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Abstract 

Mean-Swap Variance, Portfolio Theory 

and Asset Pricing  

Zhan Wang 

The primary focus of this dissertation is a new risk measure, Swap Variance (SwV), and 

its applications to expected utility maximization, portfolio theory, and capital asset pricing models 

(CAPM) with loss aversion and gain preference. Superior to the classical mean-variance (MV) 

model, the mean-swap variance (MSwV) efficiency is consistent with expected utility 

maximization for all concave utility without any restriction on the form of either utility function 

or return distributions. Specifically, the MSwV efficiency is necessary and sufficient to the second-

degree stochastic dominance (SSD). Thus, the SSD optimization can be consistently replicated by 

the SwV minimization for given means. The consistency between MSwV and SSD implies that 

the capital market line, Sharp ratio and other portfolio performance measures can now be modified 

in a generalized framework of expected concave utility maximization without utility or 

distributional assumptions of the MV model.  

Since the MSwV analysis retains the same simplicity as the MV approach, I apply the 

MSwV approach to the conventional procedure of portfolio optimization in determining capital 

market equilibrium. As a result, similar in form to the classical CAPM, the beta coefficient derived 

from the MSwV model is a ratio of the co-swap variance between returns on an asset and those on 

the market portfolio over the market SwV. Although the MSwV beta captures all high order co-

moments of return and is thus more general than the traditional MV beta, it is insufficient to explain 

the generalized relationship between expected return and risk under a single factor model. This 

research explicitly proves the necessity of additional factors in equilibrium for determining the 

asset return generating process, if the beta of MSwV is different from that of MV. Empirically, 

from an out-of-sample analysis, the larger the distinction (both positive and negative) of the 

MSwV-beta from the MV-beta, then the average return will be significantly higher. This empirical 

evidence strongly indicates that, in addition to the market factor, additional factors captured by the 

asymmetric systematic risk help explain the equilibrium risk-return relationship.   
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The MV model is valid under the assumption of a rational decision maker. The distinction 

of MSwV from MV thus captures the behavioral biases of human decision makers. The viewpoint 

of behavior finance (Benartzi & Thaler, 1995) demonstrates that loss-aversion appears when 

investors are unwilling to recognize loss and tend to afford more risk. On the other side, Kumar 

(2009) posited that individual investors prefer stocks with lottery features, which means a human 

decision maker may tolerate more risk to pursue potential gain. So, utility on a human decision 

maker shifts by three primary risk attitudes: loss-aversion for downside asymmetry (significant 

losses), rational risk-version for symmetry (normal returns), and overly risk-averse for upside 

asymmetry (substantial gains). Mathematically, the expected utility can be quantified by the 

MSwV approach without any restriction on the form of utility and return distribution functions.     

The major contribution of this dissertation is the development of a portfolio theory that can 

capture the loss aversion and gain preference of human decision makers.  Based on the portfolio 

theory, a multi-factor linear model is theoretically formulated. Precisely, the loss aversion (gain 

preference) factor is captured by the negative (positive) asymmetric beta, and the MV-beta 

captures the symmetric factor. Therefore, the factor portfolios can be replicated by the zero-cost 

(long-short) portfolios constructed from the sorted securities concerning the past asymmetric betas. 

The mimicking portfolio of the symmetric factor is the optimal portfolio without asymmetry. 

Empirical examinations show that the Fama-Macbeth cross-sectional regression results in 

asymmetric factor loadings and have significant explanatory power for security returns. 
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I. Decision-making Theory 

Decision-making theory pertains to the ideal decision that depends on values, probabilities, 

and uncertainties. Economists have been concerned with individual decision-making problems for 

more than 200 years and developed the consumer’s decision-making theory in the 1940s. Von 

Neumann and Morgenstern (1944) proposed the utility theory of risky choices. In utility theory, 

investors act to maximize their utility, which is considered as the level of relative satisfaction 

received from consumption, rather than value as in previous studies. This paper is considered the 

beginning of modern studies on risky decision-making theory. Furthermore, Von Neumann and 

Morgenstern (1944) demonstrated the properties of an investor’s utility. First, an investor has a 

well-defined preference over any two prospects. That is, if an investor is given two prospects X 

and Y, he should prefer X to Y, prefer Y to X, or be indifferent between X and Y. Second, the 

utility should be transitivity, which means that the investor should prefer A to C if he prefers A to 

B and prefers B to C. The third property of utility is independence. If an investor prefers A to C 

and B to C, then he prefers any mixture between A and B to C. Finally, the utility function is 

continuous. The utility function cannot jump for any small change in the prospect. 

The most critical assumption in Von Neumann and Morgenstern’s decision-making theory 

is the rational economic man (REM). There are three essential properties of REM. First, a REM is 

completely informed, so he knows not only all the actions available to him but also all the outcomes 

of each activity. Second, a REM is self-interested. He always pursues the highest possible utility 

for himself but never gives up anything to his opponent in a transaction. The last assumption is 
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perfect rationality. A REM can analyze and make the best decision at all times. Another important 

assumption in utility theory is risk aversion. Investors will choose the expected value with certainty 

rather than invest in a risky prospect that generates the same expected payoff. Mathematically, an 

individual’s utility function is concave and shows diminishing marginal utility of wealth. 

 

1.1.Stochastic Dominance  

However, it is complicated to apply utility theory into decision-making across the entire 

market because investor’s preferences and utility function are different, even though they are all 

considered risk-averse. So, the following studies develop several ranking approaches based on the 

distributions of security returns and avoid the dilemma of utility patterns. One of the most 

sophisticated and commonly used theories is stochastic dominance (SD). SD was initially 

developed in statistics to rank random variables. During the last 50 years, it has become an essential 

ranking rule in various areas of economics and finance. Quirk and Saposnik (1962) first applied it 

in decision theory. The paper represented that investors want to have maximum expected utility 

when they choose portfolios, so a portfolio with a higher expected utility is preferred to a lower 

expected utility. Under the assumption of the Von Neumann-Morgenstern utility function, the 

paper proved first-degree stochastic dominance (FSD), which is for all f, g included in the set of 

probability distributions over income, f is dominated in sense of SD ordering by g if and only if 

the corresponding cumulative distribution functions, F, satisfy: 𝐹(𝑓) ≥ 𝐹(𝑔) for all 𝑓 and g. The 

theory of SD and its many theoretical and empirical extensions in economics and finance were 
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developed in the late 60s. Hadar and Russell (1969) and Hanoch and Levy (1969) derived second-

degree stochastic dominance (SSD) directly from concave, non-decreasing utility function, which 

means for any risk-averse investors, portfolio g is preferred to portfolio f and is equivalent to 

portfolio g which dominates portfolio f under the sense of SSD. That is, if all investors’ utility 

functions are concave and non-decreasing, f is dominated in the sense of SSD ordering by g if and 

only if the corresponding cumulative distribution functions, F, satisfy: ∫ 𝐹(𝑠)𝑑𝑠
𝑓

0
≥ ∫ 𝐹(𝑠)𝑑𝑠

𝑔

0
 

for all f and g. After these milestones in SD, Whitmore (1970) suggested the criteria for third-

degree stochastic dominance (TSD), and Whitmore (1989) extended the SD rules to the nth-degree. 

Among SD rules with all degrees, SSD is the most commonly used because concave, non-

decreasing utility is a well-accepted assumption. Moreover, Hadar and Russell (1969) proved that 

the SSD ranking rule is the necessary and sufficient condition of Von Neumann and Morgenstern’s 

expected utility ranking rule if all the investors are risk-averse. Based on SSD ranking rules, many 

studies derived SSD portfolio selection models. Kuosmanen (2004, 2007) and Luedtke (2008) 

presented a method to compare target portfolios with an endogenously selected benchmark 

portfolio under the SSD rule. Post (2003) developed several empirical tests for SD efficiency and 

showed that Fama-French size and value factor portfolios are significantly inefficient relative to 

their SSD benchmark portfolios. Dentcheva and Ruszczyński (2003, 2006) proposed a SSD 

optimization approach for discrete joint return distributions and showed the relationship with 

utility optimization. Krokhmal (2007), Kopa and Chovanec (2008), and Fabian and Veszprémi 

(2008) proposed SSD efficiency tests for higher-moment coherent risk measures (e.g., Conditional 

Value-at-risk (VaR)) and determined that these risk measures perform very well under the SSD 



5 
 

framework. Lozano and Gutiérrez (2008) combined data envelopment analysis with SSD rules and 

showed that SSD efficient portfolios are optimal benchmarks for any rational risk-averse investors. 

However, there are two inherent difficulties of SD rules to be applied in portfolio theory. 

First, the approach requires comparing all observations in the distribution between two prospects, 

which is not convenient. The other difficulty is more important. SD rules can only rank between 

two prospects and decide which one is preferred, so SD rules cannot be used to derive an optimal 

portfolio.  
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1.2. Markowitz’s Mean-Variance Theory 

Based on expected utility theory and REM assumption, Markowitz (1952, 1956, 1959) 

developed the mean-variance (MV) theory. To develop a simple approach to portfolio optimization, 

Markowitz assumes a security’s returns are symmetrically distributed in the long term, such that 

investors’ utility function can be considered as quadratic. He worked on the single-period portfolio 

selection problem using MV criteria, which has become the most frequently used criteria in 

modern financial portfolio theory. Markowitz uses the weighted average return in each state to 

quantify the return on a security, while he uses variance to quantify the symmetrical risk on the 

security, which investors focus on only in the long term. Then the return-risk tradeoff in traditional 

decision-making theory becomes the MV tradeoff. Under this framework, REM chooses the 

security with a higher mean and lower variance to maximize his satisfaction. MV portfolio 

selection is to allocate the total wealth among many assets, including risky assets and risk-free 

assets. Based on MV criteria, risk-averse investors can form the optimal risky portfolios by 

selecting the portfolios with the minimum variance for a given expected return or maximum 

expected return for a given variance. In Markowitz’s framework, the portfolio that achieves the 

minimum variance given the certain expected level of return is said to be an optimal portfolio. The 

curve that consists with all optimal pairs (return and variance) is called a minimizing-variance 

frontier. If the expected return of an optimal portfolio is also higher than that of the global 

minimum portfolio (the upper part of the minimizing-variance frontier), the optimal portfolio is 

efficient (maximum expected return for each variance level). Then we call the pair of the minimum 

variance and the maximum expected level of return the efficient frontier. Moreover, if the risk-
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free asset exists, optimal portfolios can consist of a risk-free asset and a tangent portfolio on the 

efficient frontier when based on a two-fund separation theorem. The tangent line from a risk-free 

asset to the efficient frontier is the capital market line (CML). 

Markowitz’s MV theory has become a commonly used approach in portfolio allocation 

because it derives a simple solution for the decision-making problem. Compared to SD rules, MV 

can rank securities by only two parameters (mean and variance). Moreover, MV can form optimal 

portfolios by choosing portfolios with the highest mean return or the smallest variance. In 

Markowitz’s work, a diversification effect is proposed. If an investor holds two securities that are 

not perfectly corrected, the total risk the investor affords is smaller than the sum of the risk for 

every single security. Furthermore, the risk reduction increases as the correlation between the two 

securities decreases. In extreme cases, an investor can form a zero-risk portfolio if the two 

securities are perfectly negatively correlated. Based on Markowitz’s portfolio theory, some 

alternative risk measures are proposed. Sharpe (1966) invented the Sharpe ratio using an expected 

excess return (expected return minus risk-free return) per unit of standard deviation of the portfolio, 

which provided a portfolio risk measure that determined the quality of the portfolio return as a 

certain level of risk. Sortino and Price (1994) proposed the Sortino ratio by replacing the 

denominator of the Sharpe ratio with the standard deviation if the portfolio returns below the 

portfolio’s expected returns; this emphasizes the idea that investors are more averse to downside 

price movements. 
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However, numerous following papers demonstrate the limitations of Markowitz’s portfolio 

theory. The most important critique is that investors are not perfectly rational, so they may consider 

some characteristics on return variation beyond variance in the short term. In other words, 

Markowitz’s assumption that security returns are symmetrically distributed is invalid for human 

decision makers, especially in the short run. A growing literature shows empirical evidence that 

high moments are also crucial in portfolio allocation and asset valuation. Starting from Berger and 

Mandelbrot (1963) and Fama (1963), empirical results show that asset returns and portfolio return 

distributions are non-normal. Fang and Lai (1997) found that investors forego expected excess 

return in exchange for the benefit of increase in systematic skewness and expect compensation 

from higher expected returns for bearing systematic kurtosis. Christie-David and Chaudhry (2001) 

showed that the third and fourth moments explain the return-generating process in futures markets 

well. Smith (2007) found that investors care more about skewness when the market is positively 

skewed than when the market is negatively skewed. Hung (2007) found that skewness and kurtosis 

are significant in explaining the cross-sectional variation of portfolio returns in U.S. and U.K. 

markets. Moreno and Rodríguez (2009) found that adding a skewness factor has statistically 

significant increasing explanation power in mutual fund evaluation. Yang, Zhou, and Wang (2010) 

provided time series evidence that both conditional U.S. stock co-skewness and bond co-skewness 

command significant negative risk premiums. You and Daigler (2010) suggested that skewness is 

also useful in international stock valuation. 
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1.3.Modification of Portfolio Theory 

In response to criticism of MV portfolio theory, researchers propose several new risk 

measures to modify the return-risk tradeoff relationship in MV portfolio theory. Markowitz’s 

portfolio theory uses variance/standard deviation to quantify an investor’s risk. Typically, risk-

averse investors choose only portfolios with the smallest standard deviation given a certain 

expected return. A well-accepted risk measurement after Markowitz’s portfolio theory is value-at-

risk (VaR). VaR initiates a new research area that emphasizes the management of downside risk 

using parametric risk measures, and its purpose is to solve the simple problem of how much can 

one expect to lose with a given cumulative probability. Compared to MV portfolio theory, VaR 

focuses on risk itself rather than explaining the relation between return and risk. VaR measurement 

is popular because of its straightforward intuition and model-free framework. But the traditional 

VaR measure inaccurately captures downside risk exposures. So various modified VaR measures 

are proposed to solve the problems. Li (1999) proposed a new approach that includes high 

moments of returns and showed that this new approach captured extreme tails much better than 

the standard VaR method. Favre and Galeano (2002) developed a conditional VaR approach that 

considers convexity and coherence. 

Artzner, Delbaen, Eber, and Heath (1997) proposed coherent risk measures, which are 

considered a significant milestone in risk measurement. Coherent risk measures can no longer 

arbitrarily assign a function for risk measurement unless four axioms exist. The first axiom is 

monotonic risk structure, which means higher risk corresponding to higher expected loss. The 

second axiom is homogeneous risk, ensuring the risk of a specific stock doesn’t depend on the 
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quantity purchased.  The third axiom is riskless transaction invariance, so the investment on a risk-

free asset doesn’t afford the risk of loss. The last and most critical axiom is that risk is sub-additive, 

which ensures coherent risk measures considering diversification effects. According to these four 

axioms, VaR is not a coherent risk measure; therefore, some studies develop modified VaR 

measures to incorporate coherent risk measure properties. Artzner, Delbaen, Eber, and Heath 

(1997) and Embrechts, Resnick, and Samorodnitsky (1999) developed a conditional VaR approach. 

This approach measures mean excess loss and is consistent with the idea of coherence. Artzner, 

Delbaen, Eber, Heath, and Ku (2002) investigated risk management in over a multi-year period 

and developed an intertemporal tail VaR. Inoue (2003) proposed VaR on the worst conditional 

expectation and extended Artzner, Delbaen, Eber, and Heath’s (1997) coherent risk measure 

axioms to general probability spaces.  

 

1.4.Behavioral effects on Portfolio Theory 

Behavior finance becomes more and more important in modern finance. Kahneman won a 

Nobel Prize in 2002 for his contribution to human judgment and decision-making under 

uncertainty. Thaler won a Nobel Prize in 2017 for his contribution to behavioral finance theories. 

Under the viewpoint of behavioral finance, investors are irrational, which is inconsistent with the 

REM assumption in expected utility theory and thus contradicts SD and MV theories. Thaler 

suggests that investors overreact to a stock’s previous performance, especially to bad performance, 

resulting in stock price over-adjustment. Bondt and Thaler (1985) suggested that investors’ 

tendency to overreact to unexpected events affects stock prices and that stocks show price reversals 
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after extreme gains or losses. Bondt and Thaler (1987) supported their previous paper using more 

empirical results and demonstrated that the overreaction effect is not primarily a size effect. 

Lakonishok, Shleifer, and Vishny (1994) proposed that the high expected return of value strategies 

compensated suboptimal behaviors instead of fundamental risk. Daniel, Hirshleifer, and 

Subrahmanyam (1998) incorporated investors’ overconfidence and self-attribution into security 

pricing. They suggested that investors’ overconfidence about the precision of private information 

may imply long-run reversal, but biased self-attribution may result in short-term momentum. 

Barberis and Shleifer (2003) argued that investors may categorize risky assets into several styles 

and only consider the overall performance of the whole style, although the assets in the same style 

have relatively high correlations. Hong, Kubik, and Stein (2005) showed that even mutual fund 

managers evaluate stock by an over-simplified model. (Such as buying the same stocks as other 

managers in the same city.) 

Prospect theory is one of the most critical areas of finance to concern investors’ behavioral 

biases in decision making. Kahneman and Tversky (1979) suggested that the Von Neumann-

Morgenstern utility structure cannot fully explain investors’ behavior in decision making. They 

denoted certainty effect to explain the phenomenon that investors tend to underweight events with 

small probability and overweight events with significant probability. This tendency leads to risk 

aversion in choices involving gains but risk-loving in choices involving losses. Meanwhile, the 

paper denoted isolation effect to explain the phenomenon that investors discard components shared 

by all prospects, which results in inconsistent preference. To modify the utility theory, Kahneman 

and Tversky (1979) developed an alternative value function theory, which uses decision weight 
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instead of distributional weight used in utility theory. The value function is concave for positive 

returns, generally convex for negative returns, and is more sensitive for losses than for gains. After 

this original paper in prospect theory, Arkes and Blumer (1985) argued that investors would 

continue with a losing security simply because they already had invested money, which is 

consistent with risk-loving in prospect theory.  Tversky and Kahneman (1986) showed that 

investors make decisions based on changes in wealth instead of final wealth. Budescu and Weiss 

(1987) empirically tested the shape of the value function and suggested that more than 75% of 

their observations support the shape of value function. However, many studies argue against 

prospect theory. Hershey and Schoemaker (1980) challenged that the reflection effect, which is 

risk-averse versus risk-loving in prospect theory, lost its generality at across-subject and within-

subject levels. They suggested that there may be a revision in the shapes of value functions. 

Brockner (1992) argued that self-justification is not an explanation for prospect theory’s failure to 

explain continuous actions. Casey (1994) suggested that the comparison between maximum 

buying price and choice doesn’t support the segregation factors in prospect theory. 

Opposite of loss aversion in prospect theory, Kumar (2009) demonstrated irrational 

behaviors on the gain side. The paper showed that individual investors prefer securities with lottery 

features, especially for poorer, less educated, urban, and Catholic investors. Barber, Lee, Liu, and 

Odean (2008) empirically supported the idea using data from Taiwan. The paper showed that 

individual investors suffer 2.8% of total personal income because of aggressive orders. Bali, Cakici, 

and Whitelaw (2011) showed extreme positive returns on lottery-like securities using both 

portfolio-level and firm-level cross-sectional analysis. Fong (2013) investigated the sentiment 
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effects on the returns of lottery-like securities using SD approaches and suggested that lottery stock 

puzzle could be explained only by unusual risk preference and sentiment trading. Eraker and Ready 

(2015) found that the average returns on off-the-count (OTC) stocks are extremely negative, and 

they suggested that the negative return premium of OTC securities can be explained by investors’ 

preference for potential gain. 

 

II. Asset Pricing Models 

Theoretical studies on asset pricing began in the 1960s. Based on Markowitz’s mean-

variance portfolio theory, Sharpe (1964) and Lintner (1965) proposed the capital asset pricing 

model (CAPM). The model uses single factor market return to evaluate a risky asset and conveys 

the notation that securities can be priced so that expected returns will compensate investors for 

expected risks. In my previous discussion, investors’ risk can be decreased through diversification, 

so only the part of the risk that cannot be diversified should be compensated in asset pricing models. 

In other words, investors face two types of risk, systematic risk and idiosyncratic risk. Idiosyncratic 

risk is the component of portfolio risk that can be eliminated by increasing the portfolio size, which 

is irrelevant to market movements. On the other side, systematic risk is associated with overall 

movements in the market and cannot be eliminated through portfolio diversification. In CAPM, 

the expected return of individual securities increases only when its systematic risk increases, which 

is consistent with the idea that only the systematic risk can be compensated. Sharpe (1964) and 

Lintner (1965) used covariance between the return on the individual security and the return on the 
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market portfolio to estimate the co-movement of the two securities. So the beta coefficient, which 

is computed using this covariance divided by the variance of market return, in CAPM captures the 

systematic risk of an individual security. Moreover, because of the linear relation between the 

expected return and the beta coefficient for individual stocks, a straight line is formed to describe 

this linear relation, which is called security market line (SML). The slope of SML is the expected 

return of the market portfolio, and the intercept of SML is the risk-free rate. 

 

2.1.Criticism of CAPM 

However, CAPM faces some challenges because of the incapability of mean-variance 

theory to explain irrational activities in financial markets. A lot of papers criticize CAPM because 

researchers have found inconsistent empirical results with it. Friend and Blume (1970); Jensen, 

Black, and Scholes (1972); Fama and MacBeth (1973); and Blume and Friend (1973) suggest that 

the SML should have a higher intercept and lower slope. Reinganum (1981), Stambaugh (1982), 

Lakonishok and Shapiro (1986), and Fama and French (1992) examine CAPM using early sample 

period data and suggest that the relation between average return and beta for common stocks is 

even flatter than previous empirical results. Kothari, Shanken, and Sloan (1995) argue that the 

weak relationship in CAPM is just a chance result.  

Another series of criticism comes from the explanatory power of other variables on 

expected returns. Basu (1977) showed that common stocks with higher earning-price ratios earn 

higher returns than estimated by CAPM. Rosenberg, Reid, and Lanstein (1985) showed that future 

stock returns on higher book-to-market (B/M) stocks are higher than those captured by CAPM 
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betas when stocks are sorted on B/M ratios. Banz (1981) showed that average returns on small 

stocks are higher than estimated by CAPM. Bhandari (1988) suggested that stocks with higher 

financial leverages have higher average returns compared to their market betas. Jegadeesh and 

Titman (1993) proposed the influence of momentum on security returns. They argued that stocks 

that do well over 3 to 12 months tend to keep their performance during the following few months, 

and stocks that do poorly continue their lousy performance. 

 

2.2.Improvement of Asset Pricing Models 

Because CAPM’s failure mostly comes from the strict assumption on MV portfolio theory, 

numerous studies develop a more complicated asset pricing model to release some unrealistic 

assumptions in CAPM. Merton (1973) built the intertemporal capital asset pricing model (ICAPM). 

In ICAPM, investors consider not only the portfolio return at the end of the current period but also 

the tradeoff between consumption and investment, as well as expected future payoffs. ICAPM 

initials asset pricing studies in multiple periods, instead of the previous one-period model in CAPM.  

Another direction for improvement is adding other factors to asset pricing models. This 

class of papers uses multifactor models to incorporate the influences of other variables, which is 

consistent with empirical findings. The Fama and French three-factor model is the best accepted 

modification on CAPM in this area. Fama and French (1993, 1996) proposed a three-factor model 

that includes size and value effects. They show that the returns on the stocks of small firms covary 

more with one another than with the returns on the stocks of large companies, and returns on high 
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B/M ratio (value) stocks covary more with one another than with returns on low B/M ratio (growth) 

stocks. In their model, SMB (small minus big), the difference between the returns on diversified 

portfolios of small and big stocks quantifies size effect, and HML (high minus low), the difference 

between the returns on diversified portfolios of high and low B/M ratio stocks, quantifies value 

effect. Based on the Fama-French three-factor model, Carhart (1997) proposed a four-factor model 

that also reflects momentum effect and showed a short-term persistence in equity returns. Fama 

and French (2016) expanded their original model by adding two factors that convey information 

about profitability effect, Robust Minus Weak (RMW) and investment effect,  Conservative Minus 

Aggressive (CMA). The paper demonstrated that securities with positive (negative) exposures to 

RMW and CMA capture high (low) expected returns. The advantage of this class is that the 

empirical findings always support their asset pricing models because the factors in multifactor 

models come from empirical tests. However, due to the lack of theoretical foundation, it is 

impossible to tell which model is complete. That is, financial scholars can always find new factors 

that can significantly explain a security’s expected return.   

Moreover, another class of studies develop the multifactor asset pricing models by 

considering high moments of asset returns, which started with Kraus and Litzenberger (1976). 

They derived a two-factor valuation model from a utility maximization problem and showed that 

systematic skewness, which is ignored by traditional CAPM, cannot be omitted in asset pricing. 

In their model, the asset return premium includes two parts: 1) the market beta multiplies marginal 

rates of substitution between expected wealth and standard deviation, and 2) the market gamma 

multiplies marginal rates of substitution between expected wealth and skewness. Harvey and 
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Siddique (2000) used expected market return and expected square of market return as the two 

factors to capture the variation of stochastic discounting factor (SDF), and showed that skewness 

risk factor is economically essential in asset pricing models, even when considering the Fama-

French size and value factors. Dittmar (2002) expanded CAPM to four-moment by using a three-

factor model. He added expected cube of market return as an extra factor, thereby bringing kurtosis 

and co-kurtosis into its model. However, a crucial assumption of these models is that market 

portfolio is efficient, which ensures the SDF can be well approximated as a polynomial in the 

return of a market portfolio. Chabi-Yo, Leisen, and Renault (2014) showed a three-fund separation 

theorem with risk-free rate, market portfolio, and skewness portfolio that gave the optimal hedge 

of the square market portfolio and supported that SDF is quadratic in market return. Although the 

high-moment asset pricing has theoretical supports from utility theory, it is impossible to 

incorporate all high moments into asset pricing models. 

Opposite to the static analysis discussed in previous paragraphs, Merton (1976) suggested 

a critical assumption that the underlying stock return is captured only by a stochastic process with 

a continuous path, and he proposed a more general case that asset return is affected by both 

continuous and jump process. Based on Merton’s jump-diffusion process, Todorov and Bollerslev 

(2010) and Bollerslev, Li, and Todorov (2016) proposed a new theoretical framework to 

decompose systematic risk, or beta, and showed that discontinuous beta, compared to continuous 

beta, entails significant risk premiums. They showed that market jumps reflect true information 

surprises more than continuous price moves do, and their discontinuous beta could reflect the 

systematic market price risk more accurately than standard CAPM betas do. However, there are 
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several drawbacks intuitively. The first drawback is that they used logarithmic returns to compute 

betas. The logarithmic return is not additive in portfolio theory, which means that the portfolio 

return is not equal to the weighted average of security returns in the portfolio. But in a classical 

asset pricing model, the return must be additive, and a holding period return is used in traditional 

models. The second drawback is that the logarithmic return is normally distributed based on 

Merton’s (1976) framework (Merton’s assumption was still applied on the following papers). So 

the betas computed based on logarithmic returns are also symmetric. But if we use holding period 

returns, according to classical asset pricing theories, there are asymmetric components in 

systematic risk. Moreover, this asymmetry is very important in financial market and risk 

management. As pointed out in Kim and Zumwalt (1979) and Chen (1982), security behavior in 

bull and bear markets are different. They used up- and down-market betas to quantify this type of 

asymmetry, and they showed that investors expected to pay a premium for upside risk and receive 

a risk premium for downside variation of returns. Ang and Chen (2002) showed that correlation 

between U.S. stocks and the market are much more significant for downside moves than for upside 

moves. Campbell and Vuolteenaho (2004) proposed a model with good- and bad-beta and 

suggested that the bad cash-flow beta has a higher chance of risk than the good discount-rate beta.  
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III. Contributions 

In this dissertation, I develop a new risk measure, swap variance (SwV), and apply it into 

portfolio theory and asset pricing. SwV is the moment combination from variance, so it conveys 

all information about a return’s variation beyond only variance, which is the risk measure in 

Markowitz’s portfolio theory. Furthermore, SwV is a converge form that estimates the infinite 

degrees of high moments, which keeps the simplicity of mean-variance theory. To investigate risk-

averse investors’ expected utility maximization using affine utility function, mean-swap variance 

(MSwV) efficiency is consistent with expected utility maximization for all concave utility without 

any restriction on the form of either utility function or return distributions. Specifically, the MSwV 

efficiency is necessary and sufficient to the expected utility efficiency, as well as to second-degree 

stochastic dominance (SSD) efficiency (Hadar and Russell, 1969).   

Based on the MSwV efficiency through expected utility maximization, I apply the MSwV 

approach to the conventional procedure of portfolio optimization in determining capital market 

equilibrium. As a result, similar in form to the classical CAPM, the beta coefficient derived from 

the MSwV model is a ratio of the co-swap variance between returns on an asset and those on the 

market portfolio over the market SwV. Compared to the MV beta under the assumption of a 

rational decision maker, the distinction of MSwV from MV thus captures the behavioral biases of 

a human decision maker. Thus, the downside asymmetry in the MSwV model suggests loss-

aversion (Benartzi & Thaler, 1995) when investors are unwilling to recognize loss and tend to 

afford more risk, while upside asymmetry demonstrates gain-preference (Kumar, 2009) that a 
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human decision maker may tolerate more risk to pursue potential gain. Considering loss-aversion 

and gain-preference, the MSwV approach could quantify investors’ expected utility without any 

restriction on the form of utility and return distribution functions.      

The major contribution of this dissertation is the development of a portfolio theory that can 

capture the loss aversion and gain preference of a human decision maker.  Based on the portfolio 

theory, a multifactor linear model is theoretically formulated. Precisely, the loss aversion (gain 

preference) factor is captured by the negative (positive) asymmetric beta, and the MV-beta 

captures the symmetric factor. Therefore, factor portfolios can be replicated by zero-cost (long-

short) portfolios constructed from the sorted securities concerning the past asymmetric betas.  
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I. Introduction 

As is well known, portfolio models provide a solution that separates the decision process 

from the question of utility maximization by restricting either the individual utility function or the 

assets' return distribution. The classical MV portfolio theory and CAPM assume investor utility 

functions are quadratic or the return distributions of assets are elliptically distributed. These 

assumptions have been subject to much controversy over the decades. Due to these restrictions, 

alternative risk-return measures have been proposed. The theory of SD for ranking investment 

choices does not restrict the class of utility functions, but rather, it derives weak conditions for 

separation based on probability distributions. The SD ranking rules consider the entire return 

distribution of assets and thus make no assumption about the form of the underlying probability 

distributions. Although general, the SD approach is subject to limitations. Levy (2015) noted that 

SD performs well in applied economics and finance when the problem is the preference for a single 

asset or policy. But in optimal portfolio selection, SD performs poorly in that one has to search 

through all possible combinations of assets to find the optimal one.   

Alternative models such as the mean-Gini approach (Yitzhaki, 1982; Shalit & Yitzhaki, 

1984) and the mean-lower partial moment (LPM) model (Bawa & Lindenberg, 1977; Price, Price 

& Nantell, 1982; Harlow & Rao, 1989) attempt to resolve the problems of SD optimization by 

transforming SD into a simple two-parameter framework. Nevertheless, since mean-Gini and 

mean-LPM efficiency are necessary but insufficient to the SD efficiency, the utility separation still 
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fails to hold without further restrictions on probability distributions.1 To the best of my knowledge, 

for almost half a century, there is still no formal optimization produced for both necessarily and 

sufficiently constructing SD efficient portfolios that allow developing separation and asset pricing 

theorems.2   

In this dissertation, I formally identify all expected utilities as a function of the mean and 

quantity, called swap-variance (SwV), without any restriction on the form of investors' utility 

function as well as that of assets' return distribution.3 This affine transformation of utility function 

serves as a theoretical foundation for developing SD optimization and equilibrium fundamentally.   

Mathematically, SwV is the twice expected difference of arithmetic and logarithmic returns 

adjusted by the mean and is a convergence of a polynomial weighted sum of infinite return-

moments: 

SwV = 2[𝐸(𝑅 − 𝑟) − 𝑑𝜇] =  (
𝜎

1 + 𝜇
)
2

+ 𝔸 ≥ 0 (1) 

where 𝑅 is the one-period rate of return, 𝑟 =  𝑙𝑛(1 + 𝑅),  𝑅 − 𝑟 ≥ 0,  E is the expectation operator,   

𝜇 is the expected return of 𝑅, 𝑑𝜇 = 𝜇 − 𝑙𝑛(1 + 𝜇), 𝜎2 is the variance, 𝔸 = [∑ (−1)𝑘 (
2

𝑘
)

ℳ𝑘

(1+𝜇)𝑘
 ∞

𝑘=3 ], and  

                                                           
1 That is, the SD implies mean-Gin and/or mean-LPM dominance, but not vice versa. 
2 Although Post (2003) has made an important step in this direction in that he introduced a technique to find whether 

the market portfolio is second degree efficient relative to all diversified portfolios composed from a given set of assets, 

we still do not have a stochastic dominance equilibrium.   
3 It is well known in financial literature (e.g. Neuberger, 1994; Jiang & Oomen, 2008) that the variance swap contract 

can be replicated by a portfolio strategy of shorting a log-contract and simultaneously longing rebalanced forward 

contracts of the underlying asset. The profit/loss of such replication strategy accumulates to a quantity that is 

proportional to the realized variance (RV), if the jump-tail of return distribution is absent.  In a continuous-time limit, 

Jiang and Oomen (2008) showed that this quantity, which they call "swap variance (SwV)," can be calculated by the 

accumulated difference between simple returns and log returns. 
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ℳ𝑘 = 𝐸(𝑅 − 𝜇)
𝑘
 is the k-th central moment of the return distribution, respectively.4 Precisely, the 

right-hand side of the equation (1) quantifies that SwV comprises two components. The first is a 

symmetric (quadratic) variation of returns measured by the mean-adjusted variance, and the second, 

denoted 𝔸 and calculated merely by the difference between SwV and (
𝜎

1+𝜇
)

2

, characterizes the 

asymmetric (polynomial) variation of returns on a risky asset. Intuitively, the fundamental 

difference between SwV and variance can be graphically observed from the distinctions of the two 

random variables, 2(𝑅 − 𝑟) and 𝑅2, accordingly (see Figure 1). Both variables are non-negative, 

but 2(𝑅 − 𝑟) is asymmetric in nature, and 𝑅2 is less (higher) than 2(𝑅 − 𝑟) for negative (positive) 𝑅. 

This indicates that the variance understates (overstates) the downside (upside) variation if returns 

are asymmetrically distributed. Figure 1 also helps to acknowledge that the distinction between 

SwV and variance is a summary statistic of the asymmetries in returns (𝔸).  

 

[Insert Figure 1 here] 

 

Noticeably, the alternating signs in the weighted sequence of third and higher order 

moments in the polynomial formulation of 𝔸 suggest that the larger the positive (negative) odd 

moments then the smaller (larger) the SwV. Since the odd moments distinguish the prospect of 

                                                           
4 I assume asset returns are bounded with a finite range, 𝑅 ∈ [−1,1]. Based on Taylor’s series of the log-return 

around 𝜇, I have  𝑟 = ln(1 + 𝑅) = ln(1 + 𝜇) +
𝑅−𝜇

1+𝜇
−

(𝑅−𝜇)2

2(1+𝜇)2
+ ∑ (−1)𝑘−1 (

1

𝑘
)

(𝑅−𝜇)𝑘

(1+𝜇)𝑘
 .∞

𝑘=3  Then, 2𝐸(𝑅 − 𝑟) = 

2[𝜇 − 𝑙𝑛(1 + 𝜇)] +
𝐸(𝑅−𝜇)2

(1+𝜇)2
 +∑ (−1)𝑘 (

2

𝑘
)

𝐸(𝑅−𝜇)𝑘

(1+𝜇)𝑘
 ∞

𝑘=3  = 2𝑑𝜇 +
𝜎2

(1+𝜇)2
+ 𝔸. Moreover, since SwV 

= 2[𝐸(𝑅 − 𝑟) − 𝑑𝜇] = 2[ln (1 + 𝐸(𝑅)) − 𝐸(ln(1 + 𝑅))], and ln [𝐸(∙)] ≥ 𝐸[ln(∙)] due to the concavity of 

logarithmic function, SwV must be non-negative. 
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potential gain/loss, a significantly negative (positive) 𝔸 is associated with a prospect of substantial 

gain (loss) or a possibility of profoundly positive (negative) returns. This indicates that a volatile 

distribution may not be necessarily risky, if the value of 𝔸 is significantly negative. In short, upside 

(downside) asymmetries in returns lead to relatively low (high) risk exposure so that SwV is small 

(larger) than the variance. I explicitly apply this notion of asymmetry embedded in SwV to the 

theory of expected utility maximization and develop a model for preference of choice that is robust 

to risk-averse investors who dislike downside-losses but prefer potential upside-gains.  

This dissertation reveals that using the mean and SwV as return-risk tradeoff statistics 

allows the derivation of both the necessary and sufficient condition for SD, enabling optimizing 

investors to discard from the efficient set prospects that are stochastically dominated by others. 

Therefore, under the MSwV framework, both the knowledge of all prospects' probability 

distribution and that of investors' preference functions are solved from the decision process with 

respect to utility maximization. Consequently, the SwV is able to replace the variance, and the co-

swap variance can substitute co-variance needed in portfolio theory whenever MV fails to provide 

consistent results of the utility maximization. This dissertation formulates the SwV of a portfolio 

as a weighted sum of co-swap variances of asset returns with the market return and shows that the 

co-swap variance characterizes all order co-moments of returns between an asset and the portfolio. 

The efficient set of MSwV portfolios can thus be determined by minimizing a portfolio's SwV for 

each given mean return. With a risk-free asset, this essay formulates the Sharpe ratio as well as the 

Modigliani-Modigliani (M2) risk-adjusted performance measure in the MSwV space. The MSwV 

performance indexes are superior to the classical approaches in that they are sensitive to 
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asymmetries, tail thickness, and other characteristics in return distributions that investors care 

about. Furthermore, as with the MV model, this dissertation applies the MSwV approach to derive 

the pricing of risky assets in capital market equilibrium. Since my proposed method is independent 

of the distribution chosen, the asset pricing model of MSwV provides a consistent evaluation of 

market systematic risk without imposing any distributional assumption. 

The rest of this dissertation is organized as follows: Section II derives the expected utility 

as a function of mean and SwV. The SD rules based on distributional moments and SwV are then 

defined and proved. I also illustrate that the MV𝔸 model serves as an extension of the MSwV and 

MV approaches for incorporating with asymmetry-preference. Section III shows the derivation of 

the co-swap variance (CoSwV) as well as its application to MCSD orderings. Section IV 

demonstrates the application of MSwV and MV𝔸 to the determination of SD optimal portfolios. 

Section V illustrates the empirical analysis, and section VI contains concluding remarks.    
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II. Swap-Variance, Asymmetry, and Stochastic Dominance 

Stochastic dominance provides a way of analyzing risky investment decisions when an 

investor's utility function 𝑈 is not fully known but is presumed to be in a class of real-valued 

functions. An asset i unconditionally and stochastically dominates an asset j, if and only if 

𝐸𝑈(𝑅𝑖) ≥ 𝐸𝑈(𝑅𝑗),  where 𝐸𝑈(𝑅𝑖) and 𝐸𝑈(𝑅𝑗) are expected utilities of returns on assets 𝑖 and 𝑗, 

respectively. Without loss of generality, I apply the Taylor-series of the utility function 𝑈(𝑅) about 

mean return, and with some mathematical arrangements, the utility function can be expressed by 

the following equation:  

𝑈(𝑅) = 𝑈(𝜇) +  𝑈′(𝜇)(𝑅 − 𝜇) + 𝕌(𝑈, 𝜇, 𝑅)[2(𝑅 − 𝑟) − 2𝑑𝜇] (2) 

where  𝑈′ ≥ 0,  𝕌(𝑈,𝜇,𝑅) = ∑ 𝑤𝑘𝔘(𝑘)∞
𝑘=2 ,  is a weighted sum of all derivatives of the utility 

functions. Specifically,  𝔘(𝑘) = [
[−(1+𝜇)]𝑘

2(𝑘−1)!
𝑈(𝑘)(𝜇)], where 𝑈(𝑘)  is the k-th derivative of the utility 

function, and  𝑤𝑘 = [
2(−1)𝑘

𝑘
(

𝑅−𝜇

1+𝜇
)

𝑘

] [2(𝑅 − 𝑟) − 2𝑑𝜇]⁄ .
5

 Next, based on the assumption that utility 

function and the probability distribution function are continuous and differentiable on 𝑅, I apply 

the mean value theorem for integrals in calculus to the expected utility function of returns such 

that: 

                                                           
5 𝑈(𝑅) = 𝑈(𝜇) +  𝑈′(𝜇)(𝑅 − 𝜇) + ∑

1

𝑘!
𝑈(𝑘)(𝜇)(𝑅 − 𝜇)𝑘∞

𝑘=2  = 𝑈(𝜇) +  𝑈′(𝜇)(𝑅 − 𝜇) +

∑ [
(−1)𝑘(1+𝜇)𝑘

2(𝑘−1)!
𝑈(𝑘)(𝜇)] [

2(−1)𝑘

𝑘

(𝑅−𝜇)𝑘

(1+𝜇)𝑘
]∞

𝑘=2 .  Now, let 𝔘(𝑘) = [
(−1)𝑘(1+𝜇)𝑘

2(𝑘−1)!
𝑈(𝑘)(𝜇)],  𝐵𝑘 = [

2(−1)𝑘

𝑘

(𝑅−𝜇)𝑘

(1+𝜇)𝑘
],  

𝐵 =
1

(1+𝜇)
(𝑅 − 𝜇) + ∑ 𝐵𝑘

∞
𝑘=2 = 2(𝑅 − 𝑟) − 2𝑑𝜇, and 𝑤𝑘 =

𝐵𝑘

𝐵
.  Define 𝕌(𝑈, 𝜇, 𝑅) = ∑ 𝑤𝑘𝔘

(𝑘)∞
𝑘=2 =

1

𝐵
∑ 𝔘(𝑘)𝐵𝑘

∞
𝑘=2 . We have ∑ 𝔘(𝑘)𝐵𝑘  

∞
𝑘=2 = 𝕌(𝑈, 𝜇, 𝑅)[2(𝑅 − 𝑟) − 2𝑑𝜇],  and consequently, 𝑈(𝑅) = 𝑈(𝜇) +

 𝑈′(𝜇)(𝑅 − 𝜇) + 𝕌(𝑈, 𝜇, 𝑅)[2(𝑅 − 𝑟) − 2𝑑𝜇]. 
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𝐸𝑈(𝑅) = 𝑈(𝜇) +  𝕌(𝑈, 𝜇, 𝑅𝑜) ∙ SwV (3) 

where = 𝐸(𝑅),  SwV = 2𝐸(𝑅 − 𝑟) − 2𝑑𝜇, as shown in (1), and 𝕌(𝑈, 𝜇, 𝑅𝑜) is the function of 

𝕌(∙)  at some point of return, 𝑅𝑜 ∈ (−1, 1),  so that equation (3) equals the expected value of 

equation (2).6 It is important to note that equation (3) holds for all forms of the utility functions in 

which 𝕌(𝑈, 𝜇, 𝑅𝑜)  is negative, zero, and positive for concave, linear, and convex function, 

respectively.7    

 

A. MSwV Stochastic Dominance Rules 

The implication of equation (3) is crucial. First, with no assumption on the form of either 

utility function or that of return distribution, the expected utility can be characterized as a function 

of the mean (𝜇) and SwV. Second, the mean-SwV transformation makes the consistency between 

the expected utility maximization and the prospect theory, where the probability distribution is not 

necessarily required in decision making.   

 

 

 

                                                           
6 Let 𝑓(𝑅) be the continuous probability density function of return distribution, and assume 𝑅 ∈ [−1,1].  Based on 

the mean value theorem for integrals, there exists 𝑅𝑜 in (−1,1) such that 𝐸𝑈(𝑅) = 𝑈(𝜇) + ∫ 𝕌(𝑈, 𝜇, 𝑅)[2(𝑅 −
1

−1

𝑟) − 2𝑑𝜇]𝑓(𝑅)𝑑𝑅 = 𝑈(𝜇) + 𝕌(𝑈, 𝜇, 𝑅𝑜) ∫ [2(𝑅 − 𝑟) − 2𝑑𝜇]𝑓(𝑅)𝑑𝑅
1

−1
= 𝑈(𝜇) +  𝕌(𝑈, 𝜇, 𝑅𝑜) ∙ SwV. 

 
7 For any risk-averse investor, the concave utility must be no greater than the equivalently risk-neutral utility (i.e., 

graphically, the tangency line at any return level) due to the utility-discount of risk. That is, 𝐸𝑈(𝑅) − 𝑈(𝜇) ≤ 0. 

Since 𝐸(𝑅 − 𝑟) − 𝑑𝜇 = ln(1 + 𝜇) − 𝐸[ln (1 + 𝑅)] ≥ 0 because of the concavity of logarithmic function, i.e., 

𝕌(𝑈, 𝜇, 𝑅𝑜) =
𝐸𝑈(𝑅)−𝑈(𝜇)

(SwV−2𝑑𝜇)
≤ 0. On the other hand, for convex utilities, 𝐸𝑈(𝑅) − 𝑈(𝜇) ≥ 0, and 𝕌(𝑈, 𝜇, 𝑅𝑜) > 0. 
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Theorem 1 (First Degree Stochastic Dominance)  

Let 𝑅𝑖  and 𝑅𝑗  be two uncertain prospects. Based on equation (3), the conditions, 𝜇𝑖 ≥ 𝜇𝑗 

and SwV𝑖 = SwV𝑗 , are necessary and sufficient to have 𝐸𝑈(𝑅𝑖) ≥ 𝐸𝑈(𝑅𝑗) for all utility functions.     

 

Theorem 2 (Second Degree Stochastic Dominance: The Mean-Swap Variance Dominance)  

Let 𝑅𝑖 and 𝑅𝑗 be two uncertain prospects. Based on equation (3), the conditions, 𝜇𝑖 ≥ 𝜇𝑗 and 

SwV𝑖 ≤ SwV𝑗 , are necessary and sufficient conditions to ensure that 𝐸𝑈(𝑅𝑖) ≥ 𝐸𝑈(𝑅𝑗) for all 

concave utility functions.     

 

The proof of Theorems 1 and 2 is given in the Appendix. The main contribution of the 

above theorems is the convergence of the SD rules from the comparison of entire probability 

distributions to the two-statistic (MSwV) analysis that retains the same simplicity as the MV model.  

The theorems indicate that the SwV is more generalized risk proxy than the variance is for all risk-

averse expected utility maximizers. Notably, there are risk characters, embedded in the SwV, other 

than return volatility that risk-averse investors care about and the variance fails to measure them.   

The following numerical example shows that the MSwV approach correctly discriminates 

SSD inefficient assets, but the MV model fails to do so. Suppose returns on two securities, 𝑅1 and 

𝑅2, that are lognormally distributed, where 𝑟1~𝑁(0.1, 0.22) and 𝑟2~𝑁(−0.15, 0.24), respectively.  

Apparently, 𝑅2 is stochastically dominated by 𝑅1, and a profitable investment can be formed by a 

long/short position between 𝑅1 and 𝑅2, if investors know the form of return distributions.  Now, 
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without the knowledge of distributional forms, suppose investors employ the three methods, MV, 

SSD and MSwV for security selection. I have the following results: 

 Log-Normality 

 Security 1  Security 2 

𝜇 0.132 > -0.114 

𝜎2 0.0636 >  0.0465 

SwV 0.0484 <  0.0576 

SSD ∫
1

2
+

1

2
𝑒𝑟𝑓 [

ln(1+𝑡)−0.1

0.22√2
]

𝑅

−1
𝑑𝑡8  <9 ∫

1

2
+

1

2
𝑒𝑟𝑓 [

ln(1+𝑡)+0.15

0.24√2
]

𝑅

−1
𝑑𝑡  

 

According to the MV tradeoff (𝜎1
2 > 𝜎2

2 and 𝜇
1

> 𝜇
2
), incorrectly, no dominance between 

the two securities makes them as efficient as to each other. Nevertheless, consistent with SSD 

ordering, the MSwV rule ( 𝜇1 > 𝜇2, but SwV1 < SwV2) enables one to correctly discriminate the 

dominated security 𝑅2 from the dominating one,  𝑅1. This example highlights a significant bias of 

the traditional MV model and the superiority of the MSwV analysis under the conventional 

assumption of log-normality. The implication of this example is that if returns on risky assets are 

asymmetrically distributed, then many efficient assets or portfolios determined by the MV analysis 

are in fact inefficient. The MSwV, on the other hand, used as conveniently as the MV, provides 

unbiased results.   

                                                           
8 𝑒𝑟𝑓(∙) is error function, and it is monotonically increasing in its whole definition of domain. 
9 The “<” holds when the upper bound of holding period return is 16.28, so I consider asset 1 second-degree 

stochastically dominates asset 2. 



31 
 

B. 𝑴𝑽𝔸 and Stochastic Dominance Efficiency 

To further examine how return-variation other than volatility affects expected utility of 

investors, I separate the second order of return-moment from the SwV and focus on the 

asymmetries in returns. Again, without loss of generality, the utility function (2) can be further 

decomposed as follows: 

𝑈(𝑅) = 𝑈(𝜇) + 𝑈′(𝜇)(𝑅 − 𝜇) +
1

2
𝑈′′(𝜇)(𝑅 − 𝜇)2 + 𝕌(3)(𝑈, 𝜇, 𝑅) ∙ 𝒜  (4) 

Where 𝒜 = [2(𝑅 − 𝑟) − 2𝑑𝜇] − (
𝑅−𝜇

1+𝜇
)
2
,  𝕌(3)(𝑈,𝜇,𝑅) = ∑ 𝜔𝑘𝔘

(𝑘) < 0∞
𝑘=3 , and where  𝔘(𝑘) =

[
(−1)𝑘(1+𝜇)𝑘

2(𝑘−1)!
𝑈(𝑘)(𝜇)] and  𝜔𝑘 = [

2(−1)𝑘

𝑘
(

𝑅−𝜇

1+𝜇
)

𝑘

] 𝒜⁄ .
 10

  I note that 𝒜 depicts the asymmetries in 

return (see Figure 1 for the case that 𝜇 = 0).  The quantity 𝒜 is negative (positive) if 𝑅 is greater 

(less) than 𝜇.  Further, the inequality, 𝕌(3)(𝑈,𝜇,𝑅) < 0, holds if 𝑈‴ > 0.11  Now, from (1), (3), and 

                                                           
10 𝑈(𝑅) = 𝑈(𝜇) +  𝑈′(𝜇)(𝑅 − 𝜇)+ 

1

2
𝑈"(𝜇)(𝑅 − 𝜇)2 + ∑ [

(−1)𝑘(1+𝜇)𝑘

2(𝑘−1)!
𝑈(𝑘)(𝜇)] [

2(−1)𝑘

𝑘

(𝑅−𝜇)𝑘

(1+𝜇)𝑘
]∞

𝑘=3 . Now, let 𝔘(𝑘) =

[
(−1)𝑘(1+𝜇)𝑘

2(𝑘−1)!
𝑈(𝑘)(𝜇)],  𝐵𝑘 = [

2(−1)𝑘

𝑘

(𝑅−𝜇)𝑘

(1+𝜇)𝑘
], ℬ =

1

(1+𝜇)
(𝑅 − 𝜇) + ∑ 𝐵𝑘 = [2(𝑅 − 𝑟) − 2𝑑𝜇 ]∞

𝑘=3 − (
𝑅−𝜇

1+𝜇
)

2

, and  

𝜔𝑘 =
𝐵𝑘

ℬ
.  Define 𝕌(3)(𝑈, 𝜇, 𝑅) = ∑ 𝑤𝑘𝔘

(𝑘)∞
𝑘=3 =

1

ℬ
∑ 𝔘(𝑘)𝐵𝑘

∞
𝑘=3 . We have ∑ 𝔘(𝑘)𝐵𝑘  ∞

𝑘=3 = 𝕌(3)(𝑈, 𝜇, 𝑅) {[2(𝑅 −

𝑟) − 2𝑑𝜇] − (
𝑅−𝜇

1+𝜇
)

2

},  and consequently, 𝑈(𝑅) = 𝑈(𝜇) +  𝑈′(𝜇)(𝑅 − 𝜇) + 
1

2
𝑈"(𝜇)(𝑅 − 𝜇)2 +

𝕌(3)(𝑈, 𝜇, 𝑅) {[2(𝑅 − 𝑟) − 2𝑑𝜇] − (
𝑅−𝜇

1+𝜇
)

2

}.  

 
11 This is to prove that if 𝑈‴(𝑅) > 0, then 𝕌(3)(𝑈, 𝜇, 𝑅) < 0.  Take the Taylor Expansion on 𝑈‴(𝑅) around 𝜇, 

𝑈‴(𝑅) = 𝑈‴(𝜇) + 𝑈(4)(𝜇)(𝑅 − 𝜇) + ∑
𝑈(𝑘)(𝜇)

(𝑘−3)!
(𝑅 − 𝜇)𝑘−3∞

𝑘=5 . Define 𝑞(𝑅) = ∫ 𝑈‴(𝑠)𝑑𝑠
𝑅

𝜇
, 𝑞(𝑅) = 𝑈‴(𝜇)(𝑅 −

𝜇) +
𝑈(4)(𝜇)

2
(𝑅 − 𝜇)2 + ∑

𝑈(𝑘)(𝜇)

(𝑘−2)!
(𝑅 − 𝜇)𝑘−2∞

𝑘=5 .  Since𝑈‴(𝑅) > 0, 𝑞(𝑅) > 0 as 𝑅 > 𝜇 while 𝑞(𝑅) < 0 as 𝑅 < 𝜇. 

Now consider 𝑄(𝑅) = ∫ 𝑞(𝑠)𝑑𝑠
𝑅

𝜇
. Then 𝑄(𝑅) =

𝑈‴(𝜇)

2!
(𝑅 − 𝜇)2 +

𝑈(4)(𝜇)

3!
(𝑅 − 𝜇)3 + ∑

𝑈(𝑘)(𝜇)

(𝑘−1)!
(𝑅 − 𝜇)𝑘−1∞

𝑘=5 .  

Because of the property of 𝑞(𝑅), 𝑄(𝑅) reaches its minimum as 𝑅 = 𝜇. Thus, 𝑄(𝑅) > 0. ;’Now, consider ℚ(𝑅) =

∫ 𝑄(𝑠)𝑑𝑠
𝑅

𝜇
. Then ℚ(𝑅) =

𝑈‴(𝜇)

3!
(𝑅 − 𝜇)3 +

𝑈(4)(𝜇)

4!
(𝑅 − 𝜇)4 + ∑

𝑈(𝑘)(𝜇)

𝑘!
(𝑅 − 𝜇)𝑘∞

𝑘=5 .  Since 𝑄(𝑅) > 0 for all 𝑅. 
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(4), I can rewrite the expected utility as a function of mean, variance, and the asymmetry 

measure 𝔸 as follows: 

𝐸𝑈(𝑅) = 𝑈(𝜇) +
1

2
𝑈′′(𝜇) ∙ 𝜎2 + 𝕌(3)(𝑈, 𝜇, 𝑅𝑜) ∙ 𝔸 (5) 

where   𝔸 = SwV − (
𝜎

1+𝜇
)
2

.  Since 𝕌(3)(𝑈,𝜇,𝑅𝑜)  is non-positive, the larger (smaller) the 

asymmetric risk and the more positive (negative) the value of 𝔸, the lower (higher) the expected 

utility.  Also, since the odd higher moments embedded in 𝔸 distinguish the prospect of potential 

gain/loss, a high (low) 𝔸 results from either a significant chance of loss (gain) or a probability of 

substantially negative (positive) returns. In the next theorem, I show that for all risk-averse 

investors who also prefer (dislike) positively (negatively) asymmetric payoffs, the preference of 

choice can be made by the orders of the three parameters: mean, variance, and asymmetry, 

respectively.  

 

Theorem 3 (The Mean-Volatility-Asymmetry (MV𝔸) Dominance and Efficiency)  

Let 𝑅𝑖 and 𝑅𝑗 be two uncertain prospects. Based on equation (5), these inequalities, 𝜇𝑖 ≥ 𝜇𝑗, 𝜎𝑖 ≤

𝜎𝑗 , and 𝔸𝑖 ≤ 𝔸𝑗 are the sufficient condition for the expected utility inequality, 𝐸𝑈(𝑅𝑖) ≥ 𝐸𝑈(𝑅𝑗), 

and for all utility functions with 𝑈′ > 0,  𝑈′′ < 0, and 𝑈‴ > 0.  Since 𝑀𝑉𝔸 dominance must be 

the SSD dominance but not vice versa, the SSD efficient set is thus a subset of the 𝑀𝑉𝔸 efficiency.   

                                                           
ℚ(𝑅) is a monotonic increasing function with ℚ(𝜇) = 0, and thus ℚ(𝑅) > 0 as 𝑅 > 𝜇 while ℚ(𝑅) < 0 as 𝑅, 𝜇. 

Compared to equation (4), ℚ(𝑅) = 𝕌(3)(𝑈, 𝜇, 𝑅) ∙ 𝒜. So 𝕌(3)(𝑈, 𝜇, 𝑅) < 0 for all 𝑅. 
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The proof of Theorem 3 is similar to that of Theorems 1 and 2, except that the dominance 

of MV𝔸 is not a necessary condition of expected utility.12 Intuitively, the MV𝔸 model based on (4) 

and (5) takes both aversion of symmetric volatility (𝑈′′ < 0) and that of asymmetric variation 

(𝕌(3) < 0) into consideration. Also, from (4), the inequality of  𝑈‴ > 0 ensures that of 𝕌(3) < 0. 

That indicates the efficient assets in the MV𝔸 set include those that are chosen by investors who 

prefer upside skewed outcomes as well as those who are downside asymmetry averse.  Noticeably, 

the MV𝔸 approach reduces to the MV model if either 𝑈‴or 𝔸 is zero.   

To illustrate that some SSD (or MSwV) inefficient assets for risk-averse investors may not 

be viewed as the inferior assets for those who also prefer positively asymmetric outcomes, I use a 

simple counterexample. Consider two random prospects 𝑋 and 𝑌 with discrete distributions of 

returns.  Both 𝑋 and 𝑌 have two possible investment outcomes: -0.20 with a probability of 90% 

and 0.65 with a probability of 10%, as well as -0.20 with a probability of 40% and -0.05 with a 

probability of 60%, respectively.  We summarize the key statistics as follows: 

 

                                                           
12 Specifically, the non-necessity of MV𝔸 to expected utility dominance is because it is impossible that both   
𝑈′′(∙)

𝕌(3)(∙)
  and 

𝑈′(∙)

𝕌(3)(∙)
  simultaneously approach zero for non-decreasing concave utility functions with a non-negative 𝑈‴.  
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 Upside Gain Preference 

       X Prob.        Y Prob. 

Outcome 1 -0.20 90%  -0.20 40% 

Outcome 2 0.65 10%  -0.05 60% 

      

𝜇 -0.115  < -0.110  

𝜎2 0.065  > 0.005  

SwV 0.057  > 0.007  

𝔸 -0.026  < 0.000  

 

Based on the MSwV and MV ranking rules, asset Y is superior to X in that the mean (SwV 

or variance) of Y is higher (lower) than that of X. Also, from the aspect of the probability 

distribution, 𝑋  is also dominated by 𝑌 under the SSD rule. Nevertheless, investors may be 

unwilling to discriminate X as a dominated choice in that a prospect of dramatic positive-payoff 

(0.65) could be attractive as compared with the alternative Y that has all negative investment 

outcomes. Consequently, if I take those investors who care about the upside potential into 

consideration, X may then be as efficient as Y in the risk-return tradeoff. The MV𝔸 model can 

detect this efficiency; correctly, the negative 𝔸 shows that asset X has positively asymmetric 

(skewed) payoff and thus low asymmetric risk, which increases the expected utility as shown in 

(5).  For a graphical illustration, I depict the relationship of efficiency among the first-degree 
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stochastic dominance (FSD), the mean-variance-asymmetry(MV𝔸), the second-degree stochastic 

dominance (SSD), and the mean-variance (MV) in the following chart: 

Efficient Sets 

 

 

 

 

 

Apparently, the investment alternative X in the previous example can be viewed as a 

lottery-type security, defined by Kumar (2009), that has low negative expected returns, high 

variance, and a small probability of a substantial payoff (i.e., a significantly negative 𝔸). My 

analysis above indicates that the lottery-type securities, although they are dominated assets under 

the SSD and MV framework, could still be expected to be utility efficient for investors who have 

preference of upside potential even if they are risk-averse in general. Therefore, the traditional 

methodologies of security selection and portfolio efficiency analysis under the classical risk-

aversion assumption may be too restrictive. 

In addition to the upside gain-preference, the MSwV and MV𝔸 approaches are also useful 

in detecting investors' aversion toward downside losses (disappointment), which the MV model 

fails to do.13 For example, consider two mutually exclusive investment projects, G and H, have an 

                                                           
13 The downside asymmetry-aversion is closely related to the notion of disappointment aversion in Gul (1991). 

MV𝔸 

SSD MV 

FSD 
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almost identical mean return. As shown in the following table, G dominates H in the mean-variance 

tradeoff in that the variance of project G (0.014) is lower than that of project H (0.016): 

 Downside Loss Aversion 

       G Prob.        H Prob. 

Outcome 1 0.18 90%  0.01 50% 

Outcome 2 -0.225 10%  0.26 50% 

      

𝜇 0.140  > 0.135  

𝜎2 0.015  < 0.016  

SwV 0.014  > 0.012  

𝔸 0.003  > 0.000  

 

Therefore, project H is undoubtedly out of the MV efficient set. Nevertheless, from the 

prospect payouts shown in the above table, downside loss-averse investors could view H as a more 

efficient investment choice than G due to G’s substantial loss of -0.225 even though the possibility 

of occurrence is relatively small, where, attractively, the investment returns of alternative H are all 

positive. In fact, H stochastically dominates G because G has a higher SwV than H, and the 

downside asymmetry-loss (𝔸) of project G is greater than that of project H as well. In short, unlike 

the variance, the sign of 𝔸 derived from the SwV provides valuable indications for the preference 

of choice between the upside gain-preference and the downside loss-aversion.   
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Although the simplicity of MSwV and MV 𝔸  rules shown in the above theorems 

demonstrates their superiority to the conventional SD approach, the goal of this dissertation is to 

apply these theorems to the development of SD portfolio efficiency and equilibrium, consisting 

with the notion of expected utility maximization. In the next section, I extend the MSwV and MVA 

to the marginal and conditional ordering conditions of assets within a portfolio for serving as an 

essential step toward the development of SD optimization and capital market equilibrium. 
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III. Co-SwV, Co-Asymmetry, and MCSD 

Let 𝑅𝑝(= ∑ 𝑤𝑖𝑅𝑖
𝑁
𝑖=1 ) be the return on a core portfolio of N risky assets, where 𝑤𝑖  is the 

share of wealth invested in asset i, and  ∑ 𝑤𝑖
𝑁
𝑖=1 = 1. I assume investors are maximizing their 

expected utility of 𝑅𝑝.  Shalit and Yitzhaki (1984) showed this inequality  

𝐸[𝑈′(𝑅𝑝)(𝑅𝑖 − 𝑅𝑗)] ≥ 0 (6) 

is the necessary and sufficient condition for all risk-averse investors to prefer the marginal increase 

of the share of one asset over another in the core portfolio.  In other words, asset i is said to 

marginally and conditionally stochastically dominate (MCSD) asset j, if and only if the inequality 

(6) holds.   

 

 

A.  The Co-Swap Variance and MCSD 

Analogical to (3), I transform the difference of expected marginal utility between returns 

on component assets i and j of a portfolio p as:  

𝐸[𝑈′(𝑅𝑝)(𝑅𝑖 − 𝑅𝑗)] = 𝑈′(𝑅𝑝)(𝜇𝑖 − 𝜇𝑗) + 𝕌(𝑈, 𝜇𝑝, 𝑅𝑝
𝑜)[𝐶𝑜𝑆𝑤𝑉(𝑅𝑖, 𝑅𝑝) − 𝐶𝑜𝑆𝑤𝑉(𝑅𝑗, 𝑅𝑝)]  (7) 

where CoSwV(𝑅𝑖, 𝑅𝑝) is the co-swap variance (CoSwV) between returns on asset i and those on 

the portfolio, and 𝕌(𝑈, 𝜇𝑝, 𝑅𝑝
𝑜) , previously defined in (3), is non-positive in value.

14  The 

formulation of the CoSwV is shown in the following equation: 

                                                           
14 Equation (7) can be derived as follows: 𝐸[𝑈′(𝑅𝑝)(𝑅𝑖 − 𝑅𝑗)] = 𝐸[𝑈′(𝑅𝑝)(𝜇𝑖 − 𝜇𝑗)] + 𝐸{𝑈′(𝑅𝑝)[(𝑅𝑖 − 𝜇𝑖) −

(𝑅𝑗 − 𝜇𝑗)]}, where 𝐸{𝑈′(𝑅𝑝)[(𝑅𝑖 − 𝜇𝑖) − (𝑅𝑗 − 𝜇𝑗)]} = 𝐸 {[𝑈′(𝜇𝑝) + ∑
1

𝑘!
𝑈(𝑘)(𝜇𝑝)(𝑅𝑝 − 𝜇𝑝)

𝑘−1∞
𝑘=2 ] [(𝑅𝑖 − 𝜇𝑖) −
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𝐶𝑜𝑆𝑤𝑉(𝑅𝑖 , 𝑅𝑝) = 2𝐸 [(
𝑅𝑖 − 𝜇𝑖

𝑅𝑝 − 𝜇𝑝
) (𝑅𝑝 − 𝑟𝑝)] − 2𝑑𝜇𝑝 

 

(8) 

 =
𝐶𝑜𝑉(𝑅𝑖, 𝑅𝑝)

(1 + 𝜇𝑝)
2 + ∑ (−1)𝑘 (

2

𝑘
)
𝐶𝑜ℳ𝑘(𝑅𝑖, 𝑅𝑝)

(1 + 𝜇𝑝)
𝑘

∞

𝑘=3
  

 

where 𝑟𝑝 = 𝑙𝑛(1 + 𝑅𝑝),  𝑑𝜇𝑝 = 𝜇𝑝 − 𝑙𝑛(1 + 𝜇𝑝),  𝐶𝑜𝑉(𝑅𝑖, 𝑅𝑝) =  𝐸[(𝑅𝑖 − 𝜇𝑖)(𝑅𝑝 − 𝜇𝑖)],  and 

𝐶𝑜ℳ𝑘(𝑅𝑖, 𝑅𝑝) = 𝐸[(𝑅𝑖 − 𝜇𝑖)(𝑅𝑝 − 𝜇𝑝)𝑘−1] is the k-th order co-moment between 𝑅𝑖  and 𝑅𝑝 , 

accordingly.15   

Equation (7) shows that the marginal expected utility of return can be characterized by the 

mean and CoSwV without any restriction on the form of the utility functions and that of the return 

distributions.  Although the covariance plays the key role for risk-diversification, the higher orders 

of co-moments between assets and the portfolio, from equations (7) and (8), are crucial for the 

determination of portfolio efficiency. I show, in the following theorems, that the mean and CoSwV 

can be employed to determine the necessary and sufficient condition for the MCSD.   

 

 

 

                                                           

(𝑅𝑗 − 𝜇𝑗)]} = 𝐸 ∑
(1+𝜇𝑝)

𝑘

2(𝑘−1)!
(−1)𝑘𝑈(𝑘)(𝜇𝑝){

(−1)𝑘2

𝑘(1+𝜇𝑝)
𝑘 (𝑅𝑝 − 𝜇𝑝)

𝑘−1
[(𝑅𝑖 − 𝜇𝑖) − (𝑅𝑗 − 𝜇𝑗)]}

∞
𝑘=2  

= 𝕌(𝑈, 𝜇𝑝, 𝑅𝑝
𝑜)[CoSwV(𝑅𝑖, 𝑅𝑝) − CoSwV(𝑅𝑗, 𝑅𝑝)]. 

15The derivation of the closed-formed CoSwV is as follows:  CoSwV(𝑅𝑖 , 𝑅𝑝) = ∑
2(−1)𝑘

𝑘(1+𝜇𝑝)
𝑘 ∫ (𝑅𝑖 −

𝑏

−1
∞
𝑘=2

𝜇
𝑖
) (𝑅𝑝 − 𝜇

𝑝
)

𝑘−1

𝑑𝐹(𝑅𝑖, 𝑅𝑝) = ∫
(𝑅𝑖−𝜇𝑖)

(𝑅𝑝−𝜇𝑝)
[∑

2(−1)𝑘

𝑘(1+𝜇𝑝)
𝑘 (𝑅𝑝 − 𝜇

𝑝
)

𝑘
∞
𝑘=2 ] 𝑑𝐹(𝑅𝑖, 𝑅𝑝) =

𝑏

−1
2𝐸 [(

𝑅𝑖−𝜇𝑖

𝑅𝑝−𝜇𝑝

) (𝑅𝑝 − 𝑟𝑝)] − 2𝑑𝜇𝑝. 
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Theorem 4 (Mean-CoSwV MCSD)  

Assume 𝑅𝑖  and 𝑅𝑗  are two uncertain prospects in a portfolio  𝑅𝑝 . Based on equation (7), the 

conditions 𝜇𝑖 ≥ 𝜇𝑗  and CoSwV(𝑅𝑖, 𝑅𝑝) ≤ CoSwV(𝑅𝑗 , 𝑅𝑝)  are necessary and sufficient for 𝑅𝑖  to 

marginally and conditionally dominate 𝑅𝑗 for all concave utilities.16 

 

If returns on assets are symmetrically distributed, then from the above theorem, risk averse 

investors prefer to hold those assets with the larger expected return and lower correlations with the 

core portfolio.   

Further, let  𝐶𝑜𝔸(𝑅𝑖, 𝑅𝑝) = [𝐶𝑜𝑆𝑤𝑉(𝑅𝑖, 𝑅𝑝) −
𝐶𝑜𝑉(𝑅𝑖,𝑅𝑝)

(1+𝜇𝑝)2
]  be the sensitivity of i-th asset’s 

return to the symmetric (asymmetric) price movement of the core portfolio.   Equation (7) can then 

be expanded as:  

𝐸[𝑈′(𝑅𝑝)(𝑅𝑖 − 𝑅𝑗)] = 𝑈′(𝑅𝑝)(𝜇𝑖 − 𝜇𝑗) + 𝑈′′(𝑅𝑝)[𝐶𝑜𝑉(𝑅𝑖, 𝑅𝑝) − 𝐶𝑜𝑉(𝑅𝑗, 𝑅𝑝)] 
(9) 

   +𝕌(3)(𝑈, 𝜇𝑝, 𝑅𝑝
𝑜)[𝐶𝑜𝔸(𝑅𝑖, 𝑅𝑝) − 𝐶𝑜𝔸(𝑅𝑗, 𝑅𝑝)] 

where 𝐶𝑜𝑉(𝑅𝑖 , 𝑅𝑝) is the covariance between returns on asset i and those on the portfolio, and 

𝕌(3)(𝑈, 𝜇𝑝, 𝑅𝑝
𝑜), previously defined in (5), is non-positive in value.

17
    

                                                           
16 Analogous to these of Theorems 2 and 3, we omit the proof of this theorem. 
17 The derivation of equation (10) is shown as follows:  𝐸[𝑈′(𝑅𝑝)(𝑅𝑖 − 𝑅𝑗)] = 𝐸[𝑈′(𝑅𝑝)(𝜇𝑖 − 𝜇𝑗)] +

𝐸{𝑈′(𝑅𝑝)[(𝑅𝑖 − 𝜇𝑖) − (𝑅𝑗 − 𝜇𝑗)]}, where 𝐸{𝑈′(𝑅𝑝)[(𝑅𝑖 − 𝜇𝑖) − (𝑅𝑗 − 𝜇𝑗)]} = 𝐸 {[𝑈′(𝜇𝑝) + 𝑈′′(𝜇𝑝)(𝑅𝑝 − 𝜇𝑝) +

∑
1

(𝑘−1)!
𝑈(𝑘)(𝜇𝑝)(𝑅𝑝 − 𝜇𝑝)

𝑘−1∞
𝑘=3 ] [(𝑅𝑖 − 𝜇𝑖) − (𝑅𝑗 − 𝜇𝑗)]} = 𝑈′′(𝜇𝑝)[𝐶𝑜𝑉(𝑅𝑖 , 𝑅𝑝) − 𝐶𝑜𝑉(𝑅𝑗 , 𝑅𝑝)] +

𝐸 ∑
𝑘(1+𝜇𝑝)

𝑘

2(𝑘−1)!
(−1)𝑘𝑈(𝑘)(𝜇𝑝){

(−1)𝑘2

𝑘(1+𝜇𝑝)
𝑘 (𝑅𝑝 − 𝜇𝑝)

𝑘−1
[(𝑅𝑖 − 𝜇𝑖) − (𝑅𝑗 − 𝜇𝑗)]}

∞
𝑘=3  = 𝑈′′(𝜇𝑝)[𝐶𝑜𝑉(𝑅𝑖 , 𝑅𝑝) − 𝐶𝑜𝑉(𝑅𝑗 , 𝑅𝑝)] +

𝕌(3)(𝑈, 𝜇𝑝, 𝑅𝑝
𝑜) [(CoSwV(𝑅𝑖 , 𝑅𝑝) −

𝐶𝑜𝑉(𝑅𝑖,𝑅𝑝)

(1+𝜇𝑝)
2 ) − (CoSwV(𝑅𝑗 , 𝑅𝑝) −

𝐶𝑜𝑉(𝑅𝑗 ,𝑅𝑝)

(1+𝜇𝑝)
2 )].   
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B. The Co-Asymmetry and MCSD 

In the following theorem, I demonstrate that for those investors who care about the 

potential gain/loss due to asymmetries in returns additional to price fluctuations, the co-asymmetry 

(𝐶𝑜𝔸), in addition to the mean and variance, is an important ranking criterion for determining 

portfolio efficiency.   

 

 

Theorem 5 (Mean- 𝐶𝑜𝑉-𝐶𝑜𝔸 MCSD) 

Let 𝑅𝑖 and 𝑅𝑗 be two uncertain prospects, and  𝐶𝑜𝔸𝑖.𝑝 = [CoSwV(𝑅𝑖, 𝑅𝑝) −
𝐶𝑜𝑉(𝑅𝑖,𝑅𝑝)

(1+𝜇𝑝)2
].  The 

inequalities: 𝜇𝑖 ≥ 𝜇𝑗,  𝐶𝑜𝑉(𝑅𝑖 , 𝑅𝑝) ≤ 𝐶𝑜𝑉(𝑅𝑗 , 𝑅𝑝),  and  𝐶𝑜𝔸(𝑅𝑖, 𝑅𝑝) ≤ 𝐶𝑜𝔸(𝑅𝑗 , 𝑅𝑝) are 

sufficient conditions for 𝑅𝑖 to marginally and conditionally dominate 𝑅𝑗 and for all utility 

functions with 𝑈′ > 0,  𝑈′′ < 0, and 𝑈‴ > 0.   

 

The MCSD in Theorems 4 and 5 shows the essential roles of CoSwV, CoV, and Co𝔸 in 

portfolio risk diversification. Specifically, the minimization of these co-variations of asset returns 

maximizes the portfolio efficiency. In the next section, I demonstrate that similar to the portfolio 

variance, the SwV and 𝔸 measures of a portfolio is a weighted sum value of component assets’ 

CoSwV and Co𝔸, respectively. Consequently, the classical approach of portfolio optimization can 

be applied to the determination of SD equilibrium.  
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IV. SSD and 𝐌𝐕𝔸 Optimization & Equilibrium 

Based on (8), I show that the SwV of a portfolio is a weighted sum of CoSwV between 

returns on an asset and returns in the portfolio:18 

SwV𝑝 = 2𝐸(𝑅𝑝 − 𝑟𝑝) − 2𝑑𝜇𝑝 = ∑ 𝑤𝑖 ∙ CoSwV(𝑅𝑖, 𝑅𝑝)𝑁
𝑖=1   (10) 

 

Recall in Theorem 2, the SSD is indeed a tradeoff between mean and the SwV in which 

expected risk-averse utility maximizing investors, who have no knowledge about the form of 

return distributions, prefer an investment alternative with high mean and low SwV. Consequently, 

the SSD optimization and efficiency can be determined by choosing a securities mix that 

minimizes the SwV of the portfolio given its expected rate of return.   

 

A. Minimum-SwV Portfolios and MSwV Asset Pricing Model 

Proposition 1 (SSD Optimization and Efficiency)  

Suppose there are N assets and short selling is allowed. The SSD optimal portfolios can be 

determined by  

𝑀𝑖𝑛
𝑤𝑖

𝑆𝑤𝑉𝑝, 

Subjects to  𝜇
𝑝

= ∑ 𝑤𝑖𝐸(𝑅𝑖
𝑁
𝑖=1 ). 

                                                           
18 𝑆𝑤𝑉𝑝 = 2𝐸(𝑅𝑝 − 𝑟𝑝) − 2𝑑𝜇𝑝 = 2𝐸 [(

𝑅𝑝−𝜇𝑝

𝑅𝑝−𝜇𝑝
) (𝑅𝑝 − 𝑟𝑝)] − 2𝑑𝜇𝑝 = 2𝐸 [(

∑ 𝑤𝑖(𝑅𝑖−𝜇𝑖)
𝑁
𝑖=1

𝑅𝑝−𝜇𝑝
) (𝑅𝑝 − 𝑟𝑝)] − 2𝑑𝜇𝑝 =

∑ 𝑤𝑖 × {2𝐸 [(
𝑅𝑖−𝜇𝑖

𝑅𝑝−𝜇𝑝
) (𝑅𝑝 − 𝑟𝑝)] − 2𝑑𝜇𝑝} 

𝑁
𝑖=1 = ∑ 𝑤𝑖 ∙ CoSwV(𝑅𝑖, 𝑅𝑝)

𝑁
𝑖=1  . 
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Based on equations (8) and (10), the SSD optimal portfolios satisfy the following first order 

condition: 

          𝐸 [
𝑅𝑖𝑅𝑝∗

𝑆𝑤𝑉

1 + 𝑅𝑝∗
𝑆𝑤𝑉] = 0 (11) 

where 𝑅𝑝∗
𝑆𝑤𝑉= ∑ 𝑤𝑖∗

𝑆𝑤𝑉𝑅𝑖
𝑁
𝑖=1 , and where  𝑤𝑖∗

𝑆𝑤𝑉 is the SSD optimal share of wealth on i-th asset that 

satisfied the condition (12).  The SSD efficient portfolios are the minimum-SwV portfolios that 

offer the highest expected returns for the same level of SwV.  The SSD efficient frontier is concave 

in that the second order condition is equal to 𝐸 [
𝑅𝑖

2

(1+𝑅𝑝∗
𝑆𝑤𝑉)

2] and is non-negative, and the SSD 

optimal portfolio 𝑅𝑝∗
𝑆𝑤𝑉is unique in the MSwV space, if there is a risk-free asset.  

For an illustration, I simulate the SSD efficiency from a sample set of 300 assets randomly 

and jointly generated from a mixture of three different forms of return distributions: normal, 

lognormal, and gamma, respectively. Specifically, the sample distributions have a mean ranged 

from -0.2 to 0.2, and a standard deviation within a range from 0.4 to 0.7.  In addition, the correlation 

coefficient among assets is from -0.3 to 0.7, accordingly. Figure 2 depicts the analytical results.  

For a comparison, I also identify the MV efficient portfolios in the MSwV space. 

   

[Insert Figure 2 here] 

 

The main implication from our simulation is twofold. First, MSwV is capable of 

discriminating the stochastic dominated assets where MV can’t, so that the efficient frontier of 
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SSD could lie above that of the MV. Second, with the risk-free asset, the portfolio-separation holds 

in the MSwV space as well, corresponding to an SSD efficient portfolio of risky assets.   

 

B. Minimum-SwV Hedging Approach 

The basic concept of forming a hedging portfolio is to invest in the spot market and the 

underlying futures market at the same time, and to reduce the risks of the hedged portfolio. 

Specifically, consider a portfolio consisting of one unit of long position in the spot market and h 

units of short position in the futures market. The return on the hedged portfolio is given by  

𝑅ℎ = 𝑅𝑠 − ℎ𝑅𝑓 (12) 

where 𝑅ℎ, 𝑅𝑠 and 𝑅𝑓 are the returns of the hedging portfolio, underlying spot asset and futures 

contract, respectively. h is the so-called hedge ratio.  

In minimum-variance framework, hedge ratio can be easily solved as, ℎ =
𝐶𝑜𝑣(𝑅𝑠,𝑅𝑓)

𝑉𝑎𝑟(𝑅𝑓)
 , by 

making the variance of return on hedged portfolio the smallest (Johnson 1960). 

In minimum-swap variance framework, I use swap variance instead of variance as a more 

general and true risk measure. Therefore, the optimal hedge ratio of minimizing swap variance of 

the hedged portfolio is given by   

min
ℎ

𝑆𝑤𝑉(𝑅ℎ) (13) 

where 𝑆𝑤𝑉(𝑅ℎ) is the swap variance of returns on hedge portfolio in equation (12). The first order 

condition, from a direct calculation, is then given by 
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d𝑆𝑤𝑉(𝑅ℎ)

dℎ
= 𝐸 [

𝑅𝑓𝑅𝑠 − ℎ𝑅𝑓
2

1 + 𝑅𝑠 − ℎ𝑅𝑓
] = 0 (14) 

Additionally, since the second order condition, 
𝑑

dℎ
[
d𝑆𝑤𝑉(𝑅ℎ)

dℎ
]= 𝐸 [

𝑅𝑓
2

(1+𝑅𝑠−ℎ𝑅𝑓)2
] , and it is non-

negative, the set of minimum-SwV hedge ratio is unique.  

 

C. Minimum-𝔸 Portfolios and MV𝔸 Asset Pricing Model 

To identify the efficient set of assets and portfolios that includes those that are chosen by 

investors who like (dislike) asymmetric gains (losses), I employ the MV𝔸 approach.  Consider 

that the return of asymmetry of a portfolio is calculated as:  

𝔸𝑝 = 𝑆𝑤𝑉𝑝 − [(
𝜎𝑝

1+𝜇𝑝
)
2

] = [∑ (−1)𝑘 (
2

𝑘
)

ℳ𝑝
𝑘

(1+𝜇𝑝)𝑘
 ∞

𝑘=3 ]. (15) 

Since the value of  𝔸𝑝 is positive (negative) if returns on the portfolio are asymmetrically 

and negatively (positively) distributed, the MV𝔸  efficient portfolios can be determined by 

minimizing 𝔸𝑝 subject to different levels of  𝜇𝑝 and 𝜎𝑝
2.    

 

Proposition 2 (MV𝔸 Optimization and Efficiency)  

Suppose there are N assets and short selling is allowed. The 𝑀𝑉𝔸 optimal portfolios can be 

determined by  

𝑀𝑖𝑛
𝑤𝑖

𝔸𝑝, 

Subject to  𝜇
𝑝

= ∑ 𝑤𝑖𝐸(𝑅𝑖
𝑁
𝑖=1 ), and 𝜎𝑝

2 = ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗
𝑁
𝑗=1

𝑁
𝑖=1  
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Based on equations (9) and (10), the 𝑀𝑉𝔸 optimal portfolios satisfy the following first order 

condition: 

𝐸 [
𝑅𝑖𝑅𝑝∗

MV𝔸

1 + 𝑅𝑝∗
MV𝔸

] = 0 (16) 

where 𝑅𝑝∗
MV𝔸= ∑ 𝑤𝑖∗

𝑀𝑉𝔸𝑅𝑖
𝑁
𝑖=1 , and where  𝑤𝑖∗

𝑀𝑉𝔸 is the 𝑀𝑉𝔸 optimal share of wealth on i-th asset 

that satisfied the first order condition (16). The efficient 𝑀𝑉𝔸 portfolios are the minimum-𝔸 

portfolios that offer the highest expected returns and the lowest variances for the same level of 

SwV. The second order condition is non-negative, and 𝑀𝑉𝔸 efficient space is concave.19 

  

For a graphical illustration, Figure 3 shows that the MV𝔸 efficient portfolios are located on 

a spherical surface in a three-dimensional space of mean, variance, and the minimum- 𝔸 , 

respectively.  The MV𝔸 optimal portfolio 𝑃MV𝔸
∗  is the point on the MV𝔸 efficient-surface to which 

the MV𝔸 capital market line (MV𝔸-CML) is the tangent.  Intuitively, the MV𝔸-CML, SSD-CML 

and the MV-CML all converge to one line, only if asymmetry-risk (𝔸) of all assets is zero, or none 

of the investors care about that.   

[Insert Figure 3 here] 

An important implication of Figure 3 is that with a risk-free asset, the optimal portfolio of 

MV𝔸 is identical to that of MSwV (SSD).  The optimal portfolio of MSwV (SSD) is the tangent 

point on the efficient curve from the risk-free asset and is the one with the largest MSwV Sharpe 

                                                           
19 The derivation of Proposition 2 is similar to that of Proposition 1. I omit the detail description. 
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ratio, i.e., mathematically,  𝑀𝑖𝑛
𝑤𝑖

𝜇𝑝−𝑅𝑓

𝑆𝑤𝑉𝑝
= 𝑀𝑖𝑛

𝑤𝑖

𝜇𝑝−𝑅𝑓

𝜎𝑝
2+𝔸𝑝

. On the other hand, the optimal portfolio 

of MV𝔸 in Figure 3 also has the highest Sharpe ratio in the three-dimensional MV𝔸 space, which 

is determined by the tangent of the angle between the MV𝔸 capital market line and its projection 

line on 𝔸𝑝 − 𝜎𝑝
2 plane. Since  𝔸𝑝 is orthogonal to  𝜎𝑝

2 , the optimal portfolio of   MV𝔸  can be 

determined from this minimization process: 𝑀𝑖𝑛
𝑤𝑖

𝜇𝑝−𝑅𝑓

√(𝜎𝑝
2)2+(𝔸𝑝)2

 , or equivalently, 𝑀𝑖𝑛
𝑤𝑖

𝜇𝑝−𝑅𝑓

𝜎𝑝
2+𝔸𝑝

.  As a result, 

the optimal portfolio of MV𝔸 is the SSD optimal portfolio.    

 Figure 3 highlights that although the tow-fund separation holds between the risk-free fund 

and the optimal SSD portfolio, the risk-return tradeoff of expected utility maximization is 

determined by the three parameters: mean, volatility and asymmetry, respectively.20  Figure 3 also 

shows that the bias of the MV model is from the ignorance of the impact of distributional 

asymmetry on investment decision making. Thus, the asymmetry in addition to mean and volatility 

is necessary to be jointly considered in portfolio efficiency, performance analysis, and capital asset 

pricing.   

   

                                                           
20 Under the two-fund separation, 𝐸𝑈[(1 − 𝑤)𝑅𝑓 + 𝑤𝑅𝑝∗

𝑆𝑤𝑉]  =  𝐸𝑈[(1 − 𝑤)𝑅𝑓 + 𝑤𝑅𝑝∗
MV𝔸].   Then, according to 

equations (3) and (5), the risk-measure of the optimal investment can be linearly decomposed such that  SwV(𝑅𝑝∗
𝑆𝑤𝑉) =

𝛾 ∙ 𝑉𝑎𝑟(𝑅𝑝∗
MV𝔸) + 𝛿 ∙ 𝔸(𝑅𝑝∗

MV𝔸), where 𝛾 =
𝑈′′

2𝕌
> 0, and 𝛿 =

𝕌(3)

𝕌
> 0.     
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V. Empirical Analysis 

The primary source of sample data for my empirical analysis comes from the Center for 

Research in Security Prices (CRSP) equity database that covers all firms incorporated in the U.S. 

and listed on the NYSE, AMEX, or NASDAQ.  I select stocks that have a CRSP share code of 10 

or 11 to be consistent with the Fama-French asset pricing factors in Kenneth French's Database. 

Further, to avoid survivorship bias, stock return information before July 1969 is eliminated. The 

ending sample period is December 2015. Also, sample returns of 14 hedge funds listed on the 

Credit Suisse Hedge Fund Index over a period from April 1994 to December 2015 are employed 

as well.   

Table 1 reports the summary statistics for 14 hedge funds21, 12 industry portfolios, and 2 

Fama-French factor portfolios from January 1995 to December 2015. The first three columns report 

the mean, variance, and SwV of portfolio returns. The asymmetry equals to the combination of 

normalized high moments according to equation (1), and captures the variation that is measured 

by SwV but not included in variance. For most of these portfolios, asymmetries are significant, 

although they are very small. Then I compute the Sharpe ratios under MV and MSwV framework, 

and rank portfolio performance based on these two Sharpe ratios. The ranks are different, especially 

among the hedge funds. In the last three columns, I report the βMV and βMSwV for each portfolio, as 

well as the differences between two betas. The significance of beta difference suggests that the 

                                                           
21 https://secure.hedgeindex.com/hedgeindex/en/indexoverview.aspx?cy=USD&indexname=HEDG 
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effect of high moments cannot be ignored even considering market movement. Furthermore, the 

beta differences for most portfolios are positive, especially for hedge funds.  

 

[Insert Table 1 here] 

 

A. The Impact of Return Asymmetry on Portfolio Performance 

The difference between SwV and variance is symmetries in returns is shown in (1).  

Therefore, to illustrate the impact of asymmetry on portfolio performance, I apply both models of 

MV and MSwV to hedge fund index data. Table 1 presents the summary statistics of my analysis.   

Although the SwV of funds seems to be similar to their variance in value, a significant difference 

appears in the ranking of Sharpe ratios. The number of the ranking inconsistency is nine out of 14. 

This piece of evidence demonstrates that the impact of distributional asymmetry of returns on fund 

performance analysis is significant and should not be ignored. Also, Table 1 shows the 

considerable distinction between MV-beta and MSwV-beta that highlights the importance of 

return co-asymmetry (e.g., co-skewness and higher co-moments) in the systematic-risk 

determination. Specifically, for all hedge fund data, the MV-beta is significantly larger than 

MSwV-beta, which suggests that the co-asymmetry of hedge funds tends to be positive and 

provides diversification benefits, according to (7) and (8).    

Traditional portfolio theory suggests return volatility (𝜎)  can be reduced by forming 

portfolios if returns on assets are not perfectly correlated. Is this true as well for the return 

asymmetry ( 𝔸 )? Further, unlike the volatility, the quantity  𝔸  could be negative (positive) 
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corresponding to the prospect of potential upside-gains (downside-loss). Is the risk-diversification 

concerning return asymmetry different between the aspect of downside and that of upside, and 

which type of portfolio performs better among positive asymmetry, symmetry, and negative 

asymmetry? I find the answer to the above questions in Table 2 empirically. 

 

[Insert Table 2 here] 

 

B. Volatility, Asymmetry, Diversification, and Stability 

Twenty equally weighted portfolios are formed by grouping all stocks in our database 

according to their 𝔸 measures. The average value of individual stocks' 𝔸 ranges from -483.28 to 

265.50 basis-point (b.p.). To examine the consistency between ex-post and ex-ante measurements, 

I conduct analysis under both the in-sample and the out-of-sample frameworks. Table 2 illustrates 

that the relationship between 𝔸 and 𝜎 is truncated and concave; the higher (lower) the positive 

(negative) 𝔸, the larger the 𝜎. That is consistent with the theory shown in Figure 3. Table 2 also 

demonstrates that forming a portfolio significantly reduces the magnitude of asymmetry of 

individual assets. The range of 𝔸 of the 20 sorted portfolios decreases to -7.37 (-14.04) b.p. to 6.27 

(6.38) b.p. from the in-sample (out-of-sample) analysis. Interestingly, the portfolio of stocks that 

have the most negatively asymmetric returns (portfolio #20) has the most significant reduction of 

𝔸 (from 265 to 3.92). Thus, the implication is that returns on portfolios are more symmetrically 

distributed than those on individual securities. Since a portfolio's 𝔸  is a weighted sum of 

component assets' 𝐶𝑜𝔸  (see Sections 2 and 3), the magnitude deduction of 𝔸  from portfolio 
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formation is due to the effects of the co-asymmetry of individual securities. Implicitly, assets have 

a relatively high prospect of downside losses (upside gains) and tend to have more negative 

(positive) co-asymmetry with the core portfolio.    

Table 2 depicts that the ex-post estimate of return asymmetry is consistent with the ex-ante 

measure. Again, the ranking difference between Sharpe ratios of MV and MSwV indicates the 

importance of asymmetry in portfolio performance analysis. Portfolios with slightly negative 

asymmetry (positive 𝔸) perform better than others. Regardless of in-sample or out-of-sample, the 

worst performed portfolio (#20) is the one that has the most highly negative return-asymmetry. 

From the MV Sharpe ratios, it shows that portfolio #1 (the one with most positively skewed returns) 

has the best performance; however, the MSwV and MV𝔸 analyses do not show that. As I have 

discussed in Section II, highly upside skewed securities (e.g., lottery-type stocks) are SSD 

inefficient assets with substantial volatility. They may be MVA efficient but are probably not 

dominating alternatives for all risk-averse investors. Also, these securities tend to be positively 

correlated, and portfolio #1 should not outperform the overall market. This again highlights the 

potential bias of the MV model in fund performance analysis that ignores the impact of return-

asymmetry. 

 

C. Performance of the Optimal MSwV and 𝑴𝑽𝔸 Market Portfolios 

One of the main contributions of this dissertation is the development of optimal SD 

portfolios based on simple and basic optimization procedures shown in Propositions 1 and 3, 

respectively. Since the optimal market portfolio shown in Figure 3 should outperform other index 



52 
 

portfolios in theory, it is important to examine empirically the performance of MSwV and MV𝔸 

market portfolios. For developing market indexes, I determine the optimal weights according to 

the MSwV and MV𝔸 optimization procedures based on the past 60 monthly excess returns on all 

CRSP stocks.  I then apply the optimal weights to the following month to calculate the returns on 

indexes.  Therefore, the MSwV and MV𝔸 optimal indexes are tradeable funds.   

 

[Insert Table 3 here] 

 

For comparison purposes, Table 3 summarizes the basic statistics and Sharpe ratios of the 

MSwV and MV𝔸 optimal market funds vs. Fama-French’s factor portfolios as well as major U.S. 

market indexes including S&P500 (SPX), Dow Jones Industrial Average (DOW) and NASDAQ, 

accordingly. Noticeably, the quantity 𝔸 for all market and factor indexes is negative in value 

indicating return distribution of all indexes are positively skewed, and the magnitude of asymmetry 

is positively correlated with the volatility. Corresponding to Figure 3, the optimal market portfolio 

of MV𝔸 converges to that of MSwV (SSD) in the MV𝔸 space.  Although all other indexes may be 

located on the MV𝔸 efficient plane, the slope of their capital allocation lines will be lower than 

that of the optimal portfolio. The empirical evidence that supports my theoretical argument from 

the Sharpe ratios is shown in Table 3. Specifically, the distributional statistics of MSwV and MV𝔸 

optimal (market) portfolios are almost identical, and they have the highest Sharpe ratios among all 

funds.   
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D. Mean-Variance, Mean-Swap Variance, and SSD Efficient Sets 

This dissertation compares the asset allocation under MV and MSwV framework, using SSD as a 

benchmark. I form efficient sets under three criteria from the whole set including 14 portfolios 

from the Kenneth French Database22, which includes three different size portfolios (Small Size, 

Medium Size and Large Size); three B/M portfolios (Growth, Neutral and Value); one Momentum 

portfolio (MOM); one reversal portfolio (REV); five industry portfolios (Cnsmr, Manuf, Hitec, 

Hlth, and Other); and market portfolio (MKT). If a portfolio is not dominated by any other portfolio, 

it is considered as an efficient portfolio, and thus included in the efficient set. Table 4 reports the 

efficient sets of each year from 2006 to 2015 based on weekly returns. The results show that the 

MV and MSwV efficient sets are almost the same except for year 2014. There are two reasons. 

The first reason is that equity returns tend to be normally distributed in a long time period. The 

second reason is two or three portfolios perform very well during several years, much better than 

all the other portfolios. Thus, no matter according to which rule, the efficient sets only consist 

within these portfolios (e.g.  2007, 2008, 2011, 2015).  

[Insert Table 4 here] 

 

                                                           
22 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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E. Mean-Variance and Mean-Swap Variance Hedging 

I use daily spot and futures prices of the SPX and WTI Crude Oil. The SPX spot price is 

downloaded from CRSP. The SPX futures price, crude oil spot price, and crude oil futures price 

are obtained from the CME group. The future contracts used in this study are the existing 

contracts with the nearest delivery date. I make adjustments for rollover based on the principal 

on the CME website23. The sample period for SPX covers from April 21, 1982, to August 12, 

2016, and the sample period of Crude Oil futures covers from March 29, 1990, to August 12, 

2016. To investigate the optimal hedge ratios, I calculate the minimizing-variance and 

minimizing-swap variance hedge ratios using returns from the previous 60 consecutive trading 

days. 

Figure 4 and Figure 5 show the moving patterns of hedge ratios on SPX and Crude Oil 

markets over time. Panel A plots the minimizing-variance hedge ratio, Panel B plots the 

minimizing-swap variance hedge ratio, and Panel C plots the difference between the above two 

hedge ratios. From Panel A and Panel B, I observe that hedge ratios increase when there were 

market shocks, such as in 1998 and 2008. Although Panel A and Panel B show very similar patterns, 

I find that in Panel C the difference between hedge ratios of minimizing-variance and minimizing-

swap variance are time varying. To further test the dependence of this difference of hedge ratios 

on market conditions, I run regression of the difference with the VIX index.  

[Insert Figure 4 and Figure 5 here]  

                                                           
23 According to CME principal, the rollover date is 8 days before the announced expiration date. 
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Table 5 reports the regression results of the difference between the minimizing-swap 

variance hedge ratio and the minimizing-variance hedge ratio over the CBOE VIX index. The beta 

coefficients for the SPX and the crude oil are both negative and significant; the coefficient for the 

SPX is -0.0056 and -0.0135 for the crude oil. This means the minimizing-swap variance hedge 

ratio is positively deviated from the minimizing-variance hedge ratio when the market is stable 

(small VIX), and the minimizing-swap variance hedge ratio is negatively deviated from the 

minimizing-variance hedge ratio when the market is volatile (large VIX). This suggests the 

traditional minimizing-variance hedge is over hedged when the market is volatile. When 

considering the generalized risk measures, the SwV, the optimal hedge ratio suggests to hedge less 

than the minimizing-variance hedge ratio under bad market conditions. 

 [Insert Table 5 here]  

 

 

VI.    Conclusion  

The SwV, formulated merely by the twice expected difference of arithmetic and 

logarithmic returns adjusted by the mean, summarizes the entire probability distribution of returns.  

Since variance measures the quadratic (symmetric) variation of returns, the difference between 

SwV and the variance thus characterizes the asymmetries (denoted  𝔸)  in returns. I prove 

mathematically that the expected utility can be completely transformed as a function of mean and 

SwV as well as that of mean, variance, and 𝔸, accordingly, without any restriction on the form of 
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utility functions and that of return distributions. Therefore, the MSwV and MVA analyses, 

consistent with expected utility maximization, serve as an extension of the classical MV model by 

considering distributional asymmetries. Importantly, the MSwV efficiency is necessarily and 

sufficiently SSD efficient for all risk-averse investors. The efficient set of MVA, on the other hand, 

is much broader than that of SSD in that it also includes investors who prefer (dislike) the prospect 

of potential upside gains (downside losses). That makes some of the highly risky assets, e.g., the 

lottery-type securities, to be included in the MVA efficient set but to be excluded from the SSD 

efficient set. 

Similar to the portfolio variance, the SwV of a portfolio is also a weighted sum of CoSwV 

between individual assets and the portfolio, where CoSwV is the covariance plus a polynomial 

combination of all higher co-moments. Thus, the CoSwV is different from covariance by the co-

asymmetry (denoted Co𝔸), which captures the jointly asymmetric variation between an asset and 

the core portfolio. The return asymmetry of a portfolio is then a weighted sum of  Co𝔸 . 

Consequently, the SSD efficient frontier can be determined from the minimum SwV assets in the 

mean-SwV space, and the MV𝔸 efficient plane can be defined by the minimum 𝔸 portfolios in a 

three-dimensional mean-variance-asymmetry space.    

Using spot and futures contracts data of SPX and crude oil, I compare the new hedging 

methods with traditional MV methods. The results show that the difference of hedging effects 

under minimizing variance and minimizing swap variance methods is very small during normal 

time; however, it is much larger when market shock occurs. Moreover, these small differences 
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have significant negative correlations with market conditions measured by the implied volatility 

index.  

In summary, the simplicity and generality of MSwV and MV𝔸 approaches make them a 

powerful tool in analyzing investment decision making under risk and uncertainty. Instead of 

replacing the MV model, the MV𝔸  analysis enhances the conventional methods of security 

selection, asset allocation, portfolio efficiency analysis as well as the asset valuation to a general 

framework by taking asymmetries in return as well as investors' prospect of gain and loss into 

consideration. 
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Chapter 3 

Mean-Swap Variance Asset Pricing Model 
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I. Introduction 

The traditional CAPM, formulated by Treynor (1961), Sharpe (1964), Lintner (1965), and 

Mossin (1966), assumes that investors have knowledge of either their utility functions or the forms 

of assets' return distribution. Specifically, if returns on assets are elliptically distributed or utility 

function is quadratic, then the market-equilibrium relationship between individual assets and MV 

efficient portfolios can be determined. To modify the weakness of traditional CAPM, numerous 

studies have proposed new asset pricing approaches to measure security returns, in which the 

Fama-French model is well-accepted. Fama and French (1993, 1996) proposed a three-factor 

model that includes size and value effects. They showed that the returns on the stocks of small 

firms covary more with one another than with returns on the stocks of large firms, and returns on 

high B/M (value) stocks covary more with one another than with returns on low B/M (growth) 

stocks. In their model, SMB (small minus big), the difference between the returns on diversified 

portfolios of small and big stocks, quantifies size effect, and HML (high minus low), the difference 

between the returns on the diversified portfolios of high and low B/M stocks, quantifies value 

effect. Meanwhile, behavior finance has become a hot topic in recent years. Kahneman and 

Tversky (1979) propose the principal of prospect theory. Under prospect theory, investors tend to 

think in terms of gains and losses rather than in terms of their net assets, and therefore, investors 

encode choices in terms of deviations from a reference point. Moreover, investors treat gains 

differently than losses in that individuals tend to be risk-averse with respect to gains and risk-

accepting with respect to losses. Tversky and Kahneman (1991) point out that the central 

assumption of prospect theory is that losses and disadvantages have greater impact on preferences 
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than gains and advantages. The dissertaton develops asset valuation approaches considering 

human decision makers’ behavior biases in utility optimization based on the idea of Arbitrage 

Pricing Theory (Ross, 1976) and shows the explanatory power to the cross-sectional expected 

returns on assets compared to Fama-French factors. 

I first show that the mean-SwV (MSwV) transformation of the expected utility function 

allows the derivation of both the necessary and sufficient condition for SD, enabling risk-averse 

investors to discard from the efficient set of prospects that are stochastically dominated by others. 

Therefore, the MSwV approach separates both the knowledge of all prospects' probability 

distribution and that of investors' preference functions from the decision process on utility 

maximization. In the application of MSwV to portfolio theory, I demonstrate that similar to the 

formulation of portfolio variance, the SwV of a portfolio is also a weighted sum of the co-swap-

variance (CoSwV) between each component asset and the portfolio. Structurally, the CoSwV 

contains not only the covariance but a summary of all higher order co-moments of return; thus, the 

larger the odd co-moments (e.g., co-skewness), the smaller the CoSwV, the better the risk-

diversification, and the higher the portfolio efficiency.24 Consequently, the SwV can replace the 

                                                           
24  Mounting empirical evidence suggests that higher-order market co-moments associated with distributional 

variations in addition to the market volatility explain the expected returns on financial assets. Notably, Harvey and 

Siddique (2000) demonstrated that under a quadratic pricing kernel, conditional skewness explains the cross-sectional 

variation in expected returns across assets. Dittmar (2002) extended the pricing kernel to be a cubic in the market 

return and showed that asset returns are affected by covariance, co-skewness, and co-kurtosis with return on aggregate 

wealth. From an aspect of asset pricing, Vendrame, Tucker, and Guermat (2016) found that covariance is associated 

with a positive factor premium, co-skewness demands a negative premium, and co-kurtosis has a positive premium, 

respectively.  Furthermore, Chung, Johnson, and Schill (2006) argued that although higher moment measures such as 

skewness and kurtosis individually provide some information about the tail of the investment return distribution, they 

fall far short of specifying the tail precisely.  Therefore, the likelihood of extreme outcomes of an investment must be 
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variance, and the CoSwV can substitute covariance needed in portfolio theory whenever the MV 

model fails to provide consistent results of the utility maximization. Precisely, I prove that the 

mean and CoSwV dominance is a necessary and sufficient condition for the second-degree 

marginal conditional stochastic dominance (MCSD) of Shalit and Yitzhaki (1994) for all concaved 

utility functions. As a result, analogous to the MV analysis, an efficient set of SSD portfolios can 

be determined by minimizing the portfolio's SwV for each given mean-return without searching 

through all possible combinations of assets as the traditional SSD algorithm requires. 

Based on the decomposition of SwV shown in (1), I further quantify the expected utility as 

a function of three-parameters: mean, variance, and asymmetry (MV𝔸), respectively. Serving as 

an extension of the SSD approaches, I show that MV𝔸 efficiency is robust to risk-averse investors 

and to those who prefer a prospect of upside-skewed payoffs but are averse to that of downside 

losses, where both MV and SSD efficient sets of assets are subsets of the MV𝔸 efficiency.25  

Notably, the MV𝔸  efficient set includes lottery-type securities (Kumar, 2009) that are SSD 

inefficient and commonly viewed as highly risky assets. The MV𝔸 optimal portfolios can then be 

identified by minimizing 𝔸 of assets for every level of the mean and variance.   

Again, the main advantage of MSwV and MV𝔸 optimization is that the expected utility 

maximization of investors can be distinguished entirely by a function of finite summary statistics 

independent of individual preference function or the knowledge of probability or decision weight 

                                                           
measured jointly by the entire set of all possible moments and co-moments. To specify the distributional tails of returns 

(or the sensitivity to the market tails) ideally, it requires information of an infinite number of moments and co-moments. 
25 The MVA inefficient assets must also be dominated by SSD or MV rules. Note that the neither the MV efficient 

set is a subset of SSD, nor vice versa. 
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distribution. Consequently, the MSwV and MV𝔸 optimal portfolios allow me to derive the SD 

equilibrium return on assets as well as the SD systematic risk measures.  Specifically, I show that 

similar to the MV beta coefficient in form, the MSwV-beta (or the SSD-beta) is a ratio between 

CoSwV and the market SwV.  Since CoSwV accommodates all possible higher order co-moments 

of returns between an asset and the SSD optimal (market) portfolio, the MSwV-beta is sensitive 

to the asymmetries in market returns. It makes MSwV-beta become a more general proxy of 

systematic risk than the traditional MV-beta. Finally, incorporating with upside-skewness 

preference and downside-asymmetry aversion, I develop a two-factor linear model as a result of 

the MV𝔸 equilibrium. This model is an extension of the MSwV approach for quantifying the 

systematic impacts of symmetry and asymmetry separately on the required return of risky assets.  

Empirically, the MV𝔸  two-factor pricing model is statistically valid as compared with the 

conventional multi-factor models.    

The rest of this chapter is organized as follows: Based on the MSwV and MV𝔸 

optimization, the SD oriented asset pricing models are developed in Section II.  Section III 

demonstrates the application of MSwV and MV𝔸  to the determination of a human decision 

maker’s loss aversion and gain preference. Section IV illustrates the empirical analysis, and section 

V contains concluding remarks.  
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II. SSD and 𝐌𝐕𝔸 Optimization & Equilibrium 

The traditional CAPM, formulated by Treynor (1961), Sharpe (1964), Lintner (1965), and 

Mossin (1966), assumes that investors have knowledge of either their utility functions or the forms 

of assets' return distribution. Specifically, if returns on assets are elliptically distributed or utility 

function is quadratic, then the market-equilibrium relationship between individual assets and MV 

efficient portfolios can be determined. In this section, the dissertation develops the asset valuation 

theory for investors holding MSwV portfolios without the utility and distributional assumptions 

that the MV model requires.   

 To formulate the CAPM in the MSwV, this study retains the central assumptions of the 

classical CAPM. These assumptions include single-period analysis, the existence of a risk-free 

asset, and perfect competition in the securities market. According to equation (3) in chapter one, 

investors’ expected utility is a function of mean-swap variance (MSwV).  Investors then maximize 

expected utility with respect to only two parameters: expected return and SwV.  Consequently, the 

SSD optimization and efficiency can be determined by choosing a securities mix that minimizes 

the SwV of the portfolio given its expected rate of return.  
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Proposition 1 (The SSD Equilibrium)  

Assume short-sell is allowed and investors are permitted to borrow and lend at the risk-free rate 

of return (𝑅𝑓).  Based on equation (3), if investors are risk-averse, then the expected utility is a 

function of two parameters: 𝜇, and SwV, respectively. If investors are maximizing expected utilities 

of returns on an MSwV (SSD) efficient market portfolio, 𝑅𝑚
𝑆𝑤𝑉, the risk-premium of risky assets in 

equilibrium, can be calculated by the following equation: 

𝐸(𝑅𝑖 − 𝑅𝑓) = 𝛽𝑖
𝑆𝑤𝑉𝜆m   (17.1) 

where 

𝛽𝑖
𝑆𝑤𝑉 =

𝐶𝑜𝑆𝑤𝑉(𝑅𝑖,𝑅𝑚
𝑆𝑤𝑉)

𝑆𝑤𝑉(𝑅𝑚
𝑆𝑤𝑉)

 . 

𝜆m  = 𝐸(𝑅𝑚
𝑆𝑤𝑉 − 𝑅𝑓) 

(17.2) 

The formulation of SwV and CoSwV is shown in equations (1) and (8), accordingly.   

 

The derivation of equations (17.1) and (17.2) is shown in the Appendix. The SSD 

equilibrium is similar to the MV equilibrium in form; however, the benchmark portfolio and the 

formulation of beta coefficient are different. As I have discussed in the previous chapter, although 

the SSD efficiency is robust to risk-aversion with downside asymmetry on returns, some of the 

SSD inefficient assets with a prospect of upside potential could be efficient for investors who have 

upside skewness preference.  Consequently, the single factor equilibrium model in (17) could be 

biased, if I take the preference behavior of prospective gain into consideration.    
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For developing the MV𝔸 equilibrium, it is necessary to identify two orthogonal benchmark 

portfolios that mimic the symmetry and asymmetry of returns on the SSD optimal market portfolio.   

First, I identify the efficient portfolios with symmetric returns by minimizing SwV𝑝  subject 

to 𝜇𝑝 = ∑ 𝑤𝑖𝐸(𝑅𝑖
𝑁
𝑖=1 ), and 𝔸𝑝 = 0. Then, the optimal symmetry-factor portfolio, with returns 

denoted 𝑅𝑚
𝕊⊥

 (= ∑ 𝑤𝑖∗
𝕊⊥

𝑅𝑖
𝑁
𝑖=1 ),  is the one with the highest Sharpe ratio. Second, returns on the 

factor portfolio of asymmetry (denoted 𝑅𝑚
𝔸⊥

) have to be independent to 𝑅𝑚
𝕊⊥

, but the sum of these 

two returns must be proportionally equal to  𝑅𝑚
𝑆𝑤𝑉 ,  the returns on the SSD optimal portfolio.   

Mathematically, 𝑅𝑚
𝔸⊥

must then satisfy the following two conditions:   

𝑤𝑖∗
𝔸⊥

= (1 − 𝜃)𝑤𝑖∗
𝑆𝑤𝑉 − 𝑤𝑖∗

𝕊⊥
   for all i , (18.1) 

and  

𝐶𝑜𝑉(𝑅𝑚
𝔸⊥

, 𝑅𝑚
𝕊⊥

) = 0, (18.2) 

where 0 ≤ 𝜃 ≤ 1.   Finally, solve for 𝜃 and 𝑤𝑖∗
𝔸⊥

from the equations (18.1) and (18.2) 

simultaneously. I then can calculate returns on the optimal asymmetry-factor such that 𝑅𝑚
𝔸⊥

=

∑ 𝑤𝑖∗
𝔸⊥

𝑅𝑖
𝑁
𝑖=1 .  

From Figure 3 and Theorem 3, although the optimal portfolio of MV𝔸 is equivalent to that 

of SSD, the efficient set of MV𝔸 is larger than that of SSD.  That is, the MV𝔸 equilibrium is more 

general than the SSD equilibrium in that the MV𝔸 efficiency is valid not only for risk-averse 

investors but also for those who have upside (downside) asymmetry preference (aversion). I 
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formally derive the formulation of risk-premium for individual assets under the MV𝔸 equilibrium 

in the following proposition: 

 

Proposition 2 (The MV𝔸 Equilibrium)  

Assume short sell is allowed and investors are permitted to borrow and lend at 𝑅𝑓. Based on 

equation (5), for all utility functions with 𝑈′ > 0,  𝑈′′ < 0, and 𝑈‴ > 0, the expected utility can 

be transformed as a function of three parameters: 𝜇, 𝜎2, and 𝔸, respectively.  Let 𝑅𝑚
𝕊⊥

 and 𝑅𝑚
𝔸⊥

 be 

orthogonal returns on the symmetric and asymmetric factor portfolios determined from the SSD 

optimal portfolio based on (18.1) and (18.2), respectively. The risk-premium of risky assets, in 

equilibrium, can be calculated by the following equation: 

𝐸(𝑅𝑖 − 𝑅𝑓) = 𝛽𝑖
𝕊𝜆𝕊  + 𝛽𝑖

𝔸𝜆𝔸, (19.1) 

where  

𝛽𝑖
𝕊 =

𝐶𝑜𝑉(𝑅𝑖𝑅𝑚
𝕊⊥

)

𝑉𝑎𝑟(𝑅𝑚
𝕊⊥

)
,     (19.2) 

  

   𝛽𝑖
𝔸 =

[
 
 
 
 𝐶𝑜𝑆𝑤𝑉(𝑅𝑖,𝑅𝑚

𝔸⊥
)− 

𝐶𝑜𝑉(𝑅𝑖,𝑅𝑚
𝔸⊥

)

[1+𝐸(𝑅𝑚
𝔸⊥

)]
2  

𝑆𝑤𝑉(𝑅𝑚
𝔸⊥

) − 
𝑉𝑎𝑟(𝑅𝑚

𝔸⊥
)

[1+𝐸(𝑅𝑚
𝔸⊥

)]
2  

]
 
 
 
 

, (19.3) 

  

𝜆𝕊  = 𝐸(𝑅𝑚
𝕊⊥

− 𝑅𝑓), and  𝜆𝔸 =  𝐸(𝑅𝑚
𝔸⊥

− 𝑅𝑓) 

Serving as an extension of the CAPM, the two-factor linear model (19), derived 

theoretically from the expected utility maximization, demonstrates that two deterministic 
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components—the symmetry and the asymmetry—are sufficient to explain the market price 

dynamics. Again, the ignorance of the impact of asymmetry on market return variations causes the 

failure of the traditional CAPM. Many empirical pricing factors—such as SBM, HML, and 

others—successfully fulfill the incompleteness of the CAPM. Nevertheless, all those factors, 

perhaps, capture the systematic asymmetry in equilibrium price determination only partially.   

 

 

III. Behavioral Asset Pricing Models 

The formulation of the MSwV-beta coefficient in equation (17.2) is structurally similar to 

that derived from the MV-CAPM but with different co-variation and variation measures.  Thus, at 

this point, it is important to draw the analogy and the distinction between the two systematic risk 

measures. It can be shown that if returns are symmetrically distributed, 𝛽𝑆𝑤𝑉reduces to 𝛽𝑉 in that 

from Taylor Expansion, the higher moments and co-moments of the distributions are irrelevant to 

the beta derivation. In other words, the dissimilarity between the two beta measures is caused by 

the distributional asymmetry in returns.   

To further investigate the difference between  𝛽
𝑖
𝑆𝑤𝑉

 and  𝛽
𝑖
𝑉 , this study focuses on the 

conventional single linear factor market model. 

𝑅𝑖
𝑒 = 𝑎𝑖 + 𝑏𝑖𝑅𝑚

𝑒 + 𝜀𝑖. (20) 

It is well-known that the condition 𝐶𝑜𝑣(𝜀𝑖 , 𝑅𝑚
𝑒 ) = 0, is crucial for the validity of the model in (20).  

The violation of this condition indicates that the market factor is insufficient, and additional factors 
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exist in determining assets’ returns. A question arises: if MSwV-CAPM is a correct model, will 

replacing 𝑏𝑖 by the 𝛽𝑖
𝑆𝑤𝑉 ensure that 𝐶𝑜𝑣(𝜀𝑖, 𝑅𝑚

𝑒 ) = 0?  The answer to this question is no, because 

𝐶𝑜𝑣(𝜀𝑖 , 𝑅𝑚
𝑒 ) = 0 guarantees that 𝑏𝑖 = 𝛽𝑖

𝑀𝑉and vice versa.26  Therefore, if 𝑏𝑗 = 𝛽𝑖
𝑆𝑤𝑉 ≠ 𝛽𝑖

𝑉 , then 

𝐶𝑜𝑣(𝜀𝑖 , 𝑅𝑚
𝑒 ) ≠ 0.  I show that the non-zero of residual covariance directly results from the beta 

difference such that 27 

𝛽𝑖
𝑆𝑤𝑉𝜆m − 𝛽𝑖

𝕊𝜆𝕊  = 𝛽𝑖
𝔸𝜆𝔸  (21) 

where  

𝛽𝑖
𝔸 ≈

−2

𝜎𝑚
2

[
(−1)3𝐶𝑜ℳ𝑖,𝑚

3

3(1 + 𝜇
𝑚
)
3 +

(−1)4𝐶𝑜ℳ𝑖,𝑚
4

4(1 + 𝜇
𝑚
)
4 + ⋯ +

(−1)𝑁𝐶𝑜ℳ𝑖,𝑚
5

𝑁(1 + 𝜇
𝑚
)
5

] , and 𝑁 → ∞. (22) 
 

 

The implication of (21) and (22) is that the single factor CAPM is valid if and only if  𝛽𝑖
𝔸 

is zero. The asymmetric beta, 𝛽𝑖
𝔸, measures the sensitivity of an asset i to the asymmetry of the 

market portfolio. In a negatively (positively) skewed market, assets with positive (negatively) 𝛽𝑖
𝔸 

may be undesirable because of their possible contributions to asymmetries in the market returns.  

These assets therefore earn higher average returns.   

                                                           
26 If 𝐶𝑜𝑣(𝜀𝑗 , 𝑅𝑚

𝑒 ) = 0, then from (19), 𝐸(𝑅𝑖
𝑒𝑅𝑚

𝑒 ) − 𝐸(𝑅𝑖
𝑒)𝐸(𝑅𝑚

𝑒 ) = 𝑏𝑖[𝐸(𝑅𝑚
𝑒2

) − 𝐸(𝑅𝑚)2], and thus 𝑏𝑖 = 𝛽𝑖
𝑉.  On 

the other hand, if 𝑏𝑖 = 𝛽𝑖
𝑉, then again from (19), 𝐶𝑜𝑣(𝜀𝑗, 𝑅𝑚

𝑒 ) = 𝐸(𝜀𝑖𝑅𝑚
𝑒 ) − 𝐸(𝜀𝑖)𝐸(𝑅𝑚

𝑒 ) = [𝐸(𝑅𝑖
𝑒𝑅𝑚

𝑒 ) −

𝐸(𝑅𝑖
𝑒)𝐸(𝑅𝑚

𝑒 )] − 𝛽𝑖
𝑀𝑉[𝐸(𝑅𝑚

𝑒2
) − 𝐸(𝑅𝑚)2] = 0. 

 
27 Let 𝛿𝑖

𝑆𝑤𝑉 = (𝑅𝑖
𝑒 − 𝛽𝑖

𝑆𝑤𝑉𝑅𝑚
𝑒 ) = 𝑎𝑖 + 𝜀𝑖 and 𝛿𝑖

𝑉 = (𝑅𝑖
𝑒 − 𝛽𝑖

𝑉𝑅𝑚
𝑒 ), we have  𝛿𝑖

𝑉 = (𝛽𝑖
𝑉 − 𝛽𝑖

𝑆𝑤𝑉)𝑅𝑚
𝑒 + 𝛿𝑖

𝑆𝑤𝑉 .  Since 

the single factor model is valid only if 𝐶𝑜𝑣(𝛿𝑖
𝑉 , 𝑅𝑚

𝑒 ) = 𝐶𝑜𝑣([(𝛽𝑖
𝑉 − 𝛽𝑖

𝑆𝑤𝑉)𝑅𝑚
𝑒 + 𝛿𝑖

𝑆𝑤𝑉], 𝑅𝑚
𝑒 ) = 0,   (𝛽𝑖

𝑆𝑤𝑉 − 𝛽𝑖
𝑉) =

𝐶𝑜𝑣(𝜀𝑖,𝑅𝑚
𝑒 )

𝜎𝑚
2 . 
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Contrary to Markowitz’s assumption of rational decision makers (RDM), studies on 

behavior finance suggest that most investors are human decision maker (HDM). If HDM is 

rational without cognitive errors or emotional biases, the classical MV analysis is robust in that 

the volatility of returns is the center of concern (See Blay & Markowitz, 2013). Now, I consider 

a HDM with behavior bias. First, Benartzi and Thaler (1995) proposed that investors are 

assumed to be loss averse, so they are unwilling to recognize loss and tend to afford more risk. 

As a result, the risk aversions of investors are lower when returns are negative (or below their 

expectations). On the other side, Kumar (2009) posited that individual investors prefer stocks 

with lottery features, which means HDM may tolerate more risk to pursue potential gain. So 

HDM involves three fundamental tendencies of behavior, including the symmetric volatility risk-

aversion, the asymmetric downside loss-aversion, and the tailed gain-preference, respectively. 

Therefore, the insufficiency of the traditional MV models results from the asymmetric biases. 

Based on the MSwV theory, I develop an equilibrium pricing condition for capital assets that 

accommodates the above three decisional behaviors.  

From the empirical analysis shown in the next section, this dissertation finds that sorted 

portfolios with a higher value of the positive (negative) past 𝛽𝔸 have a higher (lower) expected 

return. Portfolios that are insensitive to the current market asymmetry have lower future average 

returns. My empirical finding of the U-shape structure of expected returns and the past-𝛽𝔸 sorted 

portfolios significantly indicates the positive (negative) risk-premium of 𝜆𝕃 (𝜆𝔾). The implication 

is that there are different risk-attitudes toward aggregated tails of returns.   
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IV. Empirical Analysis 

 

A. Testing for MSwV (SSD) and MV𝔸 Asset Pricing Models 

In this chapter, I derive the asset pricing models under the MSwV and MV𝔸 frameworks 

following the same derivation procedures as that of CAPM. To examine the validity of these 

models, I follow the Fama-MacBeth (1973) two-stage testing methodology. Based on equations 

(17.2), (19.2), and (19.3), over the sample period, I first calculate the estimates of factor 

loadings, 𝛽̂𝑖
𝑆𝑤𝑉, 𝛽̂𝑖

𝕊, and 𝛽̂𝑖
𝔸, on the monthly basis for all securities i with respect to the past 60 

monthly returns on indexes, 𝑅𝑚
𝑆𝑤𝑉, 𝑅𝑚

𝕊 , and 𝑅𝑚
𝔸 , accordingly. Second, to eliminate the impact of 

idiosyncratic risk of securities on the analysis and have a focus on the systematic risk premium, at 

the beginning of each period I form 60 equal-sized portfolios, sorted by the factor loadings of all 

individual securities that estimated from the first step. I then regress cross-sectional returns on the 

sixty portfolios against their factor loadings to estimate the factor premium, 𝜆̂𝑆𝑤𝑉 , 𝜆̂𝕊, and 𝜆̂𝔸, 

respectively.   

[Insert Table 6 here] 

 

Table 6 presents the results of the Fama-MacBeth test. It appears that all estimates of factor 

premium are statistically significant at least at the five percent level. Thus, the empirical evidence 

supports that from a cross-sectional aspect,  𝜆𝑆𝑤𝑉 is a common pricing factor for risk-averse and 

expected utility maximizing investors. If investors also have preference (aversion) for (to) the 

prospect of potential upside gains (downside losses), then the common factors,  𝜆𝕊 and  𝜆𝔸, are 
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necessary to be considered in the determination of return generating process for all risky assets.  

That is, the MV𝔸 asset pricing model can be viewed as an important extension of the traditional 

approach purely based on risk-aversion assumption in that it takes the main argument of the 

prospect theory into consideration.   

To further examine the robustness of the MV𝔸 pricing model, I test the sufficiency of the 

common factors in explaining the equilibrium returns on assets. If MV𝔸 model shown in (19) is 

valid, then the residual returns of individual assets, 𝜀𝑗,𝑡 = 𝑅𝑗,𝑡 − (𝛽̂𝑗
𝕊𝑅𝑚,𝑡

𝕊 + 𝛽̂𝑗
𝔸𝑅𝑚,𝑡

𝔸 ), should be 

idiosyncratic. Thus, no other common factors would have explanatory power to  𝜀𝑗,𝑡 . For an 

illustration, in this paper, I focus on four important empirical factors of Fama and French (1993, 

2016: SMB, HML, RMW, and CMA, respectively.  Again, by employing the Fama-MacBeth 

approach, I first calculated the factor loadings from the following regression model: 𝜀𝑗,𝑡 = 𝛼𝑗 + 

𝛽𝑗
𝑆𝑀𝐵𝑆𝑀𝐵𝑡 + 𝛽𝑗

𝐻𝑀𝐿𝐻𝑀𝐿𝑡 +𝛽𝑗
𝑅𝑀𝑊𝑅𝑀𝑊𝑡 + 𝛽𝑗

𝐶𝑀𝐴𝐶𝑀𝐴𝑡 + 𝑒𝑗,𝑡, over the past 60 months.  Then, at 

the beginning of each period, 60 equal-sized portfolios sorted by the beginning-of-period beta 

estimates are formed from the entire sample. To calculate estimates of factor-premium, 𝜆̂𝑆𝑀𝐵 , 

𝜆̂𝐻𝑀𝐿 , and 𝜆̂𝑅𝑀𝑊,  and 𝜆̂𝐶𝑀𝐴 , accordingly, I then, in a cross-sectional framework, regress all 

portfolio residuals, 𝜀𝑝, against multiple beta estimates of factor loading, 𝛽̂𝑝
𝑆𝑀𝐵, 𝛽̂𝑝

𝐻𝑀𝐿, 𝛽̂𝑝
𝑅𝑀𝑊, and 

𝛽̂𝑝
𝐶𝑀𝐴, respectively.  

 

[Insert Table 7 here] 
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Panel 1 of Table 7 reports factor premium estimates of the Fama-French original two-factor 

approach. I exclude the market factor in that it is already embedded in the MV𝔸 factors. Panel 2 

shows the results from the multiple cross-sectional regression of Fama-French newly proposed 

with four empirical pricing factors. Statistically, I found none of the 𝜆 estimates is significant, 

indicating the Fama-French empirical pricing factors have no impact on the residual returns of 

assets calculated from the MV𝔸 model. The MV𝔸 asset pricing model is robust in describing the 

cross-sectional returns on risky equity securities. From the previous discussion, the traditional MV 

model is a valid approach, if returns on the asset are symmetrically distributed. Therefore, 

intuitively, the difference between MV𝔸 and MV models is merely the impact of asymmetries in 

returns, and the asymmetry factor  𝜆𝔸 characterizes this difference.   

In short, logically, the symmetry is unique. However, the appearance of asymmetry could 

be infinite; similar to the case that there is an endless number of distributional moments in 

determining the return asymmetry. Therefore, at least in theory, it is possible to have infinite 

amounts of empirical factors identified from the sample data that can describe the phenomenon of 

pricing asymmetry in equilibrium. The contribution of this dissertation is to provide a simple 

methodology that converges all possible distributional or pricing asymmetries into a summary 

statistic or a common factor.   

 

B. Mean-Variance and Mean-Swap Variance Betas 

This dissertation uses monthly returns of portfolios from the Kenneth French Database over 

the 1932 to 2015 sample period. The six different portfolios are three size-sorted and three-value 
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sorted portfolios according to the Kenneth French Database. I compute betas using portfolio 

returns and market return over the past 60 months. Mean-variance betas are computed using single-

factor CAPM; MSwV betas are computed by the MSwV asset pricing model that was introduced 

in the previous section, and tail betas are the difference between two betas. Table 2 reports the 

descriptive statistics of portfolio betas. 

 

[Insert Table 8 here] 

 

On average, tail betas located in quintiles 2-4 are approximately equal to 0 on all six 

portfolios. But tail betas on extreme conditions are far different than 0. Except in large-size 

portfolios, tail betas are smaller than -0.l5 on lower quintile, and larger than 0.10 on higher quintile. 

The result shows that under extreme conditions MV beta and MSwV beta are significantly 

different, and traditional MV beta may lose information on high moments. Moreover, comparing 

across different portfolios, small size portfolios and high B/M portfolios have very large tail betas; 

large size portfolios, oppositely, have small tail betas. 

 

C. Factor Portfolios Mimicking Loss Aversion and Gain Preference 

To investigate how asymmetric risk is priced in the cross-section of equity returns, I follow 

Fama and French’s (1993) factor generating process. I construct a set of assets that are sufficiently 

diverse in exposure to asymmetric risk by sorting firms on absolute values of beta difference over 
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the past month with daily data. I compute betas for all stocks on CRSP with share code 10 and 11, 

and with more than 17 daily observations for each month. In a setting in which coefficients 

potentially vary over time, a one-month window with daily data is a natural compromise between 

estimating coefficients with a reasonable degree of precision and pinning down conditional 

coefficients in an environment with time-varying factor loadings. At the end of each month, I sort 

stocks into quintiles, based on the value of the realized 𝛽𝑖
𝐿 and  𝛽𝑖

𝐺 coefficients over the past month. 

Firms in quintile 1 have the lowest coefficients, while firms in quintile 5 have the highest 

beta loadings. Within each quintile portfolio, I value weight the stocks. I link the returns across 

time to form one series of post-ranking returns for each quintile portfolio. 

 

[Insert Table 9 here] 

 

Table 9 reports summary statistics for quintile portfolios sorted by past 𝛽𝑖
𝐿 and  𝛽𝑖

𝐺 over the 

previous month using equation (21). The first three columns report the mean, standard deviation 

and square root of SwV of monthly holding period returns. In the column under the heading pre-

formation 𝛽𝑖
𝔸/𝛽𝑖

𝐿/𝛽𝑖
𝐺, I report the pre-formation 𝛽𝑖

𝔸/𝛽𝑖
𝐿/𝛽𝑖

𝐺 coefficients, which are computed at the 

beginning of each month for each portfolio and are value weighted. The column reports the time 

series average of the pre-formation beta loadings across the whole sample. By construction, since 

the portfolios are formed by ranking on past betas, the pre-formation beta loadings monotonically 

increase from portfolio 1 to portfolio 5. The 𝛽𝑖
𝔸 ranking portfolio returns show a U-shape; applying 

stocks with very low or very high pre-formation 𝛽𝑖
𝔸 have a better sample performance. The 5-1 
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spreads are not significant for both value-weighted and equal-weighted portfolios. Now I rank the 

stocks by 𝛽𝑖
𝐿 and 𝛽𝑖

𝐺, and there is a significant trend from quintile 1 to quintile 5. In value-weighted 

portfolios, 𝛽𝑖
𝐿 ranked portfolio monthly holding period returns increase from 0.694% for quintile 

1 to 1.337% for quintile 5, while 𝛽𝑖
𝐺 ranked portfolio monthly holding period returns decrease from 

1.329% for quintile 1 to 0.746% for quintile 5. Equal-weighted portfolios show the same trends. 

So based on the idea of Arbitrage Pricing Theory (APT), I can construct a positive symmetric risk 

factor and a negative symmetric risk factor using the 5-1 spreads by 𝛽𝑖
𝐿 and 𝛽𝑖

𝐺  sorted portfolios, 

respectively. Table 10 reports the correlation between different factors. Market factor, loss aversion 

risk factor, and size factor have positive correlation, while gain preference risk factor and value 

factor have positive correlation. But the correlations between factors in these two groups are 

negative. The negative correlation between loss aversion and gain preference factors is consistent 

with the U-shape quintile portfolio returns when I rank 𝛽𝑖
𝔸. 

 

[Insert Table 10 here] 

In addition, this study computes the asymmetric risk factor after controlling the effect of 

Fama and French’s size and value factors. First, I run the Fama-French three factor model, and 

find the residuals that exclude the component related to size and value. Mathematically, 𝑅𝑒𝑠𝑖 =

𝑅𝑖 − 𝛽𝑆𝑀𝐵𝑆𝑀𝐵 − 𝛽𝐻𝑀𝐿𝐻𝑀𝐿 . This residual contains the information of market return but is 

uncorrelated with size and value factors. Then I compute MV beta and MSwV beta using market 

return and this residual, and then I sort quintile portfolios by the new beta difference. Table 11 

reports the off-sample performance of quintile portfolios after controlling size and value factors. 
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The results show the same pattern as before the adjustment. For both equal-weighted and value-

weighted portfolios, 𝛽𝑖
𝔸 sorted quintile portfolio returns show U-shape, positive 𝛽𝑖

𝔸 (𝛽𝑖
𝐿) sorted 

quintile portfolio returns increase significantly from quintile 1 to quintile 5, and negative 𝛽𝑖
𝔸 (𝛽𝑖

𝐺) 

sorted quintile portfolio returns decrease significantly. The results of robustness tests empirically 

support that positive and negative asymmetric risk factors are critical in asset pricing. 

 

[Insert Table 11 here] 

 

Moreover, Figure 6 shows the security market plane (SMP) in three-dimensions according 

to the U-shape return premium of asymmetric beta. The SMP represents the equilibrium asset 

pricing result of the MSwV approach in that 𝛽𝑆𝑤𝑉 is the co-effect of 𝛽𝑆and 𝛽𝔸. Note that for a level 

of systematic risk, securities that are insensitive to the distributional asymmetries in market returns 

(i.e. 𝛽𝔸 = 0 ) would have the lowest expected return.  For instance, the expected return of asset i 

(j) with a positive (negative) 𝛽𝑖
𝔸 should have higher expected returns than those determined from 

the SML. The curvature of the SMP could attribute to the fact that the risk premium of individual 

assets are determined by two fundamentally different factors: the systemic and an upside 

distributional asymmetry (or a downside asymmetry). The positive (negative) factor risk-premium 

also intuitively implies that investors are gain-preference (loss-averse) toward upside (downside) 

market return-asymmetry.  Nevertheless, to theoretically formulate the SMP as the equilibrium 

pricing results of the expected utility optimization, it is necessary to redefine utility functions for 

incorporating with the shift of investor risk attribute toward return-asymmetry. 
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[Insert Figure 6 here] 

 

 

D. Testing for Behavioral Asset Pricing Model 

This dissertation explores the cross-sectional return characteristics of portfolios based on 

size and also based on B/M value over the 1969-2015 sample period. My empirical tests are in the 

spirit of Fama and MacBeth (1973). Fama and MacBeth test the CAPM with a two-pass procedure 

that first sorts stocks into portfolios on the basis of historical beta estimates and then estimates the 

mean cross-sectional relationship between the portfolio returns and portfolio betas for each period. 

At the end of each calendar year, I rank all ordinary common stocks included in the CRSP file that 

have share code 10 or 11 by different betas and divide the sample into 60 portfolios of equal size. 

The portfolios increase from about 431 stocks per portfolio in 1969 to about 747 stocks in 2015. 

For each period, I estimate a cross-sectional regression of the period portfolio returns on the 

loadings on MKT, SMB, HML, and asymmetric factor loadings, and then average the T estimates 

to produce a sample Fama-MacBeth coefficient estimate. 

 

[Insert Table 12 here] 

 

Table 12 reports the results for a three-factor model with market, loss aversion, and gain 

preference, as well as a five-factor model adding size and value factors. For each period, portfolio 

returns are regressed on these five factor loadings. These loadings are computed by regressing 
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portfolio returns over the past 60 periods on the MKT, 𝑓𝐿, 𝑓𝐺, SMB and HML, respectively. The 

dissertation finds the asymmetric factor loading has significant explanatory power for portfolio 

returns for most of the sorting methods. The factor price for loss aversion beta is positive, while 

the factor price for gain preference beta is negative. Moreover, when including the asymmetric 

factor, size factor still has impact on asset return, but value factor seems to lose its influence on 

asset pricing. 
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VI.    Conclusion  

By employing conventional methods of expected utility optimization, I develop the 

equilibrium pricing models under the frameworks of MSwV and MV𝔸, respectively. The MSwV 

approach is a single factor model and is similar to the CAPM. However, for calculating the beta 

coefficient, the market factor needs to be replaced by the MSwV optimal portfolio, and the 

covariance (variance) has to be substituted by the CoSwV (SwV). I show empirically that the 

MSwV model is superior to the MV approach mainly for returns that are asymmetrically 

distributed.   

The MV𝔸 asset pricing approach, a two-factor model that serves as an extension of the 

CAPM, quantifies the deterministically systematic components of equilibrium returns on risky 

assets between symmetry and asymmetry, respectively. Crucially, the MV𝔸 model is unbiased not 

only to risk-aversion but also to upside gain-preference as well as to downside loss-aversion.  

Based on the Fama-MacBeth tests, I show that the MV𝔸 is empirically robust. Based on data from 

the U.S. equity markets, I further find that with the MV𝔸 factors of symmetry and asymmetry, the 

conventional empirical pricing factors lose their explanatory power to the cross-sectional expected 

returns on assets. My analysis implies that since only two fundamental factors are sufficient for 

determining the systematic risk of assets, most empirically defined factors perhaps capture just 

parts of the phenomenon of pricing asymmetry in equilibrium. 

Moreover, this dissertation develops asymmetric-risk factors following Fama and French’s 

(1992) approach and extends the MSwV asset pricing model to a multifactor model based on the 
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idea of APT. The empirical results show that the portfolios with higher loss aversion have higher 

consequent returns, while the portfolios with higher gain preference have lower consequent returns. 

That means the expected return corresponded to loss aversion is positive, while expected return 

corresponded to gain preference is negative, suggesting investors have different attitudes to risk 

on the two sides. This result is consistent with behavior theory that investors gain preference when 

they realize large profits, and they become loss averse when they suffer large losses.  
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Appendix 

Proof of Theorems 1 and 2 

 

Suppose 𝑅𝑖 stochastically dominate 𝑅𝑗 such that 𝐸𝑈(𝑅𝑖) ≥ 𝐸𝑈(𝑅𝑗).  From (3), I have  

𝐸𝑈(𝑅𝑖) − 𝐸𝑈(𝑅𝑗) = 𝑈(𝜇𝑖) − 𝑈(𝜇𝑗) + 𝜃 ∙ (SwV𝑖 − SwV𝑗) ≥ 0  (A-1) 

where  𝜃 =
𝕌(𝑈,𝜇𝑖,𝑅𝑖

𝑜
)𝑆𝑤𝑉𝑖−𝕌(𝑈,𝜇𝑗,𝑅𝑗

𝑜)𝑆𝑤𝑉𝑗

𝑆𝑤𝑉𝑖−𝑆𝑤𝑉𝑗
. Based on mean value theorem, 𝜃 is a number between 

𝕌(𝑈,𝜇𝑖, 𝑅𝑖
𝑜
) and 𝕌 (𝑈,𝜇𝑗, 𝑅𝑗

𝑜
), and thus 𝜃 ≤ 0.  The conditions that 𝜇𝑖 ≥ 𝜇𝑗, and SwV𝑖 = SwV𝑗 are 

necessary to ensure the inequality (A-1) for all investors who prefer more to less (𝑈′ ≥ 0) without 

further restriction on the utility function. For risk-averse investors where  𝕌(𝑈, 𝜇, 𝑅𝑜) ≤ 0 , in 

addition to higher mean return, the condition 𝑆𝑤𝑉𝑖 ≤ 𝑆𝑤𝑉𝑗 is necessary for the inequality (A-1).   

 To prove the sufficiency of FSD, consider risk-neutral investors in which  
𝜃

𝑈′(0)
 approaches 

zero, the condition 𝜇𝑖 ≥ 𝜇𝑗 must hold to have the inequality (A-1).  Even for the most risk-averse 

(risk-loving) investors, where the ratio 
𝜃

𝑈′(0)
 is extremely positive (negative), the condition 𝑆𝑤𝑉𝑖 =

𝑆𝑤𝑉𝑗 is sufficient to have the stochastic dominance. 

 The sufficiency of SSD can be determined by considering the most (least) risk-averse 

investors.  That is, even if the ratio 
𝜃

𝑈′(0)
 is extremely negative (approaches zero) in value, the 

condition, SwV𝑖 ≤ SwV𝑗 (𝜇𝑖 ≥ 𝜇𝑗) must hold for the stochastic dominance. 
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Derivation of Proposition 1 

Suppose the optimal market portfolio is MSwV efficient with returns denoted 𝑅𝑚
𝑆𝑤𝑉 , I define the 

Lagrange function of expected utility with respect to its mean and SwV as well as the risk-free 

rate.  

𝐿 = 𝐸𝑈[𝜇(𝑅𝑚
𝑆𝑤𝑉), 𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)] − 𝜆(1 − ∑ 𝑤𝑖𝑖 − 𝑓),  (A-2) 

where 𝜆 is the Lagrange multiplier, and 𝑓 is the weight of risk-free asset. Now, take the partial 

derivative of the Lagrange function with respect to 𝑤𝑖 and 𝑓, respectively, I have  

𝜕𝐿

𝜕𝑤𝑖
=

𝜕𝐸𝑈[𝜇(𝑅𝑚
𝑆𝑤𝑉),𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)]

𝜕𝜇(𝑅𝑚
𝑆𝑤𝑉)

∗
𝜕𝜇(𝑅𝑚

𝑆𝑤𝑉)

𝜕𝑤𝑖
+

𝜕𝐸𝑈[𝜇(𝑅𝑚
𝑆𝑤𝑉),𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)]

𝜕𝑆𝑤𝑉(𝑅𝑚
𝑆𝑤𝑉)

∗
𝜕𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)

𝜕𝑤𝑖
− 𝜆 = 0,  (A-3) 

and 

𝜕𝐿

𝜕𝑓
=

𝜕𝐸𝑈[𝜇(𝑅𝑚
𝑆𝑤𝑉),𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)]

𝜕𝜇(𝑅𝑚
𝑆𝑤𝑉)

∗
𝜕𝜇(𝑅𝑚

𝑆𝑤𝑉)

𝜕𝑓
+

𝜕𝐸𝑈[𝜇(𝑅𝑚
𝑆𝑤𝑉),𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)]

𝜕𝑆𝑤𝑉(𝑅𝑚
𝑆𝑤𝑉)

∗
𝜕𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)

𝜕𝑓
− 𝜆 = 0.  (A-4) 

 

Subtract (A-4) from (A-3), and note that 
𝜕𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)

𝜕𝑤𝑖
= 𝐶𝑜𝑆𝑤𝑉(𝑅𝑖, 𝑅𝑚

𝑆𝑤𝑉), 
𝜕𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)

𝜕𝑓
= 0, and  

(
𝜕𝜇(𝑅𝑚

𝑆𝑤𝑉)

𝜕𝑤𝑖
−

𝜕𝜇(𝑅𝑚
𝑆𝑤𝑉)

𝜕𝑓
) = 𝐸(𝑅𝑖 − 𝑅𝑓), I obtain the equilibrium condition for individual assets 

corresponding to the optimal portfolio as:   

𝐸(𝑅𝑖 − 𝑅𝑓) =
−𝐶𝑜𝑆𝑤𝑉(𝑅𝑖,𝑅𝑚

𝑆𝑤𝑉)
𝜕𝐸𝑈[𝜇(𝑅𝑚

𝑆𝑤𝑉),𝑆𝑤𝑉(𝑅𝑚
𝑆𝑤𝑉)]

𝜕𝑆𝑤𝑉(𝑅𝑚
𝑆𝑤𝑉)

𝜕𝐸𝑈[𝜇(𝑅𝑚
𝑆𝑤𝑉),𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)]

𝜕𝜇(𝑅𝑚
𝑆𝑤𝑉)

.  (A-5) 

 

The condition in (A-5) also holds for the market portfolio that  

𝐸(𝑅𝑚
𝑆𝑤𝑉 − 𝑅𝑓) =

−𝑆𝑤𝑉(𝑅𝑚
𝑆𝑤𝑉)

𝜕𝐸𝑈[𝜇(𝑅𝑚
𝑆𝑤𝑉),𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)]

𝜕𝑆𝑤𝑉(𝑅𝑚
𝑆𝑤𝑉)

𝜕𝐸𝑈[𝜇(𝑅𝑚
𝑆𝑤𝑉),𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)]

𝜕𝜇(𝑅𝑚
𝑆𝑤𝑉)

.  (A-6) 

  

Finally, divide (A-5) by (A-6), we have equations (17.1) and (17.2). 
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Proof of Proposition 2: 

Suppose the optimal market portfolio is MV𝔸 efficient with returns denoted 𝑅𝑚
MV𝔸 (= 𝑅𝑚

𝕊⊥
 + 𝑅𝑚

𝔸⊥
).  I 

define the Lagrange function of expected utility with respect to its mean, variance and 𝔸, as well 

as the risk-free rate. 

𝐿 = 𝐸𝑈[𝜇(𝑅𝑚
MV𝔸), 𝑉𝑎𝑟(𝑅𝑚

MV𝔸), 𝔸(𝑅𝑚
MV𝔸)] − 𝜆(1 − ∑ 𝑤𝑖𝑖 − 𝑓),  (A-7) 

Since U is the aggregated utility, the optimal portfolio is the market portfolio in equilibrium.  Then, 

the first order condition of (A-7) can be written as: 

𝜕𝐿

𝜕𝑤𝑖

= [
𝜕𝐸𝑈

𝜕𝜇(𝑅𝑚
MV𝔸)

∙
𝜕𝜇(𝑅𝑚

MV𝔸)

𝜕𝑤𝑖

] + [
𝜕𝐸𝑈

𝜕𝑉𝑎𝑟(𝑅𝑚
MV𝔸)

∙
𝜕𝑉𝑎𝑟(𝑅𝑚

MV𝔸)

𝜕𝑤𝑖

] + [
𝜕𝐸𝑈

𝜕𝔸(𝑅𝑚
MV𝔸)

∙
𝜕𝔸(𝑅𝑚

MV𝔸)

𝜕𝑤𝑖

] − 𝜆 = 0, (A-8) 

 

and 

𝜕𝐿

𝜕𝑓
=

𝜕𝐸𝑈

𝜕𝜇(𝑅𝑚
MV𝔸)

∙
𝜕𝜇(𝑅𝑚

MV𝔸)

𝜕𝑓
− 𝜆 = 0. (A-9) 

 

Since 𝑉𝑎𝑟(𝑅𝑚
MV𝔸) = 𝑉𝑎𝑟(𝑅𝑚

𝕊⊥
), and 𝔸(𝑅𝑚

MV𝔸) = 𝔸(𝑅𝑚
𝔸⊥

),  equation A-8 can be rewritten as: 

𝜕𝐿

𝜕𝑤𝑖

= [
𝜕𝐸𝑈

𝜕𝜇(𝑅𝑚
MV𝔸)

∙
𝜕𝜇(𝑅𝑚

MV𝔸)

𝜕𝑤𝑖

] + [
𝜕𝐸𝑈

𝜕𝑉𝑎𝑟(𝑅𝑚
𝕊⊥

)
∙
𝜕𝑉𝑎𝑟(𝑅𝑚

𝕊⊥
)

𝜕𝑤𝑖

] + [
𝜕𝐸𝑈

𝔸(𝑅𝑚
𝔸⊥

)
∙
𝜕𝔸(𝑅𝑚

𝔸⊥
)

𝜕𝑤𝑖

] − 𝜆 = 0, (A-10) 

 

Subtract (A-9) from (A-10), and note that 
𝜕𝑉𝑎𝑟(𝑅𝑚

𝕊⊥
)

𝜕𝑤𝑖
= 𝐶𝑜𝑉(𝑅𝑖, 𝑅𝑚

𝕊⊥
), 

𝜕𝔸(𝑅𝑚
𝔸⊥

)

𝜕𝑤𝑖
= 𝐶𝑜𝑆𝑤𝑉(𝑅𝑖 , 𝑅𝑚

𝔸⊥
) −

 
𝐶𝑜𝑉(𝑅𝑖,𝑅𝑚

𝐴⊥
)

[1+𝜇(𝑅𝑚
𝔸⊥

)]
2, and  [

𝜕𝜇(𝑅𝑚
MV𝔸)

𝜕𝑤𝑖
−

𝜕𝜇(𝑅𝑚
MV𝔸)

𝜕𝑓
] = [𝐸(𝑅𝑖) − 𝑅𝑓], I obtain the following equation for individual 

assets corresponding to the optimal portfolio:   

𝐸(𝑅𝑖) − 𝑅𝑓 = 

−[
𝜕𝐸𝑈

𝜕𝑉𝑎𝑟(𝑅𝑚
𝕊⊥

)
]

[
𝜕𝐸𝑈

𝜕𝜇(𝑅𝑚
MV𝔸)

]

 𝐶𝑜𝑉(𝑅𝑖, 𝑅𝑚
𝕊⊥

)  + 

[
𝜕𝐸𝑈

𝔸(𝑅𝑚
𝔸⊥

)
]

[
𝜕𝐸𝑈

𝜕𝜇(𝑅𝑚
MV𝔸)

]

[𝐶𝑜𝑆𝑤𝑉(𝑅𝑖, 𝑅𝑚
𝔸⊥

) − 
𝐶𝑜𝑉(𝑅𝑖,𝑅𝑚

𝐴⊥
)

[1+𝜇(𝑅𝑚
𝔸⊥

)]
2]      (A-11) 
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𝐸 (𝑅𝑚
𝕊⊥

− 𝑅𝑓) = 

−[
𝜕𝐸𝑈

𝜕𝑉𝑎𝑟(𝑅𝑚
𝕊⊥

)
]

[
𝜕𝐸𝑈

𝜕𝜇(𝑅𝑚
MV𝔸)

]

 𝑉𝑎𝑟(𝑅𝑚
𝕊⊥

)        (A-12) 

 

 

 

𝐸 (𝑅𝑚
𝔸⊥

− 𝑅𝑓) = 

[
𝜕𝐸𝑈

𝔸(𝑅𝑚
𝔸⊥

)
]

[
𝜕𝐸𝑈

𝜕𝜇(𝑅𝑚
MV𝔸)

]

[𝑆𝑤𝑉(𝑅𝑚
𝔸⊥

)  − 
𝑉𝑎𝑟(𝑅𝑚

𝔸⊥
)

[1+𝜇(𝑅𝑚
𝔸⊥

)]
2]      (A-13) 

 

 

Finally, substitute (A-12) and (A-13) into (A-11), I have (19.1) and (19.2). 



85 
 

 

 

 

 

 

 

Figures and Tables 



86 
 

 

 

 
 

R -0.1 -0.06 -0.02 0.02 0.06 0.1 

% Diff 7.2% 4.2% 1.4% -1.3% -3.8% -6.2% 

 

 

             Figure 1: Symmetric 𝑹𝟐  vs. Asymmetric  2(𝑹 − 𝒓) 
               This figure shows that the asymmetries in return, quantified by the difference between 

2(𝑅 − 𝑟)  and 𝑅2, where 𝑅 > −1,   𝑟 =  𝑙𝑛(1 + 𝑅),  and  𝒜 = [2(𝑅 − 𝑟) − 𝑅2] =

∑ (−1)𝑘 (
2

𝑘
)𝑅𝑘∞

𝑘=3 .  𝑅2  is less (higher) than 2(𝑅 − 𝑟) if  𝑅  is negative (positive).  That 

implies the variance understates (overstates) the downside (upside) risk if returns are 

asymmetrically distributed.   

0 R

𝑅2

2(𝑅 − 𝑟)𝒜< 0
𝒜> 0 
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Figure 2. SSD Efficiency and Portfolio Separation This figure depicts a simulated MSwV efficient 

frontier of portfolios (solid line) generated from random returns of three hypothetical distributions: 

normal, lognormal, and gamma, respectively. The random sample has means ranging from -0.2 to 0.2, 

standard deviations from 0.4 to 0.7, and correlation coefficients from -0.3 to 0.7, accordingly. For a 

comparison, we also plot the MV efficient frontier (dash line) in the MSwV space.  With a risk-free 

asset, an optimal SSD portfolio of risky assets, denoted 𝑃𝑆𝑆𝐷
∗ , can then be determined by the point on 

the SSD efficient curve to which the SSD capital market line (SSD-CML) is the tangent with the 

highest risk-adjusted mean return.  The convex curves, IC1 and IC2, are indifference curves. The 

convexity of indifference curve presents the diminishing marginal rates of substitution between 

expected return and SwV. 
 

 
 

 

 

SSD-CML

𝐸 𝑅𝑝

𝑆𝑤𝑉𝑝 − 2𝑑𝜇𝑝 

RF 

𝑃𝑆𝑆𝐷
∗  

∗ 

IC1 

 

IC2 

MV efficient frontier  

SSD (MSwV) efficient frontier 
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Figure 3.  Stochastic Dominance Efficient Frontier and Capital Market Line (CML) This 

figure depicts the SSD and  MV𝔸  efficient portfolios and the CMLs in a three-dimensional 

space with respect to mean, variance and 𝔸, where 𝔸𝑝 = 𝑆𝑤𝑉𝑝 − (
𝜎𝑝

1+𝜇𝑝
)
2

.   The SSD (or mean-

SwV) efficient curve is the upper part of the minimum-SwV portfolios for every levels of the 

mean return.  The  MV𝔸  optimal portfolios are the minimum-𝔸 portfolios for every levels of 

the mean return and those of the variance.  With a risk-free asset, the SSD optimal portfolio is 

unique and is the point on the SSD efficient curve to which the SSD capital market line (SSD-

CML) is the tangent with the highest risk-adjusted mean return.   
 

 

 

 
 

MSwV (SSD) efficient curve 

𝐸(𝑅) 

𝜎2 

𝔸 

0 
Rf 

𝑃MV𝔸
∗   
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Figure 4 

Moving Pattern of the Optimal Hedge Ratios for S&P 500 Index 

Figure shows the moving patterns of hedge ratios for S&P 500 index. Panel A shows the minimizing-

swap variance hedge ratio, Panel B shows the minimizing-variance hedge ratio, and Panel C shows the 

difference between the two hedge ratios. 
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Panel B: Minimizing-Swap Variance Hedge Ratios 

 

 

Panel C: Difference Between Hedge Ratios of Minimizing-Swap Variance and Minimizing-

Variance 
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Figure 5 

Moving Pattern of the Optimal Hedge Ratios on the Crude Oil Markets 

Figure shows the moving patterns of hedge ratios on the WTI crude oil market. Panel A shows the 

minimizing-swap variance hedge ratio, Panel B shows the minimizing-variance hedge ratio, and Panel 

C shows the difference between the two hedge ratios. 
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Panel B: Minimizing-Swap Variance Hedge Ratios 

 

 

Panel C: Difference Between Hedge Ratios of Minimizing-Swap Variance and Minimizing-

Variance 
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Figure 6.  U-shape mean-𝜷𝔸 and the Security Market Plane (SMP).  This figure depicts 

the three-dimensional equilibrium risk-return relationship derived from the MSwV analysis.  

The expected return is non-linearly with respect to the asymmetric beta, 𝛽𝔸, and it has a U-

shape appearance as shown in the figure.  Extend the curvature of mean-𝛽𝔸 to every points 

along the security market line (SML) in the mean-𝛽𝑆 space, I am able to graphically identify 

a curved security market plane (SMP) in the three-dimensional space of mean-𝛽𝑆-𝛽𝔸 in the 

figure. 
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Table 1 

Summary Statistics for Hedge Funds and Industry Portfolios 
This table summarized the statistics of monthly portfolio returns from 14 hedge fund indexes (data comes from Credit Suisse Hedge Fund Index), 

and Kenneth French’s 12 industry portfolios. The sample period is from January 1995 to December 2015. The numbers after Sharpe ratios are the 

ranks among hedge funds. The MSwV Sharpe ratio is the expected excess return over the square root of SwV. If the orders are different under the 

two framework, the ranking numbers are in bold font.  The MSwV beta is calculated based on (17.2) with respect to the MSwV optimal portfolio 

returns. To test the difference between MV-beta and MSwV-beta, I use Monte Carlo approach by data randomization. I randomly select 1,000 

sets of 500 random returns from the total 559 observations in the sample and compute the t-test statistics.   

 Mean       𝜎2    SwV  Sharpe Ratio  Beta Coefficient 

Hedge Fund Portfolios (%)  (× 104)  (× 104)  MV Rank MSwV Rank  MV MSwV Difference 

Hedge Fund Index 0.717 4.098 2.116  0.251 5 0.350 6  0.281 0.258 0.023 *** 

Convertible Arbitrage 0.618 3.534 1.981  0.218 9 0.291 8  0.159 0.171 -0.012 *** 

Dedicated Short Bias -0.408 22.381 4.679  -0.130 14 -0.285 14  -0.860 -0.863 0.004 *** 

Emerging Markets 0.611 14.339 4.016  0.106 11 0.201 10  0.505 0.431 0.075 *** 

Equity Market Neutral 0.454 7.903 3.209  0.088 12 0.137 13  0.184 0.185 -0.001 *** 

Event Driven 0.722 3.185 1.906  0.288 3 0.372 5  0.266 0.250 0.016 *** 

Distressed 0.805 3.279 1.973  0.330 2 0.425 2  0.256 0.268 -0.012 *** 

Multi-Strategy 0.686 3.762 2.035  0.247 6 0.335 7  0.275 0.239 0.036 *** 

Risk Arbitrage 0.480 1.385 1.255  0.231 8 0.243 9  0.142 0.115 0.027 *** 

Fixed Income Arbitrage 0.451 2.372 1.612  0.158 10 0.191 11  0.115 0.138 -0.023 *** 

Global Macro 0.926 6.760 2.714  0.276 4 0.436 1  0.145 0.168 -0.023 *** 

Long/Short Equity 0.832 7.256 2.767  0.232 7 0.375 3  0.448 0.391 0.057 *** 

Managed Futures 0.471 11.524 3.371  0.077 13 0.143 12  -0.054 -0.012 -0.041 *** 

Multi-Strategy 0.678 1.900 1.588  0.341 1 0.373 4  0.137 0.098 0.039 *** 
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 Mean       𝜎2    SwV  Sharpe Ratio  Beta Coefficient 

Industry Portfolios (%)  (× 104)  (× 104)  MV Rank MSwV Rank  MV MSwV Difference 

NoDur 0.883 25.847 26.337  0.132 4 0.175 4  0.902 0.892 0.010 *** 

Durbl 0.706 46.854 47.073  0.072 12 0.103 12  1.232 1.226 0.006 ** 

Manuf 0.968 38.057 39.038  0.122 6 0.157 5  1.164 1.168 -0.004 * 

Enrgy 0.934 80.569 82.138  0.080 11 0.104 11  1.125 1.100 0.025 *** 

Chems 0.921 35.212 36.012  0.119 7 0.155 6  1.070 1.084 -0.014 *** 

BusEq 1.351 82.374 81.234  0.125 5 0.152 7  1.564 1.585 -0.019 *** 

Telcm 0.914 75.429 74.115  0.081 10 0.107 10  1.519 1.533 -0.014 *** 

Utils 0.978 12.766 13.616  0.214 1 0.275 1  0.434 0.393 0.041 *** 

Shops 0.922 38.081 38.032  0.115 8 0.151 8  1.083 1.078 0.005 * 

Hlth  1.461 59.305 58.829  0.162 3 0.194 3  1.192 1.198 -0.006 ** 

Money 1.029 17.800 18.975  0.194 2 0.243 2  0.720 0.726 -0.006 * 

Other 0.821 35.474 36.036  0.102 9 0.138 9  1.108 1.119 -0.011 *** 

 

***, ** and * denote statistics significant at 1 percent, 5 percent and 10 percent levels, respectively. 

 

 



96 
 

Table 2 

MV, SSD and 𝐌𝐕𝔸 Sharpe Ratios 

This table reports the rankings of Sharpe ratios of asymmetry portfolios (PFL) that formed according to their in-sample asymmetry measure (Pre-
𝔸). We conduct a two-stage analysis. On the first stage, 20 portfolios are formed based on sorted annualized 𝔸, calculated from the monthly returns 

on all CRSP stocks with share code 10 and 11. We then report the summary statistics as well as Sharp ratios for the in-sample as well as the out-

of-sample (one-month lag) calculations.  The sample period covers from 1969 to 2015. 
 

 In-Sample Rankings Ave. 

Stock 

Pre-𝔸 

Out-of-Sample Rankings 

     Sharp Ratios     Sharp Ratios 

PFL  𝜇   𝜎2  SwV        𝔸 
MV 

R
an

k 

MSwV 

R
an

k 

𝜇 𝜎2 SwV 𝔸 
MV 

R
an

k 

MSwV 

R
an

k 

 
(%)  (× 104)  (× 104)  (× 104) (× 104) (%)  (× 104)  (× 104) (× 104) 

1 5.09 144.71 144.96 13.92 3.242 1 3.236 1 -371.56 4.13 128.91 130.13 11.26 2.900 6 2.872 5 
2 2.64 93.19 91.21 2.76 2.413 11 2.465 10 -95.20 2.92 91.72 92.51 5.92 2.753 8 2.730 8 
3 2.09 64.91 64.99 2.71 2.606 8 2.602 6 -42.58 2.45 71.46 73.67 5.58 2.870 7 2.784 7 
4 1.69 49.17 49.58 2.03 2.634 6 2.612 5 -21.12 2.23 59.69 61.08 3.98 3.077 3 3.006 3 
5 1.31 35.46 36.00 1.46 2.577 9 2.537 7 -10.81 1.62 40.27 41.76 2.75 3.031 4 2.924 4 
6 1.16 26.10 26.76 1.26 2.940 2 2.867 2 -5.37 1.40 38.20 37.38 0.22 2.624 9 2.682 9 
7 0.92 19.02 19.38 0.70 2.731 4 2.681 3 -2.40 1.23 22.80 24.11 1.86 3.677 1 3.477 1 
8 0.79 16.23 16.68 0.70 2.421 10 2.356 11 -0.76 0.98 18.20 19.28 1.43 3.228 2 3.048 2 
9 0.84 15.94 16.57 0.90 2.773 3 2.667 4 0.40 0.93 18.33 19.26 1.27 2.938 5 2.796 6 

10 0.85 17.51 18.44 1.23 2.608 7 2.476 9 1.53 0.97 22.23 22.66 0.85 2.565 10 2.518 10 
11 0.91 19.29 20.45 1.51 2.652 5 2.501 8 2.86 0.96 22.44 23.40 1.38 2.508 11 2.405 11 
12 0.88 21.05 22.33 1.65 2.307 12 2.175 12 4.53 0.96 25.64 26.77 1.63 2.212 12 2.118 14 
13 0.85 24.86 26.35 1.90 1.813 13 1.711 13 6.69 0.92 29.81 30.49 1.22 1.745 19 1.706 20 
14 0.81 26.99 28.31 1.75 1.527 14 1.456 14 9.61 0.97 32.51 33.33 1.44 1.777 18 1.733 19 
15 0.76 29.20 30.43 1.67 1.238 15 1.188 15 13.55 1.06 33.23 34.33 1.80 1.998 16 1.934 16 
16 0.54 30.88 32.11 1.56 0.479 16 0.460 16 18.73 1.19 36.48 37.44 1.81 2.190 13 2.134 13 
17 0.29 35.51 37.08 1.78 -0.293 17 -0.281 17 26.14 1.18 39.20 40.07 1.78 1.998 15 1.955 15 
18 0.01 42.96 45.14 2.19 -0.888 18 -0.845 18 38.69 1.32 49.72 50.21 1.77 1.852 17 1.834 18 
19 -0.60 55.88 59.76 3.20 -1.789 19 -1.673 19 66.91 2.07 78.66 76.45 0.94 2.124 14 2.185 12 
20 -2.47 96.06 112.29 11.29 -2.985 20 -2.554 20 187.32 5.39 405.05 266.82 -97.83 1.234 20 1.873 17 
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Table 3 
A Comparison of Market and Factor Portfolios  

This table reports the summary statistics of symmetry and asymmetry of monthly returns on the 

MSwV (SSD) optimal portfolio, the MV𝔸 optimal portfolio, the MV optimal portfolio, Fama-

French (FF) factor portfolios, and the key US market indexes. The Sharp ratios according to MSwV 

and MV𝔸 models are also reported. To find the SSD and MV𝔸 optimal portfolios, we determine the 

optimal weights based on past 60 monthly excess returns on all CRSP stocks, and apply the optimal 

weights to the following month to form the portfolios.  The sample period covers from 1995 to 2016. 

           Sharp Ratios 

 𝜇 (%) SwV × 104 𝜎2 × 104 𝔸 × 104 MV MSwV 

SSD* MKT 1.106 5.918 10.736 -5.798 0.28 0.37 

MV𝔸∗ MKT 1.107 5.916 10.731 -5.798 0.34 0.37 
       

FF-MKT 0.872 10.196 19.556 -9.779 0.20 0.21 

FF-SMB 0.210 5.163 10.424 -5.262 0.07 0.00 

FF-HML 0.260 4.959 9.934 -4.991 0.08 0.03 

FF-RMW 0.332 4.447 8.749 -4.354 0.11 0.06 

FF-CMA 0.283 2.340 4.681 -2.394 0.13 0.05 

FF-MOM 0.417 14.449 27.091 -12.591 0.08 0.06 
       

SPX 0.695 9.476 18.373 -9.125 0.16 0.16 

DOW 0.714 9.172 17.803 -8.887 0.17 0.17 

NASDAQ 0.979 22.890 44.608 -21.809 0.15 0.16 

 

 

 

 



 
 

98 
 

 

Table 4 

MV, SSD and MSwV Efficient sets 
14 available portfolios are compared based on mean-variance, mean-SwV and SSD categories. I use 

returns of portfolios from Kenneth French Data Base. There are three size portfolios (Small Size, 

Medium Size and Large Size), three B/M portfolios (Growth, Neutral and Value), one Momentum 

portfolio (MOM), one reversal portfolio (REV), five industry portfolios (Cnsmr, Manuf, Hitec, Hlth 

and Other), and market portfolio (MKT). The efficient sets are formed using weekly returns for each 

year from 2006-2015. 

2006 

Mean-Variance SSD Mean-Swapvariance 

Large Size, Neutral, Value, 

Cnsmr, Other, Rev 

Large Size, Neutral, Value, 

Cnsmr, Other, Rev 

Large Size, Neutral, Value, 

Cnsmr, Other, Rev 
 

 
2007 

Mean-Variance SSD Mean-Swapvariance 

Mom, Rev Mom, Rev Mom, Rev 

 

 
2008 

Mean-Variance SSD Mean-Swapvariance 

Mom, Rev Mom, Rev Mom, Rev 

 

 
2009 

Mean-Variance SSD Mean-Swapvariance 

Growth, Cnsmr, Hitec, Rev Growth, Cnsmr, Hitec, Rev Growth, Cnsmr, Hitec, Rev 

 

 
2010 

Mean-Variance SSD Mean-Swapvariance 

Small Size, Medium Size, 

Neutral, Cnsmr, Mom, Rev 

Small Size, Medium Size, 

Neutral, Cnsmr, Mom, Rev 

Small Size, Medium Size, 

Neutral, Cnsmr, Mom, Rev 
 

 
2011 

Mean-Variance SSD Mean-Swapvariance 

Hlth, Mom, Rev Hlth, Mom, Rev Hlth, Mom, Rev 

 

 
 
 
 
 



 
 

99 
 

2012 

Mean-Variance SSD Mean-Swapvariance 

Value, Cnsmr, Hlth, Other, 

Rev 

Value, Cnsmr, Hlth, Other, 

Rev 

Value, Cnsmr, Hlth, Other, 

Rev 
 

 
2013 

Mean-Variance SSD Mean-Swapvariance 

Small Size, Medium Size, 

Large Size, Growth, Hlth, 

Mom, Rev, MKT 

Small Size, Medium Size, 

Large Size, Growth, Hlth, 

Mom, Rev, MKT 

Small Size, Medium Size, 

Large Size, Growth, Hlth, 

Mom, Rev, MKT 
 

 
2014 

Mean-Variance SSD Mean-Swapvariance 

Large Size, Cosmr, Hitec, 

Hlth, Mom, Rev 

Growth, Large Size, 

Cosmr, Hitec, Hlth, Mom, 

Rev 

Growth, Large Size, 

Cosmr, Hitec, Hlth, Mom, 

Rev 
 

 
2015 

Mean-Variance SSD Mean-Swapvariance 

Cosmr, Mom, Rev Cosmr, Mom, Rev Cosmr, Mom, Rev 
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Table 5 

Difference of Hedge Ratio and Volatility Index 

The table reports the regression results of differences between minimizing-variance hedge ratio 

and minimizing swap variance hedge ratio on the VIX index. 𝐷𝑖𝑓𝑓 = 𝛼 + 𝛽(
𝑉𝐼𝑋

100
) + 𝜀. Panel A 

and Panel B show the results of S&P 500 index and the WTI crude oil, respectively. 

 

Panel A: S&P 500 Index 

 

 𝛼 𝛽 

Coefficients 
0.0017 

(9.86) 

-0.0056 

(-6.84) 

𝑅2 0.0070 

Observation 6646 

 

 

Panel B: Crude Oil Market 

 

 𝛼 𝛽 

Coefficients 
0.0034 

(21.33) 

-0.0135 

(-18.13) 

𝑅2 0.0475 

Observation 6591 
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Table 6  

Fama-MacBeth Tests for MSwV (SSD) and MV𝔸 Pricing Models 
Following Fama-MacBeth (1973), this table reports the estimated factor premium of MSwV 

model ( 𝜆̂𝑆𝑤𝑉 ) and that of MV𝔸  model ( 𝜆̂𝕊 , and  𝜆̂𝔸) , respectively. First, estimated factor 

loadings, 𝛽̂𝑆𝑤𝑉, 𝛽̂𝕊, and 𝛽̂𝔸 are calculated, based on (17.2), (19.2), and (19.3), from returns on 

individual securities to returns on indexes, 𝑅𝑚
𝑆𝑤𝑉, 𝑅𝑚

𝕊 , and 𝑅𝑚
𝔸 , respectively, over the past 60 

months. Second, at the beginning of each period, sixty equal-sized portfolios sorted by the 

beginning-of-period estimated betas are formed from the entire sample. I then regress all 

portfolio returns for the period against the estimated betas to determine the risk-premium for 

each factor. The sample contains all CRSP-listed ordinary common equities from July 1969 to 

December 2015. The mean coefficient estimates (𝜆̂) across the sample period are reported with 

their t-statistics.  
 

 

Panel 1: MSwV (SSD) Model  
 

 

 𝝀̂𝑺𝒘𝑽   R2 
 

Adj. R2 

𝜷̂𝒑
𝑺𝒘𝑽-sorted 

0.0057 

(2.04) 

 

** 

 
0.4971  0.4886 

 
 

Panel 2: MV𝔸 Model  

 

 𝝀̂𝕊 
 𝝀̂𝔸 

  R2 
 

Adj. R2 

𝜷̂𝒑
𝕊-sorted 

0.0057 

(2.33) 

 

** 

-0.0508 

(-3.24) 

 

*** 

 
0.5779  0.5634 

𝜷̂𝒑
𝔸-sorted 

0.0078 

(2.14) 

 

** 

-0.0072 

(-1.98) 

 

** 

 
0.6247  0.6118 

 
 

***, ** and * denote statistics significant at 1 percent, 5 percent and 10 percent levels, respectively. 
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Table 7 

Fama-MacBeth Tests for the Validity of MV𝔸 Pricing Model 

If MV𝔸 asset pricing model shown in (19) is valid, then the residual returns of individual assets, 

𝜀𝑗,𝑡 = 𝑅𝑗,𝑡 − (𝛽̂𝑗
𝕊𝑅𝑚,𝑡

𝕊 + 𝛽̂𝑗
𝔸𝑅𝑚,𝑡

𝔸 ), should be idiosyncratic.  Thus, no other common factors could 

explain the residual returns. To examine the validity of the MV𝔸 Model, I first calculated the 

factor loadings of 𝜀𝑗,𝑡 with respect to multiple common factors (e.g., SMB and HML) from the 

following regression model: 𝜀𝑗,𝑡 = 𝛼𝑗 +  𝛽𝑗
𝑆𝑀𝐵𝑆𝑀𝐵𝑡  + 𝛽𝑗

𝐻𝑀𝐿𝐻𝑀𝐿𝑡  + 𝛽𝑗
𝑅𝑀𝑊𝑅𝑀𝑊𝑡  +  𝛽𝑗

𝐶𝑀𝐴𝐶𝑀𝐴𝑡 

+ 𝑒𝑗,𝑡, over the past 60 months. Then, at the beginning of each period, sixty equal-sized portfolios 

sorted by the beginning-of-period estimated betas are formed from the entire sample.  We then 

regress all portfolio returns for each period against the estimated betas (e.g., 𝛽̂𝑝
𝑆𝑀𝐵and 𝛽̂𝑝

𝐻𝑀𝐿) to 

determine the risk-premium for each factor. The sample contains all CRSP-listed ordinary 

common equities from July 1969 to December 2015. The mean coefficient estimates (λ ̂) across 

the sample period are reported with their t-statistics. 
 

 

Panel 1: Two-Factor Test 

 

Portfolios 𝝀̂𝑺𝑴𝑩 
 𝝀̂𝑯𝑴𝑳  R2 

 
Adj. R2 

𝜷̂𝒑
𝑺𝑴𝑩-sorted 

0.0003 

(0.22) 

 0.0008 

(0.27) 

 0.2607  0.2348 

𝜷̂𝒑
𝑯𝑴𝑳-sorted 

-0.0034 

(-1.10) 

 0.0002 

(0.09) 

 0.3112  0.2870 

 

 

Panel 2: Four-Factor Test 

 

Portfolios 𝝀̂𝑺𝑴𝑩 
 𝝀̂𝑯𝑴𝑳 

 𝝀̂𝑹𝑴𝑾 
 𝝀̂𝑪𝑴𝑨 

 R2 
 

Adj. R2 

𝜷̂𝒑
𝑺𝑴𝑩-sorted 

-0.0005 

(-0.26) 

 0.0020 

(0.69) 

 0.0018 

(0.89) 

 -0.0020 

(-1.05) 

 0.3156  0.2659 

𝜷̂𝒑
𝑯𝑴𝑳-sorted 

0.0005 

(0.17) 

 0.0013 

(0.54) 

 0.0026 

(1.17) 

 -0.0006 

(-0.32) 

 0.3091  0.2589 

𝜷̂𝒑
𝑹𝑴𝑾-sorted 

-0.0016 

(-0.60) 

 0.0002 

(0.07) 

 0.0005 

(0.24) 

 -0.0031 

(-1.58) 

 0.3274  0.2786 

𝜷̂𝒑
𝑪𝑴𝑨-sorted 

0.0001 

(0.04) 

 0.0008 

(0.32) 

 0.0010 

(0.51) 

 -0.0007 

(0.09) 

 0.3093  0.2591 

 
 

***, ** and * denote statistics significant at 1 percent, 5 percent and 10 percent levels, respectively. 
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Table 8  

Descriptive Statistics of Betas 
Table 8 provides 3 betas based on 60 months lagged values. I use 3 size-sorted and 3 B/M-sorted 

portfolios from Kenneth French Data Base over the 1932 to 2015.  𝛽̂𝑝
𝑆 represents mean-variance beta; 

 𝛽̂𝑝
𝑆𝑤𝑉 represents mean-SwV beta; while  𝛽̂𝑝

𝐴 represents tail beta. All portfolios are sorted into 5 

quintiles according to their beta estimates. 
 

Portfolios Low 2 3 4 High 

Small 

Size 

 𝛽̂𝑝
𝑆 0.8550 1.0387 1.1922 1.3785 1.7118 

 𝛽̂𝑝
𝑆𝑤𝑉 0.5617 1.0350 1.1979 1.3889 1.9511 

 𝜷̂𝒑
𝑨 -0.4237 -0.0226 0.0003 0.0120 0.3918 

Medium 

Size 

 𝛽̂𝑝
𝑆 1.0005 1.1128 1.1891 1.2903 1.3809 

 𝛽̂𝑝
𝑆𝑤𝑉 0.8287 1.1168 1.1892 1.2875 1.4353 

 𝜷̂𝒑
𝑨 -0.2234 -0.0111 -0.0003 0.0055 0.1130 

Large 

Size 

 𝛽̂𝑝
𝑆 0.9743 1.0208 1.0562 1.0870 1.1370 

 𝛽̂𝑝
𝑆𝑤𝑉 0.9293 1.0218 1.0584 1.0903 1.1682 

 𝜷̂𝒑
𝑨 -0.0622 -0.0041 -0.0016 0.0010 0.0594 

Growth 

 𝛽̂𝑝
𝑆 0.9576 1.1059 1.1903 1.2874 1.4728 

 𝛽̂𝑝
𝑆𝑤𝑉 0.8487 1.1063 1.1997 1.3105 1.6182 

 𝜷̂𝒑
𝑨 -0.1620 -0.0038 0.0030 0.0096 0.2225 

Neutral 

 𝛽̂𝑝
𝑆 0.8557 0.9805 1.1147 1.2399 1.3525 

 𝛽̂𝑝
𝑆𝑤𝑉 0.6738 0.9806 1.1169 1.2406 1.4775 

 𝜷̂𝒑
𝑨 -0.2525 -0.0122 -0.0004 0.0079 0.2028 

Value 

 𝛽̂𝑝
𝑆 0.7668 0.9466 1.1545 1.2972 1.6950 

 𝛽̂𝑝
𝑆𝑤𝑉 0.5257 0.9374 1.1390 1.3029 1.9039 

 𝜷̂𝒑
𝑨 -0.3854 -0.0230 -0.0028 0.0088 0.3506 

 

 

 

 

 



 
 

104 
 

 

Table 9 

Portfolio Sorted by Systematic Exposure to Asymmetries in Returns  
I form equal-weighted and value-weighted quintile portfolios every month by computing the beta difference of 

individual stocks as in equation (21), using daily data over the previous month. Stocks are sorted into quintiles 

based on the 𝛽𝑖
𝐴, 𝛽𝑖

𝐿 and 𝛽𝑖
𝐺  from lowest (quintile 1) to highest (quintile 5), where 𝛽𝑖

𝐴 is the difference between 

mean-variance and mean-swap variance betas, 𝛽𝑖
𝐿 is the positive observations of 𝛽𝑖

𝐴, and 𝛽𝑖
𝐺  is the negative 

observations of 𝛽𝑖
𝐴. The statistics in the columns labeled Mean, Std. Dev. and √𝑆𝑤𝑉 are measured in monthly 

percentage of portfolio returns, standard deviations, and square roots of swapvariances, respectively. The pre-

formation betas refer to the equal-weighted and value-weighted asymmetric betas within each quintile portfolio 

at the start of the month. The row “5-1” refers to the difference in monthly returns between portfolio 5 and 

portfolio 1. t-statistics are reported in square brackets. The sample period is from July 1969 to December 2015. 

 

 
 

Equal-Weighted Portfolios  
 

Value-Weighted Portfolios 

Rank Mean 
Std. 

Dev. √𝑆𝑤𝑉 

Pre-

Formation 

𝛽𝐴  
 Mean 

Std. 

Dev. √𝑆𝑤𝑉 

Pre-

Formation 

𝛽𝐴  
 

1 1.976% 7.280% 7.359% -2.4948  1.121% 6.669% 6.707% -2.2013 

2 1.104% 5.311% 5.452% -0.5533  0.776% 5.075% 5.150% -0.5529 

3 1.136% 5.043% 5.139% -0.0494  0.738% 4.831% 4.897% -0.0491 

4 1.002% 5.797% 5.861% 0.4472  0.644% 5.430% 5.496% 0.4460 

5 1.901% 8.068% 8.066% 2.3900  0.964% 7.484% 7.480% 2.0778 

5-1 
-0.176% 

[-1.01] 
    

-0.157% 

[-1.12] 
   

          

Rank Mean 
Std. 

Dev. √𝑆𝑤𝑉 

Pre-

Formation 

𝛽𝐿  
 Mean 

Std. 

Dev. √𝑆𝑤𝑉 

Pre-

Formation 

𝛽𝐿  

 

1 0.948% 5.301% 5.382% 0.1005  0.694% 5.018% 5.085% 0.1017 

2 1.032% 6.116% 6.075% 0.3426  0.645% 5.384% 5.447% 0.3448 

3 1.017% 6.222% 6.293% 0.6906  0.688% 5.950% 6.008% 0.6940 

4 1.050% 6.833% 6.893% 1.3039  0.666% 6.583% 6.655% 1.3055 

5 2.573% 10.570% 10.124% 3.6904  1.337% 9.673% 9.260% 3.3304 

5-1 
1.625% 

[4.94] 
    

0.643% 

[2.24] 
   

Rank Mean 
Std. 

Dev. √𝑆𝑤𝑉 

 

Pre-

Formation 

𝛽𝐺  

 Mean 
Std. 

Dev. √𝑆𝑤𝑉 

Pre-
Formation 

𝛽𝐺  

 

1 2.579% 8.581% 8.636% -3.5968  1.329% 7.656% 7.646% -3.2280 

2 1.338% 6.438% 6.489% -1.2768  0.936% 5.985% 6.061% -1.2609 

3 1.074% 5.541% 5.623% -0.6752  0.724% 5.112% 5.184% -0.6702 

4 1.152% 5.101% 5.206% -0.3244  0.804% 4.845% 4.916% -0.3230 

5 1.217% 5.390% 5.460% -0.0922  0.746% 4.970% 5.017% -0.0938 

5-1 
-1.362% 

[-5.60] 
    

-0.583% 

[-2.98] 
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Table 10 

Correlation between Factors 
This table reports the correlation between the factors in asset pricing. 𝑓𝑀𝐾𝑇, 𝑓𝑆𝑀𝐵  and 𝑓𝐻𝑀𝐿 are market factor, 

size factor and value factor in Fama-French three factor model. 𝑓𝐿 and 𝑓𝐺  are two asymmetric risk factors I 

construct. 

 

 

 𝑓𝑀𝐾𝑇  𝑓𝐿 𝑓𝐺  𝑓𝑆𝑀𝐵  𝑓𝐻𝑀𝐿  

𝑓𝑀𝐾𝑇  1 0.3306 -0.3379 0.2716 -0.2748 

𝑓𝐿  1 -0.4326 0.3438 -0.1742 

𝑓𝐺    1 -0.5265 0.2276 

𝑓𝑆𝑀𝐵     1 -0.2130 

𝑓𝐻𝑀𝐿      1 
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Table 11 

Portfolio Sorted by Systematic Exposure to Asymmetries in Returns (Adjusted) 
I form equal-weighted and value-weighted quintile portfolios every month by computing the beta difference of 

individual stocks as in equation (21), using daily data over the previous month. Compared to unadjusted tests in 

table 9, I control for the size and value factor in this table. Firstly, I run Fama-French three factor model, and 

compute the residuals that subtract size and value components from returns. Then I compute mean-variance and 

mean-swap variance betas using individual residuals and market return. Stocks are sorted into quintiles based on 

the 𝛽𝑖
𝐴𝑆 , 𝛽𝑖

𝐿 and 𝛽𝑖
𝐺  from lowest (quintile 1) to highest (quintile 5), where 𝛽𝑖

𝐴 is the difference between mean-

variance and mean-swapvariance betas, 𝛽𝑖
𝐿 is the positive observations of 𝛽𝑖

𝐴, and 𝛽𝑖
𝐺  is the negative observations 

of 𝛽𝑖
𝐴. The statistics in the columns labeled Mean, Std. Dev. and √𝑆𝑤𝑉 are measured in monthly percentage of 

portfolio returns, standard deviations, and square roots of swap variances, respectively. The pre-formation betas 

refer to the equal-weighted and value-weighted asymmetric betas within each quintile portfolio at the start of the 

month. The row “5-1” refers to the difference in monthly returns between portfolio 5 and portfolio 1. t-statistics are 

reported in square brackets. The sample period is from July 1969 to December 2015. 

 
 

Equal-Weighted Portfolios  
 

Value-Weighted Portfolios 

Rank Mean 
Std. 

Dev. √𝑆𝑤𝑉 

Pre-

Formation 

𝛽𝐴  
 Mean 

Std. 

Dev. √𝑆𝑤𝑉 

Pre-

Formation 

𝛽𝐴  
 

1 1.944% 7.314% 7.387% -2.3464  1.053% 6.689% 6.725% -2.0704 

2 1.052% 5.267% 5.367% -0.5156  0.741% 5.066% 5.142% -0.5133 

3 1.203% 5.209% 5.298% -0.0184  0.726% 4.824% 4.892% -0.0164 

4 0.996% 5.659% 5.738% 0.4947  0.700% 5.434% 5.505% 0.4912 

5 1.824% 8.049% 8.046% 2.3465  1.010% 7.448% 7.437% 2.0631 

5-1 
-0.120% 

[-0.69] 
    

-0.000 % 

[-0.33] 
   

          

Rank Mean 
Std. 

Dev. √𝑆𝑤𝑉 

Pre-

Formation 

𝛽𝐿  
 Mean 

Std. 

Dev. √𝑆𝑤𝑉 

Pre-

Formation 

𝛽𝐿  

 

1 1.091% 5.827% 5.797% 0.1066  0.694% 5.134% 5.182% 0.1068 

2 0.904% 5.667% 5.737% 0.3544  0.631% 5.408% 5.464% 0.3542 

3 0.973% 5.956% 6.023% 0.7006  0.647% 5.721% 5.786% 0.6993 

4 1.061% 6.802% 6.854% 1.2872  0.724% 6.625% 6.670% 1.2782 

5 2.554% 10.459% 10.048% 3.5103  1.297% 9.563% 9.147% 3.1697 

5-1 
1.463% 

[4.35] 
    

0.603% 

[2.14] 
   

Rank Mean 
Std. 

Dev. √𝑆𝑤𝑉 

 
Pre-

Formation 

𝛽𝐺  

 Mean 
Std. 

Dev. √𝑆𝑤𝑉 

Pre-

Formation 

𝛽𝐺  

 

1 2.593% 8.765% 8.792% -3.4860  1.332% 7.786% 7.790% -3.1767 

2 1.261% 6.255% 6.328% -1.2489  0.851% 5.962% 6.023% -1.2403 

3 1.084% 5.576% 5.674% -0.6712  0.780% 5.309% 5.389% -0.6693 

4 1.069% 5.083% 5.182% -0.3298  0.753% 4.853% 4.925% -0.3301 

5 1.305% 5.458% 5.531% -0.0936  0.794% 5.000% 5.060% -0.0962 

5-1 
-1.288% 

[-5.00] 
    

-0.539% 

[-2.71] 
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Table 12 

Fama-MacBeth Regression Results  
The sample consists of monthly returns of 60 equal-sized portfolios. The portfolios are sorted by 

beginning-of-period betas and contain all CRSP-listed ordinary common equities from 1969 to 2015 for 

the monthly return intervals. For each calendar period, portfolio returns are regressed on three/five factor 

loadings: 𝛽̂𝑝
𝑀𝐾𝑇, 𝛽̂𝑝

𝐿, 𝛽̂𝑝
𝐺, 𝛽̂𝑝

𝑆𝑖𝑧𝑒 and 𝛽̂𝑝
𝑉𝑎𝑙𝑢𝑒. The market beta, size beta and value beta are computed by 

regressing portfolio returns over the past 60 months on the market, SMB and HML factors. The positive 

and negative asymmetry betas are computed by the asymmetry factor that generated by difference of 

holding period return between high asymmetric portfolio and low asymmetric portfolio. The mean 

coefficient estimates across the sample period are reported with their t-statistics. 

 

 

𝑅𝑝 = 𝜆0 + 𝜆1𝛽̂𝑝
𝑀𝐾𝑇 + 𝜆2𝛽̂𝑝

𝐿 + 𝜆3𝛽̂𝑝
𝐺 + 𝜆4𝛽̂𝑝

𝑆𝑖𝑧𝑒 + 𝜆5𝛽̂𝑝
𝑉𝑎𝑙𝑢𝑒 + 𝜀𝑝 

 

 𝜆1 𝜆2 𝜆3
 𝜆4 𝜆5 Average R2 

𝛽̂𝑖
𝑀𝐾𝑇-sorted 0.0016 

(1.30) 
0.0102*** 

(3.24) 
-0.0098*** 

(-3.04) 
  0.2137 

0.0009 
(0.42) 

0.0092*** 
(3.22) 

-0.0068* 
(-1.95) 

-0.0004 
(-0.15) 

-0.0037 
(-1.30) 

0.2711 

𝛽̂𝑖
𝐿-sorted 0.0049 

(0.85) 
0.0079* 

(1.81) 
-0.0148** 

(-2.32) 
  0.1997 

0.0181 
(1.14) 

0.0160 
(1.52) 

-0.0111 
(-1.34) 

0.0100* 
(1.72) 

0.0050 
(1.48) 

0.2524 

𝛽̂𝑖
𝐺-sorted 0.0049** 

(2.06) 
0.0066*** 

(2.70) 
-0.0049*** 

(-2.85) 
  0.2032 

0.0082*** 
(2.74) 

0.0024 
(0.63) 

-0.0057*** 
(-3.73) 

0.0037 
(1.55) 

0.0028 
(0.85) 

0.2512 

𝛽̂𝑖
𝑆𝑖𝑧𝑒-sorted 0.0020 

(0.74) 
0.0068** 

(2.48) 
-0.0058* 

(-1.85) 
0.0025** 

(2.49) 
0.0005 
(0.25) 

0.2759 

𝛽̂𝑖
𝑉𝑎𝑙𝑢𝑒-sorted 0.0024 

(0.48) 
0.0154** 

(2.51) 
-0.0137*** 

(-4.54) 
0.0046** 

(2.01) 
0.0019* 
(1.79) 

0.2734 
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