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ABSTRACT

Quantitative assessment of the discrimination potential of class and

randomly acquired characteristics for crime scene quality shoeprints

Nicole Richetelli, B.A.

Footwear evidence has tremendous forensic value; it can focus a criminal investigation,
link suspects to scenes, help reconstruct a series of events, or otherwise provide informa-
tion vital to the successful resolution of a case. When considering the specific utility of
a linkage, the strength of the connection between the source footwear and an impression
left at the scene of a crime varies with the known rarity of the shoeprint itself, which is
a function of the class characteristics, as well as the complexity, clarity, and quality of
randomly acquired characteristics (RACs) available for analysis. To help elucidate the
discrimination potential of footwear as a source of forensic evidence, the aim of this re-
search was three-fold.

The first (and most time consuming obstacle) of this study was data acquisition. In order
to efficiently process footwear exemplar inputs and extract meaningful data, including
information about randomly acquired characteristics, a semi-automated image processing
chain was developed. To date, 1,000 shoes have been fully processed, yielding a total of
57,426 RACs characterized in terms of position (θ, r, rnorm), shape (circle, line/curve,
triangle, irregular) and complex perimeter (e.g., Fourier descriptor). A plot of each fea-
ture versus position allowed for the creation of a heat map detailing coincidental RAC
co-occurrence in position and shape. Results indicate that random chance association
is as high as 1:756 for lines/curves and as low as 1:9,571 for triangular-shaped features.
However, when a detailed analysis of the RAC’s geometry is evaluated, each feature is
distinguishable.

The second goal of this project was to ascertain the baseline performance of an automated
footwear classification algorithm. A brief literature review reveals more than a dozen
different approaches to automated shoeprint classification over the last decade. Unfortu-
nately, despite the multitude of options and reports on algorithm inter-comparisons, few
studies have assessed accuracy for crime-scene-like prints. To remedy this deficit, this re-
search quantitatively assessed the baseline performance of a single metric, known as Phase
Only Correlation (POC), on both high quality and crime-scene-like prints. The objective
was to determine the baseline performance for high quality exemplars with high signal-
to-noise ratios, and then determine the degree to which this performance declined as a
function of variations in mixed media (blood and dust), transfer mechanisms (gel lifters),
enhancement techniques (digital and chemical) and substrates (ceramic tiles, vinyl tiles,



and paper). The results indicate probabilities greater than 0.850 (and as high as 0.989)
that known matches will exhibit stochastic dominance, and probabilities of 0.99 with high
quality exemplars (Handiprints or outsole edge images).

The third and final aim of this research was to mathematically evaluate the frequency
and similarity of RACs in high quality exemplars versus crime-scene-like impressions as
a function of RAC shape, perimeter, and area. This was accomplished using wet-residue
impressions (created in the laboratory, but generated in a manner intended to replicate
crime-scene-like prints). These impressions were processed in the same manner as their
high quality exemplar mates, allowing for the determination of RAC loss and correlation
of the entire RAC map between crime scene and high quality images. Results show that
the unpredictable nature of crime scene print deposition causes RAC loss that varies from
33-100% with an average loss of 85%, and that up to 10% of the crime scene impressions
fully lacked any identifiable RACs. Despite the loss of features present in the crime-scene-
like impressions, there was a 0.74 probability that the actual shoe’s high quality RAC
map would rank higher in an ordered list than a known non-match map when queried
with the crime-scene-like print. Moreover, this was true despite the fact that 64% of the
crime-scene-like impressions exhibit 10 or fewer RACs.
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1. Introduction
Footwear impression evidence can provide invaluable information to forensic scientists in
order to link a suspect to a crime scene or reconstruct the series of events leading up to
a crime. Despite this utility, shoeprint evidence is often “undervalued by investigators,
attorneys, and the courts due to their limited knowledge of it” (1). As evidence of this, the
Census of Publicly Funded Forensic Crime Laboratories reported that only 11,000 footwear
examinations were conducted out of a total of 4 million requests in all of 2009 (2). This
amounts to less than 0.3% of all forensic work carried out by 397 forensic laboratories
in the United States over the course of a single year. Although it is unreasonable to
anticipate that shoeprints can be detected and recovered at each and every crime scene,
it is still valid to assume that some kind of footwear evidence may be present, and that
the current statistics indicate underutilization of shoeprint impression evidence within the
forensic community. With this in mind, the remainder of this document is divided into
five chapters.

The first chapter (this chapter) reviews the current state of the footwear field, includ-
ing (i.) a discussion of the relevant features in shoeprint comparisons that are typically
evaluated during a forensic examination, (ii.) the types of conclusions that are reached af-
ter such an exam, (iii.) the education and training requirements associated with examiner
expertise, as well as (iv.) a summary of major research contributions to the field, before
closing with (v.) a brief list of topical areas that could benefit from additional research
(including the three objectives of this body of work).

This introduction is followed by three chapters that are intended as stand-alone, draft,
publication-quality journal submissions designed to address specific objectives from the
aforementioned research list. The first describes a semi-automatic image processing chain
that was implemented to streamline data acquisition for over 1,000 pairs of shoes, thereby
allowing the efficient prediction of random co-occurrence in frequency of outsole features
(in terms of location, shape, and similarity). This is followed by an assessment of the
baseline performance of Phase Only Correlation (POC) as an automated classification
technique to classify both high quality and crime-scene-like impressions. Finally, the
last draft-publication reports the reproducibility of accidentals in crime-scene-like quality
prints, including the assessment of similarity metrics such as Modified Phase Only Cor-
relation, Matched Filter, Modified Cosine Similarity, Euclidean Distance and Hausdorff
Distance, as well as the ability of a RAC map to mate back to its known match within
a database. These three publication drafts are followed by one final (fifth) chapter that
briefly reviews ways in which this research can be further prioritized and expanded.
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1.1 Analysis and Interpretation of Footwear Impression Ev-
idence

The methods of analysis of footwear impression evidence are often compared to that of
fingerprint impression evidence. Fingerprint examination includes an evaluation of first,
second, and third level detail. First level detail describes the overall pattern design, such as
arch, loop, or whorl. The first level detail of fingerprints is least individualizing, but allows
for impressions to be grouped. The same three basic friction ridge patterns are exhibited
throughout the population and although this detail cannot lead to an identification, it helps
to narrow down the comparison group (3). The second level detail includes specific ridge
path and the presence of minutiae (ridge endings, bifurcations, dots, etc.). In fingerprints,
comparison of this second level detail can lead to a positive identification. The locations
of these details and the frequencies of the occurence of such features in a given location
help to define the “uniqueness” of a fingerprint; that is, no two people are believed to
exhibit the same fingerprints (3). Lastly, the third level detail is encompassed in the
pore structures and small details contained within the ridges. Throughout the comparison
process, an examiner records any disagreement between the latent and the known prints
(3).

Similar to fingerprints, shoeprints exhibit some characteristics that are present through-
out the population and some characteristics that are believed to be random and individ-
ualizing. A shoe’s class or manufacturing characteristics include the size, shape, style,
and pattern design. By definition, a manufacturing characteristic will be shared by many
other shoes, as compared with the first level characteristics of fingerprints (1). Individual
or acquired characteristics of a shoe include cuts, scratches, tears, gum, shoe patches, and
holes; these are comparable to the bifurcations, ridge endings, and dots of a fingerprint.
Footwear examiners conduct a methodical analysis of these aforementioned features in or-
der to reach a conclusion about the origin of a given shoe impression. First and foremost,
the known shoes must be used to make exemplar prints for comparison. In addition, the
original lift or cast of an unknown impression must be obtained, if possible; if this evidence
is not available, high quality photographs of this evidence must be used for comparison.
Typically, the first of these analyses is based on class characteristics. This generally starts
with a comparison of the outsole design, given that this is the most obvious feature of
a shoe. The design of the questioned impression and the exemplar impression must be
in agreement in order to move forward with the comparison. Next, the physical shape
and size of the shoe and its design elements must be compared. This analysis includes
both measuring the physical dimensions/perimeter of the outsole, if possible, as well as
examining the size of the individual design features (1). The size of the design should be
examined because as a sole changes size, something must change on the outsole, and this
can happen in one of two ways (1):
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1. The design element size will not change, but instead the number of design elements
will change

2. The design element size will vary, but the number of design elements will remain
constant

Should the known and the questioned impressions still correspond after the comparison
of physical and design size, an analysis of randomly acquired characteristics (RACs) may
ensue. The term randomly acquired refers to features that are “not planned or intention-
ally manufactured, and that their combined position, orientation, size, and features are
unlikely to re-occur” (1). Following all of the aforementioned comparisons, the examiner
can then come to a conclusion about the origin of the questioned shoeprint impression.
SWGTREAD has published a standard for all forensic shoeprint examiners to reference
when making conclusions about comparisons between shoeprints. These conclusions and
the reasoning for each conclusion are as follows (4):

1. Lacks sufficient detail

• No comparison was conducted.

• A comparison was conducted but the impression did not have enough detail for
a meaningful comparison.

2. Exclusion

• Enough detail and differences were present to conclude that the known exemplar
was not the source of the impression.

3. Limited association of class characteristics

• Some similar class characteristics were present, but there were factors which
limited the ability to make a stronger association.

4. Association of class characteristics

• Class characteristics of physical design and size are consistent between the
known and the questioned impression. Some correspondence of wear may also
be present.

5. High degree of association

• Correspondence of general physical design, size, and wear, as well as one or more
acquired characteristics between the known and the questioned impression.
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6. Identification

• The known and the questioned impression correspond in class and acquired
characteristics. It is the opinion of the examiner that the known footwear was
the source of the questioned impression.

After conducting all relevant analyses, a footwear examiner can reach one of these
conclusions, which are based on the guidelines in the SWGTREAD standards. Currently
in the field, footwear evidence comparisons and the resulting conclusions are largely based
on an examiner’s experience, leading to some criticism. However, an analyst’s experience is
acquired from extensive education, training, casework and a wealth of acquired knowledge
as illustrated in section 1.2.

1.2 Acquisition of Experience for the
Forensic Footwear Examiner

Becoming a forensic footwear examiner requires a combination of education and training.
Requirements include (5):

1. Bachelor’s Degree in a physical or natural science, or

2. Associate’s Degree plus 2 years experience, or

3. High School Diploma plus 4 years experience.

In addition to the above, comprehensive training is required to help candidates learn
standards in terminology, evidence handling, as well as legal considerations. Further, a
section of supervised casework is completed and an examination may be conducted to
ensure that the body of knowledge has been mastered. As outlined by SWGTREAD,
the following topics are included as part of the training program for forensic footwear
examiners (5):

1. Introduction to forensic footwear examination

• History; value of footwear evidence.

2. Terminology

3. Evidence handling procedures

• Procedures and protocol; relationship of forensic footwear evidence to other
forensic disciplines; collection and preservation; marking and documentation;
chain of custody.
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4. Examination of impressions

• Protocols; theory of individualization; case organization; note taking; evidence
evaluation and comparison; conclusions and findings; report writing.

5. Laboratory instrumentation and equipment

• Procedures and protocol; photographic equipment; measuring devices; light
sources; computers and peripherals; other relevant laboratory equipment.

6. Photography

• Theory of photography; basic camera operation; general crime scene photog-
raphy; examination quality photography; two- and three- dimensional impres-
sions; various lighting techniques; filters.

7. Recovery by lifting

• Electrostatic lifting; gelatin, adhesive, and other lifting methods.

8. Recovery by casting

• Dental stone; fixatives and release agents; snow casting.

9. Detection of impressions

• Visible impressions; specialized lighting; electrostatic lifting; physical and chem-
ical methods.

10. Enhancement

• Photographic, chemical, physical, imaging software.

11. Manufacturing

12. Preparation of test impressions

13. Court testimony and legal issues

• Expert witness qualifications; legal decisions; preparations of exhibits; moot
court.
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1.3 Previous Research

While many forensic footwear examiners agree that the characteristics on a shoe are
“unique” and can be used for identification, the field is often challenged due to lack of
statistical evidence (6). Some footwear evidence has even faced admissibility challenges in
the courtroom given the lack of quantitative support for the qualitative evidence, because
the Daubert decision rejects the “general acceptance” rule (7). In an attempt to offer
quantitative support to footwear examinations, a limited number of studies have assessed
the discriminating potential of footwear, with implementation of mathematical methods,
offering support to the assertion that footwear evidence can produce an identification of
source.

Detailed below is a review of the current literature which attempts to incorporate
statistics into footwear impression evidence and further support the claim that the features
present on outsoles can lead to an identification. This claim is largely based on analysis
of three major features associated with footwear, including:

1. Class characteristics: design, manufacturing process, etc.

2. Subclass characteristics: air bubbles, incomplete mixing, etc.

3. Randomly acquired characteristics: nicks, holes, tears, etc.

As aforementioned, class characteristics include manufacturing features, design, and
size; however, shoes rarely exhibit only one class characteristic. In fact, the combination of
class characteristics can greatly reduce the sample set for comparison, as illustrated in Fig.
[1.1]. Though class characteristics cannot be used for an identification, the combination of
these features can greatly aid in narrowing down the possible sources of a given impression
by excluding shoes which do not correspond in manufacturing features (such as model,
size, etc.).

Further, air bubbles, a subclass characteristic, also help to narrow down the possibilities
of source of a given impression. For example, Champod et al. (2000) examined the
presence of air bubbles in polyurethane shoe outsoles; the goal of the study was to “gather
statistical data on the occurrence and measured features of air bubbles on shoesoles, in
order to extend our knowledge of the stochastic behaviour of air bubbles” (8). The analysts
examined seventy-one pairs of the same shoe and analyzed bubbles found only in the ball
portion of the shoe. The results indicate that the configuration of air bubbles is highly
variable, even between two shoes of the same pair.

Though class and subclass characteristics are often useful for discriminating purposes,
these features cannot actually be used to reach an identification (1). Rather, an analysis
of acquired characteristics is necessary in order to determine whether a given shoe was the
source of a crime scene print. Wilson (2012) compared the outsoles of thirty-nine pairs
of the same shoe, worn by the same person, to determine if the acquired characteristics
varied enough from shoe to shoe to separate the pairs of shoes and make an identification
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Figure 1.1: An illustration of how the presence of combined class characteristics can
significantly decrease the number of suspect shoes (adapted from Bodziak (2000)).

(9). Each outsole was examined and acquired characteristics (such as cuts, gouges, and
tears) were marked, counted, and recorded. Wilson (2012) found that even in shoes
with a comparable number of acquired characteristics, visual examination could quickly
differentiate between the location, size, and shape characteristics. In conclusion, the results
indicate that “the likelihood of the characteristic(s) repeating in the same area of the
same shoe with the same size and tread design is so small that it is the opinion of the
experienced examiner that one would never observe the same amount of similarity between
two different shoes” (9). While the results from this research indicate that the number,
shape, and size of randomly acquired characteristics are not repeated, a large scale study
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should be conducted in order to determine whether these results are repeatable.
While Wilson (2012) offered evidence that accidental characteristics are truly identi-

fying, Cassidy (1995) provides some numerical estimates for the probability of repeated
accidentals based on a dataset that consisted of boots worn by police recruits. For this
study, because all of the shoes were worn for the same time span and over the same ter-
rain, conditions favored the chance reproduction of accidental characteristics and wear
(10). Two impressions from each of 97 shoes were recorded, for a total of 194 impressions.
The shoes were broken into group A (59 shoes) and group B (38 shoes). From each im-
pression, three accidentals were chosen and then compared against all other impressions
to determine whether any of the accidentals were duplicated in the same position on an-
other shoe. Results indicated that minute accidental characteristics were more prevelant
on lightly worn shoes, while moderate or significant accidentals were much more likely
to occur on more heavily worn shoes (10). For minute characteristics, the results indi-
cated a 1 in 6 chance of encountering a duplicate accidental (10). However, the results for
moderate characteristics indicated that these are less likely to be duplicated, likely due to
increased size and/or complexity. For group A shoes, the chance of a coincidental similar
accidental position was about 1 in 20, while this chance for group B shoes was even lower
at approximately 1 in 38 (10). According to Cassidy (1995), the quality of accidentals
greatly impacted the number required for an identification. More specifically, accidentals
that are small or of poor quality require a larger number of features to reach an identi-
fication than larger or more rare characteristics (10). This study offers some numerical
estimates about the probability of encountering accidentals in the same position on two
different shoes. However, given the small sample size of this study, there remains a need
for a large scale study concerning mathematical comparison of accidental characteristics.

While all of the above studies focus on empirical data, Stone (2006) utilized theoretical
probabilities to describe the individuality of RACs. Stone (2006) identified five standard-
ized individual characteristics. In addition, the researcher analyzed theoretical acquired
characteristics based on their position, configuration, and orientation. To arrive at the
computed probabilities, a hypothetical 16,000 square millimeter grid was superimposed
on the theoretical shoeprint. The author then determined the hypothetical probability
of encountering a given accidental on another shoe provided that the hypothetical shoe
did not produce the print. For a point characteristic, the probability of a random du-
plication was modeled as 1 in 16,000. For a line characteristic, the length, orientation,
and position were combined to obtain the probability of encountering a duplication of the
given line characteristic valued at 1 in 384,000. For a curve characteristic the position,
length, orientation, direction of curvature, degree of curvature, and apex location were all
combined in the probability calculation to yield a 1 in 19,200,000 probability of finding a
given curve characteristic in another shoe. As the characteristics became more complex,
the probability of a random duplication greatly decreased. In addition, assuming that ac-
quired characteristics occur at random and are independent from other characteristics, the
probabilities of encountering several different characteristics could be multiplied together
to obtain the probability of the random duplication of the entire collection. The results
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reveal, “information about the sometimes incomprehensible magnitude of the ‘uniqueness’
of these types of characteristics when they occur in multiples or combinations”, though
the author explains that these probabilities are theoretical and that several validation
studies are required (11). While this study indicates very robust results, the empirical
data obtained by Cassidy (1995) indicates a lower discrimination potential, suggesting the
need for further work to determine the true value of accidental characteristics.

Petraco et al. (2010) examined footwear impressions using facial recognition tech-
niques, namely principal component analysis (PCA) (12). PCA assumes that variance
provides information about a given dataset. Ideally, PCA serves as a data reduction tech-
nique which still captures most of the variability of the original dataset (13). For this
study, the authors examined five pairs of the same type of shoe, which were each worn
by the same individual. The Abbott Grid Locator was utilized in order to record the
position of any accidentals on the shoe outsole, ignoring size and shape. After recording
accidentals and completing PCA on the dataset, the authors used Maximum likelihood
Gaussian-linear classification analysis (MLG-LCA) in order to determine the similarity
between patterns based on distance in principal component space (13). This metric is
essentially a Mahalanobis distance using the Z (principal component derived matrix) and
the pooled covariance matrix. Mahalanobis distance determines how many standard de-
viations away a point is from the mean of a distribution. The results indicated that the
average correct identification rate of the five pairs of shoes was approximately 92%. These
results indicate that shoe prints, even when the shoes are worn by the same person and ex-
hibit the same manufacturing characteristics, are statistically separable and the acquired
characteristics provide enough information to potentially be used for identification. This
study provides one method of statistically analyzing footwear impression evidence and
even calculates an error rate as is required by the Daubert decision.

Furthermore, Sheets et al. (2013) aimed to determine the persistence of acquired
characteristics over time, similar to Petraco et al. (2010). The goal of the study was to
determine the rate at which wear affects the persistence of randomly acquired character-
istics. For this study, eleven pairs of the same shoe were analyzed; a set of “accidentals”
was cut into the outsole of the shoe in the same location on each pair. Participants in the
study wore the pair of shoes for a period of seven weeks and the outsoles were examined at
four times throughout the period of wear. A square grid was used to record the size of the
accidentals via percentage of grid occupied by the accidental. Therefore, only the size of
the acquired characteristics was recorded and the location and shape were ignored during
the analyses. PCA was utilized to determine the variation within repeated measures of
the same shoes and between different shoes at each time interval. Throughout the study,
intra-shoe variation was much lower than inter-shoe variation. Thus, even with additional
wear, each shoe better matched itself than any other shoe to which it was compared (14).

Therefore, several studies support the theory of individuality of shoeprints and provide
evidence, both empirical and theoretical, for the identification of source based upon an
analysis of randomly acquired characteristics on shoe outsoles (10; 9; 12; 14).
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1.4 Advancing the Field with Further Research Support

While research exists to support the merit of footwear evidence in narrowing down a
suspect pool or even identifying the source of an impression, the current body of work
focuses largely on (i.) high quality evidence samples, and generally those of (ii.) very
limited sample size. Therefore, additional work is needed. Moreover, very little focus has
been directed at the interpretation and discriminating power of degraded and variable
crime scene samples. With these goals in mind, the forensic footwear community could
greatly benefit from several additional research thrusts, not limited to but including:

1. Development and implementation of an automated image processing chain, allowing
for several different inputs (i.e., high quality exemplars, lifts, photographs, and casts
of crime scene impressions), which could facilitate efficient extraction and character-
ization of features to be used for comparisons and assessment of similarity between
two prints or specific elements on several impressions;

2. Large scale study of RACs to include an assessment of postion and shapes of acci-
dentals as well as the potential for co-occurrence;

3. A detailed evaluation of a single automated classification method. This work should
include an assessment of the discrimination potential for crime scene quality impres-
sions as well as an analysis of method limitations;

4. Analysis of the reproducibility of RACs in crime scene quality impressions as well
as the potential for the features observed in evidence samples to be linked to source
footwear;

5. Evaluation of the variability in examiner conclusions, including estimations of “error”
rates for footwear comparisons (thus satistfying the Daubert standard);

6. Development of a national footwear database, comparable to AFIS for fingerprints;

7. Assessment of the frequency of different outsole styles and sizes;

8. Quantification of intra- and inter-analyst variability in RAC marking;

9. Investigation of the degree of uncertainty in footwear comparisons and conclusions;

10. Development of software which can automatically extract RACs for comparison from
a variety of inputs, thus eliminating the need for manual identification of accidentals.

In an attempt to address some of the aforementioned research needs for footwear im-
pression evidence, the current study executed a three-pronged research design. First, an
image processing chain, with both automated and user-fed algorithms, was implemented
allowing for digitization of varying impressions and extraction of feature information for
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comparison between different inputs. Using this methodology, a collection of 1,000 shoes
has been analyzed, including an assessment of RAC frequencies and potential for co-
occurrence for 57,426 identified accidentals (thus addressing items one and two from the
recommended research list). Subsequently, a random sample of 36 shoes was selected from
this set to be used for creation of 108 blood and 72 dust impressions. These prints were
utilized to conduct a quantitative assessment of the performance of Phase Only Correlation
(POC), an automated classification method (recommended research item three) on high
quality versus crime-scene-like images. This evaluation was based on a total of 1,525 high
quality and 3,096 crime-scene-like print comparisons. Lastly, 200 crime-scene-like prints
were examined to determine the fidelity of the impression transfer process; namely, the
ability of the 6,762 randomly acquired characteristics observed in the exemplar impressions
from 100 shoes to appear in the crime scene prints (recommended research item 4). In
addition, an evaluation of similarity between 1,766 known match RAC mates (RACs iden-
tified in the exemplar impressions which were visible in the crime-scene-like prints) was
conducted. The following three chapters are copies of draft, publication-quality journal
submissions addressing said items from the recommended research list.
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2. Technical Note
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Technical note: Quantifying the frequency of shape and

position of randomly acquired characteristics on outsoles

Abstract

Footwear evidence has tremendous forensic value; it can focus a criminal in-

vestigation, link suspects to scenes, help reconstruct a series of events, or oth-

erwise provide information vital to the successful resolution of a case. When

considering the specific utility of a linkage, the strength of the connection be-

tween the source footwear and an impression left at the scene of a crime varies

with the known rarity of the shoeprint itself, which is a function of the class

characteristics, as well as the complexity, clarity, and quality of randomly

acquired characteristics (RACs) available for analysis. To help elucidate the

discrimination potential of footwear as a source of forensic evidence, the aim

of this research is to further characterize the chance association in position,

shape, and geometry of RACs on a semi-random selection of footwear. To

accomplish this goal in an efficient manner, a partially automated image

processing chain was required, including steps for automated feature char-

acterization. This technical note details the methods, procedures, and the

type of results available for subsequent statistical analysis after processing a

collection of more than 1,000 shoes.

Keywords: Footwear, Shoeprints, Randomly Acquired Characteristics,

Accidentals, Fourier Descriptors, Feature Vectors, Semi-Automated

Preprint submitted to Forensic Science International December 10, 2015
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Introduction1

Though footwear impression evidence can provide a wealth of informa-2

tion about a crime, including potential suspects, the total number of possible3

offenders, and the most probable series of events associated with a reconstruc-4

tion, this evidence is often undervalued (or even overlooked) due to limited5

knowledge about how to collect, analyze, and interpret footwear impressions6

[1]. Part of the reason for this disconnect may be the difficulty associated7

with collecting sufficient-sized and community-shared databases for extensive8

research and study, which would allow the legal and forensic community to9

fully appreciate the value of this type of evidence. The fact is, footwear re-10

search is extremely time-consuming and labor intensive, regardless of whether11

the analyst is focused on class, randomly acquired characteristics (RACs), or12

both. Although class features hold incredible value, this project deliberately13

disregards class characteristics and instead focuses on RACs or accidental14

features such as nicks, tears, holes, and cuts that typically develop on out-15

soles as a function of wear. The reason for this narrow focus in scope is16

primarily four-fold. First, class features have received some research atten-17

tion in the past [2–11] and this trend is likely to continue in the future. As18

a result, this investigative effort intentionally sought out the less-traveled19

parallel track concerning characterization of accidental features, while si-20

multaneously collecting sufficient data to allow for subsequent class analysis21

downstream. Second, the National Academy of Sciences (NAS) 2009 report22

on Strengthening Forensic Science in the United States encouraged studies to23

shed light on the variability of randomly acquired characteristics, including24
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relative frequency of features, and the appropriate use of statistical standards25

[12]. Third, the Scientific Working Group for Shoeprint and Tire Tread Ev-26

idence (SWGTREAD) requested focused research in the area of “Random27

Placement Shape and/or Placement of Randomly Acquired Characteristics”28

[13], and finally, SWGTREAD also requested focused research in the area29

of “Mathematical Probabilities of Randomly Acquired Characteristics” [14].30

Given these challenges, the first goal (and bottleneck) of this project was31

data acquisition. The remainder of this technical note describes the manner32

in which more than 1,000 worn shoes (obtained from a variety of sources33

including personal donations, corporate donations, and purchases from local34

thrift stores) were sequentially processed via a combination of automated35

and user-fed algorithms allowing for identified RACs to be extracted and36

characterized in terms of shape, geometry, and physical location.37

Material and Methods38

Available defining characteristics associated with more than 1,000 shoes39

have been recorded, including make, model, size, manufacturer product code,40

degree of wear, and the presence of either microcellular material or Schal-41

lamach patterns as detailed in Tables [1] - [6]. As necessary, each shoe was42

gently washed (using warm water) to remove debris (i.e., this research does43

not account for the possible presence of transient RACs, such as rocks, gum,44

etc.). When dry, each outsole was scanned at 600PPI with an Epson Ex-45

pression 11000XL Graphic Arts Scanner. Post-outsole scanning, Handiprint46

exemplars were created [1] and likewise scanned at 600PPI. Both are illus-47

trated in Fig. [1] for a size 9 men’s Converse Chuck Taylor R© All Star R© with48
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moderate wear and Schallamach patterns.49

In order to facilitate the automated downstream extraction of RAC shape50

and position, the outsole and exemplar were background subtracted and51

registered using identified control points. This process required the analyst52

to identify common geometric shapes (usually class characteristics) that were53

patent on both the outsole and the exemplar. The mating of these common54

points allowed for the automatic computation of variations in translation,55

rotation, and scale between the outsole and the exemplar. Once detected,56

the outsole and exemplar were co-registered or adjusted to ensure that they57

occupied the same location in image space (centered and oriented such that58

the long-axis of the shoe (toe-to-heel) was North-South within the image59

frame). In addition to this co-registration, the background (non-tread areas)60

of both the outsole and exemplar were removed (Fig. [2]) to ensure the61

highest quality imagery moving forward (e.g., removal of remnants of the62

analyst’s hands that may have been captured during scanning when pressure63

was applied to the outsole to promote a nearly planar surface, and/or removal64

of extraneous dust and fingerprints on Handiprint exemplars).65

Following registration and background subtraction, randomly acquired66

characteristics present on both the outsole and exemplar were marked. This67

process required the analyst to physically examine each outsole with oblique68

illumination and 4X magnification. Upon identifying a RAC that appeared69

on both the outsole and the exemplar, the analyst blacked out the RAC pixels70

on the Handiprint image using the pencil tool in Adobe R© Photoshop R© Ele-71

ments 10. When this registered and marked image was subtracted from its72

registered (but unmarked) counterpart, the result was a RAC map that high-73
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lighted the location and geometry associated with each randomly acquired74

feature (Figs. [3] & [4]). Using the standard image processing technique of75

connected components, the location of each RAC was sequentially character-76

ized using three parameters; the radius (r) or distance (in pixels) between the77

shoe’s center and the RAC’s centroid, the angular (θ) position (in degrees) of78

the RAC’s centroid using the shoe’s center as the origin, and the normalized79

distance (rnorm) equal to r divided by the distance (in pixels) between the80

shoe’s center and the perimeter of the shoe at angular position θ.81

Following localization, each feature was automatically numbered (via its82

connected component value) and extracted from the total RAC map. The83

resulting subimages (Fig. [5]) were then evaluated to define RAC shape and84

geometry, based on a 5-dimensional RAC feature vector, before transforma-85

tion into individual RAC Fourier descriptors (FD).86

RAC Feature Vector87

Each randomly acquired characteristic was attributed to one of four cat-88

egories: lines/curves, circles, triangles, and irregular-shaped features. To89

determine this categorization, 5 attributes per RAC were required, including90

area, perimeter, linearity, circularity, and triangularity. The first 2 descrip-91

tions (area and perimeter) were readily available; area describes the total92

number of pixels comprising the RAC and perimeter evaluates the distance93

in pixels along a line/curve, or around a two-dimensional shape.94

The linearity metric was also readily available and was obtained by com-95

puting the ratio of the first and second eigenvalues (λ1 and λ2) generated96

from eigen decomposition of the RAC coordinates [15]. Using this approach,97

when λ1 is much greater than λ2, the RAC in question has a greater length98
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than width and can be classified into the line/curve category.99

The fourth measurement was a circularity metric, computed according to100

Eq. [1] [16], where A is the area of the object, and P is the length of its101

perimeter:102

Rc =
4 π A

P 2
(1)

Rc = maximum of 1.0 for a perfect circle

The fifth and final metric was a triangularity value computed using central103

moments (Eq. [2]) that are invariant to translation, scale, and rotation.104

µpq =
∑

x

∑

y

(x− xc)p(y − yc)q (2)

As per Rosin (2003) [17], the variable I1 in Eq. [3] equals 1
108

for any triangle105

that has been affine transformed into a perfect right-angled triangle:106

I1 =
µ20µ02 − µ2

11

µ4
00

(3)

As such, the triangularity measure can be normalized to vary between 0.0−107

1.0 according to Eq. [4] [17]:108

T =





108 I1 if I1 ≤ 1
108

1
108 I1

otherwise
(4)
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Categorization Parameters109

The 5-dimensional feature vector (Fig. [6]) describing area, perimeter,110

linearity, circularity, and triangularity served as a primary descriptor and111

comparison parameter for each randomly acquired characteristic. In addi-112

tion, it was used to categorize the randomly acquired characteristics into one113

of 4 groups; line/curve, circle, triangle, or irregular.114

Based on a survey of known geometric shapes, absolute categorization115

rules were developed. More specifically (and for this dataset), circles have a116

circularity measure greater than or equal to 0.8, triangles have a circularity117

measure less than 0.8 and a triangularity greater than or equal to 0.9, while118

lines/curves have a linearity ratio greater than 5 and a triangularity measure119

less than or equal to 0.3; any shape not satisfying one of the above rules120

defaults into the irregular category (Fig. [7]).121

122

Shape Descriptor123

In addition to shape categorization, each RAC was treated as a closed124

planar figure yielding a Fourier description [18–20]. This description was125

generated by tracing the contour of the shape (x(t), y(t)) where t = 0, . . . N−126

1 with N = 350 for this dataset) and assuming a complex plane z(t) =127

x(t) + i y(t) (where i =
√
−1 ). The resulting one-dimensional complex128

sequence of numbers was then mapped to the frequency domain via the129

discrete Fourier transform [19] where Rm and θm are the magnitude and130

phase of the mth coefficient, respectively [19]:131
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Z(m) =
N−1∑

t=0

z(t) e(−i2πmt/N) = Rm e
(iθm) (5)

m = −N/2, . . . ,−1, 0, 1, . . . , N/2− 1

As necessary, the coefficients can be normalized and forced to be invariant132

to translation, scale, rotation, and contour/sequence start point according to133

the following modifications [19]:134

Z(0) = 0 ⇒ translation invariance

Rm = Rm

R1
⇒ scale invariance

θm = θm − θ−1+θ1
2

⇒ rotation invariance

θm = θm +m θ−1−θ1
2

⇒ start point invariance

(6)

To illustrate, consider Figs. [8] & [9]. Fig. [8] depicts a single RAC (A), along135

with four synthetic modifications (B-E showing changes in scale, rotation,136

and translation). The resulting normalized Fourier descriptors are plotted137

in Fig. [9]. The x- and y-axes are arbitrary dimensions since the images138

have been normalized, but note that all contours are normalized to the same139

configuration, save a single π radian ambiguity [21]. Unless otherwise noted,140

all subsequent uses of RAC Fourier descriptors make use of both translation141

and start point invariance modifications.142

Results143

Database Statistics144

To date, more than 1,000 shoes have been pre-processed. The definining145

characteristics of the first 1,000 are detailed in Tables [1] - [6]. The majority146
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of shoes in this collection are athletic in nature (Table [1]), due to gener-147

ous corporate donations and the availability of shoes for purchase from local148

thrift stores. Table [2] reports the degree of wear of each shoe, which is149

not quite balanced between light, moderate, and heavy. For this study, shoes150

with “light wear” are those that exhibit discernible texture throughout. Con-151

versely, the label “moderate wear” describes shoes with a reasonable degree152

of wear, resulting in both lost texture and possible bald spots. Finally, the153

term “heavy wear” is reserved for shoes with a near complete loss of texture,154

many or large bald spots, and possible holes or areas where the outsole has155

completely worn through.156

Table [3] shows that nearly 90% of the collection lacks microcellular ma-157

terial in outsole composition. This is fortuitous since the presence of mi-158

crocellular material is likely to increase intra- and inter-analyst variability159

in identifying randomly acquired characteristics. Conversely, approximately160

three-quarters of the database show Schallamach patterns (Table [4]); this161

is likewise fortuitous. Although current RAC data does not include the162

quantification of these features, the discrimination potential of Schallamach163

patterns can be explored in future studies.164

Table [5] reports shoe frequency as a function of manufacturer and/or165

brand. Results indicate that almost 30% of the shoes processed thus far are166

from Nike R© while another 28% are comprised of a small number of shoes, but167

from numerous manufacturers. Finally, Table [6] breaks down the database168

according to size and intended market (men or women). The results here are169

not random, but selective in the sense that our group did not capture data170

for shoes with a physical outsole size greater than the maximum length of171
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a sheet of Handiprint currently available for purchase (or approximately 13172

inches in total length).173

The shoes in Table [1] generated a total of 57,426 RACs (average of 57,174

minimum of 1, and maximum of 410). The majority (45%) were catego-175

rized as lines/curves, with another 38% falling into the irregular category.176

Circles filled a distant third group, comprising only 11% of the database,177

with triangles completing the remaining 6% (Table [7]). This data has been178

transformed into an interactive web-based heat map that currently reports179

frequency data for a “normalized” shoe, based on 57,426 RACs extracted180

from 1,000 shoes in the database. The normalization step, although not181

ideal, is unfortunately a necessity since it is near impossible to collect a suffi-182

cient number of shoes of a given make, model, and size to allow for statistical183

data analysis. Instead, the semi-random selection of shoes was normalized to184

create a single idealized shoe so that all RACs could be compared as if they185

occupied the same image space (as per θ and rnorm). In short, a RAC near186

the edge of the medial part of the heel on a women’s size 6.5 could have the187

same θ and rnorm as a RAC on the edge of the medial part of the heel of a188

men’s size 10.0 (Note: we also have the capacity to report frequency values as189

absolute, physical or non-normalized values using θ and r upon request. This190

would be equivalent to taking a stack of Handiprints, centering all shoes in191

the middle of each sheet with the toe-heel oriented North-South, and drilling192

down through all sheets at a fixed location, regardless of shoe size. To further193

elaborate, in the aforementioned example, the RAC on the medial heel portion194

of the women’s size 6.5 shoe would likely fall somewhere in the lower-instep195

area of the men’s size 10.0.)196
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A static version of the web-based heat map is illustrated in Fig. [10]. In197

the associated frequency table, the numerical values in the top row remain198

constant regardless of the user’s interaction with the web-page, displaying199

data associated with total RAC count for the entire database (regardless of200

cell location). Conversely, the two remaining rows automatically update to201

display RAC count and frequency for individual cells (5mm x 5mm) when202

queried by the user (in this static version, data is provided for a single cell203

outlined in black). The heat map allows the analyst to visually and quan-204

titatively evaluate the spatial density of randomly acquired characteristics205

according to location and category, in response to the National Academy206

of Sciences (NAS) 2009 request for relative frequency of features, as well207

as SWGTREAD’s request for research on Random Placement Shape and/or208

Placement of Randomly Acquired Characteristics” [13], and the “Mathemat-209

ical Probabilities of Randomly Acquired Characteristics” [14].210

Despite this positive step (pun intended), the authors acknowledge that211

this database must be used with caution. The utility of the density informa-212

tion is its ability to shed light on the random and variable nature of RAC213

frequency and possible co-occurrence. However, the heat map data is not214

intended to be a quantitative collection of independent wear-related events215

that can be multiplied to provide a cumulative probability of occurrence for a216

constellation of RACs on a randomly selected outsole. Moreover, density and217

categorization does little to account for the clarity, quality, and complexity of218

a geometric feature, which is as much (if not more important) to the forensic219

footwear comparison than the simple assessment of presence or absence. As220

such, the examiner’s responsibilities cannot be deduced to a simple table of221
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frequencies, and a great deal more is required to both interpret and under-222

stand how best to utilize the database this project is generating. Despite223

this caveat, now that the data exists and is accessible to the community, our224

new focus is how best to present it to maximize value, along with estimates225

of uncertainty in frequency, analyst-variability, and quantitative metrics of226

shape similarity.227

Table 1: Frequency of shoe type.

Type Number

Athletic 838

Dress Shoe 88

Boot 56

Sandal 18

Total 1,000

Table 2: Degree of wear. Shoes with light wear have discernible texture. Shoes with

moderate wear may show some bald spots and lost texture. Shoes with heavy wear have a

near complete loss of texture, many or large bald spots, and possible holes or areas where

the outsole has worn away.

Wear Number

Light 281

Moderate 456

Heavy 263

Total 1,000
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Table 3: Presence of microcellular material on the outsole.

Microcellular Material Number

Present 108

Absent 892

Total 1,000

Table 4: Presence of Schallamach pattern on the outsole.

Schallamach Pattern Number

Present 743

Absent 257

Total 1,000

Figure 1: Example of outsole and Handiprint exemplar scans.
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Table 5: Frequency of manufacturer/brand.

Manufacturer/Brand Number

Adidas 28

Asics 30

Brooks 10

Converse 30

Hoka 36

New Balance 20

Nike 294

Puma 14

Reebok 160

Skechers 12

Under Armour 60

Unknown 26

Other (fewer than 10 shoes) 280

Total 1,000
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Table 6: Frequency of men’s and women’s shoe sizes. Note: shoes of unknown size account

for the remaining 106 shoes (approximately 10%) of the database. Please note that size

includes the full and half size; for example, a size 6 includes size 6 and size 6.5.

Men’s Size Number Women’s Size Number

Size 5 2 Size 4 4

Size 6 4 Size 5 2

Size 7 28 Size 6 10

Size 8 54 Size 7 56

Size 9 148 Size 8 70

Size 10 200 Size 9 46

Size 11 162 Size 10 22

Size 12 62 Size 11 8

Size 13 14 Size 12 2

Total 674 Total 220

Table 7: Frequency of RAC shape categories in 1,000 shoes.

Category Number Percentage

Lines/Curves 25,826 45%

Irregulars 22,092 38%

Circles 6,288 11%

Triangles 3,242 6%

Total 57,426 100%
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Figure 2: Registered and background subtracted outsole scan (left) and Handiprint scan

(right). The middle image is an overlay of the outsole and Handiprint illustrating co-

registration.

Figure 3: Registered and marked Handiprint image (left) and resulting RAC map (right).
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Figure 4: Example of a selected portion of the Converse Chuck Taylor R© All Star R©. Hand-

iprint (top left), outsole (bottom left), marked Handiprint (top right), RAC map (bottom

right). Note that the outsole image shown in this figure has been scanned on a flat bed

scanner, but that all RACs were detected using 4X magnification and oblique illumination.

Figure 5: Subsection of RAC map and example of connected component subimages. This

particular RAC was numbered #101, located at a normalized radius of 0.55 and an angle

of 104o
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Figure 6: Four RAC images with their corresponding feature vectors [area, perimeter,

circularity, triangularity, linearity].

Figure 7: Examples of RACs classified as circles, lines/curves, triangles, and irregulars.
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Figure 8: (A) Original RAC, (B) Rotated, (C) Rotated, (D) Rotated, Translated, and

Scaled (E) Scaled and Translated.
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Figure 9: Plot of normalized Fourier shapes derived from the RACs shown in Fig. [8].
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Description Any Shape Irregular Circle Triangle Line/Curve

Total: In Database 57,426 22,075 6,287 3,242 25,822

Total: In Cell 86 35 12 0 39

Chance of Finding RAC in Cell 1:667 1:1,640 1:4,785 1:-,142 1:1,472

Figure 10: Static illustration of web-based heat map for a normalized shoe. Numerical

values in the top row of the associated frequency table remain constant regardless of the

user’s interaction with the heat map, displaying data associated with total RAC count for

the entire database (regardless of cell location). Conversely, the middle and bottom rows

automatically update to display RAC count and frequency for individual cells (5mm x

5mm) when queried by the user. In this static example, the results are shown for a single

cell outlined in black near the toe. Note that the normalized shoe was a size 10 men’s

Reebok R© walking shoe with an area of 21,235mm2.

33



References228

[1] W. J. Bodziak, Footwear Impression Evidence: Detection, Recovery and229

Examination, Second Edition, CRC Press, 2000.230

[2] A. Alexander, A. Bouridane, D. Crookes, Automated classification and231

recognition of shoeprints, Image Processing and its Applications 2(465)232

(1999) 638–641.233

[3] Z. Geradts, J. Keijzer, The image-database REBEZO for shoeprints234

with developments on automatic classification of shoe outsole designs,235

Forensic Science International 82 (1996) 21–31.236

[4] P. de Chazal, J. Flynn, R. B. Reilly, Automated processing of shoeprint237

images based on the Fourier transform for use in forensic science, IEEE238

Transactions on Pattern Analysis and Machine Intelligence 27 (2005)239

341–50.240

[5] T. Kiely, Forensic Evidence: Science and the Criminal Law, Second241

Edition, CRC Press, 2006.242

[6] T. Hannigan, L. Fleury, R. Reilly, B. O’Mullane, P. de Chazal, Survey of243

1276 shoeprint impressions and development of an automatic shoeprint244

pattern matching facility, Science & Justice 46 (2006) 79–89.245

[7] M. Gueham, A. Bouridane, D. Crookes, Automatic recognition of partial246

shoeprints based on phase-only correlation, IEEE 4 (2007) 441–444.247

[8] M. Gueham, A. Bouridane, D. Crookes, O. Nibouche, Automatic recog-248

34



nition of shoeprints using Fourier-Mellin transform, NASA/ESA Con-249

ference on Adaptive Hardware and Systems (2008) 487–491.250

[9] R. Xiao, P. Shi, Computational Forensics: Lecture Notes in Computer251

Science, Springer, 2008.252

[10] A. Bouridane, Imaging for Forensics and Security: From Theory to Prac-253

tice, Springer, 2009.254

[11] M. Jing, W. Ho, L. Chen, A novel method for shoeprints (sic) recognition255

and classification, Proceedings of the Eighth International Conference256

on Machine Learning and Cybernetics (2009) 2846–2851.257

[12] NAS, Strengthening Forensic Science in the United States: A Path258

Forward; Committee on Identifying the Needs of the Forensic Sci-259

ences Community, National Research Council, Technical Report,260

https://www.ncjrs.gov/pdffiles1/nij/grants/228091.pdf, 2009.261

[13] SWGTREAD, Scientific Working Group for Shoeprint and Tire262

Tread Evidence - Reccomendations for Research: Random place-263

ment shape and/or placement of randomly acquired characteristics264

(http://www.swgtread.org/research/recommendations-for-research/8-265

footwear/50-random-placement-shape-and-or-placement-of-randomly-266

acquired-characteristics) (2015 (Accessed November)).267

[14] SWGTREAD, Scientific Working Group for Shoeprint and268

Tire Tread Evidence - Reccomendations for Research: Math-269

ematical probabilities of randomly acquired characteristics270

35



(http://www.swgtread.org/research/recommendations-for-research/10-271

footwear-and-tires/42-mathematical-probabilities-of-randomly-272

acquired-characteristics) (2015 (Accessed November)).273

[15] U. Park, A. K. Jain, Face matching and retrieval using soft biometrics,274

IEEE Transactions on Information Forensics and Security 5(3) (2010)275

406–415.276

[16] R. Gonzalez, R. E. Woods, Digital Image Processing, 3rd Edition, Pear-277

son Prentice Hall, New Jersey, 2008.278

[17] P. Rosin, Measuring shape: Ellipticity, rectangularity, and triangularity,279

Machine Vision and Applications 14 (2003) 172–184.280

[18] T. Wallace, O. Mitchell, Analysis of three-dimensional movement us-281

ing Fourier descriptors, IEEE Transactions on Pattern Analysis and282

Machine Intelligence 2(6) (1980) 583–588.283

[19] I. Bartolini, P. Ciaccia, M. Patella, WARP: Accurate retrieval of shape284

using phase of Fourier descriptors and time warping distance, IEEE285

Transactions on Pattern Analysis and Machine Intelligence 27(1) (2005)286

142–147.287

[20] C. Dalitz, C. Brandt, S. Goebbels, D. Kolanus, Fourier descriptors for288

broken shapes, EURASIP Journal on Advances in Signal Processing 161289

(2013) 1–11.290

[21] A. Folkers, H. Samet, Content-based image retrieval using Fourier de-291

scriptors on a logo database, Proceedings of the 16th International292

Conference on Pattern Recognition 3 (2002) 521–524.293

36



3. POC

37



Classification of Footwear Outsole Patterns using Phase

Only Correlation. Part I: Baseline Performance

Abstract

Successful classification of questioned footwear has tremendous eviden-

tiary value; the result can minimize the potential suspect pool and link a

suspect to a victim, a crime scene, or even multiple crime scenes to each

other. To date, several different automated, semi-automated and user-driven

classification models have been developed and discussed in the primary lit-

erature. Although each approach has demonstrated some level of success,

most are multi-phased and susceptible to failure owing to one or more weak-

nesses in the image processing chain. Furthermore, there have been limited

attempts to compare and quantify success when confronted with crime scene

quality prints. The research presented here examines the performance of

a single semi-automated shoeprint classification algorithm (based on Phase

Only Correlation (POC)) for the classification of both high quality and crime-

scene-like quality impressions. More specifically, the work is divided into two

parts. Part I characterizes the baseline performance of POC and the loss in

discrimination potential associated with this algorithm when presented with

crime-scene-like prints that vary in terms of media (blood and dust), transfer

mechanisms (gel lifters), enhancement techniques (digital and chemical) and

variations in print substrate (ceramic tiles, vinyl tiles and paper). The results

indicate probabilities greater than 0.850 (and as high as 0.989) that positive

Preprint submitted to Forensic Science International December 8, 2015
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samples (known matches) will order higher in a ranked list than negative

samples (known non-match) when confronted with mixed media (blood and

dust), transfer mechanisms (gel lifters), enhancement techniques (digital and

LCV) and variations in print substrate (ceramic tiles, vinyl tiles, and paper).

Based on this success, Part II has been initiated to further identify weak-

nesses. These results are forthcoming, wherein the authors intend to further

characterize weaknesses in the image processing chain as a function of scale,

translation, rotation, and partial print reproduction to help the footwear ex-

aminer better identify a priori how best to employ POC for use with crime

scene marks.

Keywords: Footwear, Database, Classification, Phase Only Correlation,

Crime Scene

Introduction1

With the increased popularity of crime solving dramas on television, the2

public is much more aware of what crime scene investigators are looking for3

while processing a scene. This knowledge, whether accurate or not, has al-4

tered the jury’s expectations during a criminal trial [1]. If this knowledge5

has affected the jury, it is equally likely to have altered how criminals at-6

tempt to conceal their crimes, putting greater importance on evidence types7

currently outside of the limelight of the media. These alternate forms of8

evidence, footwear included, provide information that is critical in linking9

suspects to victims, crime scenes, and even multiple crime scenes to each10

other. In fact, when the crime scene is void of all other forms of impression11
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evidence, footwear may be the only probative information at the scene. If12

present, footwear class and accidental characteristics may afford the analyst13

the ability to focus a criminal investigation, link high volume crimes together,14

or otherwise provide information vital to the successful resolution of a case.15

Ideally, the strength of this linkage will be highly discriminating, which is16

often a function of several factors, including the presence of randomly ac-17

quired characteristics (RACs). Despite this desired result, linkage based on18

accidental characteristics is not always possible, and a common misconcep-19

tion is that impression evidence must lead to identification for it to be useful;20

on the contrary, class features, if present in sufficient quantity and quality,21

can be extremely valuable [2].22

Presuming little debate over the expressed utility of footwear classification23

in forensic investigations, analysts are left with deciding how best to go about24

creating and searching a database of possible exemplars. Ideally, this classi-25

fication process should be simple, efficient, and automated, thereby freeing26

specialized investigators to concentrate on more demanding tasks. Regardless27

of the mechanism employed to elicit possible matches, footwear classification28

faces many challenges, including low signal to noise ratios (SNR), manufac-29

turing variations, limited or partial data, and variability in user-input.30

Footwear Classification Challenges:31

Analyst versus Automated Methods32

Since shoeprints began being sorted and collected, there has been a use33

for reference sets. In 1937 the FBI started a small rubber heel file which grew34

into the current reference collection (comprised of thousands of photographs,35

catalogs, and digital impressions) [3]. A similar effort was undertaken by the36
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National Police Agency in Tokyo, Japan, also evolving into a computerized37

reference collection [3]. However, these are only a collection of images of38

shoes, not a way to compare an unknown shoe to a set of exemplars. Since39

these inaugural efforts, scientists have progressed from completely manual40

comparisons to more automated processes [4–12], but not without encoun-41

tering challenges along the way, including the trade-off between efficiency42

and accuracy.43

In order to best evaluate crime scene quality impressions, a classification44

method must preserve structural outsole information while simultaneously45

reducing or removing noise. For this pattern recognition problem, the human46

observer has proven to be exceptionally skillful in every regard. Conversely,47

the human programmer must work diligently to overcome recognition loss48

when faced with what might seem like trivial differences between two images49

with content that varies only in size, image registration, image type (e.g.,50

photograph, cast, etc.), or signal to noise ratio.51

For example, the human analyst has little difficulty classifying two shoes52

that differ only in physical size, when they match in tread design. Con-53

versely, size variation is a particularly difficult issue to tackle in a mathemat-54

ical comparison, especially because the size difference can be introduced by55

the manufacturer through more than one modification. For instance, shoe56

size can be altered by either increasing or decreasing the size of individual57

tread elements present on the outsole (e.g., molded soles). Alternatively, the58

design of individual tread elements can remain constant, but the totality of59

the overall pattern is successively truncated (e.g., die-cut soles) during the60

production of smaller sized soles. These size variation changes all depend61
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on the sole production method and what the company’s final vision is for62

the shoe line. Shoe soles that are stamped out of a large piece of sole ma-63

terial will have the same pattern across the entire surface but as the shoe64

size increases, the number of repeating elements (e.g., rows, columns, trian-65

gles) will also increase [13], thus altering the final appearance of the sole.66

Hence, the severity of how shoe size alters the pattern depends heavily on67

the above aforementioned manufacturing method. While an examiner can68

easily identify two outsoles of the same class, even considering differences in69

size or location of tread elements, successful classification with an automated70

system under the same conditions must include a mathematical representa-71

tion or normalization step for the aforementioned variations in order to avoid72

classification failure even under high signal to noise ratio conditions.73

Another challenge arises when a reference shoe and an unknown are not in74

the same image space, specifically in the case of partial impressions. Except75

under extreme conditions (e.g., a partial impression of less than a few tread76

elements) a footwear analyst can relatively easily account for missing infor-77

mation and visually assess region correspondence between two impressions.78

However, the same spatial realignment is not as easily or seamlessly achieved79

with a computer algorithm in an automated fashion, as evidenced by the80

multitude of image registration models currently accessible in the literature81

(see review papers by Zitova and Flusser [2003] [14] and Wyawahare et al.82

[2009] [15] for details).83

Additionally, large variations in the appearance of footwear evidence can84

complicate outsole classification. As varied as the ways in which shoeprints85

can be deposited, are the methods by which they are collected and enhanced.86
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Shoeprint information at a scene can be preserved and documented using a87

number of methods, including photography, lifting, and casting of impres-88

sions. Examiners (regardless of their level of experience) are innately able to89

account for these variations in appearance in order to determine the type of90

shoe which made an impression (human observers co-mingle and synthesize91

the content of numerous media types on a daily basis (e.g., print, video, cell92

phone, Internet)). However, this large variability in evidence collection and93

preservation method becomes an obstacle for an automated system, some-94

what analogous to the traditional multi-sensor fusion problem (integration95

of multiple sensors that vary in terms of signal to noise ratio, temporal res-96

olution, spatial resolution, spectral resolution, distortion, perspective, etc.).97

In terms of footwear classification, the fusion dilemma is the comparison of98

imagery that likewise differs in terms of user-input (exemplar method (e.g.,99

Handiprint, ink, Magna-brush method), collection preferences (e.g., photo-100

graph, digital scan), resolution settings (PPI), dimensionality (2D or 3D),101

media (e.g., blood, dust, mud), substrate (e.g., tile, vinyl, carpet, wood-102

flooring), enhancement mechanisms (e.g., physical, chemical, digital), etc.).103

In short, examiners have exceptional pattern recognition skills, even in the104

presence of overwhelmingly low signal to noise ratios that are often encoun-105

tered when presented with low quality crime scene evidence. Conversely,106

automated systems require intentional and robust mathematical solutions.107

So why all the effort to accomplish something already elegantly solved by108

the evolution of the human observer? Efficiency; for all but the most com-109

monly encountered shoes and questioned impressions with the lowest SNR,110

manual classification methods are inefficient and impractical in today’s rapid111

43



forensic discipline. The footwear examiner has extremely specialized pattern112

recognition intellect which is better suited toward the skillful comparison113

tasks required post-classification. As such, the pursuit and accomplishment114

of successful automated classification frees the analyst, allowing her to de-115

vote time to other higher-level tasks that cannot be accomplished from the116

benefit of today’s ever-expanding computing efficiency.117

Models Used for Automated Classification118

To date, a variety of different classification algorithms have been evalu-119

ated for use on footwear impression evidence, including identification of local120

interest points in tread elements and correlation of the entire outsole design121

[4–12, 16, 17]. While most of these attempts are highly successful when pro-122

vided with high signal to noise input, the real test is how well the algorithm123

can tolerate degraded and variable imagery.124

Several of the existing classification methods utilize the Fourier trans-125

form in one form or another. Geradts and Keijzer [1996] generated ‘Fourier-126

features’ to identify and compare the shape of outsole design elements [16].127

Later attempts focused on a fully automated classification process that used128

the two-dimensional discrete Fourier transform (DFT), the power spectral129

density, and the two-dimensional correlation coefficient as the similarity met-130

ric, thus considering the entire outsole design rather than focusing on specific131

design features [5, 7]. Gueham et al. [2008] computed a fast-Fourier trans-132

form (FFT) on shoeprint images and, after filtering and log-polar mapping,133

computed the 2D correlation of the new Fourier magnitudes [18]. Conversely,134

some Fourier methods compute a correlation of the Fourier phase informa-135

tion to automatically classify outsole patterns [6, 17]. While the magnitude136
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of an image is important, the phase information obtained from the Fourier137

transform holds the contextual information necessary for image reconstruc-138

tion, thus providing the ability to accurately analyze images of low quality,139

which is the most probable form of footwear evidence [19].140

Moment invariants, a shape description method, are commonly used in141

the object recognition field because they can be invariant to rotation, trans-142

lation, and scale differences between shapes [20]. For example, AlGarni and143

Hamiane [2008] created a feature vector for each shoe that contained seven144

Hu moment invariants [8]. Similarly, in order to account for the shape irreg-145

ularity and complexity of shoe tread patterns, Xiao and Shi [2008] incorpo-146

rated an orthogonal polynomials-based (Zernike moments) shape descriptor147

method [7].148

Another commonly used classification metric utilizes distance metrics to149

assess the similarity of feature vectors compiled using information contained150

within a shoeprint. Patil and Kulkarni [2009] used a Gabor transform and151

Euclidean distance to compare shoeprint images. For this method, images152

were convolved with a Gabor filter and a feature vector was constructed for153

each shoe. These feature vectors were compared using Euclidean distance,154

thus obtaining a similarity score for comparison between images [9]. Beyond155

simple distance metrics, statistical values such as the Mahalanobis distance156

can be utilized to asses the similarity of outsole textured regions as was done157

by Dardi et al. [2009] [10].158

Another area of study regarding automated classification is local interest159

points. For these methods, interest points or features are extracted using a160

detector and these points are then mathematically compared using different161
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similarity metrics (e.g., k-nearest neighbors, cosine similarity, etc.) [11, 12].162

Regardless of the method employed, efficient and automated shoeprint163

classification has been extensively explored and success has been achieved,164

though largely on high quality or synthetically degraded impressions. Unfor-165

tunately, few studies have addressed the performance of these algorithms on166

crime scene impressions. Of course, algorithm validation is a two-step pro-167

cess; if an algorithm fails when presented with high quality imagery, there is168

no reason to move on and try to obtain a more realistic indicator of perfor-169

mance in the presence of complicated inputs. However, once an algorithm170

shows some level of success when presented with laboratory synthetic sam-171

ples, it becomes appropriate to identify its strengths and weaknesses and172

determine its utility in actual case usage.173

To date there have been two attempts to evaluate the performance of174

different automated methods when presented with crime scene footwear ev-175

idence. In 2009, Cervelli et al. [21] sought to compare the performance of176

three metrics: power spectral density (PSD) [5], Modified Phase Only Cor-177

relation (MPOC) [6], and texture based Mahalanobis distance (MD) [10].178

In order to account for a range in print quality, two different sets of shoe179

marks were compiled. The first set was comprised of high quality exemplars180

with synthetic additions of noise and blur, while the second set consisted of181

real crime scene marks. For the synthetic shoe marks, all algorithms per-182

formed well, with MPOC exhibiting the best matching capacity [21]. In183

almost all cases, the highest MPOC score corresponded to the correct known184

match for each query print. However, when real crime scene impressions185

were tested, these results quickly diminished, indicating (as expected) that186
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synthetic crime scene marks are not an accurate indicator of an algorithm’s187

performance on case quality evidence. Though the correct match percentage188

dropped greatly for real crime scene marks, MPOC still out-performed the189

other models [21].190

More recently, Luostarinen and Lehmussola [2014], evaluated the accu-191

racy of seven different automatic classification algorithms including PSD,192

Fourier transform, Hu’s moment invariants, Mahalanobis distance, Gabor193

transform, local interest points with RANSAC, and spectral correspondence194

of local interest points [22]. More specifically, these methods were tested us-195

ing three different image datasets of differing quality impressions, including196

real crime scene marks. Furthermore, partial and rotated prints were exam-197

ined using all algorithms [22]. Overall, the method employing local interest198

points and RANSAC performed the best. However, many of the algorithms199

proved inconsistent and inaccurate when confronted with “non-ideal” input200

(e.g., crime scene quality impressions, rotations, etc.) [22]. Again, these201

results indicate that laboratory quality prints, although useful as a first-pass202

when comparing an algorithm’s potential performance, do little to really al-203

low the research analyst to truly understand the strengths and weaknesses204

of a given classification metric.205

In the end, after comparison of a multitude of algorithms, the commu-206

nity is still left with much uncertainty as to how best to move forward. In207

truth, no single classification algorithm is likely to out-perform all others in208

every single scenario. Instead, each metric is multi-phased and susceptible209

to failure owing to one or more weaknesses in the image processing chain.210

Therefore, the goal of the current work is not to prove that one algorithm out-211
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competes all others, but to (i.) characterize the loss in discrimination poten-212

tial associated with a successful classification algorithm when presented with213

crime-scene-like prints, and (ii.) to help identify weaknesses in the image pro-214

cessing chain. More specifically, the goal of this work is two-phased. First,215

identify an algorithm that shows some level of success and characterize its216

baseline performance. Phase Only Correlation was selected as the algorithm217

of choice following a detailed literature survey and the work conducted by218

Cervelli et al. [2009] (based on the results from Luostarinen and Lehmussola219

[2014] local interest points with RANSAC could have been another likely220

candidate for study). Second, assess the weakest link(s) in the image pro-221

cessing chain associated with the selected algorithm to offer solutions that222

may help strengthen and reinforce weaknesses, and when not possible, offer223

comment so that the examiner is aware a priori of the expected failing.224

Material and Methods225

Experimental Design226

A total of sixty-five shoes were selected as high quality controls. When227

possible, available defining characteristics associated with each shoe were228

recorded, including make, model, size, degree of wear, and the presence of229

Schallamach patterns. As necessary, each shoe was gently washed to remove230

debris (i.e., this research does not account for the possible presence of tran-231

sient RACs such as rocks, gum, etc.). A subset of fifty outsoles were selected;232

these were scanned at 600PPI (3 replicates) with a Canon CanoScan8800F233

flatbed scanner, downsampled by 10, converted to binary, and transformed234

using a Canny Edge Detector [23]. The premise was to test the utility of us-235
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ing a memory-lean, low-resolution, binary edge image as the database proxy236

for all image types moving forward. For the remaining fifteen shoes, tradi-237

tional Handiprint exemplars (3 replicates) [2] were created and scanned at238

600PPI using an Epson Expression 11000XL Graphics Arts Scanner.239

Using a random number generator, a total of thirty-six shoes were selected240

for crime scene print creation. Six analysts of differing heights, weights, and241

shoe sizes were selected to aid with crime scene print creation. Each analyst242

was randomly assigned 6 shoes (3 for dust and 3 for blood) as illustrated243

in Fig. [1]. Each shoe was used to create a crime scene print on different244

substrates, which included ceramic tiles, vinyl tiles, clear acetate sheets, and245

paper (dust only). Therefore, each analyst created a total of twenty-one crime246

scene prints (12 in dust and 9 in blood). The total number of prints created247

is detailed in Table [1]. All prints were co-registered using control points to248

minimize misclassification as a function of image registration (Note: POC is249

a traditional image registration technique and can theoretically be modified to250

achieve both image registration and classification downstream).251

Crime-Scene-Like Print Creation252

In order to best replicate crime scene conditions, analysts wore the shoes253

and walked over each substrate for the creation of all crime scene prints.254

Dust Impressions255

For creation of dust prints, analysts stepped in a tray of collected vacuum256

dust and walked over each substrate. Latent prints on tiles and acetates were257

then lifted using black gelatin lifters (13cm x 36cm BVDA Gellifters, Batch258

no. 2014198) and covered with the provided clear sheet; impressions on paper259
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were not lifted (Fig. [2]). Subsequently, the covered lifts and the latent260

impressions on paper were scanned at 600PPI using the Epson Expression261

Graphic Arts 11000XL and enhanced in Adobe R©Photoshop R©Elements 10 to262

increase contrast and minimize noise.263

Blood Impressions264

Certified pathogen-free human blood was utilized for creation of crime-265

scene-like blood impressions. A paper towel was saturated with blood and266

analysts stepped onto the paper towel (then over two newspapers in order267

to minimize blood pooling), before stepping onto the substrate. These im-268

pressions were allowed to dry and then scanned at 600PPI using the Epson269

Expression Graphic Arts 11000XL. After initial scanning, the impressions270

were enhanced using leuco-crystal violet (LCV), prepared as detailed in [2].271

The enhanced impressions were again digitized after drying (Fig. [3]).272

Post-Processing273

Following crime scene print creation, enhancement, and digitization, all274

images were registered and background subtracted [REF: Technical Note].275

In total, 66 blood and 106 dust prints were available for POC comparisons276

(8 dust prints and 2 blood prints were eliminated due to lack of a discernible277

tread pattern).278

POC Comparison Metric279

The Fourier transform F [g(x, y)] = G(u, v) of a spatial domain image280

g(x, y) gives the analyst access to frequency information associated with im-281

age amplitude A(u, v) and phase σ(u, v) as illustrated in Eqs. [1] & [2] where282

the subscripts refer to the two images under comparison [17].283
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G1(u, v) = A(u, v)ejσ(u,v) (1)
284

G2(u, v) = B(u, v)ejθ(u,v) (2)

Once the Fourier transform of each input image has been calculated, the285

Phase Only Correlation can be computed according to Eq. [3] [5–7] where286

F−1 is the inverse Fourier transform and G∗
2 is the complex conjugate of G2287

[17].288

POCg1g2 = F−1

[
G1(u, v)G∗

2(u, v)

| G1(u, v)G∗
2(u, v) |

]
(3)

= F−1
[
ej[σ(u,v)−θ(u,v)]

]

Results & Discussion289

In order to obtain a baseline for POC performance on outsole classifica-290

tion, replicate high quality exemplars for each method were compared (i.e.,291

outsole scans were compared to outsole scans and Handiprints were compared292

to Handiprints). Of the two, the Handiprint exemplar is the more traditional293

impression for comparison. However, the lower-resolution edge image was in-294

cluded with the hope that it would contain sufficient information to support295

a high degree of classification success for two major reasons. First, reduced296

computer storage needs, and second, almost every type of crime-scene print297

can be converted to an edge image (of some variety), potentially reducing298

variations in user-input.299
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For the known match (KM) comparisons, 3 replicates from each shoe were300

compared, yielding N=195 scores (65(3) = 195). For the known non-match301

(KNM) comparisons, a single replicate was used, yielding N=1,330 scores302

(n(n − 1)/2 = 50(49)/2 + 15(14)/2 = 1, 330). Fig. [4] illustrates the results303

from POC comparisons for high quality KM (solid line) versus KNM (dotted304

line) images. Of note is the distinct bimodal shape for the known non-match305

scores. The smaller, leftmost peak represents the POC scores of Handiprint306

KNMs while the larger, broader, and rightmost peak corresponds to the POC307

scores for the outsole edge images. Clearly the probability density indicates308

that the POC metric prefers the Handiprint exemplar as input imagery over309

the binary, downsampled edge image exemplars. Based on these results, the310

Handiprint exemplars were selected as the database image against which all311

172 crime-scene-like query images (66 blood and 106 dust) were compared.312

Fig. [5] illustrates the probability density of the log of match scores for313

KM and KNM comparisons of bloody crime-scene-like prints versus high314

quality Handiprint exemplars. Overall, the KM (N=106) scores for blood315

are lower than those for high quality impressions. As a result, there is316

more overlap between the KM and KNM densities (N=106(17)=1,802 scores)317

wherein ambiguous classifications can occur. Fig. [6] shows that the results318

from dust exhibit an even larger region of overlap (KM of N=66 scores and319

KNM=66(17)=1,122 scores), likely due to the decreased signal to noise ratio320

expected from dust impressions (and as depicted in Fig. [2]).321

In order to compare the POC performance for the three datasets, a re-322

ceiver operator characteristic (ROC) curve was constructed. Fig. [7] plots323

the false positive versus true positive rate for each comparison scenario. In324
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order to evaluate the performance of the classifier, the area under the curve325

(AUC) was computed. For a perfect classifier, the AUC=1, indicating perfect326

stochastic dominance. Based on the POC results, high quality impressions327

exhibit a 0.989 probability that a randomly sampled positive and negative328

pair will be correctly ordered in a ranked list. For bloody crime-scene-like329

prints, the AUC is slightly lower, with a correct rank probability of 0.974.330

However, this probability drops to approximately 0.895 for dusty impressions.331

Conclusions332

The results from this study remain consistent with previous research find-333

ings in that POC performs exceptionally well when classifying high quality334

footwear imagery [21]. In addition, the current work has attempted to gen-335

erate a baseline level of performance for POC when presented with relatively336

good quality crime-scene-like prints. Results to date demonstrate reasonable337

levels of success (AUCs above 0.85) suggesting that the algorithm can han-338

dle a degree of variation in media (blood and dust), transfer mechanisms (gel339

lifters), enhancement techniques (digital and LCV), and substrate (ceramic340

tiles, vinyl tiles and paper).341

Although these results are quite promising, the authors remain cautious,342

acknowledging that many vulnerabilities have yet to be tested. For example,343

as can be seen from Figs. [2] & [3], the “crime-scene-like” imagery gener-344

ated for this comparisons is still of very respectable quality and, to adopt345

a term from analytical chemistry, not nearly able to stress the “the limit of346

detection” (LOD) for this algorithm (nor near the limit in quality observed347

by a footwear examiner on a routine basis). Moreover, the majority of the348
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test images were more than 80% complete, so future work must assess how349

well partial imagery can be classified. To this end, previous research suggests350

that image overlap (or partials) as low as 30% [24] can still be registered.351

This is extremely promising and suggests that a similar level of success may352

be achieved here, although it is important to note that shoeprint imagery is353

very different from the types of imagery traditionally registered using POC354

(medical and remotely sensed aerial imagery) so it is difficult to discern if355

this level of robustness will translate readily. Also of note is the need to356

move to a fully automated image registration mechanism (capable of han-357

dling variations in scale, rotation, and translation). Since POC is amenable358

to this implementation by conversion to log-polar space, further testing will359

move away from the use of ground control points for registration, testing360

image comparison with a significantly reduced need for user pre-processing361

[25]. These attributes (fully-automated registration, partial prints, and more362

extensive image degradation) are the topic of phase-two moving forward.363

Figure 1: Work flow for crime scene print creation.
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Table 1: Total number of crime scene prints created for dust, blood, and blood enhanced

with leuco-crystal violet (LCV).

Ceramic Vinyl Acetate Paper Total

Dust n=18 n=18 n=18 n=18 72

Blood n=18 n=18 n=18 n=0 54

Blood+LCV n=18 n=18 n=18 n=0 54

364

Figure 2: A) High quality exemplar; B) Digitally enhanced dust impression lifted from

clear acetate; C) Digitally enhanced dust impression lifted from ceramic tile; D) Digitally

enhanced dust impression from paper; E) Digitally enhanced dust impression lifted from

vinyl tile. Note: The sharp edge (denoted by a square) on the toe portion of shoe C) and

E) is the demarcation of the gel lifter.
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Figure 3: A) High quality exemplar; B) LCV enhanced blood impression on clear acetate;

C) LCV enhanced blood impression on ceramic tile; D) LCV enhanced blood impression

on vinyl tile.
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Figure 4: Probability density functions (PDFs) for KM (solid line) and KNM (dotted line)

high quality prints. There were N=195 KM comparisons and N=1,330 KNM comparisons

for the high quality exemplar dataset. PDFs were constructed using a Gaussian Kernel

Density Estimator (KDE). The bin width for each density estimate was set equal to one

quarter of the standard deviation of the log of the respective POC scores (or 0.118 for

KMs and 0.120 for KNMs).
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Probability Density Functions for KM & KNM Blood Prints
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Figure 5: Probability density functions (PDFs) for KM (solid line) and KNM (dotted

line) blood prints. There were N=106 KM comparisons and N=1,802 KNM comparisons

for the blood print dataset. PDFs were constructed using a Gaussian Kernel Density

Estimator (KDE). The bin width for each density estimate was set equal to one quarter

of the standard deviation of the log of the respective POC scores (or 0.080 for KMs and

0.011 for KNMs).
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Probability Density Functions for KM & KNM Dust Prints
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Figure 6: Probability density functions (PDFs) for KM (solid line) and KNM (dotted line)

dust prints. There were N=66 KM comparisons and N=1,122 KNM comparisons for the

dust print dataset. PDFs were constructed using a Gaussian Kernel Density Estimator

(KDE). The bin width for each density estimate was set equal to one quarter of the

standard deviation of the log of the respective POC scores (or 0.077 for KMs and 0.009

for KNMs).
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Receiver Operator Characteristic Curve
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Figure 7: ROC curve for POC results. Crosses represent high quality impressions, dia-

monds represent the blood prints, and stars represent dust impressions. The area under

the curve for high quality impressions is 0.989, for blood impressions is 0.974, and for dust

impressions is 0.895.
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Evaluation of shoeprint similarity via analysis of

randomly acquired characteristics: A comparison of

high quality exemplars and crime scene prints

Abstract

Forensic footwear evidence can prove invaluable to a criminal investi-

gation by providing information about the nature of a crime or who may

have committed it. However, limited knowledge about the discrimination

potential of this evidence can lead to challenges in court. Though experi-

enced forensic footwear examiners agree that these impressions can be just

as discriminating as a fingerprint, general acceptance of this assertion can

benefit from quantitative research. While there are several studies detailing

classification of outsole patterns, these manufacturing characteristics can-

not be used for an identification. Instead, randomly acquired characteristics

(RACs) must be utilized for this purpose. Although empirical studies exist

describing the discriminating power and frequency of these features, there

have been limited attempts to characterize the utility of accidentals in crime

scene quality prints. Given the dynamic and unpredictable nature of the me-

dia, substrate and deposition process encountered during the commission of

a crime, RACs on crime scene prints are expected to exhibit a large range of

variability in terms of reproducibility, clarity, and quality. This study math-

ematically compares the presence of RACs in high quality exemplars versus

crime-scene-like quality impressions as a function of RAC shape, perimeter,
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and area. Furthermore, the total RAC map, a binary representation of all

RACs present in an impression, has been used to illustrate the bounds by

which crime-scene-like laboratory samples can be linked back to their high

quality exemplars. Results indicate that the unpredictable conditions as-

sociated with crime-scene print production promotes RAC loss that varies

between 33%-100% with an average of 85%, and that this loss increases pro-

portionally as a function of RAC perimeter and area. Furthermore, when

the entire outsole is taken as a constellation of features, 64% of the crime-

scene-like impressions exhibit 10 or fewer RACs. Despite this, there was a

0.74 probability that the match score for a randomly selected pair of positive

(known match) and negative (known non-match) samples would be correctly

ranked in an ordered list. Overall, the results indicate that footwear com-

parisons cannot be reduced to a “simple point counting” procedure; instead,

more abstract qualities less amenable to quantitation (such as RAC shape,

clarity, and complexity) are extremely important and unmistakably relevant

in the comparison process.

Keywords: Footwear, Randomly Acquired Characteristics, Accidentals,

Frequency, Shape Descriptors, Feature Vectors, Crime Scene

Introduction1

Footwear impression evidence, which is left at almost every crime scene,2

can be invaluable for forensic scientists in order to link a suspect to a crime3

scene or reconstruct the series of events leading up to a crime. In order to4

maximize the utility of this evidence, it is therefore necessary to understand5
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how to properly evaluate and interpret footwear impression evidence. To this6

end, several studies have examined the individuality and utility of three ma-7

jor aspects of footwear impressions: class, subclass, and randomly acquired8

characteristics [1–9], the latter of which are the specific focus of this research.9

Of these three attributes, class characteristics (outsole design, size of outsole10

elements, and shoe dimensions) are the least discriminating. In combination,11

these features can greatly aid in narrowing down the possible sources of a12

given impression by excluding shoes of a given size, brand, model, etc., how-13

ever, they cannot be used for identification of source [10]. When present,14

subclass characteristics (e.g., air bubbles, stippling, remnants of inconsis-15

tent mixing of outsole material), which are a result of the manufacturing16

process that may vary for different shoes or molds, can provide additional17

means to reduce the set of possible sources for footwear impression evidence18

[11]. Through the use of class and subclass characteristics, an examiner may19

be able to eliminate an extremely large number of possible source shoes,20

greatly narrowing the number of reasonable leads and possible contributors21

in a criminal investigation. However, to determine a more precise likeness22

and actual source attribution between a questioned and known footwear ex-23

emplar, the examiner must proceed to compare the quantity, quality, clarity24

and complexity of what are termed accidental or randomly acquired char-25

acteristics (RACs) (e.g., tears, nicks, stones, holes, etc.). If these features26

have reproduced in the crime scene print, and are in “sufficient agreement”,27

the examiner is permitted to reach an actual identification of source. To28

reiterate and borrow a statement from the appellate court in the case of the29

State of Illinois vs. Charles A. Campbell [1991], “shoe print evidence may30
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be as reliable and as trustworthy as any other evidence...even one individual31

characteristic, depending on the nature and uniqueness, could be enough for32

a valued comparison” [10].33

Since source attribution is a function of RACs, an active area of research is34

how best to demonstrate the degree to which information contained within35

shoeprints (specifically accidental features) are random and variable [6–9].36

Much of this work has been affirmative of previous assertions (high discrimi-37

nation) when conducted on high quality impressions or with theoretical data,38

however, there has not been a focused effort to determine how this discrim-39

ination might vary as a function of RAC size or shape under dynamic print40

production. As such, this study focused on quantifying RAC loss and varia-41

tion during the production of crime-scene-like prints in order to better char-42

acterize the bounds by which case prints can be linked back to their high43

quality exemplars.44

Sources of Variability in Footwear Impression Evidence45

Numerous factors can affect the appearance of footwear impressions col-46

lected in criminal investigations. Consequently, examination and interpreta-47

tion of this evidence is innately challenging and requires extensive training48

and accumulated expertise. More specifically, the entire process tends to49

be influenced by variations in print creation, collection, and enhancement,50

and in order for analysts to reasonably compare crime scene impressions to51

high quality exemplars obtained from suspect shoes, it is imperative that the52

sources of variability be understood and accounted.53

68



Creation of Crime Scene Impressions54

Despite the numerous methods of crime scene print creation, there are55

two major classes: two- and three-dimensional. Within each of these classes,56

however, exist a number of different factors which can contribute greatly to57

the variability present in the appearance of crime scene shoeprints.58

Two-dimensional impressions include those which sit on top of a surface59

and have no discernible depth [12]. Positive impressions result from a transfer60

of material from the outsole to a substrate; examples include prints in blood,61

grease, and dust [10]. Conversely, a negative impression is left when an62

outsole lifts a residue from a surface. These often occur when a clean shoe63

comes into contact with a dirty surface and removes accumulated dirt or64

dust from the substrate. For negative impressions, the outsole elements are65

depicted in the void pattern. Clarity and quality of the impression often66

depends on the surface of deposition (i.e., a waxed floor tile will likely capture67

a more detailed impression than carpet) as well as the media in which the68

print is made (e.g., blood, grease, dust, etc.) [12].69

Conversely, three-dimensional impressions result in deformation of the70

surface, resulting in an impression with depth. These prints can be found in71

soil, sand, and snow and the detection, preservation, and forensic utility of72

these impressions vary depending on a multitude of environmental conditions,73

including substrate composition [13, 14].74

Collection and Enhancement of Impressions75

Given the variability in the initial appearance of footwear impressions,76

the methods for collecting and enhancing this evidence can differ greatly de-77

pending on the conditions of deposition. For example, two-dimensional prints78
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are lifted to improve visibility and allow further examination, while three-79

dimensional impressions are often cast in order to preserve the entire depth80

of the impression [15]. Furthermore, the lifting method employed depends81

on the material deposited as well as the substrate containing the impression82

(e.g., electrostatic lifters for dry impressions on non-porous surfaces, gelatin83

lifters for wet origin prints on non-porous surfaces [16–18]).84

In addition to collection of crime scene prints for examination, enhance-85

ment methods may be employed to maximize visual detail. In general, im-86

pressions can be enhanced in four major ways: chemically, physically, digi-87

tally, or via electromagnetic radiation. In order to increase contrast between88

the impression and the background, chemical methods are carefully selected89

depending on the material in which the print is deposited, as well as the90

substrate properties. Extensive research exists detailing which methods are91

appropriate in a variety of scenarios [19–23]. Likewise, physical enhancement92

can be utilized to maximize contrast. This technique involves increasing con-93

trast via the use of powders [10]. For example, by applying a fingerprint94

or fluorescent powder to an impression on a waxed surface, the evidence95

will retain the powder and can be easily distinguished from the background.96

Further, digital enhancement techniques can be used alone or in conjunction97

with another technique. These methods aim to use computer programs to in-98

crease image quality by maximizing the signal to noise ratio, thus increasing99

the amount of information available to the analyst for comparison purposes100

[24, 25]. Lastly, enhancement via electromagnetic radiation includes the use101

of specialized light sources (e.g., ultraviolet, infrared, etc.) to maximize con-102

trast of the impression against the background and therefore increase the103
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clarity and detail of evidence [26–29].104

Given the inherent variability and complexity of footwear impression de-105

position, as well as the number of physical factors which can influence the106

appearance of prints (e.g., media, substrate, enhancement methods, etc.),107

it is reasonable to expect variability in the appearance (clarity, quality, de-108

tail, etc.) of crime scene evidence. In short, a crime scene impression will109

rarely be an exact replicate of the source shoe or a corresponding high qual-110

ity exemplar print. More specifically, the RACs which are visible in a high111

quality image are unlikely to consistently reproduce in crime scene evidence112

impressions. This is especially true given that RACs show variability in re-113

production among high quality replicates even when prepared under ideal114

conditions in the laboratory! In fact, to account for this inherent variation,115

several replicate exemplars are typically created in the laboratory for both116

case and research purposes [5, 8], which further exemplifies the need to better117

understand RAC variation as a function of shape, perimeter, and area.118

Methodology119

Using a random number generator, 50 pairs of shoes were selected from120

a total of 400 to be used for crime scene print creation.121

Pre-Processing122

Available defining characteristics associated with each shoe were recorded,123

including make, model, size, manufacturer product code, degree of wear and124

the presence of Schallamach patterns. As necessary, each shoe was gently125

washed to remove easily dislodged debris (i.e., this research does not account126

for the possible presence of transient RACs such as rocks, gum, etc.). When127
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dry, each outsole was scanned at 600PPI with an Epson Expression 11000XL128

Graphics Arts Scanner. Post-outsole scanning, Handiprint exemplars were129

created [10], and each exemplar was likewise scanned at 600PPI.130

Exemplar Processing131

In order to facilitate the automated downstream extraction of RAC shape132

and position, the outsole and exemplar were background subtracted and reg-133

istered using identified control points as detailed in [REF: Technical Note].134

Post-registration and background subtraction, randomly acquired character-135

istics present on both the outsole and exemplar were marked and subse-136

quently localized [REF: Technical Note]. Each feature was then auto-137

matically numbered and extracted from the total RAC map using connected138

components. The resulting subimages were then evaluated to define RAC139

shape and geometry based on a 5-dimensional classification feature vector,140

and then finally transformed into individual RAC Fourier descriptors (FD)141

[REF: Technical Note].142

Crime-Scene-Like Print Creation143

Five analysts of differing heights, weights and shoe sizes were selected144

and randomly assigned 10 pairs of shoes to aid in print creation. In order145

to best replicate crime scene conditions, each analyst wore the shoes when146

creating impressions (note that this methodology differed from that used in147

exemplar creation which entailed pressing an outsole onto an adhesive sheet).148

Each outsole was lightly covered with shoe polish and analysts walked four149

steps over clear acetate sheets, thereby creating two replicate impressions per150

shoe for a total of 200 crime-scene-like quality prints. Each impression was151
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then developed using black magnetic powder (Lightning Powder Co. Black152

Magnetic 1-0160) and lifted using white gelatin lifters (13cm x 36cm BVDA153

Gellifters, Batch no. 2015033). Fig. [1] illustrates one “best case” and one154

“worst case” reproduction scenario.155

Processing of Crime-Scene-Like Prints156

After lifting, all impressions were scanned at 600PPI with an Epson Ex-157

pression 11000XL Graphics Arts Scanner. The lifters were afixed to a scan-158

ning board designed to raise the gel surface off the scanner bed by approxi-159

mately 1mm, thus allowing for clear, focused prints without direct interaction160

between the lifter and the scanner’s glass surface. After scanning, lifts were161

covered and stored for future reference.162

The digitized crime-scene-like print images were then background sub-163

tracted and registered to the corresponding high quality exemplars using164

identified and corresponding control points [REF: Technical Note]. This165

process ensured that all images (outsole scan, exemplar and both crime-166

scene-like impressions) were co-registered in the same image space.167

Following registration and background subtraction, RACs on the crime-168

scene-like prints were marked and localized [REF: Technical Note]. Each169

individual RAC was again automatically numbered and saved into an indi-170

vidual file via connected components. Finally, feature vectors were created171

detailing RAC shape parameters and location information [REF: Technical172

Note].173
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Identification of Known Match RAC Pairs174

In order to compare RACs, it was necessary to identify correspondences175

between accidentals on high quality exemplars and crime-scene-like prints.176

This was accomplished using RAC subimage location information. Features177

from the exemplars were automatically nominated as candidate matches if178

the angular (θ) and normalized radial value (rnorm) fell within 1 − 2o and179

0.1, respectively, of the corresponding θ and rnorm for the crime-scene-like180

RAC [REF: Technical Note]. These thresholds were selected in order to181

minimize loss of candidate RAC mates, which were subsequently manually182

verified (and adjusted as necessary) before moving forward. Fig. [2] illus-183

trates a set of these known match pairs, as well as the corresponding location184

information for each accidental.185

Similarity Metrics186

Five metrics were used to analyze the similarity of known match crime187

scene to high quality RAC pairs. These metrics were Modified Phase Only188

Correlation (MPOC), matched filter (MF), a modified cosine similarity (MCS),189

Hausdorff distance (HD), and Euclidean distance (ED).190

Modified Phase Only Correlation (MPOC)191

The Fourier transform F [g(x, y)] = G(u, v) of a spatial domain image192

g(x, y) gives the analyst access to frequency information associated with im-193

age amplitude A(u, v) and phase σ(u, v) as illustrated in Eqs. [1] & [2] (where194

the subscripts reference the images under comparison and i =
√
−1) [30].195

G1(u, v) = A(u, v)eiσ(u,v) (1)
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196

G2(u, v) = B(u, v)eiθ(u,v) (2)

Once the Fourier transform of each input image has been calculated, the197

Phase Only Correlation can be computed according to Eq. [3] [2, 3, 31]198

where F−1 is the inverse Fourier transform and G∗2 is the complex conjugate199

of G2 [30].200

POCg1g2 = F−1
[
G1(u, v)G∗2(u, v)

| G1(u, v)G∗2(u, v) |

]
(3)

= F−1
[
ei[σ(u,v)−θ(u,v)]

]

Eq. [3] can be modified by application of a frequency filter that selectively201

limits frequencies used in the computation such that F [g(x, y) · h(k, l)] =202

G(u, v). In this instance, each image g(x, y) was modified by the windowing203

function shown in Eq. [4] with α = 0.2 and where k = l = N which is the204

size of the RAC image in pixels (1600 x 1600):205

h(k) = α− (1− α) cos

[
2πk

N

]
(4)

k = 0, 1, . . . , N − 1

Fourier Descriptors (FD)206

With the exception of MPOC which was computed using 1600 x 1600207

pixel imagery, all remaining similarity metrics were based on perimeter in-208

formation. More specifically, the RAC was treated as a closed planar figure209
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yielding a Fourier description (FD) [32–34]. This description was gener-210

ated by tracing the contour of the shape (x(t), y(t)) where t = 0, . . . N − 1211

with N = 350) and assuming a complex plane z(t) = x(t) + i y(t) (where212

i =
√
−1 ). The resulting one-dimensional complex sequence of numbers213

was then mapped to the frequency domain via the discrete Fourier transform214

[33] where Rm and θm are the magnitude and phase of the mth coefficient,215

respectively [33]:216

Z(m) =
N−1∑

t=0

z(t) e(−i2πmt/N) = Rm e
(iθm) (5)

m = −N/2, . . . ,−1, 0, 1, . . . , N/2− 1

The coefficients were then transformed to ensure invariance to translation,217

and contour/sequence start point according to the following modifications218

[33]:219

Z(0) = 0 ⇒ translation invariance

θm = θm +m θ−1−θ1
2

⇒ start point invariance
(6)

Matched Filter (MF)220

The matched filter similarity metric between two shapes Z1(m) and Z2(m)221

was computed as illustrated in Eq. [7] [35] where Z(m) is normalized accord-222

ing to Z(m)√∑
t|z(t)|2

such that 0.0 is the minimum (least similar) and 1.0 is the223

maximum (most similar):224

m = argmax

∣∣∣∣∣
1

N

N−1∑

t=0

Z1(m) Z2(m)e(i2πmt/N)

∣∣∣∣∣ (7)
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Modified Cosine Similarity (MCS)225

Cosine similarity is a commonly used metric that can assess the simi-226

larity between two data vectors [36]. For two similar inputs a and b, the227

resulting angle (θ) between them will be small. Conversely, θ is large for two228

dissimilar inputs. Since the RAC perimeters are defined as FDs (or complex229

numbers z = x + i y), each complex vector was reduced to its magnitude230

|z| =
√
x2 + y2 before employing the traditional cosine computation shown231

in Eq. [8], where (T ) represents the transpose of a vector.232

θ = cos−1
[

aT b√
aTa
√
bT b

]
(8)

Euclidean Distance (ED)233

Euclidean distance was the fourth metric employed for comparison. The234

distance (D) between elements in the complex vectors is obtained as detailed235

in Eq. [9], where x1 and y1 denote the real and imaginary parts of the first236

vector, respectively [36]. Likewise, x2 and y2 denote the real and imaginary237

parts of the second vector for comparison, respectively. The total distance238

is normalized by dividing the summation by the maximum number of ele-239

ments in the vectors (N = 350 for this datset), yielding an average distance.240

Naturally, as elements become more dissimilar, the distance between them241

increases.242

D =
1

N

√∑
(x1 − x2)2 +

∑
(y1 − y2)2 (9)
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Hausdorff Distance (HD)243

Using the Euclidean distance, Hausdorff distance was likewise computed.244

This is more of a variant of ED than a truly unique computation since ED245

was used “under-the-hood’ in the HD computation (instead of a new metric246

such Manhattan distance, but this is something that can be remedied moving247

forward). In this computation, the distance (d(a, b)) is computed between a248

point (e.g., a1) on the perimeter of RAC (A) and all points on the perimeter249

of RAC (B) (Fig. [3]) using any desired distance metric (such as ED). Fol-250

lowing all computations, the smallest distance from a1 to B is retained. This251

process is then repeated for all points on A (i.e., a2...an), wherein h(A,B),252

or the maximum of these minimums, is retained [37]. This same process is253

repeated to compare all points on RAC perimeter vector B to those on RAC254

perimeter vector A, thus obtaining h(B,A). The actual distance HD is then255

the maximum of these two values (h(A,B) and h(B,A)) as illustrated in Eq.256

[10].257

H(A,B) = max{h(A,B), h(B,A)} (10)

where h(A,B) = maxa∈A{minb∈B{d(a, b)}}

RAC Map Correlation258

In addition to individual RAC characterization and comparison, the entire259

RAC map for each crime-scene-like print was compared back to its high260

quality exemplar to determine a “global similar metric” or the degree to261

which the wet-residue images could be linked back to their source. This was262

accomplished using image-wide Phase Only Correlation according to Eq. [3]263

(without windowing), and on full RAC maps 8691 x 8691 pixels in dimension.264
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Results & Discussion265

RAC Loss266

Given the inherent inconsistency present in shoeprint creation, such as267

pressure, torque, substrate, etc., it is expected that reproduction of RACs in268

crime-scene-like quality prints will be variable in comparison to high quality269

exemplars collected by pressing a dusted outsole against an adhesive sheet,270

thus ensuring full and even contact. Based on the results from this study, an271

average of 85% of RACs were not reproduced in crime-scene-like impressions272

(Table [1]). In addition, zero RACs were reproduced in 10% of the images273

(20 out of 200 impressions).274

Loss was further broken down by shape, perimeter, and area to determine275

if RAC reproduction varied as a function of any of these factors. As detailed276

in Table [2], RAC loss (77% - 84%) exhibited very little variation across shape277

classes. However, greater variation can be observed as a function of RAC size.278

Generally, as a feature’s size increased (in either total area or perimeter), the279

percent loss decreased (Tables [3] & [4]). This matched intuition in that280

“larger” defects are likely to persist and withstand the variation introduced281

during reproduction in a crime scene setting as compared to smaller features282

that may be more easily occluded by erratic conditions (such as differences283

in media, substrate, motion, etc.). Overall, Tables [1] - [4] suggest one major284

outcome. As with fingerprint comparisons, there is no scientific basis on285

which to demand a minimum number of features in order to judge source286

attribution in footwear comparisons. Moreover, the utility of an accidental287

feature should not be reduced to a simple counting exercise; its presence288

(and therefore its “uniqueness”) should not be reduced to an independent289
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wear-related event that is multiplied to provide a cumulative probability of290

occurrence among a constellation of other RACs on a randomly selected291

outsole. By the same token a RAC’s absence is not a valid reason for an292

exclusion, ergo, absence of evidence is not evidence of absence.293

Individual RAC Similarity294

Five metrics were utilized to determine similarity between crime-scene-295

like RACs and their high quality mates (MPOC, MF, MCS, HD, and ED).296

This study assessed the differences in scores as a function of RAC shape,297

perimeter, and area. The results were illustrated in two ways: binned bar298

plots and probability density functions (PDFs). The bar plots display trends299

in the data and allowed for comparison via Chi-square tests. However, the300

binning process inherently fragmented the data, so full probability density301

functions (PDFs) were also constructed using Gaussian kernel density esti-302

mators (KDEs) to allow for an unabridged view of the spread in scores for a303

given set of conditions.304

Similarity as a Function of RAC Shape305

Differences in similarity scores based on RAC shape were detected for306

MPOC and MCS as per the Chi-square test [38] with α = 0.05. In other307

words, the similarity scores for different shapes were significantly different308

from those expected if the variables were independent.309

For MPOC, circles exhibited higher similarity scores, while lines and310

curves exhibited lower similarity scores (Figs. [4] & [5]). This trend was311

significant for all binned scores and is believed to be a function of rotational312

variation. For example, a circular RAC can tolerate orientation differences313
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reasonably well (i.e., no matter how you rotate a circle, the distance between314

features remains relatively consistent, as illustrated in Fig. [6]). Conversely,315

an elongated feature, when rotated, is likely to exhibit a drastic decrease316

in correlation between its known match. As such, a metric such as MPOC317

(with a theoretical maximum of 1.0) is likely to show higher dissimilarity for318

linear RAC features unless forced to be rotationally insensitive.319

Dependence in similarity scores for RAC shape were also detected for320

MCS θ values. As illustrated in Figs. [7] & [8], circles have the greatest den-321

sity in smaller angular bins, while lines and curves dominant in frequency322

for larger angular bins. This difference is again likely due to rotational vari-323

ations. As a circular object rotates, its overall appearance and orientation324

(and therefore similarity with another circular object) is likely to remain325

relatively unchanged (Fig. 6). However, if a linear RAC is skewed, the ori-326

entation of the feature is likewise changed, again resulting in feature vectors327

with detectable differences.328

The remaining similarity metrics (MF, ED and HD) were not found to329

depend on RAC shape. The dependence of MPOC and MCS (as well as the330

lack of dependence of MF, ED and HD on RAC shape) are equally signif-331

icant results. For example, one might argue that circular features are less332

discriminating than linear features. The premise for this argument is that333

circular features have more degrees of freedom compared to linear features,334

and that this assertion is especially true if you begin to consider features in335

combination (e.g., comparing two circles versus two lines with some fixed spa-336

tial relationship). However, it is also likely that not all metrics are equally337

sensitive to these differences, proving that numerical metrics of similarity,338
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although objective and impartial, are still biased estimators that require ex-339

ploration, testing and understanding before deployment.340

Similarity as a Function of RAC Size341

Differences in similarity scores based on RAC size (perimeter and area)342

were detected for MPOC as per the Chi-square test [38] with α = 0.05. In343

other words, the similarity scores for different sized RACs were significantly344

different from those expected if the variables were independent. For MPOC,345

small features exhibited high similarity scores, while large RACs exhibited346

lower similarity scores when compared to their known match mates (Figs.347

[9] & [10] and [11] & [12]). This likely occurred because large features can348

reproduce as several, smaller, and segmented versions of their original more-349

complex self when created under variable crime-scene-like conditions (Fig.350

[13]). Due to this phenomena, each individual smaller segment from the351

crime-scene-like RAC may compare back to a single larger feature in the352

high quality impression, yielding a lower numerical score. This serves to353

reinforce the ultimate need for an examiner’s subjective interpretation dur-354

ing the comparison process. Although an automated metric can provide a355

baseline numerical assessment of a known match that can be very beneficial356

moving forward, this illustration shows that a “low” objective similarity score357

still requires expert interpretation. In this instance, a visual comparison and358

explanation by the examiner is likely to be much more illuminating to the359

jury and layperson, and arguably more defensible, than a mathematical clar-360

ification of the reason for a low score.361

Another interpretation of this result is that the larger the RAC, the more362

discriminating its potential. In other words, a single RAC, of sufficient qual-363
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ity, complexity, and similarity to a source is so unusual that its significance364

warrants source attribution. Can you quantify the degree of belief in this as-365

sertion with any degree of certainty? Only if you were comfortable answering366

this question based on the probability of encountering this score in the tail of367

a density estimated using a Gaussian KDE based on 200 samples. In other368

words, this research can be of tremendous benefit to the footwear examiner369

to help support courtroom testimony and conclusion protocols, but not as370

an automated and numerical substitute.371

In addition to the differences detected by MPOC as a function of size, ED372

also exhibited differences in similarity scores as a function of perimeter (Figs.373

[14] & [15]), but the opposite trend was noted. Namely, as RAC size (area and374

perimeter) decreased MPOC scores were more likely to increase (exhibiting375

greater similarity). Conversely, as RAC size (perimeter) decreased ED scores376

were more likely to increase (exhibiting greater dissimilarity) (note that this377

dependence was only found to be significant for ED scores between 0.01-0.02378

and greater than 0.05 for α = 0.05). A hypothesis for this observation is pos-379

sible interpolation effects. This research was conducted using pixel images,380

rather than vector graphics. Consequently, each RAC exists on a grid with381

the smallest subunit being a square picture element 42µm in size. When382

this feature is digitally captured for analysis, the resulting imagery includes383

both inherent fluctuations in reproduction due to variations in deposition384

conditions, as well as unavoidable inter- and intra-analyst variation from the385

marking phase. The end result is “jitter” (or perhaps more aptly termed,386

deviation from nominal).387

If this RAC is to then be compared, it is important to note that many388
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similarity metrics require pre-standardization such as feature vectors of a389

constant size. If so, interpolation may be needed (e.g., N=350). When re-390

quired, minute differences from previous steps (real or analyst-based) are391

likely to be accentuated as a function of RAC size as shown in Fig. [16].392

In this illustration, although both marked RACs (small versus large) have393

only a single pixel difference between them, the variation in the interpolated394

perimeter images are markedly different. The large RAC, with a greater395

number of points across its perimeter is only minimally affected by interpo-396

lation. However, the smaller the feature, the greater the artifact observed on397

the perimeter, at least in theory. Since this assertion is easily tested, a small398

study is currently underway to test this hypothesis and better characterize399

the divergence in results for MPOC and ED as a function of perimeter.400

RAC Map Correlation401

Table [5] reports the total frequency of RACs in the binary maps (as well402

as the corresponding high quality impressions). These maps were obtained403

during the subtraction process and are a binary representation of all acci-404

dentals observed on an impression. The POC was computed on all possible405

RAC map pairs to estimate a global similarity score. Results are provided406

as a receiver operator characteristic (ROC) curve displaying the true pos-407

itive and false positive rate (Fig. [17]). The area under the curve (AUC)408

indicates the probability of a randomly selected known match RAC map ex-409

hibiting a higher similarity score than a known non-match map (stochastic410

dominance). Based on the POC metric, there was a 0.74 probability that411

the match score for a randomly selected pair of positive (known match) and412

negative (known non-match) samples would be correctly ranked in an or-413
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dered list. Given that 64% of the query crime-scene-like maps contained 10414

or fewer RACs for comparison (Table [5]), these results indicate that even415

with a minimal amount of accidental transfer, matching RAC maps will rank416

higher than non-matching maps approximately 74% of the time. This result417

is staggering and lends very strong support to the claim that footwear ev-418

idence is extremely discriminating, especially given that an average of 85%419

of the identified randomly acquired characteristics failed to transfer to the420

questioned impressions. Again, although there is no scientific basis for a min-421

imum number of required characteristics for source attribution, these results422

suggest a multitude of future studies combining POC, RAC number, and423

RAC description (complexity, size, category (line, circle), etc.) in order to424

better characterize this very interesting trade space.425

Conclusions426

The results from this study suggest that reproducibility of RACs, in427

number and appearance, can vary greatly when comparing high quality and428

crime-scene impressions. Given that approximately 85% of these accidentals429

became obscured in the deposition process, it is clear that a “simple point430

counting” procedure cannot be used when assessing source attribution.431

Furthermore, the correlation of RAC maps, from crime-scene-like impres-432

sions to high quality exemplars, offers additional support that the informa-433

tion contained within accidentals (i.e., shape, size, and complexity) supplies434

greater evidence for source attribution than a simple presence, or count, of435

features. This is especially true considering that 64% of the crime scene436

prints exhibited 10 or fewer features, but that 74% of the time they ex-437
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hibit stochastic dominance. Since POC mimics some of the low-level spatial438

processing conducted by an experienced footwear examiner during the com-439

parison process, the results indicate that source attribution is possible even440

when presented with very few accidentals provided the existing RACs exhibit441

sufficient discrimination potential in terms of shape, size, and complexity.442

Mathematically, the results of MPOC and MCS reported lower similarity443

scores for linear features as compared to circular features. This is believed to444

be a function of both metric’s sensitivity to orientation differences. However,445

this sensitivity was not observed for all metrics (MF, HD, nor ED). If the446

concept that circular features have more degrees of freedom tends to mirror447

an examiner’s intuition when attributing significance to RACs, then it is448

important to evaluate the sensitivity of numerical metrics of similarity to449

best understand their strengths and weaknesses. Interestingly, a strength of450

a similarity metric when comparing known non-matches may very well be451

a weaknesses for the metric when comparing known matches (pushing the452

threshold for exclusions too high and generating too many false negatives).453

In contrast, an examiner can dynamically adjust this threshold as necessary,454

whereas doing so in an objective sense is much more difficult.455

Moreover, quantitative results can actually disagree. For example, the456

ED results presented here were opposite to those of MPOC in that small457

features appeared more dissimilar than large features as a function of RAC458

perimeter. Whether or not this is genuine, or a function of interpolation, must459

be further tested. However, the major point is that while an examiner can460

easily associate two features with differences in appearance due to deposition461

or marking variability, an algorithm is forced to make a decision based on462
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pixel differences, and this can become challenging depending on imaging463

constraints. The end result proves that numerical and objective metrics are464

in no way a panacea for subjective assessment, and much more research is465

required. Instead, the authors propose a complementary relationship between466

examiner expertise and quantitative metrics that in combination can best467

define the degree of belief in source attribution for footwear evidence. What468

this might look like and how it might best serve the forensic community has469

yet to be defined. Clearly it is a long-term goal, and instead, the focus of470

short-term goals will be to better understand the quantitative trade space.471
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Table 1: Quantifying RAC loss between high quality exemplars and replicate crime-scene-

like impressions.

RACs High Quality Crime Scene Rep 1 Crime Scene Rep 2

Total Number 6,896 1,049 1,110

Number Lost - 5,847 5,786

Percent Lost - 85% 84%

Mean Number per Shoe

± 1 standard deviation 69 ± 72 10 ± 12 11 ± 12

Maximum Number 307 66 61

Minimum Number 2 0 0

Table 2: RAC loss between high quality exemplars and replicate crime-scene-like impres-

sions as a function of RAC shape.

Shape Total HQ RACs Lost HQ RACs % Loss

Circle 1,024 863 84%

Line/Curve 2,685 2,239 83%

Irregular 2,732 2,173 80%

Triangle 455 348 77%
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Table 3: RAC loss between high quality exemplars and replicate crime-scene-like impres-

sions as a function of RAC perimeter.

Perimeter Total HQ RACs Lost HQ RACs % Loss

1-2mm 2,936 2,623 89%

2-4mm 2,413 1,939 80%

4-6mm 828 599 72%

6-8mm 337 217 64%

>8mm 382 245 64%

Table 4: RAC loss between high quality exemplars and replicate crime-scene-like impres-

sions as a function of RAC area.

Area Total HQ RACs Lost HQ RACs % Loss

0.0-0.25mm2 3,994 3,548 89%

0.25-0.5mm2 1,408 1,080 78%

0.5-0.75mm2 589 419 71%

0.75-1.0mm2 294 201 68%

1.0-2.0mm2 391 253 65%

>2.0mm2 220 122 55%
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Figure 1: Top row illustrates one “best case” scenario and bottom row displays one “worst

case” scenario for crime-scene-like impression production. Handiprint exemplar (left) and

two crime-scene-like replicates (center, right).
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[244, 1415, 0.71] [245, 1395, 0.68] [244, 1411, 0.71]

[99, 1380, 0.42] [99, 1383, 0.42] [98, 1378, 0.41]

[244, 1562, 0.68] [243, 1550, 0.70] [244, 1562, 0.68]

Figure 2: RAC image mates with their corresponding location information [θ (degree), r

(pixel), rnorm]. High quality RAC image (right) with its detected crime scene RAC mates,

one from each replicate (center, right).
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Figure 3: Two stylized RACs illustrating computation of Hausdorff distance for point a1.
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Figure 4: MPOC scores as a function of RAC shape. Circles generally have high similarity

scores, while lines and curves exhibit lower similarity scores. Based on the Chi-square

results, significant differences in similarity scores as a function of shape existed within all

bins.
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Figure 5: Probability density functions for MPOC scores as a function of RAC shape,

obtained using a Gaussian kernel density estimator. Bin width information can be found

in the Appendix.
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Figure 6: Example of stylized high quality (HQ) and crime scene (CS) RACs. Note that

lines exhibit greater discordance (overlap very little) than circular shapes when orientation

differences exists (scale and rotational differences are shown for maximum emphasis).
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Figure 7: Modified Cosine Similarity scores as a function of RAC shape. The largest

differences in RAC similarity scores, as a function of shape, exist in the bins which describe

more similar features (i.e., cosine angles of less than 5◦). Based on the Chi-square results

significant differences in MCS scores as a function of shape existed for scores ranging from

3-5◦.
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Figure 8: Probability density functions for MCS scores as a function of RAC shape,

obtained using a Gaussian kernel density estimator. Bin width information can be found

in the Appendix.
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Figure 9: MPOC scores as a function of RAC perimeter. Based on MPOC, very large RACs

are very dissimilar. Based on the Chi-square results, significant differences in similarity

scores as a function of perimeter existed within all bins.
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Figure 10: Probability density functions for MPOC scores as a function of RAC perimeter,

obtained using a Gaussian kernel density estimator. Bin width information can be found

in the Appendix.
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Figure 11: MPOC scores as a function of RAC area. Based on MPOC, very large RACs

are very dissimilar. Based on the Chi-square results, significant differences in similarity

scores as a function of area existed within all bins.
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Figure 12: Probability density functions for MPOC as a function of RAC area, obtained

using a Gaussian kernel density estimator. Bin width information can be found in the

Appendix.
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Figure 13: Original marked RAC on high quality exemplar (top left) with corresponding

RAC image obtained through connected components (top right). Corresponding RAC on

crime-scene-like print (bottom left) and RAC images obtained through connected compo-

nents (bottom center and right). The crime-scene-like RACs exhibit more voids and are

incomplete in comparison with their high quality counterparts.
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Figure 14: Euclidean distance as a function of RAC perimeter. Small RACs are more

similar to their known match mates than large RACs. Based on the Chi-square results

significant differences in ED scores as a function of perimeter existed for scores ranging

from 0.01-0.02 and those greater than 0.05.
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Figure 15: Probability density functions for ED as a function of RAC perimeter, obtained

using a Gaussian kernel density estimator. Bin width information can be found in the

Appendix.
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Figure 16: Example of stylized small and large high quality (HQ) and corresponding crime

scene (CS) RACs. There is a 1 pixel difference between the HQ and CS marking for both

the small and large features. In addition, there are 11 interpolation points which are

used to extract the perimeter image of each RAC, similar to a Fourier descriptor (FD)

perimeter representation. Note that the shape of the small RAC is more severely skewed

by interpolation than the shape of the large feature.

105



Table 5: RAC map density.

Number of RACs in Map CS Frequency HQ Frequency

0 20 (10%) 0 (0%)

1-5 74 (37%) 7 (7%)

6-10 33 (17%) 12 (12%)

11-15 32 (16%) 5 (5%)

16-20 14 (7%) 11 (11%)

21-25 4 (2%) 2 (2%)

Greater than 25 23 (11%) 63 (63%)

Total 200 (100%) 100 (100%)
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Figure 17: Receiver operator characteristic curve of RAC map POC results. High quality

comparisons are represented by the dash-dotted line and exhibit an area under the curve

(AUC) of 1.0. The solid line illustrates the results of crime-scene-like impressions with an

AUC of 0.74.
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Appendix472

As previously stated, similarity score were analyzed as a function of RAC473

shape, perimeter, and area. Detailed in Tables 6, 7, 8 are the bin widths used474

to best approximate the true data when constructing the PDFs. Therefore,475

a total of 75 individual PDFs were constructed. Subsequently, the plots for476

related conditions (i.e., MPOC as a function of shape) were compiled into477

3-dimensional plots, thus allowing for easier visual comparison.478

Table 6: Bin widths for PDFs (obtained using a Gaussian kernel density estimator) for

similarity scores as a function of RAC shape. The bin width for each density estimate was

set equal to one seventh of the standard deviation of the similarity scores.

Circle Line/Curve Triangle Irregular

MPOC 0.008 0.010 0.010 0.009

MF 0.003 0.002 0.004 0.003

MCS 0.804 0.827 0.942 0.864

HD 1.033 0.969 0.646 0.995

ED 0.006 0.006 0.006 0.005
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Table 7: Bin widths for PDFs (obtained using a Gaussian kernel density estimator) for

similarity scores as a function of RAC perimeter. The bin width for each density estimate

was set equal to one seventh of the standard deviation of the similarity scores.

0-2 2-4 4-6 6-8 Greater than 8

MPOC 0.009 0.009 0.009 0.009 0.011

MF 0.003 0.003 0.002 0.002 0.002

MCS 0.815 0.903 0.763 0.867 0.872

HD 1.109 0.949 0.843 0.981 0.886

ED 0.007 0.005 0.005 0.005 0.005

Table 8: Bin widths for PDFs (obtained using a Gaussian kernel density estimator) for

similarity scores as a function of RAC area. The bin width for each density estimate was

set equal to one seventh of the standard deviation of the similarity scores.

0-0.25 0.25-0.5 0.5-0.75 0.75-1.0 1-2 Greater than 2

MPOC 0.010 0.009 0.009 0.010 0.009 0.013

MF 0.003 0.003 0.003 0.002 0.003 0.002

MCS 0.855 0.860 0.833 0.823 0.896 0.813

HD 1.043 1.059 0.799 0.914 0.884 0.754

ED 0.006 0.005 0.005 0.005 0.005 0.004
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Figure 18: MF scores as a function of RAC shape.
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Figure 19: Probability density functions for MF scores as a function of RAC shape, ob-

tained using a Gaussian kernel density estimator.
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Figure 20: Hausdorff distance as a function of RAC shape.
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Figure 21: Probability density functions for Hausdorff distance as a function of RAC

shape, obtained using a Gaussian kernel density estimator.
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Figure 22: Euclidean distance as a function of RAC shape.
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Figure 23: Probability density functions for Euclidean distance as a function of RAC

shape, obtained using a Gaussian kernel density estimator.
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Figure 24: MF scores as a function of RAC perimeter.
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Figure 25: Probability density functions for MF scores as a function of RAC perimeter,

obtained using a Gaussian kernel density estimator.

117



0.0

0.1

0.2

0.
0−

3.
0

3.
0−

5.
0

5.
0−

7.
0

7.
0−

9.
0

9.
0−

12
.0

G
re

at
er

 th
an

 1
2.

0

Dissimilarity Score

D
en

si
ty

Perimeter
0.0−2.0

2.0−4.0

4.0−6.0

6.0−8.0

Greater than 8.0

Modified Cosine Similarity 
 as a Function of RAC Perimeter

Figure 26: MCS scores as a function of RAC perimeter.
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Figure 27: Probability density functions for MCS scores as a function of RAC perimeter,

obtained using a Gaussian kernel density estimator.
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Figure 28: Hausdorff distance as a function of RAC perimeter.
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Figure 29: Probability density functions for Hausdorff distance as a function of RAC

perimeter, obained using a Gaussian kernel density estimator.
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Figure 30: MF scores as a function of RAC area.
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Figure 31: Probability density functions for MF scores as a function of RAC area, obtained

using a Gaussian kernel density estimator.
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Figure 32: MCS scores as a function of RAC area.
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Figure 33: Probability density functions for MCS scores as a function of RAC area, ob-

tained using a Gaussian kernel density estimator.
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Figure 34: Euclidean distance as a function of RAC area.
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Figure 35: Probability density functions for Euclidean distance as a function of RAC area,

obtained using a Gaussian kernel density estimator.
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Figure 36: Hausdorff distance as a function of RAC area.
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Figure 37: Probability density functions for Hausdorff distance as a function of RAC area,

obtained using a Gaussian kernel density estimator.
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5. Future Directions

5.1 Chance Co-occurrence in Position & Shape

The normalized shoe used in this study was a men’s size 10 Reebok R© walking shoe with
an outsole surface area of 21,235mm2. Using θ and rnorm each RAC (total of 57,426 RACs
from 1,000 shoes) was localized into a cell measuring 5mm x 5mm in area, generating what
is referred to as a heat-map or a plot of frequency versus position. Based on this plot,
one bin was found to contain the greatest potential for RAC co-occurrence in position,
as illustrated in Table [5.1]. When this result was further broken down as a function of
shape category, the probability in co-occurrence ranged from 1:756 to 1:9,571 within a
single 5mm x 5mm bin.

Table 5.1: Frequency of RACs and potential for co-occurrence as a function of position
and shape for bin located approximately 5mm from the lateral edge and 70mm from the
heel of the shoe.

Description Any Shape Irregular Circle Triangle Line/Curve

Total: In Database 57,426 22,075 6,287 3,242 25,822
Total: In Cell 132 39 11 6 76

Chance of Finding RAC in Cell 1:435 1:1,472 1:5,220 1:9,571 1:756

Following localization, all pairwise comparisons in similarity were computed based on
shape categorization and using Modified Phase Only Correlation (MPOC). The results
are shown in Fig. [5.1], which report MPOC scores, RAC images, and Fourier images for
the two most similar RACs detected within the bin. In contrast with all former published
results, some level of visual similarity can be discerned. This is not to suggest that the
accidentals are indistinguishable, since clearly each pair can be differentiated based on
size, shape and/or orientation. However, it is relevant to note that there is some level of
expressed similarity that should not be ignored. Moreover, most accidentals with possible
co-occurrence in position and some expressed similarity in shape are extremely minute
in size. This clearly indicates that more work is needed to better understand the limit
of discrimination as a function of RAC size and complexity. To address this need, the
database of 1,000 shoes will be doubled. If past RAC frequency is a good indicator
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of future counts, then the end-goal of a complete database of 2,000 shoes is likely to
contain more than 100,000 RACs, allowing for a detailed statistical analysis of RAC co-
occurrence in terms of shape category (lines/curves, circles, triangles, and irregular-shaped
features) and position (θ, r, rnorm). In addition, the line/curve category is currently being
subdivided into lines, simples curves, and compound curves to increase discriminating
power. When complete, a detailed analysis of co-occurrence in position and shape will be
provided, similar to that show in Fig. [5.1], along with recommendations regarding limits
in discrimination as a function of RAC size, area, geometry, and complexity.
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Figure 5.1: An illustration of the most similar RACs (i.e., highest MPOC score) in each
shape category within the bin located approximately 5mm from the lateral edge and 70mm
from the heel of the shoe. The two RAC images, obtained through connected components,
are displayed in the first two columns. In addition, the Fourier descriptors (FD) for both
images are included for easier visualization (last two columns). Note that the most similar
RACs are distinguishable based upon visual inspection and a correspondingly low MPOC
score.
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5.2 Phase Only Classification

5.2.1 Automated Classification

Based on the preliminary results for automated classification of outsole patterns for crime
scene quality prints, Phase Only Correlation is a promising method. However, the crime-
scene-like prints used for this phase of the research still contained more information than
is often found at crime scenes (i.e., they contain 80% or more of the outsole pattern based
upon visual inspection). Thus, future imagery will be generated to increasingly stress
the algorithm via fractional losses more comparable to that encountered in casework. In
addition, 3-dimensional casts will be included to increase the variation in substrate/media
input.

5.2.2 RAC Maps

Further research will be conducted regarding the reproducibility of RACs in crime scene
impressions. Namely, the results for RAC map correlation will be broken down and ana-
lyzed in order to determine matching accuracy as a function of RAC number, size, shape
and complexity. This data will offer some insight into the amount of information that is
required for accurate identification of source (i.e., are several small RACs equal to a few,
large, complex features).

5.3 Addressing Remaining Research Needs

Although the current research attempted to address several forensic footwear research
needs in order to increase efficiency and offer support to examiner conclusions (specifically
regarding the interpretation of crime scene quality evidence), it was not possible to con-
centrate on all of the aforementioned recommended research areas. A suggested approach
for addressing the remaining research topics is as follows:

• First, an assessment of the variability in examiner conclusions should be conducted.
A similar study was previously conducted for fingerprint examiners (15). From the
data collected, quantification of error rates for examiner conclusions was possible.
Therefore, it may be possible to identify the error rates for footwear examinations,
thus offering additional support to examiners in courtrooms when defending their
conclusions.

• In addition, measures of uncertainty for examiner conclusions could be developed.
While the current scale of conclusions allows an examiner some flexibility (i.e., differ-
ent levels of association between exclusion and identification), there is currently no
method to report a quantitative level of uncertainty to accompany evidence compar-
isons. Although it is not clear how this might be achieved, research and discussion
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should consider if and how uncertainty may benefit the footwear examiner moving
forward.

• Further, an evaluation on intra- and inter-examiner variability in detecting and mark-
ing RACs should be pursued. Given that the automated comparison of RACs is
contingent on the marking of features, it is important to understand the expected
variability in identification and tracing of these accidentals. Based on an analysis
of this variation, estimates of uncertainty may be developed for the results obtained
through automated measures (i.e., a confidence interval which accounts for inher-
ent, and unavoidable, analyst variation in the absence of an automated extraction
mechanism).

• Even better, the development of automated RAC extraction software should be
explored. In theory, this algorithm could be used to search through an image for
the presence of acquired features and segment the image to allow for evaluation of
individual RACs or comparison of all features. This would offer tremendous increases
in research efficiency, although it is clearly an extremely difficult image processing
problem in its own right (e.g., like finding the needle in the haystack).

• Lastly, estimates on the frequency of outsole information (make, model, size, etc.)
should be gathered. This task is immensely difficult to tackle given the number of
unknowns, such as number of shoes of a given type, how long shoes remain in the
population before they are discarded, and the production of counterfeits for popular
types of shoes. All of these factors complicate the estimation of frequency for outsole
designs in the population, and therefore great attention will be required in order to
account for or somehow overcome these unknown factors.
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