
Graduate Theses, Dissertations, and Problem Reports

2003

Hybrid neural networks models for a membrane reactor Hybrid neural networks models for a membrane reactor

Mohammed Al-Yemni
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Al-Yemni, Mohammed, "Hybrid neural networks models for a membrane reactor" (2003). Graduate Theses,
Dissertations, and Problem Reports. 1412.
https://researchrepository.wvu.edu/etd/1412

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1412&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1412?utm_source=researchrepository.wvu.edu%2Fetd%2F1412&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

HYBRID NEURAL NETWORKS MODELS FOR A
MEMBRANE REACTOR

by

Mohammed Al-Yemni

Thesis submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Chemical Engineering

Approved by

Dr. Ray Y. K. Yang, Committee Chairperson
Dr. Eung H. Cho
Dr. Powsiri Klinkhachorn

Department of Chemical Engineering

Morgantown, West Virginia
2003

Keywords: Neural Networks, Hybrid Model, Membrane Reactor
Copyright 2003 Mohammed Al-Yemni

Abstract

Hybrid Neural Networks Models for a
Membrane Reactor

Mohammed Al-Yemni

Artificial neural networks (ANN) have become an established discipline and have gained
extensive interest within chemical engineering. In recent years, research effort has
focused on the use of “hybrid artificial neural networks” (HANN) models that combine
both the deterministic and the ANN elements. Several methods have been proposed for
combining ANN with first principle relations. In this thesis, a new hybrid scheme, which
is similar to that developed by Kasprow for a space-independent and time-dependent fed-
batch microbial reactor, was developed for a space-dependent steady-state enzymatic
reactor. This scheme combines ANN with mass balances and assumed rate expressions. It
was shown that this new hybrid scheme performed significantly better than both black-
box ANN model and the hybrid ANN with only mass balance equations. An enzymatic
tubular membrane reactor (TMR) was selected as a case study due to the availability of a
reliable deterministic/computational model, which can provide simulated process data as
needed, as well as its potential industrial importance. Also, two modeling schemes were
developed, a fully 'black box' model (BANN), based on ANN technique only, and a
simple hybrid model, combining ANN with mass balances (HANN1). Qualitative and
quantitative comparisons of the predicted profiles of the above three modeling schemes
indicated that the new hybrid scheme (HANN2) performed better than the other two
schemes. As a result of adding biochemical knowledge, in the form of mass balances and
simplified rate expressions, the new hybrid scheme allowed the process data to be
interpolated and extrapolated more accurately.

Acknowledgements

I would like to thank my research advisor, Dr. Ray Yang, for his guidance, encouragement,

corrections, and patience. I would also like to thank my other committee members Dr. Eung Cho

and Dr. Powsiri Klinkhachorn for agreeing to be on my committee and scheduling their valuable

time. Their guidance has been a good source of improvement in my work.

I would like to express my deep appreciation to my family for their support and patience. I would

also like to thank the management of Saudi Basic Industries Corp. (SABIC) for their support in

this endeavor.

Last but not the least I would like to thank my friends and the faculty of Chemical

Engineering Department, who are responsible for the knowledge that I gained over the

years of my stay at West Virginia University.

 iii

Table of Contents

 Abstract…………………………..………………………………………………… Ii

 Acknowledgements…………………....…………………………………………… iii

 Table of Contents………………………………..…………………………………. iv

 List of Figures…………………………………..………………………………….. vi

 List of Tables………………………………………..……………………………... ix

 Nomenclatures……………………………………..………………………………. x

Chapter 1 Introduction………………………………………………… …… 1

Chapter 2 Literature Review………………………………………………... 4

 2.1 ANN……………………………………………………………... 4

 2.2 Node of ANN……………………………………………………. 5

 2.3 Topology of ANN……………………………………………….. 9

 2.4 Training ANN…………………………………………………… 10

 2.4.1 Backpropagation (BP)…………………………………………... 11

 2.5 Black-box ANN (BANN)………………………………………... 12

 2.6 Hybrid ANN……………………………………………………... 12

 2.6.1 Kasprow’s Hybrid Neural Networks/Parameters Model………... 14

 2.7 Tubular Membrane Reactor (TMR)……………………………... 15

 2.7.1 Enzymatic Saccharification of Cellulose………………………. 17

 2.7.2 Kinetics of Saccharification of Cellulose………………………... 18

 iv

Chapter 3 Modeling of TMR via ANN……………………………………... 20

 3.1 Deterministic Model of the TMR and Its Numerical Solutions…. 20

 3.2 Generation of “Process Data” for ANN Development…………... 22

 3.3 Development of ANN Models for TMR………………………… 33

 3.4 Modeling TMR Using BANN…………………………………... 37

 3.5 Modeling TMR Using HANN1…………………………………. 42

 3.6 Modeling TMR Using HANN2………………………………… 49

 3.6.1 HANN2a…………………………………………………………. 52

 3.6.2 HANN2b………………………………………………………… 53

 3.7.2 List of Figures…………………………………………………… 38

Chapter 4 Performance Comparisons of BANN, HANN1, and HANN2…... 62

 4.1 Qualitative Comparison of BANN, HANN1, and HANN2……... 62

 4.2 Quantitative Comparison of BANN, HANN1, and HANN2……. 77

Chapter 5 Conclusions……………………………………………………… 91

 References………………………………………………………………………… 92

 Appendix A Programs Output………………………………………………. 95

 Appendix B Sample Programs……………………………………………... 98

 v

List of Figures

2.1 Summary of a node anatomy…………………………………………………... 5

2.2 A sigmoid transfer function…………………………………………………… 7

2.3 A hyperbolic transfer function………………………………………………… 8

2.4 Typical two-layered feed-forward ANN………………………………………. 9

2.5 Schematic of TMR…………………………………………………………….. 16

3.1 Cases with different feed conditions to TMR………………………………… 25

3.2 Comparison of noise-free and noisy “process data”(case 1)…………………... 26

3.3 Smoothed process data and first derivative of cellulose (case 1)……………… 28

3.4 Smoothed process data and first derivative of cellobiose in tube side (case 1). 29

3.5 Smoothed process data and first derivative of glucose in tube side (case 1)…. 30

3.6 Smoothed process data and first derivative of cellobiose in shell side (case 1). 31

3.7 Smoothed process data and first derivative of glucose in shell side (case 1)…. 32

3.8 A schematic representation of the TMR being numerically simulated………... 38

3.9 BANN for TMR……………………………………………………………….. 39

3.10 ANN development for BANN model………………………………………….. 41

3.11 HANN1 for TMR……………………………………………………………… 42

3.12 ANN-1 development for of HANN1 model…………………………………... 46

3.13 ANN-2 development for HANN1 model……………………………………… 47

3.14 Combination of ANN with ODEs for HANN1 model………………………… 48

3.12 HANN2 for TMR……………………………………………………………… 50

 vi

3.16 ANN-1 development for of HANN2a model………………………………….. 57

3.17 ANN-2 development for HANN2a model…………………………………….. 58

3.18 ANN-1 development for of HANN2b model…………………………………. 59

3.19 ANN-2 development for HANN2b model…………………………………….. 60

3.20 Combination of ANN with ODEs for HANN2 model………………………… 61

4.1 Comparison between process data and BANN predictions for recall case

(case 1)…………………………………………………………………………

65

4.2 Comparison between process data and BANN predictions for interpolation

case (case 21)…………………………………………………………………..

66

4.3 Comparison between process data and BANN predictions for extrapolation

case (case 25)…………………………………………………………………

67

4.4 Comparison between process data and HANN1 predictions for recall case

(case 1)…………………………………………………………………………

68

4.5 Comparison between process data and HANN1 predictions for interpolation

case (case 21)…………………………………………………………………..

69

4.6 Comparison between process data and HANN1 predictions for extrapolation

case (case 25)…………………………………………………………………

70

4.7 Comparison between process data and HANN2a predictions for recall case

(case 1)…………………………………………………………………………

71

4.8 Comparison between process data and HANN2a predictions for interpolation

case (case 21)……………….………………………………………………….

72

4.9 Comparison between process data and HANN2a predictions for extrapolation

case (case 25)………………………..…………………………………………

73

 vii

4.10 Comparison between process data and HANN2b predictions for recall case

(case 1)…………………………………………………………………………

74

4.11 Comparison between process data and HANN2b predictions for interpolation

case (case 21)…………………………………………………………………..

75

4.12 Comparison between process data and HANN2b predictions for extrapolation

case (case 25)…………………………………………………………………..

76

4.13 Regression results for glucose in tube side using BANN model……………... 81

4.14 Regression results for glucose in tube side using HANN1 model……………. 82

4.15 Regression results for glucose in tube side using HANN2a model…………... 83

4.16 Regression results for glucose in tube side using HANN2b model…………... 84

4.17 Average NSM for cellulose concentration predictions………………………... 85

4.18 Average NSM for cellobiose (tube) concentration predictions………………... 85

4.19 Average NSM for glucose (tube) concentration predictions…………………... 86

4.20 Average NSM for cellobiose (shell) concentration predictions……………….. 86

4.21 Average NSM for glucose (shell) concentration predictions………………….. 87

4.22 Average MPE for cellulose concentration predictions………………………… 88

4.23 Average MPE for cellobiose (tube) concentration predictions………………... 88

4.24 Average MPE for glucose (tube) concentration predictions…………………... 89

4.25 Average MPE for cellobiose (shell) concentration predictions……………….. 89

4.26 Average MPE for glucose (shell) concentration predictions………………….. 90

 viii

List of Tables

3.1 Deterministic model of TMR……………………………………………. 21

3.2 Parameters used in the TMR Model……………………………………... 22

3.3 Initial conditions for training, interpolation and extrapolation cases……. 24

3.4 ANN development for BANN model……………………………………. 40

3.5 ANN-1 development for HANN1 model………………………………... 45

3.6 ANN-2 development for HANN1 model………………………………... 45

3.7 ANN-1 development for HANN2a model………………………………. 55

3.8 ANN-2 development for HANN2a model………………………………. 55

3.9 ANN-1 development for HANN2b model………………………………. 55

3.10 ANN-2 development for HANN2b model………………………………. 56

3.11 Models Summary………………………………………………………... 56

 ix

Nomenclature

α Regularization parameter

β Regularization parameter

γ Effective number of parameters

µ Training algorithm tunable parameter

a Input vector to ANN

ai Output calculated via HANN or BANN models.

 b Output vector from ANN

BANN Black box ANN model

BC Concentration of cellobiose in lumen (tube) side, g l-1

_

BC Concentration of cellobiose in shell side, g l-1

GC Concentration of glucose in lumen (tube) side, g l-1

_

GC Concentration of gulcose in shell side, g l-1

SC Concentration of cellulose, g l-1

0SC Feed substrate concentration, g l-1

e Vector of ANN errors

ED Sum squared training set data errors

 x

ET Sum squared testing set data errors

EW Sum squared weight

0E Feed enzyme concentration, g l-1

F Objective function

G An approximation to the Hessian matrix H

H Hessian matrix

HANN1 First hybrid ANN model

HANN2 Second hybrid ANN model

I Identity matrix

J Jacobian matrix

iK Inhibition constant (cellobiose), g l-1

'
iK Inhibition constant (glucose), g l-1

mK Michaelis-Menten constant (cellobiose), g l-1

'
mK Michaelis-Menten constant (glucose), g l-1

N Number of data sets

NSE Normalized root mean square error

MPE Median percent error

L Length of TMR, cm

PL Hydraulic permeability, l g-1 min-1

 p Input vector

 xi

 pn Normalized vector

P Pressure at any distance z on the lumen side, g cm-2

FP Pressure at the entrance of the module, g cm-2

PP Pressure on the shell side, g cm-2

RP Pressure at the exit of the module, g cm-2

TP∆ Transmembrane pressure drop, g cm-2

ir Rate of formation of chemical species , g li -1 min-1

mr Maximum reaction rate (cellibiose), g l-1 min-1

'
mr Maximum reaction rate (glucose), g l-1 min-1

∑ ir Net rate of formation of g cm-2 species i , g l-1 min-1

1R Membrane tube (lumen) radius, cm

2R Inside radius of the reactor (shell side), cm

TMR Tubular membrane reactor

S Number of hidden layer

Tj Threshold of node j

V Volumetric flow rate at any distance z on the lumen side, l min-1

V Volumetric flow rate at any distance z on the shell side, l min-1

FV Volumetric flow rate at the entrance of the reactor, l min-1

wk vector of current weight and biases

 xii

ijW Weight factor of variable i in node j

jX Total activation of a node j

 xiii

1. Introduction

In processes involving chemical and biochemical reactions, mathematical models used

for reactor design, simulation and optimization are generally deterministic ones that are

developed based on first principles. Undoubtedly, a deterministic model is of advantage

for easy analysis and reliable extrapolation. However, the development of such a model

that is reliable and accurate is usually difficult, due to the complexity of coupled reaction

and transport phenomena usually involved in such processes. For this reason, one of the

most difficult problems in the control and optimization of biotechnological processes is

the construction of reliable models of the system. In addition, due to economic and time

constraints, in most cases, reliable deterministic models based on fundamental principles

and detailed kinetic studies are not readily available. Thus, it would be of great advantage

to find some simple and rapid ways of describing biochemical processes, which are

accurately enough for optimization and control [12].

In recent years several methods have been proposed to achieve this goal. One of them is

the use of artificial neural networks (ANN), which offers a tool for direct use of process

data to generate input-output relationships [1]. ANN has become an established discipline

and has gained extensive interest within chemical engineering. Most chemical

engineering processes are non-linear and are too complex to be modeled by conventional

modeling and simulation techniques. ANN, on the other hand, overcomes the limitations

of the conventional approach by extracting the desired information directly from the

process data.

 1

Another alternative for modeling chemical and biochemical process is the use of hybrid

ANN (HANN) models, in which the aspects of the process whose quantitative behavior is

well understood are described by deterministic mathematical equations, while the rest are

described by ANN [1,17]. These models are expected to perform better than black-box

ANN (BANN) models, in which only ANN, but not deterministic equations, is involved,

since generalization and extrapolation are confined only to the uncertain parts of the

process, and the basic model is always consistent with first principles.

The main objective of this work is to test a new hybrid neural networks model that

combines ANN with mass balances and assumed simplified rate-expressions. The

prediction of this model will be compared to the predictions of a black box ANN model

and a hybrid ANN model with only mass balances equations included as a first-principle

part. An enzymatic tubular membrane reactor (TMR) will be used as the “base process”

for studying these modeling approaches.

At first, a deterministic model of this process (reactor) was used to generate process data.

This step is described in detail in the first two sections of chapter 3 (3.1 and 3.2). Then, a

fully 'black box' model, based on the ANN technique, was developed using just the

process data. No information about the process was included in this model. The

development of this model is described in section 3.4 and the performance of this

modeling approach is evaluated in chapter 4. After that, first-principle information in the

form of mass balances equations (ODEs) was introduced separately into the 'black-box'

model to generate the first hybrid model (HANN1). In HANN1 the ANN was used to

predict rate of reactions. The development of this model is described in section 3.5 and

 2

the performance of this modeling approach is evaluated in chapter 4. The second hybrid

scheme was developed using a new hybrid scheme developed by Kasprow [17], called

“hybrid neural networks/parameters model”. This hybrid scheme combines ANN with

mass balances and assumed rate expressions. In order to test the superiority of this new

scheme, two models were developed (HANN2a and HANN2b) using smoothed and non-

smoothed data. The development of the second hybrid scheme (HANN2) is described in

section 3.6, and its comparison with other ANN schemes is presented in chapter 4.

 3

2. Literature Review

2.1 ANN

Artificial neural networks (ANN) are computational systems whose architecture and

operation are inspired from our knowledge about biological neural cells (neurons) in the

brain. ANN grew out of research in artificial intelligence; specifically, attempts to mimic

the fault-tolerance and capacity to learn of biological neural systems by modeling the

low-level structure of the brain. Although ANN have been around since the late 1950's, it

was not until the mid-1980's that algorithms became sophisticated enough for general

applications [3]

 In recent years ANN have emerged as a practical technology, with successful

applications in many fields. ANN are applicable in virtually every situation in which a

relationship between the input and output variables exists, even when that relationship is

very complex [13].

ANN have found commercial applications in a variety of areas in bioprocessing and

chemical engineering. Some examples include product design, formulation and

manufacturing; process monitoring and diagnosis; process modeling; process control; and

process optimization.

 4

2.2 Node of ANN

ANN consists of massively interconnected simple processing elements, known as

"neurons" or "nodes". Therefore, the starting point for any kind of ANN analyses are a

model node whose behavior follows closely to our understanding of how real neurons

work. Most of materials presented in this section are taken form Baughman and Liu [3].

The phrase “node” will be used in lieu of others throughout.

Figure 2.1 summarizes, as an example, the basic features of a node using five input
variables a1, a2,….,a5 [3].

 Figure 2.1. Summary of a node anatomy

jth node

 5

As seen, the inputs to the jth node are represented as an input vector, a, with components

ai (i =1 to 5). The node manipulates these inputs, or activities, to give the output, bj,

which can then form the part of the input to other nodes. Every input is multiplied by its

corresponding weight factor W and the node uses this weighted input to perform further

calculations. Weight factors can have either an inhibitory or an excitatory effect. If we

adjust Wij such that Wijai is positive (and preferably large), we tend to excite the node. If

Wijai is negative, it inhibits the node. Finally, if Wijai is very small in magnitude relative

to other signals, the input signal ai will have little or no effect.

ij

The next important factor governing the output from a node is the internal threshold . The

internal threshold for the jth node, denoted Tj, controls activation of that node. Tj is also

known as “bias”. The node calculates all its Wij ai’s, sums the terms together, and then

calculates the total activation, xj, by subtracting the internal threshold value Tj:

Total Activation = xj = - T∑
=

n

i
ijW

1
i)a(j, (2.1)

where n is the number of input variables.

If Tj is large and positive, the node has a high internal threshold, which inhibits node

output. Conversely, if Tj is zero (or negative, in some cases), the node has a low internal

threshold, which excites the node. Some, but not necessarily all, nodes have an internal

threshold.

 6

The final factor governing a node’s output is the transfer function. Once the node

calculates the dot product of vector Wj with vector a, and subtracts the threshold Tj (as

described above), it passes this result to a transfer function, f (xj). Thus, output bj from

the jth node is:

bj = f (xj) = f f
n

TW −∑)a(

).(xf

(Wj* a -Tj) = () (2.2) j
i

ij
=1

i

A particular transfer function is chosen to satisfy some specification of the problem that

the ANN is attempting to solve. It may be a linear or nonlinear function; however,

mathematicians and scientists have found sigmoid (S-shaped) functions particularly

useful. A typical sigmoid function is shown in Figure 2.2. Here y=

xe
xfy

−+
==

1
1)(

Figure 2.2. A sigmoid transfer function

 7

This function is monotonically increasing, with limiting values of 0 (at xj = -∞) and 1

(at xj = ∞). All sigmoid functions have upper and lower limiting values. Because of these

limiting values, sigmoid functions are also called threshold functions. For the function

shown in Figure 2.2 the threshold-function output is zero at very low input values. At

very high input values, the output value is one.

Another useful transfer function is the hyperbolic, with limiting values of -1 and + 1. A

typical hyperbolic transfer function is shown in Figure 2.3.

xx

xx

ee
eex −

−

+
−

==)tanh(xf)(

Figure 2.3. A hyperbolic transfer function.

As the biological and chemical processing systems become more complex and nonlinear,

the advantages of the hyperbolic transfer function become more apparent. The hyperbolic

transfer function outperforms the sigmoid transfer function in many cases. Two features

distinguish the hyperbolic transfer function:

 8

a. The slope of the hyperbolic transfer function is much greater than the slope of the

sigmoid function, which, means that it shows a greater response to a small deviation

in the input variable. Therefore, it can better distinguish between small variations in

the input variable and can generate a much more nonlinear response.

b. The hyperbolic transfer function has a negative response for a negative input value

and a positive response for a positive input value, while the sigmoid function always

has a positive response.

2.3 Topology of ANN

The topology or architecture of ANN refers to how its nodes are interconnected.

Although there are several ANN configurations possible, feed-forward ANN is widely

used for chemical engineering applications. Feed-forward ANN always consists of at

least two hierarchical layers of nodes: a hidden layer, and an output layer. A typical two-

layered feed-forward ANN is shown in Figure 2.4.

Input Output

Figure 2.4. A typical two-layered feed-forward ANN

 9

All the nodes in a layer are connected to all the nodes of the adjacent layers, and there are

no connections among the nodes in the same layer. The network is constructed in such a

way that each layer is fully connected to the next layer. In other words, every node in the

hidden layer will send its output to every node in the output layer. The number of nodes

in the hidden layers can be varied based on the complexity of the problem and the size of

the input information. However, the number of nodes in the output layer is set by the

number of output variables.

Multilayer ANN are more powerful than single-layer ANN. It has been shown that any

continues real-valued function can be approximated by a two-layered ANN to any

arbitrary degree of accuracy, given a sufficient number of nodes in the hidden layer [15,

16].

2.4 Training ANN

Generally, when we first build an ANN, we pre-specify the topology, that is, we specify

the interconnections, but leave the numerical values of the weights up to the training

phase. Learning or training is the process where the ANN approximates the function

mapping from system inputs to outputs, given a set of observations of its inputs and the

corresponding outputs. The phrase “training” will be used in lieu of others from now on.

Training implies that the node somehow changes its input/output relationship in response

to the environment via changes in the values of their weights.

 10

There are many different approaches to train ANN, most fall in one of two groups:

supervised training and unsupervised training. The primary training method and the one

we use in this work is called backpropagation (BP), which is one of the most important

methods for the supervised training of multi-layer feed-forward ANN, when dealing with

function approximation problems.

2.4.1 Backpropagation (BP)

BP has been applied to a wide variety of practical problems and it has proven very

successful in its ability to model nonlinear relationships. BP derives its name from the

fact that error signals are propagated backward through the ANN on a layer-by-layer

basis. This is done by adjusting the connecting weight of ANN, in such a way as to

minimize the sum of squared errors (ED) between desired and calculated outputs. For

each training set of ANN with n output variables the ED is defined below [8]:

∑ −=
n

btE 2)(

it ib

ib

=i
iiD

1
, (2.5)

where is the desired target output, is the output calculated via ANN. The weights

for each connection are initially randomized. When the ANN undergoes training, the

errors, - , i = 1,2,…,n, are propagated backward through the net, as the connection

weights are updated during each iteration. Repeated iterations result in a converged set of

connection weights, yielding an ANN that exhibit the relationships between sets of input

data and the corresponding sets of target values used in training.

it

 11

2.5 Black-box ANN (BANN)

ANN in its original form as described so far has typically been used as of the black-box

type, that is, no prior knowledge about the process was assumed; the goal was to develop

a process model based only on observations of its input-output behavior. With

availability of enough experimental data about the process, engineers usually can develop

such a “black-box ANN” (BANN) model without too much difficulties. There are a lot of

examples in the open literatures for the application of this approach in chemical and

biochemical process. For example, Baughman and Liu [3] applied this approach for

several chemical processes. Also, Kasprow [17] applied BANN for continuous and batch

biochemical processes. Modeling with BANN quite often is the only possible method

when no process knowledge is available [19]. However, being essentially black box

models, they may be of poor ability for extrapolation and are difficult for interpretation

and analysis of the behaviors of the process.

2.6 Hybrid ANN (HANN)

In recent years, there has been an increasing interest in developing modeling methods that

address the problems associated with BANN. Recently, research effort has focused on

the use of “hybrid ANN” (HANN) models that combine both the deterministic and the

BANN elements [17,19]. For example Psichogios and Ungar [19] considered the case of

a fed-batch bioreactor, using cell mass and substrate balances as the deterministic section

of their HANN model. According to Kasprow [17], there have been three types of HANN

methods for combining neural networks with process models. Briefly, the first method

 12

uses ANN to predict the rate of change of one or more state variables; these rates are then

used in a mass-balance expression. The second uses ANN to determine additive

corrections to an assumed simple model. The third uses ANN to predict constant model

parameters. The following three sub-sections, mainly taken from Kasprow [17], discuss

these three types in more details.

a) HANN Involving Rate Prediction

In this type of HANN, the aspects of the problem whose quantitative behavior is

well understood are described by deterministic mathematical equations, while

ANN describe the unknown kinetics. Several research groups applied this HANN

procedure to biochemical processes [1,3,19,23]. Also, it was applied to non-

biological system such as a continuous stirred tank reactor (CSTR) [7], batch

biochemical reactors [7], and a fluidized bed reactor [24].

b) HANN involving Additive Corrections

Another HANN modeling seen in the literature uses neural networks to provide an

additive correction to simple process models. In this approach the ANN represents

the complexity of the true system that cannot be accounted for in the simple

assumed model. The basic idea behind this technique is that the ANN will model

the process nonlinearities, thus enabling the complete hybrid model to capture

more complex dynamic. For example Thompson and Kramer [22] used this

approach for modeling a simulated fed-batch penicillin process.

 13

c) HANN Involving Parameter Prediction

The third HANN approach uses ANN to provide values for constant parameters in

a first-principle model. Therefore, in this approach, the partial first-principles

model specifies process variable interactions from physical considerations; the

ANN complements this model by estimating unmeasured process parameters in

such a way as to satisfy the first principles constraints. Nonparametric estimation

is needed since no knowledge is available about these parameters. Such models

are expected to perform better than BANN models in process identification tasks,

since generalization and extrapolation are confined only to the uncertain parts of

the process while the basic model is always consistent with first principles and

does not allow a physical variable interactions [22]. This approach was used to

model a wall-cooled fixed-bed reactor [21], converting benzene to maleic

anhydride, using a neural network to predict the overall heat transfer coefficient

based on the benzene flow rate, coolant temperature, and air flow rate. Also,

Kasprow [17] applied this approach for modeling biochemical process.

26.1 Kasprow’s Hybrid Neural Networks/Parameters Model

This approach was developed by Kasprow [17] as an improvement to the hybrid model

developed by Tholudur and Ramirez [23]. Tholudur and Ramirez formed a hybrid model

in which a simple mass balance is combined with neural networks that predict the protein

expression rate, protein secretion rate, growth rate, and yield of cells on substrate. In their

approach, the neural network training data is found by solving the mass balance equations

for the rates and the yield coefficient. This approach, which was called “hybrid neural

 14

networks/specific rate model” by Kasprow, neglects any prior knowledge about the

expected relationship between the state variables and growth rate.

In Kasprow’s approach, the mass balance equations are used to form the underling model

structure. Then, knowledge of a rough relationship between the state variables and the

rates is included in the form of a simple rate model. Rather than correcting the rate

model predictions, the rate model parameters are modified based on the state variables.

This is a more powerful correction, and has a basis in biochemistry since the model

parameters have a physical meaning. Finally, the parameters are not constrained to one

constant value for an entire fermentation, but allowed to vary as the state variables

change.

This new hybrid scheme was shown to perform significantly better than both a black-box

neural networks model and hybrid neural networks/parameters models. This

HANN/parameters approach was developed and used to model an enzymatic tubular

membrane reactor (TMR).

2.7 Tubular Membrane Reactor (TMR)

In this project a continuous-flow tubular membrane reactor (TMR) for enzymatic

saccharification of pretreated lignocellulosic biomass to glucose and cellobiose [11] was

selected as the “base process” for studying HANN models. This is mainly due to the

availability of a reliable deterministic model which can provide “simulated” process data

 15

as needed, as well as its potential industrial importance in the future. A schematic

diagram of the configuration of the TMR is shown in Figure 2.5 [11].

Figure 2.5 Schematic of TMR

The reactor consists of shell and tube sides and tubular membranes made of organic or

inorganic membrane. Only one membrane tube with radius, R1, is shown inside a

cylindrical housing of radius, R2. In reality, this membrane reactor may consist of several

to a large number of polysulfone (organic) or ceramic (inorganic) membrane tubes. Thus

the TMR may be either a “polysulfon TMR” (PTMR) or a “ceramic TMR” (CTMR). In

this work, effort is focused only on PTMR, although the methodologies are equally

applicable to CTMR. The TMR has the advantages of: (1) simultaneous reaction and

separation in one reactor hence reducing capital cost; (2) enhanced reaction rate

throughout the reactor, as a result of removal of inhibitory products; and (3) easy scale up

[11].

 16

The associated FORTRAN program of the TMR model, developed here at the

Bioreaction Engineering Laboratory at WVU [11], can be used with confidence to

generate “simulated” process data for most occasions for training ANN. The use of

computer-generated data (from deterministic models) superimposed with purposely

added random “noise” for use as “simulated experimental data” for ANN research is a

widely used approach among ANN researchers [17].

2.7.1 Enzymatic Saccharification of Cellulose

The conversion of biomass to liquid fuels, such as ethanol, has been of much interest during the

20th century. Ethanol can be produced either by hydrolysis of cellulose to glucose and then

fermentation of glucose to produce ethanol, or alternatively via simultaneous saccharification and

fermentation (SSF). Although, large-scale production of ethanol from lignocellulosic material in

its infancy, commercial production of ethanol from starch has been in existence for many years.

The focus of research and development efforts in biomass conversion has currently switched to

that of a bio-refinery concept, i.e., to the production of industrially important chemicals, in

addition to alcohol.

Hydrolysis is a chemical decomposition process that uses water to split chemical bonds of

substances. There are two types of hydrolysis, acidic and enzymatic with the later being the most

promising approach [11]. Feedstocks that may be appropriate for enzymatic hydrolysis typically

are plant-based materials containing cellulose. These include forest wastes and sawmill residues,

agricultural residues, urban wastes, and waste papers [18].

 17

All plants have structural components composed of lignocelluloses fibers, which in turn are

comprised of three major fractions: cellulose, hemicelluloses, and lignin. Cellulose consists of a

vary long chain of glucose and can be broken down chemically or biologically into glucose and

cellulose. The sugars can then be fermented using yeast or bacteria to produce a large number of

chemicals.

The use of enzymes for cellulose saccharification has several advantages over acid such as the

production of fewer by-products and higher yield of desirable products, hence, less purification is

required [11]. The feasibility of enzymatic processes are limited by the cost of enzyme cellulose,

so enzyme use must be optimized. One possible approach is the use of membrane bioreactors.

Membrane allows continuous removal of inhibitory products (glucose and cellobiose), thus

increases conversion to sugars, and also makes more efficient use of the enzymes [18]. The

enzymatic saccharification of cellulose is a complex process requiring the participation of

cellulase, an enzyme complex. A kinetic model for enzymatic saccharification of cellulose is

essential not only for a better understanding of its mechanism, but also for scaling-up of the

enzymatic reactors involved.

2.7.2 Kinetics of Saccharification of Cellulose

The kinetics of enzymatic hydrolysis of cellulose has been extensively studied and

several kinetic models have been proposed [11]. Cellobiose and glucose are the major

products, formed during the enzymatic hydrolysis of cellulose. Most of the models

assume that the production of sugars by enzymatic saccharification is a two-step process

(two reactions in series) involving the conversion of intermediate cellobiose to glucose:

 18

 Cellulose(S) Cellobiose (B) Glucose (G) (2.8)

In this work, a two-step competitive product inhibition model is adopted. The competitive

product inhibition rate expressions are [11].

B
i

m
Sm

Sm
B

C
K
KCK

Crr
++

=
 (2.9)

G
i

m
Bm

Bm
G

C
K
KCK

Crr

'

'
'

'

++
=

 (2.10)

The kinetic parameters of this model are listed in Table 3.2 and the symbols used are

listed in Nomenclature.

 19

3. Modeling of TMR via ANN

3.1 Deterministic Model of the TMR and Its Numerical Solutions

A deterministic model for enzymatic saccharification of pretreated lignocellulosic

biomass to glucose and cellobiose using TMR was developed in our Bioreaction

Engineering Laboratory [11]. The essential assumptions of the TMR model are as

follows: (1) steady state operation of the reactor; (2) plug flows with negligible axial and

radial dispersions in both lumen and shell sides; (3) isothermal operation; (4) negligible

concentration polarization; (5) enzymes are completely retained by the membranes; and

(6) cellulase deactivation during the period of reactor operation is negligible. In addition,

the two-step reaction scheme (Eq. 2.8) has been adopted for hydrolysis of cellulose to

cellobiose and glucose. The initial-value type ordinary differential equations (ODEs)

used to model this reactor, together with their initial conditions [11], are listed in Table

3.1. A computer programs in FORTRAN was developed by Gauba [11] to solve this set

of ODEs using the stiff ODE solver, LSODE. This computer model is capable of

providing steady-state concentration profiles of cellulose, glucose, and cellobiose in both

lumen and shell sides under different operation conditions.

Since the modeling development of ANN in this work is done using MATLAB, the

FORTRAN code of the TMR model was transformed to MATLAB code using MATLAB

(version 6). The MATLAB version of the TMR model, tmr.m, is listed in Appendix B1.

 20

Table 3.1 Deterministic model of TMR

Tube Side (Lumen)

][2
1

2
1

dz
dv

R
Cr

v
R

dz
dC S

B
S

π
π

−−= ; C (1) SoS C=)0(

B
TPB

GB
B C

R
PL

dz
dv

R
C

rr
v
R

dz
dC

)
2

([
1

2
1

2
1 ∆

−−−−=
π

π
; C (2) 0)0(=B

])2([
1

2
1

2
1

G
TPG

G
G C

R
PL

dz
dv

R
C

r
v
R

dz
dC ∆

−−=
π

π
; C (3) 0)0(=G

Shell Side

])
2

([
1

_

2
1

_

_

2
1

_

B
TPBB C

R
PL

dz
vd

R
C

v

R
dz
Cd ∆

+−=
π

π
; C (4) 0)0(=

−

B

])
2

([
1

_

2
1

_

_

2
1

_

G
TPGG C

R
PL

dz
vd

R
C

v

R
dz
Cd ∆

+−=
π

π
; C (5) 0)0(=

−

G

Where:

02 1 =∆+ TP PLR
dz
dv π ; z

L
PPPPP FR

PFT)(−
+−=∆

F
FR

PFP vz
L

PPzPPLRv +
−

+−−=]
2

)())[(2(
2

1π ; v
_

vvF +=

B

i

m
Sm

Sm
B

C
K
KCK

Cr

++
=r ;

G
i

m
Bm

Bm
G

C
K
KCK

Crr

'

'
'

'

++
=

 21

Table 3.2 Parameters used in the TMR Model

1R : 0.3 cm L : 200 cm

PP : 1033.82 g cm-2 FP : 1100 g cm-2

RP : 1070 g cm-2 PL : 2.5 x 10-7 cc g-1 min-1

oE : 0.152 g l-1 mr : 1.39x10-3 g cc-1 min-1

'
mr : 1.22x10-3 g cc-1 min-1 mK

 : 42.18x10-3 g cc-1

'
mK : 198.34x10-3 g cc-1 iK

 : 1.89x10-3 g cc-1

'
iK : 0.66x10-3 g cc-1

Although the LSODE solver was used to solve the system of ODEs in the FORTRAN

cod, the stiffness of this system was not investigated before. However, to be consistent

with the FORTRAN code, a MATLAB stiff ODE solver, ode23s, was used to solve

ODEs in the MATLAB version of the TMR model. In order to verify the correctness of

the numerical results obtained, both programs (FORTRAN and MATLAB) were tested

using the same initial conditions (Cso=0.0025 g/l and vF = 0.6 ml/min). The outputs from

the two programs are listed in Appendices A1 and A2, and it can be seen that they match

each other up to six digits.

3.2 Generation of “Process Data” for ANN Development

As mention before, the use of computer-generated data superimposed with “noise” for

use as “simulated experimental data” for ANN research is widely used among researchers

 22

[17]. This approach allows quick and easy generation of training data at different

conditions. Also, the amount of noise in the training data can be controlled, and ANN

predictions can be compared to a true underlying model.

Numerical simulations were conducted using the MATLAB version of the deterministic

TMR model to generate data, which after treatments will be used to train the ANN

models. The deterministic model was solved for a variety of feed conditions; this

resulted in a data set of 26 cases, i.e., 26 cases of data, each corresponding to a different

operation condition. The initial conditions of these cases are shown in Table 3.3. Figure

3.1 illustrate the location of the non-zero initial conditions of each case using a two-

dimensional plot of Cso vs. vF.

In order that the computes-generated simulation data would more closely represent actual

process data, random noise was added to each of the datum. Noise values were

determined at each point by sampling from a normal distribution having zero mean and a

standard deviation equal to 3.0% of the values of the datum. A MATLAB function,

noise.m, in Appendix B2 was developed to add random noise to the simulation data.

These noisy values were then considered to be the "process data”. Comparison between

noise-free data and data with 3% noise for case-1 (Cso=0.0025 g/l and vF = 0.6 ml/min)

is shown in Figure 3.2.

 23

Table 3.3 Initial Conditions for Training, Interpolation and Extrapolation Cases

Case
s

Fv
ml min-1

SoC
g l-1

BoC
g l-1

GoC
g l-1

−

BoC
g l-1

−

GoC
g l-1

Training cases
1 0.6 0.0025 0 0 0 0
2 0.62 0.0016 0 0 0 0
3 0.66 0.0013 0 0 0 0
4 0.67 0.0018 0 0 0 0
5 0.70 0.0009 0 0 0 0
6 0.71 0.0014 0 0 0 0
7 0.75 0.0017 0 0 0 0
8 0.79 0.0005 0 0 0 0
9 0.82 0.0019 0 0 0 0
10 0.83 0.0024 0 0 0 0
11 0.86 0.0007 0 0 0 0
12 0.89 0.0009 0 0 0 0
13 0.91 0.0026 0 0 0 0
14 0.93 0.0011 0 0 0 0
15 0.95 0.0010 0 0 0 0
16 0.97 0.0006 0 0 0 0
17 0.99 0.0021 0 0 0 0
18 1.01 0.0004 0 0 0 0
19 1.03 0.0021 0 0 0 0
20 1.05 0.0018 0 0 0 0

Interpolation Cases
21 0.6 0.0010 0 0 0 0
22 0.73 0.0015 0 0 0 0
23 1 0.0005 0 0 0 0

 Extrapolation Cases
24 0.65 0.0045 0 0 0 0
25 1.2 0.0003 0 0 0 0
26 1.3 0.0035 0 0 0 0

 24

 Figure 3.1 Cases with different feed conditions to TMR

 25

Figure 3.2 Comparison of noise-free and noisy “process data”(case1)

 26

In this work, developing hybrid ANN model (HANN) requires determining the rate of

reactions (rB and rG) based on the process data. First derivative of the state variable with

respect to zi gives its rate of change. The simplest way to estimate the derivative is to

divide the change in the state variable by the change in position between two

subsequent points, /∆ . However, this type of numerical differentiation will

increase the effects of noise, resulting in derivative estimates of lower reliability than the

data they are based on. The solution for this problem is to smooth the process data, and to

use the smoothed process data to train ANN and estimate derivatives. Therefore,

smoothing spline was used to treat the process data sets. The smoothing spline was

implemented using a built-in MATLAB function spaps.m [4]. Using case1 (C

∆ z

∆ iC z

so=0.0025

g/l and vF = 0.6 ml/min) as an example, Figures 3.3-3.7 illustrate the generation of

smoothed process data and first derivative by applying the MATLAB function spaps.m.

The MATLAB scripts files bann_data.m, hann1_data.m, hann2a_data.m, and

hann2b_data.m presented in Appendix B3, B4, B6, and B7 show the creation of

training, interpolation and extrapolation data sets for ANN development. Twenty six sets

of “smoothed process data” were generated, the first 20 cases have been selected for

training, the next three cases (21-23) for interpolations, and the last three cases (24-26)

for extrapolations. They are shown in Table 3.3 on by initial conditions. These 26 sets of

smoothed process data are the “foundation” of ANN models for TMR to be described

next.

 27

 28

 29

 30

 31

 32

3.3 Development of ANN models for TMR

BANN and HANN models require the development of ANN to represent the

relationships between input and output variables. These ANN were developed and trained

using MATLAB Neural Network Toolbox, ver. 4.0 [8]. Based on the process data

generated in Section 3.2 the following steps were followed to develop the ANN part of

both modeling approaches.

Step 1: Normalization

In order to train the ANN properly, it is necessary to normalize the input and target

output data, so that they are all approximately of the same order of magnitude. This is

done to make sure that the errors in each of the output nodes are roughly comparable.

Otherwise the errors from variables having large magnitude will be weighted too strongly

in the training via backpropagation (BP). All the process data were normalized to be in

the range of [-1,1]. This was done by using a built-in MATLAB function, premnmx.m.

This function uses the following equation to perform the normalization:

1
))min((2

−
−

=
pppn

p n

)min(

))min()(max(− pp (3.1)

where is a vector of the original process data, p is a vector of the normalized process

data, and p and are respectively the minimum and maximum elements in the

vector . If premnmx.m is used to normalize the training data, then the ANN will be p

)max(p

 33

trained to produce output in the range [-1,1]. Therefore, a second MATLAB function,

postmnmx.m, was used to convert these outputs back into the same units that were used

for the original data. This function uses the following equation to perform the de-

normalization:

)min())min())(max(1(5.0 ppppp +−+= n (3.2)

Step 2: ANN architecture

As mention before, it has been shown that a two-layer ANN is capable of representing

any continues real-valued function to any arbitrary degree of accuracy, given a sufficient

number of nodes in the hidden layer [15,16]. Therefore, in all modeling approaches in

this work, a two-layer (hidden layer and output layer) ANN was used, with the output

layer node having a "linear" transfer function, i.e., no transformation performed. For the

hidden layer, a hyperbolic transfer function was used, because it is the most efficient one,

as described in Section 2.2. The number of nodes in the output layer correspond to the

number of output variables for each models. However, the number of nodes in the hidden

layer was optimized for each model during the training of ANN in each model in order

to lessen the chances of over fitting the training data, and to provide the most robust

extrapolation possible.

Step 3: Training

 34

Backpropagation (BP) was used to train all ANN developed in this work. There are many

variations of BP in MATLAB Neural Network Toolbox [8]. It is not straightforward to

know a priori which training algorithm will be the most efficient for a given problem. It

depends on many factors, including the complexity of the problem, the number of data

points in the training set, and whether the ANN is being used for pattern recognition or

function approximation. However, it has been found that on function approximation

problems, for ANN that contains up to a few hundred weights, the Levenberg-Marquardt

algorithm will have the fastest convergence. The Levenberg-Marquardt algorithm uses

matrix G as an approximation to the Hessian matrix H in the following iteration scheme

[8]:

 wk+1 = wk - G-1 (wk) JT(wk)e(wk) (3.3a)

where G = H + µ I (3.3b)

 wk is a vector of current weight and biases, J is the jacobian matrix that contains first

derivatives of the ANN errors with respect to the weights and biases, e is a vector of

ANN errors, I is identity matrix, and µ is the tunable parameter of the Levenberg-

Marquardt algorithm. When the scalar µ is zero, this is just Newton's method, using the

approximate to Hessian matrix G. When µ is large, this becomes gradient descent

method with a small step size. Newton's method is faster and more accurate near an error

minimum, so the aim is to shift towards Newton's method as quickly as possible. Thus, µ

is decreased after each successful step (reduction in performance function) and is

 35

increased only when a tentative step would increase the performance function. In this

way, the performance function will always be reduced at each iteration of the algorithm

[8].

One of the problems that occur during ANN training is over-fitting, i.e., poor

generalization. The error on the training set is driven into very small value, but when new

data is presented to the ANN the error is large. One method for improving ANN

generalization is to use ANN that is just large enough to provide an adequate fit.

Unfortunately, it is difficult to know beforehand how large an ANN should be for a

specific application. There are a few techniques for avoiding over-fitting implemented in

the MATLAB Neural Networks Toolbox. One of them is to use MATLAB function,

trainbr.m , which employs Bayesian regularization techniques [8].

Typically, training aims to reduce the sum of squared errors. However, regularization

adds an additional term to avoid over-fitting; the objective function becomes [9,10]:

 WD EEF αβ += , (3.4)

where: ; ∑
=

=
n

i
iW wE

1

2

WE2
γα = ;

DE
n
2

γβ −= ; αγ 2)(1−−= HtrN ;

EW is the sum of squares of the network weights, α and β are the regulation parameters, N

is the total number of parameters (weights and biases) in the ANN, γ is a measure of

 36

how many parameters in the ANN are effectively used in reducing the error function,

tr(H-1) is the trace of the inverse of Hessian matrix H.

The problem with regularization techniques is that it is difficult to determine the optimum

value for α and β. One approach to optimize these regulation parameters automatically is

the Bayesian framework of David MacKay [10]. In this framework, the weights and

biases of the network are assumed to be random variables with specified distributions.

The regularization parameters are related to the unknown variances associated with these

distributions. A detailed discussion of the use of Bayesian regularization, in combination

with Levenberg-Marquardt training, can be found in Foresee and Hagn [10].

Bayesian regularization has been implemented in the function trainbr.m. One feature of

this function is that it provides a measure of how many network parameters (weights and

biases) are being effectively used by the ANN. trainbr.m function was used to train and

determine the optimum number of hidden nodes in all the ANN developed in this work.

3.4 Modeling TMR Using BANN

In this approach only the ANN was used to model the TMR system. No information

about the process is included in this type of model; the ANN network must extract the

relationships between input and output variables from the process data. Therefore, the

BANN model is purely “empirical”.

 37

The total length of TMR being numerically simulated is set at 200 cm. A schematic

diagram of this model is shown in Figure 3.8.

∆z

 0=z iz 1+iz Lz =

xi xi+1
 Effluent Feed

Figure 3.8 A schematic representation of the TMR being numerically simulated.

The deterministic model was set to provide steady-state concentration profiles of

cellulose, glucose, and cellobiose in both lumen and shell sides at each 10 cm length. As

shown in Figure 3.8, for each segment there is an input vector xi (at) and an

output vector x

izz =

zzzz iii+1 (at) of the variables involved and the output vector

is served as an input vector to the next segment until the end of the reactor. In BANN

model the ANN is used to simulate each 10 cm segment of TMR model. Therefore, each

training cases consists of a total of 20 pairs vectors of input and output variables. The

ANN of this model has six input variables, the first five are the concentrations of

cellulose, cellobiose, and glucose in tube and shell sides of the TMR. The sixth is the

inlet feed flow rate, in order to allow the ANN to discriminate between different training

cases. The output variables are five and they are the concentrations of cellulose,

cellobiose, and glucose in tube and shell sides at the output of each segment. A schematic

representation of the BANN model is shown in Figure 3.9. All the 20 training cases were

normalized between [-1,1] and prepared as input and output vectors. A total of 400 pairs

∆+== +1

 38

of input/output vectors were used to train the ANN. A MATLAB script file

(bann_data.m) in Appendix B3 was used to generate the training cases for BANN model

using the feed conditions of the training cases in Table 3.3.

ZiZG

B

G

B

S

C

C

C
C
C

∆+

−

−

Figure 3.9 BANN for TMR

iZG

B

G

B

S

C

C

C
C
C

−

−

 Fv

 ANN

A single-hidden-layer ANN was used for this model. This ANN has five nodes in the

output layer and uses linear transfer functions there. A hyperbolic transfer function was

used in the hidden layer. The number of the nodes in the hidden layer was optimized by

using trainbr.m. All 20 training cases were used to train different configurations, i.e,

different ANN with different nodes in the hidden layer. The interpolation cases (21-23)

were used for testing. As shown in Table 3.4, the number of nods in the hidden layer was

varied between 1 to 20 nodes. Table-3.4 summarized the training results of all ANN

obtained by using trainbr.m. In additional to ED and EW the following parameters are

illustrated: S, N, γ and ET, where S is the number of nodes in the hidden layer, ET is the

sum of squared errors on the test set containing the interpolation cases. Figure 3.10

shows the trend of ED, ET, N, and γ vs. S. It can be seen that for all ANN with S ≥10 the

effective number of parameters remain constant, even though the actual number of

 39

parameters increase as the size of ANN becomes larger. This indicates that the ANN with

10 nodes in the hidden layer is the smallest ANN with sufficient complexity to fit the data

but not to over-fit them. The performance of this ANN was evaluated by using recall,

interpolation and extrapolation cases and the results of this evaluation are discussed in

Chapter 4.

Table-3.4 ANN Development for BANN Model

S ED EW ET N γ
1 31.939 7.6204 4.2098 17 16.2
2 3.9469 13.401 0.5226 29 27.5
3 0.2236 30.580 0.0326 41 38.7
4 0.1673 21.004 0.0194 53 50.5
5 0.1282 51.563 0.0186 65 61.9
6 0.1167 29.909 0.0171 77 71.4
7 0.1167 24.579 0.0184 89 79.2
8 0.1166 19.607 0.0167 101 86.4
9 0.1093 20.368 0.0164 113 94.4

10* 0.1065 25.941 0.0154 125 105
11 0.1064 22.281 0.0155 137 105
12 0.1067 19.920 0.0152 149 105
15 0.1067 19.784 0.0154 185 105
20 0.1067 18.997 0.0158 245 105

*Optimum number of nodes in the hidden layer.

 40

 41

3.5 Modeling TMR Using HANN1

The second modeling approach developed is a hybrid ANN model (HANN1). The

deterministic model of the TMR consists of material balance equations (ODEs) and the

reaction rates expression involved (Table 3.1). In this approach the expression of the

rates of production of cellobiose and glucose, and respectively, are assumed to be

unknown and the ANN is used to predict them. In this manner, the ANN becomes

nonparametric estimator of the reaction rates. Therefore, the central idea of this modeling

approach is the combination of first principles model, in the form of mass balance

equations (ODEs) with ANN, which approximates the unknown kinetics, in order to form

a combined model structure which can be characterized as a hybrid ANN model

(HANN1). A schematic representation of the HANN1 model is shown in Figure 3.11.

Br Gr

Figure 3.11 HANN1 for TMR

As shown in this figure, two ANN are used to predict and . The first one (ANN-1)

is given as input the concentrations of cellulose and cellobiose in tube sides, as well as

Br Gr

 42

the feed flowrate, to predict the rate of formation of cellobiose (). The second

one (ANN-2) is given as input the concentrations of cellobiose and glucose in tube sides

and the feed flowrate, to predict the rate of production of glucose ().

Fv Br

F

Br

Gr

v Gr

2
+

R
LP∆

PP− (+

The training of ANN for BANN model was straightforward, because the BANN model

consists only of ANN in its original form and the input/output data are directly available.

However, for the HANN1 model the target output for ANN-1 and ANN-2 are not

directly available. Therefore, the ODEs equations in Table 3.1 are rearranged for

and , as shown in equations 3.5 and 3.6.

1
2

1

CP
R
v

dz
dCr STS

B −=
π ; (3.5)

2
1R

v
dz

dCr G
G π
= ; (3.6)

where z
L

PPPP FR
FT)−

=∆

Then, these equations were used to calculate and using the smoothed process data

and the values of the first derivative of cellulose and glucose at each segment for all of

the training cases. A MATLAB script file (hann1_data.m) in Appendix B4 was used to

generate the training data for the ANN-1 and ANN-2 using the feed conditions of the

training cases in Table 3.3.

Br Gr

 43

Two single-hidden-layer ANN were developed for HANN1 model. Both of them (ANN-1

and ANN-2) consist of one node in the output layer with the use of linear transfer

function. Hyperbolic transfer function was used in the hidden layer for both ANN. The

number of the nodes in the hidden layer was optimized during the training of both ANN

using trainbr.m function. Table-3.5 and Table-3.6 summarized the training results of

ANN-1 and ANN-2 obtained by using all training cases (1-20) and the interpolation cases

for testing. Figures 3.12 and 3.13 illustrate the performance of different ANN strictures

developed for ANN-1 ANN-2. As shown in these tables and figures the optimum number

of nodes in the hidden layer is 6 for ANN-1, and 5 for ANN-2, because after this point,

the effective number of parameters remain constant.

The trained ANN (ANN-1 and ANN-2) with optimum configurations were combined

with the mass balance equations (ODEs) as shown in Figure 3.14. A MATLAB program,

hann1.m, in Appendix B5 was developed to combine these two ANN with mass balance

equations. As shown in Figure 3.14, ANN-1 and ANN-2 receive as inputs the normalized

concentrations of cellulose, cellobios, and glucose in tube side and the feed flowrate and

predicate as outputs the normalized rates of formation of cellobiose and glucose (

and). The de-normalized ANN outputs serve as an input to the mass balance equations

(ODEs), which produces as output the concentrations of cellulose, cellobiose, and

glucose in tube and shell sides. This step was repeated iteratively until all the 20 pairs of

input/output vectors for each training case is included. The combination of ANN and

mass balance equations yields a complete HANN1 model for TMR. The performance of

Br

Gr

 44

the HANN1 model was evaluated by using recall, interpolation and extrapolation cases

and the results of this evaluation are discussed in chapter 4.

Table-3.5 ANN-1 Development for HANN1 model

S ED EW ET N γ
1 0.4580140 3.6998 0.05113 6 5.74
2 0.0975496 8.5823 0.01627 11 10.2
3 0.0535833 17.1539 0.00825 16 15.1
4 0.0388297 19.3016 0.00479 21 19.1
5 0.0381351 18.8586 0.00437 26 23.3
*6 0.0338672 22.147 0.00356 31 27.1
8 0.0338355 21.5688 0.00380 41 27.8
10 0.0341173 21.2022 0.00400 51 27.6
15 0.0338322 22.6352 0.00338 76 27.8
20 0.0335925 21.1633 0.00393 101 28.5

*Optimum number of nodes in the hidden layer.

Table-3.6 ANN-2 Development for HANN1 model

S ED EW ET N γ
1 1.18114 23.600 0.44980 6 5.36
2 0.569646 35.463 0.06747 11 9.11
3 0.408939 39.313 0.05704 16 14.2
4 0.367445 39.588 0.05424 21 18.5
*5 0.353455 39.053 0.04781 26 22.7
6 0.354659 38.271 0.05030 31 22.6
7 0.354662 38.187 0.05030 36 22.6
10 0.354803 38.138 0.05050 51 22.8
15 0.354529 37.990 0.05019 76 22.8
20 0.354287 38.025 0.05080 101 22.8

*Optimum number of nodes in the hidden layer.

 45

 Figure 3.12 ANN-1 development for HANN

 46

 Figure 3.13 ANN-2 development for HANN

 47

iZG

B

C
C

iZB

S

C
C

 Fv Fv

)(iG zr)(iB zr

ANN-2

Normalization

Reactor Effluent

 −−

GBGBS CCCCC ,,,,

ANN-1

Normalization

De-NormalizationDe-Normalization

ODE solver (ode23s) to solve

Mass Balance Equations (ODEs)

Initial Conditions

 −−

GBGBS CCCCC ,,,, ; Fv

Figure 3.14 Combination of ANN with ODEs for HANN1 model

 48

3.6 Modeling TMR using HANN2

The second hybrid approach (HANN2) in this project is an application of the new hybrid

modeling technique developed by Kasprow [17]. In addition to the mass balances

equations used in the previous hybrid approach (HANN1), this model also assumes two

simple expressions for the reaction rates. However, rather than using constant values for

all of kinetics parameters, some parameters will have to vary with the state variables in

order for the hybrid model to emulate the true situation where rate expressions are not

explicitly known. This acts to relax the constraints on the specific rates, in that they are

not restricted to a certain assumed functional form and also are allowed to vary with

variables not explicitly included in the assumed function.

In this work the kinetics of enzymatic hydrolysis of cellulose in the deterministic model

has been described using a two-step competitive product inhibition rate expressions

(equations 2.9 and 2.10). Instead of using theses two rate expressions, two simple rate

expressions are assumed as follows:

Sm

Sm
B CK

Crr
+

= (3.8)

Bm

Bm
G CK

Cr
r

+
= '

'

 (3.9)

In theses two simple rate expressions and will be determined by ANN based on

process data. Therefore, the ANN will be used to represent the variation in the rate model

mK '
mK

 49

parameters with {C , , , and }. A schematic diagram of this hybrid approach

is shown in Figure 3.15.

'
m

iz

iz∆i +

S BC GC Fv

Figure 3.15 HANN2 Model for TMR

As shown in this figure, the two ANN (ANN-1 and ANN-2) will receive the state

variables at as inputs. Then, they will predict the values of and at .

These values, along with the pre-chosen constant kinetic parameters, and , will

be used to predict reaction rates, and , at using the simplified rate expressions,

once and are determined by ANN. The calculated reaction rates along with

state variables at will then be used in the mass balance equations (ODEs) to predict

the state variables at .

iz mK '
mK iz

m

Br Gr iz

mK K

z

r '
mr

 50

Once the ANN variable parameters are chosen (and) the next step is to develop

training data sets illustrating how these parameters vary with the state variables. In order

to do that, the ODEs equations in Table 3.3 are rearranged for and , as shown in

the following equations:

mK '
mK

mK '
mK

S
SSTP

Sm
m C

R
v

dz
dC

R
CPL

CrK −
−

∆
=

2
11

2
ππ

 (3.10)

B
G

Bm
m C

R
v

dz
dC

CrK −=

2
1

'
'

π

 (3.11)

where z
L

PPPPP FR
PFT)(−
+−=∆

Two ANN were developed for this model to represent the variation in and

with state variables. The first ANN (ANN-1) have three inputs variables; the first two

are concentrations of cellulose and cellobiose in the tube side of the TMR. The second

ANN (ANN-2) also have three inputs variables; the first two are the concentrations of

cellobiose and glucose in the tube side of the TMR. In order to allow the two ANN to

discriminate between the training cases, the inlet feed flow rate is included as input

variable. The output variables of ANN-1 and ANN-2 are and respectively. The

trained ANN (ANN-1 and ANN-2) with optimum configurations are then combined with

the mass balance equations (ODEs) and simplified rate expressions (Equations 3.8 and

mK '
mK

mK '
mK

 51

3.9). As shown in Figure 3.20, ANN-1 and ANN-2 receive as inputs the normalized

concentrations of cellulose, cellobiose, and glucose in tube side and the feed flowrate.

Then, predicate as outputs the normalized and . The de-normalized values of

 and serve as an input to the simplified rate expressions. The calculated rates of

formation of cellobiose and glucose (and) serve as an input to the mass balance

equations (ODEs), which produces as output the concentrations of cellulose, cellobiose,

and glucose in tube and shell sides. This step is repeated iteratively until all the 20 pairs

of input/output vectors for each training case is included.

mK '
mK

mK '
mK

Br

'
mK

Gr

izmK

3.6.1 HANN2a

Two hybrid models were developed using this approach. The two ANN (ANN-1 and

ANN-2) for the first HANN2 (HANN2a) model were trained using non-smoothed

training data (no smoothing spline applied) as inputs. Also, the non-smoothed state

variables and smoothed first derivative values were used in equations 3.10 and 3.11 to

determine and at each position . Therefore, the training data for this model

can be considered as partially non-smoothed data. A MATLAB script file

(hann2a_data.m) in Appendix B6 was used to generate the training data for the ANN

part of this model.

The structure of both ANN (ANN-1 and ANN-2) consists of one node in the output layer

with the use of linear transfer function. A hyperbolic transfer function was used in the

 52

hidden layer for both ANN. The number of nodes in the hidden layer was optimized

during the training of both ANN using trainbr.m function. Table-3.7 and Table-3.8

summarized the training results of ANN-1 and ANN-2 obtained by using all training

cases (1-20) and the interpolation cases (21-23) for testing.

Figures 3.16 and 3.17 illustrate the performance of different ANN structure developed for

HANN2a. As shown in these tables and figures, the optimum number of nodes in the

hidden layer is 4 for ANN-1 and ANN-2, since the effective numbers of parameters

remain constant after this point. The trained ANN (ANN-1 and ANN-2) with optimum

configurations were combined with the mass balance equations (ODEs) and simplified

rate expressions (Equations 3.8 and 3.9) as shown in Figure 3.20. A MATLAB program,

hann2.m, in Appendix B8 was developed to perform the combination. The performance

of the HANN2a model was evaluated by using recall, interpolation, and extrapolation

cases and the results of this evaluation are discussed in chapter 4.

3.6.2 HANN2b

The second HANN2 model (HANN2b) is similar to the previous one (HANN2a),

however, smoothed (by smoothing-spline) data were used to train ANN-1 and ANN-2 for

this model in order to compare its prediction to the predictions of BANN and HANN1

models using the same training data. The smoothed process data were used as inputs and

the targets (and) were calculated from equations 3.10 and 3.11 using smoothed mK '
mK

 53

first derivative and smoothed process data. A MATLAB script file (hann2b_data.m) in

Appendix B7 was used to generate the training data for ANN part of this model.

The structure of the two ANN used in this model is similar to the ANN developed for

HANN2a. The number of the nodes in the hidden layer was optimized during the

training of both ANN using trainbr.m function. Table-3.9 and Table-3.10 summarized

the training results of ANN-1 and ANN-2 obtained by using all training cases (1-20) and

the interpolation cases for testing. Figures 3.18 and 3.19 illustrate the performance of

different ANN structure developed for ANN-1 ANN-2. As shown in these tables and

figures, the optimum number of nodes in the hidden layer is 5 for ANN-1, and 3 for

ANN-2, because after this point the effective number of parameters remains constant. A

MATLAB program, hann2.m, in Appendix B8 was used to combine the train ANN with

the mass balance equations (ODEs) and simplified rate expressions. The performance of

this model was evaluated by using recall, interpolation, and extrapolation cases and the

results of this evaluation are presented in chapter 4. The differences of the four models

(BANN, HANN1, HANN2a, and HANN2b) are summarized in Table-3.11

 54

Table-3.7 ANN-1 Development for HANN2a Model

S ED EW ET N γ
1 0.07631 8.18 0.00835 6 5.57
2 0.06581 4.11 0.00720 11 9.09
3 0.06446 3.30 0.00699 16 11.90
*4 0.06404 3.10 0.00707 21 13.22
5 0.06406 3.01 0.00700 26 13.16
6 0.06409 5.26 0.00707 31 13.21
10 0.06340 3.56 0.00701 51 13.36
15 0.06396 3.30 0.00706 76 13.41

*Optimum number of nodes in the hidden layer.

Table 3.8 ANN-2 Development for HANN2a Model

S ED EW ET N γ
1 0.02754 5.501 0.00949 6 5.50
2 0.02640 4.93 0.00849 11 9.36
3 0.02480 6.71 0.00801 16 13.38
*4 0.02378 6.82 0.00800 21 15.78
5 0.02373 6.97 0.00806 26 15.69
6 0.02370 6.59 0.00804 31 15.69
10 0.02377 5.62 0.00806 51 15.53
15 0.02375 6.16 0.00802 76 15.93

*Optimum number of nodes in the hidden layer.

Table-3.9 ANN-1 Development for HANN2b Model

S ED EW ET N γ
1 0.036633 25.51 0.00586 6 5.20
2 0.036279 7.94 0.00569 11 10.08
3 0.033573 10.82 0.00511 16 13.00
4 0.030091 16.86 0.00486 21 18.52
*5 0.027956 31.90 0.00393 26 21.82
6 0.027818 15.55 0.00393 31 21.81
7 0.027983 14.16 0.00392 36 21.31
10 0.027985 14.33 0.00398 51 21.61
15 0.027730 15.19 0.00399 76 21.61

*Optimum number of nodes in the hidden layer.

 55

Table-3.10 ANN-2 Development for HANN2b Model

S ED EW ET N γ
1 0.008278 54.5130 0.00558 6 5.50
2 0.007944 5.47865 0.00509 11 9.15
*3 0.005757 7.80884 0.00286 16 13.13
4 0.005744 7.95868 0.00287 21 13.22
5 0.005755 7.81909 0.00281 26 13.49
10 0.005749 6.03844 0.00284 51 13.51
15 0.005818 5.09061 0.00287 76 13.73

*Optimum number of nodes in the hidden layer.

Table-3.11 Models Summary

Training Data First-Principle relations used
Data

Smoothed
First-Derivatives

Smoothed
Mass Balance

Equations
Simplified Rate

Expressions
BANN Yes Not Applicable Not Applicable Not Applicable
HANN1 Yes Yes Yes Not Applicable
HANN2a No Yes Yes Yes
HANN2b Yes Yes Yes Yes

 56

 Figure 3.16 ANN-1 development for HANN2a

 57

Figure 3.17 ANN-2 development for HANN2a

 58

Figure 3.18 ANN-1 development for HANN2b

 59

Figure 3.19 ANN-2 development for HANN2b

 60

iZG

B

C
C

iZB

S

C
C

 Fv Fv

)(im zK)('
im zK

)(iB zr)(iG zr

ANN-2

Reactor Effluent

 −

GBGBS CCCCC ,,,,
_

ANN-1

De-Normalization

NormalizationNormalization

Simplified rate
expression Gr

De-Normalization

Simplified rate
expression Br

Initial Conditions

 −

GBGBS CCCCC ,,,,
_

; Fv

ODE solver (ode23s) to solve

Mass Balance Equations (ODEs)

Figure 3.20 Combination of ANN with ODEs for HANN2 model.

 61

4 Performance Comparisons of BANN, HANN1, and
HANN2

One of the most important aspects in developing ANN is to determine how well the ANN

performs once training is complete. Checking the performance of a trained ANN involves

two steps: (1) How well the ANN “recall” the predicted responses (output vector) from

the same data sets used to train the ANN; and (2) How well the ANN predicts responses

from data sets that were not used in training. This usually involves “interpolation”, if the

data sets used in this step is within the range of the training data sets, or “extrapolation”,

if otherwise. Case 1 from Table 3.3 was selected to test the ability of the ANN to recall

the training data since it was the first case used to train the ANN for both modeling

approaches. The last six cases in Table 3.3 were used for generalization step, three cases

(21-23) for interpolations, and three cases (24-26) for extrapolations. The interpolation

cases were selected, as shown in Figure 3.3, from different operation conditions within

the training data. The extrapolation cases were selected to be faraway from the training

conditions and also to represent different operating conditions (see Figure 3.1).

Qualitative and quantitative comparisons of BANN, HANN1, HANN2a, and HANN2b

were performed and the results are presented in the next two sections.

4.1 Qualitative Comparison of BANN, HANN1, and HANN2

The qualitative comparison was performed by plotting predictions of BANN, HANN1,

HANN2a, and HANN2b models versus process data of recall, interpolation and

extrapolation cases. One plot is given as a sample from each of the testing regimes: recall

 62

(case1), interpolation (case21), and extrapolation (case25). Each plot consists of the

predicted and process profiles for each of the state variables.

Figures 4.1 - 4.3 present a sample of the results for BANN model. As shown in these

Figures, the results are in a good agreement with process data in recall and interpolation

cases (Figures 4.1 and 4.2). The good modeling performance on these cases indicates that

the ANN was trained properly. However, The BANN model was seen to perform poorly

on extrapolation case (Figure 4.3). The poor model predictions of BANN on the

extrapolation case may indicate that the reaction system is too complex to be adequately

modeled using this BANN model. Because it is a difficult modeling task for ANN,

requiring the determination of mass balance and reaction rates based only on feed

conditions of TMR. Also, It is a very challenging test, since any errors made near the

entrance region of the TMR will propagate through the entire reactor.

Figures 4.4 – 4.6 show a selection of the results obtained using the HANN1 model.

Similar to BANN model, the predictions of this model in recall and interpolation cases

(Figures 4.4 and 4.5) are in a very good agreement with process data. However, the over

all prediction is less accurate in the extrapolation case although the gross trends are

correct. For example, as shown in Figure 4.6, HANN1 over-predict the concentration

profiles of cellobiose and glucose in the shell side. This seems to be due to an over

prediction of rate of productions of cellobiose and glucose in this case. This problem can

occur because in this modeling approach, there is no inclusion of biochemical knowledge.

 63

Figures 4.7 - 4.9 present typical results obtained using HANN2a model. The predicted

profiles of this model are seen to be very close to the process data in almost all cases. It

was initially expected that the prediction of this models would have larger errors,

compared with HANN2b, because the presence of noise in the training data (partially

non-smoothed) will degrade the interpolation and extrapolation abilities of this model.

However, including basic biochemical knowledge, in the form of simplified rate

expressions, allowed this model to be accurately interpolated and extrapolated.

Figures 4.10 – 4.12 show a selection of the results obtained using the HANN2b model.

The performance of this hybrid model is excellent for recall, interpolation, and

extrapolation cases. The predicted profiles are very close to the deterministic model

profiles. The modeling performance in the extrapolation cases (Figure 4.12) is

surprisingly good; it is a direct result of the contribution of the first-principle parts.

Qualitatively, the second hybrid scheme (HANN2a and HANN2b) is the best of the three

modeling schemes in terms of overall predictive ability. Quantitative comparisons are

presented in the next section.

 64

Figure 4.1 Comparison between process data and BANN predictions for recall

case (case 1)

 65

Figure 4.2 Comparison between process data and BANN predictions for

interpolation case (case 21)

 66

Figure 4.3 Comparison between process data and BANN predictions for

extrapolation case (case 25)

 67

Figure 4.4 Comparison between process data and HANN1 predictions for recall

case (case 1)

 68

Figure 4.5 Comparison between process data and HANN1 predictions for

interpolation case (case 21)

 69

Figure 4.6 Comparison between process data and HANN1 predictions for

extrapolation case (case 25)

 70

Figure 4.7 Comparison between process data and HANN2a predictions for recall

case (case 21)

 71

Figure 4.8 Comparison between process data and HANN2a predictions for

interpolation case (case 21)

 72

Figure 4.9 Comparison between process data and HANN2a predictions for

extrapolation case (case 25)

 73

Figure 4.10 Comparison between process data and HANN2b predictions for recall

case (case 1)

 74

Figure 4.11 Comparison between process data and HANN2b predictions for

interpolation case (case 21)

 75

Figure 4.12 Comparison between process data and HANN2b predictions for

extrapolation case (case 25)

 76

4.2 Quantitative Comparison of BANN HANN1, and HANN2

In order to compare the performance of the three modeling schemes, a quantitative

measure of their accuracy is needed. This was done first by performing regression

analysis between process data and ANN predictions for all models. This analysis was

done by using postrg.m, a MATLAB build-in function. Samples of these analyses for

recall, interpolation, and extrapolation cases for glucose in the shell side are shown in

Figures 4.13 - 4.16. As shown in these Figures, all models give a very good agreement

with process data for recall and interpolation cases. However, Figures 4.13 and 4.14 show

very poor model predictions of glucose concentration profiles in the shell side using

BANN and HANN1 models in the extrapolation case (case 25). On the other hand, the

prediction quality of both HANN2a and HANN2b models remain roughly the same when

the models were used for interpolation and extrapolation (Figures 4.15 - 4.16); this is a

benefit of including the first-principle parts. The assumed rate expressions clearly allow

the ANN in the second hybrid scheme part to successfully emulate the TMR system.

Normalized root mean square error (NSM) associated with the predictions of the four

models was also used to compare the performance of the three modeling schemes. NSM

was calculated for each variable using the following equation [17].

 77

N

t

N

bt

NSM N

i
i

N

i
ii

∑

∑

=

=

−

=

1

2/1

1

2)(

 (4.1)

where N in this equation is the number of data points for each variable in each case

(training, interpolation, and extrapolation), t , is the desired output, and bi i, is the output

calculated via HANN1, HANN2 or BANN model.

The NSM is more strongly influenced by errors when the values of the state variables are

relatively large in magnitude. Therefore, the median percent error (MPE) was used as a

second measure of the performance of the three schemes. The MPE is less popular as a

measure of ANN performance than NSM. However, when compared with NSM, it is less

susceptible to being dominated by one or two terms with a large error [5,17]. MPE was

calculated for each variable using the following equation,

−

=
i

ii

b

bt
medianMPE (4.2)

Once both of these error measurements were calculated for all of the 26 cases, their

averages were determined for each state variable for each testing regime (recall,

 78

interpolation, and extrapolation). The results of the averages of two different error

calculations, NSM and MPE respectively, for concentrations of cellulose, cellobiose, and

glucose in tube and shell sides over twenty cases (1-20) for recall, three cases (21-23) for

interpolation, and three cases (24-26) for extrapolation, are illustrated in Figures 4.17 -

4.26.

As shown in these figures, the average errors (NSM and MPE) associated with

predictions of all models were relatively low in recall and interpolation cases, and the

HANN2b model was always the lowest. The BANN model had problem with prediction

of the extrapolation cases. This caused the average NSM and MPE for this model to be

very large compare to the hybrid models. On the other hand, HANN1 model had low

average errors compared to the BANN model in all extrapolation cases. This may

indicate that the first principle part (mass balance) of this model has allowed the ANN

part to capture the underlying behavior. Therefore, the HANN1 model is expected to

perform much better than the BANN model in the extrapolation cases since the prediction

is only in the kinetic parts of the process, while the mass balance remains unchanged.

It can be seen from these figures that the average errors associated with the predictions of

HANN2a were always lower than the error associated with BANN and HANN1, even

though the training data used to develop ANN for this model were partially non-

smoothed. As mentioned before, it was initially expected that this model would have

larger average errors when used for extrapolation. This was not seen for all cases in this

investigation, which confirms the superiority and capability of this modeling scheme.

Also, HANN2a performs well for all state variables, for all testing regimes. In fact, on the

 79

basis of average NSM and MPE errors, predictions using this model have the lowest

average error on all state variables. These results show clearly that the inclusion of first

principles and basic biochemical knowledge, in the form of mass balances and the

simplified rate expressions, have allowed the HANN2 scheme to perform consistently

well on all predictions. Therefore, the quantitative comparisons support the conclusions

drawn from qualitative comparisons described in section 4.1.

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

5. Conclusions

Three modeling schemes were developed to model a steady-state space-dependent

enzymatic tubular membrane reactor (TMR). At first, a fully black-box model (BANN),

based on ANN technique, was developed using only the process data. No information

about the process was included in this model. Then, first-principle information of mass

balances equations (ODEs) was introduced separately into the black-box model to

generate the first hybrid model (HANN1). After that, a new hybrid scheme, combining

ANN with mass balances and assumed rate expressions, was used to develop the second

hybrid model (HANN2) using smoothed and non-smoothed data. The second hybrid

scheme, developed for a space-dependent steady-state enzymatic reactor, is similar to that

developed by Kasprow for a fed-batch microbial reactor that is space-independent and

time-dependent.

Qualitative and quantitative comparisons of the predicted profiles of the three modeling

schemes (BANN, HANN1, and HANN2) indicated that the second hybrid scheme

(HANN2) performed better than the other two schemes (BANN and HANN1). Because

the inclusion of engineering first principles and basic biochemical knowledge, in the form

of mass balances and the simplified rate expressions, have allowed the HANN2 scheme

to perform consistently well on all testing regimes (recall, interpolation, and

extrapolation). It is also worthwhile to note that HANN1 model significantly outperforms

the BANN model in the extrapolation cases, while the differences in outcomes from

HANN2a and HANN2b are not significant.

 91

References

1. Azevedo, S. F., Dahm, B., and Oliveira, F. R., “Hybrid Modeling of Biochemical

Process: A comparison With Conventional Approach,” Computers and Chemical

Engineering, 21, S751 (1997).

2. Bahat, N. and McAvoy, T., “Use of Neural Nets for Dynamic Modeling and

Control of Chemical Process System,” Computers and Chemical Engineering, 14,

573 (1990).

3. Baughman, D. R. and Liu, Y. A., Neural Networks in Bioprocessing and

Chemical Engineering, Academic Press, 1995.

4. Boor, C., Spline Toolbox User’s Guide, The MathWorks Inc., 2001.

5. Borse, G. J.,Numerical Methods with MATLAB, PWS Publishing Company,

1995.

6. Chitra, S. P., “Use of Neural Networks for Problem Solving” Chemical

Engineering Progress, April, 44 (1993).

7. Costa, A. C., Alves, T. L. M, Henriques, A. W. S., Filho, R. M., and Lima, E. L.,

“A Hybrid Neural Model for the Optimization of Fed Batch Fermentations,”

Brazilian Journal of Chemical Engineering, 16, 53 (1999).

8. Demuth, H. and Beale, M., Neural Networks Toolbox User’s Guide, The

MathWorks Inc., 2001.

9. Foresee, F. D., “Generalization and Neural Networks”, Ph.D. Dissertation,

Oklahoma Stat University,1996.

 92

10. Foresee, F. D., and Hagan, M.T., “Guass-Newton approximation to Bayesian

regulation”, Proceedings of the 1997 International Joint Conference on Neural

Networks, pages 1930-1935,1997.

11. Gauba, G., “ Enzymatic Saccharification of Cellulose in Membrane Bioreactor,”

M.S. Thesis, WVU, (Research advisor: R. Y. K. Yang), 1993.

12. Harada, H.P., Costa, A. C., and Filho, R. M., “Hybrid Neural Modeling of

Bioprocesses Using Function Link Networks,” Applied Biochemistry and

Biotechnology, 98, 1009 (2002).

13. Hagan, M. T. and Demuth, H. B., Neural Networks Design, PWS, 1996.

14. Henrigue, H. and Lima, E. L., “ Model Structure determination in Neural Network

Models,” Chemical Engineering Scince, 55, 5457 (2000).

15. Hornik, K., Stinchcomb, M., and White, H., “ Multilayer Feedforward Networks

are Universal Approximations,” Neural Networks, 2, 359, (1989).

16. Hassoun, M.H., “ Fundamentals of Artificial Neural Networks” Cambridge, MIT

Press, 1995.

17. Kasprow, R. K, “ Hybrid Modeling (Neural Networks and First Principles) of

Fermentation: Combining Biochemical Engineering Fundamentals and Process

data” PhD. Dissertation, University of Virginia, (Research advisor: D. Kirwan),

2000.

18. Layton, C., “ Enzymatic Hydrolysis of Cellulose in Hollow-Fiber Membrane

Reactor,” M.S. Thesis, WVU, (Research advisor: R. Y. K. Yang), 1991.

19. Psichogios, D. C. and Ungar, L. H., “ A Hybrid Neural Network First Principles

Approach to Process Modeling,” AIChE Journal, 38, 1499(1992).

 93

20. Polking, J. P. and Arnold, D., Ordinary Differential Equation Using Matlab, 2nd

Ed. , Prentice Hall , 1999.

21. Qi, H., Zhou, X., Liu, L. and Yuan, W., “A Hybrid Neural Networks First

Principles for Fixed bed Reactor,” Chemical Engineering Science, 54, 2521,

(1999).

22. Thompson, M. L., and Kramer, M. R. “ Modeling Chemical Process Using Prior

Knowledge and Neural Networks,” AIChE Journal, 40, 1328 (1994).

23. Tholudur, A., and Ramirez, W. F. “Optimization of Fed-Batch Bioreactor using

Neural Network Parameter Function Models”, Biotechnology Progress, 38, 302,

(1996).

24. Wilson, J. A., and Zorzetto, L. F., “ A Generalized Approach to Process State

Estimation Using Hybrid Artificial Neural Networks/Mechanistic Models,”

Computers and Chemical Engineering, 21, 951 (1997).

25. Zorzetto, L. F., Fiho, R. M., and Wolf, M. R., “ Process Modeling Development

Through Artificial Neural Networks and Hybrid Models” Computers and

Chemical Engineering, 24, 1355 (2000).

 94

Appendix A-Programs output

A1 Sample of output generated from Fortran program developed by G. Gauba [11] to

solve the initial-value type ordinary differential equations (ODEs) using

Livermore solver for ODE (LSODE).

A2 Sample of output generated from Matlab function “tmr.m” to solve the initial-

value type ordinary differential equations (ODEs) using Matlab solver “ode23S”.

 95

A1

Cso= 0.0025 g/l, Vf= 0.6 ml/min, L= 200 cm
 Z Cs CB
 (cm) (g/l) (g/l)
 1.440997973597329e+002 9.204938365251831e-004 2.357510673193909e-003
 1.450997973344707e+002 9.122489493962936e-004 2.365588556109517e-003
 1.460997973092086e+002 9.040018343372537e-004 2.373586021969356e-003
 1.470997972839465e+002 8.957522946650913e-004 2.381502537185116e-003
 1.480997972586844e+002 8.875001430634884e-004 2.389337540244296e-003
 1.490997972334222e+002 8.792452041309137e-004 2.397090436306075e-003
 1.500997972081601e+002 8.709873183088079e-004 2.404760588957872e-003
 1.510997971828980e+002 8.627263248866492e-004 2.412347355019059e-003
 1.520997971576359e+002 8.544620775941547e-004 2.419850052300013e-003
 1.530997971323737e+002 8.461944402158041e-004 2.427267968463170e-003
 1.540997971071116e+002 8.379232866509205e-004 2.434600360737810e-003
 1.550997970818495e+002 8.296485107204836e-004 2.441846434464746e-003
 1.560997970565874e+002 8.213700068241208e-004 2.449005384954997e-003
 1.570997970313252e+002 8.130876816930559e-004 2.456076371807432e-003
 1.580997970060631e+002 8.048014541245818e-004 2.463058519330781e-003
 1.590997969808010e+002 7.965112539895258e-004 2.469950918544718e-003
 1.600997969555389e+002 7.882170271821136e-004 2.476752616000304e-003
 1.610997969302767e+002 7.799187338213712e-004 2.483462617639613e-003
 1.620997969050146e+002 7.716163368493236e-004 2.490079914056462e-003
 1.630997968797525e+002 7.633098155222240e-004 2.496603450282101e-003
 1.640997968544904e+002 7.549991614260206e-004 2.503032134516285e-003
 1.650997968292282e+002 7.466843789018208e-004 2.509364837017601e-003
 1.660997968039661e+002 7.383654998002783e-004 2.515600356359604e-003
 1.670997967787040e+002 7.300425502298069e-004 2.521737495021252e-003
 1.680997967534419e+002 7.217155770186947e-004 2.527774998978641e-003
 1.690997967281797e+002 7.133846409351382e-004 2.533711573005726e-003
 1.700997967029176e+002 7.050498169114886e-004 2.539545880022936e-003
 1.710997966776555e+002 6.967112036017983e-004 2.545276518544461e-003
 1.720997966523934e+002 6.883689116275672e-004 2.550902050135332e-003
 1.730997966271312e+002 6.800230601916410e-004 2.556421007231990e-003
 1.740997966018691e+002 6.716737885828502e-004 2.561831866020575e-003
 1.750997965766070e+002 6.633212523339036e-004 2.567133055327538e-003
 1.760997965513449e+002 6.549656263985318e-004 2.572322948809393e-003
 1.770997965260827e+002 6.466071168821344e-004 2.577399836389321e-003
 1.780997965008206e+002 6.382459264189027e-004 2.582362008160128e-003
 1.790997964755585e+002 6.298822843366952e-004 2.587207681094362e-003
 1.800997964502964e+002 6.215164387574542e-004 2.591935018109236e-003
 1.810997964250342e+002 6.131486569750993e-004 2.596542127048122e-003
 1.820997963997721e+002 6.047792429735273e-004 2.601027016677437e-003
 1.830997963745100e+002 5.964085070227625e-004 2.605387672863769e-003
 1.840997963492479e+002 5.880367791189517e-004 2.609622024797741e-003
 1.850997963239857e+002 5.796644146670154e-004 2.613727930672027e-003
 1.860997962987236e+002 5.712917914552784e-004 2.617703185197685e-003
 1.870997962734615e+002 5.629193156430315e-004 2.621545504015519e-003
 1.880997962481994e+002 5.545474267889907e-004 2.625252510600056e-003
 1.890997962229372e+002 5.461765738942988e-004 2.628821798493900e-003
 1.900997961976751e+002 5.378072382346145e-004 2.632250871941818e-003
 1.910997961724130e+002 5.294399278179517e-004 2.635537160266717e-003
 1.920997961471509e+002 5.210751905220844e-004 2.638677981811962e-003
 1.930997961218887e+002 5.127135900285188e-004 2.641670610195530e-003
 1.940997960966266e+002 5.043557235603400e-004 2.644512225600809e-003
 1.950997960713645e+002 4.960022192752868e-004 2.647199922016836e-003
 1.960997960461024e+002 4.876537422304381e-004 2.649730689531475e-003
 1.970997960208402e+002 4.793109906861528e-004 2.652101425669553e-003
 1.980997959955781e+002 4.709746908936624e-004 2.654308951275732e-003
 1.990997959703160e+002 4.626456065467428e-004 2.656349982446680e-003

 96

A2

Cso= 0.0025 g/l, Vf= 0.6 ml/min, L= 200 cm
 Z Cs CB
 (cm) (g/l) (g/l)
 1.440997000000000e+002 9.206133393034483e-004 2.357028029533870e-003
 1.450997000000000e+002 9.123655622921875e-004 2.365109414402626e-003
 1.460997000000000e+002 9.041156053036204e-004 2.373110289821769e-003
 1.470997000000000e+002 8.958632684994322e-004 2.381030128764720e-003
 1.480997000000000e+002 8.876083605569493e-004 2.388868378888446e-003
 1.490997000000000e+002 8.793506986691386e-004 2.396624462533466e-003
 1.500997000000000e+002 8.710901085446079e-004 2.404297776723846e-003
 1.510997000000000e+002 8.628264244076063e-004 2.411887693167202e-003
 1.520997000000000e+002 8.545594903611551e-004 2.419393553913130e-003
 1.530997000000000e+002 8.462891768843841e-004 2.426814623843403e-003
 1.540997000000000e+002 8.380153650458658e-004 2.434150145634370e-003
 1.550997000000000e+002 8.297379449551726e-004 2.441399335903717e-003
 1.560997000000000e+002 8.214568182828716e-004 2.448561376181516e-003
 1.570997000000000e+002 8.131718982605244e-004 2.455635412910230e-003
 1.580997000000000e+002 8.048831096806872e-004 2.462620557444711e-003
 1.590997000000000e+002 7.965903888969110e-004 2.469515886052200e-003
 1.600997000000000e+002 7.882936838237414e-004 2.476320439912326e-003
 1.610997000000000e+002 7.799929539367183e-004 2.483033225117107e-003
 1.620997000000000e+002 7.716881702723768e-004 2.489653212670951e-003
 1.630997000000000e+002 7.633793154282460e-004 2.496179338490653e-003
 1.640997000000000e+002 7.550663835628502e-004 2.502610503405400e-003
 1.650997000000000e+002 7.467493803957078e-004 2.508945573156765e-003
 1.660997000000000e+002 7.384283232073321e-004 2.515183378398710e-003
 1.670997000000000e+002 7.301032408392310e-004 2.521322714697589e-003
 1.680997000000000e+002 7.217741736939070e-004 2.527362342532141e-003
 1.690997000000000e+002 7.134411737348573e-004 2.533300987293496e-003
 1.700997000000000e+002 7.051043044865736e-004 2.539137339285173e-003
 1.710997000000000e+002 6.967636410345423e-004 2.544870053723080e-003
 1.720997000000000e+002 6.884192742111839e-004 2.550497738133260e-003
 1.730997000000000e+002 6.800713398740353e-004 2.556018873673755e-003
 1.740997000000000e+002 6.717199847361660e-004 2.561431924783719e-003
 1.750997000000000e+002 6.633653713434626e-004 2.566735311088073e-003
 1.760997000000000e+002 6.550076817271672e-004 2.571927395297550e-003
 1.770997000000000e+002 6.466471174038767e-004 2.577006483208690e-003
 1.780997000000000e+002 6.382838993755434e-004 2.581970823703847e-003
 1.790997000000000e+002 6.299182681294742e-004 2.586818608751186e-003
 1.800997000000000e+002 6.215504836383314e-004 2.591547973404682e-003
 1.810997000000000e+002 6.131808253601325e-004 2.596156995804122e-003
 1.820997000000000e+002 6.048095922382500e-004 2.600643697175102e-003
 1.830997000000000e+002 5.964371027014111e-004 2.605006041829032e-003
 1.840997000000000e+002 5.880636946636986e-004 2.609241937163131e-003
 1.850997000000000e+002 5.796897255245504e-004 2.613349233660430e-003
 1.860997000000000e+002 5.713155721687589e-004 2.617325724889770e-003
 1.870997000000000e+002 5.629416309664723e-004 2.621169147505805e-003
 1.880997000000000e+002 5.545683177731934e-004 2.624877181248997e-003
 1.890997000000000e+002 5.461960679297804e-004 2.628447448945622e-003
 1.900997000000000e+002 5.378253362624463e-004 2.631877516507765e-003
 1.910997000000000e+002 5.294565970827594e-004 2.635164892933323e-003
 1.920997000000000e+002 5.210903683506394e-004 2.638306973673227e-003
 1.930997000000000e+002 5.127272932708564e-004 2.641300847866090e-003
 1.940997000000000e+002 5.043679809772931e-004 2.644143669076694e-003
 1.950997000000000e+002 4.960130624948722e-004 2.646832524366862e-003
 1.960997000000000e+002 4.876632015729075e-004 2.649364408953359e-003
 1.970997000000000e+002 4.793190946851038e-004 2.651736226207884e-003
 1.980997000000000e+002 4.709814710295566e-004 2.653944787657077e-003
 1.990997000000000e+002 4.626510925287525e-004 2.655986812982515e-003

 97

Appendix B-Sample programs

B1 “tmr.m” : A MATLAB version of deterministic model TMR program.

B2 “noise.m”: A MATLAB function to generate random noise.

B3 “bann_data.m”: A MATLAB script file to generate training and testing data for

BANN model.

B4 “hann1_data.m”: A MATLAB script file to generate training and testing data for

HANN1 model.

B5 “hann1.m”: A MATLAB function for the HANN1 model.

B6 “hann2a_data.m”: A MATLAB script file to generate training and testing data

 for HANN2b model.

B7 “hann2b_data.m”: A MATLAB script file to generate training and testing data

 for HANN2b model.

B8 “hann2.m”: A MATLAB function for the HANN2 model.

 98

B1- tmr.m

function [cdot]=tmr(z,c,flag,f);
% This functions contains 5 ODEs which describes enzymatic
% Saccharification of Cellulose in Hollow Fiber Bioreactor.
% This function will be called by a selected ODE solver to
% calculate the concentration profiles of Cellulose,
% Cellobiose and Gulocose in the bioreactor.
% Last update 6/11/03
%Operating Parameters
pp=1033.82; % pressure on the shell side, g/cm.cm
pf=1100; % pressure at the entrance of the modul(tube side),
 % g/cm.cm
pr=1070; % pressure at the exit of the module,g/cm.cm
l =200; % tube length, cm
r1=0.3; % tube radius, cm
vf=f; % volumetric flow rate at the entrance of the
 % reactor, cc/min
lp=2.5e-5; % hydraulic permeability, cc/[(cm.cm).min.(g/cm.cm)]
rm=1.39e-3; % maximum reaction rate (cellobiose), g/(cc.min)
rprimem=1.22e-3; % maximum reaction rate (glucose)g/(cc.min)
km=42.18e-3; % Michaelis-Menten constant (cellobiose), g/cc
kprimem=198.34e-3; % product inhibition constant (cellobiose), g/cc
ki=1.89e-3; % product inhibition constant (cellobiose), g/cc
kprimei=0.66e-3; % product inhibition constant (glucose), g/cc

pt=(pf-pp)+(pr-pf)*z/l; % transmembrane pressure drop

% v volumetric flow rates at a distance z from the entrance of the
% reactor on the tube side
 v=-(2.0*pi*r1*lp)*((pf-pp)*z+(pr-pf)*z^2/l/2.0)+vf;

% vbar volumetric flow rates at a distance z from the entrance of the
% reactor on the shell side
 vbar= vf-v+1.0e-15;
 dvdz=-(2.0d0*pi*r1*lp)*((pf-pp)+(pr-pf)*z/l);

 % rb are the rate of formation of cellobiose
 rb=rm*c(1)/(km+c(1)+(km*c(2)/ki));

 % rg are the rate of formation of glucose
 rg=rprimem*c(2)/(kprimem+c(2)+(kprimem*c(3)/kprimei));

 % 5 ODEs to calculate the concentration profiles of Cellulose
 % c(1),Cellobiose c(2) and Glucose c(3) on the tube side.
 % Cellobiose c(4) and Glucose c(5) on the shell side.
 cdot=[(pi*r1^2/v)*(-rb-c(1)*dvdz/pi/r1^2);(pi*r1^2/v)*(-rg+rb-...
 (c(2)*dvdz/pi/r1^2)-(2.0d0*lp*pt/r1)*c(2));(pi*r1^2/v)*...
 (rg-(c(3)*dvdz/pi/r1^2)-(2.0d0*lp*pt/r1)*c(3));(pi*r1^2/vbar)*...
 ((c(4)*dvdz/pi/r1^2)+(2.0*lp*pt/r1)*c(2));(pi*r1^2/vbar)...
 *((c(5)*dvdz/pi/r1^2)+(2.0*lp*pt/r1)*c(3))];

 99

B2- noise.m

function[Cn]=noise(C,per)
% This function generate noise and add it to
% the mathematical model prediction "C"in order
% to generat process data "Cn"
% Noise value "Vnoise" is determined at each point by
% sampling from a normal distribution having zero mean and
% a standard deviation equal to "per" of the state variable value
% Last update 4/1/03

Vnoise=ones(size(C))+[per/100*randn(length(C),5)];
Cn=C.*Vnoise;

B3- bann_data.m

%This script file "bann_data" is used to prepare training,
%interpolation and extrapolation cases for BANN model
% Last update 15/6/03
% In this section the function of mass balance equations "tmr" is
% called ode23s solver
%for different initial conditions in order to generate training,
interpolation and extrapolation
[z,c1]=ode23s('tmr',[0:10:200],[0.0025;0;0;0;0],[],0.6);
[z,c2]=ode23s('tmr',[0:10:200],[0.0016;0;0;0;0],[],0.62);
[z,c3]=ode23s('tmr',[0:10:200],[0.0018;0;0;0;0],[],0.66);
[z,c4]=ode23s('tmr',[0:10:200],[0.0013;0;0;0;0],[],0.67);
[z,c5]=ode23s('tmr',[0:10:200],[0.0009;0;0;0;0],[],0.70);
[z,c6]=ode23s('tmr',[0:10:200],[0.0014;0;0;0;0],[],0.71);
[z,c7]=ode23s('tmr',[0:10:200],[0.0017;0;0;0;0],[],0.75);
[z,c8]=ode23s('tmr',[0:10:200],[0.0005;0;0;0;0],[],0.79);
[z,c9]=ode23s('tmr',[0:10:200],[0.0019;0;0;0;0],[],0.82);
[z,c10]=ode23s('tmr',[0:10:200],[0.0024;0;0;0;0],[],0.83);
[z,c11]=ode23s('tmr',[0:10:200],[0.0007;0;0;0;0],[],0.86);
[z,c12]=ode23s('tmr',[0:10:200],[0.0009;0;0;0;0],[],0.89);
[z,c13]=ode23s('tmr',[0:10:200],[0.0026;0;0;0;0],[],0.91);
[z,c14]=ode23s('tmr',[0:10:200],[0.0011;0;0;0;0],[],0.93);
[z,c15]=ode23s('tmr',[0:10:200],[0.001;0;0;0;0],[],0.95);
[z,c16]=ode23s('tmr',[0:10:200],[0.0006;0;0;0;0],[],0.97);
[z,c17]=ode23s('tmr',[0:10:200],[0.0021;0;0;0;0],[],0.99);
[z,c18]=ode23s('tmr',[0:10:200],[0.0004;0;0;0;0],[],1.01);
[z,c19]=ode23s('tmr',[0:10:200],[0.0021;0;0;0;0],[],1.03);
[z,c20]=ode23s('tmr',[0:10:200],[0.0018;0;0;0;0],[],1.05);
% interpolation cases (21-23)
[z,c21]=ode45('tmr',[0:10:200],[0.001;0;0;0;0],[],0.6);
[z,c22]=ode45('tmr',[0:10:200],[0.0015;0;0;0;0],[],0.73);
[z,c23]=ode45('tmr',[0:10:200],[0.0005;0;0;0;0],[],1.0);
% extrapolation cases (24-24)
[z,c24]=ode45('tmr',[0:10:200],[0.0045;0;0;0;0],[],0.65);
[z,c25]=ode45('tmr',[0:10:200],[0.0003;0;0;0;0],[],1.20);
[z,c26]=ode45('tmr',[0:10:200],[0.0035;0;0;0;0],[],1.30);
% "c" Matrix for whole cases

 100

c=[c1;c2;c3;c4;c5;c6;c7;c8;c9;c10;c11;c12;c13;c14;c15;c16;c17;c18;c19;c
20;c21;c22;c23;c24;c25;c26];
% Generate noise (3%) for all cases (1-26) "cs" using noise function
cs=noise(c,3);
x=0:10:200;
% Appling smoothing spline using spaps for cellulose (tube) data points
for i=1:21:546
 y1=cs(i:i+20,1);
 ys1=spaps(x,y1,1e-7);
 ps1=fnval(ys1,x);
p1(i:i+20)=ps1;
end
% Appling smoothing spline using spaps for cellobiose (tube) data
% points
for i=1:21:546
 y2=cs(i:i+20,2);
 ys2=spaps(x,y2,1e-7);
 ps2=fnval(ys2,x);
 p2(i:i+20)=ps2;
end
% Appling smoothing spline using spaps for glucose (tube) data points
for i=1:21:546
 y3=cs(i:i+20,3);
 ys3=spaps(x,y3,1e-7);
 ps3=fnval(ys3,x);
 p3(i:i+20)=ps3;
end
% Appling smoothing spline using spaps for cellobiose (shell) data
% points
for i=1:21:546
 y4=cs(i:i+20,4);
 ys4=spaps(x,y4,1e-7);
 ps4=fnval(ys4,x);
 p4(i:i+20)=ps4;
end
% Appling smoothing spline using spaps for glucose (shell) data points
for i=1:21:546
 y5=cs(i:i+20,5);
 ys5=spaps(x,y5,1e-7);
 ps5=fnval(ys5,x);
 p5(i:i+20)=ps5;
end
p1=p1';p2=p2';p3=p3';p4=p4';p5=p5';
csm=[p1 p2 p3 p4 p5]; % smoothed process data
% Normalize training data between (-1 and 1)using premnmx function

[pn1,minp1,maxp1]=premnmx(p1);[pn2,minp2,maxp2]=premnmx(p2);[pn3,minp3,
maxp3]=premnmx(p3);
 [pn4,minp4,maxp4]=premnmx(p4);[pn5,minp5,maxp5]=premnmx(p5);
 % Normalize flowrates "vf" between (-1 and 1)using premnmx function
vf=[0.6;0.62;0.66;0.67;0.70;0.71;0.75;0.79;0.82;0.83;0.86;0.89;0.91;...
 0.95;0.97;0.99;1.01;1.03;1.05;0.6;0.73;1.0;0.65;1.2;1.3];
[vfn,minvf,maxvf]=premnmx(vf);
% prepare feed flowrate "vf" as a fector for each cases
vfn1=ones(21,1)*vfn(1);vfn2=ones(21,1)*vfn(2);vfn3=ones(21,1)*vfn(3);vf
n4=ones(21,1)*vfn(4);vfn5=ones(21,1)*vfn(5);vfn6=ones(21,1)*vfn(6);vfn7
=ones(21,1)*vfn(7);vfn8=ones(21,1)*vfn(8);vfn9=ones(21,1)*vfn(9);vfn10=

 101

ones(21,1)*vfn(10);vfn11=ones(21,1)*vfn(11);vfn12=ones(21,1)*vfn(12);vf
n13=ones(21,1)*vfn(13);vfn14=ones(21,1)*vfn(14);vfn15=ones(21,1)*vfn(15
);vfn16=ones(21,1)*vfn(16);vfn17=ones(21,1)*vfn(17);vfn18=ones(21,1)*vf
n(18);vfn19=ones(21,1)*vfn(19);vfn20=ones(21,1)*vfn(20);vfn21=ones(21,1
)*vfn(21);vfn22=ones(21,1)*vfn(22);vfn23=ones(21,1)*vfn(23);vfn24=ones(
21,1)*vfn(24);vfn25=ones(21,1)*vfn(25);vfn26=ones(21,1)*vfn(26);
vfnt=[vfn1;vfn2;vfn3;vfn4;vfn5;vfn6;vfn7;vfn8;vfn9;vfn10;vfn11;vfn12;..
.vfn13;vfn14;vfn15;vfn16;vfn17;vfn18;vfn19;vfn20;vfn21;vfn22;vfn23;vfn2
4;vfn25;vfn26];
%Prepare all cases as "input" and "target" vectors for all cases
%(training, interpolation and extrapolation)
input=[pn1 pn2 pn3 pn4 pn5 vfnt];
target=[pn1 pn2 pn3 pn4 pn5];
% each case consist of 20 input vectors and 20 traget vectors
% Inputs "Ptrb" and targets "Ttrb" for training cases (1-20)
input1=input(1:20,:);target1=target(2:21,:);
input2=input(22:41,:);target2=target(23:42,:);
input3=input(43:62,:);target3=target(44:63,:);
input4=input(64:83,:);target4=target(65:84,:);
input5=input(85:104,:);target5=target(86:105,:);
input6=input(106:125,:);target6=target(107:126,:);
input7=input(127:146,:);target7=target(128:147,:);
input8=input(148:167,:);target8=target(149:168,:);
input9=input(169:188,:);target9=target(170:189,:);
input10=input(190:209,:);target10=target(191:210,:);
input11=input(211:230,:);target11=target(212:231,:);
input12=input(232:251,:);target12=target(233:252,:);
input13=input(253:272,:);target13=target(254:273,:);
input14=input(274:293,:);target14=target(275:294,:);
input15=input(295:314,:);target15=target(296:315,:);
input16=input(316:335,:);target16=target(317:336,:);
input17=input(337:356,:);target17=target(338:357,:);
input18=input(358:377,:);target18=target(359:378,:);
input19=input(379:398,:);target19=target(380:399,:);
input20=input(400:419,:);target20=target(401:420,:);
Ptr_bn=[input1;input2;input3;input4;input5;input6;input7;input8;input9;
input10;input11;input12;...
 input13;input14;input15;input16;input17;input18;input19;input20]';
Ttr_bn=[target1;target2;target3;target4;target5;target6;target7;target8
;target9;target10;target11;...

target12;target13;target14;target15;target16;target17;target18;target19
;target20]';
%Inputs "Pin_bn" and targets "Tin_bn" for interpolation cases (21-23)
input21=input(421:440,:);target21=target(422:441,:);
input22=input(442:461,:);target22=target(443:462,:);
input23=input(463:482,:);target23=target(464:483,:);
Pin_bn=[input21;input22;input23]';
Tin_bn=[target21;target22;target23]';
%Inputs "Pex_bn" and targets "Tex_bn" for extrapolation cases (24-26)
input24=input(484:503,:);target24=target(485:504,:);
input25=input(505:524,:);target25=target(506:525,:);
input26=input(526:545,:);target26=target(527:546,:);
Pex_bn=[input24;input25;input26]';
Tex_bn=[target24;target25;target26]';

 102

B4- hann1_data.m

%This script file "hann_data" is used to prepare training,
%interpolation and extrapolation cases for HANN-1 model
% Last update 6/11/03
% In this section the function of mass balance equations "tmr" is
% called by
% ode23s solver for different initial conditions in order to generate
training (1-20),
%interpolation (21-23) and extrapolation (24-26)
[z,c1]=ode23s('tmr',[0:10:200],[0.0025;0;0;0;0],[],0.6);
[z,c2]=ode23s('tmr',[0:10:200],[0.0016;0;0;0;0],[],0.62);
[z,c3]=ode23s('tmr',[0:10:200],[0.0018;0;0;0;0],[],0.66);
[z,c4]=ode23s('tmr',[0:10:200],[0.0013;0;0;0;0],[],0.67);
[z,c5]=ode23s('tmr',[0:10:200],[0.0009;0;0;0;0],[],0.70);
[z,c6]=ode23s('tmr',[0:10:200],[0.0014;0;0;0;0],[],0.71);
[z,c7]=ode23s('tmr',[0:10:200],[0.0017;0;0;0;0],[],0.75);
[z,c8]=ode23s('tmr',[0:10:200],[0.0005;0;0;0;0],[],0.79);
[z,c9]=ode23s('tmr',[0:10:200],[0.0019;0;0;0;0],[],0.82);
[z,c10]=ode23s('tmr',[0:10:200],[0.0024;0;0;0;0],[],0.83);
[z,c11]=ode23s('tmr',[0:10:200],[0.0007;0;0;0;0],[],0.86);
[z,c12]=ode23s('tmr',[0:10:200],[0.0009;0;0;0;0],[],0.89);
[z,c13]=ode23s('tmr',[0:10:200],[0.0026;0;0;0;0],[],0.91);
[z,c14]=ode23s('tmr',[0:10:200],[0.0011;0;0;0;0],[],0.93);
[z,c15]=ode23s('tmr',[0:10:200],[0.001;0;0;0;0],[],0.95);
[z,c16]=ode23s('tmr',[0:10:200],[0.0006;0;0;0;0],[],0.97);
[z,c17]=ode23s('tmr',[0:10:200],[0.0021;0;0;0;0],[],0.99);
[z,c18]=ode23s('tmr',[0:10:200],[0.0004;0;0;0;0],[],1.01);
[z,c19]=ode23s('tmr',[0:10:200],[0.0021;0;0;0;0],[],1.03);
[z,c20]=ode23s('tmr',[0:10:200],[0.0018;0;0;0;0],[],1.05);
% interpolation cases (21-23)
[z,c21]=ode45('tmr',[0:10:200],[0.001;0;0;0;0],[],0.6);
[z,c22]=ode45('tmr',[0:10:200],[0.0015;0;0;0;0],[],0.73);
[z,c23]=ode45('tmr',[0:10:200],[0.0005;0;0;0;0],[],1.0);
% extrapolation cases (24-24)
[z,c24]=ode45('tmr',[0:10:200],[0.0045;0;0;0;0],[],0.65);
[z,c25]=ode45('tmr',[0:10:200],[0.0003;0;0;0;0],[],1.20);
[z,c26]=ode45('tmr',[0:10:200],[0.0035;0;0;0;0],[],1.30);
% "c" Matrix for whole cases
c=[c1;c2;c3;c4;c5;c6;c7;c8;c9;c10;c11;c12;c13;c14;c15;c16;c17;c18;c19;c
20;c21;c22;c23;c24;c25;c26];
% Generate noise (3%) for all cases (1-26) "cs" using noise function
cs=noise(c,3);
x=0:10:200;
% Appling smoothing spline using spaps function for cellulose (tube)
% data points
for i=1:21:546
 y1=cs(i:i+20,1);
 ys1=spaps(x,y1,1e-7);
 ps1=fnval(ys1,x);
 p1(i:i+20)=ps1;
% Calculat first derivative
 d1=fnval(fnder(ys1),x);
 dc1(i:i+20)=d1;
end
% Appling smoothing spline using spaps for cellobiose (tube) data

 103

% points
for i=1:21:546
 y2=cs(i:i+20,2);
 ys2=spaps(x,y2,1e-7);
 ps2=fnval(ys2,x);
 p2(i:i+20)=ps2;
 % Calculat first derivative
 d2=fnval(fnder(ys2),x);
 dc2(i:i+20)=d2;
end
% Appling smoothing spline using spaps for glucose (tube) data points
for i=1:21:546
 y3=cs(i:i+20,3);
 ys3=spaps(x,y3,1e-7);
 ps3=fnval(ys3,x);
 p3(i:i+20)=ps3;
 % Calculat first derivative
 d3=fnval(fnder(ys3),x);
 dc3(i:i+20)=d3;
end
% Appling smoothing spline using spaps for cellobiose (shell) data
% points
for i=1:21:546
 y4=cs(i:i+20,4);
 ys4=spaps(x,y4,1e-7);
 ps4=fnval(ys4,x);
 p4(i:i+20)=ps4;
 % Calculat first derivative
 d4=fnval(fnder(ys4),x);
 dc4(i:i+20)=d4;
end
% Appling smoothing spline using spaps for glucose (shell) data points
for i=1:21:546
 y5=cs(i:i+20,5);
 ys5=spaps(x,y5,1e-9);
 ps5=fnval(ys5,x);
 if ps5 < 0
 ps5=1e-6;
 end
 p5(i:i+20)=ps5;
% Calculat first derivative
 d5=fnval(fnder(ys5),x);
 dc5(i:i+20)=d5;
end
% smoothed process data "csm" (cases 1-26)
p1=p1';p2=p2';p3=p3';p4=p4';p5=p5';
csm=[p1 p2 p3 p4 p5];
% Normalize smoothed process data between (-1 and 1)using premnmx
function

[pn1,minp1,maxp1]=premnmx(p1);[pn2,minp2,maxp2]=premnmx(p2);[pn3,minp3,
maxp3]=premnmx(p3);
 [pn4,minp4,maxp4]=premnmx(p4);[pn5,minp5,maxp5]=premnmx(p5);
% Normalize flowrates "vf" between (-1 and 1)using premnmx function
vf=[0.6;0.62;0.66;0.67;0.70;0.71;0.75;0.79;0.82;0.83;0.86;0.89;0.91;...
 0.95;0.97;0.99;1.01;1.03;1.05;0.6;0.73;1.0;0.65;1.2;1.3];
[vfn,minvf,maxvf]=premnmx(vf);

 104

% prepare feed flowrate "vf" as a fector for each case
vfn1=ones(21,1)*vfn(1);vfn2=ones(21,1)*vfn(2);vfn3=ones(21,1)*vfn(3);vf
n4=ones(21,1)*vfn(4);vfn5=ones(21,1)*vfn(5);vfn6=ones(21,1)*vfn(6);vfn7
=ones(21,1)*vfn(7);vfn8=ones(21,1)*vfn(8);vfn9=ones(21,1)*vfn(9);vfn10=
ones(21,1)*vfn(10);vfn11=ones(21,1)*vfn(11);vfn12=ones(21,1)*vfn(12);vf
n13=ones(21,1)*vfn(13);vfn14=ones(21,1)*vfn(14);vfn15=ones(21,1)*vfn(15
);vfn16=ones(21,1)*vfn(16);vfn17=ones(21,1)*vfn(17);vfn18=ones(21,1)*vf
n(18);vfn19=ones(21,1)*vfn(19);vfn20=ones(21,1)*vfn(20);vfn21=ones(21,1
)*vfn(21);vfn22=ones(21,1)*vfn(22);vfn23=ones(21,1)*vfn(23);vfn24=ones(
21,1)*vfn(24);vfn25=ones(21,1)*vfn(25);vfn26=ones(21,1)*vfn(26);
vfnt=[vfn1;vfn2;vfn3;vfn4;vfn5;vfn6;vfn7;vfn8;vfn9;vfn10;vfn11;vfn12;..
vfn13;vfn14;vfn15;vfn16;vfn17;vfn18;vfn19;vfn20;vfn21;vfn22;vfn23;vfn24
;vfn25;vfn26];
%Prepare inputs for HANN-1 model using normalized smoothed process data
%"Ptr_rb" is the normalized input of the training cases (1-20) for ANN
%of rate of formation of cellobiose "rb"
Ptr_rb=[pn1(1:420) pn2(1:420) vfnt(1:420)]';
%"Pts_rb" is the normalized input of the testing (interpolation and
% extrapolation)
%cases (21-26) for ANN of rate of formation of cellobiose "rb"
Pts_rb=[pn1(421:546) pn2(421:546) vfnt(421:546)]';
%"Ptr_rg" is the normalized input of the training cases (1-20) for ANN
%of rate of formation of glucose "rg"
Ptr_rg=[pn2(1:420) pn3(1:420) vfnt(1:420)]';
%"Pts_rg" is the normalized input of the testing (interpolation and
% extrapolation)
%cases (21-26) for ANN of rate of formation of glucose "rg"
Pts_rg=[pn2(421:546) pn3(421:546) vfnt(421:546)]';
 %Operating Parameters
 pp=1033.82; % pressure on the shell side, g/cm.cm
 pf=1100; % pressure at the entrance of the module
 %(tube side), g/cm.cm
 pr=1070; % pressure at the exit of the module,g/cm.cm
 l =200; % tube length, cm
 r1=0.3; % tube radius, cm
 lp=2.5e-5; % hydraulic permeability,
 %cc/[(cm.cm).min.(g/cm.cm)]
 % calculat "pt" transmembrane pressure drop for all cases
 pt=ones(21,26);
 for i=1:26
 pti=(pf-pp)+(pr-pf)*z/l; % transmembrane pressure drop
 pt(:,i)=pti;
 end
 % v volumetric flow rates at a distance z from the entrance
 % of the reactor on the tube side
 v=ones(21,26);
 for i=1:26
 vi=-(2.0*pi*r1*lp)*((pf-pp)*z+(pr-pf)*z.*z/l/2.0)+vf(i);
 v(:,i)=vi;
 end
 % vbar volumetric flow rates at a distance z from the entrance
 dvdz=ones(21,26);
 for i=1:26
 dvdzi=-(2.0d0*pi*r1*lp)*((pf-pp)+(pr-pf)*z/l);
 dvdz(:,i)=dvdzi;
 end
 dvdz=dvdz(:);v=v(:);pt=pt(:);dc1=dc1';dc3=dc3';

 105

 % Calculate reaction rates "rb" and "rg" for all cases (1-26)
 % rb are the rate of formation of cellobiose
 for i=1:546
 rb(i)=-dc1(i)/((pi*r1^2)/v(i))-cs(i,1)/(pi*r1^2)*dvdz(i);
 % rg are the rate of formation of glucose

rg(i)=dc3(i)/((pi*r1^2)/v(i))+cs(i,3)/(pi*r1^2)*dvdz(i)+((2*lp*pt(i))/r
1)*cs(i,3);
 end
% Normalize reaction rates "rb and rg" between (-1 and 1)using premnmx
function
 [rbn,minrb,maxrb]=premnmx(rb);
 [rgn,minrg,maxrg]=premnmx(rg);
%Prepare targets for HANN1 model using normalized rate of reactions rb
and rg
%"Ttr_rb" is the normalized target of the training cases (1-20) for
ANN
%of rate of formation of cellobiose "rb"
Ttr_rb=rbn(1:420);
%"Pts_rb" is the normalized target of the testing (interpolation and
extrapolation)
% cases (21-26) for ANN of rate of formation of cellobiose "rb"
Tts_rb=rbn(421:546);
%"Ptr_rg" is the normalized target of the training cases (1-20) for
ANN
% of rate of formation of glucoseg "rg"
Ttr_rg=rgn(1:420);
%"Pts_rg" is the normalized target of the testing (interpolation and
extrapolation)
%cases (21-26) for ANN of rate of formation of glucose "rg"
Tts_rg=rgn(421:546);

B5- hann1.m

function cdot=hann1(z,c,flag,vf,rbnet,rgnet);
%This function(hann1) contains the structure of the first
% hybrid model which has the combination of the mass balance
% equations (5 ODEs) Ann which will predict the rate of reactions
% rb and rg
% Last update 5/14/03

%Operating Parameters
 pp=1033.82; % pressure on the shell side, g/cm.cm
 pf=1100; % pressure at the entrance of the module(tube

 % side), g/cm.cm
 pr=1070; % pressure at the exit of the module,g/cm.cm
 l =200; % tube length, cm
 r1=0.3; % tube radius, cm of the reactor, cc/min
 lp=2.5e-5; % hydraulic permeability,
 % pt transmembrane pressure drop
 pt=(pf-pp)+(pr-pf)*z/l;

 106

 % v volumetric flow rates at a distance z from the entrance of
 %the reactor on the tube side
 v=-(2.0*pi*r1*lp)*((pf-pp)*z+(pr-pf)*z^2/l/2.0)+vf;
 % vbar volumetric flow rates at a distance z from the entrance
 % of the reactor on the shell side
 vbar= vf-v+1.0e-15;
 dvdz=-(2.0d0*pi*r1*lp)*((pf-pp)+(pr-pf)*z/l);
 % normalization parameters calculated from "hann_data.m"
 maxp1 = 0.0043; minp1 = 7.6182e-006; % cellulose
 maxp2 =0.0049; minp2 = 0; % cellobiose "tube"
 maxp3 = 0.0015; minp3 = 0; % glucose "tube"
 minvf=0.6; maxvf=1.3; % volumetric flowrate
 minrb=9.3791e-007 ;maxrb= 1.3956e-004; % rate of formations
 minrg=0; maxrg= 1.0803e-005; % rate of formations
 % Normalization of reactant concentrations: cn1,Cellobiose cn2 and
 % Glucose cn3 on the tube side.
 % Cellobiose cn4 and Glucose cn5 on the shell side.
 cn1= 2*(c(1)-minp1)/(maxp1-minp1) - 1;cn2 = 2*(c(2)-minp2)/(maxp2-
minp2)-1;
 cn3 = 2*(c(3)-minp3)/(maxp3-minp3) - 1;vfn = 2*(vf-minvf)/(maxvf-
minvf)-1;
 % Constrains for normalized concentrations in order to control ANN
behavior
 % rxnet is ANN to predict the normalized rate of formation of
cellobiose "rbn" and glucose "rgn"
 rbn=sim(rbnet,[cn1;cn2;vfn]);
 rgn=sim(rgnet,[cn2;cn3;vfn]);
 % de-normalized rbn and rbn
 rb= 0.5*(rbn+1)*(maxrb-minrb) + minrb;
 rg= 0.5*(rgn+1)*(maxrg-minrg) + minrg;
 % 5 ODEs to calculate the concentration profiles of cellulose
 % c(1),cellobiose c(2) and glucose c(3) on the tube side.
 % cellobiose c(4) and glucose c(5) on the shell side.
 cdot=[(pi*r1^2/v)*(-rb-c(1)*dvdz/pi/r1^2);(pi*r1^2/v)*(-rg+rb-...
 (c(2)*dvdz/pi/r1^2)-(2.0d0*lp*pt/r1)*c(2));(pi*r1^2/v)*...
 (rg-(c(3)*dvdz/pi/r1^2)-(2.0d0*lp*pt/r1)*c(3));(pi*r1^2/vbar)*...
 ((c(4)*dvdz/pi/r1^2)+(2.0*lp*pt/r1)*c(2));(pi*r1^2/vbar)...
 *((c(5)*dvdz/pi/r1^2)+(2.0*lp*pt/r1)*c(3))];

B6- hann2a_data.m

%This script file "hann2a_data" is used to prepare training,
%interpolation and extrapolation cases for HANN2 model
% Last update 8/9/03

%Operating Parameters
 pp=1033.82; % pressure on the shell side, g/cm.cm
 pf=1100; % pressure at the entrance of the module(tube
 % side), g/cm.cm

 107

 pr=1070; % pressure at the exit of the module,g/cm.cm
 l =200; % tube length, cm
 r1=0.3; % tube radius, cm
 lp=2.5e-5; % hydraulic permeability,
 % cc/[(cm.cm).min.(g/cm.cm)]
 rm=1.39e-3; % maximum reaction rate (cellobiose),
 % g/(cc.min)
 rprimem=1.22e-3; % maximum reaction rate (glucose)g/(cc.min)
% calculate "pt" transmembrane pressure drop for all cases
 pt=ones(21,26);
 for i=1:26
 pti=(pf-pp)+(pr-pf)*z/l;
 pt(:,i)=pti;
 end
 % Calculate volumetric flow rates "v" at a distance z from the
 % entrance of the reactor
 % on the tube side
 v=ones(21,26);
 for i=1:26
 vi=-(2.0*pi*r1*lp)*((pf-pp)*z+(pr-pf)*z.*z/l/2.0)+vf(i);
 v(:,i)=vi;
 end
 % Calculation of Michaelis-Menten constants km and and kprimem for
 % all cases (1-26)
 % dc1 and dc3 are first derivatives of cellulose (tube) and glucose
 %(tube)
 % cs is a matrix of all process data for all cases (1-26)
 v=v(:);pt=pt(:);dc1=dc1';dc3=dc3';
 for i=1:546
 Km(i)=(rm*cs(i,1))/((2*lp*pt(i)*cs(i,1))/(pi*r1)-
dc1(i)*v(i)/(pi*r1^2))-cs(i,1);
 Kprimem(i)=(rprimem*cs(i,2))/(dc3(i)*v(i)/(pi*r1^2))-cs(i,2);
 end
% Normalize Km and and Kprimem for all cases (1-26) between (-1 and
% 1)using premnmx function
 [Kmn,minKm,maxKm]=premnmx(Km);
 [Kprimemn,minKprimem,maxKprimem]=premnmx(Kprimem);
%Prepare targets for ANN-1 and ANN-2 in HANN2 using normalized Kmn and
Kprimemn.
%"Ttr_Kmn" is the normalized targets of the training cases (1-20) for
ANN-1
Ttsr_Kmn=Kmn(1:420);
%"Tin_Kmn" is the normalized targets of the interpolation cases (21-23)
for ANN-1
Tin_Kmn=Kmn(421:483);
%"Tex_Kmn" is the normalized targets of the extrapolation cases (24-26)
for ANN-1
Tex_Kmn=Kmn(483:546);
%"Ttr_Kprimemn" is the normalized targets of the training cases (1-20)
for ANN-2
Ttr_Kprimemn=Kprimemn(1:420);
%"Tin_Kprimemn" is the normalized targets of the interpolation cases
(21-23) for ANN-1
Tin_Kprimemn=Kprimemn(421:483);
%"Tex_Kprimemn" is the normalized targets of the extrapolation cases
(24-26) for ANN-1
Tex_Kprimemn=Kprimemn(483:546);

 108

% Normalize process data between (-1 and 1)using premnmx function
 p1=cs(:,1);p2=cs(:,2);p3=cs(:,3);p4=cs(:,4);p5=cs(:,5);

[pn1,minp1,maxp1]=premnmx(p1);[pn2,minp2,maxp2]=premnmx(p2);[pn3,minp3,
maxp3]=premnmx(p3);
 [pn4,minp4,maxp4]=premnmx(p4);[pn5,minp5,maxp5]=premnmx(p5);
%Prepare inputs for ANN-1 and ANN-2 in HANN2 by using normalized
%process data using (pn1, pn2, pn3,and Vfnt)
% HANN1 models
%"Ptr_Km" is the normalized inputs of the training cases (1-20) for
%ANN-1
Ptr_Kmn=[pn1(1:420) pn2(1:420) vfnt(1:420)]';
%"Pin_Km" is the normalized inputs of interpolation cases (21-23)for
%ANN-1
Pin_Kmn=[pn1(421:483) pn2(421:483) vfnt(421:483)]';
%"Pex_Km" is the normalized inputs of extrapolation cases (24-26)for
%ANN-1
Pex_Kmn=[pn1(484:546) pn2(484:546) vfnt(484:546)]';
%"Ptr_Kprimem" is the normalized inputs of the training cases (1-20)
%for ANN-2
Ptr_Kprimemn=[pn2(1:420) pn3(1:420) vfnt(1:420)]';
%"Pin_Kprimem" is the normalized inputs of interpolation cases (21-
%23)for ANN-2
Pin_Kprimemn=[pn2(421:483) pn3(421:483) vfnt(421:483)]';
%"Pex_Kprimem" is the normalized inputs of extrapolation cases (24-
%26)for ANN-2
Pex_Kprimemn=[pn2(484:546) pn3(484:546) vfnt(484:546)]';

B7- hann2b_data.m

%This script file "hann2b_data" is used to prepare training,
% interpolation and extrapolation cases for HANN2b model
% Last update 7/15/03

%Operating Parameters
 pp=1033.82; % pressure on the shell side, g/cm.cm
 pf=1100; % pressure at the entrance of the module(tube
 % side), g/cm.cm
 pr=1070; % pressure at the exit of the module,g/cm.cm
 l =200; % tube length, cm
 r1=0.3; % tube radius, cm
 lp=2.5e-5; % hydraulic permeability,
 % cc/[(cm.cm).min.(g/cm.cm)]
 rm=1.39e-3; % maximum reaction rate (cellobiose),
 % g/(cc.min)
 rprimem=1.22e-3; % maximum reaction rate (glucose)g/(cc.min)
% calculate "pt" transmembrane pressure drop for all cases
 pt=ones(21,26);

 109

 for i=1:26
 pti=(pf-pp)+(pr-pf)*z/l;
 pt(:,i)=pti;
 end
 % Calculate volumetric flow rates "v" at a distance z from the
 % entrance of the reactor
 % on the tube side
 v=ones(21,26);
 for i=1:26
 vi=-(2.0*pi*r1*lp)*((pf-pp)*z+(pr-pf)*z.*z/l/2.0)+vf(i);
 v(:,i)=vi;
 end
 % Calculation of Michaelis-Menten constants km and and kprimem for
 %all cases (1-26)
 % dc1 and dc3 are first derivatives of cellulose (tube) and glucose
 %(tube)
 % csm is smoothed process data for all cases
 v=v(:);pt=pt(:);dc1=dc1';dc3=dc3';
 for i=1:546
 Km(i)=(rm*cs(i,1))/((2*lp*pt(i)*cs(i,1))/(pi*r1)-
dc1(i)*v(i)/(pi*r1^2))-cs(i,1);
 Kprimem(i)=(rprimem*cs(i,2))/(dc3(i)*v(i)/(pi*r1^2))-cs(i,2);
 end
% Normalize Km and and Kprimem for all cases (1-26) between (-1 and
% 1)using premnmx function
 [Kmn,minKm,maxKm]=premnmx(Km);
 [Kprimemn,minKprimem,maxKprimem]=premnmx(Kprimem);
%Prepare targets for ANN-1 and ANN-2 in HANN2 using normalized Km and
Kprimem.
%"Ttr_Kmn" is the normalized targets of the training cases (1-20) for
%ANN-1
Ttr_Kmn=Kmn(1:420);
%"Tin_Kmn" is the normalized targets of the interpolation cases (21-23)
%for ANN-1
Tin_Kmn=Kmn(421:483);
%"Tex_Kmn" is the normalized targets of the extrapolation cases (24-26)
%for ANN-1
Tex_Kmn=Kmn(483:546);
%"Ttr_Kprimemn" is the normalized targets of the training cases (1-20)
%for ANN-2
Ttr_Kprimemn=Kprimemn(1:420);
%"Tin_Kprimemn" is the normalized targets of the interpolation cases
(21-23) for ANN-1
Tin_Kprimemn=Kprimemn(421:483);
%"Tex_Kprimemn" is the normalized targets of the extrapolation cases
%(24-26) for ANN-1
Tex_Kprimemn=Kprimemn(483:546);

%Prepare inputs for ANN-1 and ANN-2 in HANN2 by using normalized
%smoothed process data using
% The same normalized smoothed process data (pn1, pn2, pn3,and
Vfnt)generated for BANN and
% HANN1 models
%"Ptr_Km" is the normalized inputs of the training cases (1-20) for
%ANN-1
Ptr_Kmn=[pn1(1:420) pn2(1:420) vfnt(1:420)]';

 110

%"Pin_Km" is the normalized inputs of interpolation cases (21-23)for
%ANN-1
Pin_Kmn=[pn1(421:483) pn2(421:483) vfnt(421:483)]';
%"Pex_Km" is the normalized inputs of extrapolation cases (24-26)for
%ANN-1
Pex_Kmn=[pn1(484:546) pn2(484:546) vfnt(484:546)]';
%"Ptr_Kprimem" is the normalized inputs of the training cases (1-20)
%for ANN-2
Ptr_Kprimemn=[pn2(1:420) pn3(1:420) vfnt(1:420)]';
%"Pin_Kprimem" is the normalized inputs of interpolation cases (21-
%23)for ANN-2
Pin_Kprimemn=[pn2(421:483) pn3(421:483) vfnt(421:483)]';
%"Pex_Kprimem" is the normalized inputs of extrapolation cases (24-
%26)for ANN-2
Pex_Kprimemn=[pn2(484:546) pn3(484:546) vfnt(484:546)]';

B8- hann2.m

function cdot=hann2(z,c,flag,vf,Kmnet,Kprimemnet);
%This function(hann2) contains the structure of the second
% hybrid model which has the combination of the mass balance
% equations (5 ODEs), simplified rate expressions, and ANN
% In this model ANN (ANN-1 and ANN-2) are used to predict
% Michaelis-Menten constants km and and kprimem
% Last update 7/20/03

%Operating Parameters
 pp=1033.82; % pressure on the shell side, g/cm.cm
 pf=1100; % pressure at the entrance of the module(tube
 % side), g/cm.cm
 pr=1070; % pressure at the exit of the module,g/cm.cm
 l =200; % tube length, cm
 r1=0.3; % tube radius, cm of the reactor, cc/min
 lp=2.5e-5; % hydraulic permeability,
 rm=1.39e-3; % maximum reaction rate (cellobiose),
 % g/(cc.min)
 rprimem=1.22e-3; % maximum reaction rate (glucose)g/(cc.min)
 % calculate pt transmembrane pressure drop
 pt=(pf-pp)+(pr-pf)*z/l;
 % calculate volumetric flow rates at a distance z from the
 % entrance of
 % the reactor on the tube side (v)
 v=-(2.0*pi*r1*lp)*((pf-pp)*z+(pr-pf)*z^2/l/2.0)+vf;
 % calculate volumetric flow rates at a distance z from the
 % entrance
 % of the reactor on the shell side (vbar)
 vbar= vf-v+1.0e-15;
 dvdz=-(2.0d0*pi*r1*lp)*((pf-pp)+(pr-pf)*z/l);

 % Normalization parameters.
 maxp1 = 0.0043; minp1 = 7.6182e-006; % cellulose
 maxp2 =0.0049; minp2 = 0; % cellobiose "tube"

 111

 maxp3 = 0.0015; minp3 = 0; % glucose "tube"
 minvf=0.6; maxvf=1.3; % volumetric flowrate
 minKm =0.0422; maxKm =0.1526; % Michaelis-Menten
 %constants(cellobiose)
 minKprimem =0.1870; maxKprimem =0.6858; % Michaelis-Menten
 %constants (glucose)
 % Normalization of reactant concentrations: cellulose
(cn1),Cellobiose (cn2), and Glucose (cn3)
 % in the tube side.
 cn1= 2*(c(1)-minp1)/(maxp1-minp1) - 1;cn2 = 2*(c(2)-minp2)/(maxp2-
minp2)-1;
 cn3 = 2*(c(3)-minp3)/(maxp3-minp3) - 1;vfn = 2*(vf-minvf)/(maxvf-
minvf)-1;

% Kmnet is ANN to predict the normalized Michaelis-Menten constants Km.
% Kprimemnet is ANN to predict the normalized Michaelis-Menten
% constants Kprimemn.
 Kmn=sim(Kmnet,[cn1;cn2;vfn]);
 Kprimemn=sim(Kprimemnet,[cn2;cn3;vfn]);

 % de-normalized Kmn and Kprimemn
 Km= 0.5*(Kmn+1)*(maxKm-minKm) + minKm;
 Kprimem= 0.5*(Kprimemn+1)*(maxKprimem-minKprimem) + minKprimem;

 % Calculation of rb using simplified rate of formation of
cellobiose
 rb=rm*c(1)./(Km+c(1));
 % Calculation of rg using simplified rate of formation of glucose
 rg=rprimem*c(2)/(Kprimem+c(2));

 % 5 ODEs to calculate the concentration profiles of cellulose
 % c(1),cellobiose c(2) and glucose c(3) on the tube side.
 % cellobiose c(4) and glucose c(5) on the shell side.
 cdot=[(pi*r1^2/v)*(-rb-c(1)*dvdz/pi/r1^2);(pi*r1^2/v)*(-rg+rb-...
 (c(2)*dvdz/pi/r1^2)-(2.0d0*lp*pt/r1)*c(2));(pi*r1^2/v)*...
 (rg-(c(3)*dvdz/pi/r1^2)-(2.0d0*lp*pt/r1)*c(3));(pi*r1^2/vbar)*...
 ((c(4)*dvdz/pi/r1^2)+(2.0*lp*pt/r1)*c(2));(pi*r1^2/vbar)...
 *((c(5)*dvdz/pi/r1^2)+(2.0*lp*pt/r1)*c(3))];

 112

	Hybrid neural networks models for a membrane reactor
	Recommended Citation

	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	2.5 Black-box ANN (BANN)
	
	
	
	
	
	
	2.7 Tubular Membrane Reactor (TMR)

	Table 3.3 Initial Conditions for Training, Interpolation and Extrapolation Cases

	Cases
	
	
	
	
	3.3 Development of ANN models for TMR
	
	Step 1: Normalization

	Step 2: ANN architecture

	Figure 3.9 BANN for TMR

	Table-3.4 ANN Development for BANN Model
	
	Table-3.5 ANN-1 Development for HANN1 model

	Table-3.6 ANN-2 Development for HANN1 model
	Figure 3.15 HANN2 Model for TMR
	
	Table-3.7 ANN-1 Development for HANN2a Model

	Table 3.8 ANN-2 Development for HANN2a Model
	Table-3.9 ANN-1 Development for HANN2b Model
	Table-3.10 ANN-2 Development for HANN2b Model
	Table-3.11 Models Summary

		2007-09-17T12:29:21-0400
	John H. Hagen
	Document unencrypted 9/17/07; originally approved 9/9/03

