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ABSTRACT 

Towards quantifying the effects of resource extraction on land cover and topography 

through remote sensing analysis: confronting issues of scale and data scarcity 

 

Jessica D. DeWitt 

 
This dissertation focuses on the mapping and monitoring of mineral mining activity using 

remotely sensed data. More specifically, it explores the challenges and issues associated with remote 

sensing-based analysis of land use land cover (LULC) and topographic changes in the landscape 

associated with artisanal and industrial-scale mining. It explores broad themes of image analysis, 

including evaluation of error in digital elevation models (DEMs), integration of multiple scales and data 

sources, quantification of change, and remote sensing classification in data-scarce environments.  The 

dissertation comprises three case studies. 

The first case study examines the LULC change associated with two scales of mining activity 

(industrial and artisanal) near Tortiya, Côte d’Ivoire.  Industrial mining activity was successfully mapped 

in a regional LULC classification using Landsat multispectral imagery and support vector machines 

(SVMs).  However, mapping artisanal mining required high-resolution imagery to discriminate the small, 

complex patterns of associated disturbance. 

The second case study is an investigation of the potential for quantifying topographic change 

associated with mountain top removal mining and the associated valley-fill operations for a region in 

West Virginia, USA, using publically available DEMs.  A 1:24,000 topographic map data, the shuttle 

radar topography mission (SRTM) DEM, a state-wide photogrammetric DEM, and the Advanced 

Spaceborne Thermal Emission Radiometer (ASTER) Global DEM (GDEM) were compared to a lidar 

bare-earth reference DEM. The observed mean error in both the SRTM and GDEM was statistically 

different than zero and modeled a surface well above the reference DEM surface. Mean error in the other 

DEMs was lower, and not significantly different than zero. The magnitude of the root mean square error 

(RMSE) suggests that only topographic change associated with the largest topographic disturbances 

would be separable from background noise using global DEMS such as the SRTM.  Nevertheless, 

regionally available DEMs from photogrammetric sources allow mapping of mining change and 

quantification of the total volume of earth removal. 

Monitoring topographic change associated with mining is challenging in regions where publically 

available DEMs are limited or not available.  This challenge is particularly acute for artisanal mining, 

where the topographic disturbance, though locally important, is unlikely to be detected in global elevation 

data sets.  Therefore, the third and final case study explored the potential for creating fine-spatial 

resolution bare-earth DEMs from digital surface models (DSMs) using high spatial resolution commercial 

satellite imagery and subsequent filtering of elevation artifacts using commercial lidar software and other 

spatial filtering techniques. Leaf-on and leaf-off DSMs were compared to highlight the effect of 

vegetation on derived bare-earth DEM accuracy. The raw leaf-off DSM was found to have very low error 

overall, with notably higher error in areas of evergreen vegetation. The raw leaf-on DSM was found to 

have a RMSE error much higher than the leaf-off data, and similar to that of the SRTM in dense 

deciduous forest. However, filtering using the commercial techniques developed for lidar notably reduced 

the error present in the raw DSMs, suggesting that such approaches could help overcome data scarcity in 

regions where regional or national elevation data sets are not available.  

Collectively this research addressed data issues and methodological challenges in the analysis of 

3D changes caused by resource extraction. Elevation and optical imagery are key data sets for mapping 

the disturbance associated with mining.  The particular combination required regarding data spatial scale, 

and for elevation, accuracy, is a function of the type and scale of the mining.  
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Chapter 1 Introduction 

Mineral resource extraction is of central importance for much of our current society and culture, and we 

live in a world that increasingly relies upon the wide variety of products that are produced from minerals 

such as iron, aluminum, tin, copper, and coal (EEA 2005, Otto 1997, Robinson 1998). Although coal is 

not chemically classified as a mineral, within the mining industry it is referred to as a ‘fuel mineral’ due 

to the type of its deposits and associated methods of mining (Spitz and Trudinger 2008). The mining of 

mineral resources includes all activities related to excavating the minerals and ore, which can be sold at a 

profit. Such activity can have a significant economic impact on both the host country and internationally. 

Mining activity also has benefits and associated risks for to the immediate locale, and may result in 

substantial changes to the environment and local economy (Hartman 1992, Spitz and Trudinger 2008). 

Response to these changes can take a variety of forms, many of which require baseline mapping through 

remote sensing (Spitz and Trudinger 2008). Mapping and monitoring of mine sites is also important to 

allow for quantification of change over time. 

 

Mining activities occur at vastly different scales, from artisanal small-scale mining to large-scale 

industrial mining, and via different methods, including surface, underground and solution mining, 

depending on the type of mineral and its deposit characteristics (Spitz and Trudinger 2008). However, a 

majority of minerals are extracted through large-scale surface mining, wherein sizeable volumes of 

overburden and waste material are removed from the landscape to reveal near-surface mineral deposits 

(Hartman 1992). The overburden and waste material are typically deposited nearby, either filling in the 

previously mined area or in the form of a spoil pile. Surface mining is one of the most cited examples of 

humans acting as geomorphic agents of change (Hooke 1994, Kite 1999, Kite 2009), as it can result in 

significant and enduring changes to both the land cover and the topography of a region. These changes 

can cause a wide variety of environmental concerns, including geochemical degradation to groundwater 

resources (Orem et al. 2012), landslides and associated issues in surface stability (Sah, Sheorey, and 

Upadhyaya 1994), hydrologic flow changes (Negley and Eshleman 2006, Phillips 2004), and reduction in 

biodiversity as a result of habitat change (Maxwell et al. 2012), as well as other social and cultural 

degradations (Woodfork et al. 2001). Artisanal and small-scale mining (ASM) entails the extraction of 

near-surface mineral resources by individual or small groups of miners using primarily manual or low 

technology methods (Barry 1996, Hentschel 2002). Although a single artisanal mine pit may be small in 

spatial extent, artisanal mining activity of many individuals has the cumulative potential to cover large 

areas and result in significant land cover changes. Environmental impacts of artisanal mining depend on 

the extent and scale of the mining activity, but potentially include many of those relevant for industrial 
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mining, such as geochemical degradation of groundwater and hydrologic flow changes (Barry 1996, 

Hentschel 2002, Aryee, Ntibery, and Atorkui 2003). In addition to environmental effects, there are many 

social and political effects of ASM (Hentschel 2002, Chirico and Malpeli 2013). 

 

As a general rule, remote sensing methods have been successfully implemented to map and monitor 

surficial mining (Townsend et al. 2009, Demirel 2011). Several studies have shown that surficial mining 

and associated land cover changes can be effectively mapped using remotely sensed multispectral 

imagery (Latifovic 2005, Schueler, Kuemmerle and Schröder 2011), despite the challenges suggested by 

Irons (1980). Moreover, the progression of mining LULC across a landscape can be monitored through an 

integrated analysis of multiple sources of remotely sensed imagery and other geospatial data for mapping 

of mine extent (Inglis et al. 1978). Remote sensing methods have also been used to investigate the 

environmental impacts associated with surface mining activity (Merriam et al. 2015, Choe 2008, Mars 

and Crowley 2003, Rathore 1993). However, the small spatial extent of an artisanal mining footprint 

makes it difficult to detect using imagery of moderate or coarse scale (Elmes et al. 2014). Some studies 

have successfully mapped ASM using high-resolution satellite imagery (Telmer and Stapper 2007, Pagot 

et al. 2008), however inaccuracy in the detail of mining-specific land use (such as active mining zones 

and transportation corridors or settlement areas) remains a challenge for automated mapping methods 

(Luethje et al. 2014). 

 

More recent technological and data availability improvements have facilitated the mapping and 

quantification of topographic changes from industrial-scale mining (Gesch 2014, Lesniak and Porzycka 

2008). In areas of industrial mining the incorporation of topographic changes, including volume 

estimates, has greatly improved the accuracy of environmental models of water quality and pollution 

(Ross, McGlynn and Bernhardt  2016). Although moderate-scale digital elevation models (DEMs) have 

been used to quantify topographic change in surface mined areas (Gesch 2005), the relative accuracy of 

such datasets calls into question the accuracy of the quantified change and the minimum amount of 

change that could be quantified using such methods (DeWitt 2015). Although a few studies have 

attempted to quantify topographic change at artisanal mine sites with mixed results (Emel, Plisinski and 

Rogan 2014), the success of this mapping is mixed due to the comparatively limited topographic changes 

that occur at such sites and the paucity of data in ASM locations (Aryee, Ntibery, and Atorkui 2003, and 

UNECA 2007), and ASM topographic change remains a current area of research. The necessary fine-

spatial resolution and high-accuracy DEMs for densely vegetated regions would typically require lidar, 

however such data remain unavailable or infeasible to collect in remote areas of the globe. Note that in 

this dissertation, the terms ‘digital elevation model’ (DEM) and ‘digital surface model’ (DSM) will both 
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be used with respect to gridded elevation data. In this context, a DEM refers to an elevation model with z-

values indicating the elevation of the bare-earth ground surface, devoid of any surface features. A DSM 

indicates an elevation model with z-values indicating the elevation of bare-earth ground surface plus the 

height of any surface features present in the same space (a surface also referred to as the ‘reflective 

surface’).  

 

Thus, there are two interconnected themes regarding the remote sensing of mining: 1) the scale of mining 

as a factor determining the efficacy of remote sensing methods, and 2) the dimensionality of the remotely 

sensed quantification – whether identification of LULC extent, three dimensional analysis combining 

LULC with topography, or four dimensional (4D) analysis of LULC and topographic changes over time. 

The latter provides a more comprehensive understanding of the web of interrelated impacts and fallouts 

(Xie et al. 2005). More importantly, the inclusion of change over time in the analysis of mining effects 

provides actionable information for policy and management. 

 

This dissertation focuses on the mapping and monitoring of mineral extraction sites over time using 

remote sensing methods, by exploring the challenges associated with remote sensing-based analysis of 

LULC and topographic changes from mining at the artisanal to the industrial-scale. Monitoring of mining 

at each of the scales is investigated and challenges to quantifying change over time are addressed. 

Another central theme of this work is of investigating LULC and topographic change in rural, 

international data-scarce environments. In these situations it is often necessary to devise new methods of 

integrating diverse datasets (chapter 2), or of establishing the methodological accuracy in areas of high 

data availability for use in data scarce areas (as in Chapter 4). 

 

This dissertation comprises four chapters. The first chapter is this general introduction, which explains the 

context of the work, and the central research questions. Chapters 2-4 are outlined below. Chapter 5 is an 

overall conclusion, summarizing the contribution of the work. 

 

Chapter  2 is titled “Integration of local- and regional-scale analysis of LULC change across 46 years 

using multi-source remote sensing methods in a post-conflict area of industrial and artisanal diamond 

mining.” This chapter is focused on the question how fine-scale artisanal mining land use can be 

incorporated into a remote sensing analysis of regional-scale land cover changes, and in doing so provides 

an evaluation of this integration in the context of mapping and monitoring mining land use. The study 

area, in Côte d’Ivoire, is a region with only limited high-resolution data available. In such areas, moderate 

resolution data such as Landsat multispectral imagery is the best available geospatial data, but the small 
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spatial extent of ASM land use is difficult to capture in land cover classification at this spatial resolution. 

In this chapter, I therefore explore the possibilities for synthesizing fine-scale and regional-scale analysis 

with multiple datasets for analysis of changing ASM activities over multiple decades. 

 

Chapter 3 is titled, “Comparison of DEMS derived from USGS DLG, SRTM, a statewide 

photogrammetry program, ASTER GDEM and lidar: implications for change detection.” Given the 

availability of a growing number of global and, in some areas, regional, DEMs of different ages, Chapter 

3 evaluates the potential to use such data to monitor and quantify topographic change associated with 

mountain top removal mining and the associated valley fill operations in West Virginia, USA. 

Specifically, the chapter investigates the comparability of currently available DEMs, and how effectively 

such DEMs can be combined to analyze topographic changes in mining areas. Key issues regarding the 

various source data, and the implications for uncertainty in modeling the topographic changes, are 

explored.  

 

Chapter 4 is titled “Creating high-resolution bare earth digital elevation models (DEMs) from stereo 

imagery using lidar point cloud procedures in an area of densely vegetated deciduous forest.”  This 

chapter addresses methodological questions centered on digital surface models (DSMs) created 

photogrammetrically from high spatial resolution commercial satellite imagery of vegetated regions and 

how such DSMs can be manipulated to produce elevation rasters that approximate bare-earth DEMs.  The 

ability to generate multiple high-resolution bare-earth DEMs over time from commercial imagery would 

offer the promise of monitoring the fine scale changes associated ASM, even in areas of limited data 

availability, such as Côte d’Ivoire, the study area for Chapter 2.  I hypothesize that lidar software filtering 

methods and other related techniques can be used to filter a photogrammetric DSM to produce a DEM.  I 

also investigate whether accurate DEMS can be produced from high-resolution imagery in leaf-off 

periods, or whether the bare trees and their shadows create noise in the data set.  The study site for this 

chapter, a park in Woodbridge, Virginia, USA, was chosen because of the presence of a closed canopy 

forest and also the availability of excellent control data, in the form of a lidar dataset. 
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Chapter 2 Integration of local- and regional-scale analysis of LULC change across 46 

years using multi-source remote sensing methods in a post-conflict area of industrial 

and artisanal mining 

 

Jessica D. DeWitt, Peter G. Chirico, Sarah E. Bergstresser, and Timothy A. Warner 

 

Abstract 

Since the closure of the industrial diamond mine in Tortiya, Côte d’Ivoire, artisanal and small-scale 

mining (ASM) has played a substantial role in the region’s economy and culture, particularly through a 

period of violent political conflict. However in recent years other land uses, such as plantation-scale tree 

crops, have expanded exponentially in this mining region. Long-term land use land cover (LULC) 

mapping of trends in these and in other categories of LULC is required to allow for land use planning and 

to address the potential for land use conflicts. However, standard remote sensing multispectral LULC 

classification methodologies cannot adequately address the vastly different scales of economically and 

politically important land uses such as ASM and plantation tree crops. This study demonstrates a multi-

source, multi-scalar data integration approach for mapping 46 years of LULC change in a region of 

widespread ASM and rapid expansion of tree crop agriculture.  

 

Keywords: land use and land cover (LULC); multi-scale integration; artisanal small-scale mining (ASM); 

industrial mine transition; tree crop expansion 

 

 

Introduction 

Over the past few decades, a multitude of global and regional factors have shifted the land use 

and land cover (LULC) patterns surrounding Tortiya, Côte d’Ivoire from industrial mining to artisanal 

mining to tree crop based agribusiness. The political and economic effects of these changes have 

significant bearing on both current governmental decisions and on future land use planning for the region, 

but currently no record of LULC trends exists to inform decisions and policies. LULC throughout the 

region occurs at a wide range of geographic scales, from the extremely localized scale of artisanal small-

scale mining (ASM) to the regional-scale of agricultural patterns. Furthermore, competing land 

requirements of mineral extraction and agribusiness sectors create the potential for renewed conflict in a 

country recently recovering from civil war partially incited by land ownership concerns. Remote sensing 

analysis provides independent quantification of land cover trends and is ideally suited for rural, data-

scarce environments. However, the contrast of local- and regional-scales complicates typical remote 
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sensing LULC change methods. This study employs an approach for integrating multiple scales and 

sources of remote sensing data to quantify LULC trends over 46 years in the Tortiya area. 

Background 

Côte d’Ivoire is a key exporter of agricultural commodities such as cocoa, coffee, pineapples, and 

palm oil. Although Portuguese traders introduced Cashew trees to Africa in the 1500s, the growth of this 

crop as a key agricultural export was prompted by the formation of the African Cashew Alliance, 

sponsored by the United States Agency for International Development (USAID) in 2005. Since that time, 

it has become one of the country’s principle exports, and was ranked as the world’s second largest cashew 

producer in 2011 (Phipps 2011; ACI 2010, Foretell 2014). Since its introduction, large plantations of 

cashew trees have expanded across the country, particularly in the north where the climate is well-suited 

to cashew cultivation (ACI 2010; Foretell 2014).  

Côte d’Ivoire’s mineral sector includes industrial and artisanal extraction of diamonds, among 

other minerals. Both primary and secondary alluvial diamond deposits are present throughout the northern 

part of the country, including the Tortiya region. In the 1950’s the Société Anonyme de Recherche et 

d’Exploitation Minières en Côte d’Ivoire (SAREMCI) mining corporation opened an industrial diamond 

mine along the Bou River in the Katiola Prefecture. The town of Tortiya was created by SAREMCI to 

house mine workers and provide associated services (Freudenberger 2015). The Tortiya diamond mine 

operated for nearly 30 years, producing between 150,000 and 175,000 carats (cts) per year at its height, 

until its abandonment in 1975 (Chirico and Malpeli, 2013). With the mine’s closure, the town of Tortiya 

declined and conflict ensued between rival villages and former mine workers over ownership and usage 

of the land (Dejong 2013, Freudenberger et al. 2015). ASM began within the extent of the industrial mine 

soon after its closure. Though no official census of ASM activity was collected, ASM activity around 

Tortiya was estimated to diminish from around 40,000 artisanal miners in 1980 (UNGoE, 2011) to around 

1,000 artisanal miners in 2011 (Chirico and Malpeli 2013). 

Civil war in Côte d’Ivoire was sparked by issues of nationality and land ownership in the late 

1990s, and led to a period of government instability and violence across the country in the early 2000s 

(Dejong 2013, Chirico & Malpeli 2013). Although violence was eventually quelled through international 

efforts, evidence that diamond sales contributed to financing of the rebellion resulted in an embargo on 

rough diamonds of Ivorian origin by the United Nations Security Council and the Kimberley Process 

(KP) in 2003. In spite of this embargo, ASM activity continued across the country, including in Tortiya 

(UNGoE 2011). Violence erupted again following presidential elections in 2010, but by 2014 efforts by 

Côte d’Ivoire’s new government and international partners brought the country into compliance with KP 

regulations and legal diamond exports resumed.  
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Today, tensions over land ownership and usage in the Tortiya region are exacerbated by rapid 

LULC transitions from ASM and traditional agricultural activities to cashew tree crop plantations. In 

these situations those with mining interests and community land rights oppose the encroachment of 

cashew plantations and farmers (Freudenberger et al. 2015). Conversely, those who have invested in this 

new industry are concerned about the potential of mining activity disturbing valuable cashew orchards 

and harvests (Dejong 2013).  

Remote Sensing of Artisanal Mining 

Many remote sensing studies of LULC change in Africa have focused on a multitude of wide-

reaching transitions from natural to agricultural and urban land covers, generally as the result of 

population and economic pressures or changing climate (Muriithi 2016, Dewan and Yamaguchi 2009, 

Kusimi 2008, Yiran, Kusimi and Kufogbe 2012, Wasige et al. 2013). Regional- and local-scale LULC 

changes are also of significant social and economic importance to community planning and conflict 

management endeavors, but may require more customized analysis techniques (Kibret, et al. 2016, Marx 

2016). The temporal and spectral resolution of Landsat satellite imagery, along with its forty-two year 

archive (Landsat Missions, 2014) allows for analysis of decadal changes in regional-scale land cover 

patterns. However this scale of analysis, along with automated methods of classification may not be 

successful in detecting changes in other economically-significant but spatially compact land uses (Kibret, 

et al. 2016). Multiple studies have noted that the mapping of ASM locations using moderate-scale 

imagery such as that from the Landsat or SPOT sensors is difficult due to the small footprint of ASM  and 

its spectral similarity with related land uses (Kusimi 2008, Elmes et al. 2014).  

One of the first major efforts to map ASM over large areas utilized a variety of remote sensing 

methods, including automated classification of moderate resolution multispectral imagery, change 

detection using radar data, and aerial photography, as well as field methods. In this study, classification 

focused specifically on ASM-related land use and relied heavily on the spectral contrast between ASM 

land use and surrounding undisturbed dense vegetation (Telmer and Stapper 2007). Object-based image 

analysis (OBIA) classification methods have been investigated as a means of detecting the sedimentation 

of water-filled ASM pits and patterns of vegetation regrowth (Pagot et al. 2008), as well as a multi-scalar 

approach using 6.5 m and 0.5-1 m imagery to detect individual ASM features (Luethje et al. 2014) The 

latter method, though not field validated, also used a secondary textural analysis to differentiate between 

‘potential mining areas’ from settlements. Sub-pixel classification methods, including spectral mixture 

analysis of Landsat imagery to detect sub-pixel changes in forest cover associated with ASM have also 

been investigated (Asner et al 2013; Elmes et al. 2014). At the other end of the spatial scale, the 

hydrological and geomorphological changes caused by industrial-scale mining operations have been 
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analyzed using moderate resolution DEM data combined with high-resolution satellite imagery (Emel et 

al. 2014, Merriam et al. 2015). 

In each of these studies, large multi-pit ASM sites were successfully mapped, but potentially also 

included areas of mixed land use, such as settlements and transportation corridors. Moreover, much of the 

research on remotely sensed ASM mapping has focused on areas of relatively expansive ASM impact. 

Many of these studies report that small areas of ASM may have been omitted from the mapped areas. A 

second gap in the literature associated with remote sensing of ASM is the absence of a comprehensive, 

regional analysis of LULC changes associated with ASM. This study attempts to fill this gap by 

quantifying regional LULC and artisanal mining independently, then analyzing the two together in a 

multi-scalar analysis. 

Study Area 

Tortiya is located in the rural north central part of Cote d’Ivoire in the Niakaramandougou 

Department. The LULC study extent indicated by the red outline in figure 1, is based on the extent of the 

original SAREMCI mining concession. A smaller focus area, outlined in light gray in figure 1, was 

determined by the overlap of available high-resolution satellite imagery. The Tortiya region has an 

equatorial, winter dry climate (Kottek et al. 2006), which typically entails warm temperatures throughout 

the year and distinct wet and dry seasons. Precipitation in the region is concentrated between the months 

of May and October, when 75% of the yearly average 1,387 mm of rain occurs (Climatic Research Unit 

2015). The warm, humid climate and seasonal rains promote quick regrowth of a woodland and grassland 

ecosystem (Sayre et al. 2014), and annual burning of this undergrowth is required to clear fields for 

traditional methods of agriculture.  

The Tortiya study area is generally a low-relief terrain dominated by gently sloping interfluves 

capped by ferricretes (frequently termed cuirasse by French scientists) and bounded by reworked and 

eroded pediments of the ferricrete materials (glacis) (Peltre 1978, Teeuw 2002).The valleys contain 

alluvial materials in an alluvial flat or floodplain and terrace landforms (Chirico et al. 2013). The town of 

Tortiya itself lies on the banks of the Bou River approximately at the intersection of the Bou and one of 

its tributaries, Pekoua Creek. 
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Figure 1. The Tortiya study area, located in northern of Côte d’Ivoire.  

 

Data 

This study incorporates multiple sources of remotely sensed imagery and topographic data to 

assess the land cover changes that have occurred in the Tortiya region over the past 46 years. Both 

moderate- and fine-spatial resolution satellite imagery is used to assess LULC change, and terrain data are 
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acquired from global digital elevation models (DEMs) and regional topographic maps. The details of all 

data used in the analysis are described below and summarized in tables 1 and 2. Finally, field data 

collected in 2013 are used to validate LULC classification and to provide site-specific ASM details.  

1. Satellite Imagery 

The earliest remotely sensed imagery available for the region was collected by the Corona 

satellite on January 29, 1968. Project KH-4A (mission 1045-1) acquired panchromatic photography with 

a spatial resolution of up to 2 m depending on the latitude of the study area (McDonald, 1995). For this 

study, digital Corona image data was acquired from the USGS Earth Explorer web interface 

(http://earthexplorer.usgs.gov/) and subsequently resampled to 3 m resolution and georeferenced to 

reference imagery.  

Cloud-free Landsat images were also acquired from the USGS Earth Explorer web interface 

(http://earthexplorer.usgs.gov/)for the dry-seasons of 1984, 1991, 2000, 2007, and 2014. These near- 

anniversary dates, on a roughly seven-year interval, capture long-term LULC changes and minimize 

annual and seasonal variations. Details regarding the specific date of collection, sensor, and scene 

identifier are shown in table 1. To reduce the effects of haze and smoke on the spectral signatures of land 

covers, each scene was atmospherically corrected to ground reflectance, then ortho-registered rectified to 

the 2014 image through cubic convolution resampling. Clouds along the western part of the 1991 image 

were masked using a two class unsupervised classification. Visible bands (bands 5, 4, and 3) of the 2014 

Landsat 8 OLI image were pansharpened with the panchromatic band (band 8) of the same date to create 

a reference image. 

An additional image data set used for this study was a NASA space photograph, collected by 

astronauts on the Space Shuttle on April 9, 1991,using a Hasselblad 250 mm camera on Kodak natural 

color positive Ektachrome, X Professional ASA-64, standard base film. The image was downloaded from 

the Earth Science and Remote Sensing Unit, NASA Johnson Space Center ‘Gateway to Astronaut 

Photography of Earth’ website (https://eol.jsc.nasa.gov/) as a geotiff, and georectified to the Landsat 8 

pan sharpened image. It was used to assess accuracy of the 1991 Landsat LULC classification. High-

resolution satellite images from the IKONOS and WorldView-1 sensors were used to assess the accuracy 

of the 2007 and 2014 classifications (respectively). These images, with additional images from the 

WorldView-1, GeoEye-1 and QuickBird1 sensors, were also used to perform local-scale LULC analysis.  
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Table 1: Remotely Sensed Imagery used in this study 

 Date Satellite/ 

Sensor 

Spatial 

Resolution (m) 

Spectral Resolution 

(Number of bands) 

Details (Scene ID, etc.) 

Landsat Imagery 

 1984 Nov 26 Landsat 5/ TM 30 Multispectral (7 bands) LT51970541984315XXX07 

 1991 Jan 6  Landsat 4/ TM 30 Multispectral (7 bands) LT41970541991006XXX03 

 2000 Jan 31 Landsat 7/ 

ETM+ 

30 Panchromatic & 

Multispectral (7 bands) 

LE71970542000031AGS00 

 2007 Jan 7 Landsat 5/ TM 30 Multispectral (7 bands) LT51970542007010MPS00 

 2014 Dec 31 Landsat 8/ 

OLI/TIRS 

30 Panchromatic & 

Multispectral (8 bands) 

LC81970542014365LGN00 

Other  Imagery 

 1968 Jan 29 Corona  3 (resampled) Panchromatic Project KH-4A mission 1045-1 

 1991 Apr 9 Shuttle, 

Hasselblad 

250mm camera 

20 Kodak natural color 

positive film 

NASA photo ID STS037-80-12 

6° camera tilt; taken at 12:11 

GMT 

High-resolution Satellite Imagery 

 2007 Dec 11 IKONOS-1 1 Panchromatic 11DEC07IK0101652po_372077 

 2008 May 5 WorldView-1 0.5 Panchromatic WV120080505105727P02 

 2009 Dec 19 WorldView-1 0.5 Panchromatic WV120091219111100P00 

 2010 Apr 6 GeoEye-1 1.6 Multispectral 4band GE120100406105833M00 

 2011 Dec 25 WorldView-1 0.5 Panchromatic WV120111225111246P00 

 
2013 Dec 26 Quickbird 

0.7 

2.7 

Panchromatic & 

Multispectral (4 band) 

QB220131226100840P00 

QB220131226100840M001 

 2014 Dec 13 WorldView-1 0.5 Panchromatic WV120141213111949P 

 

2. Field Observations 

Field observation is an important part of studies of land use land cover change because it provides 

relevant local detail and understanding that cannot be obtained from remotely sensed data. In this study, 

field observations fell into two categories – one to provide both an in-depth understanding of artisanal 

mining practices, site characteristics and locations, and the second to allow for independent accuracy 

assessment of the 2014 land cover classification. Figure 2 shows the locations of each type of observation 

made during fieldwork. Additional details regarding each type of field observation are provided below. 
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Figure 2. Locations of field observations. Visits made to observe ASM activity are shown in red, 

and the inset map shows the figure associated with these observations. LULC validation sites 

visited during 2014 are shown as yellow triangles. 

 

2009 – 2013 ASM Observations 

Field visits to areas of ASM activity near Tortiya were conducted during the dry seasons that 

occurred between 2009 and 2013. Several of these visits entailed aerial overflight observations in a 

helicopter, recorded primarily through low oblique photographs of the region and GPS. These 

observations improved understanding of ASM distribution throughout the immediate Tortiya region, 

provided detail about specific mining practices, and are also used as general validation of ASM activity 

interpreted from high-resolution satellite imagery. 
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From these field visits and overflights, it was observed that ASM has continued sporadically 

throughout the abandoned industrial mine area. Much of this mining targeted potentially diamondiferous 

gravels beneath the lateritic ferricrete. High levels of iron oxide in this semi-consolidated material make it 

appear mottled with white, orange-brown hues (Munsel colors 7.5YR 8/1, 10YR 8/4, 7.5YR 6/8), visible 

in the inset of figure 3. 

At the sites visited, ASM pits varied in size, spatial extent, and depth depending on their location 

in the landscape and the duration of mining activity. Most pits were roughly 3-5 meters in diameter and 

one to several meters in depth. Figure 4 and 5 show two different aerial views of ASM sites with varying 

pit depths and spatial extents. It was observed that small, widely spaced exploration pits were used to 

determine the potential of a site. When and if diamonds were found at a site, ASM activity increased 

rapidly and pit diameter and depth increased. 

Activity at ASM sites included both the digging for diamondiferous gravel material and the 

washing of this material to manually extract the diamonds. Figure 6 shows an ASM site where washing is 

the primary activity occurring. This activity adds substantial amounts of sediment to the water, resulting 

in high turbidity and a brighter spectral signature from the water. This is evident from figure 7, which 

shows an ASM site near the town of Tortiya where washing is the exclusive ASM activity. At this site, 

ASM miners take material from the old industrial mine spoil pile (figure 8 background) and re-wash it in 

the Bou River. At this site, it was observed that water turbidity alone was not indicative only of ASM 

activity. A multitude of other non-ASM activities, such as the laundering of clothing (also shown in 

figure 7 in the upper right corner) or disruption by livestock, also resulted in turbid water. Also evident 

from this figure is an example of the geomorphic changes caused by ASM activity. In this location, 

washing of gravel from the industrial spoil pile has increased the amount of sediment in this reach of the 

river, which over time has resulted in an artificial dam or barrage which has subsequently reduced the 

flow of the Bou and has increased flooding upstream. Although this change is small compared to the 

changes caused by the industrial mine, visible in the height of the spoil pile above the surrounding terrain 

(figure 8 background), the observed concentration of ASM activity in floodplains beyond the extent of the 

mine potentially influences the drainage patterns of the region during the rainy season.  

ASM activity was also observed beyond the extent of the abandoned industrial mine. Located to 

the northeast of town in the Pekoua Creek floodplain, ASM activity shown in figure 9 was undertaken by 

groups of women searching for both gold and diamonds.  
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Figure 3. ASM activity targeting the gravel layer below the lateritic upper crust. Photo credit: 

Peter Chirico, USGS, February 2013. 

 

 

Figure 4. Aerial observation of ASM activity within extent of abandoned industrial mine. Photo 

credit: Noora Jamsheer, UNGoE, March 2009. 
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Figure 5. Aerial observation of an ASM site in the floodplain to the east of the industrial mine. 

Photo credit: Simon Gilbert, UNGoE, February 2012. 

 

  

Figure 6. ASM activity at this site entails primarily washing of gravel material. Photo credit: 

Simon Gilbert, UNGoE, February 2012. 
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Figure 7. ASM washing activity near the abandoned industrial mine spoil pile along Bou River 

channel. Photo credit: Simon Gilbert, UNGoE, February 2012. 

 

 

Figure 8. Aerial view (facing west-southwest) of the abandoned industrial mine spoil pile and 

buildings. Photo credit: Simon Gilbert, UNGoE, February 2012.  
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Figure 9. ASM activity in ephemeral tributaries of the Bou River and Pekoua Creek occur almost 

exclusively in the floodplain. Photo credit: Peter Chirico, USGS, February 2013. 

 

2014 LULC Observations  

Multiple field visits were made to locations around the LULC study extent between August and 

September 2014 to collect land cover validation data. These observations allowed for an independent 

accuracy assessment of the 2014 LULC Classification. LULC was observed at 51 locations (figure 2, 

yellow triangles) distributed around the study area in a clustered sampling pattern, designed to minimize 

the high cost of travel in the area.  

 

Methods 

In order to assess both the small spatial-extent of ASM activity and other regional-scale land covers in the 

study area, LULC analysis is conducted independently at a regional scale and at a local scale. These two 

analyses are subsequently integrated together.  

3. Regional-scale LULC Analysis 

Six general land cover types (Table 2) were identified within the Tortiya study area for 

supervised classification. Training data were collected for each image date through visual interpretation of 

imagery and image derivatives, such as tasseled cap and the normalized difference vegetation index 

(NDVI). A support vector machine classifier with parameter optimization was selected for its ability to 
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differentiate between spectrally similar land cover classes with small training datasets (Jensen et al. 

2009).  

Table 2. LULC categories selected for the regional-scale analysis 

LULC Land Cover Description 

1 Mining/ Bare   Closed industrial mine site or unpaved road 

2 Forest (uncultivated) Mature tree growth and dense woody shrubs, 

with partial-to-full canopy closure 

3 Mixed vegetation Vegetation growth other than uncultivated 

forest and Cashew tree crops, such as mixed 

grassland or herbaceous shrubs 

4 Tree crop (cultivated) Densely spaced cashew trees with partial-to-

full canopy coverage 

5 Urban Mixed residential and commercial land use, 

indicated by the presence of pavement, 

compacted soil and/or buildings with highly 

reflective roofing materials 

6 Water Bodies of water and flooded grassland areas 

 

Quantitative accuracy assessments were performed on the 1991, 2007, and 2014 classifications. 

For the 2014 classification, field data were used to perform an initial accuracy assessment. However the 

number of land cover observation sites visited in 2014 was limited by resources and access-constraints in 

the rough terrain, so accuracy was also assessed using other imagery. The 1991 accuracy assessment was 

performed using the NASA space photograph, and the 2007 accuracy assessment was performed using 

high-resolution satellite imagery. For each classification, accuracy was assessed at a set of stratified 

random points, with sample size based on multinomial distribution (Jensen 1995), and a confusion matrix 

was created to calculate producer’s and user’s accuracy. Since the aim of this part of the study was to 

quantify and map regional land cover in Tortiya, not to evaluate machine classification, misclassified 

Urban and Mining areas of the 1984 classification were manually corrected following the accuracy 

assessment. The area (in km2) of each land cover as quantified by the classification was then calculated 

and the results were graphed to assess change over time.  

To extend the analysis of economically significant land covers further back in time, Mining/ Bare 

and Urban land covers were manually interpreted from Corona imagery. These land covers were also 

digitized from the 1973 topographic map. 

4. Local-scale analysis 

Detailed land use associated with ASM activity was manually interpreted from each of the high-

resolution images using the methods of Kauffmann et al. (2014). A point was digitized for each ASM pit 

interpreted from the high-resolution imagery, and attributed with the size of the pit (measured across the 

widest length of the pit). To minimize the subjectivity of manual interpretation, 2 image analysts 

independently interpreted ASM sites from each image, and only ASM sites consistently identified by both 
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analysts were kept. The average ASM pit size was calculated from all digitized pits from both 2007 and 

2014. 

ASM points from the 2007 and 2014 analyses were used to sample the corresponding Landsat 

classification to determine the effectiveness of moderate-scale analysis methods in analyzing ASM 

LULC. 

5. Multi-scalar fusion of LULC analyses 

In order to incorporate ASM land use into a regional-scale LULC analysis, interpreted ASM 

points were integrated with the Landsat LULC classification for 2007 and 2014. Based on field 

observations, although individual ASM pits in the Toritya region are typically small (3-5 m) in diameter, 

the space disturbed from walking paths, spoil piles, etc., might extend 15 m or more from the pit. For this 

reason the Landsat classification for each year was resampled to 15 m using nearest neighbor methods, 

and the 2007 and 2014 ASM point datasets were each converted to a 15 m raster aligned to the 15 m 

classification for that year. Pixels from the Mining/ Bare class from the ASM raster were inserted into the 

classification for the associated year. The area occupied by the Mining/ Bare class was assessed in both 

the original LULC classification and in the fused LULC classification to determine the effect of this 

method on the quantification of this land cover.  

To evaluate the difference in spatial distribution of the Mining/ Bare class between the integrated 

classification and the original classification, a kernel density analysis was performed on the 15 m pixels 

classified as Mining/ Bare in each. In this analysis, the number of Mining/ Bare pixels within a 250 m 

radius was calculated, and output in units of Mining/ Bare pixels per km2. The resultant raster was 

symbolized using a common geometric interval. 

Results 

6. Landsat SVM Classification results 

The Landsat classifications are shown for the area of focus (figure 10), and achieved accuracies 

of 84.4%, 95.0%, and 87.6%/ 83.3% for 1991, 2007, and 2014 image assessment/ field assessment, 

respectively.  
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Figure 10. Landsat classification results within the focus area extent. 

 

Producer’s and user’s accuracies for each class are shown in table 3. The classifications 

successfully differentiated spectrally similar land covers such as tree crops and forest (uncultivated), 

however there was some misclassification between the Mining/ Bare and Urban classes. This 

misclassification was visibly most severe in the 1984 image, and was manually corrected for the known 

extent of the abandoned industrial mine prior to analysis of land cover extent (as shown in figure 10). The 

percentage of each LULC calculated from the Landsat classifications, out of the total study area, is 

graphed in figure 11. Table 4 shows the LULC areas calculated from all data sources, including the 

Corona imagery, Topographic map, and LULC classifications. Figure 12 focuses on Mining/ Bare, Urban, 

and Tree Crop LULC for all dates of analysis. Each of these 3 LULCs is discussed in detail below. 

 

Table 3. Accuracy assessment of SVM land cover classifications by year 

 Classification Year – Overall Accuracy  

 1991 – 84.4% 2007 – 95.0% 2014 (Image)– 87.6% 2014 (Field) – 83.3% 

 Producer’s User’s Producer’s User’s Producer’s User’s Producer’s User’s 

Bare/mining 62 80 100 100 91 100 80 80 

Forest 53 100 71 90 68 81 50 50 

Mixed Veg 98 88 100 94 91 85 80 89 

Tree Crop 100 10 83 100 91 91 88 88 

Urban 80. 80. 83 100 100 100 100 67 

Water 100. 73 100 100 91 100 100 100 
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Table 4. Area of each LULC class, calculated from the regional-scale land cover classifications, 

the interpreted Corona imagery and the topographic map.  

 Area (km2) of LULC Class 

 1968 1978 1984 1991 2000 2007 2014 

Mining/ Bare 2.05 5.04 5.27 1.80 0.82 0.77 0.70 

Forest No Data No Data 17.24 12.89 14.67 7.0 12.52 

Mixed Vegetation No Data No Data 63.49 70.50 67.75 74.27 53.24 

Tree Crop No Data No Data 0.02 0.21 0.40 3.58 19.75 

Urban 0.46 0.45 1.35 1.83 3.20 1.48 1.25 

Water No Data No Data 0.56 0.46 0.94 0.58 0.28 

 

 

Figure 11. The 6 LULC classes are graphed as a percentage of the total area.  
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Figure 12. Area of Tree Crop, Urban, and Mining/ Bare land cover classes from multi-source 

analysis 

 

The mine area increased greatly between 1968 (2.05 km2) and 1978 (5.04 km2), and continued to 

increase through 1984 (5.27 km2). However by 1991 it had decreased substantially in extent (1.80 km2), 

and this decrease continued through 2014 (0.70 km2). Of importance is the spatial distribution of this class 

as captured by the LULC classifications (figure 10), which for all dates is principally within the extent of 

the abandoned industrial mine. The extent of Tortiya Urban area decreased between 1968 (0.46 km2) and 

1978 (0.45 km2), before increasing to a maximum extent of 3.20 km2 in 2000. Following this it steadily 

declined in area to 1.46 km2 by 2014. The Tree Crop class first appeared in the classification results in 

1984 (0.02 km2). However large areas of this class did not appear until 2007 (0.21 km2), and then it 

greatly expanded in 2014 (19.52 km2). 

7. Detailed ASM Changes 

ASM pits interpreted 2007 and 2014 high-resolution satellite imagery are shown overlain on the 

LULC classification for the respective year (figure 13). Figure 14 shows a large-scale example of the 
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2007 interpreted points overlain on IKONOS-1 imagery. The average pit size measured in both 2007 and 

2014 imagery was found to measure 3.7 m diagonally (2.6 m x 2.6 m), and to cover 6.76 m2.  

 

Figure 13. Interpreted ASM locations (red dot) were used to sample the LULC classification 
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Figure 14. Example of ASM land use interpreted from high-resolution satellite imagery for 2007.  

 

To determine the extent to which ASM activity is included in the Landsat multispectral 

classification of Mining/ Bare LULC, the 2007 and 2014 LULC classifications were compared to the 

ASM pit locations interpreted for 2007 and 2014.  

The results of this sampling are shown (table 5) as a percentage of the total pits that fall within 

each of the six mapped LULCs. Although there were ASM pits that fell within the Mining/ bare LULC 

class in each year (6.9% in 2007 and 9.3% in 2014), the majority of ASM pits for both dates were located 

within the Mixed Vegetation class (86.2% and 75.9%, respectively). This suggests that support vector 

machine classification of Landsat does not successfully identify small areas of ASM in the Tortiya, Cote 

d’Ivoire landscape. This analysis also shows that little to zero ASM activity occurs within the area of the 

Tree Crop class in either 2007 (0.3%) or 2009 (0.0%). 
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Table 5. Percentage of ASM pits that fall within each LULC class, by year. 

 Percent ASM points (per year) 

located within each LULC Class  

LULC Class 2007 2014 

1. Mining/ Bare 6.9% 9.3% 

2. Forest 2.2% 5.6% 

3. Mixed Vegetation 86.2% 75.9% 

4. Tree Crop 0.3% 0.0% 

5. Urban 2.5% 9.3% 

6. Water 1.6% 0.0% 

 

8. Multi-scale results 

The results of the integration of local-scale ASM analysis and the original (regional-scale) support vector 

machine classification are shown in figure 15. Table 6 shows the difference in spatial extent (km2) of the 

Mining/ bare class in the integrated classification and in the original SVM classification for 2007 and 

2014. 

 

 

Figure 15. Comparison of SVM classification and integrated classification for 2007 and 2014. 
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Table 6. Area (km
2
) of Mining/ bare class as calculated from the original support vector machine 

classification, from the Integrated classification, and the difference between these two values.  

Year 
Classification 

Area (km2)  
Integrated Classification 

Area (km2) 
Difference Area 

(km2) 

2007 0.77 0.83 0.06 

2014 0.70 0.71 0.02 

 

Although the difference in spatial extent between the SVM classification results and the 

Integrated Classification results is small, the spatial distribution of the Mining/ Bare class is substantially 

different for both years. The results of the kernel density (figure 16) analysis highlight this difference in 

spatial distribution.  

 

Figure 16. Kernel density analysis for each year in the original support vector machine 

classification and the integrated classification.  



31 

 

Discussion: Need for multi-scalar analysis 

The 42 year archive of Landsat imagery and its consistent spatial and spectral resolution make it 

ideal for analysis of regional-scale LULC changes. In the Tortiya region of Côte d’Ivoire, the most 

notable of such changes is a large increase in the spatial extent of cashew tree crops. Automated SVM 

classification successfully captures this trend, as well as related decreases in Mixed Vegetation, which 

includes shifting agricultural land use, and in uncultivated Forest land cover. It also captures fluctuations 

in the extent of the Tortiya urban area. However this scale of analysis fails to capture fine-scale ASM land 

use as part of the Mining/ Bare land cover class. 

When analyzed using high-resolution imagery, it is clear that ASM activity occurs throughout the 

Tortiya region in areas that are classified as Mixed Vegetation. This confirms earlier research and 

demonstrates that moderate-scale analysis based on Landsat classification is limited in its ability to 

quantify ASM activity in the mixed woody savannah landscape that surrounds Tortiya. This finding is not 

surprising when one considers the small average footprint size of ASM pits in this study (3.7 m diameter), 

compared to a 30 m Landsat pixel. The detection of fine-scale ASM activity within moderate-scale 

Landsat analysis is further hampered by the mixture of land covers that typically occurs within and 

surrounding an ASM site in this region. These land covers include dry and moist bare soil, turbid and 

clear standing water, and mixed herbaceous vegetation. Although high-resolution imagery is useful for 

identification of ASM activity, its limited temporal extent in this region and low spectral resolution makes 

it unsuitable for effective analysis of trends in other LULC classes, such as Tree Crops and Urban area. 

Thus characterization of comprehensive LULC classes and trends over time in the Tortiya area requires 

the integration of high-resolution and moderate-scale data and analysis.  

Although the Mining/ Bare class in the integrated LULC classifications does not differ 

substantially in total area, the spatial distribution of this class varies substantially across the study area. 

The SVM classification shows Mining/Bare class is located almost exclusively in the area around the 

abandoned industrial mine whereas the integrated classification identifies pockets of mining that occur 

along many parts of the Bou River and its tributaries, including Pecoua Creek.  

Artisanal mining occurs in diverse environments throughout the world, however much of the 

remote sensing literature regarding ASM has focused on mapping ASM extent within densely vegetated 

areas of the tropics. Not only does this body of research rely heavily upon the contrast of ASM activity 

with surrounding land cover (such as dense forest), it neglects to comprehensively assess changes in 

surrounding land covers that may be linked with ASM activity. The integration of fine-scale ASM 

interpretation with moderate-scale LULC classification allows for joint analysis of these different LULC 

scales in a way that meaningfully describes the spatial distribution of mining activity in this landscape. 

Furthermore, because the landscape-scale analysis of LULC is performed independently of the fine-scale 
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ASM analysis the method presented in this study could be used globally to evaluate any level of LULC 

detail. 

Conclusion 

Over the past 46 years, the primary economic driver of the town and surrounding area of Tortiya, 

Côte d’Ivoire has transitioned from industrial diamond mine to artisanal small-scale mining (ASM) to 

agribusiness in the form of cashew tree crops. More recently, the region also experienced substantial 

political and social changes due to civil war, which affected the entire country, but focused on the 

potential financial assets of diamondiferous areas in the northern part of the country, including Tortiya. In 

the post-conflict environment there remains the potential for land use conflict between those individuals 

of artisanal mining heritage and individuals of newer agribusiness focus. Collaboration between these two 

groups regarding LULC planning requires specific information regarding the history and geographic 

trends of each. This study has demonstrated a method of fusing together the fine-scale geographic 

distribution of artisanal mining with regional-scale LULC to provide a unified analysis of trends in the 

two. It showed that the amount of ASM activity occurring in the Tortiya area fluctuated significantly 

during the civil war and has diminished substantially in recent years. Conversely, the growth of cashew 

tree crop agribusiness in the Tortiya region has increased exponentially since 1984. It is likely that this 

growth will continue, potentially replacing artisanal diamond mining as the primary economic driver for 

the region. 
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Abstract 

Many digital elevation models (DEMs) now exist, enabling quantitative assessments of topographic 

change through DEM differencing.  However, many of these DEMs are inherently different—they use 

different source data, as well as different preprocessing procedures and interpolation methods, and have 

different amounts of error which vary in different ways with topography.  Understanding of these 

differences and errors is necessary prior to change detection analysis.  This study evaluated available 

DEMs in the Mud 7.5’ USGS topographic quadrangle in West Virginia, USA.  We compare DEMs 

derived from the USGS digital line graphs (DLGs), the Shuttle Radar Topography Mission (SRTM), a 

statewide photogrammetric DEM, the ASTER GDEM v2, and a lidar DEM.  Using the lidar data as a 

reference (RMSE 0.12 m), the USGS DLG and the SAMB showed low RMSE, while the SRTM and 

GDEM exhibited high RMSE and a systematic negative bias. 

 

Introduction 

A growing field of geomorphologic analyses relies on topographic change calculated from DEM 

differencing (James et al. 2012; Martínez-Casasnovas, Ramos and Poesen 2004; Wheaton et al. 2009; 

Blanchard, Rogan and Woodcock 2010).  However digital elevation model (DEM) datasets differ widely 

in terms of their collection procedures, resolution, and accuracy levels (Bolstad and Stowe 1994; Gong et 

al. 2000).  Grid-based DEMs are created through the interpolation of point or line based elevation values, 

which may be collected through in situ sampling, photogrammetry, or active remote sensors.  Each data 

collection method has varying interaction with surface objects (most importantly vegetation) and 

incorporates varying levels of error in the resultant bare-earth DEM.  These differences complicate direct 

comparison of one DEM to another DEM in change detection analysis and must be understood, and 
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preferably quantified, before topographic change can be calculated.  This paper examines the differences 

between the major global and U.S. national freely available DEMs as well as a state-wide DEM through a 

case study in the Mud 7.5’ Topographic Quadrangle, located in Boone, Lincoln and Logan Counties in 

southern West Virginia. Though other studies have focused on quantifying accuracy in one or two of the 

DEMs explored in this work, to our knowledge this study is the first to simultaneously compare the entire 

combination of the Advanced Spaceborne Thermal Emission and Reflection (ASTER) Global DEM 

(GDEM), the Shuttle Radar Topography Mission (SRTM), United States Geological Survey (USGS) 7.5” 

topographic digital line graph (DLG), and a statewide photogrammetric DEM in a single area of interest. 

Widely available elevation datasets in the United States include USGS topographic maps and 

DLGs, published with varying dates (beginning in the early 1900s and updates continue through today), 

the SRTM DEM based on data acquired in 2000 (NASA Jet Propulsion Laboratory 2009), the National 

Elevation Dataset (NED) with varying publication dates (U.S. Geological Survey, available at 

http://earthexplorer.usgs.gov/), and the ASTER GDEM published in 2009 (NASA LPDAAC and METI 

2011).  Technological advances have improved the frequency of DEM creation and update, as well as the 

spatial resolution of the released models.  However, the spatial extent of new elevation mapping 

campaigns is highly variable and many new DEMs are collected for small spatial extents, such as 

individual cities or counties.  While these new DEMs are valuable improvements in data availability for 

their specific area of coverage, inconsistencies between these local scale DEMs and the ‘best available’ 

regional scale DEMs fragments and complicates topographic change studies conducted at the regional-

scale. 

Background 

The following section reviews the procedures and methods for each of the different DEMs 

available in the WV study area to elucidate potential sources of elevation error and inaccuracy.   

9. USGS DLG 

One of the most widely available elevation datasets in the United States is produced by the USGS 

in the form of 1:24,000 scale contour-based topographic maps (also referred to as 7.5’ topographic 

quadrangle maps).  Contour maps were originally scribed manually from aerial imagery using 

stereoplotters.  With the introduction of computer automation, photogrammetric methods are used to 

generate a set of mass points, breaklines and special points (Molander 2001).  These elevation points are 

then interpolated to generate contour lines.  Breaklines are used to modify the interpolated values in 

situations of abrupt elevation change (such as ridgelines, cliffs, or steep stream valleys). USGS 7.5’ 

topographic printed maps were published on a quadrangle-by-quadrangle basis, beginning in the 1940s 

and officially completing in 1991 (Evans and Frye 2009, U.S. Geological Survey 2013).  Since 1991, only 
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minor revisions have been made to printed products and the series has moved to a digital format (U.S. 

Geological Survey 2013).  Since maps for each quadrangle are updated individually, neighbouring 

quadrangle maps frequently have different creation years (U.S. Geological Survey 2013).   

USGS topographic map accuracy standards are based on the testing of points within the map 

space, and are worded to account for contour-based elevation models (U.S. Geological Survey 2006).  In 

7.5’ quadrangle maps with a 20 foot contour interval, the accuracy standard translates roughly to a 

horizontal error of < 12.1 meter (m) and vertical error of < 3.05 m. 

Contour maps imply a certain degree of smoothness of the underlying terrain and graphically 

convey a high degree of information to the informed reader, yet this implicit information does not readily 

transfer to digital and automated analyses.  Because there are effectively no data between isolines, these 

areas are ‘undersampled’ on the map (Hengl and Evans 2009).  While humans are able to read into and 

interpret meaning from the area between contours, they are effectively a void to computers because there 

is no metric for the distance between lines in the contour-to-grid interpolation algorithms.  This is 

particularly problematic in areas of low relief, where these undersampled areas sometimes extend great 

distances from the nearest contour line (Hengl and Evans 2009).  The interpolation applied to 

undersampled areas may poorly represent the true variation of the ground surface.  Areas of high relief, 

where contour lines run closely together, are also problematic because poor scanning and manual 

digitization may introduce error to the interpolated surface.  Despite these considerations, the amount of 

error introduced by digitization is generally negligible, and the DLG digitized contours generally maintain 

a similar accuracy to that of the original maps (U.S. Geological Survey 1993).   

Unfortunately, the DLGs produced by the USGS do not carry quantified accuracy statements.  

Nevertheless, DLGs are useful in change detection, because unlike the conglomeration of elevation 

datasets in the more commonly used NED, DLGs carry a specific publication date—a key factor in 

change detection analysis applied to elevations.  Once digitized, contour lines must be interpolated to a 

grid format to facilitate computerized spatial analysis.  This process can also introduce error, which is 

complicated by the multitude of interpolation algorithms that exist.  One popular algorithm is the 

ANUDEM program, which was developed to improve contour to grid interpolation by ensuring correct 

hydrologic drainage (Hutchinson 1988, 1989, 2006).   

In summary, the DLG DEM’s representation of the earth’s surface is modified four times from 

the original photogrammetrically measured elevation values: once when the contours are drawn (which 

smoothes and generalizes topography across the earth’s surface), once when 1:24,000 topographic 

contour maps are digitized (data modification in this step is generally regarded as minor), once when the 

digitized contour lines are interpolated to a grid (where original data values are potentially lost in favour 

of a new, modelled surface), and finally when the DEM values are modified to incorporate correct 
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hydrologic drainage (this last modification is, of course, potentially common to the preparation of all 

DEMs).  

10. SRTM 

In an 11-day mission in 2000, SRTM collected a global elevation dataset using -C and -X band 

interferometric synthetic aperture radar (IFSAR) (Hensley, Munjy, and Rosen 2007; NASA Jet 

Propulsion Laboratory 2009).  Though data for the two bands was collected simultaneously, the coverage 

of the X-band is limited compared to the C-band and the processing into DEMs was done separately by 

the German Aerospace Center (DLR) and the National Aeronautics and Space Administration (NASA) 

Jet Propulsion Laboratory (JPL) (respectively).  Some studies have found the X-band DEM to contain 

more outlier values and consequently to appear ‘noisier’ than the C-band DEM, and a direct comparison 

of the two DEMs revealed a systematic bias of higher error (around 10 m) in certain regions of the globe 

(Hoffmann and Walter 2006). SAR remote sensing has several advantages over photogrammetric 

methods of elevation data collection, including cloud penetration, potential night-time data collection, 

potential partial vegetation penetration, control over the angle of illumination, and the flexibility of 

different polarizations (Jensen 2007).  Additionally, the SRTM 30° to 58° off-nadir swaths were collected 

from an altitude of 233 km yielding a wide swath width of 225 km (U.S. Geological Survey 2009).  The 

DEM produced from the SRTM data has a spatial resolution of 1’ (1 arc second or approximately 30 m, 

degraded to 3’ outside the United States) and a vertical accuracy performance goal of ±16 m (Pierce et al. 

2006).  Global evaluations of vertical accuracy found the SRTM to have an average absolute height error 

of 9 m in North America (Rodriguez, Morris, and Belz 2006).  However, in the mountainous, heavily 

forested region of Appalachia, this average error value may be higher (Bolstad and Stowe 1994; 

Blanchard, Rogan and Woodcock 2010).  Comparisons to reference DEMs in West Virginia, 

Massachusetts, and New Hampshire found the SRTM represented a surface above the ground but not 

consistently at the canopy level (Hofton et al. 2006, Passini, Jacobsen, and Passini 2007).  This 

inconsistent surface detection in areas of deciduous forest may be partially caused by the varying 

roughness of the vegetation canopy (Hensley, Munjy, and Rosen 2007).  In mountainous regions, the 

SAR returns may also be affected by foreshortening, layover, and shadow, resulting in higher errors (Guth 

2006). 

11. ASTER GDEM 

The ASTER sensor, located on board the Terra satellite, has both nadir and aft-looking near 

infrared bands.  Together these bands produce a stereopair for every scene collected.  The ASTER GDEM 

v1 was created photogrammetrically from a compilation of cloud-free ASTER stereopairs.  Published in 

2009, with a 30 m horizontal posting and a 20 m (95% confidence) stated accuracy, it was validated 
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globally by NASA at 25 m root mean squared error (RMSE) (NASA LP DAAC 2001, Chirico, Malpeli, 

and Trimble 2012).  Other evaluations have found the GDEM to have an elevation RMSE between  ±7 m 

and  ±15 m (Abrams et al. 2010; Hirano, Welch, and Lang 2003).  The GDEM includes a metadata raster 

that indicates the number of ASTER scenes used to calculate each pixel elevation.  The inclusion of 

multiple imagery dates in the computation of each pixel’s elevation value, while improving the overall 

accuracy, is one potential limitation of the GDEM for change detection studies.  In topographically 

dynamic areas this pixel-to-pixel difference results in a widely varying elevation surface that cannot be 

tied to a specific point in time.  Other studies have found two key sources of error in the first version of 

the GDEM—residual cloud artefacts and flaws in the stacking algorithm, used to calculate a single 

elevation value for each pixel from multiple image-pair DEMs (Chirico, Malpeli, and Trimble 2012; 

Hirano, Welch, and Lang 2003).  An overall negative bias of the original ASTER GDEM has also been 

noted in multiple studies (Slater et al. 2011; Hirt, Filmer, and Featherstone 2010; Chirico, Malpeli, and 

Trimble 2012).  A second version of the ASTER GDEM (v2) was released by NASA in 2011 and 

includes improved scene coverage, a smaller correlation kernel, and improved water masking.  The 

accuracy of the GDEM v2 was found to be 17 m at the 95% confidence level when compared to absolute 

geodetic references over the Conterminous U.S. and in forested areas the DEM was found to be about 8 m 

above the 1’ NED (ASTER GDEM Validation Team 2011). 

12. Lidar 

Topographic lidar is a relatively recent source of elevation data that relies upon precisely timed 

measurements of a laser registered spatially with a global positioning system (GPS) device and an inertial 

measurement unit (IMU).  Distance from the sensor to the ground is calculated from the timed return of a 

near infrared laser beam.  This distance value is converted to a ground elevation using the GPS/IMU 

measurements of the sensor’s position in space (Fowler 2007).  The accuracy of lidar elevation data 

depends on the degree of uncertainty in the position and orientation of the sensor and is potentially also 

affected by the sensor’s field of view, scan rate, and acquisition altitude.  Vertical errors are generally less 

than 0.3 m (Daniel and Tennant 2007).  Portions of the NIR lidar pulse may penetrate vegetation through 

small holes in the canopy and through partial transmittance of the leaves (Rosette et al. 2012), thus 

potentially allowing the return of pulses from the ground.  When paired with the high sampling density of 

lidar sensors, this vegetation penetration can result in highly accurate derived ground elevation values 

(Fowler 2007). 

Having reviewed the various elevation data collection methods, the rest of this paper compares 

each of the above types of DEMs to a reference DEM for a specific site in the Appalachians of the USA. 
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Study Area 

The Mud 7.5’ topographic quadrangle (Figure 1) is used as a case study to evaluate topographic 

change detection and its associated challenges.  This study area includes parts of Lincoln, Boone, and 

Logan counties, WV, USA, and exhibits evidence of the topographic changes caused by surface mining 

activity in the Hobet mine complex.  Mining activity has increased in area across the northern part of the 

quadrangle from prior to 1975 to the present day.  The southern part of the quadrangle is currently 

unaffected by mining. 

Data and Pre-processing 

Elevation data used in this study are listed in Table 1.  The most recent (and assumed most 

accurate) elevation dataset available for the Mud Quadrangle is a lidar-based DEM collected in 2010.  

The SRTM DEM and the ASTER GDEM were downloaded from the USGS data browser Earth Explorer 

(http://earthexplorer.usgs.gov/).  DLG data and the SAMB DEM were downloaded from the West 

Virginia GIS Technical Center (WV GISTC) (http://wvgis.wvu.edu). 

DiCicco et al. (2011) performed an accuracy assessment of the lidar dataset by ground-surveying 

321 points divided among four land cover categories across the southern WV coalfields area of interest.  

Of these 321 points, 98 lie within the boundaries of the Coal River watershed, which encompasses the 

Mud quadrangle.  The accuracy assessment reported a consolidated RMSE of 0.118 m for the larger study 

area, and a RMSE of 0.209 m in the Coal River watershed.  Since this error is substantially lower than the 

expected error in the other datasets, the lidar DEM (referred to hereafter as ‘lidarDEM’) is used as the 

reference topographic surface to which all other DEMs are compared to estimate their error.   

Datasets were downloaded in the Universal Transverse Mercator projection of the North 

American Datum 1983 for zone 17 North (UTM NAD83 Z17N) or were transformed to this projection 

using cubic convolution.  In order to prevent potential edge-artefacts, all datasets were obtained at a nine 

quadrangle extent surrounding the study area, converted to a DEM (as necessary), resampled to a 30 m 

grid by cubic convolution, and clipped to a 1 km buffer around the Mud quadrangle.   

Other datasets used in this study include a boundary shapefile encompassing surface mining that 

was manually interpreted and digitized from 2011 National Agricultural Imaging Program (NAIP) 

imagery.  NAIP imagery was obtained from the WV GISTC as a compressed county mosaic 

(http://wvgis.wvu.edu). This boundary was used to mask previously mined areas from the DEM 

comparison portion of the study.  Finally, the 2006 National Land Cover Dataset (NLCD) was 

downloaded from the Multi-Resolution Land Characteristics Consortium (MRLC) and used to stratify 

sampling points by land cover (MRLC data are available at http://www.mrlc.gov/). 



42 

 

Methods 

A difference raster was generated for each DEM by subtracting it from the lidarDEM (LidarDEM 

– each DEM). It was assumed that in mining areas differences between the lidarDEM and the other DEMs 

would be dominated by real change, so these areas were masked, and the resulting grids of the remaining 

non-masked areas were termed error rasters.  Error rasters were assessed qualitatively and quantitatively.  

Slope was calculated from each DEM and was used to evaluate spatial non-stationarity and 

heteroskedacity in the error rasters. 

Within the non-mined region of the quadrangle, a random sample of 1,000 points was generated 

and used to calculate error measures for each DEM.  To locate points, the NLCD was clipped to the Mud 

quadrangle, and reclassified into the following classes: developed (high intensity, medium intensity and 

low intensity); forested (deciduous, coniferous and mixed); grassland (herbaceous and woody); and shrub/ 

crop/ wetland, which represent  4.1%, 72.2%, 17.5% and 0.2% of the land use for the study area 

respectively.  The 1,000 points were allocated using a stratified random approach, with the number of 

points in each class being proportional to its area. Each DEM, slope raster, and error raster was sampled 

at the location of the points.  These sample values were then used as the basis for the DEM evaluation and 

comparison. 

The product of differencing each DEM from the lidarDEM is a new raster representing error in 

the DEM.  In this raster, negative values indicate areas where the evaluated DEM surface lies above that 

of the reference DEM, while positive values indicate areas below that of the reference surface.  To 

simplify visual comparison, these rasters were additionally processed to indicate the absolute value of 

elevation error.  Quantitative assessment of the error in each DEM was performed in SAS JMP, and 

comprised descriptive statistical measures and distribution tests for both normal and non-normal 

distributions.  The Shapiro-Wilk (W) test was used to evaluate the DEM value distributions, with the null 

hypothesis of a normal distribution. A t-test was used to test the degree to which the mean error value 

deviated from zero (Kanji 2006).  Ordinary least squares (OLS) regression was used to evaluate the extent 

to which DEM errors could be explained by elevation and slope.  Histogram plots were used to evaluate 

the variability of the error values, whether they were unimodal or multimodal, and whether they were 

predominantly positive or negative (Daniel and Tennant. 2007).  Measures of central tendency, such as 

the mean and the median, provided insight into how the DEM compares to the reference DEM (whose 

mean and median are assumed to be close to zero) (Höhle and Höhle 2009).  A t-test was used to 

determine whether the mean error value was significantly different from zero, where low values of the 

test indicate that the mean is not significantly different from zero (Rogerson 2006).  The standard 

deviation of error values further elucidates the distribution of error values around the mean, where a high 
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standard deviation indicates the presence of many large errors in the DEM and/or systematic errors in the 

DEM (Höhle and Höhle 2009; Rogerson 2006).   

The Shapiro-Wilk test was used to determine whether each DEM’s error values are normally 

distributed.  In this test, the null hypothesis is of normalcy; large p-values of the Shapiro-Wilk score result 

in rejection of the null hypothesis and indicate that the DEM error values are not normally distributed.  

Errors that are normally distributed are typically summarized using RMSE, where a low RMSE value 

indicates low overall error (Daniel and Tennant 2007).  However, RMSE alone has been shown to 

insufficiently describe DEM error (Wechsler and Kroll 2006, Fisher and Tate 2006); therefore mean and 

standard deviation of the error were also calculated.  Rasters that do not have a normal distribution of 

error values should be compared using non-normal error distribution measures, such as the median, 

normalized median absolute deviation (NMAD), and the 68.3% and 95% percentiles of the absolute error 

values.  The NMAD provides a value for non-normal distributions that is conceptually similar to the 

standard deviation used to summarize a normal distribution (Höhle and Höhle 2009). 

Results and Discussion 

Figure 2 displays the absolute value error raster for each DEM, stretched on a consistent 

greyscale ramp, from a global minimum to global maximum (the minimum value of all error rasters and 

the maximum value of all error rasters).  From this visualization it is apparent that the DLGDEM and 

SAMBDEM error rasters (Figure 2, A and D, respectively) have the lowest overall error values, and that 

the GDEM error raster has comparatively high values.  For most DEMs error appears to be higher on 

moderate to steep slopes and lower in valleys, this is most apparent near the stream that runs through the 

southwestern end of the quadrangle in figure 2A-D. 

Differences in each of the elevation data capture methods (photogrammetry, IFSAR, or lidar) 

result in differences in the detected elevation surface, and thus the derived DEMs are expected to differ.  

This is well documented by other studies (Bolstad and Stowe 1994; Kienzle 2004; Carlisle 2005; Fisher 

and Tate 2006; Li and Wong 2010) and the varying amounts of error found in the different DEM datasets 

in this study also supports this finding.  Other research has found DEM error to be both non-stationary 

and heteroskedastic, and these two characteristics are qualitatively identifiable in all error rasters shown 

in figure 2.  Additionally, DEM error has been found to be correlated with relief and slope (Bolstad and 

Stowe 1994; Carlisle 2005). 

Table 2 displays OLS results for elevation and error, and for slope and error.  These results 

support the qualitatively observed correlation between error and elevation and between error and slope.  

However, the impact of these two variables differs in magnitude and in the direction of error (whether 

positive or negative) for each DEM.  For the DLGDEM, error is positively related to elevation (valleys 
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have low error, while peaks and ridges have higher error) and slope (steep slopes have higher error); in 

the case of elevation, this relationship is statistically significant.  The SRTMDEM exhibits similar 

relationships, with both elevation and slope being significantly and positively associated with error.  By 

comparison, the GDEM shows a significant relationship with slope, but this relationship is negative, 

suggesting that flatter slopes have higher error values.  This relationship is likely an artefact of the local 

topography and land use —relatively flat areas are mostly confined to narrow valley bottoms, which are 

also the sites of most residential or industrial development in this area. Though there is relatively little 

area devoted to industrial and residential land use in the case study area, the potential exists for the 

GDEM to include building tops (effectively a digital surface model) in its representation of the bare earth. 

Other studies have found that high errors in the GDEM, though not limited to flat areas as seen in this 

study, are caused by the inclusion of multiple image dates in the photogrammetric DEM extraction. The 

use of multiple image dates maximizes cloud free areas in the imagery, however it also introduces errors 

in geometric alignment and mismatched pixels (Chirico, Malpeli and Trimble 2012).  Overall, the very 

low R-squared values for all DEMs suggest that, though the relationships between error and elevation and 

between error and slope are significant, the two variables do not explain the majority of error found in any 

of the evaluated DEMs.  At the very least, the mixed OLS regression results point to the complexity of the 

relationship between error and relief or slope and again highlight the differences between DEM datasets. 

The histograms of the error values for each DEM provide an enhanced understanding of the 

amount and numeric distribution of error in each DEM (Höhle and Höhle 2009).  Figure 3 shows DEM 

error raster histograms with uniform scaling to allow for direct comparison.  The DEM error rasters 

exhibited markedly different histograms.  The majority of the SRTMDEM and GDEM histogram values 

lie below zero, indicating that they model surfaces above the reference topographic surface.  This 

observation is partially explained by their collection methods, which generally detect the upper surface of 

the forest canopy, and thus a surface that is not representative of a bare earth surface.  Other studies have 

similarly observed the GDEM, both first and second versions, to have a negative bias on a global scale 

(Slater et al. 2011, Hirt, Filmer, and Featherstone 2010). 

Descriptive statistics of the error values for each DEM are shown in table 3, and provide a 

quantitative comparison of the DEMs.  A highly accurate DEM will exhibit a small minimum-maximum 

range, a normal unimodal distribution with a mean near zero, low skewness, a high p-value of the 

Shapiro-Wilk (W) test, a low RMSE, a low mean error, a low standard deviation, and a low  t-score 

(Daniel and Tennant 2007).  The following sections describe each DEM in terms of its errors, with the 

order of the DEMs discussed proceeding from lowest to highest overall DEM error. 

The SAMBDEM had the lowest errors of all evaluated datasets within the study area.  Its error 

value histogram exhibited the smallest range, with the mode centered near zero.  However, the W test, 
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based on a null hypothesis of error values being normally distributed, was rejected at the 0.01% 

significance level (p < 0.0001).  This demonstrates that the error value distribution is not normal, and thus 

non-normal tests were used to further assess the distribution of its values.  A low standard deviation and a 

low t-score of 2.567, significant at the 5% level (p < 0.05), indicate that the majority of error values are 

close to the mean, which is significantly different from zero.  The normalized median absolute deviation 

is lower for the SAMBDEM than for other DEMs.  This, in conjunction with the comparatively low value 

of the 95% quartile measure, confirms that the SAMBDEM is the most accurate elevation dataset 

evaluated (excluding the lidarDEM, which was used as the reference dataset). 

The DLGDEM also showed low error values within the study area.  Its histogram exhibits a 

unimodal distribution with a small range and small standard deviation, centred near zero.  These factors 

indicate low overall error in the DEM and few outliers.  The W test for the DLGDEM, based on a null 

hypothesis of the error values being normally distributed, was not significant, which leads to an 

assumption of normality of the error value distribution.  A highly significant t-score indicates that the 

sample mean is significantly different from zero, possibly indicating systematic bias in the error values.  

However, a comparatively low RMSE, low mean error, low NMAD value, and low 95% quartile support 

the conclusion of low errors overall in the dataset. 

From the histogram, it is evident that error values in the SRTMDEM are generally much larger 

and have a wider spread around the mean than those of the SAMBDEM and DLGDEM.  As noted above, 

the peak of this histogram is centred substantially below zero, the sample mean is significantly different 

than 0, and has a t-score of -49.957 (p < 0.0001).  The W test, based on the null hypothesis of the error 

values being normally distributed, suggests that error values have a normal distribution.  These factors 

indicate that the topographic surface of the SRTMDEM lies above the reference surface.  This is not 

unusual in a DEM created from C-band IFSAR, which is impacted by dense vegetation and may not reach 

the ground (NASA Jet Propulsion Laboratory June 2009).  The 12.59 m negative offset of the sample 

mean (indicating a modelled surface 12.59 m above the reference surface) is likely caused by the dense 

deciduous forest (of approximately the same height) that grows in the region (see Miliaresis and 

Delikaraoglou 2009 for a discussion on the effect of forest on the SRTMDEM).  Despite the higher 

degree of error within the DEM and the vertical offset of the modelled topographic surface, the 

SRTMDEM is valuable for topographic change detection and analysis because it provides information not 

otherwise available during the 27-year time span between the collection dates of the DLGDEM and the 

SAMBDEM. 

Error values associated with the GDEM were similar in range and magnitude to those associated 

with the SRTMDEM.  Like the SRTMDEM, the GDEM histogram peaks well below zero and has a t-

score which confirms that the mean is significantly different than zero.  These two factors indicate that the 
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modelled topographic surface lies above the reference DEM surface.  The W test, based on the null 

hypothesis of a normal distribution, was not rejected (p < 0.59).  Despite its similarities to the 

SRTMDEM in magnitude and distribution of error values, the GDEM is fundamentally different than the 

other photogrammetric DEMs in its inclusion of multiple image dates for the elevation data extraction.  

This results in an inconsistent elevation surface in areas of dynamic topography and uncertainty regarding 

the specific associated date of the elevation at each pixel location. 

Conclusion 

Several regional-and global scale DEMs were compared to a high accuracy lidar DEM to 

quantitatively and qualitatively assess their differences in the rugged topography of the southern West 

Virginia coalfields.  These DEMs included a grid interpolated from USGS 7.5’ topographic map DLGs, 

the SRTM, a state-wide photogrammetric DEM (the SAMB), and the ASTER GDEM.  Each DEM was 

compared to the lidarDEM by grid differencing and the resultant ‘error’ values were analyzed using 

various statistical measurements.  In general these datasets form two groups: one of relatively high 

accuracy and another with relatively low accuracy.  The high accuracy group comprises the SAMBDEM 

and the DLGDEM, with RMSE values of 3.05 m and 6.14 m respectively, and the low accuracy group the 

SRTMDEM and GDEM, with RMSE values of 14.90 m and 16.77 m, respectively.  Though the RMSE 

value suggests a quick, global figure representing the accuracy of each DEM, a more comprehensive 

understanding of each DEM’s representation of the topographic surface is gained through evaluation and 

comparison of other statistical values, such as basic descriptive statistics, histograms and tests for 

normalcy.  OLS regression provides insight regarding the complex relationships between elevation, slope, 

and error.  These values suggest that both the SRTMDEM and the GDEM describe a topographic surface 

substantially above that modelled by the lidarDEM.  The GDEM suffers from a further problem for use in 

areas with rapidly changing elevations in that the modelled surface does not represent a single snapshot in 

time, but instead imagery acquired over an extended period.  This problem may preclude the use of the 

GDEM in elevation change detection studies. 

Future research will focus on methods to incorporate these measures of DEM inaccuracy into 

specific values to be added or subtracted from topographic change detection quantifications, as well as to 

methods that incorporate these uncertainties in topographic change products. 
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Tables 

Table 1. DEM datasets used in the local-scale topographic change detection study.  Elevation datasets were acquired from the West Virginia GIS 

Technical Center (WV GIS TC), the National Aeronautics and Space Administration (NASA), and the Japanese Ministry of Economy, Trade, and 

Industry (METI). 

 

Dataset Date Native Resolution Creation Method Source Agency 

DLGDEM 1976 30 m Aerial photogrammetry WV GISTC 

SRTMDEM 1999 30 m C-band IFSAR NASA 

SAMBDEM 2003 3 m Aerial photogrammetry WV GISTC 

GDEM 2009 30 m Satellite photogrammetry NASA/METI 

LidarDEM 2010 3 m Lidar WV DEP 

  



52 

 

Table 2. OLS regression of elevation and DEM error, and slope and DEM error.  There is a positive significant relationship between elevation and 

error in the DLGDEM and SRTMDEM.  A significant relationship between slope and error exists in the SRTMDEM, SAMBDEM, and GDEM.   

 

Variables Metric DLGDEM SRTMDEM SAMBDEM GDEM 

Elevation and error 

 R2 0.048 0.020 0.003 0.001 

 Prob > |t| < 0.0001* < 0.0001* 0.064 0.425 

 Coefficient 0.024 0.021 0.003 0.005 

Slope and error 

 R2 0.002 0.038 0.005 0.009 

 Prob > |t| 0.165 <0.0001* 0.034* 0.004* 

 Coefficient 0.036 0.021 0.030 -0.146 

ns  p> 0.05,   *p ≤ 0.05,   ** p ≤ 0.01,   *** p ≤ 0.001,   **** p ≤ 0.0001  
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Table 3. Statistical measures of each error raster.  Error rasters with a non-normal distribution are shown in grey fill, but all measures are 

calculated for all error rasters.  While the majority of these statistical measures utilize the signed difference in elevation between the reference 

surface and the tested DEM surface (indicated by ∆h), the non-normal error distribution measures of the 68.3 percentile and the 95th percentile 

evaluate the absolute value of the errors (indicated by |∆h|). 
   SAMBDEM DLGDEM SRTMDEM GDEM 

Descriptive 

Statistic 

Maximum  ∆h 13.00 22.98 9.59 24.28 

Minimum ∆h -20.96 -17.59 -36.17 -49.19 

x ∆h 0.25 1.66 -12.59 -12.17 

Skewness ∆h -0.123 0.136 0.016 -0.078 

Test for 

normalcy 

W-score  0.979∗∗∗∗ 0.998ns 0.998ns 0.99ns 

t-score  2.57∗∗ 8.88∗∗∗∗ −49.96∗∗∗∗ −33.37∗∗∗∗ 

Normal 

Distribution 

Measure 

RMSE (m) ∆h 3.05 6.14 14.90 16.77 

Mean error ∆h 0.25 1.69 -12.59 -12.17 

Σ ∆h 3.04 5.91 7.97 11.54 

Non-

Normal 

Error 

Distribution 

Measure 

Median 

(50%) 

∆h 0.14 1.44 -12.74 -12.14 

Normalized 

median 

absolute 

deviation 

∆h 2.81 5.77 8.28 11.81 

68.3 % |∆h| 2.81 6.08 16.49 17.86 

95 % |∆h| 5.83 12.50 25.57 31.76 

ns  p> 0.05,   *p ≤ 0.05,   ** p ≤ 0.01,   *** p ≤ 0.001,   **** p ≤ 0.0001
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Figures 

 

Figure 1. Study Area extent.  The ‘Mud’ 7.5” topographic quadrangle in southern West Virginia. Areas 

that have a mining permit issued by the state, shown in black, are masked from the error analysis. 
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Figure 2. Error rasters generated from the lidarDEM - each DEM calculation.  A) Lidar – DLGDEM; B) Lidar – SRTMDEM; C) Lidar – GDEM; 

D) Lidar – SAMBDEM. Areas of high error (large difference from the lidarDEM surface) are dark. 
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Figure 3. Error raster histograms for each DEM 
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Chapter 4 Creating high-resolution bare earth digital elevation models (DEMs) from 

stereo imagery using lidar point cloud procedures in an area of densely vegetated 

deciduous forest 

 

Jessica D. DeWitt, Timothy A. Warner, Peter G. Chirico, Sarah E. Bergstresser 

 

Abstract 

For areas of the world that do not have access to lidar, fine-scale digital elevation models (DEMs) can be 

photogrammetrically created using globally-available high-spatial resolution stereo satellite imagery. The 

resultant DEM is best termed a digital surface model (DSM) because it includes heights of surface 

features. In densely vegetated conditions this inclusion can limit its usefulness in applications requiring a 

bare-earth DEM. This study explores the use of lidar point cloud filtering techniques, within the context 

of a case study of Prince William Forest Park (PWFP), Virginia, USA. The influences of land cover and 

leaf-on vs. leaf-off conditions are investigated, and the accuracy of the raw photogrammetric DSM 

extracted from leaf-on imagery was between that of a lidar bare-earth DEM and the Shuttle Radar 

Topography Mission (SRTM) DEM. Although the filtered leaf-on photogrammetric DEM retains some 

artifacts of the vegetation canopy and may not be useful for some applications, filtering procedures 

significantly improved the accuracy of the modeled terrain. The accuracy of the DSM extracted in leaf-off 

conditions was comparable in most areas to the lidar bare-earth DEM and filtering procedures resulted in 

accuracy comparable of that to the lidar DEM. 

 

Introduction 

Digital elevation models (DEMs) provide three dimensional (3D) information that can be vital for 

effective geospatial analysis (Wilson 2012; Tarolli 2014; DeWitt, Warner, and Conley 2015; Chirico, 

Malpeli, and Trimble 2012; Maxwell and Warner 2015; Maxwell, Warner, and Strager 2016). However, 

fine-scale, publically available DEMs have been generated for only limited areas of the world, placing a 

major constraint on the potential use of elevation information in remote sensing analysis. One way of 

addressing these data voids is by generating fine-scale photogrammetrically derived elevation data sets 

from commercial high-spatial resolution stereo satellite imagery. Though light detection and ranging 

(lidar) sensors have become the principle means of collecting highly accurate and precise elevation data, 

contracting lidar data for new areas can be expensive, and logistically impractical in remote areas of the 

world lacking air transportation infrastructure. Elevation data can potentially be generated from high-

spatial resolution imagery at substantially less cost than lidar acquisition for almost any location in the 

world. 

An elevation model derived from automated photogrammetric methods is best termed a digital 

surface model (DSM), because the derived elevations tend to include the heights of any objects that 
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obscure the ground. Removal of these surface features from the DSM, including trees and other 

vegetation, may be necessary for any geospatial application requiring a bare earth DEM. Thus, analysts 

considering the use of high-spatial resolution satellite imagery for generating their own DEMs are faced 

with multiple questions regarding what procedures to follow to try to reduce artifacts in the DSMs. In 

addition, for deciduous forests, the optimal season for image acquisition is not obvious. Leaf-on 

vegetation may obscure the ground surface, but leaf-off imagery may provide complex shadowing and 

branch patterns that may not necessarily be good for producing bare earth DEMs.   

 This study explores the use of commercially-available procedures designed for lidar data to filter 

vegetation and other surface features from a photogrammetrically derived DSM in forested environments 

with little or no built structures. Lidar-derived and photogrammetrically derived point clouds are 

compared to explore the potential of such tools in classifying and filtering elevation points belonging to 

surface vegetation from the DSM in an area of dense deciduous forest canopy. In order to assess the 

utility of such methods in areas of tropical vegetation and in leaf-on deciduous forest, both leaf-on and 

leaf-off photogrammetrically created DSMs are examined. Additional procedures utilizing only ancillary 

data gathered from the source imagery or photogrammetric DSM are explored, and the influence of land 

cover and vegetation canopy height on vertical accuracy of filtered DEMs is evaluated. 

Background 

Lidar is a comparatively new technology which uses precise distance calculation of laser pulse 

return time to estimate the elevation of a surface. Raw lidar data are normally represented by an 

unstructured point cloud of elevations of the ground surface and any overlying features. Classification of 

this point cloud into ground returns and surface features is performed by a variety of methods, selected by 

the specific characteristics of the area of interest (Meng, Currit, and Zhao 2010; Sithole and Vosselman 

2004; Mongus and Žalik 2012; Ni et al. 2014; Passini, Betzner, and Jacobsen 2012; Montealegre, 

Lamelas, and De Riva 2015).  

Photogrammetric methods calculate the Z (or elevation) dimension through measurement of 

parallax displacement in images taken from two different angles of view (Ni 2014). Traditionally 

photogrammetric DEMs were created for large areas at coarse scales using manual methods, or manually 

assisted computerized image matching. Recent advances in this field have automated image-matching 

algorithms (Sefercik et al. 2013) that transform the mathematical relationship between two-dimensional 

image space to 3D object space (Ni 2014, Toutin 2004). Furthermore, the introduction of epipolar 

geometry greatly improves computational efficiency and accuracy of pixel matching. The product of these 

procedures is a 3D dataset of matched-pixel locations in space from which a DEM can be interpolated (Ni 

2014; Leberl et al. 2010; Toutin 2004). In bare and non-vegetated areas, these DSMs can be highly 
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accurate and therefore useful for detailed mapping of terrain (Sefercik et al. 2013, Müller et al. 2014; 

Bühler, Marty, and Ginzler 2012), however the presence of vegetation or man-made features complicates 

both visualization of terrain and extraction of hydrologic derivatives (Novoa et al. 2015). Furthermore, 

the vertical accuracy of fine resolution photogrammetric DSMs are not well-tested in areas of dense 

vegetation. 

Study Area 

An area of Prince William Forest Park (PWFP), in northern Virginia, USA, was selected (figure 

1) for its location and data availability. The dense, closed-canopy deciduous and evergreen forest land 

cover of the region, coupled with its moderate topography was chosen to exemplify the strengths and 

weaknesses of photogrammetrically derived high-resolution DEMs and the filtering techniques explored 

in this study because they create an ideally challenging scenario for mapping ground elevations. 

The geology of Prince William Forest Park largely reflects the tectonic processes that formed the 

Appalachian Mountain landscape, specifically tectonic compression during the Taconic, Acadian, and 

Alleghanian orogenies. In this landscape the late Precambrian to early Paleozoic metamorphic rocks, such 

as the Chopawamsic formation, are resistant to erosion, and outcrop along sharp ridgelines. Other rocks 

underlying the region include younger sandstone, shale, siltstone, carbonate rocks, and quartzite. Pyrite 

was mined extensively in the late 1800s to early 1900s. Acid mine drainage from the abandoned pyrite 

mine caused water quality issues in the Quantico Creek until reclamation efforts in the early 1990s. The 

western two thirds of the park is within the Piedmont physiographic region, and consists of complex 

rolling hills and steep-sloped valleys composed of unconsolidated colluvial deposits. The transitional 

zone between the Piedmont and the Atlantic Coastal Plain in the eastern part of the park is marked by a 

“Fall Line” of small waterfalls and rapids. To the east, the gentler topography of the Coastal Plain results 

in fluvial deposition landforms and wider valleys. The park is dissected by the Quantico creek and its 

tributaries (Thornberry-Ehrlich 2009). 

Data 

Data used in this study (Table 1), includes several types of satellite and aerial imagery, as well as 

multiple digital elevation datasets. High-resolution satellite imagery acquired from DigitalGlobe includes 

stereoscopic WorldView1, monoscopic WorldView3 (shown in Figure 1), and stereoscopic WorldView3. 

The 2015 imagery captures the leaf-on phase of vegetation canopy in the study area and the 2016 imagery 

captures the leaf-off phase of vegetation canopy. Aerial high-resolution orthoimagery collected during the 

spring of 2013 was used as reference for the PWFP site.  

The reference DEM used in this study is the U.S. National Elevation Dataset (NED) 1/9 arc 

second (3 m) DEM. It was developed by the U.S. Geological Survey from lidar data collected by the 
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Federal Emergency Management Agency (FEMA) initiative to improve flood and emergency maps in 

northern Virginia. The lidar data were collected between April and October of 2011. The lidar dataset was 

independently tested (Dewberry 2012) to have a 5.5 cm vertical accuracy and a 1 m horizontal accuracy. 

The NED produced from lidar source data has an estimated RMSE of 0.87 m for the continental United 

States (Gesch, Oimoen, and Evans 2014). The NED was used for all direct elevation comparisons, and 

also to derive stream-lines. The raw lidar data is used in this study only for visual comparison between a 

true point cloud and a photogrammetric point “cloud.” 

The 1-Arc Second void-filled Shuttle Radar Topography Mission (SRTM) Version 3 DEM 

created from interferometric synthetic aperture radar (IFSAR) collected in 2009 and void-filled with 

ASTER GDEM2 data, is also used as a reference dataset. Originally this dataset was available outside the 

United States at 3-Arc Second resolution, however it was re-released in 2015 at 1-Arc Second resolution. 

Its global coverage makes it a common choice for elevation data if no higher resolution data are available. 

Several ancillary datasets, including the PWFP boundary (shown figure 1), park map, and canopy 

height were acquired from the National Park Service. The canopy height dataset is derived from the 2010 

lidar data at 1 m resolution and estimates vegetation canopy height above ground surface (Elmore, Guinn 

and Sanders 2013).  

All datasets were clipped to the study area and projected to NAD 83 UTM 18 N. The re-

projection of raster datasets was performed through cubic convolution resampling. 

Methods 

13. Software  

In general, photogrammetry tasks were performed in PCI Geomatica, all tasks related to the 

classification or manipulation of the lidar point cloud were performed in GlobalMapper 17.1, and all other 

analyses were performed in ESRI’s ArcGIS 10.1 (Table 2).  

14. Land Cover Classification 

The accuracy of both photogrammetric and IFSAR DEMs have been found to vary with 

landcover type (Fisher and Tate 2006; Hofton 2006), therefore a high-resolution land cover dataset was 

created from multispectral WorldView data to evaluate accuracy. Details regarding the creation and error 

evaluation of this dataset can be found in Appendix A, as they are not directly relevant to the focus of this 

study. 

15. DSM Extraction 

Digital surface models were extracted separately from both the leaf-off and leaf-on WorldView 

stereo imagery. To accomplish this, ground control points (GCPs) were manually selected to georeference 
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the stereo pair to reference imagery, image tie points were automatically identified, and block adjustment 

was performed. Epipolar pairs were extracted and then interpolated to create a grid-based digital surface 

model with 1.0 meter resolution. 

The 2015 leaf-on imagery required two overlapping stereo image pairs (oriented one pair to the 

north of the second) to cover the study area. Eight GCPs were collected for each individual stereo pair, 

resulting in an overall RMSE of 0.5 m for the northern image pair and 0.9 m for the southern image pair. 

Mosaicking of the two extracted leaf-on DSMs was performed using an average operator and cubic 

convolution resampling. Only one stereo pair was required for the 2016 leaf-off imagery. Eight GCPs 

were collected with a RMSE of 1.16 m. Finally, all DSMs were converted to LASer (LAS) point cloud 

file format, where each point represents the elevation value at the center of the grid cell.  

16. Filtering surface features from the DSM 

Multiple lidar processing workflows were investigated to filter surface features from the 

photogrammetric DSMs to create a bare earth DEM. A variety of procedures are described in the 

following sections, but all entail an initial classification of outlier values as noise, then the remaining non-

noise points are classified as ground or non-ground. Additional procedures using vegetation point 

classification and ancillary data are explored. An overview of the specific procedures used in each 

workflow is given in Table 3. 

 

Classification of Outlier and Ground points 

The first step in point classification is the labeling of elevations greater or less than two standard 

deviations from the local mean, and outside of the global range of 0 – 135 m (established using the limits 

of the SRTM elevation range in the study area) as noise. Of the remaining points, ground points were 

classified as those points with a relatively small curvature and small vertical difference from the average 

of the local area. These parameters were optimized iteratively through comparison of each ground point’s 

elevation to the NED. The difference value and subsequent calculation of mean error from the collective 

difference values of all points was used to characterize the success of parameter settings. From this 

analysis a local window (set to 10 m) was used to determine a minimum vertical departure (set to 1.5 m) 

for the photogrammetric DSMs, and 4 m and 0.6 m (respectively) for the raw lidar data. Additional 

parameters of maximum height delta and maximum expected terrain slope were set to 35 and 9, 

respectively, but had comparatively little influence on the classification. 

 

Additional Procedures Tested 
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Additional procedures were explored as potential methods for reducing elevation inaccuracies 

and to improve the correctness of hydrologic flow across the filtered DSM. These additional procedures 

included a vegetation offset and geomorphic correction method. 

 

Vegetation offset 

Inaccuracy in the filtered photogrammetric DSMs results partially from interpolation across large 

areas classified as ‘non-ground.’ Unlike multiple-return lidar data, which generally does not have such 

large gaps because a few returns reach the ground surface even in dense closed canopy forest, these ‘non-

ground’ points in the photogrammetric point cloud are gaps in the ground surface and must be filled 

through interpolation of surrounding ground points. Thus a procedure to utilize vegetation points through 

a vertical offset was investigated. A point was classified as vegetation if the plane between it and the 

nearest two ground points exceeded a certain slope. This ‘planarity’-based evaluation was performed for a 

local window throughout the study area. The elevation of points classified as ‘vegetation’ was then 

reduced by 10 m, based on the average canopy height observation from Elmore, Guinn and Sanders 

(2013).  

 

Geomorphic correction by proximity to stream  

Consideration was also given to hydrologic modeling of water flow across the DSM, which 

requires well-defined drainage pathways. To improve flow, key drainage pathways were defined and 

improved through a vertical offset. The orthorectified 2015 monoscopic imagery was used for the manual 

identification and digitization of stream paths as line features. Each identified stream is at least 5 m wide 

and is an important drainage element contributing to the geomorphology of the study area. Digitized 

streams were therefore buffered by 5 m on each side of the stream, and all ground points within the 

buffered area were given a 10 m negative vertical offset to improve the flow of water across the filtered 

DEM.  

 

17. Comparing lidar and photogrammetric point clouds 

Lidar and photogrammetric point clouds were compared by quantifying the area of the gap 

between each set of three points, after a triangulated irregular network (TIN) was applied to the point 

clouds. These gap areas are important because they represent the space that must be interpolated to create 

the raster DEM. The point clouds were also qualitatively compared through visualization of profiles 

through the point clouds.  
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18. Bare Earth DEM generation and error evaluation 

Once filtered for surface features, each point dataset was interpolated to a raster DEM by first 

creating a triangular irregular network (TIN) of points, thinned using a local-mean 5 m window. 

The accuracy of these bare earth DEMs was assessed through point-sample comparison to the 

reference DEM. A dataset of 1,000 random points, stratified by the land cover class, was generated. Table 

4 describes the proportion and number of points allocated for each of the three land cover classes. At each 

point, the elevation of each filtered DEM was extracted and error was calculated as the difference 

between the filtered DEM and the reference DEM (filtered DEM minus reference).  

Several studies have discussed the inadequacy of global error estimates, such as the root mean 

squared error (RMSE) and mean error, in summarizing the accuracy of a DEM (Höhle and Höhle 2009; 

DeWitt, Warner, and Conley 2015), and suggest additional statistical metrics to provide a complete 

evaluation of error irrespective of data distribution. Therefore, in addition to the normal distribution 

metrics of mean, standard deviation, and RMSE, non-normal distribution metrics of the Wilcoxon median 

interval, 68.3% quantile, 95% quantile, and normalized median absolute deviation were calculated.  

To test whether the filtering methods reduced error in the photogrammetric DSM, the one sample 

Wilcoxon statistic was used. A one-tailed null hypothesis tested whether the filtered DEM median values 

were less than the corresponding DSM median. The null hypothesis for this test states that the median 

values of the filtered DEMs are not significantly (α < 0.05) lower than that of the DSM. Similarly, a 

follow-up Wilcoxon test evaluated whether WV1_FIL2 and WV1_FIL3 had lower median error values 

than that of the simple ground filtered DEM (WV1_FIL), with a null hypothesis states that the median 

values of WV1_FIL2 and WV1_FIL3 are not significantly (α < 0.05) less than the median of WV1_FIL.  

The impact of land cover on DEM error was evaluated through the analysis of error values within 

each land cover category. For example, only error values of the 53 points falling within open areas are 

used in the calculation of error metrics for the Open land cover category, etc. Correlation between the 

canopy height raster and the error raster for each filtered DEM is used to evaluate the influence of 

vegetation height on error. 

Results 

19. Comparison of lidar and DSM point clouds 

The density of a photogrammetric point cloud depends on the resolution of the stereo imagery, 

but is typically 4 points/m2 for 25 cm imagery. Although this is similar to that of lidar, the lidar and 

photogrammetric point clouds have inherently different 3D structure. The lidar point cloud’s multiple-

return structure captures both the ground elevation and the vegetation canopy, resulting in multiple 

elevation (Z) values for each X,Y location in space. By comparison, the photogrammetric point cloud 
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contains elevation values for only the reflective surface of the imaged area. The resulting point cloud 

captures either ground or vegetation elevations, resulting in large gaps in ground elevation measurement. 

Figure 2 compares a cross-section of the lidar point cloud (A) to that of the leaf-on photogrammetric point 

cloud (B). From figure 2 it is clear that, while there are few areas of a lidar point cloud that lack coverage 

in ground points, the photogrammetric point cloud may have large areas that do not contain a single 

ground point. The removal of non-ground elevation values from a photogrammetric point dataset results 

in a loss of the elevation measurement for the area of those points, and necessitates interpolation of 

elevation from surrounding points.  

This is quantitatively evident in comparison of the triangle facet areas of the TINs created from 

the ground returns of each dataset, shown in Table 5. The larger average area of TIN facets in the 

photogrammetric DEM compared to those of the lidar DEM (2.3 m2 and 0.2 m2, respectively) indicates 

that it has sparser ground measurement and more interpolation.  

Figure 2 also demonstrates that there may be a vertical discrepancy between the elevations of 

photogrammetric ground points and elevations of lidar ground points. This is because the points may 

capture low areas in the vegetation canopy instead of the ground, and still fulfill the local height and 

planarity classification parameters for ground points in the photogrammetric point cloud.   

20. Interpolated digital terrain models 

All DEMs are shown planimetrically in figure 3 using the same color ramp and linear 0 – 125 m 

stretch to allow for direct visual comparison of the reference DEM (figure 3A) and SRTM (figure 3B) to 

the photogrammetrically derived raw DSMs (figure 3C and 3G) and filtered DSMs (figure 3D-F, 3H). 

Visualization of the DEMs in profile is useful in evaluating the degree to which each approximates the 

ground surface of the reference DEM. To enable this 3D comparison, figure 4 shows the profile of each 

DEM along a transect. Table 6 displays the results of the error assessment using descriptive statistics, 

normal distribution accuracy metrics and non-normal distribution accuracy metrics. All photogrammetric 

DEMs, except the WV3_DSM were found to have negative error skew, indicating that the modeled 

elevation surface lies below the reference surface. The presence of skewness suggests a non-normal error 

distribution and indicates that non-normal distribution metrics, such as the 68.3 percentile value, should 

be evaluated in addition to the RMSE. Each DEM is discussed in detail below.  

 

WV1_DSM 

Although the raw leaf-on DSM (figure 3C) captures the general topography of the study area it is 

noisy and smooths terrain complexity compared to the reference. From the profile view (figure 4), it is 

clear that the leaf-on WV1 DSM elevations generally lies between the reference DEM and the SRTM. 



65 

 

Quantitative error metrics suggest that the WV1_DSM is comparable to the SRTM in accuracy. Its mean 

error of 11.60 m is slightly lower than the 12.84 m mean error of the SRTM, however its RMSE of 13.68 

m is slightly higher than the SRTM’s 13.48 m RMSE. Of particular note, its non-normal distribution error 

values are greater than those of the SRTM (Table 6).  

 

WV1_FIL 

Simple filtering of the elevations classified as ground (method WV1_FIL) results in a DEM 

(figure 3D) that qualitatively appears to be an improvement on the photogrammetric DSM. The large 

maximum positive error is comparable to that of the SRTM, but the minimum error is large compared to 

that of the SRTM and indicates that the filtered DEM lies below the reference surface, at least in places. 

In evaluating terrain morphology of this filtered DSM, there are several high-elevation artifacts within the 

main stream valley caused by tall vegetation overhanging the stream. These artifacts function 

hydrologically as false dams and would result in poor modeling of water flow. Bowl-shaped depressions 

in this DEM are caused by actual ground elevations surrounded by unfiltered vegetation elevations, and 

are a second indication of the limited success of the simple filtering procedures.  

Despite the visual presence of artifacts and outliers, the filtering decreases the amount of error 

present in the DSM by all metrics. Based on the low p-value result of the one directional Wilcoxon test 

(Table 7), the null hypothesis is rejected and the median error value of WV1_FIL is found to be 

significantly (α < 0.05) less that of the unfiltered DSM, indicating the filtered DEM represents an 

improvement over the original data. 

 

WV1_FIL2 

The addition of a vertical offset to reduce the effect of vegetation artifacts (method WV1_FIL2) 

results in a DEM (figure 3E) with minimum and maximum elevations similar to the reference DEM. 

However the errors observed in the raw DSM and simple ground filtering (WV1_FIL), such as vegetation 

artifacts and sinks caused by low areas surrounded by vegetation, are still present (albeit reduced). New 

errors have been introduced where the vertical offset overcompensates for vegetation height and causes 

the filtered surface to be below the reference surface (figure 4). Thus, while the WV1_FIL2 generally lies 

close to the reference surface, it exhibits several areas of too high or too low elevation.  

Despite these inconsistencies, the WV1_FIL2 is quantitatively the most accurate leaf-on DEM 

(Table 6), with the lowest RMSE, mean error and non-normal distribution metric values. Based on the 

results of the one-directional Wilcoxon follow-up test (see Table 8), the null hypothesis is rejected and the 

median error value of WV1_FIL2 is found to be significantly less than that of both the unfiltered DSM 

and WV1_FIL. 
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WV1_FIL3 

The inclusion of a vertical offset based on stream proximity (method WV1_FIL3) produces a 

DEM (figure 3F) with substantially more terrain detail and a well-defined drainage pattern similar to the 

reference DEM. Despite a higher maximum value, qualitatively this method successfully reproduces the 

reference terrain (figure 4). Although it appears to be an improvement over the WV1_FIL2 method and 

improves the hydrologic functionality of the DEM, the RMSE, mean error, and non-normal distribution 

metric values for WV1_FIL3 are higher than those of WV1_FIL2 (Table 6). Furthermore, the Wilcoxon 

test results are somewhat contradictory for WV1_FIL3. The first test result (Table 8) indicates a rejection 

of the null hypothesis and confirms that the median value of WV1_FIL3 is significantly lower than that of 

the unfiltered DSM. However, the follow-up Wilcoxon test (Table 9) supports the acceptance of the null 

hypothesis that the median error of WV1_FIL3 is not significantly lower than that of the simple filtering 

(WV1_FIL). The latter result suggests that the simple vertical offset applied to all vegetation pixels of the 

WV1_FIL2 method produces a DEM with median error lower than is found for the DEM with the more 

complex offset designed to improve hydrologic flow (WV1_FIL3). 

 

WV3_DSM and WV3_FIL 

The leaf-off DEMs (figure 3G and 3H) are more successful in capturing the range of elevation 

and complexity of terrain features visible in the reference DEM. Elevation artifacts caused by stands of 

evergreen vegetation are clearly visible in the raw leaf-off DSM (figure 3G). These areas appear as 

contained areas of higher elevation than the surrounding terrain and are mostly removed by the filtering 

procedures (WV3_FIL). Qualitatively and quantitatively by all metrics, the filtered leaf-off DSM (figure 

3H) is the most similar to the reference DEM. 

21. Effect of Land Cover on Filtered DEMs 

A positive correlation exists between canopy height and error in all leaf-on DSMs (Table 10), but 

the moderate strength of this relationship suggests that error magnitude in the DSMs (defined as 

difference from the DEM) is not entirely caused by the height of the vegetation canopy.  

Results of the analysis of error by land cover class (figure 5), indicates that error differs 

substantially by land cover. The difference in error between different land cover categories is greatest in 

the leaf-on DEMs, but even in the leaf-off DEMs error varies notably between the different land cover 

classes. It is not surprising that the leaf-on WV1_DSM reflects the largest difference in error values 

between land cover categories, as this DSM is created at a scale and during the phenological state that 

best captures canopy differences. However, it should not be assumed that the leaf-on DSM represents a 
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perfect addition of the ground surface elevation and the height of vegetation canopy because the DSM 

does not consistently capture the upper canopy surface.  

The additional importance of figure 5 lies in the isolation of the Open land cover category for all 

evaluated DEMs. Open areas of each DEM, including DSMs, are conceptually equivalent to a digital 

terrain model. Thus evaluation of the median error within Open areas compares the DEMs at their most 

accurate spots. In these areas of high accuracy it can be seen that WV1_FIL3 has the lowest median error, 

and thus is the closest leaf-on DEM to the reference terrain. WV1_FIL2 over-compensates for vegetation 

height, resulting in a negative median error. Both leaf off DEMs (WV3_DSM and WV3_FIL) also have 

negative median error, but the value is substantially smaller than that of WV1_FIL2. Based on this 

median error metric, WV3_DSM has the lowest error and thus most closely models the reference terrain. 

The land cover class exhibiting the greatest potential error in each DEM is either deciduous forest or 

evergreen forest, depending on the seasonality of source imagery. In the leaf-on DEMs, median error of 

the filtered DEMs is lower for both deciduous and evergreen classes, suggesting that filtering successfully 

reduces the artifacts of vegetation canopy. Of these DEMs, WV1_FIL2 exhibits the smallest median error 

values. In the leaf-off DSM median error is negative for both classes and increases as a result of filtering, 

but these values are small compared to those of the leaf-on DEMs. 

Conclusion 

This work evaluated how effectively lidar filtering techniques can be used to reduce the error in a 

digital surface model (DSM) derived photogrammetrically from high-resolution stereo satellite imagery in 

a densely forested environment. The central challenge in trying to generate a bare earth DEM from 

photogrammetric methods is the lack of ground returns from beneath the vegetation canopy. In this study, 

fine spatial resolution photogrammetric DSMs were extracted from stereographic WorldView imagery in 

leaf-on and leaf-off conditions, then converted to a LAS point cloud. Ground terrain was identified using 

lidar point classification methods and then interpolated to create a bare earth digital terrain model (DEM).   

Overall it was found that a photogrammetric DSM may be created that is of similar spatial 

resolution to a lidar DEM, however the lack of multiple returns in the photogrammetric point cloud 

greatly limits the success of creating a bare-ground DEM in leaf-on forested land cover. Lidar processing 

techniques were partially successful in identifying points within the photogrammetric point cloud that fell 

upon the ground surface, but the fundamentally different 3D structure of the point cloud ultimately 

reduces the accuracy of the filtered DEM. Through filtering the effect of the vegetation canopy on the 

DSM elevation surface can be substantially diminished, creating a DEM with accuracy between that of 

the SRTM and a lidar bare earth DEM. The accuracy of the leaf-on filtered DEM created in this study 

would make it useful for terrain visualization and estimation of elevation, however it contains artifacts 



68 

 

that limit its use in hydrologic modeling applications. Subsequent smoothing may reduce the effect of 

such artifacts and improve hydrologic flow, but at the cost of the fine-scale terrain detail. 

Filtering procedures were more successful in removing the vegetation artifacts from the leaf-off 

photogrammetric DSM. In this study, the raw DSM extracted from leaf-off stereo imagery was similar in 

vertical accuracy to the reference DEM and correctly modeled the complexity of terrain features with 

minimal noise. Furthermore, elevation artifacts from evergreen vegetation and other surface features were 

successfully removed using lidar filtering procedures, resulting in a bare earth DEM with an accuracy 

comparable to that a bare earth DEM created from lidar and useful for hydrologic modeling. 

The findings of this study offer potential guidance for those considering the use of 

photogrammetric methods using high-spatial resolution imagery to generate DSMs in areas lacking high-

resolution elevation data. The study area’s leaf-on, deciduous forest land cover presents a challenge for 

the creation of a bare earth DEM, however the filtering procedures explored in this research significantly 

improved the accuracy and usability of each photogrammetric DSM. Additional research in this area 

should evaluate the potential of new filtering methods and point classification algorithms in different 

types of terrain and land cover. 
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Tables 

Table 1. Data used in the study 

 Satellite/ Source Date (Season)  View Type Characteristics Pixel size 

(m) 

Used For 

Digital Imagery 

 WorldView1 2015 Oct 10 (Leaf on) Stereo Panchromatic 0.5 Photogrammetric DSM 

 WorldView3 2015 Oct 6 (Leaf on) Mono Multispectral - 

4 band (VIS-NIR) 

1.5 Classification of land cover 

 WorldView3 2016 Mar 7 (Leaf off) Stereo Panchromatic 0.5 Photogrammetric DSM 

 Aerial 

orthoimagery 

2013 Spring (Leaf off) Ortho-

projected 

Multispectral - 

4 band (VIS-NIR) 

0.3 Accuracy assessment of 

Land cover classification 

Digital Elevation Data 

 NED 1/9 arc sec  Not Available Not Applicable Bare earth DEM 3  Reference DEM 

 SRTM 2000 February Not Applicable DEM 30  Globally available DEM 

data  

 Raw lidar data 2011 Not Applicable LAS point cloud (5 pts/m2) Photogrammetric to lidar 

point cloud comparison 
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Table 2. Software used in this study, categorized by analysis task. 

Analysis Task Software Additional Licenses 

1. Land cover classification ArcGIS 10.1 Image Classification toolbar 

2. DSM extraction PCI Geomatica Focus and OrthoEngine 

3. LAS point classification GlobalMapper 17.1 Lidar extension 

4. LAS interpolation to DEM ArcGIS 10.1 Spatial Analyst 

5. DEM comparison ArcGIS 10.1 Spatial Analyst 
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Table 3. DSMs produced from the tested filtering methods 

 Name Procedures (in order of completion from left to right) 

  Convert to 

point cloud 

Noise 

Filter 

Ground 

Classification 

Vegetation 

Classification 

and 10 m offset 

10 m offset of 

points within 5 m 

of the streamline 

Interpolation 

Leaf On DSM 

 WV1_DSM       

 WV1_FIL X X X   X 

 WV1_FIL2 X X X X  X 

 WV1_FIL3 X X X  X X 

Leaf Off DSMs 

 WV3_DSM X      

 WV3_FIL X X X   X 
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Table 4. Number of points randomly distributed within each category of land cover. 

Land Cover 

Category 

Coverage 

Area 

No. of 

Points 

Open/ field 5.3% 53 

Evergreen Forest 23.8% 238 

Deciduous Forest 70.9% 709 
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Table 5. Average area of TIN triangle facets. 

 

 

 

  

Area metric 

(m2) 

WV1_DSM 

Ground points 

Lidar  

Ground Points 

Min 0.0 0.0 

Maximum 1,801.6 262.3 

Mean 2.3 0.2 
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Table 6. Results of DEM error analysis. Descriptive statistics of signed error and absolute error, as well as normal distribution 

accuracy metrics and non-normal distribution accuracy metrics are given for each DEM evaluated in the study. 

  

SRTM WV1_DSM WV1_FIL WV1_FIL2 WV1_FIL3 WV3_DSM WV3_FIL 

Descriptive Statistics 

S
ig

n
ed

 E
rr

o
r 

Maximum (m) 26.62 28.77 22.13 17.07 22.19 25.61 4.47 

Minimum (m) 0.68 -16.77 -16.59 -22.53 -23.94 -4.90 -7.91 

Mean (m) 12.84 11.60 6.68 0.40 6.69 0.46 -0.71 

Std. Dev (m) 4.11 7.25 6.94 6.90 7.19 3.77 1.05 

Skewness (m) 0.17 -0.66 -0.52 -0.43 -0.64 4.91 -2.33 

A
b

so
lu

te
 E

rr
o
r Maximum (m) 26.62 28.77 22.13 22.53 23.94 25.61 7.91 

Minimum (m) 0.68 0.02 0.03 0.01 0.00 0.00 0.00 

Mean (m) 12.84 12.23 8.18 5.57 8.35 1.40 0.84 

Std. Dev (m) 4.11 6.13 5.08 4.09 5.16 3.53 0.94 

Normal Distribution Accuracy Metrics 

 

RMSE (m) 13.48 13.68 9.63 6.91 9.82 3.79 1.26 

Accuracy Metrics – No Assumption of Normality 

 

50th percentile (m) 12.76 12.42 7.18 1.00 7.19 -0.38 -0.56 

 

68.30th percentile (m) 14.62 15.35 10.54 3.97 10.66 -0.05 -0.31 

 

95th percentile (m) 19.70 22.30 17.09 10.74 17.29 3.87 0.45 

 

NMAD (m) 4.09 7.29 10.51 9.46 12.13 0.61 0.91 
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Table 7. Wilcoxon test of median error values 

DEM Estimated Confidence Interval (m) 

 Median (m) Lower Upper 

WV1_DSM 11.96 11.51 12.41 

WV1_FIL 6.96 6.55 7.43 

WV1_FIL2 0.66 0.22 1.10 

WV1_FIL3 7.07 6.62 7.52 

 

  



78 

 

Table 8. Wilcoxon one directional test of median error values (less than the 11.96 m estimated median of WV1_DSM). 

DEM Estimated Wilcoxon P- 

 Median (m) Statistic Value 

WV1_FIL 7.00 68507.0 0.000 

WV1_FIL2 0.66 1439.0 0.000 

WV1_FIL3 7.07 72591.0 0.000 
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Table 9. Wilcoxon one directional test of median error values (less than the 6.995 m estimated median of WV1_FIL). 

DEM Estimated Wilcoxon P- 

 Median (m) Statistic Value 

WV1_FIL2 0.66 40058.0 0.000 

WV1_FIL3 7.07 253238.0 0.628 
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Table 10. Correlation coefficients for the error in each DEM (calculated as DEM minus NED) and the canopy height raster created 

from lidar. 

DEM Correlation 

Coefficent  

WV1_DSM 0.595 

WV1_FIL 0.431 

WV1_FIL2 0.486 

WV1_FIL3 0.424 

WV3_DSM -0.053 

WV3_FIL -0.057 
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Table 11. Confusion matrix for land cover classification. Overall Accuracy is 85%. 

  Reference Image User’s 

  Field/ Open Evergreen Deciduous Total Accuracy 

C
la

ss
if

ie
d

 

Im
a
g
e 

Field/ Open 14 4 14 32 44% 

Evergreen 4 67 50 121 55% 

Deciduous 6 39 277 322 86% 

Total 24 110 341 358 

Producer’s 

Accuracy 
58% 61% 81%  
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Figures 

 

Figure 1. Study area within Prince William Forest Park in Prince William County, Virginia, USA. 

Mapped on Worldview-3 visible bands 5-red, 3-green, 2-blue, collected on October 6, 2014. 
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Figure 2. The 3D structure of the lidar point cloud (A) is inherently different than that of the 

photogrammetrically derived point cloud (B). Point classification using lidar techniques 

accurately identifies ground and vegetation points within the lidar dataset (A), but may not 

correctly differentiate between the two in the photogrammetrically derived dataset. Moreover, 

the elevation of vegetation point areas in the photogrammetric point cloud (B) must be 

interpolated from the closest ground point values. 
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Figure 3. Visual comparison of DEMs: A) reference digital terrain map (from the NED); B) 30m SRTM; 

C) raw digital surface model from leaf on WV1 imagery (WV1_DSM); D) filtered DSM (WV1_FIL); E) 

filtered leaf on DSM with vertical offset for tall vegetation (WV1_FIL2); F) filtered leaf on DSM with 

vertical offset for near-stream points (WV1_FIL3); G) raw DSM from leaf off WV3 imagery 

(WV3_DSM); and H) filtered leaf-off DSM (WV3_FIL). 
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Figure 4. Profile comparison of DEMs. The map shows the transect location. The WorldView-1 Leaf-On 

DSM graph (top) compares the surface of WV1_DSM (green), WV1_FIL (red), WV1_FIL2 (yellow), and 

WV1_FIL3 (blue), with the reference DEM (black heavy line) and the SRTM (gray line). The 

WorldView-3 Leaf-Off DSM graph (bottom) compares the surfaces of WV3_DSM (red) and WV3_FIL 

(blue), with the reference DEM (black heavy line) and the SRTM (gray line) for the same transect.  
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Figure 5. Error descriptive statistics for each DEM (m), presented by land cover. 
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Chapter 5 Conclusion 

Summary and Synthesis 

The papers presented in Chapters 2-4 have investigated specific challenges in the mapping and 

multi-dimensional monitoring of different scales of surface mining through remote sensing methods. This 

chapter summarizes the overall findings from all three papers, and discusses the potential implications for 

applied studies of surface or artisanal mining. 

The challenge of mapping different scales of land use land cover (LULC) in an area of industrial 

and artisanal mining using remote sensing methods was explored in Chapter 2. This chapter described a 

method of independently analyzing LULC at regional- and local- scales, then subsequently integrating 

these analyses in order to comprehensively assess changes in the spatial distribution of fine-scale artisanal 

mining activity within the scope of changing regional land covers. Regional-scale LULC classification of 

Landsat using support vector machines allowed for mapping of spatially relevant land covers from 1984-

2014. This classification successfully differentiated between some spectrally similar classes (such as tree 

crops and forest), but was less successful with others (such as mining/ bare and urban). Fine-scale 

artisanal mining LULC was then manually interpreted from high-resolution imagery for 2007 and 2014. 

These mining sites were compared to the regional-scale LULC classifications, and from this comparison 

it was clear that most ASM pits were located within the mixed vegetation class, suggesting that artisanal 

mining land use is generally not captured by Landsat multispectral classification in this environment. The 

small average size of an ASM pit (< 9% the size of a Landsat 30 m pixel) and the mixed land cover that 

occurs in close proximity to ASM pits are two factors that influence this misclassification. Integration of 

the fine-scale and regional-scale LULC analyses allowed for the accurate mapping of the distribution of 

both small and large areas of mining/ bare LULC. Although the inclusion of artisanal mining did not 

greatly increase the total area covered by the mining/ bare class, it altered the spatial distribution of this 

class – an important factor for community- and state- level management and monitoring.  

The findings of this paper confirm the importance of fine-scale analysis in areas of artisanal 

mining and present a simple and widely applicable method to integrate multi-scalar, multi-source remote 

sensing analyses in order to map two very different types of mining. Not only does this method allow for 

analysis of the distribution of mining activity, but it also allows for comprehensive assessment of changes 

in other, interrelated land covers, such as urban area, forest, and agriculture that surround mining regions.  

Quantification of landscape changes in the third dimension (topographic change) is also necessary 

in areas of resource extraction for applications such as the estimation of excavated volume and remaining 

mineral resources, modeling of hydrologic changes, and estimation of environmental impacts. 
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Topographic change calculated from DEM differencing is useful for such applications, but digital 

elevation models (DEMs), particularly globally available DEMs, differ widely in terms of their collection 

procedures, resolutions, and accuracies.  

Chapter 3 focuses on the potential accuracy of topographic change estimates over time through 

investigation of the source data and accuracies of available DEMs. This study was performed in a 

relatively undisturbed (by mining) part of southern West Virginia, USA. Most DEM descriptions 

typically include only a single accuracy metric (typically the root mean squared error (RMSE)), which is 

not regionally specific and does not describe the spatial distribution of error across the landscape. In the 

study, error was assessed in the available DEMs through comparison to a lidar bare-earth DEM. The 

results of this comparison called attention to the significantly large, positive, and normally distributed 

errors of both the shuttle radar topography mission (SRTM) and the Aster Global DEM (GDEM), 

indicating that terrain modeled by each of these DEMs is consistently above that of the reference DEM. 

This finding was not unexpected, as these two DEMs are known to include some portion of the vegetation 

canopy in their elevation values. The other DEMs evaluated had low errors and more closely modeled the 

reference terrain. Ordinary least squares (OLS) regression testing of the relationship between error and 

elevation, slope, and aspect returned mixed results, suggesting that their modeled terrain surfaces differ 

substantially and may not be directly comparable.  

The implications of these findings point to the limits on estimations of topographic change using 

moderate resolution DEMs. Although it is common to think of the DEM as the ground surface, plus or 

minus a single error metric (such as RMSE), the reality is that DEMs quantify the ground surface in 

different and complicated ways. Error is not uniform across this surface, and is likely autocorrelated, 

heteroskedastic, and at least partially dependent on land cover. Topographic change estimates require 

error bars that include the specific accuracies of the DEMs used to quantify change. At the very least, 

values of ±RMSE of each DEM should be considered, and amounts of change smaller than this combined 

error may appear as ‘noise’ and therefore not be quantified as change. The amount and spatial distribution 

of error in both the SRTM and the GDEM suggests that neither is comparable to the other DEMs 

evaluated, particularly since the GDEM is not associated with a specific moment in time and could 

therefore introduce additional error to topographic change quantification. Unfortunately, these two DEMs 

may be the only elevation datasets available for international areas of interest. The take-home message 

from this case study of topographic change in industrial mining areas is that a better DEM is necessary for 

the quantification of smaller magnitudes of change, such as that which occurs in areas of artisanal mining.  

The challenge of mapping fine-scale topographic changes in remote- or data-scarce areas such as 

those involved in artisanal mining is addressed in Chapter 4. This chapter presents a method of creating 

and filtering surface feature artifacts from fine-spatial resolution, globally available photogrammetric 
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digital surface models (DSMs). Although the raw photogrammetrically created DSM was found to have a 

RMSE greater than the SRTM, in many areas its modeled surface existed between that of the SRTM and 

the reference DEM. The presence of elevation artifacts caused by surface features not only reduced the 

accuracy of the terrain modeled by the DSM, but also impeded hydrologic analysis using the DEM. A 

bare-earth DEM was created through conversion of the DSM to lidar format (.las) point clouds, 

classification of the points as ground or vegetation, and subsequent filtering of non-ground points. In leaf-

on conditions, the ground filtering procedures significantly improved the RMSE, along with additional 

procedures of negative vegetation offset. Despite these improvements, correct hydrologic flow was not 

achieved due to the presence of dense vegetation in stream valleys, which limited the number and 

distribution of ground points. Vertical offset of vegetation in close proximity to the stream did not 

improve the RMSE, but did result in a more hydrologically functional DEM. In leaf-off conditions, the 

ground filtered DEM achieved low RMSE and correct hydrologic flow paths, successfully approximating 

the bare-earth reference DEM. These results indicate that this method could be used to create an 

approximation of a bare-earth DEM where no lidar data is available. Although the presence of large areas 

of dense vegetation canopy could negatively influence the RMSE of such a DEM, this work suggests that 

the filtered DEM would still be an improvement over the SRTM. Future research will entail evaluation of 

this method in mixed-LULC and will evaluate the degree to which small-scale changes in topography are 

captured by the ground filtered photogrammetric DEMs. Furthermore, 4D mapping, integrating high-

resolution LULC classification with high resolution DSMs, could allow for improvement of filtering 

procedures to include spectral characteristics. 

Final Remarks 

Mapping and monitoring of resource extraction sites over time is important not only for the quantification 

of LULC and topographic change, but also in the assessment of the multitude of environmental impacts 

that result from mining. Remote sensing and geographic information systems (GIS) are two geospatial 

tools that enable the systematic and repeatable mapping of mining-related change. However, there are 

many challenges associated with the remote sensing of mining, determined by the scale of mining and the 

dimensionality of analysis, and potentially further exacerbated by paucity of data in remote mining 

regions. In general moderate-resolution imagery and DEMs, such as Landsat and the SRTM can be used 

to map industrial-scale mining, but fine spatial resolution is necessary for artisanal and small-scale mining 

activity. However, in the analysis of topographic change over time, even moderate-scale DEMs may have 

insufficient accuracy for the quantification of industrial-scale elevation changes. In remote regions 

lacking access to lidar, photogrammetric DSMs produced from high-spatial resolution stereo satellite 
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imagery have great potential, particularly when paired with surface feature filtering methods, to fill the 

need for high quality elevation data. 
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