
Graduate Theses, Dissertations, and Problem Reports 

2006 

High frequencies of HIV-1 recombination and the evolutionary High frequencies of HIV-1 recombination and the evolutionary 

potential of a hybrid retrovirus potential of a hybrid retrovirus 

Terence D. Rhodes 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Rhodes, Terence D., "High frequencies of HIV-1 recombination and the evolutionary potential of a hybrid 
retrovirus" (2006). Graduate Theses, Dissertations, and Problem Reports. 2402. 
https://researchrepository.wvu.edu/etd/2402 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230464329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F2402&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/2402?utm_source=researchrepository.wvu.edu%2Fetd%2F2402&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


High Frequencies of HIV-1 Recombination and the Evolutionary Potential 

of a Hybrid Retrovirus 
 

 

Terence D. Rhodes 

 

 

Dissertation submitted to the  

School of Medicine 

 at West Virginia University 

in partial fulfillment of the requirements for the degree of 

 

 

Doctor of Philosophy 

in 

Microbiology, Immunology, Cell Biology 

 

 

Wei-Shau Hu, Ph.D., Chair 

Nyles Charon, Ph.D. 

Daniel C. Flynn, Ph.D. 

Michael R. Miller, Ph.D. 

Vinay K. Pathak, Ph.D. 

 

Department of Microbiology, Immunology, Cell Biology 

 

Morgantown, West Virginia 

2006 

 

 

Keywords: HIV, Retrovirus, Recombination, Evolution 



 ii

ABSTRACT 
 

High Frequencies of HIV-1 Recombination and the Evolutionary Potential of a Hybrid 
Retrovirus 

 
Terence D. Rhodes 

 
 
 

Retroviruses have a great capacity to evolve in order to over come selection pressures in 
the environment.  Such evolutional power comes from the high mutation rate and the 
high viral titers that can ensue during an infection.  Mutation generates variation in the 
viral genome.  In addition, previous reports found that retroviruses recombine at a 
relatively high rate.  These sources of variation can then be exploited by the population to 
ensure the presence of advantageous mutations, which become amplified during virus 
propagation.  Because the adaptability is based on the evolutionary potential of the virus, 
it is essential to study the mechanisms employed in this process.  Recombination can 
accelerate the generation of multidrug-resistant HIV-1 and therefore presents challenges 
to effective antiviral therapy.  We determined that HIV-1 recombination rates with 
markers 1.0, 1.3, and 1.9 kb apart were 42.4, 50.4, and 47.4% in one round of viral 
replication.  Because the predicted recombination rate of two unlinked markers is 50%, 
we conclude that markers 1 kb apart segregated in a manner similar to two unlinked 
markers in one round of retroviral replication.  These recombination rates are exceedingly 
high even among retroviruses.  To explore how efficiently HIV-1 can assort markers 
separated by short distances, we developed a flow-cytometry-based system to study 
recombination.  Using this system, we determined that the recombination rates of markers 
separated by 588, 300, 288, and 103 bp in one round of viral replication are 56, 38, 31, 
and 12%, respectively, of the theoretical maximum measurable recombination rate.  
Statistical analyses revealed that at these intervals, recombination rates and marker 
distances have a near-linear relationship that is part of an overall quadratic fit.  
Additionally, we examined the effects of target cells and viral accessory proteins on 
recombination rate.  The results indicated that infection of primary T-cells and the 
presence or absence of accessory proteins had no effect on recombination.  These results 
illustrate the power of recombination in generating viral population variation and predict 
the rapid assortment of mutations in the HIV-1 genome in infected individuals. 
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INTRODUCTION AND REVIEW OF THE LITERATURE 
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The number of articles dedicated to retrovirology has substantially increased with 

the discovery of human immunodeficiency virus type 1 (HIV-1), the major contributing 

virus to the AIDS epidemic.  Because of the AIDS crisis, much effort has been placed on 

the study of retroviruses in order to better understand the mechanisms of replication and 

selective pressures these viruses encounter with the hopes that better therapy and an 

effective vaccine for this disease will be found.  HIV-1 infection continues to be 

incredibly difficult to treat.  The high mutation rate and the high viral loads that patients 

often carry contribute to the enormous genetic variation seen within patients and within 

the world population (15, 33, 39-41).  Because of this genetic variation, drug resistance 

and immune system evasion occurs quickly and complicates therapy (12).  Another 

aspect is the ability for retroviruses to recombine (29, 48).  Retroviral recombination 

provides the viral population with a mechanism to readily assort various mutations, 

which then can lead to the generation of variants that have increased fitness within the 

environment.  For example, recombination can assort two different mutations from two 

different viruses and generate progeny carrying both of these mutations.  Previous to the 

work presented in this thesis, it was established that HIV-1 can recombine, as shown in 

the literature that recombinant HIV-1 strains are often found in dually infected 

individuals (6, 19, 32, 34, 51).  In the laboratory, HIV-1 recombination has been observed 

to be frequent (11, 25, 26, 31, 36, 42, 52).  This apparent high rate of recombination 

necessitates a more extensive study into the mechanisms of HIV-1 recombination.  Also, 

studying mechanisms of retroviral evolution would provide information to combat the 

difficult problem of rapid adaptation.  These next few pages will outline in detail the 



3 

HIV-1 lifecycle.  In addition, current literature on retroviral recombination will be 

reviewed, followed by a brief description of the experiments proposed for the completion 

of this thesis. 

 Retroviruses have a unique step in their lifecycle; these viruses carry two copies 

of single-stranded full-length viral RNA in virions (3, 17). Upon infection of the host 

cell, viral RNA is reverse transcribed into double-stranded DNA, which then is integrated 

into the host genome (46).  Genes, viral structure, encoded viral proteins, and major steps 

in viral replication are described below. 

Genes and structures of retroviruses 

 Retroviruses can be divided into two major classes, simple and complex 

retroviruses.  HIV-1 is classified as a complex retrovirus.  This classification is based on 

the presence or absence of accessory proteins in addition to proteins commonly found in 

every type of retrovirus.  First, gag encodes the structure proteins, which consist of 

matrix (MA), capsid (CA), and nucleocapsid (NC), These structure proteins are 

transcribed in cells as a polyprotein - Gag.  Figure 1 is a schematic representation of a 

mature HIV-1 virion.  MA provides structure support to the lipid membrane envelope, 

CA makes up the outer shell of the condensed core of the virion, and NC is associated 

with the genomic RNA.  Second are the proteins that perform some of the essential 

enzymatic activities for replication.  Pol polyprotein consists of two major components 

after protease cleavage in all retroviruses; reverse transcriptase (RT) transcribes single-

stranded RNA into double-stranded DNA (47) and integrase (IN) allows the integration 

of double-stranded viral DNA into the host genome.  Protease (PR) cleaves the 

polyproteins Pol and Gag into the individual components described above.  PR is 
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translated as part of Pol in HIV-1 but in some retroviruses it is translated as part of Gag 

or as a separate Gag-Pro reading frame.  Envelope (Env) is a transmembrane protein 

embedded in the outer lipid envelope of the virion.  It is responsible for the host range of 

the virus, and by interacting with the host cellular receptor, HIV-1 Env mediates virus 

entry via direct fusion with the membrane. 

 The genomic organization of the provirus, the integrated viral genome, of HIV-1 

is illustrated in Figure 2.  Each end of the proviral structure is composed of long terminal 

repeats (LTR).  The LTRs can be further subdivided into U3, R, and U5.  Immediately 

proximal to the LTRs are the primer binding site (PBS) at the 5’ end and the polypurine 

tract (PPT) at the 3’ end.  These cis-acting elements (R, U5, PBS, and PPT) play crucial 

roles during reverse transcription, which is described in detail below.  Downstream from 

the PBS are sequences important for RNA packaging, gag, pol, and env.  In addition, the 

positions of HIV-1 accessory proteins, namely vif, vpr, vpu, tat, rev, and nef are indicated 

(35). 

Retrovirus replication cycle 

 The replication cycle of a retrovirus (Fig. 3) is discussed in the following 

paragraphs from the contact of a virion to a target cell to the production and release of 

progeny virus.  Since the understanding of reverse transcription is crucial for retroviral 

recombination described in this thesis, it will be discussed extensively.   

  Env interacts with the host cellular receptor, which induces a conformational 

change of both proteins that promotes fusion of the virus and cellular membrane.  HIV-1 

Env interacts with two host proteins for virus entry, namely CD4 and another co-receptor, 

most commonly CCR5 or CXCR4.  Once fusion has occurred the core of the virion is 
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released into the cytoplasm.  For most of the retroviruses, reverse transcription starts after 

virus entry. 

 Reverse transcription is the process in which single-stranded RNA is copied into 

double-stranded DNA (47) (Fig 4).  Reverse transcription start near the 5’ end of viral 

RNA using a tRNA as a primer for DNA synthesis.  This tRNA primer was packaged 

from the previous host into the virion (22, 45).  RT then proceeds to transcribe DNA 

through the U5 and R region, which this segment of DNA is called minus-strand strong 

stop DNA.  In addition to the DNA polymerase activity, RT has an RNase H domain that 

degrades RNA from a DNA/RNA hybrid.  During synthesis, RNase H domain degrades 

RNA from the minus-strand strong stop DNA, which leaves the DNA free to anneal 

elsewhere.  RT then makes the first of two obligatory jumps (or template switches) and 

jumps to the 3’ end of the RNA strand; this jump is facilitated by the complimentary 

between the R region of the newly synthesized DNA and the 3’ R of the viral RNA (10, 

14, 16).  Synthesis continues through U3, the protein encoding regions and PBS.  RT 

makes a sequence specific cut at the PPT and the PPT is used as a primer for plus-strand 

DNA synthesis.  Plus-strand DNA synthesis proceeds through the U3, R, U5, and the 

portion of the tRNA that is complimentary to the PBS; using this complimentarity RT 

again jumps (or switches templates) to the complimentary PBS region on the minus-

strand DNA.  DNA synthesis continues on both strands which yields a double stranded 

DNA product (21).   

 Once reverse transcription is complete, the double-stranded DNA along with IN 

enters the nucleus and integrates into the host genome.  For some retroviruses, access to 

the host genome is thought to be passive and occurs during cell division.  After the 
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nuclear membrane disassociates the pre-integration complex comes in contact with the 

host genome.  Other retroviruses have evolved sequences in proteins that bind to viral 

DNA to allow viral DNA to pass through the intact nuclear membrane into the nucleus; 

these proteins sequences are known as the nuclear localization signal (NLS).  This NLS 

circumvents the need for cell division and these retroviruses, HIV-1 being among them, 

can infect non-dividing cells.  IN recognizes specific sequences within twelve to fifteen 

nucleotides from either end of the viral DNA called attachment sites (att) (5, 37).  These 

att sites, which sequences can vary greatly among retroviruses, are imperfect inverted 

repeats (37).  The att sites are usually specific to the particular retroviral integrase.  

However, a CA dinucleotide is found common in all attachment sites.  These nucleotides 

occupy position three and four proximal of the blunt end viral DNA.  For most 

retroviruses, sequences closer to the ends of the molecule are assigned greater importance 

in efficient integration than others (50).  IN must perform two reactions; first, it processes 

the 3’ end of the viral DNA by clipping off two nucleotides, and second, IN catalyzes 

strand transfer with the cellular DNA to integrate the viral DNA into the host genome.  It 

has been proposed that the 3’ end processing reaction utilizes water as an intermediate 

and the resulting 3’ hydroxyls are used for a nucleophilic attack on the host DNA in the 

strand transfer step (4).  This attack cleaves the host DNA and allows the provirus to 

become integrated.  Host enzymes repair gaps in the DNA sequence.     

 Host cellular machinery drives the transcription of viral mRNA and the 

expression of proteins.  In the host nucleus, viral mRNA can either remain full length or 

become spliced.  Env and other accessory proteins are expressed from spliced message.  

The full length viral mRNA can be packaged by viral proteins to serve as the genetic 
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material for progeny virus, or the mRNA can be translated for production of Gag and 

Gag-Pol polyproteins.   

 After the syntesis of viral RNA and proteins, viral assembly and packaging of full 

length viral mRNA occurs.  Gag specifically recognizes and encapsidates the packaging 

signal located on the full length viral RNA.  The assembled viral proteins and RNA 

eventually bud from the cell membrane and are released.  After release, the virion 

undergoes a maturation step where PR cleaves the polyproteins and forms the mature 

condensed core.  Infection of another host completes the life cycle. 

Retroviral Recombination 

 Retroviral recombination is the process in which sequences from two different 

RNA transcripts are incorporated into the reverse transcribed DNA molecule (29, 48).  

Retroviral recombination is facilitated by the packaging of two copies of its viral genome 

into virions.  If the two co-packaged RNA were different and if RT, during reverse 

transription, switches from one co-packaged RNAs to the other, a recombinant DNA 

molecule is formed. 

Two models have been proposed to explain retroviral recombination, namely the 

copy-choice (13) and strand displacement-assimilation models (27) (Fig. 5).  The copy-

choice model is sometimes referred to as minus-strand recombination because it proposes 

that the template-switching event takes place during minus-strand DNA synthesis.  As 

RT proceeds to transcribe along the viral RNA transcript, it is possible that RT can switch  

to use the other co-packaged viral RNA transcript as a template and proceed with reverse 

transcription.  It has been proposed that homology and the dynamic processes of 

polymerization and degradation of RNA from the DNA/RNA hybrid play very important 
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roles in copy-choice recombination.  Experiments examining the required template 

switch of strong-stop minus-stand DNA to the 3’ end of the RNA transcript showed that 

homology alone was sufficient to facilitate this process (10, 16).  In addition, the 

examination of a phenomenon called direct-repeat deletion, where an intramolecular 

template switch between two similar sequences located on the RNA transcript occurs, 

resulting in a deletion of sequences between these two similar repeats, revealed that lack 

of homology between the two direct repeats drastically reduced the rate of direct-repeat 

deletion (1).  Also, mutations of the polymerization domain and RNase H domain of RT 

showed that a dynamic relationship exists between the rate of polymerization and the rate 

of degradation which effects the rate of template switching (24, 44).  The slower the 

degradation and/or the faster the polymerization result in a slower rate of template 

switching.  The opposite is also true; higher rates of direct-repeat deletion were observed 

if polymerization slowed down and/or degradation was increased.  It is thought that a 

situation fostering greater base pairing between the newly transcribed minus-strand DNA 

and the homologous region located on the same RNA or co-packaged RNA promotes 

template switching (24, 44).   

Evidence for the strand displacement-assimilation model was first found by EM 

studies (27).  In this model, it is assumed that each RNA transcript undergo minus-strand 

synthesis and both initiates plus-strand DNA synthesis.  Plus-strand synthesis can occur 

in a discontinuous and disjointed manner with multiple initiations along the minus-strand 

DNA.  If one strand were displaced by a leading strand directly upstream from its 

position, then it would be free to anneal to a portion of the other minus-strand DNA.  

This strand would then become incorporated into the double-stranded DNA product and 
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integrated into the host genome.  Because this event results in mismatched base pair or 

base pairs, the host enzymes must repair the mismatch.  If the host enzymes repair the 

minus-strand, then a recombinant was generated.  There is significance evidence showing 

that the copy-choice model is the major contributor in recombination among some simple 

retroviruses (2). 

Another aspect of the retroviral lifecycle that effects recombination is the rate at 

which heterozygotic virions are formed.  It has been shown that virus populations that 

have the ability to recombine only arise from cells that are infected with more than one 

virus (23).  A cell containing two proviruses can produce three different types of virus, 

namely two different homozygotic virions and one type of heterozygotic virion.  If 

retroviral proteins package RNA transcripts from the other provirus as efficiently as its 

own, than the packaging is random.  Random packaging assures that the ratio of total 

homozygotic virions to total heterozygotic virions is 1:1 (AA + 2AB + BB).  If the 

packaging of transcripts from the other provirus is not as efficient, than the formation of 

heterozygotic virions occurs at a decreased rate.  Since recombination can only be 

observed from infection by heterozygotic virions, the lower the frequency of 

heterozygote formation, the lower the amount of recombinants will be observed. 

Implications of HIV-1 recombination 

 There has been much learned by studying different aspects of recombination in 

simple retroviruses.  Many of these findings have already been discussed above, but it is 

not known how well these observations correlate with recombination in HIV-1.  Evidence 

of recombination that has repeatedly been found in infected individuals suggests that 

HIV-1 recombination is not a rare event and contributes greatly to variation in te viral 
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population.  The acquisition of multi-drug resistant HIV-1 mutants has been attributed to 

recombination.  A greater understanding of this phenomenon must be explored in order to 

develop appropriate therapy and vaccine development.   

Introduction to Chapter 2, 3, and 4 

 The end result of the great evolutionary potential of HIV-1 is therapy failure and 

immune system evasion.  Evolution occurs in response to selective pressures placed on 

the viral population.  Although both advantageous and deleterious mutants arise during 

the generation of viral variation, the advantageous mutants become more fit for the 

current environment.  In chapter 2, a simple retroviral system that consisted of 

propagating a replication-competent chimeric virus was tested to observe evolutional 

changes in the viral population.  This chimeric virus replicated one hundred fold less than 

wild type virus.  Examining the changes in the viral population as the defective viral 

population evolves into a wild type-like population should show illustrate important 

aspects of this process. 

 Previous experiments in various laboratories have observed HIV-1 appears to 

have a high rate of recombination and that there were multiple crossover events occurring 

along the genome for those viruses that underwent recombination.  However, it has been 

difficult from these experiments to determine a recombination rate.  A recombination rate 

is a measure of the assortment of genetic markers at a certain distance apart in one round 

of replication.  In chapter 3, experiments determined the recombination rate in HIV-1 at 

marker distances of 1.0 kb, 1.3 kb, and 1.9 kb.  By using these distances and the same 

type of vectors used in the murine leukemia and spleen necrosis viral recombination 
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studies, it was possible to not only determine a recombination rate of HIV-1, but also 

directly compare that rate to MLV and SNV.   

 Because HIV-1 has a high rate of recombination, Aim III experiments were 

designed to measure the recombination rate at distance less than 1.0 kb.  This required the 

development of a different system than the one that was utilized in Aim II.  The Aim II 

system was based on drug resistance markers, where the Aim III system utilized markers 

that could be visualized by flow cytometry.  Distances of approximately 0.6 kb, 0.3 kb, 

and 0.1 kb were measured.  Development of the flow cytometry based system also will 

allow future recombination experiments to be performed quickly and effectively.   
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Figure 1. Mature HIV-1 virion 
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Figure 2.  Genomic organization of a HIV-1 provirus. 
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Figure 3.  Replication cycle of a retrovirus. 
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Figure 4.  Reverse transcription.  Thin lines represent RNA; thick lines, DNA 
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Figure 5.  Two proposed models to explain the generation of proviral recombinants. 
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Introduction 

 Retroviruses have a great capacity to evolve in order to over come selection 

pressures in the environment.  Such evolutional power comes from the high mutation rate 

and the high viral titers that can ensue during an infection.  Mutation generates variation 

in the viral genome.  This variation can then be exploited by the population ensure the 

presence of advantageous mutations, which become amplified during virus propagation.  

Because the adaptability is based on the evolutionary potential of the virus, it is essential 

to study the mechanisms employed in this process. 

 Previous experiments have shown that although SNV and MLV are genetically 

distinct retroviruses, SNV can efficiently package and replicate MLV RNA.  The reverse 

is not true, however.  MLV proteins cannot efficiently package and replicate SNV RNA.  

This non-reciprocal recognition seems to extend beyond RNA packaging and also include 

pol gene products and other cis-acting elements.  It has been shown that SNV proteins 

can not only package MLV RNA but can also support the replication of MLV vectors at a 

frequency similar to that of the SNV-based vectors.  This observation indicates that SNV 

enzymes can reverse transcribe MLV-based RNA and integrate the DNA efficiently (8, 

18).  In contrast, MLV pol gene products cannot support SNV vector replication 

efficiently.  It was found that an SNV Gag/MLV Pol chimera could package both SNV- 

and MLV-based vectors efficiently.  However, SNV vector generated titers that were 

approximately 100-fold lower than those of the MLV vector (7).  This result 

demonstrates that MLV pol gene products cannot utilize SNV cis-acting elements 

efficiently.  The defect could be during reverse transcription when reverse transcriptase 

(RT) must interact with certain sequences in the viral genome and/or during integration 
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when integrase (IN) needs to recognize the att sites. We hypothesize that if a virus with 

incompatible cis- and trans-acting elements is allowed to replicate, through mutations 

and selection, better-fit viruses will evolve.  By examining the changes that allow the 

viruses to become better fit, we can gain an understanding of the elements that are 

important in the cis- and trans-acting factors.   

Material and Methods 

Nomenclature and plasmid construction.  The names of all plasmids used in 

this study begin with p, but the names of viruses derived from these plasmids do not.  The 

cloning strategy for constructing pTR10 is as follows.  The SNV encapsidation sequence 

and a small upstream portion of SNV gag were amplified by PCR from pWH460.  

Primers were designed to include an Asp 718 restriction site upstream and two BsmI, 

MluI and HindIII sites downstream.  This PCR product and pJD214 were cut with the 

restriction enzymes Asp718 and HindIII.  Vector JD214 is an SNV-based vector that 

contains all the cis-acting elements for viral replication.  The PCR product was ligated 

with pJD214 to generate pTR6.  Vector pTR6 and pMP5 were both digested with the 

restriction enzyme BsmI.  The 5.3 kb fragment from pMP5, which contains most of SNV 

gag and all of MLV pol, was ligated into the backbone of pTR6 to pTR7.  An olgio 

containing a small portion of the 3’ end of amphotropic MLV env, flanked by two ClaI 

sites, was inserted into ClaI-digested pTR7 to generate pTR8.  Plasmid, pTR8, and 

pAMS were digested with ClaI.  Because ClaI was methylated at the downstream site, 

after the env portion, only a single cut was made in pTR8.  Plasmid pAMS is a vector that 

encodes replication competent MLV, which includes amphotropic MLV env.  ClaI cuts 

pAMS within the MLV pol and downstream of the termination codon of amphotropic 
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MLV env.  This 2.7 kb fragment was ligated into pTR8.  The result, pTR10, contains all 

the SNV cis-acting elements, SNV gag, MLV pol, and amphotropic MLV env. 

RT assay.  One milliliter of virus supernatant was collected from tissue culture 

and added to 500 µL of polyethylene glycol solution (30% polyethylene glycol, 0.5 M 

NaCl).  Following incubation in 4ºC overnight, virus was spun at 13,000 RPM for 30 min 

on a Heraeus Biofuge centrifuge.  Virus was resuspended in 20 µL and subjected to an 

RT assay using standard procedures (47). 

Cells, transfections and infections and flow cytometry analysis.  Cultured cells 

were propagated in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal 

calf serum for 293T cells and 6% calf serum for D17 cells.  Medium was also 

supplemented with penicillin (50U/mL) and streptomycin (50U/mL).  Cells were 

maintained in a 37ºC incubator with 5% CO2. 

 DNA transfections were performed by the calcium phosphate method (43).   Cells 

were plated at a density of 1 x 106 cells per 100-mm-diameter dish and transfected 24-hr 

later with the appropriate mixture of DNA.  The weight ratio of vectors expressing 

gag/pol, env, and packaging construct was 5:1:4, respectively.  Transfected cells were 

placed in a 37ºC incubator with 3% CO2 overnight.  Afterwards, the cell culture medium 

was changed and cells were placed in a 37ºC incubator with 5% CO2 for another 24 h.  

Virus supernatants were harvested and cellular debris was removed by filtering through a 

0.45-µm-pore-size filter.  Virus was either used immediately or stored at -80ºC prior to 

use. 

 For infection, cells were plated at a density of 1 x 106 cells per 100-mm-diameter 

dish or 2 x 105 cells per 60-mm-diameter dish 24 h prior to infection.  Cells were infected 
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by virus stocks in the presence of Polybrene at a final concentration of 50 µg/mL.  

Viruses were removed 4 h later and replaced with fresh media.  Cells were washed with 

PBS containing 2% fetal calf serum.  Acquisition of data was performed on a 

FACSCalibur (BD Biosciences). 

Results 

Experimental design and rationale.  The experimental design is illustrated in 

Figure 1.  Briefly, a replication competent viral vector containing incompatible cis- and 

trans-acting elements was transfected into cells.  The cells were passed periodically and 

at each passage, fresh uninfected cells were added.   RT assay was used to monitor the 

amount of virus produced from the culture cells.  We expect that better-fit viruses would 

evolve during viral replication; this would be evident from an increased RT activity in the 

cell culture supernatant.  After more efficient replicating viruses are detected in the cell 

culture system, the sequences of these viruses were amplified from the integrated 

provirus by PCR, and the molecular nature of these viruses was determined by sequence 

analysis. 

Rationale for determining changes in fitness.  The fitness of the viral 

population was monitored by RT activity.  This is an in vitro assay that uses the viral RT 

in the virions to reverse transcribe an exogenous RNA template.  Radioactive dNTPs are 

incorporated in the growing DNA strand during the assay.  The amount of radioactivity 

measured is directly proportional to the amount of virions in the sample.  The RT assay 

was used in the following manner.  The supernanent was collected at various time points 

during the experiment and the amount of virus produced was determined by RT assay.  

When RT activity is plotted over time, a characteristic viral propagation profile is created 
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(a hypothetical plot is shown in Fig. 2).   A wild type virus is expected to spread though 

cultured cells quickly and produced large amount of viruses.  As a result, the RT activity 

from the wild type virus should rise rapidly and remain high during the time course 

(dotted line in Fig. 2).  In contrast, an unfit virus spreads through culture slowly; the RT 

activity should rise slowly and plateau at a lower activity than those from wild type virus.   

It may take much longer to see virion production (represented by the dashed line).  As the 

viral population evolves and becomes more fit (solid line), the replication kinetics will 

begin to switch to an intermediate phenotype and eventually bear more similarity to that 

of the wild type virus than that of the unfit virus.    Upon identifying a viral population 

with altered viral replication kinetics, virus in the supernatant was used to infect fresh 

293T cells.  PCR was used to amplify proviral sequences from cellular genomic DNA.    

These amplified products will then be sequenced.  Changes within the viral sequences 

will then be identified. 

Vector and cell line used to examine viral evolution in cell culture system.  

The replication competent vector, pTR10, has all the cis-acting elements needed for SNV 

viral replication and SNV gag.  However, SNV pol and env are replaced by MLV pol and 

amphotropic MLV env.   The amphotropic MLV Env allows for the infection of a broad 

range of target cells.  In addition, it has been shown previously that infectious viral 

particles can be generated from SNV Gag/Gag-Pol and MLV amphotropic Env.  Human 

kidney cells, 293T, are the cells chosen for viral propagation.  These cells were chosen 

for the following reasons: first, it is easy to achieve high efficiency transfection in 293T 

cells.  Second, 293T cells are permissive to SNV infection, and third, human cells are 

known not to contain MLV-like endogenous retrovirus, which ensures the better-fit 
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viruses were generated from adaptation between the cis- and trans-acting elements and 

not from recombination events between endogenous viruses and TR10.  In previous 

experiments, SNV pseudotyped with amphotropic MLV Env efficiently infected 293T 

cells (Table 1). Also, transfecting 293T cells with SNV gag/pol constructs produced 

significant viral titers (Table 1).  These experiments were performed by transfecting 

either a plasmid expressing SNV proteins or a plasmid expressing MLV proteins into 

293T cells.  These two plasmids were transfected with pSR2 (10), a plasmid that confers 

hygromycin resistance, and a plasmid encoding amphotropic MLV env.  Viral 

supernatent harvested from transfected cells was used to infected fresh 293T cells. Based 

on these results, these cells should have been ideal for this experiment.  

 We tested whether TR10 expresses functional viral proteins essential for viral 

replication and support the replication of an SNV-based vector.  293T cells were 

transfected with either TR10 or pRD136 (a plasmid that expresses SNV wild type 

proteins) and a pSR2.  Cells that received a plasmid encoding SNV wild type proteins 

also were transfected with a plasmid expressing amphotropic MLV Env.  Serial dilutions 

of the supernatent were used to infect a dog osteosacroma cell line.  Cells were put on 

hygromycin selection 24 hours later and 2 weeks later resistant colonies were counted to 

determine viral titer (Table 2).  TR10 does package and replicate an SNV-based vector at 

SNV wild type levels, and we concluded that it could be used for the evolution 

experiments. 

 Vector pTR10 was then transiently transfected into 293T cells.  After 3 days, 

supernatant was collected and cells were mixed with fresh 293T cells at a ration of 1:1.  

Three time points were taken and presented in Table 3.  As a control, we transfected 
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pRD136, which does not produce replication competent virus, to measure RT expression 

generated from the initial transfection.  Although there was a relative strong burst of RT 

activity from TR10 after transfection, TR10 did not have significant replication to 

produce RT activity higher than the mock infected sample. 

 Because we did not observe detectable RT activity for TR10 after the first 

passage, a different strategy was employed to test whether virus from pTR10 could 

propagate over time.  D17 cells were stably transfected with pMS2 (10).  The vector 

pMS2 is an MLV-based vector that contains two separate portions of green fluorescence 

protein (GFP) located in the LTRs.  Upon infection with this construct GFP is 

reconstituted during reverse transcription.  Virus replicating through cells stably 

expressing MS2 cells would give an indication of the virus’s replicative capacity due to 

the eventual accumulation of GFP positive cells.  

 Three different viruses were tested in this cell line.  Plasmids encoding replication 

competent SNV (pCG4), replication competent MLV (pAMS), and pTR10 were 

transfected into 293T cells separately and the resulting harvested viruses were then used 

separately to infect D17/MS2 cells.  GFP expression was monitored periodically for fifty-

six days (Fig 3).  Replication competent SNV and MLV infected-cells, although with 

different kinetics, showed a rise in the percent of GFP-expressing cells, indicating that 

virus replication took place.  However, cells that were infected with TR10 only had 

background levels of GFP-expressing cells, indication that TR10 had a substantial defect 

in viral replication.  
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Discussion 

The experimental system in this report attempted to examine the evolution of a 

chimeric simple retrovirus and to investigate the role of sequences and/or protein residues 

important for virus replication.  These methods have been employed in other systems 

with success (9, 28, 49).  A defective virus is allowed to replicate over many generations 

while monitoring fitness of the viral population.  When better-fit virus populations are 

detected, strategies to examine the differences in genomic sequences are employed. 

Time and virus titer are two dependent factors on evolution experiments.  It is not 

known how many mutations in the chimeric virus that must be made in order to change 

its fitness level.  The time it takes to make enough mutations in order to generate a better-

fit virus is critical in this experiment.  If large pools of infectious progeny virions were 

generated from one infected cell then the possibility exist that those advantageous 

mutations will occur and produce another round of progeny.  However, the probability of 

the presence of advantageous mutations becomes meager when only a few progeny 

virions are produced per infected cell.  A critical mass must be achieved for the described 

experiment to work, and the time it takes for TR10 to get to the critical mass is unknown. 

Because SNV is an avian virus, it stands to reason that natural host cells might 

provide an advantage for virus replication.  Performing this experiment in avian cell lines 

might generate the critical mass of viral titer to allow evolution to take place.  In order for 

this experiment to proceed, these cell lines should be evaluated. 

There were two conflicting previous reports on the subject of SNV production and 

infection in human cells (20, 30).  Work described in Koo, et. al. discussed experiments 
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in which SNV was able to infect human cell lines, but was not able to produce virus from 

the infected cells.  They suggested a posttranslation block to productive SNV expression.  

However, work from Gautier, R., et. al. showed that SNV can not even infect human 

cells.  Because a human cell line seemed idea for the evolution experiments, we made 

sure that the human cell line, 293T, could produce SNV virus and was permissive to SNV 

infection.  When SNV was psuedotyped with amphotropic MLV env or GaLVenv, 

significant titers were produced upon infection of 293T cells.  These same viruses were 

produced from transfecting 293T cells with plasmids that express SNV proteins and 

packaging constructs.  These experiments show that 293T cells do allow production and 

are permissive to infection.  Although we obtained these results in 2000, recent published 

work confirms our conclusions (38).  Such information would be valuable to gene 

therapies strategies that use retroviral constructs. 
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Figure 1. Vector and experimental design 
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Figure 2.  Hypothetical RT activity versus time graph of three different viral populations 

with different replication kinetics.   
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 SNVgag/pol  
amphoMLVenv 

MLVgag/pol 
amphoMLVenv

Average 
titer 1.6x103 3.1x103 

 
Table 1.  SNV and MLV virus production and infection into 293T cells.   
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Table 2: TR10 and SNV virus production and infection into 293T cells. 

 TR10 (SNVgag/MLVpol) SNV wt Mock 
Average viral titer 

(cfm/mL) 
4.1 x 103 4.0 x 103 0 
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Table 3.  TR10 viral propagation in 293T cells.   

 

 

 

 

 

 

 

 

 

 

 

 Day 3 
(cpm/min) 

Day 6 
(cpm/min) 

Day 9 
(cpm/min) 

RD136 247,035 12,906 11,131 

TR10 750,550 9,719 9,188 
Mock 

infected 11,863 10,198 10,304 
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Figure 3.  Viral propagation of three different viruses in D17/MS2 cells.  d followed by a 

number on the x-axis represents the day post infection sample was taken; NC, negative 

control. 
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Abstract 
 

One of the genetic consequences of packaging two copies of full-length viral 

RNA into a single retroviral virion is frequent recombination during reverse transcription.  

Many of the currently circulating strains of human immunodeficiency virus type 1 (HIV-

1) are recombinants.  Recombination can also accelerate the generation of multidrug-

resistant HIV-1 and therefore presents challenges to effective antiviral therapy.  In this 

report, we determined that HIV-1 recombination rates with markers 1.0, 1.3, and 1.9 kb 

apart were 42.4, 50.4, and 47.4% in one round of viral replication.  Because the predicted 

recombination rate of two unlinked markers is 50%, we conclude that markers 1 kb apart 

segregated in a manner similar to two unlinked markers in one round of retroviral 

replication.  These recombination rates are exceedingly high even among retroviruses.  

Recombination rates of markers separated by 1 kb are 4% and 4.7% in one round of 

spleen necrosis virus and murine leukemia virus replication, respectively.  Therefore, 

HIV-1 recombination can be 10-fold higher than that of other retroviruses.   

Recombination can only be observed in the proviruses derived from heterozygous virions 

that contain two genotypically different RNAs.  The high rates of HIV-1 recombination 

observed in our studies also indicate that heterozygous virions are formed efficiently 

during HIV-1 replication and most HIV-1 virions are capable of undergoing 

recombination.  Our results demonstrate that recombination is an effective mechanism to 

break the genetic linkage between neighboring sequences, thereby reassorting the HIV-1 

genome and increasing the diversity in the viral population.      
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Introduction 

 Retroviruses package two copies of RNA into one virion, with each copy 

containing the entire genetic information needed for viral replication (16, 29).  Although 

two copies of RNA are packaged, generally only one provirus is generated from each 

infectious event; therefore, retroviruses are considered pseudodiploid and not diploid 

(21).  Retroviruses have been shown to undergo frequent recombination.  One of the 

prerequisites for recombination is the formation of heterozygous virions, which contain 

two copies of RNA with different genetic information (21, 53).  Recombination occurs 

during reverse transcription when portions of genetic information from both packaged 

RNA copies are used to generate a hybrid DNA copy (7, 52).  Genetic recombination 

events cannot be identified in the progeny from homozygous virions; these virions 

package two identical copies of RNA and, therefore, the recombinants will have the same 

genotype as the parental viruses.   

 Previously, we determined that the recombination rates of spleen necrosis virus 

(SNV) and murine leukemia virus (MLV) in one round of viral replication are 4% and 

4.7%, respectively, with two markers 1 kb apart (1, 21).   In MLV, the recombination 

rates increase to 5.0% and 7.4% with markers 1.3 and 1.9 kb apart, respectively (1, 2).  

However, when markers are separated by 7.1 kb, the recombination rate is 8.2%, which is 

not significantly different from the 7.4% rate observed for markers separated by 1.9 kb 

(1).   

 Recombination can reassort mutations in the viral genome to increase the 

diversity of the viral population, which can improve the probability of the survival of the 

viral population in a changing environment (7, 52).  The selective advantage of having 
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frequent recombination events is clearly illustrated in human immunodeficiency virus 

type 1 (HIV-1), which causes acquired immunodeficiency syndrome (AIDS).  It was 

estimated that significant portions of the currently circulating strains of HIV-1 are 

recombinants (9, 26, 45, 46).  Recombinant strains of HIV-1 have become dominant in 

the AIDS epidemic in certain geographical regions; for example, the A/E recombinant 

causes many of the HIV-1 infection in Thailand (18, 35).  HIV-1 recombination has also 

been directly observed in infected patients (15, 34, 47, 56).   

 Much research effort has been devoted to understanding HIV-1 recombination.  

Recombination has been observed during reverse transcription in vitro using purified 

nucleic acids and proteins (3, 12-14, 38, 39).  Frequent HIV-1 recombination events have 

also been observed in cell culture systems (6, 22, 30, 42, 50).  More recently, the 

frequency of HIV-1 recombination was estimated by studying recombination between 

two similar strains of HIV-1 and mapping the crossovers by using a heteroduplex-

tracking assay (23, 57).  These studies revealed that within limited cycles of replication, 

many HIV-1 genomes contained more than one recombination event; an average of 2-3 

crossovers per genome was estimated.  These studies are highly informative; however, 

direct comparisons among the HIV-1, SNV, and MLV recombination rates are 

complicated by the different strategies used to calculate the recombination frequencies.   

 In this report, we measured HIV-1 recombination rates in one round of viral 

replication.  We found that HIV-1 recombines at an exceeding high frequency even when 

compared with other retroviruses such as MLV and SNV.  These comparisons were made 

possible by using the same target sequences measured in the MLV recombination studies.   
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Materials and Methods 
 

Nomenclature and plasmid construction.  The names of all plasmids used in 

this study begin with p but the names of the viruses derived from these plasmids do not; 

for example, pTR-HyIN refers to a plasmid and TR-HyIN refers to the virus or provirus 

derived from this plasmid.  Plasmids were constructed using standard molecular cloning 

techniques (48).  Plasmid pTR-HyIN was constructed from pJS30 (1) and pKD-

HIV(PIN), which was a generous gift from Dr. Vinay K. Pathak and a derivative of 

pHR’-CMVLacZ (37).  Plasmids pKD-HIV(PIN) and pJS30 were digested with BamHI 

and BsrGI, respectively, treated with the Klenow fragment of Escherichia coli DNA 

polymerase I (Klenow) to fill in the 3’ ends of DNA fragments, and then digested with 

BclI.  The 1.8-kb DNA fragment derived from pJS30 containing hygromycin 

phosphotransferase B gene (hygro)(19) and internal ribosomal entry site (IRES) from 

encephalomyocarditis virus (EMCV) was ligated to the backbone from pKD-HIV(PIN) to 

generate pTR-HyIN, which contains hygro and the neomycin phosphotransferase gene 

(neo) (24).  To generate pTR-HyS2NIN, pTR-HyIN was digested with SacII, treated with 

T4 DNA polymerase to remove the protruding 3’ termini, and self-ligated.  This 

treatment generated an inactivating frameshift mutation in hygro, destroyed the SacII site 

and generated an NgoMIV site.  To generate pTR-HyN2MIN, pTR-HyIN was partially 

digested with NdeI, then a linker (5’-TATGACGCGTCA-3’) was inserted; these 

treatments generated a 10-bp addition to the sequence, which resulted in an inactivating 

frameshift mutation in hygro and an additional MluI site.  To generate pTR-HyINE2B, a 

0.9-kb MscI-to-BamHI region in pTR-HyIN was replaced by its counterpart from pJA32-

1kb (1); the resulting plasmid contained the same structure as pTR-HyIN except for a 4-
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bp inactivating insertion in neo that destroyed an EheI site and added a BssHII site.  

Plasmid pTR-HyIN was partially digested with NcoI, treated with Klenow enzyme, and 

ligated to generate pTR-HyN2NIN and pTR-HyINN2N, which contained a 4-bp insertion 

that inactivated hygro and neo, respectively.       

Cells, transfections, and infections.  Cultured cells were propagated in 

Dulbecco’s modified Eagle’s medium supplemented with 10% fetal calf serum, penicillin 

(50 U/ml), and streptomycin (50 U/ml).  Cells were maintained in a 37ºC incubator with 

5% CO2.   

 DNA transfections were performed by the calcium phosphate method (48) using 

an MBS Mammalian Transfection Kit (Strategene).  Cells were plated at a density of 4 × 

106 per 100-mm-diameter dish and transfected 18 h later with a mixture of DNA.  After 

incubating for 4 h at a 37ºC incubator with 3% CO2, the DNA mixture was removed, 

fresh medium was added to the cells, and the cells were transferred to a 37ºC incubator 

with 5% CO2.  Viral supernatants were harvested 24 h later; cellular debris was removed 

by filtering the supernatants through a 0.45-µm filter.  Viral supernatants were either used 

immediately or stored at -80ºC prior to infection.  Helper constructs pCMV∆R8.2 (36) 

together with pSV-A-MLV-env (31) or pHCMV-G (54) were transfected into cells to 

generate viruses.   Plasmid pCMV∆R8.2 expresses all HIV-1 viral proteins needed for 

infection except Env.  Plasmid pSV-A-MLV-env or pHCMV-G expresses amphotropic 

MLV Env or vesicular stomatitis virus G protein (VSV-G), respectively.   DNA mixtures 

used for transfection were either at a 5 : 1 : 4 (pCMV∆R8.2 : pSV-A-MLV-env : vector) 

or 2 : 1 (pCMV∆R8.2 : pHCMV-G) ratio.   
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 For the infection procedure, target cells were plated at a density of 1 × 105 per 60-

mm-diamter dish 24 h prior to infection.  Serial dilutions were generated from each viral 

stock and used for infection in the presence of Polybrene at a final concentration of 50 

µg/ml.  Viruses were removed 4 h later and drug selections were carried out 24 h 

postinfection.  Selection with hygromycin, G418, or hygromycin plus G418 were 

performed at 170, 609, or 170 plus 473 µg/ml, respectively.   

Southern hybridization analyses.  Genomic DNAs from infected cells were 

purified using the QIAamp DNA Blood Mini Kit (Qiagen) or AquaPure Genomic DNA 

Isolation Kit (BioRad).  Southern hybridization was performed by standard procedures 

(48).  A 1.0-kb HindIII-to-NgoMIV DNA fragment derived from pWH390 (1) containing 

the 3’ portion of the IRES, and the 5’ 0.6-kb portion of neo was used to generate a 32P-

labeled probe by random priming (17) (Random Primed DNA Labeling Kit, Roche).  

Southern hybridization results were obtained by autoradiography or PhosphorImager 

analyses. 

 

RESULTS 

 Strategy used to measure HIV-1 recombination rates.  The following 

constructs and strategy were used to measure the HIV-1 recombination rates.  We 

constructed an HIV-1-based vector (pTR-HyIN) that expresses hygro and neo, which 

confer resistance to hygromycin and G418, respectively.  In this vector, hygro expression 

is directed by an internal cytomegalovirus promoter, whereas neo expression is directed 

by an EMCV IRES (Fig. 1).  Plasmid pTR-HyIN also contains all the cis-acting elements 
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essential for viral genome replication; however, it does not express HIV-1-encoded viral 

proteins.   

Two vectors were derived from pTR-HyIN, each containing an inactivating 

mutation in one of the drug-resistance genes.  Vector pTR-HyS2NIN contains an 

inactivating frameshift mutation in hygro that destroys a SacII site and generates an 

NgoMIV site, whereas pTR-HyINE2B contains an inactivating frameshift mutation in 

neo that destroys an EheI site and generates a BssHII site (Fig. 1).  The distance between 

the SacII site in hygro and the EheI site in neo is 1 kb.  Because these two vectors each 

contain only one functional drug-resistance gene, a provirus derived from pTR-HyS2NIN 

or pTR-HyINE2B can only confer resistance to one drug selection.  However, if 

recombination occurs within the 1-kb distance separating the mutations, it could generate 

a provirus containing two functional drug-resistance genes conferring resistance to 

double drug selection.  By measuring the frequency at which recombinants with two 

functional genes are generated, we can calculate the recombination rate between markers 

1 kb apart.   

The protocol used to measure the HIV-1 recombination rate is illustrated in Fig. 

1B.  TR-HyS2NIN- or TR-HyINE2B-containing virions were generated separately by 

transfecting 293T cells with vector plasmid, pCMV∆R8.2, and pSV-a-MLV-env.  Helper 

construct pCMV∆R8.2 expresses most HIV-1-encoded proteins except Env, whereas 

pSV-A-MLV-env expresses the amphotropic MLV Env, which can functionally replace 

HIV-1 Env to generate infectious pseudotyped HIV-1 virions.  These viruses were used 

to infect 293 cells simultaneously, and the resulting hygromycin-plus-G418 double 

resistant cell clones were selected and characterized by Southern analyses.  Only cell 
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clones containing one copy of each provirus with intact structures were selected and used 

for further experiments.   

 To measure the recombination rate, these characterized cell clones were 

transfected with helper constructs pCMV∆R8.2 and pHCMV-G, which expresses VSV-

G.  VSV-G can be used to generate infectious pseudotyped HIV-1 virions.  Twenty-four 

hours after transfection, viruses were harvested and serial dilutions were generated.  

These viral stocks were used to infect 293 target cells in triplicates; these cells were then 

selected with hygromycin, G418, or hygromycin plus G418.  The numbers of drug-

resistant cell colonies were determined and viral titers were calculated.  Hygromycin-

plus-G418-resistant cell clones were isolated and the molecular nature of the proviruses 

was characterized.  These data were used to calculate the frequency at which 

recombinants with two functional drug-resistance genes were generated.  This frequency 

was then used to calculate the recombination rate.   

 Comparisons of TR-HyIN-derived viral titers resulting from different drug 

selections.  The strategy described above relied on viral titers generated from different 

drug selections to calculate how frequently recombinants with two functional genes were 

generated.  Therefore, it was important to first define the relative viral titers from 

different drug selections.  Using a protocol similar to that described above, we generated 

cell clones containing a single copy of TR-HyIN provirus.  Viruses were generated from 

these cells and used to infect 293 target cells; hygromycin, G418, or hygromycin-plus-

G418 viral titers were determined.  A summary of viral titers generated from five 

different cell clones is shown in Table 1.  In each of the five cell clones, viral titers 

generated by the three selection regimens were similar.  Therefore, viral titers generated 



55 

from single and double drug selections reflect the number of infection events and can be 

used to calculate recombination rates.   

Measuring HIV-1 recombination rates with two markers 1 kb apart.  Using 

the aforementioned protocol, we generated cell clones containing a copy of each TR-

HyS2NIN and pTR-HyINE2B provirus with intact structures.  These characterized cell 

clones were transfected with helper constructs pCMV∆R8.2 and pHCMV-G to generate 

viruses; the resulting viral titers from five cell clones are summarized in Table 2.  In 

general, hygromycin and G418 viral titers within each cell clone were similar, indicating 

that the two parental proviruses were expressed at similar levels; in addition, the 

hygromycin-plus-G418 viral titers were approximately 20% of the single drug-resistant 

viral titers.  Each of the parental viruses can only confer single drug resistance; a doubly 

resistant cell can be generated by the presence of both parental viruses or by the presence 

of a recombinant virus with two functional drug-resistance genes.  To characterize the 

molecular nature of the proviruses in the doubly resistant cells, we isolated 11 

hygromycin-plus-G418-resistant target cell clones and performed Southern analyses (Fig. 

2).  The two parental viruses are identical in sequence except for the two inactivating 

mutations, which convert a SacII site in hygro to an NgoMIV site and an EheI site in neo 

to a BssHII site.  Therefore, the nature of the proviruses can be distinguished by Southern 

analyses.  A representative Southern analysis is shown in Fig. 2B.  DNA samples were 

digested with NgoMIV plus EheI and hybridized with a probe generated from a DNA 

fragment containing the 3’ half of IRES and most of neo.  A provirus derived from one of 

the parental viruses should generate either a 1-kb band plus a 0.5-kb band (TR-

HyS2NIN) or a 2.3-kb band (TR-HyINE2B), whereas a recombinant provirus with two 
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functional genes should generate a 1.8-kb band plus a 0.5-kb band.  Southern analyses of 

DNA samples from two types of cells are shown: virus-producing cells, and doubly 

resistant target cells infected with virus generated from the producer cells.  Lanes labeled 

1.0B2, 1.0C3, and 1.0C4 contained DNA isolated from virus producer cell clones doubly 

infected with the two parental viruses.  In each of these lanes, three bands were detected, 

corresponding to the expected 2.3, 1.0, and 0.5 kb fragments.  In contrast, a 1.8-kb band 

and a 0.5-kb band were observed in DNA samples isolated from resistant target cell 

clones (lanes labeled B2B1, B2B2, B2C1, C3A1, and C4B1).  All of the 11 target cell 

clones contained recombinant proviruses (Fig. 2 and data not shown).  These results 

indicate that most of the hygromycin-plus-G418-resistant viral titers were generated from 

infection of recombinant proviruses rather than double infection of the two parent 

viruses.  Therefore, the doubly resistant viral titers reflect the amount of recombinants 

containing two functional drug resistance genes.   

Two types of recombinants can be generated in this system: recombinants with 

two functional drug resistance genes and recombinants with two inactivated genes.  

Because the double drug selection protocol specifically detected recombinants with the 

two functional drug-resistance genes, only half of the recombination events were 

measured.  To calculate the recombination rate, the hygromycin-plus-G418 viral titers 

were divided by the lower of the two single drug selection titers, and then multiplied by 

two.  The average recombination rate from the five clones is 42.4 ± 1.8% [standard error 

(SE), Table 2].   

Theoretical recombination rate of unlinked markers in this system.  We 

performed the following calculation to estimate the recombination rate of two unlinked 



57 

markers (Fig. 3).  Assuming that in the virus-producing cells, RNA expression of the two 

proviruses is equal, and the formation of homozygous and heterozygous virions is 

random, then 50% of the virions should be heterozygous, 25% of the virions should be 

homozygous containing two copies of TR-HyS2NIN RNA, and 25% of the virions 

should be homozygous containing two copies of TR-HyINE2B RNA.  Homozygous 

virions generate progeny proviruses with the same phenotypes as their parents.  In 

contrast, heterozygous virions can generate four different types of progeny proviruses: 

the TR-HyS2NIN phenotype, the TR-HyINE2B phenotype, the recombinant phenotype 

with two functional drug-resistance genes, and the recombinant phenotype with two 

inactivated genes.  If the mutations in hygro and neo are unlinked, then random 

segregation is predicted, which infers that the four different phenotypes of progeny 

proviruses should be generated at the same frequencies.  Therefore, of the 50% 

heterozygous virions, 12.5% of each phenotype of progeny is generated.  Totaling all of 

the progeny generated by both homozygous and heterozygous virions, 50% of the 

proviruses should confer resistance to a single drug selection (25% from the homozygous 

virions, 12.5% from the parental phenotype generated from heterozygous virions, and 

12.5% from the double drug-resistance phenotype), whereas 12.5% of the proviruses 

should confer resistance to double drug selection.  Therefore, the recombination rate 

should be 50% [(12.5% / 50%) × 2].  

HIV-1 recombination rate does not increase significantly when markers are 

1.3 or 1.9 kb part.   The rate that we measured with two markers 1 kb apart is 42.4%, 

which approaches the rate at which two markers reassort randomly.  To investigate 

whether the HIV-1 recombination rate can increase further, we measured the 
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recombination rates when two markers are 1.3 or 1.9 kb apart.  These two distances were 

chosen because using the same target sequences we have previously measured the MLV 

recombination rates when markers were 1.3 or 1.9 kb apart (1, 2); additionally, the 1.9-kb 

recombination rate is significantly higher than the 1.0-kb recombination rate (1).   

Three vectors were derived from pTR-HyIN; the structures of their proviruses are 

shown in Fig. 3A and 5A.  Vector pTR-HyN2MIN contains an inactivating frameshift 

mutation in hygro that introduced an MluI site in an NdeI site; when paired with the 

previously described pTR-HyINE2B, the recombination rate with markers 1.3 kb apart 

can be determined (Fig. 3A).  Vector pTR-HyN2NIN contains an inactivating mutation in 

hygro that changed an NcoI site to an NsiI site, and pTR-HyINN2N contains an 

inactivating mutation in neo that changed an NcoI site to an NsiI site (Fig. 4A); the 

distance between the NcoI site of hygro and the NcoI site of neo is 1.9 kb.    

Using a protocol identical to that used to measure the recombination rate between 

markers 1.0 kb apart, we generated and characterized cell clones containing one copy 

each of TRHyN2MIN and TR-HyINE2B.  Helper constructs were used to transfect these 

cell clones, viruses were harvested, target cells were infected, and viral titers were 

determined.  Viral titers generated from five different cell clones are summarized in 

Table 3.  Because all the inactivating mutations are accompanied by restriction enzyme 

site alterations, the structures of the proviruses with a parental or recombinant genotype 

can be distinguished by Southern analyses.  To characterize the molecular nature of 

proviruses in the hygromycin-plus-G418 resistant cells, we isolated and analyzed DNA 

from doubly resistant target cell clones.  As illustrated in Fig. 3A, after digestion with 

MluI, EheI, and XhoI and hybridization with probes generated from the aforementioned 
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DNA fragment, proviruses with parental genotypes are expected to have either a 1.3-kb 

band plus a 0.8-kb band, or a 2.7-kb band, whereas recombinant proviruses with two 

functional genes are expected to generate a 1.8-kb and a 0.8-kb band.  A representative 

Southern blot is shown in Fig. 3B; the two virus-producing cell clones (1.3A4 and 1.3C2) 

contained the two parental proviruses, whereas the three doubly resistant target cell 

clones (A4A4, C2C3, and C2C5) contained recombinant proviruses with two functional 

genes.  All of the eight doubly resistant target cell clones that were analyzed contained 

recombinant proviruses with two functional drug-resistance genes (Fig. 3 and data not 

shown).  These data indicate that the hygromycin-plus-G418-resistant viral titers reflect 

the numbers of recombinant proviruses containing two functional drug-resistance genes.  

Therefore, the average recombination rate of two markers 1.3 kb apart is 50.4 ± 3.7 %  

(SE, Table 3).   

Using the same protocol, we established and characterized cell clones containing 

a copy each of TR-HyN2NIN and TR-HyINN2N proviruses.  Viral titers were measured 

from seven of these cell clones; these data are summarized in Table 4.  Similar to data 

generated from cell clones containing proviruses with markers 1.0 and 1.3 kb apart, 

within each cell clone, the two single-selection titers are generally comparable whereas 

the double drug selection titers are approximately 20% - 25% of the single-selection 

titers.  Doubly resistant target cell clones were isolated, and the proviral structures were 

analyzed.  As shown in Fig. 4A, when digested with NcoI and XhoI and hybridized with 

probes, the two parental proviruses are expected to generate a 2.7-kb band and a 2.3-kb 

band, whereas the recombinants with two functional genes are expected to generate a 1.9-

kb band.  A representative Southern blot is shown in Fig. 4B; the two virus-producing 
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cell clones (1.9B3 and 1.9G2) contained the two parental viruses, and the four doubly 

resistant target cell clones contained the recombinant proviruses (B3A1, G2A1, G2A2, 

and G2B1).  We examined nine double drug resistant target cell clones and all of them 

contained recombinant proviruses with two functional drug-resistance genes (Fig. 4 and 

data not shown).  Therefore, the average recombination rate with markers 1.9 kb apart is 

47.4 ± 2.2 % (SE, Table 4).  Therefore, HIV-1 recombination rate does not increase 

significantly when the marker distance is increased from 1.0 kb to 1.3 or 1.9 kb apart.  

Furthermore, all three rates remain similar to the 50% predicted rate on unlinked markers.           

The experimental protocols used in these experiments mainly measured events 

that occurred during one round of HIV-1 replication.  Viruses were harvested from cells 

24 h after transfection; in order for more than one round of viral replication to occur, viral 

proteins have to be expressed from the transfected helper plasmids, and virions have to be 

generated, infect new target cells, complete the viral replication cycle, express the 

proviral genome, and form new viruses within 24 h.  We estimate that only a very small 

percentage of the events measured in the system will be derived from more than one 

round of replication and these infrequent events should not affect the recombination rate 

that we measured.  To test this, we generated two cell pools, one containing TR-

HyN2NIN proviruses and one containing TR-HyINN2N proviruses.  Equal numbers of 

cells from these two pools were mixed together, and transfected with helper constructs, 

then viruses were harvested and used to infect target cells by the same protocol described 

above.  Because the two cell pools each contained only one parental virus, only 

homozygous virions should be produced; thus, recombinant proviruses with two 

functional drug-resistance genes should not be generated in one round of viral replication.  
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However, cells containing both parental proviruses could be generated after the first 

round of viral infection, and recombinant proviruses could be generated at later 

replication cycles.  We observed that the hygromycin-plus-G418 double resistant viral 

titer was less than 2% of the single-selection viral titers, which is in sharp contrast with 

the previous experiments using coinfected cell clones.  This experiment demonstrated 

that the majority of the events measured in this system occurred in one round of viral 

replication. 

 

Discussion 

 
 High rates of HIV-1 recombination and their implications.  In this report, we 

described a series of experiments measuring HIV-1 recombination rates.  We found that 

the recombination rate in one round of viral replication is 42.4% with markers 1 kb apart, 

which predicts that two markers separated by 1 kb can reassort at a frequency similar to 

that of unlinked markers.  This observation indicates that recombination is an incredibly 

powerful tool to break the linkage between neighboring sequences in the viral genome, 

thereby generating diversity in the viral population and increasing the evolutionary 

capacity of HIV-1.  This heightened ability to generate diversity also presents more 

challenges in the development of effective anti-HIV-1 treatments and vaccines.  Although 

many anti-HIV-1 drugs have been developed in the past decades, resistance-conferring 

mutations in the HIV-1 genome have been observed for every FDA-approved drug.  For 

example, mutation L10I in protease confers resistance to indinavir and lopinavir (8, 28), 

and mutation T215Y in reverse transcriptase confers resistance to AZT (27, 32).  These 

two mutations are separated by approximately 1 kb, and should segregate randomly if 
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recombination occurs between a virus with L10I and a virus with T215Y.  Therefore, the 

high rates of recombination can accelerate the generation of multi-drug-resistant HIV-1 

strains.  In addition, high recombination rates are also important to the generation of 

novel strains of HIV-1.  HIV-1 isolates are classified into group M, N, and O based on 

sequence identity; the vast majority of the isolates belong to group M, which is further 

divided into different subtypes (44).   Recombination can occur between closely related 

strains (15, 34, 47, 56), between isolates from different subtypes (4, 5, 10, 33, 43, 49, 55), 

or even between different HIV-1 groups (41, 51).  Currently, many of the circulating 

strains of HIV-1 are intersubtype recombinants (9, 26, 45, 46).  The high rates of 

recombination indicate that the mixing of the viral genomes from different strains can 

occur much faster than previously anticipated, and novel HIV-1 variants can also be 

generated at an accelerated pace.       

 Efficient formation of heterozygous HIV-1 virions.  Previously, we 

demonstrated that the formation of the heterozygous virions is critical to SNV and MLV 

recombination [(21), Anderson and Hu, unpublished data].  Here, we also show that high 

rates of recombination occurred when viruses were harvested from cell clones containing 

both parental viruses (thus allowing the formation of heterozygous viruses) but not from 

coinfection of two stocks of homozygous viruses.  Therefore, similar to simple 

retroviruses, the high frequency of HIV-1 recombination also requires heterozygous 

virion formation.  

  We calculated the hypothetical recombination rate of unlinked markers with the 

assumptions that RNA expressed from the two parental viruses would be equal and the 

formation of homozygous and heterozygous virions would be random.  The calculated 
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hypothetical rate (50%) is similar to our measured rate (42.4 to 50.4%).  Our titer data 

indicate that within each cell clone, the two parental viruses were expressed at similar 

levels (Tables 2-4).  These results validate the assumption regarding RNA expression.  

The observed high recombination rates in these experiments allow us to conclude that 

heterozygous virions must be formed efficiently during HIV-1 replication.         

 Comparison of SNV, MLV, and HIV-1 recombination.  The HIV-1 

recombination rates described in this report are approximately 6- to 9-fold higher than the 

MLV recombination rates (1-kb distance: 4.7% versus 42.4%, 1.9-kb: 7.4% versus 

47.4%).  Because the same target sequences were used in the measurement of HIV-1 and 

MLV recombination rates, the large difference in recombination rates most likely reflects 

the difference between MLV and HIV-1 replication.  Previously, we observed that in 

SNV and MLV, intramolecular template switching occurred far more frequently than 

intermolecular template switching (1, 11, 20, 21, 25).  We hypothesized that although 

most viruses are capable of undergoing intramolecular template switching, only a 

subpopulation of the virions are capable of undergoing intermolecular template switching 

(recombination) (20).  We provided two possible explanations for the limited 

recombination subpopulation: nonrandom copackaging of viral RNA (inefficient 

heterodimer formation), or altered structures of reverse transcription complex which 

hampered the access of both RNA copies to be used as the template during reverse 

transcription (20).  Currently, we do not know the mechanisms that limit the 

intermolecular template-switching events in MLV and SNV.  However, HIV-1 does not 

appear to have the same constraints, because we were able to measure a 42.4-50.4% 

recombination rate in HIV-1, similar to the 50% hypothetical recombination rate of 
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unlinked markers.  Therefore we can also conclude that a major portion of HIV-1 viruses 

are capable of undergoing intermolecular template switching (recombination) events.   

 As we were completing this manuscript, a report was recently published 

concluding that HIV-1 recombines more frequently than MLV (40).  There are several 

differences in the systems used and the conclusions of these two studies.  In our study, 

viruses were harvested from producer cell clones that were characterized to contain a 

copy of each parental provirus, whereas in the other study viruses were generated by 

transiently cotransfecting two vectors and helpers.  Cell clones produced viruses have 

several advantages.  First, viral RNAs were generated from proviruses, and we measured 

any bias in the transport and sorting of RNA expressed from proviruses integrated at 

different locations of the host chromosomes.  Second, the homogeneity of the 

characterized cell clones allows assessment of the expression levels of the two 

proviruses, which can be used to estimate the efficiency of heterologous virions 

formation.  Such estimation cannot be easily obtained using viruses generated from a 

transfected pool because the heterogeneity of such pools creates uncertainty about the 

numbers of doubly transfected cells and the expression levels of the vectors in each cell.  

Third, DNA recombination during transfection is not a complicating factor in our system.  

In addition, our system allows the simultaneous scoring of the two parents and the 

recombinants.  In both systems, recombination is scored by the simultaneous presence of 

the two parental phenotypes, which can be complicated by double infection of the two 

parental viruses.  We have characterized target cell clones to ensure that our 

measurements reflected the recombination events.     
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There are differences in our conclusions as well.  We have measured HIV-1 

recombination rates at three marker distances; we have observed that markers 1 kb apart 

can segregate in a manner similar to unlinked markers in one round of retroviral 

replication, which has strong implications for HIV-1 evolution and the development of 

antiviral treatments and vaccines.  In addition, we concluded that heterozygous virions 

are formed efficiently in HIV-1, and most of the HIV-1 virions are capable of carrying 

out recombination events.   

The results from our study add to a growing body of evidence that HIV-1 

recombination is an important factor in generating diversity in the viral population.  

Many questions about HIV-1 recombination remain to be answered, such as the 

mechanisms of recombination and the factors that affect recombination.  However, our 

current understanding indicates that the rapid redistribution of mutations in the viral 

genomes must be taken into account when designing new treatment regimens and 

developing effective vaccines.   
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TABLE 1.  Virus titers generated by cell clones containing TR-HyIN proviruses 
  

 
Titers (102 CFU/ml) 

 

Clone 

Hygromycin G418 Hygromycin + G418 

 
HN A1 

 
1.4 

 
1.8 

 
1.2 

HN C1 2.2 2.8 2.4 

HN C3 4.1 5.0 3.6 

HN E2 3.7 5.2 2.8 

HN E4 0.3 0.7 0.4 
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TABLE 2.  Virus titers generated by cell clones containing TR-HyS2NIN and TR-

HyINE2B proviruses  

 
Titers (102 CFU/ml) 

 

Clone 

Hygromycin G418 Hygromycin + G418 

 

Recombination rate (%) 

     
1.0B2 0.9 1.1 0.2 44.4 

1.0C2 1.4 1.8 0.3 42.8 

1.0C3 1.4 2.5 0.3 42.8 

1.0C4 11.4 11.2 2.6 46.4 

1.0D1 7.7 6.7 1.2 35.8 

Avg ± SE    42.4 ± 1.8 
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TABLE 3.  Virus titers generated by cell clones containing TR-HyN2MIN and TR-

HyINE2B proviruses  

 
Titers (102 CFU/ml) 

 

Clone 

Hygromycin G418 Hygromycin + G418 

 

Recombination rate (%) 

     
1.3A1 9.5 8.3 2.2 53.0 

1.3A4 13.7 13.6 3.0 44.1 

1.3C2 9.1 10.3 2.2 48.4 

1.3E3 4.4 8.5 1.4 63.6 

1.3F4 9.7 8.8 1.9 43.1 

Avg ± SE    50.4 ± 3.7   
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TABLE 4.  Virus titers generated by cell clones containing TR-HyN2NIN and TR-

HyINN2N proviruses 

 
Titers (102 CFU/ml) 

 

Clone 

Hygromycin G418 Hygromycin + G418 

 

Recombination rate (%) 

     
1.9B1 2.5 3.1 0.51 40.8 

1.9B3 3.9 4.1 1.1 56.4 

1.9B4 7.5 8.2 2.0 53.3 

1.9C2 9.5 6.7 1.6 47.8 

1.9D1 10.7 11.5 2.4 44.9 

1.9G2 11.3 9.3 1.9 40.9 

1.9I2 11.7 15.2 2.8 47.9 

Avg ± SE    47.4 ± 2.2 
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FIGURE LEGENDS 

FIG. 1.  Viral vectors and protocol used to measure HIV-1 recombination rates 

with markers 1 kb apart.  (A)  General structures of the vectors.  pro, CMV promoter; 

hygro, hygromycin phosphotransferase B gene; IR, internal ribosomal entry site; neo, 

neomycin phosphotransferase gene; asterisk, inactivating frameshift mutation.  N, 

NgoMIV; B, BssHII; S and E with slash, destroyed SacII and EheI sites, respectively.  

(B)  Protocol used to measure recombination rates.    

 

FIG. 2.  Characterization of the proviral structures by Southern analyses.  (A) 

Partial restriction enzyme maps of parental and recombinant proviruses. A 1.0-kb DNA 

fragment (probe) was used for the random-priming reaction to generate a probe for 

Southern hybridization analysis. E, EheI.  (B) A representative Southern analysis of 

virus-producing cells and the doubly resistant cell clones.  1.0B2, 1.0C3, and 1.0C4 were 

doubly infected cell clones used to produce virus to measure recombination rates.  B2B1, 

B2B2, and B2C1 were hygromycin-plus-G418-resistant target cell clones infected by 

viruses harvested from 1.0B2; C3A1 and C4B1 were doubly resistant target cell clones 

infected by viruses harvested from 1.0C3 and 1.0C4, respectively.  Molecular size 

markers are indicated on the right of the Southern blot.  All abbreviations are the same as 

in Fig. 1.   

 

FIG. 3.  Southern analyses of the doubly resistant cell clones from the 1.3-kb 

marker distance study.  (A) Partial restriction enzyme maps of proviruses. M, MluI; X, 

XhoI.  (B) A representative Southern analysis of virus-producing cells and the doubly 
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resistant target cell clones.  1.3A4 and 1.3C2 were doubly infected cell clones used to 

produce virus to measure recombination rates.  A4A4, C2C3, and C2C5 were 

hygromycin-plus-G418-resistant target cell clones infected by viruses harvested from 

1.3A4 and 1.3C2.  Molecular size markers are indicated on the left of the Southern blot.  

Other abbreviations are the same as Fig. 1 and 2.     

 
FIG. 4.  Southern analyses of the doubly resistant cell clones from the 1.9-kb 

marker distance study.  (A) Partial restriction enzyme maps of proviruses.  Ns, NsiI; Nc, 

NcoI; Nc with slash, destroyed NcoI.   (B) A representative Southern analysis of virus-

producing cells and the doubly resistant target cell clones.  1.9B3 and 1.9G2 were doubly 

infected cell clones used to produce virus to measure recombination rates.  B3A1, G2A1, 

G2A2, and G2B1 were hygromycin-plus-G418-resistant cell clones infected by viruses 

harvested from 1.9B3 and 1.9G2.  Molecular size markers are indicated on the left of the 

Southern blot.  All abbreviations are the same as in Fig. 1, 2, and 4.        
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ABSTRACT  

 Recombination is a major mechanism that generates variation in populations of the 

human immunodeficiency virus type 1 (HIV-1).  Mutations that confer replication advantages, 

such as drug resistance, often cluster within regions of the HIV-1 genome.  To explore how 

efficiently HIV-1 can assort markers separated by short distances, we developed a flow-

cytometry-based system to study recombination.  Two HIV-1-based vectors were generated, one 

encoding the mouse heat-stable antigen gene and green fluorescent protein gene (GFP), and the 

other encoding the mouse Thy-1 gene and GFP.  We generated derivatives of both vectors that 

contained nonfunctional GFP inactivated by different mutations.  Recombination in the region 

between the two inactivating mutations during reverse transcription could yield a functional 

GFP.  Using this system, we determined that the recombination rates of markers separated by 

588, 300, 288, and 103 bp in one round of viral replication are 56, 38, 31, and 12%, respectively, 

of the theoretical maximum measurable recombination rate.  Statistical analyses revealed that at 

these intervals, recombination rates and marker distances have a near-linear relationship that is 

part of an overall quadratic fit.  Additionally, we examined the segregation of three markers 

within 600 bp and concluded that HIV-1 recombination does not exhibit high negative 

interference.  We also examined the effects of target cells and viral accessory proteins on 

recombination rate.  Similar recombination rates were observed when human primary CD4+ T 

cells and a human T cell line were used as target cells.  We also found equivalent recombination 

rates in the presence or absence of accessory genes vif, vpr, vpu, and nef.  These results illustrate 

the power of recombination in generating viral population variation and predict the rapid 

assortment of mutations in the HIV-1 genome in infected individuals.  
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INTRODUCTION 

Genetic recombination plays an important role in the evolution of human 

immunodeficiency virus type 1 (HIV-1) (34).  Recombination shuffles viral genomes and 

redistributes the mutations generated from reverse transcription, leading to increased variation 

within the infected host and, ultimately, the viral populations distributed throughout the world 

(34).  Of the more than 70,000 sequences that are catalogued in the HIV sequence database at the 

Los Alamos National Laboratory (http://www.hiv.lanl.gov), approximately 8% (> 5,500) are 

classified as recombinants.  Furthermore, recombinant strains of HIV-1 have been observed 

worldwide (13, 16, 25, 27, 37, 45).  The inherent ability for HIV-1 to recombine poses a constant 

problem for effective anti-HIV-1 treatment because multidrug resistant variants can be generated 

by recombining the genome of singly or weakly resistant viruses.  The increased variation caused 

by recombination also hinders the development of effective vaccines: the induced host immune 

response has to combat not only the variants generated by the rapidly changing virus genome but 

also all the different subtypes of HIV-1.  Therefore, rapid recombination of the HIV-1 genome 

creates a vast advantage for the evolution of the virus and an enormous difficulty for the host.   

The ability of HIV-1 to carry out frequent recombination is the result of a unique feature 

of the retrovirus family: retroviruses package two copies of viral RNA into each virion (15, 22).  

During reverse transcription, reverse transcriptase (RT) can use portions of the genomes from 

each RNA as templates to generate a recombinant viral DNA (7, 18).  Although recombination 

can occur in all virions, a genetically different progeny can only be generated from virions with 

two different RNAs (heterozygous virions), not from virions with two identical RNAs 

(homozygous virions) (17).  Heterozygous virions are only generated from cells infected with 

more than one retrovirus (double infection) (17).  We have previously demonstrated that double 



 88

infection occurs frequently in HIV-1 infection of cultured T cells and primary T cells (8), 

providing the basis for the generation of heterozygous virions that allows the observed frequent 

recombination.   

Frequent HIV-1 recombination has been evident from studies using different approaches.  

Studies of individuals infected with more than one genetically distinct HIV-1 revealed that these 

patients often also harbor hybrid viruses in their viral populations (13, 16, 25, 27, 37, 45).  

Intersubtype recombinants that cause epidemics in certain geographical areas have multiple 

break-off points along the genome (34).  Additionally, some circulating forms of recombinants 

have mosaic genomes that were derived from five or more genetically distinct HIV-1 variants, 

emphasizing the common occurrence of double infection and frequent recombination (42).  In 

addition to the viral populations in infected individuals, recombination events have also been 

observed in experimental systems.  It has been demonstrated that recombination can occur using 

purified RT and nucleic acid templates (5, 10-12, 29); these studies have also yielded interesting 

data on different aspects of recombination, such as the effects of the viral nucleocapsid protein 

(9, 29, 32, 35, 36) and the templates (5, 11, 12, 32, 35, 36).  Using cell-culture-based systems, it 

has been demonstrated that HIV-1 recombination is frequent and occurs throughout the viral 

genome with potential localized hot spots (6, 19, 21, 23, 24, 46).  Comparisons between HIV-1 

and the simple retrovirus murine leukemia virus (MLV) revealed that HIV-1 recombines more 

frequently than MLV (30, 33).   

 In a previous study, we measured HIV-1 recombination rates for three genetic distances 

(1.9, 1.3, and 1.0 kb) (33).  We observed that HIV-1 recombines at exceedingly high rates, 

because sequences separated by 1.3 kb segregated as unlinked alleles in a single round of viral 

replication.  These results also led to questions that could not be easily addressed using the same 
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system such as the relationship between recombination rate and marker distances shorter than 1.0 

kb.  Many of the mutations that cause drug resistance or immune evasion are clustered within 1.0 

kb of the viral genome (20, 40).  Therefore, it is important to measure how frequently these 

mutations can be assorted.  Furthermore, because drug selection was used in the previous system 

to measure recombination, we could not easily adapt this strategy to measure recombination in 

cells that grow in suspension, such as T cells, which are natural target cells for HIV-1.   

In this report, we describe the development of a new experimental system that can 

measure recombination rates when markers are separated by short distances (0.6 kb or less).  

Furthermore, since this system is based on the detection of green fluorescent protein (GFP) and 

cell surface proteins that can be labeled with fluorescence antibodies, we can measure the 

recombination rates in cultured T cells and primary cells.  Using this new system, we have 

measured the recombination rates at four genetic distances.  In addition, we measured the 

frequency of double recombination to test whether HIV-1 recombination exhibits interference.     

 

MATERIALS AND METHODS 

Nomenclature and plasmid construction.  Plasmids were constructed using standard 

molecular cloning techniques (38).  The names of all plasmids used in this study begin with “p”, 

but the names of the viruses derived from these plasmids do not.  Plasmid pHIV-HSA-IRES-

GFP (a kind gift from Derya Unutmaz, Vanderbilt University) is a pNL4-3-based construct that 

encodes gag, pol, tat, and rev but contains inactivating mutations in vif, vpu, vpr, and env.  

Additionally, this plasmid has an insertion in the nef reading frame that contains a mouse heat-

stable antigen gene (HSA) followed by an internal ribosomal entry site (IRES) from 

encephalomyocarditis virus and the green fluorescent protein gene (GFP).   
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Plasmid pON-fHIG is identical to pHIV-HSA-IRES-GFP, except that an NcoI site in the 

plasmid backbone was eliminated by partial NcoI digestion and fill-in reaction with the Klenow 

fragment of Escherihia coli DNA polymerase I.   Plasmid pON-fTIG was identical to pON-

fHIG, except that HSA was replaced with the mouse CD90.2 gene, also known as Thy-1.  Thy-1 

was PCR amplified from pSRalphaLthy (31) (a kind gift from Irvin S.Y. Chen, University of 

California at Los Angeles) with primers containing SacII and XhoI sites.  The PCR product was 

digested with SacII-plus-XhoI and the resulting DNA fragment was inserted into SacII plus XhoI 

digested HDV-eGFP (41) to generate pHIV-Thy1.  Thy-1 was amplified by PCR from pHIV-

Thy1; the PCR products were digested with NotI plus EcoRI, and inserted into NotI-plus-EcoRI-

digested pON-fHIG to generate pfTIG-SL-delta.  The sequence between env and the 5’ end of 

Thy-1 in pfTIG-SL-delta was replaced with the sequence from pHIV-Thy1 by substituting the 

BamHI-BstEII DNA fragment to generate pON-fTIG.   

HIV-1 vectors with mutated GFP were constructed by generating PCR products of 

mutated GFP, then subcloning the PCR DNA fragment into pON-fHIG or pON-fTIG.  Mutated 

GFP was generated by single-round or overlapping PCR using pON-fHIG as the template.  The 

PCR product containing the mutated GFP was digested with NcoI plus XhoI and cloned into 

NcoI-plus-XhoI-digested pON-fHIG or pON-fTIG .  The names of these plasmids contain a letter 

indicating the encoded functional marker (H for HSA and T for Thy-1) and a number indicating 

the position of the mutation in GFP from the translational start codon.  Plasmid pON-H0, H5, 

and H6 contained mutations 15, 500, 603 bp downstream from the translation start codon, 

whereas T3 and T6 contained mutations 303 and 603 bp downstream from the GFP start codon, 

respectively.   
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Helper plasmid pCMV-dGag was derived from pCMV∆8.2 (28) in two steps: first, a 4-bp 

frameshift mutation was introduced into the SpeI site in gag to generate pCMV-Spe*.  A second 

mutation in gag, an in-frame stop codon, was introduced 37 bp downstream of the gag AUG by 

site-directed mutagenesis to generate pCMV-dGag.   

All constructs were characterized by restriction digestion and the PCR-amplified regions 

were verified by DNA sequencing to avoid inadvertent mutations.  The phenotypes of the 

constructs were characterized by flow cytometry analyses of cells transfected with these 

plasmids and cells infected with viruses derived from these plasmids.    

Cells, transfections, and infections.  The modified human embryonic kidney cell line 

293T (14) was maintained in Dulbecco’s modified Eagle’s medium.  The human T cell line 

Hut/CCR5, derived from Hut78 to express chemokine receptor CCR5 (43), was maintained in 

RPMI medium.  Media for both cell lines were supplemented with 10% fetal calf serum, 

penicillin (50 U/ml), and streptomycin (50 U/ml).  Puromycin (1 µg/ml) and G418 (500 µg/ml) 

were also added to the medium for Hut/CCR5 cells.  All cultured cells were maintained in 

humidified 37˚C incubators with 5% CO2.   

Primary blood lymphocytes were isolated from healthy donors through HISTOPAQUE 

(Sigma) gradients and activated by phytohemagglutinin (2 µg/ml) for 3 days. Activated cells 

were maintained in RPMI medium supplemented with 10% fetal calf serum and 200 U/ml 

recombinant interleukin-2 for 3-4 days.  CD4+ T cells were isolated using the Dynabeads CD4 

Positive Isolation Kit, which typically generated > 99% purity of CD4+ T cells as determined by 

flow cytometry analyses. 

 DNA transfections were performed by the calcium phosphate method (38) using an MBS 

Mammalian Transfection Kit (Stratagene).  Cells were plated at a density of 4 × 106 per 100-
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mm-diameter dish and transfected 18 h later.  Viral supernatants were harvested 24 h later, 

clarified through a 0.45-µm-pore size filter to remove cellular debris, and used immediately or 

stored at -80˚C prior to infection.    

 For infection of 293T cells, cells were plated in a 100-mm-diameter dish at a density of 1 

× 106 cells and infected 18 h later.  Serial dilutions were generated from each viral stock and 

used for infection in the presence of Polybrene at a final concentration of 50 µg/ml.  Viruses 

were removed 1 h later, and fresh medium was added to the cells; 48 h postinfection, the cells 

were processed and flow cytometry analyses were performed.  For infection of Hut/CCR5 cells, 

2.5 × 105 or 1 × 106 cells were plated in a 24- or 6-well plate, respectively; infection was 

performed without Polybrene, and infected cells were analyzed 72 h postinfection.    

Antibody staining and flow cytometry.  Cells were stained with phycoerythrin (PE)-

conjugated α-HSA antibody (Becton Dickinson Biosciences) and allophycocyanin (APC)-

conjugated α-Thy1 antibody (eBioscience).  The concentrations of antibodies used to stain 293T 

cells were 0.8 µg/ml (PE-HSA) and 3.6 µg/ml (APC-Thy1.2), whereas the concentrations of 

antibodies used to stain Hut/CCR5 cells were 0.48 µg/ml (PE-HSA) and 3.6 µg/ml (APC-Thy-1).  

Cells that were used only for flow cytometry analyses were fixed with paraformaldehyde (1%, 

final concentration).  Flow cytometry analyses were performed on a FACSCalibur (BD 

Biosciences), whereas cell sorting was performed on a FACSVantage SE System with the 

FACSDiVa Digital Option (BD Biosciences).  Data obtained from flow cytometry analyses were 

analyzed using FlowJo software (Tree Star).   

Calculation of the recombination rate.  Multiplicity of infection (MOI) was calculated 

as follows.  Y represents the number of total analyzed live cells during flow cytometry analyses; 

Zi and Zg represent the number of infected cells and the number of GFP+ cells, respectively.  
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Infection MOI was calculated as log (1 − Zi/Y) /log ((Y − 1)/Y)/Y, whereas GFP MOI was 

calculated as log (1 − Zg/Y) /log ((Y − 1)/Y)/Y.  The percent of theoretical maximum 

measurable recombination rate for measuring markers 588, 300, 288, and 103 bp apart was 

calculated as  ((GFP+ MOI  / Infection MOI) / 12.5%) × 100%.   

       

RESULTS 

Experimental system used to examine HIV-1 recombination.  We developed a flow-

cytometry-based system to measure the recombination rates at marker distances shorter than 1.0 

kb in a single round of HIV-1 replication.  This system uses three markers: HSA, Thy-1, and 

GFP; HSA and Thy-1 are cell-surface proteins that can be detected with specific fluorochrome-

conjugated antibodies and flow cytometry, whereas GFP is a fluorescent protein.  We 

constructed two pNL4-3-based HIV-1 vectors, pON-fHIG and pON-fTIG (Fig. 1A).  These 

vectors contained all the cis-acting elements necessary for virus replication and encoded gag, 

pol, tat, and rev.  In addition, each vector contained two marker genes in the nef reading frame: 

pON-fHIG had HSA and GFP, whereas pON-fTIG had Thy-1 and GFP.  HSA and Thy-1 were 

expressed by spliced mRNAs, whereas the translation of GFP was facilitated by an IRES from 

encephalomyocarditis virus in both vectors.   

Three vectors were derived from pON-fHIG by introducing inactivating mutations in 

GFP.  Plasmid pON-H0 contained 7-nt substitutions between nt 6 and 15 that introduced a stop 

codon in each reading frame, with the translation start site as nt 1 (Table 1).  Plasmids pON-H5 

and pON-H6 contained a +1 frameshift between nt 500 and 501, and between nt 603 and 604 of 

GFP, respectively (Table 1).  Similarly, two vectors were derived from pON-fTIG: pON-T3 and 

pON-T6 contained a +1 frameshift between nt 303 and 304, and between nt 603 and 604 of GFP, 
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respectively (Table 1).  None of the five plasmids with mutation in GFP gene could express 

functional GFP; however, upon recombination, a functional GFP gene could be generated and its 

gene products could be scored by flow cytometry.  By combining different pairs of vectors, we 

could measure the recombination rates for different marker distances.   

Experimental procedure used to generate producer cell lines and measure 

recombination rates.  To measure the recombination rates in a single round of HIV-1 

replication, we elected to produce the virus for the recombination assay from established cell 

lines containing HIV-1 vector proviruses instead of transiently cotransfecting the two HIV-1 

vectors along with helper plasmids into cells.  Although more laborious, our procedure 

eliminated possible DNA recombination between the two HIV-1 vectors during transfection and 

avoided overexpression of transfected plasmids, which would not reflect the true expression of 

the integrated proviruses.  Furthermore, our procedure allowed us to measure the recombination 

events in one complete round of virus replication — from a provirus in the producer cells to a 

provirus in the target cells.   

The experiments were performed in the following manner (Fig. 1B).  First, 293T cells 

were transfected with an HIV-1 vector and pHCMV-G (44), a plasmid that expresses vesicular 

stomatitis virus G protein that can pseudotype HIV-1.  Viral supernatants were harvested, 

clarified through a filter, serially diluted, and used to infect fresh 293T cells.  A portion of the 

infected cells was stained with antibodies and analyzed by flow cytometry.  Although this 

procedure could easily infect more than 80% of the cells, we selected cell populations that were 

infected with an MOI of 0.05 to 0.1 for further experiments.  This approach allowed us to avoid 

cell populations in which a large proportion of the cells contained more than one virus; selecting 

such populations would complicate later analyses (see Discussion).   The infected cells were 
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enriched by cell sorting (Fig. 1B), and infected by a second virus at an MOI of 0.05 to 0.1; the 

doubly infected cells were then sorted until more than 95% of the cells expressed both HSA and 

Thy-1.  During the generation of the cell lines, cells were sorted no more than a total of four 

times.  To avoid biases, each cell line consisted of a large number (20,000 to 60,000) of 

independently infected cells.   

 To measure the recombination rate, cell lines expressing both HSA- and Thy-1-encoding 

vectors were transfected with helper plasmids, and viruses harvested from these cells were used 

to infected the human T cell line Hut/CCR5; the infected cells were then analyzed by flow 

cytometry to determine the numbers of cells expressing HSA, Thy-1, or GFP.  Two helper 

plasmids were used in these experiments: pIIINL(AD8)env, which expressed HIV-1 envelope 

from the AD8 strain (8),  and pCMV-dGag, which expressed HIV-1 accessory genes vif, vpr, 

vpu, tat, rev, and nef.  Because 293T cells did not express CD4, virus generated from these cells 

could not reinfect the producer cells; additionally, once transferred into Hut/CCR5 cells, the 

HIV-1 vectors did not express Env, and thus could not reinfect target cells.  Therefore, these 

experiments measured recombination events that occurred between the provirus in the producer 

cells to the provirus in the target cells — one complete cycle of HIV-1 replication.   

Experimental controls for the flow cytometry analyses.  Before this new system could 

be used for recombination studies, we performed various control experiments to establish the 

background of the experimental system and our ability to detect the marker genes.  Flow 

cytometry analyses were performed on uninfected 293T cells and the producer cells.  Uninfected 

293T cells stained with anti-HSA and anti-Thy-1 antibodies had negligible numbers of cells that 

were positive for any of the three markers (Fig. 2A and B).  An example of a producer cell line 

doubly infected with ON-H0 and ON-T6 is shown in Fig. 2C and D; although more than 95% of 
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the cells were positive for both HSA and Thy-1 expression, none of the cells were positive for 

GFP expression (0 in 11,698 live events or less than 0.008%).   

To determine the experimental background, we mock-infected Hut/CCR5 cells, stained 

these cells with anti-HSA and anti-Thy-1 antibodies, and analyzed them by flow cytometry.  An 

example is shown in Fig. 2E and 2F; very few cells were positive for HSA, Thy-1, or GFP 

expression.  Because recombination events were scored by the reconstitution of a functional GFP 

gene, we further defined the background of GFP detection.  In multiple independent experiments, 

we scored a total of more than 2.3 million mock-infected cells and observed 18 GFP+ cells, 

indicating a background of ~ 0.0008%.  We generated viruses derived from either pON-fHIG or 

pON-fTIG, using transient transfection of 293T cells along with helper plasmids, and infected 

Hut/CCR5 cells.  As shown in the representative analyses (Fig. 2G for ON-fHIG virus infection 

and Fig. 2H for ON-fTIG virus infection), most of the cells were either double-negative or 

double-positive, indicating equivalent detection of the two marker genes in both HIV-1 vectors.   

It was also important that the GFP mutants used in these experiments were indeed 

negative for GFP expression; we performed multiple experiments to confirm that all four 

mutations in GFP inactivated the gene product (Fig. 2 D and data not shown).   

 Detection of recombination events for markers separated by 588 bp.  Three 

independent cell lines doubly infected with ON-H0 and ON-T6 viruses were generated (shown 

as cell lines 1, 2, and 3 in Table 2); the GFP mutations in ON-H0 and ON-T6 were 15 and 603 

bp downstream of the AUG codon, creating a genetic distance of 588 bp.  Helper plasmids were 

transfected into producer cell lines, viruses were harvested and used to infect Hut/CCR5 cells, 

and the infected cells were analyzed by flow cytometry.  Representative mock-infected 

Hut/CCR5 cells are shown in Fig. 3A and 3B, and infected Hut/CCR5 cells are shown in Fig. 3C 
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and D.  As shown in Fig. 3C and D, cell populations that were negative, single-positive, or 

double-positive for the markers could be easily detected and scored.  Data generated from these 

analyses are summarized in Table 2.  For example, viruses produced from cell line 1 were used 

to infect Hut/CCR5 cells; of the 302,115 live events scored, 132,787 cells expressed at least one 

marker (infected cells), and 11,866 cells expressed GFP.  To more accurately calculate the 

recombination events, we converted the cell numbers into MOI (see Materials and Methods for 

formula for conversion); the MOI for infection and GFP+ virus were 0.58 and 0.04, respectively, 

indicating that 6.9% of the infection events generated GFP+ phenotypes.   

 Calculation of theoretical maximum GFP+ phenotype.  In this experimental system, 

we could measure the virus titers of the two parental phenotypes and the GFP+ recombinant 

phenotype.  Assuming that RNA expression of the two parental vectors was equal in the 

producer cell and that RNA packaging was random, 50% of the virion produced would contain a 

copy of RNA from each parent (heterozygotes), 25% would contain two copies of RNA from 

one parent, and 25% would contain RNAs from the other parent (both homozygotes).  The GFP+ 

phenotype could only be generated from reverse transcription of the heterozygous virions.  With 

two mutations in GFP, four GFP genotypes could be generated during recombination (Fig. 4); of 

these, only the GFP without any mutation could express functional proteins.  At the maximum 

recombination rate, the two markers in GFP assorted randomly; of all the virions generated from 

the producer cells, only 12.5% of the progeny was expected to reconstitute a functional GFP.  

Therefore, at most, 12.5% of the infection events should yield the GFP+ phenotype.  When we 

observed that 6.9% of the infection events had the GFP+ phenotype, recombination between 

these two markers in GFP separated by 588 bp occurred at 55.4% of the theoretical maximum 

measurable rate (6.9%/12.5% × 100%) (Table 2).   
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Recombination rates for markers separated by 300, 288, and 103 bp.  We generated 

cell lines containing both ON-H0 and ON-T3 proviruses, and cell lines containing both ON-T3 

and ON-H6 proviruses.  The distance between the H0 and T3 mutations in GFP was 288 bp, 

whereas the distance between the T3 and H6 mutations was 300 bp.  Despite the similar genetic 

distance between these two sets of mutations, they contained completely different nucleotide 

sequences: H0 to T3 comprised the sequences from the 5′ portion of GFP whereas T3 to H6 

encompassed the 3′ portion of GFP (Fig. 1).  We measured the frequencies at which GFP+ 

phenotypes were generated among infection events in cell lines containing either set of 

mutations; these results are summarized in Table 3 and 4.  The recombination rate between H0 

and T3 (288 bp) was 30.7% ± 4.3% standard deviation (SD) of the theoretical maximum 

measurable rate; the recombination rate between T3 and H6 (300 bp) was 38.2% ± 5.6 % (SD).  

There were overlaps among the three sets of measurements of the two distances, indicating that 

the two measured sequences yielded similar recombination rates.  

We also generated cell lines containing ON-H5 and ON-T6 proviruses and measured the 

recombination rate when the two markers were separated by 103 bp.  The data generated from 

three independent experiments indicated that 1.4 % of the infection events were GFP+, or 11.5% 

± 2.4 % (SD) of the theoretical maximum measurable recombination rate.   

Effect of accessory genes on the recombination rate.  The recombination experiments 

described above were performed in the presence of the accessory gene products.  It has been 

shown that some accessory genes could affect the HIV-1 mutation rate or the process of reverse 

transcription (1, 26, 39).  To examine the effect of accessory genes on the recombination rate, we 

also performed parallel experiments without the expression of vif, vpr, vpu, and nef by omitting 

the helper construct pCMVdGag.  Results from these experiments are summarized in Tables 2, 3, 
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4, and 5; these results indicated that although the presence of the accessory gene products might 

have affected the infectivity of the virus as previously described, these gene products did not 

affect the overall recombination rate significantly (two-way ANOVA, P = 0.435; analysis of 

covariance, P = 0.514) (Fig. 5).          

HIV-1 recombination in primary CD4+ activated T cells.  We also measured the HIV-

1 recombination rate in activated human primary CD4+ T cells.  In order to make direct 

comparisons between the recombination rates in different target cells, we performed infection of 

the primary cells with the same virus stocks that were used to generate data for Tables 2, 4, and 

5.  Only viruses propagated in the presence of all accessory genes were used in these 

experiments.  Three days postinfection, these cells were processed and analyzed by flow 

cytometry.  For each recombination rate, we performed experiments using cells derived from 

three different donors and viruses generated from three independent cell lines.  The ratio of GFP 

MOI/infection MOI for markers separated by 588, 288, and 103 bp were 7.1% ± 1.1 % (SD), 

4.7% ± 0.5% (SD), and 2.0% ± 0.3% (SD), respectively.  These data correspond to 56.8, 37.6, 

and 16% of the theoretical maximum measurable recombination rate, which were similar to those 

determined in Hut/CCR5 cells (Fig. 5).   

Assortment of the HSA, Thy-1, and GFP markers in target cells.  The two parental 

vectors used in this study had different marker genes upstream of GFP.  Therefore, we could also 

analyze the distribution of the GFP+ cells in HSA+ and Thy-1+ cells to monitor additional 

recombination events.  The distance between the 3′ end of HSA/Thy-1 to the H0, T3, and H5 

mutations in GFP were 0.6, 0.9, and 1.1 kb, respectively.  In order for the GFP+ provirus in the 

H0-T6 or H0-T3 experiment to have HSA, RT would have to switch templates between the 0.6 

kb separating the HSA and the first 4 nt of GFP on the Thy-1-containing RNA.  Similarly, in 
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order for the GFP+ provirus to have Thy-1 or HSA in the T3-H6 or the H5-T6 experiments, RT 

would have to switch templates within 0.9 or 1.1 kb, respectively.  We also analyzed the 

distribution of GFP+ cells in HSA+ and Thy-1+ cells (Fig. 6).  In both the H0-T6 and H0-T3 

experiments, the ratios of GFP+ in HSA+ cells were higher than those of GFP+ in Thy-1+ cells, 

whereas in T3-H6 and H5-T6 experiments, the ratios of GFP+ in HSA+ cells were similar to 

those of GFP+ in Thy-1+ cells.  The marker distributions in these experiments were similar to the 

expected distribution based on the distance.  For example, we expected that more GFP+ viruses 

would have Thy-1 markers in the H0-T6 experiment because the recombination rate was under 

the maximum rate when markers were separated by 0.6 kb.  These data suggested that HIV-1 

recombination does not have high negative interference, in contrast to the previous proposal by 

others (46).  Although able to provide useful information, the distribution of the markers could 

be complicated by the doubly infected cell population and the expression of the two parental 

viruses.  We performed further experiment to address whether HIV-1 recombination has high 

negative interference.   

Generating GFP+ phenotype by double-crossover events.   High negative interference 

is defined by double recombination generated at a frequency far higher than predicted from the 

rate of the single recombination.  To directly test whether HIV-1 recombination exhibits high 

negative interference, we generated pON-H06 (Fig. 1A), which is identical to pON-H0 except it 

also has the H6 mutation in GFP.  Using the same protocol described in Fig. 1B, we generated 

two cell lines doubly infected with ON-H06 and ON-T3, and measured the rates at which GFP+ 

viruses were generated after one round of HIV-1 replication in the presence or absence of the 

accessory genes.  These results are summarized in Table 6.  Based on our data from the H0-T3 

and T3-H6 experiments, we could calculate the theoretical frequency at which GFP+ viruses 
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would be generated if the recombination events were independent.  In the H0-T3 and T3-H6 

experiments, the ratio of the GFP+ phenotype in the total infection events was 3.8 and 5.1%, 

respectively.  Because heterozygous viruses were present in only half of the viruses, and only 

half of the recombinant genotypes could be scored in this system, the recombination rate 

between H0-T3 and T3-H6 was 15.2% (3.8% × 2 × 2) and 20.4% (5.1% × 2 × 2), respectively.  

Therefore the predicted double recombination rate was 3.1% (15.2% × 20.4%).  Given the 

inability to score one of the double-crossover recombinant genotypes and the presence of the 

homozygous viruses, the expected ratio of the GFP+ phenotype in infected events was 0.77% 

(3.1% / 4).  The predicted numbers based on single recombination rates are very similar to our 

observed rate: the average ratio of GFP+ in infected events was 0.93%.  Therefore, our data do 

not support the hypothesis that HIV-1 recombination exhibits high negative interference.   

 
 

DISCUSSION 
  

Development of a versatile system for HIV-1 recombination studies.   In this report, 

we describe the development of a system to examine factors that influence the HIV-1 

recombination rate.  Detection of the infected cells and recombinants is based on the expression 

of proteins that can be scored by flow cytometry.  The advantages of this system are the ability to 

detect recombination events in T cells and primary cells, and the ease and speed of collecting 

data from samples with large numbers of cells.  Additionally, our system is versatile; we can 

directly measure recombination rates at various distances up to 600 bp using the mutants with 

defined genotypes and phenotypes to generate recombinants.  Furthermore, we collected viruses 

used in recombination studies from infected, sorted producer cells, thereby eliminating 

background problems such as the detection of DNA recombination events of the transfected 
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parental vectors and allowing us to measure events that occur at lower frequencies.  Recently, 

another flow-cytometry-based assay for studying HIV-1 recombination was described, which 

uses derivatives of GFP that fluoresce at different wavelengths as markers and reconstitution of 

GFP* as a mean to measure recombination (24).  Although based on similar principles, the 

system is limited to mutations that conferred alteration of the fluorescence wavelength, and could 

be complicated by the presence of more than one mutation that could affect the protein excitation 

wavelength and the multiple recombinant genotypes that could have varied phenotypes.   

Calculation of HIV-1 recombination rate.  Previously, we measured the recombination 

rates of spleen necrosis virus (SNV), MLV, and HIV-1 (2, 17, 33).  In these studies, we used two 

parental vectors each encoding a functional and a nonfunctional drug-resistance gene; 

recombination events were scored by the generation of recombinants with two functional drug-

resistance genes.   In these previous experiments, three drug-selection regimens — two single 

and one double —were used to measure the titers of the two parents and the recombinant, 

respectively.  The recombination rate was calculated by dividing the double-drug-resistance titer 

with the lower of the two parental titers; the resulting number was then doubled to account for 

the recombinant with two nonfunctional genes, which could not be detected.   

In our current system, flow cytometry analyses can simultaneously measure the 

expression of all three markers.  Therefore, in addition to measuring the cell population infected 

by viruses with the parental phenotypes, and by virus with the recombinant phenotype (GFP+), 

we can directly determine the total infected cell population.  Based on Poisson distribution, the 

number of infected cells is not always in linear proportion to the number of infection events, 

especially at higher MOIs.  Additionally, the number of GFP+ cells is always lower than the total 

number of infected cells.  Therefore, to estimate the recombination rate more accurately, we 
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converted the numbers of infected cells to MOIs prior to calculation.  This concern is less of an 

issue for previous studies because the numbers of drug resistance colonies are always counted on 

cells infected with virus at low MOIs.   

To better appreciate that the true frequency with which markers separated by a given 

distance segregate in one round of viral replication, we compared the rate at which GFP+ was 

generated during infection to the theoretical maximum measurable recombination rate.  We 

calculated the theoretical maximum measurable recombination rate in this experimental design 

(Fig. 4) based on the assumption that the two parents had the same level of RNA expression.  In 

all our experiments, the expression of the HSA and Thy-1 indicated that the titers of the two 

parental viruses were similar, generally within two-fold of each other.  Because all the producer 

cells were pools of infected cells, it was possible that the two parents were expressed at very 

different levels in each cell, yet generated similar titers when viruses were harvested from a large 

pool of cells.  To reduce this bias, we infected the cells with low MOIs (0.1 to 0.05) during the 

generation of our cell lines to decrease the probability of the presence of multiple proviruses 

from the same parent in one cell.  Therefore, the 12.5% of GFP+ cells estimated (Fig. 4) is likely 

to reflect the maximum that can be observed in our experimental condition.  On the other hand, if 

we convert the two fold difference in the parental titer in some experiments to differences of 

RNA expression in the producer cells, the theoretical maximum measurable recombination rate 

would be 11.1%, similar to the 12.5% we estimated in Fig. 4.   

Near-linear relationship between recombination rate and marker distance at the 

range of 0.1 to 0.6 kb that is part of an overall quadratic fit.  The recombination rates 

measured in this study are shown in Fig. 7A.  We performed statistical analyses on the 

recombination rates measured at the aforementioned four distances.  We found that distance is a 
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significant factor that affects recombination rates (two-way ANOVA, P < 0.001; analysis of 

covariance, P < 0.001).  Further analyses indicated that at this range, the relationship between 

recombination rate and marker distance is near-linear and fits a regression model involving both 

a linear component (first power of distance) and a quadratic component (second power of 

distance), with both components being significant (P < 0.001 for the linear and P = 0.015 for the 

quadratic component) and an R2 value of 0.985.   

To gain insight into the overall relationship between recombination rate and marker 

distance, we also converted our previous measurements of recombination rates at 1.0, 1.3, and 

1.9 kb into theoretical maximum measurable recombination rates.  We then added these rates to 

the rates determined in this report and generated a model to fit these data (with the caveat that the 

data came from two different studies).  The resulting model illustrates that the relationship 

between recombination rate and marker distance has a quadratic fit with the linear and quadratic 

components being the first and second powers, respectively (Fig. 7B).  This model has an 

outstanding fit to the data, with a R2 value of 0.984; of the 41 data points from the experiments, 

only one point was outside the 95% confidence level of the model.    

  We also generated a simple simulation to predict the relationship between marker 

distance and recombination rate.  This simulation has the following assumptions: the frequency 

of crossover between two markers is directly proportion to the distance, and the crossover events 

are independent, occur randomly throughout the distance, and have a Poisson distribution.  

Furthermore, we took into the account that between the two markers, only odd numbers of 

crossover events will generate a recombinant genotype whereas even numbers of crossovers will 

not.  The stimulation is shown in Fig. 7C and resembles the graph shown in Fig. 7B.  Therefore, 
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our data are consistent with the hypothesis that the frequency of crossover events are 

proportional to the distance between the markers and are independent from one another.   

Lack of interference in HIV-1 recombination.  Adding to the evidence in our proposal 

that crossover events in HIV-1 are independent is our observed lack of interference in the 

generation of a double recombinant.  Previously, it was hypothesized that HIV-1 recombination 

exhibits high negative interference (46).  This hypothesis was based on the mapping data of the 

crossover events in the HIV-1 genomes, in which some had multiple crossovers while others did 

not have any crossovers.  It is possible that in the previous study, the viral genomes that did not 

have crossovers came from homozygous viruses.  Alternatively, although unlikely, we cannot 

exclude the possibility that recombination does not exhibit high negative interference in GFP but 

exhibit interference in the HIV-1 genome sequences.  Our previous studies indicated that 

recombination in SNV and MLV exhibit high negative interference (3, 4).  We are currently 

dissecting the mechanisms that cause high negative interference in SNV and MLV but not in 

HIV-1.      

Implications of the high recombination frequency.  One of the major hindrances in the 

treatment of HIV-1 infection is viral variation.  The high rate of HIV-1 recombination 

contributes to viral variation, which hinders effective treatments.  Through recombination, 

multidrug-resistant variants can be generated quickly in a host; for example, sequences separated 

by 100 bp can be assorted at a frequency of 11% per replication cycle, and double-crossover 

events occur frequently without interference.  With the high rates of HIV-1 replication in 

infected individuals, recombination can assort the genome in a short period of time.  The ability 

of HIV-1 to evolve presents a daunting challenge for HIV-1 treatment and vaccine development.  

However, if we can further define and understand the pathways that HIV-1 uses to generate 
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variation, we can better estimate the evolutionary potential and limitations of HIV-1.  This 

understanding can help us design better therapeutic strategies for the treatment of HIV-1 

infection.  To continue building the scaffold needed to understand the evolution potential of 

HIV-1, we are currently performing further studies to elucidate the mechanisms and factors 

important for recombination.  
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TABLE 1. Sequence comparison between wild-type and mutant GFP   

Mutation DNA sequence in GFP* 

H0  

 Wild-type  ATGGTGAGCAAGGGCGAG 

 Mutant     ATGGTAGTTAACTGAGAG 

T3  

 Wild-type  CATCTTCTTC-AAGGACGACG 

 Mutant     CATCTTCTTCGAAGGACGACG 

H5  

 Wild-type   TGAACTTCAA-GATCCGCCAC 

 Mutant      TGAACTTCAAGGATCCGCCAC 

H6/T6  

 Wild-type   ACAACCACTAC-CTGAGCACC 

 Mutant      ACAACCACTAGTCTGAGCACC 

 

* Bold letters denote substituted and inserted nucleotides.   
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TABLE 2.  Recombination between two markers separated by 588 bp.   
 

  
Total 

live events 

Infected 

cells 

GFP+ 

cells 

Infection 

MOI 

GFP 

MOI 

GFP MOI / 

Infection MOI 

% of 

TMMRR* 

With all accessory gene products      

 Cell line 1 302,115 132,787 11,866 0.58 0.040 0.069 55.4% 

 Cell line 2 311,294 108,238 7,896 0.43 0.026 0.060 48.1% 

 Cell line 3 134,998 53,493 5,366 0.50 0.041 0.080 64.3% 

 Mean ± SD     55.9% ± 8.1%  

Without Vif, Vpr, Vpu, and Nef       

 Cell line 1 244,153 92,266 7,543 0.47 0.031 0.066 52.9% 

 Cell line 2 323,309 102,981 7,682 0.38 0.024 0.063 50.2% 

 Cell line 3 153,351 44,530 3,800 0.34 0.025 0.073 58.5% 

 Mean ± SD      53.9% ± 4.3% 

 
 
* TMMRR: Theoretical maximum measurable recombination rate.   
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TABLE 3.  Recombination between two markers separated by 300 bp.   
 

  
Total 

live events 

Infected 

cells 

GFP+ 

cells 

Infection 

MOI 

GFP 

MOI 

GFP MOI / 

Infection MOI 

% of 

TMMRR* 

With all accessory gene products       

 Cell line 1 169,742 68,118 4,751 0.51 0.028 0.055 44.3% 

 Cell line 2 457,070 125,496 6,071 0.32 0.013 0.042 33.3% 

 Cell line 3 377,710 142,939 8,228 0.48 0.022 0.046 37.1% 

 Mean ± SD      38.2% ± 5.6% 

Without Vif, Vpr, Vpu, and Nef       

 Cell line 1 177,088 43,332 2,513 0.28 0.014 0.051 40.7% 

 Cell line 2 543,741 133,692 6,768 0.28 0.013 0.044 35.5% 

 Cell line 3 710,696 157,916 7,463 0.25 0.011 0.042 33.6% 

 Mean ± SD      36.6% ± 3.7% 

 
* TMMRR: Theoretical maximum measurable recombination rate.   
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TABLE 4.  Recombination between two markers separated by 288 bp.   
 

  
Total 

live events 

Infected 

cells 

GFP+ 

cells 

Infection 

MOI 

GFP 

MOI 

GFP MOI / 

Infection MOI 

% of  

TMMRR 

With all accessory gene products       

 Cell line 1 174,404 72,866 4,140 0.54 0.024 0.044 35.5% 

 Cell line 2 540,508 195,323 8,225 0.45 0.015 0.034 27.4% 

 Cell line 3 271,641 127,694 6,218 0.64 0.023 0.036 29.2% 

 Mean ± SD      30.7% ± 4.3%  

Without Vif, Vpr, Vpu, and Nef       

 Cell line 1 176,526 41,014 1,777 0.26 0.010 0.038 30.6% 

 Cell line 2 469,566 144,843 6,371 0.37 0.014 0.037 29.6% 

 Cell line 3 585,638 203,767 8,356 0.43 0.014 0.034 26.9% 

 Mean ± SD      29.0% ± 1.9% 
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TABLE 5.  Recombination between two markers separated by 103 bp.   
 

  
Total 

live events 

Infected 

cells 

GFP+ 

cells 

Infection 

MOI 

GFP 

MOI 

GFP MOI / 

Infection MOI 

% of  

TMMRR 

With all accessory gene products       

 Cell line 1 155,972 63,480 1455 0.52 0.009 0.018 14.3% 

 Cell line 2 1,067,637 405,475 6,241 0.48 0.006 0.012 9.8% 

 Cell line 3 1,049,218 321,544 5,021 0.37 0.005 0.013 10.5% 

 Mean ± SD      11.6% ± 2.4%  

Without Vif, Vpr, Vpu, and Nef       

 Cell line 1 171,884 44,695 841 0.30 0.005 0.016 13.0% 

 Cell line 2 1,094,731 387,098 5,960 0.44 0.005 0.013 10.0% 

 Cell line 3 1,319,480 372,408 5,565 0.33 0.004 0.013 10.2% 

 Mean ± SD      11.1% ± 1.7%  

 
* TMMRR: Theoretical maximum measurable recombination rate.   
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TABLE 6.  Recombination between three markers using ON-H06 and ON-T3 viruses.  
 

  
Total 

live events 

Infected 

cells 

GFP+ 

cells 

Infection 

MOI 

GFP 

MOI 

GFP MOI / 

Infection MOI 

With all accessory gene products      

 Cell line 1 919,357 223,561 2,379 0.28 0.003 0.0093 

 Cell line 2 1,034,680 343,027 3,868 0.40 0.004 0.0093 

Without Vif, Vpr, Vpu, and Nef      

 Cell line 1 930,100 262,201 2,946 0.33 0.003 0.0096 

 Cell line 2 813,916 326,331 3,955 0.51 0.005 0.0095 
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FIGURE LEGENDS 

 

FIG. 1.  Viral vectors and protocol used to measure HIV-1 recombination rates.   (A) 

General structures of the vectors.  All listed vectors have similar structures but differ in the 

encoded marker genes.  Asterisk, inactivating mutation in GFP.  (B) Protocol used to measure 

the recombination rates of HIV-1.   

 

FIG. 2.  Representative flow cytometry analyses of mock-infected cells, producer cells, 

and cells infected with control plasmids.  (A and B) Analyses of mock-infected 293T cells 

stained with anti-HSA and anti-Thy-1 antibodies.  (C and D) Analyses of a producer cell line 

used for virus production.  This cell line was sequentially infected with ON-H0 and ON-T3 at 

low MOIs; HSA+ and Thy-1+ cells were enriched by sorting, stained with antibodies, and 

analyzed.  (E and F) Analyses of uninfected Hut/CCR5 target cells stained with anti-HSA and 

anti-Thy-1 antibodies. (G) Analysis of Hut/CCR5 target cells infected with ON-fHIG virus and 

stained with anti-HSA antibody.  (H) Analysis of Hut/CCR5 cells infected with ON-fTIG virus 

and stained with anti-Thy-1 antibody.  In all panels, the x- and y-axes denote the expression of a 

particular marker as indicated.   

 

FIG. 3.  Representative flow cytometry analyses of mock-infected and infected target 

cells.  (A and B) Analyses of mock-infected Hut/CCR5 target cells stained with anti-HSA and 

anti-Thy-1 antibodies.  (C and D) Analyses of Hut/CCR5 target cells infected with virus 

harvested from a producer cell line harboring both ON-H0 and ON-T6. 
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FIG. 4.  Distribution of GFP genotypes and phenotypes in the progeny generated from 

doubly infected cells after one round of viral replication.  Vectors ON-H0 and ON-T6 were used 

as examples (shown as H0 and T6, respectively).  Several assumptions were made in the 

calculated frequency.  First, the 25%: 50%: 25% distribution of the virion content was based on 

the assumptions that H0 and T6 were expressed at similar levels in the producer cells and virion 

RNAs were packaged randomly.  Second, the 12.5% distribution of each genotype was based on 

the assumption that H0 and T6 markers segregated as unlinked markers.  GFP−, cells that did not 

express functional GFP; GFP+, cells expressing functional GFP.  

 

FIG. 5.  Effects of accessory proteins and target cells on HIV-1 recombination.  The y-

axis represents the percentage of the theoretical maximum measurable recombination rate 

(TMMRR); x-axis, distances between markers.  White and gray bars represent the average 

recombination rates measured in the presence or absence, respectively, of accessory genes vif, 

vpr, vpu, and nef in the experimental system using Hut/CCR5 as target cells.  Black bars 

represent the recombination rate in the presence of accessory genes using activated primary T 

cells as the target cells.  All of the histograms show the average of three independent 

experiments; standard deviations are shown as error bars.   

 

FIG. 6. Distribution of the GFP+ phenotype in HSA+ and Thy-1+ cells.  The y-axis 

denotes the percentage of GFP+ cells; x-axis, vector pairs used.  White bars represent GFP+ cells 

within the HSA+ populations; black bars, GFP+ cells within the Thy-1+ populations.   
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FIG. 7. Relationship between HIV-1 recombination rate and marker distance.  (A) Near-

linear relationship between recombination rate and marker distance in the 0.1 to 0.6 kb range.  

(B) The relationship between HIV-1 recombination rate and marker distances has a quadratic fit.  

All data points are shown as triangles, the quadratic fit is shown as a black line, and the 95% 

confidence level is shown as dotted lines.  (C) Simulation of observed recombination rate.  This 

simulation is based on the assumptions that the frequency of crossover event is proportional to 

the marker distance, crossover occurs randomly throughout the genome, and crossovers are 

independent events.   The x-axis, marker distance; y-axis, percentage of theoretical maximum 

measurable recombination rate (TMMRR).   
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Discussion 

 The general theme of this dissertation is retroviral evolution.  The ability of HIV-

1 to evolve poses the greatest threat to developing an effective therapy to fighting the 

AIDS pandemic.  The ability to generate variation and the relative plasticity of the viral 

genome to tolerate variation allows HIV-1 to quickly develop drug resistance mutations 

and hinder the development of vaccines.  The high mutation rate of HIV-1 and high viral 

loads found in patients contribute greatly to the evolution of HIV-1.  Because of these 

phenomena, experiments were set forth in this thesis to study retroviral evolution, albeit 

through a simple retrovirus.  Another major mechanism for retroviruses to generate 

variation is recombination.  Through work in this thesis, I discovered that HIV-1 exhibits 

a extremely high recombinogenic nature, which underscores the need to develop 

therapies that fight recombination. 

 The first chapter introduced the significance of studying retroviruses, the 

retroviral lifecycle, and selected literature known concerning evolution and retroviral 

recombination.  This chapter provided the necessary background information to 

understand the experiments and concepts set forth in the work presented in this thesis.  In 

the second chapter, I described a project that was designed to study the evolution of a 

defective simple retrovirus.  The goal of this project was to gain a greater understanding 

of evolution dynamics and identify important sequences and/or residues important to the 

replicating retrovirus.  In the third chapter, I discussed HIV-1 recombination and 

described the project that measures the recombination rate of HIV-1 at three genetic 

marker distances.  Within the fourth chapter, I presented the project that resulted in the 
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development of a novel system to measure HIV-1 recombination and measured the 

recombination rate at exceedingly short genetic marker distances.   

 Allowing defective viruses to evolve in tissue culture has proven to be a fruitful 

strategy in some instances (3, 11, 23).  However, a defective hybrid simple retrovirus that 

replicated at a 100-fold reduction over wild type evidently had too much deficiency to 

evolve in a timely manner in our experiment.  Following the initial burst of virus after 

transient transfection, replication was not detected in the 239T cell line.  Using two 

different approaches, we could not detect virus replication, even after fifty-six days in 

tissue culture.  Since viral replication provides the opportunity for a virus population to 

mutate and adapt, the lack of replication hinders the further development of the project.  

A cell line that encourages greater viral replication should provide the material needed to 

move this project forward. 

 Because of two conflicting reports (7, 12), it was unknown whether SNV could 

replicate in human cells.  We demonstrated that 293T cells could be infected by and 

could produce SNV virus.  This knowledge could be valuable to the field of gene therapy.   

Retroviral vectors are one tool used for those scientists pursuing gene therapy as a 

strategy to fight disease.  SNV can replicate in human cells, although with less efficiency 

than other viruses, such as MLV.  Although we discovered that SNV could replicate 

within human cells in 2000, recently published papers have confirmed these results (18, 

19).   

 From the first report (4), there have been several studies focusing on HIV-1 

recombination (9, 10, 13, 14, 17, 25).  Most of these experiments gave valuable 

information about the subject, but none of them provided a quantitative measurement of 
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the recombination rate and related it to genetic marker distances in one round of 

replication.  In the third chapter, I described our experiments that measured 

recombination rates when markers are separated by a distance of 1.0 kb and greater.  The 

recombination rate reached the maximum rate at 1.3 kb; therefore, markers that are 

separated by 1.3 kb or more segregate as unlinked alleles.  This is an astonishingly high 

recombination rate considering that MLV and SNV recombine at rates of 6- to 10-fold 

less at the same distances (1, 2, 8).  When the recombination rate for HIV-1 was 

measured with markers 1.0 kb apart, it was 84% of the theoretical maximum measurable 

recombination rate.  These results suggest that where markers are separated at distances 

1.3 kb apart and above illustrate a definite plateau, the distance of 1.0 kb might prove to 

be the point of transition where the recombination rate becomes proportional to genetic 

marker distance.  Based on the marker distances versus recombination rate profile of 

MLV (1), it is logical to assume that a linear relationship exist for HIV-1.  However, it 

could not be determined by the experiments performed in chapter three.  

 Several conclusions are reached from this work.  First, full-length RNA 

transcripts from two proviruses in a dually infected cell can be assorted in a random 

manner; that is, heterozygotic virion can be generated at the maximum rate, which is 50% 

of the total virion population.  Second, template-switching events occur at a high 

frequency.  Based on the measured rates, most, if not all, DNA molecules generated 

through HIV-1 reverse transcription contain genetic information from portions of two co-

packaged RNAs.  Third, two drug resistance mutations located at different positions in 

the viral genes of two different proviruses in dually infected cells will produce progeny 

containing both mutations.  This work, along with other recombination studies (9, 10, 13, 
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14, 17, 25), indicates that HIV-1 recombination is a major mechanism for generating 

variation within the viral genome. 

 In the fourth chapter, I described further studies on HIV-1 recombination.  We 

determined the recombination rate for HIV-1 when markers were separated by less than 

0.6 kb.  To perform this study, we developed a new flow cytometry-based system to 

study HIV-1 recombination.  The system used for recombination studies described in 

chapter 3 was based on reconstitution of two functional drug resistance genes separated 

by IRES, which is 0.6 kb in length.  This system yielded several disadvantages.  First, we 

could not easily adapt the system to measure recombination rates when markers were 

separated by less than 1.0 kb.  Second, because drug selection and the number of double 

drug resistant colonies were used to calculate recombination, this system could not be 

adapted to measure the recombination rate in cells that grow in suspension, such as T 

cells, the natural host cells for HIV-1.  Third, the previous assay proved to be very time 

consuming.  A new, flow cytometry-based assay can bypass these disadvantages.   

 Using the new system, we have measured the recombination rate of HIV-1 when 

markers were between 0.1 and 0.6 kb apart.  We observed a near linear relationship 

between marker distance and the recombination rate.  The recombination rate for 0.10, 

0.29, 0.30, 0.59 kb was 11.6, 30.7, 38.2, and 55.9% of the theoretical maximum 

measurable recombination rate.  We have also examined whether the presence or absence 

of accessory proteins vif, vpr, vpu, and nef had an effect on the recombination rate.  

Recombination rates for the aforementioned distances do not change significantly with or 

without vif, vpr, vpu, and nef.  The effect of target cells also did not alter the 

recombination rate.  The above experiments were performed with the Hut/CCR5 cell line 
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as target cells.  When we used primary CD4+ T lymphocytes, as target cells, the 

recombination rates were not significant different compared with Hut/CCR5 cells.   

 Recombination in some retroviruses, such as MLV and SNV, exhibit high 

negative interference (2, 8), which is defined by multiple cross-over events occurring 

more frequently than expected when calculated from single recombination events.  This 

means that once a recombination event occurs, the chances are greater for a second event.  

Experiments described in chapter four determined that HIV-1 recombination does not 

exhibit high negative interference.  HIV-1 recombination differs from MLV in at least 

two aspects: one, HIV-1 recombines at a rate substantially higher than MLV, and two, 

HIV-1 recombination does not exhibit high negative interference. 

 The development of a novel flow cytometry-based system based on to study HIV-

1 recombination increases the speed at which new studies can be performed.  Our 

previous system using drug resistance genes as markers took considerable time to 

perform.  For example, once the required vectors were generated, it would take more than 

3 months to acquire the cell lines and obtain the recombination rate.  With the flow 

cytometry method, the time required for each experiment can be reduced significantly.  In 

addition, testing multiple hypotheses in parallel is more rapid and feasible.   

 Several conclusions can be made from the work described in chapter three and 

chapter four.  As stated previously, recombination is a major determinant of variation in 

HIV-1.  Since, during HIV-1 replication, the vast majority of the heterozygotic virions 

can be generated efficiently and recombination can occur frequently.  Therefore, any 

dually infected cell with similar proviruses should produce recombinant progeny.  This is 

consistent with sequence analyses on circulating recombinant forms from infected 



136 

patients (20).  Several of these circulating recombinant forms are hybrid virus, some of 

which contain sequences from up to five different genetically distinct ancestries (22).  

Sequence analyses of HIV-1 variants from dually infected individuals frequently recover 

recombinants (5, 6, 15, 16, 21, 24).  We demonstrated that even at a short genetic 

distance, such as 100 bp, frequent recombination can occur.  Among the three cell types 

that were used, namely 293T cells in chapter three and Hut/CCR5 and primary T 

lymphocytes in chapter four, there did not seem to be an appreciable difference in 

recombination.  Although this does not rule out the possibility that recombination could 

be more frequent in other untested cell types, it shows that an established immortalized 

cell line such as Hut/CCR5 can give biological relevant data. 

 In summary, this thesis focused on retroviral evolution and recombination.  First, 

the evolution of a defective simple retrovirus was studied.  Although this project failed to 

yield better-fit viruses, it demonstrated the importance of viral replication capacity on 

viral evolution and adaptation.  Second, HIV-1 recombination projects focused on 

determining the frequencies of HIV-1 recombination in one round of viral replication at 

multiple marker distances and factors that affect the recombination rate.  Furthermore, 

these studies defined the relationship between the recombination rate and marker 

distances.  The results and conclusions in this thesis provide the scientific community a 

more comprehensive understanding on the role HIV-1 recombination plays in variation 

and how recombination must be considered in order to develop effective drugs and/or 

vaccines. 
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