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ABSTRACT 

Understanding the Mechanism of Hard Metal (WC-Co) Toxicity:   

In vitro Studies and In vivo Exploration 
 

Andrea Lynn Armstead 

Hard metals, such as tungsten carbide cobalt (WC-Co), are frequently used for a number 

of industrial applications such as surface coatings for heavy machinery and tools. In particular, 

WC-Co coatings are prevalent in mining and drilling applications where extensive, repetitive use 

of these tools causes wear over time. In enclosed environments, WC-Co wear particles become 

airborne and present an occupational inhalation hazard. It is known that inhalation of WC-Co 

“dusts”, composed of nano- and micro-sized WC-Co particles, contributes to the development of  

hard metal lung disease and increased risk for lung cancer; however, the relationship between acute 

WC-Co toxicity and disease progression remains poorly understood. To address this gap in 

knowledge, we systematically evaluated nano-WC-Co particle toxicity using a combination of in 

vitro and in vivo models. In Aim 1, we determined the toxicity of nano-WC-Co particles in BEAS-

2B lung epithelial cells over concentrations ranging 0.1 to 1000 μg/mL and exposure periods from 

0.5 to 48 hr. Our MTT-based cell viability assay indicated that nano-WC-Co exhibits greater 

toxicity than micro-WC-Co at concentrations ≥ 10 μg/mL. We also found that nano-WC-Co 

exposure induces oxidative stress at the highest particle concentration tested (1000 μg/mL) using 

a fluorescence-based (DCF/DHE) assay and that WC-Co particle exposure induced cellular 

apoptosis, marked by increased annexin-V staining in our flow cytometry apoptosis assay. The 

potential for nano-WC-Co particle internalization was also investigated using transmission 

electron microscopy (TEM) and confirmed that nano-WC-Co particles are capable of being 

internalized by BEAS-2B cells. In Aim 2, we determined the inflammatory response toward nano-

WC-Co particles in a co-culture model of BEAS-2B cells and macrophages, to more closely 

represent the dynamic tissue environment of the lung. The results of our viability assay indicated 

that macrophages attenuated the toxicity of nano-WC-Co in the co-culture model compared to 

BEAS-2B alone, which indicated a protective effect of the macrophages. We found that nano-WC-

Co exposure caused macrophage polarization toward the M1 pro-inflammatory phenotype and 

determined that nano-WC-Co exposure also stimulates the secretion of cytokines such as IL-12 

and IL-1β in macrophages, consistent with a pro-inflammatory response. In Aim 3, we investigated 

the potential systemic (extra-pulmonary) effects of nano-WC-Co exposure in an intra-tracheal 

instillation (IT) rat model and compared the outcomes with a known pulmonary irritant, cerium 

dioxide (CeO2). After 24 hr exposure, nano-WC-Co exposure did not induce pulmonary or 

systemic inflammation at a dose of 50, 250 or 500 μg compared to control or CeO2; this outcome 

highlights the need for future in vivo studies which examine the inflammatory effects of chronic 

or repeated nano-WC-Co exposure. Taken together, the results of our studies improve the current 

understanding of hard metal WC-Co toxicity and may point toward potential therapeutic or 

diagnostic strategies for the future.   
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Nano-Toxicity: Emerging Concerns Regarding Nanomaterial Safety  

&  

Occupational Hard Metal (WC-Co) Nanoparticle Exposure 
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ABSTRACT 

 

 As the number of commercial and consumer products containing engineered 

nanomaterials (ENMs) continually rises, the increased use and production of these ENMs 

presents an important toxicological concern. While ENMs offer a number of advantages over 

traditional materials, their extremely small size and associated characteristics greatly enhance 

their toxic potential. ENM exposure can occur in a variety of consumer and industrial settings via 

inhalation, ingestion or dermal routes. While the importance of accurate ENM characterization, 

effective dosage metrics and selection of appropriate cell or animal-based models are universally 

agreed upon as important factors in ENM research, at present, there is no “standardized” 

approach used to assess ENM toxicity in the research community. Of particular interest is 

occupational exposure to tungsten carbide cobalt (WC-Co) “dusts”, composed of nano- and 

micro-sized particles, in hard metal manufacturing facilities and mining and drilling industries. 

Inhalation of WC-Co dust is known to cause “hard metal lung disease” and an increased risk of 

lung cancer; however, the mechanisms underlying WC-Co toxicity, the inflammatory disease 

state and progression to cancer are poorly understood. Herein, a discussion of ENM toxicity is 

followed by a review of the known literature regarding the effects of WC-Co particle exposure 

and an original dissertation research project, focusing on the mechanisms of WC-Co mediated 

toxicity in vitro and in vivo, is proposed.     

 

 

 

Keywords: engineered nanomaterial, nanotoxicity, nanoparticle, occupational exposure, hard 
metal, lung disease, cancer 
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ENGINEERED NANOMATERIALS, NANOTOXICITY & MEANS of EXPOSURE 

Due to recent technological and manufacturing advancements, the production and use of 

engineered nanomaterials (ENMs) is increasing at a rapid pace. The term ENM broadly 

encompasses a number of nano-sized materials that vary in shape, such as nanotubes, nanowires, 

or nanoparticles (NPs), which are generally defined as “any material having at least one 

dimension smaller than 100 nm” [1, 2]. Due to their extremely small size and high surface area, 

NPs offer a number of advantages over traditional “bulk” materials and are suitable for a wide 

variety of applications in consumer goods [3-5], medical devices and diagnostics [6-9], 

pharmaceutical products [8, 10-14], fuel additives [15-17] and other industrial uses [18].  As a 

result, the number of manufactured goods containing NPs is continually rising; in 2006, 

manufacturers reported that NPs were incorporated in over 600 consumer products worth $50 

billion in market value [3], a number which more than doubled to greater than 1600 NP-

containing consumer products in 2013 [19].  

 With the increased use of NPs in such diverse applications, a concomitant risk of 

exposure exists across consumer households and in commercial occupational settings. NPs exist 

in our daily environments and are often referred to as “contaminants” of important air, water and 

soil resources [20-24]. Because these NPs are all around us, exposure can occur via mechanisms 

such as inhalation, ingestion and dermal exposure [25]. Additionally, emerging evidence 

suggests that humans may also be exposed to NPs internally, which may be generated in situ due 

to orthopedic surgical implant wear [26-29]. These potential routes of NP exposure are 

summarized graphically in Figure 1. Importantly, the route of exposure ultimately determines 

which body system or specific tissues the NPs interact with which in turn, determines the effects 

of NP exposure such as toxicity [30-32] or alterations in physiological function [33, 34]. 
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Figure 1. Routes and potential detrimental effects of NP exposure. 

The effects of NP exposure can be divided into primary and secondary categories (Figure 

1), depending upon the extent of exposure. Primary effects resulting from direct cellular NP 

contact may include toxicity, oxidative stress, DNA damage and inflammation [1, 2, 35]. Due to 

their small size, NPs may translocate through tissue barriers into the blood, where they can 

circulate and eventually deposit in other organs, thereby generating a secondary NP exposure. 

Secondary effects may include toxicity at the site of NP deposition, in organs such as the liver, 

spleen or kidneys, systemic inflammation or alterations in systemic function [1, 2, 33, 35-37]. 

The first three routes of exposure occur via external NP sources, but there is emerging evidence 

which indicates that humans may also be exposed internally, when orthopedic or surgical implant 

wear NPs are released locally from the implant site [26, 38, 39]. Most commonly, humans are 

exposed to NPs in their environments through the pulmonary route, by inhaling airborne NPs 

during normal breathing [33, 34, 40, 41].  
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Despite their potential toxic properties, it is worth mentioning that certain NPs have 

distinct advantages which outweigh the risk of use and have greatly improved a consumer 

products on the market today such as sunscreens and cosmetics [25]. For example, titanium 

dioxide NPs present in sunscreens and cosmetic products are highly beneficial, offering excellent 

protection from sun exposure, therefore protecting the skin against UV damage and preventing 

sunburn. NPs have been approved for use under these conditions; however, the long-term effects 

of titanium dioxide NPs on aquatic life in contaminated water sources (lakes, oceans, etc) remain 

an important concern for future research.  

 

Table 1. Important components of NP toxicity testing. 



6 
 

As a direct result of the increased use of NPs and likelihood of exposure, the study of the 

acute and chronic effects of NP exposure has recently emerged as the field of ‘nanotoxicology’ 

[42]. Currently, there is no standard approach for NP toxicity testing and a number of arguments 

support the implementation of a standard testing procedure, so that results and outcomes can be 

directly comparable amongst all NPs tested. However, this remains a difficult task because the 

route and realistic amount of exposure (dose) vary greatly depending on the particular NP in 

question [43]. In order to define the toxic potential of NPs, several key factors must be addressed 

(summarized in Table 1) [1, 2, 42]. First, it is imperative to characterize NPs in terms of size, 

shape and properties, so that the observed effects can be attributed to a particular property or 

characteristic [44, 45]. Next, an appropriate dosage metric must be selected for the NPs to be 

examined. In the literature, NP dosages have been reported as concentration per volume or mass 

(mg/mL or mg/kg), as reactive surface area (cm2) or as particle number in solution, calculated 

based on NP size [43]. 

In addition to particle characterization and selection of the dosing metric, an appropriate 

model must be selected for toxicity testing [32, 41, 46]. Typically, in vitro cell-based models are 

the starting point due to lower cost and relative ease of execution compared to in vivo animal-

based model systems [47]. In vitro systems require small amounts of NP for testing and allow for 

dose-response testing and sample collection over time in a variety of systems such as cells or 

tissues [47]. Primary or commercial cells are commonly used for ENM toxicity testing and cell 

selection for a given assay is frequently based on the potential route of NP exposure; some 

examples of in vitro models are summarized in Table 2. Aside from the advantage of being “fast 

and cheap”, in vitro models can be used to estimate toxico-kinetic parameters, target organ 
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toxicity and help define appropriate NP dosages for in vivo studies, which helps to reduce the 

number of experimental animals required for nanotoxicity research.  

Table 2: Examples of In Vitro Cell Models used for Nanotoxicity Testing 

Cell Type NPs Studied NP Size NP Dose [Ref] 

Human lung carcinoma (A549) Cerium Dioxide 
(CeO2) 

10 nm 6.25, 25 or 100 
μg/mL 

[17] 

Human hepatocyte (C3A), human 
colon adenocarcinoma (CaCo-2), 
primary trout hepatocytes 

Gold (Au) 

Cerium Dioxide 
(CeO2) 

35 nm 

25 nm 0-1000 μg/mL [24] 

Human fibroblasts, peripheral 
blood mononuclear cells, 
macrophages 

Cobalt Chromium 
(CoCr) 

30 nm 

3 μm 
1-5000 μm3/well 

[48-
50] 

Hepatocellular carcinoma (HepG2) Silicon Dioxide 
(SiO2) 

43 nm 25, 50, 100, 200 
μg/mL 

[51] 

Human lung epithelial cells 
(BEAS-2B) 

Titanium Dioxide 
(TiO2) 

25 nm 
5, 10, 20, 40 μg/mL [52] 

Rat alveolar macrophages (RAW 
264.7) 

Crystalline Silica  
Zinc Oxide 
Magnesium Oxide 
(DQ12, ZnO, MgO) 

960 nm 

10 nm 

8 nm 

1, 5, 10, 40 μg/cm2 [53] 

 

Table 2. Examples of in vitro models used in NP toxicity testing. 

Although in vitro models and toxicity assays are reliable and used frequently, several 

groups have reported NP interference with commonly used cell-based assays [54-57], bringing 

into question whether the results are accurate or if they are simply artifacts generated due to NP 

interference with the assay mechanism [57, 58]. To address this issue, a number of control 
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experiments are required to identify any potential NP assay interference and these effects must 

be considered when interpreting the final results.  

Although they offer a number of advantages, cell-based systems are limited and generally 

demonstrate the effects of NPs within a very specific and small compartment compared to 

whole-animal in vivo models [59-61]. Animal models may offer more realistic insights as to the 

effects of NP exposure in humans because the body systems can be utilized as a whole, with all 

of its cells, tissues and organs interacting with the NPs as would be encountered in a realistic 

exposure scenario [59-61].  

Since there are a number of NP exposure routes for humans, a number of in vivo 

exposure approaches must be used such that the effects of the NP on the appropriate tissue or 

organ system can be identified. Commonly used in vivo NP exposure routes are summarized 

Table 3, including NP inhalation, intra-tracheal instillation (IT), injection and ingestion or 

gavage. As mentioned earlier, NP inhalation and pulmonary exposure is the most common in 

humans and is therefore the most frequent route by which experimental animals are exposed in 

nanotoxicity studies. However, not all NPs are suitable for aerosolization for the purposes of an 

inhalation chamber, so alternatively, pulmonary NP exposure can be achieved via intra-tracheal 

instillation (IT) [62]. IT is a highly reproducible, direct method for depositing NP within the 

lungs and NP delivered in this manner have very similar lung distribution to NP inhalation [62]; 

therefore, IT is considered an excellent approach for the pulmonary delivery of NP. In addition 

to pulmonary routes of exposure, animals may also be exposed to NP via injection for the 

purposes of systemic or local NP exposure. Intra-peritoneal (IP) or intravenous (IV) NP 

injections can be used to achieve systemic NP exposure, as the NP will circulate through the 

vasculature and may deposit in organs such as the liver, spleen or kidneys. Injection may also be 
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used to achieve localized NP exposure within articular locations, such as the knee or hip, or may 

be used to target subcutaneous tumors.  

Table 3: Examples of In Vivo Animal Models Used for Nanotoxicity Testing 

NP Delivery 
Method 

Animal Model NPs Studied NP Size NP Dose [Ref] 

Inhalation Mouse 
Cadmium 
Oxide (CdO) 

15 nm 
250 μg/m3 for 3 hr/ 
day × 7 days 

[63] 

 
Rat 

Magnetite 
(Fe3O4) 

1.3 μm 

4.7, 16.6, 52.1 
μg/m3 for 6 hr/ day × 
5 days/week × 13 
weeks 

[64] 

Intra-tracheal 
Instillation (IT) 

Rat 
Cerium Dioxide 
(CeO2) 

191 nm 
10, 100, 400 μg per 
rat 

[65] 

 
Mouse Chitosan 633  nm 2 mg/kg [66] 

Injection 

Mouse  

(periarticular 
injection) 

Cobalt 
Chromium 
(CoCr) 

32 nm 

2.9 μm 

1.2 × 106 μm3/25 g 

1 injection/week × 2 
weeks 

[67] 

 

Rats (articular 
injection) 

Cobalt 
Chromium 
(CoCr) 

60 nm 

0.05, 0.25, 1.25 
μg/mL  

1 injection/week × 
10 weeks 

[68] 

Ingestion 

(via GI tract) 

Daphnia magna, 
Cyprius carpo 
(fish species) 

Gold (Au) 

Cerium Dioxide 
(CeO2) 

35 nm 

25 nm 
0-10 μg/mL 

[24, 
69] 

 

Table 3. Examples of in vivo exposure models used in NP toxicity testing. 
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INDUSTRIAL HARD METAL (WC-Co) APPLICATIONS & EXPOSURE 

 Among the plethora of NPs gaining industrial use and popularity is tungsten carbide 

cobalt (WC-Co), which is a hard composite metal known for its extreme hardness, stability and 

sharpness [70, 71]. The use of WC-Co NPs as a spray coating on heavy machinery, drill bits and 

saw blades substantially increases strength, durability and resistance to wear, which drastically 

improves the operating lifetimes in industrial applications [70, 71]. In particular, WC-Co 

coatings are popular in the mining and drilling industries, where maintenance of sharp saw 

blades and drills is of critical importance.  

 Despite the improved durability and strength of WC-Co NP coatings compared to other 

conventional materials, these coatings do not last forever and eventually wear over extended use 

and time. As a result, airborne WC-Co dusts containing particles of varying size can be 

generated during use [72]. These airborne WC-Co “dusts” present an occupational exposure 

hazard not only in hard metal manufacturing facilities, but also in mining and drilling industries 

where these WC-Co coated implements are used extensively in enclosed environments [73-78]. 

Typical WC-Co dusts encountered in industrial environments have a reported size range of 

several microns down to highly respirable particles in the nano-size range [78, 79].  

 While exposure to WC-Co containing dusts has been identified as an occupational 

workplace hazard by the National Institutes of Occupational Safety and Health (NIOSH) [80], 

exposure limits for WC-Co dusts and powders remain undefined. Existing exposure limits for 

cobalt metal and ionic cobalt [81-83] are difficult to translate to WC-Co exposure, as cobalt 

content can vary, depending on the application, and generated dusts may not have uniform 

composition between multiple industrial sites [77].  More importantly, the combination of WC-

Co is more toxic than Co, W or WC particles alone (see page 11). Therefore, understanding the 
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toxic effects of hard metal WC-Co particles is crucial so that occupational exposure guidelines 

can be developed.  

 

RISK OF WC-Co EXPOSURE: HARD METAL LUNG DISEASE (HMLD) PROGNOSIS 
& CANCER RISK 

 Exposure to “hard metal dust” containing WC-Co is well associated with the occurrence 

of occupational asthma and is a known prerequisite for the development of hard metal lung 

disease (HMLD) [70, 72, 81, 84-109]. Diagnosis of HMLD is a challenge, as symptoms are 

general and often mistaken for other respiratory ailments: patients often report difficulty 

breathing and present with reduced lung capacity, progressive lung inflammation and eventual 

fibrosis [101, 102, 105, 110, 111]. HMLD has been reported in hard metal manufacturing, oil 

and mining/drilling industries, where workers were exposed to WC-Co dusts or fumes on a daily 

basis for a number of years prior to diagnosis [72, 84, 101, 105, 112-118]. Currently, treatments 

are limited and no disease-specific therapy or diagnostic tool exists. There has been some 

success in treating HMLD with corticosteroids or immuno-suppressive therapies [119-122], but 

in most cases, avoidance of further hard metal exposure is the recommended course of action.  

It has recently been established that the defining characteristic of HMLD is the presence 

of “bizarre, cannibalistic, multinucleated giant cells” in lung biopsy specimens of workers 

exposed to WC-Co [102, 111, 114, 117, 123-127]. These giant cell complexes are thought to 

originate from macrophages which have engulfed WC-Co particles, which then stimulate 

inflammatory and fibrotic processes in the surrounding lung tissue [99, 102, 114, 124, 125]. In 

some cases, WC-Co particle “deposits” have been found in biopsy specimens, confirming 

causative exposure to WC-Co dust and HMLD diagnosis [113, 114, 124, 126]. It has been 
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hypothesized that there may be an allergic reaction or a genetic predisposition which may 

contribute to the development of HMLD in certain individuals [89, 128, 129].  

There is also accumulating evidence that patients with HMLD are at a two-fold increased 

risk of developing lung cancer [95, 97, 100, 101]. It has been argued that the generation of 

reactive oxygen species by WC-Co particles, which may directly cause DNA damage, along with 

the ability of cobalt ions to inhibit DNA repair mechanisms, may play a synergistic role in the 

development of lung cancer in HMLD patients [100]. However, this hypothesis has yet to be 

verified in vivo and the relationship between the inflammatory disease state and development of 

lung cancer remains unclear. 

 

DEFINING HARD METAL (WC-Co) TOXICITY: In Vitro and In Vivo STUDIES 

Early data concerning the effects of inhaled WC-Co dusts first emerged in the 1960s and 

continued through the 1980s, providing researchers the foundation to further explore the toxic 

effects of hard metal exposure using in vitro [128, 130-153] and in vivo [130, 154-161] models. 

Although cobalt itself was originally considered the causative agent of HMLD, several studies 

demonstrated that this is not the case and the disease is mainly developed due to the 

simultaneous presence of WC with Co [128, 132, 134-136, 138, 140, 141, 145, 146, 155, 156, 

162, 163]. It is currently understood that the combination of WC-Co is more toxic than Co, W or 

WC particles alone, both in vitro and in vivo [128, 130, 132, 134, 138-149, 152, 153, 155-160], 

but the reason for this enhanced toxicity is still not well defined. 

On the in vitro side, the effects of direct WC-Co particle exposure were examined by a 

number of research groups in terms of cell viability, apoptogenic potential, genotoxicity, 
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oxidative stress and DNA damage in multiple cell lines of various origins. The major outcomes 

of these early in vitro studies are summarized in Table 4, where the cell type, particle size and 

dosage parameter is noted for each study. In alveolar macrophages, 2 μm WC-Co particles 

caused significant toxicity after 24 hr of exposure at concentrations ranging from 50 to 1667 

μg/mL, but were less toxic toward type II pneumocytes under these conditions [130, 152], 

confirming pulmonary WC-Co toxicity in a relevant in vitro model. Toxicity has also been 

reported in mouse peritoneal macrophages, where WC-Co particles ranging from 2-4 μm caused 

toxicity after as little as 6 hr of exposure at concentrations ranging 50 to 300 μg/mL [140-146]. 

In human peripheral blood mononuclear cells, exposure to micron-sized WC-Co particles caused 

apoptosis, DNA damage, genotoxicity and alterations in gene expression after exposure times as 

short as 15 min and up to 6 hr [147-149, 157]. Additionally, a number of these studies compared 

the toxicity of WC-Co, WC or Co particles and determined that the interaction of WC with Co 

significantly enhances the toxicity of the composite compared to either component alone [128, 

132, 134, 140, 141, 146, 148].   

There are fewer studies which have examined the effects of nano-WC-Co particles; 

however, nano-WC-Co toxicity has been reported in human keratinocytes, liver carcinoma cells, 

oligodendroglial precursor cells and neurons, at concentrations ranging from 3 to 30 μg/mL and 

exposure times from 1 hr up to 3 days [132, 133, 138]. Internalization of nano-WC-Co has been 

reported in the keratinocytes (epidermal cells) after 2 days of exposure, which suggested that 

nano-WC-Co could potentially be absorbed through the skin [132, 133]. Nano-WC-Co toxicity 

has also been reported in rainbow trout gill cells, murine epidermal cells and fibroblasts at 

concentrations < 100 μg/mL for 3 hr and up to 3 days [137, 150, 151]. Nano-WC-Co has also 
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been shown to exert genotoxic effects by affecting the expression of genes involved in cellular 

apoptosis and stress responses [133, 134].  

While the effects of WC-Co particles have been established in multiple cell lines of 

varying origin, these studies used mono-culture systems in their examination of WC-Co particle 

toxicity, which may not provide an accurate assessment of what happens during/after WC-Co 

exposure since the local environment of the lung is highly dynamic and contains more than a 

single cell type. Additionally, amongst these studies, there was little information regarding the 

effects of WC-Co exposure in lung epithelial cells (non-carcinoma), which line the airway and 

are highly likely to directly encounter WC-Co particles or dust during an occupational exposure. 

Despite these limitations, this body of research clearly demonstrates that WC-Co particles are 

highly toxic and are capable of inducing oxidative stress and genotoxicity following exposure, 

highlighting the need for further investigation into the relationship between acute WC-Co 

toxicity and development of HMLD.   

Table 4: Summary of In Vitro Studies Regarding WC-Co Particle Toxicity 

Cell Type 
Particle Size 

& Dosage 
Major Outcome(s) [Ref] 

Primary rat type II 
pneumocytes 

2 μm  
50 μg/mL WC-
Co 

No changes in the levels of TNFα, IL-1, fibronectin or 
cystatin-C (compared to control) were observed after 
WC-Co exposure for 12 or 24 hr in isolated rat type II 
pneumocytes.  

[130] 

Human colon 
adenocarcinoma 
(CaCo-2), human 
keratinocytes 
(HaCaT), human lung 
carcinoma (A549), 
OLN-93 oligodendro-
glial precursor cells, 
rat neurons, astrocytes  

145 nm 
3.3, 6.6, 8.25, 
11, 16.5 or 33 
μg/mL WC-Co  

WC-Co particles exhibited significant toxicity at a 
concentration of 33 μg/mL after 3 days exposure to 
CaCo-2, HaCaT and A549 cells.  Significant toxicity 
was also observed in astrocytes after exposure to 
3.3 μg/mL and higher WC-Co concentration after 1 
and 3 days. Primary rat neurons were not sensitive 
to WC-Co toxicity. Additionally, WC-Co particles 
were internalized into the cytoplasm of HaCaT, A549 
and OLN-93 cells after 2 days. 

[132] 
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Table 4. Summary of in vitro WC-Co toxicity studies. 

Table 4: Summary of In Vitro Studies Regarding WC-Co Particle Toxicity (continued) 

Cell Type 
Particle Size 

& Dosage 
Major Outcome(s) [Ref] 

Human peripheral 
blood mononucleated 
cells (PMBC) 

1 μm  

10, 50 or 100 
μg/mL WC-Co 
or Co 

After 15 min exposure to WC-Co, PMBC 
demonstrated 1.5-fold increase in DNA damage, 
marked by increased formation of micronuclei due to 
oxidative stress, compared to control and Co particle 
treatment alone.  

[134] 

Rainbow trout gill cells 
(RTgill-W1) 

145 nm 

8.25, 16.5 or 
33 μg/mL WC-
Co 

WC-Co caused significant reduction in cell viability 
after 3 hr and 3 day of exposure in RT gill cells. WC-
Co particles were also found to be internalized into 
the cytoplasm after 2 days. 

[137] 

Human keratinocyte 
(HaCaT) and hepato-
cellular liver 
carcinoma (HepG2) 
cells 

145 nm 

7.5, 15 or 30 
μg/mL 

WC-Co internalization in HaCaT was confirmed; 
however, WC-Co did not cause significant toxicity at 
the concentrations studied after 1 hr, 3 hr or 3 days. 
WC-Co particles did not induce reactive oxygen 
species (ROS) or DNA micronuclei under the 
conditions tested. 

[138] 

Mouse peritoneal 
macrophages  

2 μm  

50, 100, 200 
or 300 μg/mL 
of WC-Co, Co 
or WC 

After 18-24 hr of exposure, WC-Co caused 
significant toxicity, marked by increased LDH release 
and significant induction of oxidative stress 
compared to control. Activated oxygen species were 
implicated in associated DNA damage (micronuclei) 
in macrophages. 

[140-
144] 

Human keratinocytes 
(HaCaT) 

62 nm 

33 μg/mL WC-
Co 

WC-Co exposure caused significant changes in gene 
expression, such as HIF1, after 3 hr and 3 days of 
exposure.  WC-Co responsive genes were involved 
in cellular death and stress responses. 

[133] 

Mouse peritoneal 
macrophages 

2-4 μm  

0-500 μg/mL 
of carbides: 
WC, TaC, SiC, 
NbC, Fe, TiC, 
Mo2C; all plus 
6% Co 

The addition of 6% Co particles to each of the 
“carbide” particles significantly enhanced the toxicity 
of WC, TiC and NbC in macrophages after 18 hr 
exposure, marked by increased levels of LDH 
release compared to control and the various carbide 
particles alone. Enhanced toxicity was attributed to 
the interaction of Co with the carbides. 

[146] 
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Table 4: Summary of In Vitro Studies Regarding WC-Co Particle Toxicity (continued) 

Cell Type 
Particle Size 

& Dosage 
Major Outcome(s) [Ref] 

Human peripheral 
blood mononuclear 
cells (PMBC) 

< 1 μm  

100 μg/mL  WC-
Co 

Exposure to WC-Co particles for 15 min caused 
altered gene expression after 6 and up to 24 hr 
post-exposure in PMBC, including activation of 
HIF-1α, p53 and altered expression of HMOX1 
which is involved in oxidative stress response 
mechanisms.  

[147] 

Human peripheral 
blood mononuclear 
cells (PMBC) 

< 1 μm  

33.3, 45 or 100 
μg/mL  WC-Co 
or WC 

WC-Co particles caused cellular apoptosis, marked 
by annexin-V staining, after 15 min and 6 hr of 
exposure. Apoptosis was induced via the caspase-
9 pathway and DNA fragmentation was significantly 
elevated in WC-Co exposed cells compared to WC 
alone. 

[148] 

Human peripheral 
blood mononuclear 
cells (PMBC) and 
human monocytes 

< 1 μm  

100 μg/mL  WC-
Co or WC 

A 24 hr exposure to WC-Co caused significant up-
regulation of apoptosis and stress response genes 
in both PMBC and monocytes, namely BNIP3, 
which is involved in mitochondrial mediated cell 
death. 

[149] 

Human peripheral 
lymphocytes and 
mouse fibroblast (3T3) 

2 μm  

100 μg/mL  WC-
Co, WC or Co 

In lymphocytes, WC-Co caused significant 
induction of DNA strand breaks after 15 min of 
exposure, attributed to oxidative stress damage, 
and caused extensive DNA damage in isolated 3T3 
cellular DNA compared to WC or Co particles 
alone.  

[150] 

Mouse epidermal cells 
(JB6) 

80 nm, 4 μm  

25, 37.5, 50, 75 
or 150  μg/mL  
WC-Co 

Nano-WC-Co induced greater oxidative stress and 
hydroxyl radicals, marked by significantly 
decreased cellular GSH levels, in JB6 cells 
compared to micro-WC-Co. Nano-WC-Co also 
stimulated induction of AP-1 and NF-kappaB and 
increased cellular proliferation in JB6 cells 
compared to micro-WC-Co under identical 
conditions.  

[151] 

Rat alveolar 
macrophages (AM) 
and type II 
pneumocytes 

2 μm  

83, 417 or 1667 
μg/mL  WC-Co 
or Co  

After 24 hr exposure to WC-Co, significant toxicity 
was observed in AM, but not in type II 
pneumocytes, compared to controls. However, type 
II cells were more sensitive toward Co toxicity than 
AM, in the absence of WC components.  

[152] 



17 
 

The large majority of previous WC-Co animal studies summarized in Table 5 employed 

the intra-tracheal installation (IT) exposure model, as the preferred means of delivery for hard 

metal particles and ‘dust’ in vivo [130, 154-157, 159, 161]. Inhalation studies regarding pure Co 

dust have been published [160], but to our knowledge, an in vivo study which employs inhalation 

as the means of delivery for WC-Co particles has yet to be reported. As noted in Table 5, the 

previous in vivo studies examined the effects of WC-Co particles in the micron-size range, using 

the mass-per-body weight dosing scheme (i.e. mg/kg or mg/g), although some variation in 

particle size was noted in most cases (overall, WC-Co size ranging from 0.1 to 6 μm). 

Specifically, micro-sized WC-Co particle exposure caused significant pulmonary inflammation 

in rats, marked by increased broncho-alveolar lavage (BAL) fluid parameters such as lactate 

dehydrogenase (LDH) and albumin content, compared to control animals, as little as 24 hr after 

delivery of the WC-Co IT bolus [130, 156, 157, 161]. Significant pulmonary edema, interstitial 

lung fibrosis, alveolar congestion and alveolitis were also reported in micro-sized WC-Co 

exposed animals at 1 and 6 months following a single IT exposure [154, 155, 161]. Given this 

body of literature, the local effects of micro-sized WC-Co following pulmonary exposure have 

been well characterized and it is understood that micro-sized WC-Co exerts both acute and 

chronic effects in vivo.  

However, since it is now understood that inhaled particulate matter can exert extra-

pulmonary effects and alter systemic functions [37, 66, 164-175], these studies provide limited 

insight as to the potential systemic effects of WC-Co after pulmonary exposure. The overall lack 

of in vivo toxicity data regarding nano-sized WC-Co is also concerning, since nano-sized WC-Co 

particles are likely to penetrate deeper into the lungs and cause more tissue damage than micro-

sized WC-Co particles. Further, the pathology of HMLD and presence of the “hallmark” 
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multinucleated giant cells have yet to be successfully reproduced in an animal model, so the 

mechanism underlying WC-Co mediated toxicity and progression to HMLD in exposed workers 

needs further investigation. 

Table 5: Summary of In Vivo Studies Regarding WC-Co Particle Toxicity 

Method of 
Delivery 

Animal Model & 

Particle Size 

WC-Co 
Dosage 

Major Outcome(s) [Ref]

Intra-
tracheal 

Instillation 
(IT) 

Rat 

Mixed WC-Co 
dusts ~ 0.1 to 6 
μm 

Single IT 
bolus at high 
dose (≥ 1 
mg/kg body 
weight) 

At 6 months following single IT WC-
Co exposure, rats presented with 
pulmonary edema, alveolar 
congestion and lung fibrosis in 
regions of deposited WC-Co dusts. 

[154]

IT 
Rat 

5 μm WC-Co 

Single IT 
bolus at 1 
mg/100 g 
body weight 

WC-Co caused high mortality with 
massive pulmonary edema, 
increased macrophage counts, 
LDH, albumin and total protein 
content at 24 hr post-exposure. 

[155]

IT 
Rat 

5 μm WC-Co 

Single and 
repeated IT 
bolus at 1, 5 
or 10 mg/kg 
body weight 

Single IT WC-Co exposure caused 
acute alveolitis which persisted for 
about 1 month following the IT 
bolus. Repeated weekly exposure 
(4x/1 month) caused interstitial lung 
fibrosis and increased lung 
hydroxyproline levels in exposed 
rats. 

[156]

IT 
Rat 

2 μm WC-Co 

Single IT 
bolus at 16.6 
mg/kg body 
weight 

WC-Co exposure caused significant 
elevation of LDH, total protein & 
albumin in BAL fluids after 12 hr 
and up to 72 hr following exposure. 
In rat type II pneumocytes isolated 
after IT exposure, increased 
induction of micronuclei were 
observed, indicating genotoxicity 
and DNA damage. 

[157]
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Table 5: Summary of In Vivo Studies Regarding WC-Co Particle Toxicity 

Method 
of 

Delivery 

Animal Model & 

Particle Size 

WC-Co 
Dosage 

Major Outcome(s) [Ref] 

IT 
Rat 

2 μm WC-Co 

Single IT 
bolus at 1 
mg/100 g 
body weight 

24 hr after single IT WC-Co 
exposure, significant increases in 
LDH, total protein and albumin were 
found in BAL fluids. WC-Co did not 
exert any effects on the levels of IL-
1, TNFα, fibronectin or cystatin-C in 
BAL fluids of exposed animals.  

[130] 

IT 
Rat 

3 μm WC-Co 

Single IT 
bolus at 2.5, 5 
or 10 mg/100 
g body weight 

Pulmonary edema, fibrin formation 
and increased number of 
inflammatory cells were observed in 
WC-Co exposed rat lungs, along 
with decreased reactivity to 
methacholine, increased levels of 
nitric oxide synthase (NOS), LDH, 
total protein and albumin in BAL 
fluids.  

[159] 

IT 
Rat 

1 μm WC-Co 

Single IT 
bolus at 1 or 3 
mg per rat 

A significant increase in LDH was 
observed after 1, 4, 7 and 30 days 
of WC-Co exposure and fibrosing 
alveolitis was developed in rats after 
30 days post-IT exposure.  

[161] 

 

Table 5. Summary of in vivo WC-Co toxicity studies.  
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SPECIFIC AIMS of DISSERTATION RESEARCH 

The long-term goal of this dissertation research project is to identify the mechanisms by 

which NPs exert their toxic effects and how these effects may contribute toward the development 

of respiratory diseases, such as HMLD. Since our focus is hard metal NP exposure in particular, 

the overall objective of this research project was to identify the mechanism underlying nano-

WC-Co toxicity in vitro and to establish an in vivo model to assess the potential systemic effects 

caused by pulmonary exposure to nano-WC-Co.  

Our central hypothesis is that nano-WC-Co particle exposure causes toxicity in vitro via 

induction of oxidative stress and activation of apoptosis, induces inflammation and exerts 

systemic effects in vivo which may be contributing factors in the progression of HMLD in 

patients. This hypothesis was generated upon review of the existing literature regarding hard 

metal toxicity and emerging data highlighting the potential extra-pulmonary (systemic) effects of 

inhaled NPs. Our rationale is that this dissertation research will improve our knowledge 

regarding the mechanism of nano-WC-Co toxicity at the cellular level, which may offer new 

insights into the progression of HMLD and direct us toward improved disease diagnosis, 

therapeutic treatments or potential prophylactic strategies in the future.  

In pursuit of our long-term goal and to systematically test our central hypothesis, the 

proposed research was divided into three attainable specific aims, presented graphically in 

Figure 2: 

Specific Aim 1: Determine the toxicity and identify the internalization mechanism of nano- 

and micro-sized tungsten carbide cobalt (WC-Co) particles in lung epithelial cells (BEAS-2B). 

Our working hypothesis for Aim 1 is that nano-WC-Co causes dose-dependent toxicity via 
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induction of oxidative stress and stimulation of cellular apoptosis due to particle internalization 

in vitro. 

Specific Aim 2: Determine the inflammatory response to tungsten-carbide cobalt (WC-Co) 

NPs using a co-culture model composed of lung epithelial cells (BEAS-2B) and macrophages 

(THP-1). Our working hypothesis for Aim 2 is that exposure to nano-WC-Co stimulates the 

release of pro-inflammatory cytokines and induces M2 macrophage polarization in a co-culture 

model using lung epithelial cells and macrophages. 

Specific Aim 3: Design and conduct an in vivo pilot study to determine the systemic effects of 

pulmonary tungsten carbide-cobalt (WC-Co) exposure in rats. Our working hypothesis for Aim 

3 is that, in addition to local toxic effects in the lung tissue, acute nano-WC-Co exposure induces 

a systemic response marked by increased levels of inflammatory markers in the blood plasma.  

Our proposed research is of importance because we will address the weaknesses of 

previous studies by examining the effects of WC-Co exposure on lung epithelial cells and 

macrophages using co-culture in vitro and establish an in vivo model for the assessment of 

systemic effects caused by pulmonary nano-WC-Co exposure. This research will have a positive 

impact on the realm of hard metal toxicity research, which may facilitate the discovery of 

molecular markers which could be used for improved diagnostic and treatment strategies which, 

in turn, could greatly reduce the impact of HMLD on healthcare costs and improve long-term 

patient outcomes. Additionally, the approach described herein could be further applied to other 

NPs or ENMs; therefore, this research may contribute toward the development of a standard 

model and approach for nanotoxicity and safety testing.    
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Figure 2. Schematic representation of the proposed WC-Co dissertation research project. 
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CHAPTER 2: 

 

Exploring the Potential Role of Tungsten Carbide Cobalt (WC-Co) 
Nanoparticle Internalization in Observed Toxicity toward Lung 

Epithelial Cells in vitro 
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ABSTRACT  

 Tungsten carbide cobalt (WC-Co) has been recognized as a workplace inhalation hazard 

in the manufacturing, mining and drilling industries by the National Institute of Occupational 

Safety and Health. Exposure to WC-Co is known to cause “hard metal lung disease” but the 

relationship between exposure, toxicity and development of disease remain poorly understood. 

To better understand this relationship, the present study examined the role of WC-Co particle 

size and internalization on toxicity using lung epithelial cells. We demonstrated that nano- and 

micro-WC-Co particles exerted toxicity in a dose- and time-dependent manner and that nano-

WC-Co particles caused significantly greater toxicity at lower concentrations and shorter 

exposure times compared to micro-WC-Co particles. WC-Co particles in the nano-size range 

(not micron-sized) were internalized by lung epithelial cells, which suggested that internalization 

may play a key role in the enhanced toxicity of nano-WC-Co particles over micro-WC-Co 

particles. Further exploration of the internalization process indicated that there may be multiple 

mechanisms involved in WC-Co internalization such as actin and microtubule based cytoskeletal 

rearrangements. These findings support our hypothesis that WC-Co particle internalization 

contributes to cellular toxicity and suggests that therapeutic treatments inhibiting particle 

internalization may serve as prophylactic approaches for those at risk of WC-Co particle 

exposure.  

 

 

Keywords: nanotoxicity, nanoparticle, hard metal, lung disease, pulmonary exposure, particle 

internalization 
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INTRODUCTION 

The effects of nanomaterial inhalation and pulmonary exposure are intense areas of 

research, as this is one of the most common routes by which humans are exposed to 

nanomaterials or nanoparticles in their environments [30, 37]. Although the effects of exposure 

vary due to the material and composition of the particles, pulmonary effects of nanoparticle 

exposure are known to include lung toxicity, inflammation, asthma, pleural effusion, pulmonary 

fibrosis, granuloma formation, etc [40, 176]. Inhalation of nanoparticles is a concern not only for 

the casual consumer, but also as an occupational hazard for industry workers whose daily tasks 

include the manufacture, production or repeated use of nanoparticle-containing goods, tools and 

equipment.  

In particular, occupational exposure to tungsten carbide cobalt (WC-Co), a hard 

composite metal commonly used as a material or coating for tools and machinery in mining and 

drilling industries [70] is a concern. Exposure typically occurs via inhalation in the workplace, as 

WC-Co “dusts” are released into the air upon extensive and repeated use of these tools, such as 

drills, in a closed environment. Inhalation of WC-Co “dusts”, composed of various-sized WC-Co 

particles, is well-documented to cause occupational asthma, hard metal lung disease (HMLD) 

and an increased (e.g. two-fold)  risk for lung cancer [70, 73, 75, 77, 85, 97, 100, 101, 114, 124, 

163, 177]. Among pulmonary diseases, HMLD is difficult to diagnose as its symptoms are 

similar to other respiratory ailments. HMLD usually manifests as progressive inflammation and 

fibrosis of the lung, with some cases progressing to lung cancer [101, 102, 104, 107, 114, 124]. 

At present, the relationship between WC-Co exposure, toxicity and development of HMLD 

remains poorly understood. 
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Since the first recognition of adverse health effects from WC-Co exposure in the 1960s 

[178-182], there have been a number of reports regarding the toxicity of WC-Co in the literature 

both in vitro [131-135, 137, 140, 141, 143, 144, 147, 149-153, 158] and in vivo [130, 154-157, 

159-161]. While it is well established that composite WC-Co particles are more toxic than 

tungsten (W), tungsten carbide (WC) or cobalt (Co) alone, the potential contribution of WC-Co 

particle internalization toward observed toxicity and the mechanism by which WC-Co particles 

could be internalized by relevant cells has not been well-addressed. The present study examined 

the toxic effects and explored potential internalization mechanism(s) of nano- and micro-sized 

WC-Co particles in lung epithelial cells.  

 

MATERIALS and METHODS 

Materials and Reagents: Micro-sized WC-Co particles (micro-WC-Co; 4 μm) were purchased 

from Alfa Aesar (Ward Hill, MA) and nano-sized WC-Co particles (nano-WC-Co; 80 nm) were 

purchased from Inframat Advanced Materials (Manchester, CT). BEAS-2B lung epithelial cells 

were obtained from the laboratory of Yon Rojansakul. Dulbecco’s Modified Eagle Media 

(DMEM), sterile phosphate buffered saline (PBS), 0.25% trypsin/ethylenediaminetetraacetic acid 

(EDTA), fetal bovine serum (FBS) and penicillin/streptomycin were purchased from Lonza 

(Allendale, NJ). The MTT cell viability kit (TOX-1), 2’,7’-dichlorofluorescein diacetate (DCF), 

dihydroethidium (DHE), monodansylcadaverine (MDC), colchicine and cytochalasin-D, 

glutaraldehyde, paraformaldehyde, agarose and osmium tetroxide were purchased from Sigma-

Aldrich (St. Louis, MO). ApoScreen flow cytometry kit, including annexin-V-FITC (AV-FITC) 
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and propidium iodide (PI), was purchased from Southern Biotech Inc. (Birmingham, AL). SPI-

PON 812 for electron microscopy was purchased from SPI Supplies (West Chester, PA). 

Particle Preparation: For cell culture experiments, stock WC-Co particle suspensions (5 

mg/mL) were prepared in sterile PBS containing 10% FBS and sonicated using an Omni 

International Sonic Ruptor 250 Ultrasonic Homogenizer (Kennesaw, GA). Stock particle 

suspensions were sonicated under 120 watts power output, at a frequency of 20 kHz, in two 30-

second intervals to ensure particle dispersion. Sonication was performed in 30 mL plastic vials 

immobilized in an ice bath to minimize heating of the suspension during the sonication process.  

Dilute particle suspensions (0.1 to 1000 μg/mL) were prepared in DMEM containing 10% FBS 

from the 5 mg/mL stock particle suspension on the day of each experiment.  

Particle Characterization: Micro- and nano-WC-Co particles were characterized after 

preparation in suspension for cell culture, described above, via dynamic light scattering (DLS, 

Malvern Zetasizer version 7.01, Malvern Instruments Ltd, Malvern, UK), transmission electron 

microscopy (TEM; Zeiss Libra 120 electron microscope, Carl Zeiss Microscopy, Jena, 

Germany),  scanning electron microscopy and energy-dispersive x-ray for the determination of 

elemental composition (SEM/EDX; JEOL JSM 7600F, Jeol USA, Inc, Peabody, MA). Further 

detail provided in Supplementary Material. 

Cell Culture and Exposure to WC-Co Particles: BEAS-2B cells were cultured in DMEM 

supplemented with 10% FBS and 1% penicillin-streptomycin and maintained at 37°C and 5% 

CO2. Briefly, confluent monolayers were rinsed with PBS, trypsinized, transferred to 5 mL 

polystyrene tubes and centrifuged at 1200 rpm for 7 min to pellet. The cell pellet was re-

suspended at the desired plating density, transferred to a tissue culture plate and allowed to 
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adhere overnight. 96 well plates were seeded at 1.5 × 105 cells/mL for viability, oxidative stress 

and inhibitor assays; 24 well plates were seeded at 2 × 105 cells/mL for apoptosis and TEM 

examination of particle internalization.  

Cell Viability Assay: For the viability assay, cells were exposed to either nano- or micro-WC-

Co particles at concentrations of 0.1, 1, 10, 100 and 1000 μg/mL for exposure periods of 0.5, 1, 

2, 6, 12 and 48 hr. Following particle treatment, cells were rinsed once with sterile PBS to 

remove traces of media and excess particles. The MTT cell viability assay was performed per kit 

instructions (TOX-1, Sigma-Aldrich) in a 96 well cell culture plate.The absorbance of each well 

was recorded at 570 nm using a Bio-Tek μQuant microplate reader (Winooski, VT). Blank 

values were subtracted from absorbance readings. Cell viability was calculated by dividing the 

absorbance of particle treated cells (AbsExptl) by the absorbance of the negative control cells 

(media treatment only; AbsControl) and converted to percentage according to the following 

equation: Cell Viability (%) = (AbsExptl ∕AbsControl) × 100%.  

Oxidative Stress Assay: Oxidative stress was examined at select nano- and micro-WC-Co 

particle concentrations of 0.1, 10 and 1000 μg/mL after exposure periods of 0.5, 1, 2, 6, 12 and 

48 hr. Following particle treatment, cells were rinsed once with sterile PBS to remove traces of 

media and excess particles. Oxidative stress was then determined by the addition of 10 μM DCF 

or DHE in PBS following particle treatment. Plates were incubated for 15 min in the dark and 

then fluorescence intensity of each well was quantified at 520 nm for DCF or 620 nm for DHE. 

The relative fluorescence of particle-treated cells was calculated as fold over control.  

Annexin-V Apoptosis Assay: Cells were treated with WC-Co particles at select concentrations 

of 10, 100 and 1000 μg/mL for 12 hr. Positive control (apoptotic) cells were prepared by heat-
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shock for 5 min at 56°C to induce apoptosis. Following particle exposure/heat treatment, cells 

were rinsed once with PBS, trypsinized, transferred to 5 mL polystyrene tubes and centrifuged at 

1200 rpm for 7 min to pellet. Cell pellets were re-suspended and rinsed twice with 1 mL of PBS 

to remove traces of media that may interfere with staining. After rinsing, cells were re-suspended 

in ice-cold binding buffer and stained with AV-FITC and PI according to manufacturer 

instructions. Samples were analyzed immediately by flow cytometry using a BD FACSCalibur 

flow cytometer (Franklin Lakes, NJ).  

Particle Internalization and Inhibition Assay: Three cytoskeletal inhibitors, each affecting a 

specific pathway, were studied to explore the potential mechanism(s) by which WC-Co particles 

could be internalized: 1) MDC; an inhibitor of clathrin-coated pit endocytosis [183], 2) 

colchicine; an inhibitor of microtubule polymerization [184] and 3) cytochalasin-D; an inhibitor 

of actin filament polymerization [185]. WC-Co particle suspensions were prepared as described 

above with the addition of 10 μg/mL MDC, colchicine or cytochalasin-D. Cell viability was 

calculated as described above; in this case, control cells received inhibitor treatment only (media 

+ 10 μg/mL inhibitor) such that any background toxicity of the inhibitor itself was accounted for 

in the resulting cell viability calculation.   

Transmission Electron Microscopy (TEM): Following 12 hr, 100 μg/mL WC-Co particle 

exposure, cells were washed once with PBS, detached using trypsin/EDTA and collected by 

centrifugation at 1200 rpm. Cell pellets were washed twice with PBS and fixed with 2% para-

formaldehyde and 2.5% glutaraldehyde in PBS for 0.5 hr at room temperature. Fixed cell 

samples were transferred to the West Virginia University Tissue Processing & Imaging Core 

Facility for additional processing. Briefly, fixed cell pellets were washed 3 times with PBS, re-

suspended in warm 2% low-melting point agarose solution and centrifuged at 2000 × g for 5 
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min. The resulting gelled pellet was post-fixed in a 1% osmium tetroxide for 2 hr at room 

temperature. Post-fixation, the cell pellet was washed 3 times with PBS and dehydrated in a 

graded ethanol series followed by propylene oxide. Next, the cells were embedded in SPI-PON 

812 solution and polymerized at 60°C for 48 hr. Thin sections (50 nm) were cut and mounted on 

copper grids and subsequently imaged using a Zeiss Libra 120 electron microscope at 

120 kV(Carl Zeiss Microscopy, Jena, Germany). A minimum of 200 cells were examined for the 

presence of WC-Co particles per mounted sample, with at least 20 sample grids examined per 

treatment group. The presence of tungsten (W) in cells showing internalized WC-Co particles 

was confirmed using electron energy loss spectroscopy (EELS; see Supplementary Material). 

Statistical Analyses: All experiments were performed in triplicate and data are presented as 

mean ± standard deviation. Statistical analysis was carried out by 2-way analysis of variance 

(ANOVA) using GraphPad Prism software (La Jolla, CA). P values < 0.05 were considered 

significant.  

 

RESULTS 

WC-Co Particle Characterization: Dynamic light scattering analysis of WC-Co particles in 

suspension revealed a narrow nano-WC-Co particle size distribution, with a calculated average 

particle size of 98 nm verified by TEM imaging (Figure 1A and C). For the micro-WC-Co 

particles, size distribution was slightly larger with a calculated average particle size of 3.4 μm, 

also confirmed by TEM imaging (Figure 1B and D). EDX analysis of raw WC-Co powder 

showed that nano-WC-Co contained oxygen in addition to tungsten and cobalt (Table 1 and 

Figure S1, S2).  
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WC-Co Effects on Cell Viability and Oxidative Stress: Lung epithelial BEAS-2B cells were 

exposed to WC-Co particles at concentrations of 0.1, 1, 10, 100 and 1000 μg/mL for durations of 

0.5, 1, 2, 6, 12 and 48 hr. In cells exposed to nano-WC-Co particles (Figure 2A), a significant 

reduction in viability (compared to control) was observed at concentrations of 10, 100 and 1000 

μg/mL for all the exposure time periods studied. Significant reduction in viability was also 

observed at concentrations of 0.1 and 1 μg/mL after 48 hr of exposure. In cells exposed to micro- 

 
 
Figure 2.1. WC-Co particle characterization via dynamic light scattering (DLS) of A) nano-WC-Co and 
B) micro-WC-Co particles suspended in cell culture media (average size = 98 nm and 3.4 μm, 
respectively) and representative TEM images of C) nano-WC-Co (scale bar = 500 nm) and D) micro-WC-
Co (scale bar = 2 μm) particles. 
 

Table 1.1. Elemental composition of nano- and micro-WC-Co particles by weight percentage determined 
using energy-dispersive X-ray (EDX). 

Table 1: Elemental Composition of WC-Co Particles by EDX (Weight %) 
Particle Sample Tungsten (W) Cobalt (Co) Carbon (C) Oxygen (O) 
Nano-WC-Co 

(avg. size 98 nm) 
72.13 13.42 7.63 6.81 

Micro-WC-Co 
(avg. size 3.4 μm) 

86.53 5.06 8.40 0.00 
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Figure 2.2. Cell viability after A) nano-WC-Co and B) micro-WC-Co particle exposure and C) oxidative 
stress indicated by DCF fluorescence after exposure to 1000 μg/mL nano- and micro-WC-Co particles.  
(*P < 0.05, †P < 0.001 compared to control, ‡P < 0.05 compared to micro-WC-Co) 
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WC-Co (Figure 2B), significant reduction in viability (compared to control) was observed at 

concentrations of 100 and 1000 μg/mL at 2, 6, 12 and 48 hr of exposure. Significant reduction in 

viability was also observed at 1 and 10 μg/mL after 48 hr of exposure. Moreover, nano-WC-Co 

particle exposure resulted in significantly higher reduction in cell viability overall compared to 

micro-WC-Co particles (Figure S3). For instance, the cell viability following nano-WC-Co 

exposure was significantly lower than the viability following micro-WC-Co exposure (Figure 

S3) at 1000 μg/mL for all exposure periods studied except at 48 hr, where the cell viability for 

both particle exposures was very low (Figure S3F). Significantly lower cell viability was also 

observed in nano-WC-Co compared to micro-WC-Co particle exposure at 0.5 hr from 10 to 1000 

μg/mL (Figure S3A).  

Oxidative stress was measured in the form of DCF/DHE fluorescence after exposure to 

WC-Co particles at 0.1, 10, 1000 μg/mL at representative low, moderate and highly toxic particle 

concentrations determined in Figure 2A, B. Compared to control, there was a significant 

increase in DCF fluorescence in cells exposed to 1000 μg/mL nano- and micro-WC-Co particles 

over the exposure periods studied (0.5, 1, 2, 6, 12, and 48 hr) and no significant difference when 

exposed to 0.1 and 10 μg/mL (Figure 2C and S4A). Maximal DCF fluorescence was observed 

for 1000 μg/mL nano- and micro-WC-Co after 1 hr of exposure, where DCF fluorescence due to 

nano-WC-Co exposure was significantly higher than micro-WC-Co (Figure 2C). Compared to 

control, there were no significant differences in DHE fluorescence observed for cells exposed to 

nano- or micro-WC-Co at any concentration or exposure period tested (Figure S4B).  

Induction of Apoptosis in WC-Co Exposed Cells: The total percentage of apoptotic, necrotic 

or viable BEAS-2B cells determined by flow cytometry after exposure to WC-Co is shown in 
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Figure 3. Cells stimulated to undergo apoptosis by heat treatments at 56°C were included as a 

positive control for reference.  

 

Figure 2.3. Summary of flow cytometry staining profiles after 12 hr WC-Co particle exposure: A) total 
percentage of apoptotic cells (AV+/PI+ and AV+/PI-; sum total of upper and lower right quadrants), B) 
total percentage of viable cells (AV-/PI-; lower left quadrant) and C) total percentage of necrotic cells 
(PI+/AV-; upper left quadrant) (*P < 0.05 compared to control, ‡P < 0.05 compared to micro-WC-Co) 
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A dose-dependent increase in the total percentage of apoptotic cells was observed with 

increasing WC-Co particle concentration for nano- and micro-WC-Co particles (Figure 3A). 

Compared to negative control, a significantly higher percentage of apoptotic cells was observed 

at 1000 μg/mL for both nano- and micro-WC-Co particles (Figure 3A). A corresponding dose-

dependent decrease in the percentage of viable cells was also observed and a significantly lower 

percentage of viable cells, compared to control, was found at 1000 μg/mL for both nano- and 

micro-WC-Co particles (Figure 3B). The percentage of necrotic cells remained low, less than 

1% for cells exposed to nano- and micro-WC-Co (Figure 3C). A significant difference in the 

percentage of apoptotic cells was observed at the highest particle concentration of 1000 μg/mL, 

where nano-WC-Co treatment showed significantly higher apoptosis than micro-WC-Co 

treatment (Figure 3A) and the percentage of viable cells after nano-WC-Co treatment was 

significantly lower than micro-WC-Co treatment (Figure 3B).  

 

Particle Internalization and Inhibition: After 6 hr of nano-WC-Co exposure, there was a 

significant increase in cell viability compared to control (cells receiving particle treatment only, 

no inhibitor) in the presence of MDC, colchicine and cytochalasin D at WC-Co concentrations of 

10, 100 and 1000 μg/mL (Figure 4A). After 12 hr, significant increases in cell viability were 

observed in the presence MDC and colchicine at 100 μg/mL nano-WC-Co and in the presence of 

cytochalasin D at 10, 100 and 1000 μg/mL nano-WC-Co (Figure 4B). After 48 hr, significant 

increases in cell viability were observed for MDC and colchicine at 10 and 100 μg/mL whereas 

cytochalasin D caused a significant increase in viability for 10, 100 and 1000 μg/mL nano-WC-

Co (Figure 4C). 
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Figure 2.4. Cell viability after exposure to nano- or micro-WC-Co particles in the presence of 10 μg/mL 
cytoskeletal inhibitors MDC, colchicine or cytochalasin D after A) 6 hr, B) 12 hr and C) 48 hr. [*P < 0.05, 
†P < 0.001 compared to control (particles only)] 
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For cells exposed to micro-WC-Co particles, a significant increase in cell viability was 

observed after 6 and 12 hr in the presence of MDC and colchicine at 100 μg/mL WC-Co (Figure 

4A and B). In the presence of cytochalasin D, significant increases in cell viability were 

observed after 6 hr for 100 and 1000 μg/mL WC-Co and after 12 hr at 10, 100 and 1000 μg/mL 

micro-WC-Co (Figure 4A and B). After 48 hr, significant increases in cell viability were 

observed for MDC and colchicine at 10 and 100 μg/mL and in the presence of cytochalasin D at 

10, 100 and 1000 μg/mL micro-WC-Co (Figure 4C).  

Compared to micro-WC-Co exposure, nano-WC-Co particle exposure led to significantly 

lower cell viability after 6 hr in the presence of MDC and cytochalasin D at 100 and 1000 μg/mL 

and in the presence of colchicine at 1000 μg/mL (Figure S6A, S7A, S8A). After 12 hr of 

exposure, nano-WC-Co particles resulted in significantly lower cell viability than micro-WC-Co 

particles in the presence of all 3 inhibitors at particle concentration of 1000 μg/mL (Figure S6B, 

S7B, S8B). After 48 hr, the cell viability after nano-WC-Co exposure was significantly lower 

than that of micro-WC-Co exposure in the presence of MDC at 10 and 100 μg/mL, colchicine at 

10 μg/mL and cytochalasin D at 1000 μg/mL (Figure S6C, S7C, S8C).  

Representative TEM images of BEAS-2B cells exposed to 100 μg/mL WC-Co particles 

for 12 hr are shown in Figure 5. We found that nano-WC-Co particles had been internalized 

(visible as distinct black dots, denoted by arrows) and were localized in the cytoplasm within the 

outer cell membrane (Figure 5B). For cells exposed to micro-WC-Co, no particles of micron 

size were detected within the cells; however, several particles with diameter of approximately 

500 nm were found localized in the cytoplasm (Figure 5C). In the presence of cytochalasin D, 

no particles were found within the cytoplasm of nano-WC-Co exposed cells (Figure 5D). The 

presence of tungsten in representative particle-treated cells (Figure 5) was confirmed using 
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EELS, where a definite tungsten peak was identified at ~ 1850 eV (Figure S9) which confirmed 

the presence of WC-Co particles within the cytoplasm shown in Figure 5.  

 

 

Figure 2.5. Representative TEM images of A) non-exposed control cells, B) cells exposed to 100 μg/mL 
nano-WC-Co for 12 hr, C) cells exposed to 100 μg/mL micro-WC-Co for 12 hr and D) cells exposed to 
100 μg/mL nano-WC-Co plus 10 μg/mL cytochalasin D for 12 hr. Arrows denote WC-Co particles; scale 
bars = 0.5 μm. 

 

DISCUSSION 

While workplace exposure limits are defined for hard metal manufacturing facilities [77-

79], it is difficult to predict the resulting lung burden of inhaled WC-Co per person [124] and 

challenging to define a relevant dosing scheme for experimental studies. Since exposure limits 

are frequently defined on a mass-per-volume basis (i.e. mg per m3), we elected to deliver our 
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nano- and micro-WC-Co particles at equivalent mass-per-volume doses and intentionally 

encompassed a large concentration range, 0.1 to 1000 μg/mL, to cover the range in total lung 

particle mass burden that would be observed in workers exposed through occupational settings. 

As shown in Figure 2, nano-WC-Co was significantly more toxic than micro-WC-Co at 

concentrations ≥ 10 μg/mL. These data are consistent with our expectations and similar to 

toxicity reported in the literature (Bastian et al., 2009, De Boeck et al., 2003, Lombaert et al., 

2012, Lombaert et al., 2004, Lombaert et al., 2008, Busch et al., 2010, Kuhnel et al., 2009, 

Kuhnel et al., 2012, Anard et al., 1997).  Since reasonable measures were taken to address the 

potential artifacts (Figures S10-16) due to particle interference with our in vitro assays [53-56, 

186], the differences in our observed toxicity were probably to the smaller size, higher resulting 

particle number and increased surface area of the nano-WC-Co compared to the micro-WC-Co 

particles. These factors are known to play a critical role in particle toxicity and uptake regardless 

of material composition [10, 187-191].  

The role of apoptosis in hard metal lung disease remains unclear; however, earlier studies 

have demonstrated the apoptogenic potential of WC-Co particles in vitro [148]. Since there are 

known roles for the regulation/dysregulation of apoptotic processes in cancer progression [192-

194] and it is reported that HMLD patients are at a two-fold increased risk of developing lung 

cancer [97, 100], it seemed appropriate to examine the effects of WC-Co exposure on the 

induction of apoptosis in our lung epithelial cell model [195]. We confirmed that WC-Co 

exposure induces apoptosis in exposed cell populations after 12 hr in the present study (Figure 3, 

S5). We believe in the possibility that WC-Co induced apoptosis may play a role in HMLD 

progression and contribute to the increased risk of lung cancer; however, the exact mechanism 

and contribution of these factors remains to be elucidated.  
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Interestingly, our apoptosis findings (Figure 3) did not correlate directly with our 

viability data shown in Figure 2; greater toxicity was determined in the MTT viability assay than 

was observed by quantification of annexin-V-positive (apoptotic/dead) cells in our flow 

cytometry assay. We attributed the variance in observed WC-Co toxicity to the differences in 

assay methodology and approach: while the MTT assay relies on the conversion of the 

tetrazolinium substrate to formazan by live cells, the annexin-V flow cytometry assay relies on 

membrane surface staining of exposed phosphatidyl serine (PS) residues, a known marker for 

apoptotic cells. In this case, we believe that after WC-Co treatment, some of the cells may have 

reduced metabolic function but are not yet undergoing apoptosis, which would be reflected in the 

MTT assay as a reduction in viability; however, these same cells would not be quantified as 

apoptotic (dead) by the AV-FITC apoptosis assay since they may not yet have externalized PS 

residues available for staining. However, our data confirmed that WC-Co is capable of inducing 

apoptosis. Additionally, our data regarding the limited capacity of WC-Co particle exposure to 

stimulate oxidative stress at low concentrations (<1000 μg/mL, Figure S4) appears to be 

consistent with earlier in vitro studies in other cells [138, 140, 143, 144, 153]. Although 

oxidative stress has been implicated as the toxic mechanism for other nanomaterials such as 

silica or titanium dioxide [51, 52], our data suggest that oxidative stress is probably not a primary 

mechanism of WC-Co toxicity. 

Hard metal WC-Co particle internalization is of particular interest because hard metal 

deposits have been found in lung biopsy specimens from patients with hard metal lung disease 

[85, 95, 101, 113, 114, 196-199] which may suggest a potential role for particle internalization 

and/or deposition in the disease state. Studying how WC-Co particle internalization occurs in 

vitro may offer a better understanding of how these deposits may form in vivo, which may allow 
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for the development of improved HMLD treatment strategies or new prophylactic approaches 

[200-202] for those at risk of exposure. It has been reported that alveolar epithelial cells are 

capable of internalizing nanoparticles (Stearns et al., 2001) and we confirmed in this study that 

WC-Co particles are capable of being internalized [132] in our lung epithelial cell model as 

shown in Figure 5. Based on our findings from the cytoskeletal inhibitor assay shown in Figure 

4, we believe that WC-Co particle internalization plays a role in WC-Co mediated toxicity 

because a significant increase in cell viability was observed for all three inhibitors tested when 

compared to cells treated with WC-Co particles only.  

The extent of this “rescue” effect varied amongst the inhibitors; however, cytochalasin D 

appeared to have the most significant effect of the three inhibitors (Figure 4C), so we 

hypothesized that actin dynamics and polymerization, inhibited by the presence of cytochalasin 

D [185, 203], may play a major role in the internalization of WC-Co particles. Additionally, we 

did not find any internalized WC-Co particles in cells treated with cytochalasin D shown in 

Figure 5. A significant increase in cell viability was also observed in the presence of colchicine 

and MDC, so the potential for multiple mechanisms of internalization cannot be excluded from 

this study. Colchicine, known to inhibit microtubule polymerization [184, 204], can interrupt the 

formation of endocytic vesicles which may also play a role in WC-Co internalization as indicated 

by the increase in cell viability observed in Figure 4. However, colchicine was ineffective at 

reducing WC-Co toxicity at the highest concentration of particles after 48 hr (Figure 4C), so we 

believe that microtubule-dependent internalization processes are likely secondary to actin-

mediated processes affected by cytochalasin D. MDC is an inhibitor of clathrin [183, 204] and 

specifically blocks clathrin-mediated endocytosis. In our study, MDC caused the least significant 

increase in cell viability following WC-Co exposure so we do not believe that clathrin-pit 
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mediated endocytosis is a primary mechanism for WC-Co particle internalization. Taken 

together, these initial findings suggest a potential role for WC-Co particle internalization in 

observed toxicity toward lung epithelial cells.  

 

CONCLUSION 

This study examined the toxicity of nano- and micro-sized WC-Co particles and explored 

the potential role of particle internalization in observed toxicity toward lung epithelial cells. 

Nano-WC-Co was found to be more toxic than micro-WC-Co as expected and we determined 

that WC-Co particles are capable of being internalized (via TEM). The presence of cytochalasin 

D, colchicine and MDC all caused a reduced toxicity, which suggests that there may be multiple 

mechanisms involved in WC-Co internalization and toxicity. Therefore, internalization of WC-

Co particles by cells lining the respiratory tract and lung is possible and may be a potential 

source of hard metal deposits found in HMLD biopsy specimens. 
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SUPPLEMENTARY MATERIAL 

MATERIALS and METHODS 

S1.1 WC-Co Particle Characterization: Micro-WC-Co and nano-WC-Co particles were 

analyzed using dynamic light scattering (DLS), transmission electron microscopy (TEM) and 

scanning electron microscopy with energy-dispersive x-ray (SEM/EDX) to determine the 

average particle/aggregate size in suspension, morphology and elemental composition. 

For DLS, stock particle suspensions (5 mg/mL) were prepared by adding 25 mg dry 

particle powder to a 20 mL vial containing 5 mL sterile PBS with 10% FBS. The particles were 

then sonicated using an Omni International Sonic Ruptor (Kennesaw, GA) for two intervals of 

30 sec each to ensure particle dispersion. Dilute particle suspension was then prepared in DMEM 

supplemented with 10% FBS and analyzed via DLS using a Malvern Zetasizer 7.01 (Malvern 

Instruments Ltd, Malvern, UK). Background absorbance of DMEM containing 10% FBS only 

was used to ‘blank’ the instrument prior to measurement of the WC-Co particle suspensions. 

For TEM, WC-Co particles were re-suspended in distilled water and vortexed for 60 sec 

to remove traces of salt and protein from the culture media which could interfere with TEM 

imaging.  Five microliters of the resulting suspension was transferred to a carbon-coated copper 

grid.  Excess liquid was wicked away using filter paper after 30 sec and grids were allowed to 

dry for at least 30 min before imaging on a Zeiss Libra 120 electron microscope at 120 kV (Carl 

Zeiss Microscopy, Jena, Germany).  

For SEM/EDX, raw particle powder was imaged on a JEOL JSM 7600F setup equipped 

with an Oxford Instruments energy dispersive x-ray (EDX) system for chemical analysis. EDX 
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measurements were carried out in the Point & ID mode with spectrum acquisition time of 120 s 

and spectrum range of 0-10 keV. 

S1.2 WC-Co Nanoparticle Compatibility with In Vitro Assays: To eliminate potential 

artifacts due to the presence of WC-Co particles in the absorbance measurement for the MTT 

cell viability assay, nano- and micro-WC-Co suspensions ranging from 0.1 to 1000 μg/mL in 

PBS and supplemented DMEM were tested for background absorbance, with and without the 

addition of the MTT tetrazolinium dye solution, at 570 nm (primary MTT absorbance 

wavelength) and 590 nm (background wavelength). The WC-Co particles did not exhibit any 

absorbance in the presence of the MTT dye solution after 2 hr of incubation under assay 

conditions (Figure S10).  

Similarly, for the oxidative stress assays using DCF and DHE dye solutions, nano- and 

micro-WC-Co particles were tested for background fluorescence and interference with the dye 

solutions. The WC-Co particles did not exhibit any auto-fluorescence at either of the primary 

fluorescence wavelengths for DCF (520 nm) or DHE (620 nm) and did not affect the background 

fluorescence of the dye solutions themselves (Figure S11). Additionally, we tested whether WC-

Co particle addition caused increased fluorescence of DCF/DHE in dye-loaded cells. In a 

separate experiment, cells were loaded with dye solution for 30 minutes, spiked with particle 

suspensions and resulting fluorescence was read immediately at each wavelength. No changes in 

DCF/DHE fluorescence were observed in intact cells under these conditions (Figure S12). After 

initial measurement, cells spiked with WC-Co particles were then lysed by the addition of 0.1 % 

Triton-X, in order to release the fluorescent DCF/DHE into solution. Resulting fluorescence was 

read after 15 min at each wavelength to determine if WC-Co caused changes in fluorescence 

under this condition. No changes in fluorescent DCF/DHE intensity were observed, indicating 
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that WC-Co particle are inert toward DCF/DHE and there are no artifacts present as the result of 

particle-dye interactions (Figure S13). 

S1.3 Inhibitor Concentration and Background Toxicity: The selection of inhibitors for this 

study was based on the existing literature regarding nanoparticle internalization. Inherent toxicity 

of the inhibitors alone was tested over a concentration range of 2-50 μg/mL and a 48 hr exposure 

period for colchicine, cytochalasin-D and monodansylcadaverine (MDC). Each inhibitor 

exhibited varying effects on cell viability over the course of 48 hr (Figure S14); however, all 

three inhibitors maintained reasonable cell viability (80 % of control, un-treated cells) at a 

concentration of 10 μg/mL which was further selected for our studies regarding WC-Co particle 

internalization. Importantly, for each WC-Co particle internalization experiment, the negative 

control (non-particle treated) cells were treated with inhibitor only, so that the background 

toxicity of the inhibitors was considered and did not affect our final viability results.   

S1.4 WC-Co Nanoparticle Compatibility with Apoptosis Assay: Prior to examining AV/PI 

stained cell populations following WC-Co particle exposure, several control tests were 

performed on the FACs Calibur to confirm that the particles did not bind the stains or otherwise 

interfere with the determination of cell staining profiles. Experiment parameters were set on the 

machine using live, unstained cells, positive control (dead, heat-shock) and negative control 

(live, untreated) AV/PI stained cells (Figure S15). Gating and laser intensity were set and saved 

for further experiments. Once stain and instrument parameters were finalized, nano- and micro-

WC-Co particles were prepared in assay binding buffer at the maximum concentration tested 

(1000 μg/mL) and run through the instrument to exclude any potential background or 

interference of the particles with various assay components (Figure S16).  
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S1.5 Electron Energy Loss Spectroscopy (EELS): To confirm the presence of WC-Co 

nano/micro-particles in cell samples imaged via TEM, EELS measurements  were obtained on a 

Zeiss Libra 120 Transmission Electron Microscope equipped with a Gatan Imaging Filter (GIF) 

Tridiem spectrometer with an UltraScan 1000 FT detector.  Cumulative M5 edge spectra were 

collected, centered at an energy loss of 1970 eV with a collection time of 10s.  The resulting 

tungsten (W) peak appears at ~1850 eV. The power law background model in Digital 

Micrograph software (Gatan, Inc., Pleasanton, CA, USA) was used to model the energy-

dependence of the background signal. 
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 FIGURES 

 

Figure S1. EDX spectra for elemental composition by weight (%) for A) nano-WC-Co and B) 
micro-WC-Co; insets depict scanned powder area.   
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Figure S2. Representative SEM images of raw A) nano-WC-Co and B) micro-WC-Co powders 
used for EDX compositional analysis; scale bars = 1 μm.  
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Figure S3. Comparison of cell viability after exposure to nano- and micro-WC-Co for A) 0.5 hr, 
B) 1 hr, C) 2 hr, D) 6 hr, E) 12 hr and F) 48 hr. (*P < 0.05, †P < 0.001 compared to control, ‡P < 

0.05 compared to micro-WC-Co) 
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Figure S4. Relative fluorescence of A) DCF and B) DHE as markers of oxidative stress 
following exposure to nano- and micro-WC-Co particles. (*P < 0.05 compared to control, ‡P < 

0.05 compared to micro-WC-Co at the same exposure time) 
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Figure S5. Representative flow cytometry plots illustrating annexin-V (AV) and propdium 
iodide (PI) stained cell populations following 12 hr exposure to A) 1000 μg/mL nano-WC-Co 
and B) 1000 μg/mL  micro-WC-Co. Percentages of stained cells are listed in each respective 
quadrant: lower left (PI‒/AV‒; viable), lower right (PI‒/AV+; early apoptotic), upper right 

(PI+/AV+; late apoptotic), upper left (PI+/AV‒; necrotic). 
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Figure S6. Comparison of cell viability in presence of nano- and micro-WC-Co plus 10 μg/mL 
MDC after A) 6 hr, B) 12 hr and C) 48 hr of exposure. [*P < 0.05, †P < 0.001 compared to 

control (WC-Co only), ‡P < 0.05 compared to micro-WC-Co + MDC] 
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Figure S7. Comparison of cell viability in presence of nano- and micro-WC-Co plus 10 μg/mL 
colchicine after A) 6 hr, B) 12 hr and C) 48 hr of exposure. [*P < 0.05, †P < 0.001 compared to 
control (WC-Co only), ‡P < 0.05 compared to micro-WC-Co + colchicine] 
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 Figure S8. Comparison of cell viability in presence of nano- and micro-WC-Co plus 10 μg/mL 
cytochalasin D after A) 6 hr, B) 12 hr and C) 48 hr of exposure. [*P < 0.05, †P < 0.001 compared 

to control (WC-Co only), ‡P < 0.05 compared to micro-WC-Co + cytochalasin D] 
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Figure S9. Electron energy loss spectra (EELS) for cell samples scanned for the presence of 
internalized WC-Co particles using TEM, confirming the presence of tungsten (W) ~1850 cV in 
the A) cumulative and B) power law fitted curves.  
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Figure S10. Background absorbance of DMEM containing MTT reagent (tetrazolinium salt) 
under assay conditions in the absence (blank/0) and presence of WC-Co particles to confirm the 
absence of artifacts at 570 nm, the primary absorbance wavelength for formazan detection. 
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Figure S11. Background fluorescence of blank (PBS + dye only) and WC-Co particle 
suspensions in the absence of cells to confirm the absence of artifacts at the primary emission 
wavelengths for A) DCF at 520 nm and B) DHE at 620 nm.  
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Figure S12. Background fluorescence in dye-loaded cells after being spiked with WC-Co 
particle suspensions to confirm the absence of artifacts at the primary emission wavelengths for 
A) DCF at 520 nm and B) DHE at 620 nm. 
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Figure S13. Background fluorescence in dye-loaded cells after being spiked with WC-Co 
particle suspensions and lysed, releasing fluorescent dyes into solution in order to confirm the 
absence of artifacts due to particle interference at the primary emission wavelengths for A) DCF 
at 520 nm and B) DHE at 620 nm. 
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Figure S14. Cell viability in the presence of colchicine, monodansylcadaverine (MDC) and 
cytochalasin D after 48 hr of exposure. Cell viability in presence of inhibitor calculated based on 
absorbance of untreated control cells (no inhibitor).  
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Figure S15: Representative flow cytometry dot plots illustrating gating parameters set for A) 
live, unstained cells, B) live, stained cells (neg. control; AV + PI) and C) heat-shocked dead cells 
(pos. control; AV + PI).  
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Figure S16: Representative scatter and dot plots showing the background of WC-Co particles in 
the flow cytometry apoptosis assay in the presence of assay binding buffer, AV-FITC and PI for 
A-B) nano-WC-Co and C-D) micro-WC-Co. Gates in B, D set based on control parameters 
shown above in Figure S14.  
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ABSTRACT  

 Identifying the toxicity of nanoparticles is an important area of research as the number of 

nanomaterial-based consumer and industrial products continually rises. In addition, the potential 

inflammatory effects resulting from pulmonary nanoparticle exposure are emerging as an 

important aspect of nano-toxicity. In this study, we examined the toxicity and inflammatory state 

resulting from tungsten carbide cobalt (WC-Co) nanoparticle exposure in macrophages and a co-

culture of lung epithelial cells  (BEAS-2B) and macrophages (THP-1) at a 3:1 ratio. We found 

that the toxicity of nano-WC-Co was cell dependent; significantly less toxicity was observed in 

THP-1 compared to BEAS-2B cells. We demonstrated that nano-WC-Co caused reduced toxicity 

in our co-culture model compared to lung epithelial cell mono-culture, which suggested that 

macrophages may play a protective role against nano-WC-Co mediated toxicity in co-cultures. 

Nano-WC-Co exposure in macrophages resulted in increased levels of interleukin-1beta (IL-1β) 

and interleukin-12 (IL-12) secretion and decreased levels of tumor necrosis factor (TNFα). In 

addition, the polarizing effects of nano-WC-Co exposure toward the M1 (pro-inflammatory) and 

M2 (anti-inflammatory) macrophage phenotypes were investigated. The results of this assay 

indicated that nano-WC-Co exposure stimulated the M1 phenotype, marked by high expression 

of CD40 M1 macrophage surface markers. 

 

 

 

Keywords: nanoparticle, nanotoxicity, inflammation, cytokine, macrophage, lung disease, 

cancer 
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INTRODUCTION 

 The majority of nanomaterial or nanoparticle (NP) exposure occurs via the pulmonary 

route [30, 37] and, upon inhalation, macrophages are recruited to the area as part of the body’s 

defense mechanism to promote particle clearance from the lungs [205, 206]. Phagocytic by 

nature, macrophages will quickly identify and engulf the NPs as part of their inherent 

physiological response mechanism [206, 207]. However, during this process, the macrophage 

accumulates a large quantity of NPs. Depending on the NP, this accumulation within the cell 

may cause toxicity or induce a secondary immune response and stimulate a local or systemic 

inflammatory process [63, 170, 207-209]. Therefore, along with addressing the directly toxic 

effects of the multitude of NPs currently used in consumer products today, it is important to 

consider the inflammatory response which these materials may generate upon exposure [207]. 

 Macrophage mediated inflammation typically occurs in response to bacterial or viral 

infections and tissue injuries as a part of the normal healing process, but it can also occur as a 

result of foreign particle inhalation [207, 210]. Depending on the stimulus, macrophages 

differentiate into either a “classically” activated M1 or “alternatively” activated M2 phenotype, 

which have signature characteristics that distinguish them from one other [211-217]. Classical 

M1 macrophages play important roles in infection clearance, typically in response to 

lipopolysaccharide (LPS), which stimulates a high level secretion of pro-inflammatory cytokines 

such as tumor necrosis factor alpha (TNFα) and interleukin 12 (IL-12) and promotes a type 1 T 

helper (Th1) immune response [211-213, 217]. Macrophages activated by other factors, such as 

endogenous interleukin 4 (IL-4) or glucocorticoid hormones, fall under the alternatively 

activated M2 phenotype. M2 macrophages generally secrete high levels of interleukin 10 (IL-10) 

and interleukin 1-beta (IL-1β) to promote the type 2 T helper (Th2) immune response [211-213, 
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217]. Additionally, emerging evidence indicates that macrophage activation/polarization toward 

the M1 or M2 phenotype may play critical roles in tumor growth and cancer progression [210, 

211, 218, 219]. It is thought that M1 macrophages promote tumor resistance, due to their high-

level secretion of pro-inflammatory cytokines and potent effector cell functions [212, 213]. In 

contrast, M2 macrophages are believed to possess tumor promoting functions due to their 

promotion of angiogenesis, tissue remodeling and repair mechanisms [212, 213]. Further, the 

tumor microenvironment can influence tumor associated macrophages to undergo a “phenotypic 

switching” from M1 to M2, and thus tumor-promoting, phenotype [212, 218].  

Given this body of literature, it has been suggested that inflammation resulting from 

pulmonary NP exposure may play a role in the toxicity associated with exposure [33, 40, 63, 66, 

170, 176, 207-209, 220, 221] and that the inflammatory state resulting from particle exposure 

may play a role in cancer progression [207, 210]. This is especially concerning in occupational 

settings [18, 75, 78, 79] where workers undergo pulmonary exposure to NPs on a daily basis [98, 

176]. In particular, exposure to tungsten carbide cobalt NPs (nano-WC-Co) in occupational 

settings is known to cause hard metal lung disease (HMLD), characterized by progressive 

inflammation and fibrosis of the lung [85, 101, 104, 105, 113, 114, 118, 129],  which is further 

associated with a two-fold increased risk of lung cancer [97, 100, 107]. While the toxicity of 

WC-Co particles has been studied [128, 130-134, 137, 139, 141, 143, 147-153, 155-157, 159, 

161, 222, 223], the relationship between WC-Co toxicity, inflammation and lung cancer remains 

poorly understood.  

Additionally, there is limited information regarding the interaction of multiple cell types 

during WC-Co NP exposure (i.e. immune cells and epithelial cells), as the majority of previous 

in vitro studies employed single cell (mono-culture) models in their examination of WC-Co 
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toxicity [130, 132-134, 141-144, 146-149]. This design is a disadvantage, as co-culture models 

may more closely represent the in vivo environment during a WC-Co NP exposure. To address 

this gap in understanding, the present study examined the effects of nano-WC-Co particle 

exposure in vitro using mono- and co-culture cell models composed of macrophages (THP-1) 

and lung epithelial cells (BEAS-2B) to assess the toxicity, stimulation of inflammatory cytokine 

secretion and M1/M2 macrophage polarization. We hypothesized that exposure to nano- WC-Co 

stimulates inflammation in macrophages and may promote polarization toward the M1 pro-

inflammatory macrophage phenotype.  

 

MATERIALS and METHODS 

Materials and Reagents: THP-1 (TIB-202) human monocyte cell line (TIB-202) was purchased 

from American Type Culture Collection (ATCC; Manassas, VA) and BEAS-2B cells (originally 

purchased from ATCC) were obtained from the laboratory of Yon Rojanasakul. Nano-WC-Co 

(tungsten carbide cobalt) composite particles were purchased from Inframat Advanced Materials 

(Manchester, CT). RPMI-1640 media for THP-1 cell culture was purchased from ATCC. 

Phosphate buffered saline (PBS), Dulbecco’s Modified Eagle Media (DMEM), 0.25% 

trypsin/ethylenediaminetetraacetic acid (EDTA), versene (EDTA-based cell detachment 

reagent), penicillin/streptomycin, beta-mercaptoethanol and fetal bovine serum (FBS) were 

purchased from Lonza (Allendale, NJ). Isopropanol, hydrochloric acid, Triton-X-100, thiazolyl 

blue tetrazolinium bromide (MTT reagent), phorbol-12-mystirate-13-acetate (PMA), 

lipopolysaccharide (LPS) and enzyme-linked immunosorbent assay (ELISA) kits for human IL-

12p70 (#RAB0252), IL-10 (#RAB0244), IL-1β (#RAB0273) and TNFα (#RAB0476) were 

purchased from Sigma-Aldrich (St. Louis, MO). Flow cytometry staining buffer (containing 
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0.2% bovine serum albumin and sodium azide), recombinant human IL-4, human IgG, anti-

human CD-40-APC and anti-human CD-206-FITC antibodies were purchased from BD 

Biosciences (Franklin Lakes, NJ).  

Nano-WC-Co Particle Preparation: Nano-WC-Co stock particle suspensions (5 mg/mL) were 

prepared in sterile PBS (containing 10% FBS to prevent agglomeration) by sonication under 120 

watts power output, frequency 20 kHz, for 1 min with an Omni International Sonic Ruptor 

(Kennesaw, GA). Sonication was performed in 30 mL plastic vials immobilized in an ice bath to 

prevent heating during particle dispersion. Dilute nano-WC-Co particle suspensions (1 to 1000 

μg/mL) were prepared on the day of each experiment in DMEM containing 10 % FBS from the 5 

mg/mL stock particle suspension.  

Cell Culture and THP-1 Macrophage (M0) Activation: BEAS-2B cells were maintained and 

passaged upon confluence in DMEM supplemented with 10% FBS and 1% 

penicillin/streptomycin. THP-1 cells were maintained and passaged upon confluence in RPMI-

1640 supplemented with 10% FBS, 1% penicillin/streptomycin and 0.5 mM beta-

mercaptoethanol. All cells were maintained in an incubator at 37° C and 5% CO2. Differentiation 

of THP-1 cells to macrophages (M0) was achieved through the addition of 10 ng/mL PMA. After 

48hr, THP-1 to M0 differentiation was confirmed via examination of cell morphology using a 

light microscope [215, 224], where M0 cells underwent a signature change in morphology and 

became adherent to the culture dish. For co-culture, M0 cells were rinsed once with PBS and 

incubated with versene (EDTA-based cell dissociation reagent) for 15 min. M0 were then 

pipetted gently to ensure detachment from the culture dish and re-suspended in DMEM at the 

desired concentration for co-culture seeding.  
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Macrophage and Epithelial Cell Co-Culture: To establish the co-culture (CC) at a ratio of 3:1 

(lung epithelial cell: macrophage), BEAS-2B cells were trypsinized, re-suspended in DMEM and 

seeded in a 96-well plate at a density of 1.5 × 105 cells/mL and allowed to adhere for 1 hr. 

BEAS-2B attachment was confirmed using light microscopy prior to the addition of M0 cells. 

M0 cells were seeded directly on top of the BEAS-2B monolayer at a density of 5 × 104 cells/mL 

in DMEM and co-cultured for 24 hr to allow attachment and cellular interaction prior to nano-

WC-Co exposure. 

Nano-WC-Co Particle Exposure: Nano-WC-Co particle exposure was achieved by aspirating 

the media from each well and replacing immediately with an equivalent volume of nano-WC-Co 

particle suspension at a concentration of 1, 10, 100 or 1000 μg/mL and incubated at 37° C and 

5% CO2 for exposure periods of 2, 6, 12, 24 and 48 hr; controls were treated with LPS (100 

ng/mL) or IL-4 (20 ng/mL). For the M1/M2 flow cytometery experiments, M0 cells were treated 

with either control LPS, IL-4 or 0, 1, 10 and 100 μg/mL nano-WC-Co for exposure periods of 1, 

2 and 5 days.  

Cell Viability after Nano-WC-Co Exposure: Following nano-WC-Co exposure, the media 

containing nano-WC-Co was aspirated from each well and cells were rinsed once with PBS to 

remove excess particles. Then, 100 μL un-supplemented DMEM was added to each well, 

followed by the addition of 10 μL MTT reagent to achieve a final concentration of 0.5 mg/mL 

MTT per well. Cells were incubated for 2 hr at 37° C and 5% CO2 to allow conversion of the 

soluble tetrazolinium salt (yellow) to formazan crystals (purple). Crystal formation was 

confirmed using light microscopy. Next, 100 μL of solubilization solution (0.1 M HCl in 

isopropanol containing 10% Triton-X) was added to each well to dissolve the formazan crystals 

and the absorbance of each well was recorded immediately at 570 nm using a Bio-Tek μQuant 
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microplate reader (Winooski, VT). Blank values were subtracted from all absorbance readings. 

Cell viability was calculated by dividing the absorbance of nano-WC-Co treated cells by the 

absorbance of control cells receiving media treatment only and converted to a percentage.  

Macrophage Polarization Assay: THP-1 cells were seeded at a density of 5 × 105 cells/mL in 

RPMI-1640 containing 10 ng/mL PMA in a 12-well culture dish and incubated for 48 hr to 

stimulate M0 cell differentiation. Media were then aspirated from each well and replaced with 

DMEM containing 100 ng/mL LPS (M1 stimulus/positive control), 20 ng/mL IL-4 (M2 

stimulus/positive control) and 0, 1, 10 or 100 μg/mL nano-WC-Co particles. M0 cells were 

incubated with the M1, M2 or nano-WC-Co stimulus for 1, 2 and 5 days at 37° C and 5% CO2. 

Flow Cytometry: Following M1/M2/WC-Co exposure, M0 cells were rinsed once with PBS, 

detached with versene (described above) and transferred to 15 mL polystyrene tubes. Cells were 

centrifuged at 1200 rpm for 7 min to pellet and re-suspended in 1 mL ice-cold flow cytometry 

staining buffer. M0 cells were counted on a hemocytometer and a total of 3 × 105 cells per 

sample were transferred to 5 mL polystyrene tubes for subsequent staining. After centrifugation, 

cell pellets were re-suspended in 100 μL staining buffer containing 10 μg human IgG and 

incubated for 30 min over ice to block macrophage Fc receptors and minimize non-specific 

antibody binding. Next, cells were rinsed with 1 mL cold staining buffer to remove excess IgG 

and re-suspended in 80 μL buffer. 10 μL of each antibody (anti-CD-40-APC or anti-CD-206-

FITC) was added to each appropriate tube, including positive/negative and single-stain controls 

and incubated for 1 hr over ice. After staining, cells were rinsed 3 times with 1 mL cold staining 

buffer to remove unbound antibodies. After the final rinse, cell pellets were re-suspended in 100 

μL 0.4% paraformaldehyde to fix and stored overnight at 4° C. The next day, fixed cells were 

centrifuged, re-suspended in 300 μL staining buffer and analyzed immediately on a BD LSR 
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FORTESSA flow cytometer. Instrument settings were defined at the beginning of each 

experiment using the cells only (no stain) and single-stain controls (CD40-APC only and 

CD206-FITC only) and applied for all subsequent experimental samples.  

Inflammatory Cytokine Secretion in response to Nano-WC-Co Exposure: The concentration 

of IL-12, IL-10, IL-1β and TNFα in cell culture supernatants was determined using an enzyme-

linked immunosorbent assay (ELISA) kit. Following nano-WC-Co exposure, cell culture 

supernatants were collected after 6, 12, 24 and 48 hr in 150 μL aliquots in a 96-well plate and 

preserved immediately at -80° C for later analysis. Once all supernatant samples had been 

collected, the 96-well plates were quickly thawed at room temperature and centrifuged briefly 

(500 rpm for 5 min) to pellet any cell debris or nano-WC-Co particles which may interfere with 

the assay. The ELISA assays were then carried out according to manufacturer instructions. 

Briefly, 100 μL supernatant or cytokine standard (prepared according to instructions) was 

transferred to the appropriate well(s) of the 96-well ELISA plate and incubated at room 

temperature for 2.5 hr with gentle shaking. Next, the solutions were discarded and each well was 

rinsed 4 times with prepared 1x wash buffer according to instructions. Following the rinse step, 

100 μL of biotinylated antibody was added to each well and incubated for 1 hr with gentle 

shaking. Next, solutions were discarded, the rinse step was repeated, followed by the addition of 

100 μL streptavidin solution to each well and incubated for 45 min with gentle shaking. Then, 

solutions were discarded, the rinse step was repeated and 100 μL of TMB one-step substrate 

reagent was added to each well. Plates were incubated in the dark for an additional 30 min with 

gentle shaking, followed by the addition of 50 μL stop solution to each well. Plate absorbance 

was read immediately at 450nm. Standard curves were prepared in duplicate for each ELISA 
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plate. The concentration of cytokine(s) in each supernatant sample was then calculated based on 

the sample absorbance at 450 nm and the slope of the standard curve according to instructions. 

Statistical analyses: All experiments were performed in triplicate and data are presented as 

mean ± standard deviation. Statistical analysis was carried out by 2-way analysis of variance 

(ANOVA) using GraphPad Prism software (La Jolla, CA). P values < 0.05 were considered 

significant.  

 

RESULTS 

Nano-WC-Co Characterization: Nano-WC-Co particles were prepared and characterized as 

previously described [222]. Briefly, nano-WC-Co particles averaged 98 nm in diameter in 

suspension determined by dynamic light scattering and transmission electron microscopy. 

Compositional analysis by energy-dispersive x-ray (EDX) determined that nano-WC-Co 

contained 72.13% tungsten, 13.42% cobalt, 7.63% carbon and 6.81% oxygen.  

Co-Culture Viability: Macrophages (THP-1), lung epithelial cells (BEAS-2B) and a 3:1 co-

culture of BEAS-2B and THP-1 cells were exposed to nano-WC-Co at concentrations of 1, 10, 

100 and 1000 μg/mL for durations of 2, 6, 12, 24 and 48 hr. In macrophage mono-culture (THP-

1), nano-WC-Co exposure did not induce significant changes in cell viability (compared to 

control) at 1 μg/mL but did induce a significant reduction in cell viability at 10 μg/mL after 48 

hr, at 100 μg/mL after 6, 12, 24 and 48 hr and at 1000 μg/mL after 2, 6, 12, 24 and 48 hr of 

exposure (Figure 1). Consistent with our previous report [222], nano-WC-Co exposure caused a 

significant reduction in cell viability in lung epithelial cells (BEAS-2B) at 1 μg/mL after 24 and 

48 hr and at ≥ 10 μg/mL after 2, 6, 12, 24 and 48 hr of exposure (Figure 1). The viability in 
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THP-1 cells was significantly higher compared to BEAS-2B mono-culture at 1 μg/mL after 2, 6 

and 48 hr and at 10, 100 and 1000 μg/mL after 2, 6, 12, 24 and 48 hr nano-WC-Co exposure 

(Figure 1). 

In the co-culture of BEAS-2B and THP-1 cells, nano-WC-Co exposure did not lead to 

significant changes in cell viability at 1 μg/mL but caused a significant reduction in cell viability 

(compared to control) at 10 μg/mL after 24 and 48 hr and at 100 and 1000 μg/mL after 2, 6, 12, 

24 and 48 hr of exposure (Figure 1). Compared to BEAS-2B mono-culture, an increased cell 

viability was observed in the co-culture model at 1 μg/mL after 24 and 48 hr, at 10 μg/mL after 

2, 6, 12, 24 and 48 hr, at 100 μg/mL after 2, 24 and 48 hr and at 1000 μg/mL after 2 and 6 hr of 

exposure (Figure 1).  

 

Figure 3.1. Cell viability after exposure to A) 1 μg/mL, B) 10 μg/mL, C) 100 μg/mL and D) 1000 μg/mL 
nano-WC-Co particles in macrophages (THP-1), lung epithelial cells (BEAS-2B) and 3:1 co-culture 
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(BEAS-2B:THP-1). (*P < 0.05, †P < 0.01 compared to control; ‡P < 0.05 compared to BEAS-2B 
monoculture) 

Macrophage Polarization: Macrophage polarization toward the M1 and M2 phenotypes 

was examined after exposure to LPS (M1 positive control), IL-4 (M2 positive control) and 0, 1, 

10 or 100 μg/mL nano-WC-Co for 1, 2 and 5 days. Cells staining positive for CD40-APC were 

considered M1-type macrophages and cells staining positive for CD206-FITC were considered 

M2-type macrophages. A summary of M1 and M2 flow cytometry staining is presented 

graphically in Figure 2. Representative dot plots depicting M1/M2 macrophage staining after 

exposure to nano-WC-Co for 1, 2 and 5 days are shown in Figure 3 (1 μg/mL), Figure 4 (10 

μg/mL) and Figure 5 (100 μg/mL). Compared to the control group (0 μg/mL nano-WC-Co), for 

the staining control samples used to set the instrument gating parameters, a significant increase 

in CD40+ stained cells was observed following LPS exposure for 1, 2 and 5 days; IL-4 exposure 

caused a significant increase in CD206+ cells after 2 and 5 day exposure (Figure S2).  

In general, CD40+ staining was dominant in all the samples at the exposure periods 

studied (Figure 2). Compared to the control group (0 μg/mL WC-Co), cells exposed to 1 and 10 

μg/mL nano-WC-Co had significantly higher CD40+ staining after 5 days of exposure. Exposure 

to 10 μg/mL nano-WC-Co also caused a significant increase in CD40+ cells after 1 day and cells 

exposed to 100 μg/mL demonstrated significantly lower numbers of CD40+ cells after 2 and 5 

days of exposure (Figure 2A). Further, cells exposed to 1, 10 and 100 µg/mL nano-WC-Co had 

significantly less CD206+ cells after 5 days of exposure compared to the control group (0 μg/mL 

WC-Co) (Figure 2B). With increasing nano-WC-Co exposure time from day 1 to day 2 and day 

5, an increase in the ratio of M2/M1 was found; the ratio of M2/M1 was significantly higher after 

5 days compared to 1 day for 1, 10 and 100 100 µg/mL nano-WC-Co (Figure 2C). 
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Figure 3.2.  Summary of  macrophage flow cytometry staining as total percentage of A) CD40+/M1, B) 
CD206+/M2 and C) M2/M1 ratio after exposure to nano-WC-Co particles for 1, 2 and 5 days. (*P < 0.05 

compared to 0 μg/mL (M0) control (2A, B) and †P < 0.01 compared to 1 day (2C)) 
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Figure 3.3.  Representative flow cytometry dot plots depicting macrophage staining after exposure to 1 
μg/mL nano-WC-Co particles for A) 1 day, B) 2 days and C) 5 days. CD40-APC as surface marker of 
M1-type macrophages and CD206-FITC as surface marker of M2-type macrophages.  
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Figure 3.4.  Representative flow cytometry dot plots depicting macrophage staining after exposure to 10 
μg/mL nano-WC-Co particles for A) 1 day, B) 2 days and C) 5 days. CD40-APC as surface marker of 
M1-type macrophages and CD206-FITC as surface marker of M2-type macrophages.  
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Figure 3.5.  Representative flow cytometry dot plots depicting macrophage staining after exposure to 100 
μg/mL nano-WC-Co particles for A) 1 day, B) 2 days and C) 5 days. CD40-APC as surface marker of 
M1-type macrophages and CD206-FITC as surface marker of M2-type macrophages.  
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Inflammatory Cytokine Secretion: The levels of inflammatory cytokines were quantified in the 

cell culture supernatant via ELISA after 6, 12, 24 and 48 hr of exposure to 0, 1, 10 or 100 μg/mL 

nano-WC-Co (Figure 6) and either LPS (M1 stimulus) or IL-4 (M2 stimulus) (Figure S3). 

Nano-WC-Co treatment caused varying effects on TNFα secretion (Figure 6A); 1 μg/mL nano-

WC-Co caused a significant increase in TNFα after 6 hr of exposure, compared to control (0 

μg/mL), but the levels were significantly lower after 12, 24 and 48 hr of exposure. A decrease in 

TNFα, compared to control (0 μg/mL), was also observed at 10 μg/mL after 24 and 48 hr and at 

100 μg/mL after 12, 24 and 48 hr exposure to nano-WC-Co (Figure 6A).  

In the IL-1β assay (Figure 6B), 1 μg/mL nano-WC-Co treatment caused a significant 

increase in IL-1β levels, compared to control (0 μg/mL), after 12 and 24 hr of exposure. In the 10 

μg/mL nano-WC-Co group, a significant increase in IL-1β was found at exposures of 12, 24 and 

48 hr. Compared to control (0 μg/mL), 100 μg/mL nano-WC-Co exposure led to a significant 

decrease in IL-1β after 6 and 12 hr and a significant increase after 24 hr followed by a significant 

decrease after 48 hr of exposure (Figure 6B).  

For IL-12 (Figure 6C), exposure to 1 μg/mL nano-WC-Co caused a significant increase 

compared to control (0 μg/mL) after 12 hr exposure.  10 μg/mL nano-WC-Co caused a 

significant increase in IL-12 after 12 and 48 hr of exposure and 100 μg/mL nano-WC-Co also 

caused a significant increase in IL-12 (compared to control) after 6, 12 and 48 hr of exposure 

(Figure 6C). 
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Figure 3.6. Secretion of pro-inflammatory cytokines A) TNFα, B) IL-1β and C) IL-12 in cell culture 

supernatant as markers of inflammation following nano-WC-Co exposure. (*P < 0.05, †P < 0.01 

compared to 0 μg/mL (M0) control) 
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DISCUSSION 

 Due to the increased use of nanoparticles (NP) in consumer and industrial applications 

[3], there is a critical need to clearly define the toxic and inflammatory effects of NP which occur 

after exposure. We recently reported that commercially prepared nano-WC-Co particles induced 

a time- and dose-dependent toxicity in human lung epithelial cells (BEAS-2B) and were capable 

of being internalized, inducing oxidative stress and stimulating apoptotic cell death in vitro 

[222]. Since macrophages play a critical role in promoting natural pulmonary particle clearance 

mechanisms, an important aspect of the current study was to define the toxic effects of nano-

WC-Co particle exposure on macrophages in both mono- and co-culture settings. To test the 

effects of nano-WC-Co particle exposure on macrophage-mediated inflammation and M1/M2 

polarization, we selected monocyte-derived THP-1 cells as our macrophage model due to their 

prevalence in the literature and the ease with which THP-1 cells are differentiated toward a 

macrophage (M0) phenotype with PMA [215, 217, 224, 225]. Here, a 3:1 co-culture ratio of 

BEAS-2B to THP-1 M0 was selected to represent the dynamic tissue environment within the 

lung during a particle inhalation scenario [226, 227]; the viability was compared between THP-1 

and BEAS-2B mono-cultures and the 3:1 co-culture system.  

Due to the inherent phagocytic nature of macrophages, we hypothesized that the presence 

of THP-1 M0 in the co-culture model would offer a “protective effect” against nano-WC-Co 

toxicity; therefore, increased viability would be observed in the co-culture system compared to 

BEAS-2B cells alone. In this case, the results of our cell viability study (Figure 1) are consistent 

with our hypothesis and we believe that macrophage engulfment of nano-WC-Co isolated the 

particles and prevented direct contact with the BEAS-2B cells, effectively attenuating nano-WC-

Co toxicity to the extent reported previously in BEAS-2B cells [222]. In fact, the toxicity of 
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nano-WC-Co was found to be cell dependent and significantly less toxicity was observed in 

macrophages compared to BEAS-2B cells (Figure 2). While the 1000 μg/mL dose is very high, 

we believe that it is relevant because the resulting lifetime accumulation of nano-WC-Co 

particles in the lung from occupational settings could be substantial. This idea is supported by 

histological findings in HMLD patients, where large deposits of WC-Co are often visible in lung 

specimens [113, 114, 123, 124]. 

 Macrophage polarization following exposure to other metal NPs has been reported 

elsewhere [228], so we explored the effects of nano-WC-Co exposure on macrophage 

polarization toward the M1 or M2 phenotype using flow cytometry by staining for two well-

known macrophage cell membrane markers: CD40 as an M1 surface marker and for CD206 

(mannose receptor), as an M2 macrophage surface marker [214, 215, 217]. Overall, high levels 

of CD40+/M1 staining were observed in nano-WC-Co particle exposed groups (Figure 2A) and 

in the LPS-stimulated M1 positive control group (Figure S2A). The prevalence of CD40+/M1 

staining was much higher in nano-WC-Co exposed groups than CD206+/M2 staining; while a 

slight increase in CD206+/M2 staining was observed at 5 days compared to 1  and 2 days after 

nano-WC-Co exposure, overall, the levels of CD206+/M2 macrophages were significantly lower 

than the control (0 μg/mL) group (Figure 2B). It seems that the ratio of M2/M1 increased with 

increasing exposure time (Figure 2C).  

  Therefore, at least in terms of surface marker expression, nano-WC-Co particles appear 

to induce strong CD40 expression, typical of an M1 classically activated phenotype, rather than 

increased levels of CD206 expression associated with M2 alternatively activated macrophages. 

However, there are a few potential limitations which may have contributed to the lack of 

CD206+ macrophages in our cell populations. Upon stimulation with PMA, THP-1 macrophages 
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became extremely adherent to the culture dish and were difficult to detach for membrane surface 

staining, so it is possible that CD206 membrane receptors may have been damaged during the 

detachment process, causing low numbers of CD206+ cells overall. Additionally, in our control 

(0 μg/mL) group, receiving PMA treatment only, a high level of CD40+/M1 staining was 

observed, which may indicate a predisposition toward the M1 surface markers in our control 

cells.  

Next, we examined the secretion of pro-inflammatory cytokines including TNFα, IL-1β 

and IL-12 over an exposure period ranging from 6 to 48 hr to determine the effects of nano-WC-

Co exposure on cytokine expression over time (Figure 6). Given the strong CD40+/M1-type 

inflammatory macrophage surface marker expression in our flow cytometry assay, we expected 

to see complimentary induction of pro-inflammatory cytokines in our ELISA assay. Typically, 

TNFα is secreted by activated macrophages and plays a primary role in the inflammatory 

immune response associated with infections due to bacterial or viral pathogens, such as 

promoting neutrophil chemotaxis and inducing acute phase proteins (C-reactive protein) [229].  

A mixed TNFα response was observed in nano-WC-Co macrophages compared to the control 

group, with higher levels after 6 hr exposure to low concentration (1 μg/mL) but similar or lower 

levels of TNFα compared to control at 10 and 100 μg/mL (Figure 6A).  

IL-1β is a potent inflammatory cytokine that plays a critical role in the immune response 

to infection by promoting adhesion factors on endothelial cells, which allows for migration of 

macrophages and neutrophils to the site of infection [230]. IL-1β is known to enhance systemic 

inflammation and mediate auto-immune disorders, such as rheumatoid arthritis [230, 231].  In 

contrast to TNFα, significantly higher levels of IL-1β, compared to control, were observed in all 

three nano-WC-Co treatment groups after 24 hr of exposure and for the 1 and 10 μg/mL groups 
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after 12 hr (Figure 6B). Since IL-1β is produced largely by activated macrophages, the induction 

of high levels of IL-1β secretion may indicate a pro-inflammatory response and increased 

activation in macrophages exposed to nano-WC-Co particles.   

IL-12 is known to induce phagocytic activation of macrophages, natural killer cells and 

cytotoxic T-lymphocytes as part of the innate immune response to bacterial, parasitic or 

intracellular infections [232-237]. IL-12 also acts as an inducer of other cytokines, such as 

interferon-gamma (IFNγ). Like IL-1β, IL-12 may also contribute to chronic inflammation in 

rheumatoid arthritis, psoriasis and other immune disorders [232]. In our THP-1 macrophage 

model, nano-WC-Co exposure also stimulated IL-12 secretion, since significantly higher IL-12 

levels were found in nano-WC-Co treated cells, compared to control, after 12 hr of exposure 

(Figure 6C).  

Additionally, it is worth considering how the toxic effects of nano-WC-Co particles 

toward THP-1 macrophages (Figure 1) may have impacted the results of our inflammatory 

cytokine assay. In general, the 1 μg/mL nano-WC-Co dose was non-toxic up to 48 hr in our 

viability assay, so higher observed levels of TNFα, IL-1β and IL-12 at this concentration are 

likely to reflect increased inflammatory cytokine secretion overall in nano-WC-Co exposed 

macrophage populations. In contrast, significant toxicity was observed after 48 hr exposure to 10 

μg/mL nano-WC-Co, so the lower levels of secreted inflammatory cytokines at this 

concentration seem consistent with increased nano-WC-Co toxicity at this time point. 100 μg/mL 

nano-WC-Co was toxic toward THP-1 macrophages at 6 hr and beyond, so the secretion of 

increased levels of IL-12 (compared to control) at this concentration are especially significant, 

indicating that the remaining live macrophages (< 80% compared to control) are stimulated to 

undergo a very strong IL-12 mediated inflammatory response. Taken together, these results are 
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consistent with our hypothesis and demonstrate that nano-WC-Co particles are capable of 

inducing a pro-inflammatory response in macrophages marked by high levels of IL-1β and IL-12 

secretion and high expression of CD40 M1 surface markers.  

 

CONCLUSION 

 This study examined the toxicity of nano-WC-Co in a co-culture of macrophages and 

lung epithelial cells and explored the effects of nano-WC-Co exposure on M1/M2 polarization 

and inflammatory cytokine secretion in THP-1 macrophages. The presence of THP-1 cells in the 

co-culture model was found to reduce the toxicity of nano-WC-Co compared to a mono-culture 

of BEAS-2B, which suggested a protective role of macrophages against nano-WC-Co particle 

toxicity. In macrophages, nano-WC-Co exposure induced increased secretion of IL-1β and IL-

12, which are indicators of a pro-inflammatory response. The M1/M2 polarization assay 

indicated a strong M1 phenotype (CD40+) in nano-WC-Co treated macrophages after 1, 2 and 5 

days of exposure. Overall, the outcomes of our cytokine ELISA and flow cytometry assay 

indicated that exposure to nano-WC-Co particles in vitro stimulates a pro-inflammatory cytokine 

response and polarization toward the M1 phenotype in macrophages.  
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SUPPLEMENTARY MATERIAL 

FIGURES 

 

 

Figure S1. Representative flow cytometry dot plots depicting macrophage staining controls used to set 
flow cytometer experimental parameters: A) no stain/M0 cells only, B) M1 positive control (LPS) stained 
with CD40-APC only, C) M2 positive control (IL-4) stained with CD206-FITC only and D) M0 negative 
control cells stained with both CD40-APC and CD206-FITC. CD40-APC as a surface marker of M1-type 
macrophages and CD206-FITC as a surface marker of M2-type macrophages.  
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Figure S2. Summary of A) CD40+ M1-type and B) CD206+ M2-type macrophage flow cytometry 
staining controls. M0 cells received PMA treatment only, M1 positive control received 100 ng/mL LPS 

and M2 positive control received 20 ng/mL IL-4 for 1, 2 or 5 days. (*P < 0.05, †P < 0.01 compared M0 

control) 
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Figure S3. Levels of A) TNFα, B) IL-1β  and C) IL-12 inflammatory markers in cell culture supernatant 

for the M0 (negative control), LPS (100 ng/mL) and IL-4 (20ng/mL) control groups. (*P < 0.05, †P < 

0.01 compared to M0 control) 
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Figure S4. Levels of IL-10 in cell culture supernatants following A) nano-WC-Co exposure and B) M0 
(negative control), LPS (100 ng/mL) and IL-4 (20ng/mL) control treatments. (*P < 0.05, †P < 0.01 
compared to M0 control) 
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ABSTRACT 

Exposure to hard metal tungsten carbide cobalt (WC-Co) “dusts” in enclosed industrial 

environments is known to contribute to the development of hard metal lung disease and an 

increased risk for lung cancer. Currently, the influence of local and systemic inflammation on 

disease progression following WC-Co exposure remains unclear. To better understand the 

relationship between WC-Co nanoparticle (NP) exposure and its resultant effects, the acute local 

pulmonary and systemic inflammatory responses caused by WC-Co NPs were explored using an 

intra-tracheal instillation (IT) model and compared to those of CeO2 (another occupational 

hazard) NP exposure. Sprague-Dawley rats were given an IT dose (0-500 μg per rat) of WC-Co 

or CeO2 NPs. Following 24-hr exposure, broncho-alveolar lavage fluid and whole blood were 

collected and analyzed. A consistent lack of acute local pulmonary inflammation was observed 

in terms of the broncho-alveolar lavage fluid parameters examined (i.e. LDH, albumin, 

macrophage activation); however, significant acute pulmonary inflammation was observed in the 

CeO2 NP group. The lack of acute inflammation following WC-Co NP exposure contrasts with 

earlier in vivo reports regarding WC-Co toxicity in rats, illuminating the critical role of NP dose 

and exposure time and bringing into question the potential role of impurities in particle samples. 

Further, we demonstrated that WC-Co NP exposure does not induce acute systemic effects since 

no significant increase in circulating inflammatory cytokines were observed. Taken together, the 

results of this in vivo study illustrate the distinct differences in acute local pulmonary and 

systemic inflammatory responses to NPs composed of WC-Co and CeO2; therefore, it is 

important that the outcomes of pulmonary exposure to one type of NPs may not be implicitly 

extrapolated to other types of NPs. 

Keywords: nanoparticle exposure; particle inhalation; pulmonary exposure; inflammation 
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INTRODUCTION 

 The increased use of engineered nanomaterials (ENMs) in commercial manufacturing 

and consumer products presents an important toxicological concern. As the ENMs are used 

repetitively and wear over time, nanoparticles (NPs) are generated and released into the 

environment, thereby creating a NP exposure hazard. Currently, there are no definitive 

“standards” for evaluating the toxic effects of NPs, so identifying NP exposure effects remain a 

challenge for researchers world-wide [32]. It is evident from the literature that the effects of NP 

exposure effect vary greatly, ranging from non-toxic to carcinogenic, depending upon the 

particle size, composition, dose, length, and route of exposure [1, 2, 31, 32, 37, 58]. The 

pulmonary effects of NPs are particularly important, as airborne NPs are inhaled and inhalation 

is the most frequent route by which workers are exposed in occupational settings [42, 176, 238].  

 Recently, it has been reported that inhaled NPs are capable of depositing in the lung and 

causing systemic effects at sites distant from that of exposure [37, 168, 169]. Translocation of 

NPs across the lung and into the bloodstream may result NP deposition in other organs (liver, 

spleen, kidney), with subsequent organ damage or toxicity, and may cause changes in vascular 

function or permeability [34, 37, 65, 164, 165, 168, 171, 172, 239, 240]. It is difficult to predict 

the long-term impact of these systemic effects, so the extent by which systemic effects of NP 

exposure may contribute to or alter specific disease states remains unknown.  

 As mentioned above, occupational inhalation of NPs is of particular concern; specifically, 

exposure to tungsten carbide cobalt (WC-Co) dusts and particles. WC-Co is a hard composite 

metal commonly used as a material and coating for equipment used in mining and drilling 

industries [70]. As these tools are used extensively in a closed environment, WC-Co dusts 
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containing particles of respirable range are released, thereby creating an occupational inhalation 

hazard [78, 79].  Inhalation of WC-Co containing dusts and particles is known to cause hard 

metal lung disease (HMLD) and a two-fold increased risk for lung cancer [73, 77, 101, 102, 

177]; however, the relationship between acute WC-Co toxicity and the potential role of 

inflammation on HMLD progression remains unknown. The toxicity of WC-Co particles toward 

a number of cell types in vitro has been reported in the literature [131, 132, 134, 135, 141, 143, 

144, 148-150, 152, 153, 158, 222, 241]. Specifically, we recently found that WC-Co particles in 

the nano-size range were internalized by epithelial cells and that exposure to WC-Co NPs 

resulted in significant toxicity toward lung epithelial cells at concentrations as low as 10 μg/mL 

for exposure periods as short as 0.5 hr,  significant toxicity at concentrations of 0.1 and 1 μg/mL 

after 48 hr exposure and that overall, WC-Co NPs caused significantly greater toxicity compared 

to WC-Co micro-particles [222].  

 Additionally, there have been several studies regarding the toxicity of WC-Co particles in 

vivo [130, 154-157, 159-161]. These early in vivo studies focused on the local pulmonary 

responses to WC-Co exposure and confirmed that the composite material of WC-Co was 

responsible for the observed toxic effects when compared to tungsten (W), carbide (C), or cobalt 

(Co) exposure alone [154, 160, 161]. The WC-Co particles used for these studies were within the 

2-4 μm size range and reported toxicity following single IT exposure was marked by severe 

alveolitis, pulmonary edema and increased levels of lactate dehydrogenase (LDH), which were 

observed after 24 hr and up to 72 hr post-exposure [154-156]. While the findings regarding the 

pulmonary toxicity of WC-Co micro-particles were fairly consistent among these studies, there is 

a lack of information regarding the toxicity of WC-Co particles in the nano-size range in vivo.  
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Given the gap in knowledge regarding nano-sized WC-Co toxicity in vivo and our recent 

findings demonstrating the enhanced toxicity of nano-sized WC-Co compared to micro-sized 

WC-Co in vitro, we conducted a pilot study to examine the acute pulmonary and systemic 

inflammatory effects of WC-Co NP exposure, which have not yet been reported, using an intra-

tracheal instillation rat model and compared the outcomes with cerium dioxide (CeO2) NPs. The 

Nurkiewicz laboratory, including Minarchick, Porter, and Nurkiewicz whom are coauthors of 

this study, previously reported that CeO2 NPs induced microvascular dysfunction following 

pulmonary exposure in vivo, characterized by impaired endothelium-dependent and endothelium-

independent dilation and speculated that such microvascular changes may likely contribute to 

cardiovascular dysfunction associated with particle exposure [65]. In this case, we hypothesized 

that WC-Co NPs would induce dose-dependent acute pulmonary inflammation, similar to CeO2 

NPs [65, 170, 242] and may cause systemic inflammation marked by increased levels of 

inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6).  

 

MATERIALS and METHODS 

WC-Co and CeO2 NPs: Tungsten carbide cobalt (WC-Co) NPs (80 nm) were purchased from 

Inframat Advanced Materials (Manchester, CT). Cerium dioxide (CeO2) NPs were synthesized 

and characterized as previously described [65]. The chemical composition of WC-Co NPs 

included 72.1 wt.% W, 13.4 wt.% Co, 7.6 wt.% C, and 6.8 wt.% O [222]. Stock solutions of 

WC-Co and CeO2 NPs were prepared as previously reported [65]. Briefly, dry WC-Co or CeO2 

NPs were weighed and added to 10 mL of saline (Normosol) with 10% fetal bovine serum 

(FBS). Previous studies showed that saline and FBS reduced particle aggregation and did not 

induce mechanical artifacts in terms of broncho-alveolar lavage (BAL) and systemic responses in 
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rats [33, 36, 65]. The average size of WC-Co and CeO2 NPs in Normosol (isotonic saline) plus 

10% FBS was determined via dynamic light scattering (DLS) using a Malvern Zetasizer version 

7.01 (Malvern Instruments Ltd, Malvern, UK). The average sizes of WC-Co and CeO2 NPs were 

found to be approximately 100 nm and 190 nm, respectively. 

Animals: Male Sprague-Dawley rats (8-9 weeks old) were purchased from Hilltop Laboratories 

(Scottdale, PA). The rats were housed at the West Virginia University animal facility in 

ventilated cages, under controlled humidity and temperature, with a 12 hr light/dark cycle with 

food and water provided ad libitum. Animals were acclimated for at least 2 days prior to use. 

Rats were divided randomly into groups (six animals per group) and assigned to either the 0, 50, 

250 or 500 μg WC-Co or 400 μg CeO2 NP group. All procedures were approved by the West 

Virginia University Animal Care and Use Committee (Permit Number 12-0414) and carried out 

in accordance with recommendations set forth in the Guide for the Care and Use of Laboratory 

Animals by the National Institutes of Health. All efforts were made to ensure minimal suffering 

during stated procedures. 

Intra-tracheal Instillation Rat Model and NP Exposure: The NP stock solutions were 

sonicated for 5 min on ice to ensure particle dispersion and used immediately for intra-tracheal 

(IT) instillation. Rats were lightly sedated with isofluorane gas (5% induction) and intra-

tracheally instilled with a 300 μL bolus dose of the stock NP solutions to achieve final doses of 

0, 50, 250, and 500 μg WC-Co NPs or 400 μg CeO2 NPs. Rats were monitored after instillation 

until consciousness was regained. After a 24-hr recovery period, rats were euthanized with 

thiobutabarbital sodium salt hydrate (Inactin®; Sigma-Aldrich, MO) at a dose of 1 mg/kg via 

intra-peritoneal (i.p.) injection. Anesthesia was confirmed by testing the toe-pinch reflex. Upon 

euthanization, the rat abdomen was opened and whole blood was collected in anti-coagulant 
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(ethylenediaminetetraacetic acid, EDTA) vacuum tubes via the abdominal aorta until a minimum 

of 6 mL blood was obtained. Following blood collection, the aorta was cut for complete 

exsanguination and broncho-alveolar lavage (BAL) was performed immediately thereafter.  

Blood Plasma Isolation: Whole blood samples were kept on ice until all samples were collected 

and then centrifuged at 2000 × g for 15 min to separate the plasma from the cellular blood 

components. The plasma (supernatant) was drawn off using a pipet, transferred to a cryogenic 

vial in 0.5 mL aliquots, and flash frozen in liquid nitrogen for later cytokine analysis.  

Assessment of Pulmonary Inflammation at 24-hr Post-Exposure: Pulmonary inflammation 

was assessed in the BAL fluid after NP exposure by evaluating several parameters. First, BAL 

fluid samples were assessed for cytotoxicity using the LDH assay and second, albumin protein 

concentration in the BAL fluid was determined to evaluate the integrity of the epithelial-

endothelial (blood-gas exchange) barrier in the lung. Third, inflammatory cells were isolated 

from the BAL fluid and differential cell counts performed to identify the number of alveolar 

macrophages (AM) and polymorphonuclear leukocytes (PMN) present in the lung following NP 

exposure. Further, isolated macrophage (AM) activation states were examined using a standard 

chemiluminescence assay. Then, the concentration of inflammatory cytokines (i.e. TNF-α, IL-6, 

and IFN-) were determined in BAL fluid samples using ELISA.   

BAL Procedure and BAL Fluid Collection: Broncho-alveolar lavage (BAL) was 

performed with Ca2+/Mg2+-free phosphate buffered saline (PBS, pH 7.4) plus 5.5 mM D-glucose 

as previously described [240]. Briefly, a tracheal cannula was inserted and BAL was performed 

through the cannula using ice-cold PBS. The first BAL fluid, totaling 6 mL of PBS, was 

collected and immediately centrifuged (650 x g, 10 min, 4°C). The resulting first BAL fluid 
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supernatant was then divided for later analysis: two 0.5 mL aliquots were flash-frozen in liquid 

nitrogen for cytokine determination by ELISA and the remaining 5 mL was kept on ice for 

analysis of LDH and albumin. After the first BAL was collected, BAL was repeated using 8 mL 

of PBS until a total of 40 mL BAL fluid was collected. Next, the 40 mL of BAL fluid was 

centrifuged (650 x g, 10 min, 4°C) and the resulting cell pellet was pooled with the cell pellet 

from the first BAL fluid. The pooled cells were re-suspended in HEPES-buffered medium (10 

mM N-[2-hydroxyethyl]piperazine-N′-[2-ethanesulfonic acid], 145 mM NaCl, 5 mM KCl, 1 mM 

CaCl2, 5.5 mM D-glucose, pH 7.4) and centrifuged a second time (650 x g, 10 min, 4°C). The 

resulting supernatant was decanted and a final suspension of the isolated BAL cells was prepared 

in HEPES-buffered medium.  

 Albumin Protein Assay and LDH Activity: LDH and albumin assays were performed as 

previously described [65, 243] on the same day as BAL fluid collection using a Roche Cobas 

c111 (Roche Diagnostic Systems, Indianapolis, IN). In brief, LDH activity was used as a marker 

of cytotoxicity. A commercial assay kit was purchased from Roche Diagnostic Systems 

(Indianapolis, IN) and used to measure LDH activity based on the LDH-driven oxidation of 

pyruvate coupled with the reduction of nictoinamide adenine dinucleotide at 340 nm. Albumin 

concentration was monitored as an indicator of cellular integrity using a commercially available 

kit from Sigma Chemical Co (St. Louis, MO) based on albumin binding to bromcresol green and 

measuring the color change at 628 nm.  

Histology: A total of 1.0 × 106 BAL cells were suspended in 200 μL HEPES-buffered 

medium and transferred to microscope slides using the cytospin approach [244]. The resulting 

cytospin preparations were stained with modified Wright-Giemsa stain and cell differentials 
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were determined using light microscopy. Differential cell counts were calculated by multiplying 

the total cell count by the cell differential percentage obtained from the cytospin preparations.  

Macrophage Chemiluminescence: The activation state of alveolar macrophages (AM), 

previously isolated from the BAL fluid (above), was determined in a total volume of 0.5 mL 

HEPES-buffered medium as previously described using a chemiluminescence assay [245]. First, 

chemiluminescence of resting AM (non-stimulated) was determined by incubating 1.0 × 106 

AM/mL at 37°C for 20 min, followed by the addition of 5-amino-2,3-dihydro-1,4-

phthalazinedione (luminol) to a final concentration of 0.08 μg/mL. The resulting 

chemiluminescence was measured with an automated luminometer (Berthold Autolumat Plus LB 

953, Oakridge, TN) at 390-620 nm for 15 min, where the integral of counts per minute (cpm) 

versus time was calculated. Next, zymosan-stimulated chemiluminescence was determined by 

adding 2 mg/mL of un-opsonized zymosan just prior to the measurement of chemiluminescence. 

The use of un-opsonized zymosan in this assay allows for the determination of AM 

chemiluminescence, which is a reflection of the macrophage activation state, because un-

opsonized zymosan stimulates AM chemiluminescence [246] but does not stimulate 

polymorphonuclear leukocyte (PMN) chemiluminescence [62, 247]. Stimulated macrophage 

chemiluminescence was then calculated by subtracting the cpm from the resting AM 

measurement from the cpm of the zymosan-stimulated measurement.  

Inflammatory Cytokine ELISA: Standard curves for cytokines including TNF-α, IL-6, and 

Interferon  (IFN-γ) were prepared using a dilution series with a commercial ELISA kit 

(Signosis, Inc, Santa Clara, CA). Previously frozen plasma and BAL fluid samples were thawed 

and used to determine the cytokine concentrations in each sample. Briefly, 100 μL of BAL fluid 

or plasma sample was added to each well of the 96-well ELISA plate and incubated for 2 hr to 
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allow sufficient binding to the immobilized antibodies within each well. Samples were then 

aspirated and wells were rinsed three times with 200 μL buffer per wash. Next, 100 μL biotin-

labeled detection antibody was added to each well and incubated for 1 hr. The washing step was 

repeated followed by the addition of 100 μL streptavidin-horseradish peroxidase (HRP) 

conjugate to each well. After 45 min, the washing step was repeated and 100 μL substrate was 

added to each well. The plate was further incubated for 30 min in the dark, followed by the 

addition of 50 μL stop solution to each well. The absorbance of each sample was immediately 

measured at 450 nm. BAL fluid and plasma samples were run in triplicate and the cytokine 

concentration of each sample was calculated based on the sample absorbance and the slope of the 

standard curve for each respective cytokine. 

Statistical Analysis All data were presented as the mean ± standard deviation. Statistical 

significance between experimental groups was determined using one-way analysis of variance 

(ANOVA) and Dunnett’s post-hoc analysis in GraphPad Prism 6 software (San Diego, CA).  

 

RESULTS 

Pulmonary Inflammation: BAL fluid was collected and analyzed to assess pulmonary 

inflammation following 24-hr exposure to WC-Co or CeO2 NPs. Compared to the vehicle control 

group, there were no significant differences in LDH activity for WC-Co NP exposed animals at 

the doses studied. A significant increase in LDH activity was observed in the CeO2 NP group 

compared to the vehicle control and all of the WC-Co NP exposed groups (Figure 1A). This 

indicated a lack of cytotoxicity in the WC-Co NP exposed groups at the doses studied while the 

exposure to CeO2 NPs caused significant cytotoxicity. Similarly, there were no significant 
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differences found in the albumin content in WC-Co NP exposed animals compared to vehicle 

control, although relatively higher albumin content was observed at the exposure dose of 500 µg 

compared to the other doses (i.e. 50 and 250 µg) (Figure 1B). A significant increase in albumin 

was found in the CeO2 NP exposed group compared to the vehicle control and all of the WC-Co 

NP exposed groups (Figure 1B). This indicated that the epithelial-endothelial barrier remained 

undisrupted in WC-Co NP exposed animals but was affected in the CeO2 NP exposed group.  

 

Figure 4.1.  Pulmonary inflammation parameters assessed in the BAL fluid following 24-hr exposure to 
WC-Co and CeO2 NPs: A) LDH activity, B) albumin and C) AM chemiluminescence. Values presented 
as mean ± SD. (*P < 0.05, ‡P < 0.001 compared to the vehicle control and †P < 0.01 compared to WC-Co 
NP exposed groups)  
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The activation state of AM was determined via zymogen-stimulated chemiluminescence 

assay, where no significant differences were found in AM activation in WC-Co NP exposed 

animals at all the doses studied compared to the vehicle control group. A significant increase in 

AM activation was observed when the CeO2 NP exposed group was compared to the vehicle 

control and to all of the WC-Co NP exposed groups (Figure 1C). Moreover, the number of AMs 

in the BAL fluid samples was similar across the vehicle control and all WC-Co NP exposed 

animals, where a relatively higher number of AMs was found in the CeO2 NP exposed group 

compared to the vehicle control and WC-Co NP exposed groups; however, the differences were 

not significant (Figure 2A). Additionally, no significant differences in the number of PMNs 

were found between the WC-Co NP exposed groups and the vehicle control group; however, a 

significant increase in the number of PMNs was detected in the CeO2 NP exposed group 

compared to the vehicle control and the WC-Co NP exposed groups (Figure 2B).  

Further, no significant differences were detected in the levels of inflammatory cytokines 

(i.e. TNF-α and IFN-γ) in BAL fluid among the WC-Co, CeO2, and vehicle control groups 

(Figure 3A) with the exception of IL-6, where a significant increase in IL-6 was observed for the 

CeO2 NP group compared to the vehicle control and WC-Co NP exposed groups (Figure 3A).   

Systemic Inflammation: The levels of inflammatory cytokines including TNF-α, IL-6, and IFN-

γ were determined in blood plasma samples to examine the potential systemic inflammatory 

response to WC-Co and CeO2 NP exposures. No significant differences were observed in TNF-α 

and IFN-γ levels among all the animal groups studied (i.e. Control, WC-Co NP, and CeO2 NP 

groups), but significantly higher IL-6 was found in the CeO2 NP exposed group compared to the 

vehicle control and WC-Co NP exposed groups (Figure 3B). 
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Figure 4.2.  Inflammatory cells quantified in BAL fluid samples following 24-hr exposure to WC-Co and 
CeO2 NPs: A) alveolar macrophages (AM) and B) polymorphonuclear leukocytes (PMN), represented as 
the total number of AM/PMN per 106 isolated BAL cells per rat. Values presented as mean ± SD. (†P < 
0.01 compared to the vehicle control and WC-Co NP exposed groups) 

 

Isolated BAL Cell Histology: Histological examination of the cytospin cell preparations 

revealed a population of AMs present in both the vehicle control (Figure 4A) and WC-Co NP 
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exposed groups (Figure 4B) and AM containing NPs were visible in WC-Co exposed groups 

(Figure 4B). These data suggest that AM were capable of phagocytizing the WC-Co NP; 

however, the overall lack of inflammation observed in the other pulmonary parameters suggests 

that the WC-Co NPs were recognized as ‘inert’ by the AM and did not cause significant AM 

activation. 

 

Figure 4.3.  Inflammatory cytokine concentrations in A) BAL fluid and B) blood plasma. (†P < 0.01 
compared to the vehicle control and WC-Co NP exposed groups) 
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Figure 4.4.  Histology of isolated BAL fluid cells from a representative A) control (vehicle only) rat and 
B) 500 μg WC-Co NP exposed rat. Scale bars = 20 μm. (black arrow = alveolar macrophage, AM; arrow 
head = erythrocyte; dotted arrow = polymorphonuclear leukocyte, PMN; wide arrow = AM with WC-Co 
NPs) 
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DISCUSSION 

 In this study, we determined the acute inflammatory effects of WC-Co and CeO2 NP 

exposure in terms of local pulmonary responses via assessment of BAL fluid and the acute 

systemic effects via quantification of important inflammatory mediators in the blood.  

In general, the presence of particles in the lungs, including NPs, is thought to promote the 

recruitment of macrophages, increase macrophage phagocytic activity and thereby stimulate 

particle clearance from the lung [41, 205-207] as part of the normal physiological response. 

Macrophage recruitment and phagocytosis of deposited particles is rapid, usually occurring 

within 24 hr of exposure for most animal species [205]. In this study, WC-Co NPs were 

phagocytized by AMs after 24 hr, evidenced by histological examination, which is consistent 

with reports demonstrating the uptake of other NPs such as graphene [41], titanium dioxide [248, 

249]  and magnetite [250] by AMs in vivo. Interestingly, WC-Co NPs were also “phagocytized” 

by lung bronchial epithelial cells in vitro [222], which suggests that NP internalization may not 

be exclusive to macrophages and is of particular interest, since hard metal (WC-Co) deposits 

have been found in workers diagnosed with HMLD [113, 114, 124]. In the present study, WC-

Co NPs did not induce significant acute pulmonary inflammation, compared to the vehicle 

control, in the assessment of LDH activity and albumin content in the BAL fluid following 24-hr 

exposure at doses of 50-500  μg per rat. The lack of acute pulmonary inflammation is further 

supported by the observation that WC-Co NP exposure caused little change in the number of AM 

and PMN cells and did not increase macrophage activation following 24-hr WC-Co NP 

exposure. This outcome is similar to that reported for instilled titanium dioxide NPs, which do 

not cause any substantial acute pulmonary inflammation after 24 hr at a dose up to 200 μg per rat 

[248, 249].  
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It is known that particle size may play a major role in the depth of tissue penetration and 

toxicity. Compared to micron-sized particles, NPs are smaller and have higher surface area (that 

is available for tissue interaction) and are thereby capable of deeper penetration and possessing 

higher toxicity [238, 251-256]. However, no significant alterations in LDH activity and albumin 

levels were observed in this study following WC-Co NP exposure, while significant increases in 

LDH and albumin were reported in a similar IT rat model following 24-hr exposure of WC-Co in 

the 2 μm size range [155-157]. Two factors may have contributed to the differences observed 

between this study and the previous ones: particle dose and chemical composition. In this study, 

we elected to dose our animals (50-500 μg per rat) based on total lung burden in the microgram 

range, which were identified in vitro to be significantly toxic against lung epithelial cells [222] 

and are known to cause significant inflammation in CeO2 NP exposed animals [65]. This is in 

stark contrast to the previous WC-Co NP studies [155-157], which used a mg per 100 g body 

weight dosing scheme with total WC-Co NP doses ranging from 3-30 mg per rat in a single IT 

exposure. As a result, the previous studies most likely overloaded the lung and led to significant 

inflammation. Moreover, the WC-Co NPs in the previous studies were obtained from a hard 

metal manufacturing facility and contained a significant amount of iron [155-157], which is not 

found in our WC-Co NPs. Iron has recently been identified as a pulmonary irritant [64, 174, 257] 

and could have contributed to the observed inflammatory responses in the previous studies.  

In this study, no significant differences in inflammatory cytokines (i.e. TNF-α, IL-6, IFN-

γ) were found in plasma or BAL fluid samples for WC-Co NP exposed animals compared to the 

vehicle control. These findings indicate that WC-Co NPs did not induce acute systemic 

inflammation after 24-hr pulmonary exposure at the doses studied. By contrast, within the 

emerging body of literature regarding NP toxicity in vivo, it is reported that cadmium oxide [63], 
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titanium dioxide [220] and silver [221] NPs are capable of inducing systemic inflammation after 

acute pulmonary exposure, marked by increased inflammatory cytokine levels. For example, a 

three-fold increase in the pulmonary levels of TNF-α and IFN-γ were observed in mice exposed 

to cadmium oxide NPs for 24 hr [63]. Similarly, a significant increase in pulmonary IL-6 was 

reported in rats exposed to silver NPs for 24 hr [221]. While cadmium oxide and silver NPs 

increased the pulmonary levels of these inflammatory cytokines, titanium dioxide is capable of 

inducing a significant increase in both the pulmonary and systemic levels of IL-6 and IFN-γ after 

24-48 hr of exposure in a rat IT model [220]. Together, these reports demonstrate the capacity of 

pulmonary NP exposure to initiate systemic inflammation and highlights the potential influence 

that systemic inflammatory cascades may have on the outcomes of pulmonary NP exposure.  

In contrast to the WC-Co NPs, CeO2 NPs induced significant acute pulmonary and 

systemic responses in our intra-tracheal instillation rat model. After 24-hr exposure, we observed 

significant acute inflammation in our CeO2 NP exposed group compared to the vehicle control in 

terms of LDH activity, albumin content, and macrophage activation state. These findings are 

consistent with a previous study in Nurkiewicz’s laboratory [65], where significantly higher 

LDH, albumin, and number of activated AMs were observed after 24-hr exposure to 100-400 µg 

CeO2 NPs, which might have contributed to microvascular dysfunction [65]. The significant 

increases in AM activation and number of PMNs in this study indicated that CeO2 NPs 

stimulated the activation of macrophages and promoted the recruitment of PMNs. Furthermore, 

in this study we found a significant increase in IL-6 levels in both the plasma and BAL fluid of 

CeO2 NP exposed animals compared to the vehicle control. This is most likely because IL-6 is 

primarily secreted by activated macrophages to stimulate inflammation in response to pulmonary 

tissue damage caused by the presence of NPs in the lung [207]. Overall, the outcomes reported 
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here for CeO2 NPs are consistent with the earlier studies regarding the systemic effects of 

exposure [65] and other in vivo [164, 170, 242] and in vitro [24, 258-262] reports concerning 

CeO2 NP toxicity in the literature.  

In the current in vivo study, WC-Co NPs did not induce significant acute pulmonary and 

systemic inflammation, which is likely because we limited our investigation to a single IT dose 

(i.e. 50-500 μg per rat) and a short exposure time (i.e. 24 hr). It is possible that multiple doses of 

WC-Co NP could cause significant inflammation in a delayed response (beyond 24 hr). Future 

studies that explore multiple WC-Co NP doses and/or longer exposure times are warranted to 

further examine the pulmonary and systemic inflammatory response to WC-Co NPs in vivo.  

 

CONCLUSIONS 

In this study, we examined the acute local pulmonary and systemic inflammatory 

responses to WC-Co NPs using an intra-tracheal instillation rat model. No significant differences 

between WC-Co exposed animals and vehicle control were observed in terms of LDH activity, 

albumin concentration, or cell differentials. Macrophages isolated from WC-Co animals also did 

not show significant activation when compared to macrophages from vehicle control animals. In 

addition, no significant differences in inflammatory cytokines were observed for WC-Co 

exposed animals. These findings indicated a lack of acute local pulmonary and systemic 

inflammatory responses after 24-hr exposure to WC-Co NPs in an IT dose in the range of 0-500 

μg per rat.  
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CHAPTER 5: 

 

Toxicity of Cobalt Chromium Molybdenum (CoCrMo) Particles Toward 
Lung Epithelial Cells in vitro 
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ABSTRACT 

 

 Metal-on-metal (MoM) joint implants are used routinely during total hip and knee 

replacement surgeries and are typically composed of cobalt chromium molybdenum (CoCrMo) 

alloy. While these implants are more successful than previous technologies, recent evidence 

indicates that CoCrMo “wear particles”, in the nano- and micro-size range, can be generated in 

situ and may cause toxicity and inflammation in patients. Meanwhile, occupational exposure to 

CoCrMo particles has been associated with the development of industrial dental worker’s 

pneumoconiosis and pulmonary exposure to CoCrMo particles is therefore a relevant concern in 

the manufacturing of MoM implant devices. In this study, we examined the pulmonary toxicity 

of nano- and micro-CoCrMo particles in vitro using a lung epithelial cell model and compared 

the outcomes with tungsten carbide cobalt (WC-Co) particles, which are known to cause toxicity 

and lung disease in exposed workers. We found that CoCrMo particles induced a time and dose-

dependent toxicity. There was no significant increase in the toxicity of nano-CoCrMo compared 

to micro-CoCrMo particles; however, nano-CoCrMo caused significantly greater levels of 

oxidative stress than micro-CoCrMo particles. Compared to WC-Co, CoCrMo particles caused 

significantly less cellular toxicity and oxidative stress under the conditions tested. These in vitro 

findings suggest that the pulmonary toxicity and oxidative stress associated with CoCrMo 

particle exposure in occupational settings may contribute to the development of lung disease.  

 

 

 

Keywords: implant wear, joint replacement, cobalt chromium, occupational lung disease, 
pulmonary exposure, nanoparticle, nanotoxicity 
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INTRODUCTION  

 Over a million total hip replacement procedures are performed each year; one-third of 

these surgeries use metal-on-metal (MoM) implant devices composed of cobalt chromium 

molybdenum (CoCrMo) alloys [263]. While MoM implant devices offer advantages, such as 

increased strength and resistance to wear over previous implants composed of polymeric and/or 

ceramic articulating surfaces, they are not without their faults or risks [28, 39]. In particular, new 

evidence is emerging that these MoM CoCrMo implants generate particles in situ, within the 

micro- and nano-size range, as a result of wear between the articulating joint surfaces [26, 28, 29, 

38, 39, 264-266]. The generation of wear particles increases when the implant is improperly 

aligned, causing aseptic loosening of the joint, uneven wear and damage to the implant area [26, 

28]. The current literature suggests that CoCrMo wear particles released locally within the joint 

area and surrounding tissues may cause toxicity and a subsequent inflammatory response [26, 28, 

39, 266].  

 Given this evidence and emerging concerns regarding the long term effects of CoCrMo 

particle exposure in joint replacement patients, the toxicity of CoCrMo wear particles has 

recently been explored in vitro [29, 39, 48-50, 263-278] and in vivo [67, 279, 280]. CoCrMo 

toxicity has been reported in osteoblasts, osteoclasts, fibroblasts, leukocytes and macrophages, 

where oxidative stress and DNA damage are cited as common mechanisms of toxicity amongst 

these studies [29, 48-50, 264, 267, 268, 271, 272, 274, 276-278]. Additionally, CoCrMo particle 

exposure has been found to cause reproductive toxicity [68, 281], genotoxicity and inflammatory 

immune reactions in exposed mice [38, 67, 279]. Together, these studies demonstrate that 

CoCrMo particles possess toxic properties under in vitro and in vivo conditions.  
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In addition to “internal” CoCrMo particle exposure via MoM implant wear, it is 

important to consider alternative routes of exposure such as inhalation, which could occur during 

the manufacturing and production of MoM implants. Industrial exposures to cobalt-containing 

metal “dusts” have been well-associated with the development of pneumoconiosis, occupational 

asthma and lung disease in a number of settings [86, 88, 96, 178, 181, 182, 282-289]. Although 

occupational exposure to CoCrMo particles has not been directly reported in orthopedic implant 

manufacturing settings, pulmonary exposure to CoCrMo “dusts”, similar in composition to 

orthopedic implant materials, have been reported in dental implant manufacturing settings [290]. 

Inhalation of CoCrMo particles has been attributed as the cause of “dental technician’s 

pneumoconiosis” (DTP) [290-296], which has a similar clinical presentation to hard metal lung 

disease resulting from tungsten carbide cobalt (WC-Co) exposure [26, 296, 297].  

Given the risk of CoCrMo pulmonary exposure through inhalation of CoCrMo dusts in 

manufacturing settings and the lack of data regarding CoCrMo pulmonary toxicity, the goal of 

the current study was to determine the toxicity and oxidative stress response to nano- and micro-

CoCrMo particle exposure in a lung epithelial cell culture model recently established in our lab 

[222]. Based on the literature, we hypothesized that nano- and micro-CoCrMo particles would 

exert time and dose-dependent toxicity and induce high levels of oxidative stress in BEAS-2B 

lung epithelial cells.  

 

MATERIALS and METHODS 

Materials and Reagents: CoCrMo particles were obtained as a gift from T.A. Simoes 

(University of Leeds, Institute for Materials Research, Leeds, UK). BEAS-2B lung epithelial 

cells were obtained from the laboratory of Yon Rojansakul (West Virginia University, 
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Morgantown, WV, USA). Dulbecco’s Modified Eagle Media (DMEM), sterile phosphate 

buffered saline (PBS), 0.25% trypsin/ethylenediaminetetraacetic acid (EDTA), fetal bovine 

serum (FBS) and penicillin/streptomycin were purchased from Lonza (Allendale, NJ). The MTT 

cell viability kit (TOX-1), 2’,7’-dichlorofluorescein diacetate (DCF) and dihydroethidium (DHE) 

were purchased from Sigma-Aldrich (St. Louis, MO).  

Particle Preparation: Briefly, CoCrMo nanoparticles were prepared from micro-sized ASTM 

F75 cobalt chromium atomized powder for surgical implants using mechanochemical milling in 

a high energy SPEX mill (Metuchen, NJ) [298]. For cell-based assays, CoCrMo particles were 

prepared in a phosphate buffered saline (PBS) solution containing 10% fetal bovine serum (FBS) 

as a stabilization agent and sonicated using an Omni International Sonic Ruptor 250 Ultrasonic 

Homogenizer (Kennesaw, GA). A stock concentration of 5 mg/mL CoCrMo particles was 

prepared by sonication (2 min, 120 watts power output, frequency 20 kHz) in an ice bath, to 

minimize heating of the sample during particle dispersion. Dilute particle suspensions, ranging 

from 0.1 to 1000 μg/mL, were prepared in DMEM containing 10% FBS and used immediately 

on the day of each experiment. 

Particle Characterization: Micro- and nano-CoCrMo particles were characterized for size and 

morphology by scanning electron microscopy and elemental composition was determined via 

energy-dispersive x-ray (SEM/EDX; JEOL JSM 7600F, Jeol USA, Inc., Peabody, MA). The 

average size of CoCrMo particles in suspension for cell culture was determined using dynamic 

light scattering (DLS). Additional details provided in the Supplementary Material.  

CoCrMo Particle Assay Interference: Prior to execution of the cell viability and oxidative 

stress assays, the potential interference of CoCrMo particles was examined under the 
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experimental conditions. To test compatibility with the MTT-based cell viability assay, 200 μL 

of CoCrMo suspensions (0.1 to 1000 ug/mL in DMEM) was added to duplicate wells in a 96-

well plate. The plate was briefly centrifuged (500 × g, 5 min) to pellet the particles at the bottom 

of the wells. The supernatant was then aspirated and 100 μL of plain (un-supplemented) DMEM 

was added to each well containing CoCrMo particles, along with 10 μL of MTT dye reagent. 

After 2 hr incubation at 37°C, 100 μL of solubilization solution was added to each well and the 

absorbance was determined at 570 nm. Any auto-reduction of the MTT dye reagent to formazan 

by the CoCrMo particles themselves would have been detected as an increase in absorbance 

compared to the blank wells, containing only media, MTT dye reagent and solubilization 

solution. Similarly, for the oxidative stress assay, we tested whether the CoCrMo particles 

caused increased fluorescence of either DCF or DHE dye under our assay conditions. CoCrMo 

particle suspensions were plated and centrifuged in duplicate wells of a 96-well plate as 

described above. The supernatant was then aspirated and replaced with 100 μL of 10 μM DCF or 

DHE working solution prepared in PBS. Plates were incubated for 15 min in the dark and then 

fluorescence intensity of each well was quantified every 5 min, up to one hour, at 520 nm for 

DCF or 620 nm for DHE, to identify any potential particle/dye interference compared to the 

blank (dye solution only) wells.  

Cell Culture and Exposure to CoCrMo Particles: BEAS-2B cells were cultured in DMEM 

supplemented with 10% FBS and 1% penicillin-streptomycin and maintained at 37°C and 5% 

CO2. Briefly, confluent monolayers were rinsed with PBS, trypsinized, transferred to 5 mL 

polystyrene tubes and centrifuged at 1200 rpm for 7 min to pellet. The cell pellet was re-

suspended at the desired plating density of 1.5 × 105 cells/mL, transferred to a 96-well tissue 
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culture plate and allowed to adhere overnight prior to conducting the cell viability and oxidative 

stress assays. 

Cell Viability Assay: For the viability assay, cells were exposed to either nano- or micro-

CoCrMo particles at concentrations of 0.1, 1, 10, 100 and 1000 μg/mL for exposure periods of 6, 

12, 24 and 48 hr. Following particle treatment, cells were rinsed once with sterile PBS to remove 

traces of media and excess particles. The MTT cell viability assay was performed per kit 

instructions (TOX-1, Sigma-Aldrich). The absorbance of each well was recorded at 570 nm 

using a Bio-Tek μQuant microplate reader (Winooski, VT). Blank values were subtracted from 

absorbance readings. Cell viability was calculated by dividing the absorbance of particle treated 

cells (AbsExptl) by the absorbance of the negative control cells (media treatment only; AbsControl) 

and converted to percentage according to the following equation: Cell Viability (%) = (AbsExptl 

∕AbsControl) × 100%. 

Oxidative Stress Assay: Oxidative stress was examined at the same concentration and exposure 

range described for the viability assay (above). Following particle treatment, cells were rinsed 

once with sterile PBS to remove traces of media and excess particles. Oxidative stress was then 

determined by the addition of 10 μM DCF or DHE in PBS following particle treatment. Plates 

were incubated for 15 min in the dark and then fluorescence intensity of each well was quantified 

at 520 nm for DCF or 620 nm for DHE. The relative fluorescence of particle-treated cells was 

calculated as fold over control.  

Statistical Analyses: All experiments were performed in triplicate and data are presented as 

mean ± standard deviation. Statistical analysis was carried out by 2-way analysis of variance 
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(ANOVA) using GraphPad Prism software (La Jolla, CA). P values < 0.05 were considered 

significant.  

 

RESULTS 

CoCrMo Particle Characterization and Assay Interference: Morphological examination of 

nano- and micro-CoCrMo particles by SEM revealed distinct differences between the two 

particle types (Figure 1). Micro-CoCrMo particles demonstrated spherical morphology sized in 

the 5-6 μm range (Figure 1B) whereas nano-CoCrMo particles demonstrated a more irregular 

particle shape and size range, from a half-micron down to 100-200 nm (Figure 1A). DLS 

analysis indicated that nano-CoCrMo averaged 54 nm and micro-CoCrMo particles averaged 

5.04 μm in in suspension, similar to our WC-Co particles characterized previously [222]. We did 

not find any CoCrMo particle interference in our assay tests; no auto-reduction of the MTT dye 

was identified and no changes in DCF/DHE fluorescence were observed under the assay 

conditions tested (see Supplementary Material). 

 

Figure 5.1. SEM images showing size and morphology of A) nano-CoCrMo and B) micro-CoCrMo 
particles.  
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CoCrMo Effects on Cell Viability: BEAS-2B cells were exposed to nano- and micro-CoCrMo 

particles at concentrations of 0.1, 1, 10, 100 and 1000 μg/mL for durations of 6, 12, 24 and 48 hr. 

BEAS-2B average cell viability was about 90-98% (vs. control of 100%) for all cells exposed at 

concentrations of 0.1, 1 and 10 μg/mL for durations of 6-48 hr; the cell viability tended to 

decrease with increasing particle exposure time from 6 hr to 48 hr at concentrations of both 100 

and 1000 μg/mL (Figure 2). 

In cells exposed to nano-CoCrMo particles (Figure 2A), a significant reduction in 

viability (compared to control) was only observed at the highest concentration of 1000 μg/mL for 

24 and 48 hr exposure periods; the other concentrations and exposures tested did not cause a 

statistically significant change in cell viability for nano-CoCrMo. 

In cells exposed to micro-CoCrMo particles (Figure 2B), a significant reduction in 

viability (compared to control) was observed at a concentration of 1000 μg/mL at 12, 24 and 48 

hr of exposure. There were no significant differences observed in toxicity between the nano- and 

micro-CoCrMo; however, when we compared the viability after CoCrMo treatment with our 

previous study on WC-Co particles [222], significant differences in toxicity were noted. We 

identified that nano-CoCrMo caused significantly less toxicity than nano-WC-Co at 1, 10, 100 

and 1000 μg/mL after 48 hr of exposure (Figure 3). Similarly, we observed that micro-CoCrMo 

caused significantly less toxicity than micro-WC-Co at 1, 10, 100 and 1000 μg/mL after 48 hr of 

exposure (Figure 3). At a low particle concentration (i.e. 0.1 μg/mL), no significant differences 

in cell viability were found between nano-CoCrMo and nano-WC-Co or between micro-CoCrMo 

and micro-WC-Co particles (Figure 3). 
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Figure 5.2. Cell viability measured by the MTT assay after exposure to A) Nano-CoCrMo and B) Micro-

CoCrMo particles. (†P < 0.01 compared to controls with 100% viability)  

 

CoCrMo Effects on Oxidative Stress: Oxidative stress was measured in the form of DCF/DHE 

fluorescence after exposure to nano- and micro-CoCrMo particles at 0.1, 1, 10, 100 and 1000 

μg/mL under identical exposure conditions in the viability assay. Compared to control, there was 

a significant increase in DCF fluorescence in cells exposed to 100 μg/mL  nano-CoCrMo after 6, 

12 and 24 hr of exposure  and at 1000 μg/mL  after 6, 12, 24 and 48 hr of exposure; a 3.5 fold  
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Figure 5.3. Comparison of cell viability after 48 hr exposure to nano-CoCrMo, nano-WC-Co, micro-
CoCrMo and micro-WC-Co. (°P < 0.001 vs. WC-Co)  

 

increase in DCF fluorescence was observed in cells exposed to 1000 μg/mL nano-CoCrMo after 

6 hr of exposure and after which DCF fluorescence decreased with increasing exposure time 

(Figure 4A). In cells exposed to micro-CoCrMo, a significant increase in DCF fluorescence was 

observed after 6 hr exposure to 10 and 100 μg/mL and after 6, 12, 24 and 48 hr exposure to 1000 

μg/mL micro-CoCrMo; a 2.3 fold increase in DCF fluorescence was observed in cells exposed to 

1000 μg/mL micro-CoCrMo after 6 hr of exposure (Figure 4B). In addition, nano-CoCrMo 

particles caused a significantly higher change in DCF fluorescence compared to micro-CoCrMo 

particles after 6, 12 and 24 hr exposure to 100 μg/mL and after 6, 12, 24 and 48 hr at 1000 

μg/mL (Figure 4). 

For DHE, no significant differences, compared to control, were observed in fluorescence 

after exposure to nano-CoCrMo (Figure 5A) or micro-CoCrMo (Figure 5B) particles, and the 

DHE fluorescences in cells exposed to both nano- and micro-CoCrMo particles were about the 
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same as the controls at all concentrations (0.1-1000 μg/mL) and exposure times (i.e. 6-48 hr) 

studied. 

 

 

Figure 5.4. Oxidative stress measured via fluorescence intensity of DCF after exposure to A) nano-
CoCrMo and B) micro-CoCrMo particles. (†P < 0.01 compared to control; ‡P < 0.05 vs. micro-CoCrMo)  

 

Compared to nano-WC-Co particles, nano-CoCrMo particles caused significantly less 

DCF fluorescence at 6 and 12 hr of exposure but significantly higher DCF fluorescence at 24 and 

48 hr of exposure at the 1000 μg/mL concentration (Figure 6A). Compared to micro-WC-Co 
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particles, micro-CoCrMo particles caused significantly higher levels of DCF fluorescence at 6 hr 

exposure but significantly lower DCF fluorescence at 12 hr of exposure at the 1000 μg/mL 

(Figure 6B). Compared to WC-Co particles, there was a significant increase in DHE 

fluorescence after exposure to both nano- and micro-CoCrMo at 1000 μg/mL after 6, 12, 24 and 

48 hr of exposure (Figure 6B). 

 

 

Figure 5.5. Oxidative stress measured via fluorescence intensity of DHE after exposure to A) nano-
CoCrMo and B) micro-CoCrMo particles.  
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Figure 5.6. Comparison of oxidative stress measured via fluorescence intensity of A) DCF and B) DHE 
after 48 hr exposure to nano-CoCrMo, nano-WC-Co, micro-CoCrMo and micro-WC-Co particles at 1000 
μg/mL. (°P < 0.001 vs. WC-Co) 

 

DISCUSSION 

  Inhalation of cobalt-containing metal particles is a known occupational risk in certain 

industries and has been associated with the development of hard metal lung disease following 

exposure to WC-Co particles [85, 93, 125, 199, 282, 299] and dental technician’s 

pneumoconiosis after exposure to CoCrMo particles [290-292, 294, 296, 297]. Exposure to 

CoCrMo particles may also occur under other conditions, such as orthopedic joint implant wear 
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[26, 39, 265]; advancements in our understanding of nanoparticle toxicity [35, 37, 168] lead us to 

question the potential impacts of CoCrMo implant wear particles on tissues and organs beyond 

the affected joint area. Due to their small size, nanoparticles have the capacity to enter the 

circulatory system and deposit in secondary tissues such as the liver, spleen, kidney, lymph 

nodes or lungs [26, 27, 31, 32, 238]. In humans whom have undergone MoM joint replacement 

surgery, translocation and deposition of CoCrMo wear particles has been reported in lymph 

nodes, liver and spleen [26, 38, 265, 300]; therefore, the potential secondary, systemic effects of 

CoCrMo particle exposure cannot be ignored [175, 295, 301]. 

 In the current study, we focused on the pulmonary toxicity associated with CoCrMo 

inhalation in industrial settings using an in vitro lung epithelial cell model. Here, the toxicity of 

nano- and micro-sized CoCrMo particles, originating from ASTM F75 orthopedic implant 

material, was compared with the toxicity of nano- and micro-WC-Co particles in BEAS-2B cells. 

Pulmonary exposure to WC-Co particles is known to cause “hard metal lung disease”, with 

characteristic multi-nucleated giant cells, reduced lung function, progressive inflammation and 

fibrosis of the lung in exposed workers [99-101, 107, 113, 114, 117, 124, 129, 302]. Therefore, 

the pulmonary toxicity of WC-Co has been well studied in a number of relevant models 

including bronchial epithelial cells, alveolar macrophages and lung carcinoma cells [132, 141-

143, 152, 222]. WC-Co nanoparticles are reported to cause significant cellular toxicity in 

bronchial epithelial cells after as little as 2 hr of exposure to WC-Co concentrations ≥ 10 µg/mL 

[222] and in A549 lung carcinoma cells after 3 days exposure to a low concentration of 8 µg/mL 

WC-Co [132]. In alveolar macrophages, WC-Co exerts toxicity after as little as 2 hr exposure to 

≥ 83 µg/mL [141, 142]. By contrast, very little is known about the pulmonary toxicity of 

CoCrMo particles. Since occupational exposure to both CoCrMo and WC-Co particles is known 
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to cause similar types of lung diseases, we hypothesized that the toxicity of CoCrMo particles 

would be similar to that of WC-Co particles in our BEAS-2B cell model.  

While a distinct dose- and time-dependent toxicity was observed for nano- and micro-

CoCrMo particles (Figure 2), we did not note any significant increase in the toxicity of nano-

CoCrMo compared to micro-CoCrMo. This outcome was somewhat surprising, as there is a clear 

association between particle size and toxicity in the literature [25, 31, 35, 59, 187, 238, 295, 

303]; nanoparticles typically exert greater toxic effects than microparticles of the same 

composition, due to their smaller size and increased surface area available for cellular interaction 

and chemical reactions. This result is in contrast to our findings regarding WC-Co particle 

toxicity, where nano-WC-Co was significantly more toxic than micro-WC-Co in lung epithelial 

cells at concentrations ≥ 10 μg/mL [222]. We speculate that there was little difference in nano- 

and micro-CoCrMo toxicity due to the fact that CoCrMo has caused significantly less toxicity 

compared to WC-Co particles at doses of 1-1000 µg/mL under identical conditions (Figure 3), 

and CoCrMo has been implemented as a “bio-compatible” material, hence its prevalent use in 

the orthopedic community [26]. However, these results demonstrate that CoCrMo particles can 

be toxic toward BEAS-2B cells.  

 Oxidative stress has been implicated in the reported toxicity of CoCrMo particles in other 

cell types, such as fibroblasts [48, 50, 264, 274, 304]. Oxidative stress may also play a role in the 

progression of lung diseases [305], such as those caused by cobalt-containing metal exposures 

[139], so we examined the capacity of nano- and micro-CoCrMo particles to cause oxidative 

stress in our BEAS-2B cell model.  The results of our DCF assay indicated that nano-CoCrMo 

caused significantly higher levels of oxidative stress compared to micro-CoCrMo particles at 

concentrations of 100 and 1000 μg/mL (Figure 4), which would be consistent with the expected 
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size-dependent effect due to the increased reactive surface area of nano-CoCrMo compared to 

micro-CoCrMo. These results are consistent with fibroblast studies in the literature [48, 274], 

which found high levels of oxidative stress, marked by increased levels of DCF fluorescence, 

after as little as 2 hr of exposure [274] and increased levels of 8OHdG staining, a marker of 

oxidative stress induced DNA damage, after 24 hr of exposure to nano-CoCrMo particles [48]. 

Although CoCrMo particles could cause high levels of oxidative stress compared to control, we 

noted that nano-CoCrMo caused less oxidative stress than nano-WC-Co at 1000 μg/mL after 6 

and 12 hr of exposure (Figure 6). Beyond 12 hr, nano-CoCrMo caused higher levels of oxidative 

stress than nano-WC-Co; however, we attributed this phenomenon to the enhanced toxicity of 

WC-Co over CoCrMo. At 24 hr exposure and beyond, nano-WC-Co caused such substantial 

toxicity that no live cells remained to generate a signal in the oxidative stress assay. These data 

indicated that, while less toxic than nano-WC-Co at high concentrations in the cell viability 

assay, CoCrMo particles caused greater levels of oxidative stress upon long-term exposure (i.e. 

48 hr), which could ultimately lead to downstream effects such as DNA damage and 

genotoxicity upon long-term exposure [48-50, 271].  

 In the case of occupational WC-Co exposure, there is a two-fold increased risk of 

developing lung cancer [97, 100]; however, no such link between CoCrMo particle exposure and 

cancer has yet been identified [270].  It is worth noting, however, that only the relationship 

between local implant wear particles and systemic cancer occurrence was examined during the 

systematic review of in vitro and in vivo research regarding CoCrMo cancer occurrence [270]. 

Human clinical data pertaining to the occurrence and progression of DTP in CoCrMo exposed 

technicians was not included in the study [290-294, 296, 297]. Currently, due to small sample 

size and lack of clinical follow-up, there is little information regarding the long-term progression 
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of DTP and occurrence of lung cancer in affected patients, so it remains unknown whether DTP 

patients have an increased risk of lung cancer similar to that reported for HMLD patients.  

Taken together, the results of our study demonstrated that CoCrMo particles cause 

toxicity toward BEAS-2B cells at a high concentration (1000 μg/mL) but remain relatively non-

toxic at concentrations ≤ 100 μg/mL, in stark contrast to WC-Co particles which exhibit high 

toxicity at concentrations ≥ 10 μg/mL. These findings are intriguing, since both types of “dusts” 

are reported to cause similar lung diseases following chronic occupational exposures. At least in 

the case of WC-Co, the combination of WC with Co is highly toxic in vitro and in vivo, whereas 

the components themselves are relatively non-toxic when administered alone [128, 140-144, 146, 

154-156, 160, 161, 284]. It is thought that the release of cobalt ions from the composite particle 

may enhance the toxicity of the constituent WC components [134, 140, 144, 146, 306, 307]. 

There is also some evidence which suggests that the speciation of cobalt released from MoM 

CoCrMo hip implants plays a role in the associated toxicity and inflammation state [263], so it 

seems plausible that similar mechanisms of toxicity may occur during CoCrMo and WC-Co 

particle exposure. While the results of our preliminary study indicated that CoCrMo caused high 

oxidative stress and toxicity toward lung epithelial cells, studies which further examine the 

mechanism responsible for CoCrMo-mediated toxicity are warranted.    

CONCLUSION 

 This study examined the toxicity of nano- and micro-CoCrMo particles and determined 

whether their exposure caused oxidative stress in a lung epithelial cell model. Nano- and micro-

CoCrMo caused significant toxicity at a high concentration (i.e. 1000 µg/mL), but there was no 

enhancement of toxicity of the nano-CoCrMo compared to the micro-CoCrMo. However, nano-

CoCrMo induced significantly higher levels of oxidative stress than micro-CoCrMo at high 
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concentrations (i.e. 100 and 1000 µg/mL). The results presented here demonstrated, for the first 

time, that CoCrMo particles cause pulmonary toxicity in vitro, which may contribute toward the 

development of occupational dental technician’s pneumoconiosis (lung disease) in industrial 

settings. 
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SUPPLEMENTARY MATERIAL 

MATERIALS and METHODS 

S1.1 CoCrMo Particle Characterization: Milled nano- and micro-CoCrMo particles were 

analyzed using scanning electron microscopy with energy-dispersive x-ray (SEM/EDX) to 

determine the morphology and elemental composition. Dynamic light scattering (DLS) was used 

to determine the average particle/aggregate size in suspension.  

For DLS, stock particle suspensions (5 mg/mL) were prepared by adding 25 mg dry 

particle powder to a 20 mL vial containing 5 mL sterile PBS with 10% FBS. The particles were 

then sonicated using an Omni International Sonic Ruptor (Kennesaw, GA) for two intervals of 

30 sec each to ensure particle dispersion. Dilute particle suspension was prepared in DMEM 

supplemented with 10% FBS and analyzed via DLS using a Malvern Zetasizer 7.01 (Malvern 

Instruments Ltd., Malvern, UK). Background absorbance of DMEM containing 10% FBS only 

was used to ‘blank’ the instrument prior to measurement of the WC-Co particle suspensions. 

For SEM/EDX, raw particle powder was imaged on a JEOL JSM 7600F setup equipped 

with an Oxford Instruments energy dispersive x-ray (EDX) system for chemical analysis. EDX 

measurements were carried out in the Point & ID mode with spectrum acquisition time of 120 s 

and spectrum range of 0-10 keV. 
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FIGURES 

 

Figure S1. Background absorbance of DMEM containing MTT reagent (tetrazolinium salt) 
under assay conditions in the presence of CoCrMo particles or blank (control) to confirm the 
absence of artifacts at 570 nm, the primary absorbance wavelength for formazan detection used 
in the MTT viability assay. 
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Figure S2. Background fluorescence of blank (PBS + dye only) and WC-Co particle suspensions 
in the absence of cells to confirm the absence of artifacts at the primary emission wavelengths 
for A) DCF at 520 nm and B) DHE at 620 nm.  
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CHAPTER 6: 

Research Summary and General Discussion  

 

A summary of our findings regarding nano-WC-Co toxicity and suggestions for future work 
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SUMMARY & DISCUSSION 

 Occupational exposure to hard metals such as WC-Co is an important concern in the field 

of nanotoxicology, since inhalation of WC-Co dusts and particles is known to cause hard metal 

lung disease (HMLD), marked by progressive lung inflammation, fibrosis and an increased risk 

of lung cancer [101, 102, 105, 110, 111]. Although WC-Co exposure is attributed as the cause of 

HMLD, the relationship between acute WC-Co toxicity and disease progression remains poorly 

understood. Previous in vitro studies focused on identifying the toxicity of micro-sized WC-Co 

particles and determined that the combination of WC with Co is responsible for the observed 

toxic effects, which are greater than that of the components (W, WC or Co) alone [128, 130-

153]; however, the mechanism underlying the enhanced toxicity of the WC-Co composite over 

W, WC or Co alone has not been identified. Additionally, the toxicity of micro-sized WC-Co has 

been verified in vivo, although these studies mainly focused on the local pulmonary effects of 

WC-Co exposure [130, 154-161]. In general, there are fewer reports regarding the toxicity of 

nano-sized WC-Co [132-134, 137, 138, 150, 151], especially in vivo, which is concerning since 

nano-sized particles are generally thought to be more toxic and are capable of deeper airway 

penetration than their micro-sized counterparts during inhalation.  

Therefore, the goal of my dissertation research project was to examine the toxic effects of 

nano-WC-Co, using relevant cell culture and animal models, to determine the toxicity of nano-

WC-Co and shed light on potential mechanisms underlying disease progression. To achieve this 

goal, we systematically examined the toxicity of WC-Co using a variety of in vitro and in vivo 

models. In Specific Aim 1, we focused on the in vitro effects of nano-WC-Co particles on lung 

epithelial cells which line the upper and middle respiratory tract. This model is highly relevant 

due to the risk of pulmonary WC-Co exposure in industrial settings and the effects of WC-Co 
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have yet to be reported in a non-carcinoma lung cell line. Here, we identified that nano-WC-Co 

was capable of inducing greater cellular toxicity and higher levels of oxidative stress than micro-

WC-Co particles of the same composition under identical conditions. These results were 

consistent with the literature, where the enhanced toxicity of nano-sized over micro-sized 

particles has been clearly established [25, 31, 32, 44, 205, 238]. Oxidative stress has been 

reported in human cells after exposure to micro-sized WC-Co in vitro, so our findings here seem 

consistent with earlier reports [132, 137, 140-144]. 

We further determined that cellular toxicity and death following WC-Co exposure occurs 

via induction of cellular apoptosis rather than necrosis, using flow cytometry, which indicated 

that WC-Co particles are capable of stimulating apoptotic signaling in lung epithelial cells. This 

finding is consistent with a previous study, where apoptosis was reported in human peripheral 

blood monocytes after as little as 6 hr of WC-Co exposure [148]. Determining the primary 

apoptosis signaling cascade activated after exposure to WC-Co particles was beyond the scope of 

our study and remains to be identified; however, since high levels of oxidative stress can cause 

DNA damage, we speculate that apoptosis may occur in cells exposed to WC-Co due to reactive 

oxygen species-induced DNA damage and subsequent activation of caspases involved in 

apoptosis signaling [52, 136].  

In HMLD patients, large deposits of WC-Co are often found in histological specimens, 

but the origin of these deposits is unknown. One theory suggests that these WC-Co deposits are 

due to macrophage phagocytosis of WC-Co particles [84, 299]: once the macrophage has 

engulfed the WC-Co particle, the macrophage is unable to eliminate the WC-Co particle via its 

normal lysosomal degradation process and as a result, WC-Co persists within the macrophage 

thereby forming a ‘deposit’. Due to their small size, nano-WC-Co particles have been reportedly 
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internalized by other non-phagocytic cell types such as neurons, colon and skin cells [132]. 

Consistent with this previous report, we found that lung epithelial cells are capable of 

internalizing WC-Co particles up to 500 nm in diameter in our study; therefore, we speculate that 

the origins of WC-Co deposits in HMLD patients may be multi-cellular in nature and could be 

due to the interaction of WC-Co with both lung epithelial cells and alveolar macrophages.  

Since one of the hallmarks of HMLD is pulmonary inflammation, in Specific Aim 2, we 

examined the inflammatory response toward nano-WC-Co particles in macrophages and 

determined the toxicity of WC-Co using a co-culture of lung epithelial cells and macrophages to 

more closely represent the dynamic tissue environment of the lung. In our study, nano-WC-Co 

exposure stimulated an inflammatory response in macrophages, marked by high levels of IL-12 

and IL-1β secretion. In HMLD, lung inflammation and fibrosis occur in a progressive fashion, so 

we speculate that the induction of a pro-inflammatory response in macrophages may be an 

important factor in HMLD. This idea is supported by literature which indicates that IL-1 in 

particular may play a role in pulmonary fibrosis [308], so it seems reasonable to suggest that 

WC-Co may induce a similar type of pulmonary inflammatory response which promotes lung 

fibrosis after inhalation.  

Macrophages attenuated the toxicity of nano-WC-Co in our co-culture model compared 

to lung epithelial cells alone. This “protective” effect was attributed to the engulfment of nano-

WC-Co by the macrophages, which confined the WC-Co particles to the intracellular 

environment of the macrophage itself, which thereby prevented direct interaction and toxicity of 

the nano-WC-Co toward lung epithelial cells. Although phagocytosis of WC-Co particles is part 

of the natural physiological macrophage response and seemed to play a protective role in our in 

vitro study, the long-term effects of WC-Co internalization in macrophages have not yet been 
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reported and could potentially have a more detrimental effect. As mentioned earlier, WC-Co may 

not be degraded within the phago-lysosomal compartments inside the macrophage; the inability 

to eliminate WC-Co may exacerbate the inflammatory response of the macrophage over long 

term exposure and may play a role in the progressive inflammatory and fibrotic reaction due to 

chronic secretion of cytokines such as IL-1 [308].  

In addition to exerting local toxicity at the site of exposure, emerging evidence in the 

field of nanotoxicology suggests that pulmonary NP exposure may cause systemic effects 

beyond the site of exposure in the lung [37, 66, 164-175]. Animal studies regarding the toxicity 

of WC-Co particles are limited, and in fact, the toxicity of nano-sized WC-Co has not yet been 

reported in vivo. Therefore, in Specific Aim 3, we conducted a preliminary in vivo study to 

investigate the local toxicity and potential systemic effects resulting from pulmonary nano-WC-

Co exposure in rats. Based on our in vitro outcomes in reported for Aims 1 and 2, we 

hypothesized that exposure to nano-WC-Co would cause pulmonary toxicity, inflammation and 

may cause an increase in the levels of circulating pro-inflammatory cytokines. However, we 

found an overall lack of toxicity and pulmonary inflammation after 24 hr exposure to a single 

dose of nano-WC-Co.  

This outcome was perplexing, as all of the evidence regarding the effects of WC-Co 

exposure thus far suggests that nano-WC-Co should cause acute toxicity both in vivo and in 

vitro. In this case, we speculate that we may have missed the inflammatory response since only a 

single exposure time (24 hr) was used. While we selected our dosages based on the toxicity of 

WC-Co in vitro, it is possible that a single exposure at these concentrations in vivo simply did 

not generate enough pulmonary toxicity/inflammation to be effectively detected via the broncho-

alveolar lavage technique; toxicity and inflammation may have occurred but not at detectable 
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levels after the 24 hr exposure time.  It is also possible that the effects of nano-WC-Co exposure 

may occur in a cumulative fashion (i.e. toxicity is observed after repeated or chronic exposures) 

in vivo, so multiple/repeated exposure may be a prerequisite for WC-Co toxicity in whole 

animals. The outcomes of our preliminary in vivo nano-WC-Co study highlight the need for 

future studies to examine the systemic inflammatory effects of repeated or chronic nano-WC-Co 

exposure, which would more closely represent an actual occupational WC-Co NP exposure. 

Overall, the results of this dissertation project confirm the toxic potential of WC-Co 

particles in the respiratory tract and highlight the importance of understanding the mechanism of 

WC-Co toxicity as it relates to HMLD. Based on our findings reported herein, we speculate that 

HMLD may be caused by the simultaneous acute toxicity of WC-Co in lung epithelial cells and 

the rapid inflammatory response generated by macrophages upon WC-Co internalization. The 

presence of apoptotic cells and secretion of inflammatory cytokines in the lung may stimulate an 

immune response designed to promote tissue repair; however, the persistence of WC-Co in the 

pulmonary region and likelihood for repeated exposures may shift this response toward a chronic 

inflammatory state which, in turn, may promote the fibrosis and therefore lead to the 

development of HMLD. This study, along with the existing body of literature regarding micro-

WC-Co toxicity, highlights the detrimental effects of WC-Co NP exposure in occupational 

settings, including hard metal manufacturing facilities and mining and drilling industries and 

highlights the importance of defining occupational WC-Co exposure limits so that future 

generations of workers are protected from this harmful disease. Studies which examine the 

effects of chronic nano-WC-Co exposure in vitro and in vivo are warranted in the future, so that 

the link between WC-Co acute toxicity and development of a chronic inflammatory state 

observed in HMLD patients may be elucidated. 
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ABSTRACT 
 

Diseases such as tuberculosis, hepatitis and HIV/AIDS are caused by intracellular 

pathogens and are a major burden to the global medical community. Conventional treatments for 

these diseases typically consist of long-term therapy with a combination of drugs which may lead 

to side effects and contribute to low patient compliance. The pathogens reside within 

intracellular compartments of the cell which provide additional barriers to effective treatment. 

Therefore, there is a need for improved and more effective therapies for such intracellular 

diseases. This review will summarize, for the first time, the intracellular compartments in which 

pathogens can reside and discuss how nanomedicine has the potential to improve intracellular 

disease therapy by offering properties such as targeting, sustained drug release and drug delivery 

to the pathogen’s intracellular location. The characteristics of nanomedicine may prove 

advantageous in developing improved or alternative therapies for intracellular diseases. 
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INTRODUCTION 

Worldwide, a number of diseases (eg HIV/AIDS, hepatitis and tuberculosis) are caused by 

intracellular pathogens. Such diseases can be due to viral [1-8], bacterial [9-16], fungal [17, 18] 

or other parasitic [19-21] infection as summarized in Table 1. The prevalence of each disease 

may differ geographically but the intracellular nature of these pathogens, which may protect 

them from a variety of antibiotic therapies and host immune responses, presents a treatment 

challenge for the global medical community. Some antibiotic drugs like aminoglycosides and 

beta-lactams have limited cellular penetration, while others such as fluoroquinolones or 

macrolides have the ability to penetrate host cells but are poorly retained and therefore inefficient 

[22]. Therapeutic drugs targeting the intracellular pathogens should overcome the cell membrane 

barriers, and release and retain the drug intracellularly at the therapeutic level for a desired time 

period. Moreover, multi-drug resistance is increasing [23-29] and is making intracellular disease 

treatment more challenging. Therefore, there is a need for the development of advanced 

treatment methods to better control intracellular infections. This review will summarize the 

status of intracellular disease treatments, the current therapeutic strategies against common 

intracellular diseases and present how nanomedicine is emerging as an attractive platform for 

advanced intracellular drug therapy. Note that therapeutic treatments that tune the cell-mediated 

immune responses against intracellular pathogens are important but will not be discussed here. 

 

 

INTRACELLULAR PATHOGENS AND CURRENT TREATMENT APPROACHES 
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 A wide variety of pathogens are capable of causing intracellular diseases such as 

HIV/AIDS, hepatitis and tuberculosis (see Table 1). In this section, a brief description of 

selected viral and bacterial diseases is given along with a discussion of the current therapeutic 

strategies against the causative pathogens.  

Table 1: Summary of Disease-Causing Intracellular Pathogens 

                                                   Associated Disease(s) [Ref] 

Viral Pathogens 

Herpes simplex Type I: oral herpes (cold sore, fever 
blister)  

Type II: genital herpes (warts, ulcers) 

[1, 8] 

Hepatitis C Liver cirrhosis, hepatocellular carcinoma 
(HCC) 

[2, 6] 

Respiratory syncytial virus Pediatric viral respiratory disease [4, 7] 

Human immunodeficiency virus (HIV) Acquired immunodeficiency syndrome [3, 5] 

Bacterial Pathogens 

Mycobacterium tuberculosis Tuberculosis [9, 10] 

Salmonella enterica serovars Typhi, 
Paratyphi 

Typhoid fever [11, 
12] 

Brucella species B. melitensis, B. abortus, B. 
suis 

Malta fever or undulant fever 
[13-15] 

Listeria monocytogenes Listeriosis, meningitis in newborn babies [16] 
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Table 1: Summary of Disease-Causing Intracellular Pathogens (continued) 

                                                   Associated Disease(s) [Ref] 

Fungal Pathogens 

Candidia albicans Multiple cutaneous and mucosal forms: 
frequently encountered oral form is 
thrush 

[17] 

Aspergillus fumigatus Pulmonary aspergillosis [18] 

Other Pathogens 

Leishmania (parasite) Cutaneous or tegumentary 
leishmaniasis 

[19, 
20] 

Plasmodium species (protist) P. vivas, P. 
ovale, P. malariae, P. falciparum, P. 
knowlesi 

Malaria 
[21] 

 

Table A2.1. Summary of disease-causing intracellular pathogens.  

 

Tuberculosis (TB) 

 Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis (M. tuberculosis). 

It is estimated that up to 2.2 billion people carry latent TB infections worldwide [30]. Exposure 

to TB does not necessarily lead to an active infection, as normal human immune systems are able 

to effectively control bacteria and most people remain in a symptom-free latent stage of infection 

[30]. However, susceptible individuals with poor immune response or complicating factors such 

as HIV infection may develop an active TB infection [31]. People with active infections typically 

experience pain in the chest and a cough with blood or sputum (phlegm) lasting more than three 
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weeks [32]. These symptoms could also be accompanied by fatigue, weight loss, fever, chills or 

night sweats [33]. M. tuberculosis is a gram-positive bacterium with a very thick cell wall 

characteristic of the Mycobacterium species. The thick cell wall provides an excellent 

permeability barrier, making Mycobacteria resistant to a wide variety of antimicrobial agents 

[23]. M. tuberculosis bacteria may reside and duplicate within macrophages of the lung [34]; a 

full description of M. tuberculosis pathogenesis is beyond the scope of this discussion and is 

reviewed elsewhere [35, 36]. However, an important factor is the bacteria’s ability to avoid the 

cell-mediated immune response through granuloma formation [10], such that treatment of TB 

remains a challenge.  

At present, the treatment of choice for an active TB infection is long-term antibiotic 

therapy, with an initial “intensive phase” consisting of the four first-line anti-tuberculosis drugs 

(isoniazid, rifampicin, ethambutol and pyrazinamide) followed by a typical four month course of 

rifampicin and isoniazid alone [37]. This has been the most effective treatment to date although, 

due to the length of antibiotic therapy, side effects frequently develop [38] and the cost is high 

[39].  These factors may lead to low patient compliance and contribute to the development of 

drug resistant bacteria [40]. 

Human Immunodeficiency Virus (HIV) 

 Infection with human immunodeficiency virus (HIV) is a significant ongoing problem 

worldwide. As HIV infection progresses, infected individuals develop acquired 

immunodeficiency syndrome (AIDS). According to the latest statistics from the World Health 

Organization (WHO), there are 33.3 million people living with HIV/AIDS [41]. Many of those 

infected live in sub-saharan Africa, where access to treatment is extremely costly or unavailable. 



171 
 

There have been major developments in the treatment of HIV/AIDS since the approval of 

Retrovir® (zidovudine) in 1987 [5]. Current therapeutic efforts consist of a combination of 

several drugs [42], typically from different classes of antiviral drugs [43, 44]. This regimen is 

referred to as “highly active anti-retroviral therapy” or HAART and has become the standard of 

care for those infected with HIV. There are five classes of drugs available for HIV/AIDS 

treatment, including: nucleoside reverse transcriptase inhibitors, nucleotide reverse transcriptase 

inhibitors, non-nuceloside reverse transcriptase inhibitors, protease inhibitors and viral fusion 

and integrase inhibitors. Typical regimens are combinations of three or four drugs, with 

subsequent modifications made based on the patient’s response to therapy [45]. Changes made to 

a patient’s regimen are often based on drug resistance testing, and take into consideration 

toxicity and tolerability of the new treatment strategy [45]. Although HAART has increased the 

median survival time of HIV/AIDS patients from less than a year to about ten years [29], patients 

often develop multi-drug resistant strains of the virus [41] over the course of therapy, leading to 

poor treatment outcomes [46].  

Hepatitis C Virus (HCV) 

 It is estimated that at least three percent of the world’s population is infected with HCV 

[2, 47]. The virus only affects humans and is considered a “silent” disease, as infected 

individuals are usually symptom free until later stages of infection when liver inflammation [48] 

occurs. HCV can cause liver scarring and cirrhosis, which ultimately leads to hepatocarcinoma 

(liver cancer) and death [2, 48]. Unfortunately, there is no effective vaccine [49] against HCV 

and the “gold-standard” of HCV treatment is combination antiviral therapy with ribavirin and 

interferon alpha [6]; however, both of these compounds are highly toxic and may cause severe 

side effects. Several months of treatment are usually required to eradicate a chronic infection and 
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the cost of therapy is high [49]. These factors contribute to low patient compliance, making 

therapy less effective and potentially contributing to the development of viral resistance [29].  

Typhoid Fever  

 Typhoid fever is an acute illness caused by the bacterium Salmonella enterica serovar 

Typhi (S. Typhi) or Paratyphi that cause about 20 million cases of illness per year [50]. These 

bacteria are usually ingested by consuming contaminated food or water [51]. Once ingested, the 

bacteria translocate across intestinal epithelial cells and establish an intracellular growth 

environment within macrophages [52]. The bacteria survive within ‘Salmonella-containing 

vacuoles’ in infected macrophages and later spread to organs such as the liver and spleen [11, 12, 

53]. Infected individuals often experience sustained high fevers (up to 103°F), stomach pains, 

headache, weakness and appetite loss [51].  Several vaccines against S. Typhi have been 

developed [54] although they provide only short-term protection against the disease due to 

failure of the immune system to build a lasting response [50, 54]. Typhoid fever is endemic in 

many developing countries [55], where access to vaccines and antibiotic drugs is limited and 

expensive even if available. Standard treatment for S. Typhi infection is the antibiotic 

chloramphenicol, although resistance has been reported [50]. Newer antibiotics like the 

fluoroquinolones have also proven effective in treating typhoid fever, but the widespread use of 

these drugs for a range of febrile illnesses in developing countries is contributing to the 

development of more drug-resistant strains of the bacterium [55].  
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MAJOR CHALLENGES IN TREATING INTRACELLULAR PATHOGENS  

 Tables 2A and 2B summarize the common intracellular viruses and bacteria and their 

related current therapeutic approaches. One can see that intracellular treatment approaches 

generally involve long-term therapy with a combination of drugs. Side effects can develop due to 

the drug’s inherent toxicity or due to the length of drug exposure. One of the critical challenges 

in treating these types of infections is to get enough drugs to reach the pathogens within their 

intracellular compartments. After reviewing the literature, we found evidence that intracellular 

pathogens reside in phagosomes [15, 34, 56], vacuoles [52, 53], cytosol [16, 57, 58], nucleus [1, 

59, 60], and may interact with the golgi apparatus [61] and endoplasmic reticulum [62-66] of 

host cells (Figure 1). The host cell membranes make it a challenge for many drugs to reach the 

invading pathogens. Moreover, some antiviral and antibiotic medications have short half-lives, 

requiring frequent and large doses to obtain a therapeutic effect which may lead to high cost, low 

patient compliance, and severe side effects. In addition, drug resistance may be developed when 

patients do not fully comply with their treatment regimens [28] or when pathogens are exposed 

to drugs at sub-optimal concentrations [67] for an extended time period. An alerting new 

phenomenon is that some pathogens, that have been traditionally considered extracellular, are 

emerging as intracellular pathogens and may lead to new types of intracellular diseases. As an 

example, Staphylococcus aureus (S. aureus) has long been considered an extracellular pathogen 

although recent evidence in the literature demonstrates that this bacterium is capable of being 

internalized and surviving within host cells (e.g. osteoblasts [68-72]), and may contribute to 

recurrent infections [73]. In order to reduce side effects, improve patient compliance, and reduce 

the development of drug-resistance, more effective therapeutic approaches need to be developed. 
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 An ideal drug treatment method to eradicate intracellular pathogens is one that has the 

following characteristics: the ability to penetrate host cells and reach the pathogens, high efficacy 

and low toxicity and sustained and site-specific drug release [22]. Recent evidence from the 

literature shows that nanomedicine is emerging as a promising potential treatment for 

intracellular pathogens, as nanomedicine has the capacity to address these specific challenges.  

 

Figure A2.1. Potential Locations of Intracellular Pathogens. In a typical eukaryotic cell, pathogens may 
be internalized via endocytic mechanisms before establishing their intracellular life cycle. Pathogens may 
reside in various locations, including: the cytosol, phagosome, lysosome or vacuole compartments, the 
nucleus, and some may associate with the golgi apparatus or endoplasmic reticulum. (1) Cytosol (F. 
tularensis [57], L. monocytogenes [58], Shigella [64]) (2)Phagosome/lysosome or vacuole (M. tuberculosis 
[43, 45], Brucella species [15], Salmonella [52, 53], Leigonella [56]),  (3)Nucleus (Herpes Simplex virus 
[1, 60], HIV [59]), (4)Golgi apparatus (Chlamydia [61]) and (5)Endoplasmic reticulum (Hepatitis C virus 
[65], Brucella [63], T. gondii [66], L. pneumophilia [62, 64]). 
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 TABLE 2A: Current Therapeutic Strategies against Selected Viral Pathogens  

Virus Name 
Type of 
Virus 

Current Treatment 
Options 

Drugs 
Commonly 
Prescribed 

Drug Class/Mode of Action  [Ref] 

Hepatitis C 
Virus (HCV) 

RNA virus 
(single 
strand, 
positive 
sense) 

Combination 
treatment with 
interferon and 

broad‐spectrumB 
antiviral drugs. 
Treatment duration 
is several months. 

pegylated 
interferon 2‐
alpha and 
ribavirin 

PEG‐IFN is an 
immunomodulatory drug 
and helps enhance natural 
anti‐viral mechanisms 
(degradation of viral RNA, 
translation inhibition, etc.) 
although the exact 
mechanism is unkown.   [5, 

42‐
45] 

ribavirin is a purine analog 
and is incorporated into the 
genome of the virus, 
causing lethal mutations. It 
is ineffective against HCV 
when administered alone; it 
must be administered 
concomitantly with PEG‐
IFN. 

Respiratory 
syncytial 
virus (RSV) 

RNA virus 
(single 
strand, 
negative 
sense) 

Prophylactic 
administration of 
antibodies as disease 
prevention, or 
disease treatment 
with broad‐spectrum 

antiviral drugs.C 

Ribavirin or 
palvizumab 

Ribavirin is a broad‐
spectrum antiviral drug that 
has shown some clinical 
benefit in FSV infections. It 
is the only FDA‐approved 
drug for RSV treatment.  [4, 7] 
Palivizumab is a monoclonal 
anti‐RSV antibody (mAb). It 
targets the RSV F 
glycoprotein, inhibiting viral 
entry into host cells. 

Herpes 
Simplex 

Virus (HSV) 

DNA virus 
(double 
stranded) 

Antiviral drug 
administration until 
symptoms and viral 
shedding are 
reduced. Suppressive 
therapy is often 
recommended.  

acyclovir, 
valacyclovir, 
famiclovir, 
ganciclovir 

guanosine analog; these are 
potent inhibitors of the viral 
DNA polymerase. Requires 
phosphorylation by viral 
thymidine kinase. 

[1, 8] 

cidofovir 

competitive inhibitor of 
viral DNA polymerase; 
reserved for cases of 
acyclovir resistance due to 
high toxicity.  

foscarnet 
pyrophosphate; inhibits 
viral DNA polymerase . 
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TABLE 2A: Current Therapeutic Strategies against Selected Viral Pathogens  

Virus Name 
Type of 
Virus 

Current 
Treatment 
Options 

Drugs 
Commonly 
Prescribed 

Drug Class/Mode of 
Action 

[Ref] 

Human 
Immunodeficiency 

Virus (HIV) 

Retrovirus 
(lentivirus) 

Highly active 
anti‐retroviral 
therapy (HAART; 
combination 
therapy using 
three or more 
antivirals 
simutaneously). 
Drugs may be 
administered 
individually or as 
combination 

pills.A Treatment 
duration is often 
lifetime of the 
patient. 

nevirapine, 
delavirdine, 
efavirenz, 
etravirine 

non‐nucleoside reverse 
transcriptase inhibitior 
(NNRTI) 

[5, 
42‐
45] 

tenofovir 
disoprozil 
fumarate (TDF), 
azidothymidine, 
abacavir, 
lamivudine, 
zalcitabine, 
didanosine, 
stavudine 

nucleoside/nucleotide 
reverse transcriptast 
inhibitor (NRTI) 

atazanavir, 
darunavir, 
fosamprenavir, 
lopinavir, 
tipranavir, 
indinavir, 
entricitabine, 
saquinavir, 
lopinavir, 
ritonivir, 
nelfinavir 

protease inhibitor (PI) 

enfuvirtide 
entry/fusion inhibitor 
(FI) 

maraviroc  CCR5 antagonist 

raltegravir   integrase inhibitor 

Notes:  AExamples  of  combination  pills  include:  Combivir,  Kaletra,  Truvada,  Trizivir,  Atripla, 

Epizicom/Kivexa  (all  registered  trademarks of  their  respective  companies);  BHCV‐specific antivirals are 

currently  under  development  in  clinical  trials.  None  have  been  FDA‐approved  to  date;  CThere  are 

multiple RSV‐targeted  therapies  currently under development,  including:  improved mAb preparations 

(motavizumab), antisense anti‐RSV siRNAs, fusion inhibitors and other small molecule RSV viral epitope 

inhibitors.  A  variety  of  vaccine  options  are  being  explored  as well  (live,  attenuated  vaccines,  vector 

vaccines and subunit vaccines).  

 

 

Table 2.2A. Current therapeutic strategies against selected viral pathogens. 
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TABLE 2B: Current Therapeutic Strategies against Common Intracellular Bacterial Pathogens 

Bacteria 
Associated 
Disease(s) 

Current Treatment 
Options 

Drugs 
Commonly 
Prescribed 

Drug Class/Mode 
of Action 

[Ref] 

Mycobacterium 
tuberculosis 

Tuberculosis  

Long‐term antibiotic 
treatment in two 
phases: intensive 2‐
month initial phase 
(four first‐line drugs) 
then 4‐month follow 
up (isoniazid and  
rifampicin only). 
Drug resistant strains 
require additional 
treatment for up to 
12 months. 

isoniazid, 
pyrazinamide, 
rifampicin, 
ethambutol 

first‐line drugs 
effective against 
non‐resistant M. 
tuberculosis 
infections. (non‐
MDR‐TB) 

[30, 
31, 
34, 
37, 
38] 

ethionamide, 
prothionamide, 
cycloserine, 
capreomycin, 
para‐
aminosalicylic 
acid, 
fluorquinolones 

second‐line drugs 
effective against 
multi‐drug 
resistant strains 
of M.tuberculosis. 
(MDR‐TB) 

Salmonella 
enterica 

(Serovars Typhi, 
Paratyphi) 

Typhoid 
fever 

Best therapy is 
prevention through 
vaccination. 
Chloramphenicol is a 
first‐line drug of 
choice, although 
there is increasing 
bacterial resistance 
to this drug. Other 
recommendations 
include treatment 
with cephalosporins, 
fluorquinolones or 
azithromycin in the 
case of highly drug 
resistant strains of 
Salmonella.  

chloramphenicol 

broad‐spectrum 
protein synthesis 
inhibitor; 
emerging 
bacterial 
resistance to this 
antibiotic 

[50, 
52, 
54, 
55, 
74] 

ciprofloxacin 
fluoroquinolones 
(inhibit bacterial 
DNA replication) 

ceftriaxone, 
cefotaxime 

cephalosporins 
(inhibit cell wall 
synthesis; a type 
of beta‐lactam 
antibiotic) 

azithromycin 

macrolide 
antibiotic 
(inhibits bacterial 
protein synthesis) 

Brucella 
(melitensis, 
abortus, suis, 

canis) 

Brucellosis, 
Malta fever 

Long‐term antibiotic 
treatment; 
combination therapy 
more effective than 
monotherapy. 

doxycycline with 
streptomycin, 
gentamicin or 
rifampicin 

 tetracycline‐
aminoglycoside 
combination 
(protein synthesis 
inhibitors) 

[13‐
15] 

 

Table 2.2B. Current therapeutic strategies against common intracellular bacterial pathogens. 
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NANOMEDICINE AS AN EMERGING THERAPEUTIC APPROACH 

  Conventional therapies for the treatment of intracellular diseases have existed for many 

years. These treatments may be further improved as we enter a new era of therapies based on 

nanomedicine. Nanomedicine can be most succinctly defined as “the application of 

nanotechnology to medicine” [75]. There are many potential advantages of using nanomedicine 

over the conventional therapies previously described. Combining new knowledge of 

nanomaterials with our current understanding of cellular and molecular functions may allow for 

the development of novel and advanced nanomedicines. As discussed below, nanomedicine has 

the capacity to incorporate, encapsulate or conjugate a variety of drugs, to target specific cell 

populations and to offer tunable and site-specific drug release; nanomedicine could be 

advantageous in treating intracellular diseases. 

Biocompatibility and Nanotoxicity 

 Biocompatibility is an important feature of any drug delivery system and the goal is to 

minimize nonspecific cytotoxic effects to healthy tissues while maximizing drug effects at the 

target tissue or against invasive pathogens [76]. Nanoparticles have been fabricated using a 

variety of materials  including poly(lactide-co-glycolide) or PLGA [77-82], poly-lactic acid 

(PLA) [78, 83, 84], polymethacrylic acid (PMA) [85, 86], polyethylene glycol (PEG) [87, 88], 

“natural” polymers such as chitosan [89, 90], gelatin [91, 92] or alginate [93, 94], and other 

materials such as lipids [95-97], gold [76, 98] and silica [99-102].  

PLGA has been approved by the US Food and Drug Administration (FDA) for several 

biomedical applications including surgical sutures, implants and prosthetic devices [79]. PLGA 

micro- or nano-particles have also been used for a variety of drug-delivery applications [80]. 
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PLGA displays good biocompatibility, biodegradability, suitable degradation kinetics and 

mechanical properties and is easy to process. For this reason, PLGA is an attractive candidate for 

nanoparticle-based drug delivery systems and there is a large body of ongoing research in this 

area.  Other polymers such as PLA, PMA, PEG, chitosan, gelatin and alginate also show promise 

as drug delivery vehicles due to their biocompatible properties. PEG may be used as a “coating” 

to prevent the rapid removal of nanoparticles from the blood stream by the mononuclear 

phagocytic system, which may increase nanoparticle circulation time and theoretically improve 

the therapeutic capacity of the nanoparticle [84, 87]. Chitosan and alginate are polymers derived 

from natural sources and may offer more “friendly” conditions for the encapsulation or 

incorporation of DNA or peptides since the use of organic solvents can be avoided [94]. 

 Lipids are also being explored as potential nano-delivery systems, either as liposomes or 

lipid nanocapsules (LNCs).  Liposomes are composed of lipid bi-layers surrounding a 

hydrophilic “core” and can be designed to incorporate hydrophobic drugs within the lipid bi-

layer or hydrophilic drugs within the aqueous core [95].  Liposome-encapsulated 

aminoglycosides (such as gentamicin) have shown higher therapeutic efficacy than conventional 

amingoglycoside preparations in the liver and spleen using a murine S. typhi infection 

model[95].  Amphotercin B (an anti-fungal) has also been encapsulated in lipids and 

administered to mice with an Aspergillus fumigatis infection [96].  Liposome-treated mice have 

survived longer than mice treated with other amphotercin B preparations, with reduced renal 

toxicity and a prolonged drug circulation time[96].  These liposome formulations could be a 

better treatment for diseases affecting the liver or spleen (eg typhoid fever, hepatitis).  LNCs are 

another type of lipid mediated delivery system under exploration. LNCs are considered a 

“hybrid” between a polymer nanoparticle and a liposome, with an oily core surrounded by a 
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membrane composed of PEGylated surfactants [97].  LNCs have shown promise in in vitro and 

some animal models encapsulating anti-cancer drugs such as paclitaxel, doxorubicin, and 

etoposide [97].  The results of these studies have indicated higher intracellular drug delivery and 

reduced tumor size in vivo when LNC formulations were administered.  

In contrast to these “soft” polymer-based nanoparticle systems, metals such as gold have 

also been explored as potential drug delivery vectors. Gold is an attractive drug delivery vector 

due to the ease with which biomolecules, such as protein or DNA, can be attached to the gold 

surface using thiol chemistry [76]. This process can also allow attachment of multiple targeting 

or functional groups to the nanoparticle surface to produce a multifunctional nanoparticle. 

Although gold nanoparticles can be easily functionalized, these nanoparticles may accumulate in 

tissues over time because they are not biodegradable. The effects of long-term nanoparticle 

accumulation are unknown, so in many cases it may be better to use a material that is fully 

biodegradable. Silica-based compounds are another option, as the biodegradation of silica avoids 

tissue-accumulation concerns [99] and it has been demonstrated that a variety of agents have 

been successfully incorporated into silica-based nanoparticles [100-102] for drug delivery 

applications.  

Although each of these materials offers its own set of characteristics and biocompatible 

properties, some materials may be more suited to certain applications than others. It is important 

to determine the desired properties of the nanomedicine for defined applications. 

Cellular Penetration and Intracellular Delivery  

 One critical challenge in treating intracellular pathogens is to get enough drugs to reach 

the pathogen within an intracellular compartment. Nanoparticles can be internalized by endocytic 
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mechanisms which include receptor-mediated or clathrin-coated pit endocytosis [103]. 

Nanoparticles may reside within acidic endo-lysosome compartments following endocytosis [80] 

and premature drug release within this acidic compartment may cause drug degradation and 

render treatment ineffective. It is therefore important for the nanoparticle to escape this 

compartment and gain access to the cytosol where either the drug cargo may be directly  released 

or the nanoparticle  goes on to further target a specific organelle. For instance, PLGA 

nanoparticles carrying doxorubicin are reportedly capable of escape of the endo-lysosomal 

compartment by a reversal of their surface charge. This allows the particles to interact with the 

membrane and escape into the cytosol where the doxorubicin is released [80].  

 There are a number of sources which report time and concentration-dependent uptake of 

nanoparticles by a variety of cell types such as smooth muscle cells [80], endothelial cells [104, 

105], macrophages [40, 106-108] and tumor cells [109-114]. The uptake of PLGA nanoparticles 

containing bovine serum albumin as a model drug was found to be concentration dependent in 

human vascular endothelial cells, approaching first order kinetics [104]. An in vitro uptake and 

cellular trafficking study using mesoporous hybrid silica nanoparticles demonstrated that the 

particles were internalized by receptor-mediated endocytosis, localized in the endocytic 

compartment and then released their cargo within the cytosol [101]. Another in vitro study 

examined the uptake of drug-loaded thiolated PMA hydrogel capsules [114]. The tracking 

experiments revealed that nanocapsules were taken up by endocytic mechanisms in a time-

dependent manner and the drug was released throughout the cell. Collectively, these studies 

demonstrate that nanoparticles are capable of cellular penetration and are capable of intracellular 

drug release. This is an important characteristic of a nanomedicine that targets intracellular 
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pathogens and promotes direct killing, as the drug must be able to effectively reach the invading 

pathogens within the intracellular compartment.  

Targeting to Specific Cell Types 

 The goal of targeting nanomedicines to specific cell populations is to increase the 

therapeutic efficacy of the drug while minimizing damage to healthy cells and tissues, thereby 

reducing the incidence and severity of side effects. Presently, the majority of experiments 

demonstrating the targeting of nanoparticles are related to cancer/tumor targeting although these 

same concepts can be applied to pathogen-infected cells and the intracellular compartments [99] 

where the pathogens reside. Nanoparticles can be targeted toward specific cell populations by 

conjugating targeting ligands to the surface of the nanoparticles. These targeting ligands can be 

attached directly to nanoparticle surfaces or attached via a spacer (eg PEG), which acts to 

enhance the flexibility of the targeting ligand and increase the likelihood it will bind the 

appropriate receptor on the target cell [111, 115]. There are a variety of methods available to 

attach ligands to nanoparticle surfaces [116, 117]. Targeting ligands can include antibodies 

(whole or fragment), receptors or receptor ligands, peptides, aptamers or other small molecules 

[115]. A few examples are presented below.  

When incorporating antibodies on nanoparticle surfaces, it is important to consider 

whether attachment will affect the binding site or structure of the antibody. Hybrid lipid 

nanoparticles composed of PLGA, phospholipids and an outer PEG layer have shown targeting 

capacity to pancreatic cancer cells when coupled with an anti-carcinoembryonic antigen (CEA) 

half-antibody [113]. Nanoparticles incubated with CEA-presenting pancreatic cancer cells 

showed selective uptake of targeted nanoparticles over non-targeted control nanoparticles.  
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Receptor ligands can also act as targeting moieties. It has been recently reported that 

nanosized poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) micelles bearing a 

surface epidermal growth factor (EGF) have been targeted to breast cancer cells over-expressing 

the epidermal growth factor receptor (EGFR) in vitro and in vivo [109]. The uptake of the nano-

micelles was two-fold higher using EGFR over-expressing cells compared to cells which express 

low levels of EGFR. These results were confirmed using a xenograft mouse model, with mice 

bearing EGFR over-expressing tumors demonstrating increased tumor uptake of the particles 

compared to mice bearing low EGFR expressing tumors.  

Polyester nanoparticles carrying paclitaxel can be targeted to irradiated tumor cells with a 

short peptide, Gly-Ile-Arg-Leu-Arg-Gly (GIRLRG), which binds specifically to GRP78 

receptors expressed by glioma and breast tumor cells in response to radiation therapy [110]. In 

vitro and in vivo studies were used to compare tumor volumes following treatment with control 

and targeted nanoparticles. Mice treated with nanoparticles bearing the targeting component had 

a significant decrease in tumor volume compared to control.   

 Conjugation of an A10 aptamer to PLGA/PEG nanoparticles has also been shown to be 

an effective targeting strategy [117]. The A10 aptamer binds to the prostate-specific membrane 

antigen (PSMA) on the surface of prostate cancer cells, and the A10 aptamer conjugated 

nanoparticles showed higher uptake by PSMA positive cells than by PSMA negative cells.    

Site-Specific and Tunable Drug Release  

In order to effectively eradicate intracellular pathogens, drugs that are intended to kill the 

pathogens directly should reach the intracellular locations of infected host cells. As we have 

summarized in Figure 1, locations may include phagosomes [15, 34, 56], vacuoles [52, 53], 
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cytosol [16, 57, 58], nucleus [1, 59, 60], and may interact with the golgi apparatus [61] or 

endoplasmic reticulum [62-66]. With proper engineering and design, nanoparticles can be 

tailored to carry their drug payloads into the infected cells and then release the drug within 

specific intracellular compartments. One way to accomplish site-specific drug release is to use 

pH-responsive polymers. In one study, short peptides were conjugated to pH-responsive 

polymers designed specifically to disrupt the endosomal membrane at pH 5.5 and subsequently 

release the peptide into the cytosol [118].  The polymers had no membrane disruptive activity at 

pH 7.4 due to a “masking” PEG group, which is later cleaved to expose the membrane disruption 

domain at pH 5.5. Peptide-polymer conjugates demonstrated a diffuse cytosolic distribution after 

one hour, the time normally required for macrophage endosomes to mature into lysosomes. 

Unconjugated peptide was located primarily in the lysosome after the same time period, 

indicating the peptide itself was unable to escape into the cytosol. This polymer technology may 

allow for local drug delivery to the cytosol, although it is more critical to reach the specific 

intracellular location of the pathogen, such as a vacuole or the nucleus.   

 It has been demonstrated that nanoparticles can be specifically targeted to mitochondria 

[119] or nucleus [120] and may be capable of entering vacuoles [121] where pathogens such as 

Salmonella may reside during an infection process. Although intracellular pathogens do not 

typically live within mitochondria, pathogens such as Listeria monocytogenes can secrete toxins 

which interfere with normal mitochondrial function [122]. So, the ability to target mitochondria 

may provide a means to treat these types of infection and attenuate the effects of secreted toxins. 

One study successfully localized fluorescent nanodiamonds conjugated with mitochondrial 

protein antibodies to mitochondria in live cells [119]. The inherent fluorescence of these 

nanodiamonds allowed for tracking the localization of the nanoparticles, and the microscopy 
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experiments revealed that these nanodiamonds were capable of specifically binding the 

mitochondria compared to control nanodiamonds without conjugated antibody.  

Nuclear targeting has been demonstrated in a similar manner, by conjugating nuclear 

localization signal (NLS) peptides on the surface of PLGA nanoparticles for the nuclear delivery 

of doxorubicin to cancer cells [120]. The NLS-targeted nanoparticles demonstrated a 6-fold 

increase in uptake compared to free doxorubicin in solution, and also a 2.5-fold increase in 

uptake over non-targeted nanoparticles. Cells treated with NLS-targeted nanoparticles also 

showed a higher toxicity than control nanoparticles, which was expected due to the increased 

delivery of drug to its nuclear target site. Nuclear targeting would be especially useful in viral 

infections such as HIV and HSV, as these viruses must enter the nucleus to begin their 

replicative life cycles.  

There is also evidence that demonstrates nanoparticles loaded with ampicillin are capable of 

entering cells and delivering the drug within Salmonella-containing vacuoles (SCV) [121]. 

Ampicillin was tritium-labeled and found to localize within both the cytosol and SCV’s using 

ultrastructural autoradiography. The co-localization of the drug with the bacteria led to enhanced 

bacterial killing and elimination compared to control cells treated with ampicillin in solution. 

The co-localization of the drug within the SCV is an important step in effectively targeting 

intracellular pathogen compartments.  

Another issue plaguing intracellular pathogen treatments is the lower concentration of drug at 

the target site and the short duration of efficacy of the drug administered. Large and frequent 

doses of the drugs are often required to obtain a therapeutic effect. Nanoparticles have the 

potential to overcome this issue by offering sustained release of drugs, which would lower the 

required dose and decrease the frequency of administration [123]. As an example, polymer-based 
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nanoparticles composed of PLGA are able to sustain release of a variety of drugs, such as 

rolipram for seven days [124], gentamicin for 25 days [125, 126] and dexamethasone for 15 days 

[127].  Hyperbranched poly(amine-ester)-PLGA nanoparticles have also demonstrated sustained 

release of isoniazid, an important anti-TB drug, up to 14 days [82]. Another study targeted 

gelatin nanoparticles loaded with rifampicin, another anti-TB drug, to macrophages [92]. Test 

results indicated that the rifampicin-loaded gelatin nanoparticles were capable of localizing in the 

lungs and reducing bacterial loads in a mouse model of TB. In addition, nanoparticle treatment 

was as effective as traditional daily oral rifampicin at a reduced dosing frequency (every three 

days), due to the sustained release of rifampicin from the gelatin matrix [92].  

 

PERSPECTIVES FOR THE FUTURE  

We have reviewed the current therapeutic strategies against commonly encountered 

intracellular pathogens like viruses and bacteria, and have evaluated the potential of 

nanomedicine to improve upon the current treatments. When treating intracellular diseases, it is 

important to avoid or prevent further development of pathogen resistance, which is becoming a 

major problem for the management of TB [23].  Generally speaking, the success of an antibiotic 

drug relies on its ability to penetrate the bacterial cell wall and membranes and to bind to its 

target site (protein, enzyme, etc) [128]. Bacteria may develop resistance by mutating various 

drug target sites [27], and viruses may also develop drug resistance through genetic mutation and 

recombination events [29]  that can render our current treatments ineffective. For this reason, 

there is a need for new drugs with novel mechanisms of action that may slow or stop the 

development of pathogen resistance.  
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As an example, recent literature has emerged touting the potential of cationic 

antimicrobial peptides (CAMPs) to serve as an alternative to conventional antibiotic therapy 

[129-133]. Antimicrobial peptides are short, positively charged peptides which are produced 

endogenously by human epithelial tissues where they function to prevent invasion of pathogens, 

demonstrating broad-spectrum killing activity against bacteria, yeast and fungi [130, 134]. The 

complete mechanism of CAMP action is yet to be fully understood, but one proposed mechanism 

suggests that the CAMPs interact electrostatically with the negatively charged molecules on the 

outer surface of bacteria, where they can insert themselves into the membrane and form a pore 

[130]. Such a disruption in the bacterial cell wall and membranes will affect the osmolytic 

balance of the bacterium and ultimately cause cell death. Because CAMPs do not have a specific 

molecular target per se, pathogens may have more difficulty in developing resistance to these 

peptides. There is also some evidence indicating that CAMPs can help modulate exogenous 

antibiotic action against several strains of S. aureus [135]. Bacterial cultures treated with both 

CAMPs and antibiotics had lower antibiotic “minimum inhibitory concentration” (MIC) values 

than for cultures treated with antibiotics alone, indicating complementary action between the 

CAMPs and antibiotics.  

As a result, these CAMPs are attractive targets for the development of novel 

nanomedicines to treat intracellular diseases. It may be possible to design nanoparticles capable 

of carrying CAMPs into the cell, or to develop self-assembled CAMP nanoparticles. The 

development of such nanoparticles may greatly improve intracellular drug therapy by offering 

high efficacy against a variety of pathogens, and also offer very high biocompatibility, as 

endogenous CAMPs can be used. We anticipate that CAMP nanoparticles will be a potential 

advanced nanomedicine for intracellular disease treatments.  
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Another potential strategy to improve intracellular disease treatments is to take advantage 

of the preferential accumulation of nanoparticles by the reticuloendothelial system (RES). The 

RES can also be referred to as the “mononuclear phagocytic system” and is composed of 

macrophages residing in the liver, spleen and lungs. Normally, this phenomenon is avoided in 

nanomedicine, as the RES removes the nanoparticles from circulation and may prevent drugs 

from reaching target tissues.  However, this treatment modality may be particularly useful in 

treating intracellular diseases such as TB (affecting the lungs) or typhoid fever (affecting the 

liver and spleen), as these pathogens primarily live and duplicate within macrophages of the 

affected organs. Using nanoparticles to deliver drugs of interest to fight these diseases may be 

aided by the natural tendency of these cells to internalize nanoparticles, which would help reduce 

unnecessary tissue exposure and likely decrease the amount of drug required since it is being 

delivered to the appropriate cell. 

To create the “perfect” intracellular drug delivery system for fighting infections, certain 

characteristics of nanoparticles or nanomedicine must be successfully incorporated such that the 

medicine exhibits acceptable biocompatibility, possesses targeting capacity and offers efficient 

and sustained drug release at the target site. Figure 2 illustrates an “ideal” nanoparticle drug 

delivery system with such characteristics suited to treat intracellular diseases. The nanomaterial 

used will vary with each application, but there are a variety of biocompatible materials available 

as summarized in Table 3.  
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Figure A2.2. Components of an “ideal” nanoparticle for intracellular drug delivery. The important 
components of a nanoparticle used for intracellular drug delivery include: choice of nanomaterials 
(polymer, gold, etc), targeting molecules, cell penetrating peptides (to promote internalization) and the 
incorporated drug molecules of interest. 

The drug may be used to form the nanoparticle, encapsulated within a polymer matrix, or 

attached to the surface of a solid “carrier” nanoparticle. The incorporation of surface targeting 

components to help localize to the affected tissue may improve therapeutic efficacy, along with 

the presence of molecules to enhance cellular penetration such as cell penetrating peptides 

(CPPs). CPPs are short, cationic peptides, typically derived from the HIV TAT proteins [136] 

which have been shown to readily translocate through cell membranes. The addition of CPPs, 

such as TAT, to the surface of a nanoparticle can increase the efficiency with which the 

nanoparticles are delivered intracellularly [137, 138];  although the mechanism by which these 

CPPs are able to enter cells is currently under debate. It is suggested that either the CPPs 

promote direct translocation through the membrane via electrostatic interactions, or the CPPs 

bind to specific receptors on the membrane and induce rapid receptor-mediated endocytosis 

[138].  In either case, promoting efficient cellular penetration is critical for the treatment of 

intracellular diseases.  

Nanomedicine meets the requirements for an “ideal” drug delivery system to improve 

intracellular disease therapy; however, we are still exploring this relatively new field. It is early 
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to assess how quickly nanomedicine will be adopted and integrated into the mainstream 

healthcare. Research on nanomedicine is relatively well-funded[139], so it is likely that many 

new treatment methods will be approved and available in the future. However, this investment 

cost for drug development is still high from an economic standpoint [140], and the price will 

probably be passed down to patients via high prescription co-pays and may not be available for 

years in developing areas where these improved therapies are needed most.  Initially, this may be 

a deterrent to promoting nanomedicine, but over the long-term with new cost-effective 

technologies, higher drug efficacy, and better treatment outcomes, the price will become 

acceptable.  

Table 3: Examples of Biocompatible Nanoparticles  

Type of Nanoparticle Materials Used [Ref] 

Synthetic or Man-made Polymers

Poly (lactide-co-glycolide) (PLGA) [77-81] 

Poly-lactic acid (PLA) [78, 83, 84]

Polymethacrylic acid (PMA) [85, 86] 

Polyethylene glycol (PEG) [78, 87, 88]

Natural Polymers 

Chitosan [89, 90] 

Gelatin [91, 92] 

Alginate [93, 94] 

  Lipids [95-97] 

Other Types of Nanoparticles 
Gold [76, 98] 

Silica-based compounds [99-102] 

 
Table A2.3. Examples of biocompatible nanoparticles.  
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CONCLUDING REMARKS 

The burden of treating intracellular diseases is continually increasing due to the sheer number 

of people living with diseases such as HIV/AIDS, hepatitis and tuberculosis worldwide, along 

with the increasing incidence of drug resistance. We have summarized the locations where these 

pathogens reside, such as phagosomes [15, 34, 56], vacuoles [52, 53], cytosol [16, 57, 58], 

nucleus [1, 59, 60], golgi apparatus [61] or endoplasmic reticulum [62-66]. The major challenges 

in treating these invasive pathogens include getting enough drugs to penetrate the host cell and 

reach the pathogen, having high drug efficacy and low toxicity, and maintaining sustained, site-

specific drug release throughout the duration of treatment. In the future, it may be possible to 

improve disease treatment by utilizing the uptake of nanoparticles by the reticuloendothelial 

system, especially in the case of TB or hepatitis which affects macrophages. Additionally, 

looking to endogenous sources such as CAMPs or other immunomodulatory compounds such as 

interleukins (not covered) may further improve upon current therapies.  

The literature presented here shows the potential for nanomedicine to address these 

challenges and improve upon the current therapeutic strategies. The incorporation of 

nanomedicine into mainstream healthcare is a lofty, but achievable, goal. Researchers from 

multiple disciplines must work together, push the boundaries of science at the nanoscale and 

incorporate concepts from biology, engineering and drug design in order to make this goal a 

reality.  
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