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Abstract 

Hybrid Neural Networks Models for a  
Membrane Reactor 

Mohammed Al-Yemni 
 

Artificial neural networks (ANN) have become an established discipline and have gained 
extensive interest within chemical engineering. In recent years, research effort has 
focused on the use of “hybrid artificial neural networks” (HANN) models that combine 
both the deterministic and the ANN elements. Several methods have been proposed for 
combining ANN with first principle relations. In this thesis, a new hybrid scheme, which 
is similar to that developed by Kasprow for a space-independent and time-dependent fed-
batch microbial reactor, was developed for a space-dependent steady-state enzymatic 
reactor. This scheme combines ANN with mass balances and assumed rate expressions. It 
was shown that this new hybrid scheme performed significantly better than both black-
box ANN model and the hybrid ANN with only mass balance equations. An enzymatic 
tubular membrane reactor (TMR) was selected as a case study due to the availability of a 
reliable deterministic/computational model, which can provide simulated process data as 
needed, as well as its potential industrial importance. Also, two modeling schemes were 
developed, a fully 'black box' model (BANN), based on ANN technique only, and a 
simple hybrid model, combining ANN with mass balances (HANN1).  Qualitative and 
quantitative comparisons of the predicted profiles of the above three modeling schemes 
indicated that the new hybrid scheme (HANN2) performed better than the other two 
schemes. As a result of adding biochemical knowledge, in the form of mass balances and 
simplified rate expressions, the new hybrid scheme allowed the process data to be 
interpolated and extrapolated more accurately.  
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1.   Introduction 

In processes involving chemical and biochemical reactions, mathematical models used 

for reactor design, simulation and optimization are generally deterministic ones that are 

developed based on first principles. Undoubtedly, a deterministic model is of advantage 

for easy analysis and reliable extrapolation. However, the development of such a model 

that is reliable and accurate is usually difficult, due to the complexity of coupled reaction 

and transport phenomena usually involved in such processes. For this reason, one of the 

most difficult problems in the control and optimization of biotechnological processes is 

the construction of reliable models of the system. In addition, due to economic and time 

constraints, in most cases, reliable deterministic  models based on fundamental principles 

and detailed kinetic studies are not readily available. Thus, it would be of great advantage 

to find some simple and rapid ways of describing biochemical processes, which are 

accurately enough for optimization and control [12]. 

In recent years several methods have been proposed to achieve this goal. One of them is 

the use of artificial neural networks (ANN), which offers a tool for direct use of process 

data to generate input-output relationships [1]. ANN has become an established discipline 

and has gained extensive interest within chemical engineering. Most chemical 

engineering processes are non-linear and are too complex to be modeled by  conventional 

modeling and simulation techniques. ANN, on the other hand, overcomes the limitations 

of the conventional approach by extracting the desired information directly from the 

process data.   
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Another alternative for modeling chemical and biochemical process is the use of hybrid 

ANN (HANN) models, in which the aspects of the process whose quantitative behavior is 

well understood are described by deterministic mathematical equations, while the rest are 

described by ANN [1,17]. These models are expected to perform better than black-box 

ANN (BANN) models, in which only ANN, but not deterministic equations, is involved, 

since generalization and extrapolation are confined only to the uncertain parts of the 

process, and the basic model is always consistent with first principles. 

The main objective of this work is to test a new hybrid neural networks model that 

combines ANN with mass balances and assumed simplified rate-expressions. The 

prediction of this model will be compared to the predictions of a black box ANN model 

and a hybrid ANN model with only mass balances equations included as a first-principle 

part. An enzymatic tubular membrane reactor (TMR) will be used as the “base process” 

for studying these modeling approaches. 

At first, a deterministic model of this process (reactor) was used to generate process data. 

This step is described in detail in the first two sections of chapter 3 (3.1 and 3.2). Then, a 

fully 'black box' model, based on the ANN technique, was developed using just the 

process data. No information about the process was included in this model. The 

development of this model is described in section 3.4 and the performance of this 

modeling approach is evaluated in chapter 4.  After that, first-principle information in the 

form of mass balances equations (ODEs) was introduced separately into the 'black-box' 

model to generate the first hybrid model (HANN1). In HANN1 the ANN was used to 

predict rate of reactions.  The development of this model is described in section 3.5 and 
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the performance of this modeling approach is evaluated in chapter 4.  The second hybrid 

scheme was developed using a new hybrid scheme developed by Kasprow [17], called 

“hybrid neural networks/parameters model”. This hybrid scheme combines ANN with 

mass balances and assumed rate expressions. In order to test the superiority of this new 

scheme, two models were developed (HANN2a and HANN2b) using smoothed and non-

smoothed data. The development of the second hybrid scheme (HANN2) is described in 

section 3.6, and its comparison with other ANN schemes is presented in chapter 4. 
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2.   Literature Review 

2.1 ANN 

Artificial neural networks (ANN) are computational systems whose architecture and 

operation are inspired from our knowledge about biological neural cells (neurons) in the 

brain. ANN grew out of research in artificial intelligence; specifically, attempts to mimic 

the fault-tolerance and capacity to learn of biological neural systems by modeling the 

low-level structure of the brain. Although ANN have been around since the late 1950's, it 

was not until the mid-1980's that algorithms became sophisticated enough for general 

applications [3] 

 In recent years ANN have emerged as a practical technology, with successful 

applications in many fields. ANN are applicable in virtually every situation in which a 

relationship between the input and output variables exists, even when that relationship is 

very complex [13].  

ANN have found commercial applications in a variety of areas in bioprocessing and 

chemical engineering. Some examples include product design, formulation and 

manufacturing; process monitoring and diagnosis; process modeling; process control; and 

process optimization.  
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2.2 Node of ANN 

ANN consists of massively interconnected simple processing elements, known as 

"neurons" or "nodes". Therefore, the starting point for any kind of ANN analyses are a 

model node whose behavior follows closely to our understanding of how real neurons 

work. Most of materials presented in this section are taken form Baughman and Liu [3]. 

The phrase “node” will be used in lieu of others throughout.  

Figure 2.1 summarizes, as an example, the basic features of a node using five input 
variables a1, a2,….,a5 [3].    

                            Figure 2.1. Summary of a node anatomy 

jth node 

 5



As seen, the inputs to the jth  node are represented as an input vector, a, with components 

ai (i =1 to 5). The node manipulates these inputs, or activities, to give the output, bj, 

which can then form the part of the input to other nodes. Every input is multiplied by its 

corresponding weight factor W  and the node uses this weighted input to perform further 

calculations.  Weight factors can have either an inhibitory or an excitatory effect. If we 

adjust Wij  such that Wijai is positive (and preferably large), we tend to excite the node. If 

Wijai is negative, it inhibits the node.  Finally, if Wijai is very small in magnitude relative 

to other signals, the input signal ai will have little or no effect.  

ij

The next important factor governing the output from a node is the internal threshold . The 

internal threshold for the jth node, denoted Tj, controls activation of that node. Tj  is also 

known as “bias”.  The node calculates all its Wij ai’s, sums the terms together, and then 

calculates the total activation, xj, by subtracting the internal threshold value Tj: 

Total Activation = xj = - T∑
=

n

i
ijW

1
i )a( j,                                                                     (2.1)                              

where n is the number of input variables. 

If  Tj  is large and positive, the node has a high internal threshold, which inhibits node 

output. Conversely, if Tj is zero (or negative, in some cases), the node has a low internal 

threshold, which excites the node. Some, but not necessarily all, nodes have an internal 

threshold.  
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The final factor governing a node’s output is the transfer function. Once the node 

calculates the dot product of vector Wj with vector a, and subtracts the threshold Tj  (as 

described above), it passes this result to a transfer function, f (xj). Thus, output bj from 

the jth  node is:  

bj = f (xj) = f f
n

TW −∑ )a(

).(xf

(Wj* a -Tj) = ( )                                                         (2.2) j
i

ij
=1

i

A particular transfer function is chosen to satisfy some specification of the problem that 

the ANN is attempting to solve. It may be a linear or nonlinear function; however, 

mathematicians and scientists have found sigmoid (S-shaped) functions particularly 

useful. A typical sigmoid function is shown in Figure 2.2. Here y=  

 

xe
xfy

−+
==

1
1)(

Figure 2.2.  A sigmoid transfer function  
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This function is monotonically increasing, with limiting values of  0  (at xj = -∞) and 1 

(at xj = ∞). All sigmoid functions have upper and lower limiting values. Because of these 

limiting values, sigmoid functions are also called threshold functions. For the function 

shown in Figure 2.2 the threshold-function output is zero at very low input values. At 

very high input values, the output value is one.  

Another useful transfer function is the hyperbolic, with limiting values of -1 and + 1. A 

typical hyperbolic transfer function is shown in Figure 2.3.  

 

xx

xx

ee
eex −

−

+
−

== )tanh(xf )(

Figure 2.3. A hyperbolic transfer function. 

As the biological and chemical processing systems become more complex and nonlinear, 

the advantages of the hyperbolic transfer function become more apparent. The hyperbolic 

transfer  function outperforms the sigmoid transfer function in many cases. Two features 

distinguish the hyperbolic transfer function: 
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a. The slope of the hyperbolic transfer function is much greater than the slope of  the 

sigmoid function, which, means that it shows a greater response to a small deviation 

in the input variable. Therefore, it can better distinguish between small variations in 

the input variable and can generate a much more nonlinear response.  

b. The hyperbolic transfer function has a negative response for a negative input value 

and a positive response for a positive input value, while the sigmoid function always 

has a positive response. 

2.3 Topology of ANN 

The topology or architecture of ANN refers to how its nodes are interconnected. 

Although there are several ANN configurations possible, feed-forward ANN is widely 

used for chemical engineering applications.  Feed-forward ANN always consists of at 

least two hierarchical layers of nodes: a hidden layer, and an output layer. A typical two-

layered feed-forward ANN  is shown in Figure 2.4.  

 

Input Output 

Figure 2.4. A typical two-layered feed-forward ANN 
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All the nodes in a layer are connected to all the nodes of the adjacent layers, and there are 

no connections among the nodes in the same layer. The network is constructed in such a 

way that each layer is fully connected to the next layer. In other words, every node in the 

hidden layer will send its output to every node in the output layer. The number of nodes 

in the hidden layers can be varied based on the complexity of the problem and the size of 

the input information. However, the number of nodes in the output layer is set by the 

number of output variables. 

Multilayer ANN  are more powerful than single-layer ANN. It has been shown that any 

continues real-valued function can be approximated by a two-layered ANN to any 

arbitrary degree of accuracy, given a sufficient number of nodes in the hidden layer [15, 

16].  

2.4 Training ANN 

Generally, when we first build an ANN, we pre-specify the topology, that is, we specify 

the interconnections, but leave the numerical values of the weights up to the training 

phase. Learning or training is the process where the ANN approximates the function 

mapping from system inputs to outputs, given a set of observations of its inputs and the 

corresponding outputs. The phrase “training” will be used in lieu of others from now on. 

Training implies that the node somehow changes its input/output relationship in response 

to the environment via changes in the values of their weights.  
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There are many different approaches to train ANN, most fall in one of two groups: 

supervised training and unsupervised training. The primary training method and the one 

we use in this work is called backpropagation (BP), which is one of the most important 

methods for the supervised training of multi-layer feed-forward ANN, when dealing with 

function approximation problems.  

2.4.1 Backpropagation (BP)  

BP has been applied to a wide variety of practical problems and it has proven very 

successful in its ability to model nonlinear relationships. BP derives its name from the 

fact that error signals are propagated backward through the ANN on a layer-by-layer 

basis. This is done by adjusting the connecting weight of  ANN, in such a way as to 

minimize the sum of  squared errors (ED) between desired and calculated outputs.  For 

each training set of  ANN with n output variables the ED is defined below [8]:   

∑ −=
n

btE 2)(

it ib

ib

=i
iiD

1
,                                                                                          (2.5) 

where  is the desired target output,  is the output calculated via ANN. The weights 

for each connection are initially randomized. When the ANN undergoes training, the 

errors, - , i = 1,2,…,n, are propagated backward through the net, as the connection 

weights are updated during each iteration. Repeated iterations result in a converged set of 

connection weights, yielding an ANN that exhibit the relationships  between sets of input 

data and the corresponding sets of target values used in training.  

it
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2.5 Black-box ANN (BANN)  

ANN in its original form as described so far has typically been used as of the black-box 

type, that is, no prior knowledge about the process was assumed; the goal was to develop 

a process model based only on observations of its input-output behavior. With 

availability of enough experimental data about the process, engineers usually can develop 

such a “black-box ANN” (BANN) model without too much difficulties. There are a lot of 

examples in the open literatures for the application of this approach in chemical and 

biochemical process. For example, Baughman and Liu [3] applied this approach for 

several chemical processes. Also, Kasprow [17] applied BANN for continuous and batch 

biochemical processes.   Modeling with BANN quite often is the only possible method 

when no process knowledge is available [19]. However, being essentially black box 

models, they may be of poor ability for extrapolation and are difficult for interpretation 

and analysis of the behaviors of the process.  

2.6 Hybrid ANN (HANN) 

In recent years, there has been an increasing interest in developing modeling methods that 

address the  problems associated with BANN. Recently, research effort has focused on 

the use of “hybrid ANN”  (HANN) models that combine both the deterministic and the 

BANN elements [17,19]. For example Psichogios and Ungar [19] considered the case of 

a fed-batch bioreactor, using cell mass and substrate balances as the deterministic section 

of their HANN model. According to Kasprow [17], there have been three types of HANN 

methods for combining neural networks with process models. Briefly, the first method 
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uses ANN to predict the rate of change of one or more state variables; these rates are then 

used in a mass-balance expression. The second uses ANN to determine additive 

corrections to an assumed simple model. The third uses ANN  to predict constant model 

parameters. The following three sub-sections, mainly taken from Kasprow [17], discuss 

these three types in more details.  

a) HANN Involving Rate Prediction  

In this type of HANN, the aspects of the problem whose quantitative behavior is 

well understood are described by deterministic mathematical equations, while 

ANN describe the unknown kinetics.  Several research groups applied this HANN 

procedure to biochemical processes [1,3,19,23]. Also, it was applied to non-

biological system such as a continuous stirred tank reactor (CSTR) [7], batch 

biochemical reactors [7], and a fluidized bed reactor [24].  

b) HANN involving Additive Corrections  

Another HANN modeling seen in the literature uses neural networks to provide an 

additive correction to simple process models. In this approach the ANN represents 

the complexity of the true system that cannot be accounted for in the simple 

assumed model. The basic idea behind this technique is that the ANN will model 

the process nonlinearities, thus enabling the complete hybrid model to capture 

more complex dynamic. For example Thompson and Kramer [22] used this 

approach for modeling a simulated fed-batch penicillin process.  
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c) HANN Involving Parameter Prediction  

The third HANN approach uses ANN to provide values for constant parameters in 

a first-principle model. Therefore, in this approach, the partial first-principles 

model specifies process variable interactions from physical considerations; the 

ANN complements this model by estimating unmeasured process parameters in 

such a way as to satisfy the first principles constraints. Nonparametric estimation 

is needed since no knowledge is available about these parameters. Such models 

are expected to perform better than BANN  models in process identification tasks, 

since generalization and extrapolation are confined only to the uncertain parts of 

the process while the basic model is always consistent with first principles and 

does not allow a physical variable interactions [22]. This approach was used to 

model a wall-cooled fixed-bed reactor [21], converting benzene to maleic 

anhydride, using a neural network to predict the overall heat transfer coefficient 

based on the benzene flow rate, coolant temperature, and air flow rate.  Also, 

Kasprow [17] applied this approach for modeling biochemical process.  

26.1  Kasprow’s Hybrid Neural Networks/Parameters Model  

This approach was developed by Kasprow [17] as an improvement to the hybrid model 

developed by Tholudur and Ramirez [23]. Tholudur and Ramirez formed a hybrid model 

in which a simple mass balance is combined with neural networks that predict the protein 

expression rate, protein secretion rate, growth rate, and yield of cells on substrate. In their 

approach, the neural network training data is found by solving the mass balance equations 

for the rates and the yield coefficient. This approach, which was called “hybrid neural 
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networks/specific rate model” by Kasprow,  neglects any prior knowledge about the 

expected relationship between the state variables and growth rate.  

In Kasprow’s approach, the mass balance equations are used to form the underling model 

structure. Then, knowledge of a rough relationship between the state variables and the 

rates is included in the form of a simple rate model.  Rather than correcting the rate 

model predictions, the rate model parameters are modified based on the state variables. 

This is a more powerful correction, and has a basis in biochemistry since the model 

parameters have a physical meaning.  Finally, the parameters are not constrained to one 

constant value for an entire fermentation, but allowed to vary as the state variables 

change.  

This new hybrid scheme was shown to perform significantly better than both a black-box 

neural networks model and hybrid neural networks/parameters models. This 

HANN/parameters approach was developed and used to model an enzymatic tubular 

membrane reactor (TMR). 

2.7 Tubular Membrane Reactor (TMR) 

In this project a continuous-flow tubular membrane reactor (TMR) for enzymatic 

saccharification of pretreated lignocellulosic biomass to glucose and cellobiose [11] was 

selected as the “base process” for studying HANN models. This is mainly due to the 

availability of a reliable deterministic model which can provide “simulated” process data 
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as needed, as well as its potential industrial importance in the future. A schematic 

diagram of the configuration of the TMR is shown in Figure 2.5 [11].  

 
Figure 2.5 Schematic of TMR 

The reactor consists of shell and tube sides and tubular membranes made of organic or 

inorganic membrane. Only one membrane tube with radius, R1, is shown inside a 

cylindrical housing of radius, R2.  In reality, this membrane reactor may consist of several 

to a large number of polysulfone (organic) or ceramic (inorganic) membrane tubes. Thus 

the TMR may be either a “polysulfon TMR” (PTMR) or a “ceramic TMR” (CTMR). In 

this work, effort is focused only on PTMR, although the methodologies are equally 

applicable to CTMR. The TMR has the advantages of: (1) simultaneous reaction and 

separation in one reactor hence reducing capital cost; (2) enhanced reaction rate 

throughout the reactor, as a result of removal of inhibitory products; and (3) easy scale up 

[11]. 
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The associated FORTRAN program of the TMR model, developed here at the 

Bioreaction Engineering Laboratory at WVU [11], can be used with confidence to 

generate “simulated” process data for most occasions for training ANN. The use of 

computer-generated data (from deterministic models) superimposed with purposely 

added random  “noise” for use as “simulated experimental data” for ANN research is a 

widely used approach among ANN researchers [17]. 

2.7.1 Enzymatic  Saccharification  of Cellulose 

The conversion of biomass to liquid fuels, such as ethanol, has been of much interest during the 

20th century. Ethanol can be produced either by hydrolysis of cellulose to glucose and then 

fermentation of glucose to produce ethanol, or alternatively via simultaneous saccharification and 

fermentation (SSF). Although, large-scale production of ethanol from lignocellulosic material in 

its infancy, commercial production of ethanol from starch has been in existence for many years. 

The focus of research and development efforts in biomass conversion has currently switched to 

that of a bio-refinery concept, i.e., to the production of industrially important chemicals, in 

addition to alcohol.  

Hydrolysis is a chemical decomposition process that uses water to split chemical bonds of 

substances. There are two types of hydrolysis, acidic and enzymatic with the later being the most 

promising approach [11].  Feedstocks that may be appropriate for enzymatic hydrolysis typically 

are plant-based materials containing cellulose. These include forest wastes and sawmill residues, 

agricultural residues, urban wastes, and waste papers [18]. 
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All plants have structural components composed of lignocelluloses fibers, which in turn are 

comprised of three major fractions: cellulose, hemicelluloses, and lignin. Cellulose consists of a 

vary long  chain of glucose and can be broken down chemically or biologically into glucose and 

cellulose. The sugars can then be fermented using yeast or bacteria to produce a large number of 

chemicals.  

The use of enzymes for cellulose saccharification has several advantages over acid such as  the 

production of fewer by-products and higher yield of desirable products, hence, less purification is 

required [11]. The feasibility of enzymatic processes are limited by the cost of enzyme cellulose, 

so enzyme use must be optimized. One possible approach is the use of membrane bioreactors. 

Membrane allows continuous removal of inhibitory products (glucose and cellobiose), thus 

increases conversion to sugars, and also makes more efficient use of the enzymes [18]. The 

enzymatic saccharification of cellulose is a complex process requiring the participation of 

cellulase, an enzyme complex. A kinetic model for enzymatic saccharification of cellulose is 

essential  not only for a better understanding of its mechanism, but also for scaling-up of the 

enzymatic  reactors involved.  

2.7.2 Kinetics of Saccharification of Cellulose  

The kinetics of enzymatic hydrolysis of cellulose has been extensively studied and 

several kinetic models have been proposed [11]. Cellobiose and glucose are the major 

products, formed during the enzymatic hydrolysis of cellulose. Most of the models 

assume that the production of sugars by enzymatic saccharification is a two-step process 

(two reactions in series) involving the conversion of intermediate cellobiose to glucose: 
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                       Cellulose(S)            Cellobiose (B)              Glucose (G)                       (2.8) 

In this work, a two-step competitive product inhibition model is adopted. The competitive 

product inhibition rate expressions are [11]. 
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The kinetic parameters of this model are listed in Table 3.2 and the symbols used are 

listed in Nomenclature. 
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3. Modeling of TMR via ANN 

3.1 Deterministic Model of the TMR and Its Numerical Solutions 

A deterministic model for enzymatic saccharification of pretreated lignocellulosic 

biomass to glucose and cellobiose using TMR was developed in our Bioreaction 

Engineering Laboratory [11]. The essential assumptions of the TMR model are as 

follows:  (1) steady state operation of the reactor; (2) plug flows with negligible axial and 

radial dispersions in both lumen and shell sides; (3) isothermal operation; (4) negligible 

concentration polarization; (5) enzymes are completely retained by the membranes; and 

(6) cellulase deactivation during the period of reactor operation is negligible. In addition, 

the two-step reaction scheme (Eq. 2.8) has been adopted for hydrolysis of cellulose to 

cellobiose and glucose. The initial-value type ordinary differential equations (ODEs) 

used to model this reactor, together with their initial conditions [11], are listed in Table 

3.1.  A computer programs in FORTRAN was developed by Gauba [11] to solve this set 

of ODEs using the stiff ODE solver, LSODE. This computer model is capable of 

providing steady-state concentration profiles of cellulose, glucose, and cellobiose in both 

lumen and shell sides under different operation conditions.  

Since the modeling development of ANN in this work is done using MATLAB, the 

FORTRAN code of the TMR model was transformed to MATLAB code using MATLAB 

(version 6). The MATLAB version of the TMR model, tmr.m, is listed in Appendix B1.  
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Table 3.1 Deterministic model of TMR 
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Table 3.2 Parameters used in the TMR Model 

1R   :  0.3  cm L    :  200  cm 

PP  :  1033.82 g cm-2 FP  :  1100  g  cm-2 

RP   :  1070   g  cm-2 PL    :  2.5 x 10-7  cc g-1 min-1 

oE   :    0.152  g  l-1 mr       :    1.39x10-3   g cc-1 min-1 

'
mr     :    1.22x10-3  g cc-1 min-1 mK

 : 42.18x10-3  g  cc-1 

'
mK     :   198.34x10-3  g  cc-1 iK

 : 1.89x10-3  g  cc-1 

'
iK      :  0.66x10-3  g  cc-1 

 

Although the LSODE solver was used to solve the system of ODEs in the FORTRAN 

cod, the stiffness of this system was not investigated before. However, to be consistent 

with the FORTRAN code, a MATLAB stiff ODE solver, ode23s, was used to solve 

ODEs in the MATLAB version of the TMR model. In order to verify the correctness of  

the numerical results obtained, both programs (FORTRAN and MATLAB) were tested 

using the same initial conditions (Cso=0.0025 g/l and vF = 0.6 ml/min). The outputs from 

the two programs are listed in Appendices A1 and A2, and it can be seen that they match 

each other up to six digits.   

3.2 Generation of “Process Data” for ANN Development 

As mention before, the use of computer-generated data superimposed with “noise” for 

use as “simulated experimental data” for ANN research is widely used among researchers 
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[17]. This approach allows quick and easy generation of training data at different 

conditions. Also, the amount of noise in the training data can be controlled, and ANN 

predictions can be compared to a true underlying model. 

Numerical simulations were conducted using the MATLAB version of the deterministic 

TMR model to generate data, which after treatments will be used to train the ANN 

models.  The deterministic model was solved for a variety of feed conditions; this 

resulted in a data set of 26 cases, i.e., 26 cases of data, each corresponding to a different 

operation condition.  The initial conditions of these cases are shown in Table 3.3.   Figure 

3.1 illustrate the location of the non-zero initial conditions of each case using a two-

dimensional plot of Cso vs. vF. 

In order that the computes-generated simulation data would more closely represent actual 

process data, random noise was added to each of the datum. Noise values were 

determined at each point by sampling from a normal distribution having zero mean and a 

standard deviation equal to 3.0% of the values of the datum. A MATLAB function, 

noise.m, in Appendix B2 was developed to add random noise to the simulation data.  

These noisy values were then considered to be the "process data”.  Comparison between 

noise-free data and data  with 3%  noise for case-1 (Cso=0.0025 g/l and vF = 0.6 ml/min) 

is shown in Figure 3.2.  
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Table 3.3 Initial Conditions for Training, Interpolation and Extrapolation Cases 

Case
s 

 

Fv  
ml min-1 

 

SoC  
g l-1 

 

BoC  
g l-1 

 

GoC  
g l-1 

 
−

BoC  
g l-1 

 
−

GoC  
g l-1 

Training cases 
1 0.6 0.0025 0 0 0 0 
2 0.62 0.0016 0 0 0 0 
3 0.66 0.0013 0 0 0 0 
4 0.67 0.0018 0 0 0 0 
5 0.70 0.0009 0 0 0 0 
6 0.71 0.0014 0 0 0 0 
7 0.75 0.0017 0 0 0 0 
8 0.79 0.0005 0 0 0 0 
9 0.82 0.0019 0 0 0 0 
10 0.83 0.0024 0 0 0 0 
11 0.86 0.0007 0 0 0 0 
12 0.89 0.0009 0 0 0 0 
13 0.91 0.0026 0 0 0 0 
14 0.93 0.0011 0 0 0 0 
15 0.95 0.0010 0 0 0 0 
16 0.97 0.0006 0 0 0 0 
17 0.99 0.0021 0 0 0 0 
18 1.01 0.0004 0 0 0 0 
19 1.03 0.0021 0 0 0 0 
20 1.05 0.0018 0 0 0 0 

Interpolation Cases 
21 0.6 0.0010 0 0 0 0 
22 0.73 0.0015 0 0 0 0 
23 1 0.0005 0 0 0 0 

                                       Extrapolation Cases 
24  0.65 0.0045 0 0 0 0 
25 1.2 0.0003 0 0 0 0 
26 1.3 0.0035 0 0 0 0 
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           Figure 3.1 Cases with different feed conditions  to TMR 
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Figure 3.2 Comparison of noise-free and noisy “process data”(case1) 
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In this work, developing hybrid ANN model (HANN) requires determining the rate of 

reactions (rB and rG) based on the process data. First derivative of the state variable with 

respect to zi gives its rate of change. The simplest way to estimate the derivative is to 

divide the change in the state variable by the change in position  between two 

subsequent points, /∆ . However, this type of numerical differentiation will 

increase the effects of noise, resulting in derivative estimates of lower reliability than the 

data they are based on. The solution for this problem is to smooth the process data, and to 

use the smoothed process data to train ANN  and estimate derivatives. Therefore,  

smoothing spline was used to treat the process data sets. The smoothing spline was 

implemented using a built-in MATLAB function spaps.m [4]. Using case1 (C

∆ z

∆ iC z

so=0.0025 

g/l and vF = 0.6 ml/min) as an example, Figures 3.3-3.7 illustrate the generation of 

smoothed process data and first derivative by applying the MATLAB function spaps.m.   

The MATLAB scripts files bann_data.m, hann1_data.m, hann2a_data.m, and 

hann2b_data.m presented in Appendix B3, B4, B6, and B7 show the creation of 

training, interpolation and extrapolation data sets for ANN development. Twenty six sets 

of “smoothed process data” were generated, the first 20 cases have been selected for 

training, the next three cases (21-23) for interpolations, and the last three cases  (24-26) 

for extrapolations. They are shown in Table 3.3 on by initial conditions.  These 26 sets of 

smoothed process data are the “foundation” of ANN models for TMR to be described 

next. 
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3.3 Development of ANN models for TMR  

BANN and HANN models require the development of ANN to represent the 

relationships between input and output variables. These ANN were developed and trained 

using MATLAB Neural Network Toolbox, ver. 4.0 [8]. Based on the process data 

generated in Section 3.2  the following steps were followed to develop the ANN part of 

both modeling approaches.  

Step 1:  Normalization  

In order to train the ANN properly, it is necessary to normalize the input and target 

output data, so that they are all approximately of the same order of magnitude. This is 

done to make sure that the errors in each of the output nodes are roughly comparable. 

Otherwise the errors from variables having large magnitude will be weighted too strongly 

in the training via backpropagation (BP). All the process data  were normalized to be in 

the range of [-1,1]. This was done by using a built-in  MATLAB function, premnmx.m. 

This function uses the following equation to perform the normalization: 

1
))min((2

−
−

=
pppn

p n

)min(

))min()(max( − pp                                                                          (3.1) 

where  is a vector of the original process data, p is a vector of the normalized process 

data, and p and are respectively the minimum and maximum elements in the 

vector . If premnmx.m is used to normalize the training data, then the ANN will be p

)max(p
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trained to produce output in the range [-1,1]. Therefore, a second MATLAB function, 

postmnmx.m, was used to convert these outputs back into the same units that were used 

for the original data.  This function uses the following equation to perform the de-

normalization: 

)min())min())(max(1(5.0 ppppp +−+= n                                                   (3.2) 

Step 2: ANN architecture 

As mention before, it has been shown that a two-layer ANN is capable of representing 

any continues real-valued function to any arbitrary degree of accuracy, given a sufficient 

number of nodes in the hidden layer [15,16]. Therefore, in all modeling approaches in 

this work, a two-layer (hidden layer and output layer) ANN was used, with the output 

layer node having a "linear" transfer function, i.e., no transformation performed. For the 

hidden layer, a hyperbolic transfer function was used, because it is the most efficient one, 

as described in Section 2.2. The number of nodes in the output layer correspond to the 

number of output variables for each models. However, the number of nodes in the hidden 

layer was optimized for each model during the training of ANN in   each model in order 

to lessen the chances of over fitting the training data, and to provide the most robust 

extrapolation possible.  

Step 3: Training 
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Backpropagation (BP) was used to train all ANN developed in this work. There are many 

variations of  BP  in MATLAB Neural Network Toolbox [8]. It is not straightforward to 

know a priori which training algorithm will be the most efficient for a given problem. It 

depends on many factors, including the complexity of the problem, the number of data 

points in the training set, and whether the ANN is being used for pattern recognition  or 

function approximation. However, it has been found that on function approximation 

problems, for ANN that contains up to a few hundred weights, the Levenberg-Marquardt 

algorithm will have the fastest convergence. The Levenberg-Marquardt algorithm uses 

matrix G as an approximation to the Hessian matrix H in the following iteration scheme 

[8]: 

             wk+1 = wk - G-1 (wk) JT(wk)e(wk)                                                             (3.3a)                                

where      G = H + µ I                                                                                               (3.3b) 

 wk  is a vector of current weight and biases, J is the jacobian matrix that contains first 

derivatives of the ANN errors with respect to the weights and biases, e is a vector of 

ANN errors, I  is identity matrix, and µ is the tunable parameter of the Levenberg-

Marquardt algorithm. When the scalar µ  is zero, this is just Newton's method, using the 

approximate to Hessian matrix G. When µ is large, this becomes gradient descent 

method with a small step size. Newton's method is faster and more accurate near an error 

minimum, so the aim is to shift towards Newton's method as quickly as possible. Thus, µ 

is decreased after each successful step (reduction in performance function) and is 
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increased only when a tentative step would increase the performance function. In this 

way, the performance function will always be reduced at each iteration of the algorithm 

[8].  

One of the problems that occur during ANN training is over-fitting, i.e., poor 

generalization. The error on the training set is driven into very small value, but when new 

data is presented to the ANN the error is large. One method for improving ANN 

generalization is to use ANN that is just large enough to provide an adequate fit. 

Unfortunately, it is difficult to know beforehand how large an ANN should be for a 

specific application. There are a few techniques for avoiding over-fitting implemented in 

the MATLAB Neural Networks Toolbox. One of them is to use MATLAB function, 

trainbr.m ,  which employs Bayesian  regularization techniques [8].  

Typically, training aims to reduce the sum of squared errors. However, regularization 

adds an additional term to avoid over-fitting; the objective function becomes  [9,10]: 

                WD EEF αβ += ,                                                                     (3.4) 

where:         ;                                    ∑
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EW is the sum of squares of the network weights, α and β are the regulation parameters, N 

is the total number of parameters (weights and biases) in the ANN,  γ  is a measure of 
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how many parameters in the ANN are effectively used in reducing the error function,  

tr(H-1) is the trace of the inverse of Hessian matrix H.   

The problem with regularization techniques is that it is difficult to determine the optimum 

value for α and β. One approach to optimize these regulation parameters automatically is 

the Bayesian framework of David MacKay [10]. In this framework, the weights and 

biases of the network are assumed to be random variables with specified distributions. 

The regularization parameters are related to the unknown variances associated with these 

distributions. A detailed discussion of the use of Bayesian regularization, in combination 

with Levenberg-Marquardt training, can be found in Foresee and Hagn [10].  

Bayesian regularization has been implemented in the function trainbr.m.  One feature of 

this function is that it provides a measure of how many network parameters (weights and 

biases) are being effectively used by the ANN. trainbr.m function was used to train and 

determine the optimum number of hidden nodes in all the ANN developed in this work.  

3.4 Modeling TMR Using BANN  

In this  approach  only the  ANN was  used  to model  the TMR  system. No information 

about the process is included in this type of model; the ANN network must extract the 

relationships between input and output variables from the process data. Therefore, the 

BANN model is purely “empirical”. 
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The total length of TMR being numerically simulated is set at 200 cm. A schematic 

diagram of this model is shown in Figure 3.8.  

 

 

 

     

∆z 

     

                                                                                          0=z iz 1+iz Lz =         

xi xi+1
 Effluent  Feed 

Figure 3.8 A schematic representation of the TMR being numerically simulated.  

The deterministic model was set to provide steady-state concentration profiles of 

cellulose, glucose, and cellobiose in both lumen and shell sides at each 10 cm length.  As 

shown in Figure 3.8, for each segment there is an input vector xi  (at ) and an 

output vector x

izz =

zzzz iii+1 (at ) of the variables involved and the output vector 

is served  as an input vector to  the next segment  until the end of the reactor. In BANN 

model the ANN is used to simulate each 10 cm segment of TMR model. Therefore, each 

training cases consists of a total of 20 pairs vectors of input and output variables. The  

ANN of this model has six input variables, the first five  are the concentrations of 

cellulose, cellobiose, and glucose in tube and shell sides of the TMR.   The sixth is the 

inlet feed flow rate, in order to allow the ANN to discriminate between different training 

cases. The output variables are five and they are the concentrations of cellulose, 

cellobiose, and glucose in tube and shell sides at the output of each segment. A schematic 

representation of the BANN model is shown in Figure 3.9.  All the 20 training cases were 

normalized between [-1,1] and prepared as input and output vectors. A total of 400 pairs 

∆+== +1
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of input/output vectors were used to train the ANN. A MATLAB script file 

(bann_data.m) in Appendix B3 was used to generate the training cases for BANN model 

using the feed conditions of the training cases in Table 3.3.   
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Figure 3.9  BANN for TMR 
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A single-hidden-layer ANN was used for this model. This ANN has five nodes in the 

output layer   and uses linear transfer functions there. A hyperbolic transfer function was 

used in the hidden layer. The number of the nodes in the hidden layer was optimized by 

using trainbr.m. All 20 training cases were used to train different configurations, i.e, 

different ANN with different nodes in the hidden layer. The interpolation cases (21-23) 

were used for testing. As shown in Table 3.4, the number  of nods in the hidden layer was 

varied between 1 to 20  nodes. Table-3.4 summarized the training results of all ANN 

obtained by using trainbr.m.  In additional to ED and EW the following parameters are 

illustrated: S, N, γ  and ET, where S is the number of nodes in the hidden layer,  ET  is the 

sum of squared errors  on the test set containing the interpolation cases. Figure 3.10 

shows the trend of ED, ET, N, and γ vs. S.  It can be seen that for all ANN with  S ≥10  the 

effective number of parameters remain constant, even though the actual number of 
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parameters increase as the size of ANN becomes larger. This indicates that the ANN with 

10 nodes in the hidden layer is the smallest ANN with sufficient complexity to fit the data 

but not to over-fit them. The performance of this ANN was evaluated by using recall, 

interpolation and extrapolation cases and the results of this evaluation are discussed in 

Chapter 4.  

 

Table-3.4 ANN Development for BANN Model 
 

S ED EW ET N γ 
1 31.939 7.6204 4.2098 17 16.2 
2 3.9469 13.401 0.5226 29 27.5 
3 0.2236 30.580 0.0326 41 38.7 
4 0.1673 21.004 0.0194 53 50.5 
5 0.1282 51.563 0.0186 65 61.9 
6 0.1167 29.909 0.0171 77 71.4 
7 0.1167 24.579 0.0184 89 79.2 
8 0.1166 19.607 0.0167 101 86.4 
9 0.1093 20.368 0.0164 113 94.4 

10* 0.1065 25.941 0.0154 125 105 
11 0.1064 22.281 0.0155 137 105 
12 0.1067 19.920 0.0152 149 105 
15 0.1067 19.784 0.0154 185 105 
20 0.1067 18.997 0.0158 245 105 

*Optimum number of nodes in the hidden layer.  
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3.5 Modeling TMR Using HANN1 

The second modeling approach developed is a hybrid ANN model (HANN1). The 

deterministic model of the TMR consists of material balance equations (ODEs) and the 

reaction rates expression involved  (Table 3.1).  In this approach the expression of the 

rates of production of cellobiose and glucose,  and  respectively, are assumed to be 

unknown and the ANN is used to predict them. In this manner, the ANN becomes 

nonparametric estimator of the reaction rates. Therefore, the central idea of this modeling 

approach is the combination of first principles model, in the form of mass balance 

equations (ODEs) with ANN, which approximates the unknown kinetics, in order to form 

a combined model structure which can be characterized as a hybrid ANN model 

(HANN1). A schematic representation of the HANN1 model is shown in Figure 3.11.  

Br Gr

 

Figure 3.11 HANN1 for TMR 

As shown in this figure, two ANN are used  to predict  and . The first one (ANN-1) 

is given as input the concentrations of cellulose and cellobiose  in tube sides, as well as 

Br Gr
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the feed flowrate,  to  predict the rate  of formation of cellobiose ( ). The second 

one (ANN-2) is given as input the concentrations of cellobiose and  glucose in tube sides 

and the feed flowrate, to  predict the rate of production  of glucose ( ).   

Fv Br

F
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Gr

v Gr

2
+

R
LP∆

PP− (+

The training of ANN for BANN model was straightforward, because the BANN model 

consists only of ANN in its original form and the input/output data are directly available. 

However, for the HANN1 model the target output for  ANN-1 and ANN-2  are not 

directly available. Therefore, the ODEs equations in Table 3.1 are rearranged for  

and , as shown in equations 3.5 and 3.6.  

1
2

1

CP
R
v

dz
dCr STS

B −=
π ;                                                                               (3.5) 

2
1R

v
dz

dCr G
G π
= ;                                                                                                        (3.6) 

where  z
L

PPPP FR
FT )−

=∆                                                                            

Then, these equations were used to calculate  and   using the smoothed process data 

and the values of  the first derivative of cellulose and glucose at each segment for all of 

the training cases. A MATLAB script file (hann1_data.m) in Appendix B4 was used to 

generate the training data for the ANN-1 and ANN-2 using the feed conditions of the 

training cases in Table 3.3.   

Br Gr
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Two single-hidden-layer ANN were developed for HANN1 model. Both of them (ANN-1 

and ANN-2) consist of one node in the output layer with the use of linear transfer 

function.  Hyperbolic transfer function was used in the hidden layer for both ANN. The 

number of the nodes in the hidden layer was optimized during the training of  both ANN 

using trainbr.m function. Table-3.5 and Table-3.6 summarized the training results of 

ANN-1 and ANN-2 obtained by using all training cases (1-20) and the interpolation cases 

for testing.  Figures 3.12 and 3.13 illustrate the performance of different ANN strictures 

developed for ANN-1 ANN-2. As shown in these tables and figures the optimum number 

of nodes in the hidden layer is 6 for ANN-1, and 5 for ANN-2, because after this point, 

the effective number of parameters remain constant.  

The trained ANN (ANN-1 and ANN-2) with optimum configurations were combined 

with the mass balance equations (ODEs) as shown in Figure 3.14.  A MATLAB program, 

hann1.m, in Appendix B5 was developed to combine these two ANN with mass balance 

equations. As shown in Figure 3.14, ANN-1 and ANN-2 receive as inputs the normalized 

concentrations of cellulose, cellobios, and glucose in tube side and the feed flowrate and  

predicate as outputs the normalized  rates of formation of  cellobiose and glucose (  

and ). The de-normalized ANN outputs serve as an input to the mass balance equations 

(ODEs), which produces as output  the  concentrations of cellulose, cellobiose, and 

glucose in tube and shell sides. This step was repeated iteratively until all the 20 pairs of 

input/output vectors for each training case is included. The combination of ANN and 

mass balance equations  yields a complete HANN1 model for TMR.  The performance of 
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the HANN1 model was evaluated by using recall, interpolation and extrapolation cases 

and the results of this evaluation are discussed in chapter 4.  

Table-3.5 ANN-1 Development for HANN1 model 
 

S ED EW ET N γ 
1 0.4580140 3.6998 0.05113 6 5.74 
2 0.0975496 8.5823 0.01627 11 10.2 
3 0.0535833 17.1539 0.00825 16 15.1 
4 0.0388297 19.3016 0.00479 21 19.1 
5 0.0381351 18.8586 0.00437 26 23.3 
*6 0.0338672 22.147 0.00356 31 27.1 
8 0.0338355 21.5688 0.00380 41 27.8 
10 0.0341173 21.2022 0.00400 51 27.6 
15 0.0338322 22.6352 0.00338 76 27.8 
20 0.0335925 21.1633 0.00393 101 28.5 

*Optimum number of nodes in the hidden layer.   
 
 

 

Table-3.6  ANN-2 Development for HANN1 model 
 

S ED EW ET N γ 
1 1.18114 23.600 0.44980 6 5.36 
2 0.569646 35.463 0.06747 11 9.11 
3 0.408939 39.313 0.05704 16 14.2 
4 0.367445 39.588 0.05424 21 18.5 
*5 0.353455 39.053 0.04781 26 22.7 
6 0.354659 38.271 0.05030 31 22.6 
7 0.354662 38.187 0.05030 36 22.6 
10 0.354803 38.138 0.05050 51 22.8 
15 0.354529 37.990 0.05019 76 22.8 
20 0.354287 38.025 0.05080 101 22.8 

*Optimum number of nodes in the hidden layer.   
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   Figure 3.12 ANN-1 development for HANN
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   Figure 3.13 ANN-2 development for HANN 
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Figure 3.14 Combination of ANN with ODEs for HANN1 model
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3.6 Modeling TMR using HANN2  

The second hybrid approach (HANN2) in this project is an application of the new hybrid 

modeling technique developed by Kasprow [17].   In addition to the mass balances 

equations used in the previous hybrid approach (HANN1), this model also assumes two 

simple expressions for the reaction rates. However, rather than using constant values for 

all of kinetics parameters, some parameters will have to vary with the state variables in 

order for the hybrid model to emulate the true situation where rate expressions are not 

explicitly known.  This acts to relax the constraints on the specific rates, in that they are 

not restricted to a certain assumed functional form and also are allowed to vary with 

variables not explicitly included in the assumed function.  

In this work the kinetics of enzymatic hydrolysis of cellulose in the deterministic model 

has been described using a two-step competitive product inhibition rate expressions  

(equations 2.9 and 2.10). Instead of using theses two rate expressions, two simple rate 

expressions are assumed as follows: 

   
Sm

Sm
B CK

Crr
+

=                                                                                                        (3.8) 

  
Bm

Bm
G CK

Cr
r

+
= '

'

                                                                                                        (3.9) 

In theses two simple rate expressions  and  will be determined by ANN based on 

process data. Therefore, the ANN will be used to represent the variation in the rate model 

mK '
mK
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parameters with {C , , , and }.  A schematic diagram of this hybrid approach 

is shown in Figure 3.15. 
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Figure 3.15 HANN2 Model for TMR 

 
 

As shown in this figure, the two ANN (ANN-1 and ANN-2) will receive the state 

variables at  as inputs. Then, they will predict the values of  and  at . 

These values, along with the pre-chosen constant kinetic parameters,  and , will 

be used to predict reaction rates, and , at  using the simplified rate expressions, 

once  and  are determined by ANN.  The calculated reaction rates along with 

state variables at  will then be used in the mass balance equations (ODEs) to predict 

the state variables at .  

iz mK '
mK iz

m

Br Gr iz

mK K

z

r '
mr

 50



Once the ANN variable parameters are chosen (  and ) the next step is to develop 

training data sets illustrating how these parameters vary with the state variables. In order 

to do that, the ODEs equations in Table 3.3 are rearranged for  and , as shown in 

the following equations: 

mK '
mK

mK '
mK

S
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Sm
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R
v

dz
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−

∆
=

2
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                                                                     (3.10) 
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PFT )( −
+−=∆      

Two ANN were developed for this model to represent the variation in   and  

with state variables.  The first ANN (ANN-1)  have three inputs variables; the first two 

are concentrations of cellulose and cellobiose in the tube side of the TMR. The second 

ANN (ANN-2) also have three inputs variables; the first two are the concentrations of 

cellobiose and glucose in the tube side of the TMR. In order to allow the two ANN to 

discriminate between the training cases, the inlet feed flow rate is included as input 

variable. The output variables of ANN-1 and ANN-2 are  and  respectively. The 

trained ANN (ANN-1 and ANN-2) with optimum configurations are then combined with 

the mass balance equations (ODEs) and simplified rate expressions (Equations 3.8 and 

mK '
mK

mK '
mK

 51



3.9). As shown in Figure 3.20, ANN-1 and ANN-2 receive as inputs the normalized 

concentrations of cellulose, cellobiose, and glucose in tube side and the feed flowrate. 

Then, predicate as outputs the normalized  and .  The de-normalized values of 

 and  serve as an input to the simplified rate expressions.  The calculated rates of 

formation of  cellobiose and glucose (  and ) serve as an input  to the mass balance 

equations (ODEs), which produces as output  the  concentrations of cellulose, cellobiose, 

and glucose in tube and shell sides. This step is repeated iteratively until all the 20 pairs 

of input/output vectors for each training case is included. 

mK '
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mK '
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3.6.1 HANN2a 

Two hybrid models were developed using this approach. The two ANN (ANN-1 and 

ANN-2) for the first HANN2 (HANN2a) model were trained using non-smoothed 

training data (no smoothing spline applied) as inputs. Also, the non-smoothed state 

variables and smoothed first derivative values were used in equations 3.10 and 3.11 to 

determine  and  at each position . Therefore, the training data for this model 

can be considered as partially non-smoothed data. A MATLAB script file 

(hann2a_data.m) in Appendix B6 was used to generate the training data for the ANN 

part of this model.  

The structure of both ANN (ANN-1 and ANN-2) consists of one node in the output layer 

with the use of linear transfer function. A hyperbolic transfer function was used in the 
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hidden layer for both ANN. The number of nodes in the hidden layer was optimized 

during the training of  both ANN using trainbr.m function. Table-3.7 and Table-3.8 

summarized the training results of ANN-1 and ANN-2 obtained by using all training 

cases (1-20) and the interpolation cases (21-23) for testing.   

Figures 3.16 and 3.17 illustrate the performance of different ANN structure developed for 

HANN2a. As shown in these tables and figures, the optimum number of nodes in the 

hidden layer is 4 for ANN-1 and ANN-2, since the effective numbers of parameters 

remain constant after this point. The trained ANN (ANN-1 and ANN-2) with optimum 

configurations were combined with the mass balance equations (ODEs) and simplified 

rate expressions (Equations 3.8 and 3.9) as shown in Figure 3.20.  A MATLAB program, 

hann2.m, in Appendix B8 was developed to perform the combination. The performance 

of the HANN2a model was evaluated by using recall, interpolation, and extrapolation 

cases and the results of this evaluation are discussed in chapter 4. 

3.6.2 HANN2b 

The second HANN2 model (HANN2b) is similar to the previous one (HANN2a), 

however, smoothed (by smoothing-spline) data were used to train ANN-1 and ANN-2 for 

this model in order to compare its prediction to the predictions of  BANN and HANN1 

models using the same training data. The smoothed process data were used as inputs and 

the targets (  and ) were calculated from equations 3.10 and 3.11 using smoothed mK '
mK
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first derivative and smoothed process data. A MATLAB script file (hann2b_data.m) in 

Appendix B7 was used to generate the training data for ANN part of this model.  

The structure of the two ANN used in this model is similar to the ANN developed for 

HANN2a.   The number of the nodes in the hidden layer was optimized during the 

training of both ANN using trainbr.m function. Table-3.9 and Table-3.10 summarized 

the training results of ANN-1 and ANN-2 obtained by using all training cases (1-20) and 

the interpolation cases for testing.  Figures 3.18 and 3.19 illustrate the performance of 

different ANN structure  developed for ANN-1 ANN-2. As shown in these tables and 

figures, the optimum number of nodes in the hidden layer is 5 for ANN-1, and 3 for 

ANN-2, because after this point the effective number of parameters remains constant. A 

MATLAB program, hann2.m, in Appendix B8 was used to combine the train ANN with 

the mass balance equations (ODEs) and simplified rate expressions. The performance of 

this model was evaluated by using recall, interpolation, and extrapolation cases and the 

results of this evaluation are presented in chapter 4. The differences of the four models 

(BANN, HANN1, HANN2a, and HANN2b) are summarized in Table-3.11 
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Table-3.7  ANN-1 Development for HANN2a Model 
 

S ED EW ET N γ 
1 0.07631 8.18 0.00835 6 5.57 
2 0.06581 4.11 0.00720 11 9.09 
3 0.06446 3.30 0.00699 16 11.90 
*4 0.06404 3.10 0.00707 21 13.22 
5 0.06406 3.01 0.00700 26 13.16 
6 0.06409 5.26 0.00707 31 13.21 
10 0.06340 3.56 0.00701 51 13.36 
15 0.06396 3.30 0.00706 76 13.41 

*Optimum number of nodes in the hidden layer.   
 
 

Table 3.8  ANN-2 Development for HANN2a Model 
 

S ED EW ET N γ 
1 0.02754 5.501 0.00949 6 5.50 
2 0.02640 4.93 0.00849 11 9.36 
3 0.02480 6.71 0.00801 16 13.38 
*4 0.02378 6.82 0.00800 21 15.78 
5 0.02373 6.97 0.00806 26 15.69 
6 0.02370 6.59 0.00804 31 15.69 
10 0.02377 5.62 0.00806 51 15.53 
15 0.02375 6.16 0.00802 76 15.93 

*Optimum number of nodes in the hidden layer.  

 

Table-3.9   ANN-1 Development for HANN2b Model 
  

S ED EW ET N γ 
1 0.036633 25.51 0.00586 6 5.20 
2 0.036279 7.94 0.00569 11 10.08 
3 0.033573 10.82 0.00511 16 13.00 
4 0.030091 16.86 0.00486 21 18.52 
*5 0.027956 31.90 0.00393 26 21.82 
6 0.027818 15.55 0.00393 31 21.81 
7 0.027983 14.16 0.00392 36 21.31 
10 0.027985 14.33 0.00398 51 21.61 
15 0.027730 15.19 0.00399 76 21.61 

*Optimum number of nodes in the hidden layer.   
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Table-3.10  ANN-2 Development for HANN2b Model 
 

S ED EW ET N γ 
1 0.008278 54.5130 0.00558 6 5.50 
2 0.007944 5.47865 0.00509 11 9.15 
*3 0.005757 7.80884 0.00286 16 13.13 
4 0.005744 7.95868 0.00287 21 13.22 
5 0.005755 7.81909 0.00281 26 13.49 
10 0.005749 6.03844 0.00284 51 13.51 
15 0.005818 5.09061 0.00287 76 13.73 

*Optimum number of nodes in the hidden layer.   
 
 
 
 

Table-3.11 Models Summary 
 

Training Data First-Principle relations used  
Data 

Smoothed 
First-Derivatives 

Smoothed 
Mass Balance 

Equations 
Simplified Rate 

Expressions 
BANN Yes Not Applicable Not Applicable Not Applicable 
HANN1 Yes Yes Yes Not Applicable 
HANN2a No Yes Yes Yes 
HANN2b Yes Yes Yes Yes 
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   Figure 3.16 ANN-1 development for HANN2a 
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Figure 3.17 ANN-2 development for HANN2a 
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Figure 3.18 ANN-1 development for HANN2b 
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Figure 3.19 ANN-2 development for HANN2b
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Figure 3.20 Combination of ANN with ODEs for HANN2 model.
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4 Performance Comparisons of BANN, HANN1, and 
HANN2 

One of the most important aspects in developing ANN is to determine how well the ANN 

performs once training is complete. Checking the performance of a trained ANN involves 

two steps: (1) How well the ANN “recall” the predicted responses (output vector) from 

the same data sets used to train the ANN; and (2) How well the ANN predicts responses  

from data sets that were not used in training.  This usually involves “interpolation”, if the 

data sets used in this step is within the range of the training data sets, or “extrapolation”, 

if otherwise. Case 1 from Table 3.3 was selected to test the ability of the ANN to recall 

the training data since it was the first case used to train the ANN for both modeling 

approaches. The last six cases in Table 3.3 were used for generalization step, three cases 

(21-23) for interpolations, and three cases (24-26) for extrapolations. The interpolation 

cases were selected, as shown in Figure 3.3, from different operation conditions within 

the training data.  The extrapolation cases were selected to be faraway from the training 

conditions and also to represent different operating conditions (see Figure 3.1). 

Qualitative and quantitative comparisons of BANN, HANN1, HANN2a, and HANN2b 

were performed and the results are presented in the next two sections.  

4.1 Qualitative Comparison of BANN, HANN1, and HANN2 

The qualitative comparison was performed by plotting predictions of BANN, HANN1, 

HANN2a, and HANN2b models versus process data of recall, interpolation and 

extrapolation cases. One plot is given as a sample from each of the testing regimes: recall 
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(case1), interpolation (case21), and extrapolation (case25). Each plot consists of the 

predicted and process profiles for each of the state variables. 

Figures 4.1 - 4.3 present a sample of the results for BANN model. As shown in these 

Figures, the results are in a good agreement with process data in recall and interpolation 

cases (Figures 4.1 and 4.2). The good modeling performance on these cases indicates that 

the ANN was trained properly. However, The BANN model was seen to perform poorly 

on extrapolation case (Figure 4.3). The poor model predictions of BANN on the 

extrapolation case may indicate that the reaction system is too complex to be adequately 

modeled using this BANN model. Because it is a difficult modeling task for ANN, 

requiring the determination of mass balance and reaction rates based only on feed 

conditions of TMR. Also, It is a very challenging test, since any errors made near the 

entrance region of the TMR will propagate through the entire reactor. 

Figures 4.4 – 4.6 show a selection of the results obtained using the HANN1 model. 

Similar to BANN model, the predictions of this model in recall and interpolation cases 

(Figures 4.4 and 4.5) are in a very good agreement with process data. However, the over 

all prediction is less accurate in the extrapolation case although the gross trends are 

correct. For example, as shown in Figure 4.6, HANN1 over-predict the concentration 

profiles of cellobiose and glucose in the shell side. This seems to be due to an over 

prediction of rate of productions of cellobiose and glucose in this case. This problem can 

occur because in this modeling approach, there is no inclusion of biochemical knowledge. 
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Figures 4.7 - 4.9 present typical results obtained using HANN2a model.  The predicted 

profiles of this model are seen to be very close to the process data in almost all cases. It 

was initially expected that the prediction of this models would have larger errors, 

compared with HANN2b, because the presence of noise in the training data (partially 

non-smoothed) will degrade the interpolation and extrapolation abilities of this model. 

However, including basic biochemical knowledge, in the form of simplified rate 

expressions, allowed this model to be accurately interpolated and extrapolated.  

Figures 4.10 – 4.12 show a selection of the results obtained using the HANN2b model. 

The performance of this hybrid model is excellent for recall, interpolation, and 

extrapolation cases. The predicted profiles are very close to the deterministic model 

profiles. The modeling performance in the extrapolation cases (Figure 4.12) is 

surprisingly good; it is a direct result of the contribution of the first-principle parts.  

Qualitatively, the second hybrid scheme (HANN2a and HANN2b) is the best of the three 

modeling schemes in terms of overall predictive ability. Quantitative comparisons are 

presented in the next section. 

 

 

 

 

 

 

 64



Figure 4.1 Comparison  between process data  and BANN predictions for  recall 

case (case 1) 
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Figure 4.2 Comparison between process data and BANN predictions for 

interpolation case (case 21) 
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Figure 4.3 Comparison between process data and BANN predictions for 

extrapolation case (case 25) 
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Figure 4.4 Comparison  between process data  and HANN1 predictions for  recall 

case (case 1) 
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Figure 4.5 Comparison  between process data  and HANN1 predictions for  

interpolation case (case 21) 
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Figure 4.6 Comparison  between process data  and HANN1 predictions for  

extrapolation case (case 25) 
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Figure 4.7 Comparison between process data and HANN2a predictions for recall 

case (case 21) 
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Figure 4.8 Comparison  between process data  and HANN2a predictions for  

interpolation case (case 21) 
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Figure 4.9 Comparison between process data  and HANN2a predictions for  

extrapolation case (case 25) 
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Figure 4.10 Comparison between process data and HANN2b predictions for recall 

case (case 1) 
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Figure 4.11 Comparison between process data and HANN2b predictions for 

interpolation case (case 21) 
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Figure 4.12 Comparison between process data and HANN2b predictions for 

extrapolation case (case 25) 
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4.2 Quantitative Comparison of BANN HANN1, and HANN2 

In order to compare the performance of the three modeling schemes, a quantitative 

measure of their accuracy is needed. This was done first by performing regression 

analysis between process data and ANN predictions for all models. This analysis was 

done by using postrg.m, a MATLAB build-in  function. Samples of these analyses for 

recall, interpolation, and extrapolation cases for glucose in the shell side are shown in 

Figures 4.13 - 4.16. As shown in these Figures, all models give a very good agreement 

with process data for recall and interpolation cases. However, Figures 4.13 and 4.14 show 

very poor model predictions of glucose concentration profiles in the shell side using 

BANN and HANN1 models in the extrapolation case (case 25).  On the other hand, the 

prediction quality of both HANN2a and HANN2b models remain roughly the same when 

the models were used for interpolation and extrapolation (Figures 4.15 - 4.16); this is a 

benefit of including the first-principle parts. The assumed rate expressions clearly allow 

the ANN in the second hybrid scheme part to successfully emulate the TMR system.  

Normalized root mean square error (NSM) associated with the predictions of the four 

models was also used to compare the performance of the three modeling schemes. NSM 

was calculated for each variable using the following equation [17]. 
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where N in this equation is the number of data points for each variable in each case 

(training, interpolation, and extrapolation), t  , is the desired output, and bi i, is the output 

calculated via HANN1, HANN2 or BANN model.   

The NSM is more strongly influenced by errors when the values of the state variables are 

relatively large in magnitude.  Therefore, the median percent error (MPE) was used as a 

second measure of the performance of the three schemes. The MPE  is less popular as a 

measure of ANN performance than NSM. However, when compared with NSM, it is less 

susceptible to being dominated by one or two terms with a large error [5,17].  MPE was 

calculated for each variable using the following equation,  
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Once both of these error measurements were calculated for all of the 26 cases, their 

averages were determined for each state variable for each testing regime (recall, 
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interpolation, and extrapolation).  The results of the averages of two different error 

calculations, NSM and MPE respectively, for concentrations of cellulose, cellobiose, and 

glucose in tube and shell sides over twenty cases (1-20) for recall, three cases (21-23) for 

interpolation, and three cases (24-26) for extrapolation, are illustrated in Figures 4.17 - 

4.26.  

As shown in these figures, the average errors (NSM and MPE) associated with 

predictions of all models were relatively low in recall and interpolation cases, and the 

HANN2b model was always the lowest. The BANN model had problem with prediction 

of the extrapolation cases. This caused the average NSM and MPE for this model to be 

very large compare to the hybrid models. On the other hand, HANN1 model had low 

average errors compared to the BANN model in all extrapolation cases. This may   

indicate that the first principle part (mass balance) of this model has allowed the ANN 

part to capture the underlying behavior. Therefore, the HANN1 model is expected to 

perform much better than the BANN model in the extrapolation cases since the prediction 

is only in the kinetic parts of the process, while the mass balance remains unchanged.  

It can be seen from these figures that the average errors associated with the predictions of 

HANN2a were always lower than the error associated with BANN and HANN1, even 

though the training data used to develop ANN for this model were partially non-

smoothed. As mentioned before, it was initially expected that this model would have 

larger average errors when used for extrapolation. This was not seen for all cases in this 

investigation, which confirms the superiority and capability of this modeling scheme. 

Also, HANN2a performs well for all state variables, for all testing regimes. In fact, on the 
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basis of average NSM and MPE errors, predictions using this model have the lowest 

average error on all state variables. These results show clearly that the inclusion of first 

principles and basic biochemical knowledge, in the form of mass balances and the 

simplified rate expressions, have allowed the HANN2 scheme to perform consistently 

well on all predictions. Therefore, the quantitative comparisons support the conclusions 

drawn from qualitative comparisons described in section 4.1.  
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5. Conclusions 

Three modeling schemes were developed to model a steady-state space-dependent 

enzymatic tubular membrane reactor (TMR). At first, a fully black-box model (BANN), 

based on ANN technique, was developed using only the process data. No information 

about the process was included in this model. Then, first-principle information of mass 

balances equations (ODEs) was introduced separately into the black-box model to 

generate the first hybrid model (HANN1).  After that, a new hybrid scheme, combining 

ANN with mass balances and assumed rate expressions, was used to develop the second 

hybrid model (HANN2) using smoothed and non-smoothed data. The second hybrid 

scheme, developed for a space-dependent steady-state enzymatic reactor, is similar to that 

developed by Kasprow for a fed-batch microbial reactor that is space-independent and 

time-dependent.   

Qualitative and quantitative comparisons of the predicted profiles of the three modeling 

schemes (BANN, HANN1, and HANN2) indicated that the second hybrid scheme 

(HANN2) performed better than the other two schemes (BANN and HANN1). Because 

the inclusion of engineering first principles and basic biochemical knowledge, in the form 

of mass balances and the simplified rate expressions, have allowed the HANN2 scheme 

to perform consistently well on all testing regimes (recall, interpolation, and 

extrapolation). It is also worthwhile to note that HANN1 model significantly outperforms 

the BANN model in the extrapolation cases, while the differences in outcomes from 

HANN2a and HANN2b are not significant.   
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Appendix A-Programs output 
 

A1  Sample of output generated from Fortran program developed by G. Gauba [11] to 

solve  the initial-value type ordinary differential equations (ODEs) using 

Livermore solver for ODE (LSODE). 

A2  Sample of output generated from Matlab function “tmr.m” to solve  the initial-

value type ordinary differential equations (ODEs) using Matlab solver “ode23S”. 
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A1 
 

Cso= 0.0025 g/l,   Vf= 0.6 ml/min,    L= 200 cm  
                          Z                                              Cs                                         CB 
                       (cm)                                           (g/l)                                      (g/l) 
    1.440997973597329e+002    9.204938365251831e-004    2.357510673193909e-003 
    1.450997973344707e+002    9.122489493962936e-004    2.365588556109517e-003 
    1.460997973092086e+002    9.040018343372537e-004    2.373586021969356e-003 
    1.470997972839465e+002    8.957522946650913e-004    2.381502537185116e-003 
    1.480997972586844e+002    8.875001430634884e-004    2.389337540244296e-003 
    1.490997972334222e+002    8.792452041309137e-004    2.397090436306075e-003 
    1.500997972081601e+002    8.709873183088079e-004    2.404760588957872e-003 
    1.510997971828980e+002    8.627263248866492e-004    2.412347355019059e-003 
    1.520997971576359e+002    8.544620775941547e-004    2.419850052300013e-003 
    1.530997971323737e+002    8.461944402158041e-004    2.427267968463170e-003 
    1.540997971071116e+002    8.379232866509205e-004    2.434600360737810e-003 
    1.550997970818495e+002    8.296485107204836e-004    2.441846434464746e-003 
    1.560997970565874e+002    8.213700068241208e-004    2.449005384954997e-003 
    1.570997970313252e+002    8.130876816930559e-004    2.456076371807432e-003 
    1.580997970060631e+002    8.048014541245818e-004    2.463058519330781e-003 
    1.590997969808010e+002    7.965112539895258e-004    2.469950918544718e-003 
    1.600997969555389e+002    7.882170271821136e-004    2.476752616000304e-003 
    1.610997969302767e+002    7.799187338213712e-004    2.483462617639613e-003 
    1.620997969050146e+002    7.716163368493236e-004    2.490079914056462e-003 
    1.630997968797525e+002    7.633098155222240e-004    2.496603450282101e-003 
    1.640997968544904e+002    7.549991614260206e-004    2.503032134516285e-003 
    1.650997968292282e+002    7.466843789018208e-004    2.509364837017601e-003 
    1.660997968039661e+002    7.383654998002783e-004    2.515600356359604e-003 
    1.670997967787040e+002    7.300425502298069e-004    2.521737495021252e-003 
    1.680997967534419e+002    7.217155770186947e-004    2.527774998978641e-003 
    1.690997967281797e+002    7.133846409351382e-004    2.533711573005726e-003 
    1.700997967029176e+002    7.050498169114886e-004    2.539545880022936e-003 
    1.710997966776555e+002    6.967112036017983e-004    2.545276518544461e-003 
    1.720997966523934e+002    6.883689116275672e-004    2.550902050135332e-003 
    1.730997966271312e+002    6.800230601916410e-004    2.556421007231990e-003 
    1.740997966018691e+002    6.716737885828502e-004    2.561831866020575e-003 
    1.750997965766070e+002    6.633212523339036e-004    2.567133055327538e-003 
    1.760997965513449e+002    6.549656263985318e-004    2.572322948809393e-003 
    1.770997965260827e+002    6.466071168821344e-004    2.577399836389321e-003 
    1.780997965008206e+002    6.382459264189027e-004    2.582362008160128e-003 
    1.790997964755585e+002    6.298822843366952e-004    2.587207681094362e-003 
    1.800997964502964e+002    6.215164387574542e-004    2.591935018109236e-003 
    1.810997964250342e+002    6.131486569750993e-004    2.596542127048122e-003 
    1.820997963997721e+002    6.047792429735273e-004    2.601027016677437e-003 
    1.830997963745100e+002    5.964085070227625e-004    2.605387672863769e-003 
    1.840997963492479e+002    5.880367791189517e-004    2.609622024797741e-003 
    1.850997963239857e+002    5.796644146670154e-004    2.613727930672027e-003 
    1.860997962987236e+002    5.712917914552784e-004    2.617703185197685e-003 
    1.870997962734615e+002    5.629193156430315e-004    2.621545504015519e-003 
    1.880997962481994e+002    5.545474267889907e-004    2.625252510600056e-003 
    1.890997962229372e+002    5.461765738942988e-004    2.628821798493900e-003 
    1.900997961976751e+002    5.378072382346145e-004    2.632250871941818e-003 
    1.910997961724130e+002    5.294399278179517e-004    2.635537160266717e-003 
    1.920997961471509e+002    5.210751905220844e-004    2.638677981811962e-003 
    1.930997961218887e+002    5.127135900285188e-004    2.641670610195530e-003 
    1.940997960966266e+002    5.043557235603400e-004    2.644512225600809e-003 
    1.950997960713645e+002    4.960022192752868e-004    2.647199922016836e-003 
    1.960997960461024e+002    4.876537422304381e-004    2.649730689531475e-003 
    1.970997960208402e+002    4.793109906861528e-004    2.652101425669553e-003 
    1.980997959955781e+002    4.709746908936624e-004    2.654308951275732e-003 
    1.990997959703160e+002    4.626456065467428e-004    2.656349982446680e-003 
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A2 
 

Cso= 0.0025 g/l,   Vf= 0.6 ml/min,    L= 200 cm  
                          Z                                              Cs                                         CB 
                       (cm)                                           (g/l)                                      (g/l) 
    1.440997000000000e+002    9.206133393034483e-004    2.357028029533870e-003 
    1.450997000000000e+002    9.123655622921875e-004    2.365109414402626e-003 
    1.460997000000000e+002    9.041156053036204e-004    2.373110289821769e-003 
    1.470997000000000e+002    8.958632684994322e-004    2.381030128764720e-003 
    1.480997000000000e+002    8.876083605569493e-004    2.388868378888446e-003 
    1.490997000000000e+002    8.793506986691386e-004    2.396624462533466e-003 
    1.500997000000000e+002    8.710901085446079e-004    2.404297776723846e-003 
    1.510997000000000e+002    8.628264244076063e-004    2.411887693167202e-003 
    1.520997000000000e+002    8.545594903611551e-004    2.419393553913130e-003 
    1.530997000000000e+002    8.462891768843841e-004    2.426814623843403e-003 
    1.540997000000000e+002    8.380153650458658e-004    2.434150145634370e-003 
    1.550997000000000e+002    8.297379449551726e-004    2.441399335903717e-003 
    1.560997000000000e+002    8.214568182828716e-004    2.448561376181516e-003 
    1.570997000000000e+002    8.131718982605244e-004    2.455635412910230e-003 
    1.580997000000000e+002    8.048831096806872e-004    2.462620557444711e-003 
    1.590997000000000e+002    7.965903888969110e-004    2.469515886052200e-003 
    1.600997000000000e+002    7.882936838237414e-004    2.476320439912326e-003 
    1.610997000000000e+002    7.799929539367183e-004    2.483033225117107e-003 
    1.620997000000000e+002    7.716881702723768e-004    2.489653212670951e-003 
    1.630997000000000e+002    7.633793154282460e-004    2.496179338490653e-003 
    1.640997000000000e+002    7.550663835628502e-004    2.502610503405400e-003 
    1.650997000000000e+002    7.467493803957078e-004    2.508945573156765e-003 
    1.660997000000000e+002    7.384283232073321e-004    2.515183378398710e-003 
    1.670997000000000e+002    7.301032408392310e-004    2.521322714697589e-003 
    1.680997000000000e+002    7.217741736939070e-004    2.527362342532141e-003 
    1.690997000000000e+002    7.134411737348573e-004    2.533300987293496e-003 
    1.700997000000000e+002    7.051043044865736e-004    2.539137339285173e-003 
    1.710997000000000e+002    6.967636410345423e-004    2.544870053723080e-003 
    1.720997000000000e+002    6.884192742111839e-004    2.550497738133260e-003 
    1.730997000000000e+002    6.800713398740353e-004    2.556018873673755e-003 
    1.740997000000000e+002    6.717199847361660e-004    2.561431924783719e-003 
    1.750997000000000e+002    6.633653713434626e-004    2.566735311088073e-003 
    1.760997000000000e+002    6.550076817271672e-004    2.571927395297550e-003 
    1.770997000000000e+002    6.466471174038767e-004    2.577006483208690e-003 
    1.780997000000000e+002    6.382838993755434e-004    2.581970823703847e-003 
    1.790997000000000e+002    6.299182681294742e-004    2.586818608751186e-003 
    1.800997000000000e+002    6.215504836383314e-004    2.591547973404682e-003 
    1.810997000000000e+002    6.131808253601325e-004    2.596156995804122e-003 
    1.820997000000000e+002    6.048095922382500e-004    2.600643697175102e-003 
    1.830997000000000e+002    5.964371027014111e-004    2.605006041829032e-003 
    1.840997000000000e+002    5.880636946636986e-004    2.609241937163131e-003 
    1.850997000000000e+002    5.796897255245504e-004    2.613349233660430e-003 
    1.860997000000000e+002    5.713155721687589e-004    2.617325724889770e-003 
    1.870997000000000e+002    5.629416309664723e-004    2.621169147505805e-003 
    1.880997000000000e+002    5.545683177731934e-004    2.624877181248997e-003 
    1.890997000000000e+002    5.461960679297804e-004    2.628447448945622e-003 
    1.900997000000000e+002    5.378253362624463e-004    2.631877516507765e-003 
    1.910997000000000e+002    5.294565970827594e-004    2.635164892933323e-003 
    1.920997000000000e+002    5.210903683506394e-004    2.638306973673227e-003 
    1.930997000000000e+002    5.127272932708564e-004    2.641300847866090e-003 
    1.940997000000000e+002    5.043679809772931e-004    2.644143669076694e-003 
    1.950997000000000e+002    4.960130624948722e-004    2.646832524366862e-003 
    1.960997000000000e+002    4.876632015729075e-004    2.649364408953359e-003 
    1.970997000000000e+002    4.793190946851038e-004    2.651736226207884e-003 
    1.980997000000000e+002    4.709814710295566e-004    2.653944787657077e-003 
    1.990997000000000e+002    4.626510925287525e-004    2.655986812982515e-003 
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Appendix B-Sample programs 
 
 

 
 
B1  “tmr.m” : A MATLAB version of deterministic model TMR program. 

B2       “noise.m”: A MATLAB function to generate random noise. 

B3 “bann_data.m”: A MATLAB script file to generate training and testing data for 

BANN model. 

B4  “hann1_data.m”: A MATLAB script file to generate training and testing data for 

HANN1 model. 

B5  “hann1.m”: A MATLAB function for the HANN1 model. 

B6       “hann2a_data.m”: A MATLAB script file to generate training and testing data     

            for HANN2b model. 

B7       “hann2b_data.m”: A MATLAB script file to generate training and testing data  

             for HANN2b model. 

B8       “hann2.m”: A MATLAB function for the HANN2 model. 
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B1- tmr.m 
 
function [cdot]=tmr(z,c,flag,f); 
% This functions contains  5 ODEs which describes enzymatic  
% Saccharification of Cellulose in Hollow Fiber Bioreactor.  
% This function will be called by a selected ODE solver to  
% calculate the concentration profiles of Cellulose,  
% Cellobiose and Gulocose in the bioreactor. 
% Last update 6/11/03 
%Operating Parameters 
pp=1033.82;        % pressure on the shell side, g/cm.cm 
pf=1100;           % pressure at the entrance of the modul(tube side), 
                   % g/cm.cm                           
pr=1070;           % pressure at the exit of the module,g/cm.cm 
l =200;            % tube length, cm 
r1=0.3;            % tube radius, cm 
vf=f;              % volumetric flow rate at the entrance of the  
                   % reactor, cc/min 
lp=2.5e-5;         % hydraulic permeability, cc/[(cm.cm).min.(g/cm.cm)] 
rm=1.39e-3;        % maximum reaction rate (cellobiose), g/(cc.min) 
rprimem=1.22e-3;   % maximum reaction rate (glucose)g/(cc.min) 
km=42.18e-3;       % Michaelis-Menten constant (cellobiose), g/cc 
kprimem=198.34e-3; % product inhibition constant (cellobiose), g/cc 
ki=1.89e-3;        % product inhibition constant (cellobiose), g/cc 
kprimei=0.66e-3;   % product inhibition constant (glucose), g/cc 
 
pt=(pf-pp)+(pr-pf)*z/l;  % transmembrane pressure drop 
       
% v volumetric flow rates at a distance z from the entrance of the  
% reactor on the tube side 
 v=-(2.0*pi*r1*lp)*((pf-pp)*z+(pr-pf)*z^2/l/2.0)+vf;  
      
% vbar volumetric flow rates at a distance z from the entrance of the  
% reactor on the shell side 
     vbar= vf-v+1.0e-15; 
     dvdz=-(2.0d0*pi*r1*lp)*((pf-pp)+(pr-pf)*z/l); 
     
    % rb are the rate of formation of cellobiose  
    rb=rm*c(1)/(km+c(1)+(km*c(2)/ki)); 
     
    % rg are the rate of formation of glucose 
      rg=rprimem*c(2)/(kprimem+c(2)+(kprimem*c(3)/kprimei)); 
       
  % 5 ODEs to calculate the concentration profiles of Cellulose  
  % c(1),Cellobiose c(2) and Glucose c(3) on the tube side. 
  % Cellobiose c(4) and Glucose c(5) on the shell side.  
      cdot=[(pi*r1^2/v)*(-rb-c(1)*dvdz/pi/r1^2);(pi*r1^2/v)*(-rg+rb-... 
      (c(2)*dvdz/pi/r1^2)-(2.0d0*lp*pt/r1)*c(2));(pi*r1^2/v)*... 
      (rg-(c(3)*dvdz/pi/r1^2)-(2.0d0*lp*pt/r1)*c(3));(pi*r1^2/vbar)*... 
      ((c(4)*dvdz/pi/r1^2)+(2.0*lp*pt/r1)*c(2));(pi*r1^2/vbar)... 
      *((c(5)*dvdz/pi/r1^2)+(2.0*lp*pt/r1)*c(3))]; 
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B2- noise.m 
 
function[Cn]=noise(C,per) 
% This function generate noise and add  it to  
% the mathematical model prediction "C"in order  
% to generat process data "Cn"   
% Noise value "Vnoise" is determined at each point by  
% sampling from a normal distribution having zero mean and  
% a standard deviation equal to "per" of the state variable value 
% Last update 4/1/03  
 
Vnoise=ones(size(C))+[per/100*randn(length(C),5)]; 
Cn=C.*Vnoise; 

 
 
    

B3- bann_data.m 
 
%This script file "bann_data" is used to prepare training,  
%interpolation and extrapolation cases for BANN model 
% Last update 15/6/03 
% In this section the function of mass balance equations "tmr" is  
% called ode23s solver  
%for different initial conditions in order to generate training, 
interpolation and extrapolation  
[z,c1]=ode23s('tmr',[0:10:200],[0.0025;0;0;0;0],[],0.6); 
[z,c2]=ode23s('tmr',[0:10:200],[0.0016;0;0;0;0],[],0.62); 
[z,c3]=ode23s('tmr',[0:10:200],[0.0018;0;0;0;0],[],0.66); 
[z,c4]=ode23s('tmr',[0:10:200],[0.0013;0;0;0;0],[],0.67); 
[z,c5]=ode23s('tmr',[0:10:200],[0.0009;0;0;0;0],[],0.70); 
[z,c6]=ode23s('tmr',[0:10:200],[0.0014;0;0;0;0],[],0.71); 
[z,c7]=ode23s('tmr',[0:10:200],[0.0017;0;0;0;0],[],0.75); 
[z,c8]=ode23s('tmr',[0:10:200],[0.0005;0;0;0;0],[],0.79); 
[z,c9]=ode23s('tmr',[0:10:200],[0.0019;0;0;0;0],[],0.82); 
[z,c10]=ode23s('tmr',[0:10:200],[0.0024;0;0;0;0],[],0.83); 
[z,c11]=ode23s('tmr',[0:10:200],[0.0007;0;0;0;0],[],0.86); 
[z,c12]=ode23s('tmr',[0:10:200],[0.0009;0;0;0;0],[],0.89); 
[z,c13]=ode23s('tmr',[0:10:200],[0.0026;0;0;0;0],[],0.91); 
[z,c14]=ode23s('tmr',[0:10:200],[0.0011;0;0;0;0],[],0.93); 
[z,c15]=ode23s('tmr',[0:10:200],[0.001;0;0;0;0],[],0.95); 
[z,c16]=ode23s('tmr',[0:10:200],[0.0006;0;0;0;0],[],0.97); 
[z,c17]=ode23s('tmr',[0:10:200],[0.0021;0;0;0;0],[],0.99); 
[z,c18]=ode23s('tmr',[0:10:200],[0.0004;0;0;0;0],[],1.01); 
[z,c19]=ode23s('tmr',[0:10:200],[0.0021;0;0;0;0],[],1.03); 
[z,c20]=ode23s('tmr',[0:10:200],[0.0018;0;0;0;0],[],1.05); 
% interpolation cases (21-23) 
[z,c21]=ode45('tmr',[0:10:200],[0.001;0;0;0;0],[],0.6); 
[z,c22]=ode45('tmr',[0:10:200],[0.0015;0;0;0;0],[],0.73);  
[z,c23]=ode45('tmr',[0:10:200],[0.0005;0;0;0;0],[],1.0);  
% extrapolation cases (24-24) 
[z,c24]=ode45('tmr',[0:10:200],[0.0045;0;0;0;0],[],0.65); 
[z,c25]=ode45('tmr',[0:10:200],[0.0003;0;0;0;0],[],1.20);  
[z,c26]=ode45('tmr',[0:10:200],[0.0035;0;0;0;0],[],1.30);  
% "c" Matrix for whole cases  
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c=[c1;c2;c3;c4;c5;c6;c7;c8;c9;c10;c11;c12;c13;c14;c15;c16;c17;c18;c19;c
20;c21;c22;c23;c24;c25;c26]; 
% Generate noise (3%) for all cases (1-26) "cs" using noise function  
cs=noise(c,3); 
x=0:10:200; 
% Appling smoothing spline using spaps for cellulose (tube) data points  
for i=1:21:546 
  y1=cs(i:i+20,1); 
  ys1=spaps(x,y1,1e-7); 
  ps1=fnval(ys1,x); 
p1(i:i+20)=ps1; 
end 
% Appling smoothing spline using spaps for cellobiose (tube) data  
% points 
for i=1:21:546 
   y2=cs(i:i+20,2); 
   ys2=spaps(x,y2,1e-7); 
   ps2=fnval(ys2,x); 
   p2(i:i+20)=ps2; 
end 
% Appling smoothing spline using spaps for glucose (tube) data points 
for i=1:21:546 
   y3=cs(i:i+20,3); 
   ys3=spaps(x,y3,1e-7); 
   ps3=fnval(ys3,x); 
   p3(i:i+20)=ps3; 
end 
% Appling smoothing spline using spaps for cellobiose (shell) data  
% points 
for i=1:21:546 
   y4=cs(i:i+20,4); 
   ys4=spaps(x,y4,1e-7); 
   ps4=fnval(ys4,x); 
   p4(i:i+20)=ps4; 
end 
% Appling smoothing spline using spaps for glucose (shell) data points 
for i=1:21:546 
   y5=cs(i:i+20,5); 
   ys5=spaps(x,y5,1e-7); 
   ps5=fnval(ys5,x); 
   p5(i:i+20)=ps5; 
end 
p1=p1';p2=p2';p3=p3';p4=p4';p5=p5'; 
csm=[p1 p2 p3 p4 p5];  % smoothed process data 
% Normalize training data between (-1 and 1)using premnmx function  
 
[pn1,minp1,maxp1]=premnmx(p1);[pn2,minp2,maxp2]=premnmx(p2);[pn3,minp3,
maxp3]=premnmx(p3); 
 [pn4,minp4,maxp4]=premnmx(p4);[pn5,minp5,maxp5]=premnmx(p5); 
 % Normalize flowrates "vf" between (-1 and 1)using premnmx function 
vf=[0.6;0.62;0.66;0.67;0.70;0.71;0.75;0.79;0.82;0.83;0.86;0.89;0.91;... 
   0.95;0.97;0.99;1.01;1.03;1.05;0.6;0.73;1.0;0.65;1.2;1.3]; 
[vfn,minvf,maxvf]=premnmx(vf); 
% prepare feed flowrate "vf" as a fector for each cases 
vfn1=ones(21,1)*vfn(1);vfn2=ones(21,1)*vfn(2);vfn3=ones(21,1)*vfn(3);vf
n4=ones(21,1)*vfn(4);vfn5=ones(21,1)*vfn(5);vfn6=ones(21,1)*vfn(6);vfn7
=ones(21,1)*vfn(7);vfn8=ones(21,1)*vfn(8);vfn9=ones(21,1)*vfn(9);vfn10=
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ones(21,1)*vfn(10);vfn11=ones(21,1)*vfn(11);vfn12=ones(21,1)*vfn(12);vf
n13=ones(21,1)*vfn(13);vfn14=ones(21,1)*vfn(14);vfn15=ones(21,1)*vfn(15
);vfn16=ones(21,1)*vfn(16);vfn17=ones(21,1)*vfn(17);vfn18=ones(21,1)*vf
n(18);vfn19=ones(21,1)*vfn(19);vfn20=ones(21,1)*vfn(20);vfn21=ones(21,1
)*vfn(21);vfn22=ones(21,1)*vfn(22);vfn23=ones(21,1)*vfn(23);vfn24=ones(
21,1)*vfn(24);vfn25=ones(21,1)*vfn(25);vfn26=ones(21,1)*vfn(26); 
vfnt=[vfn1;vfn2;vfn3;vfn4;vfn5;vfn6;vfn7;vfn8;vfn9;vfn10;vfn11;vfn12;..
.vfn13;vfn14;vfn15;vfn16;vfn17;vfn18;vfn19;vfn20;vfn21;vfn22;vfn23;vfn2
4;vfn25;vfn26]; 
%Prepare all cases as "input" and  "target" vectors for all cases 
%(training, interpolation and extrapolation)  
input=[pn1 pn2 pn3 pn4 pn5 vfnt]; 
target=[pn1 pn2 pn3 pn4 pn5]; 
% each case consist of 20 input vectors and 20 traget vectors 
% Inputs "Ptrb" and targets "Ttrb" for training cases (1-20) 
input1=input(1:20,:);target1=target(2:21,:); 
input2=input(22:41,:);target2=target(23:42,:); 
input3=input(43:62,:);target3=target(44:63,:); 
input4=input(64:83,:);target4=target(65:84,:); 
input5=input(85:104,:);target5=target(86:105,:); 
input6=input(106:125,:);target6=target(107:126,:); 
input7=input(127:146,:);target7=target(128:147,:); 
input8=input(148:167,:);target8=target(149:168,:); 
input9=input(169:188,:);target9=target(170:189,:); 
input10=input(190:209,:);target10=target(191:210,:); 
input11=input(211:230,:);target11=target(212:231,:); 
input12=input(232:251,:);target12=target(233:252,:); 
input13=input(253:272,:);target13=target(254:273,:); 
input14=input(274:293,:);target14=target(275:294,:); 
input15=input(295:314,:);target15=target(296:315,:); 
input16=input(316:335,:);target16=target(317:336,:); 
input17=input(337:356,:);target17=target(338:357,:); 
input18=input(358:377,:);target18=target(359:378,:); 
input19=input(379:398,:);target19=target(380:399,:); 
input20=input(400:419,:);target20=target(401:420,:); 
Ptr_bn=[input1;input2;input3;input4;input5;input6;input7;input8;input9;
input10;input11;input12;... 
  input13;input14;input15;input16;input17;input18;input19;input20]'; 
Ttr_bn=[target1;target2;target3;target4;target5;target6;target7;target8
;target9;target10;target11;... 
  
target12;target13;target14;target15;target16;target17;target18;target19
;target20]'; 
%Inputs "Pin_bn" and targets "Tin_bn" for interpolation cases (21-23) 
input21=input(421:440,:);target21=target(422:441,:); 
input22=input(442:461,:);target22=target(443:462,:); 
input23=input(463:482,:);target23=target(464:483,:); 
Pin_bn=[input21;input22;input23]'; 
Tin_bn=[target21;target22;target23]'; 
%Inputs "Pex_bn" and targets "Tex_bn" for extrapolation cases (24-26) 
input24=input(484:503,:);target24=target(485:504,:); 
input25=input(505:524,:);target25=target(506:525,:); 
input26=input(526:545,:);target26=target(527:546,:); 
Pex_bn=[input24;input25;input26]'; 
Tex_bn=[target24;target25;target26]'; 
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B4- hann1_data.m 
 
%This script file "hann_data" is used to prepare training,  
%interpolation and extrapolation cases for HANN-1 model 
% Last update 6/11/03 
% In this section the function of mass balance equations "tmr" is  
% called by  
% ode23s solver for different initial conditions in order to generate 
training (1-20),  
%interpolation (21-23) and extrapolation (24-26) 
[z,c1]=ode23s('tmr',[0:10:200],[0.0025;0;0;0;0],[],0.6); 
[z,c2]=ode23s('tmr',[0:10:200],[0.0016;0;0;0;0],[],0.62); 
[z,c3]=ode23s('tmr',[0:10:200],[0.0018;0;0;0;0],[],0.66); 
[z,c4]=ode23s('tmr',[0:10:200],[0.0013;0;0;0;0],[],0.67); 
[z,c5]=ode23s('tmr',[0:10:200],[0.0009;0;0;0;0],[],0.70); 
[z,c6]=ode23s('tmr',[0:10:200],[0.0014;0;0;0;0],[],0.71); 
[z,c7]=ode23s('tmr',[0:10:200],[0.0017;0;0;0;0],[],0.75); 
[z,c8]=ode23s('tmr',[0:10:200],[0.0005;0;0;0;0],[],0.79); 
[z,c9]=ode23s('tmr',[0:10:200],[0.0019;0;0;0;0],[],0.82); 
[z,c10]=ode23s('tmr',[0:10:200],[0.0024;0;0;0;0],[],0.83); 
[z,c11]=ode23s('tmr',[0:10:200],[0.0007;0;0;0;0],[],0.86); 
[z,c12]=ode23s('tmr',[0:10:200],[0.0009;0;0;0;0],[],0.89); 
[z,c13]=ode23s('tmr',[0:10:200],[0.0026;0;0;0;0],[],0.91); 
[z,c14]=ode23s('tmr',[0:10:200],[0.0011;0;0;0;0],[],0.93); 
[z,c15]=ode23s('tmr',[0:10:200],[0.001;0;0;0;0],[],0.95); 
[z,c16]=ode23s('tmr',[0:10:200],[0.0006;0;0;0;0],[],0.97); 
[z,c17]=ode23s('tmr',[0:10:200],[0.0021;0;0;0;0],[],0.99); 
[z,c18]=ode23s('tmr',[0:10:200],[0.0004;0;0;0;0],[],1.01); 
[z,c19]=ode23s('tmr',[0:10:200],[0.0021;0;0;0;0],[],1.03); 
[z,c20]=ode23s('tmr',[0:10:200],[0.0018;0;0;0;0],[],1.05); 
% interpolation cases (21-23) 
[z,c21]=ode45('tmr',[0:10:200],[0.001;0;0;0;0],[],0.6); 
[z,c22]=ode45('tmr',[0:10:200],[0.0015;0;0;0;0],[],0.73);  
[z,c23]=ode45('tmr',[0:10:200],[0.0005;0;0;0;0],[],1.0);  
% extrapolation cases (24-24) 
[z,c24]=ode45('tmr',[0:10:200],[0.0045;0;0;0;0],[],0.65); 
[z,c25]=ode45('tmr',[0:10:200],[0.0003;0;0;0;0],[],1.20);  
[z,c26]=ode45('tmr',[0:10:200],[0.0035;0;0;0;0],[],1.30);  
% "c" Matrix for whole cases  
c=[c1;c2;c3;c4;c5;c6;c7;c8;c9;c10;c11;c12;c13;c14;c15;c16;c17;c18;c19;c
20;c21;c22;c23;c24;c25;c26]; 
% Generate noise (3%) for all cases (1-26) "cs" using noise function  
cs=noise(c,3); 
x=0:10:200; 
% Appling smoothing spline using spaps function for cellulose (tube)  
% data points  
for i=1:21:546 
  y1=cs(i:i+20,1); 
  ys1=spaps(x,y1,1e-7); 
  ps1=fnval(ys1,x); 
  p1(i:i+20)=ps1; 
% Calculat first derivative    
  d1=fnval(fnder(ys1),x); 
  dc1(i:i+20)=d1; 
end 
% Appling smoothing spline using spaps for cellobiose (tube) data  
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% points 
for i=1:21:546 
   y2=cs(i:i+20,2); 
   ys2=spaps(x,y2,1e-7); 
   ps2=fnval(ys2,x); 
   p2(i:i+20)=ps2; 
 % Calculat first derivative    
   d2=fnval(fnder(ys2),x); 
   dc2(i:i+20)=d2; 
end 
% Appling smoothing spline using spaps for glucose (tube) data points 
for i=1:21:546 
   y3=cs(i:i+20,3); 
   ys3=spaps(x,y3,1e-7); 
   ps3=fnval(ys3,x); 
    p3(i:i+20)=ps3; 
  % Calculat first derivative    
   d3=fnval(fnder(ys3),x); 
   dc3(i:i+20)=d3; 
end 
% Appling smoothing spline using spaps for cellobiose (shell) data  
% points 
for i=1:21:546 
   y4=cs(i:i+20,4); 
   ys4=spaps(x,y4,1e-7); 
   ps4=fnval(ys4,x); 
   p4(i:i+20)=ps4; 
 % Calculat first derivative    
   d4=fnval(fnder(ys4),x); 
   dc4(i:i+20)=d4; 
end 
% Appling smoothing spline using spaps for glucose (shell) data points 
for i=1:21:546 
   y5=cs(i:i+20,5); 
   ys5=spaps(x,y5,1e-9); 
   ps5=fnval(ys5,x); 
    if ps5 < 0 
       ps5=1e-6; 
   end 
   p5(i:i+20)=ps5; 
% Calculat first derivative    
   d5=fnval(fnder(ys5),x); 
   dc5(i:i+20)=d5; 
end 
% smoothed process data "csm" (cases 1-26) 
p1=p1';p2=p2';p3=p3';p4=p4';p5=p5'; 
csm=[p1 p2 p3 p4 p5]; 
% Normalize smoothed process data between (-1 and 1)using premnmx 
function  
 
[pn1,minp1,maxp1]=premnmx(p1);[pn2,minp2,maxp2]=premnmx(p2);[pn3,minp3,
maxp3]=premnmx(p3); 
 [pn4,minp4,maxp4]=premnmx(p4);[pn5,minp5,maxp5]=premnmx(p5); 
% Normalize flowrates "vf" between (-1 and 1)using premnmx function 
vf=[0.6;0.62;0.66;0.67;0.70;0.71;0.75;0.79;0.82;0.83;0.86;0.89;0.91;... 
   0.95;0.97;0.99;1.01;1.03;1.05;0.6;0.73;1.0;0.65;1.2;1.3]; 
[vfn,minvf,maxvf]=premnmx(vf); 
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% prepare feed flowrate "vf" as a fector for each case 
vfn1=ones(21,1)*vfn(1);vfn2=ones(21,1)*vfn(2);vfn3=ones(21,1)*vfn(3);vf
n4=ones(21,1)*vfn(4);vfn5=ones(21,1)*vfn(5);vfn6=ones(21,1)*vfn(6);vfn7
=ones(21,1)*vfn(7);vfn8=ones(21,1)*vfn(8);vfn9=ones(21,1)*vfn(9);vfn10=
ones(21,1)*vfn(10);vfn11=ones(21,1)*vfn(11);vfn12=ones(21,1)*vfn(12);vf
n13=ones(21,1)*vfn(13);vfn14=ones(21,1)*vfn(14);vfn15=ones(21,1)*vfn(15
);vfn16=ones(21,1)*vfn(16);vfn17=ones(21,1)*vfn(17);vfn18=ones(21,1)*vf
n(18);vfn19=ones(21,1)*vfn(19);vfn20=ones(21,1)*vfn(20);vfn21=ones(21,1
)*vfn(21);vfn22=ones(21,1)*vfn(22);vfn23=ones(21,1)*vfn(23);vfn24=ones(
21,1)*vfn(24);vfn25=ones(21,1)*vfn(25);vfn26=ones(21,1)*vfn(26); 
vfnt=[vfn1;vfn2;vfn3;vfn4;vfn5;vfn6;vfn7;vfn8;vfn9;vfn10;vfn11;vfn12;..
vfn13;vfn14;vfn15;vfn16;vfn17;vfn18;vfn19;vfn20;vfn21;vfn22;vfn23;vfn24
;vfn25;vfn26]; 
%Prepare inputs for HANN-1 model using normalized smoothed process data 
%"Ptr_rb" is the normalized input of the  training cases (1-20) for ANN  
%of rate of formation of cellobiose "rb" 
Ptr_rb=[pn1(1:420) pn2(1:420) vfnt(1:420)]'; 
%"Pts_rb" is the normalized input of the  testing (interpolation and  
% extrapolation)  
%cases (21-26) for ANN of rate of formation of cellobiose "rb" 
Pts_rb=[pn1(421:546) pn2(421:546) vfnt(421:546)]'; 
%"Ptr_rg" is the normalized input of the  training cases (1-20) for ANN 
%of rate of formation of glucose "rg" 
Ptr_rg=[pn2(1:420) pn3(1:420) vfnt(1:420)]'; 
%"Pts_rg" is the normalized input of the  testing (interpolation and  
% extrapolation)  
%cases (21-26) for ANN of rate of formation of glucose "rg" 
Pts_rg=[pn2(421:546) pn3(421:546) vfnt(421:546)]'; 
      %Operating Parameters 
      pp=1033.82;        % pressure on the shell side, g/cm.cm 
      pf=1100;           % pressure at the entrance of the module   
                         %(tube side), g/cm.cm 
      pr=1070;           % pressure at the exit of the module,g/cm.cm 
      l =200;            % tube length, cm 
      r1=0.3;            % tube radius, cm 
      lp=2.5e-5;         % hydraulic permeability,   
                         %cc/[(cm.cm).min.(g/cm.cm)] 
      % calculat "pt" transmembrane pressure drop for all cases 
      pt=ones(21,26); 
      for i=1:26 
      pti=(pf-pp)+(pr-pf)*z/l;  % transmembrane pressure drop 
      pt(:,i)=pti; 
  end 
   % v volumetric flow rates at a distance z from the entrance  
   % of the reactor on the tube side 
    v=ones(21,26); 
   for i=1:26 
   vi=-(2.0*pi*r1*lp)*((pf-pp)*z+(pr-pf)*z.*z/l/2.0)+vf(i); 
   v(:,i)=vi; 
    end 
  % vbar volumetric flow rates at a distance z from the entrance 
  dvdz=ones(21,26);    
  for i=1:26 
  dvdzi=-(2.0d0*pi*r1*lp)*((pf-pp)+(pr-pf)*z/l); 
  dvdz(:,i)=dvdzi; 
  end 
  dvdz=dvdz(:);v=v(:);pt=pt(:);dc1=dc1';dc3=dc3'; 
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  % Calculate reaction rates "rb" and "rg" for all cases (1-26) 
  % rb are the rate of formation of cellobiose  
  for i=1:546 
  rb(i)=-dc1(i)/((pi*r1^2)/v(i))-cs(i,1)/(pi*r1^2)*dvdz(i); 
  % rg are the rate of formation of glucose 
  
rg(i)=dc3(i)/((pi*r1^2)/v(i))+cs(i,3)/(pi*r1^2)*dvdz(i)+((2*lp*pt(i))/r
1)*cs(i,3); 
  end 
% Normalize reaction rates "rb and rg"  between (-1 and 1)using premnmx 
function 
      [rbn,minrb,maxrb]=premnmx(rb); 
      [rgn,minrg,maxrg]=premnmx(rg); 
%Prepare targets for HANN1 model using normalized rate of reactions rb 
and rg 
%"Ttr_rb" is the normalized target of the  training cases (1-20) for 
ANN  
%of rate of formation of cellobiose "rb" 
Ttr_rb=rbn(1:420); 
%"Pts_rb" is the normalized target of the  testing (interpolation and 
extrapolation)  
% cases (21-26) for ANN of rate of formation of cellobiose "rb" 
Tts_rb=rbn(421:546); 
%"Ptr_rg" is the normalized target of the  training cases (1-20) for 
ANN 
% of rate of formation of glucoseg "rg" 
Ttr_rg=rgn(1:420); 
%"Pts_rg" is the normalized target of the  testing (interpolation and 
extrapolation)  
%cases (21-26) for ANN of rate of formation of glucose "rg" 
Tts_rg=rgn(421:546); 
 
 
 
 

 
B5- hann1.m 

 
function cdot=hann1(z,c,flag,vf,rbnet,rgnet);       
%This function(hann1) contains the structure of the first 
% hybrid model which has the combination of the mass balance  
% equations (5 ODEs) Ann which will predict the rate of reactions  
% rb and rg 
% Last update 5/14/03 
 
%Operating Parameters 
      pp=1033.82;        % pressure on the shell side, g/cm.cm 
      pf=1100;           % pressure at the entrance of the module(tube  

 % side), g/cm.cm 
      pr=1070;           % pressure at the exit of the module,g/cm.cm 
      l =200;            % tube length, cm 
      r1=0.3;            % tube radius, cm of the reactor, cc/min 
      lp=2.5e-5;         % hydraulic permeability,  
      % pt transmembrane pressure drop 
      pt=(pf-pp)+(pr-pf)*z/l;   
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      % v volumetric flow rates at a distance z from the entrance of  
      %the reactor on the tube side 
      v=-(2.0*pi*r1*lp)*((pf-pp)*z+(pr-pf)*z^2/l/2.0)+vf;  
      % vbar volumetric flow rates at a distance z from the entrance 
       % of the reactor on the shell side 
     vbar= vf-v+1.0e-15; 
     dvdz=-(2.0d0*pi*r1*lp)*((pf-pp)+(pr-pf)*z/l); 
      %  normalization parameters calculated from "hann_data.m" 
      maxp1 = 0.0043; minp1 =  7.6182e-006;       % cellulose  
      maxp2 =0.0049; minp2 = 0;                   % cellobiose  "tube" 
      maxp3 = 0.0015; minp3 = 0;                  % glucose "tube" 
      minvf=0.6; maxvf=1.3;                       % volumetric flowrate  
      minrb=9.3791e-007 ;maxrb= 1.3956e-004;     % rate of formations 
      minrg=0; maxrg= 1.0803e-005;               % rate of formations 
  % Normalization of reactant concentrations: cn1,Cellobiose cn2 and  
  % Glucose cn3 on the tube side. 
  % Cellobiose cn4 and Glucose cn5 on the shell side. 
   cn1= 2*(c(1)-minp1)/(maxp1-minp1) - 1;cn2 = 2*(c(2)-minp2)/(maxp2-
minp2)-1; 
   cn3 = 2*(c(3)-minp3)/(maxp3-minp3) - 1;vfn = 2*(vf-minvf)/(maxvf-
minvf)-1; 
   % Constrains for normalized concentrations in order to control ANN 
behavior  
   % rxnet is ANN to predict the normalized rate of formation of 
cellobiose "rbn" and glucose "rgn" 
   rbn=sim(rbnet,[cn1;cn2;vfn]); 
   rgn=sim(rgnet,[cn2;cn3;vfn]);  
   % de-normalized rbn and rbn  
   rb= 0.5*(rbn+1)*(maxrb-minrb) + minrb;  
   rg= 0.5*(rgn+1)*(maxrg-minrg) + minrg; 
  % 5 ODEs to calculate the concentration profiles of cellulose  
  % c(1),cellobiose c(2) and glucose c(3) on the tube side. 
  % cellobiose c(4) and glucose c(5) on the shell side.  
      cdot=[(pi*r1^2/v)*(-rb-c(1)*dvdz/pi/r1^2);(pi*r1^2/v)*(-rg+rb-... 
      (c(2)*dvdz/pi/r1^2)-(2.0d0*lp*pt/r1)*c(2));(pi*r1^2/v)*... 
      (rg-(c(3)*dvdz/pi/r1^2)-(2.0d0*lp*pt/r1)*c(3));(pi*r1^2/vbar)*... 
      ((c(4)*dvdz/pi/r1^2)+(2.0*lp*pt/r1)*c(2));(pi*r1^2/vbar)... 
      *((c(5)*dvdz/pi/r1^2)+(2.0*lp*pt/r1)*c(3))]; 
 
 
 
 
 
 
 
 

B6- hann2a_data.m 
 
%This script file "hann2a_data" is used to prepare training,  
%interpolation and extrapolation cases for HANN2 model 
% Last update 8/9/03 
 
%Operating Parameters 
      pp=1033.82;        % pressure on the shell side, g/cm.cm 
      pf=1100;           % pressure at the entrance of the module(tube  
                         % side), g/cm.cm 
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      pr=1070;           % pressure at the exit of the module,g/cm.cm 
      l =200;            % tube length, cm 
      r1=0.3;            % tube radius, cm 
      lp=2.5e-5;         % hydraulic permeability,  
                         % cc/[(cm.cm).min.(g/cm.cm)] 
      rm=1.39e-3;        % maximum reaction rate (cellobiose),  
                         % g/(cc.min) 
      rprimem=1.22e-3;   % maximum reaction rate (glucose)g/(cc.min) 
% calculate "pt" transmembrane pressure drop for all cases 
      pt=ones(21,26); 
  for i=1:26 
      pti=(pf-pp)+(pr-pf)*z/l;   
      pt(:,i)=pti; 
  end 
 % Calculate  volumetric flow rates "v" at a distance z from the  
 % entrance of the reactor  
 % on the tube side 
    v=ones(21,26); 
   for i=1:26 
   vi=-(2.0*pi*r1*lp)*((pf-pp)*z+(pr-pf)*z.*z/l/2.0)+vf(i); 
   v(:,i)=vi; 
    end 
  % Calculation of Michaelis-Menten constants km and  and kprimem  for  
  % all cases (1-26)  
  % dc1 and dc3 are first derivatives of cellulose (tube) and glucose  
  %(tube) 
  % cs is  a matrix of all process data  for all cases (1-26)  
  v=v(:);pt=pt(:);dc1=dc1';dc3=dc3'; 
  for i=1:546 
  Km(i)=(rm*cs(i,1))/((2*lp*pt(i)*cs(i,1))/(pi*r1)-
dc1(i)*v(i)/(pi*r1^2))-cs(i,1); 
  Kprimem(i)=(rprimem*cs(i,2))/(dc3(i)*v(i)/(pi*r1^2))-cs(i,2); 
  end 
% Normalize Km and  and Kprimem  for all cases (1-26)   between (-1 and  
% 1)using premnmx function 
      [Kmn,minKm,maxKm]=premnmx(Km); 
      [Kprimemn,minKprimem,maxKprimem]=premnmx(Kprimem); 
%Prepare targets for ANN-1 and ANN-2 in HANN2  using normalized Kmn and 
Kprimemn. 
%"Ttr_Kmn" is the normalized targets of the  training cases (1-20) for 
ANN-1  
Ttsr_Kmn=Kmn(1:420); 
%"Tin_Kmn" is the normalized targets of the interpolation cases (21-23) 
for ANN-1  
Tin_Kmn=Kmn(421:483); 
%"Tex_Kmn" is the normalized targets of the extrapolation cases (24-26) 
for ANN-1  
Tex_Kmn=Kmn(483:546); 
%"Ttr_Kprimemn" is the normalized targets of the  training cases (1-20) 
for ANN-2  
Ttr_Kprimemn=Kprimemn(1:420); 
%"Tin_Kprimemn" is the normalized targets of the interpolation cases 
(21-23) for ANN-1  
Tin_Kprimemn=Kprimemn(421:483); 
%"Tex_Kprimemn" is the normalized targets of the extrapolation cases 
(24-26) for ANN-1  
Tex_Kprimemn=Kprimemn(483:546); 
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% Normalize process data between (-1 and 1)using premnmx function  
 p1=cs(:,1);p2=cs(:,2);p3=cs(:,3);p4=cs(:,4);p5=cs(:,5); 
 
[pn1,minp1,maxp1]=premnmx(p1);[pn2,minp2,maxp2]=premnmx(p2);[pn3,minp3,
maxp3]=premnmx(p3); 
 [pn4,minp4,maxp4]=premnmx(p4);[pn5,minp5,maxp5]=premnmx(p5); 
%Prepare inputs for ANN-1 and ANN-2 in HANN2 by using normalized  
%process data using (pn1, pn2, pn3,and Vfnt) 
% HANN1 models   
%"Ptr_Km" is the normalized inputs of the  training cases (1-20) for 
%ANN-1  
Ptr_Kmn=[pn1(1:420) pn2(1:420) vfnt(1:420)]'; 
%"Pin_Km" is the normalized inputs of interpolation cases (21-23)for 
%ANN-1  
Pin_Kmn=[pn1(421:483) pn2(421:483) vfnt(421:483)]'; 
%"Pex_Km" is the normalized inputs of extrapolation cases (24-26)for 
%ANN-1  
Pex_Kmn=[pn1(484:546) pn2(484:546) vfnt(484:546)]'; 
%"Ptr_Kprimem" is the normalized inputs of the  training cases (1-20) 
%for ANN-2  
Ptr_Kprimemn=[pn2(1:420) pn3(1:420) vfnt(1:420)]'; 
%"Pin_Kprimem" is the normalized inputs of interpolation cases (21-
%23)for ANN-2  
Pin_Kprimemn=[pn2(421:483) pn3(421:483) vfnt(421:483)]'; 
%"Pex_Kprimem" is the normalized inputs of extrapolation cases (24-
%26)for ANN-2  
Pex_Kprimemn=[pn2(484:546) pn3(484:546) vfnt(484:546)]'; 
 
 
 
 
 
 

B7- hann2b_data.m 
 
 
%This script file "hann2b_data" is used to prepare training,  
% interpolation and extrapolation cases for HANN2b model 
% Last update 7/15/03 
 
%Operating Parameters 
      pp=1033.82;        % pressure on the shell side, g/cm.cm 
      pf=1100;           % pressure at the entrance of the module(tube  
                         % side), g/cm.cm 
      pr=1070;           % pressure at the exit of the module,g/cm.cm 
      l =200;            % tube length, cm 
      r1=0.3;            % tube radius, cm 
      lp=2.5e-5;         % hydraulic permeability,  
                         % cc/[(cm.cm).min.(g/cm.cm)] 
      rm=1.39e-3;        % maximum reaction rate (cellobiose),  
                         % g/(cc.min) 
      rprimem=1.22e-3;   % maximum reaction rate (glucose)g/(cc.min) 
% calculate "pt" transmembrane pressure drop for all cases 
      pt=ones(21,26); 
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  for i=1:26 
      pti=(pf-pp)+(pr-pf)*z/l;   
      pt(:,i)=pti; 
  end 
 % Calculate  volumetric flow rates "v" at a distance z from the  
 % entrance of the reactor  
 % on the tube side 
    v=ones(21,26); 
   for i=1:26 
   vi=-(2.0*pi*r1*lp)*((pf-pp)*z+(pr-pf)*z.*z/l/2.0)+vf(i); 
   v(:,i)=vi; 
    end 
  % Calculation of Michaelis-Menten constants km and  and kprimem  for    
  %all cases (1-26)  
  % dc1 and dc3 are first derivatives of cellulose (tube) and glucose  
  %(tube) 
  % csm is  smoothed process data  for all cases  
  v=v(:);pt=pt(:);dc1=dc1';dc3=dc3'; 
  for i=1:546 
  Km(i)=(rm*cs(i,1))/((2*lp*pt(i)*cs(i,1))/(pi*r1)-
dc1(i)*v(i)/(pi*r1^2))-cs(i,1); 
  Kprimem(i)=(rprimem*cs(i,2))/(dc3(i)*v(i)/(pi*r1^2))-cs(i,2); 
  end 
% Normalize Km and  and Kprimem  for all cases (1-26)   between (-1 and  
% 1)using premnmx function 
      [Kmn,minKm,maxKm]=premnmx(Km); 
      [Kprimemn,minKprimem,maxKprimem]=premnmx(Kprimem); 
%Prepare targets for ANN-1 and ANN-2 in HANN2  using normalized Km and 
Kprimem. 
%"Ttr_Kmn" is the normalized targets of the  training cases (1-20) for 
%ANN-1  
Ttr_Kmn=Kmn(1:420); 
%"Tin_Kmn" is the normalized targets of the interpolation cases (21-23) 
%for ANN-1  
Tin_Kmn=Kmn(421:483); 
%"Tex_Kmn" is the normalized targets of the extrapolation cases (24-26) 
%for ANN-1  
Tex_Kmn=Kmn(483:546); 
%"Ttr_Kprimemn" is the normalized targets of the  training cases (1-20) 
%for ANN-2  
Ttr_Kprimemn=Kprimemn(1:420); 
%"Tin_Kprimemn" is the normalized targets of the interpolation cases 
(21-23) for ANN-1  
Tin_Kprimemn=Kprimemn(421:483); 
%"Tex_Kprimemn" is the normalized targets of the extrapolation cases 
%(24-26) for ANN-1  
Tex_Kprimemn=Kprimemn(483:546); 
 
%Prepare inputs for ANN-1 and ANN-2 in HANN2 by using normalized 
%smoothed process data using  
% The same normalized smoothed process data (pn1, pn2, pn3,and 
Vfnt)generated for BANN and  
% HANN1 models   
%"Ptr_Km" is the normalized inputs of the  training cases (1-20) for 
%ANN-1  
Ptr_Kmn=[pn1(1:420) pn2(1:420) vfnt(1:420)]'; 
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%"Pin_Km" is the normalized inputs of interpolation cases (21-23)for 
%ANN-1  
Pin_Kmn=[pn1(421:483) pn2(421:483) vfnt(421:483)]'; 
%"Pex_Km" is the normalized inputs of extrapolation cases (24-26)for 
%ANN-1  
Pex_Kmn=[pn1(484:546) pn2(484:546) vfnt(484:546)]'; 
%"Ptr_Kprimem" is the normalized inputs of the  training cases (1-20) 
%for ANN-2  
Ptr_Kprimemn=[pn2(1:420) pn3(1:420) vfnt(1:420)]'; 
%"Pin_Kprimem" is the normalized inputs of interpolation cases (21-
%23)for ANN-2  
Pin_Kprimemn=[pn2(421:483) pn3(421:483) vfnt(421:483)]'; 
%"Pex_Kprimem" is the normalized inputs of extrapolation cases (24-
%26)for ANN-2  
Pex_Kprimemn=[pn2(484:546) pn3(484:546) vfnt(484:546)]'; 
 
 
 

B8- hann2.m 
 
 
 
function cdot=hann2(z,c,flag,vf,Kmnet,Kprimemnet);       
%This function(hann2) contains the structure of the second  
% hybrid model which has the combination of the mass balance  
% equations (5 ODEs), simplified rate expressions, and ANN  
% In this model ANN (ANN-1 and ANN-2 ) are used to predict  
% Michaelis-Menten constants km and and kprimem 
% Last update 7/20/03 
 
%Operating Parameters 
      pp=1033.82;        % pressure on the shell side, g/cm.cm 
      pf=1100;           % pressure at the entrance of the module(tube  
                         % side), g/cm.cm 
      pr=1070;           % pressure at the exit of the module,g/cm.cm 
      l =200;            % tube length, cm 
      r1=0.3;            % tube radius, cm of the reactor, cc/min 
      lp=2.5e-5;         % hydraulic permeability,  
      rm=1.39e-3;        % maximum reaction rate (cellobiose),  
                         % g/(cc.min) 
      rprimem=1.22e-3;   % maximum reaction rate (glucose)g/(cc.min)  
      %  calculate pt transmembrane pressure drop 
      pt=(pf-pp)+(pr-pf)*z/l;   
      % calculate volumetric flow rates at a distance z from the  
      % entrance of  
      % the reactor on the tube side (v) 
      v=-(2.0*pi*r1*lp)*((pf-pp)*z+(pr-pf)*z^2/l/2.0)+vf;  
      % calculate  volumetric flow rates at a distance z from the  
      % entrance  
      % of the reactor on the shell side (vbar) 
     vbar= vf-v+1.0e-15; 
     dvdz=-(2.0d0*pi*r1*lp)*((pf-pp)+(pr-pf)*z/l); 
   
  %  Normalization parameters. 
      maxp1 = 0.0043; minp1 =  7.6182e-006;       % cellulose  
      maxp2 =0.0049; minp2 = 0;                   % cellobiose  "tube" 
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      maxp3 = 0.0015; minp3 = 0;                  % glucose "tube" 
      minvf=0.6; maxvf=1.3;                       % volumetric flowrate 
     minKm =0.0422; maxKm =0.1526;                % Michaelis-Menten           
     %constants(cellobiose) 
     minKprimem =0.1870; maxKprimem =0.6858;      % Michaelis-Menten  
     %constants (glucose) 
  % Normalization of reactant concentrations: cellulose 
(cn1),Cellobiose (cn2), and Glucose (cn3)  
  % in the tube side. 
   cn1= 2*(c(1)-minp1)/(maxp1-minp1) - 1;cn2 = 2*(c(2)-minp2)/(maxp2-
minp2)-1; 
   cn3 = 2*(c(3)-minp3)/(maxp3-minp3) - 1;vfn = 2*(vf-minvf)/(maxvf-
minvf)-1; 
    
% Kmnet is ANN to predict the normalized Michaelis-Menten constants Km. 
% Kprimemnet is ANN to predict the normalized Michaelis-Menten  
% constants Kprimemn. 
   Kmn=sim(Kmnet,[cn1;cn2;vfn]); 
   Kprimemn=sim(Kprimemnet,[cn2;cn3;vfn]);  
    
   % de-normalized Kmn and Kprimemn  
   Km= 0.5*(Kmn+1)*(maxKm-minKm) + minKm;  
   Kprimem= 0.5*(Kprimemn+1)*(maxKprimem-minKprimem) + minKprimem; 
   
  % Calculation of rb  using simplified  rate of formation of 
cellobiose  
    rb=rm*c(1)./(Km+c(1)); 
 %  Calculation of rg using simplified  rate of formation of glucose 
    rg=rprimem*c(2)/(Kprimem+c(2)); 
    
  % 5 ODEs to calculate the concentration profiles of cellulose  
  % c(1),cellobiose c(2) and glucose c(3) on the tube side. 
  % cellobiose c(4) and glucose c(5) on the shell side.  
      cdot=[(pi*r1^2/v)*(-rb-c(1)*dvdz/pi/r1^2);(pi*r1^2/v)*(-rg+rb-... 
      (c(2)*dvdz/pi/r1^2)-(2.0d0*lp*pt/r1)*c(2));(pi*r1^2/v)*... 
      (rg-(c(3)*dvdz/pi/r1^2)-(2.0d0*lp*pt/r1)*c(3));(pi*r1^2/vbar)*... 
      ((c(4)*dvdz/pi/r1^2)+(2.0*lp*pt/r1)*c(2));(pi*r1^2/vbar)... 
      *((c(5)*dvdz/pi/r1^2)+(2.0*lp*pt/r1)*c(3))]; 
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