREVIEW is for it to be a totally integrated, portable system that measures the 

exhaust masses of CO, CO2, NO, and HC.  Testing has shown that for gasoline powered 

vehicles in a light duty chassis dynamometer laboratory, PREVIEW was within 1.5% for 

CO2, 3.4% for CO,12.3% for HC (comparing NDIR to a FID), and 0.4% NOX. 

2.3.11 Horiba Inc. and NGK Insulators, Ltd 

Horiba Inc. and NGK Insulator, Ltd. have developed an on-board NOX emissions 

measurement system for diesel vehicles [31].  The system consists of a zirconium oxide 
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(ZrO2) sensor, Karman vortex volumetric flow meter for intake air flow, and sensors for 

intake air pressures, intake air temperatures, intake air relative humidity, boost pressure, 

ambient pressure, ambient temperature, vehicle velocity, engine rpm, and coolant 

temperature.  This system has shown that it is within 4% NOX, 3% fuel consumption, and 

1% for distance measurements. 

2.3.12 Honda R&D 

Honda R&D Americas, Ltd.; Honda R&D Co., Ltd.; and Nocolet Instrument 

Corp. have presented work on an FTIR-based system for measuring real-world emissions 

from light-duty gasoline vehicles [28].  The emissions that are targeted are non-methane 

hydrocarbons (NMHC), NOX, and CO. 

2.3.13 Sensors, Inc 

Sensors, Inc. developed an on-board system, the SEMTECH-D, for the 

measurement of diesel emissions [36].  SEMTACH-D uses NDUV, FID, and NDIR to 

measure the emissions constituents of NO, NO2, THC, CO, and CO2.  SEMTECH-D is 

capable of simultaneous measurement of vehicle tailpipe emissions and the output of the 

vehicles on-board electronic control system [49].  The system was recently deployed by 

the EPA to collect data from heavy duty vehicles in situ for a program involving air shed 

inventory modeling [49]. 

2.3.14 Clean Air Technologies International 

Clean Air Technologies International has developed an on-board emissions 

testing system for light and heavy-duty vehicles with gasoline or diesel engines.  The 

Montana System is capable of measuring second by second mass emissions from vehicles 
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with electronically controlled sparked ignition (SI) and compression ignition (diesel) 

engines [43].  The unit utilized an NDIR for the measurement of HC, CO, CO2, and an 

electrochemical cell for the measurement of NOX and O2 for gasoline powered engines; 

for diesel powered engines, a light scattering is used to measure NOX, CO, CO2, O2, and 

PM [43].   

There are different units designed for different vehicles.  A universal unit 

measures emissions for both gasoline and diesel powered engines and gives CO,CO2, O2, 

NOX, HC readings for SI vehicles, and NOX, CO, CO2, O2, and PM for diesel vehicles 

[44].  The light-duty unit is capable of testing electronically controlled light-duty 

passenger vehicles and light trucks 1996 and newer.  Second by second measurements of 

CO, CO2, NOX, O2, and HC are recorded for the gasoline vehicles [42].  The heavy-duty 

unit is capable of testing electronically controlled heavy-duty diesel vehicles for CO, 

CO2, O2, NOX, and PM measurements [40].  Also, there is an option to customize a unit 

for specific purposes not meeting the capabilities of the other units. 

2.3.15 Analytical Engineering Inc. 

An on-board measurement system, named SPOT, was integrated by AEI for the 

EPA [12].  The objective of this study was to measure instantaneous brake-specific NOX.  

It measured NOX and O2 concentrations, as well as engine speed, exhaust mass flow rate, 

exhaust temperature, ambient temperature, barometric pressure, altitude, and vehicle 

velocity and position. The NOX was calculated on a gram per brake-horsepower hour 

basis and fuel-specific basis. 
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2.3.16 U.S. EPA 

The U.S. EPA is investigating approaches for qualifying predictive emissions 

modeling systems (PEMS) as alternatives to continuous emissions monitoring systems 

(CEMS) for determining NOX emissions from classes of combustion turbines [45].  The 

PEMS system incorporates a ZrO2 sensor for NOX measurement, a pressure drop device 

for flow measurement, and a data acquisition system that is used to record various 

information, such as: vehicle speed, engine speed, etc.  To streamline the process for 

evaluating PEMS, EPA is investigating procedures for qualifying PEMS on classes of 

turbines, thereby simplifying the approval process for installation of PEMS on individual 

turbine units [45]. To collect the data necessary for this evaluation, EPA is planning to 

conduct field tests at several types of turbines. During the tests, NOX emissions predicted 

by various PEMS will be compared with continuous emissions monitoring systems 

(CEMS) data for accuracy, precision, ability to detect changes in emissions, and ability to 

meet the regulatory requirements of Subpart E of Part 75 of the Code of Federal 

Regulations (CFR) [45]. 

2.4   MEMS Applications  
 

2.4.1 MEMS Brake Specific NOX Emissions Measurement 

With WVU’s development of the MEMS on-board emissions measurement 

system, extensive investigation went into finding the best emissions sensors for their 

applications.  A zirconium oxide NOX sensor was found to be the most suitable available 

device for use in an on-road emissions measurement system [16].  Testing was conducted 

using the Mexa-120 Sensor and comparing it with a laboratory grade chemiluminescent 



 

 19 

analyzer (Rosemount Model 955), an NDIR NO analyzer with Luft detection (Horiba 

BE-220 NO micro bench), and an electrochemical NO cell.  Using the MEXA-120 with 

the MEMS system, brake specific NOX were reported within 5% of the laboratory grade 

instruments. 

2.4.2 CARB Off-road Project 

The California Air Resources Board (CARB) has a project with WVU to measure 

and quantify the emissions output of off- road vehicles.  These off-road vehicles include 

vehicles such as: bull dozers, excavators, street sweepers, tractors, etc.  The testing 

included in the CARB Off-Road Report includes:  on-board testing, field data collection 

of CO2 and speed, and emissions testing in an emissions test cell. 

2.4.2.1 In-field CO2 Emission Data 

A Sensors AMB-II multigas analyzer bench and associated data acquisition 

components were used to record CO2 data on-board an Elgin Pelican street sweeper (John 

Deere Engine), John Deere 444 rubber-tired front end loader (John Deere Engine), and a 

Komatsu PC400LC3 Excavator (John Deere Engine). One of the goals of the in-field 

testing was to accurately measure CO2 emissions during each vehicle’s routine operation 

[15].   

Operating the vehicles as they were intended and collecting the CO2 data allowed 

for real-world CO2 emissions results.  The Elgin Pelican was operated through a route in 

Morgantown, WV and data was recorded.  The John Deere front end loader was operated 

through two operations, a transport mode to the landfill site on hilly terrain and a scoop 

loading/unloading mode that was repeated numerous times during data collection.  The 
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Kumatsu Excavator was operated through three tests.  The first test was a stationary 

digging operation in which the first half of the test was digging and the second half of the 

test was spent back-filling, and the second test simulated hauling or tramming (a 

tramming/hauling operation is when the excavator is moved in order to transport dirt 

from one location to another that is not within the reach of the boom).   For the third test 

a trench was dug and then filled.  This is probably the most common industrial use of the 

excavator. 

The engines were pulled from these vehicles and tested in WVU’s EERL.  Test 

cycles were developed to recreate the CO2 emissions found in the field.  The resulting 

emissions (NOX, PM, HC, CO) generated from the test were measured using laboratory 

grade instrument emissions testing.  It was assumed that recreating the CO2 emissions 

would recreate all the other emissions components as well. WVU’s EERL and MEMS 

were used to measure the exhaust emissions from the engines as they were tested.   

 

2.4.2.2 Track-Type Tractor In-field Results 

 

A Caterpillar D11R CD bull dozer was tested using the Sensors AMB-II multigas 

analyzer bench on site at the Buffalo Coal Company strip mine in Mt. Storm, WV.  The 

engine could not be pulled from the vehicle and transported to WVU’s EERL because its 

size was too great; therefore, the MEMS system was used to collect the emissions data 

[15].   

The MEMS system, with a novel real-time particulate matter system (Mari 

RPM100), was used to collect real-time, on-board emissions data from the dozer.  The 
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MEMS system measures NOX and CO2, thus CO and HC were not included in the dozer 

testing, and the Mari RPM100 measured real-time PM.  This system (the MEMS and 

Mari RPM100) was mounted to the hood and top of the cab of the dozer, while the dozer 

was operated in its usual manner.   

The emissions testing and cycle development work performed for the CARB Off-

Road Study provides additional information needed for the development of testing 

protocols for diesel-powered off-road equipment.  The data produced through this 

research could be used to promulgate and develop requirements and standards for the 

testing of diesel-powered off-road vehicles and equipment. 

2.4.2.3 Stationary Testing 

 

Several test cycles were run in WVU’s EERL to compare the emissions data 

between MEMS and the laboratory instruments using the track-type tractor exhaust stack.  

Because the flow rates of the exhaust from the Series 60 engine are comparable to those 

through each exhaust stack on the track-type tractor, the tests were comparable.  The 

engine was operated at steady-state set points for sufficient time to stabilize the pressure 

readings and using transient cycles, and the gaseous emissions concentrations measured 

with the MEMS.  The calculated mass emissions rates were compared to those recorded 

by the full- flow dilution tunnel and laboratory emissions analyzers [15].   

Emissions data were collected using the MEMS System, the RPM100, and the 

laboratory for the test cycle designed to mimic the operation of the track-type tractor.  
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Coinciding with the validation of MEMS equipment was the adaptation of the MARI 

RPM100 for use as an on-board measurement system for off-road vehicles.   

 

2.4.3 Future Proposals 

WVU has proposed a test plan for the development of a test method to measure 

stationary and portable engine emissions for the California Air Resources Board.  The 

proposal to develop a cost-effective in-the-field test method for these engines could be 

used as a screening tool to relate in-field emissions data with standards for newly 

manufactured off-road engines [17].   

The proposed study is focused on developing a viable, cost-effective, easy-to-use 

and accurate in-field test method for stationary and portable engines that will yield in-use 

brake specific (or fuel specific)  mass emissions data.  

WVU has proposed a test matrix for the test method to measure stationary and 

portable engine emissions.  It consists of laboratory testing, using the engine speed and 

loads specified in ISO 8178, 5-mode test.  Emissions would be measured using California 

Exhaust Emissions Standards and Test Procedure. MEMS would also measure emissions 

from the tests.  Engine specifications have been stated, and in-field testing engines have 

been contracted through WVU. 

2.5   V-Cone 

Rogalands Research, supported by the long term comparison data from Phillips 

Petroleum New Mexico, has shown that the V-Cone meter is superior in wet gas service 

than an orifice [12].  Southwest Research, Ohio University, and a Joint Industry project 
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have also investigated the V-Cone with a wet gas [23].  Both of these studies have shown 

that the V-Cone has better performance to an Orifice Meter when measuring a wet gas.   

McCrometer has also studied the permanent pressure losses of flow meters.  

Several flow meters where compared for permanent pressure losses for a 3” pipe with 

flows of 1145 lpm.  The instruments include:  Venturi (both a 7° and 15° exit angles), 

flow nozzle, vortex, turbine, Foxboro vortex, orifice plate, MicroMotion Coriolis, 

Foxboro Coriolis, and a V-Cone.  Table 2.2 shows the ranking of the meters according to 

permanent pressure loss [22]:   

Table 2.2 Flow meter rankings for permanent pressure loss. 

 Flow Meter Pressure Loss (kPa) 

1 Venturi with 7° exit angle 4 

2 V-Cone ~ 3.5 

3 Venturi with 15° exit angle 4 

4 Flow Nozzle 10  

5 Vortex 14 

6 Turbine 14.5 

7 Foxboro Vortex 18.5 

8 Orifice Plate 22 

9 MicroMotion Coriolis 30 
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10 Foxboro Coriolis 35 

 

Similar results were obtained when testing a 2” pipe with generally similar 

conditions, except that the Foxboro Coriolis and MicroMotion Coriolis switched places.  

The rest remained in the same order.   

The V-Cone has been applied in several different industries with different 

measure gases.  Several of theses applications are listed below [47]: 

Table 2.3 Applications, and the Industry where applied, for the V-Cone. 

Industry Application Gas 

Analytical Instruments Air flow measurement 

Chemical Industry Saturated Steam 

Geothermal Power Industry Geothermal Stream flow measurement 

Metals & Mining Industry 

Power Generation Industry 

Exhaust flow measurement  

Gas/Steam Turbine manufacturing Gas flow measurement 

 

Field experiences with the V-Cone technology has reduced the skepticism, based 

on the radical change in emphasis of how the flow is measured, because of the large 

number of units in the field, greater than 40,000 [32].  There have been studies of orifice 
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technology issues, including: beta edge degradation, stagnation area, and deposition.  An 

orifice has a high cost of maintenance and intervention due to frequent plate changes 

[32].  Wet gas streams were also studied; Chevron researched, in field, the Cd 

movements outside the API requirements.  They found that 2%-3% Cd movements due to 

wet gas with liquid loads of only 0.33bbl/MMscf [32].  Wet gas streams were also 

studied in a laboratory environment.  Using wafer cones, similar to V-Cone except 

removable, showed low susceptibility to Cd change with liquid load, base line values 

where plotted against numerous test loop instruments in a dry condition.  Further work is 

underway to see the effect of low DP ranges on repeatability and accuracy and Y factor 

changes [32]. 

Field test applications can be seen from Table 2.3, where the industry and use of 

the V-Cone are listed.   

McCrometer tested the V-Cone with the presence of a 90° elbow and a double 90° 

elbow, and compared it to an orifice plate.  The V-Cone can be installed close – even 

close coupled – to either single or double elbows out of plane without affecting the stated 

accuracy of the meter more than 0.3% [24]. The orifice plate needed as much as fifty 

diameters of upstream pipe run depending on the beta ratio and the type of elbow 

upstream.  The V-Cone showed that it is less susceptible to effects from elbows upstream 

than an orifice, effects up to 0.122% were shown [24].  The error is within the 2% 

allowed by the CFR. 
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2.6   FID Applications  

 

FID technology is standard in the measurement of the hydrocarbon component 

emissions in diesel engine exhaust; therefore, new research into FID’s for that reason is 

limited.  As mentioned previously, the University of California, Riverside, CE-CERT 

uses a FID for their hydrocarbon measurements [see Table 2.1]; and at the EERL at West 

Virginia University a FID, a Rosemount Analytical Model 402, is also used to measure 

hydrocarbons in their test cell.  There are new applications for FID instruments.  Some 

researchers are using FID’s for the measurement of particulate matter in exhaust.   

A dilution tunnel system, the most commonly used PM measurement technique, 

only measures total PM mass emissions during a testing period [29].  From their testing, 

Kawai et al. [29] were able to conc lude that FID technology is able to not only measure 

hydrocarbon but also carbon PM.  The acquired data using a practical engine shows a 

strong potential for the use of this technique in the development of the next generation of 

low PM emission diesel engines.   

Imperial College of Science, Technology and Medicine, researchers used FID to 

empirically determine the fraction of hydrocarbons absorbed or condensed on particulates 

[2]. The researched found that using the FID offers advantages relative to other methods 

due to its simplicity and provides an alternative to the tedious, time-consuming dilution 

tunnel procedure which is not capable of characterizing transient particulate 

concentrations.  Further research will concentrate on measuring rather than empirically 

determining the fraction of hydrocarbons on particulates.   
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Chapter 3  Experimental Setup 

3.1   Introduction 
 

 This chapter discusses the testing procedures and equipment used to during the 

experiment.  The testing was conducted at West Virginia University’s Engine and 

Emissions Research Laboratory (EERL).  An overview of MEMS, and the development 

of MEMS, is included in this chapter, as well as an instrument that measures unburned 

hydrocarbons (Signal’s Model 3030PM) and McCrometer’s V-Cone flow meter. WVU’s 

in-house engine emissions laboratory that is used at WVU’s EERL is also discussed. 

 

3.2   Test Engines  
 

 A Detroit Diesel Corporation (DDC) Series 60, 12.7 liter, 6 cylinder engine was 

tested at WVU’s EERL.  The Series 60 engine was on loan from the EPA for emissions 

testing.  The DDC Series 60 is rated at 500 hp, 1650 lb-ft for the 12.7 liter, a 14.0 liter 

engine is available with a rating of 575 hp, 1850 lb-ft.   The engine is designed so that the 

maximum torque is delivered at low horsepower, that is the horsepower curve provides 

475 hp or more all the way from 1500 to 2100 rpm.   Below 1500 rpm, the maximum 

torque is 1650 lb-ft, down to 1200 rpm [51].  Figure 3.1 shows an engine in the test cell at 

WVU’s EERL. 
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Figure 3.1 The WVU EERL test cell with an engine on the dynamometer, and the 
exhaust system.  The Annubar® can be seen in the upper left hand 
corner. 

 

A Volvo model VED123-425 was also tested in WVU’s EERL test cell.  The 

Volvo Model VE D12-425 is a 12.1 liter diesel engine.  It is rated for 425 hp.  The Volvo 

Model VE D12-425 is a heavy duty diesel engine used in Volvo Trucks for overland 

hauling. 

 

3.3   MEMS 
  

The following sections discuss the components of the first generation MEMS, 

instruments that are currently used in the system.   

Previous research conducted at WVU designed, built and tested the equipment for 

the first generation MEMS in accordance to the design criteria that it measure the exhaust 

component accurately and precisely and be made robustly.   



 

 29 

The criterion for acceptance of the analyzers as a possibility for the first 

generation MEMS was accuracy and precision of the sensor, robustness of the sensor to 

handle on-board conditions, and the size of the sensor.  Therefore, tests were conducted 

to quantify the analyzers response to the criteria of MEMS.  All the first generation 

MEMS components were to fit into a 24” by 24” by 12” enclosure.  A gas bottle test was 

first conducted to qualify the analyzers accuracy.  A sampling cart was built for initial 

engine testing, to see if temperature change, vibrations, inclination, etc. influenced the 

analyzers. The candidate analyzers that passed the gas bottle and stationary engine test 

were fitted into a 24” by 24” by 12” box, and an on-board test was conducted.  If one of 

the candidate analyzers did not meet the criteria for MEMS, it was eliminated from 

consideration.  Figure 3.2 shows a picture of the first generation MEMS, and Figure 3.3 

shows how MEMS system is integrated together for an engine emissions test. 

 

Figure 3.2 MEMS emissions box. 
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Figure 3.3 System integration of MEMS with the engine. 

 

The second generation MEMS uses the same emissions sensors that were tested 

and used by the first generation MEMS.  But, for the second generation MEMS, the 

chiller, for drying of the exhaust sample, and NOX converter were designed and 

fabricated in-house to reduce the size of the system. 

3.3.1 Flow Measurement 

The first and second generation MEMS uses an Annubar® to measure the total 

engine exhaust flow rate. The Annubar® is an averaging differential pressure-type flow 

measuring device.  The Annubar® is shaped in a diamond with two chambers inside the 

diamond shaped tube, a high pressure chamber and a low pressure chamber. These 

chambers are isolated from each other.  The diamond shape of the Annubar® separates 

the flow, reducing the permanent pressure loss due to the device.  The differential 

pressure is averaged by having multiple pressure ports on both the high pressure and low 

pressure sides of the Annubar®.  Pressure transducers measure the differential pressures 

from each chamber and relay a signal to the data acquisition system.  A Validyne P55D 
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differential pressure transducer and an Omega PX 176 absolute pressure transducer is 

used to collect the pressure data for the flow measurement of the Annubar®. 

The high pressure is produced by impact or stagnation of the moving fluid on the 

Annubar®. Multiple sensing ports, located on the front of the sensor, sense the impact 

pressure profile.  Inside the high pressure chamber on the front of the Annubar®, the 

average pressure is generated.  As the fluid continues around the sensor it generates a 

vortex shedding pattern and creates a low pressure profile. The low pressure is used as a 

pressure reference so that the velocity can be determined independent of pipe static 

pressure. The low pressure is sensed by ports, located downstream and opposite the high 

pressure ports. Inside the low pressure chamber, an average low pressure is generated to 

yield the differential pressure [48]. 

Most differential pressure-type flow meters require fully developed flow for 

accurate measurements.  The Annubar® is no exception.  For a five inch pipe, an 

approximately 6 ½ foot long segment is needed (ten diameters upstream and five 

diameters downstream).  A shorter segment is needed for smaller diameter pipe, and 

longer segments are needed for larger diameter pipes.  The Annubar® is inserted into the 

pipe at the midway point.  The Annubar®, because of the multi-port system, averages the 

pressures of the high and low velocity flows.  Therefore, great concern is given in the 

orientation of the Annubar® in the pipe.   

A picture of the exhaust system of the engine in the test cell is given in Figure 3.1.   

3.3.2 Gaseous Measurement  

 In most laboratory experiments, the main emissions measurement components of 

a diesel engine are oxides of nitrogen (NOX), carbon dioxide (CO2), and total particulate 
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matter (PM).  Other gases are also of concern, such as CO and total hydrocarbons.  CO is 

found in low levels in diesel engine exhaust, and resolution and accuracy are a problem; 

therefore, because of the resolution and accuracy problems, the measurement of CO was 

not included in the gaseous measurements of MEMS.  There are some hydrocarbon 

catalyst traps that produce NO2 by oxidizing soot with some NO to destroy the soot, and 

convert CO and HC into CO2 and H2O.   But during the regeneration (burning of the soot 

off the trap) of the catalyst trap some CO could be produced.   

Hydrocarbon measurement will become an important with the 2004 regulations 

that require NOX + HC measurements. In order to meet these regulations, the mobile 

emissions measurement systems need to measure HC accurately.  

Some sensors use non-dispersive infrared (NDIR) to measure HC’s, but the 

method was proved to lack accuracy when compared to a heated flame ionization 

detector (HFID).  Most HFID analyzers are large and cumbersome, and therefore are not 

suited for on-board testing.  HC was also neglected for the development of the first 

generation MEMS.  The only diesel engine exhaust emission gases that MEMS measures 

is NOX and CO2.  

The exhaust sampling system schematic, found in Figure 3.4, shows the 

progression of the exhaust through MEMS.     
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Figure 3.4 Second generation MEMS exhaust sampling system. 

 

The exhaust sample is pulled from the exhaust stream into MEMS by using a 

diaphragm pump.  Prior to the pump, a heated filter is used to eliminate the large particles 

and diesel soot from the sample, and then the sample passes through a NOX converter, 

which is also heated.  Diesel engines produce a lot of NO2, thus to obtain an accurate 

measure of NOX, the converter is needed to change NO2 to NO.  After the sample passes 

through the NOX converter, the sample is no longer heated.  From the exhaust stream 

through the NOX converter, the sample is heated to 180°C to prevent condensation in the 

sample exhaust prior to the drying of the sample.   

A chiller was designed in-house to lower the dew point and humidity of the 

sample.  The chiller removes the moisture from the sample after the sample leaves the 

NOX converter and ZrO2 sensor, to ensure the emissions measurements are dry 
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measurements.  The chiller consists of a heat exchanger, Peltier elements, heat sinks, and 

fans.   Downstream of the chiller, a differential pressure regulator is used to control the 

flow of the sample.  A steady flow of 3 liters per minute is needed.    

The sample is then introduced to the gas measurement analyzers.  The analyzers 

in MEMS consist of Horiba BE-140 Multigas analyzer (for measurement of CO2), a 

Horiba MEXA-120 Zirconium-oxide (ZrO2) analyzer (primary NOX analyzer), and an 

electrochemical NO cell (secondary NOX analyzer).  

MEMS was designed with quality control features integrated into the emissions 

system.  A secondary NOX analyzer located within MEMS is to ensure the primary NOX 

analyzer and NOX converter are working correctly. There is a likewise quality control 

system for CO2 that is relating CO2 from engine fueling rates.    

3.3.3 Gaseous Measurement Instruments 

3.3.3.1 Horiba BE-140 Multigas (CO, CO2, HC) Analyzer 
 
For the development of the first generation MEMS, analyzers that measured HC, 

CO, and CO2 were tested, these include: Horiba BE-140, Andros 6800, Sensors Inc. 

AMBII, and Siemens SIBENCH.  For MEMS the Horiba BE-140 was chosen as the 

sensor to measure the CO2 concentrations in the sample stream.  The Andros 6800 and 

the Siemens SIBENCH did not work when tested and the Sensors Inc. AMB-II had a 

crippling data-time stamping problem, and was therefore eliminated.   

The Horiba BE-140 micro bench measures CO, CO2, and HC concentrations.  It is 

a NDIR based detector, with solid-state optical sensors [24].  The solid-state optical 

sensor makes large scale effects from vibration due to on-board testing unlikely.  A single 

sample cell is used for the three gases.  Infrared light energy is supplied directly through 
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the sample cell onto the sensors at the opposite end of the cell.  A constant speed chopper 

wheel rotates to allow the light source to reach only one of the four sensors at any time.  

A narrow band pass filter in front of each detector allows only energy of a wavelength 

corresponding to the gas of interest to reach that sensor.  One of the four sensors is a 

reference sensor. The comparison of the outputs of the three detectors measuring gases 

with the reference detector generates the concentration of the gases. Each of the sensors 

is a dual element unit with only one element exposed to the light source.  This provides 

for nullification of temperature effects.   

The BE-140 was designed for gasoline engine automotive testing. The 

measurement ranges for each gas of interest is within typical concentration of raw 

exhaust gases from a diesel engines.  However, the concentrations of CO and HC in the 

exhaust are so low that the resolution and/or accuracy would be poor.  The BE-140 can 

be spanned to measure gas concentrations accurately in the following ranges:  3-20% 

CO2, 1.2-10% CO, and 1200-20000 ppm (propane). 

3.3.3.2 Horiba Mexa-120 NOX Analyzer 
 

Several of the analyzers tested for CO, CO2, and HC measurement also measure 

NO and NOX by some scheme.  The Andros 6800 multigas analyzer uses an 

electrochemical NO cell to determine the NO is the sample stream.  The Siemens 

SIBENCH uses an NDIR detector to measure NO in the same manner that it measures 

CO, CO2, and HC.  The Sensors AMB-II also uses an electrochemical NO cell to measure 

NO.  Other NOX analyzers that were tested for MEMS are the Horiba MEXA-120, the 

Horiba BE-220, and a Siemens Inc. Electrochemical NO Cell. MEMS uses the Horiba 
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MEXA-120 as the primary NOX analyzer and the electrochemical NO cell as a secondary 

measurement. 

The Horiba MEXA-120 zirconium oxide analyzer is capable of measuring NOX in 

concentration up to 5000ppm.  The MEXA-120 is a derivative of an NGK sensor, and it 

is designed to be placed directly in the exhaust flow 

The Horiba MEXA-120 Zirconium-oxide sensor is made of ceramic material, 

zirconium-oxide (ZrO2). The platinum coated zirconium oxide, when heated to 700°C 

will allow oxygen to readily pass through the material as O2
- ions.  The oxygen will 

migrate toward the side of the zirconium oxide exposed to the lowest concentration of 

oxygen, unless it is subjected to an electric current, which will cause a flow of oxygen 

from a higher to lower concentration [26].   
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Figure 3.5 Principal of zirconia NOX sensor. 

 

The MEXA-120 consists of two internal chambers.  The first chamber receives 

the sample gas through the first diffusion path.  In the first chamber, the oxygen present 

in the sample is pumped out, by supplying current to the section of the chamber wall that 

is zirconium oxide.  Therefore the concentration of oxygen is low within the chamber.  

The sample stream then fills the second internal chamber, where the oxygen 

concentration is lower than the first chamber.  The sample is then dissociated into 

nitrogen and oxygen.  The sensor is heated to approximately 700°C to allow for the 

oxygen ions to migrate through the zirconium-oxide material.  The oxygen generated 

from the dissociation is then pumped out by supplying a constant voltage across the 

second section of zirconium oxide within the second chamber.  NOX concentration is 

measured by determining the amount of current necessary to pump the O2 out of the 

second chamber. 
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It should be noted that there is some limitations to the MEXA-120.  It is reported 

by the manufacturer that the sensor is sensitive to ammonia (NH3), oxygen (O2), ozone 

(O3), and CO.  NH3 is a small constituent in diesel exhaust and the O2, O3, and CO levels 

are low enough to assume negligible.  The major concern for the MEXA-120 is moisture 

condensation in the sample stream.  A large amount of moisture condensation could 

cause the ceramic material to cool rapidly and crack.  But by continuing to heat the 

sample, and preventing condensation, MEMS avoids this problem. 

3.3.3.3 Sensors Inc. Electrochemical NO Cell 
 

Sensors, Inc. markets an electrochemical cell produced by City Technology of 

U.K.  The electrochemical NO cell operates on the principle of gaseous diffusion barrier 

[35].  In one operation scheme of an electrochemical NO cell, two electrodes are used, a 

sensing electrode and a counter.  A thin layer of electrolyte separates the two, and an 

external circuit connects them.   
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Figure 3.6 Electrochemical NO cell schematic. 

 

The electrochemical NO cell reads only NO, requiring a NOX converter upstream 

of the device.  The electrochemical cell is very small, and has a low cost compared to 

other NO or NOX analyzers.  The recommended operating range of relative humidity is 

between 15-90%.  Therefore the sample stream had to have at least 15% relative 

humidity to prevent the water from the electrolyte from diffusing into the stream.  If the 

electrolyte volume decreases by 40% or more, the output signal will be affected.  

Operating over 90% relative humidity will cause the electrolyte to absorb water out of the 

stream and cause possible leakage from the electrolyte. 

In the MEMS the sample is pumped, downstream of the MEXA-120, into a small 

manifold containing a cell at a flow rate of about 0.5 lpm.  The sample migrates through a 

membrane, where it reacts with the sensing electrode by either oxidation or reduction.  

This reaction causes a current to flow between the sensing and counting electrodes, which 
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is proportional to the concentration of NO in the sample and can be measured in the 

external circuit. 

3.3.3.4 Thermoelectric Chiller:  M&C Products Analysis Technology 
Inc. Model ECP1000 

 

For the first generation MEMS, a Model ECP1000 chiller was used to remove the 

water from the sample stream.  It operates on the Peltier effect.  The Peltier effect is 

observed when two different metal (or semiconductors) are connected in a loop, and 

current is run through the loop creating a small voltage across the junction of the two 

metals.  The temperature will increase at one junction and decrease at the other.  The 

sample gas flows through a heat sink located at the cooling junction of the loop.  Heat is 

transferred to the sink from the gas, reducing the temperature of the sample gas. The 

cooling junction then transfers heat across the junction to the hot junction of the loop.  A 

heat sink then absorbs heat from the hot junction.  Heat is then transferred out of the sink 

by a fan blowing across fins to reduce the temperature of the sink, thus continuing the 

heat transfer from the sample gas.  The heat transfer from the sample gas lowers the dew 

point temperature of the sample gas present in the chiller.   

The in-house chiller, used for the second generation MEMS, consists of a heat 

exchanger, Peltier elements, heat sinks, and fans.  This chiller is insulated using spray 

foam. 

3.3.3.5 Engine Speed and Torque 
 

Engine speed may be measured with a variable reluctance pickup or Hall Effect 

sensor that normally measures engine speed. A description of Hall Effect is a magnet that 
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is placed on an element that operates in a cyclic manor; a sensor produces a voltage when 

the magnetic field from the magnet comes in contact with it.  In the case of engine 

testing, to measure engine speed, a magnet is placed on the flywheel.  A sensor produces 

a voltage when the magnet on the flywheel completes one revolution, thus yielding rpm.   

Many engines use one of these sensors to broadcast the engine speed via the ECM.  For 

MEMS, the speed was easily read by the data acquisition system integrated with the 

ECM in broadcast mode. 

There are a couple of different ways to measure torque.  An estimation of torque 

can be acquired by using the ECM measurement of torque.  But the ECU’s calculated 

torque is estimated by engine fuel consumption, and this is not an accurate measure of 

torque.  A more accurate measurement of toque would be through the level of CO2 in the 

exhaust and brake-specific fuel consumption.  This yields an accurate torque 

measurement by eliminating many of the errors associated with engine parameters, but it 

also requires knowledge of fuel properties, such as hydrogen-to-carbon ratio and energy 

densities.  For MEMS, torque is recorded from the ECU.    

3.3.3.6 Data Acquisition 
 

The data acquisition of MEMS consists of a computer, data acquisition and 

conditioning hardware, and software for control and data acquisition.  MEMS was 

designed for on-road testing, with robustness and size as factors; the data acquisition was 

designed in the same manner.  Therefore it was designed to be rugged and sturdy.  The 

data acquisition operates off of 110 volt AC or 12 V supply.  To provide the 110 V AC 
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necessary, a generator is used, although the goal is that the power consumption will be 

reduced so that a power converter can be used to power MEMS.  

The data acquisition receives signals from the MEMS instruments and the 

vehicles computer.  It receives both analog and digital signals. The system must be able 

to read signal from thermocouples, pressure transducers, emissions analyzers, speed 

sensors, and numerous ECM signal. 

For the first generation MEMS, the data acquisition used different components.  

National Instruments Corp. produces a computer, a PXI-1025, that has been determined 

to be the best fit for on-road, in-use testing.  The PXI-1025 is used for the first generation 

MEMS computer.  Windows NT is used as the operating system because of its memory 

and networking capabilities, software and support.  The data acquisition hardware is 

dependant upon the computer choice and sensor requirements.  Interface components 

include ISA bus plug- in cards, PCI bus plug- in cards, universal serial bus (USB) devices, 

PCMCIA cards, and parallel printer port devices.  

For the second generation MEMS data acquisition components consist of National 

DAQcard-6024E (the data acquisition board), National Instruments SC-2345 Signal 

conditioning box, and an Adventech PCM-9570S for the main board.  The computer has 

an 800 MHz processor; memory consisted of two 128 MB of RAM, 30 GB of hard drive 

memory, and a Viewsonic 15” VG150 flat screen monitor.  Also, a Dearborn Electronics 

DG DPAIII/PC104 module was used for communication with the ECU of the test 

vehicle. 

The MEMS data acquisition software includes a WVU developed program that 

allows the user to control the number of devices to be monitored, to calibrate 
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components, and to alter the data recording frequency, as some sensors require faster or 

slower interaction.   

 

3.4   Signal Model 3030PM Hydrocarbon Analyzer 
 

The Signal Model 3030PM is a heated flame ionization detection hydrocarbon 

analyzer.  It is designed to measure organic vapors in combustion stack gases and high 

dew point samples.  Internal pumps provide the vacuum between 5.5 and 7.5 psi to draw 

the sample through the heated line. A flame ionization detector with a cylindrical 

collector, flame detector, and igniter are housed in the temperature controlled oven, kept 

at 675°C.  A heated sample line is used to transport the exhaust sample to the analyzer.  

An electrical signal is produced proportional to the number of carbon atoms present in the 

sample.  The signal is amplified and digitized for maximum accuracy [1].  A full function 

microprocessor provides for both digital and analog inputs.  For the testing, the analog 

signal output from Model 3030PM was integrated with the data acquisition system of the 

EERL.  The analog signal was inputted into the secondary hydrocarbon channel in the 

EERL data acquisition.  Figure 3.7 shows a picture of the Signal Model 3030PM. 
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Figure 3.7 Signal Model 3030PM portable hydrocarbon analyzer. 

 

The flame ionization detector works by passing the sample through an ionizing 

hydrogen flame.  The carbon atoms become charged.  The ions are then collected onto a 

polarized electrode outside the combustion zone.  The resultant electrical current is 

proportional to the mass of carbon present in the flame.  This electrical current is small 

and needs to be amplified to produce the signal.  The flame fuel is a 40% hydrogen, 60% 

helium mixture.   

The analyzer needs a reference point in order to quantify the concentration of 

hydrocarbon in the sample.  Therefore, a hydrocarbon free sample is provided as the 

reference.  The built- in internal catalyst removes hydrocarbons from ambient air to meet 

this need.  The ambient air is passed over a platinum coated catalyst on an alumina 
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substrate at a high temperature.  Zero air is also needed to give a stable signal.  The 

hydrocarbon free air produced by the catalytic process meets this need as well. 

There are several features of note for the Signal Model 3030PM.  The Model 

3030PM has an automatic calibration feature.  Signal 3030PM analyzer specifications 

include 1.5 seconds for 95% response, less than 2% drift in 8 hours, 0.03 ppm propane 

detector noise, manifold temperature stable at 200°C [49].   

Span gas is provided to the analyzer from a port in the front of the analyzer, and 

the analyzer generates its own zero air. Zero, span, or both can be re-calculated at any 

time using the button on the front panel.  An automatic calibration can be set, so that zero 

and span will be re-calculated at a specific time increment. There is also manual zero and 

span adjustments on the back panel of the analyzer.   

The concentration range can be set to values of 0-4, 0-10, 0-40, 0-100, 0-400, 0-

1000, 0-4000, and 0-10000ppm ranges.  The analog output is from 0-10V.  When a 

specific range is selected, the analyzer automatically sets the low range as 0V, and the 

high range as 10V.  The span gas value must be inputted into the analyzer by setting the 

span.  The value entered must be in methane equivalent form.  This is important for the 

calibration of the analyzer.  If the analyzer reads a value for the span gas significantly 

different from the value that span was set to, it will give an error and the calibration will 

be aborted.  There are also procedures to reset the oven temperature, catalyst temperature, 

and several other parameters that are not crucial to the operation of the analyzer.   

One apparent drawback of the Signal Model 3030PM that is noticeable is that 

there are lot of features (remote control capabilities, integration capabilities with a RS-
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232 ports, etc) that are not needed for automotive applications.  They are added features 

that add bulk and unnecessary complexity. 

For on-board applications, power consumption is an important issue.  The Signal 

Model 3030PM is interchangeable between 115VAC and 230VAC +/- 15%, 50 Hz or 60 

Hz [1].  The maximum power consumption is 40W.  Included in the power specifications 

are the requirements for the heated line. MEMS currently uses heated lines; therefore, for 

the integration with MEMS, the heated line power consumptions specifications will not 

be addressed.   

3.5   V-Cone® 
 

The MEMS system pulls a small sample of exhaust compared to the total exhaust 

exiting the engine.  Because the emissions test is conducted on a small sample, there must 

be a way to relate the emissions data to the engine.  Therefore, a total flow rate 

measurement must be made to accurately obtain the accurate emissions data for the 

engine.   

The McCrometer V-Cone® is a differential pressure-type flow meter.  It operates 

on the same principle as most differential pressure-type flow meters, using the same 

theorem of conservation of energy in fluid flow through a pipe [40].  Most differential 

pressure-type flow meters measure accurately only when the flow is fully developed.  To 

ensure that the flow is fully developed, the flow should have an unobstructed and straight 

pipe for ten diameter (of the pipe) upstream and five diameters downstream of the 

differential pressure device.  In the case of MEMS, if a 5- inch exhaust pipe is used, a pipe 

of 100 inches must be used with the differential pressure ports midway.   
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The V-Cone® is its own flow conditioner, fully conditioning the flow.  The V-

Cone overcomes the problem of trying to measure disturbed flow by reshaping and 

distributing the upstream velocity profile [32].  The result of mixing the flow is a low 

amplitude high frequency signal with little bounce in the signal.  A static pressure port is 

located just upstream of the mass, and a second low pressure port is located on the back 

side of the conical mass as seen in Figure 3.8 give the differential pressure readings.  An 

Omega model PX 176 025A absolute pressure transducer was used to record absolute 

pressures.  A 0-5V signal output corresponds to absolute pressure measurements up to 25 

psia.  A Viatran model 2746CED differential pressure transducer was also used.  It 

measures differential pressures up to 20 inches of water column. 

 

 

 

Figure 3.8 A cutout of the V-Cone showing the conical mass in the center of the flow, 
and the pressure ports. 

 

Because the conical mass forces the flow around the cone, mixing the high and 

low velocity flows; it fully conditions the flow and the need for diameters upstream and 

downstream is eliminated.  Eliminating the need for fully developed flow results in the 
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elimination of any unobstructed, straight pipe flows upstream or downstream, 

significantly reducing the length of the pipe.  The V-Cone can even be placed directly 

downstream of an elbow or something disrupting the flow, and it will measure accurately 

[40]. 

A characteristic of engine exhaust flow is that there are pulsations within the 

exhaust flow.  The multiple stroke characteristics of the engine cause the exhaust to have 

pulsations, not a constant, steady flow.  The V-Cone® fully conditions even pulsating 

flows.  Another problem with diesel engines is PM buildup on a pressure sensing device.  

PM buildup on a V-Cone® should not affect the accuracy because the low pressure port is 

located on the rear of the cone.  The PM buildup will not clog the port.   

The manufacturer claims the V-Cone® is accurate to ±0.5% for difficult flows 

and under a wide variety of Reynolds numbers and repeatability of ±0.1% or better.  

Standard Beta ratios are available, while the V-Cone® tested for this report is 0.8 beta 

ratio.  Another advantage to the V-Cone® is permanent head loss is low.  The 

manufacturer calibrated the V-Cone®, and the sizing sheet claimed a permanent head loss 

of less than 5 inches of water column, although the head loss changes under different 

flow conditions.  

The differential pressure transducer for the V-Cone® is needed that can handle 

differential pressure readings as low as 0.2 inches of H2O and as large as 15 inches of 

H2O.  The differential pressure transducer needs to be compatible with exhaust.  Exhaust 

can contain moisture, thus the transducer must be able to operate when moisture is in the 

fluid.  An absolute pressure transducer is needed to measure the absolute pressure and the 

temperature of the V-Cone® is also needed.  The equations below calculate the standard 
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flow rate of the exhaust based on the pressures and temperature readings obtained and 

base values for the pressures and temperature. (Nomenclature is located in Table 3.1 

below). 

The actual cubic feet per second is obtained from either Equation 1 or Equation 2. 

Equation 1 

ρ
P

YkACFS
∆

=
*197.5

*1  

or 

Equation 2 
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where k1 can be obtained from the sizing report for the V-Cone using 

McCrometer’s software. 

Equation 3 
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The expansion factor Y is based the differential pressure, absolute pressure, beta 

ratio, and the isentropic exponent k. 

Equation 4 
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The gas density is calculated using Equation 5. 

Equation 5 
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The standard cubic feet per minute is calculated by Equation 6. 

Equation 6 

60*
**
**

* 







=

ZTP
ZTP

ACFSSCFM
b

bb  

Table 3.1 Nomenclature of the V-Cone flow rate calculation. 

Variable  Variable  

GC Gravitation Constant (=32.2) k Isentropic exponent 

D Outside Diameter of the V-
Cone® (=5”) Y Gas Compressibility Factor 

ß Beta Ratio (=0.8) ? P Differential Pressure 

CF Flow Meter Coefficient (=0.78) ? Density of the Gas 

P Operating Pressure SSTP Specific Gravity at Standard 
Conditions 

Pb Base Pressure ACFS Actual Cubic Feet per Second 

T Operating Temperature SCFM Standard Cubic Feet per Minute 

Tb Base Temperature KT1 Meter flow Constant #1 
(=0.9736) 

Z Gas Compressibility KT2 Meter Flow Constant #2 
(=0.0239) 

Zb Base Gas Compressibility Fa 
Correction Factor for Thermal 

Expansion 
(unit less; approx. = 1.014-1.02) 
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k1 Flow Constant   

 

The most glaring problem with the V-Cone®, in its current configuration, is that it 

is made out of schedule-40 stainless steel pipe.  The V-Cone® weights approximately 40 

lbs.  For on-road testing, the flow rate meter is mounted directly to the exhaust stack of 

the vehicle.  And with the weight of the V-Cone®, stability would be difficult to obtain 

without utilizing extra support for the V-Cone on the exhaus t stack. 

 

3.6   West Virginia University’s Engine and Emissions Research Laboratory 
 

All testing covered in this report was conducted at West Virginia University’s 

Engine and Emissions Research Laboratory (EERL).  The EERL was built according to 

the specifications outlined in CFR 40, Part 86 Subpart N [9].  An overview of the 

components of the EERL is given in this section.  Figure 3.9 shows a schematic of 

WVU’s EERL test cell.   
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Figure 3.9 Schematic of the test cell at WVU's EERL.  The flow path is shown as well. 
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3.6.1  Full Flow Dilution Tunnel  

Exhaust, in the atmosphere, is diluted once it is expelled from the vehicle; it is not 

raw exhaust.  The exhaust gets diluted with the ambient air around that vehicle as it 

leaves the tailpipe.  The dilution tunnel simulates this dilution process; therefore, the 

emissions results collected from the dilution tunnel are as accurate as can be obtained to 

picture real world situations.  Another advantage of the dilution tunnel is that it lowers 

the dew point of the exhaust; hence it helps to prevent constituents from condensing out 

in the sample lines.   

WVU’s EERL is equipped with a total exhaust, double-dilution tunnel, designed 

to meet CFR 40 Part 86 Subpart N [9] requirements.  It is constructed of stainless steel. It 

has a diameter of 18 inches, and is 40 feet in length.  A blower pulls the exhaust as well 

as ambient air through the tunnel.  Four critical- flow venturi regulate the flow that the 

blower pulls. The exhaust exits the exhaust system at the entrance of the tunnel.  There is 

one 400 scfm venturi and three 1000 scfm venturi’s to regulate the flow between 400 and 

3400 scfm. The end of the exhaust pipe is situated in the center of the tunnel opening, and 

an orifice is located three feet downstream for mixing purposes.  Ports are located along 

the tunnel, at least 15 feet downstream of the orifice, to extract a sample of diluted 

exhaust for measurement purposes.  Pumps draw the sample to the gas analyzers that 

include CO, CO2, NOX, and HC.  Another pump draws a sample through a smaller tunnel 

across a filter to collect total PM data. Heated lines are used to transport the sample 
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exhaust to the analyzers (to prevent constituents from condensing out in the lines prior to 

the sensors). 

 

3.6.2  Engine Dynamometer 

For emissions data to represent the emission emitted from an on-road vehicle, the 

engine test where emissions data is measured must represent the engine operating on-

road.  Therefore, the dynamometer must load the engine in a manner to simulate a driving 

cycle.  WVU’s EERL utilizes a General Electric model DYC 243 air-cooled, direct 

current (DC) dynamometer.  It is capable of absorbing 550 hp, and providing 500 hp 

when motoring the engine.   RPM is measured using a digital encoder inside the 

dynamometer, while torque is measured by using a load cell.   

3.6.3  Critical Flow Venturi  

CFR 40 Part 86 subpart N [9] requires a constant volume sampling system.  

WVU’s EERL uses the critical flow venturi as compliance to regulate dilute exhaust 

flow.  Three venturi are used for constant total flow rate.  Critical flow venturi operate on 

the theory that the mass flow rate of a gas is maintained at a constant value once that gas 

flow reaches sonic conditions.  The mass flow rate can be calculated from a calibration 

coefficient, pressure, and temperature.   

3.6.4  Gaseous Measurement System 

The gaseous sampling system of the EERL consists of heated sampling probes, 

heated sample lines, heated head pumps, heated filters, a water-removing device, and gas 

analyzers.  Stainless steel sample probes are inserted into the dilution tunnel to draw a 

sample of diluted exhaust.  Three probes are used, one fo r HC, one for NOX, and one for 
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CO/CO2.  Heated lines transfer the sample to the analyzers and are kept at a constant 

temperature.  For NOX and HC, the line is kept at 375°F +/- 10°F, and for CO/CO2 

235°F.  The heated pumps are also controlled at a constant temperature.  A Hankison 

compressed-air dryer was used to remove water from the CO/CO2 sample line. 

3.6.5  Gaseous Measurement Instruments 

3.6.5.1 Hydrocarbon Analyzer 
 

The EERL uses a Rosemount Analytical Model 402 heated flame ionization 

detector (HFID) to measure hydrocarbons in the exhaust.  The Model 402 has an internal 

pump and heated filter.  The internal chamber is maintained to 375°F to prevent any 

condensation issues.   

An HFID uses an internal flame to ionize the carbon atoms in the exhaust sample.  

Electrons and positive ions are produced from the ionizing flame.  The electrons are 

drawn to a positively charged electrode and the positive ions are drawn to a negatively 

charged electrode.  A small ionization current is produced between the electrodes which 

is directly proportional to the concentration of HC atoms.  This current is measured by 

electronic circuitry which is related to HC concentrations.  The Model 402 can measure 

HC concentration up to 250,000ppm.   

 

3.6.5.2 NOX 
 

The NOX analyzer the EERL uses is a Rosemount Model 955 chemiluminescent 

analyzer.  There is an internal NOX converter within the analyzer that allows the analyzer 
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to convert NO2 to NO, thus allowing the analyzer to measure NOX. A solenoid switch, 

within the analyzer, can divert the sample gas around the NOX converter to allow the 

analyzer to measure only NO, since the analyzer cannot measure NO2.  

Chemiluminescence results when light is a product in a chemical reaction [27].  

The Model 955 measures NOX concentrations by determining the chemiluminesent 

radiation over a small region of the total emissions through the use of bandpass filter and 

photomultiplier.  Ozone (O3) is generated by the ultraviolet irradiation of oxygen in a 

quartz tube.  To ensure complete reaction, excess O3 is present in the chamber and it also 

minimizes quenching effects.  Sample pressure and flow rate must be carefully 

monitored, as the photomultiplier is proportional to the number of NO atoms in the 

sample, rather than the concentration of NO in the sample.  A problem with the Model 

955 is that it does not measure NO2, as NO2 does not react with the ozone like NO does.  

A portion of NOX (from 2%-10%) in diesel exhaust is NO2.  Therefore, in the Model 955 

the NOX converter reduces NO2 to give total NOX measurements.  If concentrations of 

NO are only desired, the sample can be diverted around the NOX converter to give only 

NO concentrations.  The Model 955 can measure NOX concentrations in full-scale ranges 

of 10, 25, 100, 250, 1000, 2500, and 10000ppm. 

3.6.5.3 Horiba Model AIA-210-10-LLCO 
 

The Horiba Model AIA-210-10-LLCO is a non-dispersive infrared analyzer 

(NDIR) to continuously measure the concentrations of individual components of the 

sample gas.  There are two detection cells, a reference cell and a sample cell.  A light 

source supplies infrared light to the detection cells through a chopper wheel to give 
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intermittent light to the cells.  As the sample gas absorbs light energy in the cell, there is a 

difference in intensity between the sample cell and the reference cell.  This absorption 

allows only a certain wavelength of the infrared light to reach the detector.  This 

difference between the sample cell and the reference cell is directly related to the 

concentration of a certain component of the sample gas.  If another component in the 

sample gas overlaps the wavelength of the desired component measurement, a solid state 

filter removes those overlapping infrared wavelengths so that they do not affect the 

concentration measurements.  

3.6.5.4 Horiba Model AIA-210 CO2 
 

The CO2 analyzer is a Horiba Model AIA-210 NDIR Analyzer.  The Model AIA-

210 operates with an NDIR detection scheme.  The NDIR detector is a spectrophotometer 

that uses a filter to measure light absorption over a small range of wavelengths.  Different 

gases, or different components of gases, absorb different bands of infrared light, with 

some of those gases overlapping small regions.  The detection mechanism consists of a 

light source, a filter, two cells (a sample cell and a reference cell), and a chopper wheel.  

The gas sample enters the sample cell, where infrared light is passed through it.  Infrared 

light is also passed through the reference cell, which contains a gas that does not absorb 

the same wavelength that is being absorbed in the sample cell. Light energy will be 

reduced when the gas under observation will absorb some of the light in the sample cell.  

The ratio of the detector cells can them be related to the gas concentration in the sample 

cell.  
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3.6.5.5 Bag Sampling 
 

Bag sampling allows the EERL to eliminate the constituents of ambient air that 

add to the concentrations measured in the exhaust.  Tedlar Bags with 80- liter capacity are 

used to collect ambient air.  The gaseous analyzers then sample the ambient air to 

measure the exhaust constituents in the ambient air.  This value is then subtracted from 

the results of the constituents in the engine exhaust to obtain emissions of just the engine.  

3.6.5.6 Fuel and Air Sampling 
 

Fuel and intake air are measured by Max Machinery, Inc Max Model 710 fuel 

conditioning system and a Meriam Instruments laminar flow element (LFE).  The fuel 

conditioning system consists of a constant volume fuel tank, fueling supply and return 

lines, fuel pump, fuel meter, and heat exchanger.  It interfaces with the data acquisition 

computer to give fuel measurements.  The LFE utilizes the differential pressure principle, 

with absolute pressure and temperature at the inlet, to calculate the flow. 

3.6.5.7 Data Acquisition 
 

The EERL data acquisition consists of Analog Devices 3B system modules for 

signal conditioning.  An RTI-815 analog-to-digital converter is used to change the analog 

inputs from the instruments to a digital output.  The data is recorded in ADC code.  A 

separate data reduction program is used to convert the ADC code into engineering units.   
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3.7   Error Analysis 

 

Absolute and root-sum square basis was used for determination of the propagation 

of uncertainty.  Absolute error is calculated by taking the sum of the absolute values of 

error contributed by each variable in the equation.  The absolute error is given by: 

    

Equation 7 

 

The root-sum square formula is the combination of random and bias errors.  

Random error is errors contributed by fluctuations in the repeatability of a measurement, 

and bias error is the actual offset of the measurement compared to the “true” value.  The 

root-sum square formula is given by Equation 2: 
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Random errors are usually accounted for by using normal distribution. For 

example, a 95% probability means that 95% of the data points would be within the 

calculated error range.  A variable, z, calculated from the mean value, value at the point 

of interest, and the standard deviation is 1.96.  The resulting root-sum square formula is: 
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Equation 9       
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The error obtained in Equation 9, is not the error of the analyzer, it is the possible error in 

the gaseous concentration being measured. Equation 10 shows the errors associated with 

the measurement of CO2. 

Equation 10 

( ) ( )[ ] ( )[ ] 2
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2 %18.012*002.096.112*01.012*005.0 COCO =++=∆   

Table 3.2 shows the errors involved in the reporting of gaseous emissions. 

Table 3.2 Errors involved in reporting gaseous emissions errors. 

Analyzer Accuracy (Random) Repeatability (Bias) 

Calibration Gas N/A ± 1.0 % Gas Bottle Conc. 

Analyzer ± 1.0 % of Full Scale N/A 

Gas Divider ± 0.2 % of Full Scale ± 0.5 % of Full Scale 

Total Error ± 1.22 % of Full Scale ± 1.5 % of Full Scale 
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3.8   Test Procedure  

3.8.1 HFID Test Procedures 

Steady state, transient, and response and drift tests were conducted to evaluate the 

Signal Model 3030PM HFID analyzer.  A transient test will give a better representation 

of real world driving, while steady state test provide better instrument comparison 

because the engine will hold constant conditions for a length of time allowing the 

analyzer to be compared at different conditions. The response and drift tests show 

different characteristics of the instrument. 

The transient test used for the evaluation of the HFID analyzer was an US Federal 

Test Procedure, the USFTP.  It is recognized that the heavy-duty engine certification 

cycle, the USFTP, is not representative of current on-road vehicle/engine performance; it 

is a test schedule that is most commonly employed.    For the steady state test cycles, a 6-

mode multipoint cycle was used.  Only 5 modes were used to collect data, as the 6th mode 

was an idle.   

The response test that was used to evaluate the response of the HFID analyzers 

involved a gas divider and manually changing the concentration from zero air to the span 

gas. Each concentration level was held for one-minute. Since both HFID’s sampled from 

the same port, the span gas flooded the sample probe, making sure that more sample gas 

was presented than sampled by the analyzers.  Twenty minute tests were performed, with 

the analyzers measuring the known concentration.  The drift test was done to quantify the 

drift that each instrument had.  
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3.8.2 V-Cone Test Procedures 

Similarly to the hydrocarbon analyzer testing, both steady state and transient test 

cycles were used to evaluate the flow meters.  Steady state tests provide for better 

comparisons of the two flow meters.  Steady state test cycles allow a more controlled test 

because the engine holds conditions constant for a given length of time.  Transient tests, 

on the other hand, give more of a real world driving scenario. 

3.8.2.1 Preliminary Test Procedures 

 

For the preliminary testing, different steady state and transient tests were used.  

The steady state test cycle was a three mode cycle with an idle as before and after the 

modes.  Figure 3.10 shows the speed and torque of the test. 
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Figure 3.10 Real-time rpm and torque for the steady state test cycle. 

 
A transient cycle was developed by researchers at WVU (Gautam, et al., 2002 

[15]) to simulate in-field operation of a track-type dozer. The test cycle RPM and torque 

data can be seen in Figure 3.11.  Both of these test cycles were for the preliminary testing 

conducted for the flow meters.  
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Figure 3.11 Real-time rpm and torque data for the dozer test cycle. 

 

3.8.2.2 Testing Conducted September 2002 

 

For this testing, the transient test cycle used in this series of tests was recreated 

from an actual on-road operation of a class-8 tractor.  Specifically, the transient cycle was 

developed from the first leg of the Washington, PA route that was developed for the 

consent decrees work that is being conducted at WVU. This cycle was called the PA1 

cycle.  Five tests were conducted using this cycle.  The cycle RPM and torque data can be 

seen in Figure 3.12.   
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Figure 3.12 Real-time speed (rpm) and load (ft-lbs) for the transient test cycle, the 
Washington, PA route. 

 

A steady state cycle was also developed specifically for this testing.  The steady 

state test cycle included 9 modes with an idle at the beginning and the end of each cycle.  

Each mode, including the idle set points, is approximately 2-minutes in length.  The 

modes varied in the load and speed of the engine.  Table 4.1 shows the load and speed of 

each mode.  Figure 3.13 shows the real- time RPM and torque data for the 9-mode steady 

state test. 
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Figure 3.13 Real-time rpm and torque data for the 9-mode steady state test. 

Table 3.3 Speed and load set points for the VolvoSS2 test cycle. 

Mode Speed (RPM) Load (ft- lbs) 

Idle 600 5 

Mode 1 1110 max 

Mode 2 1700 max 

Mode 3 1800 max 

Mode 4 1800 450 

Mode 5 1700 450 

Mode 6 1200 450 

Mode 7 1200 150 

Mode 8 800 max 

Mode 9 1700 250 

Idle 600 5 
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Chapter 4  Results and Discussion 

4.1   Hydrocarbon Analyzer HFID Validation Testing  
 

The Signal Model 3030PM hydrocarbon analyzer was tested at WVU’s Engine 

and Emissions Research Laboratory (EERL) and the results were compared with a 

Rosemount Analytical 402 hydrocarbon analyzer, which the Laboratory is currently 

using.  A Detroit Diesel Corporation Series 60 diesel engine was operated over both the 

steady state and transient cycles.  A 6-mode multipoint steady-state cycle was run for the 

steady state testing and an USFTP cycle for the transient testing.   

Both the Signal and the Rosemount Analytical hydrocarbon analyzers sampled 

from the same port located in the dilution tunnel.  Drawing samples from the same port, 

allowed for a direct comparison of the analyzers.  The Rosemount Analytical 402 

analyzer is integrated in the EERL data acquisition system.  The system uses a 12 bit 

analog to digital board to convert the analog signal from the analyzer to a digital output 

(0 to 2000 ADC code).  The analyzers are calibrated with the span value equal to the 

ADC code of 2000, and the zero value is assigned an ADC code of 0.  The EERL assigns 

channels to each instrument that is used in the Laboratory.  The Rosemount Analytical 

analyzer was connected to the permanent hydrocarbon channel in the laboratory, while 

the Signal was wired into the permanent secondary hydrocarbon channel.   

Prior to the test, each analyzer was calibrated.  Note that the analyzers display 

different units of concentration.  The Signal analyzer read methane equivalent while the 

Rosemount Analytical 402 measured percentage of span.  Therefore, the Signal read a 

sample gas of 20 ppm propane as 60 ppm methane equivalent, and the Rosemount 
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Analytical 402 measured the percentage of the span.  In the data reduction program, the 

percent reading of the Rosemount Analytical was converted back to a ppm concentration.   

4.1.1 Response Test 

A test was run to check the response times for the Rosemount Analytical and 

Signal hydrocarbon analyzers.  A 20 ppm propane span gas was used with helium as the 

zero air constituent, since helium is hydrocarbon free.  A gas divider, Stec, Inc. Model 

SGD-710C, was used to physically alternate the change in concentration of the sample 

gas from hydrocarbon free sample to span gas.  The sample gas was allowed to stabilize 

for a minute before the concentration was changed.  This step response can be seen in 

Figure 4.1.  Figure 4.2 shows a single pulse of the concentration change.   
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Figure 4.1 The response test using a span gas of 20 ppm propane. 
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Figure 4.2 A small scale time frame of the response test showing the response of the 

instruments.   

 

The T90 time is the time for the analyzer to reach 90% of the set value.  For the 

response test, the T90 time was found from inspecting the plots of the response test.  For 

the Rosemount Analytical, the T90 time was 9 seconds, while the T90 time for the Signal 

was 3 seconds.  The Rosemount Analytical analyzer achieves close to 100% of the span 

on each concentration change, while the Signal shows a slight drift from span.  The error 

between the analyzers when span gas was the sampled gas was less than 1%.   

4.1.2 Drift Test 

The analyzers also were tested for drift.  Drifting is when a constant concentration 

of gas is sampled by the instrument, but the instrument starts to change, or drift, from the 

true concentration.  Two separate drift tests were conducted.  A zero air drift test was a 

20 minute test where the analyzers sampled zero air or hydrocarbon free air.  The other 
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drift test was a span drift test.  The instrument samples a span gas, 20 ppm propane, for 

20 minutes.  Figure 4.4 shows the zero air drift test while Figure 4.6 shows the span gas 

drift test. 
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Figure 4.3  Hydrocarbon comparison of the HFID for a zero air drift test, showing a 

scale up to 10 ppm. 
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Figure 4.4 Hydrocarbon comparison of the HFID for a zero air drift test. 
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Figure 4.5 Hydrocarbn comparison of the HFID for a span drift test. 
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Figure 4.6 Hydrocarbon comparison of the HFID for a span gas drift test, reduced 

scale. 
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Figure 4.5 and Figure 4.6 show that neither instrument drifts more than 0.6 ppm.  

The Signal Model 3030PM analyzer drifts a little more than 0.1ppm during the zero air 

drift test and about 0.4ppm for the span gas drift test.  The Rosemount Analytical 402 

analyzer drifts a little more than 0.5ppm for the zero air drift test and a little over 0.4ppm 

for the span gas drift test.  An interesting point is the cyclic drift of the Rosemount 

Analytical 402 analyzer during the span gas drift test.  The Rosemount Analytical has an 

internal heater that turns on in a cyclic manner to keep the internal oven of the analyzer 

above the set temperature.  This cyclic drift from the Rosemount Analytical 402 is 

probably a direct result of the cyclic heating of the internal oven.    

4.1.3 Transient Tests:  USFTP 

The USFTP was used to evaluate the Signal Model 3030PM.  Several USFTP 

transient tests were conducted using the Detroit Diesel Corporation Series 60 engine at 

WVU’s EERL.  Hydrocarbon data was collected using both the Rosemount Analytical 

402 and Signal Model 3030PM for each test.  Figure 4.7 and Figure 4.8 show the direct 

comparison between the Signal and Rosemount Analytical analyzers for two transient 

tests.     
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Figure 4.7 Hydrocarbon comparison of the HFID for transient FTP test-1. 

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000 1200

Time (sec)

pp
m

signal

402

 
Figure 4.8 Hydrocarbon comparison of the HFID for transient FTP test-2. 
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Figure 4.9 shows a 150 second window of a USFTP.  The Signal Analyzer 

captured hydrocarbon emissions over most of the transients, where the Rosemount 

Analytical gave a smoother trace. 
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Figure 4.9 A smaller time scale, an 150 second window, of the Hydrocarbon 

comparison of the HFID analyzers for transient FTP test-1. 

 

Regression analysis plots two sets of data against each other.  When plotted the 

two sets of data will show the relationship between them.  The R2 function determines the 

extent of a linear relationship between two fields over a given period of time.  The R2 

value gives a numerical assignment to the linearity of the data set.  Trend lines can be 

used to generate an equation that represents the data. 

For the transient tests, the R2 values are around 0.70.  This value is low when the 

ideal r-squared value is 1.00. One reason that would account for the low r-squared value 

is the peak differences between the analyzers.  Because of the greater response 
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capabilities of the Signal Analyzer, great differences between the analyzers are found. 

The peak differences give differences of greater than 100%. If the peak differences are 

ignored, the mean error between the analyzers would be less than 5%.  Therefore, the 

differences between the Signal and Rosemount Analytical values at peaks and valleys 

cause data points to be off of the trend of the data set, thus lowering the r-squared value.  

The regression ana lyses, for the two USFTP transient tests, are found in Figure 4.10 and 

Figure 4.11. 
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Figure 4.10 Regression analysis of the HFID analyzers for transient FTP test-1. 
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Figure 4.11 Regression analysis of the HFID analyzers for transient FTP test-2. 
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4.1.4 Steady-State Test  

 
Besides USFTP transient tests, steady-state test cycles were also run and the 

hydrocarbon analyzers were compared for these cycles as well.  For the steady-state 

cycles, a DDC Series 60 engine was used, the same engine used for the transient tests.  

Figure 4.12 and Figure 4.13 below show 5 modes in comparison.  The 6th mode was idle, 

and data was not collect over mode-6.   
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Figure 4.12 Hydrocarbon comparison of the HFID for steady state 6-mode test-1. 
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Figure 4.13 Hydrocarbon comparison of the HFID for steady state 6-mode test-2. 

 

From Figure 4.12 and Figure 4.13, for a comparison, all the modes matched well 

except for the second mode.  But looking at the differences between the Signal Model 

3030PM and the Rosemount Analytical 402 analyzers, the second mode is still within 6% 

(See Appendix A for all graphs pertaining to the HFID testing).   

Again regression analysis was used to relate the two analyzers.  Figure 4.14 and 

Figure 4.15 show that the r-squared value of the regression is above 0.99.  This means 

that the trend line strongly represents the data.  The trend line has a slope of around 0.95.  

This means that the data from the analyzers do not match exactly, but are close to the 

same values at each specified time.  Note: the trend line is forced through the zero axes, 

and it is assumed that the trend is a linear trend.     
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Figure 4.14 Regression analysis of the HFID for steady state 6-mode test-1. 
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Figure 4.15 Regression analysis of the HFID for steady state 6-mode test-2. 
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4.2   V-Cone Flow Measurement Validation Testing 
 

MEMS is currently using an Annubar® as a differential pressure flow 

measurement device.  The Annubar® requires fully developed flow.  Hence, there needs 

to be unobstructed pipe length upstream and downstream to ensure the flow is fully 

developed.  The rule of thumb is to have at least ten diameters (of the pipe) upstream and 

downstream to ensure fully developed flow.  Therefore, the size of an Annubar® based 

flow metering device, with a 5 inch exhaust, the unobstructed pipe needs to be about 100 

inches (2.54 m) long.  The length of the pipe then becomes a limitation for on-road 

emissions testing.  To mount the Annubar® pipe inline with the exhaust system of the 

truck, the trucks exhaust stack needs to be removed and replaced with the Annubar® 

based flow metering section.  

 The V-Cone is an obstructive, differential pressure, flow rate measurement 

device.  A conical mass located in the center of the flow profile, forces the high velocity 

and low velocity flow to mix, conditioning the flow.  A static pressure port is located just 

upstream of the conical mass, and another static pressure port is located on the 

downstream side of the conical mass.  This differential pressure is then related to the flow 

rate.  Because the V-Cone reshapes the flow profile, the flow doesn’t need to be fully 

developed for the V-Cone to operate, eliminating the upstream and downstream 

unobstructed pipe.   

 To validate the V-Cone as a viable means for measuring exhaust flow rates, 

steady state and transient tests were employed.  

     



 

 81 

4.2.1 Preliminary Tests 

 

Steady state (5-Mode) and transient (Dozer Cycle) tests, developed by Gautam, et 

al., 2002 [15], were conducted to evaluate the V-Cone as a flow rate measurement device 

and compare its performance with the Annubar.  Both the Annubar® and the V-Cone 

were in- line in the exhaust system.  The evaluation was conducted on a DDC series 60 

engine in WVU’s EERL test cell.  The steady-state and transient cycles are presented 

below.   The comparison of the Annubar® and V-Cone flow measurements showed that 

the V-Cone differential pressure transducer over ranged in every test, the 2 steady states 

and 2 transients.  Figure 4.16 and Figure 4.18 that show flow data support the fact that the 

V-Cone pressure transducer over ranged. 

4.2.1.1 Steady-State V-Cone Tests 
 

 The first series of tests were intended to determine if the V-Cone was even a 

viable device of hot exhaust flow applications.  Not too much attention was devoted to 

proper sizing of pressure transducers at this point.  Several of the 6-mode steady-state 

cycles were run to compare the V-Cone and the Annubar® as flow meters.  The 

differential pressure transducer for the V-Cone was a 23 inWC diaphragm.   But, the 

differential pressures that were achieved during the test cycles were greater than 23 

inWC.  The data is presented to show that through inspection of the flow, the DP was 

found to be greater than the capabilities of the transducer.   
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Figure 4.16 Flow comparison of the V-Cone and Annubar® for steady state test-01. 
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Figure 4.17 Differential pressures for the V-Cone and Annubar® for steady state 
test-01. 
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Figure 4.18 Flow comparison between the V-Cone and Annubar® for steady state 
test-02 

Figure 4.16 compares the flow rates measured with the V-Cone and the 

Annubar®.  Figure 4.17 shows a comparison of the differential pressures for the same 

steady state test.  To show that this was not a one test event, Figure 4.18 shows results 

from another steady state test.  Ano ther reason for further testing is the fact that the V-

Cone shows an offset from the Annubar®. These tests showed that the V-Cone could 

certainly serve as a viable means of measuring exhaust flow rates. 

4.2.1.2 Transient Tests: Dozer Cycle 
 

 The steady state comparison was presented earlier in this report, while the 

preliminary transient tests are presented below. 

 The dozer transient test cycle was used to test the V-Cone with the Annubar® for 

the transient tests.  Similar to steady state tests, the DP transducer on the V-Cone over 
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ranged during peak flows.  Figure 4.19 shows a flow rate comparison between the 

Annubar® and V-Cone for one of the transient tests.  At peak flow, the V-Cone flow 

exhibited a different trend than the Annubar® flow.  Figure 4.20 shows the DP for the V-

Cone and Annubar® for the transient test.  It is evident that the DP transducer over ranged 

at the highest exhaust flow rates. 
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Figure 4.19 Flow comparison between the V-Cone and Annubar® for transient test 
of the dozer cycle. 
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Figure 4.20 Differential pressures for the V-Cone and Annubar® transducers for the 
transient test of the dozer cycle. 

 

 Every cycle that was run to evaluate the V-Cone as an alternative to the Annubar® 

as a flow rate measurement device had the V-Cone DP transducer over ranging; more 

importantly, these preliminary tests showed that the V-Cone could be readily employed 

for measuring exhaust flow rates.  

4.2.2 Testing Conducted September 2002 

Based upon the results from the preliminary tests, the pressure transducers were 

properly sized, the data reduction software was rectified and another series of tests was 

conducted in order to compare the V-Cone and the Annubar®. Transient and steady state 

test cycles were run on a Volvo VED123-425 engine.   
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The comparison of the V-Cone and Annubar® flow devices was piggy-backed 

onto another study that was being conducted in the laboratory test cell.  The transient test 

cycle used in this series of tests was recreated from an actual on-road operation of a class-

8 tractor.  Specifically, the transient cycle was developed from the first leg of the 

Washington, PA route that was developed for the consent decrees work that is being 

conducted at WVU. This cycle was called the PA1 cycle.  Five tests were conducted 

using this PA1 cycle.  A steady state cycle was also developed specifically for the 

comparison testing.  It included 9 modes with an idle at the beginning and the end of the 

cycle.  Each mode was approximately 2 minutes in length.  The modes varied in the load 

and speed of the engine.  Table 4.1 shows the load and speed of each mode. 

Table 4.1 Speed and load set points for the steady state test cycle. 

Mode Speed (RPM) Load (ft- lbs) 

Idle 600 5 

Mode 1 1110 max 

Mode 2 1700 max 

Mode 3 1800 max 

Mode 4 1800 450 

Mode 5 1700 450 

Mode 6 1200 450 

Mode 7 1200 150 

Mode 8 800 max 

Mode 9 1700 250 

Idle 600 5 
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4.2.2.1 Flow Rate Measurements 

 

Three steady state tests and five transient test cycles were run for the instrument 

evaluation.  Calibrations, the zeroing and spanning of the analyzers, were conducted prior 

to each test.  The setup for these tests included an Annubar® flow rate measure device 

and a V-Cone® flow rate measurement device in- line with the exhaust system.  

Differential (DP) and absolute (AP) pressure transducers were connected to each flow 

rate measurement device, as well as temperature measurements.  Both of the MEMS (the 

original and second generation MEMS) systems draw an exhaust sample from the 

exhaust stream and take emissions measurements.   
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Figure 4.21 Flow schematic of the EERL test cell, with both the MEMS systems and flow meters in- line with the exhaust.
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The first generation MEMS system was used to record the V-Cone data, which 

includes DP, AP, and temperature of the exhaust stream at the V-Cone, and to take 

emissions data (NOX and CO2).  The emissions data that the first generation MEMS 

recorded is not included in this report.  The second generation MEMS system was also 

sampling from the exhaust line and recording emissions data.  The emissions data from 

the second generation MEMS is used in this report to generate the emissions mass rate 

values. WVU’s EERL test cell was also used to measure emissions from the Volvo 

VED123-425 engine. 

Using the test cells resident data reduction program and the data reduction 

program for the second generation MEMS system, the concentrations obtained from the 

test cell and the second generation MEMS were reduced to mass rate values.  The 

emissions reduction for the V-Cone was calculated manually.  Emissions concentrations  

were taken from the second generation MEMS system, while the volume flow data was 

taken from the V-Cone measurements.  The standard conditions that were used for this 

testing were 29.92 inHg (101.3 kPa) and 20°C.  The flow rates were standardized using 

the previous conditions, as well as ensuring all emissions values are on a wet 

concentration basis.  The NOX concentrations, from which the emissions mass rates are 

calculated, are wet concentrations.  The CO2 concentrations are dry readings because the 

Horiba BE-140 uses NDIR to measure the concentrations.  MEMS sample conditioning 

system includes a dryer to remove the moisture from the sample.  Therefore, the sample 

is dried prior to the introduction to the BE-140.  The test cell also reads a dry CO2 

concentration.  To make appropriate comparisons, each emissions rate must be either wet 

or dry.  Therefore, all the NOX measurements and readings are wet, and all the CO2 
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concentrations measurement were converted back to wet.  Using Equation 11 and 

Equation 12, which can be also found in the CFR Part 40 Part 89 [10], the mass rate 

emissions for NOX and CO2 were calculated from the concentration values.   

Equation 11 

60

02832.0**.* SCFMNO
NO

FlowppminConc
ratemass X

X

ω
=  

 

Equation 12 

60

02832.0**%.*
2

2

SCFMCO
CO

FlowinConc
ratemass

ω
=  

XNOω and 
2COω are values that convert the concentrations into equivalents at the 

specified standard conditions.  They are calculated by Equation 13 and Equation 14, 

while 0.02832 is the conversion from cubic feet to cubit meters, and division by 60 is the 

conversion from per minute rates to per second rates. 
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Table 4.2 Nomenclature for dry to wet conversion. 

Symbol Physical Meaning 

M 

Molecular number 

(NOX = 46g/mol) 

(CO2 = 44g/mol) 

MV Molecular Volume (22.414 x 10-3) 

TO 273.15°K 

T 20°C 

P 101.3 kPa 

PO 101.3 kPa 

 

A dry to wet conversion for CO2 is calculated by using Equation 15 

Equation 15 

 

The concentration values recorded are on a dry basis.  Therefore, all that is needed 

is the hydrogen to carbon ration (H:C), which is 1.8 for diesels.  The second generation 

MEMS and the test cell concentrations are then converted from dry to wet, and Equation 

12 and Equation 14 can be used to calculate the mass emissions rates for CO2. 

Note:  The emissions rate values can now be directly compared and investigated, 

since all the values are at the standard conditions of 29.92 inHg (101.3 kPa) pressure, 

20°C, and are a wet concentration basis. 
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Flow Data 

 

The preliminary testing showed a flow rate offset that was similar to that observed 

for the more extensive follow-up testing of the V-Cone. The V-Cone generally measured 

higher flow rates than the Annubar®.  Of particular interest was the investigation into 

identifying the shift. For these tests, the Annubar® values are considered “true” values, 

because the Annubar® is currently used in MEMS, and the V-Cone is being investigated 

for a viable option for exhaust flow rate measurement.     

The flow rate comparison between the V-Cone and Annubar® flow rate 

instrument is shown in the figures below.  In this section, one test will be discussed, 

unless there are points that need to be made by using additional graphs; the graphs of the 

remaining tests are presented in Appendix B. Figure 4.22 shows the flow rate comparison 

for the transient tests and Figure 4.23 shows the steady state test. 
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Figure 4.22  Flow rate comparison for the V-Cone andAnnubar® for transient test 
VolvoPA1-01. 
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Figure 4.23 Flow rate comparison for the V-Cone and Annubar® for steady state 

test VolvoSS2-01. 
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From evaluating the data, an offset between the flow rates of the V-Cone and 

Annubar® appears to be a constant.  The repeatability of the flow rates for both the 

transient and steady state cycles is very good.  Regression analysis was used to compare 

the flow rates of the V-Cone and Annubar®.   

A linear trend line was used to generate the average slope of the data points.  

Therefore, the ideal slope of regression analysis is 1.00 and the closer the slope is to 1.00, 

the better the relationship between the two data sets.  Values of R2 were generated from 

regression analysis to give an indication of how close the regression analysis data points 

fall on the slope of the trend line.  The closer the R2 value is to 1.00; the “tighter” the data 

points lay on the trend line.  The lower the R2 value, the more scattered the data points.   

The regression analysis for Figure 4.24, the first transient test, shows that the 

slope of the trend line is 1.0953, which is close to 1.00.  The R2 value for first transient 

test of the Washington, PA route was 0.9862.  With the R2 value being better than 0.98, 

the data showed a “tight” data set.  The slope of the data showed that the V-Cone is a 

factor of about 1.1 off from the Annubar®.  The steady state tests show a relatively poorer 

correlation, as seen in Figure 4.25.  This is due to mode-8 of the cycle (see the flow 

Figure 4.23).  In mode-8, the differential pressure for the V-Cone increased while the 

differential pressure for the Annubar® the value decreased.  This gives large errors 

between the two instruments, and it shows on the regression analysis.  A pocket of data 

points off of the trend line is the data points for this mode-8.  The linear fit is influenced 

by this pocket of data points and the slope is observed to be higher. The pocket also 

affects the R2 value by decreasing the value due to the increased errors associated with 

this mode. 
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Figure 4.24 Regression analysis for flow rates between the V-Cone and Annubar® 
for transient test VolvoPA1-01. 
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Figure 4.25 Regression analysis for flow rates between the V-Cone and Annubar® 
for steady state test VolvoSS2-01. 
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The reasons why the V-Cone and Annubar do not agree were investigated.  For all 

the other modes of the steady state test, the V-Cone measured higher than the Annubar®, 

but both instruments had the same trends with just the amplitude of the V-Cone output 

being greater.  For mode-8, the instruments flow rates go in opposite directions, V-Cone 

measured increased flows and the Annubar® decreased flows.  Figure 4.26 shows the 

differential pressures for the V-Cone and Annubar® for a steady state test. 
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Figure 4.26 Differential pressures for the Annubar® and V-cone for steady state test 

VolvoSS2-01. 
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Figure 4.27 Exhaust temperature comparison at the location of the V-Cone and 

Annubar® for steady state test. 

 
There are a couple of issues originating with the V-Cone as a possible reason for 

differences between the Annubar®.  First, there is a temperature issue.  The V-Cone was 

considerable closer to the engine than the Annubar®.  Figure 4.27 shows the exhaust 

temperature comparison at the location of the V-Cone, closer to the engine, and the 

Annubar®, further from the engine.  As can be seen the temperature is much greater at the 

V-Cone.  A note should be made that the flow rate calculations include the temperature, 

so temperature differences of themselves will not cause the flow rates to be different, but 

their may be a thermal mass issue resulting from the temperatures.  Another difference 

between the V-Cone and Annubar® is that the pressure transducers (both the AP and DP) 

for the V-Cone were placed several feet from the exhaust system, and slightly higher than 

the exhaust level.  This, in turn, caused a difference between the V-Cone and Annubar® 

in the dead volume for the pressure transducer lines.  Note that the difference in dead 
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volume is more of a concern with transient responses than steady state cycles, but the 

dead volumes were not optimized with each analyzer.  The V-Cone had much greater 

dead volume in the pressure lines than the Annubar®.  The Annubar® had about 18 inches 

of ?  inch stainless steel tubing, while the V-Cone had approximately 4 feet of ¼ inch 

tubing; therefore, the dead volume of the V-Cone system is much greater than that of the 

Annubar®.  The V-Cone had about 12 inches of stainless steel tubing, for heat transfer 

purposes, and about 3 feet of Teflon tubing the rest of the way to the pressure 

transducers.  Another problem that the V-Cone had was condensation issues.  When the 

exhaust cooled to the dew point temperature, in the pressure lines, condensation occurred.  

This was not a unique problem to the V-Cone; the Annubar® had this problem as well.   

 

The steady state tests regression slopes for all the test cycles are a little further 

away from the ideal of 1.00 than the transient tests, this could be indicative of the slope 

changes that are a result of mode 8 differences.  Like the regression trend lines, the R2 

values for transient test were closer to the ideal than the steady state tests, with the 

transient test cycles ranging from 0.91 to 0.98 (See Appendix B).  A difficulty in 

regression analysis is the second-by-second time aligning, and any time misalignment 

will affect the regression analysis.  Remember the dead volumes for the pressure 

transducers of the V-Cone and Annubar® were not equal, and therefore could have caused 

the time misalignment. And therefore, could be a reason for the poor slopes of the linear 

fit and R2 variation.  With the time aligning difficult and the response of the flow rate 

measurement devices, there can be great differences between the flow rates on flow 

spikes.  Figure 4.28 shows how the time alignment is important in the regression analysis. 
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If, because of a time misalignment, one of the instruments begins to increase a flow rate 

before the other instrument, a large flow difference at a specific point can occur.  The 

regression analysis plots this specific point, but the flow rate is different because of a 

possible time misalignment, and the data point is plotted off of the linear trend.  When 

data points occur off the linear trend, the R2 value is low.  Figure 4.28 shows a slight time 

misalignment and Figure 4.29 shows the resultant regression analysis, but Figure 4.30 

shows the data that is time aligned, and Figure 4.31 shows the improvement of the 

regression analysis, the R2 value is higher.  
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Figure 4.28 Flow rate comparison for the V-Cone and Annubar® for transient test 
VolvoPA1-04 before time alignment. 
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Figure 4.29 Regression analysis for transient test VolvoPA1-04 before time 
alignment. 
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Figure 4.30 Flow rate comparison for the V-Cone and Annubar® for transient test 
VolvoPA1-04 after time alignment. 
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Figure 4.31 Regression analysis for transient test VolvoPA1-04 after time alignment. 

Emissions Data 

The mass emissions rates of NOX and CO2 were determined during this study.  

The mass emissions rates were obtained by either a reduction program or by manual 

calculation.   

Several graphs were generated to investigate the validity of the V-Cone with the 

Annubar® and test cell.  Mass emissions rates values for NOX for the V-Cone reduction 

and second generation MEMS reduction were plotted against the Laboratory reduction 

mass rate values.  For the CO2 mass emissions rates, the V-Cone values were plotted 

against the Annubar® and Laboratory values.  Regression analysis was used to compare 

the mass emission rates of the Annubar® and V-Cone, and this done for both NOX and 

CO2 mass emissions rates.  It should be noted, that there was a flow rate difference for 
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the steady state tests at mode-8.   Again, this mode affects the regression analysis, thus 

the trend line is shifted towards this pocket of data points.   

NOX Data 

The NOX mass emissions rate graphs are presented below.  Appendix C shows the 

Figures of all the NOX dealing the comparison of the two systems Annubar® and V-Cone 

and the Laboratory.   

Inspection of NOX data in Appendix C, shows test-to-test variations in the 

amplitude.  The first three transient tests show good repeatability, and the last two 

transient tests have repeatability, but there is a change around 400 seconds.  Figure 4.32 

and Figure 4.33 show the change in second-by-second values.  Appendix C shows data 

on repeatability for all the transient tests.   
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Figure 4.32 NOX mass emissions rate comparison between the V-Cone, Annubar®, 
and Laboratory, transient test VolvoPA1-01. 
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Figure 4.33 NOX mass emissions rate comparison between the V-Cone, Annubar®, 

and Laboratory, transient test VolvoPA1-04. 
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Figure 4.34 NOX mass emissions rate comparison between the V-Cone, Annubar®, 

and Laboratory, transient test VolvoPA1-05. 
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Figure 4.35 NOX mass emissions rate comparison between the V-Cone, Annubar®, 

and Laboratory, steady state test VolvoSS2-01. 
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Regression analysis was used to compare the V-Cone and Annubar® values. 

Regression could not be done on the Laboratory values because they were sampled at 1 

Hz while the MEMS concentrations are measured at 5 Hz.  

Figure 4.36 and Figure 4.37 shows the regression analysis for NOX for the 

transient and steady state tests. Some data points far from the trend of the data points are 

points that have time misalignments.  It is very difficult to time align the data points.  

And any misalignments will cause errant data points. Errant data points would in turn 

cause the R2 value to decrease. 
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Figure 4.36 Regression analysis for NOX for test VolvoPA1-01. 
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Figure 4.37 Regression analysis for NOX for test VolvoSS2-01. 

The regression analysis for the NOX measurement appears to show good 

repeatability in the slopes of the linear fit. The difference is an amplitude shift.  The V-

Cone measures a higher flow rate than the Annubar®; hence, the NOX mass rates are also 

higher.  The R2 values for both regression analyses are close to 1.00.  However, there are 

data points that are errant because of the time misalignments.   

Table 4.3 shows a percent difference calculation of the tests presented.  (Note:  

the steady state tests are denoted SS2 and the transient tests PA1 in Table 4.3)  The 

interesting thing is that the V-Cone shows better results when compared to the Lab than 

the Annubar® shows.  The V-Cone has at least 5% better results than the Annubar® on 

every test.  Both instruments show poor repeatable results for these tests.  The Annubar® 

has errors up to 15%, while the V-Cone has errors up to 10%.  All the errors are based on 

the laboratory values. 
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Table 4.3 Integrated NOX mass rates comparison of the V-Cone, Annubar®, and 
Laboratory with percent difference of the V-Cone and Annubar® with 
the Laboratory for all transient and steady state tests. 

 

CO2 Data  

The CO2 data was reduced and analyzed in the same manner as the NOX data.  A 

note that around the 400 second mark, the mass emissions rates characteristics change 

between test volvoPA1-01 and volvoPA1-04 (see Figure 4.38 and Figure 4.39).  Figure 

4.38, Figure 4.39, and Figure 4.40 show direct comparison of CO2 mass emissions rates 

of the Laboratory, V-Cone, and Annubar®.  An interesting note is the order from highest 

to lowest mass emissions rates for CO2 is different than for NOX.  For NOX, the order 

from highest mass emissions rates to lowest is Laboratory, V-Cone, and then Annubar®.  

For CO2, the order is V-Cone, Annubar®, and then Laboratory.  Again, it should be noted, 

that for the steady state tests, mode-8 for the V-Cone is erroneous because the flow data 

for the V-Cone is erroneous. 

Test V-Cone Annubar Lab V-Cone Difference Annubar Difference 
volvoPA1-01 289 272 300 -3.66 -9.27 
volvoPA1-02 275 258 287 -4.18 -10.0 
volvoPA1-03 277 259 308 -9.96 -15.7 
volvoPA1-04 308 289 343 -10.1 -15.7 
volvoSS2-01 422 377 410 3.02 -8.17 
volvoSS2-02 426 382 423 0.81 -9.74 
 volvoSS2-03 424 372 429 -1.08 -13.2 
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Figure 4.38 CO2 emissions mass emissions rate comparison between the V-Cone, 
Annubar®, and Laboratory, transient test VolvoPA1-01. 
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Figure 4.39 CO2 mass emissions rate comparison between the V-Cone, Annubar®, 

and Laboratory, transient test VolvoPA1-04. 
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Figure 4.40 CO2 mass emissions rate comparison between the V-Cone, Annubar®, 

and Laboratory, transient test VolvoSS2-01. 

  

Regression analysis was done to compare the V-Cone with the Annubar® CO2 

mass emissions rates.  For the transient tests, the R2 values are very close to 1.00, and the 

slope of the linear fit is close to 1.00.  The NOX and CO2 regression slopes for the 

transient tests are about 1.04.  The slopes of the regression analysis for the steady state 

trend lines are a little worse, around 1.1.  Remember that mode-8 of the flow data is not 

in agreement with the Annubar®; and therefore, the steady state CO2 data points from 

mode-8 will also be erroneous.     
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Table 4.4 Integrated CO2 mass emissions rates comparison of the V-Cone, 
Annubar®, and Laboratory with percent difference of the V-Cone and 
Annubar® with the Laboratory for all transient and steady state tests. 

 

Table 4.4 shows the percent differences of the integrated CO2 mass rate values.  

The NOX percent difference of the mass emissions rate values has the V-Cone with 5% 

better results on every test, when compared to the Laboratory.  For the CO2 percent 

difference values, the Annubar® is significantly better than the V-Cone, especially for the 

steady state tests.  For the steady state tests, the V-Cone has more than 20% error.  The 

V-Cone measures higher flow rates and thus higher mass emissions rates.  There is a 

constant offset between the V-Cone and the test cell, except for mode-8.  This accounts 

for the great errors, although neither of the instruments (the V-Cone or the Annubar®), for 

the steady state tests, have acceptable errors.    The Annubar® has more than 7% error for 

each steady state test, when compared to the Laboratory.  All CO2 graphs can be seen in 

Appendix D. 

Test V-Cone Annubar Lab V-Cone Difference Annubar Difference 
volvoPA1-01 32863 31024 31419 4.60 -1.26 
volvoPA1-02 33030 31083 31492 4.88 -1.30 
volvoPA1-03 34153 31262 31304 9.10 -0.13 
volvoPA1-04 33265 31308 30781 8.07 1.71 
volvoSS2-01 34311 30393 27481 24.85 10.60 
volvoSS2-02 33948 29979 27566 23.15 8.75 
volvoSS2-03 34415 29814 27653 24.45 7.81 
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Figure 4.41 CO2 regression analysis for test VolvoPA1-01. 
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Figure 4.42 CO2 regression analysis for test VolvoSS2-01. 
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Table 4.5 shows the percent differences between the measured V-Cone and 

Annubar® values.  Table 4.6 shows the percent differences between the measured 

Annubar® and the V-cone after the average slope was divided in.   

Table 4.5 Differences between the measured V-Cone and the measured Annubar® 
mass emissions rates. 

 

 

Table 4.6 Differences between the V-Cone with corrected values and the measured 
Annubar® mass emissions rates. 

 

Test Measured V-Cone  Measured Annubar % Diff 
volvoPA1-01 NOX 289 272 6.18 
volvoPA1-01 CO2 32863 31024 5.93 
volvoPA1-02 NOX 275 258 6.49 
volvoPA1-02 CO2 33030 31083 6.26 
volvoPA1-03 NOX 277 259 6.84 
volvoPA1-03 CO2 34153 31262 9.25 
volvoPA1-04 NOX 308 289 6.53 
volvoPA1-04 CO2 33265 31308 6.25 
volvoSS2-01 NOX 422 377 12.2 
volvoSS2-01 CO2 34311 30393 12.89 
volvoSS2-02 NOX 426 382 11.7 
volvoSS2-02 CO2 33948 29979 13.24 
 volvoSS2-03 NOX 424 372 13.9 
volvoSS2-03 CO2 34415 29814 15.43 

Test Measured V-Cone Corrected V-Cone Measured Annubar % Diff 
volvoPA1-01 NOX 289 275 272 1.10 
volvoPA1-01 CO2 32863 31289 31024 0.86 
volvoPA1-02 NOX 275 262 258 1.39 
volvoPA1-02 CO2 33030 31448 31083 1.17 
volvoPA1-03 NOX 277 264 259 1.72 
volvoPA1-03 CO2 34153 32518 31262 4.02 
volvoPA1-04 NOX 308 293 289 1.43 
volvoPA1-04 CO2 33265 31672 31308 1.16 
volvoSS2-01 NOX 422 402 377 6.81 
volvoSS2-01 CO2 34311 32667 30393 7.48 
volvoSS2-02 NOX 426 406 382 6.34 
volvoSS2-02 CO2 33948 32322 29979 7.82 
 volvoSS2-03 NOX 424 404 372 8.50 
volvoSS2-03 CO2 34415 32767 29814 9.90 
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After the slope is averaged and the V-Cone values are corrected, the percent 

difference drops by more than half.  Generally, the corrected V-Cone values are more 

accurate with the Laboratory than the Annubar® values, but remember that the V-Cone 

was corrected back to the Annubar®.  Table 4.7 shows the differences when compared 

with the Laboratory values.  The NOX errors are much less than CO2 errors for all 

comparisons.  The test with the worst errors is the steady state test for CO2 analysis.  

Remember that reducing the errors between the V-Cone and Annubar® does not mean 

that it decreases the errors with the Laboratory as well.  There are still large differences 

between the Lab, V-Cone corrected, and Annubar® (see Table 4.8).   

Table 4.7 Percent differences between the corrected V-Cone and Annubar® mass 
emissions rates with the Laboratory values.  The corrected V-Cone 
corrects to the Annubar® data, not the Laboratory data. 

 

Test Corrected  Measured  Lab Corrected  Annubar  V-Cone Annubar 
V-Cone Annubar V-Cone % Diff % Diff % Diff 

volvoPA1-01 NOX 275 272 300 -8.27 -9.27 1.10 
volvoPA1-01 CO2 31289 31024 31419 -0.41 -1.26 0.86 
volvoPA1-02 NOX 262 258 287 -8.76 -10.01 1.39 
volvoPA1-02 CO2 31448 31083 31492 -0.14 -1.30 1.17 
volvoPA1-03 NOX 264 259 308 -14.27 -15.72 1.72 
volvoPA1-03 CO2 32518 31262 31304 3.88 -0.13 4.02 
volvoPA1-04 NOX 293 289 343 -14.5 -15.7 1.43 
volvoPA1-04 CO2 31672 31308 30781 2.90 1.71 1.16 
volvoSS2-01 NOX 402 377 410 -1.91 -8.17 6.81 
volvoSS2-01 CO2 32667 30393 27481 18.87 10.60 7.48 
volvoSS2-02 NOX 406 382 423 -4.02 -9.74 6.34 
volvoSS2-02 CO2 32322 29979 27566 17.25 8.75 7.82 
 volvoSS2-03 NOX 404 372 429 -5.82 -13.2 8.50 
volvoSS2-03 CO2 32767 29814 27653 18.49 7.81 9.90 
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Table 4.8 Percent difference of integrated values comparing the V-Cone and 
Annubar® mass emissions rates, without correcting the V-Cone values to 
the Annubar® values, to the Laboratory values. 

 

The steady state test percent errors do not decrease as much as the transient tests 

percent errors.  The slopes of the steady state trend lines from regression analysis are also 

greater than the slopes from the transient tests.  The change in slopes is due to mode-8 of 

the steady state.  Mode-8 affects the trend line by pulling it towards the pocket of data 

points out of the trend.  Note: the slope of the transient tests is 1.05, the slope of the 

steady state tests averages 1.10.  Table 4.9 shows the percent errors using the average 

slopes of the steady state tests corrected V-Cone.  As you can see, the errors are all less 

than 5%.   

Table 4.9 Percent differences between the corrected V-Cone values and the 
measured Annubar® values of mass emissions rates using the average 
slope of the steady state test regression. 

 

Test V-Cone  Annubar  Lab V-Cone Difference  Annubar Difference  
volvoPA1-01 NOX 289 272 300 -3.66 -9.27 
volvoPA1-02 NOX 275 258 287 -4.18 -10.0 
volvoPA1-03 NOX 277 259 308 -9.96 -15.7 
volvoPA1-04 NOX 308 289 343 -10.2 -15.7 
volvoSS2-01 NOX 422 377 410 3.02 -8.17 
volvoSS2-02 NOX 426 382 423 0.81 -9.74 
 volvoSS2-03 NOX 424 372 429 -1.08 -13.2 
volvoPA1-01 CO2 32863 31024 31419 4.60 -1.26 
volvoPA1-02 CO2 33030 31083 31492 4.88 -1.30 
volvoPA1-03 CO2 34153 31262 31304 9.10 -0.13 
volvoPA1-04 CO2 33265 31308 30781 8.07 1.71 
volvoSS2-01 CO2 34311 30393 27481 24.85 10.60 
volvoSS2-02 CO2 33948 29979 27566 23.15 8.75 
volvoSS2-03 CO2 34415 29814 27653 24.45 7.81 

Test Measured V-Cone Corrected V-Cone Measured Annubar % Diff 
volvoSS2-01 NOX 422 384 377 1.92 
volvoSS2-01 CO2 34311 31172 30393 2.56 
volvoSS2-02 NOX 426 387 382 1.47 
volvoSS2-02 CO2 33948 30842 29979 2.88 
 volvoSS2-03 NOX 424 385 372 3.53 
volvoSS2-03 CO2 34415 31267 29814 4.87 
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The V-Cone measures the flows, NOX and CO2 mass emissions rates greater than 

the Annubar®.  If the factor is included into the equation, the V-Cone is within 2% for 

most tests with the Annubar®.   

Without correcting the V-Cone back to the Annubar®, the comparison (Table 4.8) 

shows that the V-Cone is better than the Annubar® for all NOX tests.  For the CO2 tests, 

the Annubar® is much better than the V-Cone.  The V-Cone has less than 10% error 

maximum, with most errors being less than 5%, for the NOX values.  For the CO2 values, 

the V-Cone transient test has errors less than 10%, but nearly 25% for the steady state 

tests.  The Annubar® average errors are about 12% for NOX and average errors of 4.5% 

for CO2 (both transient and steady state error averages). The Annubar® has much better 

results for the transient tests than the steady state tests.   

For the calculation of the mass rates, the only difference between the Annubar® 

and V-Cone is the flow rates.  The concentration of NOX and CO2 used to calculate the 

mass rates was the same, obtained from the second generation MEMS.   
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Chapter 5   Conclusion 

5.1   Signal Model 3030PM Portable VOC Hydrocarbon 
Analyzer 

With the development of on-board, real-time emissions measurements, increasing 

the capabilities and accuracies of these systems are of utmost importance.  Currently, 

WVU’s MEMS system measures CO2 and NOX to within 5% of laboratory grade 

instruments.  There are more emissions polluted from diesel engines than NOX and CO2, 

and they need to be measured as well.  Due the rigorous demands of the on-road testing 

environment, instrumentation for emissions such as, CO and THC need to be robust and 

accurate to allow on-board measurements. 

The investigation of the Signal Model 3030PM HFID hydrocarbon analyzer 

showed that it is possible to integrate a heated Hydrocarbon FID into the MEMS system.   

The scope of this thesis included validation of the accuracy of the HFID.  Signal 

Model 3030PM is a portable system, but the robustness of the analyzer was not tested for 

this thesis, and no on-board, on-road tests were performed on the analyzer.   

In addition to having equal or better accuracy than the laboratory grade analyzer 

currently in use, several other characteristics of the Model 3030PM had were found to be 

valuable.  Since the Model 3030PM had better response than the Model 402, the 

regression analysis, when comparing the two analyzers, was poor.  Capturing the high 

and low concentrations, by having a better response, gives a better representation of the 

HC output during a transient test cycle. 

A problem that showed up after this testing, was the possibility of hydrocarbon 

hang-up in the Model 3030PM.  After a long test, with the Model 3030PM sampling for 
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long periods of time (30-60 minutes), the analyzer did not return to zero when zero air 

was passed through the analyzer for the zeroing and spanning of the analyzers.  The 

Model 3030PM returned to within 2% of the zero for a 60 ppm methane equivalent span 

value very rapidly. However, it took several minutes, sometimes as much as 15 minutes, 

for the analyzer to finally return to zero.  A reason could be that the instrument was not 

designed for diesel engine emissions, and the high PM that the engines produce.  The 

exhaust sample passed through the analyzer for these tests was the dilute stream.  For 

MEMS, the Signal needs to be able to handle  raw exhaust.  If there is hydrocarbon hang-

up from the dilute exhaust, there would be significantly more in raw exhaust. 

 The Signal 3030PM HFID hydrocarbon analyzer performed equal to or better 

than the Rosemount Analytical 402 HFID analyzer for each of the comparative tests.  

These tests were conducted on a dilute sample.  As a THC analyzer, the Signal Model 

3030PM is a better instrument.  Depending upon its robustness, the Signal Model 

3030PM should be considered for integration into the MEMS system to increase the 

emissions that MEMS measures.  The size of the Signal analyzer is compact enough that 

it can be incorporated into on-board measurement system.   

Note:  The Signal has several features that are not required for measurement of 

hydrocarbons.  As an example, the analyzer is equipped with a methane cutter. MEMS 

does not need these features in the immediate future.  Therefore, a possibility is to 

develop a more compact, simpler HFID for specific use in MEMS and/or other portable 

on-board emissions measurement systems.   

The error between the Signal Model 3030PM and the Rosemount Analytical 

Model 402 is less than 5% for most of the tests.  A drift was observed in the Signal 
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Model 3030PM analyzer during the transient tests toward the end of the tests.  But the 

error is still within the 5% error.  For the Signal to be validated for use in the MEMS 

system the problems listed above need to be addressed.   

Testing should be conducted on the Signal Model 3030PM using raw exhaust as 

the sample stream, to determine the ability of the analyzer to handle raw exhaust 

measurements.  

5.2   McCrometer’s V-Cone Flow Meter 

 

For the V-Cone to be an adequate flow meter, it must be comparable to the Annubar® 

which is currently used.  The Annubar and its accuracy were investigated and presented 

in the MEMS Phase I and Phase II reports [18, 19].   

The differences between the V-Cone and Annubar® are consistent, but the 

differences with the Laboratory are erratic.  If the goal of the study was to compare the 

V-Cone with just the Annubar®, a factor can be used to make the errors less than 2%.  For 

some transient tests, the V-Cone is within 2% of the Laboratory, but for some, namely the 

steady state CO2, the V-Cone is 25% off.  The Annubar® provides better results, but still 

not the accuracy desired.  With the Laboratory as the standard, and accuracy needs for 

both NOX and CO2, more testing needs to be done to ensure the accuracy of the V-Cone 

for automotive exhaust measurement.   

Given that the V-Cone is more compact and doesn’t require fully developed flow 

warrants more testing of the V-Cone to ensure accurate results.  The only difference 

between the V-Cone and Annubar® is the flow rates inputted into the mass rate equations.   
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The advantages and possibilities that the V-Cone is great, but if the V-Cone does not 

have the accuracy needed for laboratory grade measurements, the compactness and 

conditioning of the flow doesn’t matter.   

Other problems with the V-Cone are the weight of the V-Cone for the application 

of on-board measurements and the pressure issue that arose in mode-8 of the steady state 

tests.  The current configuration of V-Cone has too much mass and therefore weighs too 

much for on-board application.  The other problem that needs to be looked at is what 

caused the differential pressure reading differences during mode-8 in the steady state.    
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Chapter 6  Recommendations  

The Signal Model 3030PM was tested using a diluted exhaust sample.  For 

mobile emissions measurement, the instruments need to sample raw exhaust.  Therefore, 

the Signal Model 3030PM needs to be tested sampling raw exhaust. 

The Laboratory and MEMS need to collect data points at the same frequency for 

direct comparison of the Laboratory with MEMS. This would allow for more 

comparisons between the Laboratory and MEMS using the different flow meters.  The 

use of regression analysis could then be used to evaluate the instruments with the 

Laboratory.   

Investigation of reasons why the flow meters reacted differently for mode-8 of the 

steady state tests needs to be conducted.   

 

Correspondence with McCrometer to reconfigure the V-Cone to make it lighter 

needs to be done for the V-Cone to have the possibility for on-board measurements.  If 

the V-Cone could be made out of thinner material instead of schedule 40 pipe, this 

problem could be solved.  But any changes in the V-Cone need to be done without 

adversely affecting the measurement accuracy of the instrument.   
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Chapter 8  Appendix 

8.1   Appendix A    
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Figure 8.1 Hydrocarbon comparison of the HFID for transient FTP test-1. 
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Figure 8.2 Regression analysis of the HFID analyzers for transient FTP test-1. 



 

 125 

-80

-60

-40

-20

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200

Time (sec)

P
er

ce
n

t D
if

fe
re

n
ce

 
Figure 8.3 Percent difference of the HFID analyzers for transient FTP test-1. 
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Figure 8.4 Hydrocarbon comparison of the HFID for transient FTP test-2. 
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Figure 8.5 Regression analysis of the HFID analyzers for transient FTP test-2. 
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Figure 8.6 Percent difference of the HFID analyzers for transient FTP test-2. 
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Figure 8.7 Hydrocarbon comparison of the HFID for steady state 6-mode test-1. 
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Figure 8.8 Regression analysis of the HFID for steady state 6-mode test-1. 
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Figure 8.9 Percent difference of the HFID for steady state 6-mode test-1. 
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Figure 8.10 Hydrocarbon comparison of the HFID for steady state 6-mode test-2. 
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Figure 8.11 Regression analysis of the HFID for steady state 6-mode test-2. 
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Figure 8.12 Percent difference of the HFID for steady state 6-mode test-2. 
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Figure 8.13 Hydrocarbon comparison of the HFID for the T90 response test. 
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Figure 8.14 Hydrocarbon comparison of the HFID for the zero air drift test. 
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Figure 8.15 Hydrocarbon comparison of the HFID for the span gas drift test. 
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8.2   Appendix B 
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Figure 8.16 Flow rate comparison of the V-Cone and Annubar® for transient test 

VolvoPa1-01. 
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Figure 8.17 Flow rate comparison of the V-Cone and Annubar® for transient test 
VolvoPa1-02. 
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Figure 8.18 Flow rate comparison of the V-Cone and Annubar® for transient test 
VolvoPa1-03. 
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Figure 8.19 Flow rate comparison of the V-Cone and Annubar® for transient test 
VolvoPa1-04. 
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Figure 8.20 Flow rate comparison of the V-Cone and Annubar® for transient test 

VolvoSS2-01. 
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Figure 8.21 Flow rate comparison of the V-Cone and Annubar® for transient test 

VolvoSS2-02. 

0

100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000 1200

Time (sec)

Fl
ow

 (S
C

FM
)

Annubar Flow

V-Cone Flow

 
Figure 8.22 Flow rate comparison of the V-Cone and Annubar® for transient test 

VolvoSS2-03. 

 



 

 136 

y = 1.0553x
R

2
 = 0.9862

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900

Annubar Flow

V
-C

o
n

e 
F

lo
w

 
Figure 8.23 Flow rate regression analysis for the V-Cone and Annubar® for 

transient test VolvoPA1-01. 
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Figure 8.24 Flow rate regression analysis for the V-Cone and Annubar® for 

transient test VolvoPA1-02. 
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Figure 8.25 Flow rate regression analysis for the V-Cone and Annubar® for 

transient test VolvoPA1-03. 
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Figure 8.26 Flow rate regression analysis for the V-Cone and Annubar® for 

transient test VolvoPA1-04. 
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Figure 8.27 Flow rate regression analysis for the V-Cone and Annubar® for 

transient test VolvoSS2-01. 
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Figure 8.28 Flow rate regression analysis for the V-Cone and Annubar® for 

transient test VolvoSS2-02. 
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Figure 8.29 Flow rate regression analysis for the V-Cone and Annubar® for 

transient test VolvoSS2-03. 
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Figure 8.30  Exhaust temperature comparison of the V-Cone and Annubar®. 
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8.3   Appendix C 
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Figure 8.31 NOX mass emissions rates comparison between the V-Cone, Annubar®, 
and Laboratory mass emissions rates, transient test VolvoPA1-01. 
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Figure 8.32 NOX mass emissions rates comparison between the V-Cone, Annubar®, 

and Laboratory mass emissions rates, transient test VolvoPA1-02. 
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Figure 8.33 NOX mass emissions rates comparison between the V-Cone, Annubar®, 

and Laboratory mass emissions rates, transient test VolvoPA1-03. 
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Figure 8.34 NOX mass emissions rates comparison between the V-Cone, Annubar®, 

and Laboratory mass emissions rates, transient test VolvoPA1-04. 
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Figure 8.35 NOX mass emissions rates comparison between the V-Cone, Annubar®, 

and Laboratory mass emissions rates, transient test VolvoSS2-01. 
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Figure 8.36 NOX mass emissions rates comparison between the V-Cone, Annubar®, 

and Laboratory mass emissions rates, transient test VolvoSS2-02. 
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Figure 8.37 NOX mass emissions rates comparison between the V-Cone, Annubar®, 

and Laboratory mass emissions rates, transient test VolvoSS2-03. 
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Figure 8.38  NOX mass emissions rates comparison between the V-Cone, Annubar®, 

and Laboratory mass emissions rates, transient test VolvoPA1-05. 
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Figure 8.39 NOX regression analysis for test VolvoPA1-01. 
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Figure 8.40 NOX regression analysis for test VolvoPA1-02. 
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Figure 8.41 NOX regression analysis for test VolvoPA1-03. 
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Figure 8.42 NOX regression analysis for test VolvoPA1-04. 
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Figure 8.43 NOX regression analysis for test VolvoSS2-01. 



 

 147 

y = 1.0946x
R

2
 = 0.9604

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Annubar NOx Rates

V
-C

o
n

e 
N

O
x 

R
at

es

 
Figure 8.44 NOX regression analysis for test VolvoSS2-02. 
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Figure 8.45 NOX regression analysis for test VolvoSS2-03.  
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8.4   Appendix D 
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Figure 8.46 CO2 mass emissions rates comparison between the V-Cone, Annubar®, 

and Laboratory mass emissions rates, transient test VolvoPA1-01. 
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Figure 8.47 CO2 mass emissions rates comparison between the V-Cone, Annubar®, 

and Laboratory mass emissions rates, transient test VolvoPA1-02. 
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Figure 8.48 CO2 mass emissions rates comparison between the V-Cone, Annubar®, 

and Laboratory mass emissions rates, transient test VolvoPA1-03. 
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Figure 8.49 CO2 mass emissions rates comparison between the V-Cone, Annubar®, 

and Laboratory mass emissions rates, transient test VolvoPA1-04. 
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Figure 8.50 CO2 mass emissions rates comparison between the V-Cone, Annubar®, 

and Laboratory mass emissions rates, transient test VolvoSS2-01. 
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Figure 8.51 CO2 mass emissions rates comparison between the V-Cone, Annubar®, 

and Laboratory mass emissions rates, transient test VolvoSS2-02. 
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Figure 8.52 CO2 mass emissions rates comparison between the V-Cone, Annubar®, 

and Laboratory mass emissions rates, transient test VolvoSS2-03. 
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Figure 8.53 CO2 regression analysis for test VolvoPA1-01. 
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Figure 8.54 CO2 regression analysis for test VolvoPA1-02. 
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Figure 8.55 CO2 regression analysis for test VolvoPA1-03. 
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Figure 8.56 CO2 regression analysis for test VolvoPA1-04. 
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Figure 8.57 CO2 regression analysis for test VolvoSS2-01. 
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Figure 8.58 CO2 regression analysis for test VolvoSS2-02. 
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Figure 8.59 CO2 regression analysis for test VolvoSS2-03. 
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