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Abstract 
 
 

Ecological Benefits of Mitigation on a Large River Mainstem in an 

Intensively Mined Appalachian Watershed 

 
Eric Mitchell Miller 

 
 
Large scale surface mining in the central Appalachians causes significant 
alteration of headwater catchments, and these impacts may be offset through 
implementation of stream restoration projects.  As an example, several habitat 
enhancement structures (cross-vanes and j-hooks) were constructed along a 
13.7 km section of the Little Coal River as mitigation for mining impacts in the 
region.  The objectives of our study were to: 1-quantify changes in channel 
morphology, habitat quality, sediment composition, bank stability, biological 
communities and organic matter processing in response to habitat enhancing 
structures; 2-relate changes in structural and functional attributes of the Little 
Coal River mainstem to losses resulting from mining impacts to headwater 
catchments; and 3-develop a long term restoration monitoring plan for the Little 
Coal River.  The study area included three 1.5 – 2 km segments along the Little 
Coal River mainstem.  The upstream segment contained 15 habitat 
enhancement structures that were constructed between 2005-2006.  The 
downstream segment contained no structures at the beginning of the study 
(Spring 2009). Twenty structures were then constructed in the downstream 
segment during late Fall 2009 and Spring 2010.  The middle segment contained 
no structures and served as our reference.  Sampling for physical, chemical, and 
biological attributes occurred seasonally from Spring 2009 – Fall 2010.  Our 
results indicate that the beneficial effects of structures included: increased fish 
habitat quality and bed complexity, increased substrate diversity, and increased 
macroinvertebrate biomass and diversity associated with substrate changes.  
Most measures of fish assemblages did not respond to restoration actions.  Poor 
water quality in the form of elevated sulfates and total dissolved solids (TDS) 
may be a critical factor limiting ecological benefits of habitat restoration in the 
Little Coal River.  Furthermore, traditional measures of headwater function, such 
as organic matter decomposition and retention, were not significantly affected by 
structural enhancement actions.  Consequently, effective management of aquatic 
resources in the central Appalachians must couple habitat restoration projects on 
larger river mainstems with protection of headwater catchment functions and 
effective management of water quality at a watershed scale. 
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Introduction 
 

Headwater streams are comprised of ephemeral, intermittent, and small 

perennial systems whose processes sustain downstream aquatic communities 

(Gomi et al. 2002).  These systems serve as the link between the surrounding 

landscape and larger water bodies and provide vital nutrients for downstream 

uses (Meyer et al. 2007).  Headwater systems are important because they 

interface the hydrology, geomorphology, and biology of terrestrial and aquatic 

environments that are, unfortunately, often overlooked in environmental and land 

use planning (Gomi et al. 2002).  Headwaters streams serve multiple functions 

that are easily negatively impacted by human activities, however  the 

management, conservation, and preservation required as part of sustainable 

development is highly controversial (Richardson and Danehy 2007 and Bunn and 

Davis 2000).   

 

Headwater streams comprise a large proportion of the total stream length 

and are critical areas for nutrient dynamics and habitat for macroinvertebrates, 

fish, and amphibians (Meyer and Wallace 2001).  These systems are partially 

characterized by the large volume of organic matter relative to stream size (Wipfli 

et al. 2007).  River community infrastructures rely on organic matter inputs to 

support communities (Wipfli et al. 2007).  Headwater processes such as organic 

matter input, transport, and breakdown are the basis of the food web and support 

downstream functions (Lake et al. 2007).  Headwaters systems comprise greater 
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drainage density than larger river systems and are usually confined to steep 

valleys with different land use types (Gomi et al. 2002).  Therefore special care 

must be taken when protecting and restoring these important headwaters 

systems (Gomi et al. 2002).  In particular, mountain top removal and valley fill 

(MTR-VF) mining affects numerous headwater streams. 

 

MTR-VF mining in the central Appalachians involves drastic 

transformations to headwater catchments. These practices alter the topography, 

surface and substrate properties, and vegetation of these confined systems and 

can ultimately bury headwater streams (Burns 2005).  Alteration of the 

topography and vegetation negatively impacts hydrologic processes and 

sediment delivery to downstream systems (Burns 2005).  Increasing sediment 

loading from anthropogenic activity is one problem affecting the quality of 

American waters and negatively affects fish and macroinvertebrate communities 

(Sutherland et al. 2002).  Excessive sedimentation is higher in disturbed areas 

such as mine sites, and negatively impacts biota (Zhou et al. 2008).  Sediment 

can be transported downstream in two forms, bed load and suspended load.  

Bed load sediments, usually comprised of coarser materials such as sand and 

gravel, are moved along the bottom of the channel, whereas suspended loads 

are maintained in the water column (Pratt-Situala 2007).  Increasing sediment 

loads negatively affects aquatic communities by decreasing the vital spawning 

habitat for many fish species and invertebrates by filling spaces among gravel 

and completely covering habitat (Shaffer et al. 2009).  Excessive bed load 
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sediment has the tendency to fill pools which allows shallower waters to become 

warmer in the summer months eliminating important fish refugia (Wiley et al. 

2001).  Additionally, it covers habitat forcing pool dwelling species to find 

alternate refugia (Wiley et al. 2001). Excessive sediment is one of the leading 

causes of stream impairment in West Virginia (Hodel 2004 and Burns 2004).  In 

addition to sedimentation, MTR-VF mining has serious impacts on water quality.  

The increase of specific conductance is a dominating stressor in streams 

affected by MTR-VF mining (Hartman et al. 2005, Pond et al. 2008).  In addition, 

specific conductance may be a reliable indicator of mining influences on aquatic 

ecosystems (Merriam et al. 2011).   

 

The goal of mitigation is to enhance degraded habitats and attempt to 

improve biological functions (Palmer et al. 2007).  During the mining of coal, 

headwaters are destroyed and ecosystem functions are lost, therefore increasing 

the need for off-site mitigation, or compensation for lost stream miles.  

Construction of new stream channels along valley fills is required, but they do not 

function similarly to the buried stream (Fritz et al. 2010); therefore, off-site 

mitigation is implemented.  Off-site mitigation is the process of mitigating a 

degraded stream physically removed from the immediately impacted area.  For 

example, the Little Coal River, WV was used as off-site mitigation for headwater 

stream losses in 2002.  This is necessary because the mining process generally 

buries the stream with overburden, thus precluding any on-site mitigation.  
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Stream mitigation is an attempt to recover some lost ecosystem functions 

in an aesthetic and economical manner (Palmer et al. 2007).  This is contrary to 

stream restoration, which attempts to return a stream ecosystem to its natural 

historic state after some disturbance. Many people believe that humans cannot 

recreate natural systems (Hildebrand et al. 2005, Lake et al. 2007) and it is 

unrealistic to think historic conditions can be re-created by stream mitigation. The 

fundamental goal of stream mitigation is to provide foundation for natural 

recuperative processes to build upon, not the immediate re-creation of a system 

(Palmer et al. 2007).  Many of the ecosystem services that are important to 

society are lost when rivers and streams are degraded such as fresh water 

inputs, leaf litter inputs, transportation of goods, and recreation (Baron et al. 

2002).   

 

Ecosystem restoration involves not only restoration of species and habitat, 

but also ecosystem processes (Lake et al. 2007).  In general, stream health is 

measured through indexes of biotic integrity (IBI’s) or measured against a 

“pristine” reference condition. (Bunn and Davis 2000). However,  less often is the 

functional integrity and processes (i.e. organic matter retention, organic matter 

decomposition, downstream facilitation of nutrients) of a stream measured (Bunn 

and Davies 2000). Functional integrity and process measurements can often 

reveal otherwise missed indicators of stream health (Bunn and Davies 2000).  

Lake et al. (2007) argues that ecosystem processes are often neglected in 

stream restoration.  Understanding if there is a relationship between increases in 
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biodiversity, through restoration, and increases in ecosystem functioning are 

necessary to progress the science of stream restoration (Lake et al. 2007).  

 

The goal of stream mitigation projects is to increase ecosystem processes 

and services in an aesthetic way, while maintain the integrity of the system 

downstream. (Giller 2005).  Restoring processes is as important as habitat and 

species recovery (Simon et al. 2007). This knowledge has initiated recent efforts 

to focus on “natural channel design” (NCD) (Simon et al. 2007).  NCD uses 

engineering, geological, and biological principles to improve the hydrology, 

habitat, and aesthetics of a stream, considering current and future conditions of 

the watershed and its surrounding landscape (Rosgen 1994). 

 

The NCD approach uses reference streams as the aimed model for 

restoring and maintaining natural stream functions. (WNRCS 2004).  NCD uses 

bankfull measurements to predict the natural tendencies of the river.  Thus, 

structures designed from natural materials are installed in-stream to stimulate 

and maintain this behavior.  Specifically, the purpose of the structures on the 

Little Coal River are to facilitate downstream transport of sand, reduce stream 

channel width/depth ratio, improve structural complexity, increase fish and 

macroinvertebrate habitat, and improve recreational opportunities (boating and 

fishing) in the river.  These structures include J-hooks, cross vanes, and boulder 

placements.  Altering the width/depth ratio narrows the channel, reconfiguring the 

morphology of the river at structure locations.  The increase of velocity increases 
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bedload transport capacity and moves sediment through the structures.  The 

unconsolidated sediment is deposited along the bank below the structure. 

 

Stream and river mitigation may lead to species recovery, improved water 

quality, increase in recreational activities, and new wildlife refugia (Bernhardt et 

al. 2005).  Over one-third of the rivers in the United States are listed as impaired 

or polluted, therefore mitigation has to implemented (Bernhardt et al. 2005).  

Stream restoration is expanding and for the science to grow comprehensive 

assessments of restoration effectiveness should be performed, however they are 

rare (McClurg et al. 2007).  It is essential that we gather post-reclamation data, 

so that we can learn from mistakes and resources are used to their fullest 

potential in the future. 

 

To determine if mitigation or restoration efforts are a success, it is 

essential to relate the functions of the off-site mitigation to the lost ecosystem 

functions (Brinson and Rheinhardt 2006).  Assessment of restoration work is 

necessary for management purposes and to improve our understanding of how 

ecosystems work (Giller 2005).  Bernhardt  et al. (2005) argued that pre- and 

post-construction assessments with standardized methods could allow 

restoration managers to understand which restoration activities are 

accomplishing their goals and having the broadest impacts; however it is 

unrealistic to expect that every restoration project will have extensive monitoring.  

Poorly designed studies have led to much of the uncertainty about the success or 
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failure of restoration projects (Jansson et al. 2005 and Roni et al. 2002).  Without 

monitoring, practitioners risk wasting money and never determining which in-

stream enhancement projects and techniques are truly effective (Beechie et al. 

2008 and Roni 2005). 

 

There can be many goals for a restoration project, but the most common 

are enhancement of water quality, improvement of in-stream habitat for fish and 

macroinvertebrates, restoring riparian zones and bank stabilization (Bernhardt et 

al. 2007).  Although it is unlikely that all the goals will be fulfilled, it is important to 

monitor mitigation efforts to maximize the likelihood of doing so (Bernhardt et al. 

2007).  Traditional stream assessment methods can indirectly give us information 

about biological processes; for example, studying the fish community indirectly 

assesses substrate because it is directly affected by the presence/absence 

gravel spawners (Wallace et al. 1982).  According to Karr (1999) biological 

monitoring is essential to identifying biological responses to human actions.  

Describing the condition of rivers and surrounding landscapes using pre-

construction information allows us to diagnose causes of degradation, develop 

restoration plans, evaluate the ecological threats associated with land use plans 

in the watershed, or select among multiple development options to reduce river 

impairment (Roni et al. 2002). 

 

Palmer et al. (2005) discuss five criteria for measuring restoration 

success.  First, the design of the project should incorporate as a guide a concept 
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of the healthiest river possible at the site.  Second, quantifiable improvements 

must be made to the condition of the system.  Third, the river system’s ability to 

self-regulate must increase as should its ability to cope with disturbance, thus 

decrease the amount of necessary maintenance.  Fourth, damage to the system 

during construction should be minimized and temporary.  Lastly, monitoring must 

be performed before and after construction and results should accessible to the 

public (Palmer et al. 2005). These criteria outline the foundation of measuring the 

success of a restoration project and should be the framework for restoration 

projects.  

 

Restoration projects require two distinct evaluations (Barmuta 2002).  

First, restored sites should be compared to their pre-restoration (control) 

conditions to assess if there was significance in the response variables of 

interest.  Second, restored sites should be compared to target conditions to 

assess whether the restoration has had  biological and functional increases 

(Lepori et al. 2005).  Before beginning a study to evaluate restoration the goals 

and the objectives should be clearly laid out (Roni 2005).  When a restoration 

plan is implemented there is usually a range of goals, however the objectives are 

specific and quantifiable (Roni 2005). 

 

There is a demand in the literature for mitigation studies of larger rivers 

that incorporate before-after-control-impact (BACI) design (Stewart et al. 2009).  

Most in-stream restoration research has been studied after the construction of 
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the structure with little or no pre-construction data and determining success of a 

project in compromised without this knowledge (Bernhardt et al. 2007).  Palmer 

et al. (2009) performed a comprehensive literature review on studies that 

quantified the effectiveness of stream restoration.  Specifically, they used data 

from independent restoration projects to determine the success of increasing 

stream complexity.  The reviewed studies ranged from 2-16 years after 

completion of the restoration project.  Palmer et al. (2009) found that the 

overwhelming majority of stream restoration projects (83 of 93 total) produced no 

significant change in habitat complexity.  

 

Other fields in restoration ecology have adapted BACI design.  Literature 

on wetland restoration and mitigation has brought BACI study design to the 

forefront (Malcom and Radke, 2008, Conway et al., 2010, Palik and Kastendick, 

2010).  This method gives researcher insight to the full functional lift of a 

mitigation project.  Where most stream mitigation monitoring projects use first 

year data collection as baseline data, BACI allows researchers to know pre-

construction conditions.  Without using BACI study design the project may 

increase in response however never truly determining project success because 

pre-construction conditions were unknown. 

 

As a part of off-site mitigation for previously permitted surface mines in the 

region, 15 in-stream habitat enhancing structures have been installed in the Little 
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Coal River for ~5 years. In 2010 approximately 20 more structures were installed.  

The objectives of our current study were to: 

 

1) To quantify changes in channel morphology, habitat quality, sediment 

composition, bank stability, biological communities and organic matter 

processing to habitat enhancing structures constructed in the Little Coal 

River; 

 

2) To relate changes in structural and functional attributes of the Little Coal 

River mainstem to losses resulting from mining impacts to headwater 

catchments; and 

 

3) To develop a long term management/restoration/monitoring plan for the 

Little Coal River. 

 
Methods 

 

Study Area 
 

The Little Coal River watershed drains approximately 994 km² of 

mountainous terrain in Lincoln, Boone, and Kanawha Counties in West Virginia 

and is ~56 km long.  Although mining has occurred in the watershed for more 

than a century, several mines in the Little Coal River watershed are currently 

active with a total of more than 1780 hectares of valley fills.  Historically, the river 

was used to barge sand from quarries upstream and used for cleaning coal pre-
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1972.  A highway was constructed from 1972-1973 that follows ~26 km of the 

Little Coal River mainstem.   

 

Currently, the Little Coal River has relatively low productivity, caused by 

excess sulfates and poor habitat quality (Bodkin et al 2007).  The river is also 

listed on the United States Environmental Protection Agencies 303(d) list for 

fecal coliform.  Approximately 12% of the coal river watershed has previously 

been mined or is currently being mined.  R.E.I Consultants has estimated that 

$700,000 has been spent on the Little Coal River as of 2009 and the WVDEP 

estimates that $3,000,000 will be spent by the end of the entire Little Coal River 

project (Steelhammer 2010).  The WVDEP has plans to install structures 

upstream to Danville, WV, over the next 10 years, which would span an addition 

20 km.  

 

The specific focus of this study is the last 13.7 km section of the lower 

Little Coal (Figure 1).  The lower Little Coal River and was delineated into three 

segments: 1- an upper segment where 3 J-hook and 12 cross vane structures 

were present prior to beginning the study; 2- a lower segment where 20 cross 

vane structures were installed in the summer of 2010; and 3- a middle segment 

which represents a reference reach, where no structures were constructed.  

Construction of the lower reach structure was completed in late June 2010.Each 

of the reaches contained a representative sub-reach that was approximately 40 

times the mean stream width (Freund and Petty 2007; Merovich and Petty 2007).  



12 

 

The three segments started and ended at the head of a riffle.  The length of the 

representative upper, reference, and lower reaches were 915 m, 1278 m, and 

1433 m, respectively.  These sub-reaches were used for finer scale analysis of 

substrate type, quantification of organic matter retention, and detailed mapping of 

the longitudinal profile of the stream channel.  

 
Water Chemistry 
 

Whole water samples were collected twice a year in the spring and fall of 

2009 and 2010 from each of the study reaches.  Water samples and field 

measurements were collected in accordance with standard operating procedures 

of the West Virginia Department of Environmental Protection Agency (Petty et al. 

2010).  While collecting water at each site field water quality measurements were 

collected using a multi-parameter YSI 650 unit fitted with a 600XL snode (Yellow 

Springs Instruments, Yellow Springs, OH, USA).  The YSI measures temperature 

(ºC), pH, specific conductivity (uS/cm), dissolved oxygen (mg/L) and total 

dissolved solids (g/L). 

 

Twice a year whole-water samples (i.e., unfiltered) and filtered samples 

were collected within each reach for laboratory analysis.  Both of these samples 

were collected in the middle of the river at the approximate mid-depth of the river.  

The unfiltered sample was collected by holding a pre-rinsed 500 mL bottle under 

water until all the air within the bottle is replaced with water.  The cap was then 

placed onto the bottle under water to ensure that air does not enter the container.  
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The filtered sample were collected with a pre-rinsed Nalgene polysulfone filter 

holder and receiver using fitted cellulose membrane discs (0.45 um).  Once the 

filtered sample was collected it was treated with 5 mL 1:1 nitric acid to prevent 

the metals from precipitating out of solution.  Both samples were kept at 4ºC until 

their arrival at the laboratory (<24 hours).  

 

The National Research Center for Coal and Energy at West Virginia 

University analyzed all water samples.  The unfiltered sample was used to 

estimate alkalinity, acidity, total phosphorus, nitrate, nitrite, ammonium, and 

sulfate.  The filtered sample was used for the total dissolved parameters: 

aluminum, barium, cadmium, calcium, chloride, chromium, cobalt, copper, iron, 

magnesium, nickel, selenium, sodium, and zinc.   

 

Thalweg Profile 
 

A thalweg profile is a method for obtaining in-stream measurements of 

habitat complexity (Petty et al. 2001, Merriam et al. 2011) and was conducted 

over the entire 13.7 kilometers of the river in 2009 and 2010.  Sampling stations 

were spaced every ½ mean stream width along the thalweg.  At each sampling 

station, the following information was collected: channel unit type (sensu Petty et 

al. 2001), water depth, substrate category (silt, sand, gravel, cobble, boulder, or 

bedrock), distance to nearest fish cover, and distance to nearest retentive 

feature.  Fish cover is any object large enough to conceal a 20 cm fish and 

retentive features are objects large enough to retain organic matter during flows 
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that fill the active river channel (i.e., “normal high water events” not “bankfull 

event”).  

 
Sediment and Depth Mapping 
 

One of the major purposes of the habitat enhancing structures is to 

facilitate transport of sand and silt through constriction of channel flow.  In order 

to assess the effectiveness of the structures in affecting sediment composition, 

water depth and sediment composition maps of the entire 14.7 km study area 

were constructed.  Our assessment was performed by comparing 2009-2010 

substrate maps. Although, the reference reach was located between our 

treatment sites, we will there was sufficient distance between reaches. To 

construct the maps, two teams of two people started on opposite sides of the 

river.  Five measurements by each team were taken as they walked at a 45° 

angle from bank to bank.  The teams recorded sediment type and depth 

measurements at evenly spaced points along that transect.  The sediment types 

were: silt, sand, gravel, cobble, and boulder.  These points were at left bank, 

middle left, center, middle right, and right bank.  At each of the bank 

measurements a GPS point was taken to assist in the map building.   

 

Finer scale sediment and depth maps were created in representative 

upper, reference and lower sub-reaches, which were 915 m, 1278 m, and 1433 

m respectively.  These maps allowed us to see localized details that may not be 

seen in our larger maps. Three people walked the river recording a measurement 
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every 3-4 m. Each person has a section of the river, either the left bank, center, 

or right bank.  Within each 1/3 of the river, the individuals synchronously moved 

to obtain a representative sample spanning the width of their section.  At each 

point depth and sediment type measurements were taken.  These data produced 

a finer scale of substrate change within our representative sub-reaches.  

 

Substrate data allowed the creation of the maps in ArcMap 9.3.  We used 

the kriging ordinary method, an interpolation technique in which surrounding 

values are weighted to derive a predicted value for unmeasured locations, for 

sediment type, depth, and distance to fish cover (ERSI 2010).  Because the one 

goal of the structures is to facilitate downstream transport of sand; entire river 

and sub-reach maps were then reclassified into “sand” and “not sand” maps. Our 

“not sand” category includes gravel, cobble, and boulder measurements and our 

“sand” category includes sand and silt. Due to the low count of silt measurements 

they were combined with sand for all analyses. These maps were then compared 

to one another in the raster calculator to estimate the change in substrate type 

and visualize changes in substrate type.   

 

 
 
Cross-Sectional Channel and Longitudinal Profile Geometry 
 

Cross-section surveys and longitudinal profile surveys were conducted in 

summer 2009 (prior to in-stream structure constructions in the lower segment) 

and summer 2010 (following in-stream structure construction in the lower 
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segment) to provide information on channel geometry within the three study 

segments of the Little Coal River.  If multiple surveys are conducted sequentially 

over time, then they can be used to quantify changes in the channel morphology 

and relative channel stability over time (Fraley et al. 2009).  The surveys show 

changes in wetted channel, bankfull channel, and floodplain widths and depths 

over a given period.  All cross sections and longitudinal profiles were bench 

marked with 80 d galvanized nails into large trees to maintain stations over time.  

Channel surveys were conducted using a Spectra LL300 automatic-leveling 

rotary laser level and receiver (Trimble Navigation Limited, Sunnyvale, Ca.). 

Eighteen inch rebar stakes were placed into the terraces and bank at bankfull 

height and flagged, so the study can be duplicated at the exact locations for 

years to come.  

 

Described by Rosgen (2006) a J-hook consists of natural materials. A 

large tree or vane arm is attached to the bank facing upstream.  The vane arm 

root wad is set at 1/2 bankfull height.  The arm placed at ~30º (facing upstream) 

from the bank outwards occupying 1/3 of the river.  The “hook” portion of the 

structure consists of boulders that occupy another 1/3 of the river, leaving the last 

1/3 of river free flowing.  A cross-vane structure is very similar to the J-hook 

however the remaining 1/3 of river that was free flowing is occupied by another 

vane arm.  In addition to the second vane arm the cross-vane has another series 

of boulders creating a second “throat” and between the two throats is a scour 

pool (Figure 2).  In the upper reach, five cross sections were taken at two existing 
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structures (total of 10 cross-sectional surveys).  At each structure the cross 

sections the rootwad of the vane arm was our starting point. From that point we 

conducted cross sectional surveys at 30.5 m upstream, 15.25 m upstream, 15.25 

m downstream, and 30.5 m downstream. 

 

Within the reference reach (i.e. middle segment) a cross-section survey 

was conducted within a representative pool and a representative riffle.  In the 

lower section three cross-sections were conducted at three proposed structure 

areas pre-construction.  These were taken at 30.5 m upstream, at the proposed 

root-wad location, and 30.5 m downstream.  All cross-section surveys were 

conducted from terrace to terrace.  A bankfull measurement and edge of water 

measurement were taken on both sides of the river.  The cross sections were 

conducted pre- and post-construction so morphological changes due to the 

habitat enhancement structures can be seen. 

 

Using the Spectra LL300 automatic-leveling rotary laser level and receiver 

longitudinal profiles were taken within each of the three study segments.  The 

longitudinal profiles were conducted from the head of a riffle to the head of a riffle 

along the thalweg for a minimum length of 40 times the mean stream width.  In 

the upper section the longitudinal profile was 915 m, the reference reach profile 

was 1280 m, and in the lower section the longitudinal profile was 1432 m.  The 

longitudinal profiles are different lengths due to the lack of riffles. These profiles 

allow use to visualize the changes in morphology the structures have made. 
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Profiles were created in The Reference Reach Spreadsheet and in accordance 

with the program they are displayed in feet (Mecklenburg and Ward 2004).  

  

During the construction phase of the structures a deep pool is dug 

immediately downstream of the second throat of the structure.  The substrate is 

then removed and placed on the outside of the vane arms (this area was once 

part of the stream channel).  Our “at rootwad” cross section fell directly at that 

point and therefore we were able to see the dramatic difference in cross-section 

(Figure 3). 

 
Organic Matter Retention 
 

Organic matter retention rates were quantified within representative 

reaches within the upper, middle and lower segments.  Organic matter retention 

is the rate at which organic matter (leaves and sticks) are removed from transport 

and stored within a local stream reach (Entrekin et al. 2008).  Stream retention is 

an important function needed to maintain the local food web and is recognized as 

a key headwater stream function that may be lost as a result of large scale 

surface mining (Minter 2009).  Within each of our three reaches the first 915 m 

section of our longitudinal profile selected to conduct the retention survey.  Every 

92 m of the 915 m was flagged and fifty painted dowel rods were released at the 

upstream end of the reach.  The dowel rods were spread across the full width of 

the stream and left for 40 minutes.  After the 40 minute waiting period, the entire 

reach was walked, and the locations of the dowel rods were recorded with 
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respect to the 92 m section within which it was found (Minter 2009). We 

performed our retention study once in 2009 and once after construction in 2010.  

This data was used to estimate the cumulative distance traveled by each dowel 

rod and the percentage of dowels retained within each 92 m sub-section. 

 

Organic Matter Decomposition 
 

Because organic matter decomposition is an ecological function that may 

be lost when headwater streams are impacted by mining, we attempted to use 

leaf litter packs to measure the capacity of this function in the Little Coal River.  

The leaf packs consist of mesh bags (10 mm) that were filled with 10 g of pin oak 

(Quercus palustris) leaves.  Three 10 g bags were combined to make one leaf 

pack.  Leaf packs were placed into the stream using rebar or existing stable 

structures (i.e. roots or boulders) at each site.  The leaf packs were left in the 

stream for a period of 45 and 90 days.  There were two sites in the upper section, 

both associated with a structure, two sites in the reference reach, and two sites in 

the lower reach, pre- and post-construction of a structure.  At each site leaf packs 

were placed in three different velocities: slow, moderate, and fast.  Within each 

velocity regime there were six leaf packs.  After 45 days, three leaf packs were 

removed from the river and take them to the lab for analysis and the other three 

packs were left for 45 more days.  However due to the variability and magnitude 

in flow of this size river, high flow events washed out our leaf packs and data was 

never collected.  
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Benthic Macroinvertebrate Assemblages 
 

We sampled benthic macroinvertebrates in our three representative 

reaches in the spring and fall of 2009 and 2010.  In each reach a total of 9 

benthic samples were collected from two different types of habitat: sand-silt and 

cobble-gravel. A total of 27 samples per substrate type per year was collected.  

We sampled each substrate type using a kick net with a 500um mesh and 

dimensions of 335 x 508 mm.  Within each area a 0.25 m² region of stream bed 

was disturbed to insure that the majority of the macroinvertebrates are collected.  

Nine samples were collected from each habitat type within each reach; each 

sample is comprised of three “kicks”.  A kick consists of placing the net beneath a 

riffle and vigorously disturbing the substrate.  After the completion of three kick 

samples from one habitat type, the contents of the kick net were preserved in 

95% ethanol.  The net was thoroughly cleaned and then the next habitat type will 

be sampled in the same manor.  

 

Once in the lab, samples were first rinsed into a 2 mm sieve, the contents 

of which were all identified.  The wash from the 2 mm sample was rinsed through 

a 250 um sieve.  The 250um sample was then split into 1/8th using a plankton 

splitter.  The remaining 1/8th sample was identified, this allowed us to estimate 

the total number of bugs 2 mm-250 um in size.  Macroinvertebrates were 

identified to the genus or the lowest possible level using Peckarsky et al. (1990) 

and Merritt and Cummins (2008).  
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Fish Assemblages 
 

Fishes were collected using an electro-fishing boat provided by the West 

Virginia Department of Environmental Protection.  Fish were sampled with 

respect to structures, proposed structure locations, and channel units.  The 

electro-fishing was quantified with respect to time.  Within each study reach, five 

92 m sections were sampled in mid-August of 2009 and 2010.  In the upper 

section five in-stream structures were sampled.  In the reference section, two 

glides, a riffle, a pool, and a run were sampled.  In the lower section, five areas 

prior to structure construction (2009) were sampled and then again in 2010 after 

construction.  We used 500 seconds as our target shock time, with the 

concentration being on the structures themselves, where applicable, and the 

banks.  Species type, total length, and weight were recorded for all fish.  Fish 

sampling was conducted in the summer 2009 and 2010 in the same locations. 

Statistical Analysis 

 

The central purpose of our analysis was to determine the effect of habitat 

enhancing structures on stream habitat quality and biological attributes.  All 

analyses were performed in the program R (R Development Core Team 2008), 

and a significance level of 0.1 was used in hypothesis testing. An alpha level of 

0.1 was used because of the variable nature of the aquatic systems and low 

sample size (Al-Chokhachy et al. 2010, Miller et al. 2010 and Bryant et al. 2004).   

 



22 

 

Contingency table analysis was performed to determine changes in 

substrate composition between 2009 and 2010.  Due to low counts in the boulder 

category, Fisher’s Exact Test was used.  

 

We used paired t-tests on cross-sectional survey data to test for 

differences in channel geometry between the pre-construction and post-

construction sample periods.  Using our cross-section data we calculated an 

area, perimeter, entrenchment ratio, bank height ratio and perimeter to area 

ratios for each cross section.  Pair-wise testing was performed on treatment and 

control cross-sections. Control cross-sections were all surveys conducted in the 

upper and reference sub-reaches.  Treatment cross-sectional surveys were 

conducted in the lower sub-reach.  Additionally, we performed a 2x3 factorial 

analysis of variance (ANOVA) with reach and year being our independent 

variables and entrenchment ratio, bank height ratio, area, perimeter, perimeter: 

area ratio, and coefficient of variation as our response variables to test for 

differences between pre- and post-construction.  Post hoc analysis was 

performed with Tukey HSD tests to determine which combinations of means 

were significantly different.   

 

 We used paired t-tests on retention data to test for differences in 

retentiveness between the pre-construction and post-construction sample 

periods.  Due to the nature of the structures and the downstream facilitation of 

water we expect retention to decrease in the lower reach in 2010.  
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For analysis of benthic macroinvertebrates, we use a modified West 

Virginia Stream Condition Index (mWVSCI) (Merriam et al. 2011).  The original 

WVSCI uses a subsample of 200 individuals and many parameters to calculate a 

final score (Gerritsen et al. 2000).  The WVSCI uses the following metrics, 

%EPT, % dominant individuals, % mayflies, %stoneflies, EPT abundance, and 

EPT family richness.  The final result of the WVSCI is an index number that 

ranges from 0-100 (Gerritsen et al. 2000).  The mWVSCI differs from the WVSCI 

in that all individuals, not a subsample, are used in the mWVSCI final calculation.  

The index score results in a condition of excellent, good, marginal, and poor.  

These categories correspond to WVSCI scores of >85.0, 85.0-70.0, 69.9-55.0, 

and <55.0, respectively.  We used a 3x2x2 factorial ANOVA with our factors 

being reach, season, and substrate and our response variables being; %EPT, 

mWVSCI score, and abundance to test the null hypothesis that cobble and sand 

substrate yield the same macroinvertebrate community.  

 

Reach types were compared based on their overall fish community 

structure using analysis of similarity (ANOSIM) on Bray-Curtis distance 

coefficients (Merovich and Petty 2010).  ANOSIM is a non-parametric test of 

significance between two or more groups based on a measure of distance 

between individual sites (Van Sickle and Hughes 2000).  ANOSIM measures 

classification strength (CS) by subtracting the mean between-group similarity 

from the mean within-group similarity.  Permutation tests (10,000) were used to 
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test the null hypothesis that the lower reach fish community remained constant 

from 2009 to 2010 (Van Sickle 1997).  Fish ANOSIM’s are displayed in a 

Nonmetric Multiple Dimensional Scaling (NMDS) ordination.  NMDS ordinates 

sites based on similarities of fish community.  In addition to ANSOSIM we used 

ANOVA to further investigate the Little Coal River fish assemblage.  We used a 

2x3 factorial ANOVA with our factors being reach and year and our response 

variables being; number of game fish, number of non-game fish, fish abundance, 

and fish diversity.  Lastly, Shannon-Weiner Index was calculated for fish 

diversity.  

  

We expected a difference in physical parameters and biological 

communities from 2009 and 2010 in the lower reach.  Additionally, we expected 

the morphology and community of the upper and reference reaches to remain 

constant from 2009-2010.  Presumably, we would expect the lower 2010 reach to 

resemble the upper or reference reaches in community, morphology, and habitat 

availability.    

Results 
 
Water Chemistry 
  

Laboratory results of our water samples showed excess levels of total 

dissolved solids (TDS), conductivity, and sulfates (Table 1).  Although all tested 

metals were within the United States Environmental Protection Agency (USEPA) 

standards, however the Little Coal River far exceeds an impaired conductivity. 
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Conductivity is a direct correlation between TDS and sulfates and is a major 

constraint on aquatic ecosystems (Kimmel and Argent 2010; Weber-Scannell 

and Duffey 2007) 

 

 
Thalweg Profile 
 

 Mean water depth remained constant from 2009 to 2010 over the entire 

study reach (Table 2 and Figure 4).  In 2009 the depth ranged from 0.18m to 

2.02 m (Figure 5) and in 2010 depth ranged from 0.14 m to 2.12 m (Figure 6).  

Mean depth decreased slightly in the upper reach and reference reach, however 

increased from 0.75 m in 2009 to 0.92 m in 2010 in the lower reach.  Coefficient 

of variation of depth increased over the entire river from 0.48 to 0.58: 0.46 to 0.48 

in the lower reach; however greatly decreased in the upper reach from 0.92 to 

0.52, and remained constant in the reference reach.  Distance to fish cover 

decreased by ~50% in the lower reach, increased by ~20% in the reference 

reach, and remained constant in the upper reach in 2010 (Table 2). Distance to 

fish cover increased in the reference reach due to beaver activity.  In 2009 

distance to fish cover ranged from 1 m to 50 m (Figure 7) and from 1 m to 47 m 

in 2010 (Figure 8).  A change in distance to fish cover map was created to see 

the specific areas that had the greatest change (Figure 9).  Decreases in depth in 

the upper reach had no effect on distance to fish cover.  However, increases in 

depth and distance to fish cover were associated with the new construction of 

structures in the lower reach. 
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Substrate 
 

Lower reach structures cause a +15% shift in substrate towards 

cobble/gravel between 2009 and 2010 (Table 3; Figure 10).  However, sand in 

the upper sub-reach substrate changed by +7% (Table 3, Figure 10).  The entire 

study area increased in sand substrate by 3% where the reference sub-reach 

only changed within gravel, cobble, and boulder substrate (Table 3; Figure 10).  

The finer scale substrate composition maps in the upper, reference, and lower 

sub-reaches (Figures 11-15); and of the entire study reach (Figures 16-20) show 

the change in substrate composition from 2009 to 2010.  Although we detected a 

measurable difference in substrate between 2009 and 2010 Fisher’s exact test 

results indicate no significant changes in substrate composition (Table 4). 

 
Longitudinal profiles 

 

The longitudinal profiles show the change in stream bed morphology, 

water depth, and bankfull height.  Average pool depth, average distance to pool, 

number of pools, and average pool length with respect to year and sub-reach 

were also derived from the longitudinal profiles (Table 5).  The number of pools 

increased in the lower sub-reach from 2 to 5 and the average distance to pools 

decreased from 373m to 159m.  However pools did get shorter in the lower sub-

reach by ~18m.  The upper and reference reaches remained constant in pool 

attributes between 2009 and 2010.  Longitudinal profiles are displayed as scatter 

plots (Figures 21-23). 
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Cross-sectional Geometry 
 

Pairwise comparisons show treatment cross sectional surveys (i.e., cross-

sectional surveys associated with new structures in the lower reach) had a 

significant change in entrenchment ratio (P>0.001), however there were no 

significant changes in control cross sections from 2009 to 2010 (Table 6).  

Results of 3x2 factorial ANOVA revealed reach effects on channel area, 

perimeter, perimeter:area ratio, coefficient of variation in depth, bank height ratio  

and entrenchment ratio (Table 7).  Also a year effect was detected for coefficient 

of variation in depth.  Tukey’s post hoc test results show only the significant 

interactions of each variable with respect to reach and year (Table 8).  We found 

a statistical difference in entrenchment ratio, which was due to the formation of 

scour pools below HES’s.  The cross section results revealed no change in area 

or perimeter, which leads us to believe that bank stability, was consistent 

between 2009 and 2010.    

 

Organic Matter Retention 
 

We found no statistical difference in organic matter retention between 

2009 and 2010 in the upper, reference, and lower reaches (p=0.37, p=0.28, and 

p=0.47 respectively).  The upper and reference sub-reaches remained relatively 

consistent from 2009 to 2010 (Figures 24); however the lower sub-reach retained 

18 fewer dowel rods in 2009 than in 2010 (Table 9).  There was clearly an 
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obstruction in the lower reach at ~200 m in 2009 that lead to the majority of the 

dowel rods being retained that was not present in 2010 (Figure 24).   

 

Macroinvertebrate Assemblage 
 

Our analysis of macroinvertebrate data revealed a significant effect of 

substrate type (p=0.0001) and season (p=0.0001), on mWVSCI, total abundance 

and %EPT (Table 10).  Additionally, macroinvertebrate abundance and %EPT 

responded to a substrate x season interactive effect (Table 10).  Tukey’s post 

hoc test revealed this interaction was driven by all but one of the combinations 

(Table 11).  Macroinvertebrate MeanSim is displayed as a NMDS in the first and 

second dimension with a stress value of 13.6 with macroinvertebrate community 

vectors fitted to the plot (Figure 25).  NMDS shows a clear separation between 

cobble/gravel and sand/silt samples with mWVSCI, % EPT, and abundance 

strongly correlating with cobble/gravel samples (Figure 25).  

  

The abundance of macroinvertebrates in cobble/gravel substrate was 

significantly greater than in sand/silt substrate (Figure 26).  Less than 4% of 

macroinvertebrates were collected from sand/silt substrate each year.  With our 

macroinvertebrate abundance and our substrate type we calculated habitat 

weighted abundance scores for macroinvertebrates (Figure 28).  Habitat 

weighted abundance increased 20% in 2010 from 2009 due to the localized 

change in substrate type associated with structure construction (Figure 28).  
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Fish Assemblage 
 

A total of 35 fish species were collected in both the 2009 and 2010 

sampling seasons (Table 12).  ANOSIM results indicate a significant dissimilarity 

(P=0.035) in fish community structure between 2009 and 2010 (Table 13).  

Pairwise comparisons showed that the lower reach in 2010 was significantly 

dissimilar to the upper and reference reaches in 2009.  Additionally, the lower 

reach in 2009 was significantly dissimilar to the upper and lower reaches in 2010.  

All other pairwise comparisons indicated similar communities.  A mean similarity 

dendrogram shows that the replicates in the lower and reference reach in 2010 

were, on average more similar to the other groups rather than themselves 

(Figure 28) and the overall average dissimilarity was high with a Bray-Curtis 

value of 0.84.  We projected our MeanSIM results as a Nonmetric Multiple 

Dimensional Scaling (NMDS) ordination and displayed is the first and second 

dimension with a stress value of 14.605 (Figure 29). Although no significant 

pattern emerged, a separation of post-construction sites can be seen (Figure 29).   

 

We observed a significant (p=0.019) decline in game fish abundance in 

2010 in the upper and lower reaches (i.e., in reaches with structures present).  In 

contrast, there was a significant increase in game fish abundance within the 

reference reach (Figure 30).  Although in the upper section in 2010 there was far 

less non-game fish captured, the reference reach increased in non-game fish 

abundance, and the lower reach remained constant (Figure 31).  Total fish 

abundance declined significantly in the upper reach in 2010, significantly 
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increased in the reference reach, and declined slightly in the lower reach (Figure 

32).  Shannon-Weiner Index shows that fish diversity remained constant among 

reaches and between years (Figure 33).  Catch per unit effort (#/m) decreased in 

the upper reach by ~50%, however remained constant in the other reaches 

(Figure 34).  A 2x3 factorial ANOVA showed that total diversity responded to a 

reach effect and game fish abundance responded to a year effect (Table 14).  

Tukey’s post hoc tests revealed no significant interactions.  

Discussion 
 

There is urgent need for river restoration due to anthropogenic impacts, 

such as coal mining.  Consequently, stream and watershed restoration projects 

are becoming increasingly prevalent in North America (Bash and Ryan 2002, 

Bernhardt et al. 2005, Palmer et al. 2005).  With the increase in restoration 

activity, skepticism and criticism about the success of such projects has also 

increased.  For example, Lake et al. (2007) argued that stream restoration rarely 

accounts for ecological theory and ecosystem processes.  Also, some scientists 

believe that stream restoration can only be successful if implemented at the 

watershed scale, but yet most restoration projects are implemented at scales of 

1-2 km (Roper et al. 1997).  Additionally, others believe that most aquatic 

ecosystems cannot be restored through stream channel modification alone 

(Beschta et al.1994, Thompson and Stull 2002, Pretty et al. 2003).  Moerke et al. 

(2004) argue that restoration on the reach scale may be ineffective in the face of 

degradation that typically occurs at the scale of an entire watershed.   
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Clearly, more research is needed to determine which types of restoration 

activities are effective and which types are not.  In our current study, we 

evaluated the effectiveness of habitat enhancing structures (HES) constructed in 

a medium to large sized river in the central Appalachians.  Our objectives were to 

identify the strengths and weaknesses of this restoration method, compare the 

ecological benefits of HES construction on large rivers to headwater stream 

losses that occur as a result of large scale surface mining, and to make 

recommendations for the future. 

 

Several of the physical and biological parameters that we measured 

demonstrated a positive ecological response to HES construction on the Little 

Coal River mainstem.  Although in many cases statistical tests were not 

significant, there was a measurable positive change in physical variables such as 

water depth, distance to fish cover, cobble/gravel substrate composition, number 

of pools, depth of pools, and entrenchment ratio.  Benthic macroinvertebrates 

exhibited a positive response to HES construction that was mediated by changes 

in substrate composition; invertebrate densities and community metrics were 

highest in cobble/gravel substrates.  Consequently, benthic macroinvertebrate 

variables improved following HES construction due to localized shifts in substrate 

composition from sand to gravel.  
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Our results demonstrating positive effects of HES construction on river 

habitat structure is consistent with several previous studies (Chin et al. 2009, 

Chin et al. 2010, and van Zyll De Jong et al. 1997).  The water became deeper at 

the structure location due to the large scour pools created below.  This is 

consistent with a comprehensive study performed by Whiteway et al. (2010).  

Through a literature search of restoration projects, they found that all of the 51 

reports investigated had a positive change on pool size and depth due to 

mitigation (Whiteway et al. 2010).  Coefficient of variation (CV) in depth 

increased over the entire study reach and the lower reach, which demonstrates 

that the river bed became more complex.  The upper reach decreased in CV due 

to filling in of the upper reach structures with sand.  Levell and Chang (2008) 

found similar results that pools were created and remained at equilibrium in a 

restored reach of river.  However, they also observed that the mean particle size 

in the restored reach decreased and may lead to aggradation (Levell and Chang 

2008).  Additionally, Champoux et al. (2003) found that a restoration project in 

the 1960’s increased in pool area from 267 m² to 625 m² after restoration, but 

has since decreased to 488 m².  Therefore, it is unclear if our results will persist 

over time. 

 

We found that the amount of fish cover in the Little Coal River was 

increased by boulder placement, vane arm construction, and pool creation in the 

lower reach in 2010.  Because of our study design, which compared pre- and 

post-construction conditions, improvements in fish habitat quality in the lower 
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reach are likely due to HES construction.  Pool availability has been directly 

correlated with abundance and biodiversity of macroinvertebrates and fish 

(Edwards et al. 1984).  Furthermore, Warren et al. (2010) found that pool 

availability and persistence was correlated with fish abundance in the 

headwaters of New York and Vermont, USA.  They also found that species 

richness was higher in permanent pools and that pool preservation is just as 

important as pool creation (Warren et al. 2010).  In contrast, Lepori et al. (2005) 

found that increased structural heterogeneity and pool creation had little effect on 

fish biodiversity on a Swedish tributary.  Lepori et al. (2005) argued that fish 

species response to local restoration efforts was constrained due to the 

prevalence of degraded conditions that remained within the watershed as a 

whole. 

 

Although we did not detect a significant change in substrate composition 

at the reach scale as a result of HES construction, we did detect a consistent 

change from sand-silt dominated substrata to cobble-gravel substrata within 

close proximity of structures.  However, in the upper sub-reach where HES 

construction was completed prior to the start of our study, we found that sand 

substrate increased from 2009-2010.  The same practitioner was used to 

construct all the structures in the Little Coal River.  Through personal 

correspondence I learned they had never taking on a project of this size and the 

upper reach structures were experimental in deflection angle and structure 

height. Before constructing the lower reach structures the practitioners examined, 
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through my 2009 data, which structures has the broadest impacts, and replicated 

those structures in the lower reach. Moreover, stream mitigation is a relatively 

new science and monitoring has only occurred in the past few decades, the “life 

expectancy” of HESs is largely unknown (Palmer et al. 2007 and Thompson 

2006).  It is possible that the function of structures in the Little Coal River may 

diminish or improve over time.   

 

Similar to our results in the upper reach, Habersack and Nachtnebel 

(1995) found that just a year after restoration had been implemented fine 

substrate had deposited in the main channel ~16 cm deep in the Drau River of 

south-central Europe.  Additionally, Shields et al. (2003) found progressive failure 

of large woody debris structures in a Northwest Mississippi stream.  They noted a 

30% structure failure resulting in bank erosion and sediment deposition.  In 

contrast, Moerke et al. (2004) found that 5 years after a restoration project on a 

3rd order Indiana stream, fine sediments remained low relative to an unrestored 

reach.  Continued monitoring of the Little Coal River structures will be required to 

determine if the positive effects of HES construction on sediment composition 

persists over time.  

 

Macroinvertebrate assemblages were strongly influenced by substrate 

composition in the Little Coal River.  Macroinvertebrate abundance and diversity 

was an order of magnitude lower in sand-silt substrates than in cobble-gravel 

substrates.  Substrate-dependent variation in benthic macroinvertebrates is a 
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common feature of streams across a wide range of conditions, including small, 

high gradient streams (Petty and Grossman 2004, Thompson et al. 2001) and 

larger, low gradient rivers (Benke et al. 1980, Chakona et al. 2008, and Beauger 

et al. 2006).  

 

Given that HESs resulted in a decrease in the prevalence of sand-silt and 

an increase in the prevalence of cobble-gravel, then localized increases in 

macroinvertebrate abundance and diversity can be attributed to HES 

construction.  This result is consistent with several other studies that observed 

improvements in macroinvertebrate assemblages after restoration (Gortz 1998, 

Muotka et al. 2002, Miller et al. 2010, and Jungwirth et al. 1993).  However, 

Laasonen et al. (1998) found that macroinvertebrate abundances in a Finnish 

stream with in-stream structures were comparable to those in unmitigated 

reference channelized streams.  Similarly, Harrison et al. (2004) found that in-

stream structures had no effect on benthic macroinvertebrates, but they attribute 

these results to larger scale factors constraining benefits of stream habitat 

rehabilitation.   

 

Our conclusions on the effectiveness of HES construction in improving 

benthic macroinvertebrate assemblages in the Little Coal River are as follows.  

First, HES construction can produce measureable, immediate changes in 

substrate composition within close proximity of the structures.  Second, benthic 

macroinvertebrate assemblages improve as a result of HES construction due to 
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strong substrate-dependent distribution patterns (i.e., HESs result in increased 

cobble-gravel substrata, which is preferred habitat for benthic assemblages).  

Third, the spatial extent of macroinvertebrate response is constrained, because 

HES construction only affects substrates within close proximity of the structures.  

Fourth, it is unclear how long the positive effects of HESs on substrate 

composition persist, and therefore, the persistence of positive benefits on benthic 

invertebrate assemblages is unclear.  Fifth, the overall benefits of HES 

construction on benthic macroinvertebrates are likely constrained due to elevated 

TDS concentration and conductivity within the Little Coal River (Pond et al. 2010, 

Merriam et al. 2011).  

 

Fish assemblage response to HES construction was measurable, but 

complex.  We observed a significant shift in the lower reach fish assemblage 

from pre-construction to post-construction.  Specifically we observed a notable 

increase in the shiner and chub community.  Approximately 63% of the fish 

captured in 2010 were shiners and chubs opposed to ~40% in 2009.  

Additionally, we saw a decrease in game fish from ~33% to 20% in 2010.  This is 

consistent with Detenbeck et al. (1992) who found that centrarchids and cyprinids 

were the most resilient to a disturbance and often the first to recolonize an area.  

 

Despite a general shift in fish assemblage structure, we did not observe a 

significant effect of HES construction on fish abundance or diversity.  Although 

fish abundance and diversity has been shown to increase with the use of artificial 
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cover (Feger 2010, Lehtinen et al. 1997, Madejczyk 1998), Sweka et al. (2010) 

found after 6 years that large woody debris additions had no positive effects on 

brook trout  populations in headwater streams.  Additionally, Lepori (2005) found 

limited recovery of fish after stream restoration.  Gravel/cobble substrate is 

superior to sand substrate for fish habitat (Barlaup et al. 2008, McManamay et al. 

2010, and Salas and Synder 2010).  HES’s are exposing more cobble/gravel, but 

we have yet to see a localized increase in fish abundance due to HES’s.  Lund 

(1976) and Edwards et al. (1984) found that it takes 1-5 years for fish populations 

to recover from mitigation processes such as boulder placement, pool 

construction, and artificial riffle construction.  Continued monitoring in the Little 

Coal River will be needed to determine if fish assemblages respond to HES 

construction over time. 

 

Recreational fishing pressure could be limiting our fish detection at HES’s 

(Paxton and Stevenson1979, Wilber 1978).  Increased fishing pressure in 

restored reaches has been considered the cause of poor study outcomes in other 

systems (Hunt 1988 and Avery 2004).  The Little Coal River project was 

publicized numerous times in the local media (Dennis Stottlemyer, WVDEP, 

personal communication).  The public was aware of the changes occurring on the 

river and the recreational opportunities that may accompany these structures.  

Little Coal River Road parallels the river for ~5 km and provides easy access to 

many of the new structures.  Numerous studies have shown decreases in fish 

population due to angling (Blackford 2009, Hesse 1994, and Murawski 2010), 
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and this fishing pressure may have offset gains in fish populations from structure 

placement.  In fact, the declines in game fish abundance in the upper reach from 

2009-2010 and low game fish abundance associated with the structures relative 

to the reference reach provide support for this hypothesis in the Little Coal River. 

 

In addition, fish abundances may not be recovering in the immediate area 

of restoration due to a broader impairment of fish assemblages in this region 

(Freund and Petty 2007).  The Little Coal River is just one segment within a 

region that is heavily impacted due to mining and other development activities 

(Merriam et al. 2011).  Several studies have shown that a fish community 

recovery is dependent on the interconnectivity of drainage networks (McClurg et 

al. 2007, Petty et al. 2005).  Consequently, extensive fish community loss within 

a watershed due to poor habitat and water quality may limit the ability of HES’s to 

fully recover fish populations in localized stream reaches.      

 

We detected no measureable positive change in water chemistry as a 

result of HES construction.  These structures were not designed to address water 

quality, and therefore these results were expected.  Although the structures 

manage the issue of poor habitat quality, it is paramount that elevated TDS in the 

Little Coal River be addressed.  Studies have shown that regional conditions 

strongly influence local systems that would otherwise be productive (Freud and 

Petty 2007, Martin 2004).  Ultimately, water quality has to be addressed for the 

Little Coal River to return to its historic conditions.   
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In addition to water quality issues constraining the river we found that 

organic matter retention declined as a result of HES construction.  The structures 

were designed to facilitate downstream transport of sediments, not retain organic 

matter.  However, a major function of the headwater streams lost due to MTR/VF 

mining is organic matter retention.  Muotka and Laasonen (2002) found that a 

stream in Finland with in-stream structures had higher retention than its 

unmitigated counterpart.  However, Rosi-Marshall et al. (2006) found that 

structures in a 3rd order stream in Northern Michigan had no effect on retention 

and it remained as retentive as the control reaches.  The inability of the Little 

Coal River HESs to perform all of the lost functions supplied by headwater 

streams suggests that what constitutes mitigation depends on project goals, 

because restored stream miles may not compensate for lost functions. 

 

The BACI design has been embraced in fields of ecology, but there is a 

clear void in aquatic restoration, especially larger rivers (Stewart et al. 2009).  

Bernhardt et al. (2007) found in a comprehensive survey that 25% of stream 

restoration practitioners applied a BACI design to their monitoring, however it 

should be noted that this information comes from the practitioners’ monitoring 

plans and not those of researchers.  Additionally, Palmer et al. (2009) 

synthesized stream restoration projects that studied the effects of restoration on 

habitat heterogeneity and invertebrates.  They searched from 1975-2008 and 

discovered 78 independent studies that met their criteria (Palmer et al. 2009).  
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Only 6 of the 78 studies performed pre- and post-construction data collection 

(Palmer et al. 2009).  Lake et al. (2007) argue that determining project success 

requires pre-restoration data.  However, because many studies lack pre-

restoration data, information from river restoration research is often ambiguous.   

 

Most researchers study stream restoration projects after the construction 

of the structure with little or no pre-construction data; thus determination of 

success is compromised (Bernhardt et al. 2007).  For example, Stewart et al. 

(2009) performed a review of salmonid in-stream habitat enhancing structures.  

They found that less than half of the 179 articles implemented a BACI design. 

They further explain that the lack of BACI designed studies was the limiting factor 

in their analysis and yielded equivocal results (Stewart et al. 2009).  The demand 

for stream restoration is apparent worldwide; however, without proper monitoring 

and study design the science of stream restoration will never evolve and meet its 

full potential.  Stream restoration ecology and other similar fields will greatly 

benefit from experimental designs, such as the present study, that utilize pre-

impact information. 

 

Palmer et al. (2005) provided five criteria for restoration success.  We 

have met 4 of those criteria and one has yet to be determined.  The design of the 

project was based on a specific guided image of a more dynamic and productive 

system that can exist at this site over time.  We did measure an improvement of 

the rivers ecological condition.  After construction, river entry areas were 
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reseeded and trees were planted to restore the riparian zone to pre-construction 

conditions.  Also, with our BACI study design both pre- and post-construction 

data was collected and made publically available.  The criteria concerning the 

system being more self-sustaining and resilient to external perturbations that only 

minimal follow-up is required has yet to be determined due to the young age of 

the structures and only 2 years of data collection.    

 

We found measureable, but constrained, functional improvements in the 

Little Coal River as a result of HES construction.  Palmer et al. (2007) argues that 

due to the variability of aquatic ecosystems, a measurable increase from 

restoration may be a signal of successful restoration.  Since monitoring stream 

restoration has only occurred in the past few decades, there is much debate over 

the success or failure of a project and the duration of post-construction 

monitoring (Thompson 2006).  Also, Muotka et al. (2002) found some streams 

had 8 year biological recovery periods.  In contrast, Tikkanen et al. (1994) found 

biological recovery was shown as quickly as 10 days.  Due to the variability of 

aquatic ecosystems, monitoring on the Little Coal River will have to continue to 

determine the overall success of this project.  
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Figure 1. Location of study area and upper treatment, lower treatment, and 
reference reaches.  
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Figure 2. Diagrammatic representations of habitat enhancing structures  
(A. J-hook and B. cross-vane) 
 

 

 

 

 

Scour pool 

Scour pool 

1
st
 throat 

2
nd

 throat 

 

A. 

B. 



65 

 

 
Figure 3. Representative cross-sectional survey conducted in the lower sub-
reach (dark line represents the 2009 cross-section before the structure was 
placed and the light line represents the cross-section in 2010 after the structure 
was in place; cross-section was conducted “at rootwad”.  
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Table 1. Little Coal River water quality results with respect to year, season, and reach (dots represent missing values).  
 
  

  Reach Conductivity Acidity Al Alkalinity Ca Cd Cl Co Cr Cu Fe 

    µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

Spring 2009 
           

 

Upper 693 <1 0.85 138.14 56.4 <0.014 13 <0.015 <.012 0.017 0.057 

 

Reference  667 <1 0.066 145.36 52.73 <0.014 13.09 <0.015 <.012 <0.015 0.078 

 

Lower 701 <1 0.071 143.58 56.57 <0.014 13.7 <0.015 <.012 <0.015 0.078 

Fall 2009 
 <1 0.082 252.09 61.15 <0.014 16.56 <0.015 0.06 0.323 0.265 

 

Upper 813 

 

Reference 790 <1 0.067 229.98 53.19 <0.014 16.39 <0.015 <0.012 0.025 1.07 

 

Lower 832 <1 0.045 234.58 56.35 <0.014 17.04 0.018 <0.012 0.022 0.056 

Spring 2010 
           

 

Upper 739 <1 <0.021 156.82 48.49 <0.014 13.97 <0.015 <0.012 <0.015 0.17 

 

Reference 725 <1 <0.021 117.42 · <0.014 9.79 <0.015 <0.012 <0.015 0.14 

 

Lower 687 <1 <0.021 156.65 47.99 <0.014 12.88 <0.015 <0.012 <0.015 0.21 

Fall 2010 
 <1 <0.1 351.32 45.42 <0.014 36.7 <0.015 <0.012 <0.015 <0.1 

 

Upper 1030 

 

Reference 1068 <1 <0.1 324.27 37.08 <0.014 36.8 <0.015 <0.012 <0.015 <0.1 

  Lower 1027 <1 <0.1 338.17 37.93 <0.014 36.5 <0.015 <0.012 <0.015 <0.1 
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Table 1. Continued.  

 

 

  Reach Mg Mn Na Ni Se SO4 TDS TSS Zn 

    mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

Spring 2009 
 

        

 

Upper 35.83 0.043 98.96 <0.019 <0.045 209 138 43 <0.016 

 

Reference  33.88 0.042 92.2 <0.019 <0.045 208 124 35 <0.016 

 

Lower 35.79 0.038 122.82 0.019 0.047 224 604 6 0.026 

Fall 2009 
37.64         

 

Upper 0.07 126.91 0.047 <0.045 253 649 22 0.546 

 

Reference 32.82 0.054 111.94 0.153 0.181 249 638 20 <0.016 

 

Lower 34.3 <0.017 107.94 0.038 <0.045 235 575 15 <0.016 

Spring 2010 
         

 

Upper 26.76 <0.1 72.75 <0.019 <0.045 200 493 17 <0.016 

 

Reference · <0.1 2.22 <0.019 <0.045 138 320 8 <0.016 

 

Lower 27.61 <0.1 76.69 <0.019 0.051 188 480 7 <0.016 

Fall 2010 
27.99         

 

Upper <0.1 196 <0.019 <0.045 337 880 3 0.035 

 

Reference 25.58 <0.1 197 <0.019 <0.045 328 834 <2.37 · 

  Lower 28.44 <0.1 201 <0.019 <0.045 338 834 <2.37 0.025 
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Table 2. Mean depth, coefficient of variation (CV) of water depth , mean distance 
to fish cover (DFC) in 2009 and 2010 of entire study reach and sub-reaches. 
Standard error is in parenthesis. 
 

 

  Mean Depth (m)  CV of depth DFC (m) 
Reach 2009 2010 2009 2010      2009      2010 

Entire River 0.93 (0.0072) 0.94 (0.0086) 0.48 0.58 16.15 (0.53) 14.44 (0.59) 
Upper 0.56 (0.003) 0.5 (0.0015) 0.92 0.52 16.12 (2.44) 15.24 (1.24) 
Reference 0.8 (0.0027) 0.76 (0.0026) 0.59 0.6 12.54 (1.4) 19.69 (2.72) 
Lower 0.75 (0.002) 0.92 (0.0026) 0.46 0.48 22.07 (2.45) 11.19 (2.01) 
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Figure 4. Change in depth of the lower 13.7km of the Little Coal River between 
2009-2010. 
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Figure 5. Depth mapping of the lower 13.7km of the Little Coal River in 2009 
(lighter colors indicate shallower areas and darker colors indicate the deeper 
segments).  
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Figure 6. Depth mapping of the lower 13.7km of the Little Coal River in 2010 
(lighter colors indicate sallower areas and darker colors indicate the deeper 
segments).  
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Figure 7. Distance to nearest fish cover in the lower 13.7km of the Little Coal 
River in 2009 (lighter colors indicate areas with close fish cover and darker colors 
indicate areas of further fish cover).  
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Figure 8. Distance to nearest fish cover in the lower 13.7km of the Little Coal 
River in 2010 (lighter colors indicate areas with close fish cover and darker colors 
indicate areas of further fish cover).  
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Figure 9. Change in distance to fish cover of the lower 13.7km of the Little Coal 
River between 2009-2010. 
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Table 3. Percent of substrate type within entire study reach and sub-reaches 
during pre-construction (2009) and post-construction (2010) periods.  
 

 

 

Substrate Entire River Upper Reference Lower 

2009 Sand 48 17 47 61 

 
Gravel 30 58 32 28 

 
Cobble 15 19 13 8 

  Boulder  7 6 8 3 

2010 Sand 51 24 47 46 

 
Gravel 29 54 30 39 

 
Cobble  15 19 17 12 

  Boulder  5 3 6 3 

Change Sand +3 +7 0 -15 

 

Gravel -1 -4 -2 +11 

 

Cobble 0 0 +4 +4 

  Boulder -2 -3 -2 0 
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Figure 10. Changes in substrate composition between years and sub-reaches. 
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Figure 11. Substrate mapping of sub-reaches in 2009, lines represent structure 
locations (lighter colors indicate poor substrate for habitat use and darker colors 
indicate best substrate type for habitat use).  
 



78 

 

 
 

Figure 12. Substrate mapping of sub-reaches in 2009, lines represent structure 
locations (gray indicates sand substrate and black indicates gravel, cobble, and 
boulder substrates).  
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Figure 13. Substrate mapping of sub-reaches in 2010, lines represent structure 
locations (lighter colors indicate poor substrate for habitat use and darker colors 
indicate best substrate type for habitat use). 
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Figure 14. Substrate mapping of sub-reaches in 2010, lines represent structure 
locations (gray indicates sand substrate and black indicates gravel, cobble, and 
boulder substrates).  
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Figure 15. Change in substrate composition of sub-reaches between 2009-2010, 
lines represent structure locations.  
 



82 

 

 
 

Figure 16. Substrate mapping of the lower 13.7km of the Little Coal River in 2009 
(lighter colors indicate poor substrate for habitat use and darker colors indicate 
best substrate type for habitat use). 
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Figure 17. Substrate mapping of the lower 13.7km of the Little Coal River in 2009 
(gray indicates sand substrate and black indicates gravel, cobble, and boulder 
substrates). 
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Figure 18. Substrate mapping of the lower 13.7km of the Little Coal River in 2010 
(lighter colors indicate poor substrate for habitat use and darker colors indicate 
best substrate type for habitat use). 
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Figure 19. Substrate mapping of the lower 13.7km of the Little Coal River in 2010 
(gray indicates sand substrate and black indicates gravel, cobble, and boulder 
substrates). 
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Figure 20. Change in substrate composition of the lower 13.7km of the Little Coal 
River between 2009-2010.  
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Table 4. Fishers Exact Test values of substrate type between 2009-2010.  
 

. 

Reach χ
2
 P-value 

Entire River 0.44 0.95 

Upper 2.34 0.51 

Reference 0.88 0.83 

Lower 4.38 0.22 
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Table 5: Pool attributes (in meters) derived from the longitudinal profiles (mean 
pool depth was calculated from the monument point at the start of each sub-
reach).    
 

 

  Upper Reference Lower 

  2009 2010 2009 2010 2009 2010 

mean pool depth 4.02 4.06 3.71 3.88 2.76 3.3 

mean pool length 44 45 71 66 53 35 

mean distance to pool 123 121 115 121 373 159 

number of pools 5 5 5 5 2 5 
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A) 

 
B) 

 
Figure 21. Longitudinal profile of the upper sub-reach in 2009 (A) and 2010 (B) (Open triangles represent areas where 
cross-sections were performed. 
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A) 

 
B) 

 
 

Figure 22. Longitudinal profile of the reference sub-reach in 2009 (A) 2010 (B). 
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A) 

 
B) 

 
Figure 23. Longitudinal profile of the lower sub-reach in 2009 (A) and 2010 (B) (the triangles represent areas where cross-
sections were performed. 
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Table 6. Pair-wise test statistics for comparisons of cross-sections between years 
(highlighted values indicate significance differences at the 90% confidence level).   
 

 

 

  Variable       2009 2010 

    
T-

value 
Df 

P-
value 

Mean(+SE) Mean(+SE) 

Treatment Area 1.85 8 0.104 1895.42 (85.71) 1930.45 (85.88) 
 Perimeter 1.54 8 0.906 297.10 (7.23) 297.32 (6.68) 
 Entrenchment Ratio 0.5 8 0.0001 0.1426 (0.01) 0.1726 (0.01) 
 Bank Height Ratio 0.996 8 0.336 3.514(0.61) 2.773(0.42) 
 Peri:Area Ratio -1.24 8 0.12 0.1581 (0.004) (0.1555 (0.01) 

Control Area -1.83 11 0.18 2514.29 (75.53)  2416.94 (115.3) 
 Perimeter -0.12 11 0.15 373.76 (11.79)  369.22 (11.92) 
 Entrenchment Ratio -3.08 11 0.624 0.1303 (0.007) 0.129 (0.008) 
 Bank Height Ratio -0.303 11 0.764 2.326 (0.09) 2.369 (0.11) 

  Peri:Area Ratio 1.74 11 0.242 0.1015 (0.03) 0.1076 (0.03) 
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Table 7. Global cross section results from 2x3 factorial analyses of variance 
(ANOVA) (highlighted values indicate results that are significant at the 90% 
confidence level).   
 

 

 

Variable Df F-Value P-Value 

Area       

 
Reach  2 55.5023 0.0001 

 
Year 1 0.3838 0.5395 

 
Reach x Year 2 1.3464 0.273 

Perimeter       

 
Reach  2 132.7423 0.0001 

 
Year 1 0.1961 0.6605 

 
Reach x Year 2 0.0974 0.9075 

Perimeter:Area Ratio       

 
Reach  2 8.1755 0.0011 

 
Year 1 0.0216 0.88386 

 
Reach x Year 2 0.1959 0.82295 

CV       

 
Reach  2 3.7021 0.0345 

 
Year 1 7.4021 0.0099 

 
Reach x Year 2 2.8107 0.07341 

Bank Height Ratio 
   

 

Reach  2 3.055 0.0597 

 

Year 1 0.7735 0.3849 

  Reach x Year 2 0.6849 0.5106 

Entrenchment Ratio       

 
Reach  2 4.5489 0.0173 

 

Year 1 1.508 0.22742 

  Reach x Year 2 1.2392 0.30166 
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Table 8. Tukey’s pairwise comparisons results of cross sections (only significant 
interactions are listed).  
 

 

 

Variable P-adj 

Area 
 

 

Upper 2009-Lower 2009 0.0001 

 

Upper 2010-Lower 2009 0.0001 

 

Upper 2010-Referenece 2009 0.0001 

 

Lower 2010-Upper 2009 0.0001 

 

Reference 2010-Upper 2009 0.0001 

  Upper 2009-Reference 2009 0.01 

Perimeter 
 

 

Upper 2009-Lower 2009 0.0001 

 

Upper 2010-Lower 2009 0.0001 

 

Upper 2009-Reference 2009 0.0001 

 

Upper 2010-Reference 2009 0.0001 

 

Lower 2010-Upper 2009 0.0001 

 

Reference 2010-Upper 2009 0.0001 

 

Upper 2010-Lower 2010 0.0001 

  Upper 2010-Reference 2010 0.0001 

Perimeter Area Ratio 
 

 

Upper 2009-Lower 2009 0.091 

  Upper 2010-Lower 2009 0.0966 

CV 
  

 

Upper 2010-Lower 2009 0.0028 

 

Upper 2010-Upper 2009 0.0466 

  Upper 2010-Reference 2010 0.0999 

Entrenchment Ratio 

 
 

Lower 2010-Upper 2009 0.04 

  Upper 2010-Lower 2010 0.031 
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Figure 24. Dowel rod retention in each sub-reach A) Upper B) Reference and C) 
Lower with respect to distance traveled (at 920 meters dowel rods had passed 
through the entire reach unretained).  
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Table 9: Retained and not retained dowel rods in each sub-reach and year.   
 

  Upper Reference Lower 

  2009 2010 2009 2010 2009 2010 

Retained 31 22 31 37 45 30 
Not Retained 17 22 14 12 2 20 
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Table 10: Results from 3x2x2 factorial analysis of variance (ANOVA) on our 
macroinvertebrate community, highlighted values indicate results that are 
significant at the 90% confidence level. mWVSCI represent the Modified Stream 
Condition Index scores; %EPT is the percent of ephemeroptera, plecoptera, and 
tricoptera; and total abundance is the abundance of all macroinvertebrates.   
 

 

Variable   Df F-Value P-Value 

mWVSCI 
 

   

 

Substrate 1 495.17 0.0001 

 

Season 1 56.11 0.0001 

 

Reach 2 1.19 0.401 

 

Substrate x Season 1 0.94 0.331 

 

Substrate x Reach 2 0.09 0.726 

 

Season x Reach 2 0.45 0.483 

 

Substrate x Season x Reach 2 0.33 0.671 
%EPT 

   
 

 

Substrate 1 303.18 0.0001 

 

Season 1 81.02 0.0001 

 

Reach 2 1.52 0.152 

 

Substrate x Season 1 17.20 0.0001 

 

Substrate x Reach 2 0.53 0.304 

 

Season x Reach 2 0.03 0.789 

 

Substrate x Season x Reach 2 0.09 0.979 
Total Abundance 

  
 

 

Substrate 1 256.38 0.0001 

 

Season 1 143.52 0.0001 

 

Reach 2 0.88 0.328 

 

Substrate x Season 1 121.23 0.0001 

 

Substrate x Reach 2 1.56 0.235 

 

Season x Reach 2 0.24 0.625 

  Substrate x Season x Reach 2 0.40 0.826 
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Table 11. Tukey’s pairwise comparisons results of macroinvertebrate community 
structure (highlighted values indicate results that are significant at the 90% 
confidence level). SS represent sand/silt samples and CG represents 
cobble/gravel samples.  
  

 

  Total Abundance %EPT 

  P adj P adj 

Spring SS-Spring CG 0.003 0.0001 
Fall CG-Spring CG 0.0001 0.0001 

Fall SS-Spring CG 0.026 0.0001 
Fall CG-Spring SS 0.0001 0.0001 

Spring SS-Fall SS 0.8986 0.004 
Fall SS-Fall CG 0.0001 0.0001 
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Figure 25. A NMDS plot of genus level invertebrate community structure based 
on substrate type (CG = cobble and gravel, SS = sand and silt substrate, WVSCI 
= West Virginia Stream Condition Index, EPT = % emphemeroptera, plecoptera 
and trichoptera, and Abundance = total number of macroinvertabrates).  
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Figure 26. Macroinvertabrate abundance by year, reach, and substrate.  
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.  

 
 

Figure 27. Macroinvertebrate habitat weighted abundance by reach and year. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



102 

 

 

Table 12. Fish community structure by year and sub-reach. Percent represents the percentage of the population that 
comprising that species. Mean # per 500 s is the number of fish collected in 500 of the total 2500 seconds.  

  Upper Reference Lower 

Species 2009 2010 2009 2010 2009 2010 

  Percent% 
Mean # per 

500 s 
Percent% 

Mean # per 
500 s 

Percent% 
Mean # per 

500 s 
Percent% 

Mean # per 
500 s 

Percent% 
Mean # per 

500 s 
Percent% 

Mean # per 
500 s 

Rock Bass 1.18 0.2 3.33 0.2 3.65 1 1.64 0.6 3.45 0.4 2.27 0.2 

Ambloplties rupestris 
            

Freshwater Drum · · · · · · · · 1.72 0.2 2.27 0.2 

Aplodinotus grunniens 
            

Common Carp · · 3.33 0.2 1.46 0.4 0.55 0.2 · · · · 

Cyprinus carpio 
            

Central Stoneroller · · · · 37.96 10.4 55.19 20.2 · · · · 

Campostoma anomalum 
            

Spotfin Shiner 2.35 0.4 10 0.6 1.46 0.4 0.55 0.2 · · · · 

Cyprinella spiloptera 
            

Gizzard Shad 7.06 1.2 · · 5.11 1.4 1.09 0.4 3.45 0.4 2.27 0.2 

Dorosoma cepedianum 
            

Greenside Darter 1.18 0.2 · · 2.92 0.8 5.46 2 · · · · 

Etheostoma blennioides 
            

Streamline Chub · · · · · · · · · · 2.27 0.2 

Erimystax dissimilis 
            

Rinabow Dater · · · · 1.46 0.4 3.28 1.2 · · · · 

Etheostoma caeruleum 
            

Variegate Darter · · · · 2.19 0.6 4.92 1.8 · · · · 

Etheostoma variatum 
            

Banded Darter 2.35 0.4 · · 9.49 2.6 2.73 1 · · · · 

Etheostoma zonale 
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Table 12. Continued  
            

Bigeye Chub 23.53 4 · · 15.33 4.2 · · 36.21 4.2 · · 

Hybopsis amblops 
            

Northern Hog Sucker 11.76 2 10 0.6 3.65 1 2.19 0.8 1.72 0.2 9.09 0.8 

Hypentelium nigricans 
            

Longnose Gar · · · · · · 0.55 0.2 · · · · 

Lepisosteus osseus 
            

Ohio Lamprey · · 3.33 0.2 · · · · · · · · 

Ichthyomyzon bdellium 
            

Smallmouth Buffalo · · · · 1.46 0.4 2.73 1 1.72 0.2 · · 

Ictiobus bubalus 
            

Channel Catfish 3.53 0.6 16.67 1 0.73 0.2 1.64 0.6 5.17 0.6 2.27 0.2 

Ictalurus punctatus 
            

Least Brook Lamprey · · 3.33 0.2 · · · · · · · · 

Lampetra aepyptera 
            

Green Sunfish · · · · · · 0.55 0.2 · · · · 

Lepomis cyanellus 
            

Longear Sunfish 2.35 0.4 · · 2.92 0.8 0.55 0.2 1.72 0.2 9.09 0.8 

Lepomis megalotis 
            

Striped Shiner · · 3.33 0.2 · · 1.09 0.4 · · · · 

Luxilus chrysocephalus 
            

Smallmouth Bass 11.76 2 6.67 0.4 2.92 0.8 0.55 0.2 17.24 2 · · 

Micropterus dolomieu 
            

Spotted Bass 1.18 0.2 6.67 0.4 · · 0.55 0.2 5.17 0.6 4.55 0.4 

Micropterus punctulatus 
            

             



104 

 

Table12.Continued 
            

River Redhorse · · · · 1.46 0.4 · · · · · · 

Moxostoma carinatum 
            

Golden Redhorse 14.12 2.4 20 1.2 4.38 1.2 1.09 0.4 10.34 1.2 · · 

Moxostoma erythrurum 
            

Shorthead Redhorse 2.35 0.4 3.33 0.2 · · 2.73 1 · · · · 

Moxostoma macrolepidotum 
            

Dusky Shiner · · · · · · 0.55 0.2 · · · · 

Notropis cummingsae 
            

Sand Shiner 11.76 2 · · 0.73 0.2 4.92 1.8 · · · · 

Notropis stramineus 
            

Silver Shiner · · 3.33 0.2 · · · · · · 34.09 3 

Notropis photogenis 
            

Rosyface Shiner 1.18 0.2 3.33 0.2 0.73 0.2 1.64 0.6 1.72 0.2 29.55 2.6 

Notropis rubellus 
            

Logperch 1.18 0.2 · · · · 0.55 0.2 3.45 0.4 · · 

Percina caprodes 
            

Blackside Dater · · 3.33 0.2 · · · · · · · · 

Percina maculata 
            

Bluntnose Minnow · · · · · · · · 6.9 0.8 · · 

Pimephales notatus 
            

Flathead Catfish · · · · · · 2.19 0.8 · · 2.27 0.2 

Pylodictis olivaris 
            

Sauger 1.18 0.2 · · · · 0.55 0.2 · · · · 

Stizostedion canadense                         
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Table 13. Similarity analyses based on fish community (highlighted values 
indicate reaches that are significantly dissimilar at the 90% confidence level).   
 

Reach R statistic P-value 

2009-2010  0.194 0.035 
2009 Across Reaches -0.036 0.640 
2010 Across Reaches 0.116 0.147 
Upper 2009-Upper 2010 0.166 0.126 
Upper 2009-Reference 2010 0.001 0.461 
Upper2009-Lower 2010 0.296 0.022 
Reference 2009-Upper 2010 0.172 0.150 
Reference 2009-Reference 2010 0.016 0.450 

Reference 2009-Lower 2010 0.238 0.097 
Lower 2009-Upper 2010 0.226 0.056 
Lower 2009-Reference 2010 0.100 0.257 
Lower 2009-Lower 2010 0.332 0.044 
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Figure 28. Mean similarity dendrogram for fish assemblage. The horizontal line is 
the overall mean between group similarity and the vertical lines are the within-
group similarity for each reach and year.  
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Figure 29. Non-Metric Multidimensional Scaling (NMDS) ordination of fish 
community similarity matrix (each symbol represents a single site and separation 
of sites is based on Bray-Curtis distances).  
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Figure 30. Game fish abundance collected by year and reach with standard error 
bars.
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Figure 31. Non game fish abundance collected by year and reach with standard 
error bars. 
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Figure 32. Total fish abundance collected by year and reach with standard error 
bars.  
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Figure 33. Shannon-Weiner Index of fish diversity by year and reach with 
standard errors bars.   
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Figure 34. Fish catch per unit effort (fish/minute) by year and reach with standard 
error bars.  
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Table 14. Fish results of 2x3 factorial analysis of variance (ANOVA), highlighted 
values indicate results that are significant at the 90% confidence level).   
 

 

Variable   Df F-value P-value 

Total Abundance 
 

   
 

Reach 2 1.52 0.239 

 

Year 1 0.01 0.945 

 
Reach x Year 2 0.26 0.773 

Total Diversity 

    
 

Reach  2 4.58 0.021 

 

Year  1 1.75 0.198 

 

Reach x Year 2 0.70 0.508 
Game Fish Abundance 

   
 

Reach  2 0.57 0.575 

 

Year  1 6.30 0.019 

 

Reach x Year 2 1.76 0.193 
Non-Game Fish Abundance 

   
 

Reach  2 1.43 0.26 

 

Year  1 0.00 0.971 

  Reach x Year 2 0.22 0.806 
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Appendix 1: Genera level macroinvertebrate habitat weighted scores with respect 
to year and reach. 
 
 

Genera Upper Reference Lower 

  2009 2010 2009 2010 2009 2010 

Oligochaeta 7.72 8.08 2.17 6.63 0.85 5.36 
Hirudinidae · · · · · 0.01 
Clams 10.08 7.30 5.49 22.13 2.53 9.56 
Snails 2.94 1.80 2.65 2.19 0.63 1.47 

Cambaridae · · · · · 0.04 
Gammaridae · 0.01 · · · 0.08 
Caecidotea 0.02 · · · · · 
Baetidae(UNK) · · 0.16 · · · 
Accentrella · 1.35 · 0.37 0.01 0.10 
Baetis 2.61 60.52 3.83 14.40 1.52 4.90 
Caenis 0.02 0.03 0.06 · 0.01 · 
Heptageniidae(UNK) 0.86 · 0.40 · 0.29 · 
Epeorus · · 0.01 · 0.01 · 
Heptagenia · · · · 0.07 · 
Stenonema 11.70 4.82 4.62 1.75 6.78 4.57 

Isonychia 8.65 8.34 2.39 3.05 5.59 3.89 
Leptophelbiidae(UNK) · · 1.47 · · · 
Ephemerellidae(UNK) · · · · 0.01 · 
Ephemerella · · 0.17 · · · 
Drunella · 0.01 · 0.01 0.01 · 
Dannella · · · · · 0.02 
Eurylophella · 0.03 0.01 0.01 0.04 · 
Ameletus · · · · 0.01 · 
Tricorythalus 437.35 331.95 189.59 236.09 229.71 238.36 
Unknown Mayfly 0.25 · 0.09 · 0.01 0.08 
Hydropsychidae(UNK) 0.66 0.59 0.02 · 0.75 0.08 

Parapsyche · · 0.03 · · · 
Hydropsyche 4.66 9.47 0.59 2.94 0.07 3.05 
Diplectrona · · 0.13 · 0.07 · 
Ceratopsyche · · · · · 0.07 
Cheumatopsyche 21.45 102.84 27.74 43.87 15.39 32.48 
Wormaldia · · 0.01 · · · 
Chimarra · 0.41 · 0.08 · 0.01 
Rhyacophilla · 0.28 0.01 · · 0.08 
Polycentropus 0.05 0.25 0.03 0.01 0.01 0.02 
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Cyrnellus · 0.01 0.01 0.03 · · 
Lepidostoma 0.02 · · · · · 
Leptoceridae(UNK) · · · · · 0.01 
Oecetis · 2.48 · 0.94 · 0.47 
Leptocerus · · · · 0.01 · 
Hydroptila 5.34 10.84 1.96 15.88 0.58 8.76 
Orthotrichia 1.72 · · · · 0.02 
Ochrotrichia · · · 0.02 · · 
Palaeagapetus 0.12 · · · · · 
Leucotrichia · 0.01 · 0.10 · 0.01 
Stactobiella · · · 0.08 · · 
Glossosoma · · 0.02 · 0.01 · 

Brachycentrus · 1.07 · 1.00 · 0.86 
Psychomyia · 1.51 · 0.77 · 1.68 
UnkownCaddisfly 3.82 · 2.44 0.49 0.87 0.02 
Plecoptera(UNK) · · · · 0.01 · 
Chloroperlidae(UNK) 0.37 0.11 · · · 0.01 
Utaperla 0.12 · 0.47 · · · 
Alloperla · 0.01 · · · · 
Leuctridae(UNK) · · 0.08 · · · 
Leuctra 0.74 2.31 0.59 0.51 0.06 0.68 
Perlidae(UNK) · 1.39 0.02 0.11 1.50 0.21 
Acroneuria 0.10 0.06 0.19 0.13 0.01 0.01 

Neoperla 0.003 · · · · · 
Perlodidae(UNK) 1.23 0.08 · · · 0.03 
Remenus · · 0.09 · 0.01 · 
Diploperla 0.02 · · · · · 
Peltoperla · 0.23 · · · · 
Nemouridae(UNK) · · 0.02 · · · 
Amphinemuera · 0.17 · · · · 
Taeniopteryx 0.25 10.06 0.73 3.48 · 2.93 
Unknown Stonefly 1.35 0.11 0.63 · 0.35 0.01 
Gomphidae(UNK) · · · 0.08 · · 
Gomphus 0.15 0.38 0.04 0.12 0.13 0.36 

Lanthus 0.18 0.03 · 0.01 · 0.04 
Progomphus 0.09 0.02 0.09 · 0.17 0.06 
Stylogomphus 0.02 · 0.01 0.01 · 0.02 
Arigomphus 0.03 · · · · · 
Cordulegaster · · · 0.01 · · 
Aeshna · 0.01 · · 0.01 · 
Boyeria · · 0.01 · 0.01 0.09 
Calopteryx · 0.01 0.01 0.01 · · 
Libellulidae · · 0.03 · · · 
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Bezzia · · 0.01 · · · 
Enallagma 0.02 · 0.19 0.01 · · 
Nehalennia 0.14 · · · · · 
Chromagrion 0.02 · · · · · 
Coenagrionidae(UNK) 0.02 · · 0.11 0.01 0.12 
Amphiagrion · · · · 0.01 · 
Unkown Dragonfly · 0.01 0.08 0.01 · · 
Elmidae(UNK) 0.27 · 0.16 · · · 
Optioservus 7.14 5.96 4.70 2.47 2.25 3.19 
Oulimnius 0.74 2.48 0.48 1.06 0.26 1.00 
Ancyronyx · 0.01 · · · 0.01 
Microcylloepus · 8.51 · 8.01 · 2.15 

Macronychus 0.03 · · 0.07 · · 
Stenelmis 0.37 9.61 0.04 2.96 · 4.70 
Dubiraphia 0.44 3.43 0.32 0.29 0.04 1.03 
Unknown Beetle · · 0.16 · · · 
Ectopria 0.12 0.11 · · · · 
Psephenus 0.14 0.28 · 0.01 0.01 0.03 
Anchytarsus · · · · · 0.01 
Curculionidae(UNK) · 0.03 · · · 0.01 
Dytiscidae(UNK) · 0.04 · · · · 
Staphylinidae(UNK) · 0.03 · · · · 
Hydrophilidae(UNK) · · · · · 0.01 

Helichus · 0.03 · · · 0.06 
Dineutus 0.57 0.23 0.07 0.06 0.01 0.31 
Nigronia 0.02 0.01 · 0.01 · 0.03 
Corydalus 1.08 0.90 0.91 0.44 0.56 0.59 
Sialis · 0.01 0.08 0.01 · 0.01 
Pyralidae(UNK) 0.05 0.63 · 0.76 · 1.65 
UknownHemiptera · 0.15 0.01 · · 0.01 
Corixidae · · 0.01 · · · 
Trepobates · · · · · 0.01 
Rhagovelia · 0.03 · · · 0.72 
Microvelia · 0.04 · · · 0.23 

Chironomidae 24.83 147.87 20.03 88.33 7.43 72.78 
Tipulidae(UNK) 0.12 · 0.57 · · · 
Antocha 0.25 0.77 0.08 1.35 · 1.31 
Tipula 0.81 0.50 0.70 0.67 0.12 0.50 
Hexatoma 0.02 · · · · 0.01 
Molophilus · · · · · 0.01 
Limnophila 0.05 · · · · · 
Tabanus · 0.004 · · · · 
Simulium 6.10 12.75 2.38 2.16 0.55 9.28 
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Atherix 2.32 0.23 0.61 0.02 · · 
Empididae(UNK) · 0.77 · 0.52 · 0.15 
Chelifera · 0.59 · 0.31 · · 
Hemerodromia · 4.45 0.02 2.35 0.23 1.85 
Ceratopogonidae(UNK) · · · · 0.01 0.07 
Bezzia 0.04 0.65 0.50 2.00 0.06 0.43 
Dasyhelea · 0.56 · 0.17 · · 
Atrichopogon · · · 0.01 · 0.09 
Unknown Diptera 0.58 · 0.43 · 0.25 0.16 
Neophylax · · 0.31 · · · 
Hydracarina 1.48 30.20 · 24.63 0.17 20.39 
Aphididae(UNK) · 0.28 · 0.80 · 0.84 

Agreniabidenticulata 0.12 0.07 0.08 0.94 0.06 0.07 
UNK Isotomidae 0.03 · 0.14 · 0.09 · 
Thaumaleidae(UNK) · · · · 0.02 · 
Baetisca · 0.01 · · · 0.08 
Cyclopoida · · · 0.07 · · 
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