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ABSTRACT 

Development of a Software Tool for Reliability Estimation 

Chihui Li 

 
This thesis presents Version 2.0 of Software Tool for Reliability Estimation (STORE 2.0).  

It expands on the work done by Parekh [1] by revising the algorithm for tie-set and cut-set 

calculation, by including fault tree reliability analysis, by analyzing state dependent system, and 

by integrating component and system reliability analysis. 

This thesis also presents an approach to the simplification of complex systems by 

collapsing series and parallel components into a sub-system.  The approach was illustrated on an 

example described by Nelson et al. [2].  The example had 16 components resulting in ten cut-sets 

and fifty five tie-sets.  Upon simplification, the problem was reduced to one tie-set only.   

STORE 2.0 integrates parameter estimation, component reliability analysis, system 

reliability analysis, estimation of reliability of state dependent systems, and fault tree analysis. It 

was verified and validated on several examples taken from the open literature.  The software was 

developed in Visual Basic 2008 with SQL as the database.   
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CHAPTER 1 

 

INTRODUCTION 

1.1  Background 

Over the years, engineering of products have become more sophisticated and complex.  For 

example, in 1935 a farm tractor had 1200 critical parts, and in 1990 the number increased to 

around 2900.  Today, a Boeing 747 Jumbo Jet plane is made up of approximately 4.5 million 

parts including fasteners [3].  Needless to say, reliability and quality of systems such as these 

have become more important than ever before.    

In addition, failures are much more significant in both their economic and safety impacts as 

illustrated by the following examples [4].  In 1979, the left engine of a DC-10 broke away from 

the aircraft during takeoff, killing 271 people.  Poor maintenance procedures and a bad design 

led to this crash.  The Three Mile Island disaster in 1979, which resulted in a partial meltdown of 

a nuclear reactor, was a result of both mechanical and human error.  When a backup cooling 

system was down for routine maintenance, air cut off the flow of cooling water to the reactor.   

Warning lights were hidden by maintenance tags.  An emergency relief valve failed to close, 

causing additional water to be lost from the cooling system.  Operators were either reading 

gauges that were not working properly or taking the wrong actions on the basis of those that 

were operating.  The 1986 explosion of the space shuttle Challenger was a result of the failure of 

the rubber O-rings that were used to seal the four sections of the booster rockets.  The below 

freezing temperatures before the launch contributed to the failure by making the rubber brittle. 

The demand for complex hardware systems has increased more rapidly than the ability to 

design, implement, test, and maintain them; the impact of some failures can lead to high 
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economic damage, even loss of life.  There is a definite need for reliability engineers to improve 

system reliability.    

 

1.2  Reliability Engineering – Present Status 

There are a number of techniques that are available for system reliability evaluation.  These 

techniques include conditional probability analysis, network reduction, cut-set and tie-set 

approaches, logic diagrams, tree diagrams, connection matrix techniques, and Markov analysis.   

These techniques can be applied to reliability analysis of components and system.  For 

component reliability evaluation, probability analysis is widely used.  By collecting failure data 

and fitting a suitable distribution to it, one can compute the reliability according to the fitted 

distribution and mission time. 

When it comes to system reliability analysis, different techniques are suitable for different 

systems.  For example, a series-parallel system is good for the application of network reduction 

because it does not require intensive calculation.  For a complex system, which cannot be broken 

down to a series-parallel system, cut-set and tie-set approaches are appropriate.  Markov analysis 

is a suitable technique to analyze state dependent system in which the failure of one component 

is dependent on the failure of another component. 

The main advantage of using tie-set and cut-set approach to solve complex system is that it 

is easy to program and most of the commercial software for reliability prediction use this 

approach to evaluate the reliability of complex systems. 
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1.3  Problem Statement 

The techniques mentioned above are powerful tools for reliability analysis; however, they 

require large amounts of computations which may take weeks and even months to evaluate a 

relatively simple system by hand.  In such situations, a computer solution is necessary to handle 

tedious and time-consuming computations. 

However, when the system becomes large and complex, there are still problems with 

computer solutions.  For example, in the software tool developed by Parekh [1], the matrix size 

was limited to 100 by 100, thereby allowing software to estimate reliabilities of system having 

no more than 100 tie-sets or cut-sets.  There are no restrictions on the size of the system in the 

Path Tracing Algorithm by Fotuhi-Firuzabad et al. [5]; nevertheless, the number of tie-sets can 

go out of control since every added parallel sub-system dramatically increases the number of tie-

sets.  For example, a system having ten sub-systems in series and each sub-system having ten 

different components in parallel will have 10 billion (1010) minimal tie-sets.  Improved 

techniques are required to enhance the modeling process and to reduce the time required for the 

analysis of the model.   

This thesis proposes an efficient approach containing a revised connection matrix and a 

simplification method for large simple and complex network system. The revised connection 

matrix has only three column “begin node”, “end node”, and “component” which is much more 

concise than the traditional n x n matrix.  The simplification method can simplify the system by 

identifying and combining the series and parallel sub-system until a pure complex system is 

attained. After simplification the number of minimal path and cut-set are reduced, so using the 

simplification method before applying minimal path or cut-set technique can improve the 

efficiency of the identification of paths and cuts, and save time from reliability calculation. 
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This research also makes an improvement on the element substitution algorithm [6], which 

is the latest and one of the most efficient method to determine minimal cut-sets. In the improved 

method, whenever a potential cut-set is deleted, all levels of its successors will also be 

In this way, potential cut-set array will contain less non-minimal cut-sets and its size will be 

decreased leading to reduce computation time.   

The computational techniques implemented in commercial software do not integrate 

component analysis, system analysis, state dependent system, and fault tree analysis. As a result, 

in this research the integration of all these functions are also considered. 

 

1.4  Objectives 

The objectives of this research are to: 

1) Develop an integrated approach to parameter estimation, component reliability 

calculation, system reliability estimation, estimate reliability of state dependent 

system, and fault tree analysis. 

2) Develop a common database for all analysis methods. 

3) Develop an algorithm to simplify the Reliability Block Diagram (RBD). 

4) Develop a better representation of RBD.  
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CHAPTER 2 

 

LITERATURE REVIEW 

2.1  Reliability Historical Review 

The history of reliability engineering is not too long, but it grew fast and has made 

significant progress during recent decades.  O'Connor et al. [7] described the development of 

reliability engineering as follows. 

Reliability engineering, as a separate engineering discipline, originated in the United States 

during the 1950s.  The increasing complexity of military electronic systems was generating 

failure rates, which resulted in generally reduced availability and increased costs.  Solid state 

electronics technology offered long-term hope, but conversely miniaturization was to lead to 

proportionately greater complexity, which offset the reliability improvements expected.  The 

gathering pace of electronic device technology meant that the developers of new military 

systems were making increasing use of large numbers of new components types, involving new 

manufacturing processes, with the inevitable consequences of low reliability.  The users of such 

equipment were also finding that the problems of diagnosing and repairing the new complex 

equipment were seriously affecting its availability for use, and the costs of spares, training and 

other logistics support were becoming excessive.  Against this background the US Department of 

Defense (DoD) and the electronics industry jointly set up the Advisory Group on Reliability of 

Electronic Equipment (AGREE) in 1952.  The AGREE report concluded that, to break out of the 

spiral of increasing development and ownership costs due to low reliability, disciplines must be 

laid down as integral activities in the development cycle for electronic equipment.  The report 

laid particular stress on the need for new equipment to be tested for several thousand hours in 
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high stress cyclical environments including high and low temperatures, vibration and switching, 

in order to discover the majority of weak areas in a design at an early enough stage to enable 

them to be corrected before production commenced.  Until that time, environmental tests of tens 

of duration had been considered adequate to prove the suitability of a design.  The report also 

recommended that formal demonstrations of reliability, in terms of statistical confidence that a 

specified Mean Time Between Failure (MTBF) had been exceeded, be instituted as a condition 

for acceptance of equipment by the procuring agency.  A large part of the report was devoted to 

providing detailed test plans for various levels of statistical confidence and environmental 

conditions. 

The AGREE report was accepted by the DoD, and AGREE testing quickly became a 

standard procedure.  Companies that invested in the expensive environmental test equipment 

necessary soon found that they could attain levels of reliability far higher than by traditional 

methods.  It was evident that designers, particularly those working at the fringes of advanced 

technology, could not be expected to produce highly reliable equipment without it being 

subjected to a test regime that would show up weaknesses.  Complex systems and the 

components used in them included too many variables and interactions for the human designer to 

cope with infallibly, and even the most careful design reviews and disciplines could not provide 

sufficient protection.  Consequently, it was necessary to make the product speak for itself, by 

causing it to fail, and then to eliminate the weaknesses that caused the failures.  The DoD 

reissued the AGREE report on testing as US Military Standard (MIL-STD) 781, Reliability 

Qualification and Production Approval Tests.   

Meanwhile the revolution in electronic device technology continued, led by integrated 

micro-circuitry.  Increased emphasis was now placed on improving the quality of devices fitted 
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to production equipment.  Screening techniques, in which devices are temperatures cycled, 

vibrated, centrifuged, operated at electrical overstress and otherwise abused, were introduced in 

place of the traditional sampling techniques.  With component populations on even single printed 

circuit boards becoming so large, sampling no longer provided sufficient protection against the 

production of defective equipment.  These techniques were formalized in military standards 

covering the full range of electronic components.  Components produced to these standards were 

called 'Hi-rel' components.    

Engineering reliability effort in the United States developed quickly, AGREE and 

reliability program concepts were adopted by NASA and many other major suppliers and 

purchasers of high technology equipment.  In 1965, the DoD issued MIL-STD-785-Reliability 

Programs for Systems and Equipment.  This document made mandatory the integration of a 

program of reliability engineering activities with the traditional engineering activities of design, 

development and production, as it was by then realized that such an integrated program was the 

only way to ensure that potential reliability problems would be detected and eliminated at the 

earliest, and therefore the cheapest, stage in the development cycle.  Much written work 

appeared on the cost-benefit of higher reliability, to show that effort and resources expended 

during early development and during production testing, plus the imposition of demonstrations 

of specified levels of reliability to MIL-STD-781, led to reductions in service costs which more 

than paid the reliability program expenditure.    

The concept of life cycle costs (LCC), or whole life costs, was introduced.  In the United 

Kingdom, Defense Standard 00-40, The Management of Reliability and Maintainability was 

issued in 1981.  The British Standards Institution has issued BS 5760- Guide on Reliability of 

Systems, Equipment's and Components.    
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Specifications and test systems for electronic components, based upon the US Military 

Standards, have been developed in the United Kingdom and in continental Europe.  Electronic 

component standards including test and quality aspects are being harmonized internationally 

through the International Electro-technical Commission (IEC). 

 

2.2  Concept of Reliability  

In statistics, reliability is the consistency of a set of measurements or measuring 

often used to describe a test.  This can either be whether the measurements of the same 

instrument give or are likely to give the same measurement (test-retest), or in the case of more 

subjective instruments, such as personality or trait inventories, whether two independent 

assessors give similar scores (inter-rater reliability).  Reliability is inversely related to random 

error [8]. 

Reliability is usually contrasted with validity, but reliability does not imply validity.  One 

may have a highly reliable measure which is not valid.  The following example may illustrate the 

difference between reliability and validity.  If a 5 feet long table is measured 4 times, and it reads 

5 feet each time, then the measurement is valid and reliable.  However, if it reads 8 feet each time 

instead of 5, then it is not valid, but it is still reliable because the readings are consistent.   

In experimental sciences, reliability is the extent to which the measurements of a test 

remain consistent over repeated tests of the same subject under identical conditions.  An 

experiment is reliable if it yields consistent results of the same measure.  It is unreliable if 

repeated measurements give different results.  It can also be interpreted as the lack of random 

error in measurement [8]. 
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In engineering, The IEEE (Institute of Electrical and Electronics Engineers) defines 

reliability as ". . . the ability of a system or component to perform its required functions under 

stated conditions for a specified period of time."  It is often reported in terms of a probability.   

Evaluations of reliability involve the use of many statistical tools.   

 

2.3  Reliability Determination from Tie-set and Cut-set 

There are a number of techniques that are available for system reliability evaluation, such 

as conditional probability analysis, cut-set and tie-set approaches, logic diagrams, tree diagrams, 

connection matrix techniques.  Among these techniques, minimal tie-set and cut-set approaches 

are one of the most popular and widely used methods for complex system.    

Bellmore and Jensen [9] first investigated the search for all minimal cut-sets.  Plenty of 

improved approaches were developed after that, such as Rai and Aggarwal [10] used Boolean 

algebra to obtain minimal cut-sets by inverting from the minimal cut-sets; Yeh [11] applied a 

revised layered-network algorithm to search for all minimal paths.  Recently some improved 

approaches are proposed to efficiently determine minimal tie-set and cut-set.   

A new minimal cut-set enumeration approach was proposed by Lin et al. [12] in 2003.  As 

we know, components connected to the source node consist of a minimal cut-set because the 

failure of all these components prevents the source node from arriving at the sink node and if one 

of these components works, the source node has a way to reach the sink node.  The basic 

principle of this approach was to recursively combine adjacent nodes to the source node and to 

consider them as a new source node (called source set) so that a new cut-set can be generated.  

To guarantee every generated cut-set is a minimal cut-set, after a new source set is created all 

redundant nodes (a node adjacent to source set and has no way to reach the sink node without 



10 

 

going through any node in source set) need to be checked and absorbed to the new source set.  To 

find redundant nodes is time consuming because it means we need to determine tie-sets between 

every adjacent node and the sink node. 

In 2004, a novel approach to determine minimal tie-sets of complex network was 

developed by Fotuhi-Firuzabad et al. [5].  A technique designated as the “Path Tracing 

was presented, which can handle both directed and undirected network.  There were two steps in 

the algorithm, tracing all minimal tie-sets and retrieving all of them.  This algorithm was easy to 

program, did not require limits on the size of the network, and found to be computationally 

efficient.   

In 2005, Yeh et al. [13] provided an improved algorithm to search for all minimal cut-sets 

based on the approach proposed by Jasmon and Foong [14].  One property of the network is that 

a connected network will be broken into two connected subgraphs by removing a cut.  Moreover, 

these two subgraphs contain the source node and the sink node, respectively.  So if MCVs (the 

set of nodes in the subgraph containing the sink node) are known, the cut-sets can then be 

determined.  According to this property this paper developed an algorithm to search for all 

MCVs and then convert MCVs to minimal cut-sets. 

In 2005, Younes and Girgis [15] proposed an algorithm to search all minimal tie-sets based 

on a different connection matrix called link matrix whose rows represent the link (component) 

and columns denote different nodes.  For example, component X2 is connected between node 4 

and node 6, then row 2 of the link matrix will be: 0 0 0 1 0 1.  Minimal tie-set can then be 

developed by performing union of different rows of this matrix.  This algorithm did not improve 

the efficiency of tie-set determination, but it is good for the reliability calculation because it is 
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easier to conduct the union of the minimal tie-set based on this matrix.  The drawback of this 

algorithm is that it cannot handle directed network. 

An element substitution approach was used to develop multistate minimal path vectors by 

Ramirez-Marquez et al. [6] in 2006.  Based on this Gebre and Ramirez-Marquez [16] developed 

an improved algorithm for general two-terminal network reliability analyses in 2007 by using 

forward and backward element substitution approach simultaneously.  The general rationale 

behind element substitution is that a new cut-set can be generated by replacing the element of the 

known cut-set with its preceding (backward) or succeeding (forward) elements.  For example, 

components connected with the source node consist of a cut-set.  Every time when a component 

is substituted by it succeeding components a new cut (not necessary a minimal cut) can be 

generated.  From these generated cut-sets, minimal cut-sets can be determined.  Both backward 

and forward recursion can generate minimal cut-sets independently for complex network.  

However, when they are integrated together the number of generated cut-sets can be significantly 

reduced which reduces time spent on deleting non-minimal cut-set. 
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CHAPTER 3 

 

FAILURE DATA ANALYSIS 

3.1  Types of Failure Data 

There are two types of failure data, complete data and censored data.  In reality most of 

data are censored data because testing components are removed from the testing prior to their 

failure, or because the test is finished prior to all components failing.  For example, components 

may be removed if they fail because of other failure modes.  Censoring may be further 

categorized as follows: 

Single censored data.  All units have the same test time, and the test is concluded before all 

units have failed. 

Type I censoring: Testing is terminated after fixed length of time (f*), has elapsed. 

Type II censoring: Testing is terminated after a fixed number of failures (f) have occurred.   

The test time is then given by tf, the failure time of the fth failure. 

Multiply censored data.  Test times or operating times differ among the censored (removed 

but operating) units.  Censored units are removed at various times from the sample, or units have 

gone into service at different times [17]. 

 

3.2  Reliability and Failure Functions 

If T is the life of a system, sub-system, or a component, then reliability (R) is defined as the 

probability that it will not fail during time t, where t ≤ T.  Reliability is also defined as the 

probability, at a given confidence level, that the system/component will perform its intended 
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function, for a specified mission time (t), without failure, when used for the intended purpose 

under the intended operational conditions.  The unreliability (F) is the probability that a system, 

sub-system, or a component will fail during time t.  Failures can occur due to wear, corrosions, 

defects, etc.  Reliability and unreliability can vary with time, R(t) typically decreases with time 

and F(t) typically increases with time.  At any time t, the sum of R(t) and F(t) is 1.  A system, 

sub-system, or a component may be repairable or non-repairable [18]. 

 R(t) + F(t) = 1 (3. 1)   
Let’s say we subject a large number (N) of components to a life test.  After an arbitrary 

time period t, Ns(t) components will survive and Nf(t) components will fail. 

 Ns(t) + Nf(t) = N  (3. 2)   
Component reliability can be expressed as: 

 R(t) = Ns(t) / [Ns(t) + Nf(t)] (3. 3)    R(t) = 1- Nf(t) / N = 1- F(t) (3. 4)   
The above can be expressed in mathematical terms by defining a continuous random 

variable T (T ≥ 0) as life of a system, sub-system or a component.  The reliability can be 

expressed in terms of time to failure as the probability of component failure [P(T ≥ t)], that is, 

failure occurs after time t. 

or �(�) = � �(�)����            where R(t) ≥ 0 (3. 5)   
where  0 < t <+∞,               0 ≤ R(t) ≤ 1,            R(0) = 1,                  and R(t)t→∞ = 0 

For a given t, R(t) is the probability that the time to failure is greater than t.  F(t) is defined 

as the probability that failure occurs during the period 0 - t. 

 �(�) = 1 � �(�) = � �(�)����  (3. 6)  
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 or   "#(�)"� = ��(�) (3. 7)  
 

where  0 ≤ F(t) ≤ 1,                 F(0) = 0,              and F(t)t→∞ = 1 

The hazard function is defined as the limit of the failure rate as ∆t approaches zero.  That 

is, hazard function h(t) is the instantaneous failure rate, it is the conditional probability that the 

component will fail during the interval [t, t+∆t], given that it did not fail until time t.  It is given 

by: 

 %(�) = &'(∆�*+ ,(-).,(-/∆-)∆- ,(-) 0 1,(-)2,(-).,(-/∆-)∆- 30 1,(-).4,(-)4- 56(-),(-) (3. 8)   
The cumulative hazard function H(t) is the conditional probability of failure during the 

interval [0, t]. 

 8(�) = � %(�)���+  (3. 9)    
3.3  Common Failure Distributions 

In this section, four common failure distributions as shown in Table 3.1 are discussed. 
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Table 3.1: Common Failure Distributions 

 f(t) Parameters F(t) h(t) R(t) 

Exponential :;<=� : – scale parameter  
   – Failure Rate 
   – 1/MTTF or 1/MTBF 

1 � ;<=� : ;<=� 
Weibull >? 2�?3><@ ;<(� ?⁄ )B C – shape parameter D – scale parameter 

1 � ;<(� ?⁄ )B
 

CD E�DF><@
 ;<(� ?⁄ )B

 

Normal @√HIJ ;K<(-.L)MMNM O P – location parameter 
    – mean Q – shape parameter 
   – standard deviation 

R 2�<SJ 3 T(�)R(<�) 1 � R 2�<SJ 3 
Lognormal @√HIJU� ;V< 1MNWM2 XY -LW3MZ

 

P[ – location parameter 
    – mean Q[ – shape parameter 
    – standard deviation 
 

R 2 @JU &\ �SU3 E 1�Q[F T 2 @JU &\ �SU3/R 2<@JU  &\ �SU3 
1 � R 2�<SUJU 3 

 

3.3.1  The Exponential Model 

Many electronic components (transistors, resistors, integrated circuits, etc) have a constant 

failure rate during their useful life.  The exponential model is widely used to estimate reliability 

of hardware components with constant failure rate [17].  The probability density function (PDF) 

of exponential distribution is given by  

 �(�) = :;<=�  (3. 10)  
where λ is the scale parameter.  It is equal to the failure rate (1/ MTBF or 1/MTTF) of the 

exponential model.  Mean time between failures (MTBF) is the arithmetic mean (average) time 

between failures of a system. The MTBF is typically part of a model that assumes the failed 

system is immediately repaired (zero elapsed time), as a part of a renewal process. This is in 

contrast to the mean time to failure (MTTF), which measures average time between failures with 

the modeling assumption that the failed system is not repaired. 

The cumulative distribution function (CDF), hazard rate function h(t), and reliability 

function R(t) are given by: 
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 �(�) = 1 � ;<=� (3. 11)   %(�) = : (3. 12)   �(�) = ;<=�  (3. 13)  
Common Statistics of exponential distribution are 

 Mean 1/λ 

 Median ln(2/λ) 

 Standard Deviation 1/λ 

3.3.2  The Weibull Distribution 

The Weibull distribution is an approximate model for time to failure if the item is of a type 

in which a large number of flaws exist [17].  The PDF is given by  

 �(�) = B̂_ -̂`><@;<(� ?⁄ )B  (3. 14)  
where β is the shape parameter, and θ is the scale parameter. 

The CDF, h(t), and R(t) are given by 

 �(�) = 1 � ;<(� ?⁄ )B (3. 15)  
 %(�) = >? 2�?3><@ (3. 16)   �(�) = ;<(� ?⁄ )B  (3. 17)  

Common Statistics of weibull distribution are 

 Mean θ Γ((β+1)/ β)  where Γ is gamma function 

 Median θ ln(2)1/ β 

 Standard Deviation Dab 2>cH> 3 � db 2>c@> 3eH
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3.3.3  The Normal Distribution 

The normal probability distribution function can be used to model failures due to fatigue or 

wearout.  The parameters of the normal PDF are its mean (µ) and variance (σ2).  The normal is 

not a true reliability distribution since the random variable ranges from minus infinity to plus 

infinity.  The positive portion of the normal does provide a reasonable approximation to the 

failure process.  The dispersion about the mean is dependent on the value of the variance (σ2) or 

standard deviation (σ).  The probability density function for the normal distribution provides the 

well-known bell shaped curve [17].  The PDF is given by  

 �(�) = 1√MfN ;K<(-.L)MMNM O (3. 18)  
where σ is the shape parameter and standard deviation and µ is the location parameter and mean.  

CDF, h(t), and R(t) are given by 

 �(�) = R_-.LN ` (3. 19)  
 %(�) = g(�)h(.-)    (3. 20) 
 

where Φ is the CDF of the standard normal distribution and ϕ is the PDF of the standard normal 

distribution. 

 �(�) = 1 � R_-.LN ` (3. 21) 
 
Common Statistics of normal distribution are 

 Mean µ 

 Median µ 

 Standard Deviation σ 
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3.3.4  The Lognormal Distribution 

The lognormal distribution is a good model for times to failure when failures are caused by 

fatigue cracks.  The lognormal PDF is defined for only positive values of t and is more 

appropriate than the normal distribution as a failure distribution [17].  If t is a random variable 

with a lognormal distribution, its PDF is given by 

 �(�) = 1√MfNW- ;K< 1MNWM2 XY -LW3MO (3. 22) 
 

where σ′ is the shape parameter, µ′ is the scale parameter and median.  CDF, h(t), and R(t) are 

given by 

 �(�) = R 2 1NW &\ -LW3 (3. 23)  
 %(�[) = 2 @�JU3 T 2 1NW &\ -LW3 /R 2.1NW &\ -LW3 (3. 24) 
 

where Φ is the CDF of the standard normal distribution and ϕ is the PDF of the standard normal 

distribution. 

 �(�) = 1 � R_-.LWNW ` (3. 25) 
 
Common Statistics of lognormal distribution are 

 Mean exp (0.5σ′
2
) 

 Median P[ 
 Standard Deviation j;JWM(;JWM � 1) 
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3.4  Candidate Distribution Identification 

After collection of failure or repair data, there are three steps for the fitting of a theoretical 

distribution which are 1) identifying candidate distributions, 2) estimating parameters, and 3) 

performing a goodness-of-fit test.  In the first step, least square is used to identify candidate 

distribution. 

3.4.1  Least Square Fitting 

Least Square Fitting is a mathematical procedure for finding the best-fitting curve to a 

given set of points by minimizing the sum of the squares of the offsets ("the residuals") of the 

points from the curve (see Figure 3.1).  The sum of the squares of the offsets is used instead of 

the offset absolute values because this allows the residuals to be treated as a continuous 

differentiable quantity. Least squares problems fall into two categories, linear and non-linear. The 

linear one is discussed and used in this research. 

             

Figure 3.1: Least Square Fitting 

 

A regression model is a linear one when the model comprises a linear combination of the 

parameters, i.e. 

 yl = ∑ xloβoqo0@      i = 1, 2, …, m (3. 26) 

Data point 

Error 
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has m linear equations in n unknown coefficients, β1, β2, …, βn, with m > n, written in matrix 

form as 

 Y = Xβ (3. 27) 
where 

t = u t@@ t@H v t@wtH@ tHH v tHwx x y xtz@ tzH v tzz
{,    C = uC@CHxCw

{,   | = u }@}Hx}z
{ 

We can then see that in that case the least square estimate β is given by 

 β~ = (X�X)<@X�Y (3. 28) 
 

For a special case (m = 2), }� = � + ���, using this method, a straight line with intercept 

a and slope b can be fixed by the following formulas. 

 � = ∑ ����Y�51 <�� ∑ ��Y�51∑ ��MY�51 <w��M  (3. 29)  
where  

             b is slope 

             � is independent variable  

             } is dependent variable 

             n is the number of data points 

 � = }� � ���  (3. 30)  
where  

             a is intercept 

             �� is average of x  

             }� is average of y 

The coefficient of determination, r2, can be computed as 
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 �H = 1 � ∑ (��<�<���)MY�51∑ (��<��)MY�51  (3. 31)  
The coefficient of determination measures the strength of the fit of the regression curve and 

can be interpreted as the proportion of the variation in the y’s explained by the x variables.  The 

square root, r, here is called the index of fit. It will have a value between -1 and 1; a value |�|  of 

1 is a perfect fit.  However, for example, values of r equal to 0.3 and 0.6 only mean that we have 

two positive correlations, one somewhat stronger than the other. It is wrong to conclude that r = 

0.6 indicates a linear relationship twice as good as that indicated by the value r = 0.3 [19].  

3.4.2  Least Square Approach for Common Distributions 

To make sure that the function are linear in parameters, transformations for x and y are 

necessary and listed in Table 3.2. 

Table 3.2: Least Square Approach for Common Distributions 

 x
i 
 y

i 
 Parameters  

Exponential  ��  &\ K @@<�(��)O λ = b 

Weibull  &\ ��  &\ K&\E @@<�(��)FO β = b 

θ = exp(-a/β) 

Normal  ��  �(��) σ = 1/b 

µ = -a/b 

Lognormal  &\ ��  �(��) σ′ = 1/b 

µ′ =
 
exp(-σ′a) 

 

where   F(ti) = ( i - 0.3) / ( n + 0.4).  This formula is often used as an approximation of the 

median positions. 

The exponential CDF is �(�) = 1 � ;<=�, or  1 � �(�) = ;<=�. Then taking the natural 

logarithm of both sides, � &\_1 � �(�)` = &\ 2 @@<�(�)3 = :�. So �� = ��  and 
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}� = &\ K&\ 2 @@<�(��)3O are used for the transformation to keep dependent variable and independent 

variable linear. 

From the Weibull cumulative distribution function, �(�) = 1 � ;<(� ?⁄ )B
, we get 

&\ K&\ 2 @@<�(�)3O = C &\ � � C &\ D. Hence, the transformation will be �� = &\ �� and }� =
&\ K&\ 2 @@<�(��)3O. 

For normal distribution, �(�) = R 2�<SJ 3 = R(�), the inverse function can be written 

as �� = R<@[�(�)] = ��<SJ = ��J � SJ  which is linear in t. A least–squares fit is obtained by 

setting �� = �� and }� = �(��). 

Since lognormal distribution, �(�) = R 2 @JU &\ �SU3 = R(�), then �� = R<@[�(�)] =
@J &\ � � @J &\ P[. So �� = &\ ��  and }� = �(��) 

3.5  Distribution Parameter Estimation 

The previous discussion centered on the identification of candidate distributions for 

describing a failure or repair process.  Once one or more distributions have been identified, the 

next step is to estimate the parameters of the distribution.  Until the parameters are determined, 

the distribution is not completely specified.  Although probability plots and least-squares fitting 

of the data provide a means of estimation of the parameters of the distributions, they are not 

necessarily the preferred, or “best” estimates of the distribution parameters.  This is especially 

true in certain goodness-of-fit tests that are based on the maximum likelihood estimator (MLE) 

for the distribution parameters.    
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3.5.1  Maximum likelihood estimation (MLE)  

This section presents the theory that underlies maximum likelihood estimation for 

complete data.  If x is a continuous random variable with PDF: 

    �(�; D@, DH, v , D�) (3. 32)  
where  θ1, θ2,…, θk are k unknown constant parameters which need to be estimated, conduct an 

experiment and obtain N independent observations, x1, x2,...,xN.  Then the likelihood function is 

given by the following product: 

 �(�@, �H, v , ��|D@, DH, v , D�) = � = ∏ �(��; D@, DH, v , D�)��0@    (3. 33)  
The logarithmic likelihood function is given by: 

   � = &\ � = ∑ &\ �(��; D@, DH, v , D�)��0@  (3. 34)  
The maximum likelihood estimators (MLE) of θ1, θ2,…, θk are obtained by maximizing L 

or Λ.  By maximizing Λ, the maximum likelihood estimators (MLE) of θ1, θ2,…, θk are the 

simultaneous solutions of k equations such that: 

  �(�)�?� = 0,    � = 1, 2, v , � (3. 35)  
Even though it is common practice to plot the MLE solutions using median ranks (points 

are plotted according to median ranks and the line according to the MLE solutions), this is not 

completely accurate.  As it can be seen from the equations above, the MLE method is 

independent of any kind of ranks or plotting methods.  For this reason, many times the MLE 

solution appears not to track the data on the probability plot.  This is perfectly acceptable since 

the two methods are independent of each other and in no way suggests that the solution is wrong 

[17]. 
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3.5.2  MLE Approach for Common Distributions 

By using MLE, parameters can be obtained by the following formulas [17]: 

Table 3.3: MLE Approach for Common Distributions 

 
Parameters  

Exponential 

(λ) : =  �/� 

Weibull 

(θ, β) 

∑ ��B �w ��6�51 c(w<�)��B �w ��∑ ��B6�51 c(w<�)��B    <  @>  <  ∑ �w ��6�51� =  0 
 � &¡; � � C                 

D = ¢@� £¤ ��>�
�0@ + (\ � �)�¥>¦§@ >⁄  

Normal 

(µ, σ) 

 P = ��  QH = (w<@)¥Mw   
Lognormal 

(µ′, σ′) 

P = ¤ �w ��\w
�0@   PU = ¨L  Q[ = j∑ (�w ��<SU)MY�51 w  

 

f  = the number of failed items 

n  = the number of tested items 

T = the sum of failed time ti 

 

For Weibull distribution MLE, 
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               ©(C) = 
∑ -�B XY -�6�51 /(Y.6)-�B XY -�∑ -�B6�51 /(Y.6)-�B    <  1B  < ∑ XY -�6�516 = 0  (3. 36) 

 
The newton-Raphson method for solving a nonlinear equation may be used.  This requires 

solving for β iteratively using. 

                                                    Cªc@ = Cª � «2B�3«W2B�3 (3. 37)                                                                     ©[(�) = 4«(¬)4¬  (3. 38) 
3.6  Goodness-of-fit Tests 

The final step in the selection of a theoretical distribution is to perform a statistical test for 

goodness of fit.  Such a test compares a null hypothesis (H0) with an alternative hypothesis (H1) 

having the following form: 

H0: The failure times come from the specified distribution. 

H1: The failure times do not come from the specified distribution. 

The test consists of computing a statistic based on the sample of failure times.  This 

statistic is then compared with a critical value.  The critical value depends on the level of 

significance of the test and the sample size [17].    

There are two types of goodness-of-fit tests: general tests and specific tests.  A general test 

is applicable to fitting more than one theoretical distribution, and a specific test is tailored to a 

single distribution.  When available, specific tests will be more powerful (have a higher 

probability of correctly rejecting a distribution) than general tests. 

Chi-square test is a general test which can test Exponential distribution, Weibull 

distribution, Normal distribution, and Lognormal distribution.  However, the data for this test 
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must be grouped into classes.  Another disadvantage is that it is valid for large sample size only; 

the sample size of each group should not be less than 5. 

3.6.1  Goodness-of-fit Tests for Common Distributions 

For this research, three goodness-of-fit tests are used.  These three tests are designed for 

specific distributions.  For instance, Kolmogorov-Smirnov test is designed for normal and 

lognormal distributions, Bartlett’s test is designed for exponential distribution, and Mann’s test is 

designed for the Weibull distribution.  These specific tests are more powerful than the general 

test.  For example, Monte Carlo power comparisons of the test based on Mann’s test and analogs 

of the Kolmorov-Smirnov, the Kuiper, and the standard version, as well as a weighted version of 

the Cramer-von Mises tests, revealed that the Mann’s test is most powerful against the 

alternatives studied [20]. 

 Goodness-of-fit tests of exponential distribution, Weibull distribution, normal and 

lognormal distributions can be done using the criteria in Table 3.4. 
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Table 3.4: Goodness-of-fit Tests for Common Distributions 

 
Formulas

 
 Accept H0 If 

Bartlett’s Test 
(B)  
for Exponential 
distribution 

­ = H�K�wE(@ �⁄ ) ∑ ��6�51 F<(@ �⁄ ) ∑ �w ��6�51 O@c(�c@)/(®�)  ¯@<° H⁄ ,�<@H ± ­ ± ¯° H⁄ ,�<@H  

Mann’s Test (M) 
for Weibull 
distribution 
 

² = �1 ∑ [(�w ��/1<�w ��) ³�⁄ ]6.1�5´1/1�M ∑ [(�w ��/1<�w ��) ³�⁄ ]´1�51   �@ = µ6M¶  �H = µ6.1M ¶  ²� = ·�c@ � ·�  ·� = &\ K� &\ 21 � �<+.¸wc+.H¸3O 
² ± �¹º��,°,H�M,H�1  

Kolmogorov-
Smirnov Test 
(D) 
for Normal/ 
 Lognormal 
distribution 
 

�� = ¤ ��ww
�0@   Q′H = ∑ _-�.-�`MY�51w<@   »@ = (��@¼�¼w ½R 2��<��J′ 3 � �<@w ¾  »H = (��@¼�¼w ¢ '\ � R d��<��J′ e§ 

»w ± »¹º�� 
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CHAPTER 4 

 

STATE INDEPENDENT SYSTEMS 

4.1  State Independent Systems 

To determine the reliability of a large system, it needs to be subdivided into smaller 

subsystems and components whose individual reliability factors are known or can be easily 

determined.  Depending on the manner in which these subsystems and components are connected 

to constitute the given system, the combination rules of probability can be applied to obtain 

system reliability.  From the point of view of interconnection of the subsystems, a system may be 

classified as series, parallel, series-parallel, or a complex system [21].   

Finding the exact reliability for series and parallel networks is quite straightforward and is 

described briefly in next two sections.  A series-parallel network consists of distinct series and 

parallel components within the given system.  For such a system the reliability analysis is 

performed in steps as described in section 4.4 .  K/N system is a special case of parallel system. 

It is discussed in section 4.5 .  A complex system is one, which cannot be completely 

decomposed into independent sections of series and/or parallel sub-systems.  Reliability analysis 

for such systems is significantly different from a series-parallel network.  As a result, other 

approaches such as tie-set and cut-set are necessary to solve this kind of problem. 

4.2  Series Systems 

Consider a simple system consisting of n software or hardware components connected in 

series as shown in Figure 4.1. 
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Figure 4.1: Series Systems 

 

The reliability of the system, RS, is given by:   

 Rs = R1 *R2 … *Ri … *RN (4. 1)  
For example, if we have three components with known reliability values as shown in 

Figure 4.2, the system reliability will be:  

Rs = R1 * R2 * R3 = (.99) * (.95) * (.98) =.92169 

 

Figure 4.2: Series Systems Example   
4.3  Parallel Systems 

A parallel system is shown in Figure 4.3. 

 

Figure 4.3: Parallel Systems 

 

Start 

X1 

X2 

Xi 

XN 

End …
 

…
 

X1 

(0.99) 
End Start X2 

(0.95) 
X3 

(0.98) 

X1 X2 Xi XN End Start 
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The reliability of the parallel system, RS, is given by:   

 Rs = 1 – [(1 – R1)*(1 – R2)… *(1 – Ri) …*(1 – RN)]  (4. 2)  
For example, reliability of system described in Figure 4.4: 

Rs = 1 – [(1 – R1) (1 – R2) (1 – R3)]  

      = 1 – [(0.05) (0.2) (0.3)] 

      = 0.997 

 

Figure 4.4: Parallel Systems Example 

 

4.4  Series-Parallel Systems 

An example of a series-parallel system is shown in Figure 4.5. 

Start 

X1 

(0.95) 

X2 

(0.8) 

X3 

(0.7) 

End 
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Figure 4.5: Series-Parallel Systems 

 

Reliability analysis of such system is performed in steps.  In each step the independent 

series and parallel structures are identified and solved separately.  As a result of each step, the 

size of the system reduces until it becomes a simple series or parallel system.  In the system 

shown in Figure 4.5, components X3 and X4 are in parallel and thus form a subsystem identified 

as subsystem X34 with reliability of R34.  The reliability of R34 is calculated as follow.  

R34= 1 – [(1 – R3) (1 – R4)] = .99789 

See Figure 4.6 for the series-parallel system in Figure 4.5 with subsystem X34.   

 

Figure 4.6: Series-Parallel System with Subsystem X34 

 

Component X1 and subsystem X34 are in series and compose of another subsystem 

identified as X1,34, with reliability of R1,34 as shown in Figure 4.7, and R1,34  is calculated as 

follow.    

R1,34 = R1*R34 = .928037 
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X34 

(0.99789) 
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X5 

(0.98) 

X2 
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X2 

(0.8934) 
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(0.993) 
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X1 

(0.93) 
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(0.98)  1 
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 3  4 
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Figure 4.7: Series-Parallel System with Subsystem X1,34 

 

Then combine components X2 and subsystem X1,34 which are in parallel and thus form a 

subsystem identified as subsystem X2,1,34 with reliability of R2,1,34 as shown in Figure 4.8, and 

R2,1,34  is calculated as follow.    

R2,1,34 = 1 – [(1 – R2) (1 – R1,34)] = .992329 

 

 

Figure 4.8: Series-Parallel System with Subsystem X2,1,3,4 

 

Continue to reduce the system until the whole systems’ reliability is obtained: 

Rs = R5*R2,1,34 = .972482 

4.5  K/N Systems 

The K-out-of-N system has a total of N components connected in parallel, and at least K 

components must operate for the system to function as shown in Figure 4.9. 

Start X2,1,3,4 

(0.992329) 
 End X5 

(0.98)  3  4  1 

Start 

X1,34 

(0.928037) 

End X5 

(0.98) 

X2 

(0.8934) 

 3  4  1 
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Figure 4.9: K/N Systems 

 

The reliability of the system, RS, is given by:   

 �¥ = ∑ K2 Ã!�!(Ã.�)!3 Å �ª Å (1 � �)�<ªO�ª0�  (4. 3)  
where R is reliability of Xi (all components have the same reliability) 

For example, an aircraft has four independent engines (Figure 4.10).  Three out of the four 

engines must operate in order for the aircraft to fly.  If each engine has reliability of .97, what is 

the aircraft reliability [18]? 

 

Figure 4.10: K/N Systems Example 

  

In this problem, we know k=3, N=4, and R=0.97, so 

 �¥ = ∑ 2 Ã!�!(Ã.�)!3�ª0� Å �ª Å (1 � �)�<ª  

Start 

X1 

(0.97) 

X2 

(0.97) 

X3 

(0.97) 

X4 

(0.97) 

End 

Start 

X1 

Xi 

XN 

End 

…
 

…
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 �¥ = ∑ 2 Æ!�!(Æ.Ç)!3Èª0É Å. 97ª Å (. 03)È<ª 
  

                                  = 4 Å. 97É Å .03 +. 97È 

                                 = .9948 

 

4.6  Complex Systems 

4.6.1  Existing Techniques for Complex System Reliability Evaluation 

There are a number of techniques available to analyze a complex system.  Some important 

approaches are: a) Conditional probability, b) Cut-set method, c) Tie-set method, d) Event Tree, 

and e) Fault trees. 

The conditional approach splits the given system into subsystems, until they are simple 

series/parallel networks.  The subsystems are then combined using the conditional probability 

method.  This technique gives an accurate answer, but becomes tedious for very complex 

systems.  It is also very difficult to implement in a computer program [22]. 

The cut-set method is a set of system components which, if the elements all fail, will result 

in system failure.  A minimal cut-set is one in which all the components must fail in order for the 

system to fail and if any one element does not fail then the system does not fail [23].    

The tie-set method is a set of system components whose functioning ensures that the 

system functions.  A minimal tie-set (path) is one in which all the components within the set must 

function for the system to function, and if any one element does not function then the system is 

not guaranteed to function.  A tie-set will fail if just one component of the tie-set fails and all the 

system tie-sets must fail for the system to fail [2].    
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An event tree is a pictorial representation of all the events which can occur in a system.   

The cut-sets and tie-sets can be developed from the event trees [23]. 

A useful tool in performing a system safety analysis is fault tree analysis.  A fault tree 

analysis is a graphical design technique that provides an alternative to reliability block diagrams 

in several respects.  It is a top-down, deductive analysis structured in terms of events rather than 

components.  The perspective is on faults rather than reliability [17]. 

 

4.6.2  Revised Connection Matrix and System Simplification 

4.6.2.1  Introduction 

The first step of most techniques is to build a connection matrix which includes 

information on how the components are connected in the network.  Most of the time nodes are 

added to make it easier to build the matrix and represent the direction of the branch.  One of the 

good connection matrices for small size network is a n x n matrix which is applied in many 

In such connection matrix, the row number of each component denotes the “begin” node, and the 

column number denotes the “end” node.  Table 4.1  is an example of the connection matrix of 

bridge-type network shown in Figure 4.11 [5].  In this table component “1” means the begin 

node and the end node are the same node or the begin node and end node are connected without 

components between them. 
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Figure 4.11: Bridge-type Network 

 
 

Table 4.1: Connection Matrix for Example 1 

  End Nodes 
  1 2 3 4 

Begin 
Nodes 

1 1 X1 X3 0 
2 0 1 X5 X2 
3 0 X5 1 X4 
4 0 0 0 1 

 

Based on the connection matrix, a number of techniques are available for system reliability 

analysis.  Minimal path (minimal tie-set) is one of the most important and widely used 

approaches.  The system shown in Figure 4.11 has four minimal tie-set (Ti) as shown below: 

T1: X1, X2 

T2: X3, X4 

T3: X1, X5, X4  

T4: X3, X5, X2 

System reliability can then be determinate from the minimal paths or the sets obtained.  If 

each component has a reliability of 0.9, the system reliability of the above bridge-type network is 

0.97848 obtained by the following calculation. 

X1 X2 

X3 X4 

X5  1 

 3 

 4 

 2 

Start End 
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First calculate the reliability of all tie-set combinations.  The result is shown in Table 

4.2.  Base on Table 4.2, we attain the values for the following terms: 
 ∑ Ù(��)È�0@ = Ù(�@) + Ù(�H) + Ù(�É) + Ù(�È)                        = 0.81 + 0.81 + 0.729 + 0.729 = 3.078   ∑ ∑ Ù_�� Å �ª`Èª0�c@É�0@ = Ù(�@ Å �H) + Ù(�@ Å �É) + Ù(�@ Å �È) + Ù(�H Å �É) + Ù(�H Å �È)                                                +Ù(�É Å �È)                                                                                     = 0.6561 Å 5 + 0.59049                                             = 3.87099   ∑ ∑ ∑ Ù_�� Å �ª Å ��`È�0ªc@Éª0�c@H�0@ = Ù(�@ Å �H Å �É) + Ù(�@ Å �H Å �È) + Ù(�@ Å �É Å �È)                                                                      +Ù(�H Å �É Å �È)                                                                  = 4 Å (0.59049)   ∑ ∑ ∑ ∑ Ù_�� Å �ª Å �� Å ��`È�0�c@É�0ªc@Hª0�c@@�0@ = Ù(�@ Å �H Å �É Å �È)                                                                                       = 0.59049  

The system reliability is obtained by the following equation: 

                     �¥ = Ù(�@ + �H + �É + �È) 
 

                          = ∑ Ù(��)È�0@ � ∑ ∑ Ù_�� Å �ª`Èª0�c@É�0@  

 

                             + ∑ ∑ ∑ Ù_�� Å �ª Å ��`È�0ªc@Éª0�c@H�0@  

 

                              � ∑ ∑ ∑ ∑ Ù_�� Å �ª Å �� Å ��`È�0�c@É�0ªc@Hª0�c@@�0@                                = 3.078 � 3.87099 + 4(0.59049) � 0.59049                       = 0.97848 
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Table 4.2: Tie-Set Reliability 

Probability of 

Tie-set 

Combination 

Break down Tie-set to 

components 

Apply Boolean 

Algebra 
Reliability Value 

P(T1) P{(X1*X2)} P{X1*X2} R1*R2 0.81 

P(T2) P{(X3*X4)} P{X3*X4} R3*R4 0.81 

P(T3) P{(X1*X5*X4)} P{X1*X5*X4} R1*R5*R4 0.729 

P(T4) P{(X3*X5*X2)} P{X3*X5*X2} R3*R5*R2 0.729 

P(T1*T2) P{(X1*X2)*(X3*X4)} P{X1*X2*X3*X4} R1*R2*R3*R4 0.6561 

P(T1*T3) P{(X1*X2)*(X1*X5*X4)} P{X1*X2*X4*X5} R1*R2*R4*R5 0.6561 

P(T1*T4) P{(X1*X2)*(X3*X5*X2)} P{X1*X2*X3*X5} R1*R2*R3*R5 0.6561 

P(T2*T3) P{ (X3*X4)*( X1*X5*X4)} P{X1*X3*X4*X5} R1*R3*R4*R5 0.6561 

P(T2*T4) P{ (X3*X4)*( X3*X5*X2)} P{X2*X3*X4*X5} R2*R3*R4*R5 0.6561 

P(T3*T4) P{ (X1*X5*X4)*( X3*X5*X2)} P{X1*X2*X3*X4*X5} R1*R2*R3*R4*R5 0.59049 

P(T1*T2*T3) 
P{(X1*X2)*(X3*X4) 

*(X1*X5*X4)} 
P{X1*X2*X3*X4*X5} R1*R2*R3*R4*R5 0.59049 

P(T1*T2*T4) 
P{(X1*X2)*(X3*X4) *( 

X3*X5*X2)} 
P{X1*X2*X3*X4*X5} R1*R2*R3*R4*R5 0.59049 

P(T1*T3*T4) 
P{ (X1*X2)* (X1*X5*X4)*( 

X3*X5*X2)} 
P{X1*X2*X3*X4*X5} R1*R2*R3*R4*R5 0.59049 

P(T2*T3*T4) 
P{ (X3*X4)* (X1*X5*X4)*( 

X3*X5*X2)} 
P{X1*X2*X3*X4*X5} R1*R2*R3*R4*R5 0.59049 

P(T1*T2*T3*T4) 
P{ (X1*X2)* (X3*X4)* 

(X1*X5*X4)*( X3*X5*X2)} 
P{X1*X2*X3*X4*X5} R1*R2*R3*R4*R5 0.59049 

 

A slightly more complex system with eleven components and nine nodes (example 2) is 

shown in Figure 4.12.  Table 4.3 shows the corresponding connection matrix.   



39 

 

 

Figure 4.12: Complex System for Example 2 

 
 

Table 4.3: Connection Matrix for Example 2 

 End Nodes 

B
eg

in
 N

od
es

 

 1 2 3 4 5 6 7 8 9 

1 1 X1 X4 0 0 0 X2 X3 0 
2 0 1 X5 X6 0 X8 1 1 0 
3 0 X5 1 0 X10 0 0 0 X9 
4 0 0 0 1 0 X7 0 0 0 
5 0 0 0 0 1 X11 0 0 1 
6 0 0 0 0 0 1 0 0 0 
7 0 1 0 0 0 0 1 1 0 
8 0 1 0 0 0 0 1 1 0 
9 0 0 0 0 1 0 0 0 1 

 

Minimal paths for the example shown in Figure 4.12 can be determined visually and the 

result is listed below: 

X1 

X2 

X5 

X6 X7 

X8 

X4 X10 X11 

X9 

X3 
 1 

 2 

 7 

 8 

 3 

 9 

 5 

 6 

 4 
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Table 4.4: Tie-set Result for Example 2 

NO. Tie-set NO. Tie-set 

T1 X1, X6, X7 T9 X3, X5, X9, X11 

T2 X2, X6, X7 T10 X1, X5, X10, X11 

T3 X3, X6, X7 T11 X2, X5, X10, X11 

T4 X1, X8 T12 X3, X5, X10, X11 

T5 X2, X8 T13 X4, X9, X11 

T6 X3, X8 T14 X4, X10, X11 

T7 X1, X5, X9, X11 T15 X4, X5, X6, X7 

T8 X2, X5, X9, X11 T16 X4, X5, X8 
 

To determine the system reliability, the method described for bridge-type network can be 

applied to this case.  Assuming reliability of each component is 0.9, the whole system reliability 

is 0.99765, computed according to the minimal paths. 

 

4.6.2.2  Revised Connection Matrix 

The connection matrix shown in Table 4.1 is not very efficient for systems containing 

parallel sub-systems.  If there are parallel sub-systems in the network, additional nodes have to 

be added to ensure that connection matrix works, because only one or zero component can exist 

between two nodes in the matrix.  For example, in Figure 4.11, if component X11 is added 

between node 1 and node 2 (in parallel with Component X1), there will be no place for X11 in 

the connection matrix (Table 4.1) because cell (1,2) is already occupied by X1.  This is the 

reason why additional nodes 7, 8, and 9 are added in Figure 4.12.  While additional nodes are 

added in the system to overcome the parallel problem, the size of connection matrix increases 

accordingly.   
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 Moreover, when the system becomes large, the inefficiency of this connection matrix is 

obvious since only the cells having component names are valuable.  For example, the connection 

matrix (Table 4.3) in example 2 is sparsely populated with 69 out of 81 cells containing “1” or 

“0” which provide no useful information. 

A revised connection matrix in the form of  

Table 4.5 is proposed to overcome the problems highlighted above.  The revised 

representation is better suited for large systems.   

 

Table 4.5: Revised Connection Matrix for Example 1 

Begin 

Node 

End 

Node 

Component 

1 2 X1 
1 3 X3 
2 3 X5 
3 2 X5 
2 4 X2 
3 4 X4 

 
 

Applying this revised connection matrix to example 2 (Figure 4.12), nodes 7, 8, and 9 can 

be removed (Figure 4.13) and a concise matrix Table 4.6 can be attained having only 36 cells 

instead of 81 cells.  
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Figure 4.13: Revised Complex System for Example 2 

 

 

Table 4.6: Revised Connection Matrix (Connection Array) for Example 2 

Begin 

Node 

End 

Node 

Component 

1 2 X1 
1 2 X2 
1 2 X3 
1 3 X4 
2 3 X5 
3 2 X5 
2 4 X6 
2 6 X8 
4 6 X7 
3 5 X9 
3 5 X10 
5 6 X11 

 

The same minimal paths can be obtained from the revised connection matrix. 

4.6.2.3  System Simplification 

The identification of minimal path is difficult for larger and more complex system, 

especially for complex systems containing a large number of parallel sub-systems.  For example, 

a system having ten sub-systems in series and each sub-system having ten different components 

X1 

X2 

X5 

X6 X7 

X8 

X4 X10 X11 

X9 

X3 
 1 

 2 

 3  5 

 6 

 4 
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in parallel will have 10 billion (1010) minimal paths.  However, this is not an exceptional case.  In 

real world, most large systems have thousands of components, and most of the sub-systems in 

that system are in series and parallel.  Simply using minimal path and minimal cut-set techniques 

to solve those large size network problems will lead to waste of time and resources.   

An efficient way to handle this problem is to simplify the system before applying minimal 

path approach.  As we know, computation of reliability with series/parallel laws is much more 

efficient than that with minimal path and minimal cut-set approach.  In this section, based on the 

revised connection matrix introduced above, a method to simplify all series or parallel systems in 

the system until a pure complex system is obtained is described below. 

 

Series Components Identification 

Two components (sub-systems) are in series when (1) a node is only connected to these 

two components (sub-systems) and (2) the node has input from one of those components (sub-

systems) and output to another component (sub-systems).  So if a node satisfies the above criteria 

and then we know that components between them are in series.   

For example, in Figure 4.12, node 2 has six components connected, so it is not a series 

node.  Node 1 has output to four components but has no input from other components, so node 1 

is not satisfied.  Node 4 is a series node because it has X6 as input and X7 as output and no more 

components connect to it.  In Figure 4.12 we have only component X6 and X7 in series (sub-

system will be discussed later). 

Components (sub-systems) are in parallel when they have the same input nodes and the 

same output nodes.  For example, in Figure 4.12, component X1, X2, and X3 are in parallel 
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because they share the same input node 1 and the same output node 2.  So identify all parallel 

components by checking their connected nodes. 

 

Simplification Algorithm 

Simplification algorithm pseudo-code 

Initialize:  

 CM_Rows =the number of rows of connection matrix 

 Pre_CM_Rows = CM_Rows+1 

 CMij = Connection matrix element in row i and column j 

 nk = the kth node 

 nn1 = the number of nk in CMi1 (first column of connection matrix) 

 nn2 = the number of nk in CMi2 (second column of connection matrix) 

 RAij = Reliability array element in row i and column j 

 R(x) = Reliability of component x 

  

Simplification:  

 While Pre_CM_Rows > CM_Rows  

  Pre_CM_Rows = CM_Rows 

  (Series simplification) 

  For each nk  

   If   nn1 = 1  and   nn2 = 1 and CMa1 = CMb2 = nk 

   CMb2 = CMa2 

   X = CMb3 
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   CMb3 = CMb3 + “*” + CMa3 (create a new component name) 

   R(CMb3) = R(X) * R(CMa3) 

   Add component CMb3 and its reliability R(CMb3) to Reliability array 

   Delete row a of CM    

 

  (Parallel simplification) 

  For any row of CM 

   If   CMc1 = CMd1 and CMc2 = CMd2 

   Y = CMc3 

   CMc3 = CMc3 + “+” + CMd3 (create a new component name) 

   R(CMc3) = 1- (1- R(Y)) * (1- R(CMd3)) 

   Add component CMc3 and its reliability R(CMc3) to Reliability array 

   Delete row d of CM    

 CM_Rows =the number of rows of connection matrix 

 

The algorithm is illustrated using the network shown in Figure 4.12. 

1. Build an array (denoted as connection matrix) for connection matrix.  The result of this step 

is shown in Table 4.6. 
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2. Build an array (denoted as reliability array) with two columns.  The first column is used to 

store component name and the second one for reliability value as shown in Table 4.7. 

Table 4.7: Reliability Array 

Component Reliability 

X1 0.9 
X2 0.9 
X3 0.9 
X4 0.9 
X5 0.9 
X6 0.9 
X7 0.9 
X8 0.9 
X9 0.9 
X10 0.9 
X11 0.9 

 

3. Set up an array (denoted as nodes array) for storing all nodes and put them into it as shown 

in Table 4.8. 

 

Table 4.8: Nodes Array 

Nodes 

1 
2 
3 
4 
5 
6 
7 
8 
9 

 

4. Get a node (denoted as current node) from nodes array at a time.  If the first column (begin 

node) of the connection matrix has only one current node and second column (end node) has 

exact one too (it means two components are in series), go to step 5 to combine these two 
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components.  Get the next node in the nodes array and do it again until all nodes in the nodes 

array are checked. 

5. Combine the two rows containing the current node in the connection matrix by doing the 

following.    

a. Go to the row having the current node as end node (denoted as row 1). 

b. In the second column of row 1 (end node), cover that end node with the end node of 

another row (the row having current node as begin node, denoted as row 2). 

c. In the third column of row 1 (Component), combine the component name (in row 1) by 

adding “*” following by another component name from row 2. 

d. Multiple these two components’ reliability and add the result into the reliability array. 

e. Delete row 2. 

After this step, all series sub-systems are simplified to be one component.  In this example, 

component X6 and X7 which were in series are combined to form a new component X6*X7.  

The new connection matrix is shown in Table 4.9.  The reliability array is also updated as 

shown in Table 4.10. 

Table 4.9: Connection Matrix 

Begin 
Node 

End 
Node 

Component 

1 2 X1 
1 2 X2 
1 2 X3 
1 3 X4 
2 3 X5 
3 2 X5 
2 6 X6*X7 
2 6 X8 
3 5 X9 
3 5 X10 
5 6 X11 
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Table 4.10: Reliability Array 

Component Reliability 

X1 0.9 
X2 0.9 
X3 0.9 
X4 0.9 
X5 0.9 
X6 0.9 
X7 0.9 
X8 0.9 
X9 0.9 
X10 0.9 
X11 0.9 

X6*X7 0.81 
 

6. Go to the first row of the connection matrix (initiate checked row). 

7. Compare the checked row with all following rows (current row).  If both the begin node and 

the end node are the same with those of the checked row (it means two components in parallel 

are found), call step 9 to combine these two components. 

8. If checked row is the second row from the bottom of the connection matrix, go to step 10, else 

set next row to be the checked row and go to step 7. 

9. Combine those two rows in the connection matrix by doing the following.    

a. In the third column of the checked row (Component), combine the component name (in 

checked row) by adding “+” following by another component name from current row. 

b. Multiple these two components’ reliability and add the result into the reliability array. 

c. Delete current row. 

After this step, parallel sub-systems are eliminated.  In the example, components X1, X2, X3 

are combined to be X1+X2+X3; X6*X7 and X8 to be X6*X7+X8; X9, X10 to be X9+X10.  



49 

 

The connection matrix is simplified to be Table 4.11 and the reliability array is changed to be 

Table 4.12. 

Table 4.11: Connection Matrix 

Begin 
Node 

End 
Node 

Component 

1 2 X1+X2+X3 
1 3 X4 
2 3 X5 
3 2 X5 
2 6 X6*X7+X8 
3 5 X9+X10 
5 6 X11 

 

 

Table 4.12: Reliability Array 

Component Reliability 

X1 0.9 
X2 0.9 
X3 0.9 
X4 0.9 
X5 0.9 
X6 0.9 
X7 0.9 
X8 0.9 
X9 0.9 
X10 0.9 
X11 0.9 

X6*X7 0.81 
X1+X2+X3 0.999 
X6*X7+X8 0.981 

X9+X10 0.99 
 

10. Go to step 4 and do it again until the number of rows of the connection matrix is unchanged.  

After this step all series and parallel sub-system are simplified to be components, and the 
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reliability for these special components are computed and stored in the reliability array.  The 

connection matrix final turn out to be a bridge-type bridge (Table 4.13). 

 

Table 4.13: Connection Matrix 

Begin 
Node 

End 
Node 

Component 

1 2 X1+X2+X3 
1 3 X4 
2 3 X5 
3 2 X5 
2 6 X6*X7+X8 
3 6 (X9+X10)* X11 

 

 

Table 4.14: Reliability Array 

Component Reliability 

X1 0.9 
X2 0.9 
X3 0.9 
X4 0.9 
X5 0.9 
X6 0.9 
X7 0.9 
X8 0.9 
X9 0.9 
X10 0.9 
X11 0.9 

X6*X7 0.81 
X1+X2+X3 0.999 
X6*X7+X8 0.981 

X9+X10 0.99 
(X9+X10)* X11 0.891 

 

If the network is a simple or series-parallel system, after this simplification, the system 

reliability and all reliability of series or parallel sub-system can be obtained.  If the network is 
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complex, like the example above, a minimal path or cut-set approaches [24] - [25] can then be 

applied and the whole system reliability can be computed. 

After simplification, the number of minimal paths reduces from 16 to be 4.  The new 

minimal paths are as follows: 

T1: X1+X2+X3, X6*X7+X8 

T2: X4, (X9+X10)* X11 

T3: X1+X2+X3, X5 

T4: X4, X5, X6*X7+X8 

Considered X1+X2+X3, X6*X7+X8 and (X9+X10)* X11 as sub-system and assuming 

component reliability to be 0.9, they have reliability as follow which were already exist in the 

reliability array: 

X1+X2+X3 : 0.999 =1-(1-0.9)*(1-0.9) *(1-0.9) 

X6*X7+X8 : 0.981=1-(1-0.9*0.9)*(1-0.9) 

(X9+X10)* X11 :  0.891=[1-(1-0.9)*(1-0.9)]*0.9 

From these sub-system reliability and the above four minimal paths, the system reliability 

is computed to be 0.99765. 

This simplification method can not only reduce the number of minimal path but also the 

number of minimal cut-set.  Every time the parallel components are combined to a sub-system, 

the number of minimal path of the system is reduced; the serried components are combined, the 

number of minimal cut-set is reduced.  So this simplification approach is also suitable to cut-set 

method. 
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4.6.2.4  Application to Complex System 

The revised connection matrix and the simplification approach are applied to a system in 

this section.  The system in Figure 4.14 is from Nelson et al. [2].  The system has 55 minimal 

paths with system reliability of 0.972302.   

 
Figure 4.14: Nelson's Example 

The revised connection matrix for Nelson’s example is shown in Table 4.15.  After 

simplification, the system has only one minimal path with system reliability of 0.972302, which 

means this system is a series-parallel system instead of complex system.  The sub-system 

reliability is shown in Table 4.16. 
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Table 4.15: Revised Connection Matrix—Nelson's Example 

Begin 

Node 

End 

Node 
Component 

1 2 X1 
1 2 X2 
1 3 X3 
2 4 X4 
3 4 X6 
2 4 X5 
4 5 X7 
4 5 X8 
5 6 X9 
4 6 X10 
6 8 X11 
6 8 X12 
6 8 X13 
4 7 X14 
7 8 X15 
7 8 X16 

 
 

Table 4.16: Sub-System Reliability—Nelson's Example 

Sub-system Reliability 

X1+X2 0.96 
X3*X6 0.738 
X4+X5 0.9625 
X7+X8 0.9802 

X15+X16 0.91 
(X7+X8)*X9 0.862576 

X11+X12+X13 0.9955 
X14*(X15+X16) 0.6825 

(X1+X2)*(X4+X5) 0.924 
((X7+X8)*X9)+X10 0.979386 

((X1+X2)*(X4+X5))+(X3*X6) 0.980088 
(((X7+X8)*X9)+X10)*(X11+X12+X13) 0.974979 

((((X7+X8)*X9)+X10)*(X11+X12+X13))+(X14*(X15+X16)) 0.992056 
(((X1+X2)*(X4+X5))+(X3*X6))*(((((X7+X8)*X9)+X10)*(X11+X12+X13)) 

+(X14*(X15+X16))) 
0.972302 
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The following networks in Figure 4.15 are from Gebre and Ramirez-Marquez [16], Fotuhi-

Firuzabad et al. [5], Ramirez-Marquez et al. [26], and Lin et al. [12].  Comparison of the number 

of tie-set and cut-set is shown in Table 4.17.   
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Figure 4.15: Complex Networks 
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Table 4.17: Simplification Comparison 

 
Network 

NO. of Minimal Cut-set CPU Time (second) 
Before 

Simplification 
After 

Simplification 
Before 

Simplification 
After 

Simplification 
Network 1 [16] 4 4 0.03 0.03 
Network 2 [16] 9 6 0.05 0.03 
Network 3 [16] 8 8 0.03 0.03 
Network 4 [16] 9 9 0.05 0.05 
Network 5 [16] 20 9 0.06 0.02 
Network 6 [16] 25 25 0.08 0.08 
Network 7 [16] 18 9 0.05 0.04 
Network 8 [16] 27 27 0.08 0.08 
Network 9 [16] 17 17 0.05 0.06 
Network 10 [16] 19 9 0.05 0.04 
Network 11 [16] 20 13 0.06 0.05 
Network 12 [16] 396 110 2.00 0.39 
Network 13 [16] 107 107 0.31 0.32 
Network 14 [16] 222 23 0.55 0.11 
Network 15 [16] 19 19 0.06 0.06 
Network 16 [16] 615 191 3.45 0.72 
Network 17 [16] 140 140 0.48 0.48 
Network 18 [16] 3037 3037 30.09 30.10 
Network 19 [16] 67 45 0.22 0.14 
Network 20 [16] 6441 4530 185.00 91.89 
Network 21 [16] 888 250 4.06 0.84 
Network 22 [16] 16 12 0.06 0.06 
Network 23 [16] 166 91 0.44 0.27 
Network 24 [16] — — — — 
Network 25 [16] 58 58 0.19 0.19 
Network 26 [16] 330 214 1.08 0.58 
Network 27 [16] 23 23 0.08 0.08 
Network 28 [16] 20 20 0.06 0.06 
Network 29 [26] 111 86 0.42 0.30 
Network 30 [5] 6 4 0.03 0.02 
Network 31 [12] 15 9 0.19 0.16 
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4.6.3  Determination of Minimal Tie-Set from Block Diagram 

This technique has been designated as the Path Tracing Algorithm [5].  It is “the most-

efficient reliability analysis methods currently available based on minimal path set enumeration” 

as mentioned by Gebre and Ramirez-Marquez [16].  It handles complex systems, and considers 

both unidirectional and bi-directional branches, but does not require any Boolean algebra for 

programming.  The first step in this algorithm is to determine the connection matrix for the 

network.  The connection matrix is a representation of the connections between the components 

of a network.  It is constructed from the system network or reliability diagram that defines which 

components are connected between the nodes of the network.  The row number of each 

component of the connection matrix denotes the “from” node, and the column number denotes 

the “to” node.   Once the connection matrix is deduced and the input and output nodes 

determined, the algorithm moves through the rows and columns of the connection matrix, and 

traces all the minimal paths which exist between the two nodes of interest (input and output 

nodes).  The process of the path tracing algorithm consists of two steps: 

i) tracing all minimal paths and storing them in a specific format (Figure 4.16), and  

ii) retrieving all minimal paths from the stored format(Figure 4.17). 

By doing this all minimal tie-sets can be determined.  Notations are defined as follow to 

illustrate these two steps. 

•   Input node (source node), output node (sink node): The nodes of interest. 

•   Branch number: The number assigned to the components as the process moves through the 

connection matrix. 
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•   Parent branch: The “branch number” of the element from which the current component has 

been branched. 

• Status: A flag that indicates if a component has been branched and is represented by: 

• True – indicates that the element can be branched further, and 

• False – indicates that the element cannot be branched further. 

• Component Name: The name of the element connected between two nodes (node number and 

the previous node). 

• Counter: The number of times the process is required to be continued until all minimal paths 

are traced. 

• Path tracing array (PTA): Array used to develop paths.  The structure of PTA is shown in Table 

4.18.  PTA(Node_Number, j) denotes the element of PTA in row Node_Number column j. 

Table 4.18: Path Tracing Array 

Node_Number … … … 
Parent_Branch … … … 
Branch_Number … … … 
Component … … … 
Status … … … 

 

Pseudo-code for step 1: 

Initialize:  

 Counter =1 

 PTA(Node_Number, 0) = Input_Node 

 PTA(Parent_Branch, 0) = 0 

 PTA(Branch_Number, 0) = 0 

 PTA(Component, 0) = “” (empty) 

 PTA(Status, 0) = True 
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 j=0 

 

Develop paths: 

 While PTA(Status, j) = True or j < counter 

  If PTA(Status, j) = False  

   j=j+1  

   Continue while 

  Else 

   Find out all successor nodes of node PTA(Node_Number, j) 

   For each successor node 

    PTA(Node_Number, Counter) = Name of successor node 

    PTA(Parent_Branch, Counter) = PTA(Branch_Number, j) 

    PTA(Branch_Number, Counter) = Counter 

    PTA(Component, Counter) = Component name between node 

                                                PTA(Node_Number, j) and node PTA(Node_Number, Counter) 

    If PTA(Node_Number, Counter) = Output Node 

     PTA(Status, Counter) = False 

    Else 

     PTA(Status, Counter) = True 

    Counter= Counter+1     

   PTA(Status, j) = False 

   j=j +1 
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Pseudo-code for step 2: 

Retrieve all minimal paths:  

 For each PTA(Node_Number, j) = Output_Node 

  k=j 

  While Parent_Branch ≠ 0 

   If PTA(Component, k) ≠ 1 

    Store PTA(Component, k) 

   Find PTA(Node_Number, i)= PTA(Parent_Branch, k) 

   k=i 
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Figure 4.16:  Flowchart to store paths 

Start 

Counter =1 
PTA(Node_Number, 0) = Input_Node 
PTA(Parent_Branch, 0) = 0 
PTA(Branch_Number, 0) = 0 
PTA(Component, 0) = “” (empty) 
PTA(Status, 0) = True 
j=0 
 

PTA(Status, j) = 
True or j < counter 

PTA(Status, j) 
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k=1,  n = num of successor nodes 

k > n 

PTA(Node_Number, Counter) = Name of successor node 
PTA(Parent_Branch, Counter) = PTA(Branch_Number, j) 
PTA(Branch_Number, Counter) = Counter 
PTA(Component, Counter) = Component name between node 
     PTA(Node_Number, j) and node PTA(Node_Number, Counter) 
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Figure 4.17: Flowchart to retrieve paths 
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4.6.4  Determination of Cut-Set from Given Minimal Tie-Set 

Boolean algebra technique is used to find the cut-sets of a network from given minimal tie-

set.   

Boolean Algebra Technique 

The Boolean Algebra technique, which is used to find the cut-sets of a network, also 

assumes that all the minimal paths of the network are known.  This technique is simple and can 

be easily illustrated through an example.  The technique involves some manipulation of Boolean 

expressions and therefore is computation-intensive.  For the same system discussed in Figure 

4.11, the minimal paths are  

Tl = X1, X2  

T2= X3, X4 

T3 = X1, X5, X4  

T4= X3, X5, X2 

The system will fail if one or more components in each path fail.  Hence for T1, either X1 

or X2 or both must fail to cause the path to fail.  This is expressed as (X1 + X2).  Since each path 

must fail to cause the system failure, it imposes a Boolean AND condition to find the cut-sets.   

Hence the expression (X1+X2) * (X3+X4) * (X1+X4+X5)* (X3+X2+X5) will give all possible 

cut-sets.  To get the minimal cut-sets, Boolean simplification has to be performed on this 

expression.  The product of the first three terms is 

(X1+X2) * (X3+X4)*(X1+X4+X5) 

= X1*X3+X1*X3*X5+X1*X3*X4+X1*X3*X2+X1*X3*X4+X1*X4+X1*X4+X1*X4*X5 + 
X1*X2*X4 + X2*X4 + X2*X4*X5 + X3*X2*X5 
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=X1*X3+X1*X4+X2*X4+X3*X2*X5 

Multiplying with the fourth term 

 (X1+X2)*(X3+X4)*(X1+X4+X5)*(X3+X2+X5) 

=(X1*X3+X1*X4+X2*X4+X3*X2*X5) * (X3+X2+X5) 

= X1*X3 + X1*X3*X5 + X1*X3*X2 + X1*X3*X4 + X1*X4*X5 + X1*X2*X4 + X3*X2*X4 + 
X2*X4*X5 + X2*X4 + X3*X2*X5 + X3*X2*X5 + X3*X2*X5 

=X1*X3 + X2*X4 + X1*X4*X5 + X3*X2*X5 

Therefore {X1, X3}, {X2, X4},   {X1, X4, X5},   and {X3, X2, X5} are the minimal cut-sets for 
the given network. 

 

4.6.5  Determination of Minimal Cut-Set from Block Diagram 

There are different algorithms currently available for minimal cut-sets enumeration, such 

as nodes merging approach [12], Yeh’s MCV approach [13], and element substitution approach 

[6].  Element substitution algorithm is the latest and the most efficient method to determine 

minimal cut-sets, so this algorithm is selected and make some improvement to implement to the 

software. 

4.6.5.1  Element Substitution Approach 

An example network shown in Figure 4.18 is used to illustrate this approach.   
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Figure 4.18: Predecessor matrix construction 

Step 1: Build the connection matrix of the network which indicates the connection 

relationship of components.  The result is shown in Figure 4.18. 

Step 2: Initiate primary set (a cut-set used to generate other cut-sets using forward method) 

by putting all components connected to the source node; Initiate parent set (a cut-set used to 

generate other cut-sets using backward method) by putting all components connected to the sink 

node.  In this example, the primary set is {X1, X2} and the parent is {X3, X4}. 

Step3: Develop cut-sets from primary set by substituting elements of primary set with their 

successors and put the result in the primary potential cut-set array.  The first element X1 of 

primary set {X1, X2} is replaced with its successors X3 and X6 forming a new cut-set {X3, X6, 

X2}.  Before this new cut-set can be put to the potential cut-set array, we need to 1) check 

elements within the new cut-set for predecessor relationship and eliminate the predecessor 

(eliminate successor if it is developed from parent set) from the cut-set; 2) check the new cut-set 

with the primary potential cut-sets and parent potential cut-set.  If the new cut-set is dominated 

or duplicated, eliminate the new cut-sets and go to next step, else if the new cut-set dominates 

the cuts in primary potential cut-set or parent potential cut-set, eliminate the dominated cut-sets.  

In this example, the new cut-set {X3, X6, X2} can be added to the primary potential cut-set 

because there is no predecessor relationship between the elements X3, X6 and X2 and no 

domination relationship between new cut-set {X3, X6, X2} and the primary potential cut-set 

Component 
X1 X3 

X6 X5 

X2 X4 
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{X1, X2} and parent potential cut-set{X3, X4} as shown in Figure 4.19 (“�” means it is a 

primary set or parent set).   

 

 
Primary 
Potential 
Cut-set 

� {X1, X2} 
  

 

 

 
Primary 
Potential 
Cut-set 

� {X1, X2} 
 {X3, X6, X2} 

 

 
Parent 

Potential 
Cut-set 

� {X3, X4} 
  

Figure 4.19: Element Substitution 1 

 

Step4: Develop cut-sets from parent set by substituting elements of parent set with their 

predecessors and put the result in the parent potential cut-set array.  The first element X3 of 

primary set {X3, X4} is replaced with its predecessors X1 and X5 forming a new cut-set {X1, 

X5, X4}.  This new cut-set can be added to the parent potential cut-set because there is no 

predecessor relationship between the elements X1, X5 and X4 and no domination relationship 

between new cut-set {X1, X5, X4} and the primary potential cut-set {X1, X2}, {X3, X6, X2} 

and parent potential cut-set{X3, X4} as shown in Figure 4.20. 
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Parent 
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Figure 4.20: Element Substitution 2 

 

Step5: Repeat step 3 and step 4 until all potential cut-sets have been developed.  In this 

example, we will continue to  

1) Go to step 3 and replace X2 of primary set {X1, X2} with it successors X4 and X5 

forming new cut-set {X1, X4, X5}.  This new cut-set cannot be put into the potential 

Replace X1 

Replace X3 
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cut-set array because there is already a same cut-set in parent potential cut-set array as 

shown in Figure 4.21.   
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Figure 4.21: Element Substitution 3 

 

2) Go to step 4 replace X4 of parent set {X3, X4} with its predecessors X2 and X6 

forming new cut-set {X3, X2, X6} which is already exist in the primary potential cut-

set array, so delete the new cut-set and go to next step. 
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Figure 4.22: Element Substitution 4 

 

3) Go to step 3.  Because each element of primary set {X1, X2} has already been 

replace {X1, X2} with its following cut-set {X3, X6, X2} in primary potential cut-set 

array.  So move “�” to {X3, X6, X2} and continue step 3.  Since there is no successor 

for the first element X3 of the primary set, go to the second element X6 and replace X6 

with its successor X4 and X5 forming a new cut-set {X3, X4, X5, X2}.  Within this 

new cut-set, X5 is a predecessor of X3, so delete element X5; X2 is a predecessors of 

X4, so delete X2.  So the new cut-set is updated to be {X3, X4}.  This new cut-set 

Replace X2 

Replace X4 
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cannot enter the primary potential cut-set because the same cut-set already exists in the 

parent potential cut-set array.  The result is shown in Figure 4.23. 
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� {X3, X6, X2} 
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Figure 4.23: Element Substitution 5 

4) Go to step 4.  Because each element of parent set {X3, X4} has already been replaced, 

replace {X3, X4} with its following cut-set {X1, X5, X4} in parent potential cut-set 

array.  So move “�” to {X1, X5, X4} and continue step 4.  Since there is no 

predecessor for the first element X1 of the parent set, go to the second element X5 and 

replace X5 with its predecessor X2 and X6 forming a new cut-set {X1, X2, X6, X4}.  

Within this new cut-set, X4 is a successor of X2, so delete element X4; X6 is a 

successor of X1, so delete X6.  So the new cut-set is updated to be {X1, X2}.  This new 

cut-set cannot enter the primary potential cut-set because the same cut-set already 

exists in the primary potential cut-set array.  The result is shown in Figure 4.24. 

Replace X6 
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Figure 4.24: Element Substitution 6 

5) Go to step 3 and replace element X2 with its successor X4 and X5 form a new cut-set 

{X3, X6, X4, X5} which becomes {X3, X4} after eliminating predecessors.  Because 

{X3, X4} already exist in parent potential cut-set, the new cut-set is deleted.  Since the 

last element of the last primary potential cut-set has already substituted and there is no 

more primary potential cut-sets generated, stop the loop of step 3. 

6) Go to step 4 and replace element X4 with its predecessor X2 and X6 form a new cut-set 

{X1, X5, X2, X6} which becomes {X1, X2} after eliminating successors.  Because 

{X1, X2} already exist in parent primary cut-set, the new cut-set is deleted.  Since the 

last element of the last parent potential cut-set has already substituted and there is no 

more parent potential cut-sets generated, stop the loop of step 4. 

Step6: Retrieve minimal cut-sets from the primary potential cut-set array and parent 

potential cut-set array.  In this example, the minimal cut-sets are {X1, X2}, {X3, X6, X2}, {X3, 

X4}, {X1, X5, X4}. 

4.6.5.2  Improvement to Element Substitution Approach 

This algorithm continuously uses the generated potential cut-set as a primary set or parent 

set to generate more potential cut-sets, so the primary or parent set is wanted to be a minimal set.  

If the primary or parent cut-set is not a minimal cut-set, all its generated cut-sets will not be 

Replace X4 
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minimal and these non-minimal cut-sets will continue to generate more useless cut-sets.  The size 

of potential cut-set array will increase significantly resulting in inefficiency of the cut-set 

determination.  This is the reason why every time when a new cut-set is generated we need to 

compare the new cut-set with each potential cut-set to eliminate those potential cut-sets which 

are dominated by the new cut-set.  However, this still cannot guarantee every potential cut-set in 

the potential cut-set array is a minimal cut-set until the final cut-set is generated and the last 

domination elimination is done.   

The efficiency can be improved if the potential cut-set array is kept leaner (less non-

minimal cut-set).  In current algorithm when a potential cut-set is found to be dominated by the 

new cut-set, this potential cut-set will be eliminated.  Now we can do it further.  All its 

successors (the potential cut-sets generated by this eliminated cut-set) will also be deleted, and 

continue to delete successors in the next level until the end of the potential cut-set array is 

reached.  That is, whenever a potential cut-set is deleted, all levels of its successors will also be 

eliminated.  In this way, potential cut-set array will contain less non-minimal cut-sets and its size 

will be decreased.  Because when a new cut-set is generated, it is required to compare with every 

cut-set in the potential array to check the domination relationship, the decrease of the size of 

potential cut-set array will increase the efficiency. 

This improved method is applied to Gebre and Ramirez-Marquez’s 28 networks [16]  in 

Figure 4.15 and obtain exactly the same minimal cut-set results with a shorter computation time 

as shown in Table 4.19. 

 



74 

 

 

Table 4.19: Element Substitution Result Comparison 

Net-
work 

NO. 
of 

Comp
onent 

NO. of  
minimal 

Cuts 

Gebre’s 
CPU time 

(sec.) 
[16] 

New 
CPU 
Time 
(sec.) 

Improved 
Approach 
CPU time 

(sec.) 

Non-
minimal 
Cut-set 

Generated 

Non-
minimal 
Cut-set 

Generated 
(Improved) 

Simpli
fied 
CPU 
time 
(sec.) 

1 5 4 0 0.05 0.03 0 0 0.03 
2 8 9 0.01 0.05 0.05 0 0 0.03 
3 8 8 0.01 0.03 0.03 0 0 0.03 
4 9 9 0.01 0.06 0.05 0 0 0.05 
5 12 20 0.01 0.06 0.06 0 0 0.02 
6 14 25 0.02 0.09 0.08 0 0 0.08 
7 11 18 0.01 0.08 0.05 1 1 0.04 
8 13 27 0.02 0.09 0.08 0 0 0.08 
9 12 17 0.01 0.06 0.05 1 1 0.06 
10 12 19 0.01 0.08 0.05 3 3 0.04 
11 13 20 0.01 0.08 0.06 0 0 0.05 
12 30 396 10.11 2.55 2.00 461 350 0.39 
13 20 107 0.51 0.40 0.31 22 22 0.32 
14 26 222 2.07 0.64 0.55 178 134 0.11 
15 14 19 0.03 0.06 0.06 3 3 0.06 
16 29 615 35.06 3.97 3.45 472 379 0.72 
17 23 140 1.071 0.56 0.48 48 33 0.48 
18 30 3037 355.16 31.69 30.09 1026 997 30.10 
19 24 67 0.3 0.25 0.22 17 17 0.14 
20 40 6441 3329.7 216.0 185.00 7433 6760 91.89 
21 25 888 26.638 4.73 4.06 268 267 0.84 
22 18 16 0.1 0.08 0.06 14 14 0.06 
23 21 166 0.911 0.52 0.44 52 52 0.27 
24 60 — — — — — — — 
25 21 58 0.21 0.20 0.19 9 9 0.19 
26 24 330 5.137 1.15 1.08 129 122 0.58 
27 15 23 0.08 0.11 0.08 0 0 0.08 
28 12 20 0.09 0.08 0.06 0 0 0.06 
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4.6.6  Calculation of System Reliability from Tie-Sets and Cut-Sets 

Let Ti correspond to the ith  tie-set, and Ci correspond to the ith cut-set.  The system reliability 

is computed as follows: 

Rs = P(T1+T2……+Tm) = P(at least one tie-set is good) 

Rs = P(C1 *C2 .…… *Cm) = P(at least one element of the cut-set is operative) 

Expressed in terms of unreliability, we have, 

1 - Rs = P(T’1*T’2……..*T’m) = P(all tie-sets failed)  

1 - Rs = P(C’1+C’2……..+C’m) = P(at least one cut-set fails)  

where T’i and C’i are the compliments of Ti and Ci respectively.  From the above reliability 

expression bounds can be obtained by using the basic probabilistic inequalities as follows: 

 �¥ = Ù(�@ + �H v + �z) Ú ∑ Ù(��)z�0@  (4. 4)  �¥ = Ù(�@ + �H v + �z) Û ∑ Ù(��)z�0@ � ∑ ∑ Ù_�� Å �ª`zª0�c@z<@�0@   1 Ú ', � Ú ( (4. 5)  
The upper (RU1 ) and lower bounds (RL1 ) to the reliability are:  �Ü@ = ∑ Ù(��)z�0@  (4. 6)   �Ý@ = ∑ Ù(��)z�0@ � ∑ ∑ Ù_�� Å �ª`,zª0�c@z<@�0@      1 Ú ', � Ú ( (4. 7)  
In the same manner, another upper bound is obtained 

                   �ÜH = ∑ Ù(��)z�0@ � ∑ ∑ Ù_�� Å �ª`zª0�c@z<@�0@ +                                                   ∑ ∑ ∑ Ù_�� Å �ª Å ��`z�0ªc@z<@ª0�c@z<H�0@ ,           1 Ú ', �, � Ú ( (4. 8)  
By using the above equation, upper and lower bounds on reliability are computed till the 

desired precision on system reliability is obtained.  The application of this method is illustrated 

through an example as shown in Figure 4.11 in section 4.6.2.1  

Similarly inequalities can be applied to cut-sets to obtain another upper and lower bounds. 
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 �Ý@ = 1 � ∑ Ù(Þ[�)z�0@  (4. 9)    �Ü@ = 1 � _∑ Ù(ÞU�)z�0@ � ∑ ∑ Ù_ÞU� Å ÞUª`zª0�c@z<@�0@ `                = �Ý@ + ∑ ∑ Ù_ÞU� Å ÞUª`     1 Ú ', � Ú (  zª0�c@z<@�0@   (4. 10)   �ÝH = 1 � _∑ Ù(ÞU�)z�0@ � ∑ ∑ Ù_ÞU� Å ÞUª`zª0�c@z<@�0@ ß                                         ß+ ∑ ∑ ∑ Ù_ÞU� Å ÞUª Å ÞU�`z�0ªc@z<@ª0�c@z<H�0@ `                                     = �Ü@ �   ∑ ∑ ∑ Ù_ÞU� Å ÞUª Å ÞU�`z�0ªc@z<@ª0�c@z<H�0@          1 Ú ', �, � Ú (  (4. 11)  
Example: A system has four minimal cut-sets (developed from a fault tree in section 6.2 ): 

{X3, X4, X5}, {X2, X3}, {X1, X3}, and {X1, X2}.  Assuming the unreliability of components 

X1, X2, X3, X4, X5 are R1′=0.1, R2′=0.2, R3′=0.3, R4′=0.4, R5′=0.5 respectively, what is the 

system’s reliability? 

To solve this problem, we first calculate the reliability of all combinations of cut-sets.  The 

result is shown as Table 4.20. 
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Table 4.20: Cut-set Reliability 

Probability of Cut-

set Combination 

Break down Cut-set to 

components 

Apply Boolean 

Algebra 
Reliability Value 

P(C1′) P{(X1′*X2′)} P{X1′*X2′} R1′*R2′ 0.02 

P(C2′) P{(X1′*X3′)} P{X1′*X3′} R1′*R3′ 0.03 

P(C3′) P{(X2′*X3′)} P{X2′*X3 ′} R2′*R3 ′ 0.06 

P(C4′) P{(X3′*X4′*X5′)} P{X3′*X4′*X5′} R3′*R4′*R5′ 0.06 

P(C1′*C2′) P{(X1′*X2′)*(X1′*X3′)} P{X1′*X2′*X3′} R1′*R2′*R3′ 0.006 

P(C1′*C3′) P{(X1′*X2′)*(X2′*X3′)} P{X1′*X2′*X3′} R1′*R2′*R3′ 0.006 

P(C1′*C4′) 
P{(X1′*X2′)*( 

X3′*X4′*X5′)} 

P{X1′*X2′*X3′*X4′*

X5′} 
R1′*R2′*R3′*R4′*R5′ 0.0012 

P(C2′*C3′) P{( X1′*X3′)*(X2′*X3′)} P{X1′*X2′*X3′} R1′*R2′*R3′ 0.006 

P(C2′*C4′) 
P{( X1′*X3′)*( 

X3′*X4′*X5′)} 

P{X1′*X3′*X4′ 

*X5′} 
R1′*R3′*R4′*R5′ 0.006 

P(C3′*C4′) 
P{( X2′*X3′)*( 

X3′*X4′*X5′)} 

P{X2′*X3′*X4′ 

*X5′} 
R2′*R3′*R4′*R5′ 0.012 

P(C1′*C2′*C3′) 
P{(X1′*X2′)*(X1′*X3′)*(

X2′*X3′)} 
P{X1′*X2′*X3′} R1′*R2′*R3′ 0.006 

P(C1′*C2′*C4′) 
P{(X1′*X2′)*(X1′*X3′)*( 

X3′*X4′*X5′)} 

P{X1′*X2′*X3′*X4′*

X5′} 
R1′*R2′*R3′*R4′*R5′ 0.0012 

P(C1′*C3′*C4′) 
P{(X1′*X2′)*( X2′*X3′)*( 

X3′*X4′*X5′)} 

P{X1′*X2′*X3′*X4′*

X5′} 
R1′*R2′*R3′*R4′*R5′ 0.0012 

P(C2′*C3′*C4′) 
P{( X1′*X3′)*( 

X2′*X3′)*( 

X3′*X4′*X5′)} 

P{X1′*X2′*X3′*X4′*

X5′} 
R1′*R2′*R3′*R4′*R5′ 0.0012 

P(C1′*C2′*C3′*C4′) 

P{(X1′*X2′)* ( 

X1′*X3′)*( X2′*X3′)*( 

X3′*X4′*X5′)} 

P{X1′*X2′*X3′*X4′*

X5′} 
R1′*R2′*R3′*R4′*R5′ 0.0012 

 
According to the formulas above,  

 ∑ Ù(Þ�[)È�0@ = Ù(Þ@[) + Ù(ÞH[) + Ù(ÞÉ[) + Ù(ÞÈ[)                        = 0.02 + 0.03 + 0.06 + 0.06 = 0.17   ∑ ∑ Ù_Þ�[ Å Þª[`Èª0�c@Éà0@ = Ù(Þ@[ Å ÞH[) + Ù(Þ@[ Å ÞÉ[) + Ù(Þ@[ Å ÞÈ[)                                                  +Ù(ÞH[ Å ÞÉ[) + Ù(ÞH[ Å ÞÈ[) + Ù(ÞÉ[ Å ÞÈ[)                                                                                       = 0.006 + 0.006 + 0.0012 + 0.006 + 0.006 + 0.012                                               = 0.0372 
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  ∑ ∑ ∑ Ù_Þ�[ Å Þª[ Å Þ�[`È�0ªc@Éª0�c@H�0@ = Ù(Þ@[ Å ÞH[ Å ÞÉ[) + Ù(Þ@[ Å ÞH[ Å ÞÈ[)                                                                          +Ù(Þ@[ Å ÞÉ[ Å ÞÈ[)  + Ù(ÞH[ Å ÞÉ[ Å ÞÈ[)                                                                      = 0.006 + 0.0012 + 0.0012 + 0.0012                                                                      = 0.0096   ∑ ∑ ∑ ∑ Ù_Þ�[ Å Þª[ Å Þ�[ Å Þ�[`È�0�c@É�0ªc@Hª0�c@@à0@ = Ù(Þ@[ Å ÞH[ Å ÞÉ[ Å ÞÈ[)                                                                                             = 0.0012  
And then the system reliability 0.8588 is obtained by the following steps shown in Table 4.21. 

Table 4.21: Determination of System Reliability from Cut-set 

Step Lower Bound Upper Bound Reliability Tolerance 

Step 1 
RL1 =1 - 0.17 
      =0.83 

— — — 

Step 2 RL1 =0.83 
RU1 = RL1 + 0.0372 
       =0.8672 

Rsys= (RL1+ RU1)/2 
       = 0.84866 

±0.0186 
(=0.0372/2) 

Step 3 
RL2  = RU1 - 0.0096 
       =0.8576 

RU1 = 0.8672 
Rsys= (RL2+ RU1)/2 
       = 0.8624 

±0.0048 
(=0.0096/2) 

Step 4 RL2  =0.8576 
RU2 = RL2 + 0.0012 
       =0.8588 

Rsys= (RL2+ RU2)/2 
       = 0.8582 

±0.0006 
(=0.0012/2) 

Step 5 
RL3  = RU2 - 0 
       =0.8588 

RU2 = 0.8588 
Rsys= (RL3+ RU2)/2 
       = 0.8588 

0 
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CHAPTER 5 

 

STATE DEPENDENT SYSTEM 

 

In the previous section we made an important assumption of independent failures among 

the individual components.  However, if the failure of one component is dependent on the failure 

of another component then we need a different analysis method ---Markov analysis. 

5.1  State Diagram 

Figure 5.2 is state diagram of a general standby system shown in Figure 5.1 [18]. 

 

Figure 5.1: Standby System 

States:   1.  Both components operating 

              2.  Component X1 fails  

              3.  Component X2 fails  

              4.  Both components fail 
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Figure 5.2: State Diagram 

Probability 

λ12(t) ∆t Probability of going from state 1 to state 2 during ∆t 

λ13(t) ∆t Probability of going from state 1 to state 3 during ∆t 

λ24(t) ∆t Probability of going from state 2 to state 4 during ∆t 

λ34(t) ∆t Probability of going from state 3 to state 4 during ∆t 

where, λij(t) are failure rates for each ij transition. 

State Equations 

1.  P1 (t + Δt) = P1(t) [ 1 - (λ12(t) Δt + λ13(t) Δt) ] 2.  P2 (t + Δt) = P1(t) λ12(t) Δt + P2(t) [1 - λ24(t) Δt)] 3.  P3 (t + Δt) = P1(t) λ13(t) Δt + P3(t) [1 - λ34(t) Δt)] 4.  P4 (t + Δt) = P2(t) λ24(t) Δt + P3(t) λ34(t) Δt + P4(t)  
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5.2  Markov Analysis 

5.2.1  Calculation of System Reliability from Markov Model 

From Markov Model the exact solution for the reliability of a complex system with N 

success states over the time t is 

 ∑
=

N

1i

i(t)PR(t)=  (5. 1)  
where the Pi(t) values are the solutions to the set of N differential equations 

 
1iallfor0(0)Pand1.0(0)P

(t)Pr(t)Pr(t)Pr(t)Pr(t)P
dt

d

(t)Pr(t)Pr(t)Pr(t)Pr(t)P
dt

d

(t)Pr(t)Pr(t)Pr(t)Pr(t)P
dt

d

i1

NNN33N22N11NN

NN23322221122

NN13312211111

≠==

++++−=

++++−=

++++−=

L

M

L

L

 

 
where rij (i≠j) represent the rate (failure rate λ or repair rate µ) from state i to state j.  rii represent 

the sum of all transition rates out of state i: 

 ∑
≠

=
ikall

ikii rr  
 

The above equations can be solved on the computer by approximating them by difference 

equations with sufficiently small ∆t.    

            P1 (t + Δt) = P1(t)(1- r11 Δt) + P2(t) r21 Δt + …          + PN(t) rN1 Δt             P2 (t + Δt) = P1(t) r12 Δt         + P2(t) (1- r22 Δt )+ … + PN(t) rN2 Δt                                   M  
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            PN (t + Δt) = P1(t) r1N Δt        + P2(t) r2N Δt + …          + PN(t) (1- rNN Δt)          That is,  [ ] [ ]∆tr1(t)P∆tr(t)P∆t)(tP iiiji

ijall

ji −+=+ ∑
≠

 (5. 2) 
        Let  ∆ttn /=  (5. 3) 

Then, 

 )()( tnPtP ii ∆=  (5. 4)  
And                                                

 [ ] ∆t)1n(P∆t)(tP ii +=+  (5. 5)  
The set of N independent difference equations can be written as 

 
Niwhere

trtnPtrtnPtnP iiiji

ijall

ji

,3,2,1

]1)[(])[()]1([

L=

∆−∆+∆∆=∆+ ∑
≠  (5. 6) 

 
The probability vector Π(t) and the matrix[A] are defined as follows: 

 


















=

(t)P

(t)P

(t)P

Π

N
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1

M  (5. 7) 
 
[ ]
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




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


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



∆−∆∆∆

∆∆−∆∆
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∆∆∆∆−

=

)1(

)1(

)1(

)1(

321

3332313

2322212

1312111

trtrtrtr

trtrtrtr

trtrtrtr

trtrtrtr

A

NNNNN

N

N

N

L

MMMM

L

L

L

 (5. 8) 
 

In matrix form, the set of equations is written 
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 [ ] )()]1([ tnΠAtnΠ ∆=∆+  (5. 9)  
From which follows 

 [ ] [ ] [ ] )0()]2([)]1([)( 2
ΠAtnΠAtnAtnΠ

n==∆−=∆−=∆ L  (5. 10)  
Hence, the solution to Π(t) is 

 [ ] )0()( ΠAtΠ
n=  (5. 11)  

where [A] is the coefficient matrix of the set of difference equations and Π(0) is known to be 

 


















=



















=

0

0

1

)0(
MM

(t)P

(t)P

(t)P

Π

N

2

1

 (5. 12) 
So we can solve ∑

=

N

1i

i(t)PR(t)=  by doing the following: 

1. Select a sufficiently small ∆t. 

2. Determine n=t/∆t. 

3. Determine the coefficient matrix [A] from the state-to-state transition rates and raising [A] 

to the nth power—that is, performing n successive matrix multiplications of [A]. 

4. Finally, determine the Pi(t) values. 

5.2.2  Calculation of System Reliability from Markov Model --Example 

Example [17]: An active generator has a failure rate (failures per day) of 0.01.  An older 

standby generator has a failure rate of 0.001 while in standby and a failure rate of 0.10 when 

online.  Determine the system reliability for a planned 3 day use. 

To solve this problem, we first define the states as follow: 

States:   1.  Both generators operating 
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              2.  New generator X1 fails  

              3.  Old generator X2 fails  

              4.  Both generators fail 

The failure rates are defined as follow: 

λ1 : The failure rate for new generator X1 which is equal to 0.01 

λ2I : The failrue rate for old generator X2 in standby mode (idle) which is equal to 0.001 

λ2F : The failure rate for old generator X2 when online (functioning) which is equal to 0.1 

And then obtain the state diagram as shown in Figure 5.3. 

 

Figure 5.3: State Diagram Example 

From the given data we know λ1 = .01, λ2I = .001, λ2F = .1, mission time is 3 days.  If we 

partition mission time to 1000 units, that is n=1000, ∆t will be equal to 3/1000=0.003 days.  So  

[ ]


















∆−∆∆∆

∆∆−∆∆

∆∆∆−∆

∆∆∆∆−

=

)1(

)1(

)1(

)1(

44342414

43332313

42322212

41312111

trtrtrtr

trtrtrtr

trtrtrtr

trtrtrtr

A
 

since   r12 ∆t = λ1 ∆t = 0.01(0.003) = 0.00003 

 r13 ∆t = λ2I ∆t  = 0.001(0.003) = 0.000003 
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 r24 ∆t = λ2F ∆t  = 0.1(0.003) = 0.0003 

 r34 ∆t = λ1 ∆t = 0.01(0.003) = 0.00003      

 r11 ∆t = (λ1 +λ2I)∆t= 0.011(0.003) = 0.000033 

 r22 ∆t = λ2F ∆t  = 0.1(0.003) = 0.0003 

 r33 ∆t = λ1 ∆t = 0.01(0.003) = 0.00003 

 r44 ∆t = 0 ∆t = 0 
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That means during the mission the probability of state 1 (both generators operating) is P1(t) 

= 0.967538, the probability of state 2 (generator X1 fails, but X2 runs) is P2(t) = 0.025478, the 

probability of state 3 (generator X2 fails, but X1 runs) is P3(t) = 0.002907, and the probability of 

state 4 (both generators fail) is P4(t) = 0.004077.  So the reliability of the system is Rs= 

P1(t)+P2(t) +P3(t) = 0.99592.  This is an approximate result.  An exact reliability value 0.99596 

for this example can be obtained by the formula below which is derived by Laplace method. 

 �(�) = ;<=1� + =1=1c=Mã<=Mä å;<=Mä� � ;<(=1c=Mã)�æ (5. 13) 
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CHAPTER 6 

 

FAULT TREE ANALYSIS 

6.1  Fault Tree Configuration 

The fault tree technique was introduced in 1962 at Bell Telephone Laboratories, in 

connection with a safety evaluation of the launching system for the intercontinental Minuteman 

missile.  Today fault tree analysis is one of the most commonly used techniques for reliability 

and safety analysis. 

A fault tree is a logic diagram that displays the interrelationships between a potential 

critical event (accident) in a system and the causes for this event.  The cause may be 

environmental conditions, human errors, normal events, and specific component failures [27]. 

The basic symbols used in the construction of a fault tree include logic gates and events.   

Logic gate symbols are used to represent when a particular event can occur.  The AND gate (*) 

describes the logical operation that requires the coexistence of all input events to produce the 

output event.  The OR gate (+) describes that an output event occurs if any of the input events 

occur.  There are three basic types of events that can occur in a fault tree.  These are top event, 

intermediate events and terminal events.  The top event (undesired event) appears at the top of 

the fault tree and is placed within a rectangle.  An intermediate event is any event within the fault 

tree that is further resolved into events that could cause it.  These are represented by rectangles.   

A terminal event (Sink event) is an event that is not resolved into further causes and is 

represented by either circles or diamonds [18]. 
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6.2  Determination of Minimal Cut-Set and Tie-Set from Fault Tree 

The major Fault Tree Algorithms are MOCUS [28] which is based on PREP – KITT 

(Downward) [29], TREEL based on MICSUP (upward) [30],  ELRAFT [31] based on unique 

factorization property of natural numbers 1 11…19, 111…119, …   

MOCUS is probably the most famous algorithm to compute minimal cut-sets of fault trees, 

event trees, block diagrams, etc.  It represents the class of top-down algorithms.  The following 

example is from McCalley [32].  Consider the power system illustrated in Figure 6.1. 

B 

5 

4 

3 

1 

2 

A 

C 

 
Figure 6.1: System for Fault Tree Example 

The generator at station A represents power inflow that can be perfectly reliable for 

purposes of this example. Define “system failure” to be 

1. Station B is isolated or 

2. Station C is isolated or 

3. The combined load of stations B and C are carried by a single circuit. 

A fault tree is drawn for this system (note the answer is not unique) as shown in Figure 6.2. 
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S1: System failure 

S2: Station B 
unsupplied 

S3: Station C 
unsupplied 

S4: Stations B and C 
supplied by a single line 

And 

X1 
S5: No supply 

from C 
S6: No supply 

from B 
S7: Supply 

by cct 1 only 
S8: Supply 

by cct 2 only 
S9: Supply 

by cct 3 only 

S10: CB 
Tie out 

S11: CB 
Tie out 

S12: AB 
Tie out 

And 

And And And 

And And And 

X2 X3 

X3 

X3 

X3 

X2 

X2 X2 X1 X1 

X1 X4 X5 X4 X5 

OR 

OR 

OR OR 

 
Figure 6.2: Fault Tree 

 

Our approach to identifying the minimal cut-sets from a fault tree assumes that we will 

make the identification by analyzing the fault tree from top to bottom.  In doing so, we make two 

important observations: 

1. As we proceed down the tree from the top event, whenever we pass through an AND-

gate, it means that all of the inputs to the gate must occur in order for the output to 

occur; as a result, the cut-set of interest increases in cardinality by adding the events 

corresponding to the AND-gate inputs. 
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2. As we proceed down the tree from the top event, whenever we pass through an OR-

gate, it means that any of the inputs to the gate can occur in order for the output to 

occur; as a result, the number of cut-sets increases by adding additional cut-sets 

corresponding to the original cut-set plus one of the OR-gate input events. 

The following cut-set identification algorithm follows from these two observations. 

Step1: Alphabetize the gates. 

Step2: Label each basic failure event. 

Step3: Locate the uppermost gate in the first row and first column of a matrix.    

Step4: Iterate either of the fundamental permutations (a) or (b) in a top-down fashion. 

a. Replace AND gates by a horizontal arrangement of the input to the gates, and 

enlarge the size of the cut-sets. 

b. Replace OR gates by a vertical arrangement of the input to the gates, and 

increase the cut-sets 

Step5: When all gates are replaced by basic events, obtain the minimal cut-sets by 

removing supersets.  A superset is a cut-set that includes some other cut-sets. 

This algorithm is illustrated on the example described Figure 6.2, as follows: 

We begin with the top event, label it as system S1. 

 

S1 

 

The gate below S1 is an OR gate, so we replace S1 with a vertical arrangement of the 

inputs to S1, resulting in: 
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S2 
S3 
S4 

 

Sub-system S2 and S3 are both AND gates, with inputs {X1, X2, S5}, and {X3, S6}, 

respectively, so replace S2 and S3 with these horizontal expansions.  Sub-system S4 is an OR 

gate, with inputs {S7, S8, S9}, so we replace S4 with this vertical expansion.  These changes 

result in: 

 

X1  X2  S5 
X3  S6 
S7 
S8 
S9 

 

Sub-systems S5 and S6 are OR gates, with inputs {X3, S10} and {S11, S12}, respectively, 

so replace S5 and S6 with these vertical expansions.  Sub-systems S7, S8, and S9 are AND gates 

with inputs {X2, X3}, {X1, X3}, and {X1, X2}, respectively, so replace S7, S8, and S9 with 

these horizontal expansions. 

 

X1  X2  X3 
X1  X2  S10 
X3  S11 
X3  S12 
X2  X3 
X1  X3 
X1  X2 
  

Sub-systems S10, S11, and S12, are all AND gates with inputs {X4, X5}, {X4, X5}, and 

{X1, X2}, respectively, so replace S10, S11, and S12 with these horizontal expansions. 
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X1  X2  X3 
X1  X2  X4  X5 
X3  X4  X5 
X3  X1  X2 
X2  X3 
X1  X3 
X1  X2 
  

There are 3 sets which are not minimal cut-sets: {X1, X2, X3}, {X1, X2, X4, X5}, {X3, 

X1, X2}, and these can be eliminated.  We have remaining the minimal cut-sets of {X3, X4, 

X5}, {X2, X3}, {X1, X3}, and {X1, X2}.  There are no other minimal cut-sets because a 

properly constructed fault tree must produce all cut-sets.  In this example, we may verify the list 

by observing its significance with respect to Figure 6.2. 

Once the minimal cut-sets are obtained, system reliability can be calculated according to 

the method described in section 4.6.6 . Assuming the unreliability of components X1, X2, X3, 

X4, X5 are R1′=0.1, R2′=0.2, R3′=0.3, R4′=0.4, R5′=0.5 respectively, the system’s reliability will 

be 0.85880 which was obtained in section 4.6.6 . 
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CHAPTER 7 

 

SOFTWARE DESIGN AND VALIDATION 

 

7.1  Software Development  

A Software Tool for Reliability Estimation 2.0 (STORE2.0) was developed under 

Microsoft Windows XP operating system using Microsoft Visual Basic 2008 development tool, 

and Microsoft SQL server 2005 as Database Engine.  It is significantly different from the earlier 

version developed by Parekh [1].  Some of major enhancements are listed below: 

1. Fault tree reliability analysis was added. 

2. A more efficient algorithm for tie-set and cut-set calculation was developed. 

3. State Dependent Systems can be used to analyze any multiple states Markov model. 

4. The software is developed under the latest development tool Visual Basic 2008 and 

database is implemented for user data storage. 

This software tool also differs significantly from commercial software.  The comparison is 

shown in Table 7.1. 
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Table 7.1: Comparison with commercial software 

 STORE2.0 Isograph [33] Relex [34] Item [35] ReliaSoft [36] 
Failure Data 

Analysis 
√ × × × × 

Parameter 
Estimation 

√ × × × × 

Cut-set 
Identification 

√ √ √ √ × 

Tie-set 
Identification 

√ × √ × √ 

RBD √ √ √ √ √ 
Fault Tree 
Analysis 

√ √ √ √ √ 

State 
Dependent 
Systems 

√ √ √ √ √ 

 

7.2  Database Structure 

STORE 2.0 uses the SQL data base to store data and settings for users.  When a user 

creates a new project, a SQL database file (with extension of mdf) is created automatically.  

When a project is saved, all information including component, system, fault tree, block diagram, 

and Markov model are saved to this file, so that the user can simplify open only one file and 

easily get all needed information to continue their work later.  A database file is designed to have 

different tables for different functions and each table has its own data structure. The database has 

seven tables as shown in Table 7.2. 
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Table 7.2: Database Tables 

Table Name Description 

Components Store information for components 

Systems Store information for systems 

FaultTreeConnection Store the fault tree configuration 

RBDcnMatrix Store connection information for Reliability Block Diagram 

MarkovState Store State information for Markov Model 

MarkovTransitions Store connection matrix for Markov Model 

OtherInfo Other information needed to be stored, such as setup information 

 

Detail structure information for each table is as follow: 
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Table 7.3: Component Database Table 

Field Name Data Type Description 

Comp_ID text Key field.  Component identification 

Comp_Name text Component name 

Reliability float Reliability of the component 

Failure_Data text Failure data of the component 

Description text Description of the component 

Mission_Time float Mission time for the reliability calculation 

Mission_Time_Unit text Mission time unit for the reliability calculation 

Distribution text Distribution of the failure data 

Dist_Parameter1 float Distribution parameter one 

Dist_Parameter2 float Distribution parameter two 

Dist_Parameter3 float Distribution parameter three 

Data_Type text Data type of the failure data 

Test_Time float Test time of the failure data 

Total_NO_of_Data int Total number of the tested items when collecting failure 
data 

Level_of_Significance float Level of significant required for reliability computation 

 

 

Table 7.4: System Database Table 

Field Name Data Type Description 

System_ID text Key field.  System identification 

Description text Description of the system 

Structure text Structure  of the system 

Reliability float Reliability of the system 

System_Name text System name 

Gate text Gate of the fault tree 
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Table 7.5: FaultTreeConnection Database Table 

Field Name Data Type Description 

Output_Event_Name text Output event name of the fault tree 

Gate text Gate of the fault tree 

Input_Event_Name text Input event name of the fault tree 

Event_Description text Description of the event 

 

 

Table 7.6: RBDcnMatrix Database Table 

Field Name Data Type Description 

Begin_Node int Begin node 

End_Node int End node 

Component text Component between begin node and end node 

Reliability float Reliability of the component 

 

 

Table 7.7: MarkovState Database Table 

Field Name Data Type Description 

State text The name of the state 

Description text Description of the state 
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Table 7.8: MarkovTransitions Database Table 

Field Name Data Type Description 

State_From text Begin state 

State_To text End state 

Description text Description of the transitions between begin state to end 
state 

Rate float Rate of the transitions between begin state to end state 
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Table 7.9: OtherInfo Database Table 

Field Name Data Type Description 

RBD_Description Text Description of the Block Diagram project 

FLT_Description Text Description of the Fault Tree project 

Markov_Description Text Description of the Markov Model project 

Markov_Initial_State Text Initial state of in the markov project 

Markov_Unavailability_State Text Unavailability state of in the markov project 

Markov_Mission_Time Float Mission of in the markov project 

Markov_NO_of_Partitions Int Number of partitions of mission time 

RBD_Source_Node Text Source node in the Block Diagram project 

RBD_Sink_Node Text Sink node in the Block Diagram project 

RBD_Accuracy Float Accuracy required in the Block Diagram project 

FLT_Accuracy Float Accuracy required in the Fault Tree project 

Active_Tab Int Which tab should be shown when the software is 
opened 

Markov_Time_Unit Text Time unit of the mission time in Markov project 

RBD_Mission_Time Float Mission time in Block Diagram project 

RBD_Time_Unit Text Time unit of the mission time in Block Diagram 

RBD_K Int Value of K in the K/N system 

RBD_N Int Value of N in the K/N system 

RBD_KN_Reliability float Value of reliability in the K/N system 

FLT_Mission_Time Float Mission time in Fault Tree project 

FLT_Time_Unit text Time unit of the mission time in Fault Tree project 

 

7.3  Software Functions 

The opening screen of STORE 2.0 is shown in Figure 7.1.  There are five tabs 

(Component, Reliability Block Diagram, Fault Tree Analysis, Markov Analysis, and Tools) 

available for users to choose from.  The following sections describe each of the five tabs. 
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Figure 7.1: Software Functions Screen 

7.3.1  Component Reliability Analysis 

The following example will be used to illustrate how to compute component reliability and 

how to analyze the RBD. 

Example: Let us say we have a six components system connected as shown in Figure 7.2. 

Five tabs for different functions. 
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Figure 7.2: Series-Parallel Block Diagram System 

The reliability of component X1 is known to be 0.93.  For other components we don’t 

know the reliability but we have the failure data as follows.  We want to know all components’ 

reliability and the system reliability for a mission time of 50 days with α=0.05. 

Failure data of X2 (Complete Data) [17] 

The following failure times (days) was obtained by testing 15 units until each unit failed: 

Failure 
Number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Time 
(days) 

25.1 73.9 75.5 88.5 95.5 112.2 113.6 138.5 139.8 150.3 151.9 156.8 164.5 218 403.1 

 

Failure data of X3 (Type I Single Censor Data) 

Twenty units were placed on a test for 90 days.  The following 15 failure were observed 

prior to concluding the test. 

Item 
Number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Time 
(days) 

61.6 70 78.4 75.3 83.5 72.3 65.1 77.1 83.2 63.4 72.7 72.5 84.3 73 65.5 

 

Failure data of X4 (Type II Single Censor Data) [17] 

The following 35 failure times (days) were observed from among 50 units placed on test.  

The test was terminated at the 35th failure (type II censoring).   

Start 

X2 

X3 

X4 

  End 

X1 

(0.93) 

X5 X6  1 

 2 

 3  4  5 



101 

 

Failure 
Number 

1 2 3 4 5 6 7 8 9 10 11 12 

Time 
(days) 

1.3 7.3 7.8 13.3 13.9 19.4 19.7 22.3 22.8 26.7 29.7 30.2 

Failure 
Number 

13 14 15 16 17 18 19 20 21 22 23 24 

Time 
(days) 

31.9 32.2 33 36.8 37 41.7 46.7 50.4 51.4 60 61.3 61.4 

Failure 
Number 

25 26 27 28 29 30 31 32 33 34 35  

Time 
(days) 

65.6 65.8 72.6 78.4 100.4 110.6 111.4 118.2 119.4 132.1 139.7  

 

Failure data of X5 (Type I Multiple Censor Data) [17] 

Fifteen units were placed on test for 500 days.  The following failure times and censored 

times were observed prior to concluding the test (“+” represent it is a censored (removal) time). 

Failure 
Number 

1 2 3 4 5 6 7 8 9 10 11 

Time 
(days) 

34 136 145+ 154 189 200+ 286 287 334 353 380+ 

 

Failure data of X6 (Type II Multiple Censor Data) [17] 

Thirty motors are placed on test with failures occurring at the following cycle times.  A 

cycle consists of a motor starting up to its maximum number of revolutions per minutes and then 

shutting down until it has come to a complete stop.  Censored units resulted from motors being 

removed from test to satisfy other demands. 

Failure 
Number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Time 141 391 399 410+ 463 465 497 501+ 559 563 579 580+ 586 616 

Failure 
Number 

15 16 17 18 19 20         

Time 683 707 713 742+ 755+ 764         
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When the tab “Component” is clicked, the window of component reliability analysis will 

be shown like Figure 7.1.  It contains two parts, Component Information (left hand side) and 

Component Failure Data Analysis (right hand side).  Through the above example, we will 

illustrate how to use part one to enter data and analyze the result from part two. 

In the first part Component Information, a list of component information can be created in 

the component table.  For this example, we put X1, X2, X3, X4, X5 and X6 in the first column 

(Comp_ID) of the component table and put their corresponding names in the column of 

Comp_Name (suppose their names are A, B, C, D, E, F respectively).  Since the reliability of 

component X1 is known, enter its value to the third column (Reliability) of the component table.  

The result is shown in Figure 7.3.  

  
Figure 7.3: Entering Component Name 

For each created component, failure data can be enter/display in the failure table.  In this 

case, we first select component X2 in the drawing list “Selected Component ID” and then put all 

those failure data into the failure table.  After that select day as the failure data units in the 

drawing list “Unit” and select “Complete data” as the data type (see section 3.1 for more 

information about data type).  The result is shown in Figure 7.4. 
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Figure 7.4: Input Component Failure Data 

Failure data analysis can be done in the second part.  After finishing the failure data 

information, and entering the required significant of level in the “Significant of Level” text box, 

user is ready to analyze the data.  When the button “Analyze Distribution” is clicked, failure data 

are fitted to four common distributions (Exponential, Weibull, Normal, and Lognormal) and 

results are shown in the result panel.  By choosing the best distribution and enter the mission 

time, reliability can be computed.  In this example, the index of fit r of Weibull is higher than 

those of other distributions and the goodness-of-fit of Weibull is accepted, so Weibull 

distribution is the best choice.  After selecting Weibull in the “distribution” drawing list, the 

fitted parameters will go to the “parameters” text box automatically.  And then enter 50 in the 

mission time text box and then click the button “Calculate Reliability”.  The reliability comes out 
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to be 0.882271 which is shown in text box “Reliability R(t)”.  Click “Update Data”, the 

reliability will be update to the component table.  The result is shown in Figure 7.5.  

 

Figure 7.5: Component X2 Reliability Analysis 

  

To analyze the reliability of component X3, we first put the failure data in the table.  Since 

these are type I single censor data, we select “Type I single Censor Data”.  For this type of data, 

we need to enter test time (90) and total number of units (20) in the test.  Select the best 

distribution (weibull) according to the analysis result and enter mission time (50) and time units 

(day).  By clicking the button of “Calculate Reliability”, the component reliability (0.993725) is 

attained as shown in Figure 7.6. 
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Figure 7.6: Component X3 Reliability Analysis 

Reliability of component X4 can be computed in the same manner.  The only difference is 

we need to choose “Type II single Censor Data” instead of “Type I single Censor Data”.  The 

result is shown in Figure 7.7. 
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Figure 7.7: Component X4 Reliability Analysis 

For component X5 and X6 with multiply censor failure data, “+” should be added 

following the time if it is a censored (removal) time.  The analysis result of component X5 and 

X6 is shown in Figure 7.8 and Figure 7.9 respectively. 
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Figure 7.8: Component X5 Reliability Analysis 

 

Figure 7.9: Component X6 Reliability Analysis 
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7.3.2  Reliability Block Diagram 

To analyze the reliability of system in Figure 7.2, we first need to enter the structure of the 

system as shown in Figure 7.10.   

  
Figure 7.10: Reliability Block Diagram  

Since the example has assigned reliability, the check box “Assign Component Reliability” 

should be checked.  And then enter the assigned reliability 0.93 to the table and leave the other 

reliability to be blank.  After entering the required accuracy (0, means we want an exact 

reliability value), source node (1) and sink node (5), mission time (50) and time unit (day), 

reliability result (0.945271) can be achieved by click the button “Calculate Reliably”.  The 

analysis result is shown in Figure 7.10. 

The Reliability Block Diagram not only can analyze series-parallel system such as example 

in Figure 7.2 but also can solve complex system.  Figure 7.11 shows the result of the application 
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of block diagram analysis for complex example described in Figure 4.12, assuming each 

component has reliability of 0.9.  The output shows the system reliability to be 0.997650 and 

reliability of all components and sub-system.  Tie-sets and cut-sets are also included in the 

The tree view shows the structure of the system.  In this example, the system is complex as 

it is shown “System(complex)”.  This system has 3 sub-systems (1→2, 2→6, 3→5→6) and two 

components (X4, X5).  1→2 means the begin node and end node of this sub-system are 1 and 2 

respectively.  The reliability of sub-system 1→2 is 0.999 (shown as [0.999]) and it is composed 

of 3 parallel (shown as +) components X1, X2, and X3.  In the same way, sub-system 3→5→6 

means it’s begin node is 3, end node is 6, and this sub-system is composed of two sub-systems 

(components) in series, 3→5 and 5→6. 

On the lower left corner, a K/N system is available to calculate the system reliability. 
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Figure 7.11: Software Block Diagram Screen 

 

7.3.3  Fault Tree Analysis 

Figure 7.12 shows the screen of Fault Tree Analysis when the tab “Fault Tree Analysis” is 

clicked.  Those two tables in the left hand side are used to build the structure of the system.  We 

will show how to use this function by building an example system shown in section 6.2 . 

 First, we build the top level system.  In Figure 6.2 we see the top level system S1 has an 

“or” gate with sub-system S2, S3, and S4, so in the first row we put “S1” in the column of 

“System_ID”, “System Failure” in the column of “System_Name”, and “OR” in the column of 

“Gate”.  In the input event table, we put “S2”, “S3”, and “S4” as shown in Figure 7.12.  And then 

break down sub-system S2, S3 and S4.  For sub-system S2 which has an “and” gate with 

component X1, component X2 and system S5, we will enter “S2” in the column of “System_ID”, 
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“Station B unsupplied” in the column of “System_Name”, and “AND” in the column of “Gate”; 

In the input event table, we put “X1”, “X2”, and “S5”.  After breaking down all sub-systems and 

we get the same table shown in Figure 7.12. 

A tree view of the system is available on the middle of the window showing the structure 

of selected sub-system.  We can change the selected sub-system by selecting the sub-system in 

the drawing list “Selected System ID”, or click the sub-system in the table.  When the selected 

system is changed the tree view will be updated automatically. 

   

 
Figure 7.12: Fault Tree Analysis 

  
To calculate the reliability, select the system wanted to be analyzed, enter the require 

accuracy, and then click the button “Calculate Reliability”, the result will be shown on the 

bottom.  But before clicking the “Calculate Reliability” button, make sure the component 
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database has all the components and their reliability.  In this example, click tab “Component”, we 

will see we already have those components (X1, X2, X3, X4, and X5) which are created in 

section 7.3.1 Component Reliability Analysis.  Now we go back to the Fault Tree analysis and 

click the button “Calculate Reliability”.  The result in Figure 7.12 shows the reliability (0.99060) 

of the selected sub-system (sub-system S1).  In the result we can also find the unreliability of all 

components and sub-systems under S1.  The result also shows the tie-sets and cut-sets of sub-

system S1. 

 

7.3.4  Markov Reliability Analysis 

Two tables are used for the Markov reliability analysis (Figure 7.13).  The first one is for 

the state information and the second one for the state transition matrix information.  To calculate 

the reliability, we need to partition the mission time to many parts.  In theory, the more parts we 

partition to the more accuracy we get, however, when the number of parts increases, computer 

will lose some of the accuracy.     

Figure 7.13 shows the result of the application of Markov Model for example in Figure 5.2, 

assuming λ12 = 0.01, λ13 = 0.1, λ24 = 0.001, λ34 = 0.01, mission time =3 days.  The output shows 

the system reliability and the each state’s reliability. 
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Figure 7.13: Software Markov Model Screen 

 

7.4  Software Validation 

7.4.1  Failure Data Analysis 

In this section examples for different distribution will be described and the results obtained 

will be compared with the ones existing in the literature. 

Exponential Distribution 

The following are complete data representing the failure time (hours) of the tested items 

[17] (assuming α =0.05): 
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Failure 
Number 

1 2 3 4 5 6 7 8 9 10 

Time 
(Hours) 

3.3 4.2 12.9 13.8 14.3 14.8 18.5 22.8 27.1 29.7 

Failure 
Number 

11 12 13 14 15 16 17 18 19 20 

Time 
(Hours) 

32 39.5 41.3 41.6 51.1 61.7 92.2 106.6 148.8 198.1 

 

a. Least Square 

According to Table 3.2 and formulas in section 3.4.1 , the calculation results for this 

example are:  λ = 0.02     r = 0.98 

b. MLE 

As discussed in section 3.5.2 , the formula for exponential MLE analysis is as below: 

 λ = f/T  
since T = 3.3+4.2+12.9+…+198.1=974.3       

 f=20   λ =0.02  
c. Goodness-of-fit 

As discussed in section 3.6.1 , Bartlett’s Test should be used for exponential.  The 

calculation results for this example are: 

 B = 16.49   10.12 ±  B ± 30.14  
As the value of B falls within the range, the distribution is proved to be exponential. 

d. Reliability 



115 

 

Assume mission time to be 10 hours, the formula for the reliability calculation, as shown in 

section 3.3.2 , is: 

 �(�) = ;<=�   �(10) = ;<+.+H(@+) = 0.818731  
Doing this example by hand involves lot of tedious calculation, but when the same set of 

failure data is run in the software, it gives the accurate results as shown in Figure 7.14. 

 
Figure 7.14: Software Exponential Result 

 

Weibull Distribution 

The following failure times were obtained from testing 15 units until each had failed [17] 

(assuming α =0.05): 
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Failure 
Number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Time 
(days) 

25.1 73.9 75.5 88.5 95.5 112.2 113.6 138.5 139.8 150.3 151.9 156.8 164.5 218 403.1 

 

a. Least Square 

According to Table 3.2 and formulas in section 3.4.1 , the calculation results for this 

example are:   

                                                                        β =1.8    

                                                                        θ = 161.41     

                                                                        r=0.95 

b. MLE 

As discussed in section 3.5.2 , newton-Raphson method for solving a nonlinear equation is  

used.  By initiating β =1.8 which is obtain in MLE, the answer for β and θ are calculated as 

follow 

 β =1.8     θ = 158.56     
                

c. Goodness-of-fit 

As discussed in section 3.6.1 , Mann’s Test should be used for Weibull. The calculation 

results for this example are: 

 M=1.18   M ± 2.48  
As the value of M is smaller than the critical value, the distribution is proved to be Weibull. 

d. Reliability 
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Assume mission time to be 10 hours, the formula for the reliability calculation, as shown in 

section 3.3.2 , is: 

 �(�) = ;<(� ?⁄ )B    �(10) = ;<(@+ @¸ê.¸®⁄ )1.ë = 0.993111  
When the same set of failure data is run in the software, it gives the accurate results as 

shown in Figure 7.15. 

 
Figure 7.15: Software Weibull Result 

 

Normal Distribution 

The following 15 observations represent a sample of the repair times, in hours, of a 

complex piece of machinery [17] (assuming α =0.10): 
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Item 
Number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Time 
(Hours) 

61.6 70 78.4 75.3 83.5 72.3 65.1 77.1 83.2 63.4 72.7 72.5 84.3 73 65.5 

 

a. Least Square 

According to Table 3.2 and formulas in section 3.4.1 , the calculation results for this 

example are:  

                                                                       σ =7.93    

                         μ = 73.19                          r=0.98 
 

b. MLE 

As discussed in section 3.5.2 , the formula for Normal MLE analysis is as below: 

 P = ��   QH = (Y.1)�MY  
 

The calculation results for this example are:  σ =7.04    

                                                                        µ = 73.19     

                

c. Goodness-of-fit 

As discussed in section 3.6.1 , Kolmogorov-Smirnov Test should be used for Normal.  The 

calculation results for this example are: 

     D = 0.13   D ± 0.2 
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As the value of D is smaller than the critical value, the null hypothesis regarding the 

normality of data is accepted. 

d. Reliability 

Assuming mission time to be 65 hours, the formula for the reliability calculation, as shown 

in section 3.3.3 , is: 

 �(�) = 1 � R_-.LN `   �(65) = 0.88  
When the same set of failure data is run in the software, it gives the accurate results as 

shown in Figure 7.16. 
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Figure 7.16: Software Normal Result 

  
Lognormal Distribution 

The time to failure of hose assemblies, due to structural fatigue and chemical breakdown, 

is believed to have a lognormal distribution.  The following 25 failure times were obtained from 

environmental stress testing (complete data) [17] (assuming α =0.10): 

Item 
Number 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Time 
(Hours) 

240.5 511.8 1083.4 821.3 1725.4 629.4 326.9 964.8 1677.8 282.3 652.3 639.2 1847.8 

Item 
Number 

14 15 16 17 18 19 20 21 22 23 24 25  

Time 
(Hours) 

670.8 338.8 818.1 1407.5 4991 452 464.9 734.9 220.2 1078.1 1077.3 1773  

 

a. Least Square 
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According to Table 3.2 and formulas in section 3.4.1 , the calculation results for this 

example are:  

                                                                        s =0.79    

                                                                        µ′ = 765.43     

                                                                        r = 0.99 

b. MLE 

As discussed in section 3.5.2 , the calculation results for this example are:   

                                                              σ =0.73    

                                                              µ′ = 765.43     

                

c. Goodness-of-fit 

As discussed in section 3.6.1 , Kolmogorov-Smirnov Test should be used for Lognormal.  

The calculation results for this example are: 

 D=0.08   D ± 0.16  
As the value of D is smaller than the critical value, the null hypothesis regarding the 

normality of data is accepted. 

d. Reliability 

Assuming mission time to be 200 hours, the formula for the reliability calculation, as 

shown in 3.3.4 , is: 

 �(�) = 1 � R 2 1NW &\ -LW3  
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 �(200) = 0.97  
When the same set of failure data is run in the software, it gives the accurate results as 

shown in Figure 7.17. 

 
Figure 7.17: Software Lognormal Result 

 

7.4.2  State Independent Systems 

7.4.2.1  Series-Parallel systems 

The system reliability of the series-parallel system example in Figure 4.5 is 0.97248 which 

was obtained in section 4.4 .  The same result is obtained by the software as shown in Figure 

7.18. 
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Figure 7.18: Software Series-Parallel systems Result 

7.4.2.2  K/N Systems 

A K/N system example shown in section 4.5 is recalculated by the software and the same 

result is obtained as shown in Figure 7.19. 
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Figure 7.19: Software K/N Systems Result 

7.4.2.3  Complex Systems 

This section uses a system shown in Figure 4.14 from Nelson et al. [2]  to test the software.  

System has 55 tie-sets and 10 cut-sets.  All of the tie-sets and tie-sets are listed in Table 7.10 and 

Table 7.11 respectively. 

Cut-Sets: 
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Table 7.10: Complex System Cut-Set Result 

NO. Cut-Sets NO. Cut-Sets 

C1 X1,X2,X3 C6 X11,X12,X13,X14 

C2 X3,X4,X5 C7 X7,X8,X10,X14 

C3 X1,X2,X6 C8 X9,X10,X15,X16 

C4 X4,X5,X6 C9 X11,X12,X13,X15,X16 

C5 X10,X14,X9 C10 X7,X8,X10,X15,X16 
 

 

Tie-Sets: 

Table 7.11: Complex System Tie-Set Result 

NO. Tie-Set NO. Tie-Set NO. Tie-Set 

T1 X1,X4,X10,X11 T20 X2,X5,X14,X16 T39 X2,X4,X7,X9,X12 

T2 X1,X4,X10,X12 T21 X3,X6,X10,X11 T40 X2,X4,X7,X9,X13 

T3 X1,X4,X10,X13 T22 X3,X6,X10,X12 T41 X2,X4,X8,X9,X11 

T4 X1,X4,X14,X15 T23 X3,X6,X10,X13 T42 X2,X4,X8,X9,X12 

T5 X1,X4,X14,X16 T24 X3,X6,X14,X15 T43 X2,X4,X8,X9,X13 

T6 X1,X5,X10,X11 T25 X3,X6,X14,X16 T44 X2,X5,X7,X9,X11 

T7 X1,X5,X10,X12 T26 X1,X4,X7,X9,X11 T45 X2,X5,X7,X9,X12 

T8 X1,X5,X10,X13 T27 X1,X4,X7,X9,X12 T46 X2,X5,X7,X9,X13 

T9 X1,X5,X14,X15 T28 X1,X4,X7,X9,X13 T47 X2,X5,X8,X9,X11 

T10 X1,X5,X14,X16 T29 X1,X4,X8,X9,X11 T48 X2,X5,X8,X9,X12 

T11 X2,X4,X10,X11 T30 X1,X4,X8,X9,X12 T49 X2,X5,X8,X9,X13 

T12 X2,X4,X10,X12 T31 X1,X4,X8,X9,X13 T50 X3,X6,X7,X9,X11 

T13 X2,X4,X10,X13 T32 X1,X5,X7,X9,X11 T51 X3,X6,X7,X9,X12 

T14 X2,X4,X14,X15 T33 X1,X5,X7,X9,X12 T52 X3,X6,X7,X9,X13 

T15 X2,X4,X14,X16 T34 X1,X5,X7,X9,X13 T53 X3,X6,X8,X9,X11 

T16 X2,X5,X10,X11 T35 X1,X5,X8,X9,X11 T54 X3,X6,X8,X9,X12 

T17 X2,X5,X10,X12 T36 X1,X5,X8,X9,X12 T55 X3,X6,X8,X9,X13 

T18 X2,X5,X10,X13 T37 X1,X5,X8,X9,X13   

T19 X2,X5,X14,X15 T38 X2,X4,X7,X9,X11   
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System reliability was found to be 0.972302, which is same as that stated in the paper, by 

Nelson, Batts and Beadles.  Figure 7.20 shows the results obtained by running the software. 

 
Figure 7.20: Software Complex System Result 

 

7.4.3  State Dependent Systems 

The state dependent system used to test the software is a Primary/Backup System with 

Internal/External Fault Monitoring which is equipped in airplane. 

The system shown schematically in the figure below consists of a primary unit (Unit 1) 

with continuous internal fault monitoring, a backup unit (Unit 2) with no self-monitoring, and an 

external monitoring unit (Unit 3) whose function is to monitor the health of the backup unit. 
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Figure 7.21: Diagram of Active System with self-monitoring  
and Back-up System with an Independent Monitor 

 

The failure rate of Unit 1 is λ1 = 5.0E-03per hour.  The full time self-monitoring of this unit 

enables it’s functionality to be verified prior to every flight.  (The duration of each flight is 

assumed to be 5 hours.)  If it is found to be faulty or inoperative, it is repaired before dispatch. 

The failure rate of Unit 2 is λ2 = 2.5E-03per hour.  The backup system has no self-

monitoring, but is monitored continuously by an independent monitor (Unit 3).  If the backup 

system fails and the monitor is working, the backup is repaired before the next dispatch.  If the 

monitor is not working, the backup can fail latently, but it is checked every 10 flights (50 hours).  

If the backup unit is found faulty at one of these 50-hour checks, with no indication of backup 

system failure from the monitor, it is assumed that the monitor system is also failed, so both 

Units 2 and 3 are repaired prior to the next flight. 

The external monitor (Unit 3) has a failure rate of λ3 = 2.5E-03per hour.  If it fails, it can be 

repaired in one of two ways.  First, as noted above, if the backup system is found to have failed 

at its periodic 50-hour inspection and there was no monitor indication of a backup system failure, 

then the monitor is repaired along with the backup system prior to the next flight.  Second, a 

Unit 1 

Primary System with 
self-monitoring 

Unit 2 

Backup System with 
no self-monitoring 

Unit 3 

Monitor for Backup 
System 

Output Input 
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periodic check of the monitor is performed every 100 flights (500 hours), and if the monitor is 

found to have failed, it is repaired prior to the next flight. 

The MTBFs of the individual units are 20,000 and 40,000 hours, whereas the periodic 

inspection intervals are only 5, 50, and 500 hours, all of which are orders of magnitude smaller 

than the MTBFs.  Also, most of the states being repaired are first-order states, i.e., they are just 

one failure removed from the full-up state, so there is no appreciable loss of accuracy in 

modeling these repairs as continuous transitions with constant rates given by m = 2/T for the 

respective intervals.  The exception to this is the state in which both the monitor and the backup 

system are failed.  The 50-hour periodic inspection/repair of this state will actually have an 

effective repair rate somewhat greater than 2/T, but it is conservative to use 2/T, so for 

convenience we will use this expression for all the repair rates.  Thus we set m1 = 2/5, m2 = 

2/50, and m3 = 2/500, and we can construct the Markov model for the overall system as shown 

below. 
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Figure 7.22: Markov Example 

 
 

As usual, we set the repair rate on the total system failure state (State 6) to infinity, which 

effectively eliminates that state from the system equations.  The system failure rate is simply the 

rate of entry into that state, i.e., λsys = (P1 + P4) λ2 + (P3 + P5) λ1.  Also, since the probabilities of 

the remaining states must sum to 1, we can disregard one of them, so we need only consider the 

steady-state equations for the state 1 through 5, as listed below. 

 :@Ù+ � (:H + :É + P@)Ù@ = 0 
 
 :ÉÙ+ � (:@ + :H + PÉ)ÙH + P@ÙÈ = 0 
 
 :HÙ+ � (:@ + :É + P@)ÙÉ = 0   :ÉÙ@ + :@ÙH � (:H + P@)ÙÈ = 0   :HÙH + :ÉÙÉ � (:@ + PH)Ù̧ = 0 
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Full-up 

µ1 

λ1 

µ3 

λ3 

µ1 
λ2 

µ2 
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λ2 
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λ1 
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Combining these with the conservation equation P0 + P1 + P2 + P3 + P4 + P5 = 1, we have 

six equations in six unknowns.  In terms of the matrix notation of Section 2.3, the average system 

failure rate for this example is 

 :¥�¥ = �Þ<@î (7. 1)  
where 

Þ =
ïð
ðð
ðñ 1 1 1 1 1 1:@ �(:H + :É + PÈ) 0 0 0 0:É 0 �(:@ + :H + PÉ) 0 P@ 0:H 0 0 �(:@ + :É + PÈ) 0 00 :É :@ 0 �(:H + P@) 00 0 :H :É 0 �(:@ + PH)òó

óó
óô  

 

î =
ïðð
ððñ
100000òóó

óóô 
 

and L is the row vector L = [ 0  λ2  0  λ1  λ2  λ1 ].  Inserting the values of the failure and 

repair rates, this gives the result λsys = 0.0001278 per hour.  Reliability for mission time of 2 

hours is R(2) = exp(-λsys*t) = 0.99997 

Solve the above example with software: 
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Figure 7.23: Software Markov Model Result 

7.4.4  Fault Tree Analysis 

In this section we will solve the fault tree example in section 6.2  by software and compare 

obtained result with the theory result.  In that example, the minimal cut-sets are {X3, X4, X5}, 

{X2, X3}, {X1, X3}, and {X1, X2}.  Assuming the unreliability of components X1, X2, X3, X4, 

X5 are R1′=0.1, R2′=0.2, R3′=0.3, R4′=0.4, R5′=0.5 respectively, the system’s reliability will be 

0.85880 which was obtained in section 4.6.6 . 

The same result is obtained when it is solved by the software (Figure 7.24). 
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Figure 7.24: Software Fault Tree Analysis Result 

 

  



133 

 

CHAPTER 8 

 

CONCLUSION 

 

8.1  Contributions 

The software is able to estimate the component reliability by analyzing failure data and 

determine system reliability by RBD, fault tree, and Markov approach.  The integration of all 

these functions makes it different from commercial reliability software and easier for user to 

analyze component reliability and manage failure data.  To make the software more efficient this 

research proposed an approach containing a revised connection matrix and a simplification 

method for large simple and complex network system.  The simplification method can simplify 

the system by identifying and combining the series and parallel sub-system until a pure complex 

system is attained.  After simplification the number of minimal path and cut-set are reduced, so 

using the simplification method before applying minimal path or cut-set technique can improve 

the efficiency of the identification of paths and cuts, and save time from reliability calculation.  

This research also makes an improvement on the element substitution algorithm.  In the 

improved method, whenever a potential cut-set is deleted, all levels of its successors will also be 

eliminated.  In this way, potential cut-set array will contain less non-minimal cut-sets and its size 

will be decreased leading to reduce computation time.  Comparison of these improved methods 

with current available methods is listed in Table 8.1. 
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Table 8.1: Reliability Method and Contribution 

Available 

Methods/Techniques 

This Research’s 

Proposed/ Improved 

Methods 

Improvements 

No failure data distribution 
analysis function in 

commercial software 

Integration of failure data 
analysis functions with 
other reliability analysis 

functions 

Integration of failure data 
enable users conveniently 
manage failure data and 
analyze component reliability. 

Traditional connection matrix Revised connection matrix 

Revised connection matrix is 
more concise and efficient 
than traditional connection 
matrix in tie-set and cut-set 
determination and reliability 
calculation. 

Determine tie-set or cut-set 
directly from network 

Network simplification 
before the application of 

tie-set or cut-set algorithm 

Network simplification 
method can reduce tie-set and 
cut-set, hence it reduces 
computation time. 

Element substitution to 
determine cut-set 

Improved element 
substitution 

Improved element substitution 
generates less non-minimal 
cut-set, so it is more efficient. 

 

8.2  Conclusion 

The aim of this research was to develop a software tool to efficiently estimate component 

and system reliability including state dependent and independent system.  The software tool was 

successfully built to: 

a. Analyze failure data (component reliability) 

b. Improve computation efficiency by  

1) Introducing revised connection matrix 

2) Using simplification method 

3) Improving cut-set algorithm  
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c. Calculate reliability of independent system (system reliability using block diagram 

and fault tree) 

d. Calculate the reliability of dependent system (system reliability using Markov 

Model) 

The software provides a user-friendly environment.  Data entry, data update and data 

retrieval can be performed in a short period of time.  And all functions of the software were 

validated by different examples with known solutions.   

 

8.3  Future Work 

The software is successfully developed to analyze both component reliability and system 

reliability. However, it can be enhanced in following areas:  

� Ability to handle degraded network systems 

� Improvement to the tie-set and cut-set algorithm 

� Reliability estimation by using other distributions 

� Developing a web based tool 

� Developing a Graphical User Interface which will allow the user to build a 

reliability block diagram to show the network of components 
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