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ABSTRACT

Enumeration of the generalized Catalan numbers

Steven L. Richardson, Jr

The sequence of numbers given by the equation
C(n) = 1n+ 1

�2nn
�

are widely known as the Catalan numbers, because they were �rst studiedby Catalan. The ways to enumerate these numbers are similarly widelyknown and studied, as can be seen in Gould's catalog of Catalan numbers.Our objective is to �nd ways to enumerate this larger and generalized setof sequences, using multiple methods that will build on knownenumerations of the Catalan numbers.
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1 Introduction

The sequence of numbers given by the equation
C(n) = 1n+ 1

�2nn
� (1)

are widely known as the Catalan numbers, because they were �rst studiedby Catalan [1,2] The ways to enumerate these numbers are similarly widelyknown and studied, as can be seen in Gould's [1] catalog of Catalan numbers.Gould, in 1956 [3], developed the following equation
An(a; b) = aa+ bn

�a+ bnn
� (2)

and it is easily seen to be a generalization of (1): (1) is (2) with a=1 andb=2. Gould also showed the following convolution
nX

k=0

Ak(a; b)An�k(c; b) = An(a+ c; b) (3)
for (3). This also can be used to produce a convolution for (1), again witha=1 and b=2, adding c=1.Thus, it can be seen that the Catalan numbers are simply a special caseof this larger set of sequences, which we will call Rothe numbers from thispoint forward. Also, equation (3) can be known as the Rothe convolution.The generalized Catalan numbers, seen in the Appendix, will be submit-ted as a set to the Online Encyclopedia of Integer Sequences (OEIS) alongwith some of these enumerations.These sequences have been studied and have occurred in various sources,but have never been studied in conjunction with the Catalan sequences ortogether in this way. For example, in studying the cell growth problem [7],Harary discovered some of these sequences (speci�cally those sequences witha=b), but didn't link them to equation (2) in the way that we will.Naiomi Cameron, as we discuss later, developed [9] representations forbinary and ternary trees. These, as we will see, can also be generalized tobe enumerated by these Rothe numbers.Our objective is to �nd ways to enumerate this larger and generalized setof sequences, using multiple methods that will build on known enumerationsof the Catalan numbers.
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2 Enumeration by Solutions to Inequalities

The enumeration of the Catalan numbers that we will be build on was shownby Carlitz [2]. He proved that the number of solutions to the inequality
1 � a1 � a2 � : : : � an � n+ 1; ai � i (4)

was (1).Our goal is now to enumerate all sequences produced by (2) by thesolutions to inequalities such as (4). First, let's examine the sequences whichsatisfy (4) and represent the Catalan numbers.
n=1 (1):

1

n=2 (2):

1 1

1 2

n=3 (5):

1 1 1

1 1 2

1 2 2

1 1 3

1 2 3

n=4 (14):

1 1 1 1

1 1 1 2

1 1 2 2

1 2 2 2

1 1 1 3

1 1 2 3

1 2 2 3

1 1 3 3

1 2 3 3

1 1 1 4

1 1 2 4
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1 2 2 4

1 1 3 4

1 2 3 4

All subsequent sequence illustrations can be seen in the Appendix.It can be seen, as we start to generalize this inequality, that the numberof solutions to the following inequality will give the numbers correspondingto (2), with a=1 and b=3:
1 � a1 � a2 � : : : � a2n � n+ 1; ai � i+ 12 (5)

In fact, for a=1 and a general b, it can be seen that the number ofsolutions to this inequality will give the numbers corresponding to (2) withthose a and b values.
1 � a1 � a2 � : : : � a(b�1)n � n+ 1; ai � i+ (b� 2)b� 1 (6)

Finally, for a general a and b, the number of solutions to this inequalitywill give the numbers corresponding to (2).
1 � a1 � a2 � : : : � a(b�1)n+(a�1) � n+ 1; ai � i+ (b� 2)b� 1 (7)

This inequality and restriction works for any positive integers a, b, and nexcept for b=1, where there is no restriction on the elements in the inequal-ity. To prove that this is true, we have to examine the maximum value thatan element can have in the array that follows:
(a1; a2; : : : ; a(b�1)n+(a�1)) (8)

In general, the maximum values are:
1 : : : 1| {z } 2 : : : 2| {z } : : : n : : : n| {z } z }| {(n+ 1) : : : (n+ 1) (9)

where the �rst n groups contain b-1 elements and the last group containsa-1 elements.First, we'll align the maximum elements in
An(a� 1; b) (10)
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under the above maximum elements.
1 : : : 1| {z } 2 : : : 2| {z } : : : n : : : n| {z } z }| {(n+ 1) : : : : : : (n+ 1)
1 1 : : : 1| {z } 2 : : : 2| {z } : : : n : : : n| {z } z }| {(n+ 1) : : : (n+ 1) (11)

where, in the bottom equation, there are instead a-2 elements in the lastgroup.It is easily seen that every sequence that ful�lls the bottom restrictionsalso ful�lls the top restrictions. Thus, we can start to enumerate the includedsequences by including every sequence that ful�lls the bottom restrictions.As previously stated, this is
An(a� 1; b)

Now, we need to enumerate all the sequences that this doesn't include.To accomplish this, we just need to look at the places that the 2 arraysdi�er. There are n places, counting down from n to 1 from the right handside. To enumerate the sequences to include when we move n to n+1 (the�rst di�erence), we see that we need to include the sequences with thefollowing maximum elements:
1 : : : 1| {z } 2 : : : 2| {z } : : : n : : : n| {z } (12)

where the groups again have b-1 elements. This is easily seen to be
An(1; b)

Next, we move to the di�erence to the left of this one. This includes thesequences with the following maximum elements:
1 : : : 1| {z } 2 : : : 2| {z } : : : (n� 1) : : : (n� 1)| {z } (13)

(again with each group containing b-1 elements) on the left and the se-quences with the following maximum elements:
1 : : : 1| {z } z }| {2 : : : 2 (14)

(with the �rst group containing b-1 elements and the last group containinga-2 elements) on the right. Thus, this enumeration is
(An�1(1; b)) � (A1(a� 1; b))
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This process continues until we arrive at the last di�erence, where wesee the following enumeration: The sequences with the following maximumelements: 1 : : : 1| {z } (15)
(containing b-1 elements) on the left and the sequences with the followingmaximum elements: 1 : : : 1| {z } 2 : : : 2| {z } : : : z }| {n : : : n (16)
(with the all groups containing b-1 elements except the last group, whichcontains a-2 elements) on the right.Thus, we can represent the enumeration with this sum:

nX
k=0

Ak(a� 1; b)An�k(1; b) (17)
which is easily seen to be a speci�c case of (3). Thus, by (3), this sum is

An(a; b) (18)
This proves that the solutions to the above inequality do enumerate thenumbers An(a; b) = aa+ bn

�a+ bnn
� (19)

The following triangle was �rst discovered in 1961 by Forder [8] and isknown as Catalan's triangle:
1

1 1

1 2 2

1 3 5 5

1 4 9 14 14

1 5 14 28 42 42

1 6 20 48 90 132 132

1 7 27 75 165 297 429 429

Each term can be seen to follow the following equation:
T (n; k) = kX

j=0

T (n� 1; j) (20)
5



or, in other words, the sum of all the entries above and to the left of theterm in question.It is easily seen that the values on the diagonal are the Catalan numbers.What is interesting, though, is that each column has a meaning in the listof sequences de�ned above. Referring to the above list of sequences thatenumerate the Catalan numbers, we can see that the columns represents thelargest value in each sequence. For instance, for n=3, there is 1 sequenceswith largest value 1, 2 sequences with largest value 2, and 2 sequences withlargest value 3. In the triangle above, we can see that 5 is derived by adding1+2+2.Even more interesting, though, is that we can see all sequences
An(a; 2) = aa+ 2n

�a+ 2nn
� (21)

in this triangle. Of course, the Catalan sequences (the above with a=2) canbe seen on the �rst 2 diagonals. However, the case with a=3 is on the thirddiagonal down (3, 9, 28, ...), and it can be seen that all sequences correspondto the ath diagonal.For b=3, the following array can be seen to enumerate the sequences
An(a; 3) = aa+ 3n

�a+ 3nn
� (22)

1

1 1

1 2

1 3 3

1 4 7

1 5 12 12

1 6 18 30

1 7 25 55 55

1 8 33 88 143

1 9 42 130 273 273

1 10 52 182 455 728

Again, the case with a=2 can be seen on the �rst "diagonal" (1, 3, 12,55...) and the ath case can be seen in a similar way. Note, though, that inorder to track the correct sequence, we have to move in a "knights move,"
6



that is, 1 over and 2 down. Each column, again, represents the largestelement in the sequence that will enumerate the proper element.In fact, an array such as this can be constructed for each value of b.Below is the array for b=4.
1

1 1

1 2

1 3

1 4 4

1 5 9

1 6 15

1 7 22 22

1 8 30 52

1 9 39 91

1 10 49 140 140

1 11 60 200 340

1 12 72 272 612

1 13 85 357 969 969

In addition, these triangles give rise to convolution codes, which aredi�erent than the standard convolution code that is seen above and uses therelation of the triangles, (20).Looking at the ternary triangle above, you can see that the last elementof the even numbered rows is a number that satis�es (2) with a=1 and b=3.I'll label these elements as D(i). Using (20), you can see that D(2) = 3D(1)and D(3) = 3D(2) + 3D(1). From these, we can start to accumulate aconvolution. In this case, the �rst four terms are 3,3,10,42.A conjecture for this convolution code, in general, is:
An(1; b) = n�2X

j=1

( 1(b� 1)j + 1
�bjj

� b� 1n� j
�b(n� j)� bn� j � 1

�)+ b(b� 1)(n� 1) + 1
�b(n� 1)n� 1

�
(23)

3 Enumeration by Dyck Paths and Binary Trees

Eric Weisstein [10] de�nes a Dyck path as "a staircase walk from (0,0) to(n,n) which never crosses (but may touch) the diagonal y=x. The number
7



of Dyck paths of order n is given by the Catalan number:"
Cn�1 = 1n+ 1

�2nn
� (24)

Cameron [9] de�nes, in a similar vein, ternary paths as "the set of allpositive paths from (0,0) to some (3n,0) with S = (1,1),(1,-2)," and a gen-eralized t-Dyck path as "a positive path from (0,0) to ((t+1)n,0) with S =(1,1),(1,-t)." Here are some ternary paths:Cameron shows that the number of ternary paths is given by this repre-sentation: tn = 12n+ 1
�3nn

� (25)
This can be seen to be our A(n) with a=1 and b=3. In the same way, thegeneralized t-Dyck path can be seen to be represented by A(n) with a=1and b=t.
4 Enumeration by Diagonalization of Polygons

It has also been documented that the Catalan numbers (our numbers witha=1 and b=2) can be enumerated by the number of ways to diagonalize apolygon into triangles. Again, this can be generalized to �t our discussion.It can easily be seen that our numbers with a=1 can be enumerated by thenumber of ways to diagonalize a polygon into (b-1)gons.
5 Appendix 1: Justi�cation for Exhaustive Tables

On Thursday, August 24, 2004, Donald Knuth wrote the following, as partof an email to Henry Gould:"We know that exhaustive listings of set partitions for small n have beenmade for a long time, notably in Japan.But what about the Catalan numbers? There are oodles of combinatorialproblems with C(n) objects of order n; yet I can't recall seeing any tablesof the individual objects, rather than tables of the cardinalities, going backbefore say 1950.This is in sharp contrast to extremely voluminous books with tablesof permutations, combinations, and partitions. Euler didn't exhibit thetriangulations of a small n-gon; Catalan and Rodrigues and their colleaguesdidn't tabulate the possibilities for parentheses. Not even in the Hindenburgschool, where people like Rothe wrote highly relevant papers, do I recall
8



seeing tables of Catalan-counted objects | in spite of the fact that, in hisday, combinatorialists usually made combinatorial lists!"Also, Derrick Norman Lehmer, in his book "List of Prime Numbers from1 to 10,006,721," Carnegie Institute, Washington, Pub. 165 (1914), has thefollowing to say in the preface:"In spite of the contention of certain eminent scientists that mathemat-ics is a science that has nothing to do with observation and experiment,the history of the Theory of Numbers has been chiey made by those whofollowed methods closely allied to those of the student of natural science.Gauss himself, the most successful investigator in this �eld, was an inde-fatigable computer, as may be seen by consulting the long list of tables inhis collected works. Jacobi was also a tireless maker of tables. It is hardlylikely, indeed, that any theorem of importance in the Theory of Numberswas ever discovered which was not found in the �rst place by observationof listed results. This fact is itself su�cient warrant for the publication offactor tables and lists of primes, even at the present time, when the theoryof the sequence of prime numbers has been worked out to remarkable perfec-tion. Every investigator is familiar with the fact that a table constructed forone purpose almost always suggests other directions in which research maybe pro�tably conducted. Also, no matter how extraordinary the powers ofthe pure analyst may be, he ought not to neglect the check on his resultswhich an accurate table may a�ord. Much depends, therefore, on the abso-lute accuracy of a table such as this, in which the values of a discontinuousfunction are listed. Clearly, in such a table an entry can not be computedfrom the entries adjacent to it; no interpolation scheme is practicable, andeach entry must stand on its own merits."
6 Appendix 2: Exhaustive Tables

The Generalized Catalan Numbers for n=1 to 10, a=1 to 5, b=1 to 5:
A(1,1)

1

1

1

1

1

1

1

1

9



1

1

A(1,2)

1

2

5

14

42

132

429

1430

4862

16796

A(1,3)

1

3

12

55

273

1428

7752

43263

246675

1430715

A(1,4)

1

4

22

140

969

7084

53820

420732

3362260

27343888

A(1,5)
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1

5

35

285

2530

23751

231880

2330445

23950355

250543370

A(2,1)

2

3

4

5

6

7

8

9

10

11

A(2,2)

2

5

14

42

132

429

1430

4862

16796

58786

A(2,3)

2

7

30

143

11



728

3876

21318

120175

690690

4032015

A(2,4)

2

9

52

340

2394

17710

135720

1068012

8579560

70068713

A(2,5)

2

11

80

665

5980

56637

556512

5620485

57985070

608462470

A(3,1)

3

6

10

15

21

28

36

45

12



55

66

A(3,2)

3

9

28

90

297

1001

3432

11934

41990

149226

A(3,3)

3

12

55

273

1428

7752

43263

246675

1430715

8414640

A(3,4)

3

15

91

612

4389

32890

254475

2017356

16301164

133767543

A(3,5)
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3

18

136

1155

10530

100688

996336

10116873

104819165

1103722620

A(4,1)

4

10

20

35

56

84

120

165

220

286

A(4,2)

4

14

48

165

572

2002

7072

25194

90440

326876

A(4,3)

4

18

88

455

14



2448

13566

76912

444015

2601300

15426840

A(4,4)

4

22

140

969

7084

53820

420732

3362260

27343888

225568798

A(4,5)

4

26

204

1771

16380

158224

1577532

16112057

167710664

1772645420

A(5,1)

5

15

35

70

126

210

330

495

15



715

1001

A(5,2)

5

20

75

275

1001

3640

13260

48450

177650

653752

A(5,3)

5

25

130

700

3876

21945

126500

740025

4382625

26225628

A(5,4)

5

30

200

1425

10626

81900

647280

5217300

42724825

354465254

A(5,5)
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5

35

285

2530

23751

231880

2330445

23950355

250543370

2658968130

Sequences for small values of n:
An(1; 3) (26)

n=1 (1):

1 1

n=2 (3):

1 1 1 1

1 1 1 2

1 1 2 2

n=3 (12):

1 1 1 1 1 1

1 1 1 1 1 2

1 1 1 1 2 2

1 1 1 2 2 2

1 1 2 2 2 2

1 1 1 1 1 3

1 1 1 1 2 3

1 1 1 2 2 3

1 1 2 2 2 3

1 1 1 1 3 3

1 1 1 2 3 3

1 1 2 2 3 3

17



n=4 (55):

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2

1 1 1 1 1 1 2 2

1 1 1 1 1 2 2 2

1 1 1 1 2 2 2 2

1 1 1 2 2 2 2 2

1 1 2 2 2 2 2 2

1 1 1 1 1 1 1 3

1 1 1 1 1 1 2 3

1 1 1 1 1 2 2 3

1 1 1 1 2 2 2 3

1 1 1 2 2 2 2 3

1 1 2 2 2 2 2 3

1 1 1 1 1 1 3 3

1 1 1 1 1 2 3 3

1 1 1 1 2 2 3 3

1 1 1 2 2 2 3 3

1 1 2 2 2 2 3 3

1 1 1 1 1 3 3 3

1 1 1 1 2 3 3 3

1 1 1 2 2 3 3 3

1 1 2 2 2 3 3 3

1 1 1 1 3 3 3 3

1 1 1 2 3 3 3 3

1 1 2 2 3 3 3 3

1 1 1 1 1 1 1 4

1 1 1 1 1 1 2 4

1 1 1 1 1 2 2 4

1 1 1 1 2 2 2 4

1 1 1 2 2 2 2 4

1 1 2 2 2 2 2 4

1 1 1 1 1 1 3 4

1 1 1 1 1 2 3 4

1 1 1 1 2 2 3 4

1 1 1 2 2 2 3 4

1 1 2 2 2 2 3 4

1 1 1 1 1 3 3 4

1 1 1 1 2 3 3 4

1 1 1 2 2 3 3 4

18



1 1 2 2 2 3 3 4

1 1 1 1 3 3 3 4

1 1 1 2 3 3 3 4

1 1 2 2 3 3 3 4

1 1 1 1 1 1 4 4

1 1 1 1 1 2 4 4

1 1 1 1 2 2 4 4

1 1 1 2 2 2 4 4

1 1 2 2 2 2 4 4

1 1 1 1 1 3 4 4

1 1 1 1 2 3 4 4

1 1 1 2 2 3 4 4

1 1 2 2 2 3 4 4

1 1 1 1 3 3 4 4

1 1 1 2 3 3 4 4

1 1 2 2 3 3 4 4

An(1; 4) (27)
n=1 (1):

1 1 1

n=2 (4):

1 1 1 1 1 1

1 1 1 1 1 2

1 1 1 1 2 2

1 1 1 2 2 2

n=3 (22):

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 2

1 1 1 1 1 1 1 2 2

1 1 1 1 1 1 2 2 2

1 1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2 2
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1 1 1 2 2 2 2 2 2

1 1 1 1 1 1 1 1 3

1 1 1 1 1 1 1 2 3

1 1 1 1 1 1 2 2 3

1 1 1 1 1 2 2 2 3

1 1 1 1 2 2 2 2 3

1 1 1 2 2 2 2 2 3

1 1 1 1 1 1 1 3 3

1 1 1 1 1 1 2 3 3

1 1 1 1 1 2 2 3 3

1 1 1 1 2 2 2 3 3

1 1 1 2 2 2 2 3 3

1 1 1 1 1 1 3 3 3

1 1 1 1 1 2 3 3 3

1 1 1 1 2 2 3 3 3

1 1 1 2 2 2 3 3 3

An(2; 2) (28)
n=1 (2):

1 1

1 2

n=2 (5):

1 1 1

1 1 2

1 2 2

1 1 3

1 2 3

n=3 (14):

1 1 1 1

1 1 1 2

1 1 2 2

1 2 2 2
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1 1 1 3

1 1 2 3

1 2 2 3

1 1 3 3

1 2 3 3

1 1 1 4

1 1 2 4

1 2 2 4

1 1 3 4

1 2 3 4

n=4 (42):

1 1 1 1 1

1 1 1 1 2

1 1 1 2 2

1 1 2 2 2

1 2 2 2 2

1 1 1 1 3

1 1 1 2 3

1 1 2 2 3

1 2 2 2 3

1 1 1 3 3

1 1 2 3 3

1 2 2 3 3

1 1 3 3 3

1 2 3 3 3

1 1 1 1 4

1 1 1 2 4

1 1 2 2 4

1 2 2 2 4

1 1 1 3 4

1 1 2 3 4

1 2 2 3 4

1 1 3 3 4

1 2 3 3 4

1 1 1 4 4

1 1 2 4 4

1 2 2 4 4

1 1 3 4 4

1 2 3 4 4

21



1 1 1 1 5

1 1 1 2 5

1 1 2 2 5

1 2 2 2 5

1 1 1 3 5

1 1 2 3 5

1 2 2 3 5

1 1 3 3 5

1 2 3 3 5

1 1 1 4 5

1 1 2 4 5

1 2 2 4 5

1 1 3 4 5

1 2 3 4 5

An(2; 3) (29)
n=1 (2):

1 1 1

1 1 2

n=2 (7):

1 1 1 1 1

1 1 1 1 2

1 1 1 2 2

1 1 2 2 2

1 1 1 1 3

1 1 1 2 3

1 1 2 2 3

n=3 (30):

1 1 1 1 1 1 1

1 1 1 1 1 1 2

1 1 1 1 1 2 2

1 1 1 1 2 2 2
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1 1 1 2 2 2 2

1 1 2 2 2 2 2

1 1 1 1 1 1 3

1 1 1 1 1 2 3

1 1 1 1 2 2 3

1 1 1 2 2 2 3

1 1 2 2 2 2 3

1 1 1 1 1 3 3

1 1 1 1 2 3 3

1 1 1 2 2 3 3

1 1 2 2 2 3 3

1 1 1 1 3 3 3

1 1 1 2 3 3 3

1 1 2 2 3 3 3

1 1 1 1 1 1 4

1 1 1 1 1 2 4

1 1 1 1 2 2 4

1 1 1 2 2 2 4

1 1 2 2 2 2 4

1 1 1 1 1 3 4

1 1 1 1 2 3 4

1 1 1 2 2 3 4

1 1 2 2 2 3 4

1 1 1 1 3 3 4

1 1 1 2 3 3 4

1 1 2 2 3 3 4

An(2; 4) (30)
n=1 (2):

1 1 1 1

1 1 1 2

n=2 (9):

1 1 1 1 1 1 1

1 1 1 1 1 1 2
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1 1 1 1 1 2 2

1 1 1 1 2 2 2

1 1 1 2 2 2 2

1 1 1 1 1 1 3

1 1 1 1 1 2 3

1 1 1 1 2 2 3

1 1 1 2 2 2 3

n=3 (52):

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 2

1 1 1 1 1 1 1 1 2 2

1 1 1 1 1 1 1 2 2 2

1 1 1 1 1 1 2 2 2 2

1 1 1 1 1 2 2 2 2 2

1 1 1 1 2 2 2 2 2 2

1 1 1 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 3

1 1 1 1 1 1 1 1 2 3

1 1 1 1 1 1 1 2 2 3

1 1 1 1 1 1 2 2 2 3

1 1 1 1 1 2 2 2 2 3

1 1 1 1 2 2 2 2 2 3

1 1 1 2 2 2 2 2 2 3

1 1 1 1 1 1 1 1 3 3

1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 2 2 3 3

1 1 1 1 1 2 2 2 3 3

1 1 1 1 2 2 2 2 3 3

1 1 1 2 2 2 2 2 3 3

1 1 1 1 1 1 1 3 3 3

1 1 1 1 1 1 2 3 3 3

1 1 1 1 1 2 2 3 3 3

1 1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 2 3 3 3

1 1 1 1 1 1 3 3 3 3

1 1 1 1 1 2 3 3 3 3

1 1 1 1 2 2 3 3 3 3

1 1 1 2 2 2 3 3 3 3
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1 1 1 1 1 1 1 1 1 4

1 1 1 1 1 1 1 1 2 4

1 1 1 1 1 1 1 2 2 4

1 1 1 1 1 1 2 2 2 4

1 1 1 1 1 2 2 2 2 4

1 1 1 1 2 2 2 2 2 4

1 1 1 2 2 2 2 2 2 4

1 1 1 1 1 1 1 1 3 4

1 1 1 1 1 1 1 2 3 4

1 1 1 1 1 1 2 2 3 4

1 1 1 1 1 2 2 2 3 4

1 1 1 1 2 2 2 2 3 4

1 1 1 2 2 2 2 2 3 4

1 1 1 1 1 1 1 3 3 4

1 1 1 1 1 1 2 3 3 4

1 1 1 1 1 2 2 3 3 4

1 1 1 1 2 2 2 3 3 4

1 1 1 2 2 2 2 3 3 4

1 1 1 1 1 1 3 3 3 4

1 1 1 1 1 2 3 3 3 4

1 1 1 1 2 2 3 3 3 4

1 1 1 2 2 2 3 3 3 4

An(3; 2) (31)
n=1 (3):

1 1 1

1 1 2

1 2 2

n=2 (9):

1 1 1 1

1 1 1 2

1 1 2 2

1 2 2 2

1 1 1 3
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1 1 2 3

1 2 2 3

1 1 3 3

1 2 3 3

n=3 (28):

1 1 1 1 1

1 1 1 1 2

1 1 1 2 2

1 1 2 2 2

1 2 2 2 2

1 1 1 1 3

1 1 1 2 3

1 1 2 2 3

1 2 2 2 3

1 1 1 3 3

1 1 2 3 3

1 2 2 3 3

1 1 3 3 3

1 2 3 3 3

1 1 1 1 4

1 1 1 2 4

1 1 2 2 4

1 2 2 2 4

1 1 1 3 4

1 1 2 3 4

1 2 2 3 4

1 1 3 3 4

1 2 3 3 4

1 1 1 4 4

1 1 2 4 4

1 2 2 4 4

1 1 3 4 4

1 2 3 4 4

An(3; 3) (32)
n=1 (3):
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1 1 1 1

1 1 1 2

1 1 2 2

n=2 (12):

1 1 1 1 1 1

1 1 1 1 1 2

1 1 1 1 2 2

1 1 1 2 2 2

1 1 2 2 2 2

1 1 1 1 1 3

1 1 1 1 2 3

1 1 1 2 2 3

1 1 2 2 2 3

1 1 1 1 3 3

1 1 1 2 3 3

1 1 2 2 3 3

n=3 (55):

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2

1 1 1 1 1 1 2 2

1 1 1 1 1 2 2 2

1 1 1 1 2 2 2 2

1 1 1 2 2 2 2 2

1 1 2 2 2 2 2 2

1 1 1 1 1 1 1 3

1 1 1 1 1 1 2 3

1 1 1 1 1 2 2 3

1 1 1 1 2 2 2 3

1 1 1 2 2 2 2 3

1 1 2 2 2 2 2 3

1 1 1 1 1 1 3 3

1 1 1 1 1 2 3 3

1 1 1 1 2 2 3 3

1 1 1 2 2 2 3 3

1 1 2 2 2 2 3 3

1 1 1 1 1 3 3 3
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1 1 1 1 2 3 3 3

1 1 1 2 2 3 3 3

1 1 2 2 2 3 3 3

1 1 1 1 3 3 3 3

1 1 1 2 3 3 3 3

1 1 2 2 3 3 3 3

1 1 1 1 1 1 1 4

1 1 1 1 1 1 2 4

1 1 1 1 1 2 2 4

1 1 1 1 2 2 2 4

1 1 1 2 2 2 2 4

1 1 2 2 2 2 2 4

1 1 1 1 1 1 3 4

1 1 1 1 1 2 3 4

1 1 1 1 2 2 3 4

1 1 1 2 2 2 3 4

1 1 2 2 2 2 3 4

1 1 1 1 1 3 3 4

1 1 1 1 2 3 3 4

1 1 1 2 2 3 3 4

1 1 2 2 2 3 3 4

1 1 1 1 3 3 3 4

1 1 1 2 3 3 3 4

1 1 2 2 3 3 3 4

1 1 1 1 1 1 4 4

1 1 1 1 1 2 4 4

1 1 1 1 2 2 4 4

1 1 1 2 2 2 4 4

1 1 2 2 2 2 4 4

1 1 1 1 1 3 4 4

1 1 1 1 2 3 4 4

1 1 1 2 2 3 4 4

1 1 2 2 2 3 4 4

1 1 1 1 3 3 4 4

1 1 1 2 3 3 4 4

1 1 2 2 3 3 4 4

An(3; 4) (33)
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n=1 (3):

1 1 1 1 1

1 1 1 1 2

1 1 1 2 2

n=2 (15):

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2

1 1 1 1 1 1 2 2

1 1 1 1 1 2 2 2

1 1 1 1 2 2 2 2

1 1 1 2 2 2 2 2

1 1 1 1 1 1 1 3

1 1 1 1 1 1 2 3

1 1 1 1 1 2 2 3

1 1 1 1 2 2 2 3

1 1 1 2 2 2 2 3

1 1 1 1 1 1 3 3

1 1 1 1 1 2 3 3

1 1 1 1 2 2 3 3

1 1 1 2 2 2 3 3

An(4; 2) (34)
n=1 (4):

1 1 1 1

1 1 1 2

1 1 2 2

1 2 2 2

n=2 (14):

1 1 1 1 1

1 1 1 1 2

1 1 1 2 2
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1 1 2 2 2

1 2 2 2 2

1 1 1 1 3

1 1 1 2 3

1 1 2 2 3

1 2 2 2 3

1 1 1 3 3

1 1 2 3 3

1 2 2 3 3

1 1 3 3 3

1 2 3 3 3

n=3 (48):

1 1 1 1 1 1

1 1 1 1 1 2

1 1 1 1 2 2

1 1 1 2 2 2

1 1 2 2 2 2

1 2 2 2 2 2

1 1 1 1 1 3

1 1 1 1 2 3

1 1 1 2 2 3

1 1 2 2 2 3

1 2 2 2 2 3

1 1 1 1 3 3

1 1 1 2 3 3

1 1 2 2 3 3

1 2 2 2 3 3

1 1 1 3 3 3

1 1 2 3 3 3

1 2 2 3 3 3

1 1 3 3 3 3

1 2 3 3 3 3

1 1 1 1 1 4

1 1 1 1 2 4

1 1 1 2 2 4

1 1 2 2 2 4

1 2 2 2 2 4

1 1 1 1 3 4

1 1 1 2 3 4
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1 1 2 2 3 4

1 2 2 2 3 4

1 1 1 3 3 4

1 1 2 3 3 4

1 2 2 3 3 4

1 1 3 3 3 4

1 2 3 3 3 4

1 1 1 1 4 4

1 1 1 2 4 4

1 1 2 2 4 4

1 2 2 2 4 4

1 1 1 3 4 4

1 1 2 3 4 4

1 2 2 3 4 4

1 1 3 3 4 4

1 2 3 3 4 4

1 1 1 4 4 4

1 1 2 4 4 4

1 2 2 4 4 4

1 1 3 4 4 4

1 2 3 4 4 4

An(4; 3) (35)
n=1 (4):

1 1 1 1 1

1 1 1 1 2

1 1 1 2 2

1 1 2 2 2

n=2 (18):

1 1 1 1 1 1 1

1 1 1 1 1 1 2

1 1 1 1 1 2 2

1 1 1 1 2 2 2

1 1 1 2 2 2 2
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1 1 2 2 2 2 2

1 1 1 1 1 1 3

1 1 1 1 1 2 3

1 1 1 1 2 2 3

1 1 1 2 2 2 3

1 1 2 2 2 2 3

1 1 1 1 1 3 3

1 1 1 1 2 3 3

1 1 1 2 2 3 3

1 1 2 2 2 3 3

1 1 1 1 3 3 3

1 1 1 2 3 3 3

1 1 2 2 3 3 3

An(4; 4) (36)
n=1 (4):

1 1 1 1 1 1

1 1 1 1 1 2

1 1 1 1 2 2

1 1 1 2 2 2

n=2 (22):

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 2

1 1 1 1 1 1 1 2 2

1 1 1 1 1 1 2 2 2

1 1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2 2

1 1 1 2 2 2 2 2 2

1 1 1 1 1 1 1 1 3

1 1 1 1 1 1 1 2 3

1 1 1 1 1 1 2 2 3

1 1 1 1 1 2 2 2 3

1 1 1 1 2 2 2 2 3

1 1 1 2 2 2 2 2 3
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1 1 1 1 1 1 1 3 3

1 1 1 1 1 1 2 3 3

1 1 1 1 1 2 2 3 3

1 1 1 1 2 2 2 3 3

1 1 1 2 2 2 2 3 3

1 1 1 1 1 1 3 3 3

1 1 1 1 1 2 3 3 3

1 1 1 1 2 2 3 3 3

1 1 1 2 2 2 3 3 3
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