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ABSTRACT 

Development of a Synthetic Pathway Toward a Bowl-Shaped C27H12 

Polycyclic Aromatic Hydrocarbon 

Yang-Sheng Sun 

Bowl-shaped and basket-shaped polycyclic aromatic hydrocarbons (PAHs) have 

attracted considerable attention in recent years. They are challenging targets for total synthesis 

due to the presence of substantial strain energy in the curved structures. A solution-phase 

synthesis of a bowl-shaped polycyclic aromatic hydrocarbon Cz7H12 was explored. The use of 

the casecade radical cyclization reactions of a benzannulated enyne-allene is a key feature of this 

synthetic pathway. The mild reaction conditions provide efficient and flexible designs for bowl-

shaped and basked-shaped P AHs and their precursors. Our proposed synthesis strategy for the 

bowl-shaped Cz1H12 involves an initial synthesis of a benzannulated enediynyl propargylic 

alcohols followed by the cascade cyclization reactions of the resulting enyne-allenes. The use of 

the palladium-catalyzed intramoleular arylation reactions is proposed as a key step leading to the 

final products. Specifically, transformation of 1-indanone to a key intermediate, 2-methoxy-2-(2-

methoxyethyl)-1-indanone, was extensively investigated, and the conditions for forming 1-(2-

ethynylphenyl)-2-(2,6-dichlorophenyl)ethyne via the Sonogashira reaction were established. 

Condensation between the 1-indanone and the ethyny1 derivatives produced the benzannulated 

enediynyl propargylic alcohol. Chlorinated P AHs as potential precursors leading to the bowl-

shpaed Cz1H12 hydrocarbon have been successfully synthesized. 
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Chapter 1 

Development of a Synthetic Pathway Toward a Bowl-Shaped C27H12 

Polycyclic Aromatic Hydrocarbon 

1. Introduction 

Fullerenes are referred to as molecules that are completely comprised of carbon atoms. 

With the discovery of buckminsterfullerene, C6o, in 1985, researches involving fullerenes and 

other related compounds have been intensely explored.1"3 Along with this enormous attraction 

toward fullerenes, polycyclic aromatic hydrocarbons (PAHs) containing the bowl-shaped or 

basket-shaped fragments have also received significant attention from scientists.4 These 

compounds, also known as buckybowls or buckybaskets, present an opportunity toward further 

research regarding carbon nanotubes, in that the fullerene fragments would serve as the end caps 

of nanotubes (Figure 1 ). 5' 6 

Figure 1. End cap of a nanotube 

Several buckybowls that have been synthesized and investigated are shown below 

(Figure 2). The smallest fullerene fragment showing a significant curvature is CzoH10, which is 

also known as corannulene. It was first synthesized in 1966, two decades prior to the discovery 

ofC60.7• 
8 More recently, corannulene has produced in large quantities via flash vaccum pyrolysis 

(FVP) developed in the early 1990s. In addition, various other buckybowls have since been 

prepared by both FVP and solution-phase methods. Specific types of these polycyclic aromatic 

hydrocarbons are presented as follows: sumanene (Cz1H12), acecorannulene (CzzH1o), 

tetrabenzopyracylene (Cz6Hl2), and [5,5]circulene (C3oH12). The carbon frameworks of these 



buckybowls can be mapped onto the surface of C6o, and research on buckybowl derivatives are 

being actively pursued today. 

C2oH1o 
corannulene 

C22H10 C2eH12 
acecorannulene tetrabenzopyracylene 

Figure 2. Fullerene fragments 

C3oH12 
[5,5]circulene 

Since curved buckybowls have strain energy caused by pyramidalization of interior sp2-

hybridized carbon atoms, successful methods for buckybowls synthesis must be able to 

overcome the high degree of the strain energy. Even though there are the thousands of literature 

related to buckybowls today, only few approaches can be utilized for their production. Flash 

vacuum pyrolysis (FVP) and solution-phase synthesis are the two major methods for the 

preparation of these curved P AHs. The FVP method has found success in the construction of a 

large number of fullerene fragments. However, several drawbacks are present for FVP method. 

First, the fullerene fragments with a delicate functional group may not survive under high 

temperature (900 'c or higher). Second, the yields of the highly strained PAHs are usually very 

low ( <5% ), and unwanted thermal rearrangement products can occur. 4• 
9 

To overcome these shortcomings, milder solution phase methods have been actively 

pursued. Several efficient nonpyrolytic methods were developed, including the transition metal 

(Ti-V, Ni, Pd)-catalyzed intramolecular reductive coupling of aryl, benzyl, or benzylidene 

2 



halides. 10' 14 In addition, our group first reported the synthesis of several bowl-shaped and basket-

shaped fullerene fragments via benzannulated enyne-allenes. 15
• 

16 With the milder reaction 

conditions, it is possible for scale-up production and a wide range of functional groups can be 

tolerated (Figure 3). 

Me 
Me Me 

Br 
Me 

1.1 1.2 1.3 1.4 

MeO OMe 

1.5 
1.6 1.7 

1.8 

Figure 3. Solution phase synthesis of fullerene fragments 
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2. Literature survey for the synthesis of buckybowls 

The first solution-phase synthesis of the smallest buckybowl, corannulene, was first 

reported Barth and Lawton in 1966 (Scheme 1).7' 17 This pioneer synthesis also demonstrated that 

even though curved buckybowls have high degree of strain energy, they can be synthesized by 

mild solution phase reactions. Even though synthetic route was lengthy with 17 steps, it did open 

the gate for further research in this area. 

Me02C 

--
\ 

1.9 1.10 

HO 

--
1.11 

--
CzoH1o 

corannulene 

Scheme 1. Synthesis pathways of corannulene by Barth and Lawton 

In the early 1990s, several examples of corannulene synthesis in moderate yields by FVP 

were reported. Scott's group first used diethynylfluoranthene 1.12 for the synthesis of 

corannulene by FVP (Scheme 2). 18 An improvement to 35-40% overall yield was achieved by 

using bis(1-chlorovinyl)fluoranthene 1.13 to avoid polymerization of 1.12 at elevated 

temperatures.19 

H-==--<1 '\)----:==--H FVP 

1.12 

1000 °C 
10% 

corannulene 

FVP 
1100 °C 
35-40% 

Scheme 2. Corannulene prepared by FVP pathways 

4 

1.13 



After the successful synthesis of corannulene by the FVP method, several other fullerene 

fragments have also been prepared from various precursors. For example, acecorannulene, 

tetrabenzopyracylene, and [5,5]circulene were all obtained in reasonable yields by using the 

FVP method (Scheme 3).20"23 

FVP 
10-15% 

1.14 

1.16 

C22H1o 
acecorannulene 

FVP 
5% 

1.15 

C3oH12 
[5,5]circulene 

FVP 
37% 

Scheme 3. Other fullerene fragments prepared by FVP 

c26H12 
tetrabenzopyracylene 

In addition, pyrolysis of precursors 1.17 and 1.19 produced semibuckyminsterfullerenes 

1.18 and 1.20, respectively (Scheme 4).22
• 

23 These successful examples show that enough 

thermal energy can be delivered to the molecules to cross the high energy barriers during 

intramolecular ring closures. 

5 



FVP FVP 

5-10% 25-27% 

Cl 
1.17 1.18 1.19 1.20 

Scheme 4. Larger fragments prepared by FVP 

While a number of fullerene fragments have been successfully prepared by the FVP method, 

several drawbacks limit the scope of the method. One major disadvantage with several of the 

FVP procedures is the low yields of the products, especially for higher molecular weight 

buckybowls. Other limitations include lack of functional group tolerance, difficulty in scaling up, 

byproducts caused by high temperature, and thermal rearrangement of molecular framework. 

The report of the solution phase synthesis of corannulene did not attract a lot of attention for 

many years because of the length of the procedure and extremely low overall yield (<1 %). Until 

the discovery of C6o at 1985, corannulene was known as the only bowl-shaped polynuclear 

aromatic hydrocarbon. Siegel and co-workers published the first example of a corannulene 

derivative prepared entirely by a solution-phase synthesis in 1996 (Scheme 5).24 Tetrabromide 

1.22 was first treated with a reductive coupling reagent (TiCb/LiA114) and the resulting 1.23 

then oxidized by DDQ to promote dehydrogenation for aromatization to form 1.24 in acceptable 

yield. 

6 



Br 

0 0 

~-
1.21 1.22 

TiCI3 

Br LiAIH4 
55% 

1.23 

DDQ 
33% 

Scheme 5. Synthesis of dimethylcorannulene by the Siegel group 

1.24 

Rabideau's group successfully employed a similar strategy using 1.26 in conjunction with 

low-valent vanadium and obtained 70-75% yield of corannulene in a single step (Scheme 6)Y 

Further improvement using a simple and inexpensive way to prepare tetrabromocorannulene 1.27 

in excellent yield (83%) was reported later by the same group.25'
27 

1.25 

NBS 

hv 

Br2HC ~ 0 CHBr2 

B~HC CHB~ 

1.26 

"V(O)" 

70-75% 

NaOH 
'---c-----.,--:-:- Br 

dioxane!Hp 
reflux, 15min 

83% 

corannulene 

1.27 

Scheme 6. Improved synthetic procedures by Rabideau's group 

Br 

Several groups reported the synthesis of strained bowl-shaped fulleme fragments by 

emplying palladium-catalyzed intramolecular arylation reactions (Scheme7). These P AHs were 

generated by various palladium catalysts, bases, and reaction conditions. For example, Scott's 

group found that intramolecular arylation of dibromide 1.28 produced dibenzocorammlene 1.4 in 

60% yield after 72 h at 150 oc using Pd(PPh3)2Br2 as the catalyst in the presence of 1,8-

7 



diazabicyclooundec-7-ene (DBU) in DMF. In addition, otber groups reported that PAHs 1.6 and 

1.7 were prepared using Pd(PCy3)2Clz with DBU in DMAc. Moreover, the Scott's group 

prepared pentaindenocorannulene 1.8 via microwave-assisted arylation from the corresponding 

halogenated corannulenes in 45 min. 

DBU 
Pd(PPH3)Br2 

1.4 
1.28 

MeO OMe 
DBU 

Pd(PCy3),CI, 

1.29 
1.6 

DBU 
Pd(PCy3),CI, 

1.30 1.7 

DBU 

1.8 

1.31 

Scheme 7. Palladium-catalyzed formation ofbuckybowls 

Sumanene (Cz1H12) possesses a C3v symmetry and represents tbe fundamental structure motif 

of buckminsterfullerene. The FVP method is yet unknown for obtaining this structure. In 2003, 

Hirao et al. provided a successful synthetic method to prepare sumanene in solution under mild 

conditions.Z8 Similar to other synthetic strategy for cormmulene, they first constructed the three-

8 



dimensional framework usmg tetrahedral sp3 carbons and later aromatized the structure 

oxidatively to obtain the designed product. Norborandiene 1.32 was first treated with Bu3SnCl to 

form trimer products syn-1.33a and anti-1.33b (ratio 1:3) in a total yield of 47% (Scheme 8). 

Syn-1.33a was then reacted with a Ru-catalyst to afford 1.34 in 30% yield via a ring-opening and 

ring-closing metathesis reaction sequence. By oxidization of 1.34 with DDQ, sumanene can be 

obtained in 70% yield. 28 

(PCy3l2RuCI2=CHPh 
10 mol% H 

+ 

~I 

1.33b 

(1.33a:1.33b=1 :3) 

ethylene 

Scheme 8. Hirao' s synthesis of sumanene 

H 

1.34, 30% 

sumanene, 70% 

The first asymmetric synthesis of a chiral trimethylsumanene 1.38 in a non-pyrolytic 

pathway was reported by the Sakurai's group in 2008. A similar synthetic course was utilized via 

a syn-selective trimerization of an enantiopure halonorbomene 1.35, ring-opening/closing olefin 

metathesis reactions, and DDQ oxidation at low temperature (Scheme 9).29 

9 



0 
·•'H DDQ 

H' 'H 
1.36, 55% 1.37 1.38,68% 

Scheme 9. Sakurai's synthesis of chiral sumanene 

Our group has developed successful pathways to synthesize curved P AHs vm 

benzannulated enyne-a!Ienes. The key reaction of our synthetic schemes involves a biradical-

forming C2-C6 cyclization (Schmittel cyclization) reaction of the benzannulated enyne-allenes, 

such as 1.39, to form the corresponding biradicals, such as 1.40, followed by an intramolecular 

radical-radical coupling to form the Diels-Alder adducts as depicted in 1.41. Benzofluorene 

1.42 was obtained after a prototropic rearrangement (Scheme I 0).30
• 

31 

cC)"--1: 
Ph 

1.39 1.40 1.41 1.42 

Scheme 10. Schmittel cyclization reaction 

Several highly twisted polycyclic aromatic compounds were synthesized via benzannulated 

enyne-allene. For instance, treatment of propargylic alcohol 1.43 with thionyl chloride generated 

chloride 1.44. After reduction with NaBH4, the chloride 1.5 was obtained (Scheme I 1 ). 14 Similar 

to this example, benzannulated propargylic alcohols 1.45a and 1.45b were again treated with 

10 



thionyl chloride to obtain twisted polycyclic aromatic compounds 1.46a and 1.46b, 

respectively. 16 

~ 

~ h' 
II! 

Ph 

1.43 

~ 
J' \ 
~ 

Ph 

R 

R=Pr 1.45a 
R=Me1.45b 

;, SOCI2 

pyridine 

Ph 

~ 
I" 

..-< 

1.44 

SOCI2 
pyridine 

1.5, 47% 

0 + other products 

R=Pr 1.46a, 8% 
R=Me1.46b, 5% 

Scheme 11. Twisted polycyclic compounds synthesized via benzannulated enyene-allenes 

One more example of using benzannulated enyne-allenes for the synthesis of twisted 

polycyclic aromatic compounds is presented below. Instead of using thionyl chloride, 

propargylic alcohol 1.47 was first converted to tetraacetylenic hydrocarbon 1.48 by treatment 

with triethylsilane in the presence of trifluoroacetic acid. The hydrocarbon 1.48 was then 

transformed to the 4,5-diarylphenanthrene 1.49 in the presence of potassium tert-butoxide under 

refluxing toluene (Scheme 12). 

Ph Ph Q ~ 

~ /} 

~ 1. Et3SiH 

OH 2. CF3C02H 

1.47 1.48 

~ /} 

1-BuOK/1-BuOH 
refluxing toluene 

1.49, 44% 

Scheme 12. An alternative synthetic pathway for twisted polycyclic aromatic hydrocarbons 

II 



Subsequently, chrysenes 1.52 and 1.55 as nonplanar P AHs were successfully synthesized in 

the solution-phase via benzannulated enyne-allenes (Scheme 13). Similar to the synthetic 

pathway outlined in Scheme 12, treatment of benzannulated enediynes 1.50 and 1.53 with 

potassium tert-butoxide in refluxing toluene provided 1.51 and 1.54, respectively. The 

palladium-catalyzed intramolecular arylation reactions of 1.51 and 1.54 produced buckybowls 

1.52 (37%) and 1.55 (11 %), respectively. 

?I 
""- H ~ t-Bu 

II t-Bu 
KOt-Bu Pd(O) 

? 

t-Bu 

Br 

I"" 
Br ""-

_& 

1.50 1.51, 70% 1.52, 37% 

~ H Me 

II 
Me 

KOt-Bu 

Br 

1.53 1.54, 62% 1.55, 11% 

Scheme 13. Synthesis ofbuckybowls 1.52 and 1.55 via benzannulated enyne-allenes 

Both structures of 1.52 and 1.55, confirmed by X-ray structure, indicate the presence of 

significant curvatures. Compared to tetrabenzopyracylene, the structure of 1.52 was less strained 

due to the lack of a six membered ring in the upper-right hand corner. The POA V (n-orbital axis 

vector analysis) angles oftetrabenzopyracylene carbon atoms are clearly larger than those of the 

corresponding carbon atoms of 1.52 (Figure 4). The X-ray structure of 1.55 possessing an 

additional five-membered ring appears to cause its structure to be more strained among these 

12 



structures. The POA V angles of 1.55 showed greater degree of pyramidalization. As a result, the 

transformation from 1.54 to 1.55 is less efficient. 

7.8 

1.52 

t-Bu 

5.2 9.0 
6.7 

C2sH12 
tetrabenzopyracylene 

9.2 

1.55 

Figure 4. POA V pyramidalization angles (Gem- 90) of P AHs 

Recently, our group reported the synthesis of additional fullerene fragments, including 

bowl-shaped 1.56 (C2sH1s) and basket-shaped 1.57 (Cs6H4o) and 1.58 (Cs6H3s) (Figure 5). 

Specifically, these fullerene fragments were all synthesized entirely under mild solution phase 

via benzannulated enyne-allenes. 

1.58, C56H38 

Figure 5. Fullerene fragments prepared from benzannulated enyne-allenes 

The bowl-shaped hydrocarbon 1.56 bearing a 27-carbon framework that can serve as a 

precursor for dimerization leading to a Cs4H24 (90% of C6o) fullerene fragment. The synthetic 

sequence was inspired from the synthesis of chrysenes 1.52 and 1.55. 

13 



Drs. Yu-Hsuan Wang and Hua Yang reported the use of diketone 1.60, derived from 

cyclopentadienone 1.59, as a key intermediate for the preparation of the Cs61-Lto hydrocarbon 1.57. 

The final intramolecular cyclization steps were carried out under mild conditions to afford 

hydrocarbon 1.57 (Scheme 14). The central 30 carbons of the basket-shaped 1.57 can be 

visualized as a [5,5]circulene, a semibuckminsterfullerene. 

-
1.60 

NaO-t-Bu 

1.61 1.57 

Scheme 14. Synthesis of the basket-shaped hydrocarbon 1.57 

The other basket-shaped hydrocarbon 1.58 was synthesized from 4-bromo-1-indanone 

(1.62). Tetraketone 1.63 is a key synthetic intermediate in the 12-step synthesis and cascade 

cyclization reaction of benzannulated enyne-allenes 1.66 is a key step of the synthetic sequence 

(Scheme15). The overall yield of the process is relatively efficiency (>10%). Compared to 1.57, 

the center of the polycyclic aromatic hydrocarbon 1.58 contains a fully connected 30-carbon core. 

14 



M
~-

Br 

1.62 

0 

-

1.66 1.58, 

~Ph 

UZnCI 
1.65 

Scheme 15. Synthesis of the basket-shaped hydrocarbon 1.58 

So far, our group has reported a series of simple and efficient solution-phase pathways for 

the synthesis of polycyclic aromatic hydrocarbons via benzannulated enyne-allenes. Although 

the overall yields are all below 20%, it is now possible to prepare extended PAHs possessing 

significant curvatures using mild solution phase chemistry without the need of high temperatures. 

The developments of curved PAHs synthesis using solution-phase chemistry over the last 

ten years have been quite substantial. Currently, it is possible to prepare buckybowls with diverse 

structures in greater than 30% yield using solution-phase synthesis. Moreover, the procedures of 

these solution-phase studies are simple and widely used in synthetic endeavors. It is expected 

that in the next few years, solution-phase synthesis will be used to produce bowl-shaped or 

basket-shaped precursors of interest for new materials, catalysis, and pharmaceuticals. There is a 

need to have a better understanding of the intramolecular arylation steps. A better understanding 

!5 



of the source of strains in fullerenes structures will be useful. Hopefully, as the information 

accumulates, it may become possible to formulate new synthetic pathways for these nonplanar 

polycyclic aromatic compounds. 

16 



3. Research objective 

In the past few years, our group has synthesized several polycyclic aromatic compounds via 

the benzannulated enyne-allene route. Our next target molecule is the new bowl-shaped n

conjugated hydrocarbon 1.67 to be constructed by the benzannulated enyne-allene route as well. 

1.67 

Figure 6. Bowl-shaped n-conjugated hydrocarbon 1.67 

It was previously reported by Dr. Bo Wen of our group using the synthetic sequence 

outlined in Scheme 16 for the synthesis of 1.56, a buckybowl structurally similar to the target 

molecule 1.67. Transformation of 1-indanone (1.68) to the corresponding trimethylsilylenol ether 

1.69 followed by alkylation with methyl iodide under mild conditions gave 2-methyl-1-indanone 

(1. 70) in 73% yield. The methylated 1-indanone 1. 70 was then treated with NaH and 1-iodo-2-

methoxyethane (1.71) under reflux ofTHF to produce the 2,2-disubtituted 1-indanone derivative 

1. 72 in 68% yield. Condensation of 1. 72 and the lithium acetylide derived from the 

benzarmulated enediyne 1.73 and LDA gave the enediynyl propargylic alcohol 1.74. 

Subsequently, the benzannulated enediyne 1. 75, serving as a precursor for the benzannulated 

enyne-allene 1.76, was prepared by reduction of 1.74 with triethylsilane in the presence of 

trifluoroacetic acid. 
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Scheme 16. Synthesis ofPAH 1.56 
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On exposure of 1. 75 to potassium tert-butoxide in refluxing toluene, the benzannulated 

enyne-allene 1. 76 was formed in situ. The subsequent Schrnittel cyclization reaction then 

produced benzofluorene 1.77. Cleavage of the methyl ether in 1.77 with Me3Sii produced iodide 

1. 78. In the presence of potassium tert-butoxide, 1. 78 underwent an intramolecular alkylation 

reaction to form 1. 79. The presence of two bromo substituents in 1. 79 allowed additional carbon-

carbon formation via the Pd-catalyzed intramolecular arylation reactions to form 1.56 in 32% 

yield. However, attempts to convert 1.56 to the desired buckybowl 1.67 by 

dichlorodicyanobenzoquinone (DDQ) were unsuccessful presumably because of the presence of 
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the methyl group. 

The objective of this investigation is to use a similar strategy to form 1.67. To be successful, 

it was envisioned that 1-indanone 1.80 possessing a more easily removable 2-methoxy 

substituent could be employed as a precursor (Scheme 17). 

0 

cO 4 steps 

1.68 

0 

~ (CH2l20Me 
V-foMe 

1.80 

·---------· 1.67 

Scheme 17 Alternative synthetic pathway to the bowl-shaped P AHs 1.67 

The bowl-shaped PAHs 1.67 could be further used as a building block for the construction 

of larger fullerene fragments. Dimerization of 1.67 could lead to 1.81a and/or its isomer 1.8lb 

(Figure 7). In addition, the used of a chlorinated 1.67, to be prepared from 4-chloro-1-indanone 

could allow the formation of two additional C-C bonds leading to 1.82, a basket-shaped C54H16 

hydrocarbon bearing 90% of the C60 carbon framework (Figure 8). 

1.81a 1.81b 

Figure 7. Dimerization products 1.81a and 1.81b 
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1.82 

Figure 8. A basket-shaped hydrocarbon Cs4HI6 (1.82) 
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4. Results and discussion 

As was described earlier, the synthesis of buckybowl1.67 would rely on a strategy similar 

to that for 1.56 except the following modification. First we employed indanone 1.80 as a 

potential precursor by replacing the methyl group at the alpha position of 1. 72 with a more easily 

removable methoxy group (Figure 9). The previous investigation outlined in Scheme 16 showed 

that the presence of the methyl substituent in 1.56 prevented the formation of the fully 

aromatized 1.67 by treatment of 1.56 with DDQ. Second, in order to improve the Pd-catalyzed 

intramolecular arylation reactions, we changed the bromo substituents of benzannulated 

enediyne 1. 73 to chloro groups in 1.83 (Figure 9). 

0 0 

~(CH2)20Me ==:> ~(CH2)20Me 
Me OMe 

(a) 

1.72 1.80 

Br Cl 

~ /; ~ /; ==:> ~ /; ~ /; (b) 

Br II; Cl II; 
1.73 1.83 

Figure 9. Modification in synthesis ofbuckybowl1.67 

Initially, a variety of reagents were tested to try to convert 1-indanone (1.68) to 1.85, 

However, either no desired product was obtained or yields were low (Table 1 ). Other attempts 

for preparing 1.80 were also investigated by an alternative route. 1-Indanone 1.68 was first 

treated with hydroxy(p-nitrobenzene-su1fonyloxy)iodobenzene (HNIB) in methanol to provide 

1.68a. Unfortunately, treatment of 1.68a with LDA or KHMDS/HMP A followed by 2-

methoxyethyl triflate did not produced the desired product, and only the starting 1-indanone 1.68 

was recovered (Scheme 18). 

21 



0 

():) 1. Reagent (A) 

2. Reagent (B) 
3. w 

1.68 

j
H2N-NMe2 

H+, microwave 

WNMe2 

():) 

1. Reagent (A) 

2. Reagent (B) 
3. H+ 

1.84 

Reagent (A) Reagent (B) Yield(1.85) 

LOA MeOCH2CH20Tf Low 
MeOCH2CH21 Low 

KHMOS/HMPA MeOCH2CH20Tf Low 
MeOCH2CH2Br Low 

LiHMOS/HMPA MeOCH2CH20Tf Low 
MeOCH2CH2Br Low 

n-Buli MeOCH2CH20Tf N/A 
MeOCH2CH21 N/A 
MeOCH2CH2Br N/A 

Table 1. Attempted synthesis of alkylated 1-indanone 1.85 

0 

():) 
1.68 

HNIB 

MeOH 

OH 0 0 

0 1. LOA or KHMOS/HMPA 

~ OMe--T_H_F_,_-7_8_°C ________ _. 

V-J 2. MeOCH2CH20Tf 
1.68a 

I 11// V"o/s'(} 
N02 

[hydroxy{p-nitrobenzenesulfonyloxy) 
iodo]benzene(HNIB) 

Scheme 18. Attempted synthesis of 1-indanone 1.80 

22 

0 

~ ./'-... ,OMe 

VJ"oM: 
1.80, not observed 



After several attempts, we finally were able to find a feasible synthetic sequence for 1.85 

depicted in Scheme 19. 1-Indanone 1.68 was first converted to the corresponding hydrazone 

derivative 1.84 in nearly quantitative yield by treatment with N,N-dimethylhydrazine in the 

presence of a catalytic amount of acetic acid. Alkylation of hydrazone 1.84 with the 

connnercially available 2-bromoethyl methyl ether and LDA, followed by hydrolytic workup, 

then furnished the alpha alky1ated indanone 1.85 in good yield (87%). 

0 

o=) 
1.68 

H+, Microwave 

1.84, 96% 

0 

c0-(CH2)20Me 

1.85, 87% 

Scheme 19 Synthesis of 1-indanone 1.85 

Treatment of 1.85 with trimethy1phosphite, tetrabutylammonium iodide, and a 50% 

sodium hydroxide solution under oxygen produced 2-hydroxyl-1-indanone 1.86 in 92% yield. 

Alkylation with methyl iodide in the presence of sodium hydride then produced the desired 1.80 

in 93% yield. 

50%NaOH, 0 2 1.85 
P(OMeh, Bu4NI 

0 

~ (CH2)20Me 

~H 
1.86, 92% 

NaH --Mel 

0 

~ (CH2)20Me 
VJoMe 

1.80, 93% 

Scheme 20 Synthesis of 1-indanone 1.80 
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In an attempt to fonn the Schmittel cyclization product 1.85e, a synthetic pathway outlined 

in Scheme 21 was pursued. Condensation of indanone 1.85 and ethynylmagnesium bromide 

produced propargylic alcohol 1.85a. Treatment of 1.85a with thionyl bromide produced allenic 

bromide 1.85b. However, 1.85b was not very stable and easily decomposed and the reaction is 

also furnished other unexpected byproduct. 

0 

~- OMe 

~~ 
1.85 

Cl 

~ 
ZnCI Cl 

1.85c 
HHHHH HH HHHHHHHHHH H HHH ..... 

Pd(O) 

1. =:=-MgBr 

2.H20 

Cl 

"-"' 

~ 

OMe 
OMe 

1.85a, >99% 

SOBr2 

pyridine 

Br)(H 

c 
~- OMe 

~~ 
1.85b, easily decomposed 

~ ~ ~ (CH
2
),0Me J . . . . . . . . ... Cl 

~Me 
1.85d 1.85e 

(CH2),0Me 

OMe 

Scheme 21. Attempted synthesis of 1-indanone 1.85b 

With the failure of the synthetic route outlined in Scheme 21 for the Schmittel cyclization 

product 1.85e, we quickly switched to an alternative approach by directly condensation of 

indanone 1.80 and benzannulated enediyne 1.83. 

The requisite benzannulated enediyne 1.83 was synthesized as outlined in Scheme 22. 

Precursors 1.88 and 1.91 were both produced via the Sonogashira coupling reactions of 

(trimethylsilyl)ethyne with 1 ,3-dichloro-2-iodobenzene 1.87 and 2-bromo-1-iodobenzene 1.90, 

respectively. The following desilylation reaction of 1.88 and the lithium halogen exchange 
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reaction of 1.91 were successful in producing (2,6-dichloropheny)ethyne (1.89) and 1-(2-

iodophenyl)-2-(trimethylsilyl)ethyne (1.92), respectively. A second Sonogashira reaction 

between 1.89 and 1.92 then led to 1.93, which was rapidly desilyated by 10% NaOH to afford 

the benzannulated enediyne 1.83. 

SiMes ~~ 
I Cl /!j CI~CI ==-SiMes I, I 1 O% NaOH Cl "": Cl 

V Pd(PPhshCI2 Q-cl MeOH I .ij 

1.87 Cui, EtsN - 1.88, 91% 1.89, 99% 

&' 
1.90 

==o-SiMes 

Pd(PPhsl2CI2 
Cui, Et3N 

lSi Me~. n-Buli ~SiMes 

Qsr 212 Q-1 
- 1.91, 96% 1.92, 99% 

Pd(PPh3),CI2 
Cui, Et3N 

Scheme 22. Synthesis ofbenzannulated enediyne 1.83 

Cl 

SiMe3 

"": Cl 

.ij 1.93, 78% 

1
10% NaOH 
MeOH 

1.83, 99% 

Condensation between indanone 1.80 and benzannulated enediyne 1.83 in the presence of 

LDA furnished propargylic alcohol 1.94 (Scheme 23). Treatment of 1.94 with thionyl chloride 

first induced an SNi' reaction to generate benzannulated eneyne-allene 1.95 in situ followed by 

cascade radical cyclization to afford 1.96a. The detailed mechanism to form 1.96a via 

benzannulated eneyne-allene 1.95 was described previously. The chloride 1.96a was prone to 

hydrolysis and further oxidation on exposure to air, water/silica gel to give a mixture of alcohol 

1.96b and ketone 1.96c. The combined yield of crude 1.96a 1.96b and 1.96c was ca. 77%. 
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1. LDA 
1.80 + 1.83 H O 2. 2 

1.96a 

Cl 

SOCI2 

Pyridine 

(CH2)20Me 
OMe 

1.94, 89% 

H20,02 

Silica Gel 
(CH2)20Me 

1.96b 

H 

(CH2),0Me + 

OMe 

Scheme 23. Synthesis of 1.96a-c 

Treatment of the crude 1.96a-c without further purification with an excess of diiodosilane 

(SiH2h) converted the mixture to the desired iodide 1.97 in a very good yield (95%) (Scheme 24). 

Diiodosilane is a strong Lewis acid and as good a donor of hydride and iodide ions. It was found 

to be very useful for cleavage and deoxygenation of ethers, alcohols, ketones and aldehydes. The 

use of diiodosilane to induce the transformation from 1.96a-c to 1.97 represents a new and 

convenient way to this desired precursor for possible transformation to 1.67. 

The aromatic hydrogen in 1.97 indicated with an arrow is shielded by the neighboring 

phenyl group, shifting its 1H NMR signal upfield to 8 6.59 (doublet). The upfield shift of 

aromatic hydrogen at 8 6.59 is typical of a 5-phenylbenzofluorenyl structure with the phenyl 

substituent in essentially perpendicular orientation with respect to the benzofluorenyl group. In 

our previous studies, adducts derived from benzarmulated eneyne-allene via cascade radical 

cyclization exhibited an aromatic 1H NMR signal with such an upf1eld shift. 
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1.96a-c 

1.97 

Scheme 24. Synthesis of compound 1.97 

However, treatment of iodide 1.97 with potassium tert-butoxide furnished both 

hydrocarbon 1.98a and 1.98b in nearly 1:1 ratio. Both structures of 1.98a and 1.98b were 

confirmed by 1H, 13C NMR spectroscopy and by NOESY experiments. The 1H NMR spectrum 

indicated that the upfield shifts of aromatic hydrogens shielded by perpendicular phenyl rings are 

located at o 6.60 for 1.98a and o 6.85 for 1.98b, respectively (Scheme 25). 

KOI-Bu 
1.96a-c + 

1.97 1.98a 

Scheme 25. Synthesis of compound 1.98a and 1.98b 

Our general strategy to obtain polycyclic aromatic hydrocarbon 1.67 is given in Scheme 26. 

Dichloride 1.98a was treated with a Pd catalyst to promote the intramolecular arylation reactions 

in order to produce 1.101 for the subsequent reaction with DDQ for aromatization to give the 

fully aromatized PAH 1.67. Unfortunately, the monocyclized adducts 1.99 and 1.100 were 
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formed as the only identifiable products as have been observed in our earlier investigation of the 

intramolecular arylation step. The four upfield aromatic hydrogen signals above o 9.0 were 

observed in the 1H NMR spectrum which indicated formation of P AHs 1.99 and 1.100. These 

four hydrogens, Ha, Hb, He and Hd, located in a characteristic 3-sided concave area at the 

periphery of non-linear PAHs 1.99 and 1.100, are called bay region hydrogens. 

Pd(PCy3)zCI2 
1.9Ba----..... 

DBU 
+ 

H 

DDQ ________ ,... 1.67 

1.99 1.100 1.101, not observed 

Scheme 26. Synthesis ofPAHs 1.99 and 1.100 

Compared to the previous results, the substructure of dichloro benzofl uorene 1.98a should 

have similar strain and curvature as the dibromo derivative 1. 78. Apparently, the reason that we 

were not able to obtained 1.101 might be the rigid structure of 1.99 and 1.100. Aromatization of 

the lower right hand comer in 1.99 and 1.100 may prevent the second carbon-carbon bond 

formation. 

Although we have not had an opportunity to perform the aromatization step, it is worth 

mentioning that the design of using a more easily removable methoxy group at the alpha position 

was successful during the transformation of 1.96a-c to 1.97. The tertiary methoxy group in 1.96 

was successfully replaced by a hydrogen atom to form 1.97. 
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5. Conclusion 

Our synthetic approach to the bowl-shaped polycyclic aromatic hydrocarbon 1.67 was 

investigated. We were successful in synthesizing dichloride 1.98a as a potential precursor to 

1.101 which could then be converted 1.67. The process involved the used of a mild and efficient 

route to generate benzanunulated enyne-allenes 1.95 in situ for subsequent cascade radical 

cyclizations. In addition, several attempts to improve the synthesis course were also made. The 

overall synthetic strategy is very promising and is worth further investigation. Although we have 

not yet reached our target P AH 1.67 yet, a suitable palladium catalyst could be developed to 

achieve this goal. Lastly if P AH 1.67 is obtained, it could serve as a precursor to generate 

buckybowl1.8la-b or 1.82. 

29 



6. References 

1. Kroto, H. W.; Heath, J. R.; O'Brien, S.C.; Curl, R. F.; Smalley, R. E., Nature 1985,318, 162. 

2. Wu, Y.-T.; Siegel, J. S. Chern. Rev., 2006, 106,4843-4867. 

3. Tsefrikas, V. M.; Scott, L. T. Chern. Rev., 2006, 106, 4868-4884. 

4. Mehta, G.; Rao, H. S. P., Tetrahedron 1998, 54 (44), 13325-13370. 

5. Cui, H.; Akhmedov, N. G.; Petersen, J. L.; Wang, K. K., J Org. Chem.2010, 75, 2050-2056. 

6. Hill, T. J.; Hughes, R. K.; Scott, L. T., Tetrahedron 2008, 64, 11360-11369. 

7. Barth, W. E.; Lawton, R. G., JAm. Chern. Soc. 1966, 88, 380. 

8. Barth, W. E.; Lawton, R. G., JAm. Chern. Soc. 1971, 93, 1730. 

9. Scott, L. T., Pure Appl. Chern. 1996, 68, 291. 

10. Wang, L.; Shevlin, P. B., Org. Lett. 2000,2, 3703. 

11. Sygula, A.; Rabideau, P. W., JAm. Chern. Soc. 1999, 121, 7800. 

12. Seiders, T. J.; Elliott, E. L.; Grube, G. H.; Siegel, J. S., JAm. Chern. Soc. 1999, 121, 7804. 

13. Sygula, A.; Rabideau, P. W., JAm. Chern. Soc. 1998,120, 12666-12667. 

14. Zhang, H.-R.; Wang, K. K., J Org. Chern. 1999, 64, 7996-7999. 

15. Yang, Y. H.; Petersen, J. L.; Wang, K. K., J Org. Chern. 2003, 68, 8545-8549. 

16. Yang, Y. H.; Petersen, J. L.; Wang, K. K., J Org. Chem.2003, 68, 5832-5837. 

17. Lawton, R. G.; Barth, W. E., JAm. Chern. Soc. 1971, 93, 1730. 

18. Scott, L. T.; Hashemi, M. M.; Meyer, D. T.; Warren, H. B., JAm. Chern. Soc. 1991, I 13, 

7082. 

19. Scott, L. T.; Cheng, P. C.; Hashemi, M. M.; Bratcher, M.S.; Meyer, D. T.; Warren, H. B., J 

Am. Chern. Soc. 1997, 119, 10963. 

20. Bronstein, H. E.; Choi, N.; Scott, L. T., JAm. Chern. Soc. 2002, 124,8870. 

21. Rabideau, P. W.; Abdourazak, A. H.; Folsom, H. E.; Marcinow, Z.; Sygula, A.; Sygula, R., J 

Am. Chen1. Soc. 1994, 116, 7891. 

22. Abdourazak, A. H.; Marcinow, Z.; Sygula, n.; Rabideau, P. W.,.! Am. Chern. Soc. 1995,117, 

6410. 

23. Scott, L. T.; Bratcher, M.S.; Hagen, S.,.! Am. Chern. Soc. 1996, 118, 8743. 

24. Seiders, T. J.; Baldridge, K. K.; Siegel, J. S.,.! Am. Chern. Soc. 1996, 118, 2754. 

25. Sygula, A.; Rabideau, P. W., JAm. Chern. Soc. 2000, 122, 6323. 

30 



26. Sygula, A.; Xu, G.; Marcinow, Z.; Rabideau, P. W., Tetrahedron 2001, 57, 3637. 

27. Xu, G.; Sygula, A.; Marcinow, Z.; Rabideau, P. W., Tetrahedron Lett. 2000, 41, 9931. 

28. Sakurai, H.; Daiko, T.; Hirao, T., Science 2003, 1878.29. 

29. Higashibayashi, S.; Sakurai, H., JAm. Chern. Soc. 2008, 130, 8592-8593. 

30. Schmittel, M.; Strittmatter, M.; Vollmann, K.; Kiau, S., Tetrahedron Lett. 1996,37, 999-

1002. 

31. Schmittel, M.; Strittmatter, M.; Kiau, S.,Angew. Chern. Int. Edit. 1996,35 (16), 1843-1845. 

31 



General Experimental Methods. 

Chapter 2 

Experiment Section 

All reactions were conducted in Oven-dried (11 0 °C) glassware under a nitrogen! atmosphere. 

Dichloromethane, diethyl ether, chloroform, ethyl acetate, hexanes, and methanol were reagent 

grad and used as received. Tetrahydrofuran (THF) was distilled from Na!benzophenone and used 

instantly. All other liquid reagent and solid chemicals were purchased from chemical suppliers 

and were used as received. Purification by column chromatography was performed using silica 

gel (32-63 J.Lm). Diiodosilane were prepared as reported previously31
• The crude diiodosilane 

along with the volatile side products, including HI, were used without further purification. 1H 

NMR and 13C NMR Spectra were recorded in CDCi] using CHCi] (1H o 7.26) and CDCh (13C o 
77.0) as internal standards on a Varian 600 MHz NMR Spectrometer. 
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Hydrazone 1.84 

A mixture of 0.801 g of 1-indanone (6.06 mmol), 1,1-dimethylhydrazine (0.45 mL, 6.01 mmol) 

and a trace amount of acetic acid was placed in a sealed reaction tube equipped with magnetic 

bar and heated under microwave irradiation at 140 oc for 20 min. The reaction mixture was then 

concentrated under reduced pressure to remove excess 1,1-dimethylhydrazine. The residue was 

purified over a column of basic alumina column by using 20% of ethyl acetate in hexanes as 

eluent to obtain 1.02 g (5.85 mmol, 96%) 1.84 as a yellow oil: 1H (CDCh, 600 MHz) 8 7.76 (!H, 

d, J = 7.8 Hz), 8 7.35 (!H, t, J = 7.2 Hz), 8 7.29 (!H, d, J = 7.8 Hz), 8 7.24 (IH, t, J = 7.2 Hz), 

3.05 (2H, t, J = 6.6 Hz), 2.92 (2H, t, J = 6.6 Hz), 2.66 (6H, s); 13C (CDCh, 150 MHz) 8 179.5, 

148.7, 138.7, 130.9, 127.1, 125.7, 122.3,47.3, 29.1, 29.0 

Indanone 1.85 

To a solution of 4.3 mL of a 2.0 M solution of LDA in THF/hexanes at -78 oc was added a 

mixture of 1.052 g of 1.84 (6.01 mmol) and 0.2 g LiCl in 50 mL ofTHF. After 3 h of stirring at-

78 °C, 0.68 mL of 2-methoxyethyl bromide (7.19 mmol) was introduced by a syringe. The 

reaction mixture was then allowed to warm to room temperature. After 12 h, 20 mL of a 2M 

solution of aqueous HCl was introduced. After 1 h, the mixture was then extracted with 

methylene chloride and ammonium chloride solution. The organic layer was separated, and the 

aqueous layer was back extracted with methylene chloride. The combined organic layers were 

washed with brine and water, dried over Na2S04, and concentrated. The residue was purified by 

flash chromatography (silica gel/ethyl acetate:hexane = 25:75) to provide 0.984 g (5.21 mmol, 

87%) of1.85 as a dark red color oil: 1H (CDCh, 600 MHz) 8 7.75 (IH, d, J= 7.8 Hz), 8 7.57 (1H, 

t, J= 7.2 Hz), 8 7.45 (1H, d, J= 7.8 Hz), 8 7.36 (IH, t, J= 7.2 Hz), 8 3.56 (2H, m), 3.36 (1H, dd, 
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J= 16.8 Hz, 17.4 Hz), 3.34 (3H, s), 2.89 (lH, dd, J= 16.8 Hz, 16.8Hz), 2.78 (IH, m), 2.26 (lH, 

m), 1.72 (IH, m); 13C (CDCI3, 150 MHz) 8 208.7, 153.8, 136.8, 134.8, 127.5, 126.7, 124.0, 71.0, 

58.7, 44.9, 33.2, 31.3. 

2-Hydroxy-1-indanone 1.86 

To a mixture of0.760 g of1.85 (4.01 mmol) and 1.480 g terbutyl ammonium iodide (4.02 mmol) 

in toluene under oxygen were added 1.04 mL of trimethylphosphite (8.76 mmol) and 20 mL of 

50% sodium hydroxide solution at room temperature for 24 h. The reaction mixture was then 

extracted with dichloromethane. The combined extracts were washed with 50 mL of sodium 

bicarbonate, dried over sodium sulfate, and concentrated. The residue was purified by flash 

chromatography (silica gel/ethyl acetate:hexane = 25:75) to afford 0.762 g (3.67 mmol, 92%) of 

1.86 as a brown color liquid: 1H (CDCh, 600 MHz) 8 7.77 (1H, d, J= 7.8 Hz), 8 7.62 (1H, t, J= 

7.8 Hz), 8 7.42 (1H, d, J= 7.8 Hz), 8 7.38 (lH, t, J= 7.8 Hz), 8 3.71 (IH, m), 3.54 (lH, m), 3.29, 

3.22 (2H, dd, J= 16.8 Hz, 16.8 Hz), 3.31 (3H, s), 2.08 (lH, m), 1.89 (lH, m); 13C (CDCh, 150 

MHz) 8 207.2, 150.9, 135.8, 134.4, 128.0, 126.8, 124.8, 79.9, 69.1, 59.1, 41.6, 37.5. 

Indanone 1.80 

To a solution of 0.403 g of 1.86 ( 1.93 mmol) in THF at 0 oc was added 0.093 g of sodium 

hydride (2.30 mmol) and 0.15 mL (2.41 mmol) methyl iodide. After stirring for 1 hat 0 °C, the 

reaction mixture was allowed to warm to room temperature. The reaction mixture was 

concentrated in vacuum and then extracted with mehylene chloride. The organic layer was 

washed with saturated ammonium chloride and water, dried over sodium sulfate, and 

concentrated. The residue was purified by flash chromatography (silica gel/ethyl acetate:hexane 
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= 35:65) to afford 0.402g (1.82 mmol, 93%) of 1.80 as a yellow liquid: 1H (CDCh, 600 MHz) o 
7.74 (IH, d, J= 7.2 Hz), o 7.59 (lH, t, J= 7.2 Hz), o 7.42 (!H, d, J= 7.8 Hz), o 7.36 (IH, t, J= 

7.2 Hz), o 3.51 (IH, m), 3.44 (lH, m), 3.27 (2H, dd, J= 17.5 Hz, 17.4 Hz), 3.22 (3H, s), 3.17 

(3H, s), 2.10 (lH, m), 1.98 (IH, m); 13C (CDCh, !50 MHz) o 205.2, 151.5, 135.8, 135.5, 127.9, 

126.8, 124.5, 83.4, 68.1, 58.7, 52.0, 36.7, 35.4. 

(Trimethysilyl)ethyne 1.88 

To a flask containing 0.635 g of dichlorobis(triphenylphosphine) palladium (0.55 mmol) and 

0.230 g of Cui (1.20 mmol) was added via cannula a solution of 1.003 g of 1,3-dichloro-2-

iodobenzene (3.66 mmol) in 45 mL of triethylamine followed by a solution of 0.431 g of 

trimethyl-silylacetylene (1.20 mmol) under a nitrogen atmosphere. The resulting mixture was 

stirred vigorously at 80 oc for 12 h. The mixture was then filtered to remove solid particles, and 

the filtrate was concentrated. The residue was purified by flash column chromatography (silica 

gel/ethyl acetate:hexane = 10:90) to give 0.810 g of 1.88 (3.33 mmol, 91% yield) as a light 

yellow oil: 1H (CDCh, 600 MHz) 8 7.31 (lH, d, J= 6Hz), o 7.29 (IH, d, J= 6Hz), 7.15 (IH, dd, 

J = 7.2 Hz), 0.30 (9H, s). 

(2,6-dichloropheny)ethyne 1.89 

To a solution of 0.810 g of 1.88 (3.33 mmol) in 50 ml of methanol was added !OmL of a 10% 

sodium hydroxide solution. After I 0 min of stirring at room temperature, the reaction mixture 

was neutralized with a 2M solution of HCI. The organic layer was separated, and the aqueous 

layer was back extracted with diethyl ether. The combined organic layers were treated with brine 

and water, dried over Na2S04, and concentrated to afford, without further purification, 0.564 g 
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(3.30 mmol, 99%) of 1.89 as a white color solid: 1H (CDCIJ, 600MHz) o 7.34 (2H, d, 8.4 Hz), 

7.20 (IH, t, 8.4 Hz), 3.68 (1H, s); 13C (CDCh, 150 MHz) o 137.9, 129.7, 127.7, 127.3, 122.3, 

88.0 

(Trimethysilyl)ethyne 1.91 

To a flask containing 0.131 g of dichlorobis(triphenylphosphine) palladium (0.19 mmol) and 

0.060 g of Cui (0.32 mmol) was added via cannula a solution of 1. 760 g of 1-bromo-2-

iodobenzene (6.22 mmol) in 45 mL of triethylamine followed by a solution of 0.733 g of 

trimethy1 -silylacetylene (7 .46 mmol) under a nitrogen atmosphere. After one hour of stirring at 

room temperature, the mixture was then filtered to remove solid particles, and the filtrate was 

concentrated. The residue was purified by flash column chromatography (silica gel/ethyl 

acetate:hexane = 5 :95) to give 1.520 g of 1.91 (6.00 mmol, 96% yield) as a black color liquid: 1H 

(CDCh, 600 MHz) o 7.57 (1H, d, J= 7.8 Hz), 7.49 (1H, d, J= 7.8 Hz), 7.23 (JH, t, J= 7.8 Hz), 

7.15 (IH, t, J= 7.8 Hz), 0.27 (9 H, s); 13C (CDCh, 150 MHz) o 133.7, 132.4, 129.6, 127.0, 125.9, 

125.3, 103.1, 99.7, -0.02. 

1-(2-iodophenyl)-2-( trimethylsilyl)ethyn e 1.92 

To a solution of 1.050 g of 1.91 ( 4.20 mmol) in 50 mL of anhydrous diethyl ether at -78 oc was 

added dropwise 1.84 mL of a 2.5 M solution of n-butyllithium ( 4.60 mmol) in hexanes. After one 

hour of stirring at -78 °C, a solution of 1.070 g of iodine ( 4.20 mmol) in 40 mL of anhydrous 

diethyl ether was added dropwise via cannula. The reaction mixture was allowed to warm to 

room temperature before 20 mL of a saturated ammonium chloride solution was introduced. The 

organic layer was separated, washed with water, dried over sodium sulfate, and concentrated. 
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The residue was purified by flash column chromatography (silica gel/hexane) to give !.248 g of 

1.92 (4.16 mmol, 99% yield) as a black color liquid: 1H (CDCb, 600 MHz) o 7.84 (lH, d, J= 8.4 

Hz), 7.47 (IH, d, J= 7.8 Hz), 7.28 (IH, t, J= 7.2 Hz), 6.98 (lH, t, J= 7.8 Hz), 0.28 (9 H, s); 13C 

(CDCb, 150 MHz) o 138.8, 132.8, 129.7, 128.7, 127.8, 106.6, 101.4, 98.9, -0.0!. 

(Trimethysilyl)benzannulated enediyne 1.93 

To a mixture of 1.92 (0.592 g, !.97 mmol), Pd(PPh3)2Clz (0.041 g, 0.06 mmol), and copper(I) 

iodide (0.019 g, 0.10 mmol) in 30 mL of triethylamine was added via cannula a solution of 0.337 

g of 1.89 (1.97 mmol) in 5 mL of triethylamine. After two hours of stirring at room temperature, 

the mixture was then filtered to remove solid particles, and the filtrate was concentrated. 

Purification of the residue by flash column chromatography (silica gel/hexanes) afforded 0.528 g 

of1.93 (!.54 mmol, 78% yield) as a yellow oil: 1H (CDCh, 600 MHz) o 7.61 (lH, m), 7.53 (lH, 

m), 7.36 (2H, d, J= 7.8 Hz), 7.30 (2H, m), 7.18 (IH, t, J= 7.8), 0.24 (9H, s); 13C (CDCh, 150 

MHz) o 137.4, 132.9, 132.8, 129.2, 128.7, 128.3, 127.6, 125.6, 125.3, 123.5, 103.2, 99.2, 98.5, 

87.2, 0.12. 

Benzannulated enediyne 1.83 

To a solution of 0.528 g of 1.93 (!.54 mmol) in 50 mL of methanol was added 20 mL of a 10% 

sodium hydroxide solution. After 10 min of stirring at room temperature, the reaction mixture 

was neutralized with a 2M solution of HCI. The organic layer was separated, and the aqueous 

layer was back extracted with diethyl ether. The combined organic layers were treated with brine 

and water, dried over Na2S04, and concentrated to afford, without purification, 0.413 g (1.52 

mmol, 99%) of 1.83 as a dark brown color solid: 1H (CDCh, 600 MHz) o 7.64 (IH, d, J= 7.2 
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Hz), 7.56 (lH, d, J= 7.8 Hz), 7.34 (4H, m), 7.17 (1H, t, J= 8.4), 7.18 (IH, t, J= 8.4), 3.37 (IH, 

s); 13e (eDeh, 150 MHz) li 137.5, 132.8, 132.6, 129.3, 128.8, 128.6, 127.6, 125.9, 124.7, 123.3, 

98.1, 87.3, 82.0, 81.9. 

Propargylic alcohol1.94 

To a mixture of 1.80 (0.155 g, 0.70 mmol) and 1.83 (0.190 g, 0.70 mmol) was in 50 mL ofTHF 

was added a solution of 0.43 mL of a 1.8M solution of LDA in THF/hexanes at 0 oe. After 2 h of 

stirring at 0 oe, 20 mL of a saturated ammonium chloride solution and 50 mL of methylene 

chloride were-added. The organic layer was separated, and the aqueous layer was back extracted 

with methylene chloride. The combined organic layers were washed with brine and water, dried 

over sodium sulfate, and concentrated. The residue was purified by flash chromatography (silica 

gel)/AcOEt/hexane (30/70) to afford 0.306 g (0.62 mmol, 89%, 1:1 mixture of isomers) of 1.94 

as a brown color liquid. Diastereomer 1: 1H (eDeh, 600 MHz) 1i 7.70 (1H, d, J= 7.2 Hz), 7.63 

(1H, m), 7.57 (IH, m), 7.32 (4H, m), 7.20 (lH, t, J= 7.8 Hz), 7.17 (lH, d, J= 7.8 Hz), 7.15 (IH, 

d, J= 7.2 Hz), 7.10 (lH, t, J= 7.2 Hz), 4.85 (1H, s), 3.95 (1H, t, J= 9Hz), 3.49 (1H, m), 3.35 

(3H, s), 3.16 (lH, d, J= 16.2 Hz), 3.15 (3H, s), 3.06 (IH, d, J= 16.2 Hz), 2.27 (IH, m), 2.20 (1H, 

m); Be (eDeh, 150 MHz) li 144.9, 140.4, 137.6, 132.9, 132.8, 129.3, 129.2, 128.7, 127.9, 127.6, 

127.3, 125.8, 125.06, 125.02, 124.2, 123.4, 98.6, 94.5, 89.7, 87.0, 84.1, 80.4, 67.9, 58.5, 51.6, 

39.6, 33.5. Diastereomer 2: 1H (eDeh, 600 MHz) o 7.61 (1H, d, J= 7.2 Hz), 7.58 (lH, m), 7.51 

(1H, m), 7.34 (2H, d, 8.4 Hz), 7.30 (2H, m), 7.18 (2H, t, J= 7.2 Hz), 7.12 (IH, t, .!= 7.8 Hz), 

7.10 (lH, d, .!= 7.2 Hz), 4.08 (1H, s), 3.55 (1H, m), 3.45 (IH, m), 3.36 (3H, s), 3.22 (3H, s), 3.11 

(1H, d, J = 16.2 Hz), 3.08 (1H, d,.! = 16.2 Hz), 2.59 (1H, m), 2.04 (1H, m) ; Be (eDeh, 150 
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MHz) o 144.8, 139.0, 137.6, 132.7, 132.6, 129.3, 128.9, 128.7, 128.3, 127.6, 127.3, 125.2, 124.9, 

124.7, 124.2, 123.3, 98.3, 93.0, 88.9, 86.8, 86.3, 79.4, 68.5, 58.6, 52.0, 38.8, 32.0. 

Benzofluorene 1.96a-c 

To a solution of0.101 g of1.94 (0.20 mmol) in methylene chloride at 0 oc was added dropwise 

0.72 mL ofthionyl chloride (10 mmol) and 0.16 mL of pyridine (10 mmol). After stirring 2 hat 

0 °C, 20 mL of a saturated ammonium chloride solution and 20 mL of methylene chloride were 

added. The organic layer was separated, and the aqueous layer was back extracted with 

methylene chloride. The combined organic layers were washed with brine and water, dried over 

sodium sulfate, and concentrated. Purification of the residue by flash column chromatography 

(silica gel/ethyl acetate/hexanes (25:75) afforded 0.076g of 1.96a, 1.96b, 1.96c as a brown oil. 

1.96a: 1H (CDCh, 600 MHz) o 7.70 (lH, d), 7.63 (1H, m), 7.58 (lH, m), 7.50 (1H, d), 7.46 (lH, 

m), 7.33(2H, m), 7.14 (!H, t), 7.10 (lH, t), 6.45 (lH, d, J= 7.8 Hz), 6.25 (lH, d), 3.69 (2H, dd), 

3.47 (IH, m), 3.32 (lH, m), 3.13(3H, s), 3.06(3H, s), 2.87(2H, m); 1.96b: 1H (CDCh, 600 MHz) 

o 7.70 (1H, d), 7.59 (2H, m), 7.49 (lH, d), 7.43 (1H, m), 7.32 (2H, m), 7.12 (2H, m), 6.45 (lH, d, 

J= 7.8 Hz), 5.94 (1H, d), 3.71 (lH, d), 3.53 (2H, m), 3.52 (lH, d), 3.10 (3H, s), 3.01 (lH, m), 

2.76 (3H, s), 2.62 (lH, m); 1.96c: 1H (CDCh, 600 MHz) o 7.74 (1H, d), 7.61 (2H, d), 7.50 (2H, 

m), 7.32 (lH, d), 7.25 (2H, m), 7.05 (1H, d), 6.36 (lH, d), 3.71 (lH, d, J= 18Hz), 3.59 (2H, m), 

3.44 (lH, m), 3.16 (3H, s), 3.13 (3H, s), 3.00 (lH, m), 2.65 (lH, m) 

Benzofluorene 1.97 

To a solution of0.996 g of a diiodosilane* solution at room temperature was added 0.102 g of a 

mixture of 1.96a-c (0.21 mmol) in 5 mL chloroform. After 6 h of stirring, 20 mL of a saturated 
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ammonium chloride solution and 20 mL of methylene chloride were added. The organic layer 

was separated, and the aqueous layer was back extracted with methylene chloride. The combined 

organic layers were washed with brine and water, dried over sodium sulfate, and concentrated. 

Purification of the residue by flash column chromatography (silica gel/hexanes, Rf = 0.90) 

afforded 0.108 g of 1.97 (0.20 mmol, 95% yield) as a white solid: 1H (CDCh, 600 MHz) o 7.60 

(3H, t), 7.48 (lH, t), 7.40 (lH, t), 7.31 (II-I, d), 7.28 (lH, d), 7.11 (2H, t), 6.59 (1H, d, J = 7.8 

Hz), 4.17 (lH, d, J= 21Hz), 4.09 (lH, d, J= 21.6 Hz), 4.06 (lH, dd), 3.75 (1H, dd), 3.40 (IH, 

m), 3.35 (1H, dd), 3.21 (IH, dd), 2.84 (!H, m), 2.30 (IH, m); 13C (CDCh, 150 MHz) o 144.2, 

143.7, 142.6, 141.0, 140.3, 138.1, 136.5, 136.4, 136.3, 134.2, 130.0, 129.5, 128.6, 128.0, 127.5, 

127.2, 125.3, 124.8, 122.3, 120.3, 119.5, 44.2, 38.2, 36.9, 34.6, 4.04 

*Preparation of diiodosilane was followed exactly by the same procedure in J. Org. Chern. 1987, 

52, 4846-4851 

Hydrocarbon 1.98a and 1.98b 

To a solution of 0.040 g of 1.97 (0.10 mmol) in 5 mL THF at 40 °C was added 0.011 g of 

potassium t-butoxide (0.1 0 mmole) in 5 mL of THF. After 2 h of stirring at 40 °C, I 0 mL of a 

saturated ammonium chloride solution and 10 mL of methylene chloride were added. The 

organic layer was separated, and the aqueous layer was back extracted with methylene chloride. 

The combined organic layers were washed with brine and water, dried over sodium sulfate, and 

concentrated to afford, without purification, the mixture of 0.030 g of 1.98a and 1.98b. All non-

aromatic protons were assigned to corresponding products. 1.98a: 1H (CDCh, 600 MHz) o 4.42-

4.34 (lH, d), 4.16-4.07 (IH, d), 3.92 (!H, s), 3.82 (1H, m), 2.60 (2H, m), 1.39 (IH, m), 1.03 (IH, 
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m); 1.98b: 1H (CDCIJ, 600 MHz) o 6.85 (IH, s), 6.69 (IH, d), 4.34 (2H, s), 3.03 (2H, m), 1.49 

(3H, m). 

Hydrocarbon 1.99 and 1.100 

A mixture of I.98a (0.030 g, O.o7 mmo1), Pd(PCy3)2Ch( 0.011 g, 0.015 mmol) and DBU ( 0.104 

mL, 0.7 mmo1) in 5 mL dimethylacetamide was placed in a sealed reaction tube equipped with 

magnetic bar and heated under microwave irradiation at 150 oc for 90 min. The mixture was then 

filtered to remove solid particles, and the filtrate was concentrated. The residue was washed with 

brine and water, dried over sodium sulfate, and concentrated to afford, without purification, the 

mixture of 0.014 g of 1.99 and 1.100 . .Two doublet peaks above o 9.0 were observed in the crude 

NMR which indicated formation ofPAHs 1.99 and 1.100. 1H (CDCh, 600 MHz) o 9.14 (JH, d), 

9.29 (2H, d). 
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