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ABSTRACT 

 
Conceptual and Application Issues in the Implementation of Object-Oriented GIS 

 
Janette E. Bennett 

 
The adoption of object-oriented technology for spatial data modeling is becoming a 
significant trend in GIS.  This research explores the concepts of Object-Oriented GIS 
(OOGIS) and illustrates its versatility in two case studies.  OOGIS provides a feature-
based, intuitive representation of real world features.  The study emphasizes the 
fundamental concepts of inheritance, polymorphism, and encapsulation in OOGIS and 
explores schema design, long transactions, and versioning.   Further, the study discusses 
the advantages of OOGIS in the management and analysis of geospatial data.  The case 
studies demonstrate both the conceptual basis of OOGIS and specific functionality 
including behavior, methods, versioning, long transactions and data locking.  OOGIS 
demonstrates many advantages over the traditional entity-relationship model in database 
maintenance and functionality. 
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Chapter 1.  Introduction 

The abstraction and conversion of features found in the real world into digital 

forms is a crucial component in the creation of information systems (Davis and Borges, 

1994) and especially Geographic Information Systems (GIS).   GIS represents the real 

world through the use of the data model, a core element of a GIS.  To date, the most 

widely used data model used in GIS to represent real world features is the Entity-

Relationship model.  The Entity-Relationship model is “a logical way of describing 

entities and their relationships within a relational database” (Association for Geographic 

Information, 1999).  An entity is a cartographic unit that cannot be broken down to any 

smaller unit.  Relationships between entities are maintained within a data structuring 

system that uses collections of tables associated by common attributes.  While this model 

is commonly used in the handling of geographic data, it does have some disadvantages 

and limitations that have led to the development of a new data model that emphasizes an 

object-based approach.  The ability to manage these objects in a more effective manner, 

as well as associate the object with various behaviors, has made the object-oriented 

approach very attractive to GIS developers and users. 

Object-Oriented GIS (OOGIS) does not have one generally accepted definition.  

Its origins stem from the field of computer science, where object-oriented programming 

languages were first developed and used.  The GIS community has shown considerable 

enthusiasm for object-oriented technology, though the implementation of the technology 

has taken time.  OOGIS has many advantages over current GIS software.  In particular, 

OOGIS focuses on a feature based approach, where the emphasis is placed not only on 

the spatial component of the object, but also on the behaviors associated with the object.  
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The OOGIS data model thus has the potential to not only be a more accurate 

representation of the real world and also incorporate “intelligent” objects, that have 

associated behaviors and methods, which help to define the objects and the relationships 

between them.  The recent movement toward feature-based GIS warrants an in-depth 

study of OOGIS, its concepts, strengths and weaknesses, and a review of how it is used in 

practice as demonstrated through two case studies. 

1.1. Research Objectives 

The two primary objectives of this research were to understand the conceptual 

basis of OOGIS and to explore its strengths and weaknesses through the implementation 

of OOGIS in a practical application.   The first objective involved an in-depth exploration 

of the conceptual basis of OOGIS as it pertains to GIS system development.  A 

comprehensive review of the conceptual base of object-oriented GIS was explored.  

Surprisingly, providing a definitive explanation of OOGIS proved difficult since there is 

no one generally accepted definition.  This is a reflection of the evolution of OOGIS, 

whose roots stem from computer science.  The concepts that make up the basis of OOGIS 

require a full understanding of a diverse terminology.  Terminology pertinent to OOGIS 

are explored and examples of each concept are given in order to better understand the 

underlying principles of OOGIS.   

The second objective was to use two case studies as a means of exploring issues 

involved in the implementation of OOGIS.  Two projects involving the various concepts 

the distinguish OOGIS from its predecessors were selected because they contribute in 

different ways to an understanding of the concepts and the strengths and weaknesses of 

an OO approach to GIS.  These case studies are the National Imagery and Mapping 
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Agency (NIMA) case study and the Federal Geographic Data Committee (FGDC) case 

study.  A history of each case study was given and the specific tasks of each project that 

emphasize OO concepts were discussed.   The case studies illustrate the general concepts 

of OOGIS, provide a comparison base to other GIS models and enable the benefits and 

limitations of OOGIS technology to be explored.     

1.2. Research Questions 

Four research questions stem from the overarching research objectives.  They are: 

1) What are the concepts and principles of OOGIS? 

2) What OOGIS concepts are best illustrated in the case studies? 

3) How does the OOGIS model compare with, or differ from, the Entity-
Relationship model? 

 
4) What are the perceived benefits and weaknesses of OOGIS? 

1.3. Methodology 

OOGIS concepts are reviewed in Chapter 2 by a literature search gained from a 

variety of different sources, including the Internet, journal articles, technical writings and 

books.  The literature review provides the basis for the exploration of the fundamental 

concepts of OOGIS. 

Two case studies were explored to exemplify three fundamental concepts of 

object-oriented GIS—encapsulation, polymorphism and inheritance.  The projects were 

funded by the National Imaging and Mapping Agency (NIMA) and the Federal 

Geographic Data Committee (FGDC).  In Chapter 3, the NIMA case study is discussed.  

The project began in 1998 and explores topics such as schema development, geodatabase, 

and methods.  The FGDC project, discussed in Chapter 4, was undertaken in 1996-97 and 

emphasizes other OO concepts such as conflation, data locking, versioning, and the 
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benefits of a feature based approach to the framework national database.  Conclusions to 

my thesis are presented in Chapter 5. 
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Chapter 2.  Literature Review 

2.1.  Concepts and Terminology 

There are several basic concepts underpinning OOGIS.  An object is considered 

to be “a complex data structure that is capable of storing all of its data along with 

information about the necessary procedures to create, destroy and manipulate it” (Davis 

and Borges, 1994).  Each object in an OOGIS contains not only information about its 

spatial location, but also its attributes and relationships with other objects.  For example, 

a “house” object may have geographic information associated such as its street address.  

Its location in space could also be its coordinates in latitude and longitude.  Attribute 

information about the house object might include its color, number of windows, or 

number of occupants.  Relationship information about the house object could be the 

community the house is situated in, or the fire jurisdiction or voting district the house 

object is part of.  Objects may be grouped logically to form object classes, and can also 

have subclasses.  In addition, a class can be nested within another class.  For example, 

several individual streets (objects) may be grouped to form a “roads” class.  Roads, 

railroads and waterway classes can subsequently be grouped into a “transportation” class.   

A schema is a collection of items that model some or all of a real world object.  

The schema is a critical component of object-oriented technology.  A database schema 

is a group of related tables in a database that model features in the real world 

(Association for Geographic Information, 1999).  A schema contains information such as 

data types, the hierarchy of the objects related within the OOGIS, and the relationships 

between objects.  An established schema can assist in minimizing data errors by the use 

of validation methods. 
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There are three levels of schema design or schema modeling.  The first level is the 

conceptual schema.  A conceptual schema is developed before an actual computerized 

schema is developed or implemented and is therefore not limited to data types or 

relationships acceptable to database implementation.  The second level schema is the 

logical schema, which reproduces the conceptual schema as a set of constructs supported 

by the database, such as classes and values.  Finally, the physical schema determines how 

the logical schema is operationalized in the computer.  OOGIS reduces the gap between 

the conceptual and the logical levels of schema modeling and the physical level of 

schema development is hidden from the end user (Wadembere, 2001). 

Abstraction is at the heart of every GIS, not just an OOGIS.  Abstraction is the 

main characteristics of a feature that can clearly differentiate it from any other feature and 

therefore absolutely define the boundaries of the feature, relative to the viewer’s 

perspective (Booch, 1996).  On other words, it is a simplified characterization of a real 

world feature that places emphasis on attributes that are significant and deemphasizes 

relatively insignificant properties.     

There are three fundamental concepts that are common to every OOGIS—

encapsulation, inheritance and polymorphism.  Encapsulation represents information, 

methods and behaviors embedded within an object that are accessed via an external 

interface that allows users and other objects to interact with the object.  The inner 

workings of the object are hidden from users and other objects.  Access to the inner 

workings is granted only to the user creating the object, whether it is code or data that is 

embedded in the object.  The creator has permission to create, destroy or manipulate the 

object. 

 6



 
Sub-classes may inherit both characteristics and changes from classes higher up in 

the data structure.  The adoption process is known as inheritance.  Inheritance is defined 

as the creation of an object class based on the properties of other object classes that are 

higher in the hierarchy of the object classes (Association for Geographic Information, 

1999).  A hierarchy is the structure of object classes or abstractions are ordered (Booch, 

1996).  This produces child and parent structures, where the child class “inherits” 

properties from the parent class.  The ability to inherit properties makes for greater 

efficiency in the management of changes and updates in the database. 

Objects in object classes need to be able to communicate with each other.  While 

all objects receive instructions sent by user commands, in OOGIS only objects capable of 

undertaking the instructions have the ability to implement them.  Polymorphism is the 

capacity for an object to respond to a single command that could be interpreted in several 

different ways by an object, depending on the nature or context of the object itself 

(Association for Geographic Information, 1999).  For example, an object may receive the 

“calculate area” command.  The message is sent to retrieve information for the requisite 

object, a polygon of some kind, which has the ability to carry out the instruction.  Several 

different types of objects may receive this command, but each object would implement 

the command based on the nature of the object itself.  Thus, if a feature that is circular 

receives the command, it will execute the calculation “area = πr2”.  However, a different 

object of rectangular shape would execute the calculation “area = length * width”.  

Despite the differing interpretations and calculations, only one command needs to be 

sent. 
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As the Entity-Relationship model recognizes and supports relationships between 

entities, so too does the OOGIS recognize and support relationships between objects.  

The relationships between objects are captured through topology.  Topology is the 

relative location of spatial data independent of a Cartesian location (such as XY 

coordinates). Digital geographic data uses topological relationships such as connectivity 

and adjacency, which are usually expressed as relationships between nodes, links and 

polygons (Worboys, 1995).   Topology varies depending on the type of object data 

structure.  In a vector entity relationship, connectivity is defined explicitly by a database 

pointer between records that describes features linked in the real world (e.g. the junction 

of two gas pipelines).  Topological relationships are built from simple elements into 

complex elements.  In the vector data model, the elements include points, arcs, areas, and 

routes.  Redundant data are eliminated because a single feature may represent more than 

one object in space.  For example, an arc may represent a linear feature, part of the 

boundary of an area feature, or both. Topology in GIS is crucial because many spatial 

modeling operations require that the relationships between features be specified. 

In OOGIS, each object is defined as a separate component, allowing users to 

create their own model as an extension of the basic object-oriented data model.  

Topology is built using an OOGIS, so that coincident lines can have references to 

multiple attributes.  For example, if a road was also the edge of a tax parcel, the 

information about the road and the parcel could be maintained, edited or deleted 

separately from each other or, if the road was rerouted, the parcel and the road could be 

updated at the same time. 
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Versioning or dataset versioning provide solutions to common problems 

associated with multiple data versions, including the need to develop hypothetical or 

predictive models and the merging of datasets.  Data versioning in OOGIS produces a 

logical copy of a dataset without cloning the entire dataset as is required in the Entity-

Relationship (ER) model.  Copies of the data can then be used in multiple situations 

without actually modifying the original dataset.  This is accomplished by creating a copy 

only of the data being modified, not the entire dataset.  Versioning in OOGIS greatly 

facilitates data updates and predictive modeling while at the same time avoiding data 

redundancy and procedural problems for the user (LaserScan, no date).    

There are several scenarios associated with versioning that a user may encounter, 

the most important of which is known as a long transaction.  A long transaction occurs 

when a user wants to make continuous changes to a dataset over a long period of time 

(e.g. over the course of days or longer) without prohibiting other users from using the 

existing data.  In a georelational data model, this is very difficult to achieve without 

significant data duplication of large amounts of data.  OO technology provides a solution 

to this problem through the branching and merging of datasets.  A branch dataset is at 

the heart of versioning for it is the copy of the dataset that maintains a relationship with 

the original dataset.  The user can edit the branch dataset, though there may be limits set 

by the dataset creator as to which elements of the dataset can be manipulated.  These 

limits are defined by data locking, the procedure by which “database systems can 

prevent conflicting access to data when multiple users are making requests to the data” 

(Association for Geographic Information, 1999). 
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2.2. Data Models 

The set of constructs used by the schema is determined by the data model.  A data 

model “provides a collection of constructs for describing and structuring applications in 

the database” (Worboys, 1999).  There are two general categories of spatial data models: 

vector data models and tessellation data models or, specifically, the raster data model.  

There are also database models, including the georelational data model and the Entity-

Relationship models that are also significant in the development of the object-oriented 

approach.  These models do not cover as broad a spectrum as raster and vector data 

models, but they are valuable in conceptual terms when attempting to understand OOGIS.    

2.2.1. The Vector Data Model  

Vector data models represent space as a series of unique geographically 

referenced entity-defined units of points, lines, and polygons and, in certain instances, 

pixels (Burrough and McDonnell, 1998).  Representations of real world phenomena, such 

as fire hydrants, streets and buildings that are recorded in an XY coordinate system can 

be mapped to geometry of points, lines, or polygons.  A point is a geographic feature of 

zero-dimension that can be identified or located with one set of Cartesian coordinates.  A 

point feature could be a utility pole on a city map, or a city on a national map, depending 

on the scale.  A line feature is a one-dimensional feature and implies that there are at least 

two pairs of Cartesian coordinates (nodes).  A line feature has no width, except as 

denoted in the attributes.  A line feature could be an electric utility line on a city map or a 

road on a national map.  A polygon in its simplest form is an enclosed two-dimensional 

homogeneous area and could represent a building footprint or a state boundary.  All 
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higher order features are constructed from points.  Nodes define line segments, and line 

segments define polygons. 

Vector data models are usually referenced using Cartesian coordinates.  

Vectorized features are static and are unchanging and currently do not contain 

information about variations in time or space.  There are two ways to represent a polygon 

in a vector system: by recording the coordinates of its boundary or topologically by 

defining the area in terms of the coordinates of a surrounding polygon. 

2.2.2. The Raster Data Model 

Tessellation models comprise a second broad category of spatial data models in 

which the two-dimensional geometric surface is divided into rectangular units, or pixels.  

The size of the pixel varies depending on the resolution required to represent the spatial 

variation of an attribute in a given coverage (Burrough and McDonnell, 1998).  Raster 

data models are ideal for applications such as change detection analysis, an analysis of 

feature change by the change in pixel digital number (DN) value by acquiring data of the 

same geographic area at different times.  While change detection can be accomplished 

using vector data, raster data is more versatile over a large area. 

2.2.3. The Entity-Relationship Data Model 

The Entity-Relationship (ER) model is based on a representation of space as a 

collection of basic objects or entities that have spatial relationships (Chen, 1976).  An 

entity is the data model representation of a unique feature that exists in space.  Each 

entity may have a set of attributes, stored in a separate table.  An entity resembles an 

object found in an OOGIS.  However, entities and objects are distinctly different.  One of 

the main differences between an object and an entity is that an entity does not exhibit 
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encapsulation.  An entity does not have behavior associated with it.  A relationship is an 

association that exists between defined entities.  All entities or relationships that have 

similar attributes are grouped together to form an entity set or a relationship set. 

There are four major phases to Entity-Relationship modeling: the identification of 

entities, the identification of relationships between the entities, the identification of entity 

attributes, and the derivation of tables from the previous three stages (Heywood, et al., 

1998).  Each entity in a database must have distinct characteristics that are usually 

described by use of a noun, for example ‘farmer’, ‘farm’ and ‘mall’.  Each entity has a set 

of characteristics or attributes that is unique, such as an address, known as the unique 

identifier.  The unique identifier makes it possible to distinguish one entity from another.  

The domain of an entity is the set of possible values for each of the attributes associated 

with the entity.  The relationships between entities are described using verbs.  For 

example, the farmer ‘resides on’ the farm and the farm ‘is next to’ the mall. 

There are four types of relationships that can exist in an entity relationship model: 

one-to-one, one-to-many, or many-to-many and many-to-one (Figure 1).  An example of 

a one-to-one relationship is a house located on one parcel of land in a subdivision.  In 

most cases, only one house is permitted, or can be built, on a residential parcel in a 

housing development.  An example of a one-to-many relationship would be a water 

utility company and its customers.  In general, one water company serves many 

customers and one water main could serve many houses.   A many-to-many relationship 

example would be a roadway system where many different people travel to different 

destinations using different route selections.   
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The Entity-Relationship model uses a Relational Database Management Structure 

(RDBMS) and the Entity-Relationship diagram (Figure 1) helps identify what tables are 

to be included RDBMS.  When there is a one-to-one relationship, tables for each entity 

can be joined into one table or be kept in separate tables.  With a one-to-many 

relationship, two tables are necessary with a common field that allows a relational join.  

This is known as the key field or primary key.  In a many-to-many relationship, all tables 

should be kept separate to enable the relational join.  If there are duplicate fields, the 

tables may need to be broken down to avoid data redundancy (Worboys, 1995).  After the 

tables have been selected, the necessary attributes must be determined and the ER model 

may be constructed with its table definitions containing details of feature attributes, such 

as name, size and domain (Heywood et al., 1998).  After these steps have taken place the 

database can be implemented. 

 
 
Figure 1.  Example of an Entity-Relationship diagram (Chen, 1976) 
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 In Figure 1 for example, the entity set ‘residential home’ incorporates the 

relationship set ‘utilize’ on another object, ‘power company’.  Connecting lines drawn 

between the entity and relationship sets designate relationships.  Figure 1 displays several 

types of relationships.  Many objects of one type can be related to one type of another 

object.  In this example, many residential homes use one power company to supply their 

homes with electrical power.  The entities ‘power company’ and ‘electric cables’ 

illustrate a one-to-many relationship.  One power company maintains many electric 

cables. 

2.2.4. The Georelational Data Model 

 The georelational model is based on the vector data model, utilizing points, lines 

and polygons as geometric feature types (Burroughs and McDonnell, 1998).  Features are 

stored as graphical data elements that are referenced to a coordinate system.  The 

geometric data is stored in a binary file.  Systems using the georelational model may also 

divide the entire project into separate files, however the software handles the files as one 

large seamless map file (Korte, no date).  The georelational model stores attributes in 

relational tables whereby each record has a unique identifier and descriptive information 

about each feature.  The georelational model uses topology.  Once topology is built 

within the model, relationships such as how linear map features are connected and how 

polygons are bounded, are described.  The topological structure of the georelational 

model allows a GIS to query any spatial feature to determine connectivity, boundaries, 

and adjacency.  In reality, water lines and power lines do not intersect.  When using the 

georelational data model, the storage of different feature types in separate layers prevents 
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a situation that would be impossible in reality, such as a water main and a power line 

connecting. 

 The schema is important in the georelational data model.  A relational schema 

does not include the data itself, but rather describes the structure of a relation, such as its 

attributes, the attribute domains, and restrictions placed on the data.  The relation schema 

is created when the database is first established and remains static for the duration of time 

the database is in existence.  In reality, a relation is dynamic, changing frequently as data 

are added, modified or removed from the database.  A set of relations and data is known 

as a relational database and may have restrictions, such as coded values or ranges of 

values placed on it when created.   

 Distinct from the database schema, a database is a collection of actual data, which 

can be shared by many users of a system that has the capacity to define, access, retrieve, 

manipulate and display the data within it (Worboys, 1995).  The evolution of the database 

structure is crucial to understanding the object-oriented database structure. 

 

2.3. Database Structures 

A database structure is a logical method of data organization within a system that 

is suitable for data storage and manipulation.  In particular, spatial databases have unique 

forms of data structure that facilitate access to spatially referenced data (Worboys, 1995).  

Several database structures preceded the adoption of an object-oriented database 

structure. 
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2.3.1. The Hierarchical Database Structure 

The hierarchical database structure was the first database structure to evolve and 

was based on a parent and child hierarchical structure involving one-to-one or one-to-

many relationships.  The hierarchical database provides a user with a quick and 

convenient way to access data.  This database structure is most beneficial when used on 

well-structured data and is mainly implemented in the environmental sciences because it 

uses a model similar to soil classification systems and other physical data applications.  

The hierarchical database structure was popular because of the ease of understanding the 

data structure, record updating, and database expansion.  The hierarchical database 

structure can be particularly beneficial in the organization of data in a mass storage 

system if all possible queries to be performed on the database are known beforehand.  

While this is possible with systems such as banking databases or library systems, 

environmental data and other data types, whose queries are more exploratory, cannot 

adhere to the fixed hierarchy of this data structure.  Many users consider this form of 

database structure to be too inflexible and not appropriate for the handling of geographic 

data. In addition, the difficulty in using hierarchical data structures is as much due to the 

enormous size of the index files, which must also be maintained, as to these other 

concerns.  Certain attribute values must be repeated several times, which causes data 

redundancy and leads to increased storage space and greater latency costs in accessing 

the data.    Furthermore, search patterns in the hierarchical structure are very structured 

and rigid and the data is difficult to modify and update. 
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2.3.2. The Network Database Structure 

Network database structures ease some of the rigidity of the hierarchical database 

structure by allowing the data to pass in other directions than what is already established 

in the taxonomy of the data structure.  One of the main problems resolved by the 

evolution of the network database structure is that of data redundancy.  The network 

structure is most beneficial when relations between features can be specified prior to the 

building of the database structure.  However, network database structures tend to be very 

large due to the copious number of pointers that have to be built, maintained and updated 

every time there is a change in the database. 

2.3.3. The Relational Database Management Structure 

Relational database management structures (RDBMS) were first established for 

GIS in the 1980s and have been the database structure of choice in GIS for the majority 

of commercial GIS.  This database structure can take many forms, but the simplest form 

has neither pointers nor hierarchy.  The relational data structure stores data as records or 

tuples where tuples are unique data records that contain every attribute value (Worboys, 

1999).  Tuples are grouped in two 2-dimensional tables called relations.  Each relation is 

stored as an independent file.  The pointers of the hierarchical database structure are 

exchanged for the controlled data redundancy via identification codes that identify 

records in each file by a unique key.  The user defines the parameters for a data query in a 

relational database and the program uses relational algebra to produce new tables for 

relations that do not already exist (Worboys, 1999). 

The relational database structure has certain advantages and disadvantages.  The 

structure of the relational database is very flexible and can handle the demands of most 
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unscripted queries using Boolean logic and other mathematical operations.  Adding and 

deleting data in the database is also easier with this structure because the user can add or 

remove tuples to the RDBMS.  Entire tables may also be added or removed.  A user can 

query several relational tables at once by joining tables based on common fields.  This is 

especially important in cases where all the records in a table have the same number of 

attributes, but there is no natural hierarchy (Worboys, 1999).  Unfortunately, if the 

relationships between the tables are complex and many joins are needed, the operation 

may take a substantial amount of computing time. Relational database structures have to 

be well designed in order to perform database searches while controlling the demands for 

substantial amounts of computing power.   

2.3.4. Object-Oriented Database Structure 

The hierarchical, network, and relational database structures were fundamental to 

the development of the object-oriented database structure.  Although originally object-

orientation started in the field of computer science, and specifically in programming, it 

was subsequently applied to databases and then to GIS (Environmental Systems Research 

Institute, 1999).  An improved method of data handling in a database was necessary 

because of the problems of data redundancy and the computationally intensive search 

methods of previous database structures.  In GIS, this was particularly so due to the 

complex spatial entities and the inability of previous database structures to extent beyond 

simple points, lines and polygons and focus more on what is being represented in the real 

world (Burrough and McDonnell, 1998).  The object-oriented database structure 

recognizes that there are not only relationships between objects, but objects have 

behavior that was unaccounted for in previous structures.  Object-oriented database 

 18



 
structures combine the speed of the hierarchical approach with the flexibility of the 

relational approach by organizing the data with an emphasis on the entity, as opposed to 

the functions being processed (Burrough and McDonnell, 1998). In the object-oriented 

database structure, data are characterized in terms of a set of unique objects that are 

organized into groups of similar objects (object classes) and the relationships between the 

objects and classes are made using explicit links.   

The data in this database structure are encapsulated within objects or features that 

are defined by a unique identifier within the database (Worboys, 1999).  One of the main 

aspects of the object-oriented database structure is the emphasis on the uniqueness of 

objects.  The unique identifier does not change regardless of what changes are made to 

any attribute values associated with the object.  However, if the feature is split into other 

features or combined with other features, the unique identifier is modified to compensate 

for the change in spatial information.  The classes and instances are connected by 

pointers, which define the different relationships and hierarchy of the relationship 

structure.  Where hierarchies are formed, different states and methods can be passed 

down to other objects through what is known as inheritance.  Inheritance makes the 

characterization of object attributes and the retrieval of objects from the database more 

efficient.  All data in an object-oriented database structure are specified once only and 

can be retrieved rapidly.  Data in an object-oriented database structure can only be 

queried or modified if a request to carry out an operation, called a message, is sent to the 

object.  The object response is dependent on its state.  The polymorphic capability of the 

same message to be sent to different objects is particularly valuable. 
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2.4. Object-Oriented GIS Software 

There are several commercially available GIS software packages that incorporate 

object-oriented technology.  These packages include CARIS GIS software, LaserScan’s 

Gothic LAMPS2, General Electric’s Smallworld and ESRI’s ArcGIS 8.x.  The software 

used in this research is the ESRI software, ArcGIS.  

2.4.1. CARIS GIS 

CARIS GIS software was developed from research into computer-aided 

cartography more than twenty years ago and was used in land-use and natural resource 

management (CARIS, 2002).  Currently, CARIS is a fully functional LIS/GIS software 

suite and comprises a combination of tools designed for data capture, editing, updating, 

manipulating and displaying geographic data.  CARIS also has the capability to edit, 

query, analyze and visualize spatial data.  Some highlights of the software include the 

ability to handle 2-, 3-, and n-dimensional data, support many database formats, easy 

customization of the working environment, and rigorous topological structure.  With 

CARIS, full network and polygon topology is supported (CARIS, 2002). 

2.4.2. LaserScan LAMPS2  

LAMPS2 is a map production system based on an object-oriented spatial database 

(LaserScan, 2001).  LAMPS2 demonstrates many of the advantages of object-orientation 

including powerful versioning and data locking capabilities, allowing multi-user update 

without restricting data access.  Inheritance and behavioral methods are essential to 

LAMPS2 (LaserScan, 2001).  Data validation is supported in that objects can verify 

modifications automatically using a user-defined rule base.  Data structure and topology 

is created and constantly maintained during data capture and updates.   
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2.4.3. General Electric (GE) Smallworld Core 

General Electric’s Smallworld Core is database-driven and object-oriented in 

nature (General Electric, no date).  Smallworld uses an object-oriented programming 

language for development, known as Magik.  Some of the advantages of Smallworld 

Core are that it is scalable, has a tiered architecture, has the ability to handle versioning 

and long transactions, and it has virtually seamless data access with the ability to 

integrate many data formats (General Electric, no date).   

2.4.4. Environmental Systems Research Institute (ESRI) ArcGIS 

ESRI’s ArcGIS uses the object-relational geodatabase.  The system continues to 

support legacy Entity-Relationship models and the georelational model.  While this 

software package has many new features compared to its previous releases, the focus of 

this study was on the ArcGIS object data model.  Until the release of ArcGIS, ESRI’s 

ArcInfo focused on the georelational data model in which the geometry, attribution and 

topology were stored in binary files and attributes in a relational database management 

system (Environmental Systems Research Institute, 1999).  Using object-oriented 

technology, geodatabase has the ability to combine the properties of objects with their 

behaviors (Environmental Systems Research Institute, 1999). 

Geodatabase is a key component to ESRI’s ArcGIS.  There are several different 

types of features that can be represented in geodatabase.  Some of these include 

geographic features (objects with location) and network features (objects geometrically 

integrated with other objects).  The object data model enables the user to define one or 

many relationships between objects and to implement rules that maintain the reference 

integrity between objects.  Geodatabase is based on a schema created with ArcCatalog 
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and has the ability to establish a data rule base.  Data may then be imported into the 

geodatabase under the guidelines set by the schema to help prevent the production of 

erroneous geographic data. 

The ESRI ArcGIS software was used in my case studies.  While the other 

software packages discussed earlier are capable of completing the tasks investigated in 

the case studies, ArcGIS is the most widely available software.  The following chapters 

give a background to the case studies and illustrate how OOGIS is used in each study. 

2.4.5. A Comparison of LaserScan LAMPS2 and ESRI ArcGIS 

 LAMPS2 is a true OOGIS, implementing OO data modeling using inheritance 

and methods, so that map features (such as forest, orchards, roads, and rivers) become 

objects with behaviors, providing versatile mapping and data analysis.  It is a GIS that is 

supported by an object-oriented spatial database, called Gothic.  LAMPS2 uses validation 

methods that enforce database integrity, such that objects can validate themselves 

whenever they are modified using user defined rules.  The use of methods, data locking 

and versioning provided by LAMPS2 reduces the chance of erroneous data entering the 

system.  The database structure and topology is created and constantly maintained during 

procedures such as data capture and update.  LAMPS2 has the capability of integrating 

raster and vector data.   All of the Gothic products share a common object database that 

allows efficient and transparent deployment of LAMPS2 data to web browsers and to 

desktop viewers (LaserScan, 2001). 

LAMPS2 separates the tasks of data compilation and update from those of 

presentation and product generation, allowing the generation of multiple products while 

minimizing capture and update costs.  Some of the benefits of LaserScan’s LAMPS2 are 
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the reduction of cost by eliminating duplication in the parallel update of product ranges, 

the production of new products to meet user demands direct from a centralized database, 

the production of rich data products involving structure and relationships to fit modern 

standards, an increase in productivity by using production tools built just for a specific 

task (not CAD or GIS) and movement away from constraints of sheet lines and press 

delays by supplying on-demand mapping.   

LAMPS2 boasts the advantage of truly continuous mapping with no sheet edges, 

including multi-user independent update without locking out other users.  Also, LAMPS2 

is supported by a versioned database with an integral rollback and recovery mechanism 

that efficiently handles database changes through time.  The database only stores changes 

from one database version to the next, which makes editing easy to manage. 

The fundamental difference between LAMPS2 and ArcGIS is that ArcGIS is not 

truly object-oriented, whereas LAMPS2 is a true OOGIS.  ArcGIS is an object-relational 

GIS.  The immediate predecessor to ArcGIS, ArcInfo, was based on the georelational 

model.  While the current version of ArcGIS still fully supports the georelational model, 

it also supports the object-oriented data model for the production of “smart” databases.  

This object relational system is known as the geodatabase.  “Smart” means that the 

geodatabase can coalesce the properties of objects with their behavior into one “smart” 

object.  Rather than developing an entirely new data model, ESRI’s geodatabase is an 

extension to the standard relational database technology.  Because of this, the 

geodatabase is not a true OOGIS, but an “object-relational” system.  The geodatabase 

allows the user to add behavior, properties, a rule base and relationships to the feature 

data.  The geodatabase is flexible, allowing user defined features for meeting specialized 
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requirements.  For example, if a water company were interested in pinpointing water 

main breaks, they can use the geodatabase with certain rules or behavior set up to 

determine the break in the water line network using information such as houses without 

water and intersections of water lines with water mains.  The geodatabase has the 

capability of handling topologically integrated feature classes, similar to the coverage 

model in ArcInfo.  However, ESRI has expanded the geodatabase model by making it 

accommodate support for complex networks and relationships between multiple feature 

classes.   
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Chapter 3.  The NIMA Project 

3.1. Background 

 Several years ago, the National Imagery and Mapping Agency (NIMA) embarked 

on a program to convert from paper map production to digital production.  As a part of 

this transition, NIMA sponsored a project by the West Virginia University Department of 

Geology and Geography to develop an innovative approach to automated feature 

extraction (AFE) from satellite imagery (Desai et al., 1999).  The result was the creation 

of an object-oriented database of features based on commercial satellite imagery 

products. 

 The NIMA project had three main components: 1) the automated and semi-

automated recognition and mapping of roads, rivers and forests from satellite images and 

Digital Terrain Elevation Data (DTED), 2) the automated conversion of raster features to 

vector features, and 3) the development of methods within an object-oriented GIS to 

automate the import, topological structuring, attribution, and export of Foundation 

Feature Data (FFD) (Desai et al., 1999).  There were two case study sites for which data 

was provided: Santiago, Cuba and Camp Lejeune in the United States.  Line features 

comprising roads and rivers were extracted from the satellite imagery using two different 

techniques.  Roads were extracted through a procedure that began with the application of 

an edge detection algorithm, applied to satellite imagery.  The edge image was used to 

develop a friction surface, from which optimal routes were generated between end points 

of the road system delineated by the user.  The width of the road was determined 

automatically based on a cross-sectional spectral profile, perpendicular to the road (Desai 

et al., 1999).  River features were identified and extracted using both satellite imagery 
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and the DTED.  Rivers that were recognizable in the imagery were mapped directly.  

Rivers that could not be identified in the satellite imagery were mapped from the DTED, 

focusing on areas of relatively steep topography.  However, if a river was too small to be 

identified from the satellite imagery, and the topography was to gentle to use the DTED, 

the river was mapped based on the identification of pixel with the spectral attributes of 

the river and associated vegetation, which were then connected with automated route 

selection methods (Desai et al., 1999). 

 The second main component of the NIMA project focused the conversion of 

raster feature data to a vector format.  The conversion process was completed using an 

automated raster-to-vector conversion software package.  This research component had 

several parts including: 

• The ability to input and convert raster imagery of varying spectral and spatial 
resolution to vector format 

• The ability to generate line datasets for road and river features 
• The capture of raster cell values as attributes of the vector output 
• The functionality to allow spline smoothing of the vector linework in batch 

mode 
• The filtering and thinning of vector linework in batch mode 
• The capability of raster gap-jumping with designated snap tolerance levels 
• The capability to import and export in common data formats 
• The automation of the entire system (Desai et al., 1999) 
 

The algorithms used in the raster-to-vector conversion process assisted in recognizing 

limitations in the vector feature data, given the need to meet Foundation Feature Data 

(FFD) standards (Desai et al., 1999).  FFD are a set of spatial data features that are 

captured to form a baseline set of features for a project. 

 The third component of the NIMA project, and the part of interest for my work, 

focuses on the use of object-oriented technology to integrate vector features using the 

Foundation Feature Data rule base.  The FFD rule base contains attribution and accuracy 
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requirements as well as portrayal criteria (Desai et al., 1999).  The NIMA sponsored 

research initially used LAMPS2 and Gothic DBMS by LaserScan.  Following ESRI’s 

release of their object-oriented software, ArcGIS geodatabase, the remainder of the 

project was completed using the geodatabase.  ArcGIS was used because of the 

availability of the software and my previous experience with the software. 

 

3.2. Development of the Schema 

The schema for the NIMA project was originally developed using LaserScan’s 

LAMPS2 OOGIS.  During the first year of the project, it was discovered that schema 

mapping between LAMPS2 and ESRI software was possible.  When the transition from 

LaserScan to ESRI occurred in the project, the schema remained intact.  For this thesis, 

the schema development of the roads and rivers data layers was emphasized.  A portion 

of this case study was focused on the development of the geodatabase for the 

encapsulation of the features used in the project.  The layers imported into the 

geodatabase comprised the roads, rivers, and woodlands layers.  The woodlands and 

orchards features were not developed further and emphasis was placed on developing the 

geodatabase for the roads and rivers layers.   

Three feature classes for roads, rivers and woodlands were defined for the 

Santiago, Cuba dataset, shown in Figure 2.  Each feature class is composed of one or 

more feature datasets that share common physical characteristics.  For example, a feature 

class can be created called “water,” which can then contain the feature datasets “rivers,” 

“lakes” and “estuaries”.  For each feature dataset, attribute data can be assigned.  For 

example, attribute data can include road surface type or hydrological category for a river.  

 27



           

Figure 2.  The Santiago, Cuba Geodatabase Schema 



 
Domain attributes were developed for the object classes.  Domain attributes 

consist of two data types—the range of values and coded values.  A range of values 

comprise a minimum and maximum range of valid values established by the creator of 

the geodatabase.  When a user enters an attribute value into a table, the method associated 

with the object reflexively checks the entry against the range of defined values.  If the 

entry is out of the value range, the user is prompted to enter a valid value. The second 

type of domain attribute is the coded value.  This is a numeric entry that represents a 

feature attribute.  For example, a road surface type may consist of three types—paved, 

gravel, and dirt that can be represented with the numbers 1, 2 and 3.  If another value 

other than those is entered into the system, the user will be prompted to enter a valid 

value.  After the first year of the NIMA project, the data validation method for the road 

and river features had already been developed and provided an effective data entry 

validation process.  Data validation in the geodatabase is in the form of domain attributes 

that can self-check entries in an attribute table, to ensure data accuracy.  A range of 

values was set for the widths of roads and rivers.  Coded values were established for 

attributes such as road surface type, with a value for “unknown” as well.   

The development of the schema also illustrates the properties of inheritance, 

polymorphism and encapsulation.  Once the creator of a geodatabase has established the 

schema, it can be locked so that users of the GIS cannot modify it.  The interface can also 

be customized so that users only see what the creator of the geodatabase wants them to 

see.  Also, as data is imported into the geodatabase, these datasets inherit the domain 

properties already established as it is imported into the geodatabase.  For example, if the 

range of values were already set in the “rivers” data layer, then as a user exports a subset 
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of that dataset, the new data layer will inherit the behavior of the parent dataset.  The 

geodatabase can also receive commands without being able to execute them as a stand-

alone system, but can be linked to other software or hardware capable of executing the 

request.  For example, if the user wants to calculate the area of the polygon data layers, 

the geodatabase does not understand the command, but the external system, in this case 

ArcMap, can check each dataset to look for polygon data layers and calculate the areas of 

each of the polygons within the polygon data layers.   

 

3.3. Development of the Geodatabase 

The schema contained the feature classes, attributes and methods appropriate for 

the FFD layers (Desai et al., 1999).  The feature classes and attributes were created 

during the import of the vector data following the raster-to-vector conversion.  Behavior 

methods were originally programmed in the LaserScan Lull programming language, but 

were later converted to Microsoft Visual Basic to be used with the ESRI software 

products.  Reflex methods are executed automatically and determine the behavior of the 

feature classes, and can perform a number of tasks such as building topology and data 

import verification. 

The ESRI geodatabase is feature-based, though not truly object-oriented.  Rather 

it is object-relational.  An object-relational model transforms geographical data between 

object and relational models and between the systems that support those approaches.  It is 

capable of handling objects and entities.  Object-relational is a transition step between 

entity-relationship and true object-oriented modeling.  All of the object classes are 

contained within the geodatabase.  The geodatabase can be treated as an all encapsulating 
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object, containing both spatial and non-spatial information.  Geodatabase also supports 

polymorphism, in that only appropriate components produce a response to a request.  For 

example, if the command “create centroid layer” was sent to geodatabase to operate on a 

polygon layer, the resulting layer would be a point layer.  A point or line feature class 

would not complete the command and a centroid layer would not be created by either of 

these feature types.  Likewise, the resulting layer must be a point layer, so the OOGIS 

would not produce a line or polygon layer. 

Figure 3 illustrates samples of feature datasets, feature classes, tables and 

relationship classes.  A feature dataset as defined by ESRI is “a collection of feature 

classes that share the same spatial reference” (Environmental Systems Research Institute, 

no date).  Feature classes may also be stored outside a feature dataset, but these are 

referred to as standalone feature classes.  To ensure a common spatial reference, 

however, feature classes must be contained within a feature dataset if they are to store 

topology (Environmental Systems Research Institute, no date).  Feature classes “store 

geographic features represented as points, lines or polygons, and their attributes; they can 

also store annotation and dimensions” (Environmental Systems Research Institute, no 

date).  Data may be converted to the geodatabase coordinate system upon import or the 

data may be converted before being imported into the geodatabase.  Tables imported into 

a geodatabase may contain additional information, such as attributes or geographic 

information for a feature class.  The tables stored in the geodatabase can contain vital 

information relevant to the feature datasets and classes, but not necessarily a spatial 

reference that can be displayed in a GIS.   
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Figure 3.  ESRI’s ArcCatalog displaying the contents of a personal geodatabase 

Relationship classes within the geodatabase reflect the relationship of objects in a 

real world system.  As ESRI states, “a relationship can exist between spatial objects 

(features in feature classes), non-spatial objects (rows in a table), or spatial and non-

spatial objects” (Environmental Systems Research Institute, no date).  These relationships 

between objects are stored in the relationship classes.  Unlike previous data models, such 

as the entity-relationship model, the object-relational data model allows for all objects, 

both spatial and non-spatial, to be related.  Thus, the GIS organizes the geographic 

information more intuitively, including all information relevant to the area of interest. 

3.4. Embedding Behavior and Methods 

Methods are behaviors associated with an object and are an important aspect of 

OO technology.  Three methods were developed in the NIMA project 1) the coverage to 
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geodatabase method, 2) the build and clean method, and 3) the domain validation 

method.  The methods used in the NIMA project were developed in Microsoft Visual 

Basic 6.0 and a graphic user interface (GUI) was created.  Some of the code was already 

developed by other research assistants working on this project (see Appendices A and B), 

some of the code was taken from sample code and I developed some of the code.  My 

main contributions were to integrate the code into ArcGIS 8 and I discovered a sample 

code that would convert a coverage to a geodatabase feature dataset.  The methods were 

designed to perform different functions, with the intention that they would evolve from a 

stand-alone program, to a call button in ArcGIS that would implement the method.  

Reflex methods differ from other methods because they are triggered automatically 

without the need for user input.  While the coverage to geodatabase method and the build 

and clean method were not built into ArcGIS, the stand-alone applications illustrate the 

object-oriented concepts.  The domain validation method was developed in ArcGIS and 

was implemented such that as data was entered into the attribute table of the object, errors 

were caught before such data modifications were accepted into the GIS.  The Visual 

Basic source code for each of the methods can be viewed in Appendices A and B.   

3.4.1.  The Coverage Conversion Method 

There were three parts to the coverage conversion method—the coverage to 

geodatabase method, the coverage to ESRI export or interchange file (.e00) method, and 

the coverage to ESRI shape file format (.shp) method.  The coverage to geodatabase 

method was designed to save spatial data in a variety of formats.  The method enables a 

coverage to be imported into the geodatabase and then be converted to interchange files 
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Figure 4.  Custom interface to convert coverages to other file formats 

and shape files (Appendix A).  The stand-alone program interface is shown in Figure 4. 

When converting to a shape file, the user must not only enter an input and output file 

name, but must also specify whether the file to be converted consists of nodes, arcs, 

polygons or other features.  A pop-up window prompts the user for this information 

(Figure 5). 

 Once a user enters the type of feature class to export from the coverage to the 

shape file, the conversion program then executes and creates either a point, line or 

polygon shape file in the directory and folder specified.  If the user opts for the coverage 

to interchange conversion, the user simply specifies the input and output paths and file 

names and clicks the “coverage to .e00” button.   
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Figure 5. Pop-up window associated with coverage to shape file conversion 

The coverage to geodatabase function is different from the other two options.  

Rather than creating a new file, it creates the geodatabase as well as producing a feature 

dataset within the geodatabase that contains the original coverage information.  After the 

user selects the input and output paths and filenames, a pop-up window appears asking 

for the name of the geodatabase, as illustrated in Figure 6.   Once the name of the new 

geodatabase is entered, the application then creates the geodatabase as well as the feature 

dataset.   

If the coverage conversion method were developed as a reflexive method, each of these 

files would be created at the end of each ESRI ArcMap session and would be overwritten 

each time modifications were made so that versioning issues would not arise.  Long 

transactions are capable using the coverage conversion method.  A copy of a coverage 

could be created for modification while the functioning geodatabase remains intact and 

available for public use, so that when modifications are completed on part, or all, of the 

components of a geodatabase, the copy can then replace the existing geodatabase.   
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Figure 6.  Coverage to geodatabase pop-up window 

 A further important aspect of embedding objects with their behavior is that 

behaviors can be inherited.  As the coverage is converted to a geodatabase feature, it 

passes on its behaviors and attributes to the geodatabase domain properties.  When a new 

coverage or other geographic data file is created within the geodatabase, it automatically 

takes on certain behaviors and attributes of the parent geodatabase.  It is said to ‘inherit’ 

these behaviors and attributes. 

3.4.2.  The Clean and Build Method 

 The second behavior method relates to the clean and build method.  This method 

also makes use of a GUI, which prompts the user to clean and build a specified layer and 

export it to a .vpf file or vector product format.  The clean and build method has a similar 

GUI to the coverage to geodatabase method.  Using this application, a user can display 

the geographic data to be cleaned and built (Figure 7).   
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The clean and build method exemplifies the concept of polymorphism in this case 

study.  The ‘clean’ portion of the method performs operations such as connecting 

dangling nodes, removing sliver polygons and other similar error-reducing processes, 

 

Figure 7. The clean and build method graphic user interface 

based on a specific tolerance (Appendix B).  The command is sent by the user and the 

function searches for a suitable ‘target’.  In this case, the target is a feature class.  The 

target feature class does not have to understand what ‘clean’ is; only that it is applied to 

either a line or polygon feature class.  If the coverage selected is found to contain errors, 

the coverage is ‘cleaned’.  For example, if a polygon data layer is going to be built from a 

line data layer, first the layer is cleaned to remove dangling lines or lines that do not end 

at an intersection with another line.  Then, the polygon layer is built, creating areas from 

the line data layer.   

3.4.3. The Domain Validation Method 

The third method example is the domain validation method.  This method 

automatically checks the validity of any new value entered into the system.  An object 

within a feature class or table with valid values for all of its attributes is considered a 
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valid object.  If one or more attributes of the object in a feature class or table is not valid 

then it is considered an invalid object.  The object itself is not removed from the dataset if 

it is considered invalid, however the attribute modification process is halted until invalid 

values are corrected. 

In ArcGIS, there are four types of validation rules.  These are attribute domain 

rules, connectivity rules, relationship rules, and custom rules.  Attribute domain rules are 

the primary focus of the domain validation method.  Attribute domains are utilized to 

restrict values permitted in a particular attribute entry for a table, feature class or subtype.  

Every feature class or table can have a set of attribute domains that apply to the attributes.  

The attribute domains do not have to be exclusive to the feature class or table.  Within 

geodatabase, attribute domains can be shared between feature classes and tables.  One 

disadvantage of the attribute domains is that they do not have the ability to disallow null 

values.  If a table or feature class is created within the geodatabase, the specific fields can 

be set to not accept null values.  However, the acceptance of null values cannot be set 

universally, as with attribute domains. 

As explained in section 3.2, there are two field types permitted within the attribute 

domains.  A field may be set up to accept a range of values, with the user delimiting the 

minimum and maximum values.  The other option is to have a set of coded values, with 

the user entering the valid values and a definition of what the value represents.  The value 

range method is useful when the user is looking for actual numerical or value input.  For 

example, in the NIMA project, the width of a road must be entered.  Also in the NIMA 

project, the user must enter the type of surface on the roads.  If the road is unimproved, 

the user enters a “1”.  If the road is paved, the user enters a “2”.  If the road surface type 
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is unknown, the user enters “99”.  After the value is entered, the method automatically 

checks the value in the cell to see if it is “valid”.  If the value is not within the range of 

values that is “valid” in the field, the method stops the data entry and informs the user 

that the value most recently entered is not valid and the system will not continue until a 

valid value is entered.  

 

3.5.  Review of Object-Oriented Concepts in the NIMA Project 

As demonstrated in the NIMA project, the geodatabase displays many of the 

fundamental components of object-orientation in GIS.  The geodatabase is feature-based 

and has a schema that illustrates all of the data layers and their attributes and what types 

of data are valid for each attribute.  The geodatabase combines all spatial and non-spatial 

data for a project into one file.  Also, the user may define feature classes within the 

geodatabase into which datasets with similar characteristics may be imported.  Both of 

these examples illustrate encapsulation.  The use of methods exemplifies the strength of 

polymorphism.  For each command to execute, a certain function is enacted depending on 

which type of data, point, line or polygon, receives the command.  Finally, the third 

major component, inheritance, is exemplified through the application of parent 

characteristics to the newly created child datasets within the geodatabase. 

Versioning and data locking is also embodied through the use of methods.  The 

coverage conversion method creates several types of data layers.  The original 

geodatabase layers remain intact and available to others to use while the layers created 

from the coverage conversion method can be edited and then imported into the 
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geodatabase once the edits are complete.  Along with data locking, long transactions may 

be completed on the newly created layers without hindering access to the geodatabase.  
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Chapter 4.  The FGDC Project 

4.1. Background 

The second case study used to exemplify OOGIS concepts focuses on a project 

sponsored by the Federal Geographic Data Committee (FGDC), concerning “National 

and Regional-Level Area Integrator Concepts Using Multi-Scale, Feature-Based Digital 

Transportation Data in West Virginia” (National Spatial Data Infrastructure, 1996).  This 

project sought to use OOGIS to implement the feature-based DLG-F model in support of 

the National Spatial Data Infrastructure (NSDI) initiative.  The FGDC project was 

undertaken as part of a National Spatial Data Infrastructure (NSDI) Competitive 

Cooperative Agreements Program that sought to demonstrate how cooperating agencies 

could support a national framework database concept by drawing upon data generated by 

local data producers.  The specific feature-based transportation project is a cooperative 

effort between the West Virginia State GIS Technical Center, the Department of Geology 

and Geography of West Virginia University, The West Virginia State GIS Coordinator, 

The West Virginia Department of Transportation (WVDOT) Division of Research and 

Planning, and the United States Geological Survey (USGS) National Mapping Division 

(NMD).  Initially, LaserScan OOGIS software was the preferred platform, though the 

project has subsequently adopted ESRI’s geodatabase. 

Importantly for the purpose of this project, the Framework concept focuses on the 

development of a National Spatial Data Infrastructure (NSDI) that “encompasses 

policies, standards and procedures for organizations to cooperatively produce and share 

geographic data” (Federal Geographic Data Committee, 1997).  It was in this context that 

the West Virginia University (WVU) team sought to build on the capabilities of an 
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OOGIS approach to the national database concept.  There are 17 federal agencies 

cooperating to create the NSDI, as well as participating organizations from state, local 

and tribal governments, and participants from the private sector and the academic 

community.  Executive Order 12906 established the NSDI whose role was to encourage 

the development of “the technologies, policies and people necessary to promote sharing 

of geospatial data throughout all levels of government, the private and non-profit sectors, 

and the academic community” (Federal Geographic Data Committee, 1997).  The NSDI 

sought to provide a structure for the practices and relationships between data producers 

and users that will promote data access, sharing and use in a comprehensive manner to 

enable decision makers to choose the ‘best’ available data (Federal Geographic Data 

Committee, 1997).  The new procedures were to be accomplished through the following 

set of goals (Federal Geographic Data Committee, 1997): 

• 
• 
• 
• 
• 
• 
• 
• 
• 

Provide a consistent means for sharing geographic data among all users. 
Produce significant savings in the cost of data collection. 
Enhance decision making. 
Reduce duplication of effort among agencies. 
Improve data quality. 
Reduce the cost related to geographic information. 
Facilitate accessibility of geographic data to the public. 
Increase benefits arising from using available geospatial data. 
Establish key partnerships with states, counties, cities, tribal nations, academia, 
and the private sector to increase data availability. 

 

The main issue addressed by the NSDI was the development of a national 

database capable of handling data at multiple scales, accepting data from various 

producers, reducing data redundancy and duplication and allowing updates to the 

database while making the data continuously accessible to other users. 
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The research proposed by WVU was to address these issues through the use of 

OOGIS and to develop a technical process to enable multiple local data producers to 

contribute data to a regional database and enable update and edit capability without 

locking the entire database from users.  Specifically, the study focused on transportation 

data generated by various regional and local data producers.  OOGIS was explored as a 

way of enabling data producers to contribute to a national framework database.  The 

FGDC project sought to produce a data environment and structure supportive of 

framework concepts that included: 

• Multi-scale geometry in an OOGIS 
• Feature-based unique identifier tracking (OOGIS) 
• Transaction updates from contributors (versioning) 
• Internet-based data dissemination (NSDI, 1996) 
 
OOGIS was proposed as the GIS and data model of choice. 

A supplementary proposal in 1999 titled, “Research and Design of Prototype 

Geospatial Data Transport and Update Capabilities in a Distributed Database 

Environment” provided additional focus on transactional updates and the creation of a 

distributed, multi-partner data maintenance process. 

The FGDC case study illustrates the three fundamental principles of OOGIS, 

comprising polymorphism, inheritance and encapsulation, and yet also explores several 

other OO concepts, including versioning, long transactions and data locking as well as 

conflation and the use of unique identifiers.  It is in the pursuit of OOGIS support of a 

framework national database and especially versioning that I focus on in this case study. 

Versioning is a procedure that produces a logical copy of the data without cloning 

the entire dataset.  The logical copies of the data can then be used in multiple situations  
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without actually modifying the original dataset in each instance (LaserScan, Inc., no 

date).  Developing a central database that can support multiple users performing 

transaction updates is clearly an attractive proposition not least because of reduced data 

duplication and cost.  

A long transaction in versioning enables a user to make changes to a dataset over 

a long period of time (e.g. days or longer) without restricting use of the original dataset to 

other users.  Data locking is a mechanism by which database systems can prevent 

conflicting access to data when multiple users make requests to the data (Association for 

Geographic Information, 1999).  Versioning and data locking enables multiple 

transaction updates and long transactions to be performed.  When a user performs an 

operation on a dataset, a logical copy of the data being manipulated is made.  The user 

data operations are then performed on the logical copy, leaving the original dataset intact 

so that others may use the same dataset.  If a user wishes to manipulate a dataset over a 

long period of time, these long transactions are performed on the logical copy using data 

locking without affecting the original dataset.  Versioning essentially sets a lock on the 

data while a long transaction is taking place and prevents conflicting access to the data 

through the generation of logical copies and leaving the original data intact until final 

data changes are sent to the regional database. 

 

4.2. Digital Line Graph Data Models 

The FGDC case study then was to develop a conceptual data model based on 

OOGIS and to focus this specifically on feature-based DLG-F transportation data model.   

The evolution of the DLG-F feature-based data model relies on the foundation built on 
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earlier models comprising the DLG-3 and DLG-E.  The transition from DLG-3 to DLG-E 

and subsequently to DLG-F represents a move from vector data models to entity data 

models and subsequently to object data models.  Since OOGIS uses feature-based data it 

was an obvious approach to apply to the development of a regional database for the 

NSDI. 

4.2.1. The DLG-3 and DLG-E Models 

The term “DLG-3” stands for Digital Line Graph, level 3.  It is the term used for spatial 

data stored in vector form.  There are eleven total record types in DLG-3 and these record 

types fall into the two broad categories: header records and data records.  Record type is 

significant here in that data records conform to the characteristics of a vector data model: 

• Node and area identification records—Contains qualitative and 
quantitative data that describes nodes and areas 

• Node-to-line linkage records—Contains line segment internal 
identification numbers that are unique identifiers 

• Area-to-line linkage records—Contain line segment internal 
identification numbers 

• Line identification records—Contains quantitative data regarding lines, 
as well as internal identification numbers that associate each line with a 
starting node, ending node, left area and right area 

• Coordinate string records—Contains coordinate points associated with 
each line in the dataset 

• Attribute code records—Contain major-minor code attribute pairs that 
describe each line in the DLG-3 dataset 

• Text records—Contain a descriptive text of the dataset 
 

The DLG-3 model was entity based and the relative position of data in the data 

files is very important.  Related node-to-line linkage records and attribute code records 

must follow each node identification record.  Similarly, each area identification record 

must be followed by area-to-line linkage records and attribute code records and also line 

identification records must by followed by coordinate string records and attribute code 

records.  Each of the identification records has associations with a record type.  Failure to 
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create and maintain this order can result in data and file corruption.  The DLG-3 model is 

dependent on its attribute table that is maintained separately from the spatial geometry.  

Overall, the model closely resembles the hierarchical database structure. 

The Digital Line Graph – Enhanced data model was developed specifically for 

two-dimensional spatially referenced topologically structured vector data possessing 

features, attributes and relationships and reflects a feature-based perspective of the 

topologically structured vector-based data model. 

Entities in the DLG-E model represent the digital characteristics of an entity and 

relationships provide the link between objects.  For example, relationships can exist 

between elements that have topology, such as feature objects and spatial objects, and 

feature objects to other feature objects.  Relationships can only involve two participants 

at a time using the DLG-E model.  The DLG-E model closely represents the entity-

relationship model, although the DLG-E model refers to data as “objects”, they are not 

true objects in the sense used by OOGIS.  The DLG-E model is a feature-based approach 

to data modeling that does not possess the fundamental qualities of the OOGIS data 

model such as encapsulation and inheritance.  The DLG-E model separates the spatial 

information or geometry layer from the attribute table and the relationship classes, as in 

the Entity-Relationship model.   Features in the DLG-E model are not truly 

“encapsulated” and inheritance is not possible in the DLG-E model.  Since relationships 

are stored separate from the rest of the spatial and non-spatial information, the 

relationship information cannot be passed to a child class when it is created.  

Furthermore, there is no behavior associated with the DLG-E data model and the parent 
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data layers cannot pass along behavioral qualities to the child data layers created under 

them. 

4.2.2. The DLG-F Model 

In contrast to the DLG-3 and DLG-E models, the Digital Line Graph – Feature 

more closely reflects the OO data model.  The model is feature-based, but emphasizes 

objects, rather than entities and their relationships.  Objects created using the DLG-F 

model exhibit encapsulation, by the ability to store all of its attributes and behavior in one 

object, rather than as separate related files.  DLG-F data can pass behavior to subsets of 

data or class object classes and polymorphic capabilities.   

One of the most important features of the DLG-F model is the concept of 

permanent feature identifiers.  The unique identifier, critical to OOGIS, employs the use 

of a numerical tag that is unique to the object with each feature instance.  To avoid 

having to replace all features when updating data holding, users only update the features 

that were modified.  This produces less error in the data because multiple versions of the 

data are eliminated.  The unique identifier is also important because it can be 

implemented as the link between feature attribution and multiple scale feature spatial 

representations.  The unique identifier is placed into a feature attribute table in the spatial 

data and can be used to access nonlocational data.   

The DLG-F model also uses the concept of a data dictionary, which lays out the 

type of feature, its definition, the different feature classes associated with it, the coverage 

name, and the associated attribute table.  The data dictionary also contains fields that are 

used to populate the attribute table and have properties associated with them such as 

attribute name, attribute type, data type, and attribute domain and definition.   
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DLG-F Feature: 
 

Aircraft Facility 

Definition: 
 

A location where aircraft can take-off and land, usually equipped with associated 
buildings and facilities. 

Feature Classes: Point, Area 
 

Coverage Name: 
 

TR_AIRPORTS 

Attribute Table: 
 

TR_AIRPORTS.PAT 

 
DLG-F Attribute 

 
Arc/Info Item 

 
Data Type 

 
Attribute 
Domain 

 
Definition 

Feature FEATURE Character 25 Alphanumeric The name of the DLG-F 
feature. 

Feature ID FEATURE_ID Character 10 Alphanumeric Unique permanent feature 
ID. 

Feature Type FEATURE_TYPE Character 25 Alphanumeric The type of aircraft 
facility: 
Airport = fixed-wing 
aircraft 
Stolport = short take-off 
and landing aircraft 
Ultralight = small, 
ultralight aircraft 

State FIPS Code STATE_FIPS Character 2 2-digit number FIPS code of the state 
containing the feature. 

County FIPS Code COUNTY_FIPS Character 7 (See table A-1 
in appendix) 

FIPS code of the county 
or counties containing the 
feature. (See table A-1 in 
appendix A for listing.) 

FAA ID Number FAA_ID Character 4 Alphanumeric The official ID assigned 
by FAA. 

Facility Name FACNAME Character 42 Alphanumeric Place name of the aircraft 
facility. 

Facility Ownership OWNNAME Character 29 Alphanumeric Ownership of the aircraft 
facility. 

City of Location CITYNAME Character 26 Alphanumeric Place name of the town or 
city nearest the aircraft 
facility. 

County of Location COUNTY Character 21 3-digit integer Place name of the county 
containing the aircraft 
facility. 

Source SOURCE Character 32 Alphanumeric Source data from which 
the feature was captured. 

Editor EDITOR Character 32 Alphanumeric Entity that performed 
feature updates. 

Source Date SOURCE_DATE Date Date Date of the source data. 
Feature 
Modification Date 

FEAT_MOD_DATE Date Date Date when feature was 
last updated. 

 
Table 1.  Example of DLG-F data dictionary entry (University of Georgia, Information 

Technology Outreach Services, 1998) 
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The definition may contain the coded values for the attribute domain if the field is set to 

accept coded values.  Table 1 is an example of a data dictionary entry. 

 The DLG data models illustrate the evolution from a hierarchical structure to a 

feature-based model and subsequently to an object-oriented database structure.  An OO 

DLG-F data model is fully encapsulated, thereby retaining information of several data 

layer types in one dataset.  In Table 1 for example, the aircraft facility data layer has two 

types of data within it, a point layer and an area or polygon layer.  With earlier DLG 

structures, the two types of data would have to be kept in separate files and the models 

were incapable of handling two separate types of data at the same time.  In the DLG-F 

OO model, data is related to the object that also includes attributes and behaviors because 

behavior is embedded within each object.  Validation methods can also be used. 

 The DLG-F model can pass on characteristics and behavior to child datasets, a 

feature known as inheritance.  Since the DLG-F model has a data dictionary with 

definitions of each attribute value, the information may be passed on to subsets of the 

data without having to physically reset the domain attributes.  For example, if a user 

made a subset of aircraft facilities using an individual FIPS code, the resulting data layer 

would have all of the behavior of the original data layer, without having to redefine the 

behavior of each attribute. 

 In the context of the national database, an object-oriented data model clearly 

allows versioning to be used such that data modification and transaction updates can be 

undertaken without locking all other users out of the database.  Versioning is extremely 

powerful in a multiple user GIS, such as that envisioned by the NSDI for the number of 

users creating, deleting and modifying data at one time could be in the hundreds to 
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thousands.  Feature-based data stored in an object-oriented GIS has the ability to let each 

user access the dataset while another person is accessing the database.  OOGIS enabled 

data with the capability of data locking and versioning is a powerful addition to the 

design of a national database.   

Equally, the ability to incorporate multiple scale data that can share feature 

attributes through the unique ID is a further very effective capability of an object-based 

database.  Conflation is the “process by which two digital maps, usually of the same area 

at different points in time, or two different thematic maps of the same area, may be 

matched and merged into one through geometrical and rotational transformations”  

(United States Geological Survey, 1999).  Conflation is an involved process with a 

number of complex steps.  The USGS is currently conflating the National Hydrography 

Dataset (NHD) for the entire United States such that the attribute and topological 

characteristic of feature data geometrically captured at one scale can be conflated with 

the spatial geometry of each water feature captured at a finer spatial scale.   

The NSDI uses similar techniques to add multiple scale data to the NHD database 

through the use of a regional integrator.  The regional integrator uses techniques similar 

to those of conflation to produce data at multiple scales.  For example, a 1:100,000 road 

dataset could be generalized to 1:250,000 road dataset using a process similar to 

conflation for use in the NSDI.  DLG-F is ideal for conflation and multiple scale use 

because of its versatility and powerful feature-based nature. 
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4.3. Review of Object-Oriented Concepts in the FGDC Project 

The FGDC project exemplifies many unique characteristics and strengths of an 

object-based GIS.  The feature-based DLG-F incorporated within an OOGIS has the 

capability to draw upon encapsulation, polymorphism and inheritance.  The use of unique 

identifiers, data locking, versioning and conflation are powerful contributions to the 

national framework database provided by OOGIS.  The use of a unique ID resolves 

issues of data redundancy and data error because it remains static, regardless of changes 

to the feature-based data. 

Conflation, data locking and versioning are essential elements in a database of 

this magnitude and intended use.  Since the users and contributors to such a national 

database would be many, the need to create, delete and modify data without locking out 

other users and contributors is vital.  Feature-based data and an object-oriented database 

structure allow for simultaneous access to a dataset by creating logical copy of the data 

and permits conflation between data of differing spatial scales.  A database that can draw 

upon the full range of OOGIS functionality would clearly be able to support the more 

complex organizational and user demands as envisioned by the NSDI.  The limitations of 

the ER model are thus fully exposed in the instance.   
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Chapter 5.  Conclusion 

The data model is essential to any GIS.  To date, the Entity-Relationship model 

has been the most commonly used model to represent real world features in a GIS.  

However, the object-oriented data model is a recent powerful alternative, and by all 

accounts, the data model of the future.  Because of the advantages of objects over entities 

and the preceding chapters it is proposed that the object-oriented data model provides a 

more powerful abstraction of reality than the entity-relationship model and a more 

powerful model as well.  The OO data model has the ability to manage data in a more 

intuitive manner by ordering data in a fashion similar to how a human would perceive 

and refer to the world.  Thus people refer to roads, buildings and streams as features and 

objects, not by point or arc or polygon.   

The object-oriented data model has some unique differences and advantages over 

the entity-relationship model.  The OO data model is based on feature classes or a 

schema, where each feature type may have several attributes.  Active object databases, 

such as geodatabases, allow feature-based data to be grouped into classes that portray 

similar entities.  The classes facilitate the creation of new feature classes and only the 

differences need to be modified in the schema. 

Features have their own behavior or methods encapsulated with the data, not in 

separate application programs.  By defining each spatial feature as an object, users can 

determine how an object behaves in relation to other objects around it.  For example, 

rivers cannot flow uphill.  The definition of feature classes specifies what values and 

behaviors can be associated with an object.  Methods or behaviors allow objects to 

respond differently to an instruction depending on its class and polymorphism provides a 
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mechanism for moving functionality out of applications and into class definitions stored 

with the object in the database (Sargent, 1999).  The ability for different objects to 

interpret commands unique to the nature of that object is a very powerful tool.   

The complex use of OOGIS in the case studies illustrates the power and benefits 

of the OO data model.  Concepts such as methods, schema, long transactions and 

versioning cannot be accomplished using the ER model or the georelational model with 

any degree of efficiency or effectiveness.  Since the two latter models do not associate 

behavior with data as the OO data model does, aspects of the NIMA project could not 

have been accomplished as well as they were by using the OOGIS.   

The ER model, for example, would be structured such that entities (coverages) 

would participate in many different types of relationships.  In any one-to-one 

relationships, attribute or data tables for each entity would be joined into one table or be 

kept separate.  One-to-many relationships that require two attribute or data tables and a 

field that enables a relational join.  In many-to-many relationships, all attribute or data 

tables would be kept separate (Heywood et al., 1998).  Once the attributes have been 

selected, the model would be created as well as a set of table definitions with details of 

the attributes, such as name, size and domain (Heywood et al., 1998).  In contrast, the OO 

data model has the capacity to identify relationships between features and data 

redundancy is minimized due to the relationships taking into account all of the factors 

described above without user intervention and possible user error. 

The case studies exemplify the object-oriented data model as a feature-based 

model and a more intuitive representation of the real world.  Similarly, since attribute 

domains cannot be implemented with the ER model, reflexive data validation cannot take 
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place because limitations cannot be set on field values.  The ER model is not 

encapsulated and it keeps the data, attributes and relationships as separate entities.  Since 

attribute domains cannot be created in the ER model, inheritance cannot take place and 

methods or behavior cannot to be passed to child classes. 

The advantages of the OO data model are further illustrated in the FGDC case 

study that shows the power and versatility of the OO data model.  The data dictionary 

could not be created using the ER model because behavior in the ER model cannot be 

associated with the data.  Versioning would be extraordinarily difficult using the ER 

model.  Since there are multiple tables and relationships involved with the ER model and 

creating a logical copy of only the data being manipulated could cause serious errors in 

the data and could lead to file corruption.  Data locking and long transactions, which 

usually accompany versioning, would also be considerably more tedious and 

cumbersome procedure using the ER model.  Data locking would have to take place for 

long transactions to prevent multiple edits of the same data or unnecessary data 

redundancy.  Again, specific parts of tables would have to be restricted, which may, in 

turn, restrict the whole table and thereby, create accessibility problems for other users.  If 

a long transaction were to take place, the data may be restricted for long periods of time, 

limiting the amount of data accessible to other users.  Using the ER model would not 

meet the long-term goals of the NSDI in building a national database and may create 

more problems than the issues sought to be resolved.   

 There is a wide array of uses for OOGIS.  As the trend in geographic data moves 

toward feature-based objects, the need for a system that handles data more intuitively 

becomes apparent.  A data model that is “smart” and handles and organizes objects 
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representing the world in a feature-based approach is becoming increasingly important in 

GIS.  Tools such as reflexive methods and versioning are made possible by the OO data 

model and represent significant advantages over earlier models.  The OO data model is 

superior over the entity-relationship model and provides a development based from 

which to drive a new generation of GIS tools and applications.  OOGIS is a powerful, 

reliable system in GIS technology and the wave of the future for geographic information 

systems. 
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Appendix A – Coverage Conversion Method Code 
(Code developed by Ping Qin, Xiaohua Sun and Janette Bennett) 

 
Object = "{9FF55731-7ACD-11D0-89E2-080009A874FA}#1.0#0"; "arcplot.OCX" 
Begin VB.Form Coverage_Conversion  
   Caption         =   "Coverage Conversion" 
   ClientHeight    =   5220 
   ClientLeft      =   60 
   ClientTop       =   345 
   ClientWidth     =   10740 
   LinkTopic       =   "Form1" 
   ScaleHeight     =   5220 
   ScaleWidth      =   10740 
   StartUpPosition =   3  'Windows Default 
   Begin VB.CommandButton cmdgdb  
      Caption         =   "Coverage to Geodatabase" 
      Height          =   495 
      Left            =   8280 
      TabIndex        =   15 
      Top             =   1920 
      Width           =   2175 
   End 
   Begin VB.CommandButton cmdexit  
      Caption         =   "Exit" 
      Height          =   495 
      Left            =   8280 
      TabIndex        =   14 
      Top             =   2640 
      Width           =   2175 
   End 
   Begin VB.ListBox List1  
      Height          =   2400 
      Left            =   4440 
      TabIndex        =   13 
      Top             =   2400 
      Width           =   1575 
   End 
   Begin VB.TextBox Text1  
      Height          =   375 
      Left            =   6240 
      TabIndex        =   8 
      Top             =   2880 
      Width           =   1575 
   End 
   Begin VB.DirListBox Dir2  
      Height          =   1215 
      Left            =   6240 
      TabIndex        =   7 
      Top             =   960 
      Width           =   1575 
   End 
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   Begin VB.DirListBox Dir1  
      Height          =   1215 
      Left            =   4440 
      TabIndex        =   6 
      Top             =   960 
      Width           =   1575 
   End 
   Begin VB.CommandButton cmde00  
      Caption         =   "Coverage to .e00" 
      Height          =   495 
      Left            =   8280 
      TabIndex        =   5 
      Top             =   1200 
      Width           =   2175 
   End 
   Begin VB.CommandButton cmdshape  
      Caption         =   "Coverage to Shape" 
      Height          =   495 
      Left            =   8280 
      TabIndex        =   4 
      Top             =   480 
      Width           =   2175 
   End 
   Begin VB.DriveListBox Drive2  
      Height          =   315 
      Left            =   6240 
      TabIndex        =   3 
      Top             =   480 
      Width           =   1575 
   End 
   Begin VB.DriveListBox Drive1  
      Height          =   315 
      Left            =   4440 
      TabIndex        =   2 
      Top             =   480 
      Width           =   1575 
   End 
   Begin Arcplot.Arcplot Arcplot1  
      Height          =   4095 
      Left            =   240 
      TabIndex        =   0 
      Top             =   480 
      Width           =   4095 
      _Version        =   65536 
      _ExtentX        =   7223 
      _ExtentY        =   7223 
      _StockProps     =   0 
   End 
   Begin VB.Label lbloutname  
      Caption         =   "Give a New Name for the Output File:" 
      Height          =   495 
      Left            =   6240 
      TabIndex        =   12 
      Top             =   2400 
      Width           =   1695 
   End 
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   Begin VB.Label lblinput  
      Caption         =   "Input File Name:" 
      Height          =   255 
      Left            =   4440 
      TabIndex        =   11 
      Top             =   120 
      Width           =   1215 
   End 
   Begin VB.Label lbloutput  
      Caption         =   "Output File:" 
      Height          =   255 
      Left            =   6240 
      TabIndex        =   10 
      Top             =   120 
      Width           =   1215 
   End 
   Begin VB.Label lblconvert  
      Caption         =   "Conversion Type:" 
      Height          =   255 
      Left            =   8280 
      TabIndex        =   9 
      Top             =   120 
      Width           =   1455 
   End 
   Begin VB.Label lblimage  
      Caption         =   "Image Preview:" 
      Height          =   255 
      Left            =   240 
      TabIndex        =   1 
      Top             =   120 
      Width           =   1215 
   End 
End 
 
Attribute VB_Name = "Coverage_Conversion" 
Attribute VB_GlobalNameSpace = False 
Attribute VB_Creatable = False 
Attribute VB_PredeclaredId = True 
Attribute VB_Exposed = False 
Dim theInput As String 
Dim theOutput As String 
Dim result As New ESRIutil.Strings 
Dim severity As Long 
 
Public Property Get aicontrol() As Variant 
 
End Property 
 
Public Property Let aicontrol(ByVal vnewvalue As Variant) 
    Dim Arcplot1 As Object 
    Set Arcplot1 = vnewvalue 
End Property 
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Private Sub cmde00_Click() ‘Coverage to e00 button 

 
    theInput = Dir1.Path & "\" & List1.List(List1.ListIndex) ‘reads the 

input box 
    theOutput = Dir2.Path & "\" & Text1.Text ‘reads the output text 

entered by the user 
     
    severity = Arcplot1.Command("arc export cover " & theInput & " " & 

theOutput, result) ‘executes the conversion command 
     
End Sub 
 
Private Sub cmdexit_Click() ‘Code for the exit button 
     
    End 
     
End Sub 
 
Private Sub cmdgdb_Click() 
 ‘This is from the ArcObjects samples that comes with Arc 8 
  theInput = Dir1.Path & "\" & List1.List(List1.ListIndex) 
  theOutput = Dir2.Path & "\" & Text1.Text 
   
  Dim pPropset As IPropertySet 
  Set pPropset = New PropertySet 
  pPropset.SetProperty "Database", feature1 
       
  Dim pOutAcFact As IWorkspaceFactory 
  Set pOutAcFact = New AccessWorkspaceFactory 
  Set pOutAcWorkspaceName = pOutAcFact.Create(Dir2.Path & "\", 
feature1, pPropset, 0) 'This tells the computer where to put the new 
geodatabase 
           
  ‘+++ create a new feature datset name object for the output Access 
feature dataset 
  Dim pOutAcFeatDSName As IFeatureDatasetName 
  Set pOutAcFeatDSName = New FeatureDatasetName 
   
  Dim pOutAcDSName As IDatasetName 
  Set pOutAcDSName = pOutAcFeatDSName 
   
  Set pOutAcDSName.WorkspaceName = pOutAcWorkspaceName 
  pOutAcDSName.Name = theOutput 
      
  ‘ +++ now get the name object for the input coverage feature dataset 
name. 
  Dim pInCovWorkspaceName As IWorkspaceName 
  Set pInCovWorkspaceName = New WorkspaceName 
  pInCovWorkspaceName.PathName = Dir1.Path & "\" 
  pInCovWorkspaceName.WorkspaceFactoryProgID = 
"esriCore.ArcInfoWorkspaceFactory.1" 
 
  Dim pFeatureDatasetName As IFeatureDatasetName 
  Set pFeatureDatasetName = New FeatureDatasetName 
  Dim pCovDatasetName As IDatasetName 
  Set pCovDatasetName = pFeatureDatasetName 
  pCovDatasetName.Name = List1 
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  Set pCovDatasetName.WorkspaceName = pInCovWorkspaceName 
   
  ‘+++ now use the conversion function convert the coverage to an 
Access feature dataset 
  Dim pCovtoFD As IFeatureDataConverter 
  Set pCovtoFD = New FeatureDataConverter 
  pCovtoFD.ConvertFeatureDataset pCovDatasetName, pOutAcDSName, 
Nothing, "", 1000, 0 
   
  MsgBox "Coverage conversion complete!" 
End Sub 
Private Sub cmdshape_Click() ‘This is the coverage to shapefile button 
     
    Dim Feature As String 
     
    theInput = Dir1.Path & "\" & List1.List(List1.ListIndex) ‘sets the 

input coverage 
    theOutput = Dir2.Path & "\" & Text1.Text ‘sets the name of the 

output shape file  
     
    Feature = _ 
    InputBox("Enter: ARCS or NODES or POINTS or POLYS or 
REGION.subclass or ROUTE.subclass or SECTION.subclass or TIC", "Input 
Feature Class") ‘Pop-up box that prompts user for feature type 
     
    severity = Arcplot1.Command("arc arcshape " & theInput & " " & 
Feature & " " & theOutput, result) ‘Creates the new shape file 
     
     
End Sub 
 
Private Sub Dir1_Change() ‘Changes the input directory 
     
    Dim result As New ESRIutil.Strings 
    Dim Counter As Integer 
     
    result.Clear 
    List1.Clear 
    Arcplot1.GetCover Dir1.List(Dir1.ListIndex), result 
    For Counter = 0 To result.Count - 1 
        List1.AddItem result.Item(Counter) 
    Next Counter 
     
End Sub 
 
Private Sub Drive1_Change() ‘Changes the input disk drive 
     
    Dir1.Path = Drive1.Drive 
     
End Sub 
 
Private Sub Drive2_Change() ‘Changes the output disk drive 
     
    Dir2.Path = Drive2.Drive 
     
End Sub 
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Private Sub Form_Load() ‘retrieves information from disk drives and 
directories 
 
    Dim result As New ESRIutil.Strings 
    Dim Counter As Integer 
     
    result.Clear 
    List1.Clear 
    Arcplot1.GetCover Dir1.List(Dir1.ListIndex), result 
    For Counter = 0 To result.Count - 1 
        List1.AddItem result.Item(Counter) 
    Next Counter 
     
End Sub 
 
Private Sub List1_Click() ‘Displays the coverage selected in the input 
box 
    theInput = Dir1.Path & "\" & List1.List(List1.ListIndex) 
     
    severity = Arcplot1.Command("clear ", result) 
     
    severity = Arcplot1.Command("linecolor " & Color, result) 
    severity = Arcplot1.Command("mape " & theInput, result) 
    severity = Arcplot1.Command("arcs " & theInput, result) 
     
     
End Sub 
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Appendix B – The Clean and Build Method Code 
(Code developed by Ping Qin, Xiaohua Sun and Janette Bennett) 

 
Object = "{9FF55731-7ACD-11D0-89E2-080009A874FA}#1.0#0"; "arcplot.ocx" 
Begin VB.Form Form1  
   Caption         =   "Form1" 
   ClientHeight    =   6330 
   ClientLeft      =   60 
   ClientTop       =   345 
   ClientWidth     =   7350 
   LinkTopic       =   "Form1" 
   ScaleHeight     =   6330 
   ScaleWidth      =   7350 
   StartUpPosition =   3  'Windows Default 
   Begin VB.ComboBox Combo1  
      Height          =   315 
      ItemData        =   "jtest2.frx":0000 
      Left            =   4560 
      List            =   "jtest2.frx":0016 
      TabIndex        =   12 
      Top             =   5160 
      Width           =   1335 
   End 
   Begin VB.CommandButton cmdexit  
      Caption         =   "Exit" 
      Height          =   495 
      Left            =   5640 
      TabIndex        =   11 
      Top             =   5640 
      Width           =   1215 
   End 
   Begin VB.ListBox List1  
      Height          =   2010 
      Left            =   5520 
      TabIndex        =   10 
      Top             =   2400 
      Width           =   1575 
   End 
   Begin VB.DirListBox Dir1  
      Height          =   1215 
      Left            =   5520 
      TabIndex        =   9 
      Top             =   960 
      Width           =   1575 
   End 
   Begin VB.DriveListBox Drive1  
      Height          =   315 
      Left            =   5520 
      TabIndex        =   6 
      Top             =   480 
      Width           =   1575 
   End 
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   Begin VB.CommandButton cmdDraw  
      Caption         =   "Draw" 
      Height          =   495 
      Left            =   960 
      TabIndex        =   4 
      Top             =   4800 
      Width           =   1215 
   End 
   Begin VB.CommandButton cmdClean  
      Caption         =   "Clean" 
      Height          =   495 
      Left            =   960 
      TabIndex        =   3 
      Top             =   5640 
      Width           =   1215 
   End 
   Begin VB.CommandButton cmdClear  
      Caption         =   "Clear" 
      Height          =   495 
      Left            =   2760 
      TabIndex        =   2 
      Top             =   4800 
      Width           =   1215 
   End 
   Begin VB.CommandButton cmdBuild  
      Caption         =   "Build" 
      Height          =   495 
      Left            =   2760 
      TabIndex        =   1 
      Top             =   5640 
      Width           =   1215 
   End 
   Begin Arcplot.Arcplot Arcplot1  
      Height          =   4335 
      Left            =   120 
      TabIndex        =   0 
      Top             =   120 
      Width           =   4455 
      _Version        =   65536 
      _ExtentX        =   7858 
      _ExtentY        =   7646 
      _StockProps     =   0 
   End 
   Begin VB.Label Label1  
      Caption         =   "Select Color:" 
      Height          =   495 
      Left            =   4560 
      TabIndex        =   13 
      Top             =   4800 
      Width           =   1215 
   End 
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   Begin VB.Label lblDisplay  
      Caption         =   "Display" 
      Height          =   255 
      Left            =   120 
      TabIndex        =   8 
      Top             =   4920 
      Width           =   615 
   End 
   Begin VB.Label lblOperate  
      Caption         =   "Operate" 
      Height          =   255 
      Left            =   120 
      TabIndex        =   7 
      Top             =   5760 
      Width           =   615 
   End 
   Begin VB.Label lblInput  
      Caption         =   "Input File:" 
      Height          =   255 
      Left            =   5640 
      TabIndex        =   5 
      Top             =   240 
      Width           =   1095 
   End 
End 
 
Attribute VB_Name = "Form1" 
Attribute VB_GlobalNameSpace = False 
Attribute VB_Creatable = False 
Attribute VB_PredeclaredId = True 
Attribute VB_Exposed = False 
Dim theInput As String 
Dim theOutput As String 
Dim result As New ESRIutil.Strings 
Dim Severity As Long 
 
Public Property Get aicontrol() As Variant 
 
End Property 
 
Public Property Let aicontrol(ByVal vNewValue As Variant) 
 
    Dim Arcplot1 As Object 
    Set Arcplot1 = vNewValue 
     
End Property 
 
Private Sub cmdBuild_Click() ‘Builds the topology 
     
    theInput = Dir1.Path & "\" & List1.List(List1.ListIndex) 
    Severity = Arcplot1.Command("arc build " & theInput, result) 
     
End Sub 
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Private Sub cmdClean_Click() ‘Cleans the topology 
 
    theInput = Dir1.Path & "\" & List1.List(List1.ListIndex) 
    Severity = Arcplot1.Command("arc clean " & theInput, result) 
     
End Sub 
 
Private Sub cmdClear_Click() ‘Clears the screen of the data display 
 
    Severity = Arcplot1.Command("clear ", result) 
     
End Sub 
 
Private Sub cmdDraw_Click() ‘Draws the layer selected in the input box 
 
    theInput = Dir1.Path & "\" & List1.List(List1.ListIndex) 
    Dim color As String 
     
 color = Combo1.Text 
    Severity = Arcplot1.Command("linecolor " & color, result) 
    Severity = Arcplot1.Command("mape " & theInput, result) 
    Severity = Arcplot1.Command("arcs " & theInput, result) 
     
End Sub 
 
Private Sub cmdexit_Click() ‘Exits the application 
     
    End 
     
End Sub 
 
Private Sub Dir1_Change() ‘Changes the directory in the input box 
 
    Dim result As New ESRIutil.Strings 
    Dim counter As Integer 
     
    result.Clear 
    List1.Clear 
    Arcplot1.GetCover Dir1.List(Dir1.ListIndex), result 
    For counter = 0 To result.Count - 1 
        List1.AddItem result.Item(counter) 
    Next counter 
         
End Sub 
 
Private Sub Drive2_Change() ‘Changed the drive of the output data layer 
 
    Dir2.Path = Drive2.Drive 
     
End Sub 
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Private Sub Form_Load() ‘Loads the form of the application 
 
    Dim result As New ESRIutil.Strings 
    Dim counter As Integer 
     
    result.Clear 
    List1.Clear 
    Arcplot1.GetCover Dir1.List(Dir1.ListIndex), result 
    For counter = 0 To result.Count - 1 
        List1.AddItem result.Item(counter) 
    Next counter 
     
End Sub 
 
Private Sub drive1_change() ‘Changes the drive of the input data layer 
 
Dir1.Path = Drive1.Drive 
 
End Sub 
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