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ABSTRACT

EVALUATION OF SURVIVAL AND RECOVERY CHARACTERISTICS OF
BIFIDOBACTERIA AS INDICATORS OF FECAL POLLUTION OF WATER

John Elmer Ravenscroft, Jr.

The examination of aquatic environments for bacterial indicator organisms has
proven to be a useful and well-established practice for the purpose of monitoring
microbiological water quality.  An ideal indicator of fecal pollution should be present in
sufficient density to allow detection, present simultaneous with pathogen(s), incapable of
aftergrowth in external aquatic environments, easy to enumerate, and exclusively of fecal
origin.  Unfortunately, none of the indicator organisms presently in use today meet all of
these requirements.  Bifidobacteria show promise as indicators of fecal pollution in water
with the additional ability of potentially distinguishing between fecal pollution of human
and animal origin.  In laboratory microcosm experiments, the survival of the
bifidobacteria population was indirectly proportional to the temperature at which the
microcosm was stored.  In mixed microcosm studies with E. coli, the survival of the
bifidobacteria population was considerably less than the E. coli population.  The recovery
of bifidobacteria from constructed wetlands receiving primary treated sewage was
monitored using published selective media (YN6, BIM25, and BIM50 agar). In the
influent and wetland samples, there was approximately a 2 to 3 log reduction of
bifidobacteria, while fecal coliforms exhibited a 4 to 5 log reduction.  Results indicate the
YN6 medium lacks the desired sensitivity and selectivity to effectively enumerate
bifidobacteria.  Studies addressing the recovery of bifidobacteria from the wetlands with
modified bifidobacteria enumeration media were mixed to unsuccessful.
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1

LITERATURE REVIEW

Water is seldom found in a pure state in nature whether it be in the form of

surface or ground water.  The quality of water that we ingest is a critical parameter in

determining the overall quality of our lives (20).  Of particular concern to public

health is the contamination of freshwater supplies by pathogenic organisms.  One of

the most dangerous forms of contamination occurs when feces from animals or

humans enter the water supply.  This can result in the spread of disease when a

pathogen is shed in feces, contaminates a water supply, and is later ingested.

However, not all pathogens need to be ingested, some helminths bore directly through

the skin and are spread among persons who swim or wade in waters contaminated by

human wastes.  This review will address concerns for monitoring both surface and

ground water, presently accepted standards for determining the quality of these

supplies, and a proposal for a supplemental alternative for better evaluating water

supply quality.

Ground water quality.  Ground water has been defined as the water contained

in interconnected void spaces located below the water table in either an unconfined

aquifer or a confined aquifer (20).  Unconfined aquifers are usually located near the

land surface and are easily recharged.  They are also known as water table aquifers

because the water table is its upper boundary.  Confined aquifers which are totally

filled with ground water, occur further below the ground surface. They form between

low permeability layers of rock or sediments and are consequently under constant
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pressure from the overlying stratum.  The water level in a well tapping only a

confined aquifer will be above the top of that aquifer (1).  Ground water forms from

excess soil moisture being pulled downward by gravity until it reaches a saturated

zone or water table.  As the water percolates through the soil, processes such as ion

exchange, adsorption, precipitation, filtration, and chemical alteration occur which

produce ground water that may differ chemically and microbiologically from surface

water (50).

Of the small percentage of the world's total water available as fresh water,

more than 98 percent is classified as ground water.  This greatly exceeds the amount

available as surface water (20).  In the United States, approximately 30-60 quadrillion

(1015) gallons of ground water exist within 2500 feet vertically of the land surface.

This is more than four times the volume of the Great Lakes, 30 times the volume of

all fresh water lakes, and 3000 times greater than the volume of all streams in the U.S.

(1,40).  The usable ground water resources of the U.S. are equivalent to 35 times the

total annual surface runoff or about 400 times the total annual consumption of water

(54).

There is a popular misconception that ground water is a reliable source of

good quality drinking water.  This misconception stems from the fact that surface

water pollution frequently results in contamination that can be detected by sight or

smell, whereas ground water pollution often cannot be detected by the human senses

alone (20).  Microbes, such as bacteria, protozoa, viruses, and fungi; gases, such as

methane and carbon dioxide; inorganic material, such as metals and salts; and organic

matter are all integral components of natural ground water (1).  Varying
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concentrations of the different constituents all contribute to the overall quality of a

ground water source.  However, an intimate knowledge of microbiology or chemistry

is not needed to understand the potential health hazards associated with consuming

contaminated water.  For example, Dr. John Snow in 1854 first linked the

contamination of wells by cholera to discharge and percolation from earthen privy

vaults prior to the discovery of the causative organism (5).  By simply breaking a

pump handle and thus closing a widely used well, he ended an epidemic of cholera in

London.

Reliance on ground water is quite widespread, with greater than 50 percent of

the population of the United States currently receiving their primary drinking water

from ground water sources (40,50).  Additionally, ground water usage tripled between

1950 and 1980 – from about 30 billion gallons per day to almost 90 billion gallons per

day in 1980 (54).  This trend is continuing.  One-fifth of the fresh water used in the

U.S. is furnished by ground water (60).  Thirty-six percent of the municipal public

drinking water supplies come from ground water and 75 percent of major U.S. cities

depend on ground water for most of their supply (40).  Ground water also supplies 95

percent of the rural homes in the U.S. with water for domestic use (1).  In West

Virginia, a U.S. Environmental Protection Agency (USEPA) study indicated that

more than 53 percent of the residents rely on ground water as a source of drinking

water.  Ground water supplied 32 percent of the residents on public supplies and 97

percent of rural residents on private supplies (13).

Although ground water pollution has occurred for centuries, increased

industrialization, population density, and agricultural activities have greatly
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contributed to the problem (40).  Sources of ground water contamination as a result of

human activity include a wide range of agricultural, industrial, and municipal inputs.

They include subsurface percolation from septic systems, land application of waste

water, leachate from landfills, surface impoundments, and illegal dumping to

agricultural runoff, induced discharge from mining and drilling operations, and even

human and animal burial sites (60).  Contamination may occur through point or non-

point sources.  Point sources are those whose origins can be determined and occur in a

limited area, whereas non-point sources are more ambiguous (44).  Altogether,

substantial amounts of solid, liquid, and gaseous waste are generated in the U.S – as

much as 29 metric tons per person per year (54).

Widespread usage coupled with increasing frequency of ground water

pollution could result in a potentially dangerous public health problem. Unlike

organic contaminants of ground water (e.g., TCE) which result in a long-range public

health hazard, microbial contamination results in a more immediate effect, frequently

to a large number of people.  For example, 28,745 persons in Delhi, India were

infected with hepatitis A virus transmitted via consumption of improperly disinfected

drinking water (3).  A Center for Disease Control study of waterborne disease

outbreaks in the U.S. from 1986 to 1988 found 56 percent of the outbreaks linked to

well water and 32 percent of the illnesses directly attributed to untreated ground water

(29).  Another study showed 672 cases of waterborne disease in the U.S. from 1946 to

1980.  Untreated ground water was responsible for 35 percent of the outbreaks, eight

percent was due to untreated surface waters, and the remainder were caused by failure

of systems designed to treat contaminated ground water (20).



5

Surface and Drinking Water Quality.  Recreational water environments and

potable water systems can easily become polluted with pathogens from normal,

diseased, or carrier human and animal excrements.  Potable community, non-

community, and private water supplies can be contaminated in many ways, including:

cross connections between a water main and a sewer; entry of sewage through leaks in

damaged pipes; the air-water interface in the distribution system, e.g. storage tanks;

and neglected point-of-use devices (48).  Contamination of drinking water supplies

can have serious implications for the people these systems serve.  For example,

between 1971 and 1988, there were 545 waterborne disease outbreaks caused by

contaminated water supplies affecting over 136,000 people in the United States (29).

Just in the three year period from 1986 to 1988 there were 50 outbreaks of illness

from contaminated drinking water affecting almost 26,000 people (29).

The quality of recreational waters, which include bathing beaches, is

dependent on the physical, chemical, and biological components of the surface water

system.  The potential of recreational waters for disease transmission via water

contact or ingestion is of great concern.  Sources of pollution of recreational waters

include: sewage and industrial discharges, solid waste disposal, stormwater run-off,

animal populations, and agricultural drainage (57).  These aquatic environments can

act as a vector for transmitting such fecal-oral pathogens as: Shigella spp., Giardia

lambia, Vibrio cholera, Entamoeba histolytica, Salmonella spp., Klebsiella spp.,

enterotoxigenic Escherichia coli, Yersinia enterocolitica, Campylobacter jejuni,

Francisella tularensis, Leptospira spp., enteric viruses, and Cryptosporidium spp.  In

the three year period from 1986 to 1988, 26 outbreaks due to recreational water use
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were reported.  Those outbreaks included cases of Pseudomonas dermatitis associated

with the use of hot tubs and shigellosis, giardiasis, and viral infections from

swimming at bathing beaches (29).

Constructed wetlands for domestic wastewater treatment.  Inadequate

treatment of domestic wastewater can contribute to non-point source pollution of

surface waters and contaminate ground water supplies.  The potential for

contamination of surface and ground waters, especially in rural areas, may be due to

the reliance on septic tank systems for household waste disposal.  For example, as of

1993 in Alabama, 78 percent of the homes on septic tank systems were in rural areas

with an estimated 50 percent of the total households on septic tank systems depending

on ground water for drinking water supplies.  In 1989, 50 percent of these private well

sampled had high bacteria counts, up from 35 percent in 1973 (49).  A major

contributor to this serious health problem may be septic tank systems that are

improperly designed and/or constructed or are at the limits of their engineered life

span.  An examination of the bacteriological quality of wells and springs in rural

Preston County, West Virginia found that 68 percent of the supplies were in violation

of the USEPA maximum contaminant level (MCL) of one total coliform per 100 ml

(51,52).  A re-examination of 47 of those same rural West Virginia drinking water

supplies found 62 percent contaminated with one or more total coliforms (11).  Two

factors which contribute to the incidence and severity of contamination are: depth to

the water table and distance of the ground water source from the discharge zone of the

septic tank system (15).  Moreover, it is not uncommon for multiple subsequent
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owners of older rural homes to be unaware of the location, age, or type of septic tank

system in use on their property.

Alternatives to conventional on-site wastewater treatment systems are needed

to help mitigate and prevent surface- and ground-water contamination.  Small

constructed wetlands are believed to be an effective treatment alternative where

conventional septic tank systems are rendered ineffective due to poor or shallow soils,

high ground water table, karst topography, limited lot size, age of the system, lack of

maintenance, or improper design and/or installation (49).  In addition, they offer a

potentially low-cost and low maintenance biological method of wastewater treatment.

Constructed wetlands comprise a subset of created wetlands that are designed and

developed specifically for water treatment.  They consist of a water or effluent flow,

specific aquatic macrophyte populations, waterproof liner, and a matrix which, in

varying combinations, help improve the water quality (21).  Wetland systems can

effectively treat significant levels of BOD, suspended solids, nitrogen, metals, trace

organics, and pathogens, and to a lesser degree, phosphorous (41).  Constructed

wetlands work because of a symbiotic relationship between the aquatic macrophytes

and the microbes associated with the plants.  The microbes alter contaminant

substances to obtain nutrients or energy to carry out their life cycles (24).

As of 1995, there were at least 500 managed constructed wetland systems in

operation in the U.S. (41).  They treat effluents and wastewaters from towns, paper

mills, landfill leachate, failed septic tanks, agricultural inputs, food processing plants,

petroleum refineries, mine drainage, and other industrial sources ranging in elevation
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from sea level to 5000 feet and in varying climates from the tropics to the sub arctic

(24).

There are two types of constructed wetlands utilized in the U.S.  The first is

classified as a free-water-surface (FWS) wetland, in which the water surface is

exposed to the atmosphere.  A layer of soil is used as a rooting zone with emergent

aquatic macrophytes functioning as a part of the treatment component of the system.

The second type is called a subsurface-flow (SF) wetland where the water level is

maintained below the surface of the porous material used as a rooting medium,

usually gravel.  The same types of plants are used as in the FWS wetlands.  Most of

the wetlands in use in the U.S are the SF type.  The FWS wetlands are mainly used for

treating acid mine drainage and ash pile drainage in coal producing regions (41).

There are five major components in waste water which are affected by

constructed wetland systems: suspended solids, BOD, nitrogen, phosphorous, and

pathogens (12).  The removal or reduction of these components is mediated by the

relationships between the physical, chemical, and biological components of a

constructed wetlands system (Figure A).  Suspended solids are removed in the

wetland by sedimentation and filtration – both physical processes.  These small

particles may become additional attachment sites for the wetland microbes.  However,

clogging of pore spaces can occur which can reduce the hydraulic conductivity of the

wetland matrix.  Similarly, pathogens are either filtered by the wetland matrix or are

retained long enough in the inhospitable wetland environment to become non-viable.

Average reduction rates of indicator organisms of 1-2 logs in
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systems with 3-7 day residence times and 3-4 logs in systems with residence times of

greater than 14 day are noted in the literature (41).  It has been suggested that certain

root exudates from the macrophytes may have an antibiotic effect, but no direct

evidence has been reported (12).  These wetland systems are also effective in treating

high levels of BOD.  Microbes are the primary agent for removal of this soluble

organic matter from wastewaters.  The soluble organic compounds are mainly

degraded aerobically by these microbes, although anaerobic degradation can occur

(12).

Phosphorous removal in wetland systems is not very efficient because of the

limited contact opportunities between the wastewater and the soil and the finite

capacity of the soil to absorb the phosphorous.  Systems may show very effective

phosphorous removal during the first year of two of operation due to soil adsorption

and vigorous early plant growth (41).  Once the system reaches equilibrium, available

soil sites are filled and the plants have reached the limit of their expansion.

Continued plant uptake will occur, but this is offset somewhat by phosphorous release

due to litter decomposition.  Cutting the plants and removal of the debris will remove

some phosphorous, but this is not an efficient practice, from a cost or maintenance

standpoint, on a regular basis.

The removal of nitrogen is the result of complex biological transformations

including immobilization, mineralization, nitrification, and respiratory denitrification.

These transformations are strongly influenced by the redox status of the soil matrix in

the wetland.  Nitrogen enters the wetland in the form of organic N, NH4
+, NO2

-, and

NO3
-.  Organic N undergoes mineralization and releases NH4

+ to the water and soil.
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Decomposing plant material and microbial biomass also contain organic N and are

released in this manner.  Nitrification followed by respiratory denitrification is

believed to be the pathway of NH4
+ removal from the wetland.  Ammonia is oxidized

to NO3
- by nitrifying bacteria in aerobic zones.  The NO3

- is then converted to N2O

and N2 by denitrifiers in anaerobic zones.  Nitrification can occur in the deeper

sediments of the wetland below the aerobic zone due to transport and mass flow of

oxygen to plant roots.  Some of this oxygen diffuses out from the roots creating a

narrow aerobic rhizosphere.  This transfer of oxygen to the roots is relatively slow

requiring a designed residence time of about a week in warm weather.  Plant uptake

of nitrogen occurs, but this route removes a minor fraction of the total; estimates of

around 10 percent of the total nitrogen removed have been suggested (41).

Sanitary indicator organisms and their disadvantages.  To ensure safe

recreational water and a continued supply of potable water, frequent monitoring of

both raw water sources and finished products for the presence of pathogens is very

important (48).  However, methods of detection and enumeration of any or all

pathogenic organisms that may be present in an aquatic sample can be complicated

and time consuming, often does not give the relative quality of a water supply, and for

some organisms, do not yet exist.  In addition, there is no single procedure for

detecting all waterborne pathogens and there is concern for laboratory workers

handling pathogenic organisms (42,43).  Instead, the most effective way to monitor

microbiological water quality is through simple, rapid, and relatively inexpensive

tests for fecal indicator organisms.
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Microbial examination of drinking and recreational waters, via bacterial

indicator organisms, has proven useful in protecting the public health and preventing

the spread of waterborne disease.  The ideal indicator of fecal pollution should be

present simultaneously with the pathogen(s), be specific for fecal contamination, be

able to resist water treatment and disinfection processes to the same or a slightly

greater extent than the pathogens, have no aftergrowth in external aquatic

environments, have similar survival characteristics to the pathogen in the

environment, and be detectable by simple and rapid methods (28,48).  It is also

desirable to differentiate the source (i.e., man versus animal) of the pollution (28).

Presently, total coliforms, fecal coliforms, and enterococci are examples of just a few

of several indicators in use, none of which meet all of the aforementioned criteria.

However, these indicators are considered to be the classical microbiological

parameters of water quality and have proven useful for indicating the presence of

pathogens of fecal origin (56).

Several indicator organisms have been used to monitor the bacteriological

quality of water.  Bacteria such as total coliforms, fecal coliforms, fecal streptococci,

Clostridium perfringens, and heterotrophic plate count bacteria (HPC) have been

used.  Even viruses such as bacteriophages, especially coliphage, have been suggested

as potential indicators.  However, each group listed is a less than ideal indicator.

Total coliform (TC) bacteria, used for nearly 100 years in the U.S., is

employed today in many countries to monitor fecal contamination and indicate the

microbial quality of raw and finished water (35).  Overall, these indicator organisms

apparently continue to ensure, with a few exceptions, that drinking water shall be safe
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for human consumption (56).  TC are described as gram-negative, aerobic, or

facultatively anaerobic, non-spore forming rods that ferment lactose producing gas in

48 hours at 35°C.  This group of organisms includes the genera Escherichia,

Enterobacter, Citrobacter, and Klebsiella.  They are part of the lower intestinal tract

of man, usually excreted in about 1011 organisms per person per day (57).  Since

enteric pathogens are excreted simultaneous with this group of organisms, the

presence of TC indicates possible fecal contamination and the potential presence of

enteric pathogens.

The 1986 amendments to the Safe Drinking Water Act (SDWA) changed how

the USEPA regulated the use of TC in monitoring drinking water.  Before these

amendments, TC were monitored based on their density using the multiple tube

fermentation (MTF) or the membrane filtration (MF) technique.  This requirement

changed when the EPA proposed a new rule on November 3, 1987 that would allow

the monitoring of TC based on a presence-absence (PA) method.  This decision was

based on studies that demonstrated that the level of coliform bacteria was not

quantitatively related to the potential for an outbreak of waterborne disease, while the

PA method provided adequate water quality information (4).  The final rule was

published June 29, 1989 and took effect on December 31, 1990.  Analysis of TC may

now be conducted using the MF, 10 tube MTF, PA, or the minimal media ortho-

nitrophenyl-β-D-galactopyroside-4-methylumbelliferyl-β-D-glucuronide (ONPG-

MUG) test, currently commercially available as  Colilert  (38).

Although TC may sufficiently meet most of the indicator criteria when used to

test finished drinking water, there are several serious problems with the general use of
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TC as indicators, especially when monitoring the quality of drinking water supplies in

tropical climates and untreated ground water supplies (14,17,56).  TC, especially the

genus Klebsiella, exhibit aftergrowth in water of low organic matter content as well as

in low temperature water (18,57).  The presence of excessive background bacteria, a

situation found in high organic load tropical waters and sometimes ground water but

not encountered with treated supplies, can interfere with the enumeration of TC,

which could possibly lead to an overestimation of drinking water quality (51,52).

Many organisms in this group have no sanitary significance.  They have been

recovered in soil, on vegetation, and in forest and farm products, some of which were

untouched by humans.  Also, it has been noted that some pathogens appear to be more

hardy than the TC in the environment, with a few documented cases in which

pathogenic organisms were isolated from water that was negative for coliforms (56).

Fecal coliforms (FC), also called "thermo-tolerant" coliforms, are a subset of

the total coliform group.  In addition to exhibiting the characteristics of the TC, the

FC are also able to ferment lactose with the production of acid and gas in 24 hours at

44.5°C.  This group of organisms includes Klebsiella spp., Citrobacter spp.,

Enterobacter spp., and Escherichia spp.  Since most FC have been shown to die at a

faster rate than non-FC in an aquatic environment, presence of FC indicate recent

contamination (4).  There are three ways to test for FC in an aquatic environment:

MPN, MF, or ONPG-MUG (2).

FC have proven to be valuable indicators of fecal pollution in many situations

where TC are ineffective due to the widespread occurrence of TC in the environment

(56).  In temperate climates, specific enumeration of E. coli is effective in
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demonstrating fecal pollution of water.  However, as Carrillo et al. (14) demonstrate,

E. coli was able to survive, remain physiologically active, and regrow at rates that

were dependent on nutrient levels of the ambient waters in a tropical ecosystem.  In

addition, Carrillo et al. (14) state that less than 30 percent of the fecal coliform-

positive isolates from a variety of sites around Puerto Rico are identified as E. coli.

These tropical forest watersheds have been known to have high fecal coliform counts

in the absence of any identifiable fecal source (14).  Also, the FC tests are

complicated in the tropics by the presence of 44.5°C positive Citrobacter and

Klebsiella strains (17).

Fecal Streptococci (FS) are the third most commonly employed indicator

organisms for establishing the presence of sewage in a water supply.  FS usually are

present in the lower intestinal tract of both warm blooded animals and man.  These

organisms are gram-positive cocci and include members of the genera Streptococcus

and Enterococcus.  The enterococci subgroup originates mainly from human fecal

material and is, therefore, a better indicator of human fecal contamination than the

streptococcus group.  Analysis of the enterococci only, however, may not provide a

good indication of the total water quality since fecal contamination from other warm-

blooded sources would be missed (57).  These organisms rarely multiply in polluted

water, with the exception of some naturally occurring Enterococcus faecalis biotypes.

However, they have comparable survival to both TC and FC outside the animal host

(56).

In animals, the FS usually outnumber the FC, while in man they are much

fewer in number (57).  FS serve as an index of fecal pollution of raw water and may
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provide additional information on the source of the contamination when used in a

ratio with the FC counts.  Because man harbors a greater population of FC compared

to FS, whereas the reverse is true for other warm-blooded animals, a FC:FS ratio has

been employed to help identify the source of the pollution.  A ratio greater than 4.0

usually identifies man as the source of contamination, while a ratio of less than 0.7

indicates contamination of animal origin.

Like the TC and FC, the FS can be used as fecal pollution indicators in water.

Although these organisms occur naturally in the environment, their presence in high

numbers, especially if FC are also present, indicate contamination has occurred.

Because of these naturally occurring species, it is very important to include FC and FS

density information to determine whether fecal contamination has actually occurred.

For this reason, it is not recommended that the FS be used as the sole indicator of

fecal pollution (56).

Bifidobacteria.  The genus Bifidobacterium is characterized as strictly

anaerobic, nonspore-forming, nonmotile, gram-positive, thick pleomorphic rods that

inhabit the gut of animals and humans.  They may exhibit branching bulbs, clubs,

coryneforms, buds, spheroids, and bifurcated Y and V forms when freshly isolated

from fecal sources.  Their morphology is widely affected by nutritional conditions

and, hence, will appear quite different when isolated from an aquatic environment as

opposed to fresh feces (10,28).  Culturing these organisms on normal laboratory

media, such as MRS broth or reinforced clostridial media, greatly reduces

pleomorphism (56).  Bifidobacteria are catalase negative and produce acetic and lactic

acids without gas during glucose fermentation.
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Bifidobacteria are major components of the intestinal flora of human beings

throughout their life cycle.  There is evidence that bifidobacteria are required to

maintain the proper balance of human intestinal microflora for adequate digestion

(46).  They are considered to be beneficial for humans at all age groups and are

thought to have anticarcinogenic and anticholestolemic properties (27).  These

organisms play a significant role in controlling the pH of the large intestine through

the production of acetic and lactic acids which restricts the growth of many potential

pathogens and putrefactive bacteria.  In fact, several growth factors produced by

bifidobacteria are used in different combinations to modify cow's milk to help

promote growth of bifidobacteria in nursing infants.  In adults with antibiotic-induced

diarrheas, administration of a bifidobacterial inoculum, usually through yogurt or

milk, will correct this problem (37).  Pharmaceutical companies have also added

bifidobacteria to some of their products which aid in the treatment of enterocolitis,

constipation, liver cirrhosis, and for the promotion of intestinal peristalsis (10).

Bifidobacteria were first described by Tissier in 1900 (9,28), who discovered

them in the feces of infants and named them Bacillus bifidus communis.  Although the

genus Bifidobacterium was recognized as a separate taxon in 1924, the seventh

edition of Bergey’s Manual of Determinative Bacteriology referred to these organisms

collectively as Lactobacillus bifidus.  In the latest edition of The Prokaryotes (10), 24

species of the genus are listed.

Bifidobacteria and the fructose-6-phosphate shunt (F6P shunt).  Perhaps the

most direct and reliable method for classifying a bacterial strain as belonging to the

genus Bifidobacterium is the one which demonstrates the presence of the enzyme
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fructose-6-phosphate phosphoketolase (F6PP) in cellular extracts of the bacteria

(9,10).  F6PP is the key enzyme of bifidobacterial hexose metabolism and its presence

is heretofore considered unique to the genus.  The hexose fermentation pathway in

bifidobacteria has been elucidated (10).  In this pathway, F6PP splits fructose-6-

phosphate to erythose-4-phosphate and acetyl phosphate.  From there, through the

successive action of transaldolase and transketolase, pentose phosphates are formed

which give rise to lactic and acetic acids in a 2:3 ratio (see Figure B).  It is also

interesting to note that this pathway produces 2.5 mol of ATP per mol of glucose

compared to the 2.0 mol ATP per mol of glucose in the homofermentative pathway

and 1.0 mol ATP per mol of glucose in the heterofermentative pathway (22).

Munoa and Pares in 1988 (35) reported a Bifidobacterium isolation medium

which took advantage of this shunt through the incorporation of iodoacetic acid (IA)

in the medium.  IA inhibits a key enzyme in glycolysis, glyceraldehyde-3-phosphate

dehydrogenase (see Figure C).  This inhibition “favors” hexose fermentation via the

F6P shunt and, as reported by Munoa et al. (35), drastically reduced the number of

non-bifidobacterial contaminant colonies on the plating medium.

Bifidobacterium spp. as indicators.  As indicated previously, bifidobacteria

possess the following advantageous properties as indicators:  1) they are exclusively

of fecal origin; 2) they exist in high densities to allow detection; 3) some species are

present only in the human intestinal tract; 4) they are obligate anaerobes and do not
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Figure B.  The hexose fermentation pathway of the genus Bifidobacterium
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grow well in aquatic environments; and 5) they have similar survival characteristics to

E. coli in surface waters (43).  Five species, B. adolescentis, B. bifidum, B. breve, B.

infantis, and B. longum, are found exclusively in humans.  These species are found in

the gut of all humans within 6 days of birth (14).  Bifidobacteria are the predominant

component of human intestinal microflora, typically reaching densities of 109 to 1011

cells per gram of feces (9,28).  Significant to drinking water quality monitoring,

enumeration of these species from environmental samples may permit reliable

differentiation between animal and human sources of pollution (28).

Despite being first described in 1900 by Tissier (28), there is limited

ecological information on the genus.  The potential significance of bifidobacteria as

indicator organisms was first proposed by D.A.A. Mossel in 1958 (34).  However,

even with the aforementioned advantages, there is a deficiency of available data on

the behavior of Bifidobacterium spp. in external aquatic environments, particularly in

ground water (28).  Studies of bifidobacteria in fecal specimens from humans have

shown that the population is higher and more constant  than E. coli or fecal

streptococci (enterococci) across all age and ethnic group boundaries (18,23)

Several authors have investigated the potential significance of using

bifidobacteria as fecal pollution indicators in water (14,17,18,23,31,42,43).  Most of

these studies have concentrated on using raw sewage samples (17,18,31,43) or grossly

contaminated surface waters (14,35).  Studies with pure cultures of B. bifidum, B.

adolescentis, and B. pseudolongum have demonstrated clearly that bifidobacteria are

unlikely to multiply in raw waters because:  very little growth occurs above or below

the extremely narrow temperature range of 30 to 40°C; no growth can occur above 7
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percent atmospheric oxygen; and maximum growth rates can occur only in the

presence of high concentrations of proteins or carbohydrates (56).

As early as 1960, Gyllenberg et al. (23), in evaluating the suitability of the

bifidobacteria as indicators of fecal pollution in water, were conducting comparison

studies of the bifidobacteria, coliforms, and enterococci in water under various

conditions.  In their experiments, feces of healthy adults were collected, mixed,

suspended, and diluted in well and lake waters.  The bifidobacteria, coliforms, and

enterococci were then enumerated over time.  Their data showed no difference in

survival of the indicator organisms in the different waters or when using different

concentrations of feces.  However, differences in indicator occurrence and survival

were noted when temperature was used as the variable.  Initial counts of coliforms

and enterococci were approximately 106 to 107 per gram of feces,  whereas

corresponding figures for the bifidobacteria were considerably higher with counts in

the 108 to 109 per gram of feces.  After two days of storage at room temperature,

numbers of bifidobacteria fell while the number of coliforms and enterococci

increased by 208 and 144 percent, respectively.  From the second day on, numbers for

all three groups of bacteria decreased.  The reduction rate of the coliforms and the

bifidobacteria were of the same order of magnitude and the rate for the enterococci

was somewhat lower.  At refrigerator temperatures, the numbers of all three groups of

indicators were slightly reduced.  Again, the coliforms and the bifidobacteria had

almost identical reduction rates whereas the enterococci were reduced at a lower rate.

Gyllenberg et al. (23) concluded that bifidobacteria survive similar to coliforms under

the conditions found in natural waters.  The main difference in the behavior of the
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indicators was that the bifidobacteria were definitely incapable of multiplication

under these conditions whereas coliforms may show an initial increase.

In 1975, Evison and James (17) investigated the distribution of bifidobacteria,

coliforms, E. coli, and enterococci in a variety of water and other samples in the

United Kingdom (U.K.) and Africa.  They also compared the response of

bifidobacteria to temperature and organic content of the water to that of the other

indicators in field and laboratory studies.  Water samples were collected in the U.K.,

Kenya, and Morocco.  They found that, at warmer temperatures (26 to 30°C), the

death of enterococci was very rapid, even if the sample was supplemented with

glucose, thus detracting from its value as an indicator in tropical conditions.  Under

similar conditions, coliforms and E. coli exhibited aftergrowth, as much as one

thousand-fold in some cases.  Bifidobacteria were less affected by the organic content

of the water although slight regrowth was shown to occur when the sample was

supplemented with 200 mg/l of glucose.  Evison and James (17) concluded that their

preliminary study showed that bifidobacteria have most of the characteristics required

of a bacterial indicator of pollution, and in tropical situations, they may behave more

consistently than other accepted indicator species.  As a result, “further examination

of this group as a fecal indicator is justified and necessary” (17).

Carrillo et al. (14) examined the distribution, density, and in situ survival of E.

coli and bifidobacteria in a tropical rain forest watershed in Puerto Rico.  Water

samples were taken from six sites along the Mameyes River in northeastern Puerto

Rico.  They found that the highest densities of fecal coliforms (FC), E. coli, and

bifidobacteria were recorded at a site below a sewage outfall.  Densities of FC and E.
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coli were two orders of magnitude higher than at the other sites; however, densities of

FC and E. coli at all sites exceeded recommended coliform MCL for potable waters.

Bifidobacteria did not show large increases at sites known to contain sewage

contamination. Unlike the work reported by Gyllenberg et al. (23) and Evison et al.

(17), which showed that densities of bifidobacteria were always greater than densities

of E. coli or FC in contaminated waters, all sites in the rain forest watershed had

higher densities of bifidobacteria than E. coli and FC except the site below the sewage

outfall.  Carrillo et al. (14) also demonstrated that E. coli could survive indefinitely in

the rain forest watershed and exhibited aftergrowth.  In contrast, bifidobacteria

decreased significantly over time, declining more than 50 percent in 48 hours.

Carrillo et al. (14) concluded that the primary regulator of densities of indicator

bacteria in the tropical environment was the nutrient concentration of the water.  They

suggest that coliforms not only survive but become part of the normal flora in tropical

freshwater environments.  Bifidobacteria, on the other hand, show promise as an

indicator of recent fecal contamination in terms of lack of survival in situ and

specifically as a human fecal indicator (14).

Bifidobacteria enumeration media.  One problem which has surfaced in recent

studies is the lack of a reliable selective medium for the isolation and enumeration of

Bifidobacterium spp. (46).  Results obtained when raw water was examined for

bifidobacteria differ according to the isolation medium used.  Another major

disadvantage with these media has been the inability to demonstrate reproducibility

and reliability in the enumeration of bifidobacteria.  Also, these media tend not to be

as selective when used with surface water samples as they are with sewage samples
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(56).  As a result of an absence of a reliable selective isolation medium, there is a lack

of available information concerning the extraenteric behavior of bifidobacteria (35).

Many selective agents have been used to better enumerate bifidobacteria.

Antibiotics, such as kanamycin, neomycin, paromycin, nalidixic acid, and polymyxin,

have been incorporated into both synthetic medium formulations and manufactured

complex substrates, e.g. reinforced clostridial medium (Difco).  Other compounds,

such as sodium propionate, lithium chloride, sorbic acid, sodium azide, bromocresol

green, and iodoacetic acid, have been utilized as selective and differential agents.  In

some cases, the use of these selective media can be useful (i.e., sewage and fecal

samples), but due to great intraspecific variation in the resistance of bifidobacteria to

antibiotics, none of the selective media proposed thus far seem to guarantee complete

selectivity, nor do they allow for the growth of all the species of bifidobacteria (9).

This problem is further compounded when aquatic samples which are suspected of

fecal contamination are processed using a bifidobacterial selective medium; this is

especially true of temperate surface waters.  Because of their rather complex growth

and maintenance requirements, bifidobacteria quickly become injured in these aquatic

environments, and hence they tend to be noncultivatable without employing

resuscitative techniques (35).

Bifidobacteria and molecular biology.  Bifidobacterium spp. have long been

differentiated based on their fermentative characteristics and cellular morphology, but

this often led to taxonomic uncertainties (10,28,31,33,39).  In 1970, Biavati et al. (10)

started to extensively apply the DNA-DNA filter hybridization procedure in order to

assess the validity of the bifidobacterial species previously described.  By 1982, the
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use of polyacrylamide gel electrophoresis of soluble cellular proteins was employed to

give a better assessment of the genetic relationships among the different species

(10,45).

Yamamoto et al. (59) used 16S rRNA species-specific oligonucleotide probes

to detect the five human indigenous bifidobacteria.  Those five probes were highly

species specific for strains of the human intestinal tract.  They concluded that this

RNA-DNA hybridization technique is more rapid, simple, and sensitive than methods

based on phenotypic characteristics or DNA-DNA homology.

Mangin et al. (30) were able to differentiate between strains of the same

species of bifidobacteria by using rRNA restriction patterns.  Total DNA from 21

collection or industrial strains of bifidobacteria were cleaved with BamHI, EcoRV,

and PvuII restriction endonucleases.  The resulting bands were subjected to Southern

blot hybridization with a labeled rDNA 23S gene probe.  The patterns allowed all

tested strains to be differentiated and for the collected strains, previous classifications

to be confirmed.

More recently, Bernhard and Field (8) were able to utilize Bifidobacterium-

specific 16S ribosomal DNA primers to identify nonpoint sources of fecal pollution in

coastal waters.  They utilized the polymerase chain reaction with genus specific

primers coupled with terminal restriction fragment length polymorphism (T-RFLP)

analysis to identify these organisms in water samples frequently contaminated with

fecal pollution.

Summary.  Increasing utilization and contamination of freshwater supplies,

especially ground water, is a cause for public concern.  This problem, which has been



27

occurring for centuries, is worsening due to use of increased industrial, agricultural,

and municipal activities.  This contamination has resulted in many cases of

waterborne disease in the U.S. (20,29).  People who rely on ground water as their

source of drinking water are especially vulnerable to this health hazard.  In rural areas,

inadequate treatment of wastewater further contributes to the deterioration of ground

water quality.  Alternative systems such as constructed wetlands, show promise as an

effective treatment of domestic wastewater when used in lieu of a leachate field in a

private septic system.

The examination of water samples for fecal indicator organisms has proven to

be effective in ensuring safe water supplies and protecting the public health.

Organisms such as total coliforms, fecal coliforms, and enterococci are examples of

indicators currently in use, but they are generally considered less than ideal for

detecting the presence of pathogens in all water supplies.

Bifidobacteria, of all the indicator systems thus far proposed, appear to be the

most specific for fecal contamination and the one potentially most able to reliably

distinguish between human and animal wastes.  Their characteristics include:

•   Bifidobacteria are exclusively of fecal origin.  There are no known
    extraenteric sources of these organisms, beyond those already fecally   
      contaminated

•   Unlike other indicator systems, they do not multiply in aquatic
    environments.

•   They exist and are excreted in densities surpassing those of other
    indicators, including E. coli.

•   There are five species specifically indigenous to humans which would
    allow the differentiation of the source of contamination.
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Current disadvantages of employing bifidobacteria include: the difficulty in working

with anaerobes; lack of an acceptable enumeration medium; and deficiency of data on

their behavior in external aquatic environments.
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OBJECTIVES and JUSTIFICATION

The objective for this project at the outset was to test the feasibility of using

bifidobacteria as an adjunct to the coliform test to help identify the incidence and the

source of fecal contamination in water.  The original intent was not to propose

replacing current accepted indicators, but to offer a supplemental test that could be

conducted concurrently.  Problems at the outset of the project included a lack of

information on the behavior of bifidobacteria in the various aquatic environments in

which they would eventually have to be tested.  Additionally, what information there

was, many times, tended to conflict.  For example, Evison and James (17) found that

survival of bifidobacteria was equal to and sometimes greater than the survival of E.

coli in laboratory studies.  Resnick and Levin (42,43) suggested that survival of

bifidobacteria is poor in the aquatic environment while coliforms survived better.

Another major problem with using this group of organisms has been the lack of a

reliable selective medium for the enumeration of bifidobacteria in the environment.  It

has been suggested that the high concentrations of selective agents in the various

bifidobacteria selective media found in the literature may interfere with the recovery

of injured bifidobacteria (56).  Therefore, it was decided at the beginning of the

project to better characterize the behavior of bifidobacteria in a controlled aquatic

environment; both their survival and injury attributes on selective and non-selective

media were examined.  An attempt was made to simulate both aerobic and anaerobic

circumstances that would resemble surface and ground water conditions.  It was
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hoped that by completing these microcosm studies that a better understanding of those

parameters would help optimize the efficiency of recovery of bifidobacteria from an

aquatic sample.  The information gleaned from the microcosm studies was then

applied to studying the occurrence of bifidobacteria in constructed wetlands receiving

primary treated sewage.  In these samples, bifidobacteria were enumerated, isolated,

and differentiated based on their carbohydrate fermentation characteristics.
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CHAPTER 1

Evaluation of Survival and Recovery
Characteristics of Bifidobacteria in

Microcosm Experiments
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INTRODUCTION

Examination of aquatic environments for bacterial indicator organisms has

proven to be a useful and well-established practice for the purpose of monitoring

microbiological water quality.  Instead of using complicated and time-consuming

methods to monitor pathogens, specific tests for enteric indicator bacteria have been

developed.  An ideal indicator of fecal pollution should be: 1) present in sufficient

density to allow detection, 2) present simultaneously with pathogen(s), 3) incapable of

aftergrowth in external aquatic environments, 4) easy to enumerate, and 5)

exclusively of fecal origin (28,48).  Unfortunately, none of the indicator organisms

presently in use today meet all of these requirements.

Bifidobacteria show promise as indicators of fecal pollution in water.  They

are exclusively of fecal origin, exist in high densities in feces, are obligate anaerobes

with complex nutrient requirements, and have the potential to distinguish between

fecal pollution of human and animal origin (43).  However, even with these

advantages, there is a lack of information concerning the behavior of bifidobacteria in

aquatic environments.  This is due, in part, to a lack of an acceptable selective

isolation medium as well as the difficulty involved in working with anaerobic

bacteria.

In order to better characterize the behavior of bifidobacteria in a controlled

aquatic environment, survival and injury parameters on selective and non-selective

media were examined. Findings from these in vitro experiments should provide a
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better understanding of those parameters that contribute to the recovery efficiency of

bifidobacteria from aquatic environments.
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MATERIALS AND METHODS

1.2.1 Preparation of cells for storage.  One hundred ml of Reinforced

Clostridial Medium (RCM, DIFCO, Detroit, MI) was inoculated with Bifidobacterium

bifidum ATCC 29521 and incubated anaerobically at 35ºC for 96 h.  Following

incubation, cells were centrifuged at 6000 X g for 20 min at 4ºC.  The supernatant

was decanted. The pellet was resuspended in 100 ml of a 10 % glycerol/water

solution, and then centrifuged under the same conditions.  These steps were repeated

resuspending cells in 10 %, 15 %, and 20 % glycerol solutions in successive

repetitions.  The pellet was finally resuspended in 5.0 ml of a 20 % glycerol solution

and apportioned into 0.5 ml aliquots in 1.5 ml Eppendorf tubes.  The tubes were

stored at -80ºC until used. (Note: A limited number of experiments were conducted

with B. longum ATCC 19755.  Preparation of cells of this strain was identical to that

described for B. bifidum.  Observations for B. longum can be found in the Appendix.)

1.2.2 Growth curve determinations.  Five modified 300 ml side-arm flasks

(Figure 1.2.1), containing 100 ml RCM and 0.1 ml of a rezazurin stock solution (0.5

g/L) were used for growth curve determinations.  Three of the flasks were inoculated

with 0.1 ml of B. bifidum and two flasks remained uninoculated.  Of the two

uninoculated flasks, one was a sterile anaerobic control and the other was used as an

oxygen exposed control.

Before inoculation, all flasks were assembled as shown in Figure 1.2.1, except

for the addition of the electrical tape.  The flasks were autoclaved and then allowed
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Figure 1.2.1.  Side arm flask.  Notes: Balch stopper made from neoprene; custom
fitted rubber gasket inserted very tightly inside screw cap.
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to cool under CO2 injected through the Balch tube.  When the flasks were cool

enoughto safely touch, the electrical tape was applied around the necks of the flasks

and stoppers forming a tight seal.  The flasks were then allowed to cool to room

temperature before tightening the screw cap and overpressurizing (around 2 psi).  At

this point, the screw cap of one of the uninoculated flasks was loosened so that it

became exposed to oxygen.

After inoculation, all of the flasks were incubated at 37°C.  Growth was

monitored spectrophotometrically (640 nm) using a Bauch & Lomb Spectronic 20.

Each flask was swirled and then tilted until the culture filled the side arm for

placement in the spectrophotometer.  Periodically, a sample was withdrawn from the

flask via the side arm, appropriately diluted, spread plated on Reinforced Clostridial

Agar (RCA, DIFCO), and incubated at 35°C under anaerobic conditions in GasPak

jars (BBL Microbiology Systems, Cockeysville, MD).  During sampling, the flask

was sparged with CO2, resealed, and overpressurized again.  The growth curve

(plotted as absorbance and cell counts vs. time) is given in Figure 1.5.1 of the

Appendix.  (Note: Growth curve determination for B. longum is also given in the

Appendix, Figure 1.5.2.)

1.2.3 Aerobic pure culture survival experiments.  Bifidobacterium bifidum

ATCC 29521 was grown from a frozen culture in RCM and incubated anaerobically

at 35ºC for 96 h.  One ml or 0.1 ml of the culture was used to separately seed 250 ml

sponge stoppered flasks containing 100 ml of sterilized groundwater or phosphate

buffer (1.25 ml phosphate buffer stock solution, 34.0 g/l; 5.0 ml MgCl2 stock
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solution, 81.1 g/l; 1 l distilled H2O) in order to give an initial microcosm inoculum of

104 - 105 cells/ ml.  Microcosm experiments were conducted at selected temperatures

to determine the optimal selective enumeration medium and survival characteristics of

bifidobacteria.  All microcosms were previously sterilized by autoclaving at 120ºC for

15 min.  These microcosms were stored at 13, 28, or 35°C during the course of the

experiments.

Samples were removed from the respective microcosms at various times and

spread-plated in triplicate onto petri dishes containing RCA.  All plates for the

enumeration of Bifidobacterium spp. were incubated at 35ºC under anaerobic

conditions in GasPak jars.  After incubation, colonies were counted and the replicates

averaged. (Note:  A few selected experiments were conducted using anaerobic

microcosms.  The reader is referred to the Appendix for data presentations for these

experiments.)

1.2.4 Selective media evaluation experiments.  In order to evaluate the

efficiency of various selective media, part of the aerobic pure culture experiments

were repeated under the conditions described above and the cells were enumerated on

the selective media in addition to RCA.  Enumeration media evaluated were:

Bifidobacterium iodoacetate medium 25  (B25) and 50 (B50) as described by Muñoa

and Pares (35) (Table 1.1); and, YN-6 medium as described by Resnick and Levin

(42) (Table 1.2).  B25 and B50 were used in conjunction with the 5 h resuscitation

technique described by Muñoa and Pares (35). This technique involved spread-plating

the sample onto a non-selective RCA bottom layer, anaerobically incubating the

plates at 35°C for 5 h, and then pouring the tempered selective agar over the bottom
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  Table 1.1.  Bifidobacterium Iodoacetate Medium

     Ingredient                                                    Amounta

Reinforced Clostridial Medium (RCA) 51
Nalidixic Acid   0.02
Polymyxin B sulfate   0.0085
Kanamycin sulfate   0.05
Iodoacetic acid  (Na+ salt)   0.025b

2,3,5-triphenyltetrazolium chloride   0.025

a  All amounts are grams per liter.
b  BIM50 formulation doubles the concentration of iodoacetic acid
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     Table 1.2.  YN-6 Medium

     Ingredient                                                     Amounta

    Yeast extract 20
    Peptone 10
    Casamino Acid (vitamin-free)   8.0
    Sodium chloride   3.2
    Bromocresol Green   0.3
    L-cysteine hydrochloride   0.4
    Nalidixic Acid   0.08
    Agar 15
    Neomycin Sulfate stock (2.5mg/ml)   1 ml

a  Unless otherwise indicated all amounts are grams per liter.
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layer.  The agar was allowed to harden and then the plates incubated anaerobically at

35°C in GasPak jars. RCA was used to determine 100% recovery and help

characterize sensitivity and injury properties of the selective media.  After incubation,

colonies were counted, the replicates averaged, and the enumeration efficiency

determined for each medium.

1.2.5 Aerobic mixed culture survival experiments.  One ml of a 96-h B.

bifidum culture grown anaerobically in RCM and 1.0 ml of a 24 h Escherichia coli

ATCC 23559 culture grown aerobically in Tryptic Soy Broth (TSB, DIFCO) was

inoculated into 100 ml of sterile phosphate buffer in sponge stoppered 250-ml-wide-

mouth-flasks.  These flasks were stored at 13, 28, and 35°C.  Samples were removed

at various times, appropriately diluted, and spread plated in triplicate onto B25, YN6,

and mFC agar.  All plates except the mFC plates were incubated anaerobically at

35°C.  All mFC plates were incubated aerobically at 44.5°C.  MFC agar was used to

selectively enumerate E. coli, and B25 and YN6 were used to selectively enumerate

the bifidobacteria.

1.2.6 Calculations and statistical analysis.  The percent decrease of the cell

population at some time, x, as a result of exposure to sterile groundwater or phosphate

buffer was calculated as follows:

                 (cell population at time x)
% decrease =  [1  −   -------------------------------------- ]  X  100

               (cell population at time zero)

The decimal reduction time (DRT) or the time in which the population

decreases by a 1 log was calculated as follows:

DRT = X1 - X2
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given the equation for a straight line is:  y = mx +b

and where:

X1 = [(LOG (Y1) - b)] / m

X2 = [(LOG (Y2) - b)] / m

  b = intercept of mean regression line
 m = slope of mean regression line
Y1 = estimate of population
Y2 = Y1 / 10
X1 = initial time
X2 = time at 1 log Y1 reduction

The slope and intercept of each individual replicate were used in the statistical

comparisons of decimal reduction times between incubation media; however the

average population estimates were used in each replicate calculation for each

medium.

The percentage of the cell population injured by exposure to sterile

groundwater or phosphate buffer was calculated as follows:

      (CFU on nonselective medium) - (CFU on selective medium)
      % Injury =  [-------------------------------------------------------------------------] X 100

 
(CFU on nonselective medium)

Injury induction time (IIT), showing the ability of the selective media in

enumerating the bifidobacterial population, was calculated from determining the slope

of the regression line through a log difference versus time plot for each selective

medium.

Log difference = LOG (population on RCA at time x) – LOG (population on selective

medium at time x)
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The slope and intercept of this regression line was then inserted into the following

equation:

IIT = (A - m)/b

where:

A = number of log injury (e.g., 90% injury = 1, 99% = 2, etc.)

m = slope of the regression line

b = intercept of the regression line

Statistical procedures were computed using Excel 7.0 (Microsoft Corporation) and

SigmaPlot and SigmaStat (Jandel Scientific Software, San Rafael, CA).  Data for

bacterial recovery from microcosm experiments were transformed to log10 values

prior to statistical analysis.
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RESULTS

1.3.1 Survival and recovery characteristics of bifidobacteria in pure and mixed

culture microcosms.  Phosphate buffered water and sterilized groundwater

microcosms were used to simulate conditions that would be encountered by

bifidobacteria in external aquatic environments.  Aerobic pure culture microcosm

studies were completed to evaluate recovery of bifidobacteria on selective and

nonselective media at three incubation temperatures.  Starvation induced injury and

recovery efficiency of the selective media were documented in these studies.  Aerobic

mixed culture microcosms studies were completed to evaluate the survival

characteristics of bifidobacteria compared to E. coli on selective media at three

incubation temperatures. (Note:  Limited anaerobic pure and mixed microcosm

studies were completed with B. bifidum.  Data presentations of these results can be

found in the Appendix.)

Bifidobacteria were sampled from the aerobic microcosms and enumerated on

specific selective media to investigate their injury characteristics on the published

selective media.  Injured bifidobacteria were shown to occur in these experiments

when enumerating the cells on accepted bifidobacteria enumeration media.  RCA was

used as a non-selective medium and compared with the bifidobacteria selective media

B25, B50, and YN6.  The proportion of cells enumerated only on RCA, but not the

selective media from the same sample, were considered injured.
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1.3.2 Aerobic pure culture microcosms.  Initial experiments involved determining

the survival characteristics of B. bifidum in phosphate buffered water compared to

groundwater.  The system that produced the poorest survival rates would then be used

in the remaining microcosm experiments.

Survival of B. bifidum at both 35 and 13°C was greater in sterilized

groundwater than in phosphate buffer (Figures 1.3.1 and 1.3.3) (P = 0.05 and 0.10,

respectively).  Populations of B. bifidum at 35°C declined rapidly in both microcosms

becoming non-detectable before 25 h incubation in phosphate buffer and decreasing

approximately 99% in groundwater.  Decimal reduction times in groundwater were

significantly longer than in phosphate buffer (P = 0.05) (Table 1.3). No difference in

the survival of B. bifidum was found at 28°C in phosphate buffer or groundwater

(Figure 1.3.2) (P = 0.05).  Populations of B. bifidum in both microcosms decreased by

approximately 95% after 25 h incubation (Table 1.9, appendix) and there was no

significant difference in their mean decimal reduction times (Table 1.3) (P = 0.05).

An inversely proportional, temperature-dependent survival characteristic was

shown to occur aerobically in phosphate buffer with B. bifidum when the survival

curves at the three temperatures used in the experiment were compared (Figure 1.3.4)

(P < 0.00001).  There was also a significant difference in the decimal reduction times

between all three treatments with longer decimal reduction times corresponding to

lower temperatures of incubation (P=0.05).

1.3.3  Injury induction times. The ability of the published selective media to

effectively enumerate the bifidobacterial population from a pure culture microcosm



45

Time (hours)

0 5 10 15 20 25 30

nu
m

be
r 

ce
ll

s 
pe

r 
m

L

102

103

104 Groundwater
Phosphate buffer

Figure 1.3.1.  Aerobic survival of B. bifidum incubated at 35°C in sterilized
groundwater and phosphate buffer microcosms and enumerated on RCA.
Each data point represents the mean of three replicates. Error bars indicate the
standard deviation.
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Figure 1.3.2.  Aerobic survival of B. bifidum  incubated at 28°C in sterilized
groundwater and phosphate buffer microcosms and enumerated on RCA.
Each data point represents the mean of three replicates. Error bars indicate the
standard deviation.
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Figure 1.3.3.  Aerobic survival of B. bifidum incubated at 13°C in sterilized
groundwater and phosphate buffer microcosms and enumerated on RCA.
Each data point represents the mean of three replicates.  a = data point from
100 dilution; only one replicate. Error bars indicate the standard deviation.
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Table 1.3.  Summary of decimal reduction times (in hours) of Bifidobacteria bifidum

in aerobic single culture microcosms incubated at 13, 28, and 35°C.a

Decimal reduction time
Temperature

°C
Groundwater Phosphate

buffer
13 170.46a 100.41b
28 20.48a 19.75a
35 12.43a 8.36b

a Differing letters following number indicates significance
between incubation media at the same temperature
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Figure 1.3.4.  Comparison of aerobic survival of B. bifidum incubated at 13,
28, and 35°C in phosphate buffer microcosms and enumerated on RCA.  Each
data point represents the mean of three replicates. Error bars indicate the
standard deviation.
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was investigated in order to establish the extent of injury that could be expected

before mixed culture microcosms were used. Injury characteristics of B. bifidum

sampled from the aerobic microcosms and enumerated on specific selective media

were investigated once the survival parameters of the species were better understood.

Injured bifidobacteria were shown to occur in these experiments when enumerating

the cells on B25 and YN6.  RCA was used as the non-selective medium.  The

proportion of cells enumerated only on RCA but not the selective media from the

same sample, were considered injured.

The injury induction times (IIT) for B. bifidum enumerated on B25 and YN6

are shown in Table 1.4.  No significant differences were observed between the IITs on

B25 and YN6 at 35°C.  The times to reach 90 and 99% injury were significantly

longer for B25 at 13°C, but there was no significant difference in the times to reach

99.9 and 99.99% injury between the two media.  The IIT of YN6 were observed to be

approximately twice those of B25 at 28°C and numerically greater (although not

statistically greater) than the IIT of YN6 at 35°C.

The effect of the selective media B25 and B50 on the recovery of B. bifidum

from an aerobic phosphate buffer microcosm incubated at 13°C is shown in Figure

1.3.5.  RCA enumerated a significantly higher population than either B25 or B50 at

the three sampling times.  There was no significant difference between recoveries on

B25 or B50 at zero time, but B25 did recover a significantly higher percentage of the

population at later sampling times.  The percentage of sublethally injured but still

viable cells is shown in Table 1.5.  The proportion of the population unable to grow

on the selective media was high even at zero time.  Over 45% of the bifidobacteria
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Table 1.4.  Injury induction times (IIT) in hours for B. bifidum incubated at 35, 28,
and 13°C and enumerated on B25 and YN6 selective media.a

IIT
% Injuryb B25 YN6

35°C 28°C 13°C 35°C 28°C 13°C
90 11.4a 55.6a 123.1a 16.6a 105.9b 99.5b
99 33.3a 118.5a 245.5a 35.9a 239.5b 230.7b

99.9 55.1a 181.4a 367.8a 55.2a 373.1b 362.0a
99.99 77.0a 244.4a 490.1a 74.5a 506.7b 493.2a

a Differing letters following number indicates significance between selective media at
the same temperature
b RCA was used as the nonselective reference medium
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Figure 1.3.5.  Aerobic survival of B. bifidum incubated at 13°C in
sterilized phosphate buffer microcosms and enumerated on RCA, B25,
and B50.  Graph a) represents population at zero time, b) at 168 h, and c)
at 264 h.  Each data point represents the mean of three replicates except
where noted by * indicating data for a 100 dilution. Error bars indicate
the standard deviation.
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Table 1.5.  Percent injury and decrease of B. bifidum population
incubated at 13°C in a sterilized phosphate buffer microcosm and
enumerated on RCA, B25, and B50.

Total % Injuryb % Decreasec

Time Populationa B25 B50 RCA B25 B50

0 4.53 X 105 45.73 70.37

168 2.75 X 104 96.36 98.77 93.93 99.59 99.75

264 1.33 X 103 98.19 99.32 99.70 99.99 99.99
a  as enumerated on RCA.
b  % injury was determined for each medium by comparing selected population  to the total

population surviving at each sampling time.
c  % decrease was determined by comparing the population at time x with the population at time

zero for each medium.
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enumerated on RCA did not appear on B25.  That number grew to over 70 % on B50

-- a medium differing from B25 only by a doubling of the concentration of iodoacetic

acid.  B25 and B50 exhibited approximately 96 and 99 % injury, respectively, after

incubation for 168 h.  This is especially troublesome from a monitoring standpoint

since the viable population of bifidobacteria as enumerated on RCA decreased 93.9 %

from the starting population.

1.3.4  Aerobic mixed culture microcosms.  The previous experiments

documented the survival behavior of a pure inoculum of bifidobacteria subjected to

temperature, oxygen, and osmotic stresses, and how those stresses affected

enumeration efficiencies of bifidobacteria from the microcosms on RCA.  To better

simulate a more natural situation, another organism, E. coli ATCC 23559 was also

inoculated into the microcosms and enumerated concurrently with the bifidobacteria.

The purpose here was to address concerns in the literature of bifidobacterial survival

compared to other indicator organisms in aquatic environments (16,42).  Of concern

in these experiments was the question of how efficiently the selective media would

perform in enumeration of bifidobacteria both in the presence of another organism

and in the absence of a non-selective enumeration medium.  Essentially the same

conditions were followed as in the aerobic pure culture microcosm experiments with

the exception of the exclusion of RCA because of its non-selective nature.  Keep in

mind, however, that the use of the selective media in these experiments has been

shown to underestimate the actual bifidobacteria population and that the survival of

the bifidobacteria in these situations is probably somewhat longer as compared to the

pure culture microcosms.
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The aerobic survival of B. bifidum and E. coli incubated at 35°C in a

phosphate buffer microcosm is shown in Figure 1.3.6.  It is interesting to note the

initial increase in bifidobacterial populations between time zero and the 4 hour

sampling time.  [Note: This phenomenon was also observed in the pure microcosm

experiments in the case of B. longum incubated in groundwater at 13°C (Figure 1.5.4,

appendix)].  The 0 and 4 h points were significantly different from each other for the

B25 medium but not the YN6 medium (P = 0.05).  This effect is probably due to the

initial osmotic shock of the cells going from the growth medium to the microcosm

and the slight increase being indicative of an acclimation by the remaining viable cells

at this relatively high incubation temperature.  This may explain why this increase

was not observed in the 13 and 25°C mixed culture microcosms as shown later in this

chapter.  This artifact may have also skewed the actual DRT for both YN6 and B25.

If one uses the 4, 5.5, 10 and 18 hour (which gave a zero population for

bifidobacteria) data points to calculate the DRT, then it falls very close to the pure

culture microcosm experiments.  An unexpected result was the survival ability of E.

coli in this microcosm.  It was expected that of the three temperatures, the population

of E. coli would decrease at 35°C.  However, after 25 hours at 35°C, there was no

decrease in the population.  This would seem to contradict the work of Evison and

James (17) and confirm the findings of Resnick and Levin (42).

The aerobic survival of B. bifidum and E. coli in a phosphate buffer

microcosm incubated at 28°C is shown in Figure 1.3.7.  Survival of E. coli was again

longer than expected with a significantly higher calculated DRT of 369.69 h (P =

0.05). There were no observed or statistical differences in the survival or the DRT of
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Figure 1.3.6.  Aerobic survival of B. bifidum and E. coli incubated at 35°C in a
phosphate buffer microcosm.  Bifidobacteria were enumerated on B25 and
YN6 agar and E. coli was enumerated on mFC agar.  Each data point
represents the mean of three replicates. Error bars indicate the standard
deviation.
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Figure 1.3.7.  Aerobic survival of B. bifidum and E. coli incubated at 28°C in a
phosphate buffer microcosm.  Bifidobacteria were enumerated on B25 and
YN6 agar and E. coli was enumerated on mFC.  Each data point represents the
mean of three replicates. Error bars indicate the standard deviation.
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B. bifidum on either B25 or YN6.

In the 13°C mixed microcosm (Figure 1.3.8), similar differences in survival

were observed. Both the survival and the DRT for E. coli were significantly longer

than B. bifidum.  However, the recovery of B. bifidum on B25 was significantly higher

than on YN6 and the DRT on B25 was a significantly longer 111.50 h compared to

61.13 h on YN6 (P = 0.05).  The decimal reduction times for all three incubation

temperatures are summarized in Table 1.6.
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Figure 1.3.8.  Aerobic survival of B. bifidum and E. coli incubated at 13°C in a
phosphate buffer microcosm.  Bifidobacteria were enumerated on B25 and
YN6 agar and E. coli was enumerated on mFC agar.  Each data point
represents the mean of three replicates. Error bars indicate the standard
deviation.
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Table 1.6.  Summary of decimal reduction times (in hours) of B. bifidum and E. coli
in aerobic mixed culture microcosms incubated at 13, 28, and 35°C.a

Decimal reduction time
Temperature (°C) B. bifidum E. coli

B25 YN6 mFC
13 111.50a 61.13b 320.98c
28 27.69a 29.32a 369.69b
35 5.62a 2.73b (120.78)cb

a Differing letters following number indicates significance among selective media at the same
temperature

b Numbers in parentheses denote negative numbers which indicates growth was occurring in the
microcosm.
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DISCUSSION

Using bacterial indicator organisms to monitor the quality of drinking and

recreational waters has proven useful in protecting the public health.  Various

indicator organisms, such as total coliforms, fecal coliforms, fecal streptococci, and

HPC bacteria have been used.  Total coliforms have been widely used for nearly a

century to ensure potability of water supplies.  Fecal coliforms, a thermo-tolerant

subset of total coliforms, have been used to show recent fecal contamination.  Fecal

streptococci, which include the enterococcus subgroup, have been used to better

evaluate the source of contamination.  The enterococci are mainly excreted by humans

and exhibit comparable survival characteristics to total coliforms and fecal coliforms

in water (56).  HPC bacteria have indicated fecal contamination due to the increased

number of heterotrophs observed in a contaminated sample.

Although these groups have proven valuable in ensuring safe water supplies,

they all are less than ideal for indicating fecal contamination in all water sources.

Total coliform bacteria can exhibit aftergrowth in waters containing organic matter

and under moderate temperatures.  High background bacterial populations can mask

total coliform counts resulting in a dangerous overestimation of water quality.  Many

total coliform bacteria have been shown to be from an environmental source rather

than of fecal origin.  Similar problems have been shown to occur with the fecal

coliforms in tropical waters (14).  High numbers of fecal coliforms alone do not

necessarily indicate fecal pollution and, hence, should not be used as a sole indicator
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organism.  Likewise, high HPC counts may indicate a high level of organic matter in

water and not fecal pollution.

Bifidobacteria have been proposed as indicators of fecal pollution in water,

but lack the necessary reliability and developed methodology found in the other

indicator organisms.  Bifidobacteria are exclusively of fecal origin, excreted in very

high numbers, do not exhibit aftergrowth outside the host, and some species are

exclusive to humans.  These advantages make bifidobacteria an attractive choice to

use as a supplemental test to monitor water quality.  However, there is a lack of data

describing the behavior of bifidobacteria in aquatic environments (28).  What data are

published often show conflicting results.  Accordingly, the purpose the present study

was to better characterize the survival and injury parameters of bifidobacteria in

controlled aerobic aquatic microcosms.  In addition, published selective media were

evaluated for their recovery efficiencies to test the reliability and methodology issues.

(Note:  Limited experiments were completed using B. longum in the microcosms.

Also, limited experiments with anaerobic microcosms containing B. bifidum were

conducted.  Conclusions about these experiments are included in this discussion

where appropriate for comparison purposes.  The reader is referred to the appendix

for data presentations of these experiments.)

The first question addressed in this study was the survival characteristics of

bifidobacteria in an external aquatic environment.  A human-specific species, B.

bifidum, was used in these experiments since one of the potential advantages of

bifidobacteria as indicator organisms is to aid in distinguishing the source of fecal

pollution.  In addition, the underlying aim of these experiments was to pose a worst
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case scenario for the survival of the bifidobacteria.  To that end, initial assays

investigated their survival in sterilized groundwater versus phosphate buffer

microcosms.  The type of microcosm that produced the worst survival rates would

then be used in the rest of the procedures in this study.

B. longum initially showed no differences in its survival properties in

phosphate buffer or groundwater (Figure 1.5.4, appendix) so the experiments were

repeated with B. bifidum.  At both 13 and 35°C, B. bifidum exhibited a statistically

greater survival in groundwater than in phosphate buffer.  Although there was no

statistical differences in the microcosm at 28°C, the survival of B. bifidum in

groundwater was slightly higher.  Therefore, in the remaining assays discussed in this

chapter, B. bifidum was incubated in phosphate buffer microcosms.  It is also

interesting to point out that B. bifidum exhibited less robust growth characteristics

compared to B. longum (Figures 1.5.1 and 1.5.2, appendix) and that B. bifidum had a

final population density that was over a log lower than observed for B. longum.

Data gathered in these experiments tend to corroborate those of Resnick and

Levin -- namely, that bifidobacterial survival is poor in an aquatic environment (43).

In none of these experiments was there any indication of aftergrowth.  Indeed, it was

difficult at the beginning to predict accurate sampling times in the microcosms

incubated at 28 and 35°C.  At 35°C, no viable bifidobacteria could be recovered as

enumerated on the nonselective RCA in as little as 24 h from the phosphate buffer

microcosms (Figure 1.3.1).  Even when the microcosm was kept anaerobic throughout

the incubation -- an environment more conducive to the anaerobic nature of this genus

-- B. bifidum was unrecoverable after 27 h (Figure 1.5.6, appendix).
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The second question addressed in this study was the survivability of

bifidobacteria in aquatic environments compared to E. coli.  Conflicting studies have

been published. Some studies have shown bifidobacteria to outlast E. coli or E coli

survival surpassing bifidobacteria (17, 28).  In this current study, only stationary

phase cells were used to inoculate the microcosms since exponential phase cells tend

to be more sensitive to external stresses.  Bifidobacteria as enumerated on

nonselective RCA exhibited a significant reduction in the viable population in as little

as approximately 24 hours post-inoculation for the 35°C aerobic microcosms.  There

was no convincing evidence of aftergrowth of bifidobacteria as enumerated on RCA.

Experiments that suggested aftergrowth were in the 35°C mixed culture microcosms

when bifidobacteria were enumerated only on selective media.  This may actually

show a cellular repair phenomenon at work since the increase in cell numbers was

short lived (less than 5 hours) and did not occur when bifidobacteria were enumerated

on RCA in the single culture microcosms.  In addition, E. coli did not exhibit a

significant decrease in population over the course of the experiments regardless of the

temperature of incubation or anoxic conditions (Figure 1.5.7, appendix).

The poor survival of bifidobacteria in an external aquatic environment was

unambiguous in these experiments.  A potential advantage for including

bifidobacteria in water quality assessment would be the indication of recent human

contamination of a water supply.  One parameter not addressed in this study was the

presence of organic matter.  It would be interesting to see if high organic matter levels

change the survival of bifidobacteria under similar conditions.
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One major problem with using bifidobacteria as indicator organisms arose

during the course of this study.  The inconsistency in the results gathered from the

selective media was quite disturbing.  At first, it was thought that this was due to the

time consuming and complex demands of preparing the media and then the subtle

differences in the plating techniques of some of the media (i.e., overlaying the

selective agents onto a nonselective base) combined to produce mercurial results.

However, after numerous attempts and much attention paid to quality control, the

inconsistencies can be attributed to a needlessly elaborate preparation regime and

errors in the published recipes.  Although a more detailed discussion of this problem

follows, the most glaring obstacle in the preparation of the selective media can be

seen in the research reported by Resnick and Levin (42,43) which details the use of

YN6 in the enumeration of bifidobacteria from aquatic sources.  Nowhere in the paper

is there a mention of a carbon source in the medium formulation itself.  Only in the

discussion is there any clue as to what was used as a carbon source -- lactose -- but

not in what amount.  To address this omission, the author arbitrarily used lactose in a

concentration (g/l) equal to that of glucose in the non-selective RCA formulation.

While such an oversight on the part of the authors may seem trivial, it does

unnecessarily complicate any attempt to standardize a methodology for using this

genus as an indicator organism.  Standardization is most important from a regulatory

standpoint as health, policy and judicial decisions are based on solid, demonstrative

data collection and justifiable, reliable results.  The exclusion of such an integral

component of the selective medium -- itself the focal point of that research and a

follow-up studies -- is a regrettable error.
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An illustration of that inconsistency in the selective media can be shown in the

following example.  It is interesting to note that while B25 initially appeared to be

less inhibitory than the YN6 medium to a fresh inoculum of bifidobacteria, B25

quickly became toxic to the vast majority of cells which were injured but still viable

in the microcosms, even with the 5 h nonselective RCA recovery step included in the

enumeration technique.  B. bifidum cells utilized in the microcosms were inoculated

from a culture at the beginning of stationary phase at an approximate age of 100 to

120 h, so physiological reasons, such as marked peptidoglycan deterioration or

secondary metabolite toxicity, do not seem to account for the severe inability of the

cells to grow on either selective medium, even at zero time.  Oxygen toxicity could

account for only some of the injury at zero time since the cells were spread-plated and

incubated anaerobically without delay after the initial microcosm inoculation and the

recovery step for B25 should have allowed enough time -- almost a complete

generation cycle -- for most injured cells to repair cellular structures, such as

membranes and inactivated enzymes, before they were exposed to the inhibitory

components of the selective agar overlay.  It would appear, therefore, that either the

recovery step should be extended, in which case the selective efficiency of B25 could

be compromised, or the selective agents themselves are too toxic to allow effective

enumeration of a large proportion of the viable population of cells.  Perhaps the

addition of a free radical scavenger to the basal medium would increase the efficiency

of either medium by aiding in the repair mechanisms of the injured cells.  Given that

this injury phenomenon exists to such an extent using these selective media, any

observations made from either the mixed microcosms or any field sampling should be
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viewed as an underestimation of the true bifidobacteria population and, hence, an

optimistic estimation of the actual water quality.  This conclusion is not a

condemnation of the use of bifidobacteria as an indicator organism, but only a

warning about relying on the published selective media to gauge water quality, a 40

year old hurdle which has yet to be jumped.

Another problem encountered with the present selective enumeration media

was the question of reliability and reproducibility of the media from batch to batch,

which became a great concern with the YN6 medium.  Many plates of each medium

were utilized in these experiments and each set of plates poured was rarely stored at

4°C for more than 5 days before they were used, a practice which necessitated a high

frequency of media preparation.  The author personally completed all selective media

preparation in an attempt to minimize variation in the final medium product.

Furthermore, components of the selective media were regularly replaced to ensure

their freshness; this was especially true of the antibiotics and iodoacetate.

Unfortunately, multiple experiments needed to be repeated a number of times to allow

enough data points to be collected in order for a trend to be observed.  Figures 1.3.9a

and b depict one of the experiments that investigated the anaerobic survival of B.

bifidum incubated at 13°C and enumerated on RCA, YN6, and B25.  Two times are

shown, zero and 96h on graph a and b, respectively.  No cells were observed on the

YN6 plates after 96 h even though the medium proved to be better able to enumerate

bifidobacteria over time compared to B25 at 35 and 28°C (Figures 1.3.9c and d and

1.3.10).  Due to these reliability issues with the performance of YN6 in these

experiments, as well as the mixed microcosm experiments also discussed in this
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Figure 1.4.1.  Anaerobic survival of B. bifidum incubated in sterilized phosphate
buffer microcosms and enumerated on RCA, YN6, and B25.  Graph a) zero time and
13°C, b) 96 h and 13°C, c) zero time and 28°C, and d) 27 h and 28°C.  Each data
point represents the mean of three replicates. Error bars indicate the standard
deviation.
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Figure 1.4.2.  Anaerobic survival of B. bifidum incubated at 35°C in
sterilized phosphate buffer microcosms and enumerated on RCA, YN6,
and B25.  Graph a) represents population at zero time, b) at 8 h, and c) at
14 h.  Each data point represents the mean of three replicates. Error bars
indicate the standard deviation.
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chapter, YN6 is not recommended to effectively enumerate bifidobacteria from

aquatic systems.

Bifidobacteria, as fecal pollution indicators, appear to satisfy some of the ideal

indicator organism criteria.  Results of the present study have shown bifidobacteria

maintain a population sufficient to allow detection in microcosms for a short time and

they are incapable of aftergrowth in external aquatic environments low in organic

matter even when those aquatic environments are anoxic.  The survival of the

bifidobacteria population was indirectly proportional to the temperature at which the

microcosm was stored.  The lack of an acceptable enumeration medium continues to

be a major disadvantage in trying to enumerate bifidobacteria from water samples.

Selective media found in the literature were shown to exhibit insufficient sensitivity

to effectively enumerate bifidobacteria.  In mixed microcosm studies with E. coli, the

survival of the bifidobacteria population was considerably lower than that of the E.

coli population.  Therefore, detection of bifidobacteria in a water sample would

indicate a fairly recent – and possibly human – contamination event.  Detection of

higher densities of bifidobacteria in water samples could demonstrate either a very

recent contamination or ongoing contamination, such as percolation of leachate from

a septic system or the effluent of a sewage outflow.  E. coli did not exhibit a

significant reduction in population in the microcosms at any of the temperatures used

in the experiments.  This would corroborate the work done by Carrillo et al. (14) who

suggested that coliforms have the ability to adapt to and become part of the natural

aquatic microflora.  While these organisms may have had a fecal source originally,

that may not mean that their presence indicates recent or human contamination.  The
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regulatory implications of these facts may have significant health and economic

impacts especially in rural and tropical areas.
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Appendix
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Methods and Materials

1.5.1. Aerobic pure culture survival experiments with B. longum.  All

procedures used in these experiments were the same as those used with B. bifidum.

1.5.2. Anaerobic pure culture survival experiments.  As in the aerobic pure

culture experiments, frozen inocula of B. bifidum were used to inoculate RCM and

incubated anaerobically for 96 h at 35°C.  One ml of the culture was then used to

separately inoculate an anaerobic 300 ml side arm flask containing 100 ml of

phosphate buffer supplemented with 50 mg cysteine hydrochloride, 0.38 ml 10N

NaOH, and approximately 0.05 ml rezazurin stock solution.  Flasks were stored at 13,

28, or 35°C.

Anaerobic conditions were achieved by autoclaving the side arm flasks

followed by cooling under CO2.  Upon reaching room temperature, the flasks were

sealed by tightening the screw cap and applying black electrical tape around the neck

of the flask and rubber stopper and then overpressurized (about 2 psi).  When

inoculating or sampling via the side arm tube, the flasks were sparged with CO2

injected through the Balch stopper, sealed, and overpressurized again.  Samples were

diluted appropriately, spread-plated in triplicate on RCA, and incubated anaerobically

at 35°C for 72 h.  Resulting colonies were counted and the replicates averaged.

1.5.3. Anaerobic mixed culture survival experiments.  As in the aerobic mixed

culture experiments, B. bifidum and E. coli were used to inoculate 300 ml side arm

flasks containing 100 ml phosphate buffer supplemented with 50 mg cysteine

hydrochloride, 0.38 ml 10N NaOH, and approximately 0.05 ml rezazurin stock
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solution.  Anaerobic conditions in the flasks were achieved and maintained according

to the same procedure as in the anaerobic pure culture experiments.  Samples were

removed at various times, appropriately diluted, and spread plated in triplicate onto

B25, YN6 and mFC agar.  All plates except the mFC plates were incubated

anaerobically at 35°C. All mFC plates were incubated aerobically at 44.5°C for 24 h.
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Figure 1.5.1.  Growth curve for B. bifidum.  Each data point represents the
mean of three replicates. Error bars indicate the standard deviation.
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Figure 1.5.2.  Growth curve for Bifidobacterium longum.  Each data point
represents the mean of three replicates. Error bars indicate the standard
deviation.
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Table 1.7.  Actual and relative numbers of B. longum incubated at 13°C in different
microcosms.

Mean # cells per ml of % Decrease Mean decimal
reduction times

Time Ground-
water

Phosphate
buffer

Ground-
water

Phosphate
buffer

Ground-
water

Phosphate
buffer

0 3.33 x 105 6.55 x 105 -- --

96 4.93 x 105 5.77 x 105 (48) 11.91

192 2.70 x 105 2.87 x 105 18.92 56.18 145.81 131.69

360 3.67 x 103 1.93 x 104 98.90 97.05

504 2.53 x 102 8.00 x 101 99.92 99.99
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Table 1.8.  Actual and relative numbers of B. bifidum incubated at 35°C in different
microcosms.

Mean # cells per ml of % Decrease Mean decimal
reduction times

Time Ground-
water

Phosphate
buffer

Ground-
water

Phosphate
buffer

Ground-
water

Phosphate
buffer

0 1.26 X 104 1.34 X 104 -- --

1 1.26 X 104 1.25 X 104 0.00 6.95

2 1.02 X 104 7.50 X 103 18.83 44.17 12.43 8.36

4 8.30 X 103 6.87 X 103 33.95 48.88

8 3.33 X 103 1.47 X 103 73.47 89.08

25 1.40 X 102 NDa 98.89 100.00
a  ND not detected
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Table 1.9.  Actual and relative numbers of B. bifidum incubated at 28°C in different
microcosms.

Mean # cells per ml of % Decrease Mean decimal
reduction times

Time Ground-
water

Phosphate
buffer

Ground-
water

Phosphate
buffer

Ground-
water

Phosphate
buffer

0 1.32 X 104 1.05 X 104

1 8.90 X 103 9.70 X 103 32.75 7.32

2 8.03 X 103 1.05 X 104 39.29 -0.64 20.48 19.75

4 5.67 X 103 7.50 X 103 57.18 28.34

25 7.07 X 103 6.27 X 102 94.66 94.01
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Table 1.10.  Actual and relative numbers of B. bifidum incubated at 13°C in different
microcosms.

Mean # cells per ml of % Decrease Mean decimal
reduction times

Time Ground-
water

Phosphate
buffer

Ground-
water

Phosphate
buffer

Ground-
water

Phosphate
buffer

0 8.67 X 103 1.10 X 104

24 8.67 X 103 6.87 X 103 0.00 37.58

96 1.28 X 103 2.63 X 102 85.27 97.61 170.46 100.41

192 1.57 X 102 4.67 X 101 98.19 99.58

360 7.00 X 101 3.00 X 100 99.19 99.97

504 9.00 X 100 NDa 99.90 100.00
a  ND not detected
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Figure 1.5.5.  Comparison of aerobic survival of B bifidum and B. longum
incubated at 13°C in phosphate buffer microcosms and enumerated on RCA.
Each data point represents the mean of three replicates. Error bars indicate the
standard deviation.
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Table 1.11. Actual and relative numbers of B. bifidum and E. coli incubated at 35°C
in aerobic microcosms.

Time
(hr)

Mean # cells per ml of % Decrease Decimal Reduction

B25 YN6 mFC B25 YN6 mFC B25 YN6 mFC
0 1.50 X 104 2.67 X 103 9.07 X 105

4 3.03 X 104 7.67 X 103 1.08 X 106 -102 -187.5 -19.49
10 3.33 X 102 1.00 X 100 6.17 X 105 97.78 99.96 31.99 5.62 2.73 -120.78
19 0 0 9.90 X 105 100 100 8.62
24 0 0 1.68 X 106 100 100 -172.97
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Table 1.12. Actual and relative numbers of B. bifidum and E. coli incubated at 28°C
in aerobic microcosms.

Time
(hr)

Mean # cells per ml of % Decrease Decimal Reduction

B25 YN6 mFC B25 YN6 mFC B25 YN6 mFC
0 8.00 X 103 1.67 X 103 5.40 X 105

4 4.67 X 103 4.00 X 103 6.03 X 105 41.67 -140 -11.73
10 2.30 X 103 3.67 X 103 4.37 X 105 71.25 -120 19.14 27.69 29.32 369.69
19 1.59 X 103 4.83 X 102 4.20 X 105 65.93 87.92 30.39
24 9.40 X 102 5.20 X 102 5.37 X 105 59.13 85.82 -22.90
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Table 1.13. Actual and relative numbers of B. bifidum and E. coli incubated at 13°C
in aerobic microcosms.

Time
(hr)

Mean # cells per ml of % Decrease Decimal Reduction

B25 YN6 mFC B25 YN6 mFC B25 YN6 mFC
0 5.83 X 105 5.27 X 105 5.37 X 105

25 3.42 X 105 2.25 X 105 2.33 X 105 41.31 57.34 56.52
73 1.67 X 104 2.47 X 104 1.77 X 105 97.14 95.32 67.02 111.50 61.13 320.98

144 4.20 X 103 7.67 X 103 8.57 X 104 99.28 98.54 84.04
312 6.33 X 102 3.33 1.04 X 104 99.89 100 98.07
433 40 0 3.37 X 104 99.99 100 93.72
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Figure 1.5.6.  Anaerobic survival of B. bifidum 35°C in a phosphate buffer
microcosm.  Bifidobacteria were enumerated on RCA, B25, and YN6.  Each
data point represents the mean of three replicates. Error bars indicate the
standard deviation.
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Table 1.14. Actual and relative numbers of B. bifidum incubated anaerobically at
35°C in phosphate buffer microcosms plated on nonselective and selective media.

Total

Populationa

% Injuryb % Decreasec

Time YN6 B25 RCA YN6 B25

0 2.07 X 105 39.39 29.90

4 2.19 X 105 56.55 71.65 -5.47 24.40 57.34

8 2.42 X 104 52.54 95.74 88.31 90.85 99.29

14 1.59 X 103 90.76 93.91 99.23 99.88 99.93

27 3.33 X 10-1 100.00 100.00 >99.99 100.00 100.00

a  as enumerated on RCA
b  % injury was determined for each medium by comparing selected population  to

the total population surviving at each sampling time
c  % decrease was determined by comparing the population at time x with the

population at time zero for each medium
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Figure 1.5.7.  Anaerobic survival of B. bifidum and E. coli at 35°C in a
phosphate buffer microcosm.  Bifidobacteria were enumerated on B25, B50,
and YN6 agar and E. coli was enumerated on mFC agar.  Each data point
represents the mean of three replicates. Error bars indicate the standard
deviation.
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CHAPTER 2

Occurrence of Bifidobacterium spp. in
Constructed Wetlands Receiving Primary Treated Sewage
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INTRODUCTION

Bifidobacteria have been proposed as general indicators of fecal pollution of

water and, in particular, as differential indicators to distinguish human versus animal

sources of pollution.  They are obligate anaerobes with complex nutrient requirements

and are exclusively of fecal origin.  Despite these apparent advantages, there is a

deficiency of data documenting the behavior of bifidobacteria in external

environments such as soil, sediment, and ground- and surface-waters.  This lack of

attention can largely be attributed to a lack of an acceptable enumeration medium, as

well as the inherent difficulty in regularly working with anaerobes.

Gyllenberg et al. (23) stressed that the importance of the specificity of

bifidobacteria as indicators of fecal pollution “may depend largely upon their extra-

enteral survival, particularly with the survival of other bacteria of intestinal origin, for

example, coliforms and enterococci.” Studies addressing the survival of bifidobacteria

in surface waters have been reported (14, 17, 23, 43).  However, there has been a

paucity of information on the behavior of bifidobacteria in saturated soils and

sediments, such as aquifers and wetlands, in which anoxic or microaerophilic

conditions can occur and even prevail.  This is particularly important in the United

States as greater than 50 percent of the population receive their drinking water from

groundwater sources and the most common water quality problem in rural water

supplies stems directly from bacterial contamination from septic tanks (55).

Alternative waste treatment systems such as constructed wetlands have been installed
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in situations where more traditional systems have proven ineffective.  Pathogens are

either removed by the filtering process through the wetland matrix or are rendered

non-viable by the retention time in the wetland.  The microaerophilic zones found in

these wetlands should allow the survival of bifidobacteria and thus permit the use of

this genus as indicators of contamination of drinking water supplies.  Detection of

bifidobacteria in drinking water supplies possibly tainted from these systems could

directly signify a human source of contamination.  A more comprehensive

understanding of the fate of bifidobacteria in these environments may enable a better

evaluation of the quality of our nation’s drinking water supplies, especially those of

groundwater sources, as well as a way to pinpoint the source(s) of contamination.

The purpose of this investigation was to asses the effectiveness of published

selective media (YN6, BIM25, and BIM50 agar) in monitoring the fate of

bifidobacteria from constructed wetlands receiving primary treated sewage using.

The specific objectives of this study were: 1) to examine the occurrence of

bifidobacteria in constructed wetlands receiving primary treated sewage; 2) to

evaluate published selective media for their sensitivity and selectivity for the recovery

of bifidobacteria; and, 3) to observe the relative survival of bifidobacteria versus

traditional indicator bacteria in constructed wetlands.
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MATERIALS AND METHODS

2.2.1  Wetlands.  The constructed wetlands consisted of 20 cells each

receiving primary treated sewage (Figure 2.2.1).  The wetlands were located at the

municipal sewage treatment plant in Morgantown, West Virginia.  Five different plant

treatments were tested: no plants, Scirpus spp. (bulrushes), Juncus spp. (rushes),

Typha spp. (cattails), and a mixture of the three genera.  A pair of wetland cells were

assigned to each plant treatment.  In addition, two different depths, shallow and deep,

were used for each plant treatment, thus totaling 20 wetland cells (Table 2.2.1).  To

postpone freezing as long as possible, the cells were wrapped with R25 fiberglass

insulation.  All hoses and PVC piping were also wrapped with foam insulation.

2.2.2  Sample collection.  Water samples were collected from spigots installed

in the bottom of the wetlands in 1 L sterile glass screw cap bottles, placed in a cooler,

and transported back to the laboratory within 1 hour of collection.  During collection,

an effort was made to completely fill the bottles so that there was no air in the head

space when the cap was replaced.  Upon arrival, the samples were placed in a 13°C

refrigerator until processing.  Field measurements of temperature and pH were

recorded for each sample upon collection.

2.2.3  Enumeration of bacteria.  Enumeration of Bifidobacterium spp. and

fecal coliforms were completed periodically for the influent and at least two plant

treatments.  Bifidobacterium spp. were initially recovered by spread plating aliquots

onto YN6, B25, and B50 media (Tables 1.1, 1.2).  For enumeration of bifidobacteria
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Figure 2.2.1.  Schematic diagram of constructed wetland site located at the
Morgantown, WV sewage treatment plant.  See Table 2.2.1 for key to
treatments and depths in this figure.

 19

 18

 20

 17

 16

 15

 14

 13

 12

 11  10

 9

 8

 7

 6

 5

 4

 3

 2

 1

 INFLUENT

  EFFLUENT

 WETLAND

To  pump



95

TABLE 2.2.1.  Summary of treatments for constructed wetlands

Plant Wetland
treatment  numbera Color

No plants 4s, 19s green

No plants 7d, 16d gray

Scirpus spp. 2s, 17s blue

Scirpus spp. 3d, 14d brown

Juncus spp. 8s, 13s red

Juncus spp. 5d, 20d white

Typha spp. 10s, 11s yellow

Typha spp. 9d,18d dark blue

Mixture 6s, 15s pink

Mixture 1d, 12d dark green

a Wetland cell number followed by a letter denotes depth of cell, (s)hallow or (d)eep
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on B25 and B50 media, the resuscitative technique described by Munoa and Pares

(35) was employed.

Wetland samples were diluted in 0.1% peptone, and 0.1 ml portions were

spread plated onto RCA (Difco) and incubated at 35°C for 5 h under anaerobic

conditions (GasPak, BBL).  Twenty ml of modified RCA, now designated B25 or

B50, was carefully overlaid onto the plates, and were then incubated for 4 days under

the same conditions described above.  The only modification to the Munoa et al. (35)

procedure was to shorten the incubation from five to four days.

2.2.4  Fecal coliform enumeration.  Fecal coliforms were recovered using

either the standard membrane filtration technique described in Standard Methods for

the Examination of Water and Wastewater (2) with 0.45 um filters placed on mFC

agar or by appropriately diluting each sample followed by spread plating an aliquot

onto mFC agar.  These plates were incubated aerobically at 44.5°C for 24 h.

2.2.5  Enterococci enumeration.  Enterococci were recovered either by the

standard membrane filtration technique as described in Standard Methods for the

Examination of Water and Wastewater  (2) or by appropriately diluting each sample

followed by spread plating an aliquot onto m-Enterococcus agar (Difco).  These plates

were incubated aerobically at 35°C for 48 h.

2.2.6  Bifidobacterium spp. presumptive identification.  For the B25 and B50

media, Munoa et al. (35) reported a high degree of correlation between colonial

morphology and type of bacteria enumerated.  These criteria, as described below,

were adopted in the current study to categorize the colonial types found on the

samples from the constructed wetlands.  White colonies with a diameter that clearly
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exceeded 2 mm were always Bifidobacterium spp.  All red colonies with a diameter

less than 2 mm were formed by facultatively anaerobic Gram-positive cocci.  Pink

colonies were formed by cocci, bifidobacteria, and other rods.  No Gram-negative

bacteria were isolated on B25.

Resnick et al. (42) described bifidobacteria colonies on YN6 as presumptively

positive if they were 1 to 2 mm in diameter, green (light-dark), circular, entire, convex

or pulvinate, smooth, butyrous, and opaque and displaying typical bifidobacterial

morphology upon Gram staining.  These characteristics were used to distinguish

bifidobacterial colonies on YN6 plates.

On all three bifidobacterial selective media, colony counts were categorized

into the major colonial groups found on the media.  For B25 and B50, these categories

were, white, pink, and red.  On YN6, these categories were small blue-green

(circular), large blue-green (irregular), white, and filamentous.

2.2.7  Isolation of presumptive bifidobacterial colonies.  For B25 and B50

plates, all presumptive bifidobacterial colonies were located between the agar layers.

Isolating one particular colony necessitated extreme caution to prevent contamination

of the isolate.  One hundred µl sterile pipet tips were inverted and inserted into the

agar with a circular twist until the top agar layer was penetrated.  Then, using heat

sterilized forceps, the plug was removed from the plate and placed into a screw-cap

test tube containing 10 ml of RCM.  These tubes were vortexed and incubated

anaerobically (GasPak) at 35°C for 48 to 72 h. Thereafter, a 1 ml aliquot from each

sample was diluted and spread plated onto B25.  These plates were again incubated

under the conditions described above.  A colony was picked from these plates which
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typified the characteristic bifidobacterial colonial morphology.  This procedure was

repeated two more times for each isolate to ensure a homogeneous sample.  The

resultant isolates were examined for their Gram reaction, motility, ability to grow

aerobically, and carbohydrate utilization.  This procedure is summarized in Figure

2.2.2.

2.2.8  Bifidobacterial enumeration media.  Modified bifidobacteria

enumeration media were used to test the feasibility of using bifidobacteria as fecal

indicators.  Modifications included lowering the pH, altering the carbon source,

and/or the addition of selective agents (Table 2.2.2).  These modified media were

named bifidobacterial enumeration media (BEM).  In addition, a similar resuscitative

technique used by Munoa and Pares (35), whereby the samples were spread-plated on

a non-selective basal medium and incubated for five hours and then overlaid with the

selective agar, was employed to maximize bifidobacterial recovery.  The challenge

here was to remove possible extraneous carbon sources, such as starch, sodium

acetate, and beef extract, as well as to use a more selective carbohydrate source.

These modifications combined with the antibiotic regime from the B25 or B50

formulations, a pH indicator, such as phenol red, and/or propionic acid were used in

an effort to increase differentiation and selectivity for bifidobacteria.  All B25, B50,

and BEM plates were overlaid with the respective basal formulations plus the

antibiotics and selective agents, but not the pH indicator

2.2.9  Fermentation patterns of bifidobacteria isolates.  Ten bifidobacteria

isolates gathered from the constructed wetlands were examined for and differentiated

on their carbohydrate fermentation patterns.  Modified MRS broth reported by Roy et
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Figure 2.2.2.  Identification of isolates as members of the genus
Bifidobacterium.
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Table 2.2.2a. Selective medium formulations with Reinforced Clostridial
Agar as the basal component.

Mediuma

Compound B25 B50b B25B B50B
b B50B1b

Reinforced Clostridial Agarc X X X X X
Bromocresol Green X X
Iodoacetic Acid X X X X X
Kanamycin sulfate X X X X X
Nalidixic Acid X X X X X
Polymyxin B sulfate X X X X X
Propionic Acid X X
Sodium Hydroxide (10 N) X X
2,3,4-triphenyltetrazolium
   chloride

X X X X X

a Agar overlay technique described by Munoa et al. (35) was used in all plating experiments
b B50, B50B, and B50B1 formulations contain double the concentration of iodoacetic acid
c Stock medium formulation contains tryptose, beef extract, yeast extract, dextrose, NaCl,
   starch, cysteine-HCl, sodium acetate, and agar

Table 2.2.2b. Basal and selective Bifidobacterial Enumeration media (BEM)
formulations.

Mediuma

Compound BEMb BEM1 BEM1B BEM3 BEM6B BEM6C
Tryptose X X X X X X
Yeast extract X X X X X X
Sodium chloride X X X X X X
Cysteine-HCl X X X X X X
Agar X X X X X X
Bromocresol greenc X
Bromocresol purplec X
Dextrose X
Lactose X X X X
Phenol Redc X
Nalidixic acidd X X X X X
Polymixin B sulfated X X X X X
Kanamycin sulfated X X X X X
Iodoacetic acidd X X X X X
2,3,4-triphenyltetrazolium
   chlorided

X X X X X

a Agar overlay technique described by Munoa et al. (35) was used in all plating experiments
b Basal BEM formulation is as follows (g/l): trypotse (10), yeast extract (3), NaCl (5), cysteine-HCl
   (0.5), and agar (15).
c pH indicators were included in the bottom layer only
d Selective agents were prepared as described by Munoa et al. (35) and included in the upper layer but
   not the lower layer of agar
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al. (45) supplemented with 6 different sugars (Table 2.2.3) was used to observe these

carbohydrate utilization patterns.  Each isolate was inoculated into MRS broth

supplemented with arabinose, cellobiose, lactose, mannose, ribose, or salicin.

Inoculated tubes were incubated anaerobically in GasPak jars (BBL) at 35°C for 72 to

96 h.

Acid production without gas from carbohydrate fermentation was considered

to be a positive reaction and was detected by a change in color of the phenol red

indicator from red to yellow.

2.2.10  Statistical analysis.  All statistical procedures were computed using

SigmaStat (Jandel Scientific, San Rafael, CA).  Natural logarithmic transformations

of the observed counts were obtained.
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Table 2.2.3.  Composition of modified MRS broth

Compound Concentration (g/l)
Proteose peptone no.3 10
Casamino acids 5
Yeast extract 10
Beef extract 1
Tween 80 1 ml
Ammonium acetate 2
MgSO4 0.1
MnSO4 •  H2O 0.05
Na2SO4 2
KH2PO4 1.92
Na2CO3 0.2
CaCl2 •  2H2O 0.1
L-cysteine-HCl 0.5
Phenol red 0.18
carbohydratea 1.0%

a  Carbohydrates used: arabinose, cellobiose, lactose, mannose, ribose, and salicin.
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RESULTS

2.3.1  Enumeration of bifidobacteria.  A preliminary sampling from a limited

number of wetlands was gathered to test the effectiveness of the bifidobacterial

enumeration procedure.  This survey consisted of sampling the influent, cell 1, and

cell 11.  These two cells were chosen because cell 1 was closest to the influent pipe

and cell 11 was the furthest from the influent pipe.  The results of this sampling are

summarized in Table 2.3.1.  High numbers of bifidobacteria were encountered in

these samples with no more than a 2 log difference between bifidobacteria and fecal

coliforms in the influent.  Numbers of bifidobacteria were greater than the numbers of

enterococci found in all three samples.  The dissolved oxygen level in cell 1 was

twice that in cell 11, but this may be a function of the temperature and depth of the

wetland (Table 2.3.1).

Due to the success of the preliminary sampling, more samples were collected

the following month.  This time one sample from each plant treatment, a total of 10

samples, and the influent were collected (Table 2.3.2.).  With the exception of cell 8,

bifidobacteria were detected in all cells and the influent.

Occurrences and comparisons of bifidobacteria (BIF), fecal coliforms (FC),

and enterococci (ENT) densitites in constructed wetlands receiving primary treated

sewage on (a) September 1994 and (b) October 1994 are shown in Figure 2.3.1.

Bifidobacteria were enumerated on B50 (and also YN6 agar for the September

sampling), fecal coliforms were enumerated on mFC agar, and enterococci were

enumerated on m-Enterococcus agar.  Although bifidobacteria occurred in primary
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Table 2.3.1.  Initial comparison of recoveries of bifidobacteria (BIF), fecal coliforms
(FC), and enterococci (ENT) from constructed wetlands receiving primary treated

sewage sampled on September 9, 1994

CFU/mL
Sample pH Temperature(°C) D.O.(mg/L) BIFa FC ENT
Influent 6.97 24.3 0.28 1.8 X 105 1.8 X 107 2.4 X 104

Cell 1 6.61 19.2 2.56 1.9 X 103 4.5 X 103 1.0 X 102

Cell 11 6.71 22.2 1.18 2.1 X 104 8.0 X 105 9.7 X 102

a  Enumerated on B50.
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Table 2.3.2.  Comparison of recoveries of bifidobacteria (BIF), fecal coliforms (FC),
and enterococci (ENT) from constructed wetlands receiving primary treated sewage

sampled on October, 5, 1994

CFU/mL
Sample pH Temperature(°C) D.O.(mg/L) BIFa FC ENT

Influent 6.67 23.0 0.17 2.4 X 105 5.0 X 107 2.9 X 105

Cell 1 5.85 15.5 1.65 1.0 X 103 8.0 X 102 4.3 X 102

Cell 2 6.46 15.7 0.73 1.0 X 102 2.7 X 103 4.8 X 101

Cell 3 6.41 15.4 1.63 1.2 X 103 4.0 X 102 8.9 X 101

Cell 4 6.84 16.0 0.53 1.8 X 103 6.3 X 103 1.2 X 102

Cell 5 6.64 16.0 1.05 1.9 X 103 6.0 X 103 5.1 X 101

Cell 6 6.09 14.7 2.12 1.0 X 102 1.5 X 103 1.6 X 101

Cell 7 6.83 15.7 0.79 2.0 X 102 9.0 X 102 1.8 X 101

Cell 8 6.53 14.8 1.13 NDb 1.0 X 102 <1
Cell 9 6.39 15.7 2.14 1.0 X 103 6.0 X 102 5.0 X 100

Cell 11 6.23 16.2 0.78 2.0 X 102 1.4 X 103 4.4 X 101

All Cellsc 6.42 15.6 1.13 4.9 X 102 1.1 X 103 4.5 X 101

a  Enumerated on B50.
b  ND, not detected.
c  Geometric mean.
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Figure 2.3.1. Occurrences and comparisons of bifidobacteria (BIF), fecal coliforms
(FC), and enterococci (ENT) densities in constructed wetlands receiving primary
treated sewage on (a) September 1994 and (b) October 1994
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treated sewage approximately 100-fold less than fecal coliforms, they exhibited a 100-

to 1000-fold less reduction than the fecal coliforms after passage through the wetland.

Not shown in Tables 2.3.1 and 2.3.2 was the performance of YN6 agar. YN6

agar was observed to be inadequate for enumerating bifidobacteria from primary

treated sewage or from any of the wetlands.  With the original samples in September,

YN6 enumerated bifidobacteria in densities similar to those obtained on B50.

However, when YN6 was used in a second sampling date in September and one in

October, no colonies grew on this medium.  In addition, by the time the 4-day

incubation was finished, many of the YN6 plates were overgrown with fungus-like

organisms notably at the lower dilutions (not shown). This inconsistency in the

performance of YN6 is unacceptable in its use to enumerate bifidobacteria –

especially in a laboratory testing possible fecal contamination of a potable water

supply.

The samples taken in September and October 1994 demonstrated that

bifidobacteria can be observed in the constructed wetlands and in primary treated

sewage.  Wetland cells 1 and 11 and the primary treated sewage were then chosen to

be monitored over the next 4 months to see how the densities of bifidobacteria, fecal

coliforms, and enterococci fluctuated with the natural changes in temperature,

moisture, light, etc.  The occurrence of bifidobacteria, fecal coliforms, and

enterococci in primary treated sewage over time is shown in Figure 2.3.2.  Fecal

coliforms maintained a higher population than either the bifidobacteria or enterococci

during the course of the experiment.  The bifidobacteria exhibited less fluctuation in
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     Figure 2.3.2.  Occurrence of bifidobacteria (BIF), fecal coliforms (FC), and
enterococci (ENT) in primary treated sewage beginning September, 1994.
Bifidobacteria were enumerated on B50, FC were enumerated on mFC agar,
and ENT were enumerated on mEntercoccus agar.



109

their density over time than the fecal coliforms – always within approximately one

order of magnitude for all sampling dates.  This corroborates the data from the

laboratory microcosm experiments at 13°C in Chapter 1.  Bifidobacteria in those

microcosms exhibited a longer survival periods and there were cold temperatures

occurring between the 4th (December) and 5th (March) sampling times in the wetlands.

The occurrence of bifidobacteria, fecal coliforms, and enterococci in

constructed wetland cell 1 is shown in Figure 2.3.3.  The density of fecal coliforms

was reduced by the wetland by approximately 3.5 orders of magnitude on all sample

dates.  Bifidobacteria were reduced by approximately 2 logs and again exhibited less

fluctuation in their density over time than the fecal coliforms.  Figure 2.3.4 shows the

occurrence of bifidobacteria, fecal coliforms, and enterococci in wetland cell 11.

Initial reductions of all three indicator organisms were approximately 1 order of

magnitude.  However, by the third sample date (November), fecal coliforms were

reduced by 6 orders of magnitude, bifidobacteria by approximately 3 orders of

magnitude, and enterococci were on the verge of becoming non-detectable.  These

quite large reductions could be attributable to brief periods of cold weather causing

the wetland cells to freeze.  When frozen, the influent was turned off to prevent the

primary treated sewage from spilling over the rim of the wetland cell.

2.3.2  Bifidobacterium enumeration media.  Results from the initial samples

showed that YN6 agar was an ineffective medium due to its lack of selectivity.  On

some sampling dates YN6 plates exhibited overgrowth from filamentous organisms,

while on other dates no growth was apparent on any YN6 plates even though growth
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Figure 2.3.3.  Occurrence of bifidobacteria (BIF), fecal coliforms (FC),
and enterococci (ENT) in constructed wetland cell 1 beginning
September, 1994.  Bifidobacteria were enumerated on B50, FC were
enumerated on mFC agar, and ENT were enumerated on
mEnterococcus agar.
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     Figure 2.3.4.  Occurrence of bifidobacteria (BIF), fecal coliforms (FC), and
enterococci (ENT) in constructed wetland cell 11 beginning September,
Bifidobacteria were enumerated on B50, FC were enumerated on mFC agar,
and ENT were enumerated on mEnteroccus agar.
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was observed on other bifidobacterial selective media at the same dilutions.  Efforts

were made to slightly modify the formulation and preparation of the YN6 medium,

but the enumeration problems continued.  Because of this lack of selectivity,

reproducibility and reliability, the use of YN6 was discontinued in this study.

It became clear after a few samples that the present isolation media needed

modification in order to more effectively enumerate the bifidobacteria.  Therefore, an

effort was made to modify these media by using a lower pH, changing the main

carbon source, eliminating extraneous carbon sources, and adding additional selective

agents, such as propionic acid.  These modified media were named Bifidobacteria

Enumeration Media (BEM) and numbered sequentially with each modification (Table

2.2.2). All modified media were inoculated concurrently with B25 or B50 for

comparison on subsequent samplings.  Promising media were those that inhibited

more effectively by percentage the large number of background colonies that appeared

on BIM25 and BIM50 as well as differentiated more clearly between bifidobacterial

and nonbifidobacterial colonies.

Both B25 and B50 media were semi-sensitive in enumerating bifidobacteria.

B50 was used in conjunction with B25 to observe the effects of increasing the

selectivity of the medium on bifidobacteria recovered from aquatic samples.  This

effect is shown in Figures 2.3.5 and 2.3.6 which denote the relative numbers of

colonial morphological types for constructed wetland cell 1 and the primary treated

sewage, respectively.  Since the formulation of the media differed only in the

concentration of iodoacetic acid, the expected colonial types were similar.  While

bifidobacteria represented 21.4 percent of the total bacteria enumerated on B25 agar
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Figure 2.3.5.  Occurrence of major colonial morphology categories on B25
and B50 agar from constructed wetland cell 1 sampled on September 9, 1994.
The BIF designation covers white colonies which indicated bifidobacteria,
Type I were red colonies which indicated Gram-positive anaerobic cocci, and
Type II were pink colonies which covers cocci, bifidobacteria, and other rods.
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Figure 2.3.6.  Occurrence of major colonial morphology categories on B25
and B50 agar from primary treated sewage sampled on September 9, 1994.
The BIF designation covers white colonies which indicated bifidobacteria,
Type I were red colonies which indicated Gram-positive anaerobic cocci, and
Type II were pink colonies which covers cocci, bifidobacteria, and other rods.
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from cell 1 (Figure 2.3.5), they comprised 68.4 percent of the total number of bacteria

enumerated on B50.  The red colonial type constituted 38.1 percent of the total

number of cells on B25 while that number dropped to 21.1 percent on B50.  The pink

colonial type, which could have included some bifidobacterial colonies, dropped from

40.5 percent of the total on B25 to 10.5 percent when enumerated on B50.

Similar results were seen in the primary treated sewage (Figure 2.3.6).

Bifidobacteria comprised 30.4 percent of the total when enumerated on B25, while

they increased to 51.9 percent of the total when enumerated on B50.  The occurrence

of the red colonial type dropped from 37.5 percent of the total when enumerated on

B25 to 11.1 percent of the total when enumerated on B50.  While the percentage of

pink colonies increased from 32.1 percent on B25 to 37.0 percent on B50, a possible

explanation could be that the increase was actually bifidobacterial colonies exhibiting

the pink colonial morphology.  Munoa et al. (35) observed that a portion of the pink

colonial type were confirmed as bifidobacteria.

The occurrence of bifidobacteria on B50 and BEM3 media in (a) primary

treated sewage and (b) constructed wetland cell 11 sampled on September 23, 1994 is

shown in Figure 2.3.7.  Major colonial types on B50 consisted of white colonies

representing bifidobacteria, red colonies representing Gram-positive cocci (type 1),

and pink colonies that consisted of cocci, bifidobacteria and other rods (type 2).

BEM3, lacking beef extract, appeared more pale in color than B50 and exhibited the

same main colonial morphologies as B50.  The paleness of BEM3 contributed to an

increased difficulty in distinguishing bifidobacterial colonies as they appeared white
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Figure 2.3.7. The occurrence of bifidobacteria on B50 and BEM3
media in (a) primary treated sewage and (b) constructed wetland cell
11 sampled on September 23, 1994
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underneath a white agar overlay.  B50 adequately enumerated bifidobacteria from

both primary treated sewage and cell 11.  Bifidobacteria comprised 89.9% of the total

CFU on the B50 plates in the primary treated sewage and  91.2% of the total CFU on

the B50 plates in cell 11. BEM3, which contains dextrose as the major carbohydrate

source, did not inhibit non-bifidobacteria as effectively as B50 nor did it recover as

many bifidobacteria as were observed on B50.

Figure 2.3.8 shows a comparison of various bifidobacteria enumeration media

for monitoring the occurrence of bifidobacteria in primary treated sewage on

December 7, 1994.  On all media with the exception of B50b1, which contained

propionic acid as an additional selective agent, there were three main types of

colonies observed.  It appeared that the addition of propionic acid (5ml/l) – the same

amount used by Beerens (7) -- further reduced the number of Gram positive cocci

(Type 1 in figure) and effectively inhibited the occurrence of the Type 2 category

documented by Munoa et al. (35) observed.  However, the total number of CFU

observed on B50b1 was approximately one-third the total observed on B50.  The total

number of CFU on B50b1 was less than the number of presumptive bifidobacteria on

B50.  Therefore, B50b1 was considered too inhibitory to the bifidobacterial

population to be used as a quantitative medium.  BEM1 effectively enumerated

bifidobacteria in comparable numbers to B50 with the additional advantage of easier

differentiation of bifidobacterial CFU.  This may explain the slight increase in type 1

CFU counts for the BEM1 compared to the B50 plates.  BEM1 does not contain the

extraneous carbon sources found in RCA which is the basal medium used in the

formulation of B50.  In addition, BEM1 contains lactose as a main carbohydrate



118

Medium

B50 B50b B50b1 BEM1 BEM1b

n
u
m

b
e
r 

ce
lls

 p
e
r 

m
l

103

104

105

Total 
Bifidobacteria 
type 1
type 2

Colony type

Figure 2.3.8. Comparison of various bifidobacteria enumeration media for
monitoring the occurrence of bifidobacteria in primary treated sewage on
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source as opposed to dextrose in the B50 formulation.  BEM1b, which contains

bromocresol green as a pH indicator, increased the ability to differentiate

bifidobacteria CFU over BEM1.  Any growth of bifidobacteria on these plates caused

a ring of yellow which increased as the colonies grew due to the production of acid by

the bifidobacteria.  Although it was assumed that other types of bacteria growing on

the plates could produce acid and therefore zones of yellow, the color change

facilitated bifidobacteria colony recognition in conjunction with the other colonial

morphology parameters used. The occurrence of bifidobacteria on B50, BEM6B, and

BEM6C media in constructed wetland cell 11 sampled on July 7, 1995 is shown in

Figure 2.3.9.  White colonies represent bifidobacteria, type 1 colonies denote small

red colonies, and type 2 colonies denote pink colonies.  Although B50 enumerated

bifidobacteria from the wetland, its inability to effectively inhibit non-bifidobacteria

and differentiate bifidobacteria makes this medium inefficient to regularly monitor

bifidobacteria from even moderate sample numbers.  BEM6B, which contains lactose

as the major carbohydrate source and bromocresol purple as a pH indicator, did not

effectively enumerate or differentiate bifidobacteria. BEM6C differed from BEM6B

only in that phenol red was used as the pH indicator.  Bifidobacteria comprised 28.4%

of the total CFU observed on the BEM6C plates compared to 10.8% of the total

observed on the BEM6B plates.  Phenol red appeared to be less inhibitory than

bromocresol purple to the bifidobacteria population.  However, BEM6C was not

sufficiently selective as 71.6% of the total CFU were considered non-bifidobacteria.

2.3.3  Bifidobacterial fermentation patterns.  Ten bifidobacteria isolates

gathered from the constructed wetlands and the primary treated sewage were
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Figure 2.3.9. The occurrence of bifidobacteria on B50, BEM6B, and BEM6C
media in constructed wetland cell 11 sampled on July 7, 1995. . Error bars
indicate the standard deviation.
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examined for and differentiated on their carbohydrate fermentation patterns (Table

2.3.3).  The results of the fermentation assay is shown in Table 2.3.4.  Lactose was

used as a positive control.  Arabinose, salicin, mannose, ribose, and cellobiose

differentiated the isolates into groups based on the scheme by Roy et al. (45).

According to this scheme, bifidobacteria can be differentiated into two main groups

based on their ability to ferment arabinose. All 10 environmental isolates examined

were able to ferment arabinose.  Furthermore, the environmental isolates all fell into

two subgroups based on their ability to ferment salicin;  salicin-negative (sub-cluster

B1) and salicin-positive (cluster B2) groups.  Some discrepancies were observed, but

this can be attributed to stock ATCC strains being used in the study by Roy et al. (45)

while this study used environmental isolates from the constructed wetlands.  For

example, isolates 4, 5, and 7 were keyed out to Bifidobacterium pseudocatenulatum.

However, these isolates also fermented cellobiose, which is inconsistant with the

fermentation pattern for that species according to Roy et al. (45).  A more accurate

species differentiation could be made if, in addition to the stock strains, known

environmental isolates would be included in future studies.  All isolates examined fell

into groups that are of human origin.  Suprisingly, not one of the isolates showed the

fermentation characteristics of B. bifidum, one of the most ubiquitous species of this

genus.
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Table 2.3.3.  Source and isolation medium of each environmental isolate used in the
differentiation assay.

Isolate Sourcea Isolation mediumb

1 8 BEM1 + PA
2 Inf B25
3 1 BEM1 + PA
4 1 BEM1 + PA
5 8 BEM1 + PA
6 1 BEM1 + PA
7 1 BEM1 + PA
8 1 BEM1 + PA
9 1 BEM1 + PA
10 3 BEM1b

a Number indicates wetland cell number, inf indicates influent.
b See Table 2.2.2 for medium recipe, PA = propionic acid.
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Table 2.3.4.  Carbohydrate fermentation patterns of the 10 environmental
bifidobacterial isolates.

Carbohydrate
Isolate Lactose Arabinose Salicin Mannose Ribose Cellobiose Species

1 + + - + + - longum or infantis
2 + + - + + - longum or infantis
3 + + - + + - longum or infantis
4 + + + + + + pseudocatenulatum
5 + + + + + + pseudocatenulatum
6 + + + + + - breve, infantis or

pseudocatenulatum
7 + + + + + + pseudocatenulatum
8 + + + + + - breve, infantis or

pseudocatenulatum
9 + + - + + - longum or infantis
10 + + - + + - longum or infantis
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DISCUSSION

Groundwater supplies 95 percent of the rural homes in the US and 97 percent

of the rural homes on private supplies in West Virginia (1, 11).  Unfortunately, the

trend of groundwater pollution is increasing, and the most common water quality

problem in rural water supplies is from bacterial contamination from septic tanks

(54,55).  Small constructed wetlands can be used as alternatives to traditional septic

systems especially in situations where septic systems are rendered ineffective

(19,24,58).  The wetland acts to remove pathogens either through filtration or by

retention in the wetland matrix.

The purpose of this study was to monitor the fate of bifidobacteria and

traditional indicator bacteria in constructed wetlands receiving primary treated

sewage.  Bifidobacteria, a proposed indicator group, were monitored in an effort to

describe their behavior in an external aquatic environment.  As discussed in Chapter

1, bifidobacteria are exclusively of fecal origin, excreted in very high densities, do not

exhibit aftergrowth outside the host, and some species are exclusive to humans.

Detection of bifidobacteria in the constructed wetlands would indicate the presence of

fecal material.

Two of the specific objectives of this study were to examine the occurrence of

bifidobacteria in constructed wetlands receiving primary treated sewage and to

observe the relative survival of bifidobacteria versus traditional indicator bacteria in

the wetlands.  Initial samples gathered from the wetlands and the primary treated
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sewage demonstrated that bifidobacteria can be enumerated from these systems

(Tables 2.3.1 and 2.3.2).  The bifidobacterial population of the influent from the

September sampling was approximately 2 X 105 CFU/ml and was reduced 90 to 99%

after treatment in the constructed wetlands.  This reduction may be primarily due to

the increased level of dissolved oxygen in the wetlands compared to the influent.

While densities of bifidobacteria averaged approximately 2 logs less than fecal

coliforms in the primary treated sewage, their populations were similar to fecal

coliforms after retention in the wetland.  The advantage here would be that with a

fermentation test, the presence of bifidobacteria could be directly linked to human

fecal material.  The main disadvantage would be the time involved to complete the

presumptive and confirmation test.  With a minimum of 4 days of incubation at each

step, it would take about 2 weeks from the time of sampling until the confirmation

results were available for each sample.  The population of bifidobacteria in the

wetlands exhibited less fluctuation over time than the fecal coliforms or enterococci.

In both the primary treated sewage and wetland cell 1 sample, populations of

bifidobacteria fluctuated by approximately 1 order of magnitude over the time period

they were monitored.  Even in the wetland 11 samples, bifidobacteria fluctuated over

4 orders of magnitude, which was still less than the fluctuation of fecal coliforms over

the same period.

The second specific objective of this study was to evaluate published selective

media for their sensitivity and selectivity for the recovery of bifidobacteria from the

wetlands and the primary treated sewage.  One major problem encountered in this part

of the study was the ineffectiveness of YN6 as a reliable selective medium.  YN6
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exhibited a lack of selectivity for bifidobacteria from contaminated water samples;

overgrowth by filamentous organisms were a problem on most of the sample dates

YN6 was used, while periodically no growth at all was observed on the YN6 plates

even though bifidobacterial densities on other selective media were in the 104 to 105

cells per ml range.  The use of YN6 was discontinued about midway through the

course of this study due to the reliability and reproducibility issues.  It is this author’s

opinion that the YN6 formulation published by Resnick and Levin (42) should not be

used to reliably enumerate bifidobacteria from aquatic samples.

B25 and B50 selective media enumerated bifidobacteria from the wetlands

and primary treated sewage.  The main problem with these media is their lack of

selectivity.  Approximately 70 to 80 percent of the cells enumerated on the B25 plates

and approximately 30 to 50 percent of the cells enumerated on B50 were not

considered even presumptive bifidobacterial colonies.  At higher dilutions,

overgrowth quickly appeared on these plates.  Keep in mind as well that in the

microcosm experiments discussed in Chapter 1, the use of B25 or B50 to enumerate

bifidobacteria caused a significant underestimation of their density even at lower

temperatures, so the true density of bifidobacteria in the wetlands may have been as

much as an order of magnitude greater.

While not an original objective of this study, modification of published

bifidobacterial selective media was performed in an attempt to improve the ability to

enumerate and identify bifidobacteria from the wetland samples.  The disadvantages

of published selective media for the enumeration of bifidobacteria, namely the lack of

ease and extensive amount of time involved in confirmation of presumptive colonies,



127

prevent the use of bifidobacteria as an indicator organism on a routine basis.  The

most effective system of microbiological monitoring of water sources requires simple,

rapid, and relatively inexpensive tests to determine the presence of indicator bacteria

on a routine basis (48).  The lengthy procedures required for the preparation of media,

incubation of plates, and confirmation of colonies give rise to high costs related to

man-hours and materials and further compound the use of bifidobacteria as indicator

organisms.  The modifications were performed to simplify recognition of

bifidobacteria colonies as well as increase recovery of sub-lethally injured cells.

Increasing the ability to differentiate bifidobacterial colonies – at least in the

presumptive stage – would decrease the time and materials needed in the confirmation

process.

At first, the modifications consisted of additions to the B25 and B50

formulations found in the literature (35).  These modifications included the addition

of bromocresol green as a pH indicator and propionic acid as a selective agent.

Bifidobacteria ferment dextrose to acetate and lactate, so a light yellow zone in the

medium would surround a bifidobacterial colony.  While other bacteria were assumed

to be able to ferment the dextrose in the medium, the yellow zone combined with the

distinctive colonial morphology would enhance the recognition of bifidobacteria.

Propionic acid was included since it has been shown to inhibit the growth of members

of the family Enterobacteriaceae, strains of Enterococcus, Staphylococcus, and

Micrococcus spp., and other Gram-positive bacteria while most strains of

bifidobacteria have been shown to grow on it to the same degree as a non-selective

medium (6,7).  Five ml/l of propionic acid was added to the B25 and B50
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formulations and then adjusted to a pH of 5.0 with approximately 3 ml of 10 N

sodium hydroxide.

A comparison of these modifications is shown in Figure 2.3.8.  A slight

increase in the numbers of bifidobacteria was observed on the B50b plates, but this

can be attributed to higher overall numbers of bacteria since the numbers of type 1

and type 2 colonies were constant.  Type 2 colonies were absent on B50b1 medium,

but the overall numbers of bacteria enumerated was smaller than the number of

bifidobacteria enumerated on either B50 or B50b.  While it was stated in the Results

section of this chapter that B50b1 was considered too inhibitory to be used as a

quantitative medium, it should be noted here that the bifidobacterial colonies were

quite easily differentiated from the other colonies and readily countable.  As the main

aim of the medium modifications was to simplify recognition of bifidobacterial

colonies, the use of B50b1 would seem preferable to B50 for enumeration of

bifidobacteria from a constructed wetland.  One must keep in mind, however that

given the performance of the published selective media compared to the non-selective

medium in the controlled microcosm studies discussed in Chapter 1, use of B50b1

will result in an underestimation of a log or more of the true bifidobacterial

population.

It was this problem of inhibition that prompted more extensive modifications

involving the stock RCM formulations used as a basis for the B25 and B50 selective.

Any possible extraneous carbon sources (i.e., beef extract, starch, sodium acetate, and

dextrose) were removed so that the new basal medium, now called BEM for

bifidobacterial enumeration medium, contained just tryptose, yeast extract, sodium
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chloride, cysteine hydrochloride, and agar in the same concentrations as in the RCM

medium.  Since bifidobacteria are enteric organisms, lactose was chosen as the main

carbon source to be added back into the basal BEM medium in the hope that the

lactose would be more selective than the dextrose used in RCM.  In addition, pH

indicators, such as phenol red, bromocresol green, and bromocresol purple were

added to the BEM medium in an attempt to increase the efficiency of recognition of

bifidobacterial colonies. Again, it was assumed that other enteric organisms would be

present and able to ferment the lactose, but a yellow zone combined with the colonial

morphology would help with bifidobacterial recognition.

A comparison of B50, a published selective medium, with various

bifidobacterial enumeration media can be seen in Figures 2.3.7, 2.3.8, and 2.3.9.

Although none of the BEM formulations appeared to enumerate bifidobacteria more

effectively than B50, the addition of a pH indicator, such as phenol red, in the bottom

agar layer did help in the recognition of bifidobacterial colonies during the counting

process.  This can be clearly seen in Figure 2.3.9.  Both BEM6B and BEM6C

enumerated a significantly higher number of total bacteria.  BEM6C also enumerated

a significantly higher number of presumptive bifidobacteria.  However, BEM6C also

enumerated a significantly higher number of background colonies compared to B50.

BEM6C allowed more differentiation of bifidobacterial colonies, but was not as

selective as B50.

Of all the BEM formulations tested, BEM6C appeared to be the most

effective.  In order to decrease the substantial background population, some or all of

the selective agents used in the agar overlay should be incorporated in the bottom agar
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layer.  The most effective addition would probably be iodoacetate, as this compound

blocks glycolysis, in response to which bifidobacteria can utilize the fructose-6-

phosphate shunt (35).  However, as most of the bifidobacteria present are injured, a

lower concentration of iodoacetate should be used.

A quality control step was employed to check if the colonies that were

considered presumptive bifidobacteria actually could be confirmed as

Bifidobacterium spp.  Colonies were randomly picked from the selective plates and

cultured in RCM.  The procedure shown in Figure 2.2.2 was used in the identification

of the isolates as members of the genus Bifidobacterium.  Ten of these isolates

gathered from the constructed wetlands and primary treated sewage were examined

for their carbohydrate fermentation patterns.  All ten isolates keyed out to be

bifidobacterial species of a possible human origin.  The most interesting note here is

that none of the isolates keyed out to B. bifidum, one of the most ubiquitous species of

bifidobacteria.

Conclusions and recommendations.  Bifidobacteria generally show promise in their

use as fecal pollution indicators.  The results from Chapter 1 show that bifidobacteria

can be detected in aquatic environments for a short time following inoculation and are

incapable of aftergrowth in these environments even when anoxic conditions prevail.

The results from this chapter show that bifidobacteria are readily enumerated from

constructed wetlands receiving primary treated sewage.  The bifidobacterial

populations detected in the wetlands therefore indicate recent and ongoing input in

order to maintain the population levels detected – especially when the wetlands

contained aerobic conditions.  This would help explain the lower variation in
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bifidobacterial populations over time compared to the fecal coliforms and

enterococci.  The fact that the fecal coliforms and enterococci were also being

‘replenished’ each time the influent was turned on and yet they exhibited a wide range

of variability in their populations over time is puzzling.  If levels of fecal coliforms or

enterococci (both accepted fecal pollution indicators) ever became undetectable in the

effluent from these wetlands, a false sense of water quality could be imagined.

Although bifidobacteria were readily enumerated from the wetlands with the

published selective media, those media exhibited insufficient sensitivity and

selectivity to efficiently enumerate bifidobacteria.  This point has been a major hurdle

in the use of bifidobacteria as water quality indicators.  Results from Chapter 1 show

a relatively quick temperature-dependent injury rate for bifidobacteria in aquatic

environments.  These injured cells became nonviable within a short amount of time

even when trying to enumerate them onto a nonselective, nutrient-rich agar.  Attempts

to improve upon the published selective media were only successful in improving the

ability to differentiate presumptive bifidobacterial colonies from the ever-present

background populations.  Improving the ability to enumerate injured bifidobacteria

from the wetland samples as well as increasing the selectivity of the media were

mixed to unsuccessful.  The actual population of bifidobacteria in the wetlands

therefore may have been an order of magnitude higher or more.

Another major disadvantage to using bifidobacteria as fecal pollution

indicators is the amount of time involved to get a confirmed result.  In the public

health arena, time is of the essence when protecting the well being of the general

public.  Routine monitoring of drinking water systems, and ground water and surface
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water is done to prevent the appearance or spread of illnesses that historically have

claimed many lives.  The 2 to 3 week timeframe for even one sample to be confirmed

positive for bifidobacteria is too long to adequately protect the public health.  Yet, we

are constrained by the long generation time that bifidobacteria exhibit – 4 to 5 hours

on average.  In order for this genus to be effectively used as a fecal pollution

indicator, a non-cultural method must be found.

It may help to develop a presence-absence test like that for coliforms to avoid

the problem of absolute quantification.  Since bifidobacteria are exclusively of fecal

origin, if these organisms are present, it really does not matter how many there are,

only that they are there.  If a presence-absence test is adequate, another option could

be to use 16s DNA and the polymerase chain reaction coupled with bifidobacterial-

specific primers to monitor water quality.  This method is well documented in the

literature for other organisms and other environments and can be concluded within a

day of taking the water sample.  There are species-specific primers for bifidobacteria

published in the literature (8,25,26,32,59).
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