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Abstract

Impact of Optimally Placed VAR Support on Electricity Spot Pricing

by

Ramesh Kumar V. Khajjayam

Master of Science in Electrical Engineering

West Virginia University

Professor Ali Feliachi, Ph.D., Chair

In view of deregulation and privatization processes, electricity pricing becomes one of the
most important issues. The increases in power flows and environmental constraints are forcing
electricity utilities to install new VAR equipment to enhance network operation. In this thesis
a nonlinear multi-objective optimization problem has been formulated to maximize both social
welfare and the maximum distance to collapse point in an open power market using reactive
support like Static Var Compensator (SVC). The production and consumption costs of reactive
power are intended to provide proper market signals to the electricity market agents. They are
included in the multi-objective Optimal Power Flow (OPF) coupled with an (N-1) contingency
criterion which is based on power flow sensitivity analysis.

Considering the cost associated with the investment of VAR support, placing them at
the optimal location in the network is an important issue. An index to find the optimal
site for VAR support considering various technical and economical parameters based on Cost
Benefit Analysis (CBA) is proposed. The weights for these parameters are computed through
an Analytic Hierarchy Process (AHP). A new approach of transmission pricing calculation
taking VSC-OPF based multi-objective maximization as the objective and studied the impact
of SVC on it. The integrated approach is illustrated on a 6-bus and a standard IEEE 14-bus
test systems and shows promising results
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Chapter

1

Introduction

1.1 Introduction and Background

During the last two decades, almost all the electric power systems around the world have been

experiencing significant changes due to the privatization and deregulation process. Utilities

are now integrated into decentralized environments in which the planning and operation are

based on the economic principles of open-access markets. In the deregulated environment,

electricity markets are basically competitive and the objective of introducing competition is

to make them more efficient. The basic idea is that if fair and equitable market structures are

established to give all market participants incentives to maximize their own indivual welfare,

then the market as a whole will behave in a manner which maximizes welfare for everyone in

the market [88].

Thus, it is clear that in the competitive market the top most economical aspect is social

welfare where the market suppliers and the consumers supply bids to the market operator.

Consumers should pay the lowest prices for their purchased powers whereas suppliers try

to obtain maximum prices for the supplied energy. The prices should be defined on a fair

basis and the transactions are limited only by the transmission line limits or power exchange

policies. The supply and demand of power should be balanced in real time by dispatching

1
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the generation in the most economic way possible by respecting all the physical constraints.

The pool or independent system/market operator determines these results by optimizing the

overall system operation. Spot pricing theory based method is most widely used to dispatch

generation and load in the most economic manner.

In competitive markets the primal focus of market and/or system operators is to maintain

system security since the power transactions and the construction of new transmission lines

are inherently associated with it. Transmission congestion occurs when there is insufficient

energy to meet the demands of all customers. System congestion occured due to the thermal

limits on transmission lines or voltage levels may not cause emergency conditions promptly but

should be avoided and therefore by taking this practical consideration, optimization methods

proposed in literature or applied in real time prefers computational efficiency to security

constraints. Voltage collapse have severe and immedeate consequences on system stability and

it is mandatory to avoid congestions associated with it, but voltage collpase issues are rarely

associated with the competitive market studies [19]. Voltage instability may arise following

a trip of a line or a generator, or a combination of eqipment outages. However, an unsually

high load peak or lesser disturbances can cause voltage to fall. If ample reactive power is not

available when voltage falls, reactive reserves are quickly exhausted, and voltage fall further,

possibly collapsing completely.

Voltage Collapse has the following charateristics[62]:

• It is a catastrophic and sudden phenomenon and has typically severe effects on some

network areas and, sometimes, even on the entire grid. Thus precise information about

the proximity to voltage collapse is needed.

• It is generally induced by heavy loading conditions and/or outages which limit the power

transfer capability. Hence the need for N-1 contingency criteria.

• A detailed nonlinear analytical model of power system is required to properly study

voltage collapse phenomena. This is in contrast with the need of computational efficiency

of methods accounting for security and economic dispatch
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1.1.1 Energy Pricing

In the deregulated power systems, the desired objective to achieve a more efficient power

system is facilitated by competition. In order to achieve proper and efficient competition,

how to establish a good pricing scheme becomes a key issue. Thus it is clear that a simple,

unambiguous and a transparent pricing scheme is required so that the right market signals

can be conveyed to all market pariticipants. Correct price signals will facilitate transmission

access and improve economic efficiency. A good pricing scheme should consist of at least the

following two aspects. First, it should be fair not only to power consumers but also to power

suppliers. In addition, it should he able to stimulate new constructions through providing

proper incentives[47].

Pricing energy on the basis of the location of its withdrawal or injection in a network

proposed in [81] appears to have a universal following in the evolving deregulated electric

power industry. Nodal Pricing is a method of determining prices in which market clearing

prices (MCP) are calculated for a number of locations on the transmission grid called nodes.

Each node represents the physical location on the transmission system where energy is injected

by generators or withdrawn by loads. Price at each node represents the locational value of

energy, which includes the cost of the energy and the cost of delivering it, i.e., losses and

congestion. In all deregulated markets Independent System Operator (ISO) publishes MCP

in real time in the energy market for information purposes, they are often referred to as shadow

prices.

According to PJM: Locatioanal Marginal Price (LMP) or Nodal Marginal Price is the cost

to serve the next MW of load at a specific location, using the lowest production cost of all

available generation, while observing all transmission limits.

The marginal cost to provide energy at a specific location depends on:

• Marginal cost to operate generation

• Total load (demand)

• Cost of delivery on transmission system

• Impact of losses on the interface points
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1.1.2 FACTS

In the present day scenario,unplanned power transactions are rapidly increasing due to the

competition among utilities to meet the increasing demands and to contracts concluded di-

rectly between producers and consumers. But the power flows should follow the Kirchoff’s

laws and if the transactions are not properly controlled, transmission lines are often operated

and stressed to the limit and beyond the performance capability of their original design and

sometimes overloaded which is termed congestion and thus the full capacity of transmission

interconnections could not be utilized.

Voltage stability, however, is now a major concern in planning and operation electric power

systems. Voltage instability and collapse have resulted in several major system blackouts. One

reason is the need for more intensive use of available transmission facilities. The increased

use of existing transmission is made possible, in part, by reactive power compensation. To

ensure that under these conditions the economical, reliable and secure operation of the grid are

maintained, the need for various aspects of power flow management within the power system

is becoming increasingly evident.

The concept of FACTS and FACTS controllers was first defined by Hingorani in 1988 [43],

[44], [45]. They are high power electronics devices used to control the power flow and enhance

stability, have become, not only common words in the power industry, but they have started

replacing many mechanical control devices. They are certainly playing an important and a

major role in the operation and control of modem power systems. FACTS devices provide

new control facilities, both in steady state power flow and dynamic stability control [35].

These devices have the capability to improve line flows or loadability, contractual requirement

fulfilled, decrease losses, improve voltage profile, increase social benefit, decrease congestion

cost etc, without violating specified power dispatch. Because of their considerable costs it is

important to ascertain the location for placement of these devices.

1.2 Research Motivation and Objectives

Many of today’s power networks are operating close to their stability limits due to economical

reasons; this inturn, has lead to system collapse problems. For heavy loaded systems, when

the operating point approaches the maximum loading point on the P-V curve, the region of
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attraction is very small; consequently, perturbations cannot be withstanded by the system.

Typically, voltage stability problems are associated with system bifurcations, i.e. saddle-node

or limit induced bifurcations, that lead to voltage collapse [51]. Therefore it is evident that

additional controllers should be added to enhance the overall stability of systems.

Identification of weak buses is an important issue while placing VAR support. An index

to place VAR support based on Cost Benefit Analysis (CBA) is proposed considering social

welfare, congestion cost and maximum loading condition of the system. N-1 contingency

should be considered while chosing the citation for VAR support and the critical line is found

through real power flow sensitivity analysis. To properly include the system security in the

operations of decentralized electricity markets, Voltage Stability Constrained OPF (VSC-

OPF) based market model [62] is chosen for the study with the inclusion of reactive power

production and consumption costs. This multi objective OPF maximizes social welfare and

the distance to maximum loading condition based on the chosen weights. It is demonstrated

that through use of VAR device makes the system more efficient and escalates competition in

the market. The objectives of this work are summarized as follows:

1. Develop an OPF based market model with supply and demand bids for active and also

for reactive powers.

2. Identify weak nodes for the placement of new VAr support, considering both the tech-

nical and economical aspects based on Cost Benefit Analysis (CBA) coupled with N-1

contingency criterion.

3. A method to compute the weights for various parameters of the index which rank optimal

VAr sites.

4. Study the effect of VAr support/SVC on power dispatch and spot prices.

5. Calculate wheeling charges and an analysis of reactive power pricing based on marginal

cost theory.
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1.3 Outline of the Thesis

This section briefly gives an outline of the remaining chapters of this thesis as follows:

• Chapter 2: Literature Survey

This chapter gives an overview of the research background (Section 2.1) and basics of

electricity markets (Section 2.2) and different entities in it. The literature work on

various indices for optimal placement of VAR support devices in the OPF framework

(Section 2.3) and a brief description of power system analysis toolbox (Section 2.4) are

presented.

• Chapter 3: Standard OPF Model, Pricing and Tools

This chapter presents a brief introduction of OPF based market models (Section 3.1) and

explains in detail about the security constrained OPF (Section 3.2) in the deregulated

electricity market. Transmission pricing (Section 3.3) based on wheeling charges method

and software tools (Section 3.4) used in this thesis and a summary (Section 3.5) are given.

• Chapter 4: Voltage Stability Constrained OPF

The importance of voltage stability (Section 4.1), theory of bifurcation analysis and

methods (Section 4.2) are explained. The modified multi-objective OPF market model,

electricity and nodal congestion pricing details (Section 4.3) coupled with N-1 contin-

gency criterion (Section 4.4) methods based on available transfer capability (ATC) and

a summary (Section 4.5) are presented.

• Chapter 5: VAR Support and Pricing

This chapter explains the necessity of VAR support (Section 5.1), the investment costs

(Section 5.2) associated with it and the index for optimal placement of FACTS (Section

5.3) devices. The concept of VAR pricing based on marginal theory and effect of load

power factor on reactive power marginal prices (Section 5.3.4) with a brief summary

(Section 5.5) are discussed.

• Chapter 6: System Studies

The test systems description (Section 6.1), results and discussions for 6-bus (Section

6.2), IEEE 14-bus (Section 6.3) are summarized (Section 6.4).

• Chapter 7: Conclusions an Future Work
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This chapter presents principal contributions (Section 7.1) and possible future directions

(Section 7.2).

In Appendix A.1 the network and market data of the 6-bus (A.1.2) and IEEE 14-bus

(A.1.3) are given.



Chapter

2

Literature Review

2.1 Introduction

Deregulation is defined as the process by which governments remove restrictions on business

and individuals in order to (in theory) encourage the efficient operation of markets. Due to

the recent transition from government controlled to deregulated electricity markets, the rela-

tionship between power system controllers and electricity markets has added a new dimension,

as the effect of these controllers on the overall power system stability has to be seen from an

economic point of view [50]. Transmission systems are being required to provide increased

power transfer capability and to accommodate a much wider range of possible generation

patterns. Environmental, right-of-way, and cost problems are major hurdles for power trans-

mission network expansion. Hence, there is an interest in better utilization of available power

system capacities by installing new devices such as FACTS.

This thesis mainly focuses on the voltage stability constrained optimal power flow ap-

proach to properly include security constraints in the competitive electricity markets. The

effect of VAR support such as FACTS device/SVC on power dispatch and electricity market

prices is the main concern. Transmission pricing is an important issue in view of increased

deregulation. FACTS devices had the ability to reduce the overall operating cost and their

8
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Figure 2.1: Supply and Demand Curve [98]

impact on transmission pricing. A detailed literature survey on various techniques used for

finding optimal location for the placement of VAR support and effect of load power factor on

reactive power marginal prices is presented in the following sections.

2.2 Electricity Markets Introduction

Market is a place where buyers and sellers meet to exchange goods and services. An electricity

market is a system for effecting the purchase and sale of electricity using supply and demand

to set the price. The theory of supply and demand describes how prices vary as a result of

a balance between product availability at each price (supply) and the desires of those with

purchasing power at each price (demand). The graph 2.1 depicts an increase in demand from

D1 to D2 along with the consequent increase in price and quantity required to reach a new

market-clearing equilibrium point on the supply curve (S). The slope of the demand curve

(downward to the right) indicates that a greater quantity will be demanded when the price is
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lower. On the other hand, the slope of the supply curve (upward to the right) tells us that

as the price goes up, producers are willing to produce more goods. The point at which these

curves intersect is the equilibrium point.

Electricity is by its nature difficult to store and the supply and demand has to be balanced

in realtime. Unlike other products, it is not possible, under normal operating conditions, to

keep it in stock. Demand and supply vary continuously. In the past, the electric power industry

has been vertically integrated, meaning that a central authority monitored and controlled

all the activities in generation, transmission, and distribution. For the last decade or so,

the electric power industry has been undergoing a process of transition and restructuring,

in particular the separation of transmission from generation activities. There is therefore a

physical requirement for a controlling agency, the power system operator, to coordinate the

dispatch of generating units to meet the expected demand of the system across the transmission

grid. This system operator must never be involved in the market competition, and is usually

called the Independent System Operator (ISO)

2.2.1 Various Entities in Deregulated Electricity Market

Many new entities were introduced in the new restructured market. The usual separation of

the electric power industry distinguishes among generation, transmission and distribution.

Generation Companies: GENCOs

Operates and maintains existing generating plants. The Gencos interact with the short term

market acting on behalf of the plant owners to bid into the short-term power pool for economic

dispatch. There are many participants with existing plants and no barriers to entry for

construction of new plants.

Transmission Companies: TRANSCOs

This segment is regulated to provide open access, comparable service and cost recovery. Con-

structs and maintains the network of transmission wires. This entity should ensure the avail-

ability of the transmission system to all the entities in the system.

Distribution Companies: DISCOs

They own and operate local distribution companies. This entity purchases electricity in the
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wholesale market and supply it to the final customers.

Energy Services Companies: ESCOs

These may be large industrial customers, customer pools or private companies, and their

main goal is to purchase power at the least cost for their customers from GENCOs. They

participate in the market like DISCOs, except that they do not own or operate the local

distribution companies.

Customers

These are the consumers of electricity. Depending on the market structure, the customers

have various options for purchasing electricity. They can choose to purchase electricity from

the spot-market by bidding for purchase, or buy directly from a GENCO, a DISCO or an

ESCO.

Independent System Operator: ISO

An entity that will monitor the reliability of the power system and coordinate the supply

of electricity around the state. ISO is a non-profit corporation that uses governance models

developed by the Federal Energy Regulatory Commission. In the electricity market dereg-

ulation it also acts as a marketplace in wholesale power. Regional Transmission Operators

(RTOs) such as the Pennsylvania-New Jersey-Maryland Interconnection (PJM) have the same

function and responsibility but operate within more than one U.S. state.

2.2.2 Market Clearing Mechanism

In most markets, both GENCOs and ESCOs bid in the market. A market clearing price (MCP)

is obtained, as illustrated in Figure 2.2, by stacking the supply bids in order of increasing

prices and the demand bids in order of decreasing prices. The MCP and the amount of energy

cleared for trading are obtained from the intersecting point of these curves. This market

clearing process is referred to as double-sided auction power pools [85].

However, the load in most markets does not actively bid, i.e. the load is inelastic. In this

case, the system price is cleared by matching the supply curve with a forecast of undispatchable

load. Typically, only GENCOs submit bids that are stacked in increasing order of prices, The

highest priced bid to intersect with the system demand forecast determines the MCP and such
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Figure 2.2: Double-sided auction markets
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a market model is known as a single or one-sided auction power pool.

Double-sided auctions are a better setting for thinking about price formation than one-

sided auctions, both because they are often a better match to reality, and especially because

they capture the essential problems of trade better than one-sided auctions. In this thesis, we

use double-sided auctions.

UK Power Market [93]:

UK was one of the first nations to embark upon widespread privatization of its power

industry. In 1987 fall, UK authority started to privatize its electric utilities, and separate

generation, transmission and distribution sectors. The Electricity Pool of England and Wales

has been in operation since 1990, where competition was only introduced into generation

sector. In the beginning, UK power market was a “single buyer” which bought all electricity

from generation companies through a spot market, and then sold directly to customers at an

uniform system price. UK pool is a single commodity market where only energy is traded,

and virtually all energy transactions must go through the pool.

As a means of controlling price volatility, a hedging market called “contract for differ-

ences” (CFD) market allows for bilateral contracts to be negotiated between generators and

consumers. However, CFD are purely financial contracts without exposition to public. Re-

cently UK power market has undergone a significant reform. A series of markets: a futures

market, a short-run bilateral market and so on, have been setup in order to enhance compe-

tition in local distribution, simplify pricing mechanism and strengthen market transparency

and liquidity.

California Power Market [14]:

In December, 1995, the California Utility Commission (CPUC) issued its policy on electric

industry restructuring to replace administrative regulation with competitive market forces,

and AB 1890 was signed in 1996, which called for the deregulation of Californias investor

owned electric utilities (IOUS). The law established an Oversight Board, an Independent

System Operator (IS0), and a Power Exchange (PX). On April 1, 1998, the power industry

in California began a phased-in process of deregulation.

The ISO controls power dispatch and transmission system, but it owns no transmission,

generation, or distribution facilities and has no financial interest in the PX, or in any generation
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or load. The ISO also manages transmission congestion, procures ancillary service through a

market.

The PX is mandatory for utility generation and procurement by the IOUS, but voluntary

for all other market participants. The PX is an independent entity that provides a forward

competitive spot market for electric power, conducts day-ahead and hour-ahead auctions of

generation and demand, ensures non-discriminatory, transparent bidding interface and pro-

tocols. The PX also develops balanced generation and load schedules for transmittal to the

IS0.

California power market is a “wholesale” market, and allows flow based bilateral trans-

actions to coexist with the PX spot market. Bilateral contracts and the voluntary PX are

operated in parallel.

Nordic Power Market [69]

The Norwegian market was effectively deregulated in 1991, with Sweden joining as a

full-fledged member in 1996, Finland in 1998, and Denmark recently. These three countries

constitute one closely integrated power market where power is traded via bilateral contracts

and on a common spot market exchange (Nerd Pool). The system operator in each county is

respectively in charge of its system security and coordinate cross-country trading with each

other. The Nordic power market is a “retail competition” market where end-customers have

full freedom to select power suppliers.

The Nordic power market is mainly based on bilateral contracts, and generation reserve

is not much of a problem because the system is predominantly hydro. In addition, besides a

spot market, two financial markets: futures market (Eltermin) and options market (Elopticm)

were developed for price hedging and risk management.

PJM Power Market [76]

PJM’s markets are “wholesale markets” involving only purchase and sale of power for

resale. All buyers, sellers, transmission users and transmission owners within the PJM control

region must be members of PJM. Sellers and buyers located outside of PJM may buy and sell

power into and out of PJM, are not required to be members, but must obtain transmission

service under different tariffs. Sellers may choose to self supply, sell into PJM auction markets

or privately through bilateral contracts with buyers. Buyers may choose to self supply, buy
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from PJM auction markets or through bilateral contracts with sellers (either generators or

resellers of generation). End users do not participate directly and are served by resellers.

It consists of Energy Markets (Day ahead, real time (balancing) markets), Ancillary Ser-

vices, Unforced Capacity Obligation (UCAP). Energy, Ancillary Services and UCAP may be

bought at auction, bilaterally or self supplied. PJM constantly calculates the least cost gen-

eration mix solution to serve instantaneous load, constrained by system security limits. PJM

redispatches generation, as necessary, to serve load. Generation is paid its bus price (bid based

price, not cost based). Load pays for MW consumed at its bus, plus the difference between

source and sink prices.

Day Ahead Market - Sellers and Buyers bid into each hour of the 24 hour day ahead period

bids are stacked for each hour lowest marginal price which supplies all demand sets LMP for

that hour.

Real Time Market Uncommitted Buyers and Sellers may self schedule (accept real time

price), but successful day ahead bidders must honor their bids or cover from spot market at

their own expense.

2.3 Optimal Power Flow

In view of deregulation, it is important for the independent system operator to operate power

system in a more reliable and economical way. This involves a lot of decision making process

and the softwares used to simulate and analyze the electricity market behavior are mostly

based on OPF algorithms. The optimal power flow (OPF) is an important software in the

energy management system (EMS). OPF was born in 1962 [22] and took a long time to become

a successful algorithm that could be applied in every days use. The OPF-based approach is

basically a nonlinear constrained optimization problem, and consists of a scalar objective

function and a set of equality and inequality constraints [3], [66], [91]. The objective function

varies from one system operator to another and also with the necessity. In [48] the autors

classified the optimal power flow methods based on the choice of optimization techniques.

The security constrained optimal power flow [59] implemented by many researchers is to

minimize the cost of generation or dispatch while satisfying set of constraints such as power

flow equations, active and reactive power bounds on generators, voltages at all nodes and

thermal/active power limits on transmission lines.
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Non-linear optimization techniques are shown to be adequate for maximization of the

loading parameter in voltage collapse studies as discussed in [16], [18], [19], [49], [80], [99]. In

this thesis a modified multi-objective approach [61] is chosen to properly represent security

in on-line market computations so that social welfare and the distance to collapse point are

maximized at the same time. The problem is formulated as a mixed integer non-linear pro-

gramming (MINLP) and is solved using General Algebraic Modeling System (GAMS) [12].

In this thesis contingencies are included using methods based on what proposed in [63] and

further extended to a multi-objective optimization as cited in [61].

Optimal power flow based models are widely used for market solutions because the dual

variables associated with power flow constraints gives the shadow prices which are then used

in spot pricing [31] with least computational effort. Spot pricing was originally defined for

active power transactions, considering only congestion alleviations [78], [81] and then extended

to account for different price components, such as reactive pricing and ancillary services [10],

[32]. In [41] authors detail the use of the reactive power services and demonstrate that the

reactive power production costs should be included in the formulations for the calculation of

the reactive power cost prices. A formulation for the reactive power production cost calculation

is proposed by Lamont and FU [54] and the concept of opportunity cost is introduced. In this

work for the sake of simplicity the cost of producing reactive power from generators is taken

as percentage of real power generation cost without losing any generality. The active power

dispatch minimizes losses as long as the system is not congested. However if the transmission

system is congested losses are not equally distributed among the generators.

Some of the objectives of the OPF are:

• Minimize system real & reactive power losses

• Minimize generation fuel costs

• Optimize power exchange with other systems (on-site generation, utilities, IPP’s, &

power grids)

• Control generator’s MW (governor) & MVAR (AVR) settings within the specified limits

• Maximize voltage & flow security indices

• Minimize load shedding
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• Maximize Social Welfare

• Minimize generator fuel cost or heat rate with different cost models & fuel profiles

2.3.1 OPF with VAR Support Devices

The possibility of operating the power system at the minimal cost while satisfying specified

transmission constraints and security constraints is one of main current issues in stretching

transmission capacity by the use of controllable FACTS. The conventional OPF program

must undergo some changes such as inclusion of new control variables belonging to FACTS

devices and the corresponding load flow solutions to deal with the above said problem. In

[40] presented a review literature, which addresses the application of FACTS, concepts for the

improvement of power system utilization and performance.

The four typical FACTS devices that are used in general with OPF are Static Var Com-

pensator (SVC) [5], [17], [37], [46], [74] Thyristor Controlled Series Capacitor (TCSC) [17],

[33], [46], Thyristor Controlled Phase Angle Regulator (TCPAR) [34], [71], [79] , Unified Power

Flow Controller (UPFC) [6], [7], [23], [38], [42], [70], [74]. The reactance of the line can be

changed by TCSC . TCPAR varies the phase angle between the two terminal voltages and

SVC can be used to control the reactive compensation. The UPFC is the most powerful and

versatile FACTS device due to the fact that the line impedance, terminal voltages, and the

voltage angle can be controlled by one and the same device.

The power flow Pij through the transmission line i− j is a function of the line reactance

Xij , the voltage magnitude Vi, Vj and the phase angle between the sending and recieving end

voltages δi − δj as shown in equation 2.1.

Pij =
ViVj

Xij
sin(δi − δj) (2.1)

The above-mentioned FACTS devices can be used to control the power flow by changing the

transmission line parameters so that the power flow can be optimized. The reactive power

compensation of AC transmission systems using fixed series or shunt capacitors can solve

some of the above associated problems with AC networks. However the slow nature of control

using mechanical switches (circuit breaker) and limits on the frequency of switching imply

that faster dynamic controls are required to overcome the above mentioned problems [1].
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Several algorithms have been proposed in literature to solve power flow and optimal power

with different FACTS devices. New control variables and control objective equations are

usually added in conventional power flow equations. Singinificant number of efforts have been

made to study the impact of FACTS on electricity prices. The purpose of pricing is to recover

cost of transmission and to encourage efficient use and investment. OPF based spot pricing

is an important method. In [27] Choi presented theory and simulation results of real time

pricing of real and reactive powers that maximizes social benefit. In [72], authors have shown

the ability of FACTS devices to change the production cost and their impact on transmission

charges. FACTS devices had the ability to reduce the overall operating cost and their impact

on transmission pricing. In [90] SVC and TCSC are considered to show the above mentioned

benefits of FACTS. But the optimal placement of FACTS is found through trial and error

method. Most of the literature [11], [29], [56], [74], [86] are either based on minimum price

dispatch algorithm or maximum social welfare [88], [89], [90], [95]. Optimization has been

performed with the system operating constraints.

These market models consider the offline power flow limits and the security is simply repre-

sented by voltage limits which gives higher congestion prices and spot prices are heterogeneous

[61], [65]. To properly include the security costs in the market prices the multi-objective op-

timal power flow which maximized both social welfare and loadability point is considered in

this research. To best utilize the benefits of sources, optimal allocation of FACTS should be

performed. A brief literature suvey on optimal locatin is presented in the following section.

2.3.2 Location of VAR Support

Congestion in a transmission system, whether vertically organized or unbundled, cannot be

permitted except for a very short duration, for fear of cascade outages with uncontrolled loss

of load. The role of FACTS in the open power market is to manage the congestion, enhancing

security, reliability, increasing loadability or available capability, controlled flow of power, and

other system performances. It is important to ascertain the location of these devices because

of their significant costs.

Optimal placement of FACTS using Genetic Algorithms (GA’s) is implemented in [55],

[73], [75]. In [36], authors used system loadability as the index but they didnot consider the

cost of FACTS devices and their impact on generation profile. Optimal location considering
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the generation cost of the power plants and investment cost of the devices is employed in

[13] to evaluate the power system performance. The location of FACTS devices for reactive

compensation is performed according to reactive marginal cost criterion in [74]. In [57], [72]

the optimal location of FACTS devices are obtained by solving the economic dispatch problem

plus the cost of these devices making the assumption that all lines initially have these devices.

In [89] the optimal placement of a prefixed amount of FACTS devices is developed in an

electricity market having pool and contractual dispatches by a two-step procedure. First, by

using a sensitivity-based approach the few locations of FACTS devices is decided and then

the optimal dispatch problem is solved to select the optimal location and parameter settings.

In [67] a parallel tabu search based method, for determining the optimal allocation of UPFC

devices is proposed.

Location of TCSC is taken as the best when it achieves the maximum social benefit in

[88] and used a real power flow sensitivity as an index in [95]. In [21] SVC is placed where it

improves the maximum loadability of the system as well as the voltage profiles at the most

remote load buses. In [53], VAR support at the pilot bus improves overall system voltage

profile and loading margin. The authors considered N-1 criterion but they didnot consider

various costs associated with the generation. Chattopadhyay et al presented [24] an integral

framework for optimal reactive power planning and its spot pricing in which the selection of

VAR source sites is based only on the real power generation operation benefit-to cost ratio for

a capacitor on load node. The authors considered the cost of VAR support in the objective and

the approach is superior to traditional heuristic methods in which the location of new VAR

devices are either simply estimated or directly assumed. However, it neglects the benefits of

decrease in congestion cost and increase in system loadability in the selection of weak buses.

In this thesis, a multi-objective market model [61] that maximizes the social welfare as

well as distance to collapse point is adopted. The influence of any of these terms on market

prices can be studied by adjusting the corresponding weight allocated to it. A new index

which considers the social welfare, congestion cost and maximum loadability coupled with N-

1 contingency criterion for identifying the weak candidate buses based on Cost Benefit Analysis

(CBA) is proposed in this thesis. All BCRs reflect the improvement of the systems operation

state after the VAR support service is provided. The relative weights for each parameter

are computed using analytic hierarchical process(AHP). The index and the methodology are
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explained in section 5.3.

2.4 Power System Analysis Toolbox (PSAT)

The power system analysis toolbox (PSAT) [77] is a MATLAB based toolbox for static and

dynamic analysis of electric power systems. PSAT includes power flow, continuation power

flow, optimal power flow, small signal stability analysis and time domain simulation. All

functions can be accessed by means of graphical user interfaces (GUIs) and a Simulink-based

library which provides an user friendly tool for network design.

Package PF CPF OPF SSSA TDS GUI
EST [96]

√ √ √

MatEMTP [60]
√ √

Matpower [100]
√ √

PAT [82]
√ √ √ √

PSAT [77]
√ √ √ √ √ √

PST [28]
√ √ √

SPS [92]
√ √ √ √

VST [26]
√ √ √ √ √

Table 2.1: Comparison of MATLAB-based packages for power system analysis
[77]

Table (2.1) depicts a brief comparison of the existing MATLAB-based packages for power

system analysis. The features illustrated in the table are power flow (PF), continuation power

flow (CPF), optimal power flow (OPF), small signal stability analysis (SSSA), time domain

simulation (TDS) along with features such as graphical user interface (GUI).
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3

Standard OPF Model, Pricing
and Tools

3.1 Introduction

A concept of electricity energy market, which reflects the generation cost on the price of

electricity, is suggested to replace conventional load management strategy. This market takes

charge of transmission and distribution of electricity and decides the price of electricity so as to

balance the demand and supply of electricity. Participants participate in this market by selling

and buying electricity. Electricity auction problem can be solved by two approaches, merit

order or single-price auctions and OPF-based power markets. Though the market clearing

mechanisms applied by different competitive pool-based electricity markets significantly varies,

there are some common characteristics. The main drawback of the first approach is, there

is a need of separate procedure to take into account congestions and in general, non linear

constraints. Therefore we will concentrate only on OPF based hybrid markets. As a matter of

fact, OPF methods have been used in regulated power systems to schedule power generations in

order to minimize cost productions and losses in transmission lines. OPF main characteristics

are as follows:

• Precise power system models can be represented in OPF by including variety of (non-

21
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linear) constraints.

• Having complex and unclear solution process OPF is not very popular among market

operators.

• System losses and transmission congestions are taken into consideration without any

additional procedures.

• The existing solvers for Nonlinear Programming and Mixed Integer Nonlinear Program-

ming are less efficient which is a critical issue for on-line applications.

The OPF based approach to maximize the social welfare is explained in the next section.

3.2 Security Constrained OPF Market Model

The objective of pricing policy is to maximize the benefit of all the participants, that is, to

maximize the consumers and producers surplus, subject to operational constraints. This is

accomplished by setting the prices of real and reactive powers at each bus at a particular

time equal to the marginal values of supplying and consuming real and reactive power at the

same bus and at the same time, where the marginal values are determined by maximizing total

surplus of utilities and consumers, subject to the operational constraints. The social welfare in

equation 3.2 ensures that generators get the maximum income for their power production and

consumers or wholesale retailers pay the cheapest prices for their power purchase as follows:

Max. Sw =
∑
j∈J

BPj (PDj ) + BQj (QDj ) −
∑
i∈I

CPi(PSi)− CQi(QGi) (3.1)

QDj = PDj tan(φDi)

where

I is set of pool supplier buses;

J is set of pool load buses;

PSi is active power of pool supplier-i;

QGi is reactive power of pool generator-i;

CPi is real power bid price of pool supplier-i in $/MWh;

CQi is reative power bid price of pool generator-i in $/MV Arh;
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PDj is active power of pool load-j;

QDj is reactive power of pool load-j;

BPj is real power bid price of pool load-j in $/MWh;

BQj is reactive power bid price of pool load-j in $/MV Arh;

The objective function of this OPF is to maximize the net social welfare which is the

difference between the total consumer benefit and cost of generation.

The operating constraints are as follows:

1) Equality Constraints:

Power flow equations corresponding to both real and reactive power balance equations are the

equality constraints that can be written, for all the buses.

Ph = V 2
h (gh + gh0)− Vh

nl∑
l 6=h

Vl(ghl cos(θh − θl) + bhl sin(θh − θl)) ∀h ∈ B (3.2)

Qh = −V 2
h (bh + bh0) + Vh

nl∑
l 6=h

Vl(ghl sin(θh − θl)− bhl cos(θh − θl)) ∀h ∈ B

where Ph and Qh are the real and reactive powers injected at bus h, Vh and θh are the voltages

and phasor angles at bus h, B is the set of indexes for network buses, nl is the number of

connections departing from bus h and gh, gh0, bh, bh0, ghl and bhl are line parameters, namely

conductances and succeptances, as commonly defined in literature.

In the following, power injections are modeled as the sum of generator and load powers con-

nected to the bus h, as follows:

Ph =
∑
i∈Ih

(PGi0 + PSi)−
∑
j∈Jh

(PL0j + PDj ) ∀h ∈ B (3.3)

Qh =
∑
i∈Ih

QGi −
∑
j∈Jh

(PL0j + PDj ) tan(φDi) ∀h ∈ B

QL = PLtan(φL) (3.4)

where Ih and Jh are the sub-sets of generators and loads connected to bus h, respectively.

PG0 and PL0 are fixed power amount defining the base case condition and PS and PD are

variable powers, which will be called power supply and power demand bids respectively. In all
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test cases used in this thesis, load reactive powers are assumed to be dependent on the real

powers by a constant power factor φL, thus leading to:

y
∆= f(x, p) = f(V, θ, PG, QG, PL, QL) (3.5)

where x is a vector of dependent variables and p is a vector of independent or control variables.

In a standard single slack bus power flow formulation, dependent variables are voltage magni-

tudes V and phases θ at the load buses, generator reactive powers QG and voltage phases at

the generator buses, while control variables are generator active powers PG, load powers PL

and QL and the slack bus voltage. In distributed slack bus voltage models, y includes also an

additional variable, say kG, which forces all generators to share losses [9].

PG = (1 + kG)(PG0 + Ps) (3.6)

Equations 3.3 are for single slack bus model, and do not include slack bus real power which is

actually a dependent variable, while for the distributed slack bus model where as equation 3.6

is valid for all generators, including the reference phase angle generator.The distributed slack

bus model will be used in this thesis in OPF problems since it allows a fair and reasonable

distribution of transmission losses among all market suppliers. Firstly the active and reactive

power balance is ensured, then transmission losses are accurately modeled and taken into

account.

2) Inequality Constraints:

1. Supply Bid Blocks:

PSmini
≤ PSi ≤ PSmaxi

∀i ∈ I (3.7)

where PSmini
and PSmaxi

are the minimum and maximum bids of real power offered by

unit i, respectively and I is the set of indexes of generating units.

2. Demand Bid Blocks:

PDminj
≤ PDj ≤ PDmaxj

∀j ∈ J (3.8)

where PDminj
and PDmaxj

are the minimum and maximum bids of real power demanded

by consumer j, respectively and J is the set of indexes of consumers.
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3. Generator Reactive Power Support :

QGmini
≤ QGi ≤ QGmaxi

∀i ∈ I (3.9)

where QGmini
and QGmaxi

are the minimum and maximum limits of the reactive power

support available at unit i, respectively and I is the set of indexes of generating units.

4. Voltage “Security” Limits:

Vminh
≤ Vh ≤ Vmaxh

∀h ∈ B (3.10)

where Vminh
and Vmaxh

are the minimum and maximum allowed voltage magnitues at

bus h, respectively and B is the set of indexes of network buses.

5. Thermal Limits:

Ihk(θ, V ) ≤ Ihkmax ∀(h, k) ∈ N (3.11)

Ikh(θ, V ) ≤ Ikhmax

where Ihk and Ikh are the line currents and are used to model system security by limiting

transmission line flows, respectively and N is the set of indexes of transmission lines. All

electric lines produce heat and therefore have a limit on the amount of power they can

carry to prevent overheating. The actual temperatures occurring in the transmission

line equipment depend on the current, that is the rate of flow of the electrons, and also

on ambient weather conditions, such as temperature, wind speed, and wind direction,

because the weather effects the dissipation of the heat into the air.

The thermal ratings for transmission lines, however, are usually expressed in terms of

current flows, rather than actual temperatures for ease of measurement. A “normal”

thermal rating for a line is the current flow level it can support indefinitely. Emergency

ratings are levels the line can support for specific periods, for example, several hours.

6. Power Limits:

In common practice [97], the inclusion of system congestions in the OPF problem is ob-

tained by imposing transmission capacity constraints on the real power flows, as follows:

|Phk(θ, V )| ≤ Phkmax ∀(h, k) ∈ N (3.12)

|Pkh(θ, V )| ≤ Pkhmax
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where Phk and Pkh are obtained by means of off-line angle and/or voltage stability studies.

Hence, these limits do not actually represent the actual stability conditions of the resulting

OPF problem solution, which may lead in some cases to insecure solutions and/or inadequate

price signals, as demonstrated in [62].

Summarizing and dropping the index notation, the standard security constrained single period

OPF-based market model can be formulated as below 3.13:

Max. BT
P PD + BT

QPDtan(φD) − CT
P PS − CT

QQG → SocialWelfare (3.13)

s.t. f(V, θ,QG, QD, PS , PD) = 0 → PF equations

PSmin ≤ PS ≤ PSmax → Supply bid blocks

PDmin ≤ PD ≤ PDmax → Demand bid blocks

Ihk(θ, V ) ≤ Ihkmax → Thermal limits

Ikh(θ, V ) ≤ Ikhmax

|Phk(θ, V )| ≤ Phkmax → Power/Congestion limits

|Pkh(θ, V )| ≤ Pkhmax

QGmin ≤ QG ≤ QGmax → Generator Q limits

Vmin ≤ V ≤ Vmax → Voltage “security′′ limits

The Congestion Costs(CC) are defined as:

CC =
∑

(LMPiPdi
+ RMPiPdi

tan(φdi
)) −

∑
(LMPjPsj + RMPjQgj ) (3.14)

3.2.1 Spot Pricing

It is widely recognized that spot pricing through marginal costs can provide reliable pricing

indicators [97]. OPF-based market models have the advantage of producing not only the

optimal generation schedule, but also a variety of dual variables through the Lagrangian

multipliers, which can be associated with Locational Marginal Prices (LMPs) and Reactive

Power Marginal Prices (RMPs) at each node. The shadow prices for active and reactive powers

at bus h are the marginal cost associated with the equality constraints 3.3.
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The Lagrangian function for 3.13 is as follows :

Min. L = Sw − ρT f(θ, V,QG, QD, PS , PD) (3.15)

− µT
PSmax

(PSmax − PS)

− µT
PSmin

(PS − PSmin)

− µT
PDmax

(PDmax − PD)

− µT
PDmin

(PD − PDmin)

− µT
Ihkmax

(Imax − Ihk)

− µT
Ikhmax

(Imax − Ikh)

− µT
Phkmax

(Pmax − Phk)

− µT
Pkhmax

(Pmax − Pkh)

− µT
QGmax

(QGmax −QG)

− µT
QGmin

(QG −QGmin)

− µT
Vmax

(Vmax − V )

− µT
Vmin

(V − Vmin)

At a particular instant, real time price of real power and reactive power at bus-h can be

given by 3.16, A more detailed information can be deduced from the KKT optimality condition

LMPh =
∂L

∂Ph
= ρPh

(3.16)

RMPh =
∂L

∂Qh
= ρQh

applied to the OPF problem.

3.2.2 Nodal Congestion Pricing

Using the decomposition formula proposed in [97] for LMPs one can define a vector of active

and reactive Nodal Congestion Prices (NCPs) as follows:

NCP =
(

∂fT

∂x

)−1
∂HT

∂x
(µmax − µmin) (3.17)

where x = (θ, V ) are voltage phases and magnitudes, H represents the inequality constraint

functions (e.g. transmission line powers and currents), and µmax and µmin are the dual
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variables or shadow prices associated to inequality constraints.

Equation (3.17) for the standard security constrained OPF (3.13) becomes:

NCP = [Dxf ]−1

∂Ihk

∂x
(µIhkmax

− µIhkmin
) +

∂Phk

∂x
(µPhkmax

− µPhkmin
) +

 0

µVmax − µVmin


(3.18)

NCP for real power injection h can be conveniently written as:

NCPh =
lk∑

k=1

(µIhkmax
− µIhkmin

)
∂Ihk

∂Ph
(3.19)

+
lk∑

k=1

(µPhkmax
− µPhkmin

)
∂Phk

∂Ph

where lk is the number of lines departing from bus h. Observe that in (3.18) dual variables

or shadow prices µPhkmax
and µPhkmin

directly affect NCPs, which is the main drawback of

transmission congestion limits Phkmax computed off-line.

3.3 Transmission Pricing

The transmission of electricity differs from transportation of any typical commodity by some

inherent aspects such as; production needs to match the consumption at the same time; system

control is not an easy task; the electricity flows donot usually follow the economic law. The last

aspect is normally observed when transmission systems are included in an economic dispatch

problem. Transmission is therefore the main concern in the establishment of real competition

in the electricity market.

Transmission pricing has been an important issue on the ongoing debate about power

system restructuring and deregulation. The purpose of pricing is to recover cost of transmission

and to encourage efficient use and investment. The effect of FACTS devices on transmission

charge varies according to the pricing methodology adopted. FACTS devices had the ability to

reduce the overall operating cost and their impact on transmission pricing. Impact of FACTS

on wheeling charges is being addressed in this thesis. This is becoming an important issue

when transmission open access schemes are introduced. Investments on both transmission and

generation sides are really changed by these charges.



CHAPTER 3. STANDARD OPF MODEL, PRICING AND TOOLS 29

Pricing methods based on incremental cost and embedded cost methods [87] can be used

to assess the impact of FACTS devices on transmission charges. The incremental cost methods

are based on the variation of system total costs when a wheeling transaction is accomodated.

The marginal cost is an example of this technique. This method is adopted in this thesis.

3.3.1 Wheeling Charges Method

According to economic theory, pricing transmission service by marginal cost is most acceptable.

If MCpB and MCqB are the marginal costs of real and reactive powers at a buyer bus while

MCpS and MCqS are at a seller bus, wheeling rate for real power is given by,

Wp = MCpB − MCpS (3.20)

Similarly wheeling rate for reactive power is given by,

Wq = MCqB − MCqS (3.21)

Total wheeling charges for the purchase of real power (PB) and reactive power (QB) are

given as,

WCp = PB ×Wp (3.22)

WCq = QB ×Wq (3.23)

3.4 Software Tools

The electricity market structure with both supply and demand side bidding is considered in

the OPF framework. It is assumed that each generation bus or GENCO and load bus or ESCO

supply their bids to the operator in $/MWh. The maket bids and limitations of transmission

lines and restrictions on voltage limits and maximum power output of different sources are

forumulated in a OPF structure. The problem is formulated as a Mixed Integer Nonlinear

Programming and is solved by General Algebraic Modeling Systems (GAMS).

3.4.1 PSAT-GAMS

In the field of general purpose optimization techniques, one of researcher’s favourite choice

is the General Algebraic Modeling Systems (GAMS). GAMS is a highlevel modeling system
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Figure 3.1: Structure of the PSAT-GAMS interface [62]

for mathematical programming problems. It consists of a language compiler and a variety

of integrated high-performance solvers. GAMS is specifically designed for large and complex

scale problems, and allows creating and maintaining models for a wide variety of applications

and disciplines [12]. GAMS is able to formulate models in many different types of problem

classes, such as linear programming (LP), nonlinear programming (NLP), mixed-integer linear

programming (MILP) and mixed-integer nonlinear programming (MINLP).

The existing PSAT-GAMS interface has been used to solve the market problem. Before

the interface can be used, one has to create data file describing the system. At this aim the

user can use the PSAT-Simulink interface and draw the on-line diagram of the network or load

a predefined test network which is provided within the PSAT main distribution. The second

step is solving the power flow. At this point, the PSAT-GAMS interface can be opened and
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the GAMS solvers launched. Observe in figure 3.1 that only networks for which market data

have been defined can be used with the PSAT-GAMS interface. If no market data has been

defined, the interface simply terminates with a warning message. A command line version of

PSAT is also provided to make it feasible to use it inside the matlab applications.

The interface works as follows: the system information are “translated” into a GAMS file

(psatdata.gms). User settings (e.g. the market clearing model) and global variables (e.g. the

number of bus) are also written to a GAMS script file (psatglobs.gms). The advantage of

writing data files is that one could use PSAT to export the GAMS data, and then use GAMS

from scripting without the use of Matlab. This feature can be useful in case of “heavy”

applications, where all computer resource are needed. Once the data files have been written,

GAMS is launched from within Matlab and the market clearing procedure solved. The routines

(fm gams.gms) for solving the market clearing problems have been designed to be as general

as possible, with no limit in the network size or in the number of market participants. Limits

are only the computer memory and GAMS solvers’ capabilities.

Finally, when the GAMS solver has terminated, the GAMS output (psatsol.m) is passed

back to Matlab, so that GAMS results can be displayed using the graphical capabilities of

Matlab or used for further analyses using PSAT routines.

3.5 Summary

This chapter presented standard OPF based market clearing mechanism considering real and

reactive power bids for suppliers and consumers. Technique to solve the optimization problem

has been discussed along with electricity spot prices i.e. LMPs, RPMPs and security i.e.

NCPs. A method to price transmission service based on wheeling charges and the software

tools used in this thesis are discussed.



Chapter

4

Voltage Stability Constrained
OPF

4.1 Introduction

This chapter describes a technique for representing the system security with emphasis on

voltage stability in the deregulated electricity market. The OPF problem is formulated such

that it maximizes both the social welfare and the distance to collapse point [62]. A method

to include N-1 contingency criterion is also discussed. However the cost to produce reactive

power is not considered in that model. The inclusion of reactive power marginal prices gives

incentives for both operators and customers to install VAR support and to reduce the reactive

power usage respectively. Since the overall system stability can be closely associated with the

voltage stability of the system, this chapter presents an overview of voltage stability and some

analysis techniques.

4.1.1 Voltage Stability

Several voltage collapse events throughout the world show that power systems are being

operated close to their stability limits. The problem can only be exacerbated by the application

of open market principles to the operation of power systems, as stability margins are being

reduced even further to respond to market pressures. In the restructured electricity industry,

32
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it is now very essential for the power systems to operate securely, under different operating

conditions and especially, during contingencies. Voltage stability is one of the important

phenomenons and in view of voltage collapses in recent past, lot of work has been especially

devoted to it. Voltage stability is mainly concerned with maintaining acceptable voltage profile

under all operating conditions.

Voltage stability is defined as [52] “the ability of power system to maintain acceptable

voltage at all buses in the system after being subjected to a disturbance from a given initial

operating condition”. Voltage collapse generally is a consequence of load increase in systems

characterized by heavy loading conditions and/or when a change occurs in the system, such

as a line outage. The result is typically that the current operating point, which is stable,

disappears and the following system transient leads to a fast, unrecoverable, voltage decrease.

Voltage stability is inherently a dynamic problem. But, since time domain simulations are

time consuming and also they do not readily provide the sensitivity information or the degree

of stability. For these reasons generally for bulk system studies the static analysis is preferred

in order to provide more insight into the voltage and reactive power problem.

4.2 Bifurcation Analysis and Methods

Nonlinear phenomena, especially bifurcations, have been shown to be responsible for a variety

of stability problems in power systems. In particular the lack of post contingency stability

equilibirum points, typically associate with saddle-node and limit-induced bifurcations, have

been shown to be one of the main reasons for voltage collapse problems in power systems [20].

Bifurcation points can be defined as “equilibrium points where changes in “quantity” and/or

“quality” of the equilibria associated with a nonlinear set of dynamic equations occur with

respect to slow varying parameters in the system [84]”. Since power systems are modeled by

sets of nonlinear differential equations, various types of bifurcations are generally encountered

as certain system parameters vary.

Two traditional methods to analyze bifurcations are the continuation and the direct meth-

ods (DMs) [84], [2]. Continuation methods systematically increase the loading level or bifur-

cation parameter, until a bifurcation is detected. Therefore, not only is the bifurcation or the

point of collapse determined, but also the set of equilibrium points the system goes through

to arrive the bifurcation point. The continuation method can be used to detect any type of
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bifurcation without great difficulties [2], [15], [25]. Direct, methods on the other hand, solve

the set of algebraic equations used to define the bifurcation point, directly solving for the

point at which the system collapses. Direct methods have been succesfully applied to deter-

mine the exact location of saddle-node in power systems [15], [4]. However, these methods

present serious difficulties when used to locate other types of bifurcations. For both methods

it is assumed that the bifurcation parameter is a scalar, which typically corresponds to a given

direction of load increases in power system models.

4.2.1 Direct Methods

Directs methods, also known as point of collapse methods [84] were developed to directly

determine the singular bifurcation points of nonlinear systems. It can be used to determine

[15] the loading margin to collapse ∆λ = λ∗ − λ, at any given operating point λ.

The method consists of solving the following equations to directly compute the collapse

point (x∗, λ∗).

f(x, λ) = 0 (4.1)

Dxf(x, λ)T w = 0

‖w‖∞ = 1

or

f(x, λ) = 0 (4.2)

Dxf(x, λ)v = 0

‖v‖∞ = 1

where

• f(x, λ) = 0 represents bifurcation manifold 1

• Dxf(x, λ)v = 0 or Dxf(x, λ)T w = 0 is the singularity condition of the jacobian Dxf(x, λ)

• ‖w‖ and ‖v‖ are non-zero left and right eigenvectors norm respectively of the power flow

jacobian.
1In this part f represents a column vector.
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The nonsingular equations (4.1) and (4.2) correspond to the system’s steady state equa-

tions, the singularity condition at collapse point and nonzero eigenvector requirement for any

given system. Since J is singular at bifurcation point, a nonsingular eigenvector v or w must

be guaranteed. The loading margin has been observed to exhibit a linear and smooth behavior

[20].

The disadvantage of this approach is the high computational cost as the number of equa-

tions doubles with respect to the steady state equations. The other disadvantage of the direct

method as discussed in [15] and [68] is its inadequateness in predicting the collapse point when

limits such as generator reactive power limits may come into effect and henceforth. Also, the

requirement of good initial conditions for the eigenvectors, and the convergence problems as

the system approaches the collapse point due to significant change in eigenvalues and eigenvec-

tors. Another major disadvantage of direct method is its limitation of only detecting system

singularities (bifurcation). The continuation methods overcome these difficulties as explained

in the following section. Direct Methods which are implemented in PSAT allow to compute the

value of the loading parameter λ for at Saddle-Node Bifurcation points and at Limit-Induced

Bifurcation points. In PSAT, DMs can perform only “static” bifurcation analysis.

4.2.2 Continuation Methods

The Continuation method is used to find the bifurcations of the nonlinear equations similar to

the direct methods. The advantage of this method is its ability to not only find the bifurcation

point but also to trace the bifurcation manifold accurately. Consequently the voltage behavior

at all the system buses can be determined. Since, voltage profiles or PV nose curves are used

in some utilities to determine the proximity to voltage collapse, tracing their behavior over

different loading levels is an important observation.

The basic idea behind the continuation power flow technique is to use successive power

flow solutions to compute the voltage profile up to and beyond the collapse point. But,

continuation methods overcome the difficulties of successive power flow solution methods as

they are based on an augmented system model through parameterization. This allows to

trace complete voltage profile or bifurcation manifold without any problem, as parameter λ is

varied.

The technique implemented in the continuation is illustrated in Fig. 4.1, where a given
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x1

x2

∆x1

(x1,λ1)

(x2,λ2)
(x0,λ0)

Figure 4.1: One Step of the Continuation method

equilibrium point (x1, λ1) is used to compute the direction vector ∆x1 and the change in

parameter ∆λ of the system. There are two steps involved in the process

1. Predictor and Parameterization : This step is known as the predictor, since it

generates an initial guess (x1 + ∆x1, λ1 + ∆λ1), which is then used to compute the new

equilibrium point (x2, λ2) in the corrector step.

Assuming the initial operating point (x1, λ1) is known and holds, taking partial

f(x1, λ1) = 0 (4.3)

derivatives yields,

df

dλ

∣∣∣∣
(x1,λ1)

= Dxf(x1, λ1)
dx

dλ

∣∣∣∣
x=x1

+
∂f(x, λ)

∂λ

∣∣∣∣
x=x1

= 0. (4.4)

The tangent vector at that point is given by

τ =
dx

dλ

∣∣∣∣
x=x1

= −D−1
x f(x1, λ1)

∂f(x, λ)
∂λ

∣∣∣∣
x=x1

(4.5)
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where Dxf(x1, λ1) represents power flow Jacobian. As the system approaches the bi-

furcation or collapse point, the system Jacobian becomes ill-conditioned and at the

bifurcation the Jacobian is singular, and hence in order to ensure that the tangent vec-

tor τ and numerical solution of the equations is well defined we need parameterization

of the predictor and corrector steps.

A. Step Length Control

The parameter step and the direction vector are found from the normalization of the

tangent vector found in the equation (4.5). The step generated by the predictor is given

by

∆x1

∆λ1
= t1 (4.6)

Hence, one can choose

∆λ1 =
k

‖t1‖
(4.7)

∆x1 = k
t

‖t1‖
(4.8)

where k is a scalar positive constant that controls the size of the predictor step. This

normalization results in the reduction of the step size as the system approaches the

bifurcation point since the magnitude of tangent vector increases as the system gets

closer to this point. Therefore, steeper the curve, smaller is the step length. The

optimal values of step size k have been investigated by using the tangent vectors [30].

B. Parameterization

One of the simple technique used in [2], [15] is local parameterization, which consists

of interchanging the parameter λ with the system variable xi ∈ x that has the largest

normalized entry in the tangent vector, so that λ becomes part of the equations, whereas

xi becomes the new parameter p, i.e.,

p = maxi

{∣∣∣∣∆xi

xi

∣∣∣∣ ,

∣∣∣∣∆λ

λ

∣∣∣∣} (4.9)

Detailed information regarding the predictors and parameterization techniques is given

in [20].

2. Corrector Step : The corrector step finds the actual point of solution (x2, λ2), gener-

ated from the predictor step point (x1+∆x1, λ1+∆λ1) with or without parameterization.
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Figure 4.2: Predictor and Corrector Steps in Continuation power flow

This solution can be obtained by solving the following set of equations for x and λ

f(x, λ) = 0 (4.10)

ρ(x, λ) = 0

From the Fig. 4.2, using a vector perpendicular to the tangent vector, we have

ρ(x, λ) =

 ∆x1

∆λ1

T  x2 − x1 −∆x1

λ2 − λ1 −∆λ1

 = 0 (4.11)

which can be written as,

ρ(x, λ) = ∆xT
1 (x2 − x1 −∆x1) + ∆λ1(λ2 − λ2 −∆λ1) = 0 (4.12)

As shown in the Fig.(4.2), starting from point (x1, λ1) the above equations converge to

solution (x2, λ2)
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4.3 Multi Objective VSC-OPF Market model

The following optimization problem has been used in this work to represent an OPF based

market model with the inclusion of reactive power costs that helps investors and customers

in the establishment of reactive power market. The market model is designed in such a way

that system security is modeled through the use of voltage stability conditions.

Min. F = −p1

∑
j∈J

BPj (PDj ) + BQj (PDj tan(φDj )) −
∑
i∈I

CPi(PSi)− CQi(QGi)

− p2λc

(4.13)

s.t. f(V, θ,QG, QD, PS , PD) = 0 → PF equations

fc(Vc, θc, QGc , λc, QD, PS , PD) = 0 → Max load PF equations

λcmin ≤ λc ≤ λcmax → Loading margin

PSmin ≤ PS ≤ PSmax → Supply bid blocks

PDmin ≤ PD ≤ PDmax → Demand bid blocks

Ihk(θ, V ) ≤ Ihkmax → Thermal limits

Ikh(θ, V ) ≤ Ikhmax

Ihk(θc, Vc) ≤ Ihkmax

Ikh(θc, Vc) ≤ Ikhmax

QGmin ≤ QG ≤ QGmax → Generator Q limits

QGmin ≤ QGc ≤ QGmax

Vmin ≤ V ≤ Vmax → Voltage “security” limits

Vmin ≤ Vc ≤ Vmax

A second set of power flow equations and constraints with a subscript c is introduced to

represent the system at the limit or “critical” conditions associated with the loading margin

λc in p.u., where λ is the parameter that drives the system to its maximum loading condition.

The maximum or critical loading point could be either associated with a thermal or bus voltage

limit or a voltage stability limit (collapse point) corresponding to a system singularity (saddle-

node bifurcation) or system controller limits like generator reactive power limits (limit-induced

bifurcation).
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Weighting factors p1 and p2 determine the influence of two terms in the objective and it

is obvious that the total sum of two terms is equal to 1 and the two terms p1 and p2 should

be > 0 so that both the social welfare and the “distance” between the market solution and the

critical point is maximized. If either of the terms is 0, this wouldnot necessarily correspond

either to a market representation or the maximum loading condition. Notice that the two

terms of the objective function are expressed in different units, since the social welfare would

be typically in $/h, whereas the “security” term would be in p.u., which will basically affect

the chosen values of p1 and p2 (typically p1>> p2 ). However, it is possible to assume that

p1 = (1 - p) and p2 = p, with proper scaled values of p for each system under study (0<p<1),

as this simplifies the optimization problem without losing generality.

Limits for the loading margin λc have been included in 4.14 based on practical consider-

ations. Thus the minimum limit λcmin is introduced in order to ensure a minimum level of

security in any operating condition and for any value of p, where the maximum value λcmax

imposes a maximum required security level. These conditions ensure that the loading param-

eter remains within certain limits to avoid soultions by either low security levels or low supply

and demand levels which would be unacceptable.

Power Directions:

The current and maximum loading conditions of load and the generator power directions

are defined by (4.14):

PG = PG0 + PS (4.14)

PL = PL0 + PD

PGc = (1 + λc + kGc)PG

PLc = (1 + λc)PL

where, PG0 and PL0 stand for generator and load powers which are not part of market bidding,

and kGc represents a scalar variable used to distribute the system losses associated only with

the solution of the power flow equations fc proportionally to the power injections obtained in

the solution process, i.e. a standard distributed slack bus model is used. It is assumed that

the losses associated with the loading level defined by λc in 4.14 are distributed among all

generators.
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4.3.1 Spot Pricing and Nodal Congestion Pricing

Spot Pricing

The Lagrangian multipliers associated with 4.14 correspond to the standard definition of LMPs

only when p = 0, i.e., for a pure market model. Lagrangian multipliers for p > 0 would lead

to unrealistic results, since they decrease almost linearly with respect to increases in p.

Consider the following vector objective function:

F =

 −(BT
P PD + BT

QPDtan(φD)− CT
P PS − CT

QQG)

−λc

 (4.15)

From a fundamental theorem of multi-objective optimization an optimal solution of 4.14 is also

a Pareto optimal point for the minimization problem constituted by the objective function

4.15 plus the constraints defined in 4.14 Thus, an optimal solution point of 4.14 has the

property of independently minimizing both terms of the objective function 4.15. Based on

this premise, for a given value of the weighting factor, say p∗, an optimization method is first

used to minimize the following Lagrangian function of 4.14
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Min. L = F − ρT f(θ, V,QG, QD, PS , PD) (4.16)

− ρT fc(θc, Vc, QGc , λc, QD, PS , PD)

− µλcmax
(λcmax − λc)

− µλcmin
(λc − λcmin)

− µT
PSmax

(PSmax − PS)

− µT
PSmin

(PS − PSmin)

− µT
PDmax

(PDmax − PD)

− µT
PDmin

(PD − PDmin)

− µT
Ihkmax

(Imax − Ihk)

− µT
Ikhmax

(Imax − Ikh)

− µT
Ihkcmax

(Imax − Ihkc)

− µT
Ikhcmax

(Imax − Ikhc)

− µT
QGmax

(QGmax −QG)

− µT
QGmin

(QG −QGmin)

− µT
QGc max

(QGmax −QGc)

− µT
QGc min

(QGc −QGmin)

− µT
Vmax

(Vmax − V )

− µT
Vmin

(V − Vmin)

− µT
Vc max

(Vmax − Vc)

− µT
Vc min

(Vc − Vmin)

Observe that the value of λc cannot be obtained by the mere solution of Sw, as its value

is basically defined by the value of p in the multi-objective problem 4.14. As a result, the

weighting factor p, although it affects the solution and the dual variables of it does not

explicitly appear in the equations. The solution provides the value of λ∗c associated with p∗

along with all other system variables and market bids.

Nodal Congestion Prices

Using the decomposition formula given in 3.2.2, the real power congestion price at each bus
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can be rewritten as follows:

NCP = [Dxf ]−1

∂Ihk

∂x
(µIhkmax

− µIhkmin
) +

 0

µVmax − µVmin

 (4.17)

Observe that NCPs in 4.17 depends only on shadow prices of dual variables µIhkmax
and µIhkmin

associated with current thermal limits, since the VSC-OPF model 4.14 does not include real

power flow limits as in 3.13. However, dependence on voltage security constraints given by

the inclusion of the “critical” system fc and on the loading parameter λc are implicit in 4.17.

4.3.2 Maximum Transfer Capability and Available Transfer Capability

The Available Transfer Capability (ATC) as defined by NERC, is a “measure of the transfer

capability remaining in the physical transmission network for further commercial activity over

and above already committed uses”[8]. This basic concept is typically associated with area

interchange limits used, for example, in markets for transmission rights.

In the multi-objective OPF approach λc represents the maximum loadability of the network

and, hence, this value can be viewed as a measure of the congestion of the network. Observe

that the maximum loading condition (MLC) or maximum transfer capability (MTC) and the

available loading capability (ALC) or available transfer capability (ATC) can be obtained as

a byproduct of the solution of 4.14:

MLC/MTC = (1 + λc)
∑
j∈J

PLj (4.18)

ALC/ATC = λc

∑
j∈J

PLj = λcTTL

Contingencies are considered when computing λc, MLC and ATC based on real power flow

sensitivity analysis which is explained in next section.

4.4 N-1 Contingency Criterion

This section describes a technique for including in the Voltage Stability Constrained OPF

presented in 4.3 a N-1 contingency criterion. It is based on a sensitivity analysis of power flows

in transmission lines. The available transfer capability, locational marginal prices, reactive

power marginal prices and nodal congestion prices resulting from the solutions are compared

with results obtained by means of a standard OPF technique.
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4.4.1 VSC-OPF with Critical Line Contingency

Contingencies are included in 4.14 by taking out the selected lines when formulating the

“critical” power flow equations fc, thus ensuring that the current solution of the VSC-OPF

problem is feasible also for the given contingency. Thus, the VSC-OPF problem with N-1

contingency criterion is based on what has been proposed in [19], [61] and formulated as

follows:

Min. L = F − ρT f(θ, V,QG, QD, PS , PD) (4.19)

− ρT fN−1
c (θc, Vc, QGc , λc, QD, PS , PD)

− µλcmax
(λcmax − λc)

− µλcmin
(λc − λcmin)

− µT
PSmax

(PSmax − PS)

− µT
PSmin

(PS − PSmin)

− µT
PDmax

(PDmax − PD)

− µT
PDmin

(PD − PDmin)

− µT
Ihkmax

(Imax − Ihk)

− µT
Ikhmax

(Imax − Ikh)

− µT
Ihkcmax

(Imax − Ihkc)

− µT
Ikhcmax

(Imax − Ikhc)

− µT
QGmax

(QGmax −QG)

− µT
QGmin

(QG −QGmin)

− µT
QGc max

(QGmax −QGc)

− µT
QGc min

(QGc −QGmin)

− µT
Vmax

(Vmax − V )

− µT
Vmin

(V − Vmin)

− µT
Vc max

(Vmax − Vc)

− µT
Vc min

(Vc − Vmin)

where fN−1
c represent power flow equations for the system with under study with one line

outage. The techniques used in this thesis address the problem of determining efficiently the
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contingencies which cause the worst effects on the system, i.e. the lowest loading margin λc

and ATCN−1 (equation 4.20).

ATCN−1 = minh(λch
− 1)TTLh (4.20)

where h indicates line outage.

4.4.2 Contingency Ranking with VSC-OPF

First, a basic VSC-OPF solution that does not consider contingencies is used for determining

the sensitivity of power flows with respect to the loading parameter λc. Then, based on this

solution and assuming a small variation ∈ of the loading parameter and recomputing the

power flows by solving fc, normalized sensitivity factors can be approximately computed as

follows:

phk = Phk
∂Phk

∂λc
≈ Phk(λc)

Phk(λc)− Phk(λc− ∈)
∈

(4.21)

where phk and Phk are the sensitivity factor and the power flows of line h-k respectively. The

scaling is introduced for properly evaluating the “weight” of each line in the system, and thus

for considering only those lines characterized by both “significant” power transfers and the

high sensitivities [17].

The first lines with the biggest sensitivity factors phk are selected (from multiple tests, 5

lines appear to be a sufficient number), and a VSC-OPF for each one of these contingencies is

solved (may be done in parallel). The VSC-OPF solution that presents the lowest ATCN−1

is chosen as the final solution. Observe that not necessarily the outage of the line with the

highest sensitivity factor will always produce the lowest ATCN−1, because of the non-linear

nature of the voltage stability constraints. Hence the need of solving more than one VSC-

OPF problem. However, ranking the sensitivity factors leads generally to determine a reduced

number of critical areas; ATCN−1s associated with outages of high sensitivity lines within a

certain area generally show only small differences. Thus, in practice, one needs to evaluate

only one contingency constrained VSC-OPF for each critical area that was determined by the

sensitivity analysis.

Observe that line outages that cause a separation in islands of the original grid have to be

treated in a special way, since the VSC-OPF (4.3) may not converge. In order to solve this
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problem, the islanded market participants are not committed and the fixed power productions

and/or absorptions eliminated. This solution appears to be reasonable especially for realistic

transmission grids, which are typically well interconnected, as generally only very few buses

result islanded as the consequence of a line outage.

4.5 Summary

In this chapter, a multi-objective optimization for managing and pricing voltage stability

is explained. The multi-objective approach proposed by Milano [62] has been extended to

include the cost of reactive power in the social benefit so that more accurate signals for

ractive power pricing are obtained. The multi-objective OPF method allows market operators

and participants to directly control the desired level of system security by controlling the

weighting factors of the social welfare and loading margin, which is not possible in typical

security constrained OPF-based market implementations. A method based on power flow

sensitivities in the transmission lines to include N-1 contingency criterion is explained. The

VSC-OPF with N-1 contingency is considered as the base case to compare the results with

VAR support.



Chapter

5

VAR Support and Pricing

5.1 Introduction

The transfer of real power can not be realized without reactive power/voltage support. Reac-

tive power plays an important role in supporting the real power transfer. This support becomes

especially important when an increasing number of transactions are utilizing the transmission

system and voltages become a bottleneck in preventing additional power transfer. Establish-

ing a price structure for reactive power and its support is important both operationally and

financially. Considering the high costs of VAR support, it is important to find the optimal

size and location of VAR support.

5.2 SVC Investment Costs

The following total investment cost analysis for static var compensator is based on information

from Siemens AG database [39]. According to the data given, costs can be approximated by

CSV C = 0.0003 s2 − 0.3051 s + 127.38 (US $/KVAr) (5.1)

where Csvc is in (US $/KVAr) and s is the operating range of the SVC in MVAR. The plot

of the cost function against operating range upto 400 MVAR is shown in Fig. 5.1.

47
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Figure 5.1: SVC Investment costs

5.2.1 Equipment Costs and Infrastructure Costs

As described in [39] the investment costs of FACTS devices can be split into two categories

1. Device equipment costs

2. Necessary Infrastructure costs

Equipment costs depend not only upon the installation rating but also upon special re-

quirements such as:

• Redundancy of the control and protection systems

• Seismic conditions

• Ambient conditions (e.g. temperature, pollution level), and

• Communication requirements with the substation control system or the regional or na-

tional control center.

Infrastructure costs depend on the device’s and costs include

• Land acquisition, if there is insufficient space in the existing substation,
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• Modifications to the existing substation,

• Construction of a building for indoor equipment,

• Yard civil works, and

• Communication infrastructure.

The typical range of investment costs is shown in Fig. 5.2, [39] with both the lower and

upper limits of the cost areas. The lower limit of the cost area indicates the equipment costs

and the upper limit indicates the total investment costs including the infrastructure costs. In

this study, the total investment costs, corresponding to the upper limit of the Fig. 5.2 are used.

The operating costs of SVC are generally negligible when compared to the total investment

costs and can be safely ignored.

Figure 5.2: Typical Investemnt Costs for SVC / STATCOM [39]

Most of the FACTS devices are in service for many years [39] and only a part of their life

time is employed in regulation of power flow [13]. Since SVC procurement requires a lot of

capital cost, decision on investment needs to be based on the returns the device will allow. In

this study, the annual cost of the device is calculated by assuming a uniform interest rate of

6% and 15 years of life expectancy. Hence, the annualized cost of the SVC as calculated from



CHAPTER 5. VAR SUPPORT AND PRICING 50

the model shown in Fig. 5.1 and from equation (5.1) is

Annual Csvc =
P · r · (1 + r)n

(1 + r)n − 1
(5.2)

Costsvc =
Annual Csvc

8760
(US $/hr) (5.3)

where P, r, and n denote principal value, interest rate per payment, and number of payments

respectively. Csvc is the total investment costs of the SVC given from equation (5.1).

5.3 Optimal Placement of VAR Support Devices

According to engineering economics, whenever there are different investment schemes, techni-

cal and economic quantitative analysis should be performed and economic assessment should

be provided in order to select the optimal scheme. The OPF solution will give the amount of

reactive power support needed at each load bus. It is necessary to use cost-benefit analysis

(CBA) to analyze whether the new VAR source would be cost-effective when it is actually

installed.

5.3.1 Cost Benefit Analysis

For VAR planning purposes, costs and sites of reactive power sources must be determined.

This thesis also presents a new method to select the reactive power source sites by the ana-

lytic hierarchy process (AHP). The proposed approach comprehensively considers the network

topology, operation states and reactive power support service cost of each candidate VAR

source site. Specifically it considers the social welfare benefit-to-cost ratio (SBCR), maxi-

mum loading condition benefit-to-cost ratio (MBCR) and congestion cost benefit-to-cost ratio

(CBCR) based on a cost - benefit analysis. Due to their independent nature, results from

these three BCRs are not necessarily the same. Of course, all BCRs reflect the improvement

of the systems operation state after the VAR support service is provided.

Unfortunately, it is difficult to find a unified process for ranking these results. Moreover, all

BCRs have not included other qualitative relationships for considering relative importance of

different VAR source sites. AHP is a simple and convenient method to analyze a complicated

problem (or a complex system). It is especially suitable for problems which are very difficult

to be analyzed whole quantitatively, and is now widely used in various areas [83] including
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power systems. AHP can help to quantify the decision-makers thinking. Thus, it provides

a useful means for considering myriad factors in the ranking and selection of VAR source

locations. The method is explained in detail in the next section.

The aim of reactive power planning is to obtain optimal VAR placement scheme (location

and sizing of SVC on the load buses) under the some load level and constraints. In this work,

multi-objective OPF formulation is used along with the investment costs of SVC for this

purpose. Considering the ‘social welfare’ objective function, somewhat higher losses would be

incurred since cheaper generating sources, generally located away from load center, would be

predominantly used to meet the demands. However, it might be worthwhile for the utility to

bear this additional loss rather than switch generation to relatively expensive units located

nearer to load center [24]. The OPF formulation as explained in the previous chapter is

extended to include cost of VAR support/SVC is given in equation 5.4.

Min. F = −p1 ∗ social welfare− p2 ∗ λc + CsvcQsvc (5.4)

where F is the sum of social welfare ($/h), loading margin (p.u) and total investement cost

of SVC ($/h).

In order to reflect the overall benefits after SVC is installed, three kinds of BCR were

considered for the selection of optimal location.

(1) Social welfare benefit-to-cost ratio (SBCR) ($/h)

SBCR =
max(0,

24∑
t=1

(Sw(Qsvci)− Sw(0)))

C(Qsvci)
(5.5)

or

SBCRt =
max[0, (St

w(Qsvci)− St
w(0))]

C(Qsvci)/24
(5.6)

where: St
w(0), the social welfare at time t before SVC at bus i is installed; St

w(Qsvci), the social

welfare at time t after SVC at bus i is installed; C(Qsvci), the equivalent daily investment

cost of SVC at load node i ($/day). Because of the chosen objective at some load buses the

social welfare may decrease after the SVC is installed though the loading margin of the system

increase. Since the social welfare being the main objective of the market opearator placement

of SVC at such load buses is not desired. This means, St
w(0) may be larger than St

w(Qsvci),
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i.e. (St
w(Qsvci) − St

w(0)) is negative. In other words no social welfare benefit is obtained in

this case. Therefore, it is defined as SBCRt = 0 to reflect this case, i.e.

max[0, (St
w(Qsvci)− St

w(0))] = 0 (5.7)

(2) Maximum loadability benefit-to-cost ratio (MBCR) (MW/h)

MBCR =
(

24∑
t=1

(ML(Qsvci)−ML(0)))

C(Qsvci)
(5.8)

or

MBCRt =
(MLt(Qsvci)−MLt(0))

C(Qsvci)/24
(5.9)

where: ML(0) is the loading margin or maximum loadability of the system at time t before

SVC at bus i is installed and ML(Qsvci) is the loading margin at time t after SVC at bus i

is installed. MBCR provides the increase in maximum loading condition with the installation

of SVC

(3) Congestion cost benefit-to-cost ratio (CBCR) ($/h)

CBCR =
max(0,

24∑
t=1

(CC(0)− CC(Qsvci)))

C(Qsvci)
(5.10)

or

CBCRt =
max[0, (CCt(0)− CCt(Qsvci))]

C(Qsvci)/24
(5.11)

where: CCt(0) is the congestion cost at time t before SVC at bus i is installed and CCt(Qsvci)

is the congestion cost at time t after SVC at bus i is installed; C(Qsvci), the equivalent daily

investment cost of SVC at load node i ($/day).

Obviously, all BCRs reflect the improvement of the system operation state after the VAR

support service is provided. However, the ranking results from these three BCRs might not

be same due to their independent nature. The relative importance of each factor over other

is represented as weighting factor which is found through analytic hierarchy process.

The index for optimal placement of VAR support is formulated as:

J̃ = max
i∈NL

J i = w1 Ĵ i
1 + w2 Ĵ i

2 + w3 Ĵ i
3 (5.12)



CHAPTER 5. VAR SUPPORT AND PRICING 53

where all the factors are evaluated at each optimal location i for a selected critical line con-

tingency found through sensitivity analysis.

J̃ = Index to be maximized

Ĵ1 = Normalized value of SBCRs

Ĵ2 = Normalized value of MBCRs

Ĵ3 = Normalized value of CBCRs

NL = Total number of load buses

w1 + w2 + w3 = 1

The bus corresponding to the maximum value of index Ĵ is the optimal site for installing

SVC. First compute the VSC-OPF solution by reading the network topology and market data

. Identify the critical line such that the system’s overall available transfer capability (ATC)

reaches minimum with the line outage. This index is suitable for the systems which are

capable of maintaining minimum level of security after critical line outage. The new benefits

with SVC are obtained at each load bus over a period of 24 hours and all the three BCRs

can be calculated from equations 5.6, 5.9, and 5.11. The importance of each factor over other

factor is calculated by setting up an AHP model for source selection.

If the system cannot be loaded to the minimum desired security level i.e. 110% of system

base load, it is considered as the market solution is not feasible i.e base case solution is not

existing and it is a necessity for the system to install additional VAR support to make system

realiable, secure and stable. For such systems the index for optimal VAR source site is given in

5.13. Considering the three factors social welfare, maximum loading condition and congestion

cost for all the load buses. The index is given below,

J̃ = max
i∈NL

J i = w1 Ĵ i
1 + w2 Ĵ i

2 − w3 Ĵ i
3 (5.13)

where, the Social welfare is obtained from:

J1 =

24∑
t=1

Sw(Qsvci)

C(Qsvci)
(5.14)

or

J1
t =

St
w(Qsvci)

C(Qsvci)/24
(5.15)
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Maximum loading condition or system loadability:

J2 =

24∑
t=1

ML(Qsvci)

C(Qsvci)
(5.16)

or

J2
t =

MLt(Qsvci)
C(Qsvci)/24

(5.17)

Congestion cost:

J3 =

24∑
t=1

CC(Qsvci)

C(Qsvci)
(5.18)

or

J3
t =

CCt(Qsvci)
C(Qsvci)/24

(5.19)

Setting up an AHP model and ranking the source sites can be performed similar to previous

case. The maximum social welfare, MLC & CC with SVC at load buses can be obtained from

equations 5.15, 5.17 and 5.19 respectively. The bus corresponding to the maximum value of

J̃ is chosen as the optimal location.

In the equations 5.15, 5.17and CC 5.19, the final values are then obtained through nor-

malization by dividing all the values with the maximum.

J̃ = Index to be maximized

Ĵ1 = Normalized value of J1

Ĵ2 = Normalized value of J2

Ĵ3 = Normalized value of J3

NL = Total number of load buses

w1 + w2 + w3 = 1

The sum of total weights is equal to 1, so the resultant weights have values ranging from 0 to

1.

5.3.2 Analytic Hierarchy Process

The principle of the analytic hierarchy process is that first a structural model of the analytic

hierarchy is established through analysis of the complex system, then the complex problem
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is transformed into the problem of rank calculation within the hierarchy structure. In the

ranking computation, the ranking in each hierarchy can also be converted into the judgment

and comparison of a series of pairs of factors. This implies that a judgment matrix is needed

to reflect these judgments and comparisons. The judgment matrix can be formed according

to the quantified judgment of pairs of factors using some ratio scale method. Consequently,

the value of the weighting coefficients of all factors can be obtained through calculating the

maximal eigenvalue and the corresponding eigenvector of the judgment matrix. Obviously, the

purpose of ranking the elements of the eigenvector corresponding to the maximal eigenvalue

is simply to obtain the weight of each factor among the different kinds of factors.

The steps of the AHP algorithm may be written as follows:

1. Set up a hierarchy model.

2. Form a judgment matrix.

The value of elements in the judgment matrix reflects the users knowledge about the

relative importance between every pair of factors.

3. Calculate the maximal eigenvalue and the corresponding eigenvector of the judgment

matrix.

4. Perform hierarchy ranking and consistency checking of results.

We can perform the hierarchy ranking according to the value of elements in the eigenvector,

which represents the relative importance of the corresponding factor. The consistency index

(CI) of a hierarchy ranking is defined as

CI =
(λmax − n)

(n− 1)
(5.20)

where λmax is the maximal eigenvalue of the judgment matrix and n is the dimension of the

judgment matrix.

The stochastic consistency ratio is defined as

CR =
CI

RI
(5.21)

where RI is a set of given average stochastic consistency indices.
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n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45

Table 5.1: Set of average stochastic consistency indices RI

Figure 5.3: Hierarchy model for optimal placement of SVC

For any judgment matrix of dimension 1 to 9, the average stochastic consistency indices

RI, given in Table 5.1, can be obtained according to statistical calculations. A satisfactory

hierarchy ranking has been obtained when the stochastic consistency ratio CR < 0.1.

Hierarchy model of VAR placement

The hierarchy model for the VAR placement is simple. It consists of only a two-level hierarchy

as shown in Fig. 5.3. In this way, the calculation of the weighting coefficients in the objective

for VAR location is changed into ranking calculation in the hierarchy model. Thus, it is

necessary to form a judgement matrix A for ranking computation. According to the principle

of AHP mentioned above, the judgement matrix is formed as below 5.22.

A =


W1/W1 W1/W2 W1/W3

W2/W1 W2/W2 W2/W3

W3/W1 W3/W2 W3/W3

 (5.22)

where Wi is the weighting coefficient of the ith subobjective in the hierarchy model. Of course

Wi, which is just what we need, is unknown.

Wi/Wj can be obtained according to the experiences of electrical engineers using some

ratio scale methods. The weights usually consist of numbers on a scale of ‘1-9’, as illustrated

in Table [5.2]. For example, if J2 as compared to J1 is “clearly more important”, corresponding
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Importance of Any Factor in

Comparison with Any Other Factor Scale

Equally important 1

A little more important 3

Clearly more important 5

Much more important 7

Most important 9

Table 5.2: Weighting Scale for “More Important Than”

Importance of Any Factor in

Comparison with Any Other Factor Scale

Equally important 1

A little less important 1/3

Clearly less important 1/5

Much less important 1/7

Least important 1/9

Table 5.3: Weighting Scale for “Less Important Than”

value in the matrix is taken as ‘5’.

Conversely, the relative importance of J1 as compared to J2 is the reciprocal of ‘5’, that

is ‘1/5’. This suggests a second table, such as Table [5.3]. The numbers, ‘2’, ‘4’, ‘6’ and ‘8’

can be used to reduce the gap between “importance” in ratings. Thus, ‘8’ might be assigned

to a rating of “very much more important,” lying half way between “much more important”

and “most important”. When the judgment matrix A is formed, the maximal eigenvalue and

the corresponding eigenvector can be computed by matrix theory.

It is possible to precisely calculate the eigenvalue and the corresponding eigenvector of a

matrix, but this would be time-consuming. Moreover, it is not necessary to precisely compute

the eigenvalue and the corresponding eigenvector of the judgment matrix. The reason is that

the judgment matrix, which is formed by the subjective judgment of the user, itself has some

range of error. Therefore, an approximate approach to compute the maximal eigenvalue and

the corresponding eigenvector has been used.
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Sum Method:

(i) Normalize every column in the judgement matrix:

X∗
ij =

Xij∑
k

Xkj
i, j, k = 1, 2, ..., n (5.23)

Now, the judgment matrix A is changed into a new matrix A∗, in which each column has been

normalised.

(ii) Add all the elements of each row in matrix A∗:

W ∗
i =

∑
j

Xij i, j, k = 1, 2, ..., n (5.24)

(iii) Normalize the vector W ∗, which equals [W ∗
1 ,W ∗

2 , ...,W ∗
n ]T

Wi =
W ∗

i∑
j

W ∗
j

i, j, k = 1, 2, ..., n (5.25)

Hence, we obtain the eigenvector of the judgment matrix A:

W = [W1,W2, ...,Wn]T (5.26)

(iv) Calculate the maximal eigenvalue of the judgment matrix λmax:

λmax =
∑

i

[
(AW)i

nWi

]
i = 1, 2, ..., n (5.27)

where (AW)i represents the ith element in vector AW.

5.3.3 Pricing VAR Support Services

FACTS devices are being used in many places to relieve congestion, to improve system load-

ability and there is a potential price reduction upon its usage. A pricing scheme for FACTS

devices which are used in congestion relief and increase in social welfare, so that new con-

struction can be efficiently simulated, is still missing. The effects of FACTS devices are not

constrained to the location where they are installed and are hard to measure by the power

flowing through them. Since the costs associated with FACTS controllers are high, pricing

methodologies for the services provided by these controllers should be developed.
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The pricing methods are based on a comparison of congestion costs and social welfare.

The congestion costs are defined as:

CC =
∑

(LMPiPdi
+ RMPiPdi

tan(φdi
)) −

∑
(LMPjPsj + RMPjQgj ) (5.28)

where CC is the congestion cost in $/h, LMP is the locational marginal price for demand

bus i or supply bus j in $/MWh, and Pdi
& Psj are the demand and supply powers in MW.

Thus any reduction in CC due to the application of FACTS is considered to be a profit which

cannot exist without these devices. Consequently, the difference between the CC with and

without the FACTS devices is used to price the reactive services of the device.

FP = CC|wof − CC|wf (5.29)

where FP is FACTS pricing in $/h, and CC|wof and CC|wf are the congestion costs without

and with FACTS device in service respectively. The value of FP is not considerable if the

system is not heavily loaded.

The social welfare Sw can also be used as a tool for pricing the FACTS service. It is

defined as:

SP = SP |wf − SP |wof (5.30)

where SP is the social welfare price in $/h and SP |wof and SP |wf are the social welfare

without and with FACTS device in service respectively. Similar to FP, the value of SP is not

considerable if the system is not heavily loaded.

5.3.4 Analysis of Reactive Power Pricing

Developing an accurate and feasible method for reactive power pricing is important in the

electricity market, Such reactive power price cannot be obtained by conventional optimal power

flow models because the production cost of reactive power is ignored in these models. It is

realized that establishing an accurate pricing structure of reactive power can not only recover

the costs of reactive power providers, but also provide economic information for real-time

operations. In this thesis, a social welfare objective function with both supply and demand

reactive power costs are considered. Tests under different system operating conditions help to

observe how those conditions influence reactive power prices.



CHAPTER 5. VAR SUPPORT AND PRICING 60

Reactive power production cost can be represented as the opportunity cost of generator.

According to the loading capability diagram of a generator, reactive power output may re-

duce active power output capacity of generators which can at least serve as spinning reserve,

therefore causes implicit financial loss to generators. Actually, opportunity cost depends on

the real time balance between demand and supply in the market, so it is difficult to determine

the real value. The opportunity cost (5.31) in general is approximated as:

Cpgi(QGi) =
[
Cpgi(SGi,max) −

√
Cpgi(SGi,max)2 −Q2

Gi

]
.k (5.31)

where SGi,max is the nominal apparent power of the generator at bus i ; QGi is the reactive

power output of the generator at bus i ; k is the profit rate of of active power generation,

usually between 5% and 10%.

Since, there is no similar model for the reactive power procurement cost on the demand

side and in addition to make the calculations simple, the cost to produce and consume reac-

tive power is taken as a percentage of its respective real power bid price without losing any

generality.

5.4 VSC-OPF with SVC and N-1 contingency criterion

The important objective of this thesis work is to study the effect of SVC on spot pricing in a

VSC-OPF based market model. The multi-objective includes maximization of social welfare,

maximum distance to collapse and the cost of SVC in $/h. While calculating the loading

margin the N-1 contingency criterion is considered.

Static VAR Compensator (SVC):

SVC is used for voltage control applications in transmission systems. The placement of

SVC has been considered at load bus only but not in the middle of the line, since the benefits

rendered by SVC in the network go in vain with the line outage. Reactive power output of

an SVC (QSV C) lies within limits set by available inductive and capacitive susceptances (Bind

and Bcap respectively) as follows:

Qind = BindV
2
ref (5.32)

Qcap = BcapV
2
ref (5.33)

Qmin ≤ QSV C ≤ Qmax (5.34)
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Where Vref is the reference voltage magnitude at SVC node. In the OPF formulation, steady

state model of SVC has been taken as a PV generator with P = 0 and supply reactive power

with the above set reactive power limits. The investment costs of SVC are given in section 5.2

5.5 Summary

An index to place the VAR support in the network considering both technical and economical

factors is proposed based on CBA. Various factors such as social welfare, maximum loading

condition and congestion cost are computed in a voltage-stability constrained OPF. AHP

method is used to find the quantitative relationship between the three BCRs taking into

account the complete network topology. A simple method to price VAR support to recover

the investment cost is proposed.



Chapter

6

System Studies and Discussion

6.1 Test Systems Description

This chapter describes two case studies, the first case maintains minimum level of security

after N-1 contingency and the second system fails to maintain minimum level of security.

1. Six-Bus Test System: Fig. 6.1 depicts the six-bus test system single-line diagram, which

is extracted from [85].

2. IEEE 14-Bus Test System: A single-line diagram of the IEEE 14-bus test system is

depicted in Fig. 6.10 which represents a portion of the American Electric Power System

(in the Midwestern US) obtained from [94]

In sections 6.2 and 6.3, the OPF problem for 3.13 and 4.3 are applied to the two test

systems and compared the effect of system security on power dispatch and electricity prices.

The power flow limits needed in 3.13 were obtained “offline” by means of a continuation

power flow technique [20]. For both test systems, bid load and generator powers were used as

the direction needed to obtain a maximum loading point and the associated power flows in

the lines, ignoring contingencies so that proper comparisons can be made. The limits of the

62
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loading parameter were assumed to be λcmin = 0.1 and λcmax = 0.8 (i.e., for any value of p, it

is assumed that the system can be securely loaded to an MLC between 110% and 180% of the

total transaction level of the given solution). To allow for adequate comparisons, the actual

power flow limits used in 3.13 were reduced by 10% with respect to the values obtained from

the offline continuation power flow analysis to emulate the λc = 0.1 limit.

VSC-OPF is extended to include N-1 contingency criterion and the critical line is iden-

tified through power transfer sensitivity analysis. Optimal scheme for placing VAR support

explained in section 5.3 is implemented by performing AHP analysis to find the appropriate

weights for economical and technical terms. The results are then compared with Standard

OPF and VSC-OPF with N-1 contingency and no VAR support. Transmission prices before

and after the VAR support are compared for 6-bus test system as the system can be securely

loaded and stable after crtical line failure. The effect of weighting factor p on the total trans-

action level, congestion costs and the maximum loading margin λc for the system with SVC

is observed.

The IEEE 14-bus test system is not stable with critical line failure and therefore it needs

VAR support to avoid voltage collapse and increase loading margin in this particular case.

The index given in 5.13 is used for optimal placement of VAR support. The effect of SVC on

power dispatch and electricity prices are compared with standard OPF, the case without SVC

and without N-1 contingency criterion. The transmission prices are calculated using wheeling

charges method. Reactive power marginal prices are effected because of the inclusion of cost

for both suppliers and consumers. Though, there is some debate regarding the viability of

reactive power prices, any pricing scheme will likely to be based on spot pricing technique.

The impact of load power factor on reactive power marginal prices is analysed.

6.2 6-Bus Test System

The system represents three generation companies (GENCOs) and three energy supply compa-

nies (ESCOs) that provide supply and demand bids. The complete data set for this system is

provided in the Appendix A.1.2, so that the results discussed here may be readily reproduced.
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Figure 6.1: 6-bus test system [85]
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Pariticipant V LMP RMP NCP PBID P0 Pay

[p.u.] [$/MWh] [$/MVArh] [$/MWh] [MW] [MW] [$/h]

GENCO1 1.089 9.70 0.97 1.24 14.5 90 -811

GENCO2 1.091 8.42 0.88 0.00 0.0 140 -907

GENCO3 1.100 7.00 0.70 -1.03 20.5 60 -496

ESCO4 1.034 11.91 1.38 3.41 25.3 90 1184

ESCO5 1.037 10.45 1.15 1.09 2.3 100 870

ESCO6 1.055 9.57 0.81 1.79 6.4 90 746

Totals T = 243.98 MW Congestion Cost = 584.85 $/h

Losses = 6.23 MW

Table 6.1: Six-bus test system: OPF with offline power flow limits

6.2.1 Results and Discussion

The results for the standard OPF formulation (3.13) are reported in Table 6.1. The results

depict that the system is having low transaction level ‘T’ and heterogeneous LMPs, RMPs

and NCPs, indicating that the system constraints, and in particular active power flow limits,

negatively affect the market solution. Table 6.1 shows also the total losses and the payment

given to the Independent Market Operator (referred to as PayIMO) or Congestion Cost (CC),

which is computed as the difference between demand and supply payments.

Table 6.2 illustrates the initial solution of the VSC-OPF problem 4.3. The weighting factor

p in the objective function of VSC-OPF used for maximizing the loading parameter, was set

to p = 10−3 as this was determined to be a value that does not significantly affect the market

solution, since the distance to the maximum loading point is not being really “optimized,”

with mostly the social welfare being considered in the objective function. Observe that, as

expected, the absence of active power flow limits and contingencies makes possible a higher

total transaction level ‘T’ and more homogeneous LMPs, RMPs and lower NCPs. For both

solutions, generator voltages are almost at their maximum limits, as expected, since this

condition generally provides higher transactions levels.

The improved LMPs result also in a lower total price paid to the independent market

operator (PayIMO) (i.e., the network congestion prices are lower), even though the system

losses are higher which is expected, as ‘T’ is higher. This demonstrates that offline power flow
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Pariticipant V LMP RMP NCP PBID P0 Pay

[p.u.] [$/MWh] [$/MVArh] [$/MWh] [MW] [MW] [$/h]

GENCO1 1.096 9.20 0.97 0.01 0.0 90 -650

GENCO2 1.100 9.08 0.88 0.00 37.5 140 -1324

GENCO3 1.100 9.15 0.70 0.01 30.0 60 -721

ESCO4 1.033 9.76 1.29 0.28 37.5 90 1106

ESCO5 1.033 9.76 1.21 0.31 15.0 100 951

ESCO6 1.054 9.48 0.99 0.19 12.2 90 806

Totals T = 274.72 MW Congestion Cost = 168.96 $/h

Losses = 7.93 MW Loading Margin = 0.73

MLC = 474.16 MW

Table 6.2: Six-bus test system: VSC-OPF w/o contingencies

Line # Line h− k Phk(λ) (p.u.) phk=Phk*dPhk/dλ (106) ATCN−1 (MW)

1 2-3 0.127 0.0025 184.71

2 3-6 0.932 0.1897 77.85

3 4-5 0.032 0.0008 184.38

4 3-5 0.530 0.0419 155.09

5 5-6 0.098 0.0009 179.25

6 2-4 1.324 0.2531 27.47

7 1-2 0.043 0.0117 191.71

8 1-4 0.655 0.1073 42.61

9 1-5 0.506 0.0318 174.17

10 2-6 0.599 0.1189 132.58

11 2-5 0.491 0.0581 151.02

Table 6.3: Six-bus test system: Sensitivity coefficients Phk and ATC (N-1)

limits are not adequate constraints for representing the actual system congestion and not a

very good reprentation of stability.

Table 6.3 shows the coefficients phk used for sensitivity analysis. As mentioned in section

4.4, the line which produces lowest ATCN−1 is chosen as the critical line. For the six-bus test

system failure of ‘line 6’ i.e. line connecting from bus 2 - bus 4 produces the lowest ATC.
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Pariticipant V LMP RMP NCP PBID P0 Pay

[p.u.] [$/MWh] [$/MVArh] [$/MWh] [MW] [MW] [$/h]

GENCO1 1.096 9.20 0.97 0.01 0.0 90 -650

GENCO2 1.100 9.08 0.88 0.00 37.5 140 -1324

GENCO3 1.100 9.15 0.70 0.01 30.0 60 -721

ESCO4 1.033 9.76 1.29 0.28 37.5 90 1106

ESCO5 1.033 9.76 1.21 0.31 15.0 100 951

ESCO6 1.054 9.48 0.99 0.19 12.2 90 806

Totals T = 274.72 MW Congestion Cost = 168.96 $/h

Losses = 7.93 MW Loading Margin = 0.148

MLC = 315.36 MW

Table 6.4: Six-bus test system: VSC-OPF w/ contingency on line 2-4

Table 6.4 depicts the VSC-OPF results with the critical line 2-4 outage. This solution

presents practically the same total transaction level as provided by the solution without con-

tingencies in Table 6.2. If the system maintains just the minimum level of security, the OPF

solution might get affected and therefore a slight decrease in LMPs, RMPs and NCPs is

possible.

The ATCN−1 in Table 6.4 corresponds to a λcmin = 0.1, i.e. 110% of the total transaction

level, indicating that the current solution has the minimum required security level (λc =

0.148). Because of the rescheduling of bids and by including more precise security constraints

there is significant reduction in the congestion cost or Pay-IMO value compared to Standard

OPF problem 3.13.

Optimal Placement of VAR Support based on CBA

As explained in the section 5.3.1 and from index 5.12, the optimal location for SVC is

found through a cost-benefit analysis. First the AHP algorithm is solved to find the weights

to three different BCRs. The criterion for chosing weights are:

1. Social welfare is “clearly more important” compared to maximum loading condition and

“much more important” compared to congestion cost benefit-to-cost ratio.

2. Maximum loading condition BCR is taken as “little more important” compared to con-

gestion cost BCR.



CHAPTER 6. SYSTEM STUDIES AND DISCUSSION 68

Therefore, the judgement matrix A is as follows:

A =


1 5 7

1/5 1 3

1/7 1/3 1

 (6.1)

From the judgement matrix further analysis is performed. The Consistency Ratio (CR) is ob-

tained as 0.057 which is acceptable for this size problem. The corresponding weights obtained

are:

w1 = 0.724 w2 = 0.193 w3 = 0.083

Table 6.5: Weighting factors for six-bus test system

The Cost benefit analysis should be performed for a period of 24 hours with different

loading conditions. Inorder to make calculations simple and at the same time not to lose the

generality, four load serving factors (LSFs) are considered that reflect the change in loads. The

LSFs considered for CBA study are 0.8, 1.0, 1.2, 1.4. This means the system is loaded with

80%, 100%, 120% and 140% of total load. Mean of the four values is calculated as explained

in equations 5.6, 5.9 and 5.11.

Based on the index proposed in this thesis, the optimal location for VAR support is found

for the six-bus test system. The weak bus ranking for VAR support is listed in Table 6.6.

Bus No Jmax

4 0.9726

5 0.1241

6 0.0479

Table 6.6: Weak bus ranking for six-bus test system using CBA

In order to estimate the most appropriate capacity of the VAR support, a relationship

between the loading factor and the corresponding capacity of the device was found through

evaluating information regarding how much support the device can provide against voltage

collapse. The loading factor is the factor by which real and reactive power loads are increased

to calculate the maximum loading point. This relationship is shown in the Fig. 6.2. Based

on this relationship, the optimal rating of the SVC was determined to be 130 MVar but,
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considering the high investment cost associated with it and keeping in mind of increase in

demand in the future, a bigger size of SVC i.e. 200MVAR is taken in this study.
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Figure 6.2: Loading Margin Vs SVC Capacity for six-bus test system

Table 6.7 depicts the results of VSC-OPF with SVC for a six-bus test system. We can

observe that the system loading margin is increased and can now be loaded until 164% of its

base load.

The voltages at all buses after installing the SVC are close to the reference value which

is highly desired to restrict voltage limit violations. The three factors Social welfare, loading

capability and congestion cost benefits are given below:

Though we cannot draw any mathematical relationship between change in locational prices

with installation of SVC, but since the system loadability is being increased, the congestion

cost should decrease compared to base case. Reactive power marginal prices decreased with

the installation of SVC which is a desired incentive for new ventures.

Pricing VAR Support:

According to the pricing scheme explained in 5.28, Congestion cost decrease obtained due to

installation of SVC should be socialized or should be used for using the FACTS service.
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Pariticipant V LMP RMP NCP PBID P0 Pay

[p.u.] [$/MWh] [$/MVArh] [$/MWh] [MW] [MW] [$/h]

GENCO1 1.035 9.09 0.97 -0.03 0.0 90 -616

GENCO2 1.047 9.01 0.88 0.00 37.5 140 -1271

GENCO3 1.084 9.16 0.70 0.08 30.0 60 -751

ESCO4 1.000 9.63 0.92 0.20 37.5 90 1070

ESCO5 0.991 9.74 1.20 0.34 15.0 100 949

ESCO6 1.022 9.48 0.98 0.27 11.9 90 803

Totals T = 274.37 MW Congestion Cost = 145.64 $/h

Losses = 8.28 MW Loading Margin = 0.644

MLC = 451.20 MW

Table 6.7: Six-bus test system: VSC-OPF w/ contingency on line 2-4 and with SVC at bus 4

Factor Base Case SVC at bus # 4

Social Welfare 103.85 $/h 108.45 $/h

Maximum Loading Condition 315.36 MW 451.20 MW

Congestion Cost 168.96 $/h 145.64 MW

Table 6.8: Benefit factors before and after SVC is installed
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Figure 6.3: LMPs for the six-bus system

Therefore, from 5.29 ,

CCwof = 168.96;

CCwf = 145.64;

FP = CC|wof − CC|wf (6.2)

FP = 23.32$/h and this amount can be used to recover the investment cost of SVC.

The Fig. 6.3, Fig. 6.4, and Fig. 6.5, it is clearly shown that the marginal prices are

effected by placing VAR support. Compared to Standard OPF model, the prices obtained

through VSC-OPF are more homogeneous and decreased. The Fig. 6.6 and Fig. 6.7 shows

the effect of weighting factor p on the total transaction level ‘T’ and the maximum loading

margin λc

Observe that as expected the more the weight of loading margin, the higher the level

of security λc, but at the same time the lower the Transaction level ‘T’. This is due to the

power bids being free to vary so that, as p increases, congestion is minimized (security is

maximized) by both increasing λc and reducing ‘T’. The impact of SVC on the two factors is

quite obvious that by installing SVC the total transfer capability of the system increased there

by the system security increased. System is now stable at higher weighting factors providing
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Figure 6.4: RMPs for the six-bus system
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Figure 6.5: NCPs for the six-bus system
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Figure 6.6: Total transaction level for the six-bus system
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Figure 6.7: Loading margin for the six-bus system
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Figure 6.8: Congestion Cost for the six-bus system

constant transaction levels. In the Fig. 6.8 the impact of weighting factors on the congestion

cost is shown with and without SVC. The plot shows that the behavior of CC is same as ‘T’

as expected. At higher security, system is still able to maintain transaction levels and hence

the congestion cost exist. At lower security levels, we can observe that the congestion cost

decreased with SVC.

Fig. 6.9 depicts LMPs as p varies, illustrating the transition from an OPF market problem

to an OPF security problem as λc approaches its maximum imposed value of λcmax = 0.8.

LMPs decrease as the security levels increase, since the auction solutions move away from the

security limits (i.e., the system is less congested). Furthermore, even though the LMPs and

the overall total transaction level decrease, local bids may increase or decrease, accordingly to

the power schedule which better matches the obtained loading margin.

Wheeling Rates

The transmission prices are calculated based on wheeling charges method presented in

section 3.3. Table 6.9 gives the comparison of wheeling rates for a few selected buses with and

without SVC. The base case refers to the VSC-OPF with no critical line outage and no VAR
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Figure 6.9: LMPs for the six-bus system

Gen Bus - Load Bus Base Case SVC at bus # 4

1 - 4 0.562 0.537

1 - 5 0.559 0.647

2 - 4 0.684 0.625

2 - 5 0.681 0.735

2 - 6 0.402 0.478

3 - 5 0.608 0.580

3 - 6 0.329 0.323

Table 6.9: Wheeling rates for a few selected buses w.r.t. generator buses ($/MWh)
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support. The table shows that the FACTS devices are capable to impact transmission prices.

As in the case of LMPs, the wheeling rates increase at few buses and decrease at few buses.

6.3 IEEE 14-Bus Test System

Figure 6.10: Single-line daiagram of the IEEE 14-bus test system [94]

The IEEE 14-bus test system represents a portion of the American Electric Power System

and hence can be considered a realistic example. The system has enough generation and

load to simulate an electricity market, and thus, produce significant results for examining

the algorithm and prices. The system consists of five synchronous machines two of which



CHAPTER 6. SYSTEM STUDIES AND DISCUSSION 77

are synchronous compensators for reactive power support. There are 11 loads in the system,

totalling 259 MW and 81.3 MVAr. The data for the system, generators are illustrated in

Appendix A.1.3, together with the market bidding data.

6.3.1 Results and Discussion

The results for standard security constrained OPF for IEEE 14-bus system with offline power

flow limits found through CPF and N-1 contingency analysis are presented in Table 6.10. As

demonstrated above for the six-bus test case, the LMPs and RMPs are more heterogeneous

and the NCPs being very high. The table also provides the payments recieved by suppliers

and paid by consumers.

Bus V LMP RMP NCP PayS PayD

# [p.u.] [$/MWh] [$/MVArh] [$/MWh] [$/h] [$/h]

1 1.045 10.20 1.02 0.00 -4 0

2 1.059 9.52 0.95 -0.54 -1950 302

3 1.015 11.30 1.22 0.75 -918 1559

4 1.025 12.19 1.01 1.53 0 150

5 1.027 12.72 0.98 2.08 0 0

6 1.083 12.47 0.69 2.32 -17 178

7 1.062 13.15 0.92 2.06 0 0

8 1.100 13.15 0.54 2.06 -13 0

9 1.047 13.66 1.09 2.34 0 495

10 1.046 14.83 1.07 2.55 0 158

11 1.061 13.86 0.91 2.53 0 63

12 1.065 15.15 0.21 2.94 0 95

13 1.059 14.35 1.11 2.61 0 200

14 1.029 14.52 1.28 2.63 0 253

Totals T = 274.46 MW Congestion Cost = 551.79 $/h

Losses = 4.866 MW

Table 6.10: IEEE 14-bus test system: OPF with offline power flow limits

Table 6.11 provides the market outcomes of VSC-OPF without any contingencies. We can
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observe that the LMPs and RMPs are more homogeneous. The change in LMPs resulted in

decrease of congestion cost.

Bus V LMP RMP NCP PayS PayD

# [p.u.] [$/MWh] [$/MVArh] [$/MWh] [$/h] [$/h]

1 1.100 10.20 1.02 0 -967 0

2 1.084 10.36 1.28 0.13 -2136 331

3 1.023 11.30 1.65 0.78 -998 1583

4 1.011 11.54 1.72 0.88 0 821

5 1.023 11.32 1.63 0.74 0 128

6 1.061 11.76 1.68 1.54 -40 196

7 1.040 11.82 1.83 1.36 0 0

8 1.079 11.82 1.70 1.36 -41 0

9 1.021 11.98 1.96 1.63 0 529

10 1.019 12.08 1.97 1.69 0 163

11 1.036 11.99 1.87 1.65 0 63

12 1.036 12.12 1.85 1.73 0 110

13 1.029 12.22 1.92 1.77 0 246

14 0.995 12.59 2.18 1.96 0 282

Totals T = 362.62 MW Congestion Cost = 268.94 $/h Losses = 10.753 MW

Loading Margin = 0.172 MLC = 424.97 MW

Table 6.11: IEEE 14-bus test system: VSC-OPF w/o contingencies

Table 6.12 gives the sensitivity co-efficients and the ATC values. Observe that not all the

lines that carry high powers or that have sensitivity co-efficients will be the worst outage.

Here it is evident that line 1 - 2 is the most sensitive line in the system and with the outage

of this line, the system collapses and there is no solution for VSC-OPF. This is a situation

where the installation of VAR support/SVC is desired to make the system N-1 secure and

stable. Though the system looks stable without any failure, with the critical line failure, the

system doesnt have enough resources to avoid the collapse. The optimal placement of SVC is

performed according to the algorithm proposed in 5.13

Optimal Placement of SVC:
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Line # Line h− k Phk(λ) (p.u.) phk=Phk*dPhk/dλ (106) ATCN−1 (MW)

11 1-2 1.686 0.1926 -

12 3-2 0.680 0.0345 52.47

14 1-5 0.900 0.0280 49.04

15 5-4 0.566 0.0174 52.19

16 2-4 0.710 0.0074 51.27

13 3-4 0.086 0.0034 52.76

1 2-5 0.577 0.0012 51.83

4 6-13 0.273 0.0003 51.73

17 5-6 0.647 0.0002 42.55

7 9-10 0.182 0.0001 52.97

Table 6.12: IEEE 14-bus test system: Sensitivity coefficients Phk and ATC (N-1)
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The approach explained in 6.2.1 for the six-bus system to find the weights for the three

BCRs is adopted for this test case. Since, the base case solution with critical line outage

has no solution the index proposed in 5.12 has been used to rank the VAR source location

sites. The tables for judgement matrix (Table 6.3) and weighting co-efficients (Table 6.13) are

illustrated again below:

A =


1 5 7

1/5 1 3

1/7 1/3 1

 (6.3)

From the judgement matrix further analysis is performed. The Consistency Ratio (CR)

is obtained as 0.057 which is acceptable for this size problem. The corresponding weights

obtained are:

w1 = 0.724 w2 = 0.193 w3 = 0.083

Table 6.13: Weighting factors for IEEE 14-bus test system

The LSFs considered for this study are 0.8, 1.0, 1.2, 1.4. It means the system is loaded

with 80%, 100%, 120% and 140% of total load. Mean of the four values is calculated as

explained in equations 5.15, 5.17 and 5.19.

Based on the index explained in 5.12, the optimal location for VAR support is found for

the IEEE 14-bus test system. The weak bus ranking for VAR support is listed in Table 6.14.

From the table it is found that bus # 4 is the optimal location for VAR support where the

index J is maximum. Table 6.15 gives the single hierarchical ranking of VAR support buses

for IEEE 14-bus test system.

The single hierarchical ranking is defined as that ranking as obtained by using only one

BCR for all elements in one hierarchical structure. It can be observed from Table 6.15 that

the candidate VAR support buses selected by the three benefit-to-cost ratios (SBCR, MBCR

and CBCR) are different in ranking. Hence the need for calculating the weighting factors. In

the ranking table, it is desired that both social welfare and maximum loadability ratios to be

maximum where as the congestion cost ratio is to be minimum. Therefore, the negative sign

for CBCR in index 5.13 minimizes the congestion cost. The approach to find optimal size of
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Bus No Jmax

4 0.9970

5 0.9755

9 0.9464

14 0.9387

10 0.9375

13 0.9290

11 0.9279

12 0.9241

Table 6.14: Weak bus ranking for IEEE 14-bus test system

Bus # SBCR Rank # MBCR Rank # CBCR Rank #

4 1.0000 1 1.0000 1 0.9644 6

5 0.9938 2 0.8969 2 1.0000 8

9 0.9791 4 0.8114 3 0.9762 7

10 0.9783 5 0.7745 4 0.9614 5

11 0.9729 8 0.7459 8 0.9591 4

12 0.9734 7 0.7459 7 0.9096 1

13 0.9751 6 0.7465 6 0.9516 3

14 0.9864 3 0.7605 5 0.9376 2

Table 6.15: Single hierarchical ranking of VAR support buses for IEEE 14-bus test system
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SVC for this system is chosen in a similar way to six-bus test case. Fig. 6.11 depicts the plot

between loading margin and reactive power output of SVC.
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Figure 6.11: Loading Margin Vs SVC Capacity for IEEE 14-bus test system

From the plot, it is clear that the system loading margin reaches its maximum and stables

at QSV C = 1.8p.u.. Considering the high cost involved in the investment of SVC, a device of

capacity 2.5 p.u. is taken in this study for this system. Table 6.16 illustrates the spot prices

and the benefits obtained by installing SVC at the optimal location. Also observe that the

bus voltages in the three cases, the system with SVC at bus # 4 has got the voltages close to

1.0 which is desired at higher loading levels inorder to avoid voltage collapses.

The system which was prone to collapse and failed to maintain minimum level of security

with the critical line outage is now able to withstand the failure of line with the installation

of VAR support. The system with SVC is stable in all aspects. The congestion cost decreased

compared to standard OPF where as losses are increased which is expected because of the

increase in the transaction level. The loading margin which is less then 0.1 with no SVC

has been increased to 0.475 i.e. the system can be loaded safely upto 140% of base load by

maintaining minimum level of security.
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Bus V LMP RMP NCP PayS PayD

# [p.u.] [$/MWh] [$/MVArh] [$/MWh] [$/h] [$/h]

1 1.029 10.20 1.02 0.00 -991 0

2 1.031 10.35 0.95 0.10 -2108 327

3 0.976 11.30 1.13 0.71 -883 1554

4 1.000 11.41 0.74 0.71 -63 785

5 0.996 11.23 0.89 0.62 0 124

6 1.038 11.46 0.84 1.26 -20 185

7 1.024 11.55 0.86 1.09 0 0

8 1.064 11.55 0.80 1.09 -19 0

9 1.003 11.63 0.96 1.31 0 497

10 1.001 11.72 0.99 1.36 0 153

11 1.014 11.65 0.95 1.34 0 59

12 1.013 11.78 0.99 1.43 0 104

13 1.006 11.87 1.04 1.45 0 233

14 0.975 12.19 1.20 1.59 0 265

Totals T = 362.62 MW Congestion Cost = 200.35 $/h Losses = 11.64 MW

Loading Margin = 0.475 MLC = 534.7 MW

Table 6.16: IEEE 14-bus test system: VSC-OPF w/ contingency on line 1-2 and SVC on bus 4
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Figure 6.12: LMPs for the IEEE 14-bus system
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Figure 6.13: RMPs for the IEEE 14-bus system

From Fig. 6.12 depicts the LMPs at all the buses. We can observe that the LMPs decreased

with the case without any contingency. Observe that the LMPs obtained for standard OPF

with offline power flow limits are heterogeneous and very high compared to the other two

cases. The improvement in the LMPs and change in power bids help to decrease congestion

cost and to increase transaction levels.

The reactive power marginal prices in Fig. 6.13 obtained by placing SVC are more homo-

geneous and are lesser compared to standard OPF and with VSC-OPF with no contingency.

The loads are required to maintain a constant power factor of 0.92 and this high power factor

leads to lower RMPs. Observe that from Fig. 6.14 the nodal congestion prices (NCPs) reduced

compared to both standard OPF and voltage stability OPF.

Wheeling Rates The wheeling charges calculated for few selected load buses w.r.t generator

buses are shown in Table 6.17. The base case refers to the VSC-OPF with no contingencies

as the system with critical line outage is not stable. It is evident that the wheeling charges

decreased for the case with SVC at bus # 4 compared to the one with no SVC.

Analysis of Reactive Power Pricing
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Figure 6.14: NCPs for the IEEE 14-bus system

Gen Bus - Load Bus Base Case SVC at bus # 4

1 - 5 1.115 1.031

2 - 4 1.182 1.058

2 - 5 0.954 0.879

3 - 4 0.243 0.109

6 - 11 0.230 0.193

6 - 12 0.360 0.322

6 - 13 0.462 0.415

Table 6.17: Wheeling rates for a few selected buses w.r.t. generator buses ($/MWh)
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Figure 6.15: RMPs for the IEEE 14-bus system

In this case, the impact of load power factor on RMP is studied. From Fig. 6.15, 6.16,

6.17 we can see:

1. When the load power factor reduces from 1.0 to 0.7, the RMP increases gradually.

Therefore, the RMP can provide clear economic information to loads to improve their

power factors.

2. In Fig. 6.16 when the power factor is close to 1, the reactive power output of the two

generators becomes negative. This means that the system has surplus reactive power

and the generators are asked to absorb excessive reactive power. The corresponding

RMPs in 6.15 are also low or at their minimum.

3. When the voltage of bus 3 reduced with the decrease in power factor, the corresponding

RMP increased rapidly.

4. The revenue of reactive power supply based on the marginal price will be much more

than that based on the average price especially at lower power factors. Therefore some

adjustment should be made if RMP is going to be used.
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Figure 6.16: Reactive Power output of generators for IEEE 14-bus system

0.7 0.75 0.8 0.85 0.9 0.95 1
0.9

0.95

1

1.05

1.1

1.15

Power Factor

B
us

 V
ol

ta
ge

s

Bus 2
Bus 3
Bus 5
Bus 6
Bus 7
Bus 8
Bus 9
Bus 10
Bus 11
Bus 12
Bus 13
Bus14

Figure 6.17: Bus Voltages for IEEE 14-bus system
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6.4 Summary

The impact of VAR support on the electricity market prices is studied. Electricity market is

designed as a multi-objective OPF problem that maximizes social welfare and loading margin.

The index to identify and rank candidate VAR source nodes is tested on a six-bus and a

realistic IEEE 14-bus test system.



Chapter

7

Conclusions and Future Work

7.1 Principal Contributions

An approach to study the impact of optimally placed VAR support on electrity spot pricing in

the deregulated electricity market is proposed. The multi-objective OPF is modified to include

the reactive power production and consumption costs which provides proper market signals

to restrict the reactive power usage and maintain good power factor. An index to place VAR

support such that the social welfare, maximum loading condition are improved and congestion

costs are reduced based on a cost benefit analysis is proposed. Analytic Hierarchy Process

which can be used to find weights for different terms which are not related qualitatively is

extended to use in the complicated power systems to find appropriate weighting factors for

different benefit-to-cost ratios but based on engineers knowledge of each of these terms.

This thesis has described a new approach of transmission pricing calculation taking VSC-

OPF based multi-objective maximization as the objective and has studied the impact of

FACTS devices on it. A simple method to price VAR support such that the investment cost is

recovered from the market solution is proposed according to congestion cost of the system. An

analysis of reactive power pricing is performed such that the RMPs can provide clear economic

information to loads to improve their power factors.

90
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7.2 Possible Future Directions

Some possible future directions for this work are:

1. The loads considered in this study are elastic, i.e. price sensitive. Studies with voltage

dependent loads may help to better understand the impact of load voltages on market

solutions.

2. Real market scenario can be replicated by the multi-agent systems. GENCOs, TRANSCOs

DISCOs and ESCOs can all be different agents that communicate each other in real time

operations.

3. The principal’s of optimal location in transmission system can be extended to distribu-

tion system with the help of GIS.
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APPENDIX A

A.1 Network and Market Data

A.1.1 PSAT Data Format

The following tables 1 illustrate the PSAT data structure.

Table A.1: Bus Data Format (Bus.con)

Column Description Unit
1 Bus number int
2 Voltage base kV
†3 Voltage amplitude initial guess p.u.
†4 Voltage phase initial guess rad
†5 Area number (not used yet...) int
†6 Region number (not used yet...) int

1In this table and remaining tables in this chapter, fields marked with † are optional

92
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Table A.2: PQ Data Format (PQ.con)

Column Description Unit
1 Bus number int
2 Power rating MVA
3 Voltage rating kV
4 Active power p.u.
5 Reactive power p.u.
† 6 Maximum voltage p.u.
† 7 Minimum voltage p.u.
† 8 Allow conversion to impedance boolean.

Table A.3: PV Data Format (PV.con)

Column Description Unit
1 Bus number int
2 Power rating MVA
3 Voltage rating kV
4 Active power p.u.
5 Voltage magnitude p.u.
† 6 Maximum reactive power p.u.
† 7 Minimum reactive power p.u.
† 8 Maximum voltage p.u.
† 9 Minimum voltage p.u.
†10 Loss participation coefficient −

Table A.4: Shunt Data Format (Shunt.con)

Column Description Unit
1 Bus number int
2 Power rating MVA
3 Voltage rating kV
4 Frequency rating Hz
5 Conductance p.u.
6 Susceptance p.u.
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Table A.5: SW Data Format (SW.con)

Column Description Unit
1 Bus number int
2 Power rating MVA
3 Voltage rating kV
4 Voltage magnitude p.u.
5 Reference angle p.u.
† 6 Maximum reactive power p.u.
† 7 Minimum reactive power p.u.
† 8 Maximum voltage p.u.
† 9 Minimum voltage p.u.
†10 Active power guess p.u.
†11 Loss participation coefficient −

Table A.6: Line Data Format (Line.con)

Column Description Unit
1 From Bus int
2 To Bus int
3 Power Rating MVA
4 Voltage Rating kV
5 Frequency Rating Hz
6 Line Length km
7 (not used yet...) −
8 Resistance p.u. (Ω / km )
9 Reactance p.u. ( H / km )
10 Susceptance p.u. ( F / km )
† 11 (not used yet...) −
† 12 (not used yet...) −
† 13 Current limit p.u.
† 14 Active power limit p.u.
† 15 Apparent power limit p.u.
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Table A.7: Demand Data Format (Demand.con)

Column Description Unit
1 Bus number int
2 Power Rating MVA
3 Forecasted active power p.u.
4 Forecasted reactive power p.u.
5 Maximum power bid p.u.
6 Minimum power bid p.u.
7 Actual power bid p.u.
8 Fixed cost(active power) p.u. ($/h )
9 Proportional cost(active power) p.u. ($/MWh)
10 Quadratic cost(active power) p.u. ($/MW 2h)
11 Fixed cost(reactive power) p.u. ($/h )
12 Proportional cost(reactive power) p.u. ($/MV Arh)
13 Quadratic cost(active power) p.u. ($/MW 2h)

Table A.8: Supply Data Format (Supply.con)

Column Description Unit
1 Bus number int
2 Power Rating MVA
3 Forecasted active power p.u.
4 Forecasted reactive power p.u.
5 Maximum power bid p.u.
6 Minimum power bid p.u.
7 Actual power bid p.u.
8 Fixed cost(active power) p.u. ($/h )
9 Proportional cost(active power) p.u. ($/MWh)
10 Quadratic cost(active power) p.u. ($/MW 2h)
11 Fixed cost(reactive power) p.u. ($/h )
12 Proportional cost(reactive power) p.u. ($/MV Arh)
13 Quadratic cost(active power) p.u. ($/MW 2h)
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A.1.2 6-Bus Test System

Bus.con = [ ...

1 400 1 0 2 1;

2 400 1 0 2 1;

3 400 1 0 2 1;

4 400 1 0 2 1;

5 400 1 0 2 1;

6 400 1 0 2 1 ];

Line.con = [ ...

2 3 100 400 60 0 0 0.05 0.25 0.06 0 0 1.3856 0.1827;

3 6 100 400 60 0 0 0.02 0.1 0.02 0 0 1.3856 0.4745;

4 5 100 400 60 0 0 0.2 0.4 0.08 0 0 1.3856 0.0773;

3 5 100 400 60 0 0 0.12 0.26 0.05 0 0 1.3856 0.2304;

5 6 100 400 60 0 0 0.1 0.3 0.06 0 0 1.3856 0.0219;

2 4 100 400 60 0 0 0.05 0.1 0.02 0 0 1.3856 0.5769;

1 2 100 400 60 0 0 0.1 0.2 0.04 0 0 1.3856 0.1174;

1 4 100 400 60 0 0 0.05 0.2 0.04 0 0 1.3856 0.3984;

1 5 100 400 60 0 0 0.08 0.3 0.06 0 0 1.3856 0.5044;

2 6 100 400 60 0 0 0.07 0.2 0.05 0 0 1.3856 0.4332;

2 5 100 400 60 0 0 0.1 0.3 0.04 0 0 1.3856 0.3311];

SW.con = [ ...

2 100 400 1.05 0 1.5 -0.15 1.1 0.9 1.03 1 ];

PV.con = [ ...

1 100 400 0.675 1.05 1.5 -0.15 1.1 0.9 1;

3 100 400 0.45 1.05 1.5 -0.15 1.1 0.9 1];

PQ.con = [ ...

4 100 400 0.675 0.45 1.1 0.9 0;

5 100 400 0.75 0.525 1.1 0.9 0;

6 100 400 0.675 0.45 1.1 0.9 0 ];

Demand.con = [ ...

4 100 0.25 0.1210 0.375 1e-5 0 0 12 0 0 1.20 0 1;

5 100 0.1 0.0484 0.15 1e-5 0 0 10.5 0 0 1.05 0 1;

6 100 0.2 0.0968 0.3 1e-5 0 0 9.5 0 0 0.95 0 1 ];

Supply.con = [ ...

1 100 0.3 0.3 1e-005 0 0 9.7 0 0 0.97 0 0 0;

2 100 0.375 0.375 1e-005 0 0 8.8 0 0 0.88 0 0 0;

3 100 0.3 0.3 1e-005 0 0 7 0 0 0.70 0 0 0];

Varname.bus = {...

’Bus1’; ’Bus2’; ’Bus3’; ’Bus4’; ’Bus5’;

’Bus6’};

Bus.con(:,3) = [...

1.0500000; 1.0500000; 1.0500000; 1.0048; 0.99391;

1.0086];

Bus.con(:,4) = [...

0.01895; 0.0000000;-0.02549;-0.03039;-0.05393;

-0.05415];

A.1.3 IEEE 14-Bus Test System

Bus.con = [ ...
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1 69 1 0 4 1;

2 69 1 0 4 1;

3 69 1 0 4 1;

4 69 1 0 4 1;

5 69 1 0 4 1;

6 13.8 1 0 2 1;

7 13.8 1 0 2 1;

8 18 1 0 3 1;

9 13.8 1 0 2 1;

10 13.8 1 0 2 1;

11 13.8 1 0 2 1;

12 13.8 1 0 2 1;

13 13.8 1 0 2 1;

14 13.8 1 0 2 1 ];

Line.con = [ ...

2 5 100 69 60 0 0 0.05695 0.17388 0.034 0 0 0 0 0;

6 12 100 13.8 60 0 0 0.12291 0.25581 0 0 0 0 0 0;

12 13 100 13.8 60 0 0 0.22092 0.19988 0 0 0 0 0 0;

6 13 100 13.8 60 0 0 0.06615 0.13027 0 0 0 0 0 0;

6 11 100 13.8 60 0 0 0.09498 0.1989 0 0 0 0 0 0;

11 10 100 13.8 60 0 0 0.08205 0.19207 0 0 0 0 0 0;

9 10 100 13.8 60 0 0 0.03181 0.0845 0 0 0 0 0 0;

9 14 100 13.8 60 0 0 0.12711 0.27038 0 0 0 0 0 0;

14 13 100 13.8 60 0 0 0.17093 0.34802 0 0 0 0 0 0;

7 9 100 13.8 60 0 0 0 0.11001 0 0 0 0 0 0;

1 2 100 69 60 0 0 0.01938 0.05917 0.0528 0 0 0 0 0;

3 2 100 69 60 0 0 0.04699 0.19797 0.0438 0 0 0 0 0;

3 4 100 69 60 0 0 0.06701 0.17103 0.0346 0 0 0 0 0;

1 5 100 69 60 0 0 0.05403 0.22304 0.0492 0 0 0 0 0;

5 4 100 69 60 0 0 0.01335 0.04211 0.0128 0 0 0 0 0;

2 4 100 69 60 0 0 0.05811 0.17632 0.0374 0 0 0 0 0;

5 6 100 69 60 0 5 0 0.25202 0 0.932 0 0 0 0;

4 9 100 69 60 0 5 0 0.55618 0 0.969 0 0 0 0;

4 7 100 69 60 0 5 0 0.20912 0 0.978 0 0 0 0;

8 7 100 18 60 0 1.30435 0 0.17615 0 0 0 0 0 0 ];

Line.con(:,13) = 1.5498;

Line.con(:,14) = [0.49535; 0.09027; 0.01987; 0.21251; 0.08948; 0.03882; 0.07662; 0.12167; 0.07268; 0.38089;...

1.9237; 0.89421; 0.24213; 0.89121; 0.78599; 0.6519; 0.54778; 0.21166; 0.38089; 0]*0.9;

SW.con = [ ...

1 100 69 1.06 0 1.0 -0.4 1.1 0.9 2.324 1 ];

PV.con = [ ...

2 100 69 0.4 1.045 0.5 -0.4 1.1 0.9 1;

3 100 13.8 0 1.07 0.4 -0.4 1.1 0.9 1;

6 100 69 0 1.01 0.24 -0.06 1.1 0.9 1;

8 100 18 0 1.09 0.24 -0.06 1.1 0.9 1 ];

PQ.con = [ ...

11 100 13.8 0.035 0.018 1.1 0.9 0;

13 100 13.8 0.135 0.058 1.1 0.9 0;

3 100 69 0.942 0.19 1.1 0.9 0;

5 100 69 0.076 0.016 1.1 0.9 0;

2 100 69 0.217 0.127 1.1 0.9 0;

6 100 13.8 0.112 0.075 1.1 0.9 0;

4 100 69 0.478 0.04 1.1 0.9 0;

14 100 13.8 0.149 0.05 1.1 0.9 0;

12 100 13.8 0.061 0.016 1.1 0.9 0;

10 100 13.8 0.09 0.058 1.1 0.9 0;

9 100 13.8 0.295 0.166 1.1 0.9 0 ];
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Supply.con = [ ...

1 100 0.10 1.0 1e-005 0 0 10.2 0 0 1.02 0 0 0;

2 100 0.10 2.0 1e-005 0 0 9.5 0 0 0.95 0 0 0;

3 100 0.10 2.0 1e-005 0 0 11.3 0 0 1.13 0 0 0];

Demand.con = [ ...

2 100 0.1519 0.0646 0.3038 1e-5 0 0 13 0 0 1.300 0 0 0;

3 100 0.6595 0.2803 1.319 1e-5 0 0 13.2 0 0 1.320 0 0 0;

4 100 0.3346 0.1422 0.6692 1e-5 0 0 12.1 0 0 1.210 0 0 0;

5 100 0.0532 0.0226 0.1064 1e-5 0 0 12.33 0 0 1.233 0 0 0;

6 100 0.0784 0.0333 0.1568 1e-5 0 0 12.24 0 0 1.224 0 0 0;

9 100 0.2065 0.0878 0.4130 1e-5 0 0 13.55 0 0 1.355 0 0 0;

10 100 0.063 0.0268 0.1260 1e-5 0 0 14.66 0 0 1.466 0 0 0;

11 100 0.0245 0.0104 0.0490 1e-5 0 0 13.67 0 0 1.367 0 0 0;

12 100 0.0427 0.0182 0.0854 1e-5 0 0 14.62 0 0 1.462 0 0 0;

13 100 0.0945 0.0402 0.1890 1e-5 0 0 14.22 0 0 1.422 0 0 0;

14 100 0.1043 0.0443 0.2086 1e-5 0 0 14.45 0 0 1.445 0 0 0];

Demand.con(:,4) = Demand.con(:,3)*0.425;

Varname.bus = {...

’Bus 01’; ’Bus 02’; ’Bus 03’; ’Bus 04’; ’Bus 05’;

’Bus 06’; ’Bus 07’; ’Bus 08’; ’Bus 09’; ’Bus 10’;

’Bus 11’; ’Bus 12’; ’Bus 13’; ’Bus 14’};
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[21] Cañizares, C. A., Kodsi, S. K. M., “Dynamic versus steady-state modeling of FACTS
controllers in transmission congestion,” IEEE Power Engineering Society General Meet-
ing, June 2006.
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Francaise des Electriciena, Series. 8, Vol. 3, August 1962.

[23] Cazzol, M. V. et al., “Unified power flow controller (UPFC) model in the framework
of interior point based active and reactive OPF procedure,” International Journal of
Electrical Power and Energy Systems, Vol. 24, no. 6, pp. 431-437, August 2002.

[24] Chattopadhyay, D., Bhattacharya, K., Parikh, J., “Optimal reactive power planning and
its spot-pricing: an integrated approach,” IEEE Transactions on Power Systems, Vol.
10, no. 4, pp. 2014-2020, Nov. 1995.



REFERENCES 101

[25] Chiang, H. D., Flueck, A. J., Shah, K. S., Balu, N., “CPFLOW: A Pratical Tool for
Tracing Power System Steady-State Stationary Behavior Due to Load and Generation
Variations,” IEEE Transactions on Power Systems, Vol. 10, no. 2, pp. 623-634, May
1995.

[26] Chen, A. H. L., Nwankpa, C. O., Kawatny, H. G. and ming Yu, X., “ Voltage Stability
Toolbox: An Introduction and Implementation, ” Proceedings of North American Power
Symposium, MIT, 1996.

[27] Choi, J. Y., Rim, S. H., Park, J. K., “Optimal real time pricing of real and reactive
powers,” IEEE Transactions on Power Systems, Vol. 3, no. 4, pp. 1226-1231, Nov. 1998.

[28] Chow, J., “Power System Toolbox Version 2.0: Load Flow Tutorial and Functions,”
Cherry Tree Scientific Software, RR-5 Colborne, Ontario K0K 1S0, 1991-1999.

[29] Chung, T. S., Li, Y. Z.,“A hybrid GA approach for OPF with consideration of FACTS
devices,” IEEE Power Engineering Review, Vol. 21, no. 2, pp. 47-50, Feb. 2001.
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