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ABSTRACT 

 

RAPID CHARACTERIZATION OF BIOMASS: THE USE OF NEAR INFRARED AND 
FLUORESCENCE SPECTROSCOPY AS PROCESS ANALYTICAL TECHNOLOGY 

(PAT) METHOD. 

Kofi Nkansah 

 

The heterogeneous property of biomass (wood) affects its potential of being converted into any 

form of fuel in different ways (both positive and negative effects). Therefore in other to 

efficiently utilized biomass as a raw material for conversion into any form of clean alternative 

fuel to displace some of the fossil fuel we consume in the United State on a commercial scale 

basis, a quick, robust, non destructive on/in/at-line method of characterizing the physical and 

chemical properties of biomass that are relevant to the bio-refinery industry is imperative. 

 

This study discusses the potential of using near infrared spectroscopy (NIRS) and fluorescence 

spectroscopy (FS) coupled with multivariate data analysis (MVDA) as a robust and rapid process 

analytical technology (PAT) to characterize the physical and chemical properties of two potential 

biomass feedstock (yellow-poplar and northern red oak) in its solid state. This study is aimed at 

rapidly detecting the properties of potential biomass feedstock to be used in the bio-refinery 

online before any conversion process is begun. This will reduce cost of manufacturing bio-fuels, 

provide real time results of biomass characteristics reduce waste and produce a much consistent 

product.  The potential utilization of fluorescence spectrometer which is much cheaper, rapid and 

sensitive spectrometer with equal model performance as the NIR spectrometer models will 

reduce the cost of PAT even further. 

 

Generally, the results of this study showed that both NIR and FS can be used as rapid PAT 

method to characterize the physical and chemical properties of northern red oak and yellow-

poplar with moderate to high prediction performance. The NIR prediction models generally 

exhibited slightly higher prediction model performance as compared to similar models of the 

same response variable developed with the fluorescence spectra data. 
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CHAPTER ONE: Structure of thesis, introduction, objectives and 
literature review 
 

Structure of thesis 
This thesis is a combination of four unpublished papers that emanated from one broad 

objective. This thesis will constitute six chapters. Chapter one presents a general introduction to 

the study and literature review on relevant concepts such as multivariate data analysis, process 

analytical technology, near infrared spectroscopy (NIRS) and fluorescence spectroscopy (FS).   

Chapter two will constitute paper I, which investigate the use of near infrared (NIR) as a 

process analytical technology (PAT) tool to predict the physical and chemical properties of 

yellow-poplar (Liriodendron tulipifera). Chemical properties that were studied include ash 

content, extractive content, acid insoluble lignin, total lignin and holocellulose. Two types of 

bulk densities (aerated and tapped bulk density) were also measured and predicted. 

 Paper II will be presented in chapter three, which is a follow up study on the first paper. 

This study was necessitated based on the concept that biomass is heterogeneous and the 

prediction performance of yellow-poplar calibration models may not be taken as a universal 

prediction performance for all biomass types.  This chapter evaluated the possibility of predicting 

the physical and chemical properties of northern red oak using NIR spectroscopy coupled with 

multivariate data analysis.   

Chapter four of this thesis presents paper III which investigates the potential of using FS 

as a rapid PAT method for predicting the physical and chemical properties of yellow-poplar 

relevant to the bio-fuel industries that utilize biomass as a feedstock. This study also compares 

the performance of similar near infrared and fluorescence spectra-based models of each property 

of yellow-poplar which were considered in this study and predicted from the same population 

size.  

Paper IV, the final paper of this study is presented in chapter five of this thesis. This 

paper is a follow up on paper III.  This chapter presents a study on the potential of using FS as a 

PAT tool to predict the chemical and physical properties of yellow-poplar.  This study also 

compared fluorescence spectra-based models to near infrared spectra-based models of similar 

chemical or physical property of northern red oak to assess their performance. This comparison 

1 
 



was reasonable because both models were developed with the sample population. Chapter six 

will present a general conclusion and recommendations of the whole study. 
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Introduction 
Recent increase in crude oil prices coupled with environmental concerns over the use of 

fossil fuels has lead to the search for alternative clean fuel. In this search for alternative clean 

fuels to complement or displace some of the fossil fuels that our economy depends on, 

transportation bio-fuels and bio-products has been on the fore front. The use of any biomass as 

feed stock for bio-fuel is affected by its physical and chemical properties. The heterogeneous 

nature of biomass requires it properties to be known in real time before it can be used efficiently 

as a feedstock for any form of bio-energy conversion process. Therefore there is the need to 

pursue very rapid, sensitive, non invasive, robust and simple technology that can be used online 

during biomass conversion to predict the physical and chemical properties. This will form part of 

process monitoring in the bio-fuel product processing stream.  

Process analytical technology (PAT) has been successfully used for such process control 

activities in the petrochemical and pharmaceutical industry for more than two decades. In PAT, 

sensitive and robust analyzers are coupled with an appropriate multivariate data analysis 

(MVDA) to monitor the process stream of product manufacturing from the beginning to the end 

of the process.1 In the forest product industry, near infrared spectroscopy (NIRS) has been 

successfully been used as a PAT method to predict and monitor a variety of properties of wood 

that affects the appropriate products being manufactured. These include physical and chemical 

properties of wood.2,3 However, NIRS cannot be a catch-all PAT tool for all lignocellulosic 

properties, other efficient spectroscopic tools such as fluorescence which is 100-1000 times more 

sensitive need to be pursued. The efficient conversion of biomass into clean transportation fuel 

requires the development of appropriate cheap, robust, rapid and non invasive PAT method to 

characterize the physical and chemical properties of the feedstock relevant to the biochemical 

and chemo-thermal processing both online and offline.  Fluorescence spectroscopy (FS) and 

NIRS meet the requirements to be used as a PAT method in the bio-fuel and forest product 

industry in general. 

FS, a very sensitive spectroscopic tool is not widely used as a PAT analyzer in the 

biomass and forest products industry. Wood fluoresces by virtue of the presence of 

chromophores that gives wood its color. Even though Billa et al. (2000) demonstrated the 

potential of using FS coupled with MVDA to predict the ash content and monomeric lignin of 

eucalyptus wood, most of the use of FS in the forest product industry has predominantly been 
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limited to identification of wood.5,6 Fluorescence spectrometers are much portable, sensitive and 

acquisition of spectrum is rapid as compared to other spectroscopic tools used in the forest 

products industry. FS if pursued as a possible PAT method in the wood industry will cut cost in 

process control activities and also time of analysis. 

 

Objective of study 
The primary goal of this study was to investigate the use of NIR and fluorescence to 

characterize some physical and chemical properties of two potential bio-refinery raw material 

feed stocks: yellow-poplar (Liriodendron tulipifera L.) and northern red oak (Quercus rubra). 

Specific objectives of this study include: 

 

1. Investigate the use of NIR and FS coupled with MVDA to predict important physical and 

chemical properties of northern red oak and yellow-poplar. These properties include ash 

content, extractives content, total lignin, acid insoluble lignin, holocellulose and bulk 

density.  

 

2. Compare the performance of NIR and fluorescence based prediction models of each 

physical and chemical property of northern red oak and yellow-poplar. 

 

 

 

 

 

 

 

 

 

 

 

   

4 
 



Literature review  
 

Process analytical chemistry (PAC) / Process analytical technology 
Process Analytical Chemistry (PAC) a technique that combines analytical chemistry, 

process engineering, process chemistry and multivariate data analysis (MVDA) has been 

embraced by a lot of industries for decades.  Process Analytics (PA) is broadly defines as the 

chemical and physical analysis of a material in the process stream through the use of an in-line or 

on-line analyzer.  The principal focus of PAC is to gain a deep understanding of a process stream 

in other to achieve a more consistent end product, improve manufacturing efficiency, reduce 

waste, optimize the use of resources, enhance safety and reduce production cost that can be 

gathered from the mentioned advantages of PAC.  

When the principal focus of PAC is directed towards process understanding, the 

technique is referred to as Process Analytical Technology.  The past decade has seen 

approximately 5% annual increase in the use of PA instruments and this growth is expected to 

continue.1 Early PAT utilized univariate tools such as oxygen sensors, pH meters and flow 

meters which are currently also used. Other tools that are been utilized along these univariate 

tools are on-line chromatographs and spectroscopic tool.1 There has been extensive research in 

the potential use of PA instrument in the biomass based products industries. NIR is one of the 

most predominant PA tools that have been used over the years. NIR has been used as a PAT 

method to predict the physical and chemical properties of different types of biomass based 

products.2,3 The potential used of other tools such as NMR and FS have also been 

investigated.4,7,8  

 

Near infrared spectroscopy (NIRS) 

The use of NIR as a PAC technique has been applied to various process control variable 

measurements from a simple variable (moisture content) to very complex variables (full 

characterization of hydrocarbon composition and properties in refinery process stream).1 NIRS is 

known to be simple, non-destructive and rapid analytical technique that enables multi constituent 

analysis of nearly any matrix with a precision and accuracy comparably similar to reference 

methods.9  William Herschel, an astronomer, is largely credited with the discovery of NIR when 

he studied the distribution of heat in sunlight in 1800.10 The first potential use of NIR in the 
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agricultural and food industry was reported by Karl Norris et al. in 1950. They exhibited the 

potential used of NIRS as a rapid analytical tool for studying the properties of grain.11 The 

instrumentation of NIRS has lately been modified for rapid, non-destructive analysis of a variety 

of matrices; solids and liquids across agricultural and food industry.9 The first commercial 

application of NIRS as a PAT tool in the agricultural products industry is credited to the 

Canadian Grain Commission (CGC). The CGC successfully started using NIRS to monitor the 

protein content of wheat grain from 1974. NIR coupled with chemometric tools has been 

successfully used for quantitative and qualitative analysis of organic compounds in an array of 

applications. Online and inline analysis of materials with NIRS permits real-time measurements 

of a process and minimize deviations from standard process specification.1 

 

Principles of NIRS 

NIRS is defined as the measurement of wavelength and intensity of absorption of the near 

infrared light by a material. The spectra region approximately between 750-2500nm is 

characterized as the NIR region of the electromagnetic spectrum.12 (Figure 1) 

 

 
 
Figure 1: The infra red region of the electromagnetic spectrum (667‐20000nm) 

 

 Source: http://www.nirtech.net/technology.htm 
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The principle behind NIRS is the concept of vibration spectroscopy. NIRS is used to 

characterize the vibrational properties of a matrix or material.13 The concept of vibrational 

spectroscopy is based on the principle that atom-to-atom bonds within molecules vibrate with 

different frequencies that can be quantified by laws of physics.14 Most molecules at room 

temperature vibrates at their least energetic state allowed by quantum mechanics (rest state). NIR 

light has enough energy to excite molecular vibration of a material to higher energy levels from 

its rest state. When a material is radiated with EM radiation of NIR, the NIR light transfers some 

amount of energy unto the materials molecules and this causes transition from ground state of the 

molecules to higher energy levels. When this energy transfer matches the exact difference 

between the two energy levels (ground state-to-excited state) absorption of NIR radiation 

(energy) by the material occurs. Two major types of bond vibrational excitation occur during 

NIR radiation on a material, there are stretching (higher energy) and bending (lower energy) 

vibrations.13-15 

Some groups of atoms characteristically absorb NIR at different wavelengths.16 

Spectrometers can be used to detect and measure these frequencies or energies being absorbed.  

The near infra red spectra region (700-2500nm) absorption bands are characterized by overtones 

and combination of fundamental stretching bands that are known to occur in the mid-IR region 

of the EM-spectrum. Certain bonds of fundamental group of atoms including C-H, O-H and N-H 

are known to be involved in NIR absorption of a material. This means most organic molecules 

and water molecules which possess theses functional groups does absorb radiations in the NIR 

spectra region. This provides unique advantage of using NIRs as a qualitative and quantitative 

tool in agricultural, food and organic materials industries  since NIR absorption bands in organic 

materials will be due to these fundamental chemical bonds; C-H (Oils, fats and hydrocarbons), 

N-H (proteins)  and O-H (water and alcohol). The overtones bands of the NIR may be absorbed 

by other chemical bonds of a material but these absorptions are generally weak to be potentially 

useful in any analysis of a heterogeneous material such as agricultural and pharmaceutical 

product.2,14,16 Fundamentals absorption are known to be 10-100 times much stronger than 

overtones and combination bands. NIR radiation must cause a change in the dipole moment of a 

molecule before absorption occurs.13 Since the NIR spectrum of a material is characterized by 

overlapping overtones and fundamental absorptions, calibration models does rely heavily on 

statistics (MVDA).16 
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Near infrared spectra acquisition modes 

T wo modes of NIR spectra acquisition (transmission mode or reflection mode) are 

predominantly employed in the operation of NIR spectrometers.17 

 

Transmission spectroscopy 

Transmission spectroscopy is known to be the most common form of NIRS measurement 

modes. It occurs in the region between 1200 to 1850nm which encompass the first and second 

overtones of the mid infra red region fundamental stretching bands. Transmission spectroscopy 

is generally based on the direct penetration of a material by an NIR radiation without any 

deflections and the energy absorbed by the chemical component of the material recorded by the 

spectrometer. Transmission spectroscopy measurement (1/log T) is usually used to analyze 

materials that are transparent such as liquids and film and other biological materials.16 (Figure 2) 

 

 

 

Figure 2: Schematics of transmission spectroscopy 

 

Diffuse reflectance 

Diffuse reflectance spectroscopy measurements (1/R) is generally the most predominant 

reflection mode of spectra acquisition employed when analyzing opaque or light scattering 

matrices inkling solids, sullies and suspensions.16,17 The basic concept of diffuse reflectance is 

depicted in Figure 3.  In diffuse reflectance, NIR radiation illuminates a material at zero degrees 

angle. The light interacts with the material and re-radiate the diffused energy that contains vital 

compositional and physical characteristics of the material back into the plane of illumination at 

an angle of 45 degrees. The deviation in angle gives an advantage of a reduction in specular 

reflection during spectra collection. Particle size and shape of the particles being tested affect 
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diffuse reflectance; therefore a potential sampling error ascribed to particle size and shape needs 

to be considered during sampling.16 

 

 

 

Figure 3: Schematic of Reflectance spectroscopy 

Source: http://www.nirtech.net/technology.htm 

 

NIR Spectra analysis 

 

Data (spectra) pre-processing 

The overtones and combination of fundamental vibrations that are exhibited by the three 

fundamental absorbers; C-H, O-H, and N-H produce similar, broad and overlapping bands that 

cannot be clearly seen.16 This characteristic of the NIRS makes it rely greatly on statistics to 

decipher and extract information in the spectra produced. It is therefore common to apply some 

form of mathematical pre-treatment to spectra data during analysis. Three forms of spectra pre-

processing are commonly used in NIR spectroscopic analysis of reflectance data.  These include 

smoothing, derivation, and multiplicative scatter correction.16 

Smoothing essentially used on spectra data where system noise is highest. Smoothing is 

used to improve multivariate calibration by reducing the spectra noise in the data. The loss of 
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spectra resolution can also occur when too much smoothing is employed therefore theoretical 

background of smoothing methods need to be known before being applied.16 

Spectra derivation practically correct baseline shift and some variation that are encountered in 

using diffused reflectance spectroscopic measurements caused by particle characteristics. All 

spectra being analyzed are brought to a common base line before analysis is performed. The first 

derivative is used to offset baseline feature whiles the second derivate is used for linear base line 

feature (removing overlaps) that make absorption bands appear shaper.16,18 Third and fourth 

derivative are possible and even produce much sharper bands but higher derivative are not 

encouraged since spectra noise increases as derivative increases from first to fourth.16 

Multiplicative scatter correction (MSC) corrects the additive and multiplicative effects of spectra 

data.  This method is used to correct the difference that exist between individual spectra data for 

all samples at a wavelength point and the average spectra data for all samples at that same 

wavelength.16 MSC allows the variance between physical and chemical properties of a material 

to be more profound.19 

 

Potential use of NIR in the biomass products industry 

Biomass, an organic material has fundamental groups of chemical bonds (C-H, O-H and 

N-H) that form its primary constituents. These chemical bonds are known to have specific 

absorption bands in the NIR spectrum of the material. When NIR spectra are coupled with the 

appropriate MVDA inherent chemical and physical properties of the material can be extracted. 

NIRS has many advantages that make it the spectroscopic tool of choice in characterizing 

biomass. These advantages include; ease of operation and analysis, minimal sample preparation, 

non invasiveness and rapid spectra acquisition. NIR as a PAT tool has been used in the chemical 

and pharmaceutical industries for more than two decades.1,9  Tremendous research on forestry 

products industry have successfully demonstrated the use of NIRS to characterize some physical 

and chemical properties of some wood species.20-22 The mechanical properties of solid wood has 

also been successfully predicted with NIRS.17,23-25 The paper industry also has extensively 

studied NIRS and has used it to characterize the chemical properties of pulp.26-28 
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Fluorescence spectroscopy 

 

Fluorescence spectroscopy (FS) 
Light can be absorbed and re-emitted by matter, this phenomenon is called luminescence. 

There are two types of luminescence where absorption of photons occurs: fluorescence and 

phosphorescence. The absorbing and re-emitting light in fluorescence occurs on an average 

timescale of about 10-5 to 10-8 seconds while phosphorescence processes are much slower, taking 

about 10-4 to several second to occur.29,30 

Fluorescence spectroscopy (FS) is a widely used method within biochemistry and 

molecular biophysics. This is likely due to its extraordinarily high sensitivity in detecting 

changes in the structural properties as well as dynamic properties of biomolecules and 

biomolecular complexes.31 In FS the radiation of electrons in certain molecules by a suitable light 

energy source usually ultraviolet light causes the molecule to emit light of a lower energy which 

is typically but not necessarily visible light. Sir G. G. Stokes in 1852, first documented the 

comprehensive mechanism of absorption and emission process that he named as flourecence.32 

The phenomenon of fluorescence could be defined as the spontaneous emission of light from an 

electronically excited state to different vibrational levels of the electronic ground state. The 

stages in this process involve electronic transfer after molecules are excited by photons.33 

Flourophores are characterized by important properties like the position of emission wavelength, 

intensity and life time. These properties are inherent in any flourophore and are modified by the 

environment.34 The efficiency of fluorescence is expressed as quantum yield (Φ) which is a 

measure of the ratio of emitted light to absorbed light. When a quantum yield is 0.10, only 10% 

of photons are absorbed by the system (material) resulting in fluorescence.7 Quantum yield and 

wavelength of fluorescence spectra is affected by the structure of the material and the 

environment.7  

Principles of fluorescence spectroscopy 

FS is primarily associated with excitation of molecules from the ground state through the 

absorption of photons.  Materials at room temperature have its molecules in the ground state 

which is the lowest vibrational state of the molecule. In FS, the molecules absorb photons and 

are elevated to an excited state which results in the molecule reaching any of the vibrational sub-
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levels with each electronic state. Collisions with other molecules cause the excited molecule to 

lose vibrational energy until it reaches the lowest vibrational state of the excited electronic state. 

The molecule then drops down to one of the various vibrational levels of the ground electronic 

state again, emitting a photon in the process.29 Molecules may drop down into any of several 

vibrational levels in the ground state. The emitted photons will have different energies 

(emission), and thus frequencies. Therefore, by analyzing the different frequencies of light 

emitted in FS, along with their relative intensities, the structure of the different vibrational levels 

can be determined.31 In a typical study, the different frequencies of fluorescent light emitted by a 

sample are measured, holding the excitation light at a constant wavelength. This is called an 

emission spectrum. An excitation spectrum is measured by fixing the emission wavelength and 

measuring the excitation wavelenghth that emerges from the monochromator.34  

The Jabłoński diagram (Figure 4) summarizes the different relaxation pathways of an 

electronically excited chromphore. Light absorption usually starts from the first singlet state (S0) 

and its lowest vibrational level towards a vibrational level in S1. This is indicated by a vertical 

line in the diagram. In the S1 state the molecule rapidly relaxes to the lowest vibrational level 

(S0). There are several possible pathways of relaxation from the excited state and most of them 

are non-radiative. The most common pathways are internal conversion (IC) and fluorescence.34 

 

 

Figure 4: The Jablonski’s diagram 

Source: http://www.shsu.edu/~chm_tgc/chemilumdir/JABLONSKI.html 
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Potential use of fluorescence spectroscopy in biomass products industry 

The presence of chromophores in wood (biomass) which gives its color is responsible for 

the fluorescence of wood. Fluorescence spectra coupled with the appropriate MVDA may be 

used to predict some important properties of wood. The use of FS spectroscopy in the forest 

products industry has been limited. Fluorescence has been successfully coupled with MVDA to 

characterize some chemical properties of wood.4 The concept of different species of wood 

having different emission spectra (color) has also been demonstrated.5,6,35 The paper industry has 

studied fluorescence extensively and has used it to characterize cellulose and lignin content of 

pulp.7 

Multivariate data analysis 
In MVDA, mathematics and statistics are employed to extract relevant information from 

large data matrices with more than one variable. This approach is driven by data “mining” and 

statistics to get the desired results. Vital physical and chemical information of a material can be 

extracted from the broad spectrum of the matrix through MVDA. In contrast to traditional 

statistics, distributions assumptions are not met; the number of variables may be higher than the 

number of object and the variables are highly correlated. Hidden data structure of a material is 

fully investigated by the use of MVDA through the utilization of all data points in the data 

analysis.10 Traditional statistics will not analyze multivariate data where the number of objects is 

not at least five times as large as the number of variables.36 MVDA employs the correlation 

among the variables instead of looking at only one or few variables. The original variables are 

linearly combined to create new linear orthogonal variables.    

Properties of materials, technological processes, and chemical measurement are 

multivariate in nature, i.e. many variables describe the observed phenomenon, i.e. properties, etc. 

Multivariate analysis unlike univariate analysis considers many variables simultaneously. In 

chemical analysis, traditional chemical approaches are univariate – absorbance of a solution is 

measured at only one wavelength.37 In this approach, some important information about the 

solution is lost.  In contrast, multivariate approach will record a spectrum of the solution over a 

wavelength region, i.e. – absorbance at several wavelengths are recorded. Since MVDA 

considers many variables simultaneously, it is able to obtain newer and higher quality of 

informationa from data.36 The NIR and fluorescence spectra of most materials, including wood, 

contain valuable underlying chemical and physical information (“finger print”) related to the 
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described material.  However, without appropriate MVDA, the chemical, physical and biological 

information obtained from the spectra is limited.16 Thus MVDA which analyzes data consisting 

of multiple samples (observation) and variables by decomposing and reducing these multiple 

data points (data dimensionality) into a few relevant latent variables that can explain the 

relationship between the observations and variables in the data and also capture them in new 

latent variables.38,39 Multivariate data contains much more information about the phenomenon 

being studies than univariate data. There are many MVDA methods and the choice of a method 

in any analysis depends on the objectives of the study. These methods are categorized under 

three mains groups39: 

 

(i) Data description (explorative data structure modeling) 

(ii) Discrimination and classification 

(iii) Regression and prediction. (Partial least square and principal component regression) 

This study employed two of these MVDA methods; they include data description method –

principal component analysis (PCA) and principal least square regression method (PLS). 

Data description (Overview) 

The first steps in data analysis are descriptive statistics (mean, standard deviation, 

variance, etc) and PCA. PCA reduces the dimensionality of data by a linear combination of 

original data to generate new latent variables which are orthogonal and uncorrelated to each 

other. It distills the information in the original variables into a lower number of variables – 

principal components (latent variables).40 The first principal component (PC) lies along the 

direction of maximum variance in the data set, whiles the second PC lies in the direction of the 

next greatest variance in the data matrice.41,39 PCA, basically decomposes an X-data matrix into 

structure and noise parts. PCA thus minimizes errors in X-data matrix measurements by 

eliminating the noise part of the data matrix.42 PCA is known to form the basis of MVDA by 

extracting and displaying systematic variations within a data matrix.40,42-45 This method is used to 

characterize data and display its intrinsic structures visually by graph plots and summaries. Thus, 

it provides an overview of data and displays the relationship between variables in a data. PCA 

extracts and determines which variable is vital to variations in a data and also gives an overview 

of covariance variables that has the same effects on the x-matrix data.38 
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Multivariate calibration 

In any multivariate calibration process, the determination of X and Y matrices are 

essential. PLS and PCR relates the independent variables (X-matrix) to the response variables 

(Yi-matrices). The model(s) developed is then used to predict new response variables from new 

independent population with similar sampling properties. The ability PLS and PCR to deal with 

noise, collinearity and interference have made them the two methods widely used for 

multivariate regression calibration modeling methods. 

 

Principal component regression (PCR) 

The principal component regression (PCR) method is a two step procedure which 

involves PCA methods and multiple linear regression method (MLR). First a PCA of an X-

matrix data is done and the transformed x-matrix data is later plugged into an MLR model.39 The 

advantage of PCR over an MLR is that, PCR exhibits score plots, loadings and variance and can 

be interpreted with ease.39 

 

Partial least square regression (PLS) 

PLS is simply considered to be the most used method for relating two data matrices, X 

and Y, to each other by a linear multivariate model. PLS considered to be useful in analyzing a 

data with many variable, noise, co-linearity, and incomplete variables in both X and Y matrices. 

Precision of PLS increase with increasing number of X variables. In PLS regression the variance 

in a data matrix X and a dependent matrix Y is decomposed by successively estimating PLS 

components that captures the variance and correlation between X and Y. PLS systematically 

extract (decompose) variation in the data matrix (X-matrix) while (PCR) is used to regress each 

response variable (Y-matrix) onto the decomposed spectra(X-matrix), and make a projection to 

latent structures. This process allows for simultaneous and independent decomposition of both 

X- and Y-matrices and then performs the regression of the Y-matrix onto the X-matrix. There are 

usually two forms of PLS algorithms calculated and used in chemometrics studies; PLS1 and 

PLS2.  PLS1 analysis allows only one Y-variable to be projected against the x-matrix at a time, 

whiles PLS2 allows the projection of many Y-variables onto the X-matrix. Many studies have 

shown that PLS1 regression has a marginally better prediction ability of pertinent set of Y-

variable than PLS2 modeling of multiple Y-variables set.38,39,46 
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The mathematical basis of these methods are reported elsewhere in literature.38-39,47-48  

Useful statistics used to evaluate NIRS and fluorescence calibration models 

A good PLS calibration model fit for accurate future predictions can be measured with 

several parameters. They include root mean square error of calibration (RMSEC),  root mean 

square error of prediction (RMSEP), standard error of prediction (SEP), standard error of 

calibration (SEC), coefficient of  determination (R2), bias, RDP and residual variance. This study 

focused on future prediction ability of calibration models developed for each response variable 

(Y-reference value). Therefore the parameters used to measure the performance (prediction 

accuracy) of our models in this study included R2, RMSEP, SEP and bias.  

 

Root mean square of prediction 

RMSEP, a measure of the model fit, is a direct estimate of the prediction error in the Y-

variables (reference) of the model. It is expressed as the average error expected from future 

prediction of Y variables using our model and also expressed in the measurement units of the Y 

variables used in developing the model. Standard error of prediction (SEP) is a measure of 

precision of the models predicting ability corrected for the bias in the validation of the model.38,39 

SEP measures the average errors that are expected to be associated with future preditions.39 

 

Bias 

Bias is used to detect if there is a systematic difference between average values of the 

calibration set and the validation set. If such no difference exists, bias will be equal to zero. The 

closer the bias is to zero, the more accurate is the model developed, both in terms of model fit 

and predictability of the future sample set. Bias is computed as the average difference between 

predicted and measured Y-values of all samples in the validation set.39 

 

Coefficient of determination (R2) between predicted and measured values. 

Coefficient of determination (R2) is a measure of total variance between measured and 

predicted values that can be modeled by linear association. R2 shows the proportion of X- data 

that can be explained by the variance in the Y-data. It varies between zero and one. The closer R2 

is to one, the stronger the correlation. R2 can inflate and approach unity by increasing the 

complexity of the model. Therefore a high R2, even though a good indicator of a good model 
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cannot be independently used as the ultimate measure of model performance. Interpretation of R2 

may be subjective.16,38 Generally, an R2 between 0.92-0.96 represents a model that can be used in 

most applications including quality assurance. An R2 of 0.83-0.90 range also represent a model 

that can be used in most applications including research activities with some level of caution. 

Approximate calibration and screening purpose activities can be done with an R2 range of 0.66-

0.81. General rough screening activities can utilize a model with an R2 range between (0.5-0.64). 

R2 (< 0.5) may be deemed poor and not useable in any NIR calibration and the reasons should be 

investigated.16,38 
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CHAPTER TWO: Rapid characterization of biomass using near infrared 
spectroscopy coupled with multivariate data analysis: Part 1.  Yellow­
poplar (Liriodendron tulipifera L) 
 

Abstract 
This paper is the first of a series of four papers on the use of near infrared (NIR) and 

fluorescence spectroscopy (FS) coupled with multivariate data analysis (MVDA) as a process 

analytical technology (PAT) tool for rapid characterization of important physical and chemical 

properties of two types of lignocellulosic biomass; Northern red oak (Quercus rubra) and 

yellow-poplar (Liriodendron tulipifera L) as a potential feed stock for the bio-refinery industry. 

This paper, Part 1, focuses on the use of NIR as a PAT tool in predicting the chemical and 

physical properties of a West Virginia hardwood (yellow-poplar). This study revealed that some 

form of mathematical preprocessing of the NIR spectra (first derivative) greatly improved all 

prediction models developed in this study. Two spectra regions were used in this study (800-

2400nm and 1300-1800nm) and the full NIR spectra-based PLS1 models were comparably 

similar to models developed with reduced spectra that encompass parts of the first and second 

overtone of the NIR spectrum (1300-1800nm). Moderate to high correlation (R2) between 

measured and predicted properties were observed in this study. 

 

Keywords: Multivariate data analysis, Near Infrared, Fluorescence, Process analytical technology 
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Introduction 
For decades, the U.S. economy has depended largely on fossil fuels. More than half of 

the oil requirement of the U.S. is imported from politically unstable regions of the world. 

Additionally, predicted reserves of oil world-wide are grim. The energy crisis in 1970’s clearly 

demonstrated that continued dependence on imported foreign petroleum oil by the US poses a 

serious security threat to the U.S. economy. The uncertainty about the future availability and 

prices of petroleum oil worldwide has necessitated an urgent need to find alternate U.S. energy 

sources that can displace imported transportation fuels to ensure the country’s energy security.  

The billion-ton study estimated that, approximately 3% of U.S. industrial energy needs 

are currently met by biomass.1 In 2003, it contributed 2.9 quadrillion Btu of energy. A potential 

feedstock for the production of bio-fuels and bio-products is lignocellulosic biomass. 

Lignocellulosic biomass is both renewable and sustainable. It is a potential feedstock for the 

production of second generation transportation fuels and bio-products.  Estimates for biomass 

contribution to total industrial and electric energy are put at 4% with annual increase of 3.9 

quads in 2020.1 Biomass was projected to contribute to about 10% of transportation fuel 

consumption in 2020 (4.0 quads) and 25% in 2030.1 Further increase in production of chemicals 

and bio-products from biomass is expected. An increase in the production of chemicals from 

biomass is estimated to be 18% in 2020 and 25% in 2030. The Billion-ton study estimates that 

sustainable and renewable biomass from land resources can displace 30% or more of U.S. energy 

oil needs.1 Biomass can therefore make significant contribution to the overall energy needs of the 

country. 

Biomass is structurally heterogeneous both chemically and structurally. Its chemical, 

physical, and mechanical properties are source dependent. Sources of biomass include 

agriculture, logging residues, wood processing operations, and urban wood residues.1 It is 

therefore important in the optimization of the bio-refinery process to match the different physical 

and chemical characteristics to the process parameters. This can be achieved by using rapid and 

non-destructive methods in place of the traditional slow and expensive wet chemical methods.  

Recent developments in electronics and optics have led to the development of small 

portable spectrometers fitted with optical fibers. This configuration enables source of radiation to 

be brought to the specimen instead of the traditional setup where the specimen is brought to the 

radiation source. This reduces the time for analysis and unlike classical spectrometric analysis; 
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solid and liquid samples can now be analyzed in-situ with minimum sample preparation. These 

spectrometers are also capable of generating tremendous information about test specimens in a 

very short time periods (seconds). Such data contain “fingerprint” information about structure, 

physical and chemical properties of specimen under study. Using multivariate data analysis 

(MVDA), important and relevant information in the data can be “mined” and used to develop 

classification and prediction models. This constitutes the basis of Process Analytical technology 

(PAT).  

PAT is defined as the application of analytical chemistry with multivariate data tools for 

process understanding and achieving control or optimization of manufacturing processes.2 The 

immense capability of near infrared spectroscopy (NIRS) as a PAT tool was first demonstrated 

by the work of Karl Norris et al. in late 1950’s at the U.S. Department of Agriculture in 

Maryland.3 They demonstrated that NIR spectroscopy coupled with MVDA can be used to   

determine the physical and chemical properties of grains. NIR spectra represent overtones and 

combination bands. Most chemical and biochemical materials are known to have unique, well 

defined features at wavelengths that can be used for both qualitative and quantitative purposes. 

NIR spectra contain absorbance bands mainly due to three chemical bonds, i.e., C-H (fats, oil, 

and hydrocarbons), O-H (water, alcohol) and N-H (protein).2 PAT has been successfully used in 

the petroleum and pharmaceutical industry. In addition to NIR, PAT has also been applied to 

other spectroscopic methods such as Raman, UV-Visible, Laser Induced Breakdown, Nuclear 

Magnetic Resonance and fluorescence spectroscopy (FS).  

Considerable amount of wood residues is generated by various forestry operations in 

West Virginia. A recent survey by the Appalachian Hardwood Center (Division of Forestry and 

Natural Resources, West Virginia University) estimates weekly production of 12,077 tons of 

sawdust; 22,945 tons of chips and 17,748 tons of bark. Yellow-poplar and northern red oak are 

two of the most common wood species in West Virginia. Wood waste streams emanating from 

commercial forestry operations and wood processing plants provide potential lignocellulosic 

biomass feed stock for bio-refinery operations. Ability to rapidly characterize physical and 

chemical properties of these two wood species would enhance their potential as feed stock for 

the bio-refinery industry. 

One of the overall objectives of this study was to evaluate FS as a potential PAT tool and 

compare its performance with near infrared (NIR). NIRS has demonstrated tremendous success 
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as a PAT tool for the rapid and nondestructive characterization of lignocellulosic biomass 

properties.4,5 However, NIR spectroscopy cannot be a catch-all PAT tool for all lignocellulosic 

properties. FS has been reported as a rapid, nondestructive spectroscopic method for 

characterizing food products.6 Fluorescence spectra can be acquired very quickly, thus lending 

itself as potential PAT tool.  

In this study, NIR and Fluorescence were used to characterize some physical and chemical 

properties of two potential bio-refinery feedstock, yellow-poplar and northern red oak. 

Specifically, the objectives were to: 

 

1. Use NIR and FS spectroscopy coupled with MVDA to predict important physical and 

chemical properties of northern red oak (Quercus rubra) and yellow-poplar 

(Liriodendron tulipifera L). These properties include ash content, extractives content, 

total lignin, acid insoluble lignin, holocellulose, and bulk density.  

 

2. Compare the efficiency of two spectra region of NIR and fluorescence, in order to 

determine which region contains relevant spectroscopic information for accurate 

quantification of the chemical and physical properties of northern red oak and yellow-

poplar.  

 

3. Compare the performance of NIR based and Fluorescence based PLS1 prediction models 

of each physical and chemical property of northern red oak and yellow-poplar. 

 

The results of this study will be useful to the bio-refinery and bio-products industry. It will 

encourage the industry to embrace PAT as a tool for process control. The results of this study are 

presented in four parts. Parts 1 and 2 of this study reports on predicted models developed for of 

yellow-poplar and northern red oak using NIR. In parts 3 and 4, prediction models for the same 

properties of the two species using FS are presented. This study allows us to compare the 

performance of the two potential PAT tools with respect to a common population of each wood 

species. These results are also presented in paper 3 and 4. 
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Materials and methods 
Materials and methods used in the overall study are described here in details. The 

remaining three papers will all make references to this section.  

 

Materials 
A tree each of yellow-poplar and northern red oak were randomly selected in West 

Virginia University Research forest located about 13 km east of Morganton, WV. The height of 

each tree was approximately 14 meters. Five centimeter thick disks were cut at 3.5 meter 

intervals along the bole of the tree starting from the breast height (1.1m). A total of three disks 

were cut from each tree. Each disk was cut into blocks of size 19 X 19 X 50 mm. Only blocks 

from the heartwood of each disk were used in this study. Twenty specimens were randomly 

selected from each disk of both northern red oak and yellow-poplar disks. A total of 60 blocks 

(specimens) of both species were used in this study. Specimens were oven-dried at 103±2 oC for 

24 hours and reconditioned at about 23oC in a vacuum dessicator for 24 hours prior to analysis. 

 

Methods 
Near infrared (NIR) measurements 

Measurement of NIR spectra of yellow-poplar and northern red oak are described here. 

The paper on northern red oak makes reference to this section. All wood specimens were 

scanned with Bruker Matrix-F FT-NIR spectrometer (Bruker Optics Inc., Billerica, MA, USA) 

with a fiber optic sampling probe for solids and liquids (IN263E) operating in the diffuse 

reflectance mode (range 833-2500 nm). Each wood specimen was scanned 10 times and 

averaged to obtain single spectrum. For each specimen, a total of four spectra from the tangential 

face were taken and converted to the JCAMP format using Bruker OPUSTM software (version 

5.0, Bruker Optics. Inc, Billerica, MA, USA). The probe was aligned perpendicular to the 

collection face for each scan at a distance 5 mm from the sample.  
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Determination of chemical properties 

Chemical properties measured included total lignin (insoluble and acid-soluble lignin), 

extractives, and ash contents. Specific chemical properties of yellow-poplar were determined by 

classical wet chemistry methods: ASTM D-1106-96, NREL LAP-004(1996), ASTM D1105-

96(2007) and ASTM D-1102-84 respectively. Holocellulose was determined by the difference 

between initial weight of ground wood (oven-dried weight basis) and the sum of the above 

chemical components.  

 

Bulk density measurement 

Bulk density of biomass is a major contributing factor to the determination of “cost and 

logistic requirements for handling and moving biomass from point of production to biorefinery.7 

It is a function of the size, shape and individual particle density of the lignocellulose biomass. 

Two types of bulk densities were determined: aerated bulk density and tapped bulk density, 

according to the method described by Yu et al (1994)8 and Adullah et al. (1998).9 Volume and 

weight determinations for each method was replicated twice for each sample and the average 

computed for the sample. The chemical and physical properties determined were used as Y-

response variable for PLS modeling. 

 

Development of NIR calibration  

All spectra were analyzed using Unscrambler multivariate data analysis software (version 

9.8, Camo Inc., Woodbridge, New Jersey, US). The four spectra collected from each sample 

were averaged to one spectrum to give a total of sixty (60) averaged spectra for each species. 

(Sixty samples per species). All spectra data collected were converted from wave numbers to 

wavelength using OPUSTM software. The spectra data were divided into calibration and 

prediction sets. The calibration set consisted of two spectra out of every three consecutive 

spectra (40 spectra) and the prediction set comprised of one spectrum out of every three 

consecutive spectra (20 spectra).  

As a first step in the development of a calibration model, a Principal Component Analysis 

(PCA) was applied to the data to obtain an overview. This process reduces the dimensionality of 

data by a linear combination of original data to generate new latent variables which are 

orthogonal and uncorrelated to each other. It distills the information in the original variables into 
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a lower number of variables – principal components (latent variables).10 PCA lies along the 

direction of maximum variance in the data set. 11 The score plot and loading plots of the PCA 

were observed and this operation revealed a total of six outliers that were removed from the 

yellow-poplar data and excluded from subsequent model development. As a result of these 

outlier samples, the number of samples used for calibration (37 spectra) and testing (17spectra) 

of the model decreased. After removal of outliers, both X- and Y- data matrices were mean-

centered. All NIR spectra (independent variables) were combined into a single data matrix [X-

matrix] and the physical and chemical properties into separate response matrices [Yi].  

Calibration models were developed for two spectra region: (i) full spectra region (800-2500nm) 

and (ii) the second overtone region and first overtone region (1300-1800nm). The most important 

and distinct spectra information of NIR is known to be between 1000-2500nm (combination of 

first overtone, second overtone and combination band region).12,13 Therefore this much reduced 

region was chosen to cover part of this important region of the NIR (1000-2500nm).  

Calibration models were developed using partial least squares regression (PLS1).  PLS1 

models were developed for raw spectra data and Savitzky-Golay first derivative pre-processing 

of the raw data. (15 points of smoothing on both sides of the X-data matrix with a second 

polynomial order). This preprocessing was done to evaluate improvement in model quality, 

interpretation and prediction ability. Additionally, data pre-processed using second derivative 

and Multiple Scatter Correction (MSC) did not significantly improve the model developed and 

are therefore not reported here. Partial least squares calibration models were developed with X- 

and Y-matrices. The Y-matrices consisted of data from bulk densities (aerated bulk density and 

tapped bulk density), ash content, holocellulose content, total lignin, acid insoluble lignin and 

extractives contents. The response variable holocellulose content, total lignin content and acid 

insoluble lignin content were preprocessed using a cubed root transformation due to the large 

differences in the values measured.14 Calibration models were developed using full-cross 

validation method and then used to predict the response of the prediction set.  

The Unscrambler (version.9.8) software was allowed to determine the optimum number of 

principal components required with close supervision on the explained and residual variance 

plots of each model before it was accepted. This was done to prevent under fitting or over fitting 

of our model. 
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Measure of calibration model performance 

The prediction performance of a PLS model can be evaluated using a number of 

parameters and they include root mean square error of calibration (RMSEC),  root mean square 

error of prediction (RMSEP), standard error of prediction (SEP), standard error of calibration 

(SEC), coefficient of  determination (R2), bias, RDP and residual variance. This study focused on 

future prediction ability of calibration models developed for each response variable. Therefore, 

the parameters used to measure prediction performance of our models in this study included R2, 

RMSEP, SEP and bias. Calibration models results are also presented for convenience purposes, 

even though they not discussed in the results and discussion section. 

  RMSEP, a measure of the model fit, is a direct estimate of the prediction error in the Y-

variables of the model. It is expressed as the average error expected from future prediction of Y 

variables using our model and also expressed in the measurement units of the Y variables used in 

developing the model. Bias is used to detect if there is a systematic difference between average 

values of the calibration set and the validation set. If no such difference exists, bias will be equal 

to zero. The closer the bias is to zero, the more accurate is the model developed, both in terms of 

model fit and predictability of the future sample set. Bias is computed as the average difference 

between predicted and measured Y-values or all samples in the validation set. SEP is a measure 

of precision of the models predicting ability corrected for the bias in the validation of the 

model.12,15,16 

Coefficient of determination (R2) is a measure of total variance between measured and 

predicted values that can be modeled by linear association. R2 shows the proportion of X- data 

that can be explained by the variance in the Y-data. It varies between zero and one. The closer R2 

is to one, the stronger the correlation. R2 can inflate and approach unity by increasing the 

complexity of the model. Therefore, a high R2, even though a good indicator of a good model 

cannot be independently used as the ultimate measure of model performance. Interpretation of R2 

may be subjective. Generally, an R2 between 0.92-0.96 represents a model that can be used in 

most applications including quality assurance. An R2 of 0.83-0.90 range also represent a model 

that can be used in most applications including research activities with some level of caution. 

Approximate calibration and screening purpose activities can be done with an R2 range of 0.66-

0.81. General rough screening activities can utilize a model with an R2 range between (0.5-0.64). 

R2 (< 0.5) may be deemed poor and not useable in any NIR calibration and the reasons should be 
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investigated.16,17 The evaluation of  possible end used of prediction models in this study will be 

based on this reference. 

Result presented in Tables 2 and 3 are PLS1 models developed for the prediction of measured 

physical and chemical properties of yellow-poplar with raw spectra data matrix and first 

derivative spectra data matrix.  

 

Results and discussion 
Chemical properties of yellow-poplar are reported on percentage basis (oven-dried 

weight) of original sample analyzed. (Table 1) Ash content exhibited a range of 0.70-0.79; 

extractive content had a range of 3.88-6.1, acid-insoluble lignin ranged from 16.59-21.30; acid-

soluble lignin content had a range of 0.011-0.067; total lignin content ranged from 21.84-27.49 

and holocellulose showed a range of 72.51-78.16. Chemical properties measured compared 

favorably to those reported previously by Peterson (1984). For the physical property measured, 

aerated bulk density and tapped bulk density exhibited a range of 0.16-0.20 and 0.21-0.27 g/cm3 

respectively. Like typical NIR spectra, all measured spectra of yellow-poplar looked alike 

(Figure 1).  

 

Evaluation of chemical and physical properties prediction using raw NIR 
spectra data 

Results of calibration and prediction models of physical and chemical properties of 

yellow- poplar using the full spectra (800-2500nm) and reduced spectra regions (1300-1800nm) 

are presented in Table 2. Generally all the calibration and prediction models developed in this 

study required optimum PC’s of 6-10. Almost all calibration models developed with the full 

spectra exhibited higher model performance as compared to similar prediction models developed 

with the reduced spectra regions. 

For the prediction models developed with the full spectra region, aerated bulk density of 

yellow-poplar had a high R2 (0.83). Both RMSEP and SEP were low (0.0053). Bias for the full 

spectra-based prediction model was also low (0.0014). There was only a small decrease in R2 

(0.82) when the reduced spectrum was used to predict aerated bulk density. Similar prediction 

model developed with the reduced spectra exhibited a slightly higher RMSEP (0.0057) and SEP 

(0.0058) as compared to the full spectra-based model. The reduced spectra region also predicted 
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aerated bulk density with a low bias (0.0010). Both models required 7 optimum PC’s for model 

development. 

Tapped bulk density prediction model also exhibited an R2 of 0.78 and 0.77 for full 

spectra-based and reduced spectra-based models respectively. Both models had bias value of 

0.0010. The full spectra-based model exhibited low RMSEP (0.0072) and SEP (0.0073). There 

was a slight increase in the RMSEP (0.0086) and SEP (0.0088) of prediction models developed 

with reduced spectra region as compared to full spectra-based prediction model. Few studies 

have predicted wood bulk density with NIR spectroscopy. Adedipe and Dawson-Andoh (2008) 

developed bulk density prediction model for solid yellow-poplar veneer with NIR spectra (R2 of 

0.79). Even though this study can not be compared to the results reported here due to differences 

in how the response variable (bulk density) were measured, the potential use of NIR 

spectroscopy to predict bulk density was exhibited.14 Both models required moderate number of 

PC’s for model development and could be used for approximate calibration and screening 

purposes. 

Prediction models for ash content of yellow-poplar exhibited high R2 of 0.87 and 0.83 

using calibration models developed with the full NIR and reduced spectra regions respectively. 

Prediction model developed with the full spectra exhibited low RMSEP (0.0126) and SEP 

(0.0122) values whiles the prediction model developed with the reduced spectra had a slight 

increase in RMSEP (0.0144) and SEP (0.0148) values. The full spectra-based and the reduced 

spectra-based prediction models required slightly high number of PC’s (10) and low bias values 

of 0.0041 and 0.0001 respectively. Both models could be used for applications where accuracy is 

imperative.                                                

For extractives content, prediction models for yellow-poplar developed with the full 

spectra and reduced spectra region exhibited high R2 of 0.84 and 0.78 respectively. Low RMSEP 

(0.2902) and SEP (0.2985) was exhibited by the prediction model developed with the full 

spectra. Concurrent with the slight decrease in R2, the reduced spectra-based prediction model 

also exhibited a slight increase in RMSEP (0.3387) and SEP (0.3419) as compared to similar 

model developed with the full NIR region. The prediction models developed with the full spectra 

and the reduced spectra exhibited low bias values of 0.0090 and 0.0661 respectively. The 

development of both models required 8 PCs for model development. Based on the R2 exhibited 

by both models, the prediction model developed with the full spectra could be used for most 
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applications where accuracy is important, and the reduced spectra-based prediction model could 

be used for approximate calibrations and screening purposes. 

For acid-insoluble lignin, the prediction model developed with the full NIR region had a 

moderate R2 (0.64) and a low bias (-0.0039). This model also exhibited low RMSEP (0.0895) 

and SEP (0.0922). Prediction models developed with the reduced spectra had a low R2 (0.39) and 

bias (0.0099) values. RMSEP (0.1067) and SEP (0.1096) of the prediction model developed with 

the reduced spectra increased slightly as compared to the prediction model developed with the 

full spectra. The reduced spectra-based prediction model of acid insoluble lignin was poor and 

unusable because of low R2 (0.39). The prediction model developed with the full spectra could be 

used for rough screening purposes (R2 0.64). The calibration and prediction models for both 

spectra regions required a high number of PC’s (8-9) for model development. 

Similarly, total lignin content of yellow-poplar was predicted with a moderate R2 (0.64) 

using the calibration model developed with the full spectra whiles prediction model developed 

with the reduced spectra exhibited a low R2 (0.38). Prediction model developed with the full 

spectra exhibited low RMSEP (0.0876), SEP (0.0905), and bias (-0.0024). Even though the 

reduced spectra-based prediction model of total lignin had low RMSEP and SEP values (< 0.12), 

the model was poor and unusable due to its low R2 (0.38). The prediction model developed with 

the full spectra-based prediction model was adequate for rough screening activities based on its 

R2.  High number of PC’s (8-9) was required to develop both prediction models using the full 

spectra and reduced spectra. 

Holocellulose, a measure of total sugars in a biomass, was predicted with moderate R2 

values of 0.68 and 0.63 for the full spectra-based and reduced spectra-based prediction models 

respectively. The full spectra-based model exhibited low RMSEP (0.0474) and SEP (0.0489) 

value, with a bias (0.0003) close to zero. A slight increase in RMSEP(0.0507) and SEP(0.0518) 

of holocellulose prediction model developed with the reduced spectra region as compared to 

similar model developed with the full spectra region  was observed. The increase in RMSEP and 

SEP can be attributed to the decrease in R2 value; this invariably increases model error.15,16 

Similarly, holocellulose content prediction model developed with the reduced spectra region 

exhibited a low bias (-0.0067) close to zero.  Both prediction model of holocellulose required 6-7 

PC’s for model development. Based on the R2 exhibited by each model, the full spectra-based 
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prediction model could be used for approximate calibration activities whiles the reduced spectra-

based prediction model could be used for rough screening purposes. 

Comparatively, the prediction models developed with the full spectra was generally better 

than the reduced spectra-based prediction models; this observation was based on the slight 

improvement in R2 and a small reduction in RMSEP/SEP values of the full spectra-based models 

as compared to the prediction models developed with the reduced spectra region. 

 

Evaluation of chemical and physical properties prediction using first 
derivative preprocessed NIR spectra data 

Table 3 presents results of physical and chemical properties prediction models of yellow- 

poplar developed with first derivative preprocessed spectra. Generally, prediction models 

developed with the preprocessed full and reduced spectra regions improved greatly as compared 

to similar raw spectra-based prediction models developed for each response variable considered 

in this study. There was a great decrease in the number of PC’s (3-6) required to develop the 

models and an increase or almost equal R2 values. Comparatively, with the exception of acid-

insoluble lignin and holocellulose content prediction models, the reduced spectra-based 

prediction models of the preprocessed data generally predicted all response variables with a 

much improved accuracy than the full spectra-based models. Acid-insoluble lignin and 

holocellulose content prediction models exhibited the reverse of this pattern. 

The prediction model of aerated bulk density revealed a high R2 for the full spectra-based 

(R2 0.83) and reduced spectra-based (R2 0.84) models respectively. The prediction model 

developed with the full spectra region predicted aerated bulk density with low RMSEP (0.0054), 

SEP (0.0055), and bias value close to zero (-0.0007). Equal RMSEP and SEP value (0.0051) was 

exhibited by the prediction model developed with the reduced spectra region. The latter model 

also exhibited a low bias (0.0012) value. Both models require low number of PC’s for model 

development and could be used for most prediction activities with some caution based on the R2 

values exhibited. 

Tapped bulk density, the second type of bulk density, exhibited good R2 (0.79) when 

predicted with the calibration model developed with the full spectra region. The prediction model 

developed with reduced spectra exhibited a slightly higher R2 (0.86). Both spectra regions 

predicted tapped bulk density with low RMSEP and SEP values (< 0.0073), with the reduced 
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spectra-based prediction model having a slightly lower RMSEP/SEP than the prediction model 

developed with the full spectra. Bias value of both prediction models of tapped bulk density were 

low, with the full spectra-based region and reduced spectra-based models having bias values of (-

0.0031) and (0.0012) respectively. All the prediction models developed for both bulk densities 

required low number of PC’s (4-5) for model development. With respect to the R2 exhibited by 

both models, the full spectra-based prediction model was adequate for approximate calibration 

and screening purposes, whiles the reduced spectra-based prediction model was good for most 

prediction applications including research purposes. 

Ash content was predicted with strong R2 of 0.82 and 0.92 for the full and reduced 

spectra-based prediction models respectively. Both prediction models exhibited low bias values 

(< 0.0025). Prediction model developed with the full spectra region had low RMSEP (0.0132) 

and SEP (0.0133). The reduced spectra region predicted ash content with a slightly lower 

RMSEP and SEP (0.0099). Both prediction models required low number of PC’s (5-6) for model 

development. Based on the R2 exhibited by the models, the prediction model developed with the 

full spectra was judged to be adequate for approximate calibrations and screening activities 

whiles the reduced spectra-based prediction model was adequate for most application including 

quality assurance purposes. 

For extractives content, prediction models developed with the full and reduced spectra 

regions exhibited good R2 values of 0.78 and 0.83 respectively. The prediction model developed 

with the full spectra exhibited low RMSEP (0.3422) and SEP (0.3387). The reduced spectra-

based prediction model had a slightly lower RMSEP (0.2945) and SEP (0.3029) as compared 

with the models developed with the full spectra. Low bias values were observed in both 

prediction models, with the full spectra-based and reduced spectra-based prediction models 

exhibiting bias values of (0.0954), and (-0.0057) respectively. The prediction models of both 

spectra regions for extractives content required low number of PC’s (4) for model development.  

The prediction model developed with the full spectra was adequate for approximate calibration 

and screening purposes whiles the reduced spectra-based prediction models was good for most 

prediction applications including research activities. These observations were based on the R2 

exhibited by both models. 

Acid-insoluble lignin content of yellow-poplar was predicted with good R2 value of 0.79 

and 0.75 for the full spectra-based and reduced spectra-based prediction models respectively. 
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These results were highly improved models as compared to the moderate R2 (0.64) and low R2 

(0.39) values that was exhibited when the full raw and reduced raw spectra regions were used to 

predict acid-insoluble lignin. The full preprocessed spectra predicted acid-insoluble lignin with 

low bias (0.0037), RMSEP (0.0696) and SEP (0.0717) values. Similarly, low RMSEP (0.0792), 

SEP (0.0783) and bias (0.0224) values were exhibited by the prediction model developed with 

the reduced preprocessed spectra region. The number of PC’s required to develop both prediction 

models were low and within the range of 3-5. With respect to the R2 values exhibited by both 

models of the preprocessed spectra, the models were adequate for screening and approximate 

calibration purposes. 

Prediction models of total lignin exhibited moderate R2. The full spectra and reduced 

spectra-based models exhibited R2 of 0.66 and 0.77 respectively. These R2 values were 

significant improvement over respective similar models developed with the raw NIR spectra. 

Low RMSEP (0.0885) and SEP (0.0895) values were observed in the prediction models 

developed with the full spectra. The reduced spectra-based model also exhibited slightly lower 

RMSEP (0.0717) and SEP (0.0724). The slight reduction in RMSEP and SEP in the latter may 

be attributed to the slightly higher R2 value over the full spectra-based prediction model. Low 

bias values of -0.0165 and 0.0143 were exhibited by the full spectra-based and the reduced 

spectra-based prediction models respectively. Low numbers of PC’s (3-4) were required to 

develop both prediction models of total lignin.  Based on the R2 values exhibited by the models, 

both models were judged adequate for approximate calibration and screening activities. 

For holocellulose content, the prediction model developed with full spectra had a high R2 

(0.81), whiles the model developed with the reduced spectra region exhibited a moderate R2 

(0.77). Both prediction models developed with the full spectra and reduced spectra had low 

RMSEP and SEP (< 0.043). Very low bias values were exhibited by the prediction model 

developed with the full spectra (0.0012) and reduced spectra (0.0057) regions. Prediction model 

of each spectra region was developed with low PC’s (4). This was a much lower number of PC’s 

as compared to similar models developed with the raw spectra data. Both models were adequate 

for screening and approximate calibration purposes based on the R2 range (0.77-0.81) exhibited 

by the models. 

Improvement of prediction results of some physical and chemical properties of biomass 

using NIR after some form of  preprocessing of the raw spectra data have been reported, these 
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preprocessing include Savitzky- Golay first derivative, second derivative, Standard Normal 

Variate and Multiplicative Scatter Correction.12-14 

 

Conclusion 
The results of this study have demonstrated that NIR can be used to predict some 

chemical and physical properties of yellow-poplar, a potential biomass feedstock for the 

production of bio-products and bio-fuels. Different response variables predicted showed varying 

degrees of model strength. With the exception of acid insoluble lignin and total lignin, which 

was predicted poorly with the reduced raw spectra (R2 < 0.4), all the chemical and physical 

properties predicted with the full spectra and reduced spectra of the raw data exhibited R2 values 

greater than 0.6. The findings of this study have also shown that first derivative preprocessing of 

raw spectra data generally improved the performance of the models. The improvement in model 

performance of preprocessed data is shown by the decrease in optimum number of PCs, and an 

increase in R2 values. 

 This study has also shown that the reduced spectra region (1300-1800nm), which 

encompass part of the first and second overtone regions of the NIR spectrum, can be used to 

predict the physical and chemical properties of yellow-poplar with an R2 greater than 0.75 after 

the preprocessing of the spectra. The R2 values of the reduced spectra-based models of the 

preprocessed spectra were comparable to models developed with the preprocessed full spectra. 

The reduced spectra-based models predicted all the chemical and physical properties in this 

study with an R2 greater than 0.77, with the exception of total lignin content which was predicted 

with a slightly lower R2 of 0.66. This is an important finding for industries that are interested in 

pursuing cheaper and portable spectrometers with shorter wavelength range for rapid 

acquisitions and analysis. It must be noted that no attempt was made in this study to attribute 

wavelength regions to predicted response variables considered in this study. 
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               Table 1. Statistics of measured chemical and physical properties of  yellow‐poplar (60 samples) 

  Mean* SDa Minb Maxc 

Aerated Bulk Density (g/cm3) 0.18 0.014 0.16 0.20 

Tapped Bulk Density (g/cm3) 0.24 0.017 0.210 0.266 

Ash (%) 0.76 0.036 0.7 0.79 

Extractives (%) 5.03 0.720 3.88 6.1 

Acid Insoluble Lignin (%)  19.39 1.29 16.59 21.3 

Soluble Lignin (%) 0.03 0.012 0.011 0.067 

Total Lignin (%) 19.40 1.27 21.84 27.49 

Holocellulose (%) 73.00 0.75 72.51 78.16 
            

           *Mean, aStandard deviation, bMinimum measured value, cMaximum maximum measured value 

 

 

 

 

 

 

 



Table 2. Results of PLS1 calibration and prediction models developed for the chemical and physical properties of yellow‐poplar using the raw spectra at two 
NIR wavelength regions 

  Wavelength (nm) aPC bR2cal cRMSEC dSEC eR2val fRMSEP gSEP BIAS 
Bulk Density Aerated (g/cm3)                   

 800-2500 (A) 7 0.85 0.0054 0.0055 0.83 0.0053 0.0053 0.0014 
  1300-1800 ( C ) 7 0.86 0.0053 0.0054 0.82 0.0057 0.0058 0.0010 
Bulk Density Tapped (g/cm3)                   

 800-2500 (A) 7 0.80 0.0074 0.0075 0.78 0.0072 0.0073 -0.0010 
  1300-1800 ( C ) 7 0.89 0.0055 0.0056 0.77 0.0086 0.0088 0.0010 
Ash (%)                   

 800-2500 (A) 10 0.99 0.0043 0.0044 0.87 0.0126 0.0122 0.0041 
  1300-1800 ( C ) 10 0.98 0.0048 0.0490 0.83 0.0144 0.0148 0.0001 
Extractives (%)                   

 800-2500 (A) 8 0.86 0.2640 0.2678 0.84 0.2902 0.2985 0.0090 
  1300-1800 ( C ) 8 0.83 0.2878 0.2917 0.78 0.3387 0.3419 0.0661 
Acid Insoluble Lignin (%)                   

 800-2500 (A) 8 0.83 0.0599 0.0606 0.64 0.0895 0.0922 -0.0039 
  1300-1800 ( C ) 9 0.86 0.0540 0.0550 0.39 0.1067 0.1096 0.0099 
Total Lignin (%)                   

 800-2500 (A) 8 0.83 0.0592 0.0600 0.64 0.0878 0.0905 -0.0024 
  1300-1800 ( C ) 9 0.85 0.0550 0.0550 0.38 0.1067 0.1097 0.0087 
Holocellulose (%)                   

 800-2500 (A) 7 0.77 0.0289 0.0293 0.68 0.0474 0.0489 0.0003 
  1300-1800 ( C ) 6 0.78 0.0283 0.0288 0.63 0.0507 0.0518 -0.0067 

aNo of principal components, bCalibration R2, cRoot mean square of calibration, dStandard error of calibration, eValidation R2, fRoot mean square of validation, 
gStandard error of prediction 
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Table 3. Results of PLS1 calibration and prediction models developed for the chemical and physical properties of yellow‐poplar using the first derivative 
preprocessed spectra at two NIR wavelength regions 

  Wavelength (nm) aPC bR2cal cRMSEC dSEC eR2val fRMSEP gSEP BIAS 
Bulk Density Aerated (g/cm3)                   

 800-2500 (A) 4 0.9 0.0044 0.0044 0.83 0.0054 0.0055 -0.0007 
  1300-1800 ( C ) 4 0.89 0.0047 0.0047 0.84 0.0051 0.0051 0.0012 
Bulk Density Tapped (g/cm3)                   

 800-2500 (A) 4 0.86 0.0067 0.0068 0.79 0.0072 0.0067 -0.0031 
  1300-1800 ( C ) 5 0.92 0.0051 0.0052 0.86 0.0063 0.0064 0.0012 
Ash (%)                   

 800-2500 (A) 5 0.96 0.0074 0.0075 0.82 0.0132 0.0133 0.0024 
  1300-1800 ( C ) 6 0.98 0.0055 0.0056 0.92 0.0099 0.0099 0.0022 
Extractives (%)                   

 800-2500 (A) 4 0.83 0.2846 0.2885 0.78 0.3422 0.3387 0.0954 
  1300-1800 ( C ) 4 0.81 0.3066 0.3108 0.83 0.2945 0.3029 -0.0057 
Acid Insoluble Lignin (%)                   

 800-2500 (A) 5 0.89 0.0488 0.0495 0.79 0.0696 0.0717 0.0037 
  1300-1800 ( C ) 3 0.7 0.0810 0.0828 0.75 0.0792 0.0783 0.0224 
Total Lignin (%)                   

 800-2500 (A) 4 0.81 0.0633 0.0641 0.66 0.0885 0.0895 -0.0165 
  1300-1800 ( C ) 3 0.68 0.0806 0.0817 0.77 0.0717 0.0724 0.0143 
Holocellulose (%)                   

 800-2500 (A) 4 0.79 0.0370 0.0375 0.81 0.0416 0.0429 0.0012 
  1300-1800 ( C ) 4 0.64 0.0445 0.0451 0.77 0.0401 0.0409 0.0057 

aNo of principal components, bCalibration R2, cRoot mean square of calibration, dStandard error of calibration, eValidation R2, fRoot mean square of validation, 
gStandard error of prediction 

   



 

Figure 1a. Representative spectra of northern red oak 

 

 

 

Figure 1b. First derivative preprocessed spectra of yellow‐poplar heart wood 
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Figure 2a. PLS1 plot of predicted against measured total lignin using raw NIR spectra region of 1300‐1800nm 
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Figure 2b. PLS1 plot of predicted against measured total lignin using preprocessed NIR spectra region of 1300‐
1800nm 
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CHAPTER THREE: Rapid characterization of biomass using near infrared 
Spectroscopy coupled with multivariate data analysis: Part 2. Northern 
red oak (Quercus rubra) 
 

Abstract 
Rapid characterization of biomass as a raw material is vital to the emerging bio-fuel and bio-

products industry. In this study, NIR spectroscopy coupled with Multivariate data analysis was 

used to develop calibration models for the chemical and physical properties of northern red oak 

which was tested with separate samples not included in the calibration of the model. Two 

wavelength regions (800-2500nm and 1300-1800nm) were modeled. The performances of 

preprocessed PLS1 prediction models (first derivative) were superior to the raw spectra-based 

prediction models. Models based on the two spectra regions were similar in performance and 

exhibited moderate to strong coefficient of determination (R2) between measured and predicted 

properties with the exception of Ash content that exhibited poor PLS1 prediction models. 

 

Keywords: Multivariate data analysis, Near infrared spectroscopy, 
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Introduction 
Today, energy has become a global security and economic issue characterized by an 

earnest search for alternatives to fossil fuels. Approximately 97% of U.S. transportation industry 

energy needs come from petroleum-based sources.1 The U.S. imports approximately 60% 

(approximately 190 billion gallons) of its petroleum oil needs. About 13% of this comes from 

politically unstable Persian Gulf region.  U.S. energy consumption is projected to increase more 

than 30% by 2030 from its 2006 levels. Agriculture products and other finished goods, requires 

transportation from the source to the market. Therefore the cost of transportation fuel is an 

important contributor to prices of all services and goods in US economy. Petroleum-based fuels 

not only affect the economy, but also the environmental health of the country because they 

closely associated with the emission of green house gases. The latter exerts a significant negative 

impact on the environment.  The deleterious environmental impacts of green house gas emissions 

precipitated the creation of the Kyoto Protocol.2  

Lignocellulosic biomass conversion into clean forms of energy has been a subject of 

interest as a potential alternative to fossil fuel for some time.3 It is estimated that the existing 

forestlands and agricultural lands in the U.S. could potentially produce 1.3 billion dry tons of 

biomass per year. This amount of biomass will meet more than one-third of the transportation 

needs of the U.S. Out of the 1.3 billion dry tons, forestlands will contribute approximately 368 

million dry tons. This can be used to displace about 30% of fossil fuel need in the united state. 

Presently biomass fuels used in US industries, meet about 3% of the total energy needs annually 

and this is expected to increase in the near future.3  

The conversion of biomass into any form of fuel presents a numbers of challenges 

because of its heterogeneous nature, both physically and chemically.4 Physical and chemical 

properties of biomass impact its conversion into bio-fuels and bio products. Today, these 

properties are largely determined by standard wet chemical analyses which are destructive, slow, 

and expensive protocols. Also these standard methods of analysis do not lend themselves to 

on/at/in-line implementation. Development of robust rapid, non-destructive characterization 

methods will be a great boost to the emerging bio-refinery industry. Important physical and 

chemical properties of biomass that are relevant to the bio-refinery process include bulk density, 

particle size, moisture content, gross calorific value, lignin content, extractives content, ash 

content, cellulose and hemicelluloses contents.  
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Advancement in electronic and optics technologies have produced cheap, portable and 

simple spectrometers that brings the light source to the specimens and also generates tremendous 

multi-component information in very short periods (seconds). Additionally, these methods 

require no or minimum sample preparation.  These methods are the foundation of a new 

approach to measuring important properties of industrial processes - Process Analytical 

technology (PAT).  It has been successfully used with multivariate data analysis (MVDA) to 

develop prediction models for process parameter. PAT is explained in detail elsewhere.5 Near 

infrared spectroscopy (NIRS) coupled with MVDA is one of the most predominant PAT tools 

available. This PAT tool has enjoyed considerable success in the characterization of physical, 

chemical and mechanical properties of lignocellulosic biomass. Heterogeneity in lignocellulosic 

biomass exists between, within species, and to some extent between geographic locations of 

growth.6,7 Process analytical tools are also lignocellulosic biomass type dependent. Therefore 

prediction models developed for properties of yellow-poplar cannot be applied to other species 

or types. Consequently, new prediction models need to be developed for northern red oak. This 

paper reports the results of prediction models for the same physical and chemical properties for 

northern red oak using the same PAT tool – Near infrared (NIR) coupled with MVDA used in 

earlier study for yellow-poplar. Northern red oak used in this study was harvested from the same 

location as the yellow-poplar.  

Specifically the objectives of this paper are to: 

 

1. Use NIR coupled with MVDA as a PAT method to develop calibration and prediction 

tools for some physical and chemical properties of northern red oak (Quercus rubra). 

These properties include ash content, extractives content, total lignin, acid insoluble 

lignin, holocellulose, and bulk density.   

 

2. Compare the efficiency of two spectra region of the NIR spectrum in order to determine 

which spectra region contains relevant spectroscopic information for accurate 

quantification of the chemical and physical properties of northern red oak. 
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Materials and methods 

Materials 
Northern red oak was randomly selected in West Virginia University Research forest 

located about 13 km east of Morganton, WV. Each tree was approximately 14 meters tall. Three 

50 mm disks were removed from the bole and a total of 60 samples from the heartwood with size 

19mm X 19mm X 50 mm each were randomly selected for this study. Detailed description of 

sampling methods and conditioning are described elsewhere.5  

 

Methods 
Near infrared (NIR) measurements 

Bruker Matrix-F FT-NIR spectrometer (Bruker Optics Inc., Billerica, MA, USA) coupled 

with a fiber optic sampling probe, for solids and liquids (IN263), operating in the diffuse 

reflectance mode (range 833-2500 nm), was used to collect NIR spectra of each sample. 

Measurement of NIR spectra of northern red oak specimens were done as per protocols described 

in details elsewhere s for yellow-poplar.5  

 

Determination of chemical properties 

Chemical properties measured include total lignin (insoluble and acid-soluble lignin), 

extractives content, holocellulose, and ash contents. These properties were determined by 

classical wet chemistry methods as per protocols of ASTM D-1106-96, NREL LAP-004(1996), 

ASTM D1105-96(2007) and ASTM D-1102-84 respectively. Holocellulose was given by the 

difference between initial weight of ground wood and the sum of the above chemical 

components.  

 

Bulk density measurement 

Bulk density of biomass is a major contributing factor to the determination of “cost and 

logistic requirements of handling and moving biomass from point of production to biorefinery.8 

It is a function of the size, shape and individual particle density of the lignocellulose biomass. 

Two types of bulk densities were determined; aerated bulk density and tapped bulk density 

according to the method described by Yu et al. (1994)9 and Adullah et al. (1998).10 Both volume 

and weight determination for each method was replicated twice for each sample and the average 
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computed for the sample. The measured physical and chemical properties of northern red oak 

were used as Yi-response variables for PLS modeling. 

 

Development of NIR calibration 

All spectra were analyzed using Unscrambler multivariate data analysis software (version 

9.8, Camo Inc., Woodbridge, New Jersey, US). A total of 60 averaged spectra for the heartwood 

of northern red oak as described previously were used.5 To obtain an overview of data, Principal 

Component Analysis (PCA) was performed and it revealed the presence of six outliers. These 

were eliminated from data in subsequent analysis. Spectra data were divided into calibration and 

validation sets. The calibration set consisted of two spectra out of every three consecutive spectra 

(n=37 spectra) and the prediction set (n=17 spectra) comprised of one spectrum out of every 

three consecutive spectra. For the development of calibration models, all NIR spectra were 

combined into a single data matrix (X-matrix, independent variables). Each measured physical or 

chemical property was also combined into separate data matrices (Y-matrices, dependent 

variables). The Y-matrices consisted of data from bulk densities (aerated bulk density and tapped 

bulk density), ash content, holocellulose content, total lignin, acid-insoluble lignin, and 

extractives contents.  

Using the X-matrix, calibration models were developed for two spectra region: (i) full 

NIR Spectrum (800-2500nm) and (ii) part of the second overtone region and first overtone 

region (1300-1800nm). PLS1 calibration models were developed using the raw spectra data and 

Savitzky-Golay first derivative (15 smoothing points on both sides of the X- matrix data, with a 

second polynomial order) pre-processed data. PLS1 calibration models were developed with X- 

and Y-matrices. The response variables holocellulose content, total lignin content and acid-

insoluble lignin content were preprocessed using a cubed root transformation due to the large 

differences in the values measured.11 The Y-data matrix were mean –centered and calibration 

models were developed using full-cross validation method and then used to predict the response 

of the validation set. Detailed multivariate analyses (calibration and validation methods) of the 

data are described elsewhere.5  

 

  

48 
 



Measure of calibration model performance 

Parameters used to evaluate the performance of our cprediction models include: (i) 

Coefficient of determination (R2),  (ii) root mean square error of prediction (RMSEP), (iii) 

standard error of prediction (SEP), and (iv) bias. These parameters are discussed in details 

elsewhere.5 Root mean square error of prediction is a direct estimate of the prediction error in the 

Y variables of the model; whiles SEP is a measure of precision of the models predicting ability 

corrected for the bias in the validation of the model. Bias is a measure of systematic difference 

between average values of the calibration set and the validation set of a model.  If no such 

difference exists, the bias will be equal to zero. Coefficient of determination (R2) is a measure of 

total variance between measured and predicted values that can be modeled by linear association. 

The closer R2 value is to one, the stronger the correlation.12-15 

Result presented in Tables 2 and 3 are PLS1 models developed for prediction of measured 

physical and chemical properties with raw spectra data matrix and first derivative spectra data 

matrix of northern red oak.  

 

Results and discussion 

Results of measured chemical and physical properties of northern red oak are presented 

in Table1. Chemical properties of northern red oak are expressed as a percentage of the original 

oven dry-weight of ground wood analyzed. Ash content had a range of 0.15-0.20; extractives 

content had a range of 4.48-7.74; acid insoluble lignin exhibited a range of 17.90-21.95 whiles 

total lignin content had a range of 18-21.97. Holocellulose content also had a range of 71.48-

74.93. These results were comparable to earlier data reported by Petersen (1984). For the 

physical property measured; aerated bulk density and tapped bulk density exhibited a range of 

0.23-0.28 and 0.31-0.38 g/cm3 respectively.  All collected NIR spectra were similar (Figure 1). 
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Evaluation of chemical and physical properties prediction using raw NIR 
spectra data 

Table 2 present results of PLS1 models developed with raw spectra data covering the full 

NIR spectrum (800-2500nm) and reduced spectra region (1300-1800nm). Generally, all 

prediction models developed for the physical and chemical properties required high number of 

principal component (PCs, 4-12).  

Prediction models developed for aerated bulk density exhibited a high R2 (0.80) for both 

full and reduced spectra-based models (Figure 2). The full spectra-based prediction model had a 

low RMSEP (0.0073) and SEP (0.0074). Slightly lower RMSEP (0.0069) and SEP (0.0070) were 

exhibited by the reduced spectra-based prediction model of aerated bulk density. Prediction 

models of aerated bulk density developed using the full and reduced spectra regions exhibited 

low bias values of -0.0008 and 0.0012 respectively. Both models required 9 PC’s for model 

development. Both models will be adequate for screening and approximate calibration activities 

based on the R2 (0.80) values exhibited.15 

Tapped bulk density prediction models exhibited high R2 (0.80) for the full spectra and 

reduced spectra-based prediction models. The prediction models developed with the full spectra 

region exhibited low RMSEP (0.0104), SEP (0.0103) and bias (-0.0026) value close to zero. 

Similarly, low RMSEP (0.0025), SEP (0.0099) and bias (-0.0035) were observed for the tapped 

bulk density prediction model developed with the reduced spectra region. Both prediction 

models of tapped bulk density required relatively high number of PC’s (10-12) for model 

development. Adedipe and Dawson-Andoh (2008)11 reported bulk density prediction model for 

yellow-poplar veneer with good R2 (0.79).  Even though these two studies used different wood 

species, different response variable measuring methods and probably different populations; it is a 

clear indication of the ability of NIR coupled with MVDA to predict bulk density of a biomass. 

Based on R2 (0.80) values exhibited by the models, both prediction models were judged adequate 

for screening and adequate calibration purpose.15 

For ash content, the prediction models developed for both each spectra regions were poor 

and exhibited very low R2 (< 0.35). Additionally, they also exhibited low bias (< 0.015). This 

may be attributed to the low ash content values obtained and the subtle variance between the 

measured samples used in this study. Poke et al. (2004), similarly obtained moderate R2 (0.62) 

for the calibration models for acid-soluble lignin of Eucalyptus globlus using NIR and attributed 
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the observation to low quantitative values of measured acid-soluble content of the species. The 

poor ash content model obtained in this study may be improved by increasing the number of 

samples in the study, which will increase the variance within the population and make it more 

profound and detectable by PLS modeling technique. The number of PC’s required to develop 

both prediction models had a range within (4-10). Both models were poor and unusable based on 

the low R2 values they exhibited.15 

Extractives content of northern red oak was predicted with a very high R2 (> 0.92) for 

both models developed with the raw full and the reduced spectra. The reduced spectra-based 

prediction model exhibited slightly lower RMSEP (0.2602) and SEP (0.2674) values as 

compared to the RMSEP (0.2660) and SEP (0.2717) of the model developed with the full 

spectra. Both prediction models required a higher number of PC’s (10-11) for model 

development and exhibited lower bias values (0.0326-0.0126). Based on the high R2 exhibited by 

both models they were adequate for most prediction purposes where accuracy is vital; including 

quality assurance activities.15 

Prediction of acid-insoluble lignin exhibited a slightly low R2 values of (0.56) and (0.58) 

for the full and reduced spectra-based prediction models respectively. These models even though 

had slightly low R2 values, were suitable for rough screening purposes.15 The prediction model 

developed with the full spectra of the raw data exhibited low RMSEP (0.0674) and SEP 

(0.0696). Similarly, low RMSEP (0.0793) and SEP (0.0817) were exhibited by acid-insoluble 

lignin prediction model developed with the reduced spectra region. Both prediction models 

required slightly higher number of PC’s (5-9). Low bias values were exhibited by prediction 

models developed with the full spectra (0.0020) and the reduce spectra (0.0039) regions. 

For total lignin, the prediction model developed with the full spectra region exhibited low 

R2 (0.40). R2 (0.56) was slightly improved (0.56) when total lignin was predicted with calibration 

model developed with the reduced spectra region. The reduced spectra-based prediction model 

exhibited slightly lower RMSEP (0.0654) and SEP (0.0669) values as compared to the RMSEP 

(0.0766) and SEP (0.0789) values exhibited by the full spectra-based model. The prediction 

models developed with full and reduced spectra regions also exhibited low bias values of -0.0028 

and 0.0083 respectively. Higher numbers of PC’s (7-12) were required to develop both models. 

The full spectra-based prediction model is unusable based on the low R2 (0.4), whiles the 

reduced spectra-based model with an R2 of 0.56 will be adequate for rough screening purposes.15 

51 
 



Holocellulose prediction model developed with the reduced spectra demonstrated slightly 

reduced RMSEP (0.0114) and SEP (0.0117) as compared to RMSEP (0.0137) and SEP (0.0141) 

for the full spectra-based model. This may be due to the slightly high number of PC’s (9) and R2 

(0.89) associated with the reduced spectra-based model. The full spectra-based prediction model 

also exhibited high R2 (0.89) and required high number PC’s (8) for model developement. 

Models of both spectra regions had low bias (0.0009). Both models will be adequate for 

prediction purposes where accuracy is required including research activities. This observation 

was based on the range of R2 (0.83-0.89) exhibited by both models developed.15 

With the exception of prediction models developed for ash content, which were both 

poor, the reduced spectra-based prediction models of all response variables considered in this 

study exhibited slightly better prediction accuracy over the full spectra-based prediction models. 

This is based on improved R2 and a decrease in RMSEP/SEP of the reduced spectra-based model 

as compared to the full spectra-based models. These results are shown in columns 6-8 of Table 2. 

 

Evaluation of chemical and physical properties prediction using first 
derivative preprocessed spectra 

Prediction statistic of PLS1 models developed with the first derivate preprocessed data 

and their optimum number of PCs are shown in Table 3. Generally, preprocessing of the raw 

spectra using the first derivative method improved the PLS models of all the chemical and 

physical properties. This observation was based on a decrease in the number of optimum PCs 

and an increase in R2 or almost equal R2 values with respect to similar models developed with the 

raw spectra data (Table2).  

For aerated bulk density, prediction models developed with the full spectra and reduced 

spectra exhibited high R2 (0.84) values. Both models had low and equal RMSEP (0.0066) and 

SEP (0.0068). Prediction models developed with the full spectra and reduced spectra exhibited 

low bias values of 0.0005 and -0.0004 respectively. Both prediction models required lower 

number of PC’s (6) for model development as compared to similar models (9 PC’s) developed 

with the raw spectra data.  Based on the high R2 (0.84) exhibited by both models, they were 

judged adequate for most prediction purposes where accuracy is important; this includes research 

activities.15  
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High R2 values were exhibited by prediction models of tapped bulk density developed 

with the full (R2 0.89) and reduced spectra (R2 0.88). The prediction model developed with the 

full spectra exhibited low RMSEP (0.0078) and SEP (0.0072) values. Similarly, the reduced 

spectra-based model also predicted tapped bulk density with a slightly higher RMSEP (0.0084) 

and SEP (0.0085) values as compared to the model developed with the full spectra region. 

Prediction models developed with the full and reduced spectra exhibited low bias values of -

0.0035 and -0.0015 respectively. The number of PC’s required to develop both models were 

much lower (5-6) than similar models developed with the raw spectra data (10-12 PC’s). Both 

models are adequate for most applications including research purposes where accuracy is vital 

(Williams 2004). This observation was based on R2 values (0.88-0.89) exhibited by both models. 

For ash content, even though all the parameters used to evaluate models performance 

improved in the first derivate preprocessed spectra models in comparison with models developed 

with the raw spectra, the ash content prediction models developed with both spectra regions were 

poor and unusable based on low R2 values (< 0.4). Similar results were obtained when the raw 

spectra data was used to predict ash content of northern red oak. The poor prediction ability of 

ash content model was attributed to its low content in northern red oak and hence the subtle 

variance between the measured samples. This can be remedied by increasing the sample 

population.  Lower number of optimum PC’s (4-5) was used to develop both models. 

For extractives content, there was a strong correlation between the measured and NIR 

predicted values, with the full and reduced spectra-based prediction models exhibiting R2 value 

of 0.93 and 0.94 respectively. Prediction models developed with the full spectra exhibited low 

RMSEP (0.2550) and SEP (0.2519) values. Likewise, the reduced spectra-based model also 

exhibited low RMSEP (0.2328) and SEP (0.2395), which were slightly lower than the full 

spectra-based prediction model. The number of PC’s (6) required to develop both models were 

lower than similar models (10-11 PC’s) developed with the raw spectra data. Extractives content 

prediction models developed with the full and reduced spectra exhibited low bias value of 0.0729 

and 0.0059 respectively.  Both models will be adequate for quality assurance activities. This 

observation was based on the high R2 (0.03-0.94) exhibited by both models. 15 

The preprocessed full spectra region and preprocessed reduced spectra region was used to 

predict acid-insoluble lignin content with a much improved R2 values (>0.7) as compared to low 

R2 (<0.6) values of similar models developed with the raw spectra data. The full and reduced 
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spectra-based prediction models exhibited R2 values of 0.73 and 0.79 respectively. Prediction 

models developed with the full spectra exhibited low RMSEP (0.0631) and SEP (0.0647) values. 

Slightly lower RMSEP (0.0567) and SEP (0.0583) were exhibited by prediction models 

developed with reduced spectra; this may be due to an increase in number of PC’s (5) and R2 

values in the latter model. Models developed with the full and the reduced spectra predicted acid-

insoluble lignin with low bias values of 0.0057 and 0.0047 respectively. Both prediction models 

were developed with few PC’s (4-5) and based on their R2 values both models were judged to be 

adequate for screening and approximate calibration purposes.15 

Likewise, total lignin was predicted with a much improved R2 (0.70) for the model 

developed with the full spectra-based model and an R2 of (0.72) for reduced spectra-based 

models. Similar models developed with the raw spectra data had a much lower R2 (<0.6) for both 

spectra regions. Prediction models developed with the full spectra region exhibited low RMSEP 

(0.0531) and SEP (0.0477). Similarly, the reduced spectra-based model predicted extractives 

content with a low RMSEP (0.0487) and SEP (0.0485). The full and reduced spectra-based 

prediction models exhibited low bias values of -0.0262 and -0.0127 respectively. Both prediction 

models required low number of PC’s (5-6) for model development. With a moderate R2 range 

exhibited by the two prediction models, both models were deemed adequate for approximate 

calibration and screening purposes.15 

Holocellulose content was predicted with high R2 (0.85-0.89) for both models developed 

with the full and reduced spectra regions (Figure3). The full spectra-based prediction models 

exhibited low RMSEP (0.0124) and SEP (0.0124) values. Prediction models developed with the 

reduced spectra region exhibited a slightly higher RMSEP (0.0129) and SEP (0.0133) in contrast 

to full spectra-based prediction models. Prediction models developed with the full and reduced 

spectra regions showed low bias values of -0.0028 and -0.0006 respectively. The number of PC’s 

necessary to develop both prediction models was within the range of 6-7.  Both models were 

deemed good for most prediction applications where accuracy is vital, including research 

activities. 

Comparatively, the full spectra-based prediction models of tapped bulk density, 

extractives content and holocellulose content exhibited slightly higher prediction accuracy over 

the reduced spectra-based prediction models of each response variable. Prediction models 

developed for acid- insoluble lignin and total lignin exhibited the reverse of this pattern.  Aerated 
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bulk density was predicted with the same accuracy using the full NIR and the reduced spectra 

regions of the preprocessed spectra. 

 

Conclusion: 
NIRS coupled with MVDA can be used to predict the physical and chemical properties of 

northern red oak with a high degree of accuracy. However, ash content was poorly predicted 

with both the raw and preprocessed spectra. The raw spectra data could be used to predict 

aerated bulk density, tapped bulk density, extractive content, and holocellulose with high R2 (> 

0.8).  Acid-insoluble lignin and total lignin was predicted moderately with R2 (< 0.6). First 

derivative preprocessing of spectra data greatly improved the prediction models developed for all 

the physical and chemical properties of northern red oak considered in this study. These 

observations were based on a significant decrease in PC’s required to develop prediction models 

and a general increase in R2 values of the models with respect to similar models developed with 

the raw spectra data in this study. 

Prediction models developed with the reduced spectra region (1300-1800nm), predicted 

both chemical and physical properties of northern red oak with comparable degree of accuracy as 

the full spectra region (800-2500nm). This result is significant because cheaper, rapid and more 

portable spectrometers with a much reduced spectra range can be used to predict the chemical 

and physical properties of northern red oak, a potential biomass feedstock, with a good level of 

accuracy. No attempt was made in this study to attribute wavelength regions to predicted 

response variables considered in this study. 
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Table 1. Statistics of measured chemical and physical properties of northern red oak (60 samples) 

  Mean* SDa Minb Maxc 

Aerated Bulk Density (g/cm3) 0.25 0.015 0.23 0.28 

Tapped Bulk Density (g/cm3) 0.35 0.023 0.31 0.38 

Ash (%) 0.18 0.013 0.15 0.20 

Extractives (%) 6.25 0.997 4.80 7.74 

Acid Insoluble Lignin (%) 20.54 1.162 17.90 21.95 

Soluble Lignin (%) 0.034 0.015 0.003 0.063 

Total Lignin (%) 20.60 1.028 18.00 21.97 

Holocellulose (%) 74.8 1.45 71.48 74.93 
Mean, aStandard deviation, bMinimum measured value, cMaximum maximum measured value 

 

 

 

 

 

 

 

 



Table 2. Results of PLS1 calibration and prediction models developed for the chemical and physical properties of northern red oak using the raw spectra at 
two NIR wavelength regions 

  Wavelength (nm) aPC bR2cal cRMSEC dSEC eR2val fRMSEP gSEP BIAS 
Bulk Density Aerated (g/cm3)                   

 800-2500 (A) 9 0.94 0.0034 0.0034 0.80 0.0073 0.0074 -0.0008 
  1300-1800 ( C ) 9 0.93 0.0039 0.0040 0.80 0.0069 0.0070 0.0012 
BulkDensity Tapped (g/cm3)                   

 800-2500 (A) 10 0.98 0.0031 0.0031 0.80 0.0104 0.0103 -0.0026 
  1300-1800 ( C ) 12 0.98 0.0035 0.0035 0.80 0.0025 0.0099 -0.0035 
Ash (%)   

 800-2500 (A) 10 0.95 0.0030 0.0030 0.33 0.0108 0.0108 0.0026 
1300-1800 ( C ) 4 0.59 0.0086 0.0087 0.17 0.0140 0.0118 0.0081 

Extractives (%)                   
 800-2500 (A) 10 0.98 0.1241 0.1256 0.93 0.2660 0.2717 0.0326 

  1300-1800 ( C ) 11 0.98 0.1524 0.1543 0.94 0.2602 0.2674 0.0126 
Acid Insoluble Lignin (%)                   

 800-2500 (A) 9 0.91 0.0415 0.0420 0.56 0.0674 0.0696 0.0020 
  1300-1800 ( C ) 5 0.64 0.0820 0.0831 0.58 0.0793 0.0817 0.0039 
Total Lignin (%)                   

 800-2500 (A) 7 0.89 0.0395 0.0400 0.40 0.0766 0.0789 -0.0028 
  1300-1800 ( C ) 12 0.97 0.0201 0.0203 0.56 0.0654 0.0669 0.0083 
Holocellulose (%)                   

 800-2500 (A) 8 0.81 0.0143 0.0145 0.83 0.0137 0.0141 0.0009 
  1300-1800 ( C ) 9 0.81 0.0136 0.0138 0.89 0.0114 0.0117 0.0009 

aNo of principal components, bCalibration R2, cRoot mean square of calibration, dStandard error of calibration, eValidation R2, fRoot mean square of validation, 
gStandard error of prediction 
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Table 3. Results of PLS1 calibration and prediction models developed for the chemical and physical properties of northern red oak using the first derivative 
preprocessed spectra at two NIR wavelength regions 

  Wavelength (nm) aPC bR2cal cRMSEC dSEC eR2val fRMSEP gSEP BIAS 
Bulk Density Aerated (g/cm3)                   

 800-2500 (A) 6 0.96 0.0030 0.0031 0.84 0.0066 0.0068 0.0005 
  1300-1800 ( C ) 6 0.91 0.0044 0.0045 0.84 0.0066 0.0068 -0.0004 
BulkDensity Tapped (g/cm3)                   

 800-2500 (A) 5 0.94 0.0055 0.0055 0.89 0.0078 0.0072 -0.0035 
  1300-1800 ( C ) 6 0.94 0.0057 0.0057 0.88 0.0084 0.0085 -0.0015 
Ash (%)   

 800-2500 (A) 4 0.62 0.0079 0.0080 0.36 0.0119 0.0098 0.0072 
1300-1800 ( C ) 5 0.66 0.0076 0.0077 0.23 0.0159 0.0140 0.0082 

Extractives (%)                   
 800-2500 (A) 6 0.98 0.1498 0.1517 0.93 0.2550 0.2519 0.0729 

  1300-1800 ( C ) 6 0.94 0.2267 0.2296 0.94 0.2328 0.2395 0.0059 
Acid Insoluble Lignin (%)                   

 800-2500 (A) 4 0.82 0.0569 0.0576 0.73 0.0631 0.0647 0.0057 
  1300-1800 ( C ) 5 0.73 0.0693 0.0702 0.79 0.0567 0.0583 0.0047 
Total Lignin (%)                   

 800-2500 (A) 5 0.92 0.0323 0.0327 0.70 0.0531 0.0477 -0.0262 
  1300-1800 ( C ) 6 0.91 0.0344 0.0348 0.72 0.0487 0.0485 -0.0127 
Holocellulose (%)                   

 800-2500 (A) 7 0.99 0.0036 0.0037 0.89 0.0124 0.0124 -0.0028 
  1300-1800 ( C ) 6 0.83 0.0129 0.0131 0.85 0.0129 0.0133 -0.0006 

aNo of principal components, bCalibration R2, cRoot mean square of calibration, dStandard error of calibration, eValidation R2, fRoot mean square of validation, 
gStandard error of prediction 
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Figure 1a: Representative spectra of northern red oak 

 

 

Figure 1b. First derivative preprocessed spectra of northern red oak 
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Figure 2. PLS1 plot of predicted against measured Aerated Bulk Density using raw full NIR spectra region ( 800‐
2500nm) 
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Figure 3. PLS1 plot of predicted against measured Holocellulose content using preprocessed NIR spectra region 
of 1300‐1800nm 
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CHAPTER FOUR:  Rapid characterization of biomass using fluorescence 
spectroscopy coupled with multivariate data analysis: Part 1.  Yellow­
poplar (Liriodendron tulipifera L) 

 

Abstract  
In this paper, fluorescence spectroscopy coupled with multivariate data analysis (MVDA) was 

used as a process analytical technology (PAT) tool to predict some physical and chemical 

properties of yellow-poplar (Liriodendron tulipifera L.) as a biomass feedstock relevant to the 

bio-chemical conversion of the material into bio-fuels and bio-products. With the exception of 

holocellulose content, all the properties considered in the study were predicted with moderate to 

strong correlation between measured and fluorescence predicted values. Fluorescence spectra-

based prediction models of each property considered in this study were compared to Near 

Infrared (NIR) spectra-based prediction models of the same properties from a previous study 

using the same population. The NIR-based prediction models exhibited slightly superior model 

strength over the fluorescence spectra-based prediction models of similar properties. 

 

Keywords: Process analytical technology, multivariate data analysis, fluorescence, near infrared 
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Introduction 
The emergence of cellulosic bio-fuel as an alternate clean fuel to displace fossil-based 

transportation fuel has gained momentum for the last couple of years.  In the United States it is 

currently estimated that about 3% of our total industrial energy consumption is fulfilled by bio-

energy derived from sustainable and renewable biomass.1 It is projected that available renewable 

biomass in the U.S.  can be used to displace about 30% of current fossil fuel needs.1  

The potential of using biomass as feedstock for bio-refineries depends on linking both 

their physical and chemical properties to the bio-refinery process parameters. These properties 

include bulk density, particle size, moisture content, calorific values, ash content, lignin content, 

extractive content, and total sugars.2 Both qualitative and quantitative information on these 

properties needs to be known at the beginning of the bio-refinery process. We should also be 

able to track these properties and that of intermediary to final products of the process for 

optimum process control and quality assurance.  Currently, these properties are monitored by 

standard wet chemistry analysis which is slow, destructive, expensive, and can only be carried 

out primarily off-line. Consequently, rapid characterization of these properties before and during 

bio-refinery is critical to the success of the process. Standard wet chemistry methods of 

quantification are cumbersome, slow and expensive. 

Recent advances in spectroscopic technologies such as near infrared (NIR), UV-VIS, 

fluorescence, Raman and Laser induced breakdown spectroscopy (LIBS) coupled with “data 

mining” methods such as multivariate data analysis (MVDA) have created new opportunities for 

industries such as the pharmaceutical to implement rapid on-/at/in-line analytical quantification 

and qualification methods (Process Analytical Technology, PAT) for monitoring manufacturing 

processes and quality assurance. Process analytical technology (PAT) is broadly defined as the 

application of analytical chemistry coupled with multivariate data (MVDA) to monitor the 

physical and chemical properties of a material through on-/at-/in-line for process understanding, 

control or optimization.3 The “data mining” tool, MVDA, facilitates the extraction of important 

and relevant information in the large multivariable data (spectra) generated by spectrometers. 

This can be used to develop classification and prediction models. 

The biomass and forest  products industry have successfully utilized NIR as a PAT tool  

for quantitative and qualitative process control.4-6 Extensive research has been done on the use of 

NIR as a PAT tool in the biomass and forest products industry  to quantify the physical and  

64 
 



chemical properties of a number of wood species.7,8  Fluorescence spectroscopy (FS), a 

vibrational spectroscopic tool known to be more sensitive, cheaper, and more rapid in spectra 

acquisition has been understudied in the biomass and forest products industry. Wood is known to 

fluoresce due to the presence of flourophores in its chemical structure.9 The source of 

fluorescence is lignocellulose materials has been has been attributed to the presence of 

fluorophore molecules present in some of its chemical components; notably lignin, cellulose, 

hemicelluloses and extractives.9-12 Some chemical properties of Eucalyptus wood species were 

successfully quantified by fluorescence coupled with chemometrics.13 Most past fluorescence 

spectroscopic studies of wood were done on ground wood specimens. Sum et al. (1991), 

successfully used fluorescence spectra of solid wood to identify wood species on the basis of the 

characteristic spectra exhibited by different species.14 

To the best of our literature review, limited studies of fluorescence spectra coupled with 

MVDA have been evaluated as a potential PAT tool for predicting physical and chemical 

properties of solid wood. This study therefore bridges the knowledge gap by evaluating the 

potential of using FS to predict comprehensive physical and chemical properties of solid biomass 

and also evaluate the relative performance of NIR and fluorescence to predict the physical and 

chemical properties of wood using the same population of wood samples. The specific objectives 

of this study were:  

 

1. Use Fluorescence spectroscopy coupled with MVDA to develop calibration and 

prediction models for important physical and chemical properties of northern red oak 

(Quercus rubra) and yellow-poplar (Liriodendron tulipifera L.). These properties include 

ash content, extractives content, total lignin, acid insoluble lignin, holocellulose, and bulk 

density. 

 

2. Compare the efficiency of two spectra region of the fluorescence spectrum in order to 

determine which region contains relevant spectroscopic information for accurate 

quantification of the chemical and physical properties of yellow-poplar.  

 

3. Compare the performance of fluorescence and NIR spectra-based PLS1 prediction 

models of each physical and chemical property of northern red oak and yellow-poplar. 
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The above study results are presented in two parts based on the two wood species, yellow-poplar 

and northern red oak. Part 1 of the study, which is based on yellow-poplar is presented here. Part 

2, which reports the results of the study on northern red oak, is reported elsewhere.  

 

Materials and methods 
Details of materials and methods used in this study are described in this paper. Part 2 of this 

study makes extensive references to this section.   

 

Materials 
A tree, each of yellow-poplar and northern red oak was randomly selected in West 

Virginia University Research forest located about 13 km east of Morganton, WV. The height of 

each tree was approximately 14 meters. Five centimeter thick disks were cut at 3.5 meter 

intervals along the bole of the tree starting from the breast height (1.1m). A total of three disks 

were cut from each tree. Each disk was cut into blocks of size 19 X 19 X 50 mm. Only blocks 

from the heartwood of each disk were used in this study. Twenty specimens were randomly 

selected from each disk of both northern red oak and yellow-poplar disks. A total of 60 blocks 

(specimens) of both species were used in this study. Specimens were oven-dried at 103±2 oC for 

24 hours and reconditioned at about 23oC in a vacuum desiccator for 24 hours before analysis. 

 

Methods 
Fluorescence spectra measurement 

Fluorescence spectra measurements were acquired using USB2000-FLG fluorescence 

spectrometer (Ocean Optics Inc., Dunedin, FL, USA) with an application wavelength range of 

380-1050nm. The spectrometer was fitted with a customized fiber optic probe for measuring the 

fluorescence of solid biomass materials. A UV light source (PX-2 Pulsed Xenon Lamp) of range 

200-750 nm was used to excite the samples. The probe had an incident leg to direct light source 

and collection leg for collection of emitted light (fluorescence emission) after incidence on the 

material connected to the spectrometer. A linear variable filter (Ocean Optics Inc., Dunedin, FL 

USA) was fixed between the broad UV light source and the tip of the probe that directs light onto 

the material. The purpose of this filter was to select a band wavelength region for excitation of 

66 
 

http://oceanoptics.com/products/px2.asp


the material and block out other wavelength regions not selected. The software of the 

spectrometer (Spectra Suite, Ocean Optics Inc., Dunedin, FL, USA) allows excitation period 

adjustments. Excitation was done with thirty milliseconds of exposure of incident light and the 

resulting emission recorded. The spectra of wood samples were collected in scope mode and 

excited with a band wavelength region of 300-400nm. Ten scans were collected and averaged to 

a single spectrum; a total of four spectra were taken on the tangential face along the length of 

each sample and averaged to one average spectrum. These spectra were collected with the tip of 

the probe perpendicular to the tangential face of the sample.  Spectra were collected using 

Spectra Suite software in GRAMS SPC format. The Unscramble software version 9.8 (Camo 

Software Inc., Woodbridge, NJ, USA) was used for MVDA of the spectra data 

 

Determination of chemical properties  

Acid-insoluble lignin, total lignin (insoluble and acid-soluble lignin), extractives, and ash 

contents were the chemical properties determined in this study. Specific chemical properties of 

yellow-poplar were determined by traditional wet chemistry analytical methods: ASTM D-1106-

96, NREL LAP-004(1996), ASTM D1105-96(2007) and ASTM D-1102-84 respectively. 

Holocellulose content is given by the difference between initial weight of ground wood (oven-

dried weight basis) and the sum of the above chemical components. This data together with their 

physical property; bulk density was used as the Y-response variable for PLS modeling. 

 

Bulk density measurement  

Only one physical property of wood, bulk density was measured. Bulk density of biomass 

is a major contributing factor to the determination of “cost and logistic requirements for handling 

and moving biomass from point of production to biorefinery”.15 It is a function of the size, shape 

and individual particle density of the lignocellulose biomass. Two types of bulk densities were 

determined; aerated bulk density and tapped bulk density in accordance with the method 

described by [Yu et al (1994) and Adullah et al. (1998)]. Volume and weight determinations for 

each method were replicated twice for each sample and the average was computed for the 

sample. 

 

  

67 
 



Development of fluorescence calibration 

All spectra were analyzed using Unscrambler multivariate data analysis software (version 

9.8, Camo Inc., Woodbridge, New Jersey, US). The four emission spectra collected from each 

sample were averaged to one spectrum to give a total of sixty averaged spectra for each wood 

species. Spectra data of each species were divided into calibration and prediction sets. The 

calibration set consisted of two spectra out of every three consecutive spectra (40 spectra) and 

the prediction set comprised of one spectrum out of every three consecutive spectra (20 spectra).  

Chemometrically, fluorescence data can be analyzed in several ways: (i) two-way 

structure – sample X emission spectra wavelengths using bilinear chemometric methods 

(principal component analysis, partial least squares) and (ii) multi-way notable three-way 

(samples X excitation wavelengths X emission wavelengths). The two-way method principal 

component analysis is used to find the principal directions of variation in the fluorescence 

data.25-26 However, the three-way analysis produces more robust prediction models.27-29 

PARFAC method is one method used for multi-way model development.30 It decomposed three 

way fluorescence data into spectra excitation and emission profiles of fluorophores in samples. 

Two-way models are less robust in prediction. However, a two-way analysis will be used in this 

paper and a three-way analysis will be presented in a subsequent paper. 

As a first step in the development of a calibration model, a Principal Component Analysis 

(PCA) was applied to the data to obtain an overview. This process reduces the dimensionality of 

data by a linear combination of original data to generate new latent variables which are 

orthogonal and uncorrelated to each other. It distills the information in the original variables into 

a lower number of variables – principal components (latent variables).18 PCA lies along the 

direction of maximum variance in the data set.19 The score plot and loading plots of the PCA 

were observed and this operation revealed a total of six (6) outliers that were removed from the 

yellow-poplar data and excluded from subsequent model development. As a result of these 

outlier samples, the number of samples used for calibration (37 spectra) and testing (17 spectra) 

of the model decreased. After removal of outliers, both X- and Y- data matrices were mean-

centered. All fluorescence spectra (independent variables) were combined into a single data 

matrix [X-matrix] and the physical and chemical properties into separate response matrices [Yi].  

Calibration models were developed for two spectra region: (i) full spectra region that contained 
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both excitation and emission regions (295-872nm) and (ii) the longer wavelength region (400-

810nm) which encompassed only the emission region of the spectrum.  

Calibration models were developed using partial least squares regression (PLS1).  PLS1 

models were developed using only the raw spectra data. It should be noted that two other forms 

of spectra preprocessing of the data including first derivative and multiple scatter correction 

(MSC) were evaluated but did not significantly improve prediction models developed and are 

therefore not reported here. Since models developed with the raw data were better than similar 

models developed with preprocessed data, only the raw data-based calibration and prediction 

models are reported in this study. 

Partial least squares calibration models were developed with X- and Y-matrices. The Y-

matrices consisted of data from bulk densities (aerated bulk density and tapped bulk density), ash 

content, holocellulose content, total lignin, acid-insoluble lignin and extractives contents. The 

response variables, holocellulose, total lignin and acid-insoluble lignin contents were each 

preprocessed using a cubed root transformation due to the large differences in the values 

measured.6 Calibration models were developed using full-cross validation method and then used 

to predict the response of the prediction set. The Unscrambler MVDA software (version.9.8, 

Camo Software, Woodbridge, NJ, USA) was allowed to determine the optimum number of 

principal components required with close supervision on the explained and residual variance 

plots of each model before it was accepted. This was done to prevent under or over fitting of 

model. 

 

Measure of calibration model performance 

The prediction performance of a PLS1 model can be evaluated using a number of 

parameters. These include root mean square error of calibration (RMSEC), root mean square 

error of prediction (RMSEP), standard error of prediction (SEP), standard error of calibration 

(SEC), coefficient of determination (R2), bias, RDP and residual variance.22 Since this study 

focused on future prediction ability of models developed, parameters used to evaluate prediction 

performance of models were R2, RMSEP, SEP and bias. Calibration models results are also 

presented even though they not discussed. 
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RMSEP, a measure of the model fit, is a direct estimate of the prediction error in the Y-

variables of the model. It is expressed as the average error expected from future prediction of Y 

variables using our model and also expressed in the measurement units of the Y variables used in 

developing the model. Bias is used to detect if there is a systematic difference between average 

values of the calibration set and the validation set. If no such difference exists, bias will be equal 

to zero. The closer the bias is to zero, the more accurate the model developed both in terms of 

model fit and predictability of the future sample set. Bias is computed as the average difference 

between predicted and measured Y-values or all samples in the validation set. SEP is a measure 

of precision of the models predicting ability corrected for the bias in the validation of the 

model.4,20,21 

Coefficient of determination (R2) is a measure of total variance between measured and 

predicted values that can be modeled by linear association. R2 shows the proportion of X- data 

that can be explained by the variance in the Y-data. It varies between zero and one. The closer R2 

is to one, the stronger the correlation. R2 can inflate and approach unity by increasing the 

complexity of the model. Therefore, a high R2, even though a good indicator of a good model 

cannot be independently used as the ultimate measure of model performance. Interpretation of R2 

may be subjective. Generally, an R2 between 0.92-0.96 represents a model that can be used in 

most applications including quality assurance. An R2 of 0.83-0.90 range also represent a model 

that can be used in most applications including research activities with some level of caution. 

Approximate calibration and screening purpose activities can be done with an R2 range of 0.66-

0.81. General rough screening activities can utilize a model with an R2 range between (0.5-0.64). 

R2 (< 0.5) may be deemed poor and not useable in any Fluorescence calibration and the reasons 

should be investigated.21,22 The evaluation of  possible end use of prediction models in this study 

are based on this reference. 

Result presented in Tables 2 and 3 are PLS1 models developed for the prediction of 

measured physical and chemical properties of yellow-poplar with raw fluorescence spectra data 

and First derivative preprocessed NIR spectra (full spectra-based models).  
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Results and discussion 
Chemical properties of yellow-poplar are reported on percentage basis (oven-dried 

weight) of original sample analyzed (Table 1). Ash content exhibited a range of 0.70-0.79; 

extractives content had a range of 3.88-6.1, acid-insoluble lignin ranged from 16.59-21.30; acid-

soluble lignin content had a range of 0.011-0.067; total lignin content ranged from 21.84-27.49 

and holocellulose showed a range of 72.51-78.16. Chemical properties measured compared 

favorably to those reported previously by Peterson (1984). For the physical property measured, 

aerated bulk density and tapped bulk density exhibited a range of 0.16-0.20 and 0.21-0.27 g/cm3 

respectively. Typical representative fluorescence spectra of yellow-poplar are depicted in 

Figure1.  

 

Evaluation of chemical and physical properties prediction using fluorescence 
spectra data 

PLS1 prediction models were developed to predict ash, extractives, acid-insoluble lignin, 

total lignin, holocellulose contents, aerated and tapped bulk densities of yellow-poplar using 

fluorescence spectroscopy coupled with MVDA and the results are presented Table 1.  

The prediction of aerated bulk density with calibration models developed with the full spectra, 

and the emission spectra exhibited good correlation between the fluorescence predicted and 

measured aerated bulk density with an R2 of (0.77) and (0.72) respectively (Figure 2). Low 

RMSEP (0.0068) and SEP (0.0068) were exhibited by the full spectra-based prediction model. 

The emission spectra-based prediction model had a slightly higher RMSEP and SEP (0.0072) 

values as compared to a full spectra-based model. Both PLS1 prediction models required slightly 

high number of PC’s (7-8) for model development. Very low bias values were exhibited by the 

full spectra-based prediction model (-0.0001) and the emission spectra-based prediction model (-

0.0016). Both models were adequate for screening and approximate calibration purposes based 

on the moderate R2 exhibited by the models (0.72-0.77).22 

Tapped bulk density, the second type of bulk density measured, was also predicted with a 

good R2 (0.75) for the full spectra-based and the emission spectra-based (R2 0.69) prediction 

models. The full spectra-based prediction model exhibited low RMSEP and SEP (0.0086). 

Similarly, the emission spectra-based tapped bulk density prediction model also exhibited low 

RMSEP and SEP (0.0095) values. Low bias values were also exhibited by the full spectra-based 
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(-0.0021) and the emission spectra-based (-0.0023) prediction models. Slightly higher number of 

PC’s (8) were required by both prediction models development. PLS1 prediction models 

developed for aerated bulk density and tapped bulk density exhibited slightly better model when 

predicted with calibration models developed with the full spectra than models developed with the 

emission spectra. This observation was based on slightly improved R2, low RMSEP, SEP and 

bias values. Both models will be adequate for screening and adequate approximation activities. 

This observation was based on R2 (0.69-0.75) values exhibited by the models.22 

PLS1 calibration models developed for ash content with the full spectra and emission 

spectra exhibited high correlation between measured and fluorescence-predicted ash content 

values with R2 values of (0.86) and (0.76) respectively. The full spectra-based prediction model 

exhibited low RMSEP (0.0130), SEP (0.0131) and bias (0.0021) values. Low RMSEP (0.0167), 

SEP (0.0170) and bias (-0.0014) values were also exhibited by the prediction models developed 

with the emission spectra. The full spectra-based prediction model was slightly a better model as 

compared to the emission spectra-based model; this was based on slightly lower RMSEP, SEP 

values and an improved R2 value of the full spectra-based model (columns 6-9 of Table 2). Both 

prediction models required slightly high number of PC’s (8) for development. Based on the R2 of 

the model, the full spectra-based prediction models will be adequate for most prediction 

activities including research R2 (0.86), whiles the emission spectra-based model will be good for 

screening and approximate calibration purposes R2 (0.76).22 Billa et al. (2000), similarly 

predicted the ash content of eucalyptus wood based on the fluorescence spectra of ground wood 

with a Pearson correlation coefficient (R) of 0.7. 

For extractives content, prediction models developed with the full spectra and the 

emission spectra exhibited good R2 of 0.75 and 0.68 respectively (Figure 3). Full spectra-based 

prediction model exhibited low RMSEP (0.3439), SEP (0.3529) and bias (-0.0333) values. 

Similarly the emission spectra-based prediction model also exhibited slightly higher RMSEP 

(0.3924) and SEP (0.4043) as compared to the full spectra-based model. Low bias (0.0113) was 

also exhibited by the emission spectra-based prediction model. The full spectra-based prediction 

model was consequently judged a better prediction model over the emission spectra-based model 

based on improved R2, RMSEP and SEP values. Both prediction models required slightly high 

number of PC’s (8) for development. Both prediction models will be adequate for screening and 

some approximate calibration purposes based on the R2 of the models (0.68-0.75).22 
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Moderate correlation was exhibited between measured acid-insoluble lignin content and 

fluorescence predicted values based upon full spectra (R2 0.65) and emission spectra (R2 0.59) 

prediction models. The full spectra-based prediction model exhibited low RMSEP (0.0812), SEP 

(0.0838) and bias (0.0033). The emission spectra-based prediction model exhibited a slightly 

higher RMSEP (0.0912) and SEP (0.0905) value as compared to the full spectra-based model. 

Bias of the reduced spectra model was also low (-0.0245). Full spectra-based prediction model 

for acid-insoluble lignin will perform much better than models developed based with emission 

spectra. This observation was based on the much improved R2, RMSEP and SEP values of the 

full spectra-based model. Both prediction models required a moderate number of PC’s (7) for 

development. Based on the R2 (0.59-0.65) values exhibited by each model, both models will be 

adequate for rough screening activities.22 

Total lignin, the sum of acid-insoluble, and soluble lignin contents were also predicted 

with moderate R2 values of 0.62 and 0.57, for the full spectra-based and the emission spectra-

based prediction models respectively. The prediction model developed with the full spectra 

exhibited low RMSEP (0.0889), SEP (0.0918) and bias (-0.0015). Prediction model developed 

with the emission spectra also exhibited slightly higher RMSEP (0.0914), SEP (0.0943) and bias 

(0.0026). Based on the slight improvement in R2, RMSEP, SEP and bias values of the full 

spectra-based prediction model; it was judged a better model for predicting total lignin content 

with an R2 of 0.62. Both models required slightly high number of PC’s (8-9) for development. 

Additionally, they will be adequate for rough screening purposes based on their R2 range (0.57-

0.62).22 

For holocellulose content, prediction models for both spectra region exhibited very low 

R2 values with a range of (0.1-0.3). Both models developed exhibited low RMSEP and SEP 

values (<0.068). Similarly, low number of PC’s (6) were required for the development of both 

models and a low bias values were exhibited by both models as well (0.0012-0.0097). These 

models were judged poor and unusable for any purpose based on their low R2 values.22 The low 

prediction ability of holocellulose models may be as a result of insufficient sample size used to 

calibrate and test the model or as a result of the inability of fluorescence spectroscopy (FS) 

coupled with MVDA to predict holocellulose content of yellow-poplar accurately.  
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Comparison of fluorescence and near infrared spectra­based models 
The performance of first derivative based-NIR prediction models for the identical 

response variables for the same yellow-poplar population published elsewhere (Nkansah and 

Dawson-Andoh, 2009) are compared. Since each spectra-based model was developed with the 

sample population, models developed by the two spectroscopic methods can be compared. To 

make comparison simple, only the full spectra-based prediction models with three parameters 

(R2, SEP, and number of PC’s) of the two spectra-based models will be used. 

The NIR-based prediction model predicted aerated bulk density with greater accuracy 

than the fluorescence-based model. The NIR-based model exhibited slightly higher R2 (0.83); 

slightly lower SEP (0.0055) and PC’s (4) in contrast to fluorescence-based model [R2 0.77, SEP 

(0.0068) and PC’s (8)]. Similarly, NIR-based tapped bulk density model [R2 (0.79); slightly 

lower SEP (0.0067); number of PC’s (4)] performed better than fluorescence-based model [lower 

R2 (0.72), much higher SEP (0.0086) and higher number of PC‘s (8)].   

Even though the fluorescence-based prediction model of ash content exhibited higher R2 

(0.86) and a lower SEP (0.0131) as compared to the slightly lower R2 (0.82) and a minimal 

increase in SEP (0.0133) for the NIR-based model, the NIR-based spectra was still comparable 

in performance to fluorescence-based model. This is due to the high number of PC’s (8) required 

by the fluorescence-based model as compared to the NIR-based model (PC’s 5). High number of 

PC’s may inflate R2 values and cause over fitting of the model, therefore a lower number of PC’s 

is preferred.  

For extractives content, the performance of NIR-based prediction model [R2 (0.78), lower 

SEP (0.3387) and number of PC’s (4)] was comparable to fluorescence-based models [R2 (0.75), 

an increase in SEP (0.3529) and number of PC’s (4)]. Performance of NIR-based acid-insoluble 

lignin content prediction model [R2 (0.79), lower SEP (0.0717) and number of PC’s (5)] was 

slightly better than fluorescence-based model [R2 (0.65), an increase in SEP (0.0838) and 

number of PC’s (7)].  Total lignin was predicted by NIR-based model [R2 (0.66), reduction SEP 

(0.0895) and number of PC’s (4)] with a greater accuracy than the NIR-based prediction model 

[R2 (0.62), much higher SEP (0.0918) and number of PC’s (8)].  Fluorescence-based prediction 

model failed to predict holocellulose content [low R2 (0.37), high SEP (0.0608) and number of 

PC’s (6)]. In contrast, NIR-based model predicted holocellulose content with greater accuracy 

[high R2 (0.81), low SEP (0.0429) and number of PC’s (4)]. 
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  Generally, the performance of the NIR-based prediction models developed with the first 

derivative preprocessed spectra for all response variables were higher than similar fluorescence 

based models. The fluorescence based models could still be used for screening, approximate 

calibration and research purposes (R2 range: 0.59-0.86).  The raw spectra NIR-based spectra 

models were not considered in this study because the preprocessed models performed much 

better.24 Additionally, with the exception of holocellulose content, fluorescence spectra-based 

prediction models performed equally, and in some situations better than the raw NIR spectra-

based prediction (data not shown here). Raw spectra NIR-based models are presented 

elsewhere.24 Finally, two-way model analysis of fluorescence data is less robust and exhibits low 

prediction performance. A three-way analysis using PARAFAC may improve prediction models 

developed in this study and will be presented in a subsequent paper.  

 

Conclusion 
Results from this study have shown that with the exception of holocellulose content, a 

two-way MVDA model analysis of full spectra fluorescence data (emission and excitation 

together) can predict (R2 0.62-0.86) ash, extractives, acid-insoluble lignin, total lignin contents, 

aerated and tapped bulk density of yellow-poplar with moderate to high accuracy than the 

emission spectra-based models (R2 0.55-0.76 ). The performance of full fluorescence spectra-

based models was generally lower than preprocessed full NIR spectra-based models for similar 

response variables. Fluorescence data analyzed using two-way model principal component and 

partial least squares has low prediction accuracy and less robust. A three-way principal 

component analysis of this data will be presented in a subsequent paper. 

This study further demonstrates the future potential of FS coupled with MVDA as a 

potential PAT tool. It has demonstrated the potential of using fluorescence spectrometer as an 

inexpensive, rapid, and portable spectrometer for characterizing some chemical properties of 

solid wood and the bulk density of ground wood based on fluorescence spectra of the solid wood 

block with fairly good results. 
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Table 1. Statistics of measured chemical and physical properties of yellow‐poplar (60 samples) 

  Mean* SDa Minb Maxc 

Aerated Bulk Density (g/cm3) 0.18 0.014 0.16 0.20 

Tapped Bulk Density (g/cm3) 0.24 0.017 0.210 0.266 

Ash (%) 0.76 0.036 0.7 0.79 

Extractives (%) 5.03 0.720 3.88 6.1 

Acid Insoluble Lignin (%)  19.39 1.29 16.59 21.3 

Soluble Lignin (%) 0.03 0.012 0.011 0.067 

Total Lignin (%) 19.40 1.27 21.84 27.49 

Holocellulose (%) 73.00 0.75 72.51 78.16 
                      *Mean, aStandard deviation, bMinimum measured value, cMaximum maximum measured value 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Results of PLS1 calibration and prediction models developed for the chemical and physical properties of yellow‐poplar using the raw fluorescence 
spectra at two wavelength regions 

  Wavelength (nm) aPC bR2cal cRMSEC  dSEC eR2val fRMSEP gSEP BIAS 
Bulk Density Aerated (g/cm3) 

295-872(A) 8 0.88 0.0046 0.0047 0.77 0.0066 0.0068 -0.0001 
  400-810 (B) 7 0.85 0.0052 0.0052 0.72 0.0072 0.0072 -0.0016 
Bulk Density Tapped (g/cm3)                     

295-872(A) 8 0.83 0.0072 0.0073 0.75 0.0086 0.0086 -0.0021 
  400-810 (B) 8 0.89 0.0058 0.0059 0.69 0.0095 0.0095 -0.0023 
Ash (%) 

295-872(A) 8 0.94 0.0088 0.0089 0.86 0.0130 0.0131 0.0021 
  400-810 (B) 8 0.93 0.0091 0.0092 0.76 0.0167 0.0170 -0.0014 
Extractives (%) 

295-872(A) 8 0.89 0.2287 0.2319 0.75 0.3439 0.3529 -0.0333 
  400-810 (B) 8 0.89 0.2185 0.2216 0.68 0.3924 0.4043 0.0113 
Acid Insoluble Lignin (%)                   

295-872(A) 7 0.75 0.0673 0.0683 0.65 0.0812 0.0838 0.0033 
  400-810 (B) 7 0.85 0.0528 0.0535 0.59 0.0912 0.0905 -0.0245 
Total Lignin (%) 

295-872(A) 8 0.81 0.0588 0.0597 0.62 0.0889 0.0918 -0.0015 
  400-810 (B) 9 0.96 0.0266 0.0270 0.57 0.0914 0.0943 0.0026 
Holocellulose (%)                   

295-872(A) 6 0.51 0.0476 0.0482 0.37 0.0588 0.0608 0.0012 
  400-810 (B) 6 0.51 0.0547 0.0554 0.1 0.0652 0.0668 0.0097 

aNo of principal components, bCalibration R2, cRoot mean square of calibration, dStandard error of calibration, eValidation R2, fRoot mean square of validation, 
gStandard error of prediction 
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Table 3. Results of PLS1 calibration and prediction models developed for the chemical and physical properties of yellow‐poplar using the first derivative 
preprocessed full NIR spectra region. 

  Wavelength (nm) aPC bR2cal cRMSEC dSEC eR2val fRMSEP gSEP BIAS 

Bulk Density Aerated (g/cm3)                   

 800-2500 (A) 4 0.9 0.0044 0.0044 0.83 0.0054 0.0055 -0.0007 

BulkDensity Tapped (g/cm3)                   

 800-2500 (A) 4 0.86 0.0067 0.0068 0.79 0.0072 0.0067 -0.0031 

Ash (%)                   

 800-2500 (A) 5 0.96 0.0074 0.0075 0.82 0.0132 0.0133 0.0024 

Extractives (%)                   

 800-2500 (A) 4 0.83 0.2846 0.2885 0.78 0.3422 0.3387 0.0954 
 
Acid Insoluble Lignin (%)                   

 800-2500 (A) 5 0.89 0.0488 0.0495 0.79 0.0696 0.0717 0.0037 

Total Lignin (%)                   

 800-2500 (A) 4 0.81 0.0633 0.0641 0.66 0.0885 0.0895 -0.0165 

Holocellulose (%)                   

   800-2500 (A) 4 0.79 0.0370 0.0375 0.81 0.0416 0.0429 0.0012 
aNo of principal components, bCalibration R2, cRoot mean square of calibration, dStandard error of calibration, eValidation R2, fRoot mean square of validation, 
gStandard error of prediction 

 

 

 



 

Figure 1. Representative fluorescence spectra of yellow‐poplar heartwood 
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Figure 2. PLS1 plot of predicted against measured aerated bulk density of yellow‐poplar using the emission 
fluorescence spectra region (400‐810nm) 
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Figure 3. PLS1 plot of predicted against measured extractive content using the full fluorescence spectra region 
(295‐872nm) 
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CHAPTER FIVE: Rapid characterization of biomass using fluorescence 
spectroscopy coupled with multivariate data analysis: Part 2. Northern 
red oak (Quercus rubra.) 
 

Abstract 
This paper is the final part of our study of the potential use of fluorescence spectrometer coupled 

with multivariate data analysis (MVDA) as a process analytical (PAT) tool for rapid 

characterization of a variety of biomass residues and this study focus on northern red oak 

(Quercus rubra) as a bio-energy feedstock. The results of the study showed that, with the 

exception of holocellulose content and ash content, fluorescence spectrometer can be used to 

predict the entire chemical and physical properties of biomass relevant to its bio-chemical 

conversion into bio-energy and bio-products. Similar near infrared (NIR) spectra-based 

prediction models of the same properties and population from a previous study were compared to 

this study. The performance of the NIR spectra-based prediction models of each property was 

slightly superior over the fluorescence spectra-based models even though both can be used for 

the same purpose. fluorescence spectra-based prediction models  of  holocellulose content and 

ash content of northern red oak were poorly predicted with a low R2 (<0.5). 

 

Keywords: Fluorescence, Multivariate data analysis, Process analytical technology, Near 

infrared 
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Introduction 
After the energy crisis that dominated the 1970’s, interest in alternative sources of fuel 

has gained momentum. Bio-fuels have become the epitome of this search because its 

characteristics of being a clean source of energy.  A comprehensive study of biomass resource 

(residues) as a potential feedstock for the bio-refinery industries put the contribution of biomass 

to total industrial and electric energy at 4% with annual increase of 3.9 quads in 2020 and 4.8 

quads in 2030.1 These estimates are based on the availability of approximately 1.3billion tons of 

dry biomass per year in the United States which is are sustainable resource and renewable.1 

The heterogeneous nature of biomass presents a number of challenges for its biochemical 

conversion into energy.2 Standard analytical methods of determining the properties of a biomass 

are slow and expensive. Therefore rapid characterization of the physical and chemical properties 

of any biomass is paramount prior to any conversion process.  

The potential use of near infrared spectroscopy (NIRS) coupled with multivariate data 

analysis (MVDA) as a process analytical technology (PAT) tool in the forest products industry 

has been extensively studied and reviewed in a number of scientific reviews.3-7 The used of much 

cheaper, sensitive, rapid, and portable spectroscopic tool such fluorescence have not gained 

much traction in the bio-fuel, forest products, and bio-products industry. Wood as a form of 

biomass is known to fluoresce due to the presence of flourophores in its chemical structure.8 

Olmstead and Gray (1997), extensively reviewed the source of fluorescence in cellulosic, lignin 

and mechanical pulp. A number of studies have also exhibited the possibility of classifying wood 

based on the fluorescence spectra from ground wood and solid wood.10,11 The quantification of 

some wood properties based on fluorescence spectra from ground wood has also been reported.12 

Dues to the heterogeneous nature of wood, the fluorescence spectra may vary from species to 

species.11,13,14 This study is a follow up on our previous paper that employed fluorescence 

spectroscopy (FS) as a PAT method to predict the physical and chemical properties of biomass. 

Specific objective of this study were to: 

 

1. Use Fluorescence spectroscopy coupled with MVDA to predict important physical and 

chemical properties of northern red oak (Quercus rubra) These properties include ash 

content, extractives content, total lignin, acid insoluble lignin, holocellulose and bulk 

density. 
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2. Compare the efficiency of two spectra region of the fluorescence spectrum in order to 

determine which region contains relevant spectroscopic information for accurate 

quantification of the chemical and physical properties of northern red oak (Quercus 

rubra). 

 

3. Compare the performance of Fluorescence spectra-based and NIR spectra-based PLS1 

prediction models of each physical and chemical property of northern red oak of the same 

population. 

 

Materials and Methods 
Similar sampling methods used in our previous paper (Nkansah, K and Dawson-Andoh, 

B. 2009) will be applied in this study. 

 

Materials 
Northern red oak (Quercus rubra) was randomly selected in West Virginia University 

Research forest located about 13 km east of Morganton, WV. Each tree was approximately 14 

meters tall. Three 50 mm disk were removed from the bole and a total of 60 samples from the 

heartwood with size 19mm X 19mm X 50 mm each were randomly selected for this study. 

Detailed description of sampling methods and conditioning are described in our previous study.15 

 

Methods 
Fluorescence spectra measurement 

Ocean Optics USB2000-FLG fluorescence spectrometer (Ocean Optics, Florida) with an 

application wavelength range of 380-1050nm was used to capture the fluorescence spectra of the 

samples. The spectrometer was fitted with a customized fiber optic probe for measuring the 

fluorescence of solid biomass materials. A UV light source (PX-2 Pulsed Xenon Lamp) of range 

200-750 nm was used to excite the samples at a band wavelength region of 200-400nm. Ten 

scans were collected and averaged to a single spectrum, a total of four spectra were taken on the 

tangential face along the length of each sample and averaged to one average spectrum. Detailed 
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description of the spectrometer, solid collection probe and technique of measurement used in this 

study are described in details elsewhere.15 The Unscramble software v9.8 (Camo Smart, 

Woodbridge, NJ, USA) was used for MVDA of the spectra data 

 

Determination of chemical properties 

Chemical properties measured included total lignin (insoluble and acid-soluble lignin), 

extractives, holocellulose, and ash contents. These properties were determined by classical wet 

chemistry methods as per protocols of ASTM D-1106-96, NREL LAP-004(1996), ASTM 

D1105-96(2007) and ASTM D-1102-84 respectively. Holocellulose was given by the difference 

between initial weight of ground wood and the sum of the above chemical components. This data 

together with their physical property; bulk density was used as the Y-response variable for PLS 

modeling. 

 

Bulk density measurement 

Bulk density of biomass is a major contributing factor to the determination of “cost and 

logistic requirements of handling and moving biomass from point of production to biorefinery.16 

It is a function of the size, shape and individual particle density of the lignocellulose biomass. 

Two types of bulk densities were determined; aerated bulk density and tapped bulk density in 

accordance with the method described by Yu et al. (1994) and Adullah et al. (1998). Both 

volume and weight determination for each method was replicated twice for each sample and the 

average computed for the sample. 

 

Development of fluorescence calibration  

All spectra were analyzed using Unscrambler multivariate data analysis software (version 

9.8, Camo Inc., Woodbridge, New Jersey, US). A total of 60 averaged spectra for the heartwood 

of northern red oak; one averaged spectrum for each specimen.  

Several methods can be used in chemometrics to analyze fluorescence data. The two 

predominant methods are (i) two-way structure –samples X emission spectra wavelength using 

bilinear chemometric methods (PCA, PLS) and (ii) multi-way which is notable referred to as 

three-may (samples X excitation X emission wavelength). The three–way method is more robust 

when compared to the two-way method.24-26 The two-way PCA is used to find the direction of 
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variation in the fluorescence data whiles the PLS decomposes the independent (emission spectra-

X) and dependent (reference-Y) matrix successively and captures the variation and correlation 

between X and Y.27-28  Detailed summary of these methods are presented in the first part of our 

study.15 In this study the two–way method was used and a three-way analysis will be presented 

in a subsequent paper. 

To obtain an overview of data, Principal Component Analysis (PCA) was performed and 

it revealed the presence of six outliers. These were eliminated from subsequent analysis. The 

spectra data were divided into calibration and prediction sets. Data was divided into calibration 

and validation sets. The calibration set consisted of two spectra out of every three consecutive 

spectra (n=36 spectra) and the prediction set (n=18 spectra) comprised of one spectrum out of 

every three consecutive spectra. All the fluorescence spectra were combined into a single data 

matrix [X-matrix] and the measured physical or chemical properties measured were also 

combined into separate response matrix [Yi]. The Y-matrices consisted of data from bulk 

densities (aerated bulk density and tapped bulk density), ash content, holocellulose content, total 

lignin, acid insoluble lignin, and extractives contents measured values.  

Calibration models were developed for two spectra region: (i) full fluorescence spectrum 

that encompassed the excitation and emission spectra (295-872nm) and (ii) emission spectra 

region (400-810nm) that encompassed only the emission spectrum. PLS1 calibration models 

were developed using the raw spectra data.  In our study two other forms of spectra 

preprocessing of the data including first derivative and multiple scatter correction (MSC) were 

evaluated. These preprocessing techniques did not improve the prediction models developed to 

any degree than the raw spectra data models. Comparatively the raw spectra prediction models 

were much better than any of the preprocessing applied. Only the raw spectra data calibration 

and prediction models were evaluated and reported in this study. PLS1 calibration models were 

developed with X- and Y-matrices. The response variable holocellulose content, total lignin 

content, and acid-insoluble lignin content were preprocessed using a cubed root transformation 

due to the large differences in the values measured.6 The Y-data matrix were mean –centered and 

calibration models were developed using full-cross validation method and then used to predict 

the response of the prediction/validation set. Detailed multivariate analyses (calibration and 

validation methods) of the data are described in our previous study.15 
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Measure of calibration model performance  

Parameters used to evaluate the performance of our calibration models include: (i) 

coefficient of determination R2,  (ii) root mean square error of prediction (RMSEP), (iii) standard 

error of prediction (SEP), and (iv) bias. These parameters are discussed in details elsewhere.15 

Root mean square error of prediction is a direct estimate of the prediction error in the Y variables 

of the model; whiles SEP is a measure of precision of the models predicting ability corrected for 

the bias in the validation of the model. Bias is a measure of systematic difference between 

average values of the calibration set and the validation set of a model.  If no such difference 

exists, the bias will be equal to zero. R2 is a measure of total variance between measured and 

predicted values that can be modeled by linear association. The closer R2 value is to one, the 

stronger the correlation.4,19-21 

Result presented in Tables 2 and 3 are PLS1 models developed for prediction of 

measured physical and chemical properties with the raw fluorescence spectra and first derivative 

preprocessed full NIR spectra of northern red oak respectively.  

 

Results and discussion 
Results of measured chemical and physical properties of northern red oak are presented 

in Table 1. Chemical properties of northern red oak are expressed as a percentage of the original 

oven dry weight of ground wood analyzed. Ash content had a range of 0.15-0.20; extractives 

content had a range of 4.48-7.74; acid insoluble lignin exhibited a range of 17.90-21.95 whiles 

total lignin content had a range of 18-21.97. Holocellulose content also had a range of 71.48-

74.93. These results were comparable to a similar study reported by Petersen (1984). For the 

physical property measured, aerated bulk density and tapped bulk density exhibited a range of 

0.23-0.28 and 0.31-0.38 g/cm3 respectively.  All collected fluorescence spectra were similar as 

depicted in Figure 1.  
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Evaluation of chemical and physical properties prediction using fluorescence 
spectra data 

Table 2 presents results of PLS1 calibration and prediction models of ash content, 

extractive content, acid insoluble lignin, total lignin, holocellulose content, aerated and tapped 

bulk density of northern red Oak (Quercus rubra). The number of optimum PCs required for 

developing calibration models for all properties in this study ranged between 1-7 PCs. Generally 

prediction models developed with the full spectra and the emission spectra for all the response 

variables considered in this study exhibited almost equal prediction accuracy with regards to R2 

values. 

For aerated bulk density, prediction model developed with the full spectra and the 

emission spectra exhibited high R2 values of (0.85) and (0.83) respectively. Prediction model 

developed with the full spectra had a low RMSEP (0.0055), SEP (0.0057) and bias (0.0001). 

Slightly higher RMSEP (0.0058), SEP (0.0059) and bias (0.0008) values were exhibited by the 

prediction model developed with the emission spectra as compared to the full spectra-based 

prediction model. Both models required moderate number of PC’s (7) for model development. 

Prediction model developed with the full spectra exhibited a slightly better model over the 

emission spectra-based model. This observation was based on the slight improvement in R2, 

RMSEP, SEP and bias values of the full spectra-based prediction model. Both models were also 

adequate for most activities that accuracy is important based on their high R2 values. 21 

Tapped bulk density was predicted with a high R2 using the full spectra-based (R2 0.87) 

and the emission spectra-based (R2 0.92) prediction models. The Prediction model developed 

with the full spectra exhibited low RMSEP (0.0074), SEP (0.0075) and bias (-0.0012). Slightly 

lower RMSEP, SEP (0.0057) and bias (0.0016) were exhibited by the prediction model 

developed with the reduce spectra region. Based on this observation the emission spectra region 

was judged a better model over the full spectra prediction model. Both models required a 

moderate number of PC’s (7) for model development. The full spectra-based prediction model 

was adequate for most prediction activities whiles the emission spectra-based model was good 

for most applications including quality assurance purposes. These observations are based on high 

R2 values both models exhibited (0.87-0.92).21  

Even though the PLS1 prediction models developed for ash content with the full spectra 

and the emission spectra had low RMSEP,  SEP values (<0.012) and a low bias within the range 
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(0.0011-0.0015), both models were judged to be poor models based on the low R2 values 

exhibited (<0.24). 21 Similarly poor modeling of ash content was exhibited in our previous study 

using NIR as a spectroscopic tool in PLS1 prediction modeling on the same population used in 

this study. The low R2 values in the previous study was ascribed to the very minute ash content 

values of red oak and the subtle variance within the population used in the calibration and 

prediction of the models.23 Since this study used the same sample population as the previous 

study, the inability of fluorescence spectroscopy to predict ash content of northern red oak was 

also attributed to the minute ash content of northern red oak and the lack of variance within the 

population used in the study.  

 An increase in the sample space may increase the possibility of predicting ash content 

using (FS) coupled with MVDA by invariably increasing the variance within the population and 

making them more profound and detectable by the PLS1 modeling technique. Similar result was 

reported in a study of acid soluble lignin calibration model of E.globulus developed using the 

NIR spectrum. The poor R2 of calibration was attributed to the minute quantitative measured 

values of acid soluble content of E.globulus. The study also suggested that the subtle variation 

within the measured values may contribute to the low R2 of 0.62.7 

Prediction models developed for extractive content exhibited high R2 values of (0.92) and 

(0.91) for the full spectra-based and the emission spectra-based prediction models respectively. 

(Figure 2)  Low RMSEP (0.2693) and SEP (0.2767) were exhibited by full spectra-based 

prediction model. Slightly higher RMSEP (0.2894) and SEP (0.2935) were exhibited by the 

emission spectra-based prediction model. The prediction model developed with the full spectra 

and the emission spectra showed low bias values of (-0.0138) and (-0.0487) respectively. Both 

models required moderate number of PC’s (6) for model development. The prediction accuracy 

of the full spectra-based model was generally stronger than the emission spectra-based model. 

This observation was based on the slightly lower RMSEP, SEP and bias of the full spectra-based 

model as compared to the emission spectra model. Based on high R2 values exhibited by the 

models, both models were adequate for most applications where high accuracy is vital including 

quality assurance activities. 21  

 Acid insoluble lignin, PLS1 prediction models, developed with the full spectra and the 

emission spectra exhibited moderate R2 values of (0.71) as depicted in Figure 2. Low RMSEP 

(0.0676) and SEP (0.0691) exhibited by the full spectra-based prediction model. The RMSEP 
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(0.0693) and SEP (0.0713) values exhibited by the emission spectra-based prediction model were 

slightly higher than similar parameters of the full spectra-based model. Prediction models 

developed with the full spectra and the emission spectra exhibited low bias values (<0.0090). 

Even though the correlation between measure and fluorescence predicted acid insoluble lignin 

for both models were equal, the full spectra-based prediction model was a slightly better 

prediction model as compared to the emission spectra-based prediction model. This observation 

was based on the slightly lower RMSEP and SEP values exhibited by the full spectra-based 

prediction model as compared to the similar parameters of the emission spectra-based model. 

Both models required low number of PC’s (5) for model development and they were both 

adequate for approximate calibration and screening purpose based on their R2 values (0.71).21 

Total lignin content was also predicted with high R2 of (0.88) and (0.93) for models 

developed using the full spectra region and the emission spectra region respectively. The full 

spectra-based prediction model exhibited low RMSEP (0.0436) and SEP (0.0446). Much lower 

RMSEP (0.0355) and SEP (0.0346) was exhibited by the emission spectra-based prediction 

model. The emission spectra-based prediction model of total lignin exhibited a much higher 

model performance with respect to the decrease in RMSEP, SEP and an improved R2 of the 

model as compared similar model parameters of the full spectra-based prediction model. Based 

on the R2 of each model, the full spectra-based prediction model was judged to be adequate for 

most prediction purposes where accuracy is imperative, including research. The emission 

spectra-based prediction model was adequate for quality assurance activities where strict 

accuracy was required.21 

For holocellulose content, prediction models developed with both spectra regions 

exhibited low RMSEP and SEP (<0.022). The full spectra-based and emission spectra-based 

prediction models exhibited low bias values of (0.0016) and (-0.0014) respectively. Both 

prediction models were judge poor and unusable for any purpose based on the low R2 values they 

exhibited (0.23-0.48). The poor prediction modeling of holocellulose content of northern red oak 

may be as a result of insufficient population size for calibration and prediction of the model. An 

increase in the sample size may improve the models by increasing the variance within the 

measured sample population. It is also possible that the FS coupled with MVDA cannot be used 

to predict the holocellulose content of northern red oak with high accuracy. Similar results was 
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exhibited in our previous study; were holocellulose content of yellow-poplar was poorly 

predicted with low R2 values (<0.40).21 

 

Comparison of fluorescence and near infrared spectra­based models 
The first derivative preprocessed NIR spectra-based prediction models of northern red 

oak from our previous study (Nkansah, K and Dawson-Andoh. 2009) were compared with 

similar response variable prediction models developed with the fluorescence spectra to evaluate 

the relative performance of the models for each response variable. Both studies used the same 

sample population in developing prediction models and this allowed us to make a meaningful 

comparison between the two different spectra-based prediction models. Only the full spectra-

based prediction models of the fluorescence and NIR study were compared with respect to their 

R2, SEP values and the number of PC’s of each prediction model. 

For aerated bulk density; even though fluorescence spectra-based exhibited a slightly 

improved prediction model [R2 (0.85) and SEP (0.0057)], as compared the NIR spectra-based 

prediction model [R2 (0.84) and SEP (0.0068)]. The NIR spectra-based model was judged as 

better prediction model of aerated bulk density with regard to the lower number of PC’s (6) 

required by the NIR spectra-based model as compared to the fluorescence spectra-based model 

(7 PC’s). The R2 of both models were comparably very close and could be used for similar 

activities including research purposes. The performance of the NIR spectra-based prediction 

model of tapped bulk density was judged a better prediction model over the fluorescence spectra-

based model. This observation was based on the slightly higher R2 (0.89), lower SEP (0.0072) 

and number of PC’s (5) exhibited by the NIR spectra-based model as compared to the 

fluorescence spectra-based prediction model that exhibited a slightly lower R2, an increase in 

SEP and number of PC’s [R2 (0.87), SEP (0.0075) and PC’s (7) ]. 

Even though the ash content of northern red oak prediction models of both spectra-based 

models were poor and unusable, the NIR spectra-based model (R2= 0.36) exhibited the potential 

of being a better model over the fluorescence based-spectra model (R2 =0.23). Similarly, for 

extractive content, the NIR spectra-based prediction model performed slightly better than the 

fluorescence spectra-based model. The NIR spectra-based model exhibited a slightly higher R2 

(0.93) and a much lower SEP (0.2519) as compared to the fluorescence spectra-based model [R2 

(0.92) and SEP (0.2767)]. Both models had the same number of PC’s (6). 
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Acid insoluble lignin of northern red oak was also predicted with slightly higher accuracy 

by the NIR spectra-based prediction model as compared to the corresponding fluorescence 

spectra-based model. The NIR spectra-based model exhibited a slightly higher R2 (0.73), low 

SEP (0.0647) and low number of PC’s (4) as compared the fluorescence spectra-based model [R2 

(0.71), SEP (0.0691) and PC’s (5)]. Even though the NIR spectra-based prediction model of total 

lignin exhibited lower number of PC’s (5) as compared to the fluorescence spectra-based (PC’s: 

7), the huge difference in R2 between the NIR spectra-based model (R2 0.72) and fluorescence 

spectra-based models (R2 0.88) could not be over shadowed. The fluorescence spectra-based 

model also exhibited lower SEP (0.0446) as compared to the NIR spectra-based model [SEP 

(0.0477)]. Based on these observations the performance of the fluorescence spectra-based 

models in predicting total lignin was deemed superior over the NIR spectra-based model. 

For holocellulose, the NIR spectra-based prediction model performed poorly and 

exhibited low R2 (0.48), slightly higher SEP (0.0179), and number of PC’s (5) as compared to 

the NIR spectra-based prediction model which exhibited a strong correlation between measured 

and predicted hollocelulose content (R2 0.89). This model also exhibited much lower SEP 

(0.0124)  and required moderate  number of PC’s (7). 

With the exception of total lignin content, NIR spectra-based prediction models for all 

response variables generally exhibited slightly higher model performance over the corresponding 

fluorescence spectra-based models. The performance of the latter spectra-based model was close 

in comparison to the performance of the NIR spectra-based models. The spectra-based models 

could be used to predict both bulk densities, extractive content, acid insoluble lignin content, and 

total lignin content with comparable accuracies. Some form of mathematical preprocessing, or a 

more robust MVDA regression technique including three-way analysis (PARAFAC) of 

fluorescence spectra may improve the performance of the fluorescence spectra-based models and 

should be investigated in future studies of FS as a PAT tool for biomass characterization. This 

will be presented in a subsequent paper. 

The detailed comparison of the performance of the NIR-based prediction models 

developed with the raw spectra to similar fluorescence spectra-based prediction models were not 

conducted in this study because the preprocessed models performed much better than the raw 

NIR spectra-based models and these results are presented elsewhere.23 It should be mentioned 

that with the exception of ash content and holocellulose content; a general overview of the 
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performance of the fluorescence spectra-based prediction model of this study were superior over 

similar response variable prediction models developed with the raw NIR spectra.  

 

Conclusion  
This study has established that some chemical properties (extractive content, acid 

insoluble lignin and total lignin) and physical properties (Aerated bulk density and tapped bulk 

density) of northern red oak can successfully be predicted with moderate to high degrees of 

accuracy (R2 between 0.71-0.93) using FS coupled with MVDA. Ash content and holocelluse 

content of red oak were poorly predicted with both spectra regions considered in this study (R2 < 

0.5).  

This study has also shown the potential of using only the emission region of the 

fluorescence spectra coupled with MVDA to predict some chemical and physical properties of 

northern red oak that is much comparable to results that could be obtained using the full 

fluorescence spectrum. Model performances of fluorescence spectra-based prediction models 

were comparable to NIR spectra-based models of similar prediction models, even though the 

NIR spectra-based models were slightly superior over the fluorescence spectra-based models.  A 

more robust MVDA analysis such as three-way PARAFAC technique may improve the 

fluorescence spectra-based models and need to be investigated. Tremendous number of research 

on rapid characterization of biomass properties have focused mainly on the use of NIR 

spectrometer which is a much expensive and bulk spectrometer as compared to the fluorescence 

spectrometer used in this study. This study has established the potential of using fluorescence 

spectrometer as an inexpensive, rapid, and portable tool for characterizing some chemical and 

physical properties of northern red oak with high prediction accuracies.   

 

 

 

 

 

   

95 
 



96 
 

Table 4. Statistics of measured chemical and physical properties of northern red oak (60 samples) 

  Mean* SDa Minb Maxc 

Aerated Bulk Density (g/cm3) 0.25 0.015 0.23 0.28 

Tapped Bulk Density (g/cm3) 0.35 0.023 0.31 0.38 

Ash (%) 0.18 0.013 0.15 0.20 

Extractives (%) 6.25 0.997 4.80 7.74 

Acid Insoluble Lignin (%) 20.54 1.162 17.90 21.95 

Soluble Lignin (%) 0.034 0.015 0.003 0.063 

Total Lignin (%) 20.60 1.028 18.00 21.97 

Holocellulose (%) 74.8 1.45 71.48 74.93 
Mean, aStandard deviation, bMinimum measured value, cMaximum maximum measured value 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5. Results of PLS1 calibration and prediction models developed for the chemical and physical properties of northern red oak using the raw 
fluorescence spectra at two wavelength regions 

  Wavelength (nm) aPC bR2cal cRMSEC dSEC eR2val fRMSEP gSEP BIAS 
Bulk Density Aerated 
(g/cm3) 

295-872(A) 7 0.86 0.0058 0.0058 0.85 0.0055 0.0057 -5.9E-05 
  400-810 (B) 7 0.87 0.0054 0.0054 0.83 0.0058 0.0059 0.0008 
Bulk Density Tapped 
(g/cm3)                     

295-872(A) 7 0.8 0.0095 0.0097 0.87 0.0074 0.0075 -0.0012 
  400-810 (B) 7 0.88 0.0073 0.0073 0.92 0.0057 0.0057 0.0016 
Ash (%) 

295-872(A) 1 0.45 0.0073 0.0074 0.23 0.0104 0.0106 0.0015 
  400-810 (B) 1 0.42 0.0074 0.0076 0.22 0.0105 0.0107 0.0011 
Extractives (%) 

295-872(A) 6 0.85 0.3658 0.3709 0.92 0.2693 0.2767 -0.0138 
  400-810 (B) 6 0.78 0.4467 0.4530 0.91 0.2894 0.2935 -0.0487 
Acid Insoluble  Lignin (%)                   

295-872(A) 5 0.61 0.0703 0.0713 0.71 0.0676 0.0691 0.0088 
  400-810 (B) 5 0.62 0.0744 0.0754 0.71 0.0693 0.0713 0.0029 
Total Lignin (%) 

295-872(A) 7 0.86 0.0409 0.0415 0.88 0.0436 0.0446 0.0051 
  400-810 (B) 7 0.87 0.0427 0.0432 0.93 0.0355 0.0346 0.0110 
Holocellulose (%)                   

295-872(A) 5 0.48 0.0176 0.0178 0.48 0.0175 0.0179 0.0016 
  400-810 (B) 3 0.37 0.0195 0.0197 0.23 0.0209 0.0214 -0.0014 

aNo of principal components, bCalibration R2, cRoot mean square of calibration, dStandard error of calibration, eValidation R2, fRoot mean square of validation, 
gStandard error of prediction 
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Table 6. Results of PLS1 calibration and prediction models developed for the chemical and physical properties of northern red oak using the first 
derivative preprocessed full NIR spectra region. 

  Wavelength (nm) aPC bR2cal cRMSEC dSEC eR2val fRMSEP gSEP BIAS 
Bulk Density Aerated (g/cm3)                   

 800-2500 (A) 6 0.96 0.0030 0.0031 0.84 0.0066 0.0068 0.0005 
BulkDensity Tapped (g/cm3)                   

 800-2500 (A) 5 0.94 0.0055 0.0055 0.89 0.0078 0.0072 -0.0035 
Ash (%)   

 800-2500 (A) 4 0.62 0.0079 0.0080 0.36 0.0119 0.0098 0.0072 
Extractives (%)                   

 800-2500 (A) 6 0.98 0.1498 0.1517 0.93 0.2550 0.2519 0.0729 
Acid Insoluble Lignin (%)                   

 800-2500 (A) 4 0.82 0.0569 0.0576 0.73 0.0631 0.0647 0.0057 
Total Lignin (%)                   

 800-2500 (A) 5 0.92 0.0323 0.0327 0.70 0.0531 0.0477 -0.0262 
Holocellulose (%)                   
   800-2500 (A) 7 0.99 0.0036 0.0037 0.89 0.0124 0.0124 -0.0028 

aNo of principal components, bCalibration R2, cRoot mean square of calibration, dStandard error of calibration, eValidation R2, fRoot mean square of validation, 
gStandard error of prediction 
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Figure 5. Representative fluorescence spectra of northern red oak heartwood 
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Figure 6. PLS1 plot of predicted against measured extractive content using the full fluorescence spectra region 
(295‐872nm) 
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Figure 7. PLS1 plot of predicted against measured acid  insoluble  lignin content of northern  red oak using  the 
emission fluorescence spectra region (400‐810nm) 
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CHAPTER SIX: Conclusion and recommendation 

Conclusion  
The results from this study have established that NIRS and FS can be used online/inline 

to accurately predict some physical and chemical properties of northern red oak and yellow-

poplar. First derivative preprocess of the NIR spectra greatly improved prediction performance 

of calibration models as compared to similar prediction models developed with the raw NIR 

spectra of both species. This allowed the much reduced spectra region (1300-1800nm) to be used 

to predict all chemical and physical properties with comparably similar accuracy as the full NIR 

spectra. This finding establishes the possibility of building a cheap and portable NIR 

spectrometer with a reduced wavelength region. Ash content of northern red oak was poorly 

predicted and the reason was attributed to subtle variance within the laboratory measured values. 

An increase in sample population may improve the prediction performance of the calibration 

models of ash content. 

The findings in this study also established the potential of using fluorescence 

spectrometer, which is a more portable, cheaper and sensitive spectroscopic tool when coupled 

with the appropriate MVDA method could be used as a rapid PAT method to predict important 

physical and chemical properties of biomass. With the exception of holocellulose content, 

predicted physical and chemical properties of yellow-poplar exhibited moderate to high model 

accuracy. Similar results were exhibited in the physical and chemical properties prediction 

models of northern red oak with the exception of ash content, which were poorly predicted.  

Generally the full NIR spectra-based prediction models of all variables considered in this 

study for both northern red oak and yellow-poplar performed better than the full fluorescence 

spectra-based models of similar variables. Generally performance of fluorescence spectra-based 

prediction models showed the potential of FS being used as an accurate prediction PAT tool 

which is comparable to the performance NIRS based models. An enhance MVDA method of 

analysis such as three way PARAFAC method may improve the performance of the fluorescence 

spectra-based models as compared to the two way MVDA analysis used in this study.  
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Recommendation 
In order to effectively utilize the findings of this study outside a controlled environment 

(laboratory), the robustness of prediction model needs to be tested and improved. The findings of 

this thesis may be improved by: 

 

• Increasing the number of samples used in this study.  This will help better understand the 

reasons why NIR-based prediction models of ash content in northern red oak were poor. 

Similarly holocellulose content prediction models developed with fluorescence spectra 

may also be evaluated. 

 

• Utilizing an enhanced MVDA tool such as three way PARAFAC method for analyzing 

fluorescence spectra. Three way analysis may effectively decompose the excitation and 

emission wavelength region. This will invariably improve the models as compared to two 

way analysis models. 

 

• Actual field testing (industrial) of calibration models may be necessary in other to utilize 

it commercially.  
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