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ABSTRACT

Development of a Software Tool for Reliability Estimation

Chihui Li

This thesis presents Version 2.0 of Software Tool for Reliability Estimation (STORE 2.0).
It expands on the work done by Parekh [1] by revising the algorithm for tie-set and cut-set
calculation, by including fault tree reliability analysis, by analyzing state dependent system, and
by integrating component and system reliability analysis.

This thesis also presents an approach to the simplification of complex systems by
collapsing series and parallel components into a sub-system. The approach was illustrated on an
example described by Nelson et al. [2]. The example had 16 components resulting in ten cut-sets
and fifty five tie-sets. Upon simplification, the problem was reduced to one tie-set only.

STORE 2.0 integrates parameter estimation, component reliability analysis, system
reliability analysis, estimation of reliability of state dependent systems, and fault tree analysis. It
was verified and validated on several examples taken from the open literature. The software was

developed in Visual Basic 2008 with SQL as the database.
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CHAPTER 1

INTRODUCTION

1.1 Background

Over the years, engineering of products have become more sophisticated and complex. For
example, in 1935 a farm tractor had 1200 critical parts, and in 1990 the number increased to
around 2900. Today, a Boeing 747 Jumbo Jet plane is made up of approximately 4.5 million
parts including fasteners [3]. Needless to say, reliability and quality of systems such as these
have become more important than ever before.

In addition, failures are much more significant in both their economic and safety impacts as
illustrated by the following examples [4]. In 1979, the left engine of a DC-10 broke away from
the aircraft during takeoff, killing 271 people. Poor maintenance procedures and a bad design
led to this crash. The Three Mile Island disaster in 1979, which resulted in a partial meltdown of
a nuclear reactor, was a result of both mechanical and human error. When a backup cooling
system was down for routine maintenance, air cut off the flow of cooling water to the reactor.
Warning lights were hidden by maintenance tags. An emergency relief valve failed to close,
causing additional water to be lost from the cooling system. Operators were either reading
gauges that were not working properly or taking the wrong actions on the basis of those that
were operating. The 1986 explosion of the space shuttle Challenger was a result of the failure of
the rubber O-rings that were used to seal the four sections of the booster rockets. The below
freezing temperatures before the launch contributed to the failure by making the rubber brittle.

The demand for complex hardware systems has increased more rapidly than the ability to

design, implement, test, and maintain them; the impact of some failures can lead to high



economic damage, even loss of life. There is a definite need for reliability engineers to improve

system reliability.

1.2 Reliability Engineering — Present Status

There are a number of techniques that are available for system reliability evaluation. These
techniques include conditional probability analysis, network reduction, cut-set and tie-set
approaches, logic diagrams, tree diagrams, connection matrix techniques, and Markov analysis.
These techniques can be applied to reliability analysis of components and system. For
component reliability evaluation, probability analysis is widely used. By collecting failure data
and fitting a suitable distribution to it, one can compute the reliability according to the fitted
distribution and mission time.

When it comes to system reliability analysis, different techniques are suitable for different
systems. For example, a series-parallel system is good for the application of network reduction
because it does not require intensive calculation. For a complex system, which cannot be broken
down to a series-parallel system, cut-set and tie-set approaches are appropriate. Markov analysis
is a suitable technique to analyze state dependent system in which the failure of one component
is dependent on the failure of another component.

The main advantage of using tie-set and cut-set approach to solve complex system is that it
is easy to program and most of the commercial software for reliability prediction use this

approach to evaluate the reliability of complex systems.



1.3 Problem Statement

The techniques mentioned above are powerful tools for reliability analysis; however, they
require large amounts of computations which may take weeks and even months to evaluate a
relatively simple system by hand. In such situations, a computer solution is necessary to handle
tedious and time-consuming computations.

However, when the system becomes large and complex, there are still problems with
computer solutions. For example, in the software tool developed by Parekh [1], the matrix size
was limited to 100 by 100, thereby allowing software to estimate reliabilities of system having
no more than 100 tie-sets or cut-sets. There are no restrictions on the size of the system in the
Path Tracing Algorithm by Fotuhi-Firuzabad et al. [5]; nevertheless, the number of tie-sets can
go out of control since every added parallel sub-system dramatically increases the number of tie-
sets. For example, a system having ten sub-systems in series and each sub-system having ten
different components in parallel will have 10 billion (10'°) minimal tie-sets. Improved
techniques are required to enhance the modeling process and to reduce the time required for the
analysis of the model.

This thesis proposes an efficient approach containing a revised connection matrix and a
simplification method for large simple and complex network system. The revised connection
matrix has only three column “begin node”, “end node”, and “component” which is much more
concise than the traditional n x n matrix. The simplification method can simplify the system by
identifying and combining the series and parallel sub-system until a pure complex system is
attained. After simplification the number of minimal path and cut-set are reduced, so using the
simplification method before applying minimal path or cut-set technique can improve the

efficiency of the identification of paths and cuts, and save time from reliability calculation.



This research also makes an improvement on the element substitution algorithm [6], which
is the latest and one of the most efficient method to determine minimal cut-sets. In the improved
method, whenever a potential cut-set is deleted, all levels of its successors will also be
In this way, potential cut-set array will contain less non-minimal cut-sets and its size will be
decreased leading to reduce computation time.

The computational techniques implemented in commercial software do not integrate
component analysis, system analysis, state dependent system, and fault tree analysis. As a result,

in this research the integration of all these functions are also considered.

1.4 Objectives

The objectives of this research are to:
1) Develop an integrated approach to parameter estimation, component reliability
calculation, system reliability estimation, estimate reliability of state dependent

system, and fault tree analysis.
2) Develop a common database for all analysis methods.
3) Develop an algorithm to simplify the Reliability Block Diagram (RBD).

4) Develop a better representation of RBD.



CHAPTER 2

LITERATURE REVIEW

2.1 Reliability Historical Review

The history of reliability engineering is not too long, but it grew fast and has made
significant progress during recent decades. O'Connor et al. [7] described the development of
reliability engineering as follows.

Reliability engineering, as a separate engineering discipline, originated in the United States
during the 1950s. The increasing complexity of military electronic systems was generating
failure rates, which resulted in generally reduced availability and increased costs. Solid state
electronics technology offered long-term hope, but conversely miniaturization was to lead to
proportionately greater complexity, which offset the reliability improvements expected. The
gathering pace of electronic device technology meant that the developers of new military
systems were making increasing use of large numbers of new components types, involving new
manufacturing processes, with the inevitable consequences of low reliability. The users of such
equipment were also finding that the problems of diagnosing and repairing the new complex
equipment were seriously affecting its availability for use, and the costs of spares, training and
other logistics support were becoming excessive. Against this background the US Department of
Defense (DoD) and the electronics industry jointly set up the Advisory Group on Reliability of
Electronic Equipment (AGREE) in 1952. The AGREE report concluded that, to break out of the
spiral of increasing development and ownership costs due to low reliability, disciplines must be
laid down as integral activities in the development cycle for electronic equipment. The report

laid particular stress on the need for new equipment to be tested for several thousand hours in



high stress cyclical environments including high and low temperatures, vibration and switching,
in order to discover the majority of weak areas in a design at an early enough stage to enable
them to be corrected before production commenced. Until that time, environmental tests of tens
of duration had been considered adequate to prove the suitability of a design. The report also
recommended that formal demonstrations of reliability, in terms of statistical confidence that a
specified Mean Time Between Failure (MTBF) had been exceeded, be instituted as a condition
for acceptance of equipment by the procuring agency. A large part of the report was devoted to
providing detailed test plans for various levels of statistical confidence and environmental
conditions.

The AGREE report was accepted by the DoD, and AGREE testing quickly became a
standard procedure. Companies that invested in the expensive environmental test equipment
necessary soon found that they could attain levels of reliability far higher than by traditional
methods. It was evident that designers, particularly those working at the fringes of advanced
technology, could not be expected to produce highly reliable equipment without it being
subjected to a test regime that would show up weaknesses. Complex systems and the
components used in them included too many variables and interactions for the human designer to
cope with infallibly, and even the most careful design reviews and disciplines could not provide
sufficient protection. Consequently, it was necessary to make the product speak for itself, by
causing it to fail, and then to eliminate the weaknesses that caused the failures. The DoD
reissued the AGREE report on testing as US Military Standard (MIL-STD) 781, Reliability
Qualification and Production Approval Tests.

Meanwhile the revolution in electronic device technology continued, led by integrated

micro-circuitry. Increased emphasis was now placed on improving the quality of devices fitted



to production equipment. Screening techniques, in which devices are temperatures cycled,
vibrated, centrifuged, operated at electrical overstress and otherwise abused, were introduced in
place of the traditional sampling techniques. With component populations on even single printed
circuit boards becoming so large, sampling no longer provided sufficient protection against the
production of defective equipment. These techniques were formalized in military standards
covering the full range of electronic components. Components produced to these standards were
called 'Hi-rel' components.

Engineering reliability effort in the United States developed quickly, AGREE and
reliability program concepts were adopted by NASA and many other major suppliers and
purchasers of high technology equipment. In 1965, the DoD issued MIL-STD-785-Reliability
Programs for Systems and Equipment. This document made mandatory the integration of a
program of reliability engineering activities with the traditional engineering activities of design,
development and production, as it was by then realized that such an integrated program was the
only way to ensure that potential reliability problems would be detected and eliminated at the
earliest, and therefore the cheapest, stage in the development cycle. Much written work
appeared on the cost-benefit of higher reliability, to show that effort and resources expended
during early development and during production testing, plus the imposition of demonstrations
of specified levels of reliability to MIL-STD-781, led to reductions in service costs which more
than paid the reliability program expenditure.

The concept of life cycle costs (LCC), or whole life costs, was introduced. In the United
Kingdom, Defense Standard 00-40, The Management of Reliability and Maintainability was
issued in 1981. The British Standards Institution has issued BS 5760- Guide on Reliability of

Systems, Equipment's and Components.



Specifications and test systems for electronic components, based upon the US Military
Standards, have been developed in the United Kingdom and in continental Europe. Electronic
component standards including test and quality aspects are being harmonized internationally

through the International Electro-technical Commission (IEC).

2.2 Concept of Reliability

In statistics, reliability is the consistency of a set of measurements or measuring
often used to describe a test. This can either be whether the measurements of the same
instrument give or are likely to give the same measurement (test-retest), or in the case of more
subjective instruments, such as personality or trait inventories, whether two independent
assessors give similar scores (inter-rater reliability). Reliability is inversely related to random
error [8].

Reliability is usually contrasted with validity, but reliability does not imply validity. One
may have a highly reliable measure which is not valid. The following example may illustrate the
difference between reliability and validity. If a 5 feet long table is measured 4 times, and it reads
5 feet each time, then the measurement is valid and reliable. However, if it reads 8 feet each time
instead of 5, then it is not valid, but it is still reliable because the readings are consistent.

In experimental sciences, reliability is the extent to which the measurements of a test
remain consistent over repeated tests of the same subject under identical conditions. An
experiment is reliable if it yields consistent results of the same measure. It is unreliable if
repeated measurements give different results. It can also be interpreted as the lack of random

error in measurement [8].



In engineering, The IEEE (Institute of Electrical and Electronics Engineers) defines
reliability as ". . . the ability of a system or component to perform its required functions under
stated conditions for a specified period of time." It is often reported in terms of a probability.

Evaluations of reliability involve the use of many statistical tools.

2.3 Reliability Determination from Tie-set and Cut-set

There are a number of techniques that are available for system reliability evaluation, such
as conditional probability analysis, cut-set and tie-set approaches, logic diagrams, tree diagrams,
connection matrix techniques. Among these techniques, minimal tie-set and cut-set approaches
are one of the most popular and widely used methods for complex system.

Bellmore and Jensen [9] first investigated the search for all minimal cut-sets. Plenty of
improved approaches were developed after that, such as Rai and Aggarwal [10] used Boolean
algebra to obtain minimal cut-sets by inverting from the minimal cut-sets; Yeh [11] applied a
revised layered-network algorithm to search for all minimal paths. Recently some improved
approaches are proposed to efficiently determine minimal tie-set and cut-set.

A new minimal cut-set enumeration approach was proposed by Lin et al. [12] in 2003. As
we know, components connected to the source node consist of a minimal cut-set because the
failure of all these components prevents the source node from arriving at the sink node and if one
of these components works, the source node has a way to reach the sink node. The basic
principle of this approach was to recursively combine adjacent nodes to the source node and to
consider them as a new source node (called source set) so that a new cut-set can be generated.
To guarantee every generated cut-set is a minimal cut-set, after a new source set is created all

redundant nodes (a node adjacent to source set and has no way to reach the sink node without



going through any node in source set) need to be checked and absorbed to the new source set. To
find redundant nodes is time consuming because it means we need to determine tie-sets between
every adjacent node and the sink node.

In 2004, a novel approach to determine minimal tie-sets of complex network was
developed by Fotuhi-Firuzabad et al. [5]. A technique designated as the “Path Tracing
was presented, which can handle both directed and undirected network. There were two steps in
the algorithm, tracing all minimal tie-sets and retrieving all of them. This algorithm was easy to
program, did not require limits on the size of the network, and found to be computationally
efficient.

In 2005, Yeh et al. [13] provided an improved algorithm to search for all minimal cut-sets
based on the approach proposed by Jasmon and Foong [14]. One property of the network is that
a connected network will be broken into two connected subgraphs by removing a cut. Moreover,
these two subgraphs contain the source node and the sink node, respectively. So if MCVs (the
set of nodes in the subgraph containing the sink node) are known, the cut-sets can then be
determined. According to this property this paper developed an algorithm to search for all
MCVs and then convert MCVs to minimal cut-sets.

In 2005, Younes and Girgis [15] proposed an algorithm to search all minimal tie-sets based
on a different connection matrix called link matrix whose rows represent the link (component)
and columns denote different nodes. For example, component X2 is connected between node 4
and node 6, then row 2 of the link matrix will be: 00 0 1 0 1. Minimal tie-set can then be
developed by performing union of different rows of this matrix. This algorithm did not improve

the efficiency of tie-set determination, but it is good for the reliability calculation because it is
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easier to conduct the union of the minimal tie-set based on this matrix. The drawback of this
algorithm is that it cannot handle directed network.

An element substitution approach was used to develop multistate minimal path vectors by
Ramirez-Marquez et al. [6] in 2006. Based on this Gebre and Ramirez-Marquez [16] developed
an improved algorithm for general two-terminal network reliability analyses in 2007 by using
forward and backward element substitution approach simultaneously. The general rationale
behind element substitution is that a new cut-set can be generated by replacing the element of the
known cut-set with its preceding (backward) or succeeding (forward) elements. For example,
components connected with the source node consist of a cut-set. Every time when a component
is substituted by it succeeding components a new cut (not necessary a minimal cut) can be
generated. From these generated cut-sets, minimal cut-sets can be determined. Both backward
and forward recursion can generate minimal cut-sets independently for complex network.
However, when they are integrated together the number of generated cut-sets can be significantly

reduced which reduces time spent on deleting non-minimal cut-set.
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CHAPTER 3

FAILURE DATA ANALYSIS

3.1 Types of Failure Data

There are two types of failure data, complete data and censored data. In reality most of
data are censored data because testing components are removed from the testing prior to their
failure, or because the test is finished prior to all components failing. For example, components
may be removed if they fail because of other failure modes. Censoring may be further
categorized as follows:

Single censored data. All units have the same test time, and the test is concluded before all
units have failed.

Type I censoring: Testing is terminated after fixed length of time (f*), has elapsed.

Type II censoring: Testing is terminated after a fixed number of failures (f) have occurred.
The test time 1s then given by #; the failure time of the /" failure.

Multiply censored data. Test times or operating times differ among the censored (removed
but operating) units. Censored units are removed at various times from the sample, or units have

gone into service at different times [17].

3.2 Reliability and Failure Functions

If T'is the life of a system, sub-system, or a component, then reliability (R) is defined as the
probability that it will not fail during time #, where # < 7. Reliability is also defined as the
probability, at a given confidence level, that the system/component will perform its intended

12



function, for a specified mission time (t), without failure, when used for the intended purpose
under the intended operational conditions. The unreliability (F) is the probability that a system,
sub-system, or a component will fail during time . Failures can occur due to wear, corrosions,
defects, etc. Reliability and unreliability can vary with time, R(?) typically decreases with time
and F(t) typically increases with time. At any time ¢, the sum of R(z) and F(z) is 1. A system,
sub-system, or a component may be repairable or non-repairable [18].
R +F1) =1 (3.1)
Let’s say we subject a large number (V) of components to a life test. After an arbitrary
time period ¢, Ny(t) components will survive and N,(t) components will fail.
Ns(t) + Ngt) =N (3.2)
Component reliability can be expressed as:
R(®) = Ne(®) / [Ns(®) + N(®)] (3.3)
R(®) = 1-Nqt) /N = 1- F(t) (3.4)
The above can be expressed in mathematical terms by defining a continuous random
variable 7' (7 > 0) as life of a system, sub-system or a component. The reliability can be

expressed in terms of time to failure as the probability of component failure [P(7 > ¢)], that is,

failure occurs after time ¢.
or R = [” f(t)dt where R(7) 2 0 (3.5)
where 0 <f<+oo, 0< RHL 1, R0)=1, and R(?); ... =0

For a given ¢, R(?) is the probability that the time to failure is greater than . F(?) is defined

as the probability that failure occurs during the period O - ¢.

RO =1-F() = [ f(O)dt (3.6)
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or = —f(0) (3.7)

where 0 < F(z) <1, F@)=0, and F(t);-.=1

The hazard function is defined as the limit of the failure rate as Az approaches zero. That
is, hazard function /() is the instantaneous failure rate, it is the conditional probability that the
component will fail during the interval [¢, #+At], given that it did not fail until time 7. It is given

by:

Y R(O-R(t+At) _ 1 (R(O—-R(t+AD)\_ 1 —dR(t)_f(t)

The cumulative hazard function H(?) is the conditional probability of failure during the

interval [0, z].

H(t) = [, h(t)dt (3.9)

3.3 Common Failure Distributions

In this section, four common failure distributions as shown in Table 3.1 are discussed.
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Table 3.1: Common Failure Distributions

) Parameters F) h(t) R(1)
A — scale parameter
Exponential le=Mt — Failure Rate 1—e M A e~ M
— I/MTTF or I/MTBF
: B-1 B — shape parameter 1- B t\f 1
B(t -(t/6)F P(= -(t/6)F
Weibull 0 (5) € 0 — scale parameter e—(t/0F 9 (9) €
u — location parameter 1
1 [Le=w? — mean t-u ¢(t) -
Normal 2o © 20 ] o — shape parameter P (T) & (-¢t) & (t_T")
— standard deviation
u' — location parameter 1
21| —mean (_,)¢ LmE) 1-
Lognormal |__1 e[_w% n ) ] o' — shape parameter  |® (% i to » (‘"t ”') ® (t—;u)
Vamort — standard deviation /@ (7 In E) o

3.3.1 The Exponential Model

Many electronic components (transistors, resistors, integrated circuits, etc) have a constant

failure rate during their useful life. The exponential model is widely used to estimate reliability

of hardware components with constant failure rate [17]. The probability density function (PDF)

of exponential distribution is given by

f(t) = e

(3.10)

where 4 is the scale parameter. It is equal to the failure rate (1/ MTBF or 1/MTTF) of the

exponential model. Mean time between failures (MTBF) is the arithmetic mean (average) time

between failures of a system. The MTBEF is typically part of a model that assumes the failed

system is immediately repaired (zero elapsed time), as a part of a renewal process. This is in

contrast to the mean time to failure (MTTF), which measures average time between failures with

the modeling assumption that the failed system is not repaired.

The cumulative distribution function (CDF), hazard rate function /4(z), and reliability

function R(?) are given by:
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Ft)=1—eH (3.11)
h(t) =27 (3.12)
R(t) = e (3.13)

Common Statistics of exponential distribution are

Mean 1/4
Median In(2/%)

Standard Deviation 1/4

3.3.2 The Weibull Distribution
The Weibull distribution is an approximate model for time to failure if the item is of a type

in which a large number of flaws exist [17]. The PDF is given by

B-1 _ B
f@©) =5(5)" e /9 (3.14)
where f is the shape parameter, and 6 is the scale parameter.

The CDF, A(t), and R(t) are given by

F(t)=1— e t/0)F (3.15)
g-1

h(t) = %(g) (3.16)

R(t) = e~ /0" (3.17)

Common Statistics of weibull distribution are

Mean O I((p+1)/p) where I' is gamma function

Median 0In2)""

Standard Deviation 0 |I (%) o <F (%)>2
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3.3.3 The Normal Distribution

The normal probability distribution function can be used to model failures due to fatigue or
wearout. The parameters of the normal PDF are its mean () and variance (¢°). The normal is
not a true reliability distribution since the random variable ranges from minus infinity to plus
infinity. The positive portion of the normal does provide a reasonable approximation to the
failure process. The dispersion about the mean is dependent on the value of the variance (¢°) or
standard deviation (o). The probability density function for the normal distribution provides the
well-known bell shaped curve [17]. The PDF is given by

(t-w?

f@) = len—ae[_ ot | (3.18)

where ¢ is the shape parameter and standard deviation and u is the location parameter and mean.

CDF, h(t), and R(?) are given by

F(t) = (%) (3.19)
_%®
h(t) = pYan (3.20)

where @ is the CDF of the standard normal distribution and ¢ is the PDF of the standard normal

distribution.
R(H)=1- (¢ (3.21)

Common Statistics of normal distribution are

Mean 2
Median U
Standard Deviation o
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3.3.4 The Lognormal Distribution

The lognormal distribution is a good model for times to failure when failures are caused by
fatigue cracks. The lognormal PDF is defined for only positive values of t and is more
appropriate than the normal distribution as a failure distribution [17]. If t is a random variable

with a lognormal distribution, its PDF is given by
— 1 (Y
f(t) = _’2_;alt e[ Za’z(ln“’) ] (3.22)

where ¢’ is the shape parameter, u' is the scale parameter and median. CDF, A(?), and R(?) are

given by
F(t)=a (g l"ﬁ) (3.23)
h(t") = (%) b (1 In ) Jd (;} In ﬁ) (3. 24)

where @ is the CDF of the standard normal distribution and ¢ is the PDF of the standard normal

distribution.

R(®) =1-o(Z%) (3. 25)

Common Statistics of lognormal distribution are

Mean exp (0.56")

Median u

2 2
Standard Deviation \/ e’ (e —1)
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3.4 Candidate Distribution Identification

After collection of failure or repair data, there are three steps for the fitting of a theoretical
distribution which are 1) identifying candidate distributions, 2) estimating parameters, and 3)
performing a goodness-of-fit test. In the first step, least square is used to identify candidate

distribution.

3.4.1 Least Square Fitting

Least Square Fitting is a mathematical procedure for finding the best-fitting curve to a
given set of points by minimizing the sum of the squares of the offsets ("the residuals") of the
points from the curve (see Figure 3.1). The sum of the squares of the offsets is used instead of
the offset absolute values because this allows the residuals to be treated as a continuous
differentiable quantity. Least squares problems fall into two categories, linear and non-linear. The

linear one is discussed and used in this research.

Data point

I,,,
Tz/,’,f’l}Error

Figure 3.1: Least Square Fitting

A regression model is a linear one when the model comprises a linear combination of the

parameters, i.e.

Vi =Z]n=1xij6j i=1,2,...,m (326)
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has m linear equations in n unknown coefficients, fi, p2, ..., fn, With m > n, written in matrix

form as
Y =X (3.27)
where
X111 Xz o X p1 Y1
X _ X21 X22 X2n , ‘8 — ‘8:2 , Y — y:Z
Xml sz Xmm :Bn Ym

We can then see that in that case the least square estimate S is given by

B = X™X)XTY (3.28)

For a special case (m = 2), ¥; = a + bX;, using this method, a straight line with intercept

a and slope b can be fixed by the following formulas.

b = Y XiYi—X X Vi

T ng? (3.29)
where
b is slope
x is independent variable
y is dependent variable
n is the number of data points
a=Yy—bx (3.30)
where

a is intercept
X is average of x
y is average of y

The coefficient of determination, ¥ , can be computed as
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Yiz, (yi—a—bx;)?

2
=1—
r ST (7i-9)?

(3.31)

The coefficient of determination measures the strength of the fit of the regression curve and
can be interpreted as the proportion of the variation in the y’s explained by the x variables. The
square root, r, here is called the index of fit. It will have a value between -1 and 1; a value |r| of
1 is a perfect fit. However, for example, values of » equal to 0.3 and 0.6 only mean that we have
two positive correlations, one somewhat stronger than the other. It is wrong to conclude that r =

0.6 indicates a linear relationship twice as good as that indicated by the value r = 0.3 [19].

3.4.2 Least Square Approach for Common Distributions
To make sure that the function are linear in parameters, transformations for x and y are
necessary and listed in Table 3.2.

Table 3.2: Least Square Approach for Common Distributions

X, Y, Parameters
Exponential t; In [1 - (tz)] A=b
Weibull Int hanJ.Faoﬂ 0=€;£mﬂ
Normal ti F(t) : : —]a//bb
Lognormal Int; F(t;) ' Z,e;p]({[;’a )

where F(#) =(i-0.3)/(n + 0.4). This formula is often used as an approximation of the
median positions.

The exponential CDF is F(t) = 1 — e ™*, or 1 — F(t) = e *t. Then taking the natural

logarithm of both sides, — ln(l — F(t)) = ln( L ) = At. So x; = t; and

1-F(t)
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yi=lIn [ln (1_; (t_))] are used for the transformation to keep dependent variable and independent

variable linear.

From the Weibull cumulative distribution function, F(t) =1 — e~/ G)B, we get

In [ln (1_;(0)] = fInt — B In 6. Hence, the transformation will be x; = Int; and y; =

in|in (=5}

t_
For normal distribution, F (t) = & (T'u) = @ (2), the inverse function can be written

asz; = @THF(t)] = lei = ;l — % which is linear in ¢. A least—squares fit is obtained by
setting x; = t; and y; = F(t;).

Since lognormal distribution, F(t) = @ (% In i) = ®(z),thenz; = @ LF(t)] =

ilnt _iln,u., SOXi = lnti andyl- = F(ti)

3.5 Distribution Parameter Estimation

The previous discussion centered on the identification of candidate distributions for
describing a failure or repair process. Once one or more distributions have been identified, the
next step is to estimate the parameters of the distribution. Until the parameters are determined,
the distribution is not completely specified. Although probability plots and least-squares fitting
of the data provide a means of estimation of the parameters of the distributions, they are not
necessarily the preferred, or “best” estimates of the distribution parameters. This is especially
true in certain goodness-of-fit tests that are based on the maximum likelihood estimator (MLE)

for the distribution parameters.
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3.5.1 Maximum likelihood estimation (MLE)
This section presents the theory that underlies maximum likelihood estimation for
complete data. Ifx is a continuous random variable with PDF':
f(x;04,05,++,6) (3.32)
where 6, 0,,..., 6; are k unknown constant parameters which need to be estimated, conduct an
experiment and obtain N independent observations, xi, x»,...,xy. Then the likelihood function is
given by the following product:
L(xy, x5, , xn101,62,+,0;) = L = ?’:1 f(xi;61,02,-,0%) (3.33)
The logarithmic likelihood function is given by:
A=InL=YN Inf(x; 64,60, ,6;) (3.34)
The maximum likelihood estimators (MLE) of 6;, 6,,..., 0y are obtained by maximizing L
or /4. By maximizing 4, the maximum likelihood estimators (MLE) of 6,, 0.,,..., 6y are the

simultaneous solutions of k£ equations such that:

ow) _

26;

0, j=1,2-k (3.35)

Even though it is common practice to plot the MLE solutions using median ranks (points
are plotted according to median ranks and the line according to the MLE solutions), this is not
completely accurate. As it can be seen from the equations above, the MLE method is
independent of any kind of ranks or plotting methods. For this reason, many times the MLE
solution appears not to track the data on the probability plot. This is perfectly acceptable since
the two methods are independent of each other and in no way suggests that the solution is wrong

[17].
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3.5.2 MLE Approach for Common Distributions

By using MLE, parameters can be obtained by the following formulas [17]

Table 3.3: MLE Approach for Common Distributions

Parameters
Exponential
= f/T
21 1 b lntl+(n f)t Intg 1 Z{zllnti — 0
s tPrm-pef 5 f
“(];fl;),l;“ Solve for B
f 1/B
Gt o]
S| &ai=1
p=x
Normal
(n, o) o2 = (n-1)s?
n
z lntl
U=
i=1 N
Lognormal U= ek
('ur’ O")
o \/zz;lan ti—ur)?
n

f = the number of failed items

n = the number of tested items

T = the sum of failed time ¢

For Weibull distribution MLE,
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f B B f
Zi=1ti Inti+(n-ftg Intg 1 Zi=1lnti —0
= - - = 3.36
9(8) s/ tPim-pif B f (3.36)

=171

The newton-Raphson method for solving a nonlinear equation may be used. This requires

solving for B iteratively using.

s = b~ (3.37)
g'(x) = 42X (3.38)

3.6 Goodness-of-fit Tests

The final step in the selection of a theoretical distribution is to perform a statistical test for
goodness of fit. Such a test compares a null hypothesis (Ho) with an alternative hypothesis (H;)
having the following form:

Hy: The failure times come from the specified distribution.

H;i: The failure times do not come from the specified distribution.

The test consists of computing a statistic based on the sample of failure times. This
statistic is then compared with a critical value. The critical value depends on the level of
significance of the test and the sample size [17].

There are two types of goodness-of-fit tests: general tests and specific tests. A general test
is applicable to fitting more than one theoretical distribution, and a specific test is tailored to a
single distribution. When available, specific tests will be more powerful (have a higher
probability of correctly rejecting a distribution) than general tests.

Chi-square test is a general test which can test Exponential distribution, Weibull

distribution, Normal distribution, and Lognormal distribution. However, the data for this test
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must be grouped into classes. Another disadvantage is that it is valid for large sample size only;

the sample size of each group should not be less than 5.

3.6.1 Goodness-of-fit Tests for Common Distributions

For this research, three goodness-of-fit tests are used. These three tests are designed for
specific distributions. For instance, Kolmogorov-Smirnov test is designed for normal and
lognormal distributions, Bartlett’s test is designed for exponential distribution, and Mann’s test is
designed for the Weibull distribution. These specific tests are more powerful than the general
test. For example, Monte Carlo power comparisons of the test based on Mann’s test and analogs
of the Kolmorov-Smirnov, the Kuiper, and the standard version, as well as a weighted version of
the Cramer-von Mises tests, revealed that the Mann’s test is most powerful against the
alternatives studied [20].

Goodness-of-fit tests of exponential distribution, Weibull distribution, normal and

lognormal distributions can be done using the criteria in Table 3.4.
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Table 3.4: Goodness-of-fit Tests for Common Distributions

Formulas

Accept Hy If

Bartlett’s Test
(B)

for Exponential
distribution

B = 2f [l"((l/ﬂ Z{=1ti)—(1/f) sl int)
B 1+(F+1)/(6)

2 2
Xi-a/2f-1 <B < Xa/2,f-1

la XIop il tipa—tne) /M

M = -
ky 32 [(ntipq—Int;)/M;]
=|f
Mann’s Test (M) ey lzJ
for Weibull
distribution ky = |2 M < Ferita2ks 2k
M; =711 — Z;
Z;=In [— In (1 —ﬂ)]
n+0.25
n
i=1"
Kolmogorov- 2 S (67
Smirnov Test o = %
(D)
for Normal/ ti—F i1 D,, < Dyit
Lognormal D, = m?jfl {CD ( LJ, ) - T}
distribution T
D, = max{——®
1<isn (n o’
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CHAPTER 4

STATE INDEPENDENT SYSTEMS

4.1 State Independent Systems

To determine the reliability of a large system, it needs to be subdivided into smaller
subsystems and components whose individual reliability factors are known or can be easily
determined. Depending on the manner in which these subsystems and components are connected
to constitute the given system, the combination rules of probability can be applied to obtain
system reliability. From the point of view of interconnection of the subsystems, a system may be
classified as series, parallel, series-parallel, or a complex system [21].

Finding the exact reliability for series and parallel networks is quite straightforward and is
described briefly in next two sections. A series-parallel network consists of distinct series and
parallel components within the given system. For such a system the reliability analysis is
performed in steps as described in section 4.4 . K/N system is a special case of parallel system.
It is discussed in section 4.5 . A complex system is one, which cannot be completely
decomposed into independent sections of series and/or parallel sub-systems. Reliability analysis
for such systems is significantly different from a series-parallel network. As a result, other

approaches such as tie-set and cut-set are necessary to solve this kind of problem.

4.2 Series Systems

Consider a simple system consisting of n software or hardware components connected in

series as shown in Figure 4.1.
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Start —>| X, X, p------>| X; f------>| Xy [—>End

Figure 4.1: Series Systems

The reliability of the system, Rg, is given by:
Rs= Ri*Rz...*R;... *Ry (4.1)
For example, if we have three components with known reliability values as shown in
Figure 4.2, the system reliability will be:

Rs =R, * R>* Ry =(.99) * (.95) * (.98) =.92169

X X X3

(0.99) (0.95) (0.08) [ End

Start —>

Figure 4.2: Series Systems Example

4.3 Parallel Systems

A parallel system is shown in Figure 4.3.

Xi

Start — : > End

XN

Figure 4.3: Parallel Systems
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The reliability of the parallel system, Ry, is given by:
Ri=1-[(1-R)*(1-R2)..*(1 - R) ..*(1 - Rw)] (4.2)
For example, reliability of system described in Figure 4.4:
Rs=1~-[(1-R;) (1 -R>) (1-R3)]
=1-1[(0.05) (0.2) (0.3)]

=0.997

Start X2 End

Figure 4.4: Parallel Systems Example

4.4 Series-Parallel Systems

An example of a series-parallel system is shown in Figure 4.5.

30



X>
(0.8934)

Start—>Q® X; Omm (0.98) —>@End

(0.6985)
Xi
(0.93) % X

(0.993)

Figure 4.5: Series-Parallel Systems

Reliability analysis of such system is performed in steps. In each step the independent
series and parallel structures are identified and solved separately. As a result of each step, the
size of the system reduces until it becomes a simple series or parallel system. In the system
shown in Figure 4.5, components X3 and X4 are in parallel and thus form a subsystem identified
as subsystem X34 with reliability of R;,. The reliability of R34 is calculated as follow.

R3~=1—[(1-R3) (1 —R,)]=.99789

See Figure 4.6 for the series-parallel system in Figure 4.5 with subsystem X3a.

X2
(0.8934)
X
Start —() O— (0.958) —>@End
X X
(0.913) @ (0.9937489)

Figure 4.6: Series-Parallel System with Subsystem X34

Component X1 and subsystem X34 are in series and compose of another subsystem
identified as X 34, with reliability of R; 3, as shown in Figure 4.7, and R; 34 is calculated as
follow.

R1,34 = R] *R34= 928037
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Xs

(0.8934)
Start —() — (Oj.(958) | S@End
X134
(0.928037)

Figure 4.7: Series-Parallel System with Subsystem X 34

Then combine components X2 and subsystem X134 which are in parallel and thus form a
subsystem identified as subsystem X ; 34 with reliability of R, ; 34 as shown in Figure 4.8, and
R, ;34 is calculated as follow.

Ry134=1-[(1-R2) (1 -R;34)]=.992329

X134 Xs
Start =0 0992320) O (008 | O Fd

Figure 4.8: Series-Parallel System with Subsystem X5 34

Continue to reduce the system until the whole systems’ reliability is obtained:

RS = R5*R2,1,34 = 972482

4.5 K/N Systems

The K-out-of-N system has a total of N components connected in parallel, and at least K

components must operate for the system to function as shown in Figure 4.9.
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Start —> > End

Figure 4.9: K/N Systems

The reliability of the system, Rg, is given by:

= L=k [( 1= 1)') RV x(1-R)"" ]] (%-3)

where R is reliability of X (all components have the same reliability)
For example, an aircraft has four independent engines (Figure 4.10). Three out of the four
engines must operate in order for the aircraft to fly. If each engine has reliability of .97, what is

the aircraft reliability [18]?

Start —> —> End

Figure 4.10: K/N Systems Example

In this problem, we know k=3, N=4, and R=0.97, so

= Xk () < R+ L= )"
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R = Xis (sitsy) =977 + (.03)*~
= 4%.973 % .03 +.97

=.9948

4.6 Complex Systems

4.6.1 Existing Techniques for Complex System Reliability Evaluation

There are a number of techniques available to analyze a complex system. Some important
approaches are: a) Conditional probability, b) Cut-set method, c) Tie-set method, d) Event Tree,
and e) Fault trees.

The conditional approach splits the given system into subsystems, until they are simple
series/parallel networks. The subsystems are then combined using the conditional probability
method. This technique gives an accurate answer, but becomes tedious for very complex
systems. It is also very difficult to implement in a computer program [22].

The cut-set method is a set of system components which, if the elements all fail, will result
in system failure. A minimal cut-set is one in which all the components mus¢ fail in order for the
system to fail and if any one element does not fail then the system does not fail [23].

The tie-set method is a set of system components whose functioning ensures that the
system functions. A minimal tie-set (path) is one in which all the components within the set must
function for the system to function, and if any one element does not function then the system is
not guaranteed to function. A tie-set will fail if just one component of the tie-set fails and all the

system tie-sets must fail for the system to fail [2].
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An event tree is a pictorial representation of all the events which can occur in a system.
The cut-sets and tie-sets can be developed from the event trees [23].

A useful tool in performing a system safety analysis is fault tree analysis. A fault tree
analysis is a graphical design technique that provides an alternative to reliability block diagrams
in several respects. It is a top-down, deductive analysis structured in terms of events rather than

components. The perspective is on faults rather than reliability [17].

4.6.2 Revised Connection Matrix and System Simplification
4.6.2.1 Introduction

The first step of most techniques is to build a connection matrix which includes
information on how the components are connected in the network. Most of the time nodes are
added to make it easier to build the matrix and represent the direction of the branch. One of the
good connection matrices for small size network is a n x n matrix which is applied in many
In such connection matrix, the row number of each component denotes the “begin” node, and the
column number denotes the “end” node. Table 4.1 is an example of the connection matrix of
bridge-type network shown in Figure 4.11 [5]. In this table component “1”” means the begin
node and the end node are the same node or the begin node and end node are connected without

components between them.
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\ 4

Start —»D

X1

X2

e

X5

A 4

X3

L

X4

®— End

Figure 4.11: Bridge-type Network

Table 4.1: Connection Matrix for Example 1
End Nodes
1 2 3 4
1 1 X1 X3 0
Begin | 2| 0 1 | X5 | X2
Nodes [3| O X5 1 X4
4| 0 0 1

Based on the connection matrix, a number of techniques are available for system reliability

analysis. Minimal path (minimal tie-set) is one of the most important and widely used

approaches. The system shown in Figure 4.11 has four minimal tie-set (Ti) as shown below:

T1: X1, X2
T2: X3, X4
T3: X1, X5, X4

T4: X3, X5, X2

System reliability can then be determinate from the minimal paths or the sets obtained. If

each component has a reliability of 0.9, the system reliability of the above bridge-type network is

0.97848 obtained by the following calculation.
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First calculate the reliability of all tie-set combinations. The result is shown in Table
4.2. Base on Table 4.2, we attain the values for the following terms:
11 P(T)) = P(Ty) + P(Ty) + P(T3) + P(Ty)
= 0.81+0.81 +0.729 + 0.729 = 3.078
i3=12§=i+1 P(Tl- * TJ) =P(T; *T,) + P(Ty *T5) + P(T; *T,) + P(T, * T3) + P(T, * T,)
+P(T5 * T,)
= 0.6561 * 5 + 0.59049
= 3.87099
P X e Yhejar P(T;* Ty x Tye) = P(Ty # Tp % T3) + P(Ty x Ty % Ty) + P(Ty % T3 % T,)
+P(T, * T3 *T,)
= 4 x (0.59049)
i1=1 Z?:Hl Zi=j+1 Z?=k+1 P(Ti * Tj o+ Ty * Tl) = P(Ty * T, x T3 x Ty)
= 0.59049
The system reliability is obtained by the following equation:
Rs=P(Ty+ T, +T;+T,)
=Yi, P(T) -Xi, Z?:Hl P(T; * T])
+ Z?:l Z?=i+1 Zt=j+1 P(Ti * T * Tk)
— Vi1 Xiie1 imje1 Dteiear P(Ti # Ty x Ty x T)
= 3.078 — 3.87099 + 4(0.59049) — 0.59049

= 0.97848
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Table 4.2: Tie-Set Reliability

Probability of

Tie-set Break down Tie-set to Apply Boolean Reliability Value
Combination components Algebra
P(T) P{X X)) P{X *X5) R, *R, 0.81
P(T) P{X5*Xy)} P{X;*X,} R;*Ry 0.81
P(T3) P{XEX*X,)) P{X*X5%X,)} R;*Rs*R, 0.729
P(T,) P{XGEX*X)) P{XG*X5%X5) R;*R5*R, 0.729
P(T;*T,) P{(X1*X) *(X5%X,)} P{X* X% X5 Xy} R *R>*R3*Ry 0.6561
P(T;*T3) P{XEXG) ¥ (X *X5%X )} P{X ¥ X*X*X5) R *Ry*R*R; 0.6561
P(T;*T,) P{X X)) ¥ (X5*X5%X5) PIX*X*X5%X) R *Ry*R3*R; 0.6561
P(T,*T3) P{OGHEX ) (X EX*X))} PIXEXGEX *X) R;*R3*R*R;5 0.6561
P(T,*T,) P{OXGHEX ) ¥ XEX*X5))} PIXGEXGEX X, R>*R3*R /*R;5 0.6561
P(T;*T,) P{ (X RN X) ¥ X¥X53X0)) | PIXTRXORXGHX X! | Ry*Ry*R3*R,*Rs | 0.59049
% * %
P(T;*T,*T3) P{fé’(l)fjé*% }X") P{X*Xo%XG*X,%X5) | Ry*Ry*Rs*R,*Rs | 0.59049
P{X*X5) *(X5%X,) *(
P(T*T,*T. P{X* X0 XX, X R;*R,*R3*R,*R5 | 0.59049
(1 2 4) X3*X5*X2)} { 1 2 3 4 5} 1 2 3 4 5
P (X X0)* (X1*X5*Xy)*(
P(T,*T5*T. PIX XXX, *X R *Ry*R3*R,*Rs | 0.59049
(1 3 4) X3*X5*X2)} { 1 2 3 4 5} 1 2 3 4 5
P{ (Xs*X)* (X *X5*X) %(
P(T,*T;*T. P{X XXX, X R;*R,*R3*R,*Rs | 0.59049
(T>,*T5*Ty) X5%X5%X)) (X X* X5 X X5 PR A MY A& Y A P A
% * * %
P(T*T>*T5*T,) PL(X1X)* (X3%X, P{X*Xo*XG*X,*X5) | Ry*Ry*Rs*R,*Rs | 0.59049

(XX 5*X ) *( X3 *X5%X5))

A slightly more complex system with eleven components and nine nodes (example 2) is

shown in Figure 4.12. Table 4.3 shows the corresponding connection matrix.
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X3 ®

X9 ©)
X4 X10 X11 |

Figure 4.12: Complex System for Example 2

O,
\
e
o0

\4

Table 4.3: Connection Matrix for Example 2

End Nodes

1|2 |3 |4 5|67 )89
1 1 [ X1|X4| 0] 0] 0 |X2[X3]| 0
2 |01 [X5[X6] 0 X8| 1 1 0

§ 310 |X5]1 0 [XI10/ O | O | O | X9
CZD 41010010 [X7,007]0
go 510007 0] 1 XII|] 0] 0|1
R 6 {00, 00|01 ]0]07]0O0
710111000101 1 0
8| 0|1 [0]0]0]|O0]1 1 0
91010, 0|01 ]0]0|O0/1

Minimal paths for the example shown in Figure 4.12 can be determined visually and the

result is listed below:
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Table 4.4: Tie-set Result for Example 2

NO. Tie-set NO. Tie-set

T1 X1, X6, X7 T9 X3, X5, X9, X11
T2 X2, X6, X7 T10 X1, X5, X10, X11
T3 X3, X6, X7 T11 X2, X5, X10, X11
T4 X1, X8 T12 X3, X5, X10, X11
TS5 X2, X8 T13 X4, X9, X11

T6 X3, X8 T14 X4, X10, X11

T7 X1, X5, X9, X11 T15 X4, X5, X6, X7
T8 X2, X5, X9, X11 T16 X4, X5, X8

To determine the system reliability, the method described for bridge-type network can be
applied to this case. Assuming reliability of each component is 0.9, the whole system reliability

1s 0.99765, computed according to the minimal paths.

4.6.2.2 Revised Connection Matrix

The connection matrix shown in Table 4.1 is not very efficient for systems containing
parallel sub-systems. If there are parallel sub-systems in the network, additional nodes have to
be added to ensure that connection matrix works, because only one or zero component can exist
between two nodes in the matrix. For example, in Figure 4.11, if component X11 is added
between node 1 and node 2 (in parallel with Component X1), there will be no place for X11 in
the connection matrix (Table 4.1) because cell (1,2) is already occupied by X1. This is the
reason why additional nodes 7, 8, and 9 are added in Figure 4.12. While additional nodes are
added in the system to overcome the parallel problem, the size of connection matrix increases

accordingly.
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Moreover, when the system becomes large, the inefficiency of this connection matrix is

obvious since only the cells having component names are valuable. For example, the connection

matrix (Table 4.3) in example 2 is sparsely populated with 69 out of 81 cells containing “1” or
“0” which provide no useful information.

A revised connection matrix in the form of

Table 4.5 is proposed to overcome the problems highlighted above. The revised

representation is better suited for large systems.

Table 4.5: Revised Connection Matrix for Example 1

Begin End Component
Node Node

1 2 X1

1 3 X3

2 3 X5

3 2 X5

2 4 X2

3 4 X4

Applying this revised connection matrix to example 2 (Figure 4.12), nodes 7, 8, and 9 can

be removed (Figure 4.13) and a concise matrix Table 4.6 can be attained having only 36 cells

instead of 81 cells.
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Figure 4.13: Revised Complex System for Example 2

Table 4.6: Revised Connection Matrix (Connection Array) for Example 2

Begin End Component

Node Node
1 2 X1
1 2 X2
1 2 X3
1 3 X4
2 3 X5
3 2 X5
2 4 X6
2 6 X8
4 6 X7
3 5 X9
3 5 X10
5 6 XI11

The same minimal paths can be obtained from the revised connection matrix.

4.6.2.3 System Simplification

The identification of minimal path is difficult for larger and more complex system,

especially for complex systems containing a large number of parallel sub-systems. For example,

a system having ten sub-systems in series and each sub-system having ten different components

)



in parallel will have 10 billion (10'®) minimal paths. However, this is not an exceptional case. In
real world, most large systems have thousands of components, and most of the sub-systems in
that system are in series and parallel. Simply using minimal path and minimal cut-set techniques
to solve those large size network problems will lead to waste of time and resources.

An efficient way to handle this problem is to simplify the system before applying minimal
path approach. As we know, computation of reliability with series/parallel laws is much more
efficient than that with minimal path and minimal cut-set approach. In this section, based on the
revised connection matrix introduced above, a method to simplify all series or parallel systems in

the system until a pure complex system is obtained is described below.

Series Components Identification

Two components (sub-systems) are in series when (1) a node is only connected to these
two components (sub-systems) and (2) the node has input from one of those components (sub-
systems) and output to another component (sub-systems). So if a node satisfies the above criteria
and then we know that components between them are in series.

For example, in Figure 4.12, node 2 has six components connected, so it is not a series
node. Node 1 has output to four components but has no input from other components, so node 1
is not satisfied. Node 4 is a series node because it has X6 as input and X7 as output and no more
components connect to it. In Figure 4.12 we have only component X6 and X7 in series (sub-
system will be discussed later).

Components (sub-systems) are in parallel when they have the same input nodes and the

same output nodes. For example, in Figure 4.12, component X1, X2, and X3 are in parallel
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because they share the same input node 1 and the same output node 2. So identify all parallel

components by checking their connected nodes.

Simplification Algorithm

Simplification algorithm pseudo-code
Initialize:
CM_Rows =the number of rows of connection matrix
Pre CM_Rows = CM_Rows+1
CM;j = Connection matrix element in row 1 and column j
ny = the k™ node
nnl = the number of nx in CM;j; (first column of connection matrix)
nn2 = the number of nyx in CMj; (second column of connection matrix)
RAjj = Reliability array element in row i and column j

R(x) = Reliability of component x

Simplification:
While Pre. CM_Rows > CM_Rows
Pre CM_Rows =CM_Rows
(Series simplification)
For each ni
If nnl1=1 and nn2 =1 and CM,;= CMy; = ni
CMp, = CMa

X = CMb3
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CMp3 = CMyp3 + “*” + CM,3 (create a new component name)
R(CMyp3) = R(X) * R(CM,3)
Add component CMy,; and its reliability R(CMy;) to Reliability array

Delete row a of CM

(Parallel simplification)
For any row of CM
If CM, =CMy; and CM,, = CMg»
Y = CMg;
CM = CMg; + “+7 + CMy; (create a new component name)
R(CMg) = 1- (1- R(Y)) * (1- R(CM3))
Add component CM,3 and its reliability R(CM.3) to Reliability array
Delete row d of CM

CM_Rows =the number of rows of connection matrix

The algorithm is illustrated using the network shown in Figure 4.12.

1. Build an array (denoted as connection matrix) for connection matrix. The result of this step

is shown in Table 4.6.
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2. Build an array (denoted as reliability array) with two columns. The first column is used to
store component name and the second one for reliability value as shown in Table 4.7.

Table 4.7: Reliability Array

Component | Reliability
X1 0.9
X2 0.9
X3 0.9
X4 0.9
X5 0.9
X6 0.9
X7 0.9
X8 0.9
X9 0.9

X10 0.9
X11 0.9

3. Set up an array (denoted as nodes array) for storing all nodes and put them into it as shown

in Table 4.8.

Table 4.8: Nodes Array

Nodes
1

ORI |N | |WIN

4. Get a node (denoted as current node) from nodes array at a time. If the first column (begin
node) of the connection matrix has only one current node and second column (end node) has

exact one too (it means two components are in series), go to step 5 to combine these two



components. Get the next node in the nodes array and do it again until all nodes in the nodes

array are checked.

. Combine the two rows containing the current node in the connection matrix by doing the

following.

a. Go to the row having the current node as end node (denoted as row 1).
b. In the second column of row 1 (end node), cover that end node with the end node of
another row (the row having current node as begin node, denoted as row 2).

c. In the third column of row 1 (Component), combine the component name (in row 1) by

132

adding

d. Multiple these two components’ reliability and add the result into the reliability array.

e. Delete row 2.

After this step, all series sub-systems are simplified to be one component. In this example,

following by another component name from row 2.

component X6 and X7 which were in series are combined to form a new component X6*X7.

The new connection matrix is shown in Table 4.9. The reliability array is also updated as

shown in Table 4.10.

Table 4.9: Connection Matrix

I'ileo%dl: I\];:(I)lc?e Component
1 2 X1
1 2 X2
1 2 X3
1 3 X4
2 3 X5
3 2 X5
2 6 X6*X7
2 6 X8
3 5 X9
3 5 X10
5 6 X11
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Table 4.10: Reliability Array

Component | Reliability
X1 0.9
X2 0.9
X3 0.9
X4 0.9
X5 0.9
X6 0.9
X7 0.9
X8 0.9
X9 0.9

X10 0.9
X11 0.9
X6*X7 0.81

. Go to the first row of the connection matrix (initiate checked row).

. Compare the checked row with all following rows (current row). If both the begin node and

the end node are the same with those of the checked row (it means two components in parallel

are found), call step 9 to combine these two components.

. If checked row is the second row from the bottom of the connection matrix, go to step 10, else

set next row to be the checked row and go to step 7.

. Combine those two rows in the connection matrix by doing the following.

a. In the third column of the checked row (Component), combine the component name (in
checked row) by adding “+” following by another component name from current row.

b. Multiple these two components’ reliability and add the result into the reliability array.

c. Delete current row.

After this step, parallel sub-systems are eliminated. In the example, components X1, X2, X3

are combined to be X1+X2+X3; X6*X7 and X8 to be X6*X7+X8; X9, X10 to be X9+X10.
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The connection matrix is simplified to be Table 4.11 and the reliability array is changed to be

Table 4.12.

Table 4.11: Connection Matrix

Begin End Component
Node Node

1 2 X1+X2+X3
1 3 X4

2 3 X5

3 2 X5

2 6 X6*X7+X8
3 5 X9+X10

5 6 X11

After this step all series and parallel sub-system are simplified to be components, and the

Table 4.12: Reliability Array

Component | Reliability

X1 0.9

X2 0.9

X3 0.9

X4 0.9

X5 0.9

X6 0.9

X7 0.9

X8 0.9

X9 0.9

X10 0.9

X11 0.9
X6*X7 0.81
X1+X2+X3 0.999
X6*X7+X8 0.981
X9+X10 0.99

10. Go to step 4 and do it again until the number of rows of the connection matrix is unchanged.
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connection matrix final turn out to be a bridge-type bridge (Table 4.13).

Table 4.13: Connection Matrix

Begin End Component
Node Node

1 2 X1+X2+X3

1 3 X4

2 3 X5

3 2 X5

2 6 X6*X7+X8

3 6 (X9+X10)* X11

Table 4.14: Reliability Array

Component Reliability

X1 0.9

X2 0.9

X3 0.9

X4 0.9

X5 0.9

X6 0.9

X7 0.9

X8 0.9

X9 0.9

X10 0.9

X11 0.9
X6*X7 0.81
X14+X2+X3 0.999
X6*X7+X8 0.981
X9+X10 0.99
(X9+X10)* X11 0.891

reliability for these special components are computed and stored in the reliability array. The

If the network is a simple or series-parallel system, after this simplification, the system

reliability and all reliability of series or parallel sub-system can be obtained. If the network is
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complex, like the example above, a minimal path or cut-set approaches [24] - [25] can then be
applied and the whole system reliability can be computed.

After simplification, the number of minimal paths reduces from 16 to be 4. The new
minimal paths are as follows:

T1: X1+X2+X3, X6*X7+X8

T2: X4, (X9+X10)* X11

T3: X1+X2+X3, X5
T4: X4, X5, X6*X7+X8

Considered X1+X2+X3, X6*X7+X8 and (X9+X10)* X11 as sub-system and assuming

component reliability to be 0.9, they have reliability as follow which were already exist in the
reliability array:

X1+X2+X3 : 0.999 =1-(1-0.9)*(1-0.9) *(1-0.9)

X6*X7+X8 : 0.981=1-(1-0.9*0.9)*(1-0.9)

(X9+X10)* X11 : 0.891=[1-(1-0.9)*(1-0.9)]*0.9

From these sub-system reliability and the above four minimal paths, the system reliability
is computed to be 0.99765.

This simplification method can not only reduce the number of minimal path but also the
number of minimal cut-set. Every time the parallel components are combined to a sub-system,
the number of minimal path of the system is reduced; the serried components are combined, the
number of minimal cut-set is reduced. So this simplification approach is also suitable to cut-set

method.
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4.6.2.4 Application to Complex System
The revised connection matrix and the simplification approach are applied to a system in
this section. The system in Figure 4.14 is from Nelson et al. [2]. The system has 55 minimal

paths with system reliability of 0.972302.

(0?;10) E (0??345) @ (0??372) © (3.%15) 7
Start (= (0%0) (0%755) @ (0%%89) (0%;98) © (3.%25) r® End
(0%0) g (oj.;éz) > (0.85) | © (g%i)) K
0> (3%) | (3?713)) )
(3%) i

Figure 4.14: Nelson's Example

The revised connection matrix for Nelson’s example is shown in Table 4.15. After
simplification, the system has only one minimal path with system reliability of 0.972302, which
means this system is a series-parallel system instead of complex system. The sub-system

reliability is shown in Table 4.16.
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Table 4.15: Revised Connection Matrix—Nelson's Example

gig(;: 15:(;1 Component
1 2 X1
1 2 X2
1 3 X3
2 4 X4
3 4 X6
2 4 X5
4 5 X7
4 5 X8
5 6 X9
4 6 X10
6 8 X11
6 8 X12
6 8 X13
4 7 X14
7 8 X15
7 8 X16

Table 4.16: Sub-System Reliability—Nelson's Example

Sub-system Reliability
X1+X2 0.96
X3*X6 0.738
X4+X5 0.9625
X7+X8 0.9802
X15+X16 0.91
(X7+X8)*X9 0.862576
X11+X12+X13 0.9955
X14*(X15+X16) 0.6825
(X1+X2)*(X4+X5) 0.924
(X7+X8)*X9)+X10 0.979386
((X1+X2)*(X4+X5))+(X3*X6) 0.980088
((X7+X8)*X9)+X10)*(X11+X12+X13) 0.974979
(X7+X8)*X9)+X10)*(X11+X12+X13))+H(X14*(X15+X16)) 0.992056
((X1+X2)*(X4+X5))HX3*X6))* ((X7T+X8)*X9)+X10)*(X11+X12+X13)) 0.972302

+HX14%(X15+X16)))
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The following networks in Figure 4.15 are from Gebre and Ramirez-Marquez [16], Fotuhi-
Firuzabad et al. [5], Ramirez-Marquez et al. [26], and Lin et al. [12]. Comparison of the number

of tie-set and cut-set is shown in Table 4.17.
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Figure 4.15: Complex Networks
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Table 4.17: Simplification Comparison

NO. of Minimal Cut-set CPU Time (second)
Network Before After Before After
Simplification | Simplification | Simplification | Simplification

Network 1 [16] 4 4 0.03 0.03
Network 2 [16] 9 6 0.05 0.03
Network 3 [16] 8 8 0.03 0.03
Network 4 [16] 9 9 0.05 0.05
Network 5 [16] 20 9 0.06 0.02
Network 6 [16] 25 25 0.08 0.08
Network 7 [16] 18 9 0.05 0.04
Network 8 [16] 27 27 0.08 0.08
Network 9 [16] 17 17 0.05 0.06
Network 10 [16] 19 9 0.05 0.04
Network 11 [16] 20 13 0.06 0.05
Network 12 [16] 396 110 2.00 0.39
Network 13 [16] 107 107 0.31 0.32
Network 14 [16] 222 23 0.55 0.11
Network 15 [16] 19 19 0.06 0.06
Network 16 [16] 615 191 3.45 0.72
Network 17 [16] 140 140 0.48 0.48
Network 18 [16] 3037 3037 30.09 30.10
Network 19 [16] 67 45 0.22 0.14
Network 20 [16] 6441 4530 185.00 91.89
Network 21 [16] 888 250 4.06 0.84
Network 22 [16] 16 12 0.06 0.06
Network 23 [16] 166 91 0.44 0.27
Network 24 [16] — — — —
Network 25 [16] 58 58 0.19 0.19
Network 26 [16] 330 214 1.08 0.58
Network 27 [16] 23 23 0.08 0.08
Network 28 [16] 20 20 0.06 0.06
Network 29 [26] 111 86 0.42 0.30
Network 30 [5] 6 4 0.03 0.02
Network 31 [12] 15 9 0.19 0.16
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4.6.3 Determination of Minimal Tie-Set from Block Diagram

This technique has been designated as the Path Tracing Algorithm [5]. It is “the most-
efficient reliability analysis methods currently available based on minimal path set enumeration
as mentioned by Gebre and Ramirez-Marquez [16]. It handles complex systems, and considers
both unidirectional and bi-directional branches, but does not require any Boolean algebra for
programming. The first step in this algorithm is to determine the connection matrix for the

network. The connection matrix is a representation of the connections between the components

2

of a network. It is constructed from the system network or reliability diagram that defines which

components are connected between the nodes of the network. The row number of each
component of the connection matrix denotes the “from” node, and the column number denotes
the “to” node. Once the connection matrix is deduced and the input and output nodes
determined, the algorithm moves through the rows and columns of the connection matrix, and
traces all the minimal paths which exist between the two nodes of interest (input and output
nodes). The process of the path tracing algorithm consists of two steps:

1) tracing all minimal paths and storing them in a specific format (Figure 4.16), and

i1) retrieving all minimal paths from the stored format(Figure 4.17).

By doing this all minimal tie-sets can be determined. Notations are defined as follow to
illustrate these two steps.
» Input node (source node), output node (sink node): The nodes of interest.
* Branch number: The number assigned to the components as the process moves through the

connection matrix.
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* Parent branch: The “branch number” of the element from which the current component has
been branched.
* Status: A flag that indicates if a component has been branched and is represented by:
* True — indicates that the element can be branched further, and
* False — indicates that the element cannot be branched further.
» Component Name: The name of the element connected between two nodes (node number and
the previous node).
* Counter: The number of times the process is required to be continued until all minimal paths

are traced.

* Path tracing array (PTA): Array used to develop paths. The structure of PTA is shown in Table

4.18. PTA(Node Number, j) denotes the element of PTA in row Node Number column j.

Table 4.18: Path Tracing Array

Node Number
Parent Branch
Branch Number
Component
Status

Pseudo-code for step 1:

Initialize:
Counter =1
PTA(Node Number, 0) = Input Node
PTA(Parent Branch, 0) =0
PTA(Branch Number, 0) =0
PTA(Component, 0) = “’ (empty)

PTA(Status, 0) = True
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=0

Develop paths:
While PTA(Status, j) = True or j < counter
If PTA(Status, j) = False
i1
Continue while
Else
Find out all successor nodes of node PTA(Node Number, j)
For each successor node
PTA(Node Number, Counter) = Name of successor node
PTA(Parent Branch, Counter) = PTA(Branch Number, j)
PTA(Branch Number, Counter) = Counter
PTA(Component, Counter) = Component name between node
PTA(Node Number, j) and node PTA(Node Number, Counter)
If PTA(Node Number, Counter) = Output Node
PTA(Status, Counter) = False
Else
PTA(Status, Counter) = True
Counter= Counter+1
PTA(Status, j) = False

i +1
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Pseudo-code for step 2:
Retrieve all minimal paths:
For each PTA(Node Number, j) = Output Node
k=]
While Parent Branch # 0
If PTA(Component, k) # 1
Store PTA(Component, k)
Find PTA(Node Number, 1)= PTA(Parent Branch, k)

k=i
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Counter =1

PTA(Node Number, 0) = Input Node
PTA(Parent Branch, 0) =0
PTA(Branch Number, 0) =0
PTA(Component, 0) = *“” (empty)
PTA(Status, 0) = True

=0

PTA(Status, j) =
True or j < counter

PTA(Status, j)
= False

Find out all successor nodes
k=1, n=num of successor nodes

PTA(Node Number, Counter) = Name of successor node

PTA(Parent_Branch, Counter) = PTA(Branch_Number, j)

PTA(Branch_Number, Counter) = Counter

PTA(Component, Counter) = Component name between node
PTA(Node Number, j) and node PTA(Node Number, Counter)

PTA(Node Number,
Counter) = Output Node

A 4

PTA(Status, Counter) = True

PTA(Status, Counter) = False

IA

PTA(Status, Counter) = False
Counter = Counter +1
k =k+1

v

Figure 4.16: Flowchart to store paths
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No
v
Read Element with /
Branch_Number = »

Parent_Branch of this element /

Figure 4.17: Flowchart to retrieve paths
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4.6.4 Determination of Cut-Set from Given Minimal Tie-Set

Boolean algebra technique is used to find the cut-sets of a network from given minimal tie-
set.

Boolean Algebra Technique

The Boolean Algebra technique, which is used to find the cut-sets of a network, also
assumes that all the minimal paths of the network are known. This technique is simple and can
be easily illustrated through an example. The technique involves some manipulation of Boolean
expressions and therefore is computation-intensive. For the same system discussed in Figure
4.11, the minimal paths are

T1=XI1, X2

T2=X3, X4

T3 =XI, X5, X4

T4= X3, X5, X2

The system will fail if one or more components in each path fail. Hence for T1, either X1
or X2 or both must fail to cause the path to fail. This is expressed as (X1 + X2). Since each path
must fail to cause the system failure, it imposes a Boolean AND condition to find the cut-sets.
Hence the expression (X1+X2) * (X3+X4) * (X1+X4+X5)* (X3+X2+X5) will give all possible
cut-sets. To get the minimal cut-sets, Boolean simplification has to be performed on this
expression. The product of the first three terms is
(X1+X2) * (X3+X4)*(X1+X4+X5)
= XT*X3+XT*X3*X5+X1*¥X3* X4+ X 1*X3* X2+ X 1*X3*X4+X1*X4+X1*X4+X1*X4*X5 +

X1*X2%¥X4 + X2*%X4 + X2*X4*X5 + X3*X2*X5
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=X1*X3+X1*X4+X2*X4+X3*X2*X5

Multiplying with the fourth term
(X1+X2)*(X3+X4)*(X1+X4+X5)*(X3+X2+X5)
=(X1*X3+X1*¥X4+X2*¥X4+X3*X2*X5) * (X3+X2+X5)

= X1*X3 + X1*X3*X5 + X1*X3*X2 + X1*X3*X4 + X1*X4*X5 + X1*X2*X4 + X3*X2*X4 +
X2*¥X4*¥XS5 + X2*%X4 + X3*X2*X5 + X3*X2*X5 + X3*X2*X5

=X1*X3 + X2*X4 + X1*X4*X5 + X3*X2*X5

Therefore {X1, X3}, {X2, X4}, {XI1, X4, X5}, and {X3, X2, X5} are the minimal cut-sets for
the given network.

4.6.5 Determination of Minimal Cut-Set from Block Diagram

There are different algorithms currently available for minimal cut-sets enumeration, such
as nodes merging approach [12], Yeh’s MCV approach [13], and element substitution approach
[6]. Element substitution algorithm is the latest and the most efficient method to determine
minimal cut-sets, so this algorithm is selected and make some improvement to implement to the

software.

4.6.5.1 Element Substitution Approach

An example network shown in Figure 4.18 is used to illustrate this approach.

67



Component

\X3

1
0
0
1
0
0
1

O -~ =20 0O OoO|IN
OO OO OO|w
OO OO OO|M
- OO0 —-0QO|lun
O == 0O OoCOoO,m

<

N

<

W
ONhWN=

Figure 4.18: Predecessor matrix construction

Step 1: Build the connection matrix of the network which indicates the connection
relationship of components. The result is shown in Figure 4.18.

Step 2: Initiate primary set (a cut-set used to generate other cut-sets using forward method)
by putting all components connected to the source node; Initiate parent set (a cut-set used to
generate other cut-sets using backward method) by putting all components connected to the sink
node. In this example, the primary set is {X1, X2} and the parent is {X3, X4}.

Step3: Develop cut-sets from primary set by substituting elements of primary set with their
successors and put the result in the primary potential cut-set array. The first element X1 of
primary set {X1, X2} is replaced with its successors X3 and X6 forming a new cut-set {X3, X6,
X2}. Before this new cut-set can be put to the potential cut-set array, we need to 1) check
elements within the new cut-set for predecessor relationship and eliminate the predecessor
(eliminate successor if it is developed from parent set) from the cut-set; 2) check the new cut-set
with the primary potential cut-sets and parent potential cut-set. If the new cut-set is dominated
or duplicated, eliminate the new cut-sets and go to next step, else if the new cut-set dominates
the cuts in primary potential cut-set or parent potential cut-set, eliminate the dominated cut-sets.
In this example, the new cut-set {X3, X6, X2} can be added to the primary potential cut-set
because there is no predecessor relationship between the elements X3, X6 and X2 and no

domination relationship between new cut-set {X3, X6, X2} and the primary potential cut-set

68



{X1, X2} and parent potential cut-set{X3, X4} as shown in Figure 4.19 (“>” means it is a
primary set or parent set).

Primary Primary Parent
Potential Potential Potential
Cut-set Cut-set Cut-set

> (X1, X2} Replace X1 > X1, X2} > (X3, X4}
(X3, X6, X2}

Figure 4.19: Element Substitution 1

Step4: Develop cut-sets from parent set by substituting elements of parent set with their
predecessors and put the result in the parent potential cut-set array. The first element X3 of
primary set {X3, X4} is replaced with its predecessors X1 and X5 forming a new cut-set {X1,
X5, X4}. This new cut-set can be added to the parent potential cut-set because there is no
predecessor relationship between the elements X1, X5 and X4 and no domination relationship
between new cut-set {X1, X5, X4} and the primary potential cut-set {X1, X2}, {X3, X6, X2}

and parent potential cut-set{X3, X4} as shown in Figure 4.20.

Parent Primary Parent
Potential Potential Potential
Cut-set Cut-set Cut-set

> [ (X3, X4 Replace 3 S 2 X1, X2} > X3, X4}
(X3, X6, X2} (X1, X5, X4}

Figure 4.20: Element Substitution 2

Step5: Repeat step 3 and step 4 until all potential cut-sets have been developed. In this
example, we will continue to
1) Go to step 3 and replace X2 of primary set {X1, X2} with it successors X4 and X5

forming new cut-set {X1, X4, X5}. This new cut-set cannot be put into the potential
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cut-set array because there is already a same cut-set in parent potential cut-set array as

shown in Figure 4.21.

Primary Primary Parent
Potential Potential Potential
Cut-set Cut-set Cut-set
{X1, X2} Replace X2 > {X1, X2} {X3, X4}
{X3, X6, X2} {X3, X6, X2} {X1, X5, X4}

X5X4

Figure 4.21: Element Substitution 3

2) Go to step 4 replace X4 of parent set {X3, X4} with its predecessors X2 and X6

forming new cut-set {X3, X2, X6} which is already exist in the primary potential cut-

set array, so delete the new cut-set and go to next step.

Parent Primary Parent
Potential Potential Potential
Cut-set Cut-set Cut-set
{X3, X4} Replace X4 -> {X1, X2} {X3, X4}
{X1, X5, X4} {X3, X6, X2} {X1, X5, X4}

Figure 4.22: Element Substitution 4

3) Go to step 3. Because each element of primary set {X1, X2} has already been

replace {X1, X2} with its following cut-set {X3, X6, X2} in primary potential cut-set
array. So move “>” to {X3, X6, X2} and continue step 3. Since there is no successor
for the first element X3 of the primary set, go to the second element X6 and replace X6
with its successor X4 and X5 forming a new cut-set {X3, X4, X5, X2}. Within this
new cut-set, X5 is a predecessor of X3, so delete element X5; X2 is a predecessors of

X4, so delete X2. So the new cut-set is updated to be {X3, X4}. This new cut-set
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cannot enter the primary potential cut-set because the same cut-set already exists in the

parent potential cut-set array. The result is shown in Figure 4.23.

Primary Primary Parent
Potential Potential Potential
Cut-set Cut-set Cut-set
{X1, X2} Replace X6 {X1, X2} > {X3, X4}
{X3, X6, X2} 2> | {X3, X6, X2} {X1, X5, X4}

AX3XSE

Figure 4.23: Element Substitution 5

4) Go to step 4. Because each element of parent set {X3, X4} has already been replaced,
replace {X3, X4} with its following cut-set {X1, X5, X4} in parent potential cut-set
array. So move “>” to {X1, X5, X4} and continue step 4. Since there is no
predecessor for the first element X1 of the parent set, go to the second element X5 and
replace X5 with its predecessor X2 and X6 forming a new cut-set {X1, X2, X6, X4}.
Within this new cut-set, X4 is a successor of X2, so delete element X4; X6 is a
successor of X1, so delete X6. So the new cut-set is updated to be {X1, X2}. This new
cut-set cannot enter the primary potential cut-set because the same cut-set already

exists in the primary potential cut-set array. The result is shown in Figure 4.24.
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Parent Primary Parent

Potential Potential Potential
Cut-set Cut-set Cut-set
{X3, X4} Replace X4 {X1, X2} {X3, X4}
2> | {XI, X5, X4} 2> | {X3,X6,X2} 2> | {XI1, X5, X4}
K3 X4 X2t

Figure 4.24: Element Substitution 6

5) Go to step 3 and replace element X2 with its successor X4 and X5 form a new cut-set
{X3, X6, X4, X5} which becomes {X3, X4} after eliminating predecessors. Because
{X3, X4} already exist in parent potential cut-set, the new cut-set is deleted. Since the
last element of the last primary potential cut-set has already substituted and there is no

more primary potential cut-sets generated, stop the loop of step 3.

6) Go to step 4 and replace element X4 with its predecessor X2 and X6 form a new cut-set
{X1, X5, X2, X6} which becomes {X1, X2} after eliminating successors. Because
{X1, X2} already exist in parent primary cut-set, the new cut-set is deleted. Since the
last element of the last parent potential cut-set has already substituted and there is no

more parent potential cut-sets generated, stop the loop of step 4.

Step6: Retrieve minimal cut-sets from the primary potential cut-set array and parent
potential cut-set array. In this example, the minimal cut-sets are {X1, X2}, {X3, X6, X2}, {X3,

X4}, {X1, X5, X4},

4.6.5.2 Improvement to Element Substitution Approach
This algorithm continuously uses the generated potential cut-set as a primary set or parent
set to generate more potential cut-sets, so the primary or parent set is wanted to be a minimal set.

If the primary or parent cut-set is not a minimal cut-set, all its generated cut-sets will not be
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minimal and these non-minimal cut-sets will continue to generate more useless cut-sets. The size
of potential cut-set array will increase significantly resulting in inefficiency of the cut-set
determination. This is the reason why every time when a new cut-set is generated we need to
compare the new cut-set with each potential cut-set to eliminate those potential cut-sets which
are dominated by the new cut-set. However, this still cannot guarantee every potential cut-set in
the potential cut-set array is a minimal cut-set until the final cut-set is generated and the last
domination elimination is done.

The efficiency can be improved if the potential cut-set array is kept leaner (less non-
minimal cut-set). In current algorithm when a potential cut-set is found to be dominated by the
new cut-set, this potential cut-set will be eliminated. Now we can do it further. All its
successors (the potential cut-sets generated by this eliminated cut-set) will also be deleted, and
continue to delete successors in the next level until the end of the potential cut-set array is
reached. That is, whenever a potential cut-set is deleted, all levels of its successors will also be
eliminated. In this way, potential cut-set array will contain less non-minimal cut-sets and its size
will be decreased. Because when a new cut-set is generated, it is required to compare with every
cut-set in the potential array to check the domination relationship, the decrease of the size of
potential cut-set array will increase the efficiency.

This improved method is applied to Gebre and Ramirez-Marquez’s 28 networks [16] in
Figure 4.15 and obtain exactly the same minimal cut-set results with a shorter computation time

as shown in Table 4.19.
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Table 4.19: Element Substitution Result Comparison

NO. Gebre’s | New | Improved Non- N(?n— Simpli
Net- of NO of CPU time | CPU | Approach | minimal minimal fied
work | Comp minimal (sec.) Time | CPU time | Cut-set Cut-set (;PU
onent Cuts [16] (sec.) (sec.) Generated Generated | - time
(Improved) | (sec.)
1 5 4 0 0.05 0.03 0 0 0.03
2 8 9 0.01 0.05 0.05 0 0 0.03
3 8 8 0.01 0.03 0.03 0 0 0.03
4 9 9 0.01 0.06 0.05 0 0 0.05
5 12 20 0.01 0.06 0.06 0 0 0.02
6 14 25 0.02 0.09 0.08 0 0 0.08
7 11 18 0.01 0.08 0.05 1 1 0.04
8 13 27 0.02 0.09 0.08 0 0 0.08
9 12 17 0.01 0.06 0.05 1 1 0.06
10 12 19 0.01 0.08 0.05 3 3 0.04
11 13 20 0.01 0.08 0.06 0 0 0.05
12 30 396 10.11 2.55 2.00 461 350 0.39
13 20 107 0.51 0.40 0.31 22 22 0.32
14 26 222 2.07 0.64 0.55 178 134 0.11
15 14 19 0.03 0.06 0.06 3 3 0.06
16 29 615 35.06 3.97 3.45 472 379 0.72
17 23 140 1.071 0.56 0.48 48 33 0.48
18 30 3037 355.16 | 31.69 30.09 1026 997 30.10
19 24 67 0.3 0.25 0.22 17 17 0.14
20 40 6441 3329.7 | 216.0 | 185.00 7433 6760 91.89
21 25 888 26.638 4.73 4.06 268 267 0.84
22 18 16 0.1 0.08 0.06 14 14 0.06
23 21 166 0911 0.52 0.44 52 52 0.27
24 60 — — — — — — —
25 21 58 0.21 0.20 0.19 9 9 0.19
26 24 330 5.137 1.15 1.08 129 122 0.58
27 15 23 0.08 0.11 0.08 0 0 0.08
28 12 20 0.09 0.08 0.06 0 0 0.06
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4.6.6 Calculation of System Reliability from Tie-Sets and Cut-Sets

Let T;correspond to the i tie-set, and Cicorrespond to the i" cut-set. The system reliability
is computed as follows:

Ri=P(Ti+T>...... +Tx) = P(at least one tie-set is good)

Ri=P(C:*C2....... *C») = P(at least one element of the cut-set is operative)

Expressed in terms of unreliability, we have,

1-Ri=P(T"1*T"....... *T’m) = P(all tie-sets failed)

1-R=P(C1+C........ +C’») = P(at least one cut-set fails)
where 7"iand Ciare the compliments of 7:and Cirespectively. From the above reliability

expression bounds can be obtained by using the basic probabilistic inequalities as follows:
Ry = P(Ty + Ty -+ T) < X% P(TY) (4.4)
Ry =P(Ty+ Ty +Tp) 2 XL P(T) — X127 X7 P(Ty * T;) 1<i,j <m(4.5)
The upper (Ruv ) and lower bounds (R::) to the reliability are:
Ry, = X2, P(T) (4.6)
Ry =Y P(T) - 30" Y P(TiTy), 1<ij<m  (47)
In the same manner, another upper bound is obtained
Ry, = X%, P(T) — X271 7]71=L'+11:)(Ti «Tj) +

e m_1127131=j+1P(Ti *Tj * Ty,), 1<ijk<m (4.8)

j=i+

By using the above equation, upper and lower bounds on reliability are computed till the

desired precision on system reliability is obtained. The application of this method is illustrated
through an example as shown in Figure 4.11 in section 4.6.2.1

Similarly inequalities can be applied to cut-sets to obtain another upper and lower bounds.
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Ry, =1-%Z,P(C") (4.9)
Ryy = 1= (I, P(C') = X X P(CTi % C)))
=Ry + X2 Y P(C'i+CY) 1<ij<m (4.10)

RLZ =1- (Z P(C l) Zm ! an+1P(C,i * C,f)

= 2 ;nuld k= ]+1P(C’ i * C,k))
=Ry, — Z:nlz j= l+1 Zk ]+1P(C, j * C,k)
1<ijk<m (4.11)

Example: A system has four minimal cut-sets (developed from a fault tree in section 6.2 ):
{X3, X4, X5}, {X2, X3}, {XI1, X3}, and {X1, X2}. Assuming the unreliability of components
X1, X2, X3, X4, X5 are R;'=0.1, R,'=0.2, R3'=0.3, R4'=0.4, R5s'=0.5 respectively, what is the
system’s reliability?

To solve this problem, we first calculate the reliability of all combinations of cut-sets. The

result is shown as Table 4.20.
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Table 4.20: Cut-set Reliability

Probability of Cut-| Break down Cut-set to Apply Boolean -

set Combination components Algebra Reliability Value
P(C)) P{(X,"*X5")} P{X,"*X") R,"*R,’ 0.02
P(C)) P{X,"*X5)) P{X,"*X5") R;"*R3’ 0.03
P(C5) P{X"*X5)} P{X;,"X; Ry"™*R; ' 0.06
PC)) P{XG™*X,/*X5)) P{XG*X,*X5") R;"™*R,*R5' 0.06
PC,"*Cy) PLXXG)*(X X5} P{X XX R;"™*R,"*R;' 0.006
P(C1'*C3") P{XT'*X2")*(X2'*X3")} | P{X1'*X2'*X3"} RI"™R2'*R3' 0.006

, P{XT™*X2)*( P{XT'™*X2"*:X3":X4"* ,

* 4 &3 I3k &3 !k
PCI'*C4’) X3"4X4"%X5")} X5 RI™R2™R3"*R4'*R5' | 0.0012
P(C2'*C3") P{(X1"™*X3)*(X2'*X3")} | P{X1'*X2'*X3"} RI"™R2'*R3' 0.006

P{(XT™*X3)*( P{X1"*X3"*X4'

3% 4 3 1% £3 '

P(C2'*C4’) X3%X4"%X5")} xx57) RI'™R3"™R4'"*R5 0.006

v 1 P{X2™*X3)*( P{X2'*X3"*:X4' VD 21 1D

* % % %

P(C3'*C4') X374X4™X5")} xx57) R2'*R3"™*R4'*R5 0.012
P{XT™*X2")*(X1"*X3")*(

13k X3 ' 3% £3 ’ &3 ’3% 4

P(CI™*C2'*C3") X2"%5X3)) P{X1*X2'*X3"} RI'™R2'™*R3 0.006
P{XT™*X2)*(X1™*X3")*( | P{X1'"*X2"*X3"*X4"*

[£3 1£3 ' £3 Ik 1£3 (£3 [
P(CI'™*C2'*C4") X3'%X4"%X5")} X5 RI™R2"™R3"*R4'*R5' | 0.0012

vy g1 P{XT™*X2)*( X2™*X3) *(| P{X1"™*X2"*X3"*X4"* D ATED 21D A1 o1

* * % % % %
PCI'™*C3'*C4") X374X4™X5)} X57 RI™R2™R3"*R4'*R5' | 0.0012

P{(X1™*X3)*( P{X1™*X2'*X3"*X4"*

[£3 £3 ' £3 Ik 1£3 (£3 [

P(C2'™*C3"*C4") X215X3)%( X5 RI™R2"™R3"*R4'*R5' | 0.0012
P{XT™X2)* ( Y)Y IR A1
PCI'™*C2'™*C3'™*C4")|  XI'™*X3")*( X2'*X3")*( PIXTX27X3 X4 RI'™R2"™R3"*R4'*R5' | 0.0012

X3"5X4"*X5")}

X57

According to the formulas above,

L1P(C;) =P(C,) + P(C,) + P(C5) + P(C,)

= 0.02+0.03 +0.06 + 0.06 = 0.17

Yia Z?=i+1 P(Ci, * Cj’) = P(C," = C) + P(C' * C5") + P(C," = C,)
+P(C,' « C3") + P(C,' = C,") + P(C3' +C,")

= 0.006 + 0.006 + 0.0012 + 0.006 + 0.006 + 0.012

= 0.0372
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12:1 Z?=i+1 2£=]'+1 P(Ci, * Cj, * Ck,) = P(Cll * CZI * C3,) + P(Cll * CZI * C4_,)

+P(Cy"*C3' + C,") +P(C'*C3' +C,")

= 0.006 + 0.0012 + 0.0012 + 0.0012

= 0.0096

Y1 Y i1 Tae i1 Dimk1 P(C/ * € G % €) = P(Cy * €' % C3' % C,))

= 0.0012

And then the system reliability 0.8588 is obtained by the following steps shown in Table 4.21.

Table 4.21: Determination of System Reliability from Cut-set

Step Lower Bound Upper Bound Reliability Tolerance
- - -
Steps | K3 zggéég Rup=0.8588 Rsyszz(gfgg];”)/z 0
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CHAPTER §

STATE DEPENDENT SYSTEM

In the previous section we made an important assumption of independent failures among

the individual components. However, if the failure of one component is dependent on the failure

of another component then we need a different analysis method ---Markov analysis.

5.1 State Diagram

Figure 5.2 is state diagram of a general standby system shown in Figure 5.1 [18].

X

Start )7

Figure 5.1: Standby System

States: 1. Both components operating
2. Component X1 fails
3. Component X2 fails

4. Both components fail

\

End )
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1-224() At

Ap(f) At

1-(ha(0)
At gs(0) AD
As() At desalt) At
1-7as(t) At
Figure 5.2: State Diagram
Probability

Ai2(t) At Probability of going from state 1 to state 2 during At

A13(t) At Probability of going from state 1 to state 3 during At

A24(t) At Probability of going from state 2 to state 4 during At

A34(t) At Probability of going from state 3 to state 4 during At
where, A;(t) are failure rates for each ij transition.

State Equations

1. Pr(t+A4t) = P1(V) [ 1- A1z(t) At + A13() 4At) ]

2. P2 (t+At) = P1(t) A12(t) At + P2(t) [1 - A24(t) A)]
3. Pz (t+At) = P1(t) A13(t) At + P3(t) [1 - Az4(t) AV)]
4. Py (t+ At) = P2(t) A24(t) At + P3(t) A34(t) At + Pa(t)
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5.2 Markov Analysis

5.2.1 Calculation of System Reliability from Markov Model
From Markov Model the exact solution for the reliability of a complex system with N

success states over the time t is

N
R@®)=)_P(1) (5.1)
i=1
where the P;(?) values are the solutions to the set of N differential equations
d
EP/U =1, B() + 1y, Py(t) + 15, Py(D) + -+ + 1y, Py (1)
d

Epz(f) = =1, P(0) + 1y, (1) + 1, Py() + - + 1, Py (1)

d
EPN(Q =1 B(t) + 1oy Po(t) + 1y Py(t) + -+ + 1y Py(1)
PO)=1.0 and P@0)=0 foralli#l
where r;; (i%f) represent the rate (failure rate 4 or repair rate 1) from state i to state j. 7; represent

the sum of all transition rates out of state i:

= DT

all k+i

The above equations can be solved on the computer by approximating them by difference

equations with sufficiently small 4¢.

P1 (t+ At = Pi(O(1- r11 At) + Pa(t) r21 At + ... + Pn(t) rvi1 At
P2 (t+ At = P1(t) rizAt  + P2(t) (1-r224t )+ ... + Pn(t) 2 At
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Py (t +At) = Pi(t) rinAt + P2(t) roanAt+ ... + Pn(t) (1- rawAt)

That is,
P+ 49 =Y Pl at]+ Pl -r, 4] 5.2)
all j#i
Let
n=tlAt (5.3)
Then,
P.(t) = P,(n At) (5.4)
And
P(t + A1) = P([n+1] 49 (5.5)

The set of N independent difference equations can be written as

P([n+11A0) = 3 P(nAt)[r,At]+ P.(nAD)[1 - r,At]

all j#i (5 6)
where i =1,2,3--- N

The probability vector 71(?) and the matrix/A4] are defined as follows:

Rill,
Pyt
| PO
: (5.7)
| P
(1-r,At) 1y At ry At raAt ]
1, At (1-ryAt) ry, At Fy, At
[A] =| r,At 7y, At (1—r;At) - Fys At .8)
r At 7,y At r At o (I=ryAf) |

In matrix form, the set of equations is written
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I ([n+1]A1) = [4]1T (nAt) (5.9)
From which follows
I (nAt)y=[4](n-11at)=[AF T (n-21at)=-- =[4] 1T(0) (5.10)
Hence, the solution to I7(z) is
(t)y=[a] (0) (5.11)

where [A] is the coefficient matrix of the set of difference equations and I1(0) is known to be

(P 1
P | |0
11(0) = S (5.12)
Py 0]

N
So we can solve R(H)= Z Pl(t) by doing the following:
i=1

1. Select a sufficiently small 4¢.

2. Determine n=t/At.

3. Determine the coefficient matrix [4] from the state-to-state transition rates and raising [4]
to the n" power—that is, performing n successive matrix multiplications of [4].

4. Finally, determine the P;(?) values.

5.2.2 Calculation of System Reliability from Markov Model --Example

Example [17]: An active generator has a failure rate (failures per day) of 0.01. An older
standby generator has a failure rate of 0.001 while in standby and a failure rate of 0.10 when
online. Determine the system reliability for a planned 3 day use.

To solve this problem, we first define the states as follow:

States: 1. Both generators operating
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2. New generator X1 fails
3. Old generator X2 fails
4. Both generators fail
The failure rates are defined as follow:
A; : The failure rate for new generator X1 which is equal to 0.01
Azr 2 The failrue rate for old generator X2 in standby mode (idle) which is equal to 0.001
A2r : The failure rate for old generator X2 when online (functioning) which is equal to 0.1

And then obtain the state diagram as shown in Figure 5.3.

Figure 5.3: State Diagram Example

From the given data we know 4; = .01, A,;=.001, A, = .1, mission time is 3 days. If we

partition mission time to 1000 units, that is n=1000, At will be equal to 3/1000=0.003 days. So

(1-r,A?) 1y, At 1y, At r, At
[A] _ 1, At (1-ry,A?) ry, At ry, At
1, At vy, At (1-ry;A7) 1, At

| At 7y, At 1y, At (1—ry,Al) |

since  rpp At =A; 4¢t=0.01(0.003) = 0.00003

ri3 At = Ay At =0.001(0.003) = 0.000003
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r24 At = Ar At = 0.1(0.003) = 0.0003

r3q At = A; At =0.01(0.003) = 0.00003

ri; At = (A +A2)A4=0.011(0.003) = 0.000033
ra2 At = Ap At = 0.1(0.003) = 0.0003

r3z At = A1 At=10.01(0.003) = 0.00003

rag At =04t=0

0.999967 0 0 0

[4]- 0.00003  0.9997 0 0

1 0.000003 0 0.99997 0

0 0.0003  0.00003 1
P, (1) 0.967538 0 0 071 0.967538
a0 = P, (1) _LA]™ 1200) = 0.025478  0.740785 0 0(0| [0.025478
Py | ~10.002907 0 0.970445 0/ 0| |0.002907
P, (1) 0.004077  0.002996  0.029555 1|0 0.004077

That means during the mission the probability of state 1 (both generators operating) is P;(?)
= 0.967538, the probability of state 2 (generator X1 fails, but X2 runs) is P,(¢) = 0.025478, the
probability of state 3 (generator X2 fails, but X1 runs) is P3(z) = 0.002907, and the probability of
state 4 (both generators fail) is Py(?) = 0.004077. So the reliability of the system is R;=
Pi(1)+P,(t) +P3(t) = 0.99592. This is an approximate result. An exact reliability value 0.99596

for this example can be obtained by the formula below which is derived by Laplace method.

_ oMt g M (-2t —(Ag ARt
R(t)=e +/,11+/12F_/121 [e e ] (5.13)
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CHAPTER 6

FAULT TREE ANALYSIS

6.1 Fault Tree Configuration

The fault tree technique was introduced in 1962 at Bell Telephone Laboratories, in
connection with a safety evaluation of the launching system for the intercontinental Minuteman
missile. Today fault tree analysis is one of the most commonly used techniques for reliability
and safety analysis.

A fault tree is a logic diagram that displays the interrelationships between a potential
critical event (accident) in a system and the causes for this event. The cause may be
environmental conditions, human errors, normal events, and specific component failures [27].

The basic symbols used in the construction of a fault tree include logic gates and events.
Logic gate symbols are used to represent when a particular event can occur. The AND gate (*)
describes the logical operation that requires the coexistence of all input events to produce the
output event. The OR gate (+) describes that an output event occurs if any of the input events
occur. There are three basic types of events that can occur in a fault tree. These are top event,
intermediate events and terminal events. The top event (undesired event) appears at the top of
the fault tree and is placed within a rectangle. An intermediate event is any event within the fault
tree that is further resolved into events that could cause it. These are represented by rectangles.
A terminal event (Sink event) is an event that is not resolved into further causes and is

represented by either circles or diamonds [18].
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6.2 Determination of Minimal Cut-Set and Tie-Set from Fault Tree

The major Fault Tree Algorithms are MOCUS [28] which is based on PREP — KITT
(Downward) [29], TREEL based on MICSUP (upward) [30], ELRAFT [31] based on unique
factorization property of natural numbers 1 11...19, 111...119, ...

MOCUS is probably the most famous algorithm to compute minimal cut-sets of fault trees,
event trees, block diagrams, etc. It represents the class of top-down algorithms. The following

example is from McCalley [32]. Consider the power system illustrated in Figure 6.1.

B
T_ 1 A

5 —O

i 3

Figure 6.1: System for Fault Tree Example

The generator at station A represents power inflow that can be perfectly reliable for
purposes of this example. Define “system failure” to be

1. Station B is isolated or

2. Station C is isolated or

3. The combined load of stations B and C are carried by a single circuit.

A fault tree is drawn for this system (note the answer is not unique) as shown in Figure 6.2.
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| S1: System failure |

[
S2: Station B

unsupplied

SS No supply

S3: Station C
unsupplied

S4: Stations B and C
supplied by a single line

S6: No supply S7: Supply || S8: Supply || S9: Supply
from C from B by cct 1 only||by cct 2 only| [by cct 3 only
@ @ And And And

S10: CB S11: CB S12: AB
Tie out Tie out Tie out

Figure 6.2: Fault Tree

Our approach to identifying the minimal cut-sets from a fault tree assumes that we will
make the identification by analyzing the fault tree from top to bottom. In doing so, we make two
important observations:

1. As we proceed down the tree from the top event, whenever we pass through an AND-

gate, it means that all of the inputs to the gate must occur in order for the output to

occur; as a result, the cut-set of interest increases in cardinality by adding the events

corresponding to the AND-gate inputs.

88



2. As we proceed down the tree from the top event, whenever we pass through an OR-
gate, it means that any of the inputs to the gate can occur in order for the output to
occur; as a result, the number of cut-sets increases by adding additional cut-sets
corresponding to the original cut-set plus one of the OR-gate input events.

The following cut-set identification algorithm follows from these two observations.

Step1: Alphabetize the gates.

Step2: Label each basic failure event.

Step3: Locate the uppermost gate in the first row and first column of a matrix.

Step4: Iterate either of the fundamental permutations (a) or (b) in a top-down fashion.

a. Replace AND gates by a horizontal arrangement of the input to the gates, and
enlarge the size of the cut-sets.

b. Replace OR gates by a vertical arrangement of the input to the gates, and
increase the cut-sets

Step5: When all gates are replaced by basic events, obtain the minimal cut-sets by

removing supersets. A superset is a cut-set that includes some other cut-sets.

This algorithm is illustrated on the example described Figure 6.2, as follows:

We begin with the top event, label it as system S1.

S1

The gate below S1 is an OR gate, so we replace S1 with a vertical arrangement of the

inputs to S1, resulting in:
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S2
S3
sS4

Sub-system S2 and S3 are both AND gates, with inputs {X1, X2, S5}, and {X3, S6},
respectively, so replace S2 and S3 with these horizontal expansions. Sub-system S4 is an OR
gate, with inputs {S7, S8, S9}, so we replace S4 with this vertical expansion. These changes

result in:

X1 X2 S5
X3 S6

S7

S8

S9

Sub-systems S5 and S6 are OR gates, with inputs {X3, S10} and {S11, S12}, respectively,
so replace S5 and S6 with these vertical expansions. Sub-systems S7, S8, and S9 are AND gates
with inputs {X2, X3}, {X1, X3}, and {X1, X2}, respectively, so replace S7, S8, and S9 with

these horizontal expansions.

X1 X2 X3
X1 X2 S10
X3 Sl11
X3 S12
X2 X3
X1 X3
X1 X2

Sub-systems S10, S11, and S12, are all AND gates with inputs {X4, X5}, {X4, X5}, and

{X1, X2}, respectively, so replace S10, S11, and S12 with these horizontal expansions.
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X1 X2 X3

X1 X2 X4 X5
X3 X4 X5
X3 X1 X2
X2 X3

X1 X3

X1 X2

There are 3 sets which are not minimal cut-sets: {X1, X2, X3}, {X1, X2, X4, X5}, {X3,
X1, X2}, and these can be eliminated. We have remaining the minimal cut-sets of {X3, X4,
X5}, {X2, X3}, {X1, X3}, and {X1, X2}. There are no other minimal cut-sets because a
properly constructed fault tree must produce all cut-sets. In this example, we may verify the list
by observing its significance with respect to Figure 6.2.

Once the minimal cut-sets are obtained, system reliability can be calculated according to
the method described in section 4.6.6 . Assuming the unreliability of components X1, X2, X3,
X4, X5 are R;'=0.1, R,'=0.2, R3'=0.3, R4'=0.4, R5'=0.5 respectively, the system’s reliability will

be 0.85880 which was obtained in section 4.6.6 .
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CHAPTER 7

SOFTWARE DESIGN AND VALIDATION

7.1 Software Development

A Software Tool for Reliability Estimation 2.0 (STORE2.0) was developed under

Microsoft Windows XP operating system using Microsoft Visual Basic 2008 development tool,

and Microsoft SQL server 2005 as Database Engine. It is significantly different from the earlier

version developed by Parekh [1]. Some of major enhancements are listed below:

1.

2.

Fault tree reliability analysis was added.

A more efficient algorithm for tie-set and cut-set calculation was developed.

State Dependent Systems can be used to analyze any multiple states Markov model.
The software is developed under the latest development tool Visual Basic 2008 and

database is implemented for user data storage.

This software tool also differs significantly from commercial software. The comparison is

shown in Table 7.1.
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Table 7.1: Comparison with commercial software

STORE2.0

Isograph [33]

Relex [34]

Ttem [35]

ReliaSoft [36]

Failure Data
Analysis

\/

X

X

X

X

Parameter
Estimation

Cut-set
Identification

Tie-set
Identification

RBD

Fault Tree
Analysis

< |2] 2| 2| <

< | <2 | <

< |<] <

State
Dependent
Systems

7.2 Database Structure

STORE 2.0 uses the SQL data base to store data and settings for users. When a user

creates a new project, a SQL database file (with extension of mdf) is created automatically.

When a project is saved, all information including component, system, fault tree, block diagram,

and Markov model are saved to this file, so that the user can simplify open only one file and

easily get all needed information to continue their work later. A database file is designed to have

different tables for different functions and each table has its own data structure. The database has

seven tables as shown in Table 7.2.
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Table 7.2: Database Tables

Table Name Description

Components Store information for components

Systems Store information for systems

FaultTreeConnection | Store the fault tree configuration

RBDcnMatrix Store connection information for Reliability Block Diagram
MarkovState Store State information for Markov Model

MarkovTransitions Store connection matrix for Markov Model

OtherInfo Other information needed to be stored, such as setup information

Detail structure information for each table is as follow:
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Table 7.3: Component Database Table

Field Name Data Type | Description

Comp ID text Key field. Component identification

Comp_ Name text Component name

Reliability float Reliability of the component

Failure Data text Failure data of the component

Description text Description of the component

Mission_Time float Mission time for the reliability calculation

Mission Time Unit text Mission time unit for the reliability calculation

Distribution text Distribution of the failure data

Dist Parameterl float Distribution parameter one

Dist Parameter2 float Distribution parameter two

Dist Parameter3 float Distribution parameter three

Data Type text Data type of the failure data

Test Time float Test time of the failure data

Total NO of Data int Total number of the tested items when collecting failure
data

Level of Significance float Level of significant required for reliability computation

Table 7.4: System Database Table

Field Name Data Type | Description

System_ ID text Key field. System identification
Description text Description of the system
Structure text Structure of the system
Reliability float Reliability of the system

System Name text System name

Gate text Gate of the fault tree
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Table 7.5: FaultTreeConnection Database Table

Field Name Data Type | Description

Output Event Name text Output event name of the fault tree
Gate text Gate of the fault tree

Input Event Name text Input event name of the fault tree
Event Description text Description of the event

Table 7.6: RBDcnMatrix Database Table

Field Name Data Type | Description
Begin Node int Begin node
End Node int End node
Component text Component between begin node and end node
Reliability float Reliability of the component
Table 7.7: MarkovState Database Table
Field Name Data Type | Description
State text The name of the state
Description text Description of the state
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Table 7.8: MarkovTransitions Database Table

Field Name Data Type | Description

State From text Begin state

State To text End state

Description text Description of the transitions between begin state to end
state

Rate float Rate of the transitions between begin state to end state
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Table 7.9: OtherInfo Database Table

Field Name Data Type | Description

RBD_Description Text Description of the Block Diagram project

FLT Description Text Description of the Fault Tree project

Markov_Description Text Description of the Markov Model project

Markov_Initial State Text Initial state of in the markov project

Markov_Unavailability State Text Unavailability state of in the markov project

Markov_Mission_Time Float Mission of in the markov project

Markov_ NO_of Partitions Int Number of partitions of mission time

RBD Source Node Text Source node in the Block Diagram project

RBD_Sink Node Text Sink node in the Block Diagram project

RBD_Accuracy Float Accuracy required in the Block Diagram project

FLT Accuracy Float Accuracy required in the Fault Tree project

Active Tab Int Which tab should be shown when the software is
opened

Markov_Time Unit Text Time unit of the mission time in Markov project

RBD Mission_Time Float Mission time in Block Diagram project

RBD Time Unit Text Time unit of the mission time in Block Diagram

RBD K Int Value of K in the K/N system

RBD N Int Value of N in the K/N system

RBD_ KN Reliability float Value of reliability in the K/N system

FLT Mission Time Float Mission time in Fault Tree project

FLT Time Unit text Time unit of the mission time in Fault Tree project

7.3 Software Functions

The opening screen of STORE 2.0 is shown in Figure 7.1. There are five tabs
(Component, Reliability Block Diagram, Fault Tree Analysis, Markov Analysis, and Tools)

available for users to choose from. The following sections describe each of the five tabs.
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[ C:\DOCUMENTS AND SETTINGS\SIMON\MY DOCUMENTS\VISUAL STUDIO 2008\PROJECTS\THESIS V5)\NEW THESIS)BIN\DEBUG)\MYNEWPROJECT MDF

Fle  Edt Ticl—res

amponent | Reliabiity Bock Diagram | Faut Trez Anahsi | Matkov Sysiem | Tools

Five tabs for different functions.

Component Information Component Failure Data Analysis
r—Compenent Failurs Data — Failure Data I
_ID | Come_| | i re_Datz . RIS = & Complete Data
l* I Iae-.T — i o © Type | Singls Caneor Data
Dlescription: i Type: |l ﬁng(e-Cenmr-Dda

Mai;m Distribution

€' Typs | Mutiply Carzor Data
" Type |l Multiply Censor Data
Test Time: I
Total NO. o units at risk: |
boVe of Seniicoe ]—

[~ Resut
Exponential Weibull
Least Square:
WLE
‘Goodness of Fit
Tilission
Time (t): Unit Distribution
SN = —
Oid Data | I I

404 |[[Doee | _Reloos | _subm s | add | Dol |

Iomal ‘Lognomal
Parsmeters Felisbity R{t):
I | Calculat
I_ Heﬁabﬂr;
==
[_

Figure 7.1: Software Functions Screen

7.3.1 Component Reliability Analysis

The following example will be used to illustrate how to compute component reliability and

how to analyze the RBD.

Example: Let us say we have a six components system connected as shown in Figure 7.2.
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Start () N ®— Xs & X¢ —>®End
3
Xi
(0.93)
Xy

Figure 7.2: Series-Parallel Block Diagram System

The reliability of component X1 is known to be 0.93. For other components we don’t
know the reliability but we have the failure data as follows. We want to know all components’
reliability and the system reliability for a mission time of 50 days with a=0.05.

Failure data of X2 (Complete Data) [17]

The following failure times (days) was obtained by testing 15 units until each unit failed:

Failure | 1y s g s gl 7 8| o 1011|1213 ]|14]15
Number
(Eg;‘:) 25.1{73.9/75.5(88.5(95.5(112.2|113.6(138.5(139.8/150.3[151.9|156.8|164.5|218 [403.1

Failure data of X3 (Type I Single Censor Data)

Twenty units were placed on a test for 90 days. The following 15 failure were observed

prior to concluding the test.

ftem s s g s 6l 7189 10l ]i12]13]14]1s
Number
(g;:) 61.6| 70 |78.4|75.3(83.5| 723 [65.1|77.1183.2|63.4|72.7|72.5|84.3| 73 | 65.5

Failure data of X4 (Type II Single Censor Data) [17]

The following 35 failure times (days) were observed from among 50 units placed on test.

The test was terminated at the 35" failure (type II censoring).
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Failure \ b s by s L gl 7 8 | 9 |10 11|12
Number
Time

13173]781(13313.9]194 197|223 |228 267 |29.7 (302
(days)
Failure |50l ys | g | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24
Number
Time

31.9(32.2] 33 [36.8] 37 | 41.7 467|504 (514 60 | 613|614
(days)
Failure | o} ool o7 [ 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35
Number
Time
(days) 65.6(65.8/72.6|78.4|100.4|110.6[111.4|118.2(119.4[132.1|139.7

Failure data of X5 (Type I Multiple Censor Data) [17]

Fifteen units were placed on test for 500 days. The following failure times and censored

times were observed prior to concluding the test (“+” represent it is a censored (removal) time).

Failure
Number 1 2 3 4 5 6 71819 10| 11
Time

34 | 136|145+ 154 {189 (200+|286(287 (334|353 380+
(days)

Failure data of X6 (Type II Multiple Censor Data) [17]

Thirty motors are placed on test with failures occurring at the following cycle times. A
cycle consists of a motor starting up to its maximum number of revolutions per minutes and then
shutting down until it has come to a complete stop. Censored units resulted from motors being

removed from test to satisfy other demands.

Failure
Number

Time |141|391|399 410+ 463 | 465 | 497 |501+| 559 | 563 | 579 |580+| 586 (616

Failure
Number

Time |683|707 713 [742+{755+ 764

15716 | 17 | 18 | 19 | 20
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When the tab “Component” is clicked, the window of component reliability analysis will
be shown like Figure 7.1. It contains two parts, Component Information (left hand side) and
Component Failure Data Analysis (right hand side). Through the above example, we will
illustrate how to use part one to enter data and analyze the result from part two.

In the first part Component Information, a list of component information can be created in
the component table. For this example, we put X1, X2, X3, X4, X5 and X6 in the first column
(Comp_ID) of the component table and put their corresponding names in the column of
Comp_Name (suppose their names are A, B, C, D, E, F respectively). Since the reliability of
component X1 is known, enter its value to the third column (Reliability) of the component table.

The result is shown in Figure 7.3.

C:\DOCUMENTS AND SETTINGS\SIMON\DESKTOP\DATA

File Edit View Tool Help

Componert | Reliability Block Diagram | Fault Tree Analysis | I

Component Inforr

— Componert

Comp_ID | Comp_Name Reliability
X1 A 0.53
pvi B
X3 C
W o]
X5 E

» X6 F

;

Figure 7.3: Entering Component Name

For each created component, failure data can be enter/display in the failure table. In this
case, we first select component X2 in the drawing list “Selected Component ID” and then put all
those failure data into the failure table. After that select day as the failure data units in the
drawing list “Unit” and select “Complete data” as the data type (see section 3.1 for more

information about data type). The result is shown in Figure 7.4.
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Figure 7.4: Input Component Failure Data

Failure data analysis can be done in the second part. After finishing the failure data

information, and entering the required significant of level in the “Significant of Level” text box,

user is ready to analyze the data. When the button “Analyze Distribution” is clicked, failure data

are fitted to four common distributions (Exponential, Weibull, Normal, and Lognormal) and

results are shown in the result panel. By choosing the best distribution and enter the mission

time, reliability can be computed. In this example, the index of fit r of Weibull is higher than

those of other distributions and the goodness-of-fit of Weibull is accepted, so Weibull

distribution is the best choice. After selecting Weibull in the “distribution” drawing list, the

fitted parameters will go to the “parameters” text box automatically. And then enter 50 in the

mission time text box and then click the button “Calculate Reliability”. The reliability comes out
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to be 0.882271 which is shown in text box “Reliability R(z)”. Click “Update Data”, the

reliability will be update to the component table. The result is shown in Figure 7.5.
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Figure 7.5: Component X2 Reliability Analysis

To analyze the reliability of component X3, we first put the failure data in the table. Since
these are type I single censor data, we select “Type I single Censor Data”. For this type of data,
we need to enter test time (90) and total number of units (20) in the test. Select the best
distribution (weibull) according to the analysis result and enter mission time (50) and time units
(day). By clicking the button of “Calculate Reliability”, the component reliability (0.993725) is

attained as shown in Figure 7.6.
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Figure 7.6: Component X3 Reliability Analysis

Reliability of component X4 can be computed in the same manner. The only difference is

we need to choose “Type Il single Censor Data” instead of “Type I single Censor Data”. The

result is shown in Figure 7.7.
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Figure 7.7: Component X4 Reliability Analysis

For component X5 and X6 with multiply censor failure data, “+” should be added

following the time if it is a censored (removal) time. The analysis result of component X5 and

X6 is shown in Figure 7.8 and Figure 7.9 respectively.
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Figure 7.9: Component X6 Reliability Analysis
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7.3.2 Reliability Block Diagram
To analyze the reliability of system in Figure 7.2, we first need to enter the structure of the

system as shown in Figure 7.10.
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Figure 7.10: Reliability Block Diagram

Since the example has assigned reliability, the check box “Assign Component Reliability”
should be checked. And then enter the assigned reliability 0.93 to the table and leave the other
reliability to be blank. After entering the required accuracy (0, means we want an exact
reliability value), source node (1) and sink node (5), mission time (50) and time unit (day),
reliability result (0.945271) can be achieved by click the button “Calculate Reliably”. The
analysis result is shown in Figure 7.10.

The Reliability Block Diagram not only can analyze series-parallel system such as example

in Figure 7.2 but also can solve complex system. Figure 7.11 shows the result of the application
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of block diagram analysis for complex example described in Figure 4.12, assuming each
component has reliability of 0.9. The output shows the system reliability to be 0.997650 and
reliability of all components and sub-system. Tie-sets and cut-sets are also included in the

The tree view shows the structure of the system. In this example, the system is complex as
it is shown “System(complex)”. This system has 3 sub-systems (1—2, 2—6, 3—5—6) and two
components (X4, X5). 1—2 means the begin node and end node of this sub-system are 1 and 2
respectively. The reliability of sub-system 1—2 is 0.999 (shown as [0.999]) and it is composed
of 3 parallel (shown as +) components X1, X2, and X3. In the same way, sub-system 3—5—6
means it’s begin node is 3, end node is 6, and this sub-system is composed of two sub-systems
(components) in series, 3—5 and 5—6.

On the lower left corner, a K/N system is available to calculate the system reliability.
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Figure 7.11: Software Block Diagram Screen

7.3.3 Fault Tree Analysis

Figure 7.12 shows the screen of Fault Tree Analysis when the tab “Fault Tree Analysis” is
clicked. Those two tables in the left hand side are used to build the structure of the system. We
will show how to use this function by building an example system shown in section 6.2 .

First, we build the top level system. In Figure 6.2 we see the top level system S1 has an
“or” gate with sub-system S2, S3, and S4, so in the first row we put “S1” in the column of
“System_ID”, “System Failure” in the column of “System Name”, and “OR” in the column of
“Gate”. In the input event table, we put “S2”, “S3”, and “S4” as shown in Figure 7.12. And then
break down sub-system S2, S3 and S4. For sub-system S2 which has an “and” gate with

component X1, component X2 and system S5, we will enter “S2” in the column of “System_ID”,
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“Station B unsupplied” in the column of “System Name”, and “AND” in the column of “Gate”;
In the input event table, we put “X17, “X2”, and “S5”. After breaking down all sub-systems and
we get the same table shown in Figure 7.12.

A tree view of the system is available on the middle of the window showing the structure
of selected sub-system. We can change the selected sub-system by selecting the sub-system in
the drawing list “Selected System ID”, or click the sub-system in the table. When the selected

system is changed the tree view will be updated automatically.
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Figure 7.12: Fault Tree Analysis

To calculate the reliability, select the system wanted to be analyzed, enter the require
accuracy, and then click the button “Calculate Reliability”, the result will be shown on the

bottom. But before clicking the “Calculate Reliability” button, make sure the component
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database has all the components and their reliability. In this example, click tab “Component”, we
will see we already have those components (X1, X2, X3, X4, and X5) which are created in
section 7.3.1 Component Reliability Analysis. Now we go back to the Fault Tree analysis and
click the button “Calculate Reliability”. The result in Figure 7.12 shows the reliability (0.99060)
of the selected sub-system (sub-system S1). In the result we can also find the unreliability of all
components and sub-systems under S1. The result also shows the tie-sets and cut-sets of sub-

system S1.

7.3.4 Markov Reliability Analysis

Two tables are used for the Markov reliability analysis (Figure 7.13). The first one is for
the state information and the second one for the state transition matrix information. To calculate
the reliability, we need to partition the mission time to many parts. In theory, the more parts we
partition to the more accuracy we get, however, when the number of parts increases, computer
will lose some of the accuracy.

Figure 7.13 shows the result of the application of Markov Model for example in Figure 5.2,
assuming 4;,= 0.01, 4;3=0.1, 1,,= 0.001, 43,= 0.01, mission time =3 days. The output shows

the system reliability and the each state’s reliability.
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Figure 7.13: Software Markov Model Screen

7.4 Software Validation

7.4.1 Failure Data Analysis

In this section examples for different distribution will be described and the results obtained

will be compared with the ones existing in the literature.

Exponential Distribution

The following are complete data representing the failure time (hours) of the tested items

[17] (assuming o =0.05):
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Failure
Nembor | L1234 5] 6] 7[8]9]10
Time |3 31 45 112.9]13.8/14.3] 14.8| 18.5| 22.8 | 27.1 [ 29.7
(Hours)
Failure | o i3 14 15 [ 16 | 17 | 18 | 19 | 20
Number
Time | 55 139 5141.3]41.6(51.1] 61.7 | 92.2 |106.6|148.8]198.1
(Hours)

a. Least Square

According to Table 3.2 and formulas in section 3.4.1 , the calculation results for this
example are: 41 =0.02 »=0.98

b. MLE

As discussed in section 3.5.2 , the formula for exponential MLE analysis is as below:
A=T
since 7= 3.3+4.2+12.9+...+198.1=974.3
=20
1=0.02

¢. Goodness-of-fit

As discussed in section 3.6.1 , Bartlett’s Test should be used for exponential. The
calculation results for this example are:
B=16.49
10.12 < B<30.14

As the value of B falls within the range, the distribution is proved to be exponential.

d. Reliability
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Assume mission time to be 10 hours, the formula for the reliability calculation, as shown in

section 3.3.2 , is:

R(t) =e ™M

R(10) = ¢7902(10) = 0.818731

Doing this example by hand involves lot of tedious calculation, but when the same set of

failure data is run in the software, it gives the accurate results as shown in Figure 7.14.
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Figure 7.14: Software Exponential Result

Weibull Distribution

The following failure times were obtained from testing 15 units until each had failed [17]

(assuming a =0.05):
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Failure
Number
Time
(days)

25.1{73.9|75.5|88.5(95.5|112.2{113.6/138.5{139.8{150.3|151.9|156.8(164.5|218|403.1

a. Least Square

According to Table 3.2 and formulas in section 3.4.1 , the calculation results for this

example are:

£=1.8
0=161.41
=0.95

b. MLE

As discussed in section 3.5.2 , newton-Raphson method for solving a nonlinear equation is
used. By initiating f=1.8 which is obtain in MLE, the answer for § and @ are calculated as
follow

£=18

6= 158.56

¢. Goodness-of-fit

As discussed in section 3.6.1 , Mann’s Test should be used for Weibull. The calculation
results for this example are:
M=1.18
M< 2.48

As the value of M is smaller than the critical value, the distribution is proved to be Weibull.

d. Reliability
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Assume mission time to be 10 hours, the formula for the reliability calculation, as shown in

section 3.3.2 , is

R(t) = =@/

R(10) = ¢~(10/15856)'® — 993111

When the same set of failure data is run in the software, it gives the accurate results as

shown in Figure 7.15.
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Figure 7.15: Software Weibull Result

The following 15 observations represent a sample of the repair times, in hours, of a

complex piece of machinery [17] (assuming a =0.10):
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Item
Number

Time

61.6| 70 (78.4|75.3|83.5/72.3 165.1|77.183.2|63.4|72.7|72.5|84.3| 73 |65.5
(Hours)

a. Least Square

According to Table 3.2 and formulas in section 3.4.1 , the calculation results for this
example are:
0=7.93
(©=173.19

r=0.98

b. MLE

As discussed in section 3.5.2 , the formula for Normal MLE analysis is as below:
p=x

_ 2
0_2 — (n—-1)s

The calculation results for this example are: ¢=7.04

1=73.19

¢. Goodness-of-fit

As discussed in section 3.6.1 , Kolmogorov-Smirnov Test should be used for Normal. The
calculation results for this example are:
D=0.13

D<0.2
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As the value of D is smaller than the critical value, the null hypothesis regarding the

normality of data is accepted.

d. Reliability

Assuming mission time to be 65 hours, the formula for the reliability calculation, as shown

in section 3.3.3 , is:
R(H)=1-o(t
R(65) = 0.88

When the same set of failure data is run in the software, it gives the accurate results as

shown in Figure 7.16.
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Figure 7.16: Software Normal Result

The time to failure of hose assemblies, due to structural fatigue and chemical breakdown,

is believed to have a lognormal distribution. The following 25 failure times were obtained from

environmental stress testing (complete data) [17] (assuming a =0.10):

ftem |l s g s e 78] 9|0 1|2 13
Number
(Ii‘)?;res) 240.5(511.8/1083.4| 821.3 |1725.4/629.4{326.9(964.8/1677.8| 282.3 | 652.3 [639.2(1847.8
ftem | ol ys | 16 | 17 | 18 | 1920 21| 22 | 23 | 24 | 25
Number

Time 1050 ¢l338.8] 818.1 [1407.5| 4991 | 452 |464.9/734.9 220.2 |1078.1|1077.3| 1773
(Hours)

a. Least Square
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According to Table 3.2 and formulas in section 3.4.1 , the calculation results for this

example are:

s =0.79
' =765.43
r=0.99

b. MLE

As discussed in section 3.5.2 , the calculation results for this example are:
0=0.73

' =765.43

¢. Goodness-of-fit

As discussed in section 3.6.1 , Kolmogorov-Smirnov Test should be used for Lognormal.
The calculation results for this example are:
D=0.08
D<0.16
As the value of D is smaller than the critical value, the null hypothesis regarding the

normality of data is accepted.

d. Reliability

Assuming mission time to be 200 hours, the formula for the reliability calculation, as

shown in 3.3.4 , is:

R =1-o(Lint)
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R(200) = 0.97

When the same set of failure data is run in the software, it gives the accurate results as

shown in Figure 7.17.
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Figure 7.17: Software Lognormal Result

7.4.2 State Independent Systems

7.4.2.1 Series-Parallel systems

The system reliability of the series-parallel system example in Figure 4.5 is 0.97248 which

was obtained in section 4.4 . The same result is obtained by the software as shown in Figure

7.18.
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Figure 7.18: Software Series-Parallel systems Result

7.4.2.2 K/N Systems

A K/N system example shown in section 4.5 is recalculated by the software and the same

result is obtained as shown in Figure 7.19.
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Figure 7.19: Software K/N Systems Result

7.4.2.3 Complex Systems

This section uses a system shown in Figure 4.14 from Nelson et al. [2] to test the software.

System has 55 tie-sets and 10 cut-sets. All of the tie-sets and tie-sets are listed in Table 7.10 and

Table 7.11 respectively.

Cut-Sets:
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Table 7.10: Complex System Cut-Set Result

NO. | Cut-Sets NO. | Cut-Sets

Cl | X1,X2,X3 Co | X11,X12,X13,X14

C2 | X3,X4,X5 C7 | X7,X8,X10,X14

C3 | X1,X2,X6 C8 | X9,X10,X15,X16

C4 | X4,X5,X6 C9 | X11,X12,X13,X15,X16
C5 | X10,X14,X9 C10 | X7,X8,X10,X15,X16

Tie-Sets:

Table 7.11: Complex System Tie-Set Result
NO. |Tie-Set NO. | Tie-Set NO. | Tie-Set
T1 X1,X4,X10,X11 |T20 [X2,X5,X14,X16 T39 | X2,X4,X7,X9,X12
T2  [X1,X4,X10,X12 |T21 |X3,X6,X10,X11 T40 |X2,X4,X7,X9,X13
T3 [X1,X4,X10,X13 |T22 |X3,X6,X10,X12 T41 | X2,X4,X8,X9,X11
T4 [|X1,X4,X14,X15 |T23 |X3,X6,X10,X13 T42 1X2,X4,X8,X9,X12
T5 [|X1,X4,X14,X16 |T24 |X3,X6,X14,X15 T43 1X2,X4,X8,X9,X13
T6 |X1,X5X10,X11 |T25 |X3,X6,X14,X16 T44 |X2,X5,X7,X9,X11
T7  1X1,X5,X10,X12 |T26 | X1,X4,X7,X9,X11 |T45 |X2,X5,X7,X9,X12
T8  X1,X5,X10,X13 |T27 |X1,X4,X7,X9,X12 |T46 |X2,X5,X7,X9,X13
T9 [|X1,X5X14,X15 |T28 |X1,X4,X7,X9,X13 |T47 |X2,X5,X8,X9,X11
T10 |X1,X5,X14,X16 |T29 |X1,X4,X8,X9,X11 |T48 |X2,X5,X8,X9,X12
T11 [X2,X4,X10,X11 |T30 |X1,X4,X8,X9,X12 |T49 [X2,X5,X8,X9,X13
T12 [X2,X4,X10,X12 |T31 |X1,X4,X8,X9,X13 |T50 |X3,X6,X7,X9,X11
T13 [X2,X4,X10,X13 |T32 |X1,X5,X7,X9,X11 |T51 |X3,X6,X7,X9,X12
T14 [X2,X4,X14,X15 |T33 |X1,X5,X7,X9,X12 |T52 |X3,X6,X7,X9,X13
T15 [X2,X4,X14,X16 |T34 |X1,X5,X7,X9,X13 |T53 |X3,X6,X8,X9,X11
T16 |X2,X5X10,X11 |T35 |X1,X5,X8,X9,X11 |T54 |X3,X6,X8,X9,X12
T17 [X2,X5,X10,X12 |T36 |X1,X5,X8,X9,X12 |T55 [X3,X6,X8,X9,X13
T18 [X2,X5,X10,X13 |T37 |X1,X5,X8,X9,X13
T19 [X2,X5,X14,X15 |T38 |X2,X4,X7,X9,X11
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System reliability was found to be 0.972302, which is same as that stated in the paper, by

Nelson, Batts and Beadles. Figure 7.20 shows the results obtained by running the software.
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Figure 7.20: Software Complex System Result

7.4.3 State Dependent Systems

The state dependent system used to test the software is a Primary/Backup System with
Internal/External Fault Monitoring which is equipped in airplane.

The system shown schematically in the figure below consists of a primary unit (Unit 1)
with continuous internal fault monitoring, a backup unit (Unit 2) with no self-monitoring, and an

external monitoring unit (Unit 3) whose function is to monitor the health of the backup unit.
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Unit 1

Primary System with
Input self-monitoring Output
D —>
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Backup System with
no self-monitoring

Unit 3
Monitor for Backup
System

Figure 7.21: Diagram of Active System with self-monitoring
and Back-up System with an Independent Monitor

The failure rate of Unit 1 is 4; = 5.0E-03per hour. The full time self-monitoring of this unit
enables it’s functionality to be verified prior to every flight. (The duration of each flight is
assumed to be 5 hours.) Ifit is found to be faulty or inoperative, it is repaired before dispatch.

The failure rate of Unit 2 is A, = 2.5E-03per hour. The backup system has no self-
monitoring, but is monitored continuously by an independent monitor (Unit 3). If the backup
system fails and the monitor is working, the backup is repaired before the next dispatch. If the
monitor is not working, the backup can fail latently, but it is checked every 10 flights (50 hours).
If the backup unit is found faulty at one of these 50-hour checks, with no indication of backup
system failure from the monitor, it is assumed that the monitor system is also failed, so both
Units 2 and 3 are repaired prior to the next flight.

The external monitor (Unit 3) has a failure rate of A3 = 2.5E-03per hour. If it fails, it can be
repaired in one of two ways. First, as noted above, if the backup system is found to have failed
at its periodic 50-hour inspection and there was no monitor indication of a backup system failure,

then the monitor is repaired along with the backup system prior to the next flight. Second, a
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periodic check of the monitor is performed every 100 flights (500 hours), and if the monitor is
found to have failed, it is repaired prior to the next flight.

The MTBFs of the individual units are 20,000 and 40,000 hours, whereas the periodic
inspection intervals are only 5, 50, and 500 hours, all of which are orders of magnitude smaller
than the MTBFs. Also, most of the states being repaired are first-order states, i.e., they are just
one failure removed from the full-up state, so there is no appreciable loss of accuracy in

modeling these repairs as continuous transitions with constant rates given by m = 2/7 for the

respective intervals. The exception to this is the state in which both the monitor and the backup

system are failed. The 50-hour periodic inspection/repair of this state will actually have an
effective repair rate somewhat greater than 2/7, but it is conservative to use 2/7, so for
convenience we will use this expression for all the repair rates. Thus we set m/ =2/5, m2 =
2/50, and m3 = 2/500, and we can construct the Markov model for the overall system as shown

below.
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State 1
Primary
failed

State 4
Primary &
BU Monitor

failed

State 6
System
Failure

State 2
BU Monitor
failed

State 0
Full-up

State 5
Backup &
BU Monitor
failed

State 3
Backup
failed

Figure 7.22: Markov Example

As usual, we set the repair rate on the total system failure state (State 6) to infinity, which
effectively eliminates that state from the system equations. The system failure rate is simply the
rate of entry into that state, i.e., Agys = (P; + P4) A2 + (P3 + Ps) A1. Also, since the probabilities of
the remaining states must sum to 1, we can disregard one of them, so we need only consider the
steady-state equations for the state 1 through 5, as listed below.

Py — (A3 + A3+ )Py =0
APy — (A + A + uz)Py + 1Py =0
APy — (A1 + A3+ )P =0
APy + 4Py — (A2 + )P, =0

APy + A3P3 — (A1 + pp)Ps = 0
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Combining these with the conservation equation Py + P; + P>+ P; + P, + Ps =1, we have
six equations in six unknowns. In terms of the matrix notation of Section 2.3, the average system

failure rate for this example is

Asys = LCT1U (7.1
where
1 1 1 1 1 1
A =y + A3 + ) 0 0 0 0
C= A3 0 —(Ay + 23 + p3) 0 My 0
|2, 0 0 —(A + A3 + py) 0 0
0 /13 /11 0 _(/12 + .ul) 0
| 0 0 2.2 2.3 0 _(Al + ‘le)_
1
ol
_10
Y=o
0

Lo

and L is the row vector L=[0 4, 0 4; 4, 4, ]. Inserting the values of the failure and
repair rates, this gives the result Ass = 0.0001278 per hour. Reliability for mission time of 2
hours is R(2) = exp(-Asys*t) = 0.99997

Solve the above example with software:
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Number of Intermediate Time Foints |1:2i. Clear Reautt

Figure 7.23: Software Markov Model Result
7.4.4 Fault Tree Analysis
In this section we will solve the fault tree example in section 6.2 by software and compare
obtained result with the theory result. In that example, the minimal cut-sets are {X3, X4, X5},
{X2, X3}, {X1, X3}, and {X1, X2}. Assuming the unreliability of components X1, X2, X3, X4,
X5 are R;'=0.1, R,'=0.2, R;'=0.3, R,/=0.4, Rs'=0.5 respectively, the system’s reliability will be
0.85880 which was obtained in section 4.6.6 .

The same result is obtained when it is solved by the software (Figure 7.24).
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Figure 7.24: Software Fault Tree Analysis Result
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CHAPTER 8

CONCLUSION

8.1 Contributions

The software is able to estimate the component reliability by analyzing failure data and
determine system reliability by RBD, fault tree, and Markov approach. The integration of all
these functions makes it different from commercial reliability software and easier for user to
analyze component reliability and manage failure data. To make the software more efficient this
research proposed an approach containing a revised connection matrix and a simplification
method for large simple and complex network system. The simplification method can simplify
the system by identifying and combining the series and parallel sub-system until a pure complex
system is attained. After simplification the number of minimal path and cut-set are reduced, so
using the simplification method before applying minimal path or cut-set technique can improve
the efficiency of the identification of paths and cuts, and save time from reliability calculation.
This research also makes an improvement on the element substitution algorithm. In the
improved method, whenever a potential cut-set is deleted, all levels of its successors will also be
eliminated. In this way, potential cut-set array will contain less non-minimal cut-sets and its size
will be decreased leading to reduce computation time. Comparison of these improved methods

with current available methods is listed in Table &.1.
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Table 8.1: Reliability Method and Contribution

Available
Methods/Techniques

This Research’s
Proposed/ Improved
Methods

Improvements

No failure data distribution
analysis function in
commercial software

Integration of failure data
analysis functions with
other reliability analysis

functions

Integration of failure data
enable users conveniently
manage failure data and
analyze component reliability.

Traditional connection matrix

Revised connection matrix

Revised connection matrix is
more concise and efficient
than traditional connection
matrix in tie-set and cut-set
determination and reliability
calculation.

Determine tie-set or cut-set
directly from network

Network simplification
before the application of
tie-set or cut-set algorithm

Network simplification
method can reduce tie-set and
cut-set, hence it reduces
computation time.

Element substitution to
determine cut-set

Improved element
substitution

Improved element substitution
generates less non-minimal
cut-set, so it is more efficient.

8.2 Conclusion

The aim of this research was to develop a software tool to efficiently estimate component

and system reliability including state dependent and independent system. The software tool was

successfully built to:

a. Analyze failure data (component reliability)

b. Improve computation efficiency by

1) Introducing revised connection matrix

2) Using simplification method

3) Improving cut-set algorithm
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Calculate reliability of independent system (system reliability using block diagram
and fault tree)
Calculate the reliability of dependent system (system reliability using Markov

Model)

The software provides a user-friendly environment. Data entry, data update and data

retrieval can be performed in a short period of time. And all functions of the software were

validated by different examples with known solutions.

8.3 Future Work

The software is successfully developed to analyze both component reliability and system

reliability. However, it can be enhanced in following areas:

Ability to handle degraded network systems

Improvement to the tie-set and cut-set algorithm

Reliability estimation by using other distributions

Developing a web based tool

Developing a Graphical User Interface which will allow the user to build a

reliability block diagram to show the network of components
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