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ABSTRACT 

 

The Flow Regimes Associated with Hydraulically Fractured Horizontal Wells in Shale 

Formations 

Saba J. Raeisi 

 

Shale gas in the United States went from a practically invisible resource to massive reserves that 

challenge the largest conventional gas accumulations in the world. Shale gas success is directly the result 

of economically managed deployment of petroleum technology, namely horizontal wells .Horizontal 

drilling and multi-stage stimulation technologies are driving the successful development of shale plays. 

The production performance of hydraulically fractured horizontal wells in naturally fractured ultra-low 

permeability shale formations is not well established since the interaction among the hydraulic fractures, 

natural fracture system, and the shale matrix leads to a complex production mechanism that has not been 

fully investigated. Modeling and simulation of shale gas reservoir is challenging due to the complex 

nature of the reservoir, the strong heterogeneous and anisotropic characteristics of the system, different 

reservoir behavior, multiple gas-storage mechanisms and unique attributes that control the production. 

The objective of this study was to understand the impact of hydraulic fracture on the flow behavior of the 

horizontal wells completed in ultralow permeability shale formations such as Marcellus Shale. A 

synthetic numerical model was developed using a commercial reservoir simulator (Eclipse) with different 

realizations to identify the impact of number of hydraulic fractures and gas desorption on the flow regime. 

Diagnostic plots were used to identify the flow regimes. The diagnostic plots were also used to investigate 

the impact of hydraulic fractures and shale characteristics on the duration of the flow periods. The most 

dominant flow regimes included the “Early Linear Flow” and “Compounded Linear Flow.”  The detail 

investigation of the flow regimes revealed that as the number of hydraulic fracture increased, the duration 

of the “Early Linear Flow” became longer while the duration of the “Compounded Linear Flow” became 

shorter. Furthermore as the fracture half-length was reduced, the “Early Linear Flow” became shorter and 

the “Compounded Linear Flow became longer. Also as the fissure permeability increased, the linear flow 

diminished. 
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1. Introduction 

1.1 Unconventional Gas Reservoirs 

One of the fastest growing regions within the petroleum industry is Unconventional Gas Reservoirs, 

which includes Tight Gas Sand, Shale Gas, and Coal Bed Methane.  These reservoirs have a large effect 

on hydrocarbon production in United States, and are categorized based on the geological and petro-

physical systems of heterogeneities. Unconventional gas reservoirs naturally have good rock particle 

texture, display gas storage and flow characteristics and pore size spreading. The following are common 

characteristics of unconventional gas reservoirs:   

1. They are difficult to develop due to their low permeability relative to conventional reservoirs  

2. They have large volumes of hydrocarbons in place   

3. They require advanced stimulation technologies  

4. They are more expensive to drill into and complete compared to conventional gas reservoirs.  

1.2 Shale Gas Reservoirs 

Shale is a form of clay or mud that can easily split into layers, which were compressed by formation 

pressure or other geological conditions and turned into a fine-grained sedimentary rock. Shale gas 

reservoirs have been known as highly organic formations with ranges of permeability from 0.1 mD to 

10.7 mD. The influence of adsorbed gas to gas produced in shale is not as dominant as in coalbed 

methane reservoirs. Due to shale’s ultra-low permeability, in order to produce gas at commercial rates and 

volumes from shale, horizontal drilling and hydraulic fracturing are required. 

U.S shale gas production has been grown rapidly in recent years. (Kalantari, 2010) In 2008 the gas 

production from shale was 2.02 trillion cubic feet (57 billion cubic meters), which was a 71% increase 

over the previous year and later in 2009 the production increased an additional 51% to 3.11 trillion cubic 

feet (88 billion cubic meters) and by end of 2009 year production had reached 60.6 trillion cubic feet 

(1.72 trillion cubic meters). In 2007 the 13
th
 largest source of natural gas in U.S was the Antrim gas field 

with136 billion cubic feet (3.9 billion cubic meters) of gas production. In the same year, Barnett shale, 

which is located in the Ft. Worth Basin of North Central Texas, had 1.11 trillion cubic feet (31 billion 

cubic meters) of gas production and the formation has become a gas producer since the large success of 

the Barnett play (Anon., 2013). 
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1.3 Hydraulic Fractures & Flow Regimes 

Hydraulic fracturing has significant effect on productivity of shale gas wells. This technique is a 

stimulation process of the well performed to maximize the extraction of underground resources including 

oil, natural gas, and water, fracturing occurs by injecting fluid into an underground formation at a high 

pressure to part of the formation. At this stage the injected fluid and proppants will pump into the created 

fracture to keep the fracture open and generate conductive flow path with large permeability toward the 

wellbore.  

In 1988, Rosa and Carvalho were the first to extend the horizontal well solutions to dual porosity systems. 

Pressure transient in dual porosity systems have general solutions that are provided by log-log type 

curves, meanwhile the flow regimes are predicted by the model and rarely observed from field data.  In 

2009, Lu et al developed the direct synthesis method for horizontal wells, which concluded based on 

reservoir parameters that a number of flow regimes exist and one or more could be masked or missing. 

The flow regimes include the early radial flow in the vertical direction and it has short duration in thin or 

high vertical permeability reservoirs. Another flow regime is known as the intermediate linear flow 

regime and is developed because of greater length of horizontal well compared to the formation thickness. 

The transition period from short duration to intermediate linear becomes leading and the late radial flow 

period will be observed afterward (Belyadi, 2010). 

1.4 Problem Statement 

The production performance of hydraulically fractured horizontal wells in naturally fractured ultra-low 

permeability shale formations is not well established.  The interaction among the hydraulic fracture, 

natural fracture systems, and the shale matrix, which contains both adsorbed and free gas, leads to a 

complex production mechanism that has not been fully investigated. Hydraulic fractures, which are high 

conductivity channels, have a significant impact on the flow geometry in the reservoir. 
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2. Literature Review 

2.1 Dual Porosity Model 

Shale gas has naturally fractured reservoirs that have two distinct porosities, one in the matrix and one in 

the fractures. These types of reservoirs consist of irregular fractures that can be represented by 

homogeneous dual porosity model (Warren, 1963). This concept was formulated by Barenblatt et al based 

on limited derivation of the pressure in block sections and later extended to well test analysis by Warren 

and Root. Dual porosity has complex interface between the naturally fractured reservoir and rock matrix, 

also the volume of hydrocarbon stored within the natural fractures is much lower than is stored in the 

matrix. Once the natural fractures have been drained, the large volume of hydrocarbons contained within 

the bulk of the reservoir (matrix) begins flow (Olusehun, 2009). 

2.2 Transient Linear Flow 

Horizontal wells in hydraulically fractured shale gas have transient linear behavior. This behavior is 

characterized by a one-half slope on a log-log plot of rate against time, which caused by transient 

drainage of low permeability matrix blocks into adjoining fractures (Olusehun, 2009).  

  

Figure 1 – Illustration of the Five Flow Regions (Olusehun, 2009) 

Figure1 represents the effect of ω and λ on linear model responses that Olusehun used for his thesis study. 

This figure shows the homogeneous response as a dual porosity response, which shows for        , all 

the responses for                      coverage to the same initial half-slope, which indicates the 
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linear flow in the fractures, at early times and different half slopes at later times. The half slope at later 

times is indicative of linear flow in the matrix. Region 1 represents early transient linear from in the 

fracture, Region 2 represents bilinear flow caused by simultaneous transient flow in the fracture and 

matrix that is indicated by a one-quarter slope on a log-log plot. Region 3 represents the homogeneous 

reservoir; Region 4 represents the transient linear case, which is the purpose of the current study and 

Region 5 that represents the period when the reservoir boundary. Using a one-half slope line on a log-log 

plot can indicate region 3 and 4.  

 Table 1 - Summary of Analysis Equations for the Constant    Inner Boundary Case (Slab Matrix) 

This case is the 
            

  
 vs. √  

    (Olusehun, 2009) 
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2.3 Flow Behavior in Horizontal Wells 

The flow behavior in horizontal wells when there are no hydraulic fractures is different compared to the 

behavior with existence of hydraulic fractures. Flow regimes including early radial flow, intermediate 

linear flow, and late pseudo-radial can be seen during pressure transient responses that are shown in 

figure 2. 

 

Figure 2 - Flow Behavior in Horizontal well (No Hydraulic Fractures) 

 

When there is no storage effect the early radial flow will occur and upper and lower boundaries have not 

yet touched any boundaries during this stage. Meanwhile the flow regimes in horizontal wells with 

existence of hydraulic fractures break down into two different fracture behaviors known as finite 

conductivity and infinite conductivity fractures based on low conductivity and high conductivity High 

conductivity   has no considerable pressure loss in the fracture compare to low conductivity fracture. 

Linear flow and Pseudo-steady state flow are different flow regimes that can occur during transient-

pressure effects. Below in figure 3, shows the early radial flow, which has short duration and can be 

classified using unit slope line on log-log plot. (Belyadi, 2011) 
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Figure 3 - Early Radial Flow with single hydraulic fracture 

 

As it has been mentioned before, the number of hydraulic fractures effects on the flow regime. Figure 4 

shows the behavior of the flow regime with two hydraulic fractures along the length of the horizontal 

well.  Also the linear flow can be identified using ½ slope line on log-log plot. 

 

Figure 4 - Linear flow regimes with two hydraulic fractures 
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When the fluid in the reservoir hits the boundaries then boundary dominated flow or pseudo steady state 

occurs in entire reservoir. Below figure 5 shows the pseudo steady state flow regime. 

 

Figure 5 - Pseudo steady state flow regime 

 

2.4 Diagnostic Plots 

The derivative type curves were introduced by Bourdet et al. to improve the type curve analysis of 

pressure transient tests since the derivative curve was an indispensable aid to diagnostic pressure transient 

behavior for infinite-acting radial flow, for dual porosity behavior, and for bounded reservoir behavior 

(Bourdet, 1983). In order to develop diagnostic plot, calculate the derivative with respect to the 

superposition time function, and graphing the result vs. the shutin time and the use of this technique 

involves the pressure change and pressure derivative calculated with respect to, and graph vs. shutin time 

(Spivey, 1999). The advantages of using diagnostic plot are such as: 

1. It does not assume a certain flow regime, as the use of the superposition time function accepts 

infinite-acting radial flow. 

2. It encourages the analyst to think in terms of both reservoir boundaries and production history 

prior to the test as possible causes for unusual behavior occurring during the test.  

3. It is compatible with the superposition type curve. 
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The five-point derivative method, as described below in figure 6, is commonly used to estimate the 

derivative values: 

 

 

Figure 6 - Five-Point Derivative method (Belyadi, 2011)  
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3. Objective and Methodology 

3.1 Objective 

The objective of this study is to understand the impacts of hydraulic fractures on flow behavior of the 

horizontal wells completed in ultra-low permeability shale formations such as Marcellus Shale. A 

commercial reservoir simulator has been employed to build a model with a horizontal well completed in 

ultra-low permeability shale with several hydraulic fracture stages.  

3. 2. Methodology  

The methodology that was employed in this study consisted of the following steps:  

1. Creating a base model to simulate production history for a horizontal well completed in ultra-low 

permeability formation. 

2. Identifying the various flow periods (regimes) associated with hydraulically fractured horizontal 

wells using the diagnostic plots. 

3. Investigating the impact of various shale characteristics on the duration of the flow periods. 

3.2.1.  Step 1.Simulation Base Model  

A commercial reservoir simulator (ECLIPSE) was used to simulate 30-year production profile for a 

horizontal well in ultra-low permeability shale. The simulated production rates were then used to generate 

a diagnostic plot to determine the flow regimes. The base model consisted of a rectangular drainage area 

4000 feet by 2000 feet containing a 3000-feet horizontal well.  

The other important parameters for the model were established based on the available field information as 

well as the results of the previous production history matching for Marcellus Shale wells (Belyadi, H. 

2011) and are listed below in Table 2. A multi-layer, dual porosity model, which included adsorbed gas, 

was employed to generate the production profiles. In addition, production profiles without adsorbed gas 

were generated by setting the Langmuir Concentration to 0 MSCF/ton.   

Tables 2 through 4 summarize other constant inputs and different properties for various numbers of 

hydraulic fracture stages.  

Table 3 illustrates the layers and rock properties that were used for the base model. There were total of 

five layers in the model and top of the first layer is at 7000 feet. Each layer has a thickness of 15 feet. 

Table 4 includes the hydraulic fractures’ properties. Four different cases were investigated, they are the 
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model with No hydraulic fractures, 1, 2, 4 hydraulic fracture stages. The hydraulic fracture stages were 

placed as summarized in table 4 to have uniform spacing.  

The grid-size in the model was chosen as 10 feet in all directions. The early production rates were found 

to be significantly higher than the rest of the production profile. This problem is due to the fact that the 

model treats the first grid block next to the wellbore as the hydraulic fracture. Consequently, the fracture 

dimensions, in a model with large grid blocks, are significantly larger than the actual fracture dimensions. 

This leads to over-prediction of the production rate at early times. To resolve this issue, the simulation 

runs were performed using minimum grid sizes of 1 ft. in all directions. It should also mention that the 

run-time for the model with small gird blocks was excessive. After comparing the new results to previous 

results, it became clear that after 3 to 4 years of production, the simulated production rates were almost 

identical for both runs. In order to have consistent results while reducing the run-time, the first 5 years of 

the production was simulated using the model with smaller minimum grid size and the remainder of 

production profile was obtained from the model with the larger minimum grid block size.  

3.2.2.  Step 2.Flow Regime Determination  

In this step, a diagnostic plot of 1/q and derivative of 1/q as function of time was prepared based on the 

production profile generated by reservoir simulator to identify the flow regimes. Figures 7 and 8 shows 

the diagnostic plot for case 4, which is the base model with 4 hydraulic fractures. As it can be seen from 

the plot, several flow periods (regimes) are present. The early flow period is associated with the radial 

flow in the vertical plane and is characterized by a valley in the derivative data representing the dual 

porosity system. The linear flow period is identified by ½-slope line on the derivative data which is 

followed by boundary effects.  Figure 7 shows the diagnostic plot illustrating various flow regimes based 

on the production history for the model with 4 hydraulic fractures with adsorbed gas and figure 8 shows 

the diagnostic plot illustrating various flow regimes based on the production history for the model with 4 

hydraulic fractures without adsorbed gas. 

  



11 
 

 

Table 2 - Basic Model Parameters 

Reservoir parameters 

Depth, ft. 7,000 

Thickness, ft. 75 

Rock Properties   

Fracture spacing, dimensionless 0.0073 

Coal Compress, 1/psia  0.000001 

Rock Density,  Units 150 

Fracture Porosity 0.002 

Matrix Porosity, mD 0.05 

Fissure Permeability x, y, z   mD 0.002, 0.002, 0.0002 

Matrix Permeability x, y, z   mD 0.0004, 0.0004, 0.00004 

Initial Conditions   

Pressure, psia 3,000 

Water Saturation, fraction 0.15 

Hydraulic Fractures Properties   

Half Length, ft. 500 

Width, in 0.01 

Top of Fracture, ft. 7,000 

Bottom of Fracture, ft. 7,075 

Permeability, mD 20,000 

Porosity, fraction 0.1 

Well Production Control   

Bottom Hole Pressure, psia 500 

Fluid Properties   

Standard Pressure, psia 14.7 

Standard Temperature, F 60 

Reference Temperature, F 120 

Desorption   

Gas Diffusion Coefficient, Units 1 

Sorption Time, day 62 

Langmuir Pressure, psia 635 

Langmuir Concentration, MSCF/ton 0.08899 
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Table 3 - Constant Inputs for layers and Rock properties 

Total of 5 Layers  Rock Properties 

Top Depth, ft. 
Thickness, 

ft. 

Length of 

Reservoir, ft. 

Width of Reservoir, 

ft. 

Fracture 

Porosity 

Fissure Perm, 

mD 

Matrix Perm, 

mD 

7000 7060 15 4000 2000 0.002 0.002 0.0004 

 

Table 4 - Properties for 4 Hydraulic Fractures 

Fracture Name F1 F2 F3 F4 

Half Length 500 ft. 500 ft. 500 ft. 500 ft. 

Width 0.01 in 0.01 in 0.01 in 0.01 in 

Top of Fracture 7000 ft. 7000 ft. 7000 ft. 7000 ft. 

Bottom of Fracture 7075 ft. 7075 ft. 7075 ft. 7075 ft. 

X Center 500 ft. 1500 ft. 2500 ft. 3500 ft. 

Y Center 1000 ft. 1000 ft. 1000 ft. 1000 ft. 

Permeability 20000 mD 20000 mD 20000 mD 20000 mD 

Porosity 0.1 0.1 0.1 0.1 

 

Figure 8 shows the diagnostic plot illustrating various flow regimes based on the production history for 

the model with 4 hydraulic fractures without adsorbed gas. 

3.2.3.  Step 3.Sensitivity Analysis  

To investigate the impact of various shale characteristics on the duration of the flow period, calculated 

derivatives and diagnostic plots were used. After plotting each case and found the start and end point for 

each flow rate, it was easy to see the behavior of each flow regime based on variable parameters. There 

are 4 scenarios that are shown in Table 5. Also Table 6 to Table 9 listed below show the detail inputs for 

each scenarios and variable parameters are shown in bold.  

3.2.3.1  First Scenario 

As it shows in table 5, the base model with no desorption for cases 2, 3, and 4 were run with 250 feet 

half-length size for hydraulic fractures with actual fissure permeability (0.002). Table 6 is an example for 

case 4 inputs. 

3.2.3.2   Second Scenario 

The base model with original half-length size (500 feet) was run with 0.001 fissure permeability for case 

3 (base model with 2 hydraulic fractures) and case 4 (base model with 4 hydraulic fractures). Table 7 is an 

example for case 4 inputs. 
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Figure 7 – Diagnostic Plot Illustrating Various Flow Regimes  

3.2.3.3 Third Scenario 

The base model with original half-length size (500 feet) was run with 0.001 fissure permeability for case 

3 (base model with 2 hydraulic fractures) and case 4 (base model with 4 hydraulic fractures). Table 8 is an 

example for case 4 inputs. 

3.2.3.4 Fourth Scenario 

The base model with original half-length size (500 feet) was run with 0.001 fissure permeability for case 

3 (base model with 2 hydraulic fractures) and case 4 (base model with 4 hydraulic fractures). Table 9 is an 

example for case 4 inputs.  
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Figure 8 - Diagnostic Plot Illustrating Various Flow Regimes   
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Table 5 - Variable Parameters for Each Case 

Case studies Half Length Fissure Permeability 

For cases 2,3, and 4  250 ft. 0.002 

For case 3 and 4 500 ft. 0.001 

For case 3 and 4 500 ft. 0.005 

For case 3 and 4 500 ft. 0.01 

 

 

Table 6 - Hydraulic Fractures' Properties for 4 Fractures 

Fracture Name F1 F2 F3 F4 

Half Length 250 ft 250 ft 250 ft 250 ft 

Width 0.01 in 0.01 in 0.01 in 0.01 in 

Top of Fracture 7000 ft 7000 ft 7000 ft 7000 ft 

Bottom of Fracture 7075 ft 7075 ft 7075 ft 7075 ft 

X Center 500 ft 1500 ft 2500 ft 3500 ft 

Y Center 1000 ft 1000 ft 1000 ft 1000 ft 

Permeability 20000 md 20000 md 20000 md 20000 md 

Porosity 0.1 0.1 0.1 0.1 

 

Table 7 - Inputs for layers and Rock properties 

Total of 5 Layers  Rock Properties 

Top Depth, 

ft 
Thickness, 

ft 

Length of 

Reservoir, ft 

Width of 

Reservoir, ft 

Fracture 

Porosity 

Fissure Perm, 

mD 

Matrix Perm, 

mD 

7000 7060 15 4000 2000 0.002 0.001 0.0001 

 

Table 8 - Inputs for layers and Rock properties 

Total of 5 Layers  Rock Properties 

Top Depth, ft 
Thickness, 

ft 

Length of 

Reservoir, ft 

Width of 

Reservoir, ft 

Fracture 

Porosity 

Fissure Perm, 

mD 

Matrix Perm, 

mD 

7000 7060 15 4000 2000 0.002 0.005 0.0005 

 

Table 9 - Inputs for layers and Rock properties 

Total of 5 Layers  Rock Properties 

Top Depth, ft 
Thickness, 

ft 

Length of 

Reservoir, ft 

Width of 

Reservoir, ft 

Fracture 

Porosity 

Fissure Perm, 

mD 

Matrix Perm, 

mD 

7000 7060 15 4000 2000 0.002 0.01 0.001 
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4. Results and Discussions 

The following sections summarize the results of modeling and simulation studies as well as the 

interpretation of the results for each scenario. 

4.1. Step 1. Simulation Base Model  

The base model for all four cases (No hydraulic fracture, 1, 2, and 4 hydraulic fractures) was generated 

using given data and commercial software (ECLIPSE). This model was created based on 4000 feet by 

2000 feet drainage area with 3000 feet horizontal well. A multi-layer, dual porosity model, which 

included adsorbed gas, was employed to generate the production profiles. In addition, production profiles 

without adsorbed gas were generated by setting the Langmuir Concentration to 0 MSCF/ton. Figure 9, 10 

are the production profiles and figure 11 and 12 are the cumulative production profiles of base models 

with and without desorption for all cases. 

 

Figure 9 - Production profile of 3000 feet horizontal well with Desorption 
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Figure 10 - Production profile of 3000 feet horizontal well with No Desorption 
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Figure 11 – The impact of different number of hydraulic fractures on cumulative production 
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Figure 12 - The impact of different number of hydraulic fractures on cumulative production 
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4.2.  Step 2. Flow Regime Determination  

To determine the flow regimes, the derivative of production rate has been calculated and the diagnostic 

plots were used to show the flow regime for each individual case with 3000 feet of horizontal lateral and 

4000 by 2000 ft
2 
drainage area. Figures 13and 14 are diagnostic plots that shows all case studies together 

and illustrates flow regimes for the case study with 1, 2, and 4 hydraulic fractures with base model using 

diagnostic plots. The results include dual porosity effect and the flow is followed by linear flow and 

compounded linear flow. Duration period is based on the drainage geometry as it shows in listed figures.  

 

 

Figure 13 - Diagnostic plot showing flow periods for all 4 cases 
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Figure 14 - Diagnostic plot showing flow periods for all 4 cases 

 

Figures 15 and 16 are representing the base model with 4 hydraulic fractures with and with no desorption 

conditions. The properties for the base model are such as: permeability of 0.002 mD with 500 feet half-

length for hydraulic fractures and tables10 and 11 indicating the results for all cases. Below figures are 

diagnostic plots presenting the flow durations for each condition. The duration period for early linear flow 

for the model with 4 hydraulic fractures with desorption is 166 days and for the case when there is no 

desorption goes up to 322 days of early linear flow. Also the flow duration for compounded linear flow 

for desorption case travels up to 406 days and when there is no desorption, the duration flow is up to 174 

days. The diagnostic plots for flow durations for models with 1 and 2 hydraulic fractures are included in 

appendices.  
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Table 10 -Desorption w/ 500 feet Half Length & 0.002 Permeability 

  

Early Linear Flow (Days) Compounded Linear Flow (Days) 

  
Start Points End Points Duration Start Points End Points Duration 

No Hydraulic Fracture 15 36 21 205 3986 3782 

1 Hydraulic Fracture 35 78 43 455 3150 2695 

2 Hydraulic Fractures 45 136 91 414 908 495 

4 Hydraulic Fractures 62 228 166 337 743 406 

 

 

Figure 15 - Diagnostic plot illustrating various flow periods (4 Fracs) 
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Table 11 - No Desorption w/ 500 feet Half Length & 0.002 Permeability 

  

Early Linear Flow (Days) Compounded Linear Flow (Days) 

  
Start Points End Points Duration Start Points End Points Duration 

No Hydraulic Fracture 15 36 21 195 1642 1447 

1 Hydraulic Fracture 25 69 44 713 3110 2397 

2 Hydraulic Fractures 45 103 58 361 792 431 

4 Hydraulic Fractures 54 93 39 82 601 518 

 

 

Figure 16 - Diagnostic plot illustrating various flow periods (4 Fracs) 
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4.3.  Step 3. Sensitivity Analysis 

4.3.1. Scenario1 

The base model with no desorption for the model with 1, 2, and 4 hydraulic fractures were run with 250 

feet half-length size for hydraulic fractures with 0.002 mD fissure permeability. Figure 17 illustrates this 

case study for the model with 4 hydraulic fractures vs. its original case study to show the differences in 

flow regimes. By decreasing the size of fracture half-length to 250 feet, the early linear flow becomes 

longer compare to the 500 feet case and same condition for compounded linear flow but for the case with 

one hydraulic fracture, the early linear flow ends sooner and compounded linear flow has longer duration 

compare to its original case and same condition for the model with 2 hydraulic fractures. Table 12 

demonstrations the flow durations for current scenario. Other diagnostic plots for the models are included 

in appendices too.  

 

 

Figure 17 - Diagnostic plot illustrating model with 250 feet half-length vs. model with 500 feet half-length (4 

Fracs) 
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Table 12 - No Desorption w/ 250 feet Half Length & 0.002 Perm 

  
Early Linear Flow (Days) Compounded Linear Flow (Days) 

  
Start Points End Points Duration Start Points End Points Duration 

1 Hydraulic Fracture 25 44 18 372 3202 2830 

2 Hydraulic Fractures 28 69 41 584 3030 2445 

4 Hydraulic Fractures 35 114 79 548 986 438 
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4.3.2. Scenario2 

The base model with no desorption for cases with 2 and 4 hydraulic fractures were run with 500 feet half-

length size of hydraulic fractures and 0.001 mD fissure permeability. Figure 18 illustrates this case study 

for the model with 4 hydraulic fractures vs. its original case study to show the differences in flow 

regimes. By decreasing the fissure permeability to 0.001 mD, the early and compounded linear flows will 

have longer duration compare to the original case study. Table 13 shows the flow durations for both new 

scenarios. Also a diagnostic plot for the model with 2 hydraulic fractures is included in appendix as well. 

  

Table 13 - No Desorption Model w/ 500 feet Half Length and 0.001 Perm 

  
Early Linear Flow (Days) Compounded Linear Flow (Days) 

  
Start Points End Points Duration Start Points End Points Duration 

2 Hydraulic Fractures 44 118 74 723 1437 714 

4 Hydraulic Fractures 57 155 98 681 1229 548 

 

 

Figure 18 - Diagnostic plot to show model for 4 hydraulic fractures w/ 0.001 permeability 
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4.3.3. Scenario 3 and 4 

The base model with no desorption for cases 3 and 4 were run with 500 feet half-length size for hydraulic 

fractures with 0.005 mD fissure permeability for scenario 3, and 0.01 mD fissure permeability for 

scenario 4. Figure 19 and 20 illustrates these two scenarios vs. their original case studies to show the 

differences in flow regimes. Table 14 shows the flow durations for both new scenarios. Also a diagnostic 

plot for case 3 is included in appendices section. By increasing the fissure permeability to 0.005 mD, the 

linear flow for both scenarios flows longer period but for the scenario with 0.01 mD fissure permeability, 

the linear flow becomes shorter and smaller duration periods. 

  

Table 14 -No Desorption Model w/ 500 feet Half Length 

  

 With 0.005 Perm With 0.01 Perm 

  
Start Points End Points Duration Start Points End Points Duration 

2 Hydraulic Fractures 39 290 251 44 124 80 

4 Hydraulic Fractures 45 207 162 52 124 72 

 

 

Figure 19 - Diagnostic plot to show model for 4 hydraulic fractures w/ 0.005 permeability 
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Figure 20 - Diagnostic plot to show model for 4 hydraulic fractures w/ 0.01 permeability 
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5. Conclusions 

The objective of this thesis was to understand the impacts of hydraulic fractures on flow behavior of the 

horizontal wells completed in ultra-low permeability shale formations such as Marcellus Shale. After 

creating the model and analyzed multiple cases, it was concluded that the number of hydraulic fractures 

significantly impacts the production. Meanwhile the impact of desorption was found to be negligible 

during the early stage of the production.  This study identified a number of different flow regimes. The 

first flow period identified was vertical radial flow that was influenced by the dual porosity effects. The 

second flow period was “Early Linear Flow” which its duration depended on the number of hydraulic 

fractures. The next flow period identified was “Compounded Linear Flow” which its duration also 

depended on the number of hydraulic fractures.  Finally, the flow becomes elliptical due to boundary 

effects. 

The detail investigation of the flow regimes revealed that as the number of hydraulic fracture increases, 

the duration of the “Early Linear Flow” becomes longer. However, as the number of hydraulic fracture 

increases, the duration of the “Compounded Linear Flow” becomes shorter. This is because the boundary 

effects occur earlier with the increase in the number of hydraulic fracture.   The fracture half-length also 

impacts the flow periods. The shore the fracture half-length, the shorter is the “Early Linear Flow” and 

the longer is the “Compounded Linear Flow. Also fissure permeability is another parameter that had 

major impact on the flow periods. The study showed that as the fissure permeability increases, the linear 

flow diminishes because the transient period becomes shorter.  
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6. Recommendations for future work 

A case with more horizontal wells with multiples clusters of hydraulic fractures can be investigated for 

the flow regimes identifications. Moreover, a real case can be used to apply the developed workflow for 

identifying different flow regimes. 
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Appendices 

Appendix A (ECLIPSE) 

Appendix A-1 shows simple procedure using Schlumberger ECLIPSE software to model horizontal well 

completed in shale. Step by step of this procedure is included. Figure A-1 shows an Eclipse software 

launcher screen that was used in this research. 

 

Figure 17 - Appendix A-1: ECLIPSE Launcher 
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Before choosing of any options excited in the launcher, create a file for the model that needs to becreated, 

then  click on the office tab from the software launcher window to select the file that has been created and 

run the launcher. Figure 18 is an example of what was explained. 

 

Figure 18 - Appendix A-2: ECLIPSE Office Launcher 
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Figure 19 shows the next step, which is creating a project. Click on file and there click on the “New 

Project” option. 

 

Figure 19 - Appendix A-3: ECLIPSE Office Screen 
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After creating the project, click on the “Add Template Case” option as it shown in figure 20. Then the 

template selection panel will be displayed as it shows in figures 21 and 22. The user will be able to select 

the detail of the model. 

 

Figure 20 – Appendix A-4: ECLIPSE Template Screen 
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Figure 21 - Appendix A-5: ECLIPSE Template Selections 
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Figure 22 - Appendix A-6: ECLIPSE Template Screen 
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After creating the template for the model, click on to move on to the next step of the creating the model. 

Figure 23 shows the Model Definition window, which has the start and end day, month, and year, also 

model properties. The user selects and enters the workflow is shown in this figure.  

 

Figure 23 - Appendix A-7: Model Definition 

 

The next step is the “Reservoir Description”, which this section has its own work flow to follow. Figure 

24 displays the window for layer information, which includes layer name, top depths, thickness, Length 

and width for each layer.  

 

Figure 24 - Appendix A-8: Reservoir Layers Description 
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Figure 25 displays the “Rock Properties” window, which is the next work flow in “Reservoir 

Description”. Rock properties contain rock name, fracture porosity, fissure permeability, matrix porosity 

and so on that shows in listed figure.  

 

Figure 25 - Appendix A-9: Rock Properties 

Next step in Reservoir Description is the “Non-Equilibrium Initial Conditions”, which the user enters the 

reservoir pressure and water saturation for the model. 

 

Figure 26 - Appendix A-10: Non-Equilibrium Initial Conditions 
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For this study, the aquifers data wasn’t used. The last step of the reservoir description is the “Fractures” 

data entry. Figure 27 shows the detail of this work.  

 

Figure 27 - Appendix A-11: Fractures 

Continuing the next work flow is the access to well location in terms of its deviation survey data 

coordinates.  Figure 28 shows the detail of this work flow to enter either horizontal or vertical wells for 

the model.  

 

Figure 28 - Appendix A-12: Well Control 

At this point, the user is fully done with 3 steps and following steps starts off with production tab. In this 

step, new even from available event types needs to be selected and the user can click on the “Production 
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Well Schedule Data”. Continue selecting well controls tab and enter the information related to start date, 

control mode, open/shut flag and target pressure. Figure 29 shows listed stages also figure 30 shows the 

user to define the perforation from the event type’ drop-down box. 

 

Figure 29 - Appendix A-13: Production Well Control 

 

Figure 30 - Appendix A-14: Perforation Control 

Figures 31to 34 illustrates the work flow for the “Fluid Properties” for the model. At this stage, the 

information for PVT Composition, Rel. Perm, and Coal Bed Methane are used.  
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Figure 31 - Appendix A-15: PVT Composition 

 

Figure 32 - Appendix A-16: Rel. Perm for Gas  
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Figure 33 - Appendix A-17: Rel. Perm for Water 

 

Figure 34 - Appendix A-17: Coal Bed Methane 
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The last work flow that was used to complete this model is the “Simulation Control for Gridding 

Control”. Figures 35 and 36 illustrate the details for gridding and turning controls. The minimum and 

maximum cell sizes needs to be determined by the user, also cell per layers in the gridding control data. 

Meanwhile, turning controls was used for time-step, minimum time-step, maximum time-step, maximum 

pressure change per time-step, maximum non-linear iteration, and maximum linear iteration data entry. 

 

Figure 35 - Appendix A-18: Simulation Controls for Gridding Controls 

 

Figure 36 - Appendix A-19: Simulation Controls for Turning Controls 

 

At this point, the user has completed data entry to build the model and by clicking on generating model, 

then run ECLIPSE, and at the end view results will be able to achieve the results. 
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Appendix B (ECLIPSE Models Layouts) 

 

 

Figure 37 - Appendix B-1: Model with 1 Hydraulic Fracture 

 

Figure 38 - Appendix B-2: Model with 2 Hydraulic Fractures 

 

Figure 39 - Appendix B-3: Model with 4 Hydraulic Fractures 
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Appendix C (Diagnostic Plots) 

 

 

Figure 40 - Appendix C-1: Diagnostic Plot for the model w/ no desorption-250 ft Half-length (1HF) 

 

Figure 41 - Appendix C-2: Diagnostic Plot for the model w/ no desorption-250 ft Half-length (2HFs) 
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Figure 42 - Appendix C-3: Diagnostic Plot for the model w/ no desorption-250 ft Half-length (4HFs) 

 

Figure 43 - Appendix C-4: Diagnostic Plot for the model w/ no desorption-250 ft Half-length  
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Figure 44 - Appendix C-5: Diagnostic plot for model for 2 hydraulic fractures w/ 0.001 permeability 

 

 

Figure 45 - Appendix C-6: Diagnostic plot for model for 2 hydraulic fractures w/ 0.005 permeability 
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Figure 46 - Appendix C-7: Diagnostic plot for model for 2 hydraulic fractures w/ 0.01 permeability 

 

 

Figure 47 - Appendix C-8: Diagnostic plots for all scenarios for model with 2 hydraulic fractures 
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Figure 48 - Appendix C-9: Diagnostic plots for all scenarios for model with 4 hydraulic fractures 
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