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ABSTRACT 

Two Essays on Macro-Financial Linkages 

Jennifer Moreale 

In the following essays I examine the effects of two unique macro-financial conditions – tight credit 
and unconventional monetary policy – in an investment and a price discovery setting. I address two 
major questions from the macro-finance literature: (1) what are the states of nature in which excess 
returns are mostly affected? And, (2) does unconventional monetary policy influence the term 
structure of interest rates? 

Results from my first essay show a differential effect of the credit cycle on firms in the cross-
section. Firm’s excess returns are particularly affected in periods of tight credit conditions and the 
effect of the credit cycle is heterogeneous across firm types. Overall I concluded that tight credit 
conditions have a more severe impact on opaque firms and that opacity includes both smallness and 
access to credit sensitivity measures.  

In my second essay I find quantitative easing and days of macroeconomic announcements 
are not a significant driver of price discovery when examining the impact of unconventional 
monetary policy along the yield curve. I argue that the unexpected result is due to the presence of a 
time-varying risk premium component which significantly influenced the yield curve during the 
period of quantitative easing examined.  
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I. INTRODUCTION. 

In the following essays I examine the effects of two unique macro-financial conditions – tight credit 

and unconventional monetary policy – in an investment and a price discovery setting. My goal is to 

address two major questions from the macro-finance literature: (1) what are the states of nature in 

which excess returns are mostly affected? And, (2) does unconventional monetary policy influence 

the term structure of interest rates? 

In the first essay I investigate the role of the credit cycle in explaining observed risk premia 

within a regime switching framework. Specifically, I study the impact of credit cycles on excess 

returns to investigate potential increased sensitivities across credit regimes for portfolios of opaque 

firms. I expect the relationship between credit and excess returns across opaque firms to be best 

represented by a nonlinear model capturing the different effects of the credit cycle. Results show 

that i) tight credit conditions have a more severe impact on opaque firms and that ii) opacity 

includes both smallness and access to credit sensitivity measures. I contribute to the macro-finance 

literature by finding a differential effect of the credit cycle on firms in the cross-section. 

In the second essay I examine the impact of unconventional monetary policy on price 

discovery along the yield curve. The question addressed has important implications for the 

understanding of monetary policy effects on price discovery through the investor’s expectations 

channel. My study consists of two parts. First, I adopt Hasbrouck’s (1995) information share 

methodology to examine the cross-sectional and time-series price informational contribution of 

Treasury and Eurodollar futures contracts. This allows me to capture the change in relative 

information shares across the recent financial crisis. Second, I investigate the role of days with 

general and specific macroeconomic news announcements as drivers of relative information shares 

across maturities and quantitative easing periods. Contrary to my expectations, quantitative easing is 

not a significant driver of price discovery along the yield curve, and days of general macroeconomic 

news announcements do not seem to significantly matter. Given the unexpected results, I advance 

an alternative explanation related to the macro-finance term structure literature: futures prices 

contained a time-varying risk premium component which significantly influenced the yield curve 

beyond the impact of investor’s expectations.  
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II. CHAPTER 1. RETURNS OF OPAQUE FIRMS ACROSS THE CREDIT CYCLE
1

Abstract 

We examine the role of credit risk in explaining observed risk premia within a regime switching 

framework. Credit risk appears particularly important in opaque firms, suggesting these firms may 

have difficulty obtaining funds in poor states of nature, when they most need assistance. Through a 

multivariate regime-switching model, we examine the nonlinearity of stock returns across the credit 

cycle and find a differential effect of credit across firms of different opacity levels. Furthermore, we 

examine the time series behavior of the opacity index and its premium by computing a new factor, 

the Opaque-Minus-Transparent (OMT) factor. We conclude that the degree of opacity includes 

both smallness and access to credit sensitivity measures and it is an influential firm characteristic 

explaining the heterogeneous sensitivity of excess returns across the credit cycle.  

1 This essay is based on a paper coauthored with Harry J. Turtle. 
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1. Introduction 

We study the impact of credit cycles on excess returns to investigate heterogeneous effects 

across credit regimes on portfolios of opaque firms. Our contention is that opaque firms may be 

especially prone to asymmetric information problems that limit access to external sources of funds 

through the credit cycle. We hypothesize that the returns of opaque firms will be especially 

hampered in periods of low credit, and we empirically capture credit regimes within a multivariate 

Markov regime-switching model across opaque portfolios.  A Markov regime switching model 

captures changes in the investment environment, the volatility dynamics, and the nonlinear 

relationship between the credit cycle, the firm’s opacity level and an investor’s required excess 

returns.  

By opacity in our study we refer to the characteristic that influences access to funds and investor 

behavior. To give a concrete example, imagine a car manufacturing firm with glass walls and a 

pharmaceutical firm with concrete walls and no windows. Looking at the car firm, an investor can 

clearly see the output produced inside the firm and its manufacturing process. The valuation of the 

car firm becomes a straightforward task given the tangibility of the output and the knowledge of the 

production process and property, plant, and equipment. However, when the investor looks at the 

pharmaceutical firm he is unable to clearly understand the output and profitability of the firm’s 

projects. Valuing the pharmaceutical firm is a challenging task. We say that the pharmaceutical firm 

is highly opaque due to complexity in tangibility and valuation difficulties due to embedded real 

options.  

The concept of opacity can be applied to financial markets: the uncertainty concerning the 

valuation of opaque firms worsens in poor economic conditions leading investors to demand an 

opacity premium. Required premia should be highly dependent on the overall level of credit in the 

economy especially because opaque firms have limited access to external capital and recessions lead 
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to tighter credit conditions (Hatzius, Hooper, Mishkin, Schoenholtz and Watson, 2010; Davig and 

Hakkio, 2010; Boissay, Collard and Smets, 2013; Hubrich and Tetlow, 2014; Morley, 2015). 

Although opaque firms know their true value, they may have difficulty in conveying this 

information to investors or lenders. We investigate how this opacity premium varies according to 

credit conditions and we hypothesize that the credit cycle has heterogeneous effects on the returns 

of opaque firms. This concept is further supported by Hubrich and Tetlow (2014): 

“The importance of financial factors tends to be episodic in nature. In normal times, 
[…] the financing decision is in some sense subordinate to the real-side decisions of 
the firm; credit doesn’t matter. In other times, when the financial system is not 
operating normally, financial frictions become important as lending terms and 
standards tighten, making the interest rate a much less reliable metric of the cost of 
funds, broadly defined. During such times, which we will call stress events, credit can 
seem like it is the only thing that matters.” 

The credit cycle influences a firm’s financial decisions and stock returns and its dynamic effect 

should be especially noticeable across firms with different levels of asymmetric information, access 

to credit, and financial stability. In our study, these firm characteristics are captured by our opacity 

index. 

We argue that differences in firm opacity is a key factor that causes differences in required excess 

returns and in the sensitivity of firm value across credit conditions. We advance two related 

hypotheses: (a) opaque firms should be most sensitive to credit conditions and (b) opacity should 

subsume both smallness and access to credit sensitivity. We expect the relationship between credit 

and excess returns across opaque firms to be best represented by a nonlinear multivariate Markov 

regime-switching model capturing the different effects of the credit cycle. 

What is novel about our study is the connection between opacity, credit states, and required 

excess returns. Results clarify the factors behind the different sensitivity across opacity levels and are 

hoped to shed light on the effect of the credit cycle on investor portfolios and financial markets. By 

understanding the state of nature in which excess returns are high, we contribute to the macro-
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finance literature linking the equity premium to underlying economic conditions and to how 

monetary conditions are expected to differentially impact firms in the cross-section. Lastly, our 

results support the credit view where credit has a constructive role in determining monetary policy 

actions.  

In summary, we find opaque firm returns and the credit cycle are related. Opaque firms are 

affected the most across the credit cycle and opacity subsumes both a size and financial constraint 

effect. The remainder of the paper is organized as follows. Section 2 provides information on related 

literature and results. Section 3 outlines our empirical approach and hypotheses. Section 4 describes 

the data along with the computation of the opacity index and the identification of the credit cycle. 

Sections 5 analyzes portfolio returns across various firm characteristics. Section 6 introduces the 

Opaque-Minus-Transparent (OMT) factor and reports results from a linear analysis. The nonlinear 

model is described in Section 7 and the results are reported in Section 8. Robustness checks and 

summary of findings conclude the paper in Sections 9 and 10, respectively. 

 

2. Empirical background 

2.1 Literature on firm characteristics and stock returns  

Our study builds upon the work of Perez-Quiros and Timmermann (2000) who empirically 

investigate the asymmetry of returns across business cycle and firm size through a regime-switching 

model. During a recession with lower access to credit, small firms are affected more than large firms 

due to tighter and worsening credit conditions. This causes the stock returns of small firms to be 

more sensitive than those of large firms. Small firms are found to have higher unusual returns in 

periods of low credit in order to compensate for the higher risk incurred, as Fama and French 

(1989) initially argued.  
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Lamont, Polk and Saa-Requejo (2001) investigate a similar question but shift their hypothesis to 

the effect of firm financial constraints on stock returns. They suggest that financial constraints cause 

return asymmetries; they test this hypothesis by controlling for the size-effect and find that, unlike 

small firms, financially constrained firms earn lower returns than unconstrained firms and are not 

particularly exposed to credit conditions.  

The Lamont, Polk and Saa-Requejo (2001) results differ from Perez-Quiros and Timmermann 

(2000) and question the hypothesized risk and size effect underlying asset pricing and nonlinear 

returns. Perez-Quiros and Timmermann posit that during a recession – characterized by low credit – 

small firms are more sensitive to economic conditions and have greater returns than large firms. Bad 

credit conditions have a positive effect on small firm stock returns relative to large firms because of 

compensation for a higher risk. Small firms are typically financially constrained, young, 

uncollateralized, bank dependent firms (Gertler and Hubbard, 1988; Kashyap, Stein, and Wilcox, 

1993; Gertler and Gilchrist, 1994). Contrary to Perez-Quiros and Timmermann’s redults, Lamont, 

Polk and Saa-Requejo suggest that financially constrained firms – typically small firms – experience 

lower returns than financially sound firms – typically large firms. A low access to credit has a 

negative effect on small firm stock returns relative to large firms.  

Perez-Quiros and Timmermann (2000) focus on two concepts: i) small firms are on average 

more financially constrained than large firms, and ii) changing credit market conditions have 

heterogeneous effects across firm types (as observed in Kyiotaki and Moore, 1997; Bernanke and 

Gertler, 1989; Gertler and Gilchrist, 1994). In contrast, Lamont, Polk and Saa-Requejo (2001) rely 

on the idea that size and financial constraints are not perfectly correlated (Fazzari, Hubbard and 

Petersen, 1988; Gertler and Hubbard, 1988; Kashyap, Lamont and Stein, 1994). Whited and Wu 

(2006) and Livdan, Sapriza and Zhang (2009) revisit this return premium issue in relation to financial 

constraints and find that (1) more financially constrained firms have an annual return premium of 
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approximately 2.5% compared to less financially constrained firms (Whited and Wu); (2) the 

financial constraint effect dominates the size effect; (3) there is a relationship between financial 

constraint risk and the business cycle: cumulative stock returns of constrained firms either coincide 

or lead recessions and decline during expansions. Whited and Wu further argue that their analysis is 

more accurate than Lamont, Polk and Saa-Requejo (2001) because their financial constraints index is 

able to isolate firm characteristics.  

The Perez-Quiros and Timmermann (2000) and Lamont, Polk and Saa-Requejo (2001) findings 

are important because they contribute to issues in both finance and macroeconomics. From a 

macroeconomics perspective, Perez-Quiros and Timmermann suggest that monetary policy has a 

role through the credit channel. In contrast, Lamont, Polk and Saa-Requejo suggest that monetary 

policy, credit conditions and business cycles have nothing to do with the observed return premium. 

From a financial perspective, Perez-Quiros and Timmermann suggest a size and risk effect 

explanation for the asymmetry of returns, while Lamont, Polk and Saa-Requejo highlight the 

financial constraint effect. The two studies also differ in policy implications. Perez-Quiros and 

Timmermann find that small firms are more sensitive to monetary policy and credit conditions, 

while Lamont, Polk and Saa-Requejo suggests expansive monetary policy is ineffective in increasing 

the investment level in financially constrained firms.  

Although Perez-Quiros and Timmermann (2000) and Lamont, Polk and Saa-Requejo (2001) 

reach contrasting results, the two studies have an underlying common focus on the opacity variable 

addressed in our paper. Opaque firms are small (cf., Perez-Quiros and Timmermann), young firms 

with low earnings, small equity base, low dividends, intangible assets (Berger and Turtle, 2012) and 

limited access to external financing (cf., Lamont, Polk and Saa-Requejo).  

Perez-Quiros and Timmermann (2000) and Lamont, Polk and Saa-Requejo (2001) also 

acknowledge that credit conditions, access to credit, inability to borrow and dependence on bank 
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loans are related to firm performance and the characteristics examined. However, Perez-Quiros and 

Timmermann and Lamont, Polk and Saa-Requejo account for recessions by using proxies that 

capture stringent credit conditions, credit constraints, and inability to borrow. On the other hand, 

we directly incorporate credit and the opacity factor in our research. 

We account for both opacity and credit by directly adding the credit cycle in our analysis and 

focusing on portfolio returns for opaque firms across credit regimes in a multivariate setting. We 

posit that credit and opacity are missing elements in previous work and, when considered together, 

should explain the observed risk premia and nonlinearity of stock returns.  

2.2 Literature on the credit cycle 

There is a need to incorporate the credit level in macrofinancial research to examine the impact 

of policy on financial markets. Given credit spillovers on the real economy and its strong 

relationship with the financial sector, it is essential to further investigate and understand the direct 

effects of the credit cycle on portfolios, its impact on required excess returns, and the effectiveness 

of monetary policy channels. Credit from the banking sector facilitates investment, consumption and 

steady economic growth. In contrast, credit shocks have adverse effects on the real sector: excessive 

levels of credit have been identified as a primary source and a reliable predictor for the financial 

crisis (Gourinchas and Obstfeld, 2011); while restrictive levels of credit cause underinvestment and 

slow growth (Buncic and Melecky, 2013).  

Borio, Fulfine and Lowe (2001) find that recessions and expansions are characterized by 

different levels of credit: booms are associated with rapid credit growth, artificially low lending 

spreads, and large increases in equity prices; busts are characterized by credit contractions, increased 

spreads, and equity price declines. Gorton and He (2005) investigate the effect of bank competition 

on credit cycles in an asset pricing context. The authors find that different levels of credit affect firm 

performance and that stock returns behave differently across economic states. Fama and French 
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(1989) find evidence supporting a larger risk premium: when economic conditions are unfavorable, 

firms offer a higher return to encourage substitution between consumption and investment. Rey 

(2013) identifies excessive credit growth with a global financial cycle, as credit across economies is 

extremely volatile, procyclical, and negatively related to financial stress indicators.  

These are concepts of a growing literature drawing from Mishkin (1978), Bernanke (1983) and 

Gertler (1988) who were among the initial authors to recognize the importance of bank credit for 

financial markets. They gave rise to the so-called credit view – the notion that credit mattered more 

than the level of bank money and it constituted an enhancement mechanism in the economy 

(Bernanke and Gertler, 1995). Monetary policy influences firm investments through both the 

availability of credit and its impact on stock returns (Kashyap, Setin, and Wilcox, 1993; Thorbecke, 

1997).  

In a more recent study, Adrian and Shin (2008) stress that non-monetary sources of finances 

have become increasingly important and that financial markets have substantial impact on both 

credit creation and financial stability. Similarly, Schularick and Taylor (2009) investigate the role of 

credit as an influencing factor through an in-depth historical account of money and credit 

fluctuations. The authors find that the financial system generates economic instability through 

endogenous credit bubbles. Financial markets can in fact amplify economic shocks such as credit 

crunches through changes in the external finance premium (Morley, 2015). It is our hypothesis that 

this premium is especially severe for opaque firms which are more sensitive to a financial accelerator 

effect: higher borrowing costs arise due to an overall deterioration of financial conditions in a period 

of low credit (Davig and Hakkio, 2010). Our expectations are in line with Bougheas, Mizen, and 

Yalcin (2006) who find that the interaction of firm-specific characteristics with monetary policy lead 

to different market responses; small, risky and young firms are affected the most by monetary 

tightening when compared to the impact on larger, secure firms.  



10 

Credit influences investor sentiment. Berger and Turtle (2012) in fact suggest that investor 

sentiment has a stronger impact on opaque firms. Therefore, during periods of low credit, investors 

form dampened expectations about the future that then influence market prices. We hypothesize 

that firms most sensitive to investor sentiment will be most affected by the credit cycle and we 

expect opaque firms to be most constrained by the availability of funds especially in periods of low 

credit. Judge and Korzhenitskaya (2012) further motivates our research question. They find that the 

supply of credit is found to be inelastic and that specific type of firms face different prices and 

limited debt availability from lenders due to their characteristics. 

 

3. Empirical approach and hypotheses  

We adopt an approach that combines both an analysis across portfolio characteristics and a 

nonlinear model. We first run a set of linear models in order to capture the basic relationship 

between opacity and returns, and between credit, opacity and returns. The linear approach is 

supplemented by the construction of our Opaque-Minus-Transparent (OMT) factor which captures 

the time-series opacity premia. 

We further develop our nonlinear model and build upon the work of Perez-Quiros and 

Timmermann (2000) with a two state multivariate Markov regime-switching model. Our main 

analysis is based on three, five, or ten quantile portfolios that range from low to high levels of 

opacity. Portfolios are also constructed as a combination of either opacity and size or opacity and 

financial constraint level in order to examine the excess returns after controlling for additional 

characteristics.  

External funding and stock returns behave differently across the credit cycle and, in periods of 

low credit, lenders avoid riskier, opaque firms. Due to this dynamic impact, a nonlinear regime-

switching model is more appropriate to test our hypotheses and describe the relationship between 



11 

excess returns and credit levels while capturing the different credit regimes and their heterogeneous 

effect across opacity levels. Controlling for firm characteristics and credit-sensitive variables, we 

predict nonlinear returns across the credit cycle and firm opacity levels. These predictions lead us to 

the following hypotheses:  

Hypothesis 1 (H1): Returns to opaque firms are more sensitive to changes in credit conditions.  

Hypothesis 2 (H2): Opacity subsumes both smallness and access to credit sensitivity measures.  

Our first hypothesis is motivated by previous literature implying that opacity is a credit-sensitive 

portfolio characteristic affecting the relationship between returns and credit conditions. Opaque 

firms, mostly small and private firms, are able to finance their operations from external sources less 

easily than transparent firms and are more sensitive to investor sentiment (Berger and Turtle, 2012). 

The characteristics underlying opaque firms motivate our second hypothesis: opacity entails specific 

firm characteristics in connection to both a size and a financial constraint premium. We therefore 

expect the opacity premium to include both size and credit sensitivity premia. 

 

4. Data and descriptive statistics 

Credit is the residual component from running the natural logarithm of total bank credit of all 

commercial banks on a time trend. Total commercial banks credit is retrieved by the Federal Reserve 

Bank of St. Louis. Our approach captures periods of low and high credit in the economy. Our proxy 

for opacity is constructed from measures of firm size, age, financial constraints, research and 

development (R&D), book-to-market, asset tangibility and earnings management. In general, we 

expect opacity to increase with the following firm characteristics: smallness, youth, financial 

constraints, R&D, low tangibility, and earnings management (Baker and Wurgler, 2006; Sato, 2013; 

Berger and Turtle, 2012).  
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Monthly stock returns from 1973 to 2015 are from the Center for Research in Security Prices 

(CRSP) database. Firm level financial data is retrieved from COMPUSTAT. Variables are winsorized 

at the 1% and 99% level, and the sample contains only firm-year combinations with non-missing 

data used to compute the indices.2 Following Fama and French (1992), monthly returns from July t 

to June t+1 are matched with accounting data of fiscal year-end in t-1. Table 1 reports summary 

statistics for our dataset.  

[Insert Table 1 about here] 

The firms in the sample have an average age of 19 years, ranging from very young to established 

firms. The overall tangibility of firms– captured as R&D expenses over total assets – has a mean of 

0.086 ranging from an absent level of R&D to a much higher R&D expense to assets. The book-to-

market is computed as book value of common equity over the market cap and for the sample 

examined it reaches a maximum value of 18.366 and a sample mean of 0.71.  

4.1 The Credit Cycle  

Perez-Quiros and Timmermann (2000) refer to “credit conditions” and use macroeconomic proxies 

such as the one-month T-Bill rate and changes in money stock to capture unfavorable credit levels. 

Lamont, Polk and Saa-Requejo (2001) look at the degree of financial constraint within firms but do 

not consider the interaction between the economic setting and financial constraints. Considering 

credit data directly is critical given recent trends in the US credit level and the significant effect credit 

shocks have on the economy (Bernanke, 1983; Mishkin, 1978). Data gathered by the Federal 

Reserve Bank of St. Louis shows that since the early 1990s total outstanding consumer credit in the 

US grew by more than 225%, at an average rate of 11.25% per year. A similar trend is observed in 

total bank credit at all commercial banks.  

                                                           
2 Firm-year observations with total assets, property plant and equipment, stockholders’ equity, capital 
expenditures and R&D expenditures equal to or less than zero are also dropped from the sample. 
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We identify periods of high and low credit to capture the direct impacts of credit changes on the 

financial and macroeconomic setting. Several methods have been applied to capture the departure of 

credit from its equilibrium level. Mendoza and Torres (2008) identify credit booms and busts across 

emerging and industrial economies. The authors adopt a threshold method along with the standard 

Hodrick-Prescott filter to separate the cyclical and trend component of annual credit per capita. 

Credit booms (busts) are then defined as periods of large expansions (contractions) of credit 

compared to its long-run trend. Their use of annual data, however, limits the extent to which 

periods of high vs. low credit can be identified – Mendoza and Torres find that the United States 

experienced excessive credit only once, in 1999.3 

In this paper, the credit cycle is identified in two steps. We capture deviations from the credit 

level by detrending total credit through a linear regression on a time component. This choice is 

motivated by its simplicity in capturing the deviations from the credit level.4 Total credit is the series 

of monthly bank credit of all commercial banks from the Federal Reserve Bank of St. Louis dataset. 

The series is published by the Federal Reserve Bank on a weekly basis, every Friday, as part of the 

Assets and Liabilities of Commercial Banks report (H.8 release). The assets included in the series are 

securities, loans and leases in bank credit. The total commercial banks credit level through the 

sample period has a minimum of $610.84 billion to a maximum of $11,674.40 billion. We examine 

credit from the banking sector since previous literature finds that small, opaque firms rely mostly on 

private borrowing rather than debt from the open market. Figure 1 provides a graphical 

representation of the credit residuals obtained and shows the cyclical component of the total credit 

                                                           
3 We decide not to adopt the HP filter in our study given Hamilton’s (2017) recent criticism on this 
methodology. Hamilton finds that an HP filter fails to produce a stationary component and it adds spurious 
relations not fond in the original data.  
4 In unreported results we capture the credit cycle by adopting a Hodrick-Prescott filter methodology similar 
to Mendoza and Torres (2008). Results are qualitatively robust.  
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level along with NBER recessions. Recessions seem to coincide with negative or decreasing credit 

residuals.  

[Insert Figure 1 about here] 

We then capture high or low credit regimes through a multivariate Markov regime-switching 

model with either constant or time varying probabilities as adopted in Perez-Quiros and 

Timmermann (2000). Our procedure differs from Perez-Quiros and Timmermann in that the regime 

switching probabilities are functions of the deviations from a credit trend allowing the regimes to 

equally apply to all the opaque portfolios analyzed.  

Sources of funds beyond commercial banks credit – such as the financing through the shadow 

banking channel – might also be of importance in our context. However, the ease of access to other 

financing channels is still dependent on firm’s nature and characteristics. Opaque firms face a higher 

cost of financing diversification and have overall higher fixed financing costs. Furthermore, the 

presence of a shadow banking channel in the United States has developed parallel to the amount of 

commercial credit in the banking sector. The volume of financial intermediary sources is of similar 

magnitude to the amount of credit from traditional banking channels (Pozsar, Arian, Ashcraft and 

Boesky, 2010). For these reasons, we believe it is sufficient to concentrate our analysis on the credit 

cycle involving traditional banking channels and available commercial credit. The impact of shadow 

banking on the availability of credit to firms in the corss-section could be venue for further research.  

4.2 Opacity  

The “opacity premium” is observed when opaque assets offer returns in excess of transparent 

asset returns, even though the final expected payoff is the same (Sato, 2013). This is caused by the 

difficulty in determining the value of firms with short earning history, intangible assets, unstable 

dividends, and low profitability (Baker and Wurgler, 2006). Investors will demand a premium for 
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holding stocks of firms whose values are uncertain due to the lack of information on the firm 

profitability. 

While there is a common view concerning the definition of opacity, there is no agreement when 

it comes to its measurement and various proxies have been used in order to capture a firm’s degree 

of opacity. Taking into account the different sources of opacity in the construction of the index 

allows us to capture the overall credit-sensitive nature of the firm.  

To capture firm opacity, we follow the spirit of the Baker and Wurgler (2006) sentiment index to 

construct a firm-level opacity index. On June of every year we run a principal component analysis in 

order to construct and compute the yearly opacity index for each firm. The index is constructed as a 

linear combination of the first principal component of the following variables: property plant and 

equipment over total assets (tang), log of age, log of size (price times shares outstanding), book-to-

market (BEME), R&D expenditures over total assets (RD), and discretionary current accruals 

(DCAJones) computed as in Jones (1991).5 The variable choice is supported by previous literature 

and by the fact that opaque firms tend to be volatile, small, young and intangible (Berger and Turtle, 

2012).  

Considering opacity as an index composed of several firm characteristics captures the overall 

level of opacity rather than a single component. The latter would bias the analysis and results by 

placing weight only on the firm’s industry or product nature. We believe a principal component 

analysis to be the most appropriate methodology for the construction of the opacity index. This 

methodology examines the patterns across a set of variables and identifies linear relationships among 

them. Factor analysis is another methodology often adopted when exploring patterns across 

quantitative variables, but this procedure is most effective when explaining the covariance or 

                                                           
5 Refer to Section 9 of the paper for the additional indices used in order to run our robustness checks. 
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correlations of variables, rather than their total variance. Table 2 reports the computation of the 

opacity index for each year in the sample.  

[Insert Table 2 about here] 

Overall, we observe an increase in opacity with the following firm characteristics: 

intangibility, youth, smallness, financial constraints, and R&D. The effects of book-to-market and 

discretionary current accruals for respectively 40% and 44% of the years in the sample have the 

opposite sign we expected. This result can be explained by the dual nature of the two firm 

characteristics: book-to-market also captures the value intrinsic to the firm but not visible to the 

investor, and discretionary accruals captures opacity through earnings managements or through 

characteristics intrinsic to the firm. Because in the principal component analysis discretionary 

accruals explain the smallest portion of common variation among opaque firm characteristics 

examined, as a robustness check we compute the opacity index omitting this variable and find that 

excess returns patters across opaque portfolios are consistent with our original analysis. We 

therefore decide to include discretionary accruals even though the effect is not consistent because 

this procedure allows us to create a more comprehensive opacity measure.  

The same robustness check approach cannot be adopted to control for the change in sign of 

book-to-market. As a matter of fact, book-to-market explains a significant portion of the common 

variation among variables examined and omitting it would leave unexplained a critical portion of the 

common variation among opaque variables. Nonetheless, the book-to-market switch in sign can be 

explained through economic intuition. We expect a higher BEME to coincide with a lower firm’s 

opacity because a high book-to-market ratio captures firms with higher infrastructure capital (for 

example, manufacturing rather than consulting-type firms) and with higher expected future cash 

flows (Pontiff and Schall, 1998). On the other hand, it could also capture a portion of the actual 

value of the firm which is not perceived by the market due to a higher opacity, therefore causing a 
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higher BEME to coincide with a higher opacity level. The appearance of both positive and negative 

effect on the overall opacity index across the sample period can thus be justified. 

Overall, the average index and impact of the opaque characteristics reflect our expectations 

and can be represented as follows: 

                Average_OpacityIndex
t
 = − 0.42307Tang

𝑡
− 0.57265LogAge

𝑡
−  0.43702LogSize

𝑡
 

−0.05383BEME𝑡 + 0.40330RD𝑡 + 0.00071DCAJones
𝑡
.           (1) 

Firm age is computed as the log of the current age of the firm calculated since its first 

appearance on COMPUSTAT. Smaller firms are usually younger firms. We expect older firms to 

have lower excess returns than younger firms, as seen in Perez-Quiros and Timmermann and Fama 

and French. Size captures the size-effect that is central to Perez-Quiros and Timmermann (2000) 

argument we refer to. Following common practice, we capture size as price times shares 

outstanding.  

Hutton, Marcus and Tehranian (2009), Bhattacharya, Daouk and Welker (2003) and Hirshleifer, 

Hou and Teoh (2009) use earnings management as a firm-level measurement of opacity arguing for 

its direct connection to manager attempts to hide information from the public. Hutton, Marcus and 

Tehranian find that opacity is associated with a higher R-squared obtained when regressing 

individual stock returns on CRSP value-weighted market index and Fama-French value-weighted 

industry index. A higher R-squared indicates less disclosure of firm-specific information: the lack of 

public information should cause stock returns to mirror market indexes.  

Bhattacharya, Daouk and Welker (2003) identify three components of earnings management: 

loss avoidance, earnings smoothing, and earnings aggressiveness. Their measurement aims at 

capturing how little information lies in a firm’s reported earnings about its true performance and 

future value. Opacity is therefore a consequence of asymmetric information, which increases 

transaction costs and induces investors to require higher returns. 
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The modified Jones (1991) discretionary current accruals model is the most appropriate in 

detecting earnings management (Dechow, Sloan and Sweeney, 1995.) Jones captures discretionary 

accruals as the difference between total current accruals and nondiscretionary current accruals.6 

Another single proxy of opacity is research and development expenditures as a percentage of 

assets. R&D intensive firms are considered riskier, less tangible and highly opaque because the 

outcome of the firm’s investment decisions is unknown. Chan, Lakonishok and Sougiannis (2001) 

find that firms with a high R&D to equity market value ratio experience more volatile returns and 

larger excess returns. Furthermore, R&D intensive firms are usually small, young, do not pay 

dividends and are highly leveraged. Li (2011) confirmed these findings and connects Lamont, Polk 

and Saa-Requejo (2001) research questions to the level of firm R&D. Li captures a strong positive 

relationship between financial constraints and stock returns of R&D intensive firms, as well as 

between R&D investments and stock returns of more constrained firms. The positive R&D-returns 

relationship can be attributed to financial constraints because this relationship is stronger in more 

constrained firms. Li suggests that financial constraints drive the positive R&D-return relation, play 

a role in determining firm’s value, and have a significant impact on R&D-intensive firms’ risk and 

return. Lastly, earnings management and R&D capture opacity that arises because of the firm’s 

industry (such as high tech, pharmaceutical, service) and opacity that arises because of management 

decisions and accounting practices (such as earnings management, loss avoidance, earnings 

smoothing, and earnings aggressiveness). 

After computing a yearly opacity index we can investigate the time-series dynamics of firm 

opacity levels in the aggregate. Figure 2, Panel A shows the average opacity index over time.   

[Insert Figure 2 about here] 

                                                           
6 See Dechow, Sloan and Sweeney (1995) for a detailed description of the computation of the modified Jones 
(1991) discretionary accruals. 
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 Interestingly, the overall level of firm opacity experiences a significant spike around the early 

2000s, coinciding with the dot-com bubble experienced in the stock market. It is safe to say this 

spike is caused by the increased number of small, high R&D, intangible companies that 

characterized the stock market of that period. These are characteristics that increase the opacity of a 

firm, and the significant larger number of opaque firms listed on the stock market causes the average 

index to increase. Besides the increase in the early 2000s, the average opacity experiences several 

increases and decreases in its level.  

In order to refrain from placing too much weight on the firm’s stock price, we compute an 

alternative opacity index with size captured as a firm’s total current assets. The results of our analysis 

are robust despite the choice of the opacity index.7 Figure 2, Panel B represents the average yearly 

opacity index with size as total assets. The firm opacity level is overall more stable than the index 

including market cap. However, both indices capture the opacity increase in the early 2000s and a 

decrease in overall opacity thereafter. Because our results are robust despite the choice of the index, 

we choose to use the index with market cap in order to be in line with common procedure in the 

previous literature. 

 

5. Portfolio analysis  

The first task is to construct portfolios across the opacity index in order to investigate the 

difference in excess returns. We also construct portfolios across size and financial constraint levels 

in order to verify the presence of the size effect in Perez-Quiros and Timmermann (2000) and of the 

financial constraint effect in Lamont, Polk and Saa-Requejo (2001). Results support the presence of 

an opacity premium and the inclusion of smallness and access to credit sensitivity measures in the 

opacity index.  

                                                           
7 See section 9 for a discussion on robustness checks and procedures adopted. 
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5.1 Opaque Portfolios  

We sort firms in ascending order according to their opacity index and construct both tercile, 

quintile, and deciles portfolios from low to high opacity following Fama and French (1992). 

Portfolios are formed by ranking all available NYSE-AMEX-NASDAQ firms by the opacity index 

in each June of year t from 1973 to 2015. Table 3, Panel A reports summary statistics of firm 

characteristics for quantile portfolios constructed on the opacity index. Opaque firms are small, 

young, less tangible, more R&D intensive, have a higher book-to-market ratio, and experience the 

highest degree of earning management and riskier opportunities. For this reason, the index includes 

proxies of tangibility, available information, profitability, growth opportunity and earning 

management of a firm.  

[Insert Table 3 about here] 

On average, each portfolio has little over 200 firms per year, with the most opaque firms being 

the most abundant portfolio with 244 firms on average. As expected, the most opaque firms are the 

smallest, youngest, less tangible, and most R&D intensive firms. A higher book-to-market ratio 

indicates a higher risk as in Fama and French (1992, 2006), and a larger absolute value earnings 

management indicates uncertainty and asymmetric information (Bhattacharya, Daouk and Welker, 

2003).  

Table 3, Panels B and C report the equal-weighted average monthly returns of portfolios across 

opacity levels. For the quintile (decile) case reported in Table 2, Panel B the bottom 20% (10%) of 

firms are most transparent, while the top 20% (10%) includes the most opaque firms. In both the 

quintile and decile case, highly opaque firms experience higher average returns compared to 

transparent firms. The highest quintile (decile) experiences a 147 (196) basis points premium 

compared to the lowest quintile (decile). 
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As a robustness check, we constructed quintile portfolios based on one single characteristic: the 

ratio of R&D expenditures to total assets. We order firms in ascending order according to their 

R&D-to-assets ratio reported in dollar amounts. The bottom 20% collect firms with the lowest 

R&D investment and will be classified as the least opaque firms, the top 20% instead refer to highly 

opaque firms. Portfolios are constructed according to such classification. Unreported results show 

that the equal-weighted average monthly returns for the opaque portfolios constructed on R&D to 

total assets have the same pattern as the portfolios constructed on our composite index. R&D 

intensive, opaque firms have higher average returns than transparent firms.  

5.2 Size Portfolios 

The size-effect is central to Perez-Quiros and Timmermann (2000) argument and it is one of the 

most robust anomalies found in empirical asset pricing tests (Fama and French, 1989, 1992, 1993). 

We construct two and five quantile value-weighted size portfolios following Fama and French 

procedure where the size breakpoints for year t are the NYSE median and quintiles of market equity 

at the end of June of year t-1. We then sort all firms from NYSE, AMEX, and NASDAQ in 

ascending order according to their market cap. Size portfolios constructed on the market cap median 

are used to form portfolios on multiple firm characteristics. 

Table 4, Panels A and B report the average monthly returns for equal-weighted portfolios 

(median and quintile) taking into consideration the entire sample from January 1973 to December 

2015 available on CRSP. As in Fama and French (1992) we capture the negative relationship 

between size and returns of equal-weighted portfolios.  

[Insert Table 4 about here] 
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5.3 Financially Constrained Portfolios 

Given that opacity entails limited access to external sources of funds, controlling for financial 

constraints characteristics could be of significance in our study. As measures of a firm’s financial 

constraint level, we adopt Whited and Wu’s (2006) WW index and Kaplan and Kingales’ (1997) KZ 

index.  

We sort firms in ascending order according to either their WW or KZ index and we construct 

median portfolios from low to high financial constraints following Fama and French’s (1992) 

procedure. Table 4, Panels C and D report the equal-weighted average monthly returns of median 

portfolios across financial constraint levels. We chose the median cutoff for the construction of 

combination portfolios following Fama and French’s procedure.  

Average returns for annually rebalanced equal-weighted portfolios are formed by ranking all 

available NYSE-AMEX-NASDAQ firms by the respective financially constraint index in each June 

of year t from January 1973 to December 2015. The financial constraint breakpoint for year t for 

portfolios in Panel C is the NYSE-AMEX-NASDAQ median of the WW index at the end of June t-

1; Panel D reports the portfolios constructed over the KZ index.  

 Financially constrained firms experience higher average returns compared to firms less 

constrained no matter the financial constraint index used in the portfolio construction. This result is 

in line with Perez-Quiros and Timmermann’s (2000) argument and in contrast with Lamont, Polk 

and Saa-Requejo’s (2001) findings that financially constrained firms earn lower returns than 

unconstrained firms and are not particularly exposed to credit conditions. 

5.4 Combination Portfolios 

5.4.1 Portfolios Constructed as a Combination of Opacity Level and Size 

 Opaque firms are mostly small firms. We control for the size effect by forming portfolios on 

both firm’s size (price times shares outstanding) and opacity levels. Portfolio construction follows 
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Fama and French (1992) procedure. The size breakpoint for year t is the NYSE 50th percentile at the 

end of June t-1. The opacity index breakpoint for year t is the NYSE median or 30th and 70th 

percentiles of the index at the end of June t-1. Table 5, Panel A reports the equal weighted average 

returns for the annually rebalanced combination portfolios on opacity and size. The pattern of 

portfolio returns suggests that overall opacity is most the most crucial characteristic of a firm even 

when size is kept constant. Across firms of the same size, the opaque firms will experience the 

highest excess returns, while the transparent firms will experience the lowest excess returns. Opacity 

seems to have a more significant impact than size.  

[Insert Table 5 about here] 

We also construct portfolios on size and opacity, where the size factor in the opacity index is 

captured through total current assets. This avoids accounting for size – as market cap – twice and it 

highlights even more the impact of opacity. Return patters are robust no matter which size proxy is 

adopted.  

Another approach used to avoid accounting for size twice would be to create an opacity index 

which excludes the size characteristic. Despite the straightforward solution, not considering size in 

the index significantly skews the opacity measurement because it ignores one of its major 

characteristics of what it is considered to be an opaque firm.8  

5.4.2 Portfolios Constructed as a Combination of Opacity and Financial Constraint Levels 

 We construct portfolios as a combination of opacity and financial constraint levels in order to 

capture the relative impact of both firm characteristics on firm returns. Combination portfolios are 

formed as the intersection of median portfolios formed on the KZ financial constraint index and 

tercile portfolios formed on the opacity index. Portfolio construction follows Fama and French 

                                                           
8 The analysis using an index without size, not reported in the paper, significantly changes the return patterns 
and non-consistent results across different models. Furthermore, ignoring size from the index departs from 
the overall research question of our paper. 
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(1992) procedure. The KZ index breakpoint for year t is the NYSE-AMEX-NASDAQ 50th 

percentile at the end of June t-1. The opacity breakpoint for year t is the NYSE-AMEX-NASDAQ 

median or the 30th and 70th percentiles at the end of June t-1. Table 5, Panel B reports the equal 

weighted average returns for the annually rebalanced combination portfolios on opacity and 

financial constraint levels. The opacity and KZ indices have a correlation coefficient of 0.35, 

showing that they are positively related but they do not capture the same firm characteristics given 

the rather low correlation. Considering both characteristics therefore will not count for the same 

effect twice. 

 The pattern of portfolio returns shows that opaque, financially constrained portfolios experience 

the highest excess returns. Unconstrained firms experience an opacity premium of about 91 basis 

points, while constrained firms experience an opacity premium of about 126 basis points. However, 

holding opacity constant, firms experience only 52 basis points in financial constraint premium.  

 The degree of opacity seems to be the most influential characteristic of a firm and it includes 

both smallness and access to credit sensitivity measures.  

 

6. Opaque-Minus-Transparent Factor  

 In order to capture the premia related to opacity, we calculate an opacity factor, the OMT 

(Opaque-Minus-Transparent) factor, as the difference between the most opaque and the most 

transparent portfolio returns. The opacity breakpoints were the 10th and 90th percentiles of the 

opacity index at the end of June t-1. Figure 3 shows the OMT factor over time.  

[Insert Figure 3 about here] 
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The series has high volatility with the largest swings occurring between the years 2000 and 2001 

corresponding to the stock market dot-com bubble. The time series dynamics follows a pattern 

similar to the opacity index, once more highlighting the premium implied by a firm’s opacity level.9 

6.1 Linear analysis and results 

In order to examine the effect of opacity on excess returns and have a first test of our 

hypotheses, we run ordinary least square regressions across firms. Table 6 reports the results for six 

modifications of the following panel linear regression: 

 ri,t = β
0
+ β

1
𝑀𝐾𝑇t + β

2
SMBt + β

3
HMLt + β

4
OMTt +β

5
Dummy

t
+ β

6
CreditGrowtht-1           (2) 

where monthly excess returns, rit, are calculated as the difference between firm’s monthly returns 

and the one-month Treasury Bill rate; OMT is the opacity factor; Dummy captures periods of low 

credit and it equals 1 in periods of credit level below the trend, and 0 otherwise; CreditGrowth is the 

growth in credit residuals from regressing the natural logarithm of total bank credit of all 

commercial banks on a time trend. 

[Insert Table 6 about here] 

 The OMT factor has a positive, significant impact on excess returns showing that as the opacity 

premium increases, the firm’s excess returns increase as well.10 The standardized regressions of Table 

6 shows that a one standard deviation increase in the OMT factor leads to 0.085-0.086 standard 

deviations increases in excess returns. Results from Models 2 and 4 show that being in a period of 

credit levels below the trend negatively affects the returns of all firms. However results from Models 

3 and 5 show that a decrease in credit positively impacts firm’s returns: one standard deviation 

decrease in credit positively impacts the excess returns by 0.011 to 0.016 standard deviations. These 

                                                           
9 The dynamics of the OMT factor are robust when the premium is calculated using the opacity index with 
size as total current assets. 
10 Results are consistent when calculating the OMT factor using different percentile breakpoints, 30th and 
70th. 
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might seem contrasting results, but a more careful interpretation suggests differently. Returns are 

negatively affected in a period where credit is low due to the overall stringent economic conditions 

and, at the same time, a tightening of credit reflects a riskier condition that needs to be compensated 

with higher excess returns.  

 We run a similar analysis across opaque portfolios to explore the underlying interpretation and 

the effect of credit on excess returns across opacity levels. Table 7 reports the results for the 

following three models across opaque portfolio quintiles: 

𝑟t
𝑖 = β

0
𝑖 + β

1
𝑖 CreditGrowth𝑡−1 +  β

2
𝑖 MKTt + β

3
𝑖 SMBt+ β

4
𝑖 HMLt                          (3) 

𝑟t
𝑖= β

0
𝑖 + β

1
𝑖 Dummy

𝑡
+  β

2
𝑖 CreditGrowth𝑡 + β

3
𝑖 Dummy

𝑡
∗ CreditGrowth𝑡 + β

4
𝑖 MKT𝑡−1 +  β

5
𝑖 SMBt + β

6
𝑖 HMLt  (4) 

𝑟t
𝑖= β

0
𝑖 + β

1
𝑖 Dummy

𝑡
+  β

2
𝑖 CreditGrowth𝑡 + β

3
𝑖 Dummy

𝑡
∗ CreditGrowth𝑡 + β

4
𝑖 MKT𝑡−1 +  β

5
𝑖 HMLt    (5) 

for i={1,2,3,4,5} where rt is excess returns on the portfolio measured as the difference between 

portfolio return and the one-month Treasury Bill rate; Dummy is a dummy variable capturing periods 

of low credit; CreditGrowth is the growth in credit residuals from regressing the natural logarithm of 

total bank credit of all commercial banks on a time trend; and Dummy*CreditGrowth is the interaction 

variable between being in a low credit state and credit growth.  

[Insert Table 7 about here] 

Results in Table 7, Panel A confirm that a tightening of credit has a positive impact on excess 

returns. The positive effect is significantly greater for portfolios of opaque firm, leading to an 

increase of 0.03 standard deviations. The market, size and value factor all significantly impact excess 

returns across opacity level. The size factor has a stronger impact for opaque firm returns, and its 

effect decreases as opacity decreases. The inverse is true for the market factor, where it is most 

important for transparent firms.  

Panel B takes into account for the interaction term of the credit state and its growth. Opaque 

firms are significantly, negatively affected by the interaction variable to a greater degree than 
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transparent firms. Opaque and transparent firms are affected differently. A further decrease in credit 

in a period of tight conditions will lead to higher excess returns for opaque firms relative to 

transparent firms. The effect of overall credit conditions, captured by Dummy, and of a change in 

credit growth have consistent effect across portfolios, but the impact is always greater in absolute 

value for opaque firms.  Both Panels A and B report a lower R-squared for opaque portfolios, 

indicating that there are additional elements driving their excess returns, while the R-squared for 

transparent firms is, as expected, rather high.  

 In Panel C we omit the size factor in order to investigate the effect on excess returns driven by 

size. This decision is motivated by the construction of the opacity index, which includes a size 

characteristic. The impact of credit growth and the interaction term is greater in magnitude for 

opaque portfolios compared to the results of Panel B, however the impact of credit conditions on 

transparent firms decreases when compared to the previous analysis with the inclusion of size. 

Lastly, the R-squared are lower across all portfolios. We can safely say that size is not the major 

driver of excess returns, but it does play a role because it is one of the factors determining the level 

of opacity of a firm.  

Testing our hypotheses by running ordinary least square regressions on all firm-year 

observations provides preliminary results that are easy to interpret and in line with our predictions. 

However, linear analysis cannot fully explain the dynamics behind the excess returns of opaque 

portfolios. Given the nonlinear nature of our research question, a linear analysis might be 

overlooking some dynamic patterns across portfolios and credit cycle.  
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7. The Nonlinear Model  

A decrease in the amount of credit available influences the behavior of private lenders who 

become less likely to lend to riskier borrowers. Consequently, because opaque firms are riskier than 

transparent firms, opaque firms will be more sensitive to the credit cycle.  

The relationship between credit and the returns of opaque firms is not necessarily linear because 

periods of low credit are more critical and pervasive than periods of excess credit. Economic activity 

and investment are in fact significantly limited in the former case (Davig and Hakkio, 2010). We 

expect the relationship between credit and excess returns across opaque portfolios to be best 

represented by a nonlinear model capturing both the different effects of the credit cycle and its 

linkages with opacity and required excess returns.  

We adopt a multivariate Markov switching framework to account for the different credit regimes 

of the model (low credit state vs. high credit state). Like most macroeconomic and financial series, 

credit is characterized by changes in level. The economy could go from a period of high credit to a 

period of low credit, but the economy would not be able to know the specific credit regime at any 

given time. A Markov switching model allows us to examine the behavior of variables across states, 

estimate the probability of being in a high or low credit state, and derive the likelihood of a 

transition from one state to the other. The model will therefore capture nonlinear time-series 

dynamic patterns characterized by multiple structures and allow for the parameters to differ across 

latent states. The states are unobservable and follow a first order Markov chain with time varying 

transition probabilities. Estimated probabilities are determined only by the data, are not enforced on 

the results, and they indicate the likelihood, not the certainty, of being in a particular state. 

In our study credit is the main determinant of the latent states. Following Perez-Quiros and 

Timmermann (2000), Hamilton (1989), and Gray (1996) we adopt a model with time-varying 

transition probabilities. However, we choose to run multivariate regime switching models in order to 
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admit multiple states of the world that equally apply to all portfolios. The coefficients in our model 

vary across states and are estimated through maximum-likelihood.11 Based on the constant 

probability model outlined in Perlin (2015), the final log likelihood function used in the estimation 

of our model after obtaining the time-varying state transition probabilities is the following:  

𝑙𝑛𝐿 = ∑ 𝑙𝑛 ∑ 𝑙𝑛
2

𝑗=1

𝑇

𝑡=1
(𝑓(𝑟𝑖,𝑡|𝑆𝑖,𝑡 = 𝑗, Θ))𝑃𝑟(𝑆𝑖,𝑡 = 𝑗|𝜓𝑡) 

where (𝑓(𝑟𝑖,𝑡|𝑆𝑖,𝑡 = 𝑗, Θ)) is the likelihood function for state j dependent on a set of parameters Θ, 

𝑃𝑟(𝑆𝑖,𝑡 = 𝑗|𝜓𝑡) is the probability for each state and 𝜓𝑡 is the matrix of available information at time 

t. The overall likelihood function is the weighted average of the likelihood function in each state. 

Our general empirical model admits time varying transition probabilities related to the cyclical 

component of total bank credit of all commercial banks, CreditResiduals. Our general multivariate 

model, Model A, is a can be written as: 

MODEL A: 

𝑟t
𝑖 = β

0,𝑠𝑡
𝑖 + β

1𝑖,𝑠𝑡
𝑖 1moTBill𝑡−1 +  β
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 + β

3,st
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𝑖                  (6) 
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)]                  (7) 
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𝑖= β

0
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𝑖 = 2, Y𝑡−1) = ф[∏

2𝑖
+ ∏

3𝑖
(CreditResiduals

𝑡−1
)]                  (8) 

 

where 𝑟𝑖,𝑡 is the excess return of the ith opaque portfolio quintiles; St = {1,2}, pit is the probability of 

being in State 1 at time t given that we were in State 1 at time t-1; qit is the probability of being in 

State 2 at time t given that we were in State 2 at time t-1; ф is the cumulative density function under 

the normality assumption; and εi
t ~ N(0, σ2

i0,st). The different economic and regime conditions are 

captured by allowing for both the coefficients and the variance of the model to vary across states.  

                                                           
11 We gratefully acknowledge Matlab code from Ding (2012) and Perlin (2015) to estimate a Markov regime switching 
model through maximum likelihood for both constant and time varying transition probabilities.  
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The choice of specific control variables is motivated by previous work. The three-month 

Treasury bill (3moTbill) captures investors’ expectations on future economic activity. The default 

premium (Def) is the difference between yields on BAA- and AAA-rated corporate bonds capturing 

the quality spread. This variable captures financial distress of firms in period of economic downturn. 

A higher risk of default will be compensated by higher excess returns. The computation of dividend 

yields (DividendYield) follows Fama and French’s (1988) dividend to price ratios, where firm’s 

dividends are the total dividends paid from July of t-1 to June of t. 

We apply restrictions to our general model in order to create two narrower specifications: (i) the 

time-varying transition probabilities are driven only by a constant and credit enters the model as an 

explanatory variable (Model B); (ii) the state transition probabilities are constant and credit enters the 

model as an explanatory variable (Model C). The state transition probabilities for Models B and C 

are respectively: 

MODEL B: 

 𝑝𝑖𝑡 = P(𝑆𝑖,𝑡 = 1|𝑆𝑖,𝑡−1 = 1, 𝑌𝑡−1) = ф[∏
0𝑖,𝑠𝑡

]                      (9) 

 𝑞𝑖𝑡 = 𝑃(𝑆𝑖,𝑡 = 2|𝑆𝑖,𝑡−1 = 2, 𝑌𝑡−1) = ф[∏
1𝑖,𝑠𝑡

]                        (10) 

 
 
 

MODEL C: 

𝑝𝑖 = P(𝑆𝑖,𝑡 = 1|𝑆𝑖,𝑡−1 = 1, 𝑌𝑡−1) = ф[∏
0𝑖

]               (11) 

𝑞𝑖 = 𝑃(𝑆𝑖,𝑡 = 2|𝑆𝑖,𝑡−1 = 2, 𝑌𝑡−1) = ф[∏
0𝑖

]                (12) 

 

where ф are the cumulative density function under the normality assumption.  

The time-varying component in Models A and B takes into account the impact of credit on the 

probability of switching regimes. In Model B the state transition probability are time varying and 

determined by a constant, while in Model C the state transition probabilities are not time variant 

such that 𝑝𝑖𝑡 =  𝑝𝑖 and 𝑞𝑖𝑡 =  𝑞𝑖 . Overall, the three models allow (1) the regime state to determine 
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the transition between the states of the world, (2) the parameters to change with shifts in regimes 

over time, and (3) the excess returns to be ruled by two distributions with distinct means, variances 

and intercepts. Lastly, the regime state determines the transition between the two regimes.  

 

8. Nonlinear Results  

As an initial analysis we run the general multivariate model, Model A, where a regime switching 

model is estimated across opaque quintile portfolios. A multivariate analysis simultaneously takes 

into account the information provided by each portfolio in order to estimate the likelihood and the 

presence of different regimes. A univariate approach is not able to consistently capture separate 

regimes when each portfolio is analyzed individually.12 The univariate model in fact estimates the 

state probability for each portfolio determining the likelihood of State 1 or State 2 using only 

information from the individual portfolio analyzed. For this reason a univariate analysis is too 

restrictive when examining the effect of credit across all portfolios. 

Table 8 reports the results for Model A across opaque portfolio quintiles.13 The likelihood ratio 

test confirms significantly different parameter estimates across the two states. The duration of 

regimes is short: slightly less than three months for State 1 and slightly more than two months for 

State 2. Both the constant and the credit cycle in the transition probability equation have a negative 

impact in State 2.  

[Insert Table 8 about here] 

When compared to the transparent portfolio, the opaque portfolio has overall higher variances 

and all parameter estimates are larger in absolute value in both states, with the exception of the 

                                                           
12 In unreported results, through a likelihood ratio test of the univariate model we fail to reject the null that 
the parameter estimates across regimes are significantly different.  This was an expected results given the 
univariate component of the analysis and the nonlinear, multivariate component of our research question. 
13 We obtain consistent results across opaque portfolio deciles.  
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default premium. The qualitative impact of parameters are consistent across quintile portfolio. 

However, opaque firms seem to have a higher sensitivity than transparent firms. Opaque firms have 

a positive, larger intercept in State 1 and a negative, smaller intercept in State 2. The effect of the 

one-month T-bill rate has a negative impact in State 1 and a positive impact in State 2 across all 

portfolios.  

A multivariate analysis across too many portfolios causes the model to be less precise due to the 

simultaneous estimation of a very large number of parameters – 57 parameters in the quintile case. A 

bivariate model that simultaneously considers only the highest and the lowest opaque portfolios 

estimates a lower number of parameters allowing for more precision in the transition probability 

estimation. Table 9 reports the bivariate version of two regime switching models (Models A, B and 

C) analyzed across two decile portfolios, each having the lowest or the highest opacity index level. 

Parameter estimates are significantly different across states for all three models, with a likelihood 

ratio test statistical significance at the 2%, 3%, and 2% levels, respectively.  

[Insert Table 9 about here] 

The state transition probabilities in Table 9, Panel A are ruled by a constant and by the credit 

cycle: State 1 has a positive, larger intercept impact and a positive credit cycle impact, while State 2 

has negative intercept and credit cycle impacts. The State 2 is once again the low mean, high 

variance, shorter duration state. State 1 lasts slightly more than 9 months, while State 2 lasts slightly 

more than 4 months. Figure 4 plots the State 2 probabilities estimated from Model A along with the 

recession periods determined ex-post by the NBER. The sate probabilities at time t are conditional 

on the information at time t-1.14 

[Insert Figure 4 about here] 

                                                           
14 In order to verify that the model is capturing states of the world with different credit conditions rather than 
the business cycle, we graph the State 2 probabilities for Model B, where credit enters the model as an 
independent variable. Results are robust with Model A transition probabilities depicted in Figure 4.  
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A regime switching model estimates the characteristics and likelihood of each state, it does not 

estimate with certainty the identity of each regime. In order to identify the low credit and the high 

credit regime there is the need to interpret the characteristics of each state through economic theory 

and intuition. A low credit state has a higher uncertainty and it usually occurs around recessionary 

periods and economic downturns. Figure 4 shows that each NBER recession coincides with a high 

probability of being in State 2. Figure 5 shows the State 2 probabilities along with the Chicago Fed 

National Activity Index (CFNAI). The CFNAI represents the level of monthly economic activity 

and it is computed as a combination of eighty-five macroeconomic series. A low CFNAI value 

corresponds to low economic activity. Periods of high State 2 probabilities coincide with periods of 

low CFNAI values; State 2 can be interpreted as the state when the credit level is most likely to be 

low.  

[Insert Figures 5 about here] 

Lastly, Figure 6 further highlights the identification of State 2 as the low credit regime. The 

figure plots the State 2 probabilities along with the credit spread computed as the difference between 

AAA corporate bond yield and the 10-year Treasury yield. The credit spread is often regarded as a 

proxy for credit conditions, credit risk, and external finance premium. Peaks of high credit spread 

correspond to periods having a high State 2 probability.  

[Insert Figures 6 about here] 

After analyzing the relation between the estimated State 2 probabilities and the NBER 

recessions, the CFNAI, and the credit spread, we can interpret State 2 as being the regime in our 

model when credit level is most likely to be low. Along with our hypothesis, results show that the 

opaque portfolio has a significantly higher variance in State 2 when compared to the transparent 

portfolio. The higher variance can be interpreted as a decrease of stability in the state, a 

characteristic common to periods of low credit. 
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Even though a univariate model is limiting because it analyzes each portfolio individually, it 

allows us to examine the probability dynamics across opaque portfolio quantiles. Figure 7 reports 

the smoothed state probabilities for the most transparent and most opaque decile portfolios. The 

two portfolios have similar probabilities, however the opaque portfolios have more pronounced and 

persistent State 2 probabilities. The figure highlights the difference in behavior across regimes due to 

different levels of opacity. Transparent firms, on the other hand, have lower probability of being in 

State 2, even if this probability is recurring more often compared to opaque firm’s state probabilities.  

[Insert Figure 7 about here] 

Figure 8 report the time-series of the probability of remaining in the current state – either high 

or low credit regime – for transparent and opaque portfolios deciles. Whereas both transparent and 

opaque portfolios have a rather constant and high tendency of remaining in State 1 (the high credit 

state), opaque portfolios have a much higher probability of staying in State 2. This time-series 

variation further justifies the adoption of a regime switching model with time-varying transition 

probability. The State 2 transition probabilities for both firms seem to mirror each other: a higher 

probability of staying in State 2 for an opaque firms corresponds to a lower probability of staying in 

State 2 for transparent firms. This further highlights the heterogeneous effect of credit across 

opacity levels.  

 [Insert Figure 8 about here] 

Results in Panel A, Table 9 show that parameters are larger in absolute value for the highest 

portfolio decile, thus capturing the hypothesized higher sensitivity of opaque portfolios. The 

intercept for the opaque portfolio switches sign across states, going from negative to positive from 

State 1 to State 2. The one-month T-bill negatively affects the opaque portfolio in both states, but 

only in State 1 for transparent firms. Overall, for opaque portfolios the impact is greater in the low 
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credit state and estimates are larger in absolute value due to credit’s heterogeneous effects on excess 

returns. 

[Insert Table 9 about here] 

Panel B reports results for the bivariate model with the credit cycle entering the model as an 

explanatory variable and the transition probability being driven by a constant. Overall the results are 

consistent. The main punchline of Panel B is the interpretation of the credit variable across 

portfolios and states. State 2 is the high variance state, which can be identified with the low credit 

regime. The opaque portfolio is negatively affected by the credit level in State 2 but the impact is 

significantly smaller than State 1, the high credit state; the transparent portfolio are positively 

impacted in both states. The magnitude of the credit cycle estimate is larger for the opaque portfolio 

in both states when compared to the transparent portfolio parameters. The transition probability 

constant parameter is positive in State 1 but negative in State 2.  

Panel C reports the results of the original model with a constant transition probability and with 

the credit cycle entering as an explanatory variable. Once again, we fail to reject the null of different 

estimates across regimes. State 2 is once again the shorter regime with higher variance. The 

transition probability is kept constant, but the impact across states is still greater in absolute value 

for opaque portfolios. Credit negatively impacts opaque firms during State 2, having an opposite 

effect when compared to the impact in State 1. Opaque firms experience a larger variance both in 

the cross-section and across states of the world. Despite the results are in line with our previous 

models and hypotheses, we believe keeping the transition probability constant is a limiting 

assumption that cannot be fully justified in a macroeconomic context. Allowing the transition 

probability to be time-varying is essential in identifying significantly different regimes and testing our 

hypotheses. 

Results from Table 9 can be summarized as follows:  
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Result 1. The excess returns of opaque portfolios have a higher sensitivity to credit conditions. 

Result 2. State 2 is the high variance state and through economic intuition it can be interpreted as 

the low credit regime. State 2 is the regime with the shortest duration. 

Result 3. Credit has a larger impact on opaque portfolios in State 2. 

Result 4. An increase in the one-month Treasury bill rate negatively affects the excess returns of all 

portfolios in State 1, but positively in State 2.  

Overall, we found a differential sensitivity to credit conditions across firms of different opacity 

level and an empirical support for our hypotheses. The two major findings are that i) firm’s excess 

returns are more sensitive to unfavorable credit levels captured in State 2 (the low mean, high 

variance state) and that ii) opaque portfolios are more sensitive throughout the analysis when 

compared to transparent portfolios.  

 

9. Robustness Analysis  

We run robustness analyses using either (i) three alternative opacity indices, (ii) an alternative 

sorting procedure, (iii) an alternative credit variable, (iv) an alternative regime switching model 

specification, or (v) leverage as a control variable. 

9.1. Alternative computations of the opacity indices  

In order to refrain from placing too much weight on the price of a firm’s stock we construct the 

yearly opacity index with size computed as total current assets. Total current assets in fact captures 

of a firm value of assets such as cash, accounts receivable, inventory and supplies that can be 

converted into cash in a one-year time frame. Total current assets is therefore a different proxy for a 

firm’s size. The excess return patterns across different levels of the new opacity index reflect our 

original results: the most opaque firms experience higher excess returns compared to the most 
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transparent firms. Furthermore, the regime switching model results are consistent and qualitative 

equal to our original analysis even if we create portfolios based on the new opacity index.  

We also constructed a single index for the entire dataset by running a principal component 

analysis simultaneously considering data from June of every year. Results are qualitatively consistent 

with our original analysis. However, we believe a yearly construction of the index is more accurate 

and it is of use when explaining the time-series patterns of the opacity premium. Furthermore, a 

principal component analysis leads to most accurate results when analyzing a cross-sectional, rather 

than a panel, dataset. 

Lastly, we constructed an opacity index without including size. The results are significantly 

different and non-consistent across different models. Ignoring size from the index departs from the 

overall research question of our paper. We believe that controlling for the size factor in our linear 

analysis and creating combination portfolios across size and opacity sufficiently highlights the 

opacity factors rather than size alone. We believe it is also necessary to include size in our analysis 

because size is correlated to public debt market access, a critical concept connected to opacity and 

our research question (Leary, 2009). 

9.2. An alternative sorting procedure for portfolios 

In our original analysis considered all available firms in order to take into account for the widest 

range of firm types. We sorted all available NYSE-AMEX-NASDAQ firms in ascending order 

according to their opacity index and constructed both quintile and deciles portfolios in each June of 

year t. As a robustness check, we follow Fama and French (1992) procedure and we consider only 

firms listed on the NYSE firms when ranking them according to their opacity index and calculating 

cutoff benchmarks.  

As we predicted, considering only NYSE firms causes a larger number of firms to be assigned to 

the portfolios of the highest opacity levels. In unreported results we find that the most opaque 
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portfolio has an average of 678 of firms, compared to an average 77 for the most transparent 

portfolio. This is in contrast with our original analysis where all portfolios have approximately the 

same average number of firms – 244 firms in the most opaque portfolio, and 203 firms in the most 

transparent portfolio.  

This occurs because we are omitting a large portion of the most opaque firms listed on the 

NASDAQ exchange when the opacity breakpoints are calculated only using NYSE firms, as in the 

robustness check, ultimately skewing the breakpoints toward a lower opacity cutoffs. The NASDAQ 

firms have an overall higher average opacity index because they are small, high-tech firms and most 

of them therefore fall in the most opaque portfolio, consequently increasing the number of firms 

classified as opaque. Determining the opacity index quantile cutoffs by considering all firms in the 

sample eliminates this issue. 

Our initial choice of considering all available firms when computing the portfolio cutoffs is the 

most appropriate one.  

9.3. An alternative regime switching model specification  

The identification of the states in a Markov-switching model might be driven by state-dependent 

variance returns. We control for this through a regime switching model with constant variance 

across states.  Not allowing the variance to change across states might better capture the effect of 

the credit cycle on excess returns. Results are reported in Table 10, Panels A and B.  

[Insert Table 10 about here] 

Results in Panel A show that parameters are not significantly different across states, however the 

constant variance is still higher for the opaque portfolio compared to the transparent portfolio. In 

Panel B, the model having the credit component as an independent variable shows that the existence 

of only one regime can be rejected at the 90% confidence level. The impact of credit is significantly 
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different across states and across portfolios: opaque firms are influenced by the level of credit to a 

greater degree than transparent firms.  

The identification of high or low credit state is more challenging because we restrict variance to 

be constant across regimes. Nonetheless, Table 10 confirms that opaque portfolios are more 

sensitive to the underlying economic conditions and credit has a heterogeneous impact across states. 

9.4. An alternative credit variable 

We run a robustness check where credit residuals enter the regime switching model as an 

independent variable and where the time varying transition probability structure is driven by the 

Composite Leading Indicators (CLI). We choose to consider the index of Composite Leading 

Indicators as a driver of the state probabilities because it is widely regarded as a proxy for economic 

conditions. Table 11 reports the results. Contrarily to our original results, the parameter estimates 

are not significantly different across regimes when the Composite Leading Indicator drives the state 

probability. Consequently, having the credit cycle driving the transition probability equation leads to 

a more accurate investigation of our research question. 

[Insert Table 11 about here] 

9.5. The inclusion of leverage 

As an additional robustness check we control for leverage. Leverage is in fact considered to 

be one of the factors influencing the accessibility by firms to external sources of credit. According to 

our hypothesis opacity is also a major determinant of access to capital. Because leverage is not one 

of the characteristics that necessarily increases opacity, it would be erroneous to include it in the 

computation of our opacity index; we account for firm’s leverage level by including it as a control in 

our linear panel regressions similar to Equation 2 in Section 6.  
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We compute leverage as the sum of long-term debt and debt in current liabilities over market 

value of equity.15 Judge and Korzhenitskaya (2012) find that firms constrained by poor access to 

credit are significantly under-levered; in our study these firms are opaque firms and, following our 

hypotheses, we should expect a negative effect of leverage on excess returns. On the other hand, it 

might also be that a higher leverage leads to higher returns because it indicates a higher risk exposure 

for the firm. Our results are in favor of the former, where leverage significantly negatively impacts 

the excess returns despite the model chosen for the analysis. Table 12 reports the results. 

[Insert Table 12 about here] 

The results are in line with our previous results: the opacity factor has a positive significant 

impact on excess returns, being in a period below the credit trend negatively affects returns but a 

further tightening of credit increases the excess returns. Model 6 also takes into account the financial 

constraint levels of firms, captured through the CMU factor (Constrained-Minus-Unconstrained) as 

the difference between returns of the most financially constrained and the least financially 

constrained according to the 10th and the 90th percentile breakpoints of the KZ index.  

After accounting for market, size and value factors, a higher level of financial constraints 

negatively impacts the excess returns of firms. This result is in line with Lamont, Polk and Saa-

Requejo’s (2001) findings. The effect of leverage is consistent throughout the models, having a 

negative and significant impact of about 3 basis points on firm’s excess returns. 

                                                           
15 We run the same analysis using several different leverage ratios: long-term debt to book value of equity, 
long-term debt to market value of equity, debt to net working capital ratio, and financial debt to stockholder’s 
equity. Results are robust when using long-term debt to market value of equity, in the other instances leverage 
has a negative but insignificant impact on excess returns. 
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10. Summary and Contribution 

This paper aimed at providing a deeper understanding of the effect of the credit cycle on opaque 

firms. We address two core macro-finance questions: what are the state of the nature and regimes in 

which excess returns are the highest? And, what macroeconomic state variables drive excess returns? 

Results from a multivariate Markov regime-switching model and a portfolio linear analysis 

support our hypotheses that opaque firms are more sensitive to changes in credit conditions and 

that opacity subsumes both a size and financial constraint effect. Lastly, our results consider the 

effect of a shift in monetary policy on the financial sector and how this impacts different firms in the 

cross-section. We conclude that the credit cycle has a differential effect across firms having different 

opacity levels. 
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Tables 

Table 1. Summary Statistics    

This table presents summary statistics for our data from January 1973 through December 2015. 

Accounting and financial firm level variables are retrieved from Compustat and CRSP respectively. 

The size, value, momentum and market factor are retrieved from Kenneth French’s data library. 

Variable Mean Median Std. Dev Minimum Maximum 

Credit Residuals 0.004 0.016 0.088 -0.170 0.139 

Credit (Billions $) 4,367.34 3,191.04 3,245.60 610.84 11,674.40 

R&D exp./assets 0.086 0.044 0.144 0.000 6.435 

Age 19.140 15.00 13.555 2.000 83.000 

Size (log) 12.356 12.222 2.143 5.457 20.389 

Total Current Assets (log) 5.289 5.061 2.044 -1.561 12.764 

Book-to-Market 0.709 0.521 0.704 0.000 18.366 

Market Factor 0.559 0.925 4.603 -23.240 16.100 

Small-Minus-Big 0.245 0.135 3.111 -16.700 22.320 

High-Minus-Low 0.329 0.290 2.992 -13.110 13.910 

Momentum 0.663 0.740 4.457 -34.580 18.380 
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Table 2. The Opacity Index 

This table reports the computation of the yearly opacity index. On June of every year we run a 
principal component analysis in order to construct and compute the yearly opacity index for each 
firm. The index is constructed as a linear combination of the first principal component of the 
following variables: property plant and equipment over total assets (Tangibility), log of Age, log of 
Size (price times shares outstanding), book-to-market (BEME), R&D expenditures over total 

assets (R&D), and discretionary current accruals (DCAJones) computed as in Jones (1991). 

Year Tangibility Age Size BEME R&D DCA Jones 
       

1973 -0.112790 -0.436550 -0.646303 0.473915 -0.334130 -0.206777 

1974 -0.525156 -0.553987 -0.570711 0.163472 0.186446 0.173532 

1975 -0.475237 -0.527419 -0.607401 0.309919 0.163769 -0.064600 

1976 -0.486098 -0.566932 -0.566348 0.139951 0.246330 -0.203180 

1977 -0.467503 -0.544755 -0.572128 0.117235 0.289438 0.244611 

1978 -0.492461 -0.556874 -0.468431 -0.148236 0.363185 0.272158 

1979 -0.485429 -0.510421 -0.393225 -0.273288 0.392847 0.346682 

1980 -0.460935 -0.516472 -0.311185 -0.365233 0.408902 0.351232 

1981 -0.483342 -0.536064 -0.314240 -0.376388 0.395531 0.286628 

1982 -0.496712 -0.557806 -0.376569 -0.373665 0.385958 0.108333 

1983 -0.423402 -0.530842 -0.297125 -0.413908 0.392055 0.354439 

1984 -0.490079 -0.537669 -0.356193 -0.409374 0.360331 0.215492 

1985 -0.488802 -0.570589 -0.415714 -0.294704 0.403743 -0.113246 

1986 -0.489149 -0.582293 -0.414804 -0.296029 0.396079 -0.071372 

1987 -0.464629 -0.610522 -0.496462 -0.118464 0.385068 -0.050968 

1988 -0.479192 -0.604537 -0.493058 -0.029703 0.397295 0.055491 

1989 -0.488662 -0.599969 -0.470618 -0.111605 0.407730 0.081801 

1990 -0.478989 -0.611544 -0.481169 -0.043986 0.402160 -0.037309 

1991 -0.450818 -0.593698 -0.527009 0.124953 0.364342 -0.164867 

1992 -0.500775 -0.608378 -0.443482 -0.023493 0.415565 -0.095804 

1993 -0.506988 -0.601522 -0.353451 -0.120163 0.466462 -0.155504 

1994 -0.494293 -0.595884 -0.416998 -0.095835 0.419538 -0.203746 

1995 -0.504736 -0.617014 -0.439234 -0.046874 0.411417 0.012108 

1996 -0.507884 -0.612220 -0.283443 -0.239275 0.474087 -0.069927 

1997 -0.512925 -0.605929 -0.406702 -0.086575 0.437744 -0.072364 

1998 -0.491201 -0.603701 -0.444449 0.008019 0.433558 -0.093250 

1999 -0.458612 -0.602550 -0.482097 0.097137 0.423464 -0.073718 
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Table 2, continued 

Year Tangibility Age Size BEME R&D DCA Jones 
       

2000 -0.490090 -0.515785 -0.138514 -0.498211 0.458672 -0.126479 

2001 -0.426644 -0.576408 -0.408148 0.200368 0.380475 -0.366381 

2002 -0.420234 -0.587366 -0.439138 0.014415 0.496845 -0.196214 

2003 -0.319537 -0.556540 -0.528339 0.351510 0.389154 -0.184436 

2004 -0.450264 -0.582828 -0.258627 -0.311167 0.541835 -0.016603 

2005 -0.437678 -0.589263 -0.345131 -0.205771 0.524925 -0.155579 

2006 -0.400116 -0.598705 -0.366576 -0.199877 0.548638 -0.078276 

2007 -0.398513 -0.588147 -0.407452 -0.149045 0.550861 0.059925 

2008 -0.292686 -0.580155 -0.586226 0.219847 0.392214 -0.178686 

2009 -0.284484 -0.582257 -0.560563 0.236493 0.452019 0.074596 

2010 -0.318580 -0.618518 -0.483594 0.008282 0.531006 0.006586 

2011 -0.354951 -0.554374 -0.373296 -0.148696 0.571272 0.280835 

2012 -0.124074 -0.565399 -0.613512 0.249831 0.472533 0.053197 

2013 -0.215728 -0.564480 -0.500554 0.138970 0.513178 -0.318755 

2014 -0.297191 -0.570578 -0.476665 0.070683 0.501811 0.319528 

2015 -0.244311 -0.596819 -0.534177 0.140075 0.527413 0.031435 

Average -0.423067 -0.572646 -0.437024 -0.053825 0.403297 0.000711 
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Table 3. Summary Statistics of Opaque Portfolios 

This table presents summary statistics for quantile portfolios constructed on the opacity index. Portfolios are 
formed by ranking all available NYSE-AMEX-NASDAQ firms by the opacity index in each June of year t 
from 1973 to 2015. Portfolio construction follows Fama and French (1992) procedure.  
Panel A reports the summary statistics of firm characteristics by opacity level. MarketCap is price times shares 
outstanding, TotalAssets is firm’s current total assets, Age is the current age of the firm calculated since its first 
appearance on Compustat, BEME is book-to-market, PPE/Assets captures the tangibility of a firm, 
R&D/Assets is measured as research and development expenses over total assets and it captures the tangibility 
of a firm, Earnings Management is the three-year moving sum of discretionary accruals computed according to 
Hutton, Marcus and Tehranian (2009). The Opacity Index is the linear combination of first principal 
component derived from the following firm-level variables: property plant and equipment over total assets, 
log of age, log of size (shares outstanding times price), book-to-market, discretionary current accruals 
computed as in Jones (1991). Portfolio 1 contains the most transparent firms, while portfolio 5 the most 
opaque firms. A larger index value corresponds to higher opacity. The difference in means between portfolio 
1 and 5 is tested trough a t-test, while the difference in median is tested according to median score analysis. 
Panels B and C report the average returns for annually rebalanced equal-weighted quintile and decile opaque 
portfolios. There are 510 time series observations for each opaque portfolios. 

Panel A: Summary statistics of firm characteristics by opaque portfolio 

Variable  1 (Low) 2 3 4 5 (High) 1 - 5 All 

         
Opacity Mean -8.852 -7.610 -6.892 -6.307 -5.517 (0.01)*** (0.01)*** 
Index Median -9.021 -7.714 -6.974 -6.389 -5.666 (0.01)*** (0.01)*** 
         

         
MarketCap(log) Mean 15.007 13.148 12.117 11.301 10.559 (0.01)*** (0.01)*** 
 Median 14.900 13.099 12.108 11.283 10.416 (0.01)*** (0.01)*** 
         
TotalAsssets(log) Mean 

Median 
7.983 
7.901 

6.087 
6.002 

5.004 
4.893 

4.188 
4.109 

3.532 
3.360 

(0.01)*** 
(0.01)*** 

(0.01)*** 
(0.01)*** 

         
Age (log) Mean 3.493 2.962 2.616 2.365 2.146 (0.01)*** (0.01)*** 
 Median 3.555 3.045 2.639 2.398 2.079 (0.01)*** (0.01)*** 
         
BEME Mean 0.579 0.653 0.688 0.732 0.881 (0.01)*** (0.01)*** 
 Median 0.452 0.561 0.534 0.551 0.579 (0.01)*** (0.01)*** 
         
PPE/Assets Mean 0.603 0.518 0.439 0.384 0.358 (0.01)*** (0.01)*** 
 Median 0.569 0.474 0.397 0.343 0.300 (0.01)*** (0.01)*** 
         
R&D/Assets Mean 0.040 0.052 0.071 0.098 0.154 (0.01)*** (0.01)*** 
 Median 0.026 0.031 0.045 0.060 0.086 (0.01)*** (0.01)*** 
         
Earnings Mean -0.015 -0.012 -0.008 -0.011 -0.018 (0.01)*** (0.01)*** 
Management Median -0.011 -0.009 -0.008 -0.011 -0.013 (0.01)*** (0.01)*** 
         
Average Obs  203 202 202 201 244   

        
 
 
 

 



 

50 

 

Table 3, continued 

Panel B: Equal Weighted Returns of Opaque Quintile Portfolios 

Portfolio Mean Std Dev Minimum Maximum 

Low Opacity 0.878 5.214 -26.582 19.217 

2 1.065 6.102 -31.196 23.571 

3 1.189 7.033 -32.786 29.707 

4 1.329 7.632 -32.732 33.049 

High Opacity 2.348 8.545 -29.452 48.912 

 

 

 

Panel C: Equal Weighted Returns of Opaque Deciles Portfolios 

Portfolio Mean Std Dev Minimum Maximum 

Low Opacity 0.780 4.847 -23.808 21.467 

2 0.976 5.755 -29.355 24.562 

3 1.051 5.972 -30.198 23.813 

4 1.080 6.337 -32.218 23.300 

5 1.133 6.919 -32.688 26.744 

6 1.244 7.276 -32.881 33.080 

7 1.332 7.559 -31.315 35.390 

8 1.327 7.887 -34.149 33.887 

9 1.797 8.408 -30.545 40.081 

High Opacity 2.736 8.866 -28.691 55.572 
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  Table 4. Equal weighted returns for size and financially constrained portfolios 

Equal weighted returns for size and financially constrained portfolios.  
 Average returns for annually rebalanced equal-weighted size portfolios are formed by ranking all 

available NYSE-AMEX-NASDAQ firms by size or financial constraint index in each June of year 
t from 1973 to 2015. Portfolio construction follows Fama and French (1992) procedure. Panel A 
reports the two portfolios constructed on the median size; Panel B reports the quintile size 
portfolios; Panel C and D report portfolios constructed respectively on the median Whited-Wu 
and Kaplan-Zingales financial constraint indices. There are 510 observations for each size 
portfolios.  

Panel A: Equal Weighted Returns of Size Median Portfolios 

Portfolio Mean Std Dev Minimum Maximum 

Small 1.781 7.448 -31.097 37.577 
Big 0.919 6.178 -29.906 20.892 

Panel B: Equal Weighted Returns of Size Quintile Portfolios 

Portfolio Mean Std Dev Minimum Maximum 

Small 2.374 7.749 -29.106 42.444 
2 1.505 7.655 -31.325 36.759 
3 1.093 7.268 -33.818 28.186 
4 0.994 6.643 -31.719 22.695 
Large 0.797 5.551 -26.673 18.785 

Panel C: Equal Weighted Returns of Financially Constrained Median Portfolios – WW Index 

Portfolio Mean Std Dev Minimum Maximum 

Unconstrained 1.014 5.534 -28.357 20.534 

Constrained 1.467 7.129 -31.233 31.590 

Panel D: Equal Weighted Returns of Financially Constrained Median Portfolios – KZ Index 

Portfolio Mean Std Dev Minimum Maximum 

Unconstrained 1.217 6.602 -29.471 31.268 

Constrained 1.505 6.592 -31.545 29.894 
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  Table 5. Equal weighted returns for portfolios formed on opacity and size 

 Average returns for annually rebalanced equal-weighted portfolios reported in Panel A (Panel B) are the 
intersection of two portfolios formed on size (the financial constraint KZ index) and three portfolios 
formed on the opacity index. Portfolio construction follows Fama and French (1992) procedure. The 
size breakpoint for year t is the 50th percentile size at the end of June t-1. The KZ index breakpoint for 
year t is the NYSE-AMEX-NASDAQ 50th percentile at the end of June t-1. The opacity index 
breakpoint for year t is the NYSE-AMEX-NASDAQ 30th and 70th percentile and median at the end of 
June t-1. There are 510 observations for each formed portfolio.  

Panel A: Equal Weighted Returns of portfolios formed on opacity 30th and 70th percentiles and on size 
median. 

Portfolio Mean Std Dev Minimum Maximum 

Small     

    1 Opaque 2.071 8.275 -30.822 43.873 

    2 Neutral 1.318 6.825 -31.532 34.147 

    3 Transparent 1.247 7.946 -32.743 40.834 

Big     

    4 Opaque 1.797 8.862 -30.777 38.989 

    5 Neutral 0.968 7.171 -33.021 30.105 

    6 Transparent 0.879 5.349 -27.768 20.736 

Panel B: Equal Weighted Returns of portfolios formed on opacity 30th and 70th percentiles and on KZ 
index median. 

Portfolio Mean Std Dev Minimum Maximum 

Unconstrained     

    1 Opaque 1.729 8.092 -31.358 41.858 

    2 Neutral 1.054 7.010 -30.307 36.892 

    3 Transparent 0.821 5.358 -26.628 18.932 

Constrained     

    4 Opaque 2.249 8.314 -30.416 45.175 

    5 Neutral 1.250 6.948 -34.630 28.713 

    6 Transparent 0.992 5.604 -29.012 23.150 
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Table 6 
The credit cycle and excess returns. 

This table reports standardize parameter estimates and statistical significance for six variations of the 

following panel OLS model: 

 ri,t = β
0
+ β

1
𝑀𝐾𝑇t + β

2
SMBt + β

3
HMLt + β

4
OMTt +β

5
Dummy

t
+ β

6
CreditGrowtht-1  +  𝜀𝑖𝑡   

where monthly excess returns, rit, are calculated as the difference between firms monthly returns and the 

one-month Treasury Bill rate. MKT is the excess return on the market; SMB captures the size effect; HML 

captures the value effect. The market, size, and value factors are retrieved from the Kenneth French library. 

The OMT (Opaque-Minus-Transparent) factor is computed as the difference between returns of opaque and 

transparent portfolios. The opacity breakpoint was the 10th and 90th percentile of the opacity index at the 

end of June t-1. Dummy captures periods of low credit and it equals 1 in periods of credit level below the 

trend, and 0 otherwise; CreditGrowth is the growth in credit residuals from regressing the natural logarithm of 

total bank credit of all commercial banks on a time trend. 

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

       
MKT 0.295*** 

(0.00) 
0.293*** 

(0.00) 
0.293*** 

(0.00) 
0.295*** 

(0.00) 
0.295*** 

(0.00) 
0.295*** 

(0.00) 
SMB 0.117*** 

(0.00) 
0.176*** 

(0.00) 
0.176*** 

(0.00) 
0.119*** 

(0.00) 
0.118*** 

(0.00) 
0.119*** 

(0.00) 
HML 0.012*** 

(0.00) 
-0.002 
(0.41) 

-0.002 
(0.34) 

0.012*** 
(0.00) 

0.012*** 
(0.00) 

0.012*** 
(0.00) 

OMT  0.086*** 
(0.00) 

  0.085*** 
(0.00) 

0.086*** 
(0.00) 

0.085*** 
(0.00) 

Dummyt  -0.016*** 
(0.00) 

 -0.011*** 
(0.00) 

 -0.012*** 
(0.00) 

CreditGrowtht-1   -0.006*** 
(0.00) 

 -0.003** 
(0.05) 

-0.002** 
(0.05) 

Intercept Yes*** Yes*** Yes*** Yes*** Yes*** Yes*** 

R-Squared 0.15 0.14 0.14 0.15 0.15 0.15 
*** indicates significance at the 1% level. ** indicates significance at the 5% level. * indicates significance at 
the 10% level. P-values are in parenthesis. 
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Table 7  
Credit growth and excess returns across opaque portfolios. 

  This table reports standardized parameter estimates and statistical significance for three OLS models 
regressed across the excess returns, rt, of five opaque portfolios. Excess returns are measured as the difference 
between portfolio return and the one-month Treasury Bill rate. Portfolios are constructed by ranking firms 
on the level of opacity and assigning each firm to one of the five quintiles. Portfolios are rebalanced annually 
in June. CreditGrowth is the growth in credit residuals from regressing the natural logarithm of total bank 
credit of all commercial banks on a time trend. MKT is the excess return on the market and is retrieved from 
the Kenneth French library; HML is the average return on the two value portfolios minus the average return 
on the two growth portfolios. 

Panel A 

Panel A reports the standardized parameter estimates for the following OLS model across opaque portfolio 
quintiles: 

𝑟𝑡
𝑖= β

0
𝑖 + β

1
𝑖 CreditGrowth𝑡−1 +  β

2
𝑖 MKTt + β

3
𝑖 SMBt+ β

4
𝑖 HML𝑡 +  𝜀𝑡

𝑖      for i={1,2,3,4,5}. 

                                                                                   Opaque Portfolios 

Variable 1 (Low) 2 3 4 5 (High) 

CreditGrowtht-1 -0.002*** 
(0.00) 

-0.006*** 
(0.00) 

-0.007*** 
(0.00) 

-0.018*** 
(0.00) 

-0.030*** 
(0.00) 

MKT 0.945*** 
(0.00) 

0.818*** 
(0.00) 

0.710*** 
(0.00) 

0.669*** 
(0.00) 

0.557*** 
(0.00) 

SMB 0.084*** 
(0.00) 

0.371*** 
(0.00) 

0.487*** 
(0.00) 

0.502*** 
(0.00) 

0.535*** 
(0.00) 

HML 0.092*** 
(0.00) 

0.059*** 
(0.00) 

-0.005*** 
(0.00) 

-0.037*** 
(0.00) 

-0.062*** 
(0.00) 

Intercept Yes*** Yes*** Yes*** Yes*** Yes*** 

R-Squared 0.89 0.92 0.92 0.89 0.78 

Panel B 

Panel B reports the standardized parameter estimates for the following OLS model across opaque portfolio 
quintiles, where i={1,2,3,4,5}: 

𝑟t
𝑖= β

0
𝑖 + β

1
𝑖 Dummy

𝑡
+  β

2
𝑖 CreditGrowth𝑡 + β

3
𝑖 Dummy

𝑡
∗ CreditGrowth𝑡 + β

4
𝑖 MKT𝑡−1 +  β

5
𝑖 SMBt + β

6
𝑖 HMLt

+  𝜀𝑡
𝑖 

                                                                                   Opaque Portfolios 

Variable 1 (Low) 2 3 4 5 (High) 

Dummyt -0.022*** 
(0.00) 

-0.022*** 
(0.00) 

-0.035*** 
(0.00) 

-0.040*** 
(0.00) 

-0.048*** 
(0.00) 

CreditGrowtht 0.041*** 
(0.00) 

0.040*** 
(0.00) 

0.088*** 
(0.00) 

0.090*** 
(0.00) 

0.082*** 
(0.00) 

Dummyt*CreditGrowtht -0.026*** 
(0.00) 

-0.023*** 
(0.00) 

-0.060*** 
(0.00) 

-0.081*** 
(0.00) 

-0.085*** 
(0.00) 

MKT 0.943*** 
(0.00) 

0.817*** 
(0.00) 

0.707*** 
(0.00) 

0.664*** 
(0.00) 

0.552*** 
(0.00) 

SMB 
 

0.091*** 
(0.00) 

0.371*** 
(0.00) 

0.487*** 
(0.00) 

0.500*** 
(0.00) 

0.532*** 
(0.00) 

HML 0.084*** 
(0.00) 

0.058*** 
(0.00) 

-0.008*** 
(0.00) 

-0.040*** 
(0.00) 

-0.065*** 
(0.00) 

Intercept Yes*** Yes*** Yes*** Yes*** Yes*** 

R-Squared 0.89 0.92 0.92 0.90 0.79 
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Table 7, continued      

Panel C 

Panel C reports the standardized parameter estimates for the following OLS model across opaque portfolio 
quintiles, where i={1,2,3,4,5}: 

𝑟t
𝑖= β

0
𝑖 + β

1
𝑖 Dummy

𝑡
+ β

2
𝑖 CreditGrowth𝑡 + β

3
𝑖 Dummy

𝑡
∗ CreditGrowth𝑡 + β

4
𝑖 MKT𝑡−1 + β

5
𝑖 HMLt +  𝜀𝑡

𝑖 

                                                                                   Opaque Portfolios 

Variable 1 (Low) 2 3 4 5 (High) 

Dummyt -0.019*** 
(0.00) 

-0.003*** 
(0.00) 

-0.009*** 
(0.00) 

-0.014*** 
(0.00) 

-0.025*** 
(0.00) 

CreditGrowtht 0.047*** 
(0.00) 

0.069*** 
(0.00) 

0.126*** 
(0.00) 

0.129*** 
(0.00) 

0.117*** 
(0.00) 

Dummyt*CreditGrowtht -0.035*** 
(0.00) 

-0.064*** 
(0.00) 

-0.114*** 
(0.00) 

-0.136*** 
(0.00) 

-0.139*** 
(0.00) 

MKT 0.959*** 
(0.00) 

0.886*** 
(0.00) 

0.797*** 
(0.00) 

0.757*** 
(0.00) 

0.651*** 
(0.00) 

HML 0.074*** 
(0.00) 

-0.015*** 
(0.00) 

-0.105*** 
(0.00) 

-0.139*** 
(0.00) 

-0.174*** 
(0.00) 

Intercept Yes*** Yes*** Yes*** Yes*** Yes*** 

R-Squared 0.89 0.80 0.71 0.68 0.54 

*** indicates significance at the 1% level. ** indicates significance at the 5% level. P-values are in parenthesis. 
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Table 8 

Multivariate Markov Switching Model. 

The table reports results for the multivariate Markov Switching Model A estimated across opaque portfolio quintiles. 
Opacity is captured as the linear combination of the first principal component derived from the following firm-level 
variables: property plant and equipment over total assets, log of age, log of size (shares outstanding times price), book-to-
market, discretionary current accruals computed as in Jones (1991).  

The table reports the results for the following model with time varying transition probability: 

𝑟𝑖,𝑡 =  𝛽0𝑖,𝑠𝑡 +  𝛽1𝑖,𝑠𝑡(1𝑚𝑜𝑇𝐵𝑖𝑙𝑙)𝑡−1 + 𝛽2𝑖,𝑠𝑡(𝐷𝑒𝑓)𝑡−1 + 𝛽3𝑖(𝐷𝑖𝑣𝑌𝑖𝑒𝑙𝑑)𝑡−1 + 𝜀𝑖𝑡   

𝑝𝑖𝑡 = P(𝑆𝑖,𝑡 = 1|𝑆𝑖,𝑡−1 = 1, 𝑌𝑡−1) = ф[∏
0𝑖,𝑠𝑡

+ ∏
1𝑖

(𝐶𝑟𝑒𝑑𝑖𝑡𝑅𝑒𝑠𝑖𝑑𝑡−1)]  

𝑞𝑖𝑡 = (𝑆𝑖,𝑡 = 2|𝑆𝑖,𝑡−1 = 2, 𝑌𝑡−1) = ф[∏
2𝑖,𝑠𝑡

+ ∏
3𝑖

(𝐶𝑟𝑒𝑑𝑖𝑡𝑅𝑒𝑠𝑖𝑑𝑡−1)] , 𝑖 = {1 𝑡𝑜 5} 

where εi
t ~ N(0, σ2

i0,st), St = {1,2} and ф is the cumulative density function under the normality assumption. The 
standard errors are in parentheses. The state transition probabilities are ruled by a constant and by the residuals from 
regressing the natural logarithm of total bank credit of all commercial banks on a time trend, CreditResid.  

Opaque Portfolios 

 Parameters 1 (Low) 2 3 4 5 (High) 

Mean parameters      

State 1 Constant 2.177 (1.35) 3.164 (2.29) 3.772 (2.90) 4.352 (3.34) 6.353 (2.96) 

 1mo T-Bill rate -1.239 (2.41) -1.619 (3.95) -1.641 (4.73) -1.794 (5.24) -2.942 (4.84) 

 Default 
premium 

1.949 (1.15) 1.931 (1.88) 2.003 (2.55) 1.971 (2.66) 2.583 (2.00) 

       

State 2 Constant -2.209 (2.30) -3.399 (4.14) -4.415 (3.72) -5.447 (4.82) -5.705 (3.27) 

 1mo T-Bill rate 1.108 (3.49) 1.427 (6.51) 1.495 (6.06) 1.614 (6.55) 2.553 (4.85) 

 Default 
premium 

-1.486 (2.12) -1.356 (4.09) -1.102 (3.65) -0.467 (4.34) 0.945 (2.36) 

       

States 1, 2 Dividend Yield -0.020 (0.47) 0.017 (0.96) 0.010 (1.17) 0.011 (1.12) -0.356 (1.04) 

Variance parameters      

State 1     12.783 (1.41) 14.373 (2.46) 21.072 (4.25) 26.499 (5.16) 41.778 (4.90) 

State 2      15.565 (3.13) 19.642 (7.62) 22.518 (9.65) 25.924 (8.17) 33.733 (8.18) 

Transition Prob. parameters      

State 1     Constant 0.398 (0.09) 

     Credit 1.154 (1.01) 

State 2     Constant -0.040 (0.11) 

     Credit -0.445 (1.14) 

Log likelihood value -7,831.40 

AIC/BIC 15,7661/16,047 

Duration of Regimes      

State 1      2.90 months 

State 2       2.07 months 

Restricted log likelihood    

  𝛽𝑘𝑖,𝑠𝑡=1 =  𝛽𝑘𝑖,𝑠𝑡=2 𝑘 = {1,2,3} -7,924.83 

p-value  

 

0.01 
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Table 9 
Bivariate Markov Switching Model. 
The table reports results for three bivarite Markov Switching models estimated across two decile portfolios having 
the lowest or highest opacity level. Opacity is captured as the linear combination of the first principal component 
derived from the following firm-level variables: property plant and equipment over total assets, log of age, log of 
size (shares outstanding times price), book-to-market, discretionary current accruals computed as in Jones (1991).  

Panel A 

Panel A reports the results for the following model with time varying transition probability estimated across opaque 
and transparent portfolios: 

𝑟𝑖,𝑡 =  𝛽0𝑖,𝑠𝑡 + 𝛽1𝑖,𝑠𝑡(1𝑚𝑜𝑇𝐵𝑖𝑙)𝑡−1 +  𝛽2𝑖,𝑠𝑡(𝐷𝑒𝑓)𝑡−1 + 𝛽3𝑖(𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑 𝑌𝑖𝑒𝑙𝑑)𝑡−1+ 𝜀𝑖𝑡   

𝑝𝑖𝑡 = P(𝑆𝑖,𝑡 = 1|𝑆𝑖,𝑡−1 = 1, 𝑌𝑡−1) = ф[∏
0𝑖,𝑠𝑡

+ ∏
1𝑖

(𝐶𝑟𝑒𝑑𝑖𝑡𝑅𝑒𝑠𝑖𝑑𝑡−1)]  

𝑞𝑖𝑡 = (𝑆𝑖,𝑡 = 2|𝑆𝑖,𝑡−1 = 2, 𝑌𝑡−1) = ф [∏
2𝑖,𝑠𝑡

+ ∏
3𝑖

(𝐶𝑟𝑒𝑑𝑖𝑡𝑅𝑒𝑠𝑖𝑑𝑡−1)],  𝑖 = {1, 10} 

where εi
t ~ N(0, σ2

i0,st), St = {1,2} and ф is the cumulative density function under the normality assumption. The 
standard errors are in parentheses. The state transition probabilities are ruled by a constant and by the residuals 
from regressing the natural logarithm of total bank credit of all commercial banks on a time trend, CreditResid. 

                                                                                      Opaque Portfolios 

Parameters Low Opacity High Opacity 

Mean parameters 

State 1 Constant -0.587 (0.73) -1.051 (1.13) 
 1mo T-Bill rate  -2.796 (1.06) -6.294 (1.85) 
 Default premium 2.264 (0.51) 4.544 (0.99) 
    
State 2 Constant 0.653 (2.65) 4.241 (4.79) 
 1mo T-Bill rate  0.577 (3.72) -2.758 (7.84) 
 Default premium -1.364 (1.61) -2.178 (2.73) 
    
State 1, 2 Dividend Yield 0.159 (0.30) 0.546 (0.53) 

Variance parameters 

State 1  10.295 (1.08) 27.265 (3.04) 
State 2  48.852 (6.29) 169.560 (21.60) 

Transition Prob. Parameters 

State 1 Constant 1.227 (0.15) 
 Credit 1.069 (1.54) 
State 2 Constant -0.719 (0.17) 
 Credit -0.699 (2.17) 

Log likelihood value -3,243.66 

Duration of Regimes   

    State 1  9.08 months 
    State 2  4.24 months 

AIC/BIC  6,531.30/6,639.70 

Restricted log likelihood   

  𝛽𝑘𝑖,𝑠𝑡=1 =  𝛽𝑘𝑖,𝑠𝑡=2 , 𝑘 = {1,2,3} -3,248.87 

p-value 0.02 
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Table 9, continued  

Panel B 

Panel B reports the results for the following model with time varying transition probability estimated across opaque 
and transparent portfolios: 

𝑟𝑖,𝑡 =  𝛽0𝑖,𝑠𝑡 +  𝛽1𝑖,𝑠𝑡(1𝑚𝑜𝑇𝐵𝑖𝑙)𝑡−1 +  𝛽2𝑖,𝑠𝑡(𝐷𝑒𝑓)𝑡−1 + 𝛽3𝑖(𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑 𝑌𝑖𝑒𝑙𝑑)𝑡−1+ 𝛽4𝑖,𝑠𝑡(𝐶𝑟𝑒𝑑𝑖𝑡𝑅𝑒𝑠𝑖𝑑)𝑡−1 +  𝜀𝑖𝑡  

𝑝𝑖𝑡 = P(𝑆𝑖,𝑡 = 1|𝑆𝑖,𝑡−1 = 1, 𝑌𝑡−1) = ф[∏
0𝑖,𝑠𝑡

]  

  𝑞𝑖𝑡 = P(𝑆𝑖,𝑡 = 2|𝑆𝑖,𝑡−1 = 2, 𝑌𝑡−1) = ф [∏
1𝑖,𝑠𝑡

],     𝑖 = {1, 10} 

where εi
t ~ N(0, σ2

i0,st), St = {1,2} and ф is the cumulative density function under the normality assumption. The 
standard errors are in parentheses. The state transition probabilities are ruled by a constant. 

                                                                                                Opaque Portfolios 

Parameters Low Opacity High Opacity 

Mean parameters 

State 1 Constant -0.485 (0.73) -0.758 (1.10) 
 1mo T-Bill rate  -4.332 (1.17) -8.119 (2.01) 
 Default premium 2.154 (0.52) 4.664 (0.99) 
 Credit Residuals 5.538 (2.79) 6.071 (5.06) 
    
State 2 Constant 0.457 (2.74) 2.780 (4.81) 
 1mo T-Bill rate  0.492 (3.75) 1.157 (7.77) 
 Default premium -1.590 (1.71) -2.335 (2.65) 
 Credit Residuals 0.752 (10.29) -4.219 (19.89) 
    
State 1, 2 Dividend Yield 0.335 (0.32) 0.576 (0.55) 

Variance parameters 

State 1  10.103 (1.06) 26.474 (3.02) 
State 2  48.573 (6.45) 169.617 (21.73) 

Transition Prob. Parameters 

State 1 Constant 1.183 (0.15) 
State 2 Constant -0.665 (0.17) 

Log likelihood value -3,241.54 

Duration of Regimes   

    State 1  8.44 months 
    State 2  3.95 months 

AIC/BIC                                                                         6,531.07/6,649.33 

Restricted log likelihood  

     𝛽𝑘𝑖,𝑠𝑡=1 =  𝛽𝑘𝑖,𝑠𝑡=2 , 𝑘 = {1,2,3}                                                        -3,246.94 

p-value                        0.03 
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Table 9, continued  

Panel C 

Panel C reports the results for the following model with constant transition probability estimated across opaque 
and transparent portfolios: 

𝑟𝑖,𝑡 =  𝛽
0𝑖,𝑠𝑡

+  𝛽
1𝑖,𝑠𝑡

(1𝑚𝑜𝑇𝐵𝑖𝑙)
𝑡−1

+  𝛽
2𝑖,𝑠𝑡

(𝐷𝑒𝑓)
𝑡−1

+ 𝛽
3𝑖

(𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑 𝑌𝑖𝑒𝑙𝑑)
𝑡−1

+ 𝛽
4𝑖,𝑠𝑡

(𝐶𝑟𝑒𝑑𝑖𝑡𝑅𝑒𝑠𝑖𝑑)
𝑡−1

+  𝜀
𝑖𝑡

  

𝑝
𝑖𝑡

= P(𝑆𝑖,𝑡 = 1|𝑆𝑖,𝑡−1 = 1, 𝑌𝑡−1) = ф[∏
0𝑖

]  

  𝑞
𝑖𝑡

= P(𝑆𝑖,𝑡 = 2|𝑆𝑖,𝑡−1 = 2, 𝑌𝑡−1) = ф[∏
0𝑖

],     𝑖 = {1, 10} 

where εi
t ~ N(0, σ2

i0,st), St = {1,2} and ф is the cumulative density function under the normality assumption. The 
standard errors are in parentheses. The state transition probabilities are constant. 

                                                                                                   Opaque Portfolios 

Parameters Low Opacity High Opacity 

Mean parameters 

State 1 Constant -0.048 (0.53) -0.416 (0.81) 
 1mo T-Bill rate  -3.647 (1.09) -7.433 (1.79) 
 Default premium 1.381 (0.58) 2.579 (0.90) 
 Credit Residuals 4.565 (2.67) 6.327 (4.16) 
    
State 2 Constant -2.520 (3.08) 6.257 (3.57) 
 1mo T-Bill rate  9.177 (4.61) -0.825 (1.00) 
 Default premium -1.096 (1.76) -2.465 (3.38) 
 Credit Residuals 4.685 (15.37) -6.471 (33.83) 
    
State 1, 2 Dividend Yield 0.270 (0.29) 0.958 (0.49) 

Variance parameters 

State 1  15.540 (1.47) 37.976 (3.72) 
State 2  59.279 (10.74) 244.213 (44.99) 

Log likelihood value -3,117.39 

Duration of Regimes   

    State 1  18.00 months 
    State 2  3.30 months 

AIC/BIC                                                      6,286.78/6,414.90 

Restricted log likelihood                    

     𝛽𝑘𝑖,𝑠𝑡=1 =  𝛽𝑘𝑖,𝑠𝑡=2 , 𝑘 = {1,2,3}                -3,123.04 

p-value                    0.02 
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Table 10 
Bivariate Markov Switching Model with constant variance. 
The table reports results for two bivariate Markov Switching models estimated across two decile portfolios having the 
lowest or highest opacity level. Opacity is captured as the linear combination of the first principal component derived 
from the following firm-level variables: property plant and equipment over total assets, log of age, log of size (shares 
outstanding times price), book-to-market, discretionary current accruals computed as in Jones (1991).  

Panel A 

Panel A reports results for the following Markov Switching model with time varying transition probability estimated 
across two decile portfolios having the lowest and highest opacity index: 

𝑟𝑖,𝑡 =  𝛽
0𝑖,𝑠𝑡

+  𝛽
1𝑖,𝑠𝑡

(1𝑚𝑜𝑇𝐵𝑖𝑙)
𝑡−1

+  𝛽
2𝑖,𝑠𝑡

(𝐷𝑒𝑓)
𝑡−1

+ 𝛽
3𝑖,𝑠𝑡

(𝐷𝑖𝑣𝑌𝑙𝑑)
𝑡−1

+ 𝜀𝑖𝑡  

𝑝
𝑖𝑡

= P(𝑆𝑖,𝑡 = 1|𝑆𝑖,𝑡−1 = 1, 𝑌𝑡−1) = ф[∏
0𝑖,𝑠𝑡

+ ∏
1𝑖

(𝐶𝑟𝑒𝑑𝑖𝑡𝑅𝑒𝑠𝑖𝑑𝑡−2)]  

𝑞
𝑖𝑡

= (𝑆𝑖,𝑡 = 2|𝑆𝑖,𝑡−1 = 2, 𝑌𝑡−1) = ф [∏
2𝑖,𝑠𝑡

+ ∏
3𝑖

(𝐶𝑟𝑒𝑑𝑖𝑡𝑅𝑒𝑠𝑖𝑑𝑡−2)] , 𝑖 = {1, 10} 

where εi
t ~ N(0, σ2

i0), St = {1,2} and ф is the cumulative density function under the normality assumption. The 
standard errors are in parentheses. The state transition probabilities are ruled by a constant and by the residuals from 
regressing the natural logarithm of total bank credit of all commercial banks on a time trend, CreditResid. The variance 
is kept constant across states. 

                                                                                                    Opaque Portfolios 

Parameters Transparent  Opaque 

Mean parameters 

State 1 Constant 0.072 (0.72) 1.892 (1.37) 
 1mo T-Bill rate  -0.244 (1.22) -1.119 (2.44) 
 Default premium 2.369 (0.58) 4.122 (1.27) 
    
State 2 Constant -5.587 (2.08) -10.710 (4.77) 
 1mo T-Bill rate  1.265 (2.73) -0.303 (6.30) 
 Default premium 0.455 (1.11) 3.979 (1.97) 
    
State 1, 2 Dividend Yield -0.169 (0.23) -0.360 (0.49) 

Variance parameters 15.789 (0.98) 52.108 (2.48) 

Transition Prob. Parameters 15.789 (0.98) 52.108 (2.48) 

State 1 Constant 1.161 (0.12) 
 Credit 0.006 (1.30) 
State 2 Constant 0.053 (0.18) 
 Credit -0.346 (2.05) 

Log likelihood value -3,283.35 

Duration of Regimes   

    State 1  8.15 months 
    State 2  1.92 months 

AIC/BIC                                                      6,606.70/6,705.25 

Restricted log likelihood  

      

  

 𝛽
𝑘𝑖,𝑠𝑡=1

=  𝛽
𝑘𝑖,𝑠𝑡=2

 , 𝑘 = {1,2,3,4}  -3,285.23 

p-value  0.29 
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Table 10, continued 

Panel B 

Panel B reports results for the following Markov Switching model with time varying transition probability estimated 
across two decile portfolios having the lowest and highest opacity index: 

𝑟𝑖,𝑡 =  𝛽
0𝑖,𝑠𝑡

+  𝛽
1𝑖,𝑠𝑡

(1𝑚𝑜𝑇𝐵𝑖𝑙)
𝑡−1

+  𝛽
2𝑖,𝑠𝑡

(𝐷𝑒𝑓)
𝑡−1

+ 𝛽
3𝑖,𝑠𝑡

(𝐷𝑖𝑣𝑌𝑙𝑑)
𝑡−1

+ 𝛽
4𝑖,𝑠𝑡

(𝐶𝑟𝑒𝑑𝑖𝑡𝑅𝑒𝑠𝑖𝑑)
𝑡−1

+  𝜀
𝑖𝑡

  

𝑝
𝑖𝑡

= P(𝑆𝑖,𝑡 = 1|𝑆𝑖,𝑡−1 = 1, 𝑌𝑡−1) = ф[∏
0𝑖,𝑠𝑡

]  

𝑞
𝑖𝑡

= (𝑆𝑖,𝑡 = 2|𝑆𝑖,𝑡−1 = 2, 𝑌𝑡−1) = ф [∏
1𝑖,𝑠𝑡

] , 𝑖 = {1, 10} 

where εi
t ~ N(0, σ2

i0), St = {1,2} and ф is the cumulative density function under the normality assumption. The 
standard errors are in parentheses. The state transition probabilities are ruled by a constant. The variance is kept 
constant across states. 

                                                                                                  Opaque Portfolios 

Parameters Transparent  Opaque 

Mean parameters 

State 1 Constant -0.025 (0.70) 1.605 (1.26) 
 1mo T-Bill rate  -0.687 (1.29) -0.656 (2.49) 
 Default premium 2.323 (0.59) 4.321 (1.28) 
 Credit Residuals 0.583 (2.97) -6.156 (5.77) 
    
State 2 Constant -7.571 (2.33) -13.476 (5.44) 
 1mo T-Bill rate  1.192 (3.11) 0.237 (6.97) 
 Default premium 1.316 (1.29) 5.448 (2.34) 
 Credit Residuals -11.878 (6.99) -18.939 (17.14) 
    
State 1, 2 Dividend Yield -0.113 (0.26) -0.501 (0.54) 

Variance parameters 15.793 (1.02) 53.053 (2.45) 

Transition Prob. Parameters 15.793 (1.02) 53.053 (2.45) 

State 1 Constant 1.274 (0.12) 
State 2 Constant 0.102 (0.19) 

Log likelihood value -3,281.49 

Duration of Regimes   

    State 1  9.87 months 
    State 2  1.85 months 

AIC/BIC                                                        6,606.99/6,715.39 

Restricted log likelihood    

𝛽
𝑘𝑖,𝑠𝑡=1

=  𝛽
𝑘𝑖,𝑠𝑡=2

 , 𝑘 = {1,2,3,4}  -3,284.70 

p-value  0.10 
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Table 11   
Bivariate Markov Switching Model. 
The table reports results for three univariate Markov Switching models simultaneously estimated across two decile 
portfolios having the lowest and highest opacity index. Opacity is captured as the linear combination of the first 
principal component derived from the following firm-level variables: property plant and equipment over total assets, 
log of age, log of size (shares outstanding times price), book-to-market, discretionary current accruals computed as in 
Jones (1991). 
The table reports the results for the following model with time varying transition probability estimated separately for 
opaque and transparent portfolios: 

𝑟𝑖,𝑡 =  𝛽
0𝑖,𝑠𝑡

+  𝛽
1𝑖,𝑠𝑡

(1𝑚𝑜𝑇𝐵𝑖𝑙)
𝑡−1

+  𝛽
2𝑖,𝑠𝑡

(𝐷𝑒𝑓)
𝑡−1

+ 𝛽
3𝑖,𝑠𝑡

(𝐶𝑟𝑒𝑑𝑖𝑡𝑅𝑒𝑠𝑖𝑑. )
𝑡−1

+  𝛽
4𝑖

(𝐷𝑖𝑣𝑌𝑙𝑑)
𝑡−1

+ 𝜀𝑖𝑡  

𝑝
𝑖𝑡

= P(𝑆𝑖,𝑡 = 1|𝑆𝑖,𝑡−1 = 1, 𝑌𝑡−1) = ф[∏
0𝑖,𝑠𝑡

+ ∏
1𝑖

(𝐶𝐿𝐼𝑡−2)]  

𝑞
𝑖𝑡

= (𝑆𝑖,𝑡 = 2|𝑆𝑖,𝑡−1 = 2, 𝑌𝑡−1) = ф [∏
2𝑖,𝑠𝑡

+ ∏
3𝑖

(𝐶𝐿𝐼𝑡−2)] , 𝑖 = {1, 10} 

where εi
t ~ N(0, σ2

i0,st), St = {1,2} and ф is the cumulative density function under the normality assumption. The 
standard errors are in parentheses. The state transition probabilities are ruled by a constant and by the two-month 
lagged annual rate of change in the composite leading indicator, CLI. 

                                                                                                    Opaque Portfolios 

Parameters Transparent  Opaque 

Mean parameters 

State 1 Constant -0.440 (0.73) -0.413 (1.10) 
 1mo T-Bill rate  -4.437 (1.20) -5.332 (1.99) 
 Default premium 2.075 (0.53) 4.572 (0.98) 
 Credit 5.444 (2.83) 2.923 (5.19) 
    
State 2 Constant 0.126 (2.96) 2.476 (5.12) 
 1mo T-Bill rate  1.089 (4.03) 2.290 (8.27) 
 Default premium -1.751 (1.85) -1.435 (2.89) 
 Credit 0.355 (11.29) -6.189 (21.69) 
    
State 1, 2 Dividend Yield 0.380 (0.32) 0.145 (0.55) 

Variance parameters 

State 1  10.477 (1.08) 28.070 (3.05) 
State 2  51.993 (7.45) 180.62 (24.94) 

Transition Prob. Parameters 15.793 (1.02) 53.053 (2.45) 

State 1 Constant 1.130 (0.23) 
 CLI 0.038 (0.06) 
State 2 Constant -0.698 (0.22) 
 CLI 0.022 (0.06) 

Log likelihood value                         -3,242.494 

Duration of Regimes   

    State 1  9.08 months 
    State 2  3.82 months 

AIC/BIC   

Restricted log likelihood                    

   𝛽𝑘𝑖,𝑠𝑡=1 =  𝛽𝑘𝑖,𝑠𝑡=2 , 𝑘 = {1,2,3,4}                    -3,245.194 

p-value                     0.25 
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Table 12 
The credit cycle, leverage, and excess returns. 

This table reports standardize parameter estimates and statistical significance for six variations of the 

following panel OLS model: 

 rit = β
0
+ β

1
𝑀𝐾𝑇t + β

2
SMBt + β

3
HMLt + β

4
OMTt +  β

5
Leverage

it
+ β

6
Dummy

t
+ β

7
CreditGrowtht-1+ 𝜀𝑖𝑡   

where monthly excess returns, rt, are calculated as the difference between firms monthly returns and the one-

month Treasury Bill rate. MKT is the excess return on the market; SMB captures the size effect; HML 

captures the value effect. The market, size, and value factors are retrieved from the Kenneth French library. 

The OMT factor (Opaque-Minus-Transparent) is computed as the difference between returns of opaque and 

transparent portfolios. The opacity breakpoint was the 10th and 90th percentile of the opacity index at the 

end of June t-1. The CMU factor (Constrained-Minus-Unconstrained) is computed as the difference between 

returns of the most financially constrained and the least financially constrained according to the KZ index. 

The KZ index breakpoint was the 10th and the 90th percentile. Leverage is computed as the ratio of long-term 

debt and debt in current liabilities over market value of equity. Dummy captures periods of low credit and it 

equals 1 in periods of credit level below the trend, and 0 otherwise; CreditGrowth is the growth in credit 

residuals from regressing the natural logarithm of total bank credit of all commercial banks on a time trend. 

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

       
MKT 0.292*** 

(0.00) 
0.292*** 

(0.00) 
0.292*** 

(0.00) 
0.295*** 

(0.00) 
0.295*** 

(0.00) 
0.295*** 

(0.00) 
SMB 0.116*** 

(0.00) 
0.176*** 

(0.00) 
0.176*** 

(0.00) 
0.119*** 

(0.00) 
0.118*** 

(0.00) 
0.118*** 

(0.00) 
HML 0.009*** 

(0.00) 
-0.002 
(0.39) 

-0.002 
(0.26) 

0.012*** 
(0.00) 

0.012*** 
(0.00) 

0.017*** 
(0.00) 

OMT  0.086*** 
(0.00) 

  0.085*** 
(0.00) 

0.086*** 
(0.00) 

0.085*** 
(0.00) 

CMU      -0.009*** 
(0.00) 

Leverage -0.031*** 
(0.00) 

-0.030*** 
(0.00) 

-0.031*** 
(0.00) 

-0.031*** 
(0.00) 

-0.031*** 
(0.00) 

-0.031*** 
(0.00) 

Dummyt  -0.015*** 
(0.00) 

 -0.011*** 
(0.00) 

  

CreditGrowtht-1   -0.006*** 
(0.00) 

 -0.003*** 
(0.00) 

 

Intercept Yes*** Yes*** Yes*** Yes*** Yes*** Yes*** 

R-Squared 0.15 0.14 0.14 0.15 0.15 0.15 
*** indicates significance at the 1% level. ** indicates significance at the 5% level. * indicates significance at 
the 10% level. P-values are in parenthesis. 
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Figure 1. The credit cycle. 
  This figure plots Credit, the residual component of total bank credit of all commercial banks. Total bank 
credit is detrended by regressing the natural logarithm of total credit (TOTBKCR) on a time trend. The 
shaded regions depict NBER recessions. 
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Panel A 

 

Panel B 

 

Figure 2. Average Yearly Opacity Index. 
  The figure represents the time-series dynamics of the yearly average opacity index. Panel A represents 
the opacity index having size computed as stock price times shares outstanding. Panel B represents the 
opacity index having size captured as total current assets.  
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Figure 3. Opaque-Minus-Transparent. 
  The figure represents the OMT factor computed as the difference between returns of opaque and 
transparent portfolios. The opacity breakpoints were the 10th and 90th percentiles of the opacity index 
at the end of June t-1. 
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Figure 4. State 2 probabilities and NBER recessions.  
  This figure plot the State 2 smoothed probabilities derived from model A, Table 8. The shaded 
regions represent the NBER recessions. The probabilities at time t are conditional on the information 
at time t-1. 
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Figure 5. State 2 probabilities and the CFNAI.   
  This figure plots the state 2 smoothed probabilities of Model A, Table 8 along with the Chicago Fed 
National Activity Index (CFNAI). The CFNAI represents the level of monthly economic activity and it 
is computed as a combination of 85 macroeconomic series. A low CFNAI index corresponds to low 
economic activity. The probabilities at time t are conditional on the information at time t-1. 
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Figure 6. State 2 probabilities and the credit spread.  
  This figure plots the state 2 smoothed probabilities of Model A, Table 8 along with the credit spread 
computed as the difference between AAA corporate bond yield and the 10-year Treasury yield. The 
probabilities at time t are conditional on the information at time t-1. 
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Figure 7. Smoothed state probabilities. 

  This figure represents the smoothed state probabilities for transparent and opaque portfolios obtained 
from the univariate regime switching model estimation.  
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Transparent 

 
 

Opaque 

 
Figure 8. Transition probability for transparent and opaque portfolios. 
  This figure plots the time-series of the probability of staying in the current state for transparent and opaque 
portfolios obtained from the univariate regime switching model estimation.  
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III. CAPTER 2. PRICE DISCOVERY ALONG THE YIELD CURVE: DOES UNCONVENTIONAL 

MONETARY POLICY MAKE A DIFFERENCE?1 
 

 
 

Abstract 

 

 

We examine the impact of unconventional monetary policy on price discovery along the yield curve 

by investigating the effects of quantitative easing, macroeconomic news, and security’s 

characteristics on relative information shares. Our analysis consists of two parts: (1) we analyze the 

cross-sectional and time-series price informational contribution of Treasury and Eurodollar futures 

contracts across periods of quantitative easing, and (2) we investigate the influence of 

macroeconomic news on information shares. The questions addressed have important implications 

for the understanding of monetary policy effects on price discovery through the investor’s 

expectations channel. Contrary to our expectations, we find that the long-term contracts do not 

have higher relative information shares during periods of unconventional monetary policy. We 

conclude that quantitative easing is not a significant driver of price discovery along the yield curve. 

Our findings are surprising given the effectiveness of quantitative easing in influencing longer-term 

rates.  We advance an alternative explanation in line with the macro-finance term structure literature: 

futures prices contained a time-varying component that went beyond the role of expectations as 

drivers of the term structure of interest rates. 

 

 

 

 

 

                                                           
1 This essay is based on a paper coauthored with Alexander Kurov. 
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1. Introduction  

The goal of our study is to investigate the relative informational contribution of different 

maturities across the yield curve in order to understand if the dynamics of price discovery reflect the 

impact of quantitative easing on long-term interest rates. The question addressed has important 

implications for understanding the effect of monetary policy on price discovery through the 

investor’s expectations channel. While previous literature examines the market reactions to monetary 

policy announcements, little has been done investigating the inclusion of updated investor’s 

expectations in market prices through a price discovery approach. We are, to the best of our 

knowledge, the first to examine the price discovery dynamics along the yield curve during 

quantitative easing periods for Treasury and Eurodollar futures contracts. 

Given the effectiveness of quantitative easing policy on long term interest rates,1 news from 

unconventional monetary policy should be more important for the long term rates rather than the 

short term rates. This would lead to greater information being incorporated into long term futures 

contract prices and, consequently, cause higher relative information shares for long term contracts. 

Information shares capture the relative weight of price discovery across different maturities 

highlighting the market, or the security, in which the new information is first incorporated. For this 

reason, the relative information shares should also vary according to quantitative easing periods and 

new release of information. 

Our analysis consists of two parts: Part I investigates the price discovery and its dynamics across 

contract maturities and quantitative easing periods; Part II investigates the influence of 

macroeconomic and policy news on relative information shares, after controlling for specific 

contract characteristics.   

                                                           
1 For empirical analysis and results concerning the effectiveness of unconventional monetary policy see 
Gagnon, Raskin, Remache and Sack (2010), Krishnamurthy and Vissing-Jorgensen (2011), and Swanson and 
Williams (2014). 
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Capturing changes in expectations is essential for understanding investor’s behavior and the 

effects of economy-wide events on financial markets. When faced with a change in policy 

procedures, such as during unconventional monetary policy periods, rational investors would 

immediately update their holdings to reflect their new expectations influenced by the Federal 

Reserve Bank’s policy announcements and long-term commitments. Expected changes in future 

macroeconomic policy and settings in fact cause changes in investor’s expectations and, ultimately, 

movements along the yield curve (Rudebusch and Wu, 2008). The behavior of rational investors in 

front of monetary policy shocks should be captured through a price discovery analysis and the 

results should highlight the primary location of price discovery– in short-term or long-term 

securities.  

Interest rate expectations are significant factors influencing investor’s decisions, holdings, 

portfolio rebalancing, borrowing levels and lending patterns; as such, they should be considered as 

determining drivers of changes in relative information shares across assets whose values are strictly 

related to interest rates levels. Financial instruments such as Treasury and Eurodollar futures are 

found to be good predictors of monetary policy expectations and a forecasting tool of spot interest 

rates (Chernenko, Schwarz and Wright, 2004; Gürkaynak, Sack and Swanson, 2007; Ferrero and 

Nobili, 2009). Most importantly, both Treasury and Eurodollar futures are derivatives whose values 

are strictly connected to their underlying assets and whose contracts are often used by investors to 

hedge future interest rate movements. Long-term yields also reflect expectations of short-term yields 

and are highly sensitive to monetary policy changes. A price discovery analysis across maturities of 

both the Eurodollar futures contracts and the maturities of the underlying assets of Treasury futures 

contracts should highlight the efficacy of quantitative easing policy in influencing long-term rates. 

We also expect information shares to exhibit a dynamic behavior across periods of different 

monetary policy. Relative information shares should differ across quantitative easing periods because 
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investors are shifting their holdings after adjusting their expectations for long-term interest rates. As 

Burger, Lang and Rasche (1977) point out, changes in expectations coincide with changes in 

investor’s holdings. We believe that information shares for long-term contracts should account for a 

higher portion of price discovery during quantitative easing periods. In our study, we identify thirty 

years and 9 quarters as being the long-term contracts for Treasury and Eurodollar futures, 

respectively. Examining the Eurodollar futures at 9 quarters in fact allows us to magnify and dissect 

the price discovery patterns observed at the shortest maturity of Treasuries in order to identify a 

long-term in a short-term setting. Lastly, we expect days of macroeconomic news to influence how 

information is incorporated in prices. In line with our initial hypothesis, macroeconomic 

information should be more important when revealed during a period of unconventional monetary 

policy, and its effect should be stronger for longer-term securities, the target of quantitative easing 

policy.   

Contrary to our expectations, our analysis reveals that long-term contracts do not have higher 

relative information shares during periods of unconventional monetary policy, and that days of 

macroeconomic news do not experience different price discovery patterns. Shortest-term maturities 

maintain their relative importance even during unconventional monetary policy when the short-term 

rates were bounded at zero. Our price discovery results suggest that the short end of the yield curve 

moves first, followed by the medium and long-term rates. Such findings are surprising given the 

success of quantitative easing policy in decreasing longer-term rates while the short-term rates were 

bounded at zero (Krishnamurthy and Vissing-Jorgensen, 2011).  

Our results do not disprove the effectiveness of unconventional monetary policy. On the other 

hand, our results show that quantitative easing did not disrupt the commonly observed price 

discovery dynamics, even though the policy specifically targeted longer-term securities.  
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In order to further understand our results, in our second part of the analysis we investigate the 

influence of macroeconomic news on the dynamics and patterns of price discovery. It is in fact 

possible for the release of new information to be an additional determinant of price discovery 

through its influence on the informational structure of markets. Specific macroeconomic news that 

have been found in past literature to have an impact on investor’s behavior and price discovery 

might also change the relative importance of information shares across maturities according to the 

economic circumstances – quantitative easing vs. non-quantitative easing periods. It is therefore 

important to further analyze the determinants of relative information shares and the drivers of price 

discovery patterns across contract maturities and unconventional times. 

Our results lead us to an alternative explanation spanning the macro-finance term-structure 

literature. There are additional factors besides expectations that determine the term structure of 

interest rates, the overall yield curve, and the level and composition of risk. There is the need to 

decompose the yield curve into expectations and risk premia effects in a similar way as that adopted 

in Cochrane and Piazzesi (2005). Our price discovery analysis might be capturing the time-varying 

risk premium component effects driving the yield curve especially during a period of unconventional 

monetary policy. Macroeconomic factors are in fact found to be important when analyzing the term 

structure of interest rates (Ludvigson and Ng, 2009). 

Our paper is organized as follows. Section 2 discusses the related literature to our hypothesis and 

motivates our analysis; Section 3 describes the sample and the construction of our dataset; Section 4 

explains our three hypotheses, which are tested in the two following sections. In Sections 5 we 

compute the relative information shares for Treasury and Eurodollar contracts, and we discuss the 

observed patterns and results; in Section 6 we examine the impact of macroeconomic news and 

contract characteristics on relative information shares across maturities and quantitative easing 

periods. Section 7 provides a brief summary of the motivation behind our study and of the results. 
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2. Related Literature  

Our paper primarily relates to two strands of literature investigating the effect on price discovery 

from (i) monetary policy and (ii) release of macroeconomic news.  

There are good reasons to expect a dynamic behavior in relative information shares across 

periods of unconventional monetary policy. Krishnamurthy and Vissing-Jorgensen (2011) find that 

unconventional policy works through different channels and the effect of QE depends strictly on 

the type of assets purchased by central banks. Their results show that the long-term interest rates on 

Treasury and safe corporate bonds are significantly decreased when the Fed purchases only Treasury 

securities, while the mortgage rates are the ones affected when mainly mortgage-backed securities 

are purchased.  

Swanson and Williams (2014) find that medium- to long-term interest rates were particularly 

sensitive to monetary policy from 2008 to 2010, but the sensitivity for long-term rates became 

insignificant starting in late 2011. The Federal Reserve Bank’s monetary policy actions have been 

successful for most of the financial crisis, and investor’s expectations of monetary policy and 

forward guidance information are the factors driving the observed results. Given the success of 

unconventional monetary policy, we might observe its effectiveness also through a price discovery 

analysis capturing how the new information is incorporated in market prices. 

The paper closest to our study is Fricke and Menkhoff (2011). The authors examine the relative 

information shares of the German bond futures market and find that the long-term contract – with 

the Bund as the underlying security – has a significant role in price discovery, but its absolute 

importance fluctuates. The authors try to explain the determinants of relative information shares in 

the European bond market and find that order flow is an information channel for price discovery 

more important than macroeconomic news itself. Contract characteristics seem to matter 

significantly for a price discovery analysis. 
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Macroeconomic announcements have a significant impact on trading and prices,2 but limited 

work has been done on the connection between price discovery and news announcements. Mizrach 

and Neely (2008) ask whether the information shares change from announcement to non-

announcement days, and they find that price discovery in Treasury futures markets increases when 

public information is released. While macroeconomic events have a moderate effect on futures 

market information shares, FOMC-related events have no significant effect. Their analysis however 

does not include the financial crisis, a period of high uncertainty characterized by the release of 

information related to new policy measures. 

Motivating our analysis is also Gagnon, Raskin, Remache and Sack’s (2010) study where they 

investigate the effectiveness of Large-Scale Asset Purchases (LSAP) by the Federal Reserve. The 

authors find that unconventional monetary policy was effective in lowering long-term rates. The 

LSAP program was found to decrease the 10-year premium between 30 and 100 basis points thanks 

to the portfolio balance effect – investors rebalance their portfolios due to the decrease in yield 

caused by the increase in Fed’s purchases of long-term securities. However, unconventional 

monetary policy was found to influence longer-term rates the most during announcement days.  

Consequently, information shares for long-term rates could be influenced more on announcement 

days rather than throughout each quantitative easing period. There is the need to further investigate 

this possible channel of monetary policy particularly on days of new information release. 

Chen and Gau (2010) examine the impact of news on price discovery in foreign exchange 

markets and reach two conclusions: (i) information is more crucial for spot rates in the Electronic 

Broking Services (EBS) rather than for Chicago Mercantile Exchange (CME) futures rates, and (ii) 

                                                           
2 For the major research concerning the impact of macroeconomic news announcements on investor’s 
behavior and prices, see Fleming and Remolona (1999), Andersen, Bollerslev, Diebold, and Vega (2003), 
Boyd, Hu, and Jaganathan (2005), Bernanke and Kuttner (2005), Gürkaynak, Sack, and Swanson (2005), 
Basistha and Kurov (2015). 
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the price discovery in the CME increases around macroeconomic announcements. Jian and Lo 

(2014) instead identify two states of the world through a regime switching model: an informed state 

and an uninformed state. They find that both private and public information dominate price 

discovery in days of macroeconomic announcements, while private information and liquidity shocks 

are most important for non-announcement days. Their analysis focuses only on 2-, 5- and 10-year 

notes and ranges from January 2004 to June 2007 thus discarding the financial crisis period, the 

focus of our study. 

A last strand of literature strictly connected to our research question is that investigating time-

varying risk premia and investor’s expectations as drivers of asset prices. Overall, previous studies do 

confirm the existence of a time-varying risk component in asset prices, but they do not expand such 

intuition through a price discovery analysis. Balduzzi and Moneta (2016) price macroeconomic risk 

and find a counter cyclical risk premium implied in an economic news factor. The authors find that 

the reaction to macroeconomic announcements has a time-varying component leading to dynamic 

response patterns.  Feroli, Kashyap, Schoenholtz and Shin (2014) find that periods of 

unconventional monetary policy lead to changes in perceived risk through monetary policy shocks 

such as the use of forward guidance. Chernenko, Schwarz and Wright (2004) empirically test the 

existence of risk premia and find that interest rate futures prices include both expectations and 

market priced risk components, therefore departing from the expectation hypothesis. 

 

3. Data  

In order to test our hypotheses, we use second-by-second data for Treasury and Eurodollar 

futures contracts. The underlying assets of Treasury futures contracts have maturities of 2, 5, 10 and 

30 years. The data is gathered from Genesis Financial Technologies and spans from January 1st, 2008 
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to October 9th, 2015. The four Treasury contracts are the most traded contracts in each respective 

market.  

The Eurodollar futures contracts data is gathered from Genesis Financial Technologies and the 

overall sample covers a longer time period than the Treasury dataset, ranging from December 9th, 

2007 (contract with expiration on March 2008) to February 10th, 2016 (contract with expiration on 

March 2018). The futures contracts examined have a maturity of 1, 3, 5, 9 quarters. In order to 

calculate the different maturities across Eurodollar futures, for each trade we computed the numbers 

of quarters to maturity for the underlying security and we then created four time series reflecting the 

contract prices for 1, 3, 5 and 9 quarters to expiration, respectively. The sample periods examined 

refer only to the trading days from 8:00am to 5:00pm.3 

It is of crucial importance to point out that when we refer to the maturities of Treasury futures 

contracts throughout the text, we are actually referring to the maturity of the underlying assets – 

Treasury notes and bonds – rather than the contract itself. When we refer to Eurodollar futures 

contracts, instead, we are referring to the maturity of the contract which is captured through the 

computation described above. 

Table 1 reports the descriptive statistics for the Treasury constant maturity rates (Panel A) and 

the Eurodollar implied LIBOR rates (Panel B). The Treasury data was gathered from the Federal 

Reserve Bank of St. Louis database, while the implied LIBOR rate was computed by subtracting the 

Eurodollar futures price from 100. The table provides information on the securities underlying the 

derivative contracts examined in our study. 

[Insert Table 1 around here] 

                                                           
3 Some announcements (for example, the Nonfarm Employment announcement) are released before the 
markets open. For this reason, we decided to analyze trades starting from 8:00am; while the cutoff time, of 
5:00pm is common practice in the literature.  
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Figures 1 and 2 show the yearly average trading volume of the number of contracts per second 

for the Treasury and Eurodollar futures contracts. On average, the 10-year Treasury futures contract 

has the highest trading volume among the four maturities and the thirty-year futures has the lowest 

trading volume. The most actively traded Eurodollar futures maturity in average daily volume is the 

1-quarter contract, while the least traded is the 9-quarter contract. The 1-quarter Eurodollar contract 

during the last two years examined – 2015 and 2016 – show a sharp increase in the yearly average 

trading volume. The 2-year Treasury contract also exhibits an increase in average volume for the 

years 2014 and 2015. For both securities the increase in volume was experienced by the shortest-

term futures contracts.  

 [Insert Figures 1 and 2 about here] 

Conducting the price discovery analysis over different quantitative easing periods allows us to 

directly examine the dynamics of information shares across the financial crisis and unconventional 

monetary policy. The overall analysis for each security is conducted across both the full sample 

period and five selected quantitative easing periods:  

 QE1 (November 25th, 2008 to Mar 31st, 2010); 

 Pre-QE2 (April 1st, 2010 to November 2nd, 2010); 

 QE2 (November 3rd, 2010 to June 30th, 2011); 

 Pre-QE3 (July 1st, 2011 to September 12th, 2012) 

 QE3 (September 13th, 2012 to October 29th, 2014); 

Quantitative easing policy differentiates itself from conventional Open Market Operation in 

both the size and the goal of policy actions. Conventional asset purchases by the Federal Reserve 

aim at causing a small effect in short-term interest rates through the Treasury bill market; 

unconventional monetary policy involves a large purchase of longer term securities in order to 

significantly influence long-term rates for specific securities and markets.  
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 After lowering the short-term interest rates to almost zero in mid-2008, the Federal Reserve 

adopted unconventional monetary policy measures and started purchasing long-term securities. The 

QE1 period accounted for the purchase of $1.25 trillion of mortgage-back securities, $300 billion in 

Treasury bonds and $175 billion of agency debt securities; the QE2 accounted for the purchase of 

$600 billion of long-term Treasury securities at $75 billion per month until June 30th, 2011; QE3 

accounted for an additional $40 billion monthly purchases of mortgage-backed securities and $85 

billion of Treasuries to then be tapered to zero by the end of QE3 period.  

We retrieve data on macroeconomic announcements from Bloomberg’s Economic Calendar 

Database. The calendar reports dates, times, and figures for each US macroeconomic and policy 

announcement. We first consider days with at least one news announcement, we then narrow the 

announcements to those considered to have the most significant impact on prices. Table 2 reports 

the specific macroeconomic announcements that we take into consideration, along with the number 

of days in our sample coinciding with each specific announcement or with a day of macroeconomic 

news release, regardless of the type of news. We consider announcements related to real economic 

activity (GDP and jobless claims), prices (CPI and PPI), forward looking proxies (ISM 

manufacturing index), and monetary policy (FOMC announcements and the release of the meeting 

minutes). The choice of announcements was motivated by previous literature.4 

 [Insert Table 2 about here] 

Of the seven specific macroeconomic news examined, announcements concerning jobless claims 

(GDP) occur most (least) frequently accounting for a total of 151 (22) days in the sample. Overall, 

we have 605 days (94% of our final sample) experiencing at least one macroeconomic 

                                                           
4 For an extensive overview of the effect of macroeconomic announcements on price discovery, see Mizrach 
and Neely (2008), Chen and Gau (2010), and Fricke and Menkhoff (2011). 
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announcement, where 313 (48% of our final sample) of these coincide with the release of one of the 

seven specific announcement we closely analyze.  

We also take into consideration announcements that relate specifically to quantitative easing 

policy actions. Table 3 reports the days of our sample that coincide with these significant QE-related 

news announced through either FOMC statements or speeches by the Chairman of the Federal 

Reserve Bank. We believe it is important to consider the effect of QE-related news on price 

discovery even though only a small number of days coincide with our cointegrated sample.  

[Insert Table 3 about here] 

 

4. Hypotheses 

We expect the relative contribution of information shares to vary across time and across 

contract maturities. This expectation is motivated by the effectiveness of unconventional monetary 

policy, by the different sensitivity of Treasury yields, and by the different degree of information and 

learning gathered by investors. Applying Swanson and Williams’ (2014) findings to a price discovery 

analysis during unconventional monetary policy, we expect the information shares to be time-

varying and the relevant price discovery market to change according to both the time period and the 

information gathered by investors. We advance the following hypotheses: 

Hypothesis 1 (H1): Price discovery in the pre-QE and post-QE periods should occur mostly in 
short-term futures contracts due to the effectiveness of conventional monetary policy and to 
investors’ familiarity with the policy procedures. 
 
Hypothesis 2 (H2): Price discovery in the QE1, QE2, and QE3 periods should occur in long-term 
futures contracts due to the zero lower bound and to the effectiveness of unconventional 
monetary policy at influencing investors’ expectations.  
 
For what concerns the effect of macroeconomic news on the dynamics of price discovery, we 

expect the release of public news to have a different impact during quantitative easing periods. 

Macroeconomic announcements have the potential to change the information structure of markets, 
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and price discovery captures how prices react to available relevant information (Chen and Gau, 

2010). For this reason, we believe announcements should change the price discovery dynamics. This 

should be true especially during periods of unconventional monetary policy when any new 

information is crucial at the margin. We aim at investigating whether a day of macroeconomic 

announcement or specific macroeconomic news partially explain the relative information shares 

across time and across Treasury and Eurodollar futures contract maturities. We advance the 

following two additional hypotheses: 

Hypothesis 3 (H3): We expect the days of macroeconomic announcements to significantly 
influence information shares, especially if they occur during periods of quantitative easing.  
 
Hypothesis 4 (H4): We expect specific announcements related to macroeconomic policy to have a 
heterogeneous impact across information shares of different contract maturities.  

 
The novel contribution of the study is the time-series analysis of information shares along the 

yield curve for securities targeted by monetary policy before, during and after the recent financial 

crisis. Results will highlight both the dynamics of price discovery in response to different monetary 

policy actions and the degree of investor’s learning and inclusion of specific macroeconomic 

information in financial markets.  

 

5. Part I: Dynamics of Information Shares 

Our main goal is to look at the relative rates of price discovery for futures contract prices across 

maturities. In order to do this, we must compute information shares for multiple assets using 

Hasbrouck’s (1995) price discovery methodology. The information share is a price discovery 

measure capturing the relative contribution of a market’s innovation to the overall security’s price 

innovation.  

Both Treasury and Eurodollar futures are often used by investors to hedge future interest rate 

moves, and futures markets are a forecasting tool of spot interest rates (Chernenko, Schwarz and 
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Wright, 2004; Ferrero and Nobili, 2009). We start by analyzing information shares for Treasury 

futures contracts having the underlying assets with maturities of 2, 5, ten, and thirty years. In order 

to further dissect the short-term maturities and given Eurodollar futures are a good forecasting tool 

of monetary policy expectations, we also analyze Eurodollar futures contracts having 1 quarter as the 

shortest futures maturity. 

5.1 Information shares adopting Hasbrouck (1995) price discovery model 

Hasbrouck’s (1995) model relies on the idea that a change in price reflects a deviation from the 

long-run equilibrium price. When we have multiple prices for the same security, i.e.: when securities 

are either traded on different markets or through different contract maturities, prices follows a 

random walk and have a common underlying efficient price. Therefore, prices will diverge in the 

short-run but converge in the long-run, and the difference between prices will be stationary 

(Hasbrouck, 2004).  

Hasbrouck’s (1995) price discovery measure – the Information Share (IS) – is widely used in the 

microstructure literature and it captures how much the variance of a security’s price contributes to 

the overall variance of the changes in the underlying efficient price. In other words, the information 

share captures the relative price discovery occurring in each specific market. The methodology 

consists on estimating a Vector Error Correction Model (VECM) of the price series examined.  

Following we outline the econometric procedure adopted in the price discovery analysis as 

explained in Hasbrouck (2002). 5  Consider a price vector 𝑝𝑡 = [𝑝1𝑡  𝑝2𝑡  …  𝑝𝑛𝑡], where 𝑝𝑖 refers to 

the same security. We can write a VECM of order K as: 

∆𝑝𝑡 =  𝛼𝛽𝑝𝑡−1 + ∑ 𝐴𝑖∆𝑝𝑡−𝑖
𝑘
𝑖=1 +  𝜀𝑡,                                            (1) 

                                                           
5 The model is estimated using the SAS code provided in Hasbrouck (2002) available from 
www.stern.nyu.edu/~jhasbrou. 
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where α and β are n x (n - 1) matrices with rank (n-1); α contains the adjustment coefficients; β is an 

(n - 1) cointegration vector; 𝐴𝑖 are square matrices of order n; 𝜀𝑡 is an (n x 1) vector of price 

innovations; and 𝛽𝑝𝑡−1 is the (n - 1) x 1 vector of error correction terms. For example, if we look at 

the relationship of the Hewlett-Packard (HP) stock traded on NYSE and the NASDAQ, the error 

correction term will be 𝛽𝑝𝑡−1 =  𝑝𝑡−1
𝑁𝑌𝑆𝐸 − 𝑝𝑡−1

𝑁𝐴𝑆𝐷𝐴𝑄
.  

The Vector-Moving Average (VMA) of the model can be expressed as: 

      ∆𝑝𝑡 = 𝑒𝑡 + (𝜓1𝑒𝑡−1 +  𝜓2𝑒𝑡−2 +  𝜓3𝑒𝑡−3 + ⋯ ) ,          (2) 

where the vector 𝑒𝑡 captures the VECM residuals, 𝑒𝑡 = [𝑒1𝑡   𝑒2𝑡   …   𝑒𝑛𝑡]′. This allows us to 

compute the variance of the efficient price, the major component in the information share 

calculation. The efficient price, 𝑚𝑡, follows a random walk, 𝑚𝑡 =  𝑚𝑡−1 +  𝑢𝑡 , where 𝑢𝑡 is the 

efficient price innovation. The variance of the common random-walk component of prices can thus 

be written as: 

𝜎𝑢
2 = 𝜓𝛺𝜓′            (3) 

where 𝛺 = 𝑉𝑎𝑟(𝑒𝑡) and 𝜓 is the matrix of VMA coefficients. Hasbrouck (1995) shows that if 𝛺 is 

diagonal, then: 

   𝛺 =  [
𝜎1

2 0 0
0 ⋱ 0
0 0 𝜎𝑛

2
]            (4) 

and the information share for market i can be computed as 

𝐼𝑆𝑖 =  
𝜓𝑖

2𝜎𝑖
2

𝜎𝑢
2 .                        (5) 
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If instead 𝛺 is a non-diagonal matrix, as it often occurs, Hasbrouck adopts a Cholesky 

factorization to 𝛺 to obtain the lower triangular matrix M.6 After the transformation, the new matrix 

is 𝛺 = 𝑀𝑀′ and the information share for market i can now be calculated as: 

𝐼𝑆𝑖 =  
(𝜓𝑀)𝑖

2

𝜎𝑢
2             (6) 

where 𝜓𝑖𝑀 is the ith element of the row matrix 𝜓𝑀 (Hasbrouck, 1995). The information share, ISi, 

is the proportion of the variance of the permanent component price innovation coming from the ith 

market. Consequently, the information share captures the relative amount of information produced 

for that security in a specific market by examining the relative contribution of each price innovation 

into the overall common efficient price variance (Hasbrouck, 2004). 

The information share for market i will not be uniquely defined when 𝛺 is not diagonal and a 

Cholesky factorization is adopted. This methodology leads to an upper and lower bound on the 

information shares calculated from all possible ordering of the variables in the covariance matrix.7 In 

our analysis we consider the midpoint of the upper- and lower-bound range of information shares as 

our main price discovery measure.8 After computing the median information shares for Treasury and 

Eurodollar futures, we compare the dynamics and patterns of price discovery across contracts and 

quantitative easing periods.  

5.2 Cointegration Tests 

As outlined above, Hasbrouck’s (1995) information share approach relies on the presence of a 

common permanent component for all market prices. In order to adopt this methodology we have 

                                                           
6 The Cholesky factorization allows to consider all possible permutations of the disturbances.  
7 The upper bound for market i is obtained by ordering market i first when permuting 𝜓 and 𝛺 and therefore 
placing higher weight on its information share. The lower bound for market i is obtained by ordering it last 
and therefore minimizing the weight on its information share (Hasbrouck, 1995). 
8 The midpoint information shares are a good representation of the relative information shares because the 
upper- and lower-bound spread is tight, with an average spread across Treasury (Eurodollar) contracts of 0.04 
(0.05). 
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to test for daily cointegration across the four futures contracts for each security. Since we have 4 

prices, we need 3 independent cointegrating vectors to correctly compute information shares 

(Huang, 2002). We adopt the Johansen (1988) cointegration test to identify the days having the 

required 3 cointegrating vectors. There are two main cointegration tests: trace test and maximum 

eigenvalue tests. The trace statistics tests the null hypothesis that the number of independent 

cointegrating vectors is less than or equal to m against the alternative hypothesis that the number of 

independent cointegrating vectors is greater than m. The maximum eigenvalue statistics instead tests 

the null hypothesis that the number of independent cointegrating vectors is indeed m against the 

alternative hypothesis that the number of independent cointegrating vectors is (m + 1).   

The hypotheses of cointegration rank are tested sequentially using Johansen’s (1988) 

cointegration trace test and we discard any days where the hypothesis of a rank of cointegration less 

than 3 cannot be rejected. Days with either 1, 2 or no independent cointegrating vectors are dropped 

from the sample.9 Including only cointegrated days is the most appropriate way to compute correct 

information share (Fricke and Menkhoff, 2011). Table  reports the cointegration test results. There 

are a total of 1,607 (2,108) trading days for the Treasury (Eurodollar) futures sample and 40% (39%) 

of the days from our original sample have 3 cointegrating vectors. The final sample for Treasury 

(Eurodollar) contracts has 647 (817) cointegrated days. As a robustness check, we also run the 

analysis across the days from the maximum eigenvalue tests; results do not qualitatively change.  

[Insert Table 4 about here] 

5.3 Results   

Figure 3 shows the average daily cumulative impulse response functions for the Treasury (Figure 

3a) and Eurodollar (Figure 3b) futures contracts. The impulse response functions show that the 

                                                           
9 The inclusion of only cointegrated days is a widely used practice in price discovery empirical studies. See for 
example, Hasbrouck (1995), Lien and Shrestha (2009, 2014), and Fricke and Menkhoff (2011). 
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shortest- and longest-term contract prices for both securities do not converge within the ten-minute 

window examined; there seems to be a shock that permanently influences the 2- and thirty-year 

Treasury futures contracts, and the 1- and 9-quarter Eurodollar futures contracts. This is an 

interesting result given the recognized empirical impact of monetary policy on both short-term and 

long-term rates (Swanson and Williams, 2014; Gagnon, Raskin, Remache and Sack, 2010; and 

Krishnamurthy and Vissing-Jorgensen, 2011). The mid-term maturities seem to cause less 

permanent shocks to the short- and long-term contract prices; after a shock to the mid-term 

contracts, all prices reach a closer converge range within the ten-minute window examined. 

[Insert Figures 3a and 3b about here] 

Table 5 reports the midpoint information shares across quantitative easing periods and contract 

maturities for both underlying Treasury assets (Panel A) and Eurodollar (Panel B) futures contracts. 

Over the full period analyzed, the contracts with the shortest term to maturity account for the 

largest portion of information share ranging from 84% to 72% for the 2-year Treasury futures 

contract and the 1-quarter Eurodollar futures contract, respectively. Results are consistent when we 

examine the information share across different quantitative easing periods.  

[Insert Table 45 about here] 

Interestingly, the long-term Eurodollar futures contract with 9 quarters to maturity has a higher 

information share only during the pre-QE1 period; nonetheless, it still accounts for the smallest 

portion of price discovery. The higher relative information share observed before the 

implementation of quantitative easing policy is in line with Gagnon, Raskin, Remache and Sack’s 

(2010) findings concerning the effectiveness of the LSAP program in decreasing long-term rates. 

The authors find that the two initial FOMC announcements on quantitative easing – in November 

2008 and March 2009 – contained the most useful information for investors. At these meetings the 

Federal Reserve announced a planned future course of actions that investors interpreted as being a 
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long-term commitment. In our results, the higher observed information shares for Eurodollar 

longer-term rates before the QE1 period could be the consequence of this market adjustment.  

Figures 4 and 5 show the relative midpoint information shares for all Treasury and Eurodollar 

futures contracts for the shortest- and longest-term maturities. The shaded regions represent the 

three quantitative easing periods. The graphs show that there is no significant change in pattern for 

the information shares of futures contracts across the entire sample period. The short-term maturity 

remains the most significant contract throughout the distinctive quantitative easing phases.  

[Insert Figures 4 and 5 about here] 

Through our analysis we are not able to capture the expected patterns of information shares 

advanced in our second hypothesis. Price discovery does not reflect the effectiveness of 

unconventional monetary policy as we predicted; nonetheless, it highlights the validity of common 

price discovery dynamics observed in our results for conventional pre-QE times, where short-term 

futures contracts impound most of the information.  

5.4 Robustness Checks 

When interpreting the results it is important to take into account the overall empirical approach 

used. The price discovery methodology applies only to cointegrated days when the futures contract 

prices move together; but the cointegration test results clearly shows that sections of the yield curve 

do not necessarily behave in this matter. The analysis across only cointegrated days could therefore 

be a limiting factor leading to our unexpected results. 

In order to address this concern, we compute information shares across only non-cointegrated 

days. Table 6 reports the information share midpoints across different maturities for the non-

cointegrated days in the sample. 

[Insert Table 6 about here] 
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The information shares levels and dynamics are consistent with the results obtained using only 

cointegrated days: the short-term maturity contract has the highest information share. We can 

conclude that discarding the non-cointegrated days does not bias our analysis; the same information 

share patterns are observed across cointegrated and non-cointegrated days in the dataset. We 

proceed with our analysis taking into account only cointegrated days. 

 

6. Part II: Macroeconomic News and Dynamics of Information Shares 

In the second part of our analysis we ask whether information shares are predictable on days of 

macroeconomic news announcements. New available information changes the informational 

structure of markets. This implies that investors might incorporate information differently according 

to the news type and the overall economic circumstances. In specific, we ask if relative information 

shares across assets and maturities change because of (1) general or specific macroeconomic news 

announcements, and (2) quantitative easing policy.  

In order to test our hypotheses concerning the influence of macroeconomic announcements on 

price discovery across maturities and quantitative easing periods, we run several model specifications 

that take into account the release of macroeconomic information along with three of the major 

contract characteristics – bid-ask spread, volume, and volatility.  

6.1 Expectations 

Fricke and Mankhoff (2011) and Mizrach and Neely (2008) found rather consistent effects of 

market state variables and contract characteristics on information shares. We can thus form the 

following expectations: an increase in spread is expected to decrease relative information shares 

because including information in markets becomes more costly and because a higher spread could 

imply lower liquidity; an increase in trading volume increases the effectiveness of market 

informational structure and thus leads to higher relative information shares; and an increase in 
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volatility implies an increase in noise therefore leading to lower relative information shares. Higher 

volatility could also lead to an increase, rather than a decrease, in information shares if it implies 

more is not homogeneously available and impounded across markets into prices. Fricke and 

Menkhoff point out that previous literature results should be considered as being neither universal 

nor absolute stylized facts. 

Concerning the effect of macroeconomic news on price discovery across maturities and 

quantitative easing periods, we expect the days of announcements to be most critical in driving 

information shares, especially if they occur during periods of quantitative easing. Such finding would 

imply that quantitative easing was one of the drivers of price discovery during periods of 

unconventional monetary policy. Gagnon, Raskin, Remache and Sack (2010) in fact find that 

unconventional monetary policy was able to significantly decrease long-term rates only during 

macroeconomic announcement days, while average long-term rates during non-announcement days 

are found to increase. Information could have been included differently into prices according to 

quantitative easing periods.  

We also expect specific announcements to have a different impact across maturities of 

Eurodollar futures contracts and underlying Treasury bonds: for example, announcements by the 

Federal Open Market Committee and news concerning monetary policy should have a significant 

impact on longer-term relative information shares due to the critical importance of new information 

during unconventional times.  

6.2 Regression Analysis and Results  

First, we examine the impact of QE-related macroeconomic announcement days and of contract 

characteristics (Models 1, 2, 3); second, we investigate whether specific news announcements have a 

significant influence of information shares (Models 4, 5, 6); finally, we test if the effect of these 

specific news announcements vary across quantitative easing policy periods (Model 7). 
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We start by examining the significance of QE-related macroeconomic news on price discovery 

by running the following three model specifications: 

Model 1 

 𝑙𝑛 (
𝐼𝑆𝑖,𝑡

1−𝐼𝑆𝑖,𝑡
) =  𝑐 + 𝑏1𝑄𝐸𝑁𝑒𝑤𝑠𝐷𝑎𝑦𝑡  + 𝑏2𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 + 𝑏3𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 +  𝑏4𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡 + 𝜖𝑡    (7) 

Model 2 

𝑙𝑛 (
𝐼𝑆𝑖,𝑡

1−𝐼𝑆𝑖,𝑡
) =  𝑐 + 𝑏1𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 + 𝑏2𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 +  𝑏3𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡 + 𝜖𝑡                   (8) 

Model 3 

     𝑙𝑛 (
𝐼𝑆𝑖,𝑡

1−𝐼𝑆𝑖,𝑡
) =  𝑐 + 𝑏1𝑄𝐸𝑃𝑒𝑟𝑖𝑜𝑑𝑡  + 𝑏2𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 + 𝑏3𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 +  𝑏4𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡 + 𝜖𝑡      (9) 

where i refers to either the Treasury or Eurodollar log-transformed maturity-specific information 

share. Following Mizrach and Neely (2008) and Fricke and Mekhoff (2010), we choose the 

logarithmic transformation of variables to account for distributional bias and to allow for an easier 

interpretation of results. QE NewsDayt is a dummy variable equal to 1 if day t corresponds to a day 

when the FOMC or the Chairman of the Federal Reserve Bank announced (i) specific amounts of 

Treasury bonds or mortgage-backed securities to be purchased or sold, or (ii) actions to be taken 

concerning quantitative easing policy; QE Periodt  is a dummy variable equal to 1 if day t falls under 

QE1, QE2, or QE3 period and it includes a larger number of announcement days when compared 

to QE-specific news announcement days. We control for the following contract characteristics: the 

daily share of spread (Spread) computed as a proportion, where the daily average of price reversals of 

each maturity contract is divided by the sum over all four contract maturities; the daily share of 

volume traded (Volume) computed as the contract specific daily number of trades divided by the sum 

of all trades for the four contract maturities; the daily share of the realized volatility (and Volatility) 

estimated as the square root of the sum of squared five-minute returns of each contract maturity 

divided by the sum of realized volatilities of the four contract maturities. 
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Table 7, Panel A reports the results for Model 1 and answers the question of whether specific 

QE-related news announcements affect price discovery along the yield curve. Results indicate that 

being on a day of QE-specific news release significantly impact the relative information shares of 

only the contracts on the Treasury bonds having the longest maturity and the shortest Eurodollar 

futures contracts. The effect, however, is opposite: the information share for long-term Treasury 

bond futures contracts is positively affected, while Eurodollar futures relative information share 

decreases. This might be explained by investors changing markets due to the relevant QE-related 

news announced. As expected, the R-square for this model is very low; there is the need to control 

for additional factors. 

[Insert Table 7 about here] 

In Panel B we control only for three major contract characteristics: spread, volume traded, and 

realized volatility. Spread is highly significant and with the expected negative sign for the longest and 

shortest maturity of Treasury futures contracts and for the 1 and 3 quarters Eurodollar futures 

contracts. A one percent increase in 2 years (30 years) Treasury futures spread will lead to a decrease 

of about 2 basis points (3 basis points) in its information share, while a one percent increase in the 

spread of the 3 quarters Eurodollar futures contract will decrease the information share by about 2 

basis points. The information shares for the 5 and 9 quarters Eurodollar futures contracts are 

instead positively affected, with an increase of about 1 basis point. The opposite effect on 

Eurodollar and Treasuries might be caused by investors switching markets.  

Volatility exhibits both signs across securities, matching our expectations of a mixed effect from 

a higher realized volatility. Volume, on the other hand, negatively impacts the information shares of 

Treasury futures and the shortest and longest maturity contracts of Eurodollar futures. According to 

Campbell and Hendry (2007), this result can be explained by a worsening of the speed in price 

discovery due to the higher share of trading volume and more noise being included in the overall 
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market. The effect of spread, volume, and volatility are not perfectly in line with the results from 

previous literature, they are however consistent throughout our analysis. Overall, Panel B shows that 

the short-term contracts – 2 years and 1 quarter – exhibit the highest explanatory power, followed 

by the long-term contracts – 30 years and 9 quarters. 

Through Model 3 in Panel C we reveal that being in a period of quantitative easing has a 

significant effect on the relative information shares, especially for what concerns the shortest 

maturity contracts. Information shares for the 2 years Treasury future contract decrease while both 

shortest term Eurodollar contracts – 1 and 3 quarters – increase during periods of quantitative 

easing. The negative coefficient on the QE Period dummy matches our expectations that during a 

period of unconventional monetary policy the information share for the short-term Treasury futures 

contract decreases. In this case, shifting to a day when quantitative easing is into effect causes a 

negative impact on the information share of short-term Treasury futures contracts of about 17%. 

On the other hand, the short-term information share of Eurodollar futures is positively affected 

despite the unconventional period, experiencing an average positive impact to the information 

shares of 1 and 3 quarters Eurodollar futures contracts when transitioning to a period of quantitative 

easing policy.  

After analyzing a day of general macroeconomic news release, we investigate whether a specific 

news announcement has a significant impact on the price discovery of Treasury futures.10 We thus 

run the following three additional model specifications:  

Model 4 

𝑙𝑛 (
𝐼𝑆𝑖,𝑡

1−𝐼𝑆𝑖,𝑡
) =  𝑐 + 𝑏1𝑁𝑒𝑤𝑠𝑇𝑦𝑝𝑒𝑡 + 𝜖𝑡                                            (10) 

 

                                                           
10 We conduct the same analysis for Eurodollar futures contracts. Given the results are consistent across 
both securities and to minimize the length of the paper, we omit the results for Eurodollar futures. 
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Model 5 

𝑙𝑛 (
𝐼𝑆𝑖,𝑡

1−𝐼𝑆𝑖,𝑡
) =  𝑐 + 𝑏1𝑁𝑒𝑤𝑠𝑇𝑦𝑝𝑒𝑡  + 𝑏2𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 + 𝑏3𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 +  𝑏4𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡  + 𝜖𝑡  (11) 

Model 6 

    𝑙𝑛 (
𝐼𝑆𝑖,𝑡

1−𝐼𝑆𝑖,𝑡
) =  𝑐 + ∑ 𝑏𝑗𝐴𝑛𝑛𝑜𝑢𝑛𝑐𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒𝑗,𝑡

7
𝑗=1 + 𝑏8𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 + 𝑏9𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 +

                                                                                                𝑏10𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡 + 𝜖𝑡                               (12) 

 
where i refers to the Treasury log-transformed maturity-specific information share, NewsTypet is a 

dummy variable equal to 1 if the macroeconomic announcement on day t is either one of the seven 

announcements analyzed singularly, and j refers to the a specific news announcement. The seven 

AnnouncementType variables are the following: FOMC Announcements, FOMC Meetings, PPI, CPI, 

Jobless Claims, ISM Manufacturing Index, and GDP.  

In Panels A and B of Table 7 we capture the effect of being in a day when at least one of the 

seven announcements analyzed is released. Panel A shows that days of specific news announcements 

do influence the information shares; the effect is negative for the short-term contracts, but positive 

for the long-term contracts. This result is in line with our expectations that information shares 

should increase for long-term contracts following macroeconomic and policy announcements during 

a period of unconventional monetary policy. In this case, going from a non-announcement day to an 

announcement-day causes the short-term contract information share to decrease, while the long-

term contract information share increases. However, results in Panel B show that the specific news 

day effect found in Panel A disappears after controlling for volume, spread, and volatility. The 

effects of the contract characteristics are in line with the results from our previous models.  

[Insert Table 7 about here] 
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In order to truly test our hypotheses we believe there is the need to consider the effect of each 

announcement separately. Panel C reports the effect of each specific macroeconomic 

announcements. Contrary to our expectations but in line with previous literature and results, overall 

macroeconomic news does not significantly drive or explain relative information shares. However, 

specific news such as the FOMC and the Jobless Claims announcements have an impact on price 

discovery. Confirming our expectations, the day of FOMC statements has a negative impact on the 

2 years contract information share, while it has a positive effect on the price discovery in the 30 

years Treasury futures market. There seems to be a shift in price discovery patters in favor of longer 

maturity contracts during a day of FOMC statements. The same pattern can be observed for days of 

initial unemployment claims announcements (Jobless Claims) having a negative (positive) impact on 

information shares of short-term (long-term) Treasury futures contracts, but we find no other 

significant macroeconomic announcement. The statistically insignificant daily impact of specific 

macroeconomic announcements found in Panel C might reflect Balduzzi, Elton, and Green (2001) 

findings that most economic news is included in government bond prices in the one-minute time 

frame following the announcement.  

Swanson and Williams (2014) found that the beginning of unconventional monetary policy was 

able to influence long-term rates and it contained the most relevant information for investors. It is 

possible that the effect of specific macroeconomic news varies according to the period of 

unconventional policy when the release of information occurs. Consequently, we might expect the 

announcements to have a different effect on information shares according to the period in which 

they occur. We thus run the following model on Treasury futures information shares to examine the 

impact of each of the seven specific announcements across quantitative easing periods: 
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Model 7 

         𝑙𝑛 (
𝐼𝑆𝑖,𝑡

𝑞

1−𝐼𝑆
𝑖,𝑡
𝑞 ) =  𝑐 +  ∑ 𝑏𝑗

𝑞𝐴𝑛𝑛𝑜𝑢𝑛𝑐𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒𝑗,𝑡
7
𝑗=1 + 𝑏8

𝑞𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 + 𝑏9
𝑞𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 +

                                                                                                  𝑏10
𝑞 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡 + 𝜖𝑡                                (13) 

where i refers to Treasury log-transformed maturity-specific information share, j refers to the a 

specific news announcement, and q = {1, 2, 3, 4, 5} captures each unconventional monetary policy 

period: QE1, pre-QE2, QE2, pre-QE3, QE3. 

Table 8 reports the results. Even though most of the specific macroeconomic announcements 

have no significant effect on the price discovery, we can see that across quantitative easing periods 

being in a day of FOMC announcement matters the most during either the first round or the last 

round of quantitative easing, QE1 or QE3. The result is partly in line with Swanson and Williams 

(2014) findings. Interestingly, the relative information share of the contracts for the shortest and 

longest term underlying securities is significantly affected at the end of the unconventional monetary 

policy period, QE3. However, the effect is opposite: transitioning to a day of FOMC statements has 

a negative impact on the information share for the short-term contract, while it has a positive impact 

of about six-fold on the information share for the long-term contract. The futures contract on the 5 

year Treasury is instead affected during the beginning of the quantitative easing periods, QE1 and 

Pre-QE2.  

[Insert Table 8 about here] 

The non-farm payroll announcement is also known as the king of announcements (Andersen and 

Bollerslev, 1998). However, our Treasury futures dataset of cointegrated days does not include any 

day when such announcement occurs. For this reason, we run the same model (Model 6) for 

Eurodollar futures and report the results in Table 9.  

[Insert Table 9 about here] 
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Non-farm payroll is highly significant for the shortest and longest maturity contract. However, 

being on a day of such announcement has a negative impact on the information share of the 1 

quarter Eurodollar futures contract, and a positive impact on the information shares of other 

maturity contracts. The qualitative impact of a transition to a day of FOMC statements is in line with 

the results observed for information shares of Treasury futures contracts.  

 

7. Summary and concluding remarks 

In this paper we examined the impact of unconventional monetary policy on price discovery 

along the yield curve. The paper is a contribution to the price discovery and macro-financial linkages 

literatures because, to the best of our knowledge, it is the first study analyzing relative information 

shares across different sections of the yield curve before, during and after the recent financial crisis. 

The questions addressed reveal important implications for the understanding of monetary policy 

effects on price discovery through the investor’s expectations channel.  

Our analysis brings to light unexpected results underlying unconventional monetary policy: the 

long-term contracts do not have higher relative information shares during periods of unconventional 

monetary policy despite the effect of quantitative easing on longer-term rates found in earlier 

studies. Because of the different effects of unconventional monetary policy found in the literature 

across days of announcements and non-announcements days, we believed it necessary to examine 

the impact of news releases on price discovery across quantitative easing periods. Our results show 

that besides FOMC announcements, initial jobless claims, and non-farm payroll news, no other 

specific news announcement is significant. Lastly, for the intermediate maturity contracts the first 

round of quantitative easing seems to have the impact outlined in Swanson and Williams (2014) 

where the beginning of QE announcements have significant effects. The remaining contract 
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maturities are mostly affected by FOMC announcements during the end of unconventional 

monetary policy.  

In summary, our study suggests that during QE periods the short end of the yield curve still 

moves first, followed by the medium and long-term rates. The findings are surprising given previous 

evidence on the impact of monetary policy changes and announcements on markets. Specific 

macroeconomic news does not seem to matter significantly, but contract characteristics seem to be 

the major factors driving price discovery dynamics. We can conclude that unconventional monetary 

policy did not have disruptive effects in a price discovery setting and quantitative easing is not a 

significant driver influencing price discovery along the yield curve. 

We advance an alternative explanation related to the macro-finance term structure literature: 

unconventional monetary policy was effective at influencing expectations and longer-term rates, but 

futures prices and interest rates contained a time-varying risk premium component that went beyond 

the role of expectations as drivers of long-term rates. The additional risk might be the main driver of 

our price discovery results given it is strictly related to the underlying interest rates and to the 

implied term premium. The risk premium component therefore does not seem to be constant over 

time and it increases the wedge between true prices and expectations. One can argue that, due to the 

zero lower bound constraint of short-term interest rates, any price changes in the short-term 

Eurodollar maturity should be due to dynamics of the risk premium.  

There are in fact additional factors that come into play in determining the term structure of 

interest rates, the overall yield curve, and the level and composition of risk faced by investors. 

Cochrane and Piazzesi (2005) develop an empirical measure to capture the bond risk premium by 

considering forward iteration of both the one-year expected excess returns and the current one-year 

interest rate; Ludvigson and Ng (2009) investigate the relationship between macroeconomic 

variables and risk premia, and find that there are real and inflation factors providing new information 
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useful for expectations on future interest rate. Furthermore, Cochrane (2007) argues that there is the 

need to decompose the yield curve and capture the effects from expectations and those from time-

varying risk premia. 

By adopting a price discovery analysis, our goal was to capture changes in expectations of future 

short-term rates. However, findings from the term-structure literature suggest that we might actually 

be capturing a change in risk premia underling interest rates and unconventional monetary policy. If 

this is the case, and if the yield risk premium is in fact not constant, it must be that the expectation 

hypothesis does not hold. 

The question then becomes, do long-term rates reflect the investor expectations, do they capture 

an underlying change in the overall risk premia, or both?11 Our results seem to point in favor of the 

presence of underlying time-varying risk premia compoenents. In order to fully answer this question, 

however, it is necessary to decompose the changes in expectations and those of time-varying risk 

premium separately. This can be an avenue for future research and an opportunity to expand the 

macro-finance term structure literature. 

                                                           
11 This concept has been addressed in past literature, and can be summarized in Federal Reserve Governor 
Donald Kohn’s (2005) speech: “to what extent are long-term interest rates low because investors expect 
short-term rates to be low in the future… and to what extent do low long rates reflect narrow term 
premiums?” https://www.federalreserve.gov/boarddocs/speeches/2005/20050721/ 
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Table 1 
    Descriptive statistics. 
This table reports the summary statistics for the Treasury rate at constant maturity and the implied 
LIBOR rate from Eurodollar futures. The Treasury data is gathered by the Federal Reserve Bank 
of St. Louis database, while the implied LIBOR rate is computed as 100 minus the Eurodollar 
futures price. 

Panel A. Treasury Constant Maturity Rate 

Expiration Mean Median Std Dev Minimum Maximum 

2 years 0.73 0.56 0.58 0.21 2.77 
5 years 1.69 1.60 0.69 0.62 3.49 
10 years 2.68 2.73 0.71 1.53 4.10 
30 years 3.65 3.65 0.66 2.46 4.69 

Panel B. Implied LIBOR Rate 

Expiration Mean Median Std Dev Minimum Maximum 

1 quarter 1.25 0.61 1.13 0.22 4.51 
3 quarters 1.33 0.91 0.99 0.25 4.40 
5 quarters 1.55 1.28 0.98 0.34 4.44 
9 quarters 1.96 1.78 0.97 0.50 5.32 
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Table 2 
    U.S. Macroeconomic Announcements. 
The following table reports the seven macroeconomic news we considered in our regression 
analysis when investigating the impact of specific announcements on the dynamics of Treasury 
futures information shares. There are a total of 154 announcement news types reported in 
Bloomberg’s Economic Calendar database. FRB: Federal Reserve Board; BLS: Bureau of Labor 
Statistics; BEA: Bureau of Economic Analysis; USDOL: U.S. Department of Labor; ISM: 
Institute for Supply Management. 

Announcement Agency Frequency Observations 

FOMC Announcements FRB Eight times a year (min.) 32 
FOMC Meetings FRB Eight times a year 27 
Change CPI BLS Monthly 24 
Change in PPI BLS Monthly 28 
GDP BEA Quarterly 22 
Jobless Claims USDOL Weekly 151 
ISM Mfg Index ISM Monthly 29 
     
Days with at least one news announcement of interest 313 (48%)  
Days with at least one macroeconomic announcement 605 (94%)  
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Table 3 
    Days of QE purchases/sales announcements 
The following table reports the days in the Treasury and Eurodollar futures contracts samples coinciding 
with days of QE-related news announcements. The specific actions announced concerning the purchase 
or sale of security quantitative easing measures are also specified.  

Period Day Event Action Sample 

QE 1 Dec. 16, 2008 FOMC Statement  Eurodollar  
QE 1 Dec. 30, 2008 FOMC Statement   Treasury  
QE 1 Feb. 23, 2009 FOMC Statement   Treasury  
QE 1 Sept. 23, 2009 FOMC Statement   Treasury  
QE 1 Nov. 4, 2009 FOMC Statement   Treasury  
QE 2 Nov. 3, 2010 QE Statement $600 billion T-bonds Treasury  
QE 2 June 20, 2012 QE Statement $267 billion T-bonds Treasury and Eurodollar  
QE 3 Aug. 22, 2012 QE Statement   Treasury  
QE 3 Sept. 13, 2012 QE Statement $40 billion per month, MBS Eurodollar  
QE 3 Nov. 2, 2012 FOMC Statement   Eurodollar  
QE 3 Dec. 12, 2012 QE Statement $45 billion per month, MBS Treasury  
TAPER  May 1, 2013 QE Statement Hint at reducing purchases Eurodollar  
TAPER  May 22, 2013 QE Statement Hint at reducing purchases Treasury  
TAPER  June 19, 2013 FOMC Statement   Treasury  
TAPER  Jan 29, 2014 FOMC Statement   Eurodollar  
END June 18, 2014 QE Statement Might end QE3 Treasury and Eurodollar 
END Oct. 29, 2014 QE Statement End of QE Treasury  
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Table 4 
  Cointegration tests. 
This table shows the total number of days and the overall percentage of days having 3 
cointegrating vectors according to the trace and maximum eigenvaule Johansen (1988) tests of 
cointegration. The Treasury futures contracts full sample has 1607 total days; the Eurodollar 
futures contracts full sample has 2108 total days.  

Panel A. Treasury futures contracts. 

Test Days Cointegrated     Percentage of days cointegrated 

Trace  647 40% 
Maximum eigenvalue  1018 63% 

Panel B. Eurodollar futures contracts. 

Test Days Cointegrated Percentage of days cointegrated 
Trace  817 39% 
Maximum eigenvalue  863 41% 
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Table 5 
   Midpoint information shares. 
This table reports the average midpoint information shares for Treasury and Eurodollar futures contracts 
across maturities for both the full sample periods and quantitative easing periods. The quantitative easing 
ranges are the following: 

Pre QE1 
QE1 

Post QE1 
QE2 

Post QE2 
QE3 

Post QE3 

Before November 25th, 2008 
November 25th, 2008 to March 31st 2010 
April 1st 2010 to November 2nd, 2010 
November 3rd, 2010 to June 30th, 2011 
July 1st, 2011 to September 12th, 2012 
September 13th, 2012 to October 29th, 2014 (QE3 and QE3 tapered periods) 
After October 30th, 2014 

Panel A. Treasury futures contracts. 

  Across Quantitative Easing Periods  
 Full Period Pre QE1 QE1 Post QE1 QE2 Post QE2 QE3 Post QE3 

2 years 0.84 0.68 0.82 0.85 0.87 0.90 0.87 0.82 
5 years 0.13 0.21 0.14 0.13 0.11 0.09 0.10 0.15 
10 years 0.02 0.09 0.03 0.02 0.02 0.01 0.01 0.02 
30 years 0.02 0.06 0.02 0.01 0.01 0.01 0.01 0.02 
Obs. 647 58 114 67 69 100 155 84 

Panel B. Eurodollar futures contracts. 

  Across Quantitative Easing Periods  
 Full Period Pre QE1 QE1 Post QE1 QE2 Post QE2 QE3 Post QE3 

1 quarter 0.72 0.39 0.61 0.73 0.76 0.79 0.78 0.71 
3 quarters 0.07 0.17 0.10 0.04 0.04 0.05 0.05 0.07 
5 quarters 0.16 0.33 0.23 0.17 0.17 0.10 0.12 0.19 
9 quarters 0.06 0.13 0.07 0.06 0.04 0.06 0.05 0.04 
Obs. 817 76 83 30 26 150 314 138 
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Table 6 
   Midpoint information shares across non-cointegrated days. 
This table reports the average midpoint information shares across only non-cointegrated days for 
Treasury and Eurodollar futures contracts. Information shares are computed across maturities for 
both the full sample periods and quantitative easing periods. The quantitative easing ranges are the 
following: 

Pre QE1 
QE1 

Post QE1 
QE2 

Post QE2 
QE3 

Post QE3 

Before November 25th, 2008 
November 25th, 2008 to March 31st 2010 
April 1st 2010 to November 2nd, 2010 
November 3rd, 2010 to June 30th, 2011 
July 1st, 2011 to September 12th, 2012 
September 13th, 2012 to October 29th, 2014 (QE3 and QE3 tapered periods) 
After October 30th, 2014 

Panel A. Treasury futures contracts across non-cointegrated days. 

  Across Quantitative Easing Periods  

 Full Period Pre QE1 QE1 Post QE1 QE2 Post QE2 QE3 Post QE3 

2 years 0.85 0.73 0.83 0.88 0.88 0.89 0.87 0.84 
5 years 0.12 0.18 0.12 0.09 0.10 0.09 0.12 0.13 
10 years 0.02 0.08 0.03 0.02 0.02 0.01 0.01 0.01 
30 years 0.02 0.05 0.03 0.01 0.01 0.01 0.01 0.02 
Obs. 947 113 161 59 69 152 273 120 

Panel B. Eurodollar futures contracts across non-cointegrated days. 

  Across Quantitative Easing Periods  

 Full Period Pre QE1 QE1 Post QE1 QE2 Post QE2 QE3 Post QE3 

1 quarter 0.79 0.85 0.87 0.78 0.78 0.74 0.68 0.81 
3 quarters 0.16 0.10 0.11 0.17 0.19 0.18 0.12 0.15 
5 quarters 0.05 0.04 0.02 0.04 0.03 0.08 0.09 0.04 
9 quarters 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 
Obs. 1,283 160 265 124 144 162 235 193 
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Table 7   
    U.S. Macroeconomic News and Information Shares 
The table reports the regression analysis across Treasury and Eurodollar futures contracts maturities. 
QENewsDayt is a dummy variable equal to 1 if day t corresponds to a day when the FOMC or the Chairman of 
the Federal Reserve Bank announced specific amounts of Treasury bond purchases or actions to be taken 
concerning quantitative easing measure; Spreadt represents the daily share of spread computed as the daily 
average of price reversals of each maturity contract divided by the sum over all four contract maturities; Volumet 

 represents the daily share of volume traded computed as the contract specific daily number of trades divided 
by the sum of all trades for the four contract maturities; Volatilityt represents the daily share of the realized 
volatility estimated as the square root of the sum of squared five-minute returns of each contract maturity 
divided by the sum of realized volatilities of the four contract maturities; QE Periodt is a dummy variable equal 
to 1 if day t falls under QE1, QE2, or QE3 period; The dependent variable is the log-transformed maturity-
specific information share. 

Panel A  

 Treasury Futures Information Shares Eurodollar Futures Information Shares 

 2 yrs 5 yrs 10 yrs 30 yrs 1 qrtr 3 qrtr 5 qrtr 9 qrtr 
Constant -4.400*** 

(0.58) 
-1.182 
(0.68) 

0.993 
(1.97) 

-10.107*** 
(1.07) 

-0.321 
(0.32) 

-6.019*** 
(0.73) 

1.779*** 
(0.62) 

-5.315*** 
(0.63) 

QENewsDa
yt 

-0.124 
(0.21) 

-0.179 
(0.29) 

0.332 
(0.68) 

1.327** 
(0.63) 

-0.712** 
(0.36) 

0.287 
(0.56) 

0.504 
(0.42) 

0.672 
(0.56) 

Spreadi,t -2.322*** 
(0.28) 

0.687** 
(0.27) 

3.609*** 
(0.84) 

-3.427*** 
(0.61) 

-0.311* 
(0.18) 

-1.513*** 
(0.34) 

1.143*** 
(0.30) 

0.645*** 
(0.22) 

Volume i,t -0.676*** 
(0.10) 

-0.487 
(0.35) 

-1.625 
(1.24) 

-0.595 
(0.48) 

-1.078*** 
(0.10) 

0.191* 
(0.10) 

1.122*** 
(0.138) 

-0.446*** 
(0.07) 

Volatility i,t 0.080*** 
(0.02) 

0.094 
(0.07) 

1.310 
(1.25) 

-2.188*** 
(0.82) 

0.262** 
(0.12) 

-0.926*** 
(0.34) 

0.469 
(0.29) 

-1.576*** 
(0.30) 

         
R-sq. 0.20 0.02 0.09 0.19 0.14 0.04 0.09 0.17 
Obs. 647 647 647 647 817 817 817 817 

Panel B 

 Treasury Futures Information Shares Eurodollar Futures Information Shares 

 2 yrs 5 yrs 10 yrs 30 yrs 1 qrtr 3 qrtr 5 qrtr 9 qrtr 

Constant -4.409*** 
(0.57) 

-1.202* 
(0.68) 

1.047 
(1.97) 

-9.923*** 
(1.07) 

-0.318 
(0.32) 

-6.045*** 
(0.73) 

1.775** 
(0.62) 

-5.240*** 
(0.62) 

Spread i,t -2.323*** 
(0.28) 

0.689** 
(0.27) 

3.598*** 
(0.83) 

-3.399*** 
(0.61) 

-0.309* 
(0.18) 

-1.526*** 
(0.34) 

1.150*** 
(0.30) 

0.667*** 
(0.22) 

Volume i,t -0.681*** 
(0.10) 

-0.502 
(0.35) 

-1.626 
(1.62) 

-0.515 
(0.48) 

-1.068*** 
(0.10) 

0.190 
(0.10) 

1.115*** 
(0.14) 

-0.442 
(0.07) 

Volatility i,t 0.080*** 
(0.02) 

0.094 
(0.07) 

1.359 
(1.24) 

-2.208*** 
(0.82) 

0.259** 
(0.12) 

-0.936*** 
(0.34) 

0.462*** 
(0.29) 

-1.559*** 
(0.30) 

         
R-sq. 0.201 0.022 0.087 0.174 0.133 0.042 0.092 0.164 
Obs. 647 647 647 647 817 817 817 817 
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Table 7, continued 

Panel C 

 Treasury Futures Information Shares Eurodollar Futures Information Shares 

 2 yrs 5 yrs 10 yrs 30 yrs 1 qrtr 3 qrtr 5 qrtr 9 qrtr 

Constant -3.841*** 
(0.60) 

-1.747** 
(0.83) 

1.029 
(1.97) 

-9.970*** 
(1.12) 

-0.600* 
(0.33) 

-6.280*** 
(0.53) 

1.633*** 
(0.63) 

-5.253*** 
(0.62) 

QE Periodt -0.191*** 
(0.07) 

0.132 
(0.11) 

0.164 
(0.22) 

-0.033 
(0.21) 

0.253*** 
(0.08) 

0.251** 
(0.12) 

-0.113 
(0.09) 

0.115 
(0.14) 

Spread i,t -2.145*** 
(0.28) 

0.616** 
(0.28) 

3.455*** 
(0.86) 

-3.426*** 
(0.64) 

-0.506*** 
(0.19) 

-1.728*** 
(0.36) 

1.015*** 
(0.32) 

0.732*** 
(0.24) 

Volume i,t -0.650*** 
(0.10) 

-0.700* 
(0.39) 

-1.415 
(1.29) 

-0.541 
(0.51) 

-0.975*** 
(0.10) 

0.224** 
(0.11) 

1.141*** 
(0.14) 

-0.462*** 
(0.07) 

Volatility i,t -0.070*** 
(0.02) 

0.083 
(0.07) 

1.482 
(1.25) 

-2.212*** 
(0.82) 

0.283** 
(0.12) 

-0.861*** 
(0.23) 

0.431 
(0.29) 

-1.566*** 
(0.30) 

         
R-sq. 0.212 0.026 0.089 0.174 0.145 0.047 0.093 0.165 
Obs. 647 647 647 647 817 817 817 817 
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Table 8 
    Specific U.S. Macroeconomic Announcements and Information Shares 
The table report the regression analysis for log-transformed maturity-specific information shares 
of Treasury futures contracts (Panels A, B, C). NewsTypet is a dummy variable equal to 1 if the 
macroeconomic announcement is either one of the following seven: FOMC statements, FOMC 
Meetings, PPI, CPI, Jobless Claims, ISM Manufacturing Index, and GDP. Spreadt represents the 
daily share of spread computed as the daily average of price reversals of each maturity contract 
divided by the sum over all four contract maturities; Volumet  represents the daily share of 
volume traded computed as the contract specific daily number of trades divided by the sum of 
all trades for the four contract maturities; Volatilityt represents the daily share of the realized 
volatility estimated as the square root of the sum of squared five-minute returns of each contract 
maturity divided by the sum of realized volatilities of the four contract maturities.  

Panel A 

 Treasury Futures Information Shares 

 2 yrs 5 yrs 10 yrs 30 yrs 

Constant 1.847*** 
(0.03) 

-2.153*** 
(0.03) 

-2.153*** 
(0.06) 

-4.896*** 
(0.06) 

NewsTypet -0.210* 
(1.12) 

0.119 
(0.13) 

0.119* 
(0.24) 

0.601** 
(0.24) 

     
R-sq. 0.005 0.001 0.005 0.010 
Obs. 647 647 647 647 

Panel B 

 Treasury Futures Information Shares 

 2 yrs 5 yrs 10 yrs 30 yrs 

Constant -4.362*** 
(0.58) 

-1.174* 
(0.68) 

0.769 
(1.98) 

-9.772*** 
(1.08) 

NewsTypet -0.100 
(0.11) 

-0.061 
(0.15) 

0.364 
(0.32) 

0.385 
(0.30) 

Spread i,t -2.310*** 
(0.28) 

0.710*** 
(0.27) 

3.459*** 
(0.84) 

-3.261*** 
(0.62) 

Volume i,t -0.676*** 
(0.10) 

-0.517 
(0.35) 

-1.739 
(1.27) 

-0.465 
(0.48) 

Volatility i,t 0.080*** 
(0.02) 

0.095 
(0.07) 

1.368 
(1.24) 

-2.242*** 
(0.82) 

     
R-sq. 0.202 0.023 0.091 0.179 
Obs. 647 647 647 647 
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Table 8, continued 

Panel C 

 Treasury Futures Information Shares 

 2 yrs 5 yrs 10 yrs 30 yrs 

Constant -4.458*** 
(0.57) 

-1.373** 
(0.69) 

0.829 
(1.98) 

-9.807*** 
(1.10) 

FOMC Statementt -0.300** 
(0.13) 

0.311* 
(0.17) 

0.117 
(0.39) 

0.683* 
(0.37) 

CPIt -0.229 
(0.15) 

0.024 
(0.20) 

-0.095 
(0.51) 

0.371 
(0.48) 

FOMC Mins.t 0.074 
(0.14) 

-0.197 
(0.18) 

-0.617 
(0.42) 

-0.194 
(0.39) 

GDPt -0.010 
(0.16) 

-0.119 
(0.21) 

0.438 
(0.52) 

-0.419 
(0.49) 

Jobless Claimst -0.121* 
(0.07) 

0.098 
(0.09) 

0.409** 
(0.20) 

0.039 
(0.19) 

PPIt -0.190 
(0.14) 

-0.005 
(0.18) 

0.516 
(0.38) 

-0.269 
(0.36) 

ISM Manuf.t 0.126 
(0.13) 

-0.159 
(0.18) 

-0.405 
(0.43) 

-0.134 
(0.40) 

Spread i,t -2.349*** 
(0.28) 

0.674** 
(0.27) 

3.349*** 
(0.84) 

-3.524*** 
(0.63) 

Volume i,t -0.701*** 
(0.10) 

-0.588 
(0.36) 

-1.897 
(1.27) 

-0.447 
(0.49) 

Volatility i,t 0.079*** 
(0.02) 

0.093 
(0.07) 

1.667 
(1.26) 

-2.078** 
(0.83) 

     
R-sq. 0.212 0.040 0.121 0.189 
Obs. 647 647 647 647 
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Table 9 
    U.S. Macroeconomic News and Information Shares Across Quantitative Easing Periods. 
The Panels A, B, C, and D report the regression analysis across Treasury futures contracts for 
four maturities: two, five, ten, 30 years. NewsDayt is a dummy variable equal to 1 if on day t there 
was at least one macroeconomic announcement; Spreadt represents the daily share of spread 
computed as the daily average of price reversals of each maturity contract divided by the sum over 
all four contract maturities; Volumet  represents the daily share of volume traded computed as the 
contract specific daily number of trades divided by the sum of all trades for the four contract 
maturities; Volatilityt represents the daily share of the realized volatility estimated as the square root 
of the sum of squared five-minute returns of each contract maturity divided by the sum of 
realized volatilities of the four contract maturities. Refer to Table 3 for details concerning the 
macroeconomic announcements.  

Panel A 

 Treasury Futures Information Shares – 2 yrs 

 QE1 Pre-QE2 QE2 Per-QE3 QE3 

Constant -2.038*** 
(1.11) 

29.070 
(25.01) 

-25.177 
(28.72) 

31.182 
(30.77) 

25.225* 
(13.76) 

FOMC Statementt -0.409 
(0.27) 

-1.039 
(0.68) 

-0.030 
(0.41) 

0.325 
(0.34) 

-0.500** 
(0.22) 

CPIt 0.082 
(0.33) 

-0.053 
(0.53) 

-0.544 
(0.45) 

-0.340 
(0.30) 

-0.087 
(0.24) 

FOMC Mins.t -0.125 
(0.43) 

-0.383 
(0.42) 

-0.216 
(0.56) 

0.485* 
(0.28) 

0.127 
(0.20) 

GDPt 0.152 
(0.31) 

-0.548 
(0.54) 

-0.436 
(0.75) 

0.151 
(0.36) 

0.074 
(0.23) 

Jobless Claimst -0.101 
(0.13) 

0.077 
(0.20) 

-0.346 
(0.24) 

0.161 
(0.17) 

-0.108 
(0.11) 

PPIt -0.036 
(0.24) 

0.040 
(0.40) 

-0.699 
(0.36) 

-0.220 
(0.30) 

-0.101 
(0.28) 

ISM Manuf.t -0.242 
(0.22) 

-0.640 
(0.47) 

-0.063 
(0.55) 

0.681 
(0.34) 

0.494** 
(0.22) 

Spread i,t -1.431*** 
(0.39) 

13.426 
(12.04) 

-12.869 
(13.84) 

14.033 
(14.83) 

11.878* 
(6.61) 

Volume i,t -0.295 
(0.29) 

-0.509 
(0.39) 

-0.287 
(0.54) 

-0.149 
(0.27) 

-0.683*** 
(0.16) 

Volatility i,t -0.015 
(0.04) 

0.295*** 
(0.07) 

0.071 
(0.08) 

0.051 
(0.05) 

0.105*** 
(0.04) 

      
R-sq. 0.103 0.426 0.161 0.115 0.199 
Obs. 114 67 69 100 155 
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Table 9, continued 

Panel B 

 Treasury Futures Information Shares – 5 yrs 

 QE1 Pre-QE2 QE2 Per-QE3 QE3 

Constant 1.893 
(1.24) 

-17.343 
(26.02) 

38.287 
(30.21) 

-40.490 
(33.20) 

-11.791 
(16.04) 

FOMC Statementt 0.496* 
(0.30) 

1.237* 
(0.70) 

0.220 
(0.43) 

-0.317 
(0.37) 

0.266 
(0.26) 

CPIt -0.231 
(0.37) 

0.073 
(0.55) 

0.296 
(0.47) 

0.467 
(0.32) 

0.065 
(0.28) 

FOMC Mins.t 0.540 
(0.48) 

0.126 
(0.44) 

0.222 
(0.58) 

-0.477 
(0.31) 

-0.095 
(0.23) 

GDPt -0.239 
(0.35) 

0.285 
(0.56) 

0.514 
(0.79) 

-0.132 
(0.39) 

0.022 
(0.27) 

Jobless Claimst 0.112 
(0.14) 

-0.040 
(0.20) 

0.360 
(0.25) 

-0.135 
(0.19) 

0.138 
(0.13) 

PPIt 0.161 
(0.26) 

-0.065 
(0.41) 

0.430 
(0.38) 

0.331 
(0.33) 

0.222 
(0.33) 

ISM Manuf.t 0.371 
(0.24) 

0.705 
(0.49) 

0.226 
(0.58) 

-0.700* 
(0.36) 

-0.575** 
(0.26) 

Spread i,t 1.302** 
(0.43) 

-7.558 
(12.52) 

19.463 
(14.56) 

-18.374 
(16.00) 

-5.275 
(7.71) 

Volume i,t 0.558* 
(0.33) 

0.385 
(0.41) 

0.118 
(0.56) 

0.134 
(0.29) 

0.661*** 
(0.18) 

Volatility i,t 0.052 
(0.05) 

-0.269*** 
(0.08) 

-0.076 
(0.08) 

-0.037 
(0.05) 

-0.124*** 
(0.04) 

      
R-Sq. 0.104 0.356 0.128 0.113 0.139 
Obs. 114 67 69 100 155 
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Table 9, continued 

Panel C 

 Treasury Futures Information Shares – 10 yrs 

 QE1 Pre-QE2 QE2 Per-QE3 QE3 

Constant -0.523 
(2.11) 

-55.645 
(42.11) 

-12.080 
(43.43) 

-126.220* 
(64.39) 

-108.866*** 
(21.17) 

FOMC Statementt 0.197 
(.51) 

0.548 
(1.14) 

-0.669 
(0.61) 

-1.420* 
(0.72) 

1.514*** 
(0.44) 

CPIt 0.390 
(0.63) 

0.287 
(0.89) 

1.358* 
(0.67) 

-0.213 
(0.62) 

-0.084 
(0.47) 

FOMC Mins.t -0.777 
(0.82) 

1.241* 
(0.71) 

0.848 
(0.84) 

-0.358 
(0.59) 

0.253 
(0.39) 

GDPt -0.095 
(0.59) 

1.924** 
(0.91) 

-1.222 
(1.13) 

0.519 
(0.75) 

-0.204 
(0.46) 

Jobless Claimst 0.140 
(0.24) 

-0.244 
(0.33) 

0.577 
(0.36) 

-0.248 
(0.36) 

0.614*** 
(0.21) 

PPIt -0.364 
(0.45) 

0.595 
(0.67) 

1.651*** 
(0.55) 

0.623 
(0.63) 

-0.956* 
(0.56) 

ISM Manuf.t -0.227 
(0.41) 

0.734 
(0.80) 

-0.890 
(0.83) 

-0.411 
(0.70) 

-0.200 
(0.44) 

Spread i,t 2.248 
(0.74) 

-24.929 
(20.27) 

-4.586 
(20.92) 

-58.533* 
(31.03) 

-50.861*** 
(13.06) 

Volume i,t -0.548 
(0.55) 

0.676 
(0.66) 

0.819 
(0.81) 

0.659 
(0.57) 

1.127*** 
(0.31) 

Volatility i,t -0.071 
(0.08) 

-0.514*** 
(0.12) 

0.135 
(0.12) 

-0.150 
(0.10) 

-0.113 
(0.07) 

      
R-sq. 0.106 0.450 0.306 0.080 0.260 
Obs. 114 67 69 100 155 
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Table 9, continued 

Panel D 

 Treasury Futures Information Shares – 30 yrs 

 QE1 Pre-QE2 QE2 Per-QE3 QE3 

Constant 1.693 
(2.26) 

-72.661 
(50.06) 

-95.879 
(57.90) 

33.253 
(67.04) 

-51.777* 
(30.56) 

FOMC Statementt 0.458 
(0.54) 

0.177 
(1.36) 

-0.459 
(0.82) 

0.429 
(0.75) 

1.282*** 
(0.49) 

CPIt 0.101 
(0.67) 

-0.043 
(1.05) 

1.219 
(0.90) 

-0.596 
(0.65) 

-0.052 
(0.53) 

FOMC Mins.t -0.930 
(0.88) 

1.584* 
(0.85) 

-0.587 
(1.12) 

-0.507 
(0.62) 

0.499 
(0.44) 

GDPt 0.275 
(0.64) 

2.125* 
(1.08) 

1.633 
(1.50) 

-0.880 
(0.78) 

-0.642 
(0.52) 

Jobless Claimst 0.398 
(0.26) 

-0.123 
(039) 

0.370 
(0.47) 

-0.087 
(0.38) 

-0.109 
(0.24) 

PPIt -0.046 
(0.48) 

0.538 
(0.79) 

1.174 
(0.73) 

-0.348 
(0.66) 

-1.326** 
(0.63) 

ISM Manuf.t 0.212 
(0.44) 

-0.813 
(0.95) 

0.054 
(1.11) 

-0.198 
(0.73) 

-0.322 
(0.49) 

Spread i,t 3.981*** 
(0.79) 

-33.159 
(24.10) 

-43.972 
(27.90) 

17.970 
(32.31) 

-23.275 
(14.69) 

Volume i,t -0.836 
(0.59) 

0.731 
(0.78) 

0.664 
(1.08) 

0.436 
(0.59) 

0.756** 
(0.35) 

Volatility i,t 0.037 
(0.09) 

-0.061 
(0.15) 

-0.072 
(0.16) 

-0.064 
(0.11) 

-0.061 
(0.08) 

      
R-sq. 0.206 0.171 0.166 0.072 0.123 
Obs. 114 67 69 100 155 
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Table 10 
    Specific U.S. Macroeconomic Announcements and Information Shares 
The table report the regression analysis for log-transformed maturity-specific information 
shares of Eurodollar futures contracts. Spreadt represents the daily share of spread computed 
as the daily average of price reversals of each maturity contract divided by the sum over all 
four contract maturities; Volumet  represents the daily share of volume traded computed as the 
contract specific daily number of trades divided by the sum of all trades for the four contract 
maturities; Volatilityt represents the daily share of the realized volatility estimated as the square 
root of the sum of squared five-minute returns of each contract maturity divided by the sum 
of realized volatilities of the four contract maturities.  

 Eurodollar Futures Information Shares  

 1 qrtr 3 qrtr 5 qrtr 9 qrtr 

Constant -0.576** 
(0.67) 

-4.999*** 
(0.49) 

-1.463** 
(0.68) 

1.827*** 
(0.62) 

FOMC Statementt -0.447** 
(0.22) 

-0.192 
(0.35) 

0.584** 
(0.27) 

0.250 
(0.36) 

CPIt -0.344** 
(0.16) 

0.320 
(0.25) 

0.320* 
(0.19) 

-0.280 
(0.26) 

FOMC Mins.t 0.209 
(0.23) 

-0.279 
(0.36) 

-0.322 
(0.27) 

-0.194 
(0.38) 

GDPt -0.282* 
(0.16) 

0.229 
(0.25) 

0.193 
(0.19) 

-0.377 
(0.27) 

Nonfarm Payrollt -0.372*** 
(0.13) 

0.334* 
(0.20) 

0.224 
(0.15) 

0.578*** 
(0.22) 

Jobless Claimst 0.059 
(0.08) 

-0.053 
(0.13) 

-0.098 
(0.10) 

0.217 
(0.14) 

PPIt -0.064 
(0.18) 

-0.151 
(0.28) 

0.123 
(0.21) 

0.122 
(0.27) 

ISM Manuf.t -0.008 
(0.16) 

0.054 
(0.24) 

-0.002 
(0.19) 

0.041 
(0.26) 

Spread i,t -0.402** 
(0.18) 

-0.827** 
(0.37) 

1.029*** 
(0.30) 

0.456** 
(0.21) 

Volume i,t -1.036*** 
(0.10) 

0.076 
(0.11) 

0.784*** 
(0.15) 

-0.007 
(0.08) 

Volatility i,t -0.269*** 
(0.08) 

0.745*** 
(0.24) 

1.389*** 
(0.22) 

-2.690*** 
(0.25) 

     
R-sq. 0.160 0.051 0.147 0.264 
Obs. 817 817 817 817 
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Figure 1. Average trading volume for Treasury Futures 
  This figure shows the average yearly trading volume as the number of Treasury futures 
contracts per second with maturities of 2, 5, 10, and thirty years.  
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Figure 2. Average trading volume for Eurodollar Futures 
  This figure shows the average yearly trading volume as the number of Eurodollar futures 
contracts per second with maturities of 1, 3, 5 and 9 quarters. 
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                       Shock to 2-year contract      Shock to 5-year contract 

  
                       Shock to 10-year contract     Shock to 30-year contract 

  

 
Figure 3a. Cumulative impulse response functions. 
   This figure shows the impulse response function for Treasury futures contracts during a ten 
minute window. 
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                  Shock to 1-quarter contract                              Shock to 3-quarter contract 

  
                  Shock to 5-quarter contract                            Shock to 9-quarter contract 

 

 
Figure 3b. Cumulative impulse response functions. 
   This figure shows the impulse response function for Eurodollar futures contracts during a ten 
minute window. 
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Figure 4. Treasury futures contracts midpoint daily information shares, two and thirty years. 
  This figure shows the midpoint daily information shares of the shortest and longest maturities 
for the Treasury futures contracts (2 and 30 years). The shaded regions represent the three 
quantitative easing phases adopted by the Federal Reserve Bank: QE1 spans from November 
25th, 2008 to March 31st 2010; QE2 spans from November 3rd, 2010 to June 30th, 2011; QE3 
spans from September 13th, 2012 to October 29th, 2014. 
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Figure 5. Eurodollar futures contracts midpoint daily information shares, one and nine 
quarters. 
  This figure shows the midpoint daily information shares of the shortest and longest maturities 
for the Eurodollar futures contracts (1 quarter and 9 quarters). The shaded regions represent 
the three quantitative easing phases adopted by the Federal Reserve Bank: QE1 spans from 
November 25th, 2008 to March 31st 2010; QE2 spans from November 3rd, 2010 to June 30th, 
2011; QE3 spans from September 13th, 2012 to October 29th, 2014. 
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