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ABSTRACT 

Novel Treatment Strategies for Brain metastases of breast cancer 

 

Afroz Shareef Mohammad 

About 20-40% of advanced breast cancer patients will develop symptomatic brain metastases. 
Once the patients diagnosed with metastatic brain tumors, there is 80% mortality rate within one 
year. The presence of blood-brain barrier makes it difficult for drugs to reach site of action in 
brain related ailments. To overcome we came up with two strategies: First, we encapsulated the 
chemotherapy in a liposome and thereby significantly improving the plasma pharmacokinetics of 
chemotherapy. We also observed that tumor drug exposure significantly improved by liposomal 
formulation. This improvement in plasma drug pharmacokinetics and tumor drug accumulation 
after administration of liposomal formulation, decreased the tumor burden and significantly 
increased the median survival by 40% when compared to vehicle group in an experimental 
model of brain metastases. In another strategy, we want to modulate blood-brain barrier in brain 
metastases to increase permeation. Notch-4 signaling pathway plays an important role in 
angiogenesis and inhibition of Notch-4 by DAPT will increase the expression of vascular 
endothelial growth factor receptor-2 ultimately leading to leaky vasculature in metastatic brain 
tumor. In our studies, we found that inhibition of Notch-4 by DAPT increased the permeation 
14C- Aminoisobutyric acid specifically in the brain metastases. We also observed that the 
progression of tumor burden was decreased when animals were administered both Notch-4 
inhibitor and chemotherapy. We also found that median survival is increased by 20% in animals 
treated with chemotherapy with concurrent Notch-4 inhibition by DAPT. Finally, we evaluated 
the effect of chemotherapy on normal brain region adjacent to brain metastases. We found that 
the permeation of fluorescent tracers and 14C-Palcitaxel increased in brain adjacent to tumor. We 
also found that the expression of activated astrocytes increased in brain adjacent to tumors after 
chronic chemotherapy treatment in our brain metastases model. Together these results suggest 
that novel strategies improved survival in brain metastases of breast cancer. Future studies 
should aim at combining these individual strategies to further increase survival in preclinical 
model. At the same time care should be taken not increase chemotherapy permeation into the 
normal brain as it may lead to unwanted effects like chemo-fog.   
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CHAPTER 1 

INTRODUCTION 
 

 

1.1 Introduction 

Over 500,000 people die every year of cancer in US and over 8 million people die of 

cancer worldwide every year.  The incidence of cancer is rising with the rise in life expectancy, 

by 2030 it was estimated that over 20 million people worldwide would be effected by cancer 

every year with about 14 million estimated cancer deaths worldwide. Metastasis refers to 

spreading of cancer to distant organ from the primary site of origin and most of the cancer deaths 

are due to metastases. 

With improved therapies for metastases, patients are surviving longer but brain 

metastases remains a singular obstacle. The incidence of brain metastases is increasing and many 

predict that this increase is due to improved survival of patients with primary cancer.  About 10-

40% of advanced breast cancer patients develop brain metastases. Once diagnosed with brain 

metastases of breast cancer, the survival rate at one year is around 20%. Brain metastases from 

breast cancer cause seizures, headache, and neurologic deficits beyond mortality. Primary 

therapeutic options involves surgery, followed by radiation therapy. Unfortunately, the 

bioavailability of most of the chemotherapy is limited due to the presence of blood-brain barrier 

(BBB).  

  The blood vessels in brain are different when compared to rest of the body; the blood 

vessels in brain are formed by compact endothelial cells with tight junctions surrounded by 

astrocytic foot processes and pericytes.  These cells also express various efflux transporters and 
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are enzymatically active forming a unique barrier called BBB to maintain brain homeostasis. 

BBB regulates the movement of many solutes into the brain and unfortunately, most of the 

anticancer agents does not qualify to be the candidates to cross BBB and treat metastatic brain 

tumors.  

In this dissertation, we investigate treatment strategies to overcome BBB at the tumor, 

blood-tumor barrier (BTB) for efficacious chemotherapy concentration in the tumor. First, we 

administer liposomal irinotecan in an experimental model of brain metastases of breast cancer 

and will evaluate the efficacy to the drug in reduction of tumors burden and improvement of 

median survival when compared with vehicle and conventional non-liposomal formulation. 

These nano-liposomes owing to its size take the advantage of enhanced permeation and retention 

(EPR) effect and accumulate in the metastatic lesions. Liposomes will also mask the drug related 

disadvantages in crossing the BTB like efflux from BTB and cancer cells. We evaluate novel 

methodologies to modulate BTB specifically such that the BTB permeability is increased which 

will lead to increased chemotherapy concentration in the metastatic lesion and ultimately, will 

improve the survival in an experimental model of metastatic brain tumors from breast cancer. 

Additionally, we also explored the effect of anticancer agents in normal brain adjacent to tumors. 

Chapter 2 discusses a review of current treatment strategies of metastatic brain tumors. 

Here we discuss all the current treatment strategies including surgical resection, radiation therapy 

and chemotherapy and their shortcomings in the management of metastatic brain tumors. Other 

CNS drug delivery strategies were reviewed for the treatment of metastatic brain tumors. 

Chapter 3 discusses the Pharmacokinetics of a Nano-liposomal formulation in experimental brain 

tumor model of triple negative breast cancer. Nano-liposomal formulation of irinotecan is 

hypothesized to have improved distribution to brain tumors because the formulation avoids 
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efflux transporters at BTB and takes advantage of the enhanced permeability and retention (EPR) 

effect of brain metastases. We investigate the concentration of irinotecan and its active 

metabolite SN-38 from both liposomal formulation and non-liposomal irinotecan in plasma and 

brain tumors. We evaluate the half-lives of drugs from non-liposomal irinotecan and liposomal 

irinotecan and finally, we investigate drug exposure to brain tumors by studying area under the 

curve for both non-liposomal irinotecan and liposomal irinotecan.  

After studying the pharmacokinetics of liposomal irinotecan, we evaluate 

pharmacodynamics of liposomal irinotecan in chapter 4. Here, we study the accumulation of 

fluorescently tagged liposomes in brain tumors and then we study the progression of tumor 

burden in different treatment groups. Finally, we investigate pharmacodynamics effect by 

studying median survival after treatment with vehicle, non-liposomal irinotecan and liposomal 

irinotecan.  

In Chapter 5, we examine a new strategy to increase the permeation of the BTB. Notch-4 

signaling pathway plays an important role in maintaining endothelial quiescence and thereby 

maintaining the integrity of blood vessels in brain by down regulation of vascular endothelial 

growth factor receptor-2 (VEGFR-2). We hypothesize, inhibiting the Notch-4 signaling pathway 

will lead to formation of leaky vasculature in the tumor thereby increasing the permeation of 

BTB. We administer chemotherapy with concurrent inhibition of Notch-4. We expect this 

strategy will improve the chemotherapy concentration reaching the brain tumors ultimately 

leading to increased median survival. We study mRNA and protein levels of VEGFR-2 on 

human brain endothelial cells (HBEC) upon inhibition of Notch-4 signaling pathway.  We 

investigate permeation changes in tumors after Noth-4 inhibition by 14C- 2-Aminoisobutyric 
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acid.  Finally, we study the survival in an experimental model after chemotherapy administration 

with concurrent Notch-4 inhibition. 

With many new strategies to treat metastatic brain tumors involves overcoming BBB, in 

Chapter 6 we study the permeation changes and effect of chemotherapy on normal brain 

surrounding the tumor. We study transfer rate constant of fluorescent tracers in brain adjacent to 

tumors (BAT) and then we investigate the concentrations of 14C-paclitaxel using quantitative 

autoradiography. Finally, we study the effect of chemotherapeutic agents on astrocytes in BAT 

regions. 

In summary, this dissertation evaluates current treatment strategies for metastatic brain 

tumor as well as new strategies to overcome the BTB and treat metastatic brain tumors. This 

dissertation provides novel strategies where, chemotherapy is administered in Nano-liposomal 

formulation and a proangiogenic strategy, where we hypothesize increase in permeation at the 

BTB by increasing inefficient angiogenesis. This dissertation also documents the cytotoxic 

effects of chemotherapy on normal brain region around the tumors. As a whole, the data 

emphasizes the need of novel strategies to improve drug concentrations specifically in the brain 

tumors without affecting BBB in normal brain region.    
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CHAPTER 2 

CURRENT TREATMENT STRTEGIES FOR TREATMENT OF 

METASTATIC BRAIN TUMORS  

 

2.1 Blood-Brain Barrier 

Blood vessels deliver blood from the heart to different organs and the blood vessels 

especially the microvasculature has different properties to meet the requirements of the particular 

organ or tissue they vascularize (Palade 1961). Neurons of brain communicate and function by 

chemical and electrical signals. For these signals to be reliable and reproducible, the ionic 

concentration of the tissue has to be constant maintaining homeostasis (Abbott, Patabendige et 

al. 2010). The microvasculature of the brain plays an important role in regulating the entry of any 

solute into the brain parenchyma and helps in maintaining homoeostasis for proper neuronal 

function (Abbott, Patabendige et al. 2010). This unique property of brain microvasculature was 

described as Blood-brain barrier (BBB). The BBB is formed by continuous non-fenestrated 

capillaries, where endothelial cells are attached together by tight junction protein complexes 

(TJs), including claudins, occludins and intercellular adhesion molecules, which restricts the 

paracellular diffusion of solutes (Fig 2.1) (Reese and Karnovsky 1967, Ballabh, Braun et al. 

2004). The brain endothelial cells also restricts vesicle mediated transcellular movement 

compared to peripheral endothelium(Coomber and Stewart 1985).  The endothelial cells are 

surrounded by pericytes on the abluminal side which, have contractile proteins and they can 

regulate the diameter of the capillary (Peppiatt, Howarth et al. 2006). Astrocytic foot processes 

also ensheeth the capillaries providing link between neurons and blood vessels (Fig 2.1). 

Through this cellular link, astrocytes mediate blood flow in accordance with neuronal activity 
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(Attwell, Buchan et al. 2010, Gordon, Howarth et al. 2011). Astrocytes play an important role in 

formation of BBB and astrocyte secreted factors play an important role in BBB function (Janzer 

and Raff 1987). In addition to physical barrier properties of brain capillaries, there are efflux 

transporters including p-glycoprotein, breast cancer resistance protein and the family of multi-

drug resistance proteins expressed on brain endothelium, which will limit lipophilic solutes form 

entering the brain (Cordon-Cardo, O'Brien et al. 1989, Thiebaut, Tsuruo et al. 1989). Enzymes 

secreted by BBB (e.g., phosphatases) will inactivate some molecules like peptides and 

neuropeptides, preventing them to cross BBB (Minn, Ghersi-Egea et al. 1991, Witt, Gillespie et 

al. 2001). 

2.1.1 Functions of BBB 

BBB provides stable environment for the neuronal activity by ion regulation. The ion 

concentration is kept constant despite the changes in plasma ion concentration due to 

exercise/meal/some disease condition (Bradbury, Stubbs et al. 1963, Hansen 1985, Somjen 

2002). The BBB also separates the pool of  central neurotransmitters from that of peripheral 

neurotransmitters, though both the neurotransmitters are same, the peripheral neuroexcitatory 

amino acid glutamate which is present in high concentrations in blood may cause permanent 

neurotoxic damage if unregulated by BBB (Abbott, Patabendige et al. 2010). Macromolecules 

like albumin, pro-thrombin and plasminogen may initiate apoptosis and are detrimental to central 

nervous system. BBB restricts these macromolecules from entering into the brain tissue (Nadal, 

Fuentes et al. 1995, Gingrich and Traynelis 2000). BBB prevents the entry of many neurotoxic 

substance into the CNS by various active efflux mechanisms present. The neurotoxic substance 

may be endogenous metabolites or xenobiotics ingested (Abbott, Patabendige et al. 2010). BBB 

also plays an important role in delivery of nutrients to brain. It has specific transport systems to 
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transport various essential water-soluble nutrients (Abbott, Patabendige et al. 2010). 

Angiogenesis and vasculogenesis is regulated by many pathways including vascular endothelial 

growth factor (VEGF) and its receptors (VEGFR) and Notch signaling plays an important role in 

regulating the endothelial cell functions (Hofer and Schweighofer 2007, Kume 2009). 

While the BBB helps in maintaining the homeostasis for proper functioning of the brain, 

it restricts delivery of many central nervous system (CNS) drugs including chemotherapies 

(Toth, Veszelka et al. 2011).  Some of the chemotherapeutics like paclitaxel and doxorubicin are 

most significantly subjected to efflux transport mechanisms present at the BBB (Löscher and 

Potschka 2005, Thomas, Taskar et al. 2009).  

2.2 Brain Metastases 

Joseph Recamier in 1829 coined the term metastases to describe spread of cancer in 

treatise “Recherches sur le traitement du cancer”(Fisher 2008). In Greek metastases means, 

migration; removal or change. In 1858 Rudolf Virchow described the process of metastasis was 

determined by mechanical factors like the arrest of tumor-cell emboli in the vasculature (Fisher 

2008).  Stephen Paget, the father of metastases in 1889 published a paper “The distribution of 

secondary growth in cancer of the breast”, where he analyzed 735 breast cancer patients and 

argued that metastatic distribution is not due to chance. Paget came up with “seed and soil” 

hypothesis, where cancer cells are referred to as “seeds” and the distribution of these cancer cells 

in the body should be understood by the “properties of soil” which refers to the secondary 

organs. The quote from the paper is “When a plant goes to seed, its seeds are carried in all 

directions, but they can only live and grow if they fall on congenial soil” suggesting that the 

metastatic distribution pattern doesn’t not follow blood flow distribution as proposed by Virchow 

(Paget 1889). In 1928, James Ewing, questioned “seed and soil” hypothesis and proposed that 
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the pattern of metastases was determined by the anatomy of vascular and lymphatic drainage 

from the primary tumor (Pienta, Robertson et al. 2013). Isaiah Fidler from MD Anderson in 1970 

published series of studies, where he demonstrated that metastasis occurred in sequential steps 

where cancer cells interact with microenvironment and selecting for successful cancer cells in 

stochastic manner. The process proposed by him took into account Virchow, Paget and Ewing’s 

models (Talmadge and Fidler 2010). 

The incidence of metastatic brain tumors was estimated between 200,000 and 300,000 

according to American Brain Tumor Association. About 20-40 % of all cancers eventually 

metastasize to brain(Ostrom, Gittleman et al. 2016). More than 80% of metastatic brain tumors 

develop multiple metastatic lesions in the brain. The site of origin for brain metastases is mostly 

from lung, followed by breast and melanoma (Ostrom, Gittleman et al. 2016). Brain metastases 

from breast cancer is second most common type of metastatic brain tumors after lung cancer. In 

about 30% breast cancer patients, metastatic lesions in brain were found via autopsy (Mueller 

and Jeffries 1975, Tsukada, Fouad et al. 1983, Sant, Capocaccia et al. 1998, Lin, Bellon et al. 

2004). Once the patient diagnosed with metastatic brain tumors from breast cancer, one-year 

survival is only 20%. The main reason for this grim prognosis is the inability of 

chemotherapeutic agents to cross BBB (Lockman, Mittapalli et al. 2010). 

2.3 Blood-Tumor Barrier  

Once the metastatic lesions start developing in the brain, the integrity of the BBB is lost 

in the tumor and microvasculature in the tumor is often referred to as blood-tumor-barrier (BTB) 

(Fig 2.2) (Lockman, Mittapalli et al. 2010). As the tumors grow, they promote the growth of new 

blood vessels, a process called angiogenesis. These new blood vessels in brain tumors lack tight 
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junctions and also proper astrocytic contact, as result the blood vessels in the tumors (BTB) have 

increased permeability and reduced blood flow (Front, Israel et al. 1984, Bertossi, Virgintino et 

al. 1997, Liu, Xue et al. 2008). In addition, the angiogenic vessels also have fenestrations, which 

increase the permeability through paracellular pathways (Blasberg, Gazendam et al. 1980, 

Groothuis, Fischer et al. 1983). 

The BTB permeability is not homogenous from tumor to tumor and within the metastatic 

lesion (Lockman, Mittapalli et al. 2010).  BTB permeability between different tumor preclinical 

tumor models were heterogeneous. Brain metastases become hypoxic as they grow beyond their 

blood supply, to meet their oxygen and nutrition requirements, tumor cells secrete vascular 

endothelial growth factor (VEGF) to initiate the process of new blood vessel formation (Folkman 

1971). VEGF secretion is associated with increased turnover of endothelial cells leading to 

increased permeability (Folkman 1971). Angiogenesis is a dynamic process and the 

heterogeneity of BTB permeability between the tumors and within the tumors can be attributed 

to this dynamic nature (LeBlanc, Krishnan et al. 2012, Betz, Lenard et al. 2016). 

2.4 Current Treatment modalities for brain metastases of breast cancer.   

Current treatment for metastatic brain tumors include surgery, stereotactic radiosurgery 

(SRS), whole brain radiation therapy (WBRT), and chemotherapy. Usually, more than one type 

of treatment is suggested and treatment has become increasingly individualized. Treatment for 

patients with karnofsky performance score (KPS) 70 or higher, age < 65 years and with single 

metastatic brain tumor includes surgical resection followed by WBRT or SRS. There was no 

difference in overall survival with WBRT or SRS but with SRS cognitive deterioration free 

survival was observed. Treatment for patients with multiple metastatic lesions who are not 

candidates for surgical resection includes either WBRT or SRS (Aoyama, Shirato et al. 2006, 
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Chang, Wefel et al. 2009, Kocher, Soffietti et al. 2011). Treatment for patients with poor 

prognosis (KPS <70) WBRT is the preferred treatment modality. With SRS the median brain 

recurrence-free survival was 6 months (range, 4 to 11 months) and median overall survival was 

10 months (range, 4 to 18 months)(Kelly, Lin et al. 2012). Chemotherapy for treatment of 

metastatic brain tumors from breast cancer include commonly used cytotoxic agents for breast 

cancer like cyclophosphamide, fluorouracil, methotrexate, and doxorubicin (Boogerd, Dalesio et 

al. 1992, Lin, Bellon et al. 2004). However, the penetration of chemotherapy is limited due to the 

presence of blood-tumor barrier. An objective response rate of 50 percent and a median duration 

of response of 7 months was observed with a variety of chemotherapy regimens (Rosner, 

Nemoto et al. 1986). For treatment of brain metastases from HER2-positive breast cancer, 

targeted agents like lapatinib, transtuzumab have proven to be effective. The combination 

therapy of lapatinib and capecitabine was evaluated in many trials, in Lapatinib Expanded 

Access Program (LEAP), the objective response rate was 18 percent (Boccardo, Kaufman et al. 

2008).  In another Italian trial, 32 percent partial response rate was observed with a combination 

therapy of capecitabine and lapatinib (Metro, Foglietta et al. 2011).   

2.5 Current strategies to bypass BBB or BTB 

Drugs used in the treatment of CNS disorders like Psychosis, Parkinson's disease, 

Alzheimer's disease, Affective mood disorders, Pain and Brain tumors  experience a peculiar 

hurdle of passing into the brain because of a selective barrier between brain and blood 

(Oldendorf 1974). There is a need for development of successful techniques to deliver effective 

concentrations of the drug across the BBB. Currently, there are two general strategies employed 

for drug delivery across the BBB, invasive and non-invasive techniques. Invasive strategies that 

are employed for drug delivery in CNS include intracranial drug delivery though intra-
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cerebroventricular (ICV) injection and intra-cerebral implants (Pathan, Iqbal et al. 2009). Non-

invasive approaches include osmotic disruption of BBB/BTB, disruption of BBB/BTB through 

focused ultrasound and carrier mediated drug delivery system (Pathan, Iqbal et al. 2009, Kuo, 

Lin et al. 2011). 

2.5.1 Convection-enhanced delivery (CED): Bobo et al., in 1994 first described CED, where 

catheters are surgically implanted to administer chemotherapeutic agents directly into the tumor 

using positive pressure micro-perfusion (Bobo, Laske et al. 1994). Many chemotherapeutic 

agents are under investigation using CED (Kunwar 2003, Kioi, Husain et al. 2006, Sampson, 

Akabani et al. 2006). The major limitation with CED is poor drug distribution due to backflow 

and it is highly invasive (Rapoport 2001, Tanner, Holtmannspotter et al. 2007, Sampson, Archer 

et al. 2009). CED is beneficial in single brain tumors where drug distribution can be targeted to 

the tumors but in case multiple tumors, it is impractical to introduce catheter surgically into each 

tumor.  

2.5.2 Intra-cerebroventricular injection (ICV): It is a highly invasive technique, where the 

drugs of interest are directly injected into the cerebrospinal fluid (CSF) present in the cerebral 

ventricles. Injecting directly into the ventricles, the drugs bypasses the BBB, however there are 

many studies suggesting complete clearance of injected drugs from CSF  into the blood. Most of 

the studies indicate that only <10% of drug is available in brain after 1-3 h of intraventricular 

injection of radiolabeled sucrose (Ghersi-Egea, Finnegan et al. 1996, Ghersi-Egea, Gorevic et al. 

1996). In a study performed by Nagaraja et al., they administered radiolabeled insulin like 

growth factor (IGF-1) into rat ventricle through ICV using stereotaxic coordinates. They found 

that nearly, 80% of IGF-1 was cleared with in first 30 min after administration. They also studies 

the concentration of IGF-1 at various distances from the ventricles and found that within 0.5 mm 
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from the ventricles the diffusion of IGF-1 was negligible (Fig 2.)(Nagaraja, Patel et al. 2005). 

ICV injection are highly invasive and only useful if the metastatic tumors are present around the 

ventricles, unfortunately most of the brain metastases of breast cancer form multiple tumors in 

the cerebrum. 

2.5.3. Intracerebral Implants: FDA approved Gliadel wafer, a biodegradable polymer loaded 

with chemotherapy drug BCNU for implantation after surgical resection of gliomas (Perry, 

Chambers et al. 2007). This local delivery of the drugs eliminates side effects like fatigue and 

hair loss. A phase III clinical trial with gliadel wafers in patients with glioma the median survival 

improved from 11.6 months to 13.9 months (Westphal, Hilt et al. 2003). This study shows 

survival benefit with local delivery of chemotherapy. Implantation of wafers is highly invasive 

and this modality is good for single tumors. In case of metastatic brain tumors, surgically 

implanting multiple wafers into metastatic lesions is impractical.  

2.5.4 Osmotic disruption of BBB: Osmotic disruption of BBB by infusing hyperosmolar agent 

was first reported by Rapoport et al. in 1972 (Rapoport, Hori et al. 1972). After administration of 

hyperosmotic agent like mannitol, the brain endothelial cells shrink resulting in dysfunction of 

tight junctions which will lead to increase in BBB permeability (Fig. 2.4) (Rapoport and 

Robinson 1986). This increase in BBB permeability for few hours allows a therapeutic window 

for administration of the chemotherapy (Rapoport and Robinson 1986). Many studies reported 

that there is an increase on drug concentration up to 90-folds after osmotic disruption of BBB 

(Williams, Henner et al. 1995).  In a trail with 30 patients with primary CNS lymphoma, median 

survival improved from 17.8 months to 44.5 months after osmotic disruption of BBB with 

mannitol and chemotherapy (cyclophosphamide) before radiation therapy, when compared it to 

controls receiving only radiotherapy(Neuwelt, Goldman et al. 1991).  
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The selective opening of BBB in the tumor region (BTB) through osmotic BBB 

disruption is still a debate; many preclinical studies suggest that the hyperosmotic agents did not 

selectively open BBB in the tumor region (Nakagawa, Groothuis et al. 1984, R. Groothuis, C. 

Warkne et al. 1990, Zünkeler, Carson et al. 1996). The increase in BBB permeability in normal 

brain region may lead to CNS toxicity from chemotherapy and the patients may suffer from 

fading cognitive function termed as “chemo-fog” (Kemper, Boogerd et al. 2004) (Raffa 2010).  

2.5.5 BBB disruption by focused ultrasound (FUS): MRI-guided FUS is a non-invasive 

method for precise transient BBB disruption (Fig 2.4) (Hynynen, McDannold et al. 2001, 

Hynynen, McDannold et al. 2005).  FUS produces shear stress in cells and disrupt the tight 

junctions of BBB to increase permeability (Gonzalez-Mariscal, Tapia et al. 2008, Sheikov, 

McDannold et al. 2008, Shang, Wang et al. 2011). Additionally, microbubbles can be 

administered and lower the energy required for BBB disruption (Hynynen, McDannold et al. 

2001). Microbubble induced FUS was successful in opening BBB without any major side effect 

in non-human primates (McDannold, Arvanitis et al. 2012). Targeted opening of BBB can be 

achieved by using MRI to guide FUS and real time monitoring of acoustic emissions from 

microbubbles (Kaye, Chen et al. 2011, Arvanitis, Livingstone et al. 2012, Jones, O'Reilly et al. 

2013).   

Various chemotherapeutic agents like doxorubicin, carmustine, transtuzumab, and 

temozolamide have been administered using FUS preclinical (Liu, Hua et al. 2010, Aryal, 

Vykhodtseva et al. 2013, Wei, Chu et al. 2013). Diaz et al., demonstrated the delivery of gold 

nanoparticles into the brain tumors, in this study they also showed anti-epidermal growth factor 

receptor antibody improved the uptake in glioma (Diaz, McVeigh et al. 2014). While preclinical 

experiments prove the effectiveness of FUS in treatment of brain tumors overcoming the BBB, a 



 

14 
 

limitation would be attenuation of ultrasound signal through human skull and its ability to reach 

deeper parts of human brain. FUS can only be targeted if the tumors are detected through MRI, 

on the contrast many of brain metastases for micro metastatic lesions which are undetectable 

through the aid of MRI.    

2.5.6 Carrier mediated drug delivery: Carriers like liposomes, dendrimer nanoparticles and 

other nanoparticles are studied for drug delivery in brain tumors (Fabel, Dietrich et al. 2001, 

Gelperina, Maksimenko et al. 2010). Localized nanoparticle delivery into the brain tumor can be 

achieved by magnetic therapy, where carrier molecule with iron can be targeted using magnetic 

field (Saenz del Burgo, Hernandez et al. 2014).  Nektar therapeutics developed a novel 

polyethylene glycol (PEG) based carrier system for the delivery of irinotecan and it showed 

significant survival benefit in preclinical breast cancer model (Adkins, Nounou et al. 2015). 

Doxorubicin encapsulated in a liposome was widely studied for malignant gliomas, showed 

disease stabilization along with low side effects.  

2.5.7 BBB disruption by pharmacological agents: The peptide bradykinin is a vasodilator and 

upon administration increases expression of caveolin-1 and caveolin-2 at the BBB (Liu, Xue et 

al. 2010). Higher expression of caveolae at the BBB will lead increase in BBB permeability. 

Many researchers extensively studied its potential to increase dug delivery in brain (Inamura and 

Black 1994, Emerich, Snodgrass et al. 1998); however, this disruption is transient (Liu, Xue et 

al. 2010).  In a clinical trial with pediatric brain tumors, a bradykinin analogue lobradimil along 

with anticancer agent carboplatin showed no therapeutic benefit (Warren, Jakacki et al. 2006).  

Most of the chemotherapeutic agents are substrates for efflux transporters like P-gp at the 

BBB, unfortunately cancer cells have high expression of efflux transporters making it even more 
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difficult for drug delivery in brain metastases (Dombrowski, Desai et al. 2001). Many small 

molecules were developed for direct inhibition of efflux transporter but clinically, they showed 

poor efficacy and safety profile (Thomas and Coley 2003). Kreisl et al., showed greater uptake of 

a P-gp substrate of 11c-N-desmethylloperamide with a promising P-gp inhibitor tariquidar, 

which is effective at nanomolar concentration (Roe, Folkes et al. 1999, Kreisl, Liow et al. 2010). 

2.5.8 New drug entities and targets for the treatment: Sagopilone, a new anti-neoplastic 

agent, penetrates BBB and evades from efflux transport at the BBB was evaluated in a phase 2 

study of cancer patients with brain metastases from breast cancer. The overall survival after 

treatment with sagopilone was 5.3 months with 13% of the patients showed partial response 

(Hoffmann, Fichtner et al. 2009, Freedman, Bullitt et al. 2011). Peptide treated formulation of 

paclitaxel (GRN1005) increased the permeability of drug in to the advanced brain tumors and 

decreased the tumor burden (Kurzrock, Gabrail et al. 2012).  

The incidence of brain metastases is as high as 40% with triple negative breast cancer 

(TNBC) but no targeted therapies are available for brain metastases of TNBC (Weil, Palmieri et 

al. 2005). Recent studies showed that high expression of PD-L1 in TNBC could be used as a 

targeting strategy for treating brain metastases from TNBC. In a phase I trial, targeting PD-L1 

with pembrolizumab showed an overall response rate of 19% in brain metastases (Nanda, Chow 

et al. 2015).   

Dar. M along with Smithkline Beecham corporation owns a patent for the use 

benzimidazole thiophene compounds for tumors in CNS (Dar 2009). Benzimidazole thiophenes 

showed strong anticancer and DNA binding properties along with the ability to cross the BBB 

(Cindric, Jambon et al. 2017). These compounds inhibit polo-like kinases, which play an 
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important role in mitosis (Dar 2009).   

McChesney et al. and Tapestry pharmaceuticals Inc. owns a patent for taxane analogs for 

the treatment of brain cancer. Abeoa-taxane is an orally effective taxane, which stabilizes tubulin 

dimers during mitosis. These taxanes penetrate BBB and are not substrates for multi-drug 

resistance (MDR) proteins (McChesney, Tapolsky et al. 2011). 

A Korean biotechnological company owns a patent for sodium meta arsenite for 

treatment of brain tumors (Jo and Yang 2011). This compound is able to cross BBB/BTB 

elimating the need of osmotic disruption of BBB/BTB(Jo and Yang 2011). 

Myriad genetics and Laughlin own a patent for (4-Methoxy-phenyl)-methyl-(2-methyl-

quinazolin-4-yl) for the treatment of metastatic brain tumors. Myriad genetics claim that (4-

Methoxy-phenyl)-methyl-(2-methyl-quinazolin-4-yl) crosses BBB/BTB and reach cytotoxic 

concentrations (Laughlin 2010).  

Zhang owns a patent on targeting brain metastases of breast cancer by inhibiting enzyme 

1,6 fructose biphosphatase (FBP) which is critical in gluconeogenesis (Weihua 2013). Zhang 

found that the metastatic breast cancer cells survived in low glucose media while the non-

metastatic cells did not. The brain interstitial spaces have low glucose and for the cancer cells to 

survive, they should depend on gluconeogenesis for their energy requirements.  FBP inhibitors 

like benzimidazole derivatives, amino pyridines, tricyclic thiazoles, azaindole inhibitors will 

interfere with this rate-limiting step involving FBP in gluconeogenesis, which leads to inability 

of the cancer cells to produces their energy requirements (Weihua 2013). 

Transtuzumab is already used to treat HER2 positive breast cancer but it is unable to treat 
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brain metastases of breast cancer, as it cannot cross the BBB/BTB. BiOasis Inc., and Hutchinson 

et al., own a patent for coupling P97 peptide to transtuzumab, which showed significant 

improvement in the therapeutic efficacy (up to 1000 times higher) in treating brain metastases of 

HER2 positive breast cancer (Hutchison, Vitalis et al. 2013).  

Nektar therapeutics developed a novel irinotecan drug delivery system with irinotecan 

linked to a polymer, poly ethylene glycol (NKTR-102)(Eldon, Harite et al. 2010). In study 

published by Adkins et al., NKTR-102 showed increased drug accumulation of irinotecan and its 

active metabolite SN-38 in brain metastases, due to enhanced permeation and retention (EPR) 

effect through leaky brain metastases vasculature. The PEGylation is responsible for increased 

plasma circulation time and thereby modifying the distribution of irinotecan when compared to 

conventional irinotecan (Adkins, Nounou et al. 2015).  

2.5.9 Clinical trials on brain metastases of breast cancer:  

Chemotherapy clinical trials have typically excluded patients with brain metastases for a 

variety of reasons, including limited penetration of agents through the BBB/BTB, the lack of a 

convenient modality for tumor burden monitoring, and poor overall survival prognoses leading 

to negative outcomes for patients (Phillips, Jeffree et al. 2017). Some of the earliest published 

work in chemotherapy for brain tumors began in the 1950s and 1960s, focusing on use of 

systemic agents such as methotrexate, thioTEPA, nitrosoureas, and vinca alkaloids (Wilson and 

Delagarza 1965, Nevinny, Hall et al. 1968, Fewer, Wilson et al. 1972, Gutin, Wilson et al. 1975). 

Kofman et al noted the use of prednisolone to reduce neurological symptoms in 1957 (Kofman, 

Garvin et al. 1957).  Though the chemotherapy field has advanced, a regimen specific for the 

treatment of brain metastases of breast cancer has yet to be approved and ratified by the FDA or 
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national and international cancer organizations. Systemic cytotoxic therapy including taxanes 

(docetaxel, paclitaxel), anthracyclines (doxorubicin), platinum compounds (cisplatin), and 

alkylating agents (cyclophosphamide) in combination with other agents have shown some 

efficacy in small studies (Miller, Wang et al. 2007, Miles, Chan et al. 2010, Linot, Campone et 

al. 2014, Isakoff, Mayer et al. 2015). The rise of novel dosage forms, immunotherapy, and small 

molecule inhibitors has pushed the envelope of treatment expectations and produced trials 

focusing specifically on brain metastases of breast cancer. 

 

Completed clinical trials: 

Cisplatin and etoposide were tested as combination agents in a Phase II for brain 

metastases of breast cancer patients and only one had a partial response. Penetration into the CSF 

is poor but it can penetrate through the blood-tumor barrier (Vinolas, Graus et al. 1997).  

Cisplatin and etoposide were tested as combination agents. Out of 56 patients, 7 achieved 

complete response, 14 achieved partial response, 12 no change, 16 progressive, 8 insufficient 

treatment/not assessed (BEEP NCT02185352) (Franciosi, Cocconi et al. 1999).  

Doxorubicin, cisplatin, 5-fluorouracil, methotrexate cycle schedules given to patients 

with brain metastases of breast cancer. No improvement in overall survival was noted, with 

major toxicity (Lamar, Greco et al. 1994). 

In a Phase II  study 15 patients with brain metastases of breast cancer were treated with 

cyclophosphamide and cisplatin, 6 achieved partial response which is defined as, at least 50% 

reduction in tumor, no new lesions and no progression of brain tumors (Christodoulou, 

Bafaloukos et al. 2005). 
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In a Phase II clinical trial 25 patients with brain metastases of breast cancer treated with 

cisplatin and vinorelbine, with 30 Gy fractionated radiation. Complete response was seen in 3 

patients, partial response in 16 patients with a total response of 76% (Cassier, Ray-Coquard et al. 

2008).   

In study involving 152 metastatic breast cancer patients, 78 patients responded to 

paclitaxel, and 6 developed CNS progression. In four brain metastases of breast cancer patients  

with concomitant paclitaxel and bevacizumab treatment, 3 showed partial response and 1 showed 

complete response, with no extra progression (Labidi, Bachelot et al. 2009). In another study, 5 

brain metastases of breast cancer patients receiving similar bevacizumab and paclitaxel treatment 

showed partial response (2), stable disease (2), and progression (1)(Yamamoto, Iwase et al. 

2012).  

Vinorelbine and temozolamide was used in 6 brain metastases of breast cancer patients 

with only a minor response, which then progressed (Omuro, Raizer et al. 2006).  In another 

Phase II trial of 11 brain metastases of breast cancer patients were treated with vinorelbine and 

temozolamide, one patient had a minor response, while the others were grouped together in 

stable or progressing disease (Iwamoto, Omuro et al. 2008). 

In a trial liposomal doxorubicin combined with cyclophosphamide, and radiation, given 

in 29 patients with brain metastases from breast cancer. After 6 courses, 9 (31%) had partial 

response, but eventually 16 (55%) had progressive disease (Linot, Campone et al. 2014) 

NCT00465673.  

In a study, nanoparticle albumin bound paclitaxel (nab-paclitaxel) and transtuzumab was 

given weekly for 14 cycles with concomitant SRS, but resulted in minimal response in brain 
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nodules, though the patient had progression-free survival for 13 months (Ricciardi, Russo et al. 

2015).  

A phase II clinical trial with ANG1005 in breast cancer patients with recurrent brain 

metastases was completed in September 2017 (NCT02048059). ANG1005 is novel agiopep2-

paclitaxel conjugate and it showed increased drug delivery in a preclinical brain metastases of 

breast cancer model (Thomas, Taskar et al. 2009).  

A phase I study of lapatinib with whole brain radiotherapy was completed for brain 

metastases for HER2-positive breast cancer (NCT00470847).  Results show, 4.8 months of 

progression free survival with lapatinib. 

GRN1005 is paclitaxel peptide conjugate, which targets low-density lipoprotein receptor- 

related protein 1. GRN1005 showed efficacy in metastatic brain tumors and it was well tolerated 

(Kurzrock, Gabrail et al. 2012). A phase II clinical trial with GRN1005 alone or with 

transtuzumab in patients with brain metastases was completed and yet to publish results 

(NCT01480583).  

Ongoing clinical trials:  

Currently, there are 31 clinical trial, which are active or recruiting patients for the 

treatment of metastatic brain tumors for breast cancer. The details of the trials are included in 

Table 2.1. 
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2.6 Chapter Summary 

The presence of BBB is responsible for grim prognosis in patients with brain metastases 

of breast cancer. Current treatment strategies include whole brain radiotherapy, stereotactic radio 

surgery and surgical resection and most of the time these modalities are merely palliative without 

significantly improving the overall survival. Novel strategies are being employed for the 

treatment of metastatic tumors for the improved delivery of chemotherapy but unfortunately, 

these new strategies fail to show any beneficial improvement in overall patient survival.    
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Figure 2.1: Cartoon depiction of peripheral capillary in comparison to brain capillary 
 

Cartoon illustrating the blood-brain barrier. The structural differences between the two vessels is 

the presence of tight junction proteins, presence of pericytes and astrocyte foot process in brain 

capillary while, in peripheral capillary the endothelial cells have intercellular space and fenestrae 

without any additional cell structure making it more permeable when compared to brain 

capillary. 
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Figure 2.2: Cartoon depicting capillary in brain tumor (Blood-tumor barrier). 

Cartoon illustrating the blood-tumor barrier. A major structural difference between the Blood-

tumor barrier and blood-brain barrier is decreased expression of tight junction proteins, which 

leads to an incomplete sealing of the vasculature in tumor, and increased permeability. 
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Figure 2.3: Cartoon depicting Blood-Brain Barrier disruption by osmotic shrinkage. 

The figure illustrates the difference in brain capillary before and after intra-arterial 

administration of hyperosmolar solution. The endothelial cells shrink due to loss of water after 

administration of hyperosmolar compound, which will lead to loss of tight junctions.  
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Figure 2.4: Cartoon depicting Blood-Brain Barrier disruption by osmotic shrinkage (Treat et al., 
2007) 

The animal is positioned with skull partially submerged in a de-gassed water tank and 

microbubbles are intravenously administered. A focused transducer attached to a network power 

and computer system delivers low frequency ultrasound, which disrupts the BBB. MRI is 

incorporated for targeting as well as BBB disruption visualization. 

 



Table 2.1 On-going clinical trials in brain metastases of breast cancer   

 

Clinical trial title Intervention Reference 

 A Study of Etirinotecan Pegol (NKTR-102) Versus Treatment of 
Physician's Choice (TPC) in Patients With Metastatic Breast Cancer Who 
Have Stable Brain Metastases and Have Been Previously Treated With an 
Anthracycline, a Taxane, and Capecitabine 

Drug: NKTR-102  

Drug: Eribulin   

Drug: Ixabepilone  

Drug: Vinorelbine  

Drug: Gemcitabine  

Dug:Paclitaxel  

Drug: Docetaxel 

Drug: Nab-paclitaxel 

NCT02915744

ARRY-380 + Trastuzuamab for Breast w/ Brain Mets Drug: ARRY-380 Twice Daily 
Dosage Drug: ARRY-380 Once 
Daily 

Drug: Trastuzumab 

NCT01921335

A Study Of Everolimus, Trastuzumab And Vinorelbine In HER2-
PositiveBreast Cancer Brain Metastases 

Drug: Everolimus  

Drug: Vinorelbine  

Drug: Transtuzumab 

NCT01305941

HKI-272 for HER2-Positive Breast Cancer and Brain Metastases Drug: HKI-272 

Procedure: Surgical Resection 

Drug: Capecitabine 

NCT01494662
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Clinical trial title Intervention Reference 

Lapatinib for Brain Metastases In ErbB2-Positive Breast Cancer Drug: Lapatinib NCT00263588

STAR Cape+BKM120 MBC With Brain Met Drug: BKM120 

Drug: capecitabine 

Drug: Trastuzumab 

NCT02000882

PCI in Advanced Triple Negative Breast Cancer Patients Who Response to 
1st Line Chemotherapy 

Radiation: prophylactic cranial 
irradiation 

 

NCT02448576

A Study of Local Therapy for the Treatment of Brain Metastases From 
HER2 Positive Breast Cancer 

Other: Local Therapy NCT02898727

Proteome-based Immunotherapy of Brain Metastases From Breast Cancer Biological: Dendritic vaccine, 
allogeneic hematopoietic stem cells, 
cytotoxic lymphocytes 

Biological: Dendritic vaccine, 
autologous hematopoietic stem cells, 
cytotoxic lymphocytes 

 

 

 

 

NCT01782274
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Clinical trial title Intervention Reference 

Palbociclib in Treating Patients With Metastatic HER-2 Positive Breast 
Cancer With Brain Metastasis 

Procedure: Cognitive Assessment 
Drug: Palbociclib 
Procedure: Quality-of-Life 
Assessment 
Biological: Transtuzumab 

NCT02774681

 A Study of Abemaciclib (LY2835219) in Participants With Breast Cancer, 
Non-small Cell Lung Cancer, or Melanoma That Has Spread to the Brain 

Drug: Abemaciclib NCT02308020

 Whole-Brain Radiation Therapy or Stereotactic Radiosurgery With or 
Without Lapatinib Ditosylate in Treating Patients With Brain Metastasis 
From HER2-Positive Breast Cancer  

Other: Laboratory Biomarker 
Analysis 
Drug: Lapatinib Ditosylate 
Radiation: Stereotactic Radiosurgery
Radiation: Whole-Brain 
Radiotherapy 

NCT01622868

Phase II Etirinotecan Pegol in Refractory Brain Metastases & Advanced 
Lung Cancer / Metastatic Breast Cancer 
 
 
 
 

Drug: pegylated irinotecan NKTR 
102 
Other: laboratory biomarker analysis
Stanford University, School of 
Medicine 
Stanford, California 

NCT02312622

18F-FLT-PET Imaging of the Brain in Patients With Metastatic Breast 
Cancer to the Brain Treated With Whole Brain Radiation Therapy With or 
Without Sorafenib: Comparison With MR Imaging of the Brain 

Device: 18F-FLT-PET Imaging NCT01621906
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Clinical trial title Intervention Reference 

MM-398 (Nanoliposomal Irinotecan, Nal-IRI) to Determine Tumor Drug 
Levels and to Evaluate the Feasibility of Ferumoxytol Magnetic Resonance 
Imaging to Measure Tumor Associated Macrophages and to Predict Patient 
Response to Treatment 

Drug: Ferumoxytol followed by 
MM-398 

NCT01770353

Correlation Between Circulating Tumor Cells and Brain Disease Control 
After Focal Radiotherapy for Metastases of Breast Cancer 

Diagnostic Test: Circulating tumor 
cells evaluation 

NCT02941536

Stereotactic Radiation Therapy With or Without Whole-Brain Radiation 
Therapy in Treating Patients With Brain Metastases 

Radiation: radiation therapy 
Radiation: stereotactic radiosurgery 

NCT00377156

Cambridge Brain Mets Trial 1 Drug: Afatinib 
Radiation: 2 Gy targeted 
radiotherapy 
Radiation: 4 Gy targeted 
radiotherapy 

NCT02768337

 MEDI4736 (Durvalumab) in Patients With Brain Metastasis From 
Epithelial-derived Tumors 

Drug: MEDI4736 NCT02669914

Lapatinib Plus Capecitabine Versus Trastuzumab Plus Capecitabine in 
ErbB2 (HER2) Positive Metastatic Breast Cancer  

Drug: Capecitabine 
Drug: Lapatinib 
Drug: Trastuzumab 

NCT00820222

A Pilot/Phase II Study of Gamma Knife Radiosurgery for Brain Metastases 
Using 3Tesla MRI and Rational Dose Selection 

Procedure: Gamma Knife 
Radiosurgery 

NCT02005614
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Clinical trial title Intervention Reference 

Phase 2 Study of Tucatinib vs Placebo in Combination With Capecitabine & 
Trastuzumab in Patients With Advanced HER2+ Breast Cancer  

Drug: Tucatinib 
Drug: Capecitabine 
Drug: Trastuzumab 
Drug: Placebo 

NCT02614794
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CHAPTER 3 

PHARMACOKINETICS OF A NANO-LIPOSOMAL FORMULATION IN 

AN EXPERIMENTAL BRAIN TUMOR MODEL OF TRIPLE NEGATIVE 

BREAST CANCER 

3.1 Introduction 

In spite of the progress in research for metastatic brain tumors, the primary treatment 

modality is whole brain radiation therapy (WBRT) and surgical resection (Lin, Amiri-Kordestani 

et al. 2013). Treatment with anticancer agents is particularly challenging because of presence of 

BBB/BTB and its related low permeability of various drugs (Pardridge 2003).  Many new 

approaches are under investigation for CNS drug delivery but the unique issue with metastatic 

brain tumors is its randomness in spatial location within the brain. Most often, these metastatic 

brain tumors form multiple tumors and making it harder to surgically remove (Ramakrishna, 

Temin et al. 2014).   

Nanoparticles like liposomes can be used to deliver anticancer agents and currently 

approved agents include Marqibo (liposomal vincristine, Talon Therapeutics, CA), Doxil 

(liposomal doxorubicin, Alza Pharmaceuticals Inc., CA), DaunoXome (liposomal daunorubicin, 

Gilead Inc., CA) (Rifkin, Gregory et al. 2006, Gibson, Alzghari et al. 2013, Andriyanov, Koren et 

al. 2014). In our previous studies, we demonstrated that irinotecan administered as Etirinotecan 

pegol (NKTR-102), not only improved the pharmacokinetics of irinotecan and its active 
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metabolite SN-38, it also improved the median survival in our preclinical metastases model 

(Adkins, Nounou et al. 2015). Irinotecan shows cytotoxic activity against many cancer types 

including breast cancer and malignant gliomas (Taguchi, Tominaga et al. 1994, Adkins, Nounou 

et al. 2015, Sengupta, Rojas et al. 2015). Irinotecan is a prodrug and it is converted SN-38 which 

is a potent topoisomerase I inhibitor and this conversion is dependent on carboxylesterase II 

(Kaneda, Nagata et al. 1990). This makes it a great case for drug delivery through carriers like 

liposomes as it evades premature conversion to SN-38 until it is delivered to brain metastases.  

The BBB serves as a functional and structural barrier for the entry of most of the 

chemotherapeutic agents but growth of the intracranial tumors will alter the permeability 

characteristics. The BTB has increased permeability when compared to normal BBB due to 

reduced expression of tight junction proteins and increased angiogenic factor (Ballabh, Braun et 

al. 2004). Nanoparticles like liposomes with sizes in the range of 80-200 nm take the advantage of 

leaky tumor vasculature and distribute due to enhanced permeation and retention (EPR) effect 

(Drummond, Meyer et al. 2000). We hypothesize that liposomal irinotecan will have better brain 

tumor distribution than non-liposomal irinotecan  by 1) increased passive diffusion from blood to 

tumor due to EPR effect 2) bypassing various efflux transporters present at the BBB/BTB and 3) 

increased plasma mean residence time  (Kemper, Cleypool et al. 2004, Amzerin, Mokrim et al. 

2015). 

Here, we present encouraging pharmacokinetic (PK) results for liposomal irinotecan in an 

experimental brain tumor model when compared to non-liposomal irinotecan. Liposomal 

irinotecan showed prolonged plasma drug exposure with mean residence time (MRT) of 17.7 ± 

3.8 h for SN-38, whereas MRT was 3.67 ± 1.2 for non-liposomal irinotecan. Further, liposomal 

irinotecan accumulated in metastatic lesions and demonstrated prolonged exposure of SN-38 
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compared to non-liposomal irinotecan. Liposomal irinotecan achieved AUC values of 6883 ± 

4149 ng-h/g for SN-38, whereas non-liposomal irinotecan showed significantly lower AUC 

values of 982 ± 256 ng-h/g for SN-38.  

3.2 Materials and Methods 

Chemicals 

  Irinotecan HCl and nal-IRI were supplied by Merrimack Pharmaceuticals (Cambridge, 

US), which were prepared as reported by Noble et al. and Kalra et al. (Kalra, Kim et al. 2014, 

Noble, Krauze et al. 2014). The lipid mixture of nal-IRI consisting of 

distearoylphosphatidylcholine, cholesterol, and polyethyleneglycol-distearoylphosphatidyl-

ethanolamine at the molar ration of 3:2:0.015 (Noble, Krauze et al. 2014). Irinotecan HCl was in 

the liposomes at a ratio of 750 g irinotecan HCl / mol phospholipid (Noble, Krauze et al. 2014). 

All other chemicals were analytical grade purchased from Sigma-Aldrich (St. Louis, MO).  

 

Animals 

  Female athymic nude mice (Charles River Laboratories, Kingston, NY) were used for all 

experiments in the study.  Mice were 6-8 weeks of age and weighed 22-28 g before injecting with 

cancer cells and were housed under 12-hour light/dark conditions with food and water ad libitum, 

and mice were acclimated for 1 week prior to use. All animal work was approved by West 

Virginia University Institutional Animal care and Use Committee (IACUC protocols 13-1207). 

All animal experiments were performed according to the principles of the Guide for the Care and 

use of Laboratory animals.  
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Cell Culture 

  Brain-seeking human triple negative breast cancer cells, transfected to express firefly 

luciferase (MDA-MB-231Br-Luc), were cultured in Dulbecco’s Modified Eagle’s Medium 

(DMEM) with 10% fetal bovine serum (FBS). Dr. Patricia Steeg, of the National Institute of 

Health Center for Cancer Research, kindly provided MDA-MB-231Br-Luc cells. All cell work 

was performed under aseptic conditions, and cells were cultured at 37˚C with 5% CO2. 

 

Pharmacokinetic study of irinotecan and liposomal irinotecan in brain tumors 

  MDA-MB-231Br-Luc cells (5 × 105) cells were injected intra-cranially as described 

previously (Adkins, Nounou et al. 2015). Tumors were allowed to grow until neurological 

symptoms developed, and the animals were intravenously administered Non-liposomal irinotecan 

(50 mg/kg, IRN-50), and two different doses of liposomal irinotecan, 10 mg/kg (nal-IRI-10) and 

50 mg/kg (nal-IRI-50). Non-liposomal irinotecan-treated animals (n=5/time point) were sacrificed 

at 0.083, 0.5, 1, 2, 6, 12 and 24 h after administration, and liposomal irinotecan treated animals 

(n=5/time point) were sacrificed at 0.5, 2, 6, 24, 72, 48 and 168 h after administration. The 

animals were anesthetized (ketamine/xylazine; 100 mg/kg and 8 mg/kg respectively) and then 

blood samples were collected before a washout with phosphate buffer saline at 5 ml/min flow 

rate. The animal was sacrificed by decapitation to collect brain and tumor samples. The blood was 

centrifuged at 13600 RPM for 5 minutes at 4 ̊C and the plasma was separated and stored along 

with tumor samples at -80 ̊C until analysis.  Irinotecan and SN-38 concentrations in normal brain 

and brain tumor samples were analyzed by liquid chromatography-tandem mass spectrometry 

(LC/MS). Metabolite levels in plasma samples were measured using high performance liquid 
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chromatography (HPLC) methods reported previously (Kalra, Kim et al. 2014). The limit of 

quantification for irinotecan was 25 ng/ml and for its active metabolite, SN-38 was 2 ng/ml. 

Pharmacokinetic analysis 

Pharmacokinetic parameters of irinotecan and its active metabolite SN-38 were 

characterized by non-compartmental analysis (NCA)(Huang and Zheng 2010). NCA applies to 

linear pharmacokinetic models and it doesn’t not assume specific compartmental model for drug 

or metabolite. In this method area under plasma concentration- time curve was calculated by the 

application of trapezoidal rule and this is often called as area under zero moment curve (AUC). 

The area under first moment curve (AUMC) refers to area under the product of time and the 

concentration versus time curve (Figure 3.1). AUC is express as concentration times time for 

example mg.hr/L (Gabrielsson and Weiner 2012). 

The mean residence time (MRT) is the average of the total number of molecules dosed 

reside in the body. MRT is a function of distribution and elimination like half-life. MRT 

calculation after I.V administration is provides a quantitative estimate of persistence in the body. 

MRT is calculated by the ratio of AUMC to AUC. The units for MRT are time and expressed as 

hours or minutes(Gabrielsson and Weiner 2012). 

MRT=	  

Drug clearance is the ability of certain organs like kidneys and liver to excrete and 

metabolize drugs. Clearance is defined as the volume of fluid cleared of the drug in a unit time 

and is expressed as ml/min or L/h.  The rate of elimination of drug is proportional to plasma 

concertation (Gibaldi and Levy 1976).  

Rate of elimination ( )  plasma concentration (Cp) 
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 = Cl. Cp 

= Cl. Cp	dt 

Total amount eliminated = Cl.  

Cl = 
	 	

 

Cl= 
. 	

 

  Apparent volume of distribution (Vd) is the most useful volume term in pharmacokinetics. 

Vd is the hypothetical volume within which a drug is distributed and Vd does not refers to the 

physiological fluid volume. Vd solely demonstrates the space occupied by the drug and relative 

degree of drug distribution in blood and extravascular space and expressed as ml or L.  Vd can be 

calculated by the following equation (Gibaldi and Levy 1976, Huang and Zheng 2010); 

Vd= 
	 	

 

Which can be re-written as, 

Vd = 
	 	

  

But, Cl= 
	 	

 and MRT =  

Therefore, Vd= Cl. MRT  
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Data Analysis 

  Differences among treatment groups in the pharmacokinetic study were compared 

GraphPad® Prism 6.0, San Diego, CA and were considered statistically significant at p<0.05.  

 

3.3 Results 

Liposomal irinotecan increased plasma half-life and total exposure of both irinotecan and its 

active metabolite SN-38 

 Initially, we set out to study the plasma concentration time profile of irinotecan and its 

active metabolite, SN-38, after the administration of IRN-50, nal-IRI-10, and nal-IRI-50. We 

observed the plasma half-life of irinotecan significantly increased in liposomal formulations, nal-

IRI-10 and nal-IRI-50 with half-lives of 12.7 ± 0. 5 h and 10.9 ± 0.3 h respectively, when 

compared to that of IRN-50 with a half-life of 3.3 ± 0.1 h.  Plasma half-life of SN-38 was also 

significantly increased for nal-IRI with 21 ± 2.9 h in nal-IRI-10 group and 18 ± 1.3 h in nal-IRI-

50 group when compared to that of IRN-50 with a half-life of 3.17 ± 0.43 h (Table 3.1, Fig 3.4). 

We also observed that the mean residence time (MRT) for liposomal formulation  significantly 

increased with 4.5 ± 0.4 h for nal-IRI-10 and 7.3 ± 2.6 h for nal-IRI-50, whereas IRI-50 showed 

MRT of 2 ± 0.5  h for plasma irinotecan. We found similar trend for its active metabolite SN-38 

with MRT of 16.7 ± 8.3 h and 17.7 ± 3.8 h for nal-IRI-10 and nal-IRI-50 respectively, while MRT 

for IRI-50 was 3.67 ± 1.2 (Table 3.1, Fig 3.5). Clearance (Cl) of irinotecan for IRI-50 was 85.7 ± 

22.8 ml/h with apparent volume of distribution (Vd) 178.6 ± 64.7. Whereas for liposomal 

irinotecan clearance and volume of distribution significantly decreased with values 0.6 ± 0.2 ml/h 

and 2.9 ± 0.5 ml respectively for nal-IRI-10 and clearance value of 0.3 ± 0.1 ml/h and volume of 

distribution of 2.2 ± 1.1 ml for nal-IRI-50. We have seen the similar trend for plasma SN-38 
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clearance and volume of distribution values, for liposomal irinotecan, both clearance and volume 

of distribution values were significantly lower than that of IRI-150 values (Table 3.1, Fig 3.6 and 

3.7). 

We also observed the area under the curve (AUC) significantly increased with nal-IRI, 

3.20± 0.94 ng-hr/ml ×105 for nal-IRI-10 and 45.05 ± 5.52 ng-hr/ml ×105 for nal-IRI-50 compared 

with IRN-50, which had an AUC of 0.15 ± 0.02 ng-hr/ml ×105 (Fig. 3.2B). With the increase in  

AUC for free irinotecan from nal-IRI formulations, we also observed significant increase in  AUC 

for the active metabolite SN-38  from the liposomal formulations with 2.56 ±0.63 ng-hr/ml ×103 

for nal-IRI-10 and 9.66 ± 0.44 ng-hr/ml ×103 for nal-IRI-50, compared to the AUC for IRN-50 at 

0.55 ± 0.08 ng-hr/ml ×103 (Fig. 3.3B). These results confirm the increased plasma exposure of 

irinotecan and its active metabolite SN-38 from nal-IRI-10 and nal-IRI-50 formulations when 

compared to IRN-50 (Fig. 3.3B).    

Liposomal irinotecan acts as reservoir and increase the exposure of irinotecan and SN-38 in 

brain tumors 

  After studying the plasma pharmacokinetics, we set out to assess the concentrations of 

irinotecan, and its active metabolite, SN-38, in brain tumors and normal brain tissue after the 

administration of liposomal formulations and conventional irinotecan. After the administration of 

IRN-50, irinotecan and SN-38 concentrations in brain tumors peaked at 0.5 to 2 h post-

administration (Fig. 3.8A and 3.9A). Both irinotecan and SN-38 were cleared rapidly after 6 h 

with tumor-to-plasma ratios ranged from 3.0 to 10 for irinotecan and 0.62-5.1 for SN-38 (Table 

3.2). After administration of nal-IRI-50, irinotecan and SN-38 concentrations continue to 

accumulate in brain tumors over 168 h with tumor-to-plasma ratios of 0.05-90 and 0.59-39 for 

irinotecan and SN-38, respectively. Tumor SN-38 concentration in mice treated with nal-IRI-50 at 
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168 h was found to be 50 ± 30 ng/g, whereas SN-38 concentration in non-liposomal irinotecan 

treated group was undetectable (<10 ng/g) at 12 h post-administration (Fig. 3.9A). The AUC of 

both irinotecan and SN-38 from nal-IRI-50 in brain tumors was found to be significantly higher 

than that of IRN-50 (Fig. 3.8B and 3.9B).  These results suggest that nal-IRI prolonged drug 

exposure in brain tumors compared to conventional irinotecan.  

3.4 Discussion  

The results of this study show that nal-IRI penetrates the BTB and accumulates within 

brain tumors in a preclinical model of MDA-MB-231Br-Luc. Upon accumulation in brain tumors, 

the liposomes appear to act as reservoir for the release of irinotecan. The local release of 

irinotecan improved free drug exposure irinotecan and its active metabolite SN-38 to tumor. 

In general, nanoparticles with sizes ranging from 80 to 200 nm are expected to have 

optimal tumor distribution and accumulation due to enhanced permeation and retention (EPR) 

through the leaky vasculature of tumors (Yuan, Dellian et al. 1995, Greish 2010, Raza, Shareef et 

al. 2014).  It has been posited, based upon liver and renal clearance of nanoparticles, that ideal 

size of liposomes for maximum distribution and to maintain prolonged plasma residence times is 

approximately 100 nm (Drummond, Meyer et al. 1999). The liposomal irinotecan formulation 

described in this study were between 100-110 nm (Noble, Krauze et al. 2014).  Once liposomes 

accumulate in tumors due to EPR effect, the clearance from the tumor is limited because of its 

size and impaired lymphatic system, which results in prolonged drug exposure (Abrams 1964, 

Iwai, Maeda et al. 1984). On the other hand, non-liposomal irinotecan is rapidly cleared from the 

tumor due to its smaller size, leading to sub-therapeutic drug levels in tumor between the cycles 

of treatment. These observations support that liposomal irinotecan accumulates in brain 

metastases via the EPR effect, as reported for other solid tumor types (Kalra, Kim et al. 2014). 
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Further mechanistic possibilities for the increased drug uptake and accumulation from 

liposomal irinotecan is that it may avoid efflux by multidrug resistant proteins like P-gp and 

BCRP (Michieli, Damiani et al. 1999, Bansal, Mishra et al. 2009, Adkins, Mittapalli et al. 2013, 

Lo and Tu 2015). The uptake of conventional anticancer agents is limited by multidrug resistant 

protein present on membranes of cancer cells (Bansal, Mishra et al. 2009). In addition to efflux 

mechanisms on cancer cells, the BBB and BTB also express variety of multidrug resistant 

proteins, which further limits the uptake of chemotherapy (Mittapalli, Chung et al. 2016). Uptake 

of conventional irinotecan is also restricted by P-gp efflux (Bansal, Mishra et al. 2009, Adkins, 

Mittapalli et al. 2013, Mittapalli, Manda et al. 2013), but we hypothesize that the liposomal 

irinotecan formulation bypasses multidrug resistant proteins both at the BBB/BTB. 

We observed that clearance rates for both irinotecan and its active metabolite SN-38 was 

significantly lower in liposomal irinotecan groups when compared to non-liposomal irinotecan 

group and this lower clearance rates for liposomes are responsible for prolonged plasma halves 

and mean residence times for both irinotecan and SN-38 with liposomal irinotecan formulation. 

The rate of clearance for liposomes are determined by both drug release and also uptake of 

liposomes by mononuclear phagocyte system (MPS) (Patel 1992, Patel and Moghimi 1998). The 

liposomes used for this study are “PEGylated” with approximately one polyethyleneglycol (PEG) 

molecule for 200 phospholipid molecules and PEGylated liposomes have long circulation 

time(Gabizon, Catane et al. 1994, Bayever, Fitzgerald et al. 2016). This increase in circulation 

time also accounts for the decrease in volume of distribution of both irinotecan and SN-38 from 

liposomal formulations when compared to non-liposomal irinotecan formulation (Table 3.1). This 

increased plasma MRT with decreased volume of distribution ultimately lead to increased 

exposure for the drug to penetrate BBB/BTB.  
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Irinotecan is mostly converted to SN-38 in liver, whereas, liposomal irinotecan 

formulation leads to local conversion of irinotecan to SN-38 upon accumulation in the tumor 

(Wang, Rao et al. 2016). Tissue pharmacokinetics reveal that liposomal irinotecan resulted in 

significantly higher drug exposure for both irinotecan and its active metabolite SN-38. Non-

liposomal irinotecan (IRI-50) has showed AUC values of 27575 ± 4042 ng-h/g which is 

significantly lower than nal-IRI-50 with 250253 ± 74682 ng-he/g. Similar trend was observed in 

AUC of active metabolite SN-38 where, nal-IRI-50 showed AUC values of 6883 ± 4149 ng-h/g 

for SN-38, whereas IRI-50 showed significantly lower AUC values of 982 ± 256 ng-h/g for SN-

38. In addition to drug exposure, tumor-to-plasma ratio of SN-38 in IRN-50 group was highest at 

2 h with 5.1 but at 4 h it decreased to 0.6. The tumor-to-plasma ratio of SN-38 in liposomal 

irinotecan groups increased over time and reached 38.6 at 168 h in nal-IRI-50 groups (Table 3.2). 

The increase in tumor-to-plasma SN-38 ratio may be attributed to local conversion of irinotecan 

to SN-38 in the brain tumors following liposome accumulation via the EPR effect.  

In summary, our data suggests that liposomal irinotecan significantly improved tumor 

exposure of irinotecan and its active metabolite SN-38 when compared to non-liposomal 

irinotecan in our preclinical brain tumor model. We also demonstrated that improved plasma 

pharmacokinetic profile with liposomal irinotecan compared to non-liposomal irinotecan.    
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Table 3.1: Plasma pharmacokinetics of non-liposomal irinotecan and liposomal 
irinotecan. 

Plasma Irinotecan  

Treatment 
AUC0-α  

(ng-hr/mL) ×105 t1/2  (h) MRT (h) Cl (ml/h) Vd (ml) 

IRI-50 0.2 ± 0.02   3.3 ± 0.1 2 ± 0.5 85.7 ± 22.8 178.6 ± 64.7 
nal-IRI-10 3.2± 0.9 12.7 ± 0.5 4.5 ± 0.4 0.6 ± 0.2 2.9 ± 0.5 
nal-IRI-50 45 ± 5.5  10.9 ± 0.3 7.3 ± 2.6 0.3 ± 0.1 2.2 ± 1.1 

Plasma SN-38 

Treatment 
AUC0-α  

(ng-hr/mL) ×103 t1/2  (h) MRT (h) Cl (ml/h) Vd (ml) 

IRI-50 0.6 ± 0.08  4.32 ±  3.2 3.67 ±  1.2 2472 ±  881 7845.6 ±  2023 
nal-IRI-10 2.6 ±0.6 21 ±  2.9 16.7 ±  8.3 80.9 ±  13.5 1327.5 ±  678 
nal-IRI-50 9.7 ± 0.4  18 ± 1.3 17.7 ± 3.8 130.2 ±11.9 1990.3 ± 329 

AUC0-α : Area under the time-concentration cure; Cl: Clearance; MRT: Mean residence time;  
t1/2: plasma half-life of the drug; Vd: Apparent volume of distribution  
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Table 3.2: Plasma and Brain Tumor Concentrations of Irinotecan and SN-38 after Administration of IRN-50 and nal-IRI -50. 

 

  

 Conventional Irinotecan (50 mg/kg)  Liposomal Irinotecan (50 mg/kg) 

Time (hr) 2 6 12 24 6 24 72 168 

Irinotecan concentration ± SEM (ng/mL or ng/g) 

Plasma 1470±159 239± 101 78.0±21.3 12.6±3.9 248000±60000 49800±24800 5.8±2.3 2.3±0.5 

Tumor 4370±622 841±393 807±327 102±26.1 11300±6650 2760±1180 523±343 123±72.5 

Tumor/Plasma 2.97 3.52 10.35 8.08 0.05 0.06 90.1 52.9 

SN-38 concentration ± SEM (ng/mL or ng/g) 

Plasma 35.9±3.7 14.3±6.5 9.0±6.0 1.6±0.8 197±50.6 185±61.7 5.3±1.5 1.28±0.6 

Tumor 184±71.1 18.5±18.5 5.6±5.6 1±1 116±57.8 68.8±24.5 7.1±7.1 49.5±30.4 

Tumor/Plasma 5.13 1.29 0.62 0.63 0.59 0.37 1.33 38.66 



 

70 
 

 

 

 

Figure 3.1: Image representing the calculation of AUC and AUMC by trapezoidal rule. 
 

Plasma concentration (left y-axis) and time (x -axis) curve is used for calculation of AUC by 

trapezoidal rule. Plasma concentration-time (right y-axis) and time (x -axis) curve is used for 

calculation of AUMC by trapezoidal rule.  
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Figure 3.2: Plasma time profile of irinotecan after administration of liposomal and non-liposomal 
irinotecan formulations and their exposures. 
(A) Plasma concentration-time profile of irinotecan after IV bolus administration of IRN-50, nal-
IRI-10 and nal-IRI -50. Irinotecan essentially cleared from circulation within 24 hr from IRN-50, 
whereas in nal-IRI-10 and nal-IRI -50 formulations, we observed a prolonged exposure of both 
irinotecan and SN-38 until 168 hr. (B) Plasma drug exposure of irinotecan expressed by area 
under the curve (AUC) after IV bolus administration of IRN-50, nal-IRI -10 and nal-IRI -50. 
Irinotecan AUCs for nal-IRI -10 and nal-IRI -50 were significantly higher than that of IRN-50 
(p<0.05). Data represents mean ± SD for n=4 animals per time point.   
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Figure 3.3: Plasma time profile of SN-38 after administration of liposomal and non-liposomal 
irinotecan formulations and their exposures 
(A) Plasma concentration-time profile of SN-38 after IV bolus administration of IRN-50, nal-
IRI-10 and nal-IRI -50. SN-38 essentially cleared from circulation within 24 hr from IRN-50, 
whereas in nal-IRI-10 and nal-IRI -50 formulations, we observed a prolonged exposure of SN-38 
until 168 hr. (B) Plasma drug exposure of SN-38 expressed by area under the curve (AUC) after 
IV bolus administration of IRN-50, nal-IRI -10 and nal-IRI -50. SN-38 AUCs for nal-IRI -10 and 
nal-IRI -50 were significantly higher than that of IRN-50 (p<0.05). Data represents mean ± SD 
for n=4 animals per time point.   
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Figure 3.3: Plasma half-lives of irinotecan and SN-38 after administration of liposomal and non-
liposomal irinotecan formulations.  
(A) Plasma half-lives of irinotecan after administration of IR-50, nal-IRI-10 and nal-IRI-50.  
Irinotecan half-lives for nal-IRI -10 and nal-IRI -50 were significantly higher than that of IRN-50 
(p<0.05). Data represents mean ± SD for n=4 animals per time point.   

(B) Plasma half-life of Plasma half-lives of SN-38 after administration of IR-50, nal-IRI-10 and 
nal-IRI-50.  SN-38 half-lives for nal-IRI -10 and nal-IRI -50 were significantly higher than that 
of IRN-50 (p<0.05). Data represents mean ± SD for n=4 animals per time point.   
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Figure 3.4: Plasma mean residence time (MRT) of irinotecan and SN-38 after administration of 
liposomal and non-liposomal irinotecan formulations.  
(A) Plasma MRT of irinotecan after administration of IR-50, nal-IRI-10 and nal-IRI-50.  
Irinotecan MRT for nal-IRI -10 and nal-IRI -50 were significantly higher than that of IRN-50 
(p<0.05). Data represents mean ± SD for n=4 animals per time point.   

(B) Plasma MRT of Plasma half-lives of SN-38 after administration of IR-50, nal-IRI-10 and 
nal-IRI-50.  SN-38 MRT for nal-IRI -10 and nal-IRI -50 were significantly higher than that of 
IRN-50 (p<0.05). Data represents mean ± SD for n=4 animals per time point. 
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Figure 3.5: Plasma clearance (Cl) of irinotecan and SN-38 after administration of liposomal and non-
liposomal irinotecan formulations.  
(A) Plasma Cl of irinotecan after administration of IR-50, nal-IRI-10 and nal-IRI-50.  Irinotecan 
Cl for nal-IRI -10 and nal-IRI -50 were significantly higher than that of IRN-50 (p<0.05). Data 
represents mean ± SD for n=4 animals per time point.   

(B) Plasma Cl of Plasma half-lives of SN-38 after administration of IR-50, nal-IRI-10 and nal-
IRI-50.  SN-38 Cl for nal-IRI -10 and nal-IRI -50 were significantly higher than that of IRN-50 
(p<0.05). Data represents mean ± SD for n=4 animals per time point.  
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Figure 3.6: Plasma volume of distribution (Vd) of irinotecan and SN-38 after administration of 
liposomal and non-liposomal irinotecan formulations.  
(A) Plasma Vd of irinotecan after administration of IR-50, nal-IRI-10 and nal-IRI-50.  Irinotecan 
Vd for nal-IRI -10 and nal-IRI -50 were significantly higher than that of IRN-50 (p<0.05). Data 
represents mean ± SD for n=4 animals per time point.   

(B) Plasma Vd of Plasma half-lives of SN-38 after administration of IR-50, nal-IRI-10 and nal-
IRI-50.  SN-38 Vd for nal-IRI -10 and nal-IRI -50 were significantly higher than that of IRN-50 
(p<0.05). Data represents mean ± SD for n=4 animals per time point. 
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Figure 3.7: Tumor time profile of irinotecan after administration of liposomal and non-liposomal 
irinotecan formulation and their exposures. 
(A) Brain tumor concentration-time profile of irinotecan after IV bolus administration of IRN-
50, nal-IRI-10 and nal-IRI -50. Irinotecan essentially cleared from circulation within 24 hr from 
IRN-50, whereas in nal-IRI-10 and nal-IRI -50 formulations, we observed a prolonged exposure 
of both irinotecan and SN-38 until 168 hr. (B) Brain tumor drug exposure of irinotecan expressed 
by area under the curve (AUC) after IV bolus administration of IRN-50, nal-IRI -10 and nal-IRI 
-50. Irinotecan AUCs for nal-IRI -10 and nal-IRI -50 were significantly higher than that of IRN-
50 (p<0.05). Data represents mean ± SD for n=4 animals per time point. 
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Figure 3.8: Brain tumor time profile of SN-38 after administration of liposomal and non-liposomal 
irinotecan formulation and their exposures 
(A) Tumor concentration-time profile of SN-38 after IV bolus administration of IRN-50, nal-IRI-
10 and nal-IRI -50. SN-38 essentially cleared from circulation within 24 hr from IRN-50, 
whereas in nal-IRI-10 and nal-IRI -50 formulations, we observed a prolonged exposure of SN-38 
until 168 hr. (B) Brain tumor drug exposure of SN-38 expressed by area under the curve (AUC) 
after IV bolus administration of IRN-50, nal-IRI -10 and nal-IRI -50. SN-38 AUCs for nal-IRI -
50 was significantly higher than that of IRN-50 (p<0.05). Data represents mean ± SD for n=4 
animals per time point.   
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CHAPTER 4 

LIPOSOMAL IRINOTECAN ACCUMULATES IN METASTATIC 

LESIONS, CROSSES THE BLOOD-TUMOR BARRIER (BTB), AND 

PROLONGS SURVIVAL IN AN EXPERIMENTAL MODEL OF BRAIN 

METASTASES OF TRIPLE NEGATIVE BREAST CANCER 

 

4.1 Introduction 
More than 230,000 women are diagnosed with breast cancer every year (Society 2015).  

Of this general population of women with breast cancer, 6% present with distant metastases at 

the time of diagnosis, and 10-15% will develop brain metastases at some period during their 

lifetime. After diagnosis of a brain metastasis, survival is approximately 3-25 months depending 

on breast cancer subtype, total body burden, and treatment regimen (Sperduto, Kased et al. 2012, 

Siegel, Miller et al. 2015). Brain metastases are common in human epidermal growth factor 

receptor 2 overexpressing (HER2+) cancers and triple negative breast cancer (Bachelot, Romieu 

et al. 2013, Bohn, Adkins et al. 2016, H. Nitta 2016). While the HER2 receptor can be targeted 

to treat primary breast cancer, unfortunately these therapies (e.g., trastuzumab and lapatinib) 

have limited distribution to HER2+ brain metastases and accordingly have poor efficacy (Taskar, 

Rudraraju et al. 2012, Morikawa, Peereboom et al. 2015, Bohn, Adkins et al. 2016). There are no 

such targeted therapies for the treatment of basal-like triple negative breast cancer (TNBC). 

Triple negative breast cancer is characterized by the absence of the oncogenic overexpression of 

HER2, estrogen receptors (ER) and progesterone receptors (PR). Of significance is the fact that 

brain metastases are a major sequelae of TNBC, as one study found that as many as 36% of 
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women with TNBC will develop metastatic CNS lesions over their lifetime (Lin, Vanderplas et 

al. 2012).  

 

A major impediment in effectively treating brain metastases of breast cancer is the 

distribution of chemotherapeutics past the blood-brain barrier (BBB). The BBB, which remains 

intact to a large degree in metastatic brain lesions of breast cancer (blood-tumor barrier; BTB), 

significantly limits the passive permeation of drugs from blood to tumor (Lockmanet al. 2010, 

Mittapalli et al. 2017) and continues to actively extrude and limit lesion accumulation of 

substrates subject to drug-resistance efflux transporters. For example, paclitaxel, which is used in 

treating breast cancer, is unable to permeate the BTB at rates to achieve a therapeutically 

relevant concentration (Lockman et al. 2010, Adkins et al. 2013, Geldenhuys et al. 2015). 

Approaches to treatment of brain metastases include stereotactic radiosurgery (SRS) or whole 

brain radiation therapy (WBRT) in combination with systemic therapy, though these therapies 

are largely palliative and may result in neurocognitive degeneration (El-Habashy et al. 2014, 

Halasz et al. 2016).  

 

Nanoparticles and other polymeric drug formulations have shown promise for the 

delivery of chemotherapeutics, primarily through extravasation across the BTB (Mittapalli et 

al. 2013, Adkins et al. 2015, Mittapalli et al. 2017). This strategy has been particularly 

effective in fast-growing, aggressive metastases, which produce more growth factors 

associated with angiogenesis and have a resultant vasculature that is more permeable than 

BBB (Greish 2010). In addition, nanoparticles have prolonged residence times within lesions 

due to increased circulation half-life, while small molecules leave the tumor interstitial space 
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much faster. Consequently, the increased residence time of the nanoparticles results in 

significantly greater total drug exposure (area under the curve) (Sambade et al. 2016). 

Improvements in pharmacokinetics and reduced toxicity are evident with nano-liposome 

encapsulated anticancer agents such as vinorelbine, docetaxel and doxorubicin (Drummond, et 

al. 2009, Maeda et al. 2013).  

 

Recently, Nobel et al. demonstrated that a liposomal nanoparticle increased concentration 

of irinotecan by 3.1-fold in glioblastoma xenograft tumors compared to non-liposomal irinotecan 

(Noble et al. 2014). The 3-fold increase in Cmax was mirrored by similar increases observed for 

the active metabolite of irinotecan, SN-38, in the tumor (Noble et al. 2014). The liposomes 

preferentially accumulated in tumor tissues, with a 35-fold increase in irinotecan concentration 

from normal brain concentration, whereas non-liposomal irinotecan showed 9.5 fold increase in 

irinotecan concentration in tumor tissue compared to normal brain (Noble et al. 2014). 

Consistent with previous work showing nanoparticles increase total tumor exposure (area under 

the curve), the 3.1-fold increased peak concentrations were reached at 12 h in comparison to 15 

min with non-liposomal irinotecan (Noble et al. 2014). 

In the clinical setting, delivery of liposomes to brain lesions was previously observed with 

multiple methods. Detectable and variable uptake of 111In labelled non-PEGylated liposomes at 

72 h was observed in brain tumors across multiple patients with malignant glioma using single 

photon emission tomography(Khalifa et al. 1997). In another study, delivery of 99mTc labelled 

liposomal doxorubicin to glioblastomas and metastatic brain tumors of various origin was also 

observed using planar and SPECT scintigraphy (Koukourakis et al. 2000). Most recently, 

delivery of 64Cu labelled HER2-targeted liposomal doxorubicin was noted by PET/CT in breast 
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cancer brain metastases (Lee et al. 2017). These studies highlight the potential for liposomes to 

enable drug delivery to brain metastases. 

 

We hypothesize that liposomal irinotecan (nal-IRI, irinotecan liposome injection) will 

effectively deliver irinotecan and SN-38 resulting in efficacy and prolonged survival in a 

preclinical model of brain metastases of TNBC. nal-IRI, in combination with 5-fluorouracil and 

leucovorin, has recently been approved in the US and EU for the treatment of patients with 

advanced metastatic pancreatic adenocarcinoma after disease progression following gemcitabine-

based therapy.  

 

4.2 Materials and Methods 
Chemicals 

  Irinotecan HCl, nal-IRI were supplied by Merrimack Pharmaceuticals (Cambridge, US), 

which were prepared as reported by Noble et al. and Kalra et al. (Kalra et al. 2014, Noble et al. 

2014). Fluorescently-labeled liposomal irinotecan (DiI5-liposomal irinotecan) was also provided 

by Merrimack Pharmaceuticals, which was prepared following previously reported methods 

(Espelin, Leonard et al. 2016). The lipid mixture of nal-IRI consisting of 

distearoylphosphatidylcholine, cholesterol, and polyethyleneglycol-distearoylphosphatidyl-

ethanolamine at the molar ration of 3:2:0.015(Noble et al. 2014). Irinotecan HCl was in the 

liposomes at a ratio of 750 g irinotecan HCl / mol phospholipid (Noble et al. 2014). 

Carbocyanine tracer DiIC18 (5)-DS (D12730; Life Technologies) was incorporated into the lipid 

bilayer of the liposome prior to drug loading. All other chemicals were analytical grade 

purchased from Sigma-Aldrich (St. Louis, MO).  
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Animals 

  Female athymic nude mice (22-28 g) were obrained from Charles River Laboratories 

(Kingston, NY) were used for all experiments in the study.  Mice were 6-8 weeks of age before 

injecting with cancer cells and were housed under 12-hour light/dark conditions with food and 

water ad libitum, and mice were acclimated for 1 week prior to use. All animal work was 

approved by West Virginia University Institutional Animal care and Use Committee (IACUC 

protocols 13-1207). All animal experiments were performed according to the principles of the 

Guide for the Care and use of Laboratory animals.  

 

Cell Culture 

  Brain-seeking human triple negative breast cancer cells, transfected to express firefly 

luciferase (MDA-MB-231Br-Luc), were cultured in Dulbecco’s Modified Eagle’s Medium 

(DMEM) with 10% fetal bovine serum (FBS). MDA-MB-231Br-Luc cells were kindly provided 

by Dr. Patricia Steeg, of the National Institute of Health Center for Cancer Research. All cell 

work was performed under aseptic conditions, and cells were cultured at 37˚C with 5% CO2. 

 

Survival of animals with brain metastases after treatment 

  MDA-MB-231Br-Luc cells (1.75 × 105) cells were injected intracardially into the left 

ventricle and allowed to develop into CNS metastases for 21 days. The presence of metastases 

was confirmed by bioluminescence imaging (BLI) using the IVIS Lumina in vivo imaging 

system (PerkinElmer, Waltham, MA) after 15 min intraperitoneal administration of D-luciferin 
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potassium salt (150 mg/kg; PerkinElmer). Animals were then randomized into treatment groups 

(Saline, n=10), IRN-50 (n=10), nal-IRI-10 (n=10), and nal-IRI-50 (n=10). Drugs were 

administered intravenously via tail vein injection. Treatments were repeated once weekly, and 

BLI data was gathered twice weekly to quantify tumor burden and progression in different 

groups, similar to our previous work (Adkins et al. 2015). Once animals developed neurological 

symptoms or showed weight loss of ≥20 %, they were sacrificed under anesthesia. Euthanasia 

upon development of neurological symptoms was blinded and performed based on the 

recommendation of OLAR staff at WVU.     

Uptake and accumulation of liposomal irinotecan formulation 

  Animals from the liposomal irinotecan group (nal-IRI-10 and nal-IRI-50) were 

administered with Dil5-labelled liposomes intravenously. After 24 h, animals were sacrificed 

under anesthesia as described above. The brain was immediately harvested, frozen in 2-

methylbutane at -50C, and sectioned into 20 µm thick sections (Leica CM3050 S cryostat). The 

sections were imaged with an Olympus MVX10 microscope with a 2x objective (NA=0.5) using 

the Cy5 channel. The same sections were then stained with cresyl violet and compared to 

fluorescent images to confirm the accumulation of Dil-5 labeled liposomes within the metastatic 

tumors. Sections were also stained for cytokeratin and DAPI, a fluorescent stain that binds to 

DNA to visualize the accumulation of liposomes within the cancer cell using Nikon N-Storm 

super-resolution microscope system.    

 

Data Analysis 

  Differences among treatment groups in the survival study were compared by log-rank test 

(GraphPad® Prism 6.0, San Diego, CA) and were considered statistically significant at p<0.05. 
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Living Image V4.0 software (PerkinElmer, Waltham, MA) was used to quantify tumor burden in 

different groups.   

 

4.3 Results 
Dil-5 labelled liposomes cross the BTB and accumulate in brain metastases 

  To understand tumor localization of nal-IRI, we studied the spatial distribution of the 

liposomal formulation incorporated with a fluorescent dye (Dil-5). After confirmation of the 

presence of metastatic lesions by BLI (Fig. 4.1A, 4.2A and 4.3A), Dil5-labelled liposomes were 

administered at equivalent dose of nal-IRI-10(Fig 4.3) and nal-IRI-50 (Fig 4.2 and 4.3). The 

liposomes were allowed to circulate for 24 hr, the animals were anesthetized (ketamine/xylazine; 

100 mg/kg and 8 mg/kg respectively) and a washout with phosphate buffer saline at 5 ml/min 

flow rate for two minutes was performed in animals (Fig 4.2 and 4.3). For visualizing the brain 

vasculature, a mouse injected with Dil5-labelled liposomes was washed out with Texas red 

dextran 70 k (50 µg/ml) at 5 ml/min flow rate for 2 minutes (Fig 4.3)   The animals were 

sacrificed by decapitation to collect brain and tumor samples and then brain tissues were 

harvested and sectioned to allow for microscopic distribution visualization (Fig. 4.1B, 4.2B and 

4.3B). Brain sections corresponding to regions 1, 2, 3 and 4, as shown in Fig. 4.1B, 4.2B and 

4.3B, were also imaged for visualization of Dil-5 liposomes (Fig. 4.1, 4.2 and 4.3 (D1-D4)). The 

same sections were stained with cresyl violet and imaged for histopathologic visualization of 

lesions (Fig. 4.1, 4.2 (C1-C4) and 4.3 (C1-C3)). Cresyl violet images (Fig. 4.1, 4.2 (C1-C4) 

and 4.3 (C1-C3)) and their corresponding fluorescent images (Fig. 4.1, 4.2 (D1-D4) and 4.3 

(D1-D3)) show that there is localization of Dil-5 liposomes within metastatic lesions (i.e. cresyl 

violet positive regions). We also confirmed normal brain tissue (i.e. brain regions devoid of any 
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metastases) has undetectable amounts of Dil-5 labelled liposomes (Fig. 4.1 C4 and Fig. 4.1 D4). 

Figures 4.3 (E1-E3) show the vasculature in the brain. 

The sections were then stained for cytokeratin and DAPI for high-resolution visualization 

within the metastatic lesions using Nikon N-Storm super-resolution microscope system (Fig. 

4.4). We found that the Dil5 labelled liposomes not only crossed the BTB, but also localized 

within the cancer cells in the perinuclear regions, as shown in Fig. 4.4.  

 

 

Liposomal irinotecan reduces tumor burden and prolongs survival in animals with brain 

metastases of breast cancer 

 Lastly, we set out to determine if the increased accumulation of DiI5-liposomal 

irinotecan and prolonged drug exposure would result in increased median survival in our 

experimental model. To evaluate this, mice injected with TNBC cells intracardially for 

metastases development; after 21 days, mice were randomized to receive different therapeutic 

treatment regimens (Saline, IRN-50, nal-IRI-10 and nal-IRI-50).  We observed that progression 

of tumor burden in liposomal irinotecan-treated groups (nal-IRI-10 and nal-IRI-50) was 

significantly lowered when compared to vehicle and IRN-50 groups (Fig. 4.5A and B). We also 

noted that liposomal irinotecan formulations significantly improved survival when compared to 

both the vehicle group and conventional irinotecan group (Fig. 4.6). The median survival for 

liposomal irinotecan groups were 48 and 50 days for nal-IRI-10 and nal-IRI-50 respectively, 

while for vehicle and non-liposomal irinotecan (50 mg/kg) group’s median survival were 37 and 

35 days, respectively (Fig. 4.6). 
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4.4 Discussion 

The results of this study show that nal-IRI penetrates the BTB and accumulates within 

metastases in a preclinical model of MDA-MB-231Br-Luc brain metastases. Upon accumulation 

in metastatic tumors, the liposomes appear to act as reservoir for the release of irinotecan. The 

local release of irinotecan improved free drug exposure to tumor and presumably delayed the 

progression of tumor burden, which ultimately corresponded to significant prolonged survival. 

 

Irinotecan is a widely used chemotherapeutic agent, upon administration it is converted to 

its active metabolite7-ethyly-10hydroxy-camptothecin (SN-38), which is a potent topoisomerase 

I inhibitor (Adkins et al. 2015). Inhibition of topoisomerase I activity by SN-38 and irinotecan 

prevents DNA from unwinding. This results in DNA damage leading to inhibition of DNA 

replication ultimately triggering apoptosis in the tumor cells (Chabot 1996). Irinotecan is mostly 

converted to SN-38 in liver, whereas, liposomal irinotecan formulation leads to local conversion 

of irinotecan to SN-38 upon accumulation in the tumor (Wang et al. 2016). Adkins et al., 

previously reported that polyethylene glycol (PEG)- coupled irinotecan (NKTR-102) showed 

superior drug distribution in a preclinical brain metastases of breast cancer model. They also 

found that the survival with this novel formulation significantly improved with complete 

regression of brain metastases in 50% of the mice treated with NKTR-102 by the end of the 

study (Adkins et al. 2015).  A phase III study of NKTR-102 versus treatment of physician’s 

choice (TPC) in patients with brain metastases of breast cancer is currently recruiting 

participants (NCT02915744).  Liposomal irinotecan has already proved to beneficial both 

preclinically and clinically for treating metastatic pancreatic cancer (Carnevale and Ko 2016, 

Chiang et al. 2016). FDA approved ONIVYDE® , irinotecan liposomal injection in combination 
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of 5-Flurouracil/ leucovorin (5-FU/LV) for metastatic pancreatic cancer patients(Kipps et al. 

2017). 

 

The accumulation of Dil-5 labelled liposomes in brain metastases, and the increased 

concentrations of drug payload over a period align with previous observations of passive 

targeting in tumors with nanoparticles like liposomes (Jain and Stylianopoulos 2010, Liu et al. 

2013). These observations support that liposomal irinotecan accumulates in brain metastases via 

the EPR effect, as reported for other solid tumor types (Kalra et al. 2014). This maintenance of 

prolonged SN-38 cytotoxic concentrations and high tumor-to-normal tissue ratio (Chapter 3) are 

likely responsible for the prolonged survival observed in our animal model. Irinotecan is also 

substrate for efflux transporters present at the BBB/BTB.  The pharmacokinetic data presented in 

Chapter 3 confirms the increased plasma mean residence time for both SN-38 and irinotecan,     

 

In addition to preferential accumulation of liposomal irinotecan in metastatic lesions, we 

observed that the progression of tumor burden was significantly delayed in liposomal irinotecan 

groups, which correlated with prolonged survival. The median survival of the vehicle group was 

found to be 37 days (Adkins et al. 2015, Adkins et al. 2016). Treatment with conventional 

irinotecan (50 mg/kg) showed no improvement in survival (median survival of 35 days). 

However, liposomal irinotecan-treated groups significantly prolonged median survival to 50 days 

in 50 mg/kg group and 48 days in 10 mg/kg group (Fig.6). We hypothesize that after 

accumulation of liposomal irinotecan formulation in brain tumors, they act as reservoir for the 

release of irinotecan as described in other previous studies (Ostrowski et al. 2012, Liu et al. 

2013). The prolonged release of the chemotherapy from the liposomes provides sustained tumor 
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drug concentration, as shown in the pharmacokinetic results (Chapter 3). Maintenance of the 

irinotecan concentration in between cycles of treatments in liposomal irinotecan groups may be 

responsible for the prolonged survival when compared to vehicle and conventional irinotecan 

groups. We have demonstrated that nal-IRI permeates the BTB and accumulates in metastatic 

brain tumors due to the EPR effect, prolonged systemic circulation, and potentially bypassing the 

efflux mechanisms. We also observed accumulation of liposomes in lesions with sustained 

release of irinotecan. We believe this is responsible for the increase in survival in liposomal 

irinotecan groups compared to non-liposomal irinotecan group. Clinically, the chemotherapy 

used for the management of brain metastases of breast cancer are conventional cytotoxic agents 

such as cyclophosphamide, fluorouracil, methotrexate, and doxorubicin based upon their 

increased permeability through tumor vasculature (Boogerd et al. 1992, Lin, Bellon et al. 2004). 

Collectively, results presented herein support the on-going clinical study of nal-IRI in patients 

with breast cancer brain metastases (NCT01770353) and indicates its potential for treatment of 

brain metastases of breast cancer.  

 

In summary, we demonstrated efficacy of liposomal irinotecan in a preclinical model of a 

metastatic brain tumors. We observed the preferential uptake and accumulation of liposomal 

irinotecan into the brain tumors, ultimately correlating with increased survival.   
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Figure 4.1: nal-IRI-50 accumulates in metastatic lesions in preclinical brain metastases of breast 
cancer model after 24 hour intravenous administration. 

A. Image showing MDA MB 231Br-Luc brain metastases Bio-luminescence image (BLI) 
signal 

B. Image showing accumulation of fluorescent liposomes. The numbered dashed lines 1,2,3 
and 4 corresponds to the numbered coronal sections (C and D panels). 

C. Cresyl violet stained images corresponding to tumors in brain sections. (C1= Bregma 
2.24 mm; C2=1.54 mm; C3= 0.5 mm; C4= -0.7 mm) 

D. Florescent liposomes accumulation in the corresponding brain tumors. . (D1= Bregma 
2.24 mm; D2=1.54 mm; D3= 0.5 mm; D4= -0.7 mm).   
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Figure 4.2: nal-IRI-50 accumulates in metastatic lesions in preclinical brain metastases of breast 
cancer model after 24 hour intravenous administration. 

A. Image showing MDA MB 231Br-Luc brain metastases Bio-luminescence image (BLI) 
signal 

B. Image showing accumulation of fluorescent liposomes. The numbered dashed lines 1,2,3 
and 4 corresponds to the numbered coronal sections (C and D panels). 

C. Cresyl violet stained images corresponding to tumors in brain sections. (C1= Bregma 2.8 
mm; C2=1.18 mm; C3= 0.5 mm; C4= -0.7 mm; C5= -2.18 mm  ) 

D. Florescent liposomes accumulation in the corresponding brain tumors. (D1= Bregma 2.8 
mm; D2=1.18 mm; D3= 0.5 mm; D4= -0.7 mm; D5= -2.18 mm  ) 
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Figure 4.3: nal-IRI-10 accumulates in metastatic lesions in preclinical brain metastases of breast 
cancer model after 24 hour intravenous administration. 

A. Image showing MDA MB 231Br-Luc brain metastases Bio-luminescence image (BLI) 
signal 

B. Image showing accumulation of fluorescent liposomes. The numbered dashed lines 1,2,3 
and 4 corresponds to the numbered coronal sections (C, D and E panels).  

C. Cresyl violet stained images corresponding to tumors in brain sections. (C1= Bregma 
1.10 mm; C2=0.02 mm; C3= -1.06 mm) 

D. Florescent liposomes accumulation in the corresponding brain tumors. (D1= Bregma 1.10 
mm; D2=0.02 mm; D3= -1.06 mm) 

E. Image showing vasculature in brain sections. (E1= Bregma 1.10 mm; E2=0.02 mm; E3= 
-1.06 mm) 
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Figure 4.4: Dil5-labelled liposomes accumulate in metastatic lesions in preclinical brain metastases of 

breast cancer model 24 hr after intravenous administration.  

Mouse brain tissue sections were stained for DAPI (blue) and cytokeratin (green) after 24 hr 

circulation of Dil5-labelled liposomes. DAPI highlights the nucleus and cytokeratin highlights 

MDA-MB-231Br-Luc brain metastases. We observed Dil5-labelled liposomes (red) accumulated 

in the MDA-MB-231Br-Luc cancer cell (green) around the nucleus (blue). Images were acquired 

from Nikon N-Storm super-resolution microscope system. Scale bar =1 µm. 
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Figure 4.5: Liposomal irinotecan decreases tumor burden compared to non-liposomal irinotecan and 
vehicle.  

(A) In vivo optical imagining (IVIS Lumina) was used to confirm and monitor the metastatic 

tumor growth after intracardiac injection.  Increase in BLI signal in brain reflects the pattern of 

metastatic tumor growth in different treatment groups. Images acquired are of same animal 

sequentially over time. (B) Mean BLI signal versus time in mice exhibiting brain metastases. 

Treatment was initiated on day 21. Each data point represents mean ± SD. Tumor burden in 

groups treated with liposomal irinotecan were significantly lower (P<0.05) 
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Figure 4.6:  Kaplan-Meier Survival Plot of mice bearing metastatic brain tumors from human triple 

negative breast cancer.  

The mice were treated weekly via IV bolus with vehicle (n=23), IRN-50 (n = 16), nal-IRI -10 

(n=8) and nal-IRI -50 (n=9) starting 21 days after intracardiac injection of MDA-MB-231Br-Luc 

cancer cells. The median survival time was 37 days for vehicle, 35 days for IRN-50, 48 and 50 

days for nal-IRI -10 and nal-IRI -50 respectively. The median survival for liposomal irinotecan 

groups (nal-IRI -10 and nal-IRI -50) significantly increased (P< 0.05) when compared to vehicle 

group.  The groups were compared to vehicle by Log-rank statistical analysis. 
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CHAPTER 5 

NOTCH-4 INHIBITION FOLLOWED BY CHEMOTHERAPY 

ADMINISTRATION DECREASES TUMOR BURDEN AND INCREASES 

SURVIVAL IN A MOUSE MODEL OF BRAIN METASTASES OF 

BREAST CANCER. 

5.1 Introduction 

Drugs used in the treatment of CNS disorders like psychosis, Parkinson’s disease, 

Alzheimer’s disease, affective mood disorders, pain and brain tumors  experience a peculiar 

hurdle of passing into the brain because of a selective barrier between brain and blood 

(Oldendorf 1974). Entry of the molecules into the brain is regulated by this selective barrier and 

it is called the Blood Brain Barrier (BBB). Many drugs that act on the CNS disorders should be 

delivered at the site of action, which are often invasive because of intact BBB (Pardridge 1997).  

Blood capillaries in the brain are not structurally similar to that of other tissues. The 

unique structural characteristic of the BBB is complete sealing of vascular endothelium with 

tight junction protein complexes like occludins, claudins, and intercellular junctional adhesion 

molecules making BBB devoid of any paracellular diffusion of drugs from blood to 

brain(Ballabh, Braun et al. 2004). In addition to the compact endothelium in the cerebral 

capillaries, it also contains pericytes and astrocytes. Pericytes share common basement 

membrane with endothelial cells and they are on the brain side of the endothelium. Astrocytes 

are specialized glial cells supporting the neurons. The extensions of these cell are called foot 

processes or limbs which are closely associated with cerebral endothelial cells encapsulating the 

capillaries. This physically uncompromised structure is also complemented with various active 
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efflux mechanisms and highly active enzymes secreted by endothelial cells, pericytes and 

astrocytes represent diffusion of drugs across the BBB is also curtailed metabolically. The active 

efflux mechanisms include P-glycoprotein, breast cancer resistance proteins and the family of 

multi drug resistance proteins which decrease the BBB permeability considerably despite their 

lipophilicity. The drugs that undergo active efflux mechanism include anti-cancer drugs like 

doxorubicin and vincristine. (Sun et al. 2003, Noble et al. 2014) (Löscher and Potschka 2005). 

Several families of active enzymes like phosphatases secreted by brain parenchyma and 

microvessel endothelial cells inactivate several drugs including peptides and 

neuropeptides.(Minn et al. 1991) (Brownlees and Williams 1993).  

20-40% of the patients with advanced breast cancer will develop symptomatic brain 

metastases (Ostrom, Gittleman et al. 2016). Once the patients develop metastatic brain tumor 

from breast cancer, there is 80% mortality within one year in the patients (Ostrom, Gittleman et 

al. 2016). Current modalities for treatment of metastatic brain tumors from breast cancer include 

radiotherapy and surgical resection (Kocher, Soffietti et al. 2011). Chemotherapy fails to cross 

the blood-brain barrier and show optimum efficacy in metastatic brain tumors (Lockman, 

Mittapalli et al. 2010). There is a need for developing new strategies to increase the permeability 

of the vasculature in brain metastases specifically.  

In our previous studies we found that the vasculature in the tumor (BTB) is leakier 

compared normal brain vasculature (BBB) (Adkins et al. 2016). The increased permeability of 

blood vessels in the tumor (BTB) can be accounted for angiogenic process in the tumor(Dvorak 

et al. 1988, Jain 2000). Many studied antiangiogenic therapy for brain tumors but the results 

demonstrated that these therapies resulted in sustained tumor progression and also increased 

local invasion of the tumor cells (Leenders et al. 2004, Pàez-Ribes et al. 2009). One approach to 
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improve chemotherapeutic permeability into the tumors is to increase angiogenesis as angiogenic 

vessels are leakier compared to normal brain vessels (Carmeliet and Jain 2000, Jain and Munn 

2000). Notch-4 plays an important role in angiogenesis and in quiescence of brain endothelium. 

The brain endothelium is a dormant and an inactive tissue and activated Notch-4 is responsible 

for its stabilization of mature endothelium because activated Notch-4 inhibits apoptosis and 

downregulates the VEGF-2 receptors making it very quiescent (Fig. 5.1)(Williams et al. 2006). 

We hypothesized that inhibiting Notch-4 will upregulate the VEGF-2 receptors, which leads to 

increased angiogenesis ultimately leading to increased permeability. We also hypothesized that, 

concurrent chemotherapy administration with Notch-4 inhibition will decrease the tumor burden 

and increase overall survival in mouse model of brain metastases of breast cancer.  

 

5.2 Material and Methods 

Chemicals 

Irinotecan HCl, DAPT (GSI-IX) were purchased from APExBIO (Boston, MA). 

Irinotecan HCl was dissolved in 5% dextrose before administration into the mice intravenously 

and DAPT was dissolved in corn oil, 5 % ( V/V) ethanol before its administration 

intraperitoneally. 14C-labelled aminoisobutyric acid (AIB) was purchased from American 

Radiolabelled Chemicals (St. Louis, MO). Cresyl violet acetate (0.1%) was purchased from 

Sigma-Aldrich (St. Louis, MO). Firefly D-luciferase potassium salt was purchased from Caliper-

PerkinElmer (Waltham, MA). All chemicals and reagents used were of analytical grade and were 

purchased from Sigma-Aldrich (St. Louis, MO) 
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Animals 

All experiments in the study were conducted in female athymic nude mice (Charles River 

Laboratories, Kinston, NY).  Mice weighed 23-28 g and were 6-8 weeks of age before the start 

of the experiments and were acclimated for 1 week prior to use. Mice were housed under 12-

hour light/dark conditions with food and water ad libitum. All Experiments were performed 

under approved institutional Animal Care and Use Committee protocols (WVU #13-1207) and 

all work followed internationally recognized animal welfare guidelines.    

 

Cell Culture 

Human brain endothelial cells (CRL-3245) were purchased from ATCC (Manassas, VA) 

and cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% fetal 

bovine serum (FBS) and supplemented by 40 µg/ml endothelial growth supplement (ECGS). 

MDA-MB-231Br-Luc cells were kindly provided by Dr. Patricia Steeg, were cultured in 

Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% fetal bovine serum (FBS). All cell 

work was performed under aseptic conditions, and cells were cultured at 37˚C with 5% CO2. 

 

Determination of Vascular endothelial growth factor receptor-2 (VEGFR-2) mRNA and 

protein levels 

Human brain endothelial cells were treated with different concentrations of Notch-4 

inhibitor DAPT, cells are collected after treatments and RNA was isolated from samples using 

RNeasy Plus Mini Kit (QIAGEN, Germantown, MD) according to the manufacturer’s 

instruction. NanoDrop 1,000 spectrophotometer (Thermo Scientific, Wilmington, DE) was used 

assess the concentration and purity of RNA. 1 µg of RNA was reverse transcribed to cDNA with 
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random primers and then cDNA was diluted to the concentration of 50 ng/ml. qPCR was 

performed on cDNA using oligo nucleotide primer for VEGFR-2, HES-1 and GAPDH 

(endogenous control) by 7300 Real Time PCR (Applied Biosystems, CA) in 96 well microtiter 

plates with amplification mixture SYBER Green master mix (Fermentas, MA). Changes in 

mRNA levels were analyzed by the   ΔΔCt method.  

VEGFR-2 and HES-1 protein levels are determined by dissolving the cells in RIPA 

buffer and western blot analysis was performed as previously described (Logsdon, Lucke-Wold 

et al. 2017). A rabbit anit-VEGR-2 antibody (1:1000), a rabbit anti-HES-1 (1:1000), and a rabbit 

anti-GAPDH antibody (1:1000) (Cell signaling, Denvers, CA) were used with a secondary 

IRDye 800 CW (goat anti-rabbit) (LI-COR Biosciences).  

 

Determination of Blood-Brain Barrier Permeability  

Mice were anesthetized under 2% isoflurane and injected with 175,000 MDA MB 231Br-

Luc cells intracardially into the left ventricle using stereotaxic device (Stoelting, Wood Dale, IL). 

After the injection metastases were allowed to develop and presence of brain metastases was 

confirmed by the presence of bio-luminescence imaging (BLI) on the mice on day 21. Once the 

confirmation of metastases the mice were randomized into 3 different groups and treated with 

control (Corn oil, 5 % (V/V) ethanol), 50 mg/kg DAPT and 100 mg/kg DAPT intraperitoneally 

daily until the mice showed neurological symptoms. The mice were anesthetized with 

ketamine/xylazine (100mg/kg and 8mg/kg respectively) and administered with 10 µCi/animal 

14C-labelled aminoisobutyric acid (AIB) intravenously and allowed it to circulate for 10 minutes, 

then animals were euthanized. Brains were rapidly removed and flash frozen in isopentane and 

then stored at negative 80°C.  
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Brains were sliced at 20 µm thickness using cryotome (Leica CM3050S; Leica 

Microsystems, Wetzlar, Germany) and transferred to slides. The slides were placed in 

quantitative autoradiography (QAR) cassettes (GE Healthcare, Piscataway, NJ) and then a 

phosphor screen (FujiFilm Life Sciences, 20 × 40 super-resolution) was placed over the slides 

and allowed to develop for 20 days. High resolution phosphor imager (FUJI FLA-7000, FujiFilm 

Life Sciences) was used develop QAR phosphor screens and the images were converted to 

digital images which were calibrated with 14C standards and analyzed using MCID Analysis 

software (InterFocus Imaging LTD, Linton, Cambridge, England). The permeability of 14C-

labelled aminoisobutyric acid (AIB) in brain metastases were determined by overlaying cresyl 

violet stained images of the same brain slice.   

 

Survival of animals with brain metastases  

Brain seeking breast cancer cell were injected intracardially and allowed to metastasize. The 

presence of metastases was confirmed on day 21 by BLI and then the mice were randomized and 

divided into 4 different groups (n=10), Vehicle group, Irinotecan group, DAPT group and 

DAPT+ irinotecan group and treated according with vehicle or DAPT (50mg/kg I.P, once daily) 

or irinotecan (50 mg/kg I.V, once a week). The treatment were continued with BLI to monitor 

tumor burden. Once animals developed neurological symptoms or showed weight loss of ≥20 %, 

they were sacrificed under anesthesia. Euthanasia upon development of neurological symptoms 

was blinded and performed based on the recommendation of OLAR staff at WVU. BLI data was 

gathered twice weekly to quantify tumor burden and progression in different groups, similar to 

our previous work (Adkins et al. 2015). 
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Data Analysis 

A long-rank test (GraphPad® Prism 6.0, San Diego, CA) was used to compare difference 

among different groups and groups were considered statistically different at p<0.05. Living 

Image V4.0 software (PerkinElmer, Waltham, MA) was used to quantify tumor burden in 

different groups.    

5.3 Results:  

Increase in VEGFR-2 mRNA and protein levels in human brain endothelial cells after Notch-

4 inhibition 

First, we investigated mRNA levels in human brain endothelial cells after treating with 

Notch-4 inhibitor DAPT at different concentration; 0 µM (Control),   5 µM, 10 µM, 20 µM, 50 

µM, and 100 µM. Cells were treated with DAPT treated for 48 hours before quantitative PCR 

was performed. We then determined mRNA levels of VEGFR-2 after Notch-4 inhibition. We 

found that with increase in DAPT concentrations the VEGFR-2 mRNA expression increased. 

The mRNA expression levels significantly increased more than two-folds in the groups treated at 

10 µM, 20 µM, 50 µM DAPT. 20 µM and 50 µM of DAPT treatment showed highest fold 

increase (q= 2.5; p<0.05) in mRNA expression (Fig 5.2A). We also confirmed the inhibition of 

Notch-4 expression by investigating mRNA expression of HES-1 from the same samples and we 

found that with increase in DAPT concentration the mRNA expression of HES-1 decreased (Fig 

5.2B). 

After investigating VEGFR-2 mRNA expression levels, we studied VEGFR-2 protein 

levels in human brain endothelial cells after treatment with DAPT at concentration similar 

concentrations (0 µM (Control),   5 µM, 10 µM, 20 µM, 50 µM, and 100 µM. DAPT). We found 
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that the expression VEGFR-2 protein levels increased with decrease in HES-1 protein levels (Fig 

5.3). 

Notch-4 inhibition increased blood-tumor barrier permeability in animals with brain 

metastases of breast cancer 

After studying the expression of VEGFR-2 mRNA and protein levels, we investigated the 

permeability of blood-tumor barrier in brain metastases. After development of brain metastases, 

animals were randomized into three groups, control, DAPT (50 mg/kg) and DAPT (100 mg/kg). 

The permeability was determined by 14C-labelled aminoisobutyric acid (AIB) as discussed in 

methods section. We found that the permeability of 14C-labelled aminoisobutyric acid (AIB) 

significantly increased in DAPT treated group when compared to vehicle group. DAPT (50 

mg/kg) group showed the highest 14C-labelled aminoisobutyric acid (AIB) levels in the tumor 

with the mean values of 280 ± 31 nCi/g, the values observed from DAPT (100 mg/kg) was 204 ± 

24 nCi/g whereas, the control group showed the mean values of 93.5 ±10 nCi/g (Figure 5.4 A 

and B). We also found that 14C-labelled aminoisobutyric acid (AIB) levels in normal brain 

region did not show any differences with control group values of 5 ± 0.9 nCi/g, DAPT (50 

mg/kg)  showed the values of 5.6 ± 0.6 nCi/g and DAPT (100 mg/kg) showed the values of 7.9 ± 

0.4 nCi/g.  We also observed that there was no difference in 14C- (AIB) permeation in brain 

distant from tumor. 

  

After investigating the permeability of the tumors from different groups we want to evaluate if 

there is any correlation between the size of the tumor and the permeability of 14C-labelled 

aminoisobutyric acid (AIB). We stained the brain sections with 0.1% cresyl violet acetate 

(Sigma-Aldrich, St. Louis, MO) to localize brain metastases. Cell sense software (Olympus, 
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Center Valley, PA) was used to measure the area of the metastases. Tumor size and metastases 

were plotted on XY plots and the XY plots were analyzed by linear regression (Graph pad 

prism). We found that there is no correlation between size of the tumor and the permeability of 

14C-labelled aminoisobutyric acid (AIB). The R2 value for Control group found to be 0.1, 

similarly for DAPT (50 mg/kg) and DAPT (100 mg/kg) the R2 values were found to be 0.17 and 

0.18 respectively (Fig 5.5).  

 

Chemotherapy administration with concurrent Notch-4 inhibition reduces tumor burden and 

prolongs survival in animals with brain metastases of breast cancer 

Lastly, we set out to determine if this increase in VEGFR-2 and increase in BTB 

permeability in Notch-4 treated groups would result in increased median survival in our 

experimental model of brain metastases of breast cancer. To investigate this, mice were injected 

with MDA MB 231Br-Luc cells and allowed to metastasize. Once the metastasis was confirmed 

in mice after 21 days, mice were randomized into four groups (n=10) into control, irinotecan (50 

mg/kg), DAPT (50 mg/kg) and irinotecan (50 mg/kg) + DAPT (50 mg/kg) groups. BLI imaging 

was performed twice a week to monitor tumor burden in 4 groups. We found that the tumor 

burden progression in DAPT + Irinotecan group is delayed when compared to vehicle and other 

groups (Fig. 5.6 A and B). DAPT group and the irinotecan group showed similar trend to that of 

vehicle group. This decrease in tumor burden progression correlated with that of survival in 

different groups. The median survival of irinotecan + DAPT group significantly increased when 

compared to vehicle and other groups. We found that the median survival from DAPT + 

irinotecan group improved by 20% when compared to vehicle group. The survival from 

irinotecan and DAPT groups did not significantly improved when compared to the vehicle. The 
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median survival for vehicle group was found to be 28.5 days, whereas the median survival for 

irinotecan and DAPT group were found to be 29 days and the median survival for irinotecan + 

DAPT group was found to be 35 days (Fig. 5.7).  

5.4 Discussion 

The results of this study shows that Notch-4 inhibition increases the permeability in the 

brain tumors and this increased permeability also resulted in the decreased progression of tumor 

burden with increase in median survival when treated with chemotherapy with concurrent Notch-

4 inhibition by DAPT in an experimental model of brain metastases of breast cancer. 

 As tumors grow, they secrete various proangiogenic growth factors such as vascular 

endothelial growth factor (VEGF) for their vascular supply and inhibition of angiogenesis may 

suppress tumor growth (Folkman 1971). Based on this many antiangiogenic therapies were 

developed but antiangiogenic drugs such as bevacizumab, sunitinib and afliberecept targeting 

VEGF pathways slowed disease progression in some patients but the results are modest and 

limited to certain settings (Hurwitz et al. 2004, Carmeliet and Jain 2011, Raymond et al. 2011, 

Jayson et al. 2016). Preclinical and clinical data suggests that brain tumors becomes more 

infiltrative when the VEGF pathways are inhibited by facilitating vessel co-option.(Leenders et 

al. 2004, de Groot et al. 2010, di Tomaso et al. 2011).  We have previously showed that brain 

metastases are leaky compared to normal brain vasculature and here we want to take advantage 

of leaky vasculature in the tumor due to angiogenesis and instead of taking an antiangiogenic 

approach we want to investigate if proangiogenic approach would result in increase in 

permeation and ultimately leading increased survival in this study (Lockman et al. 2010). 

 Notch signaling is short range communication system between the adjacent cells by 

ligand gated receptors to coordinate development.(Ables et al. 2011). Notch is fully activated 
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after proteolytic cleavage of intracellular domain (ICD) of Notch receptor by gamma secretase, 

then intracellular domain will translocate to nucleus for further downstream events (Fig 5.1) (De 

Strooper et al. 1999). Notch signaling pathway is inhibited by inhibiting the activity of gamma 

secretase.  Notch (Notch-1 and Notch-4 receptors) plays many roles during vascular 

development in vertebrates which include differentiation of both endothelial cells and vascular 

smooth muscle cells and it also plays a vital role in influencing angiogenesis (Gridley 2010). The 

role of Notch-4 in vasculogeneis and angiogenesis is crucial as activated Notch-4 downregulates 

the VEGF-2 thereby regulating VEGF pathways for angiogenesis (Shibuya and Claesson-Welsh 

2006, Williams, Li et al. 2006). During angiogenesis, the formation of new capillaries take place 

from particular endothelial cells and the Notch pathway has a key role in formation and function 

of this endothelial tip. Inhibition of Notch signaling increases the endothelial tip cell division and 

branching by vessel bifurcation ultimately leading to leakier angiogenic vessel (Sainson and 

Harris 2007).  We observed that permeability of 14C-labelled aminoisobutyric acid (AIB) 

significantly increased after Notch-4 inhibition by a gamma secretase inhibitor, DAPT in our 

experimental metastatic model. We also observed that there was no difference in the 

permeability of brain distant from tumor after Notch-4 inhibition by DAPT when compared to 

vehicle group. 

 After studying the permeation of tumors after Notch-4 inhibition we investigated survival 

with chemotherapy and concurrent Notch-4 inhibition in an experimental model of metastases. 

We found that tumor burden progression decreased in DAPT + Irinotecan group compared to 

vehicle and other groups. This also correlated with the survival study, where the median survival 

was significantly increased in DAPT + Irinotecan group in our experimental model. We found 

that there was 20% increase in median survival when compared to both vehicle and irinotecan 
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group. The data suggests that increase in permeability of BTB is responsible for increased drug 

efficacy in the metastatic brain tumors.  

 In this study Notch-4 is inhibited by a gamma secretase inhibitor, DAPT (N-[N-(3, 5-

difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester). DAPT is investigated in other 

diseases like Alzheimer’s disease, where they found certain isoforms of amyloid beta levels 

decreased upon treatment with DAPT in a mouse model of Alzheimer’s disease (Portelius et al. 

2010). But with chronic Notch inhibition some toxicities were observed. In a mouse study, 

necropsy analysis various organ revealed that Notch was active in the liver endothelium and they 

observed benign tumors of endothelial tumors on histopathological examination (Liu et al. 2011, 

Ryeom 2011).  However, there is not enough data about the gamma secretase inhibitor related 

toxicities and the dose at which it causes toxicity(D'Onofrio et al. 2012). 

 In summary, we found that Notch-4 inhibition increased the expression of VEGFR-2 

mRNA and protein levels. DAPT treated animals also showed increased permeability of 14C-AIB 

in an experimental mouse model. We also observed that chemotherapy administration with 

concurrent Notch-4 inhibition decreased the tumor burden progression and significantly 

increasing the survival in a preclinical model of brain metastases of breast cancer.  
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Fig 5.1. Schematic representation of NOTCH signaling pathway. 

Notch is transmembrane proteins which act as receptor for DSL (Delta, Serrate and Lag-2) group 

of ligands and there are four types of Notch receptors (Notch 1, 2, 3 and 4). Notch receptor 

consisting of large extracellular domain (ECD), small transmembrane and intracellular domain 

(ICD). When the ligands bind to the ECD of the Notch receptors it initiates the S2 cleavage of the 

ECD domain and also internalization of both ECD and the ligand occurs. Notch is fully activated 

when gamma secretase cleaves ICD from the membrane. The cleaved ICD translocates to the 

nucleus and binds to the transcriptional repressor CBF1. The multi-protein complex of ICD, CBF1 

and proteins of mastermind-like family (MAML) decreases the trascriptional repressor activity of 

CBF1 by displacement of co-repressor (SMRT) and Histone Deacetylase (HDAc) and  with 

simultaneous binding of Histone acetyltransferase (HAc) and Ski-interacting protein 

(SKIP)   ultimately causing the transcriptional initiation of HES-1.  
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DAPT 

Figure 5.2 Notch-4 inhibition increases the expression of VEGFR-2 mRNA in human brain 
endothelial cells 

(A) A significant increase in VEGFR-2 mRNA was observed in human brain endothelial cells 
after treatment with DAPT at different concentration for 48 hours.  (*P < 0.05 vs control, 
**P<0.01 vs control). (B) A significant decrease in HES-1 mRNA was observed in human 
brain endothelial cells after treatment with DAPT at different concentration for 48 hours 
confirming Notch inhibition.  (*P < 0.05 vs control, **P<0.01 vs control)  
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Figure 5.3 Notch-4 increases the expression of VEGFR-2 protein levels in human brain 
endothelial cells 

Increase in VEGFR-2 protein levels was observed in human brain endothelial cells after treatment 
with DAPT at different concentration for 48 hours. Maximum expression of VEGFR-2 protein 
levels was found at 20 µM of DAPT treatment.   Decrease in HES-1 protein levels was observed 
in human brain endothelial cells after treatment with DAPT at different concentration for 48 hours 
confirming Notch inhibition.  
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Figure 5.4 Notch-4 Inhibition Increases the permeability of 14C-AIB in a Mouse Model 

(A1-A3) Brain metastases identification of coronal sections based on cresyl violet staining. (B1-
B3) Autoradiograms of corresponding cresyl violet sections showing the intensity of 14C-AIB. (C) 
Image representing amount of 14C-AIB accumulation in brain metastases in animals treated with 
saline (Control), DAPT (50mg/kg) and DAPT (100mg/kg) (****P< 0.0001). Each column 
represents mean ± SEM 
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Figure 5.5 Correlation between Blood-tumor barrier permeability and size of the tumor 

Cell sense software) was used to measure the area of the metastases. Tumor size and metastases were plotted on XY plots and the XY 
plots were analyzed by linear regression (Graph pad prism). We found that there is no correlation between size of the tumor and the 
permeability of 14C-AIB. (A) Represents the linear regression analysis of tumors from control animals (B) Represents linear 
regression analysis of tumors from DAPT (50mg/kg) group and (C) Represents linear regression analysis of tumors from DAPT 
(100mg/kg) group. 
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Figure 5.6 Notch-4 inhibition followed by chemotherapy administration decreases the 
progression of tumor burden 

(A) In vivo optical imagining (IVIS Lumina) was used to confirm and monitor the metastatic tumor 
growth after intracardiac injection. (B) Mean BLI signal versus time in mice exhibiting brain 
metastases. Treatment was initiated on day 21. Each data point represents mean ± SEM.   
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Figure 5.7 Notch-4 inhibition followed by chemotherapy administration increases the 
median survival 

Kaplan-Meier Survival Plot of mice bearing metastatic brain tumors. The median survival time 

was 28.5 days for vehicle, 29 days for irinotecan (IRN), 29 and 35 days for DAPT and DAPT+ 

IRN respectively.  DAPT+IRN treatment significantly increased (P<0.05) survival when 

compared to all other groups. The groups were compared to vehicle by Log-rank statistical 

analysis. 
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CHAPTER 6 

PERMEABILITY CHANGES AND EFFECT OF CHEMOTHERAPY IN 

BRAIN ADJACENT TO TUMOR IN AN EXPERIMENTAL MODEL OF 

METASTATIC BRAIN TUMOR FROM BREAST CANCER 

6.1 Introduction 

The incidence of metastatic brain tumors in United States is approximately 170,000 

patients annually (Platta et al. 2010). The most common primary sites for brain metastases are 

lung, breast and skin, with more than 70% of the patients account for cancers from lung and 

breast (Rivkin and Kanoff 2013). The incidence of breast cancer metastases to brain is 

increasing, as there is significant improvement in 5-year survival from primary breast cancer 

(Frisk et al. 2012, Leone and Leone 2015). Once diagnosed with metastatic brain tumors from 

breast cancer, 4 out of 5 patients will die within one year (Adkins et al. 2015).  

Conventional chemotherapy fails in metastatic brain tumors due to the presence of blood-

brain barrier (BBB)/ blood-tumor barrier (BTB), which prevents a sufficient concentration of 

chemotherapeutics from reaching lesions (Adkins et al. 2015). However, we have previously 

found that there is an increase in drug permeation in metastatic lesions when compared to normal 

brain (Lockman, Mittapalli et al. 2010, Adkins et al. 2016). Many newer strategies to treat 

metastatic brain tumors include methods to improve chemotherapeutic penetration by 

overcoming the BBB/BTB, including  nanoparticles, osmotic BBB disruption, BBB disruption 

using ultrasound, etc. (Guillaume et al. 2010, Konofagou et al. 2012, El-Habashy et al. 2014, 

Adkins et al. 2015). All of these strategies have shown increased penetration through BBB, but 
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the effect of chemotherapy on tumor-adjacent healthy tissue has not been thoroughly 

investigated.  

In this study, we hypothesize that the area around tumor is more accessible to drug 

penetration, or there is diffusion from the tumor into normal brain tissues, which may result in 

chemotherapy accumulation and effect in the brain adjacent to tumor (BAT). We tested the 

penetration of two different fluorescent permeability markers, texas red free dye (Mol. Wt. 625 

Da.) and texas red dextran 3kDa. (Mol. wt. 3000 Da.). We then determined the distribution of 

14C-paclitaxel in normal brain, tumors, and BAT regions. Finally, we studied the effect of 

chemotherapy on BAT by staining for a marker of neuro-inflammation. 

6.2 Methods 

Chemicals & Reagents 

The fluorescent tracers texas red (625Da) and texas red dextran (3kDa) was purchased 

from Molecular Probes-Life Technologies (Carlsbad, CA). Radiolabeled (14C)-Paclitaxel was 

purchased from Moravek, Inc (Brea, CA). Cresyl violet acetate (0.1%) was purchased from 

Sigma-Aldrich (St. Louis, MO). All chemicals and reagents used were of analytical grade and 

were used as supplied. 

Cell culture 

 Human MDA-MB-231Br metastatic breast cancer cells were cultured in DMEM 

supplemented with 10% FBS. MDA-MB-231Br cell lines were transfected to stably express 

enhanced green fluorescent protein (eGFP). All cells used in experimental conditions came from 

passages 1-10 and were maintained at 37°C with 5% CO2.  For all cell preparations for 

intracardiac injection, cells were harvested at 70% confluency. 
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Experimental brain metastases model 

All animal handling and procedures were approved by institutional Animal Care and Use 

Committee protocol (WVU #13-1207), and all work followed internationally recognized animal 

welfare guidelines. Female athymic nu/nu mice (24-30 g) were purchased from Charles River 

Laboratories (Wilmington, MA) and were used for the experimental metastases model in this 

study. Mice were 6 to 8 weeks of age at the initiation of the brain metastases models and were 

housed in a barrier facility with chow and water available ad libitum before and after inoculation 

of tumor cells. For inoculation of MDA-MB-231BR cells, mice were anesthetized under 2% 

isoflurane and injected with 175,000 cells in the left cardiac ventricle using a sterile 27-gauge 

tuberculin syringe with the aid of a stereotaxic device (Stoelting, Wood Dale, IL). Injection 

accuracy was evaluated by a pulsatory flash of bright-red blood into the syringe upon little 

retraction of the plunger prior to injection. After intra-cardiac injection, mice were placed in a 

warmed (37C) sterile cage and vitals monitored until fully recovered. Metastases were allowed 

to develop until neurologic symptoms appeared (~28 days for MDA-MB-231Br), and animals 

were then anesthetized with ketamine/xylazine (100mg/kg and 8mg/kg, respectively) prior to 

texas red (6mg/kg) and 14C-Paclitaxel (10 µCi/animal) injection via IV bolus dose (femoral 

vein). The Texas Red dye and dextrans were allowed to circulate for 10 minutes prior to 

euthanasia, and 14C-Paclitaxel was allowed to circulate for 8 hours before sacrifice. Brains were 

rapidly removed (less than 60 seconds), flash-frozen in isopentane (-65°C), and stored at 

negative 20C.  
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Tissue processing and analysis   

Brain slices (20μm) were acquired with a cryotome (Leica CM3050S; Leica 

Microsystems, Wetzlar, Germany) and transferred to charged microscope slides. Fluorescent 

images of brain slices were acquired using a stereomicroscope (Olympus MVX10; Olympus, 

Center Valley, PA) equipped with a 0.5 NA 2X objective and a monochromatic cooled CCD 

scientific camera (Retiga 4000R, QIMaging, Surrey, BC, Canada). texas red fluorescence was 

imaged using a DsRed sputter filter (excitation/band λ 545/25nm, emission/band λ 605/70nm and 

dichromatic mirror at λ 565nm) (Chroma Technologies, Bellows Falls, VT) and enhanced green 

fluorescent protein (expressed in MDA-MB-231Br) using an ET-GFP sputter filter 

(excitation/band λ 470/40nm, emission/band λ 525/50nm and dichromatic mirror at λ 495nm) 

(Chroma Technologies, Bellows Falls, VT). Fluorescent image capture and analysis software 

(SlideBook 5.0; Intelligent Imaging Innovations Inc., Denver, CO ) was used to capture and 

quantitate images. Binary mask methodology was used to analyze brain slices based upon the 

eGFP fluorescence from MDA-MB-231Br cells. Binary mask methodology is simply voxel-

defined regions of interest where tumor was defined by the presence of eGFP fluorescence from 

MDA-MB-231Br on a voxel-by-voxel basis. By this methodology, the eGFP fluorescence 

roughly >3-fold above background was considered as brain tumor. Once the images were 

acquired, circumferential fluorescent analysis was performed using software analysis (SlideBook 

5.0; Intelligent Imaging Innovations Inc., Denver, CO), where 8 micron thick region of interest 

(ROI) were drawn 300 micron beyond and within the tumor(Fig 6.1A and 6.1B). texas red 

permeability fold-changes were determined by texas red  sum intensity (SI) per unit area of 

metastases relative to that of contralateral normal brain regions. The transfer coefficient (Kin) of 

texas red tracers were determined in tumor, BAT and normal brain by multiple uptake time 
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approach after analyzing the blood and tumor concentrations of texas red tracers as previously 

described by Mittapalli et al.(Mittapalli, Adkins et al. 2017) 

The unidirectional blood to brain, blood to tumor and blood to BAT transfer constant Kin 

was determined for fluorescent tracers using multiple-time uptake approach (Patlak et al. 1983, 

Blasberg et al. 1984, Asotra et al. 2003). A single-time uptake method was used to calculate Kin 

because of heterogeneity of the metastatic tumors. Kin was calculated using the flowing 

equation(Blasberg et al. 1984) 

Kin=  

Where, Cbr is the amount of compound in brain/metastatic tumor/ BAT per unit mass of 

the tissue at time T and Cbl is the blood concentration of the tracer. For 14C-Paclitaxel permeation 

studies, 20μm thick brain slices were exposed for 20 days to phosphor screens along with tissue-

calibrated standards for quantitative autoradiographic analysis. The phosphor screens were 

developed using GE Typhoon FLA 7000 and images were processed using MCID software 

(Imaging Research) and Adobe Photoshop to acquire color-coded drug concentrations (ng/g or 

µg/g) in regions of interest. 

 

Effect of Drug on BAT  

Female athymic nu/nu mice were inoculated with human MDA-MB-231-Br-Luc cells 

and allowed to develop metastases. On day 21, the presence of metastases is confirmed using an 

IVIS bioluminescent imaging system and then treated with chemotherapeutic agents including 

Docetaxel (10mg/kg I.V, once a week), Eribulin (1.5 mg/kg I.P, twice every week) and 
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Paclitaxel (10mg/kg I.V, once a week). The treatment regimen was continued until mice showed 

neurological symptoms, and the then mice were sacrificed and the brains collected. The brains 

were sectioned and stained for the presence of activated astrocytes. 

6.3 Results 

BAT Permeability 

Regional barrier integrity was evaluated using permeability tracers’ texas red 625Da and 

texas red dextran (3kDa), which fall within the upper-limit molecular weight of most 

conventional and non-biological chemotherapeutic drugs. The margins of metastases were 

demarcated based on eGFP fluorescence around cancer cell clusters that were confined within 

100µm of each other, as previously described. Once the tumor margin was defined for each 

metastasis, a series of consecutive circumferential masks (8µm wide) extending 300µm beyond 

the original metastasis margin were generated automatically using custom written SlideBook 5.0 

software scripts (Fig. 6.1A and 6.1B). The additional 200 µm region was drawn to also allow for 

analysis of brain distant to tumor. Additional circumferential masks (8µm wide) that extend 

300µm internally from the metastasis margin were created using the software scripts (Fig. 6.1C 

and 6.1D).  

Texas red 625Da and texas red Dextran 3kDa permeation were plotted relative to the 

distance from the tumor edge for three different metastases exhibiting different magnitudes of 

mean permeability increases (Fig. 6.2A). Analysis of texas red 3kDa permeation within the BAT 

region 100µm beyond the tumor edge for each metastasis demonstrated mean permeability 

increase ranging from 1.0 to 2.5-fold compared to normal brain (Fig. 6.2B). The mean 

permeability of texas red 625Da within BAT region increased 1.0 to 3.8-fold when compared to 

normal brain.  
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We then calculated Kin for tumor, normal brain, and BAT, and we found that there was a 

significant increase in Kin in BAT for both texas red free dye and texas red Dextran 3 kDa when 

compared with normal brain (Fig. 6.3A and 6.3B). The Kin values for texas red 625 Da in normal 

brain was found to be 1.2 ± 0.16 × 105 mL/s/g. For tumor, it was 11.3 ± 1.9 × 105 mL/s/g, and for 

BAT the Kin was 4.32 ± 0.2 × 105 mL/s/g. The Kin values for texas red 3kDa was found to be 0.4 

± 0.14 × 105 mL/s/g, 2 ± 0.3 × 105 mL/s/g and 1.6 ± 1.4 × 105 mL/s/g for normal brain, tumor 

and BAT respectively. 

Distribution of paclitaxel in normal brain, BAT and tumor 

After analyzing texas red tracer permeability and transfer coefficients in the BAT, we 

determined the distribution of 14C-Paclitaxel using autoradiography. The tumor was identified by 

cresyl violet stain (Fig. 6.4A) and the corresponding overlaid autoradiogram (Fig. 6.4B) was 

used to analyze the concentrations of paclitaxel in 100 × 100 µm squares (50×50 µm squares in 

BAT) as shown in Fig 6.4A and 6.4B. We found that there is increase in concentration of 14C-

Paclitaxel in BAT regions and the increase in concentration was heterogeneous as seen in the 

metastases. We found that the concentration of 14C-paclitaxel in BAT (0-50 µm) to be 86.7 ± 31 

ng/g and BAT (50-100 µm) 35.4 ± 11 ng/g (Fig. 6.4C), whereas the concentrations of 14C-

Paclitaxel beyond 100µm of tumor and normal brain was consistently found to be 1 ng/g. The 

concertation of 14C-Paclitaxel in the tumor was 529 ± 223 ng/g consistent with our previous 

studies (Lockman et al. 2010). 
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Chemotherapeutic drugs induce astrocyte activation in BAT 

After studying the permeability of tracers and 14C-paclitaxel in BAT, we sought to study 

the effect of chemotherapeutic drugs on BAT. For this study, we treated mice with various 

chemotherapeutic drugs after the confirmation of metastases as mentioned above. To visualize 

activated astrocytes, we stained for glial fibrillary acidic protein (GFAP), which is over-

expressed when astrocytes are activated (Eng et al. 2000). We observed GFAP over-expression 

in BAT in all the groups treated with chemotherapeutic drugs and found that there is increase in 

expression of GFAP in BAT (Fig. 6.5B-F). However, GFAP expression in BAT in vehicle group 

was not noticeable (Fig. 6.5A). 

6.4 Discussion  

Many studies have shown the permeability and effect of chemotherapy in the brain 

metastases (Lockman et al. 2010), but surprisingly, there are not many studies investigating those 

same effects in BAT. With increase in strategies to overcome BBB and BTB to treat metastases 

(Guillaume et al. 2010, Platta et al. 2010, and Konofagou et al. 2012), it is important to study the 

permeability in BAT and effect of chemotherapy in metastatic tumors. In this study, we found 

that the permeability of tracers and 14C-palcitaxel increased in BAT when compared to normal 

brain regions distant to the tumor. We also found that administration of chemotherapeutic drugs 

induced activation of astrocytes in these adjacent regions. 

In this work, we studied permeability for two tracers, Texas red 625Da and Texas red 

dextran 3kDa using quantitative fluorescence microscopy. The methodology was developed 

based on previous study by Mittapalli et al.,(Mittapalli et al. 2017), where all fluorescent images 

were captured using the same settings in the microscope to maintain uniformity in fluorescence 

emission (Song et al. 1996). Permeation of Texas red tracers in brain metastases were previously 
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characterized by Adkins et al. (Adkins et al. 2016), and we found similar fold-increase in tumor 

core. Unidirectional BBB/BTB transfer constants Kin  for both dyes were calculated using an 

established multiple-time uptake approach (Patlak et al. 1983). The Kin values obtained in these 

studies for normal brain and tumor were consistent with our previous published data (Mittapalli 

et al. 2017). The increased Kin values in BAT when compared to normal brain clearly suggest the 

permeability in BAT region was increased. 

Once we had confirmed the increase in permeability of the tracers, we studied the 

distribution of a chemotherapeutic agent, 14C-paclitaxel in BAT. We used quantitative 

autoradiography (QAR) to determine the distribution of 14C-paclitaxel in BAT, normal brain, and 

within the tumor (Knight, Nagaraja et al. 2005, Knight, Karki et al. 2009). We found that there is 

increase in accumulation of 14C-paclitaxel in the BAT region and this increase is heterogeneous 

similar to what we have found in brain lesions previously (Lockman et al. 2010, Mittapalli et al. 

2017). The increase in permeation of BTB can be accounted for angiogenesis in the tumor 

(Carmeliet and Jain 2000, Fukumura and Jain 2007, van Tellingen et al. 2015) and the reasons 

for this heterogeneous permeability within the lesion is due to dynamics of angiogenic process as 

reported in the previous studies (Eilken and Adams 2010). 

The most common transport mechanism for drugs across BBB is through passive 

diffusion (Pardridge 2012). For passive diffusion of drugs across the BBB, the drugs which are 

lipid soluble, low molecular weight (< 400 Da) and which form ≤ 7 hydrogen bonds are better 

candidates(Lipinski 2000). Diffusion through lipid membrane like BBB is dependent on 

molecular volume of the solute, which in turn depends on its molecular weight (Levin 1980, van 

de Waterbeemd et al. 1998). BBB permeability decreases 100 fold with the increase is solute’s 

molecular weight from 300 Da to 450 Da (Fischer, Gottschlich et al. 1998). In addition to solute 
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related limitations, the active efflux transporters like p-glycoprotein (P-gp) and other members of  

ABC (ATP-binding cassette) family of transporters present at the BBB play a significant role in 

efflux of chemotherapeutic agents from the brain to blood (Sharom 2008, Uchida et al. 2011).  

However, in metastatic lesions the BBB is disrupted (BTB) which results in an increase in 

penetration of chemotherapeutic agents (Hiesiger et al. 1986). The higher tumor concentration of 

chemotherapeutic agents in the tumor creates a concentration gradient with the surrounding 

normal brain allowing the chemotherapeutic agent to diffuse into normal brain (Walker and 

Weiss 1975). Accordingly we hypothesize that the increased accumulation of paclitaxel in the 

BAT region is due to higher concentration in the brain metastasis. Other studies observed 

increased blood flow in brain metastases and lowered in the BAT when compared to normal 

brain. Regarding permeability, the blood-to-tissue transfer constant (Ki) for 14C-α-

aminoisobutyric acid (AIB) was increased in both tumor and BAT when compared to normal 

brain, suggesting irregular neovascularization with increased permeability in the brain metastases 

(Blasberg et al. 1980, Fidler et al. 2002, Langley and Fidler 2013).   

Finally, once we confirmed the increased permeation of tracers and increased distribution 

of 
14C-paclitaxel in BAT, we studied the effect of chemotherapy on BAT. After treating with 

various chemotherapeutic agents, we stained for GFAP to determine whether there was any 

inflammatory effect of chemotherapeutic drugs in CNS. GFAP is expressed in astrocytes in the 

brain (Baba et al. 1997), and when there is injury, inflammation or neurodegeneration in the 

central nervous system (CNS), the common reaction of astrocytes is hypertrophy, referred to as 

reactive astrocytosis or activated astrocytes (Khurgel and Ivy 1996, Niranjan et al. 2014, Yang 

and Wang 2015). This hypertrophy increases the expression of GFAP in astrocytes as well as the 

binding affinity to GFAP antibody (Hozumi et al. 1990).  Expression of GFAP is altered by 
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many factors like brain injury and disease (Eng et al. 2000). Expression of GFAP has been 

shown to be increased in various diseases such as Alzheimer’s, Amyotrophic lateral sclerosis 

(ALS), Parkinson’s, Pick’s, Huntington’s and Autism (Murayama et al. 1991, Troost et al. 1992, 

Banati et al. 1998, Tsuji et al. 1999, Laurence and Fatemi 2005). In Autism, increase in 

autoantibodies of GFAP has also been found in plasma (Rosengren et al. 1992, Singh et al. 

1997). In the case of acute CNS injuries like brain infarction and traumatic brain injury, there 

was increase in levels of GFAP in CSF (Aurell et al. 1991, Hausmann et al. 2000). On the other 

hand, decrease in GFAP expression was associated with depression and growth of gliomas 

(Johnston-Wilson et al. 2000, Chumbalkar et al. 2005).We found that treating with chemotherapy 

increased expression of GFAP protein in BAT (Fig. 6.5), confirming the presence of activated 

astrocytes after pharmacological chemotherapy regimens. 

Recent studies indicate, chemotherapy may induce numerous deleterious effects within 

CNS such as altered cognitive function, memory and attention (Kovalchuk and Kolb 2017). 

Fading of cognitive function after chronic chemotherapy administration in patients with cancer 

has been termed “chemo-fog” or “chemo-brain” (Raffa 2010). With improvements in survival 

for women with breast cancer over the past decade, there is also increased number of survivors 

expressing concerns with memory and concentration post treatment (Schagen et al. 1999, Ahles 

et al. 2002, Castellon et al. 2004). Recent studies suggest that the mechanism for chemo-fog is 

secondary to the toxic effects imposed by sub-lethal concentrations of chemotherapy on the 

normal cellular population of CNS (Kaiser et al. 2014). Many studies suggests that 

chemotherapeutic agents not only induce oxidative stress and apoptosis in CNS but they also 

inhibit proliferation and differentiation of cellular population of CNS leading to abnormal 
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expression of neurotrophic proteins in the brains (Seigers et al. 2010, Seigers et al. 2010, Seigers 

and Fardell 2011, Seigers et al. 2015).      

In summary, we observed permeation of fluorescent tracers were increased in the BAT 

compared to normal brain, which was accompanied by increased distribution of 14C-paclitaxel. 

The increase in permeation resulted in increased uptake of chemotherapeutic agents and 

increased the expression of GFAP in regions adjacent to tumor, indicating reactive astrocytosis. 

As many new clinical strategies to treat brain metastases tend to increase drug permeation, it is 

also important to study potential damage in normal brain.  
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Figure 6.1: Image representing Circumferential Fluorescent Analysis by Quantitative Fluorescence 
Microscopy.  
 

Fluorescent image of eGFP transfected MDA-MB-231Br metastasis in brain with circumferential 

8 micron thick regions of interest (ROI) drawn to 300 microns beyond the metastasis margin (A 

and B). To distinguish between BAT and tumor regions, the inner 300 microns from the 

metastasis margin were used to create 8 micron thick circumferential ROIs (C and D).  
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Figure 6.2: Circumferential Fluorescent Analysis by Quantitative Fluorescence Microscopy for 
Texas Red 625Da and Texas Red Dextran (3 kDa).  
 

(A) Image showing fluorescence intensity fold increase over normal brain in Texas Red 625Da 

and Texas Red Dextran (3 kDa) after circumferential fluorescent analysis of in tumor and BAT 

regions in metastases  

(B) Image showing fluorescence intensity fold increase over normal brain in Texas Red 625Da 

and Texas Red Dextran (3 kDa) after circumferential fluorescent analysis within 100µm beyond 

the tumor edge.  

Fold increase in TR 625da permeability: 1.8-3.8. Fold increase in TRD 3KD permeability: 1-2.5  
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Figure 6.3: Transfer coefficient (Kin) of texas red tracers in tumor, BAT and normal brain by 
multiple uptake time approach 
 

(A). Uptake of Texas Red (625 Da) in normal brain (Control), BAT and Tumor regions. The 

transfer coefficient (Kin) for Texas Red (625 Da) in BAT was significantly higher than normal 

brain (Control)   

(B)Uptake of Texas Red Dextran (3 kDa) in normal brain (Control), BAT and Tumor regions. 

The transfer coefficient (Kin) for Texas Red Dextran (3 kDa) in BAT was significantly higher 

than normal brain (Control)     
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Figure 6.4: Analysis of 14C-Paclitaxel concentration in tumor, normal brain and BAT regions. 
 

Representative image of 231Br brain metastases (A) and corresponding 14C-Paclitaxel 

accumulation (B) in metastases 8 h after intravenous administration of radiolabeled paclitaxel. 

Paclitaxel concentrations from 100 µm squares as shown in image A and B were determined 

(1=1 ng/g, 2=1 ng/g, 3=10.5 ng/g, 4= 293 ng/g, 5= 261 ng/g). (C) Analysis of 14C-Paclitaxel 

concentration in tumor regions (-300 µm to 0) and normal brain regions (0 to 300 µm) 
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Figure 6.5: Image showing activated astrocytes (GFAP) after treatment with chemotherapy  

Fluorescent images representing presence of nuclei (DAPI) in blue and activated astrocytes 

(GFAP) in green after treating with A.Saline (Vehicle), B. Eribulin (1.5mg/kg  I.P), C. 

Docetaxel: (10mg/kg I.V), D. Paclitaxel: (10mg/kg I.V). The GFAP expression in BAT regions 

in chemotherapeutic treated group appears are higher than that of vehicle group 
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CHAPTER 7 

FUTURE DIRECTIONS 

 In conclusion, this dissertation investigated novel approaches to treat metastatic brain 

tumors from breast cancer. The presence of blood-brain barrier (BBB) and blood-tumor barrier 

(BTB) makes the permeability of chemotherapeutic agents into the tumor challenging. The 

permeability of any solute or anti-cancer agent across the BBB/BTB is dependent of physico-

chemical properties of drugs/solutes. Most of the anti-cancer drugs do not qualify to penetrate BTB 

in concentrations enough to elicit cytotoxic activity. To overcome this we first, we encapsulated a 

chemotherapeutic agent irinotecan into a liposome. Then we studied the pharmacokinetics of 

liposomal irinotecan in our mouse model of brain metastases from breast cancer. We found that 

liposomal irinotecan has better pharmacokinetic profile than non-liposomal conventional 

irinotecan. The plasma half-lives and mean residence times (MRT) of liposomal irinotecan 

significantly improved while compared to non-liposomal irinotecan. In addition to that clearance 

and volume of distribution of liposomal irinotecan decreased when compared to non-liposomal 

irinotecan. The plasma drug exposure for liposomal irinotecan was significantly improve when 

compared non-liposomal irinotecan. This improved plasma pharmacokinetics also reflected in 

brain tumor pharmacokinetics. We found that the drug exposure of liposomal irinotecan in brain 

tumors were significantly higher than that of non-liposomal irinotecan.  

 After studying the pharmacokinetics, we evaluated the accumulation of liposomes and its 

effect on tumor burden and survival in a mouse model of metastatic breast cancer. We found that 

with liposomal irinotecan the tumor burden was decreased and the median survival in our mouse 

model was significantly improved. We previously reported that brain tumors have leakier BTB 

compared to BBB (Lockman et al. 2010) and we believe that this leakier BTB is responsible for 
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the liposomes to penetrate into the brain tumors by enhanced permeation and retention (EPR) 

effect and by bypassing efflux transporters present at the BBB. We found that liposomal irinotecan 

improved median survival by 40% when compared to non-liposomal irinotecan. 

 Using another strategy, we want modulate the BTB and increase the permeability of 

chemotherapeutic agents. Notch-4 signaling pathway play an important role in angiogenesis by 

downregulating vascular endothelial growth receptor-2 (VEGFR-2)(Taylor et al. 2002). We want 

to increase permeation specifically in tumors by increasing angiogenesis as angiogenic vessels are 

leakier when compared to normal brain blood vessels. Notch-4 inhibition will lead to increased 

expression of VEGFR-2, which then leads to increase in angiogenic vessels, ultimately leading to 

increased permeation of chemotherapy. We observed in our study that inhibition of Notch-4 by 

DAPT significantly increased the permeability of 14C-AIB in our mouse model. We then studied 

chemotherapy administration with concurrent Notch-4 inhibition and found that the survival was 

significantly improved in a mouse model of metastatic brain tumors form breast cancer. We also 

found that the progression of tumor burden was delayed. 

 Lastly, we want to investigate the effect of chemotherapy in normal brain around the 

brain metastases. Brain tumor vasculature can be significantly compromised and leakier than that 

of normal brain blood vessels but only a little is known if there are vascular permeability 

alterations in the brain adjacent to tumor (BAT).  Changes in BAT permeability may also suggest 

increased drug permeation in the BAT which may exert toxicity on cells of the central nervous 

system. Herein, we studied permeation changes in BAT using quantitative fluorescent 

microscopy and autoradiography, while effect of chemotherapy within the BAT region was 

determined by staining for activated astrocytes and DNA damage. The mean permeability of 

fluorescent dyes within BAT region significantly increased when compared to normal brain. The 
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Kin values in the BAT for both Texas Red (625 Da) and Texas Red dextran (3kDa) were found to 

be significantly higher than normal brain. We also found that there is significant increase in 

accumulation of 14C-Paclitaxel in BAT compared to normal brain. We also observed animals 

treated with chemotherapy (paclitaxel (10mg/kg), erubilin (1.5mg/kg and docetaxel (10mg/kg)) 

showed activated astrocytes in BAT. As many new strategies to treat brain tumors tend to 

overcome BBB/BTB, the adverse effect of normal brain should also be considered.  

Future studies, based on the results within the dissertation, include: 

1. We have found that liposomal irinotecan crosses the BTB and accumulates in brain 

metastases of breast cancer and acts as a depot for the sustained release of irinotecan in 

our mouse model. This accumulation and sustained release of drug ultimately resulted in 

prolonged survival of animals in our mouse model. A phase I study with liposomal 

irinotecan (MM-398) is recruiting patients to determine tumor drug levels and to predict 

patient response to treatment for metastatic brain tumors from triple negative breast 

cancer (NCT01770353). 

2. We observed that inhibition of Notch-4 increased the permeation of the BTB in our 

studies and we also found that the liposomes accumulated in brain metastases. We want 

to combine both strategies and administer liposomal irinotecan with concurrent Notch-4 

inhibition. With liposomal irinotecan the median survival improved by 40 % and with 

Notch-4 inhibition it was 20%. We hypothesize, combining both strategies will result in a 

better outcome. 

3. Finally, we want to design and develop liposomes where, both DAPT (Notch-4 inhibitor) 

and a chemotherapy drug (Irinotecan) will be encapsulated in it. We believe 

encapsulation of DAPT will improve the pharmacokinetics of DAPT and also will 
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decrease the dose DAPT administered as the formulation will be administered 

intravenously. DAPT is lipophilic in nature and will be encapsulated in lipid part of 

liposome, whereas hydrophilic irinotecan HCl will be encapsulated in the hydrophilic 

core of liposome.    

Clinically, treatment strategies for metastatic brain tumors involve surgery, radiation therapy 

and chemotherapy. Often more than one modality is employed for the treatment and the 

treatment for cancer has become individualized. In addition to improving the uptake of 

chemotherapy, other modalities like radiation therapy should be improved. The use of radio-

sensitizers and radio-protective agents improved the radiation therapy. Radio-sensitizers further 

sensitize the cancer cells for the radiation while radio-protective agents protect normal tissue. We 

believe effective treatment modality for treatment of metastatic brain tumors is the combination 

of improved multimodal approach. Nanoparticles showed improved the drug distribution into the 

brain metastases and our studies showed that distribution is localized into the brain tumors. 

Future studies should focus in exploiting nanoparticles like liposomes for delivery 

chemotherapy, radio-sensitizers and other agents like P-gp inhibitors in a single delivery system 

along with radiation therapy. We believe brain metastases will be managed effectively by 

employing multiple improved treatment modalities. 
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