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Abstract 
 
 

Multivariable Robust Control of a Simulated Hybrid 

Solid Oxide Fuel Cell Gas Turbine Plant 
 

Alex Tsai 

 
This work presents a systematic approach to the multivariable robust control of a hybrid 
fuel cell gas turbine plant.  The hybrid configuration under investigation built by the 
National Energy Technology Laboratory comprises a physical simulation of a 300kW 
fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine.  The public 
facility provides for the testing and simulation of different fuel cell models that in turn 
help identify the key difficulties encountered in the transient operation of such systems.  
An empirical model of the built facility comprising a simulated fuel cell cathode volume 
and balance of plant components is derived via frequency response data.  Through the 
modulation of various airflow bypass valves within the hybrid configuration, Bode plots 
are used to derive key input/output interactions in transfer function format.  A 
multivariate system is then built from individual transfer functions, creating a matrix that 

serves as the nominal plant in an H∞ robust control algorithm.  The controller’s main 
objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode 
airflow, and the turbo machinery states of temperature and speed, under transient 
disturbances.  This algorithm is then tested on a Simulink/MatLab platform for various 
perturbations of load and fuel cell heat effluence.                   
 
As a complementary tool to the aforementioned empirical plant, a nonlinear analytical 
model faithful to the existing process and instrumentation arrangement is evaluated and 
designed in the Simulink environment.  This parallel task intends to serve as a building 
block to scalable hybrid configurations that might require a more detailed nonlinear 
representation for a wide variety of controller schemes and hardware implementations. 
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1 Introduction 

 
Fuel cell technology has fast advanced in the field of power generation, and is currently 

sought as one viable alternative for the replacement of conventional power systems, as an 

efficient and clean source of electricity.  As the research in this field progresses, it is 

more evident that existing technologies must be incorporated in the design of these 

systems in order to achieve the highest possible efficiency without sacrificing 

performance or cost.  It is therefore convenient to utilize the synergy of current power 

producing methods with power generating fuel cells.  However, the resulting coupling 

difficulties of fuel cells and gas turbines are yet to be successfully mastered.   

 

One of the most promising technologies for hybrid power generation systems is the 

coupling between Solid Oxide Fuel Cells and gas turbines.  Siemens-Westinghouse and 

the National Fuel Cell Research Center or NFCRC for example, have recently built and 

tested one such system, capable of producing 220kW of power with more than 50% 

electrical efficiency based on the LHV of natural gas fuel.  It is estimated that enhanced 

configurations of similar types of hybrid systems can deliver more than 70% efficiencies.  

This is far greater than systems running on coal or natural gas alone, for equivalent sized 

plants.  In addition, fuel cells may offer advantages over conventional power plants in the 

area of carbon sequestration.      

 

Despite the success of the NFCRC in proving the practical implementation of the 

conceptual hybrid design, the resulting system was meant to serve only as a test bed for 

future designs.  There are still many issues to address, before a fully integrated and 

functional configuration is ready for commercialization.  One such concern is the ability 

to safely control the plant in the presence of disturbances, as defined by sudden load 

demands.  An inherent difficulty of the fuel cell – gas turbine assembly, is that 

interactions between the high-pressure gas turbine flow and the fragile fuel cell material 

can lead to severe equipment damage, and malfunction.  This constitutes the essential 

control problem of hybrid systems, to successfully regulate and follow load demands in a 
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system that exhibits a wide mismatch between component time constants, and large 

differences between their structural strengths.   

 

Researchers have sought to find the solution to these problems mostly with the use of 

analytical models that are subsequently incorporated into various control methodologies.  

To date, hundreds of models have been based on the first principles of energy and mass 

conservation, and presented in various degrees of complexity, ranging from lumped 

parameter, to one and two-dimensional models.  This limited form of characterization can 

be primarily attributed to the lack of any test facility large enough to faithfully duplicate 

the effects of a real hybrid plant.  An experimental facility robust enough to test the 

operational limits was simply not available, and for most, cost prohibitive.  Without an 

alternate way in which to physically model the system, the analytical models could not be 

validated, nor their accuracy measured.   

 

In face of these challenges, the National Energy Technology Laboratory, or NETL has 

designed and constructed a test facility that allows for the simulation of a hybrid system, 

under a particular hybrid configuration.  The facility simulates with hardware a 300kW 

Solid Oxide Fuel Cell coupled to a gas turbine.  Hardware control of this system has been 

partially achieved for quasi-steady state scenarios.  However, centralized control has yet 

to be implemented for transient occurrences and other quasi-steady state conditions.   

 

The main objectives of this research are:  

 

- To make use of the existing NETL hybrid facility for the generation and 

subsequent analysis of frequency response data useful for control development 

-  To derive a set of mathematical equations stemming from the aforementioned 

frequency response tests that more realistically predict the hybrid component 

interactions 

- To develop and implement a control methodology based on the derived 

empirical multivariate model that can robustly regulate fuel cell and turbo-

machinery critical parameters  
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A successful completion of these tasks will result in the following original contributions 

of this work, primarily:   

 

- The availability of real frequency response data of a hybrid system as given in 

magnitude and phase Bode plots 

- The derivation of empirical Transfer Functions never before obtained for a 

hardware hybrid configuration 

- The design of a centralized state space robust controller for a hybrid system 

based entirely on an experimental model 

- The validation of existing analytical multivariate models with the use of the 

empirical Transfer Function matrix  

 

The scope of this work thus lays in the development of a centralized robust controller that 

can manage flow to maintain fuel cell operational constraints under multivariate transient 

disturbances.  A robust controller is necessary for the safe and stable implementation of 

such a hybrid system.  This is especially the case when detailed models are unattainable 

due to the complexity of the system itself, like that of a coupled gas turbine compressor 

assembly, or a system having combustion dynamics as it is in the present case.  

Robustness, as defined by the ability to sustain control in the presence of model 

uncertainty, is also preferred in a system required to dismiss low frequency perturbations.  

Random loss of electrical load is, for the most part, a real life low frequency occurrence.  

Such events could impose the possible destructive forces on a fuel cell, when they are not 

dealt with accordingly, because of the inevitable rise in turbine speed, and hence mass 

flow that accompanies a loss of electrical load.  Thus, a controller that can mitigate both, 

high and low frequency phenomena is desired for the early stages of the hybrid design.  

Frequency domain loop shaping techniques are suitable to achieve these goals.  System 

identification can provide empirical transfer functions for the linear window of fuel cell 

operation, while more insight into system coupling effects can be gained by examination 

of Bode plots.  These transfer functions are in turn used in the design of an H∞ controller, 

which can be tested offline with a high fidelity model of the hybrid configuration. 
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Online testing of the resultant controller design will provide a means of quantifying the 

applicability of the abovementioned control methodology to new assemblies of the hybrid 

configuration.  With the use of every available input, including electrical load, bypass 

valves and fuel, such a design can be accomplished with maximum thermal management 

capability under a stable envelope of operation for any system disturbance.   

 

An analytical nonlinear model of the hardware facility at NETL has also been developed 

in the MatLab/Simulink environment.  This model serves as a complementary tool to the 

aforementioned empirical analysis.  Although originally intended to predict steady state 

behavior, ongoing work aims at incorporating full system dynamics to more accurately 

predict transient system behavior.  Adjustment and tuning of the model is necessary if 

controller performance is to be evaluated prior to its real time implementation on the 

physical facility.   
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2 Literature Review 

 
Hybrid power generating systems of the fuel cell type are mainly categorized according 

to the energy management strategy used. Whether the process is a recuperated heat 

process, a heat of compression configuration or a steam turbine bottoming cycle, the 

performance is generally based on the power produced per unit fuel consumed with 

respect to the lower heating value LHV of the fuel utilized.  Following is a description of 

the existing and suggested hybrid configurations in literature as well as the different types 

of controllers being adapted to each assembly. 

 

2.1 Solid Oxide Fuel Cell 

 
Fuel cells have been described as replenishable batteries that operate continuously under 

a constant fuel supply.  These electrochemical devices are able to produce power as a 

result of the ionic interaction between hydrogen and oxygen.  A fuel cell thus has cathode 

and anode electrodes, an electrolyte, and conductive interconnections that allow for the 

transport of electrons through a resistive load from cathode to anode sides.  In principle, 

hydrogen is supplied at the anode side and oxygen at the cathode side.  The overall 

reaction in the fuel cell can be summarized as that of Eq.2.1.1, where electrons and heat 

are released as a consequence of the exothermic reaction. 

OHOH 222
2

1
→+                                             Eq.2.1.1 

Power electronics coupled to a resistive load can then convert this generated DC voltage 

to AC, when the fuel cell is used in stationary power generating applications.   

 

For the most part, fuel cells are distinguished by the type of electrolyte used.  The solid 

oxide fuel cell electrolyte has a Yttria-Stabilized Zirconia YSZ ceramic solid structure 

that allows ionic transport while remaining impermeable to electrons.  The cathode and 

anode sides are composed of a mixture of ceramic and metals, mainly a Zirconia cermet 

that allows high temperatures and high electronic conductivity.  The interconnects 

between cathode and anode sides are made of Lanthanum Chromite, a ceramic that can 
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increase conductivity when mixed with compatible alkaline materials (Larminie et al. 

2003).  These components combined together can withstand temperatures of up to 

1000°C, and produce as much as 250MW of power, when assembled in compounding 

stacks (Carlson et al. 2004).  It is because of these characteristics that the solid oxide fuel 

cell SOFC is the favorable candidate for large power applications.   

 

A simplified schematic of the SOFC is shown in Figure 2.1.  As noted earlier, electrons 

are expelled from the hydrogen molecules when the H2 reacts with two oxygen anions to 

produce water and heat.  The anode and cathode half reactions are accordingly: 

 

      −= +→+ eOHOH 4222 22                                      Eq.2.1.2 

=− →+ OeO 242                                              Eq.2.1.3 

A graph showing cell performance based on voltage/current density data is shown in 

Appendix A.   

     

 

Figure 2.1 SOFC Operation 

 

For this and any other fuel cell, the voltage produced is a function of the Gibbs free 

energy ∆Gf and thus of the reactant concentrations within the cell.  The Gibbs free energy 
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is a measure of the amount of useable work that can be extracted from a chemical 

reaction.  This energy is defined as the change in the enthalpy of formation minus the 

heat released as expressed in Eq.2.1.4.  The fuel cell voltage can then be related to this 

available amount of work as that given by Eq.2.1.5. 

 

sThg ff ∆−∆=∆                                          Eq.2.1.4 
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where EOC is the open circuit voltage, z is the number of electrons and F, Faraday’s 

constant.  In the presence of irreversibilities, the actual voltage per cell is given by the 

reversible Nernst potential cell voltage minus all irreversibilities, as shown in Eq.2.1.6, 
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where the main irreversibilities η’s are those of activation, fuel crossover, ohmic, and 

concentration losses (Larminie et al. 2004).  Equation 2.1.6 assumes that the oxidation 

process produces pure hydrogen to the cell.  Activation losses are attributed to the voltage 

loss due to the driving force required to kick start the ionic exchange of the overall 

chemical reaction.  Fuel crossover losses are those voltage drops observed when the 

electrolyte permits some electrons and fuel to permeate its membrane and mix with the 

cathode side stream.  Ohmic losses are those relevant to the resistance of current flow, 

whereas concentration losses are those due to fluctuations in the stoichiometric quantities 

of the reactants.  Ways in which to minimize these overpotentials are described in more 

detail in (Larminie et al. 2004).  It can be seen from Eq.2.1.6 that the cell voltage is 

dependent on the partial pressures of the reactants, as well as the temperature of the cell.  



2 Literature Review 8

Appendix A also shows how these irreversibilities affect the current voltage relationship 

in the cell.   

 

So far it has been stated that fuel cells produce power by the electrochemical reaction of 

H2 and O2, once the latter is broken into anions.  Hydrogen however, must be produced in 

pure form for the reaction to take place.  With the use of pure H2, power generation can 

result in zero pollutant emissions, having only water as a byproduct.  Various methods to 

produce hydrogen exist, such as the use of primary fossil fuels like natural gas or coal.  If 

coal is used, a gasification process combines high temperatures with water vapor and 

oxygen, while a natural gas fuel would require reforming and hydrogen shift reactions to 

to produce H2.  Equations 2.1.8 and 2.1.9 detail the chemistry for the reforming, and shift 

reaction respectively of methane fuel (Karvountzi et al. 2004).  Typical combustion NOX 

and SOX pollutants are thus eliminated in a fuel cell, having only the carbon dioxide 

capture logistics to handle.   

   224 3HCOOHCH +↔+                                       Eq.2.1.8 

222 HCOOHCO +↔+                                       Eq.2.1.9 

 

Solid Oxide Fuel Cells are most suited to stationary hybrid power generation applications 

because they can operate at high enough temperatures to directly oxidize CO and CH4.  

Proton Exchange Membrane fuel cells for example cannot withstand CO as a fuel or 

byproduct, because carbon monoxide poisons the electrolyte membrane.  Since large 

realistic hybrid plants would require the production of massive amounts of hydrogen 

either by reforming a hydrocarbon or from coal syngas, it is likely that hydrocarbon 

byproducts appear at the anode along with hydrogen.  The versatility of being able to 

withstand a wide variety of fuels, is a highly desirable feature of SOFC that becomes 

especially important if coal based systems are to be mandated.      

 

In order for the fuel cell to maintain performance and operability, the cell’s temperature, 

anode fuel flow, cathode airflow, and reactant partial pressure constraints must be met.  

Each of these parameters plays a major role in the thermal efficiency and the net power 

output of the fuel cell.  Research on ways to optimize the cell’s power production via the 
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synergistic use of its thermal characteristics has led to the successful coupling of existing 

gas turbine technology.  In the following sections it will be seen that simple gas turbine 

cycles for stationary power generation benefit from exhausted fuel cell heat, while fuel 

cells increase in efficiency from recuperation and pressurized air, both byproducts of 

expanders and compressor assemblies.   

 
2.2 The Brayton Cycle 

 
A simple gas turbine cycle using air as the working fluid is illustrated in Fig.2.2.  

Ambient air enters point “1” and is adiabatically compressed to a higher temperature and 

pressure at point “2”.  Heat through a combustor further increases the temperature of the 

compressed air at point “3”, where it is then expanded in a turbine to generate electrical 

power through a generator at point “4”.  The ideal cycle for this configuration is known 

as the Brayton Cycle, and the closed loop version is shown to the right in Fig.2.2.       

 

 

Figure 2.1 Brayton Cycle Schematic (Saad 1997) 
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Figure.2.3. Regenerative Brayton Cycle with Stage Compression (Saad 1997) 

 

A single shaft connects the compressor to the turbine, and the latter provides the 

compressor work required to pressurize the working fluid.  In order to improve cycle 

efficiency by means of energy transfer, various configurations, including compressor 

stage intercooling and expander stage reheat have been studied and proven to work (Saad 

1997), as shown in Fig.2.3.  The higher the difference between the turbine inlet 

temperature TIT and the exhaust gas temperature EGT is, the more power the turbo 

machinery can generate.  If an external source of heat can be freely extracted and 

supplied to the turbine inlet, then less fuel would be required in the combustor to produce 

the same amount of power, increasing thus the efficiency of the cycle.  A SOFC can 

provide this complementary source of heat, and at the same time utilize the pressurized 

oxygen in the air to produce electricity.  However, there are significant difficulties in 

combining these technologies, with the most noticeable in the interaction between the 

fragile ceramic fuel cell components and a high-pressure dynamic system.  Large 

differences in fuel cell and gas turbine time constants add to the complexity and 

challenge of designing a successful control strategy for the hybrid system.   

 

As will be noted in subsequent sections, fuel cell mass flow rate is a critical parameter 

that greatly affects the performance of the overall hybrid system.  The synergistic 

advantage of SOFC and gas turbines is clear, when taking into account the parasitic 

losses that would otherwise be incurred when running a blower to provide airflow in the 
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stand-alone fuel cell configuration.  Since the turbine runs the compressor that supplies 

the oxidant and cooling flow to the fuel cell cathode side, there is no loss in efficiency 

due to the required energy to run the blower.         

 

The equations derived in this work, governing the energy and mass interactions between 

system components of the compressor-turbine assembly will be discussed in detail 

throughout Chapter 4.  However, models for the dynamic behavior of compressors 

presented below have yielded valuable information in preventing the unwanted 

phenomena known as stall and surge. 

 
2.3 Compressor Stall and Surge 

 
Greitzer developed a compressor system model in order to predict the instances in which 

the stall and surge phenomena would occur in axial flow compressors (Greitzer 1976a).  

Rotational stall is defined as the sudden loss of positive airflow through a compressor 

blade, which leads to a sharp decrease in effectiveness, with efficiency values measured 

at 20%.  During stall, flow around the circumference of an axial compressor blade is non-

uniform, with high flows on one side, and low flows on the other.  Long periods of time 

in rotational stall can cause combustor and engine damage, due to the excessive 

temperatures induced by the low mass flows that are not being “pushed” through the 

compressor.  Also, because of the unsteady flow field that is caused in the compressor 

blades, stresses can develop, affecting blade life.  Once the stall limit is reached, the only 

way in which to return to the un-stalled condition is to reduce the shaft rotational speed.  

However, this in turn results in a reduction of the compressor pressure ratio.  Because of 

the compressor hysteresis effects, opening the throttle valve is an ineffective means of 

stall recovery.   

 

A surge on the other hand, is defined as large amplitude sustained oscillation of 

averaged airflow that can only occur after the stall limit is reached.  Surge is only 

observed to happen at high rotational speeds.  For the most part, compressors do not 

surge at small downstream volumes, but their occurrence is dependent on how large the 

downstream volume is.  Large damaging inlet over-pressures within a compressor can 
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result from a surge, while the stall condition can occur several times before a surge 

manifests.  In fact, the frequency of stalls is orders of magnitude higher than that of surge 

oscillations, which occur at low frequencies.  It is because of this that the model 

developed by Greitzer assumes incompressible flow, with densities taken at ambient 

values.  Greitzer’s work aims at determining if a slight change in throttle opening during 

compressor steady state operation would result in a stall or surge condition, from the 

mass and pressure response output of a nonlinear time dependent model.  To validate the 

model in part II of his work, Greitzer models the compressor pressure rise as an actuator 

disk connected to a plenum of moderate volume via a constant area duct.  The continuity 

and momentum equations for the compressor, plenum and throttle are all non-

dimensioinalized, and the variation of one particular parameter, B, is examined.  The four 

main equations that comprise the compressor system are:    
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Equation 2.3.1 is the momentum equation for the compressor, Eq.2.3.2 is that for the 

throttle, and Equations 2.3.3 and 2.3.4 are for the plenum  

 

Greitzer concludes that in practice, stall and surge cannot be predicted from compressor 

or throttle static maps since the transient compressor behavior is determined by the 

dynamic considerations of pressure and mass flow rate in the compressor and throttle 

assembly.  These elements give the energy input and dissipation of the system.  The net 

amount of energy the compressor inputs to sustain oscillations is greater than that at 

steady state, thus the cycle oscillations of the surge phenomena are sustained when the 
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energy input of the compressor balances the energy dissipation of the throttle.  In other 

words, static instability does not create surge cycles.   

 

Part II of Greitzer’s work tests the validity of a previous nonlinear compressor model for 

a three stage axial compressor (Greitzer 1976b).  The setup consisted of a compressor 

that drove ambient air into a large plenum vessel that has two throttle valve openings, one 

of 1.5m and the other of 1.53m at its exhaust.  The plenum volumes under study ranged 

from 2.8m3 to 34.9m3.   

 

The tests concluded that during stall, pressure fluctuations inside the plenums were 

negligible even though the mass flow rates through the compressor were unsteady.  Also, 

during the surge cycles induced, the data showed that the compressor’s operating 

condition moved in and out of stall.  In short, just as was predicted in the model, the 

system’s dynamic response was greatly dependent on the normalized parameter B, 

defined as the resonant frequency.  The dynamic response was rather set by the time 

history of the compressor operating point, and not the rotational speed or throttle valve 

position.   

 

The work of Greitzer was extended to centrifugal single stage compressors in Hansen’s 

study of deep surge for a plenum volume of 0.025m3 (Hansen et al. 1981).  The inputs to 

Greitzer’s model are system geometry, measured steady state positive and negative 

characteristic branches, estimated unstable branch, throttle valve characteristic, and a 

compressor flow relaxation time.  In order to predict deep surge, Hansen inserted a 

negative flow branch into the compressor characteristic from surge data by injecting plant 

air at the compressor exhaust, and measuring the reverse flow.  In order to initiate stall 

and surge, the throttle was slowly closed to allow for flow reversal in the compressor at 

speeds as low as 7,000rpm, from the nominal operating speed of 65,000rpm.  The work 

concluded that Greitzer’s model can be used to model centrifugal compressors, with 

slight modifications to the relaxation time variable N, assumed to be constant by Greitzer.  

Greitzer’s compressor model has been extensively used in the modeling of fuel cell – gas 

turbine hybrid systems, as described most recently by Hahn (2004).    
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With regard to the control of surge, Blanchini outlines the positive and negative aspects 

of designing high gain linear controllers capable of stabilizing compressor surge in the 

face of measurement noise and high frequency disturbances for multistage centrifugal 

compressors (Blanchini et al. 2002).  If a throttle valve serves as the actuator, and a 

differential pressure transducer as the feedback signal, to suppress surge a large value of 

gain is required.  This however, implies that system noise is amplified, and saturation of 

the actuator can occur due to this noise fluctuation.  A trade off between speed and 

stability is therefore warranted.  The noise is thus filtered at a cutoff frequency that is not 

too large to affect attenuation properties, and not too low to introduce phase lags that 

might be detrimental to system stability.  Based on Greitzer’s model, Blanchini’s control 

law is highly dependent on the steady state value of the throttle valve position and the 

non-dimensional parameter B, which can be interpreted as the ratio between pressure 

forces and inertia forces acting in the compressor duct.  This parameter strongly affects 

system stability.  B increases with increasing speed and plenum volume, and decreases 

with increasing compressor pipe length.  To avoid noise disturbances, a second order low 

pass filter was designed with the inclusion of a notch filter to attenuate a dominant 

frequency observed in the noise spectrum.  To improve the controller’s speed, the throttle 

valve was replaced by one having a smaller inertia to allow fast throttle fluctuations 

during control, while the notch filter reduced the stall noise disturbances.  The stability 

range for operation was not however concluded, this being attributed to the intrinsic 

nature of the stability limit of the compression system, dependent in great measure on the 

B parameter. 

 

The next sections compare different types of hybrid SOFC / Gas Turbine configurations 

in terms of electrical and thermal efficiencies, performance, cost of electricity, and net 

power output.   

 
2.4 Hybrid Configurations 

 
The first prove-of-concept hybrid system was built by Siemens-Westinghouse in 

conjunction with the National Fuel Cell Research Center (NFCRC 2007).  It consisted of 
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a 220kW Solid Oxide Fuel Cell Gas Turbine facility that utilized a tubular seal-less stack 

design within the SOFC.    Figures 2.4 and 2.5 illustrate the physical arrangement of the 

hybrid system that produced efficiencies of 53%, based on the LHV of the fuel (Smith 

2006).  Figure 2.4 compares observed and predicted results of a dynamic model of the 

hardware configuration developed by the NFCRC. Testing consequently showed that the 

cathode airflow was the dominant factor in the overall performance of the hybrid system.  

Ambient pressure, temperature, and humidity were also found to affect turbo machinery 

performance (Smith 2006).  The pressure ratio for this system was 3:1. 

 

 

Figure.2.4. Simulated and Observed Results for the 220kW System [NFCRC] 
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Figure.2.5. Siemens-Westinghouse 220kW Hybrid System [NFCRC] 

 

 
Veyo makes a figure of merit comparison between four SOFC/GT hybrid system 

configurations in terms of cost, efficiency, relative system complexity, net power output, 

number of cells, and overall performance (Veyo et al. 2003).  The four configurations 

under study are: 1) an atmospheric pressure system, 2) a pressurized system, 3) a 

turbocharged SOFC, and 4) a pressurized recuperated SOFC with intercooling and micro 

gas turbine reheat.  Each of these configurations, as they appear in the paper, is shown 

below.   
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Figure.2.6. Atmospheric Hybrid [Veyo] 

 

  
 

Figure.2.7. Pressurized Hybrid [Veyo] 
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Figure.2.8. Pressurized Intercooled Hybrid [Veyo] 

 

 
 

Figure.2.9. Turbo-Charged Hybrid [Veyo] 
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Test results show that even though the ambient pressure hybrid system is more efficient 

than the stand alone SOFC, it is less efficient than a pressurized system.  The latter has a 

net system electrical efficiency of 59%, and the former 52% efficiency for 300kW plants.  

The reason the ambient hybrid excels over the SOFC, is that the exhaust stack heat is 

used by the turbine to generate additional electrical power.  For the atmospheric hybrid, 

the SOFC cathode side receives airflow from the turbine exhaust.  The turbine in turn 

recuperates exhaust heat from the fuel cell by the use of a heat exchanger.  In order to 

reach maximum peak efficiency under this configuration, the recuperator effectiveness, 

TIT, and gas side inlet temperature must conform to design specifications, and are the 

key control parameters to monitor.  For a very effective recuperator, an optimal TIT can 

be obtained without firing the combustor, with temperatures of 950°C.  

 

In pressurized hybrids there is a reduction in NOX and CO2 emissions, a higher fuel cell 

stack voltage, and a higher cell operating efficiency for a set stack current.  This 

configuration exhibits efficiencies in the order of 60% for a SOFC, but is also more 

costly due to pressurization constraints.  The turbocharged hybrid system in contrast, 

pressurizes the fuel cell but does not generate electrical power.  The cell exhaust heat is 

only used to drive the compressor through the turbine.  The turbocharged hybrid has the 

lowest system efficiency, with only 47%.   

 

Lastly, the pressurized intercooled with reheat hybrid cycle demonstrates a 64% 

efficiency for 2 turbines and compressors, and 2 SOFC modules both for the high and 

low-pressure sides.  The high pressure SOFC operates at 7atm, and the lower at 3atm for 

a fuel cell exhaust temperature of 850°C.  This configuration shows the lowest emission 

levels, and the best fuel economy due to the low pressure SOFC operating at a low 

current density.      

 

Rao compares the thermal efficiencies, exergy destruction, and specific power produced 

by analytical models for three pressurized tubular SOFC hybrid configurations: an 

intercooled preheated SOFC recuperated gas turbine cycle, a single SOFC humid air 
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turbine HAT cycle, and a dual SOFC-HAT cycle that incorporates a second low pressure 

SOFC (Rao et al. 2003).  Exergy calculations are meant to define the thermal efficiency 

of each cycle, since Carnot efficiencies are not suitable for power cycles incorporating 

electrochemical reactions.  The three configurations are shown below.   

 

 

Figure.2.10. Base Cycle Configuration [Rao] 
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Figure.2.11. Single SOFC-HAT Cycle [Rao] 

 

 

Figure.2.12. Dual SOFC-HAT cycle [Rao] 
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The intercooled preheated cycle efficiency i.e. that of the base case, is found to be weakly 

related to the pressure ratio PR.  This is due to the increase in the low-pressure turbine 

exhaust temperature, which in turn increases the preheated air entering the fuel cell stack.  

Irreversibilities in the LP combustor are reduced with a lower PR, and the exergy loss by 

the intercooler is also reduced as PR goes down, because less heat is being rejected.  The 

second configuration generates steam through a humidifier that is in direct contact with 

the pressurized system air, in the single HAT cycle.  Compressed air is humidified prior 

to being reheated in the recuperator before reaching the fuel cell stack.  Heat for hot 

water is recovered from the intercooler and low-pressure expander rejected energy, 

reducing exergy destruction during the heat transfer.  The downside to this is that the 

partial pressure of O2 is reduced in the cathode stream, increasing activation and 

concentration losses in the cell.  However, the cycle allows for an increase in the PR, 

offsetting the oxygen partial pressure reduction.  Based on the LHV of the fuel, the 

highest efficiency for this cycle is 69.05% at a PR of 15.  The SOFC-HAT system has 

less exergy destruction than the base case, but the fuel consumption per unit of inlet air is 

higher because of the high water vapor concentration in the combustion air.   

 

In the dual SOFC-HAT configuration, a low-pressure combustor and fuel cell are added 

between the HP and LP expanders, resulting in an efficiency of 75.98% at a PR of 15.  

Due to an increase in the concentration of water vapor and CO2, the current density in the 

lower operating pressure cell for this cycle is lower than the previous two cycles.  Rao 

concludes that by adding another SOFC in the dual HAT cycle, the specific power, 

defined as the net power cycle output per unit air entering the system, is more than 

doubled from that of the base case, with no humidification.   

 

Diverting flow from the cathode side of the fuel cell has been a control strategy aimed at 

managing thermal transients of a hybrid SOFC gas turbine assembly (Tucker et al. 2005).  

With the use of the three main bypass valves of the recuperated cycle configuration, 

shown in Fig.2.13, the effect of bypass flow is studied in terms of system efficiency and 

performance.  Tucker demonstrates that among the three valves, the CA bypass valve is 



2 Literature Review 23

the most effective in increasing the stall/surge margin by providing a decrease in system 

pressure drop.  The data correspond to the assumption that fuel cell operation remains 

constant, despite changes in cathode airflow.  This valve has also proven to divert 

cathode airflow by almost 50% with a slight penalty on system efficiency. 

 

 

 

 

 

Figure.2.13. Above: Recuperated SOFC Hybrid Cycle.  Below: Hardware Simulation 
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In contrast with the CA bypass valve, the bleed air BA valve has shown to be very 

effective in absorbing thermal transients.  When the BA was used over its full range of 

operation, there was a 40% increase in fuel flow utilization.  This means that the valve 

can be used as a sink to counteract the effect of load loss in a fuel cell.  The hypothesis is 

that whenever there is a sudden fuel cell load loss, un-utilized amounts of fuel passes the 

cell, only to be combusted prior to reaching the turbine.  This rise in wasted energy 

causes an increase in shaft speed to the turbine that would in turn increase airflow to the 

cathode side. An increase in cathode flow would overcool the fuel cell ceramic material, 

thus creating thermal stresses and possible cell destruction.  The BA thus allows for 

management of a substantial increase in energy, while contributing also to an increased 

stall/surge margin by increasing compressor inlet flow and reducing compressor 

discharge pressure.  This stall margin is however largely restricted by the exhaust gas 

temperature or EGT limit.  Thus through hardware simulation, operational constraints 

and control capabilities for the HyPer bypass configuration were set as a means of control 

and performance.   

 

Tucker’s work on valve characterization extends to cases where there is turbine loading 

in coal based fuel cell models (Tucker et al. 2006c).  Thermal management for this hybrid 

configuration was achieved solely through the use of bypass valves, allowing for 

uninterrupted synchronous operation of the turbine’s generator.  This approach benefits 

large-scale coal based plants in stationary power generation, where variable generator 

loads are not used to manipulate shaft speed, and hence cathode airflow.  In Tucker’s 

tests, compressor bleed air, cold air, and hot air bypass valves were varied over their 

operating range to examine their effect in system efficiency, pressure loss, turbine inlet 

temperature, cathode inlet pressure, and cathode inlet mass flow rate, while the turbine 

was loaded to 45kW.  Results show that bleed air (BA) has a negligible effect on cathode 

inlet flow, increases the compressor discharge pressure, has no effect on system pressure 

drop, adds an additional load to the turbine shaft, and can be used to absorb thermal 

transients as well as to increase stall margins.   
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Hot air (HA) on the other hand was observed to effectively decrease the cathode inlet 

airflow by close to 50%.  It can also lower system pressure drop by 10%, has the least 

cost in terms of required fuel per bypass compressor flow, decreases the cathode inlet 

temperature, has no change in the TIT for a constant fuel cell effluent, and has no effect 

on compressor inlet flow.  The HA bypass valve is thus useful mostly for cathode air 

flow management. 

 

The cold air (CA) valve was shown to be the most influential in altering the cathode 

airflow, increasing cathode pressure, decreasing cathode temperature, decreasing TIT, 

and increasing the compressor surge margin.  This valve can also be used to manage 

thermal transients due to the high-energy utilization at wide valve openings.     

 

Hardware-Based simulation has been successfully implemented in the HyPer facility, and 

is the subject of study in Smith’s work (Smith et al. 2006).  In the hardware-in-the-loop 

simulation, electrical load transients are induced in the fuel cell model in order to analyze 

the hybrid system’s response to the heat effluence of the SOFC under the natural gas 

configuration.  The model comprises 1500 planar fuel cell stacks connected in series, 

which generate 350kW of electrical power.  The stack’s power rating was chosen to 

match the thermal input required by the turbine at a 45kW electrical load set point.  As in 

similar tests conducted in the HyPer facility, parallel loop bypass valves are used to 

manage flow into the cathode fuel cell side.  To simulate the transients, a 5% fuel cell 

current increment was first applied, followed by a 5% current shed.  Results show that for 

the current drop, the fuel cell voltage increased at first causing a thermal effluent rise due 

to the lower percent of fuel utilization.  This caused an increase in the TIT, as well as the 

turbine speed, increasing hence the mass flow rate.  After the transient, the fuel cell began 

to cool down relative to the lower current demand, and lower heat effluence.  It is noted 

that the opposite occurs when the current demand is increased for the 5% case.   

 

The effect of ambient pressure on system performance was also studied at the NETL 

facilities.  Tucker presents a study of how compressor inlet pressure affects system 

pressure drops, flows and temperatures via the introduction of concentric orifice plates 
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(Tucker et al. 2006b).  These plates restricted the inlet of the compressor in order to 

simulate changes in ambient pressures.  Testing demonstrated that system pressures 

varied linearly with changes in inlet pressure, while temperatures had a nonlinear 

dependency.  The pressure ratio is unaffected by changes in ambient pressure, but the 

reduction in airflow due to the orifice plate obstruction reduces the stall margin with 

increasing ambient pressure.  Discrepancies between actual and derived values are 

attributed to model assumptions, such as constant turbine backpressure and compressor 

map error.   

 

In his work, Lundberg studied the performance and cost of a high efficiency 20MWe 

SOFC hybrid power system that utilizes an advanced turbine system, operating at a 

pressure ratio of 9.5:1 (Lundberg et al. 2003).  The proposed system configuration is a 

recuperated cycle similar to the 220kWe hybrid first built by Siemens-Westinghouse.  In 

Lundberg’s design, the Mercury 50 single shaft turbine supplies pressurized preheated air 

to four fuel cell generator modules, each comprising 20 sub-stacks of 576 tubular SOFC.  

The operating nominal conditions for the hybrid require a combustor exit temperature of 

1150°C, and a SOFC exhaust temperature of 870°C.  In order to optimize the system in 

terms of the cost of electricity (COE) parameter, the effect of cell sub-stack variation was 

shown in plots of efficiency and relative cost as a function of net AC power.   It was 

shown that the optimal number of stacks that would balance the COE and efficiency was 

72.  With this number of stacks, one power block of 4 cell generator modules produces 

12.5MWe at 60% efficiency.  In designing the turbine, intercooling and recuperation 

improvements allowed for a range of generated output voltages of 13,800V.   

 

Two bottoming cycles were studied in conjunction with the proposed hybrid 

configuration.  One integrated a heat recovery steam generator and turbine, and the other 

an ammonia/water absorption power cycle.  Results show that adding a bottoming cycle 

to the proposed hybrid system would increase the efficiency to 64%.     

 

Ferrari studied the influence of anodic side fuel transients on hybrid system performance 

for a simulated 300kW SOFC plant (Ferrari et al. 2005).  The work concentrates on 
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modeling and validation of a single stage ejector that recycles anode fuel flow for 

reforming, and on sustaining acceptable steam-to-carbon ratios in the cell stack.  Ferrari 

outlines the critical parameters affecting hybrid operability, mainly: high cell 

temperature, high pressure difference between cathode and anode sides, low STCR in the 

reformer, high rotational turbine speed, low surge/stall margin, and excessive temperature 

gradients in the heat exchangers.  The dynamic ejector model is based on 1-D Euler fluid 

dynamic equations, having adiabatic flow and semi-ideal gas behavior with variable 

specific heats.  The code calculates mass flow rate, momentum, and total enthalpy at the 

ejector’s primary nozzle from isentropic and normal wave equations.   

 

Validation tests with a 0.686m long ejector show that a 10% reduction in the ejector’s 

primary nozzle total pressure with an 85% constant fuel utilization results in the anodic 

side having 3 different time scale interactions, namely fuel flow time delay, 

depressurization time delay, and a thermal time delay.  The time constants are 

respectively 1s, 100s, and 300s.   Also, it was shown that the differential pressure 

between anode and cathode sides was within range, that of 20mbar during the transient.  

A greater fuel variation however can result in greater oscillations exceeding the 

operational range.  The compressor surge/stall the margin is increased because a 

reduction in the average fuel cell temperature causes an increase of mass flow on the 

cathode side, and a subsequent decrease in PR.  This hybrid system efficiency was found 

to be 64% for a recirculation mass flow ratio of 7.2, with a primary fuel flow of 

0.009kg/s. 

 

The Department of Energy evaluated several different system configurations for thermal 

management in coal based hybrid plants through numerical simulation (Ford et al. 2006).  

The steady state analysis was done with the comparison of a lumped parameter model in 

ASPEN Plus, and a 1-D high fidelity model in which the cell is subdivided, each module 

having a mass and energy balance calculation.  System efficiencies were also compared 

for natural gas and coal based plants.  Ford presents 3 configurations: heat of 

compression, a cathode recycle, and a recuperation combined cycle.  In the heat of 

compression configuration, the turbo-machinery preheats air to the cathode, and its flow 
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steadies the temperature difference between the inlet and outlet cathode stream.   The 

cathode recycle configuration comprises two methods for recycling air to the cathode, 

through a high temperature blower and an ejector that uses compressor discharge flow as 

the primary recycle flow.  In the recuperation cycle, two more methods are analyzed: an 

upstream combustor to the fuel cell that preheats compressed air, and the addition of fuel 

to the post combustor firing the turbine.  The data showed that heat recuperation is only 

possible for PR of 10 or greater for a TIT of 1500K.   

 

Calculations of the three configurations give efficiencies of: 57%, 54%, and 64% based 

on syngas, for heat of compression, cathode ejector recycle, and recuperation upstream 

preheat systems respectively.  The efficiencies based on coal were: 49%, 46%, and 56% 

for the same methods.  This shows that recuperated cycles are the most efficient, by 

increasing the power contribution of the turbine, and thus the power density of the cell.  It 

is also noted that for coal based systems, thermal management and power generation are 

more dependent on the turbine’s work for the high cathode flows required, as compared 

to natural gas systems.  On the other hand, cathode recycle configurations show 

promising efficiencies that are harder to control due to flow limitations on blowers and 

ejectors.  As a point in case, the ejector’s pressure drop plays a key role in system 

performance and stability, since there is a decrease in surge/stall margin with increasing 

pressure differential.   

 

As part of the Department of Energy’s FutureGen program aimed at reducing power plant 

emissions, Samuelsen presents a sensitivity analysis for a coal based zero emission 

hybrid configuration (Samuelsen et al. 2006).  Plant optimization is based on an advanced 

transport reactor (ATR) for coal, which receives preheated humidified oxygen and 

gasifies partially dried coal and limestone into a syngas fuel for use in SOFC gas turbine 

combined cycle.  This configuration provides for the removal of CO2 and the separation 

of H2 for anodic recycling.  With the use of design of experiments (DOEx), Samuelsen is 

able to identify the major factors affecting plant performance, in terms of net system 

efficiency and net SOFC power output.  The design factors chosen were SOFC pressure, 
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voltage, fuel utilization and ATR carbon conversion, while the outputs of interest were 

net system efficiency, and net SOFC power output.   

 

There are two factor interactions for the SOFC power output response, namely SOFC 

pressure and voltage.  These two factor interactions of pressure and voltage mean that 

both these parameters combined result in a net power increase, which is greater than their 

individual power increase contributions.  The order of influence on the net system 

efficiency output was: SOFC pressure, fuel utilization, ATR carbon conversion, and 

SOFC voltage.  Therefore it is concluded that pressure is the most significant factor 

affecting system performance.  In order to increase system efficiency, the original plant 

configuration was modified to add heat exchangers upstream of the cell stack to preheat 

cathode inlet air, and to remove the downstream combustor.   

 
2.5 Fuel Cell Models 

 
Wächter has represented a tubular SOFC/GT hybrid system dynamic linear and nonlinear 

model in state space format for the development of modern control algorithms (Wächter 

et al. 2006).  The nonlinear model has 19 dynamic states, for a system comprised of a 

compressor, turbine, recuperator, ejector, reformer, and load.  This model divides the 

plant into 6 separate lumped volumes that represent the fluid dynamics, into 17 dynamic 

states, these being: 6 fluid and 3 solid temperatures, 6 pressures, 1 mass flow, 1 shaft 

speed, and 2 current densities. The equations for mass, energy, and momentum 

conservation are described below, and are employed in each of the 6 separate volumes, 

mainly: compressor-recuperator, cathodic side, ejector-diffusor, reformer, anodic side, 

and combustion zone with turbine-recuperator volumes.   
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The electrochemical reaction rate, gas composition, and the heat and mass flows between 

volumes are calculated via algebraic equations, whereas current-voltage relationships are 

modeled thru the use of an electrical network having passive elements, to simulate cell 

voltage losses and Nernst potentials, as described by Eq.2.5.6.        
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In order to numerically solve the system of equations, analytical time constants are found 

for each of the hybrid components.  The results are grouped into three categories: system 

performance in terms of current density, power, cell voltage, and efficiency, gas turbine 

behavior as shown for mass flow, pressure, power, and TIT, and lastly additional 

parameters such as STCR, electrolyte pressure differential, FU ratio, and ejector mass 

flow.  For the system performance criteria, all the outputs showed a strong dependency 

on current.  This same trend is seen for the efficiency.   

 

Linearization of the model for state space representation in the Simulink platform 

required the inclusion of time delays in order to avoid algebraic loops.  State space 

matrices were obtained for each individual subsystem, from a Simulink command having 

3 inputs and 78 outputs.  The final matrix had 18 states with the exclusion of a variable 

shaft speed parameter.  Simulations were performed for disturbances of 0.1% and 0.5% 

from nominal operating values, and these showed a discrepancy between the response of 

the linear and nonlinear models.  Wächter attributes this difference to linearization errors, 

the time delay inclusions, and the lack of accuracy from the ever-changing numerical 

convergence that is dependent on the perturbation form and magnitude.  The linear model 

however, decreases computational time from 21 hours to less than two minutes.   

 

The experimental facilities of the HyPer project were modeled by Shelton for the 

purposes of aiding in the design of test plans, understanding system dynamics, and as a 

prelude to testing a control algorithm for future hardware implementation (Shelton et al. 
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2005).  The model is a lumped parameter model done in the Simulink platform that only 

simulates the hardware facility, without the fuel cell electrochemistry.  In order to 

validate the model, two test runs were conducted, one for a resistive load shed and 

another for a speed set point change.  The model follows previous modeling logistics that 

incorporate the couplings between flow and pressure calculation modules.  These 

modules account for the plenum vessel, post combustor, combustor, heat exchangers, 

compressor, turbine, and generator.  The model is aided by empirical data, such as the use 

of compressor and turbine maps, measured friction factors, and experimental turbine 

inertia parameters.    

 

The results show that the model accurately tracks system oscillations for each of the two 

perturbations, but fails to match maximum magnitude values for speed and fuel.  Shelton 

explains that this is due to the model under-prediction of the required fuel, stemming 

from a possible sensor error in the airflow measurement.   

 
The lumped parameter model incorporates look-up tables and empirical curve fitting for 

the compressor and turbine that pose simulation difficulties.  Because of the iterative 

nature of the look-up table, and the closeness of data in compressor and turbine maps, the 

model is only able to run at half the nominal speed of 40,500rpm i.e. 20,000rpm.  It is 

thus desirable to develop a model that can simulate startup tests, in order to fully replicate 

a hybrid’s system dynamics from startup to shutdown.     

 

The dynamic bulk model of a pressurized SOFC was also incorporated and tested in the 

HyPer facility at NETL, by Smith (2006).  The model was intended to run in real-time, 

and its performance was to be compared to a previous 1-D model of the fuel cell 

electrochemistry.  For this and the previous 1-D model, the hardware measured states 

received as inputs to the model were the flow, temperature and pressure of the inlet to the 

air plenum, as described in the HyPer configuration, since this is the plenum that 

represents the fuel cell stack volume.  The model receives hypothetical input values of 

current flow demand, fuel flow utilization, and anode recycle percentage.  Because this is 

a model based on natural gas, there is an inclusion of an external reformer that recycles 
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exhaust cathode air to reform methane into H2 and CO.  The exiting gases from the 

cathode and un-utilized fuel from the anode side are then oxidized together in a 

combustor prior to reaching the turbine inlet.  Present models tested on the HyPer facility 

have no reformers since they are based on coal syngas fuel.  This model, as with the coal 

syngas based model, predicts the heat effluence of the fuel cell as a function of cathode 

inlet flow and temperature.  Smith’s model calculates Nernrst voltage and overpotentials, 

disregarding the dynamic effects on temperature inside the cell stack.  Because this model 

is directly coupled to the turbine, the effect of pressure is of the most importance.   

 

For the test, the methane flow and current density were adjusted until 80% fuel utilization 

and 0.7V were reached for the atmospheric case.  Once these values were reached, the 

pressure was increased to 360kPaa, simulating the hardware’s system pressure.  In 

comparison to the 1-D model, this bulk model showed that the cathode exit temperature 

was affected at a higher degree.  The model also demonstrated to work well in controlling 

turbine speed as a function of fuel cell heat exhaust for the three transient cases under 

study: cathode airflow increase, inlet cathode temperature increase, and load current 

demand decrease.   

 
2.6 Control Strategies and Designed Controllers 

 
Rancruel’s work concentrates on studying the effect of different control strategies on the 

transient behavior of hybrid systems for startups and shutdowns (Rancruel et al. 2004).  

This 5kW net power SOFC based APU configuration comprises a fuel reformer, a fuel 

cell stack having air, water and thermal management, power electronics, power 

conditioning, and energy buffering mechanisms for electricity, fuel, and air.  Energy 

buffering by means of auxiliary fuel and air tanks is intended to aid the BOP control 

outputs during transient disturbances, as an alternative to delayed load following, which 

would allow sufficient BOP recovery times.  Rancruel examines fuel consumption and 

startup response times for two startup approaches: one with steam re-circulation and 

system component preheating, and the other without.   
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The control variables are the steam-to-methane ratio (STMR), fuel utilization (FU), air-

to-fuel ratio (AFR), and fuel reformate ratio (FRR).  The STMR controls the chemical 

reaction within the steam reformer, while the FU affects the heat and work recovery as 

well as the fuel cell reaction rates.  The AFR is related to the parasitic power 

requirements, mass flow and temperature of combustion gases, and the FRR controls the 

exhaust temperature of the methane reformer.  The multi level control approach consists 

of a controller aiming at keeping the air and fuel tank pressures fixed under transient 

conditions, an actuator valve that regulates cathode and anode flow from the respective 

pressure tanks, and a battery activated by fuel cell current demand rate of change.  RGA 

analysis pairs the corresponding inputs and outputs in this multiple model based PID 

controller.   Open loop tests show that the reformer thermal response is heavily dependent 

on the fuel utilization, having the fastest response to a power increase.  Rancruel 

concludes that as the fuel utilization increases, so does the internal losses in the fuel cell 

stack, and thus the fuel reformer is the most critical component of the BOP.   

 

Traverso present an analytical model of a 300kW SOFC hybrid system whose 

configuration includes the use of recuperated heat, and anode recycle via the use of a 

single stage ejector, in the Simulink/MatLab platform (Traverso et al. 2005).  All 

modeled components use the lump volume technique, with fluid dynamic delays, and 

they all take into account heat exchange and variations in the chemical composition of the 

fuel.  The system is set to distribute net hybrid power demand to the fuel cell stack and 

the micro turbine with the use of multiple parallel PID controllers.  The bypass of a 

fractional flow valve that redirects compressed air to regulate fuel cell temperature, 

accomplishes the distribution of power demand and speed control.  PID controllers tuned 

at different response rates in separate loops determine the fuel cell current, anode side 

recycle flow, turbine speed, and power distribution values between fuel cell stack and 

turbine.  The simulation aims at controlling the critical parameters of excessive stack 

temperature gradient, low steam-to-carbon ratio in the reformer and the cell, stack and 

heat exchanger thermal stress, micro turbine rotational speed, pressure differential 

between anode and cathode sides, and surge/stall margin, all within operational 

constraints.   
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The simulation results show that there are initial difficulties in achieving stability due to 

the large discrepancies between system time constants i.e. that of the fast turbine, in 

contrast with the slow cell thermal response.  Overall, the 10% power decrease did not 

cause the aforementioned critical parameters to exceed operational limits during the 

transient.  For the power decrease, turbine rotational speed momentarily increased, to 

steady out at the lower value of 64krpm.  Initial fuel cell temperature decreases after the 

transient, but steadies out to the design point of 1230K.  The surge/stall margin was 

actually increased and there is also an increase in net power distribution to the cell.   

After the transient, the net plant efficiency, which is primarily determined by the cell 

temperature, settles to 63%.  This same control scheme was implemented in a MCFC 

hybrid.         

 

Mueller describes the design of a centralized linear quadratic regulator (LQR) with state 

estimation for a 250kW bottoming SOFC indirectly heated gas turbine hybrid cycle 

(Mueller et al. 2006).  The control objective is to maintain a set point power output, fuel 

cell temperature, and fuel utilization target under ambient temperature and fuel 

composition variations, for 40°C fluctuations, and 5% reduction in the methane mole 

fraction.  This controller scheme is then compared to the performance of a previously 

designed decentralized controller derived from a nonlinear dynamic model.  The LQR 

approach stems from a Relative Gain Array RGA analysis that shows strong coupling 

between independent control loops for time scales greater than one second.  This fact 

limits the performance of cascaded decentralized controllers that make use of one 

feedback signal at a time, and fail to incorporate the interaction and effects between 

states.  The linear quadratic guassian (LQG) uses all the multiple input/output signals for 

disturbance rejection by first linearizing the model, reducing the model’s order, designing 

the optimal state feedback, estimating the states via the use of a Kalman filter, and 

introducing an integral power feedback based on fuel cell current demand.  The linearized 

model sustains 70 states, for which model reduction improves to a minimal realization of 

58, once the uncontrollable and unobservable states are removed.  Further reduction 
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based on the magnitude of the Hankel singular values of each state, results in a total of 27 

states, the remaining having singular values greater than 1x10-3.   

 

The LQR integrated system response showed that neither the combustor temperature nor 

the fuel cell temperature were adequately controlled by the estimated states.  Mueller 

attributes this to the fuel mole fraction disturbance not being utilized in the estimation.   

Power could be controlled to zero steady state error, with the use of the integral feedback 

action.  However, when the LQR was tested in the nonlinear model, the controller 

exhibited a slow response, in spite of the fact that it was able to reject a 20% reduction in 

fuel composition, and a 40°C ambient variation with minor offsets.   

 

Control simulations of other types of fuel cell hybrid systems have also given insight into 

the cathode side dynamic issues that are similarly encountered in SOFC systems 

(Pukrushpan et al. 2004).  As an example, Pukrushpan suggests a control methodology 

for a proton exchange membrane PEM fuel cell hybrid system that takes into account fuel 

cell voltage and partial reactant pressure of the cathode side as the feedback signals.  In 

contrast with the SOFC, PEM fuel cells operate at a much lower temperature of 50-

100°C, enabling fast starts while maintaining a high power density of 0.6W/cm2.  

According to Pukrushpan, airflow, pressure regulation, heat transfer, and water 

management all limit fuel cell power.  It is thus necessary to manage cathode side airflow 

in order to regulate the critical excess oxygen ratio λ, and the partial pressure of the 

reactants.  It is this lumped parameter value λ, that is the measure in which the airflow 

controller prevents oxygen starvation, as opposed to the immediate fuel cell shutdown by 

the removal of current demand.   

 

In his work, Pukrushpan concludes that in order to overcome the trade-off of increasing 

power, by decreasing compressor voltage to decrease parasitic losses, and therefore 

affecting λ, it is necessary to filter the current drawn from the stack, use an additional 

energy source for the compressor, and have available oxygen that would fire upon 

recognition of a transient event. 
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Another proposed multi loop control methodology for a SOFC/GT hybrid configuration 

similar to the 220kW Siemens-Westinghouse system is given by the Norwegian 

University of Science and Technology (Stiller et al. 2005).  PI and PID decentralized 

control loops of various time scales regulate SOFC power, fuel utilization, airflow, and 

temperature, using fuel cell current, fuel flow, and generator power as the manipulated 

variables.  This control strategy allows the turbine’s shaft speed to vary, resulting in 

greater degrees of freedom for regulating air and fuel utilization to the fuel cell.  In this 

work, Stiller uses inferential control in an analytical model to maintain fuel cell inlet 

temperature, by readjusting cathode airflow set-points from measurements of fuel cell 

exhaust temperature.  The result is a stable plant under a strict linear region of operation.  

In particular, this configuration is very sensitive to fuel flow overestimation, and thus not 

robust to degradation or malfunction of fuel flow measurement equipment.     

 

The modeling of an industrial twin shaft gas turbine in state space format has been 

recently presented for a 11.2MW turbine.  Weibel shows how the linearization of a 15th 

order nonlinear model composed mainly of time delays allows for the design of modern 

state space controllers (Weibel et al. 2005).  The time delays for the most part, represent 

the heat transfer dynamics within the turbine system.  According to Weibel, it is possible 

to obtain satisfactory results in the speed control of the shaft turbine for load sheds of 

2MW in magnitude.  The paper combines three algorithms combined with the derived 

state space plant matrices: a pole placement, an optimal linear quadratic regulator, and a 

PI pole placement controller.   

 

The MIMO system is reduced to a SISO system in its present version.  Huge setbacks are 

attributed to the large magnitude difference between elements in the system matrix A.  

These differences gave way to simulation problems in the numerical solution of these.   

 

Of the three controllers, the extended PI pole placement algorithm gave the best results.  

On the other hand, the objectives imposed on the optimal controller of being fast acting, 

non-oscillating, and energy minimizing on the control effort, were not satisfactorily met.  
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The paper thus however, shows that gas turbines can, with the proper set of constraints 

and assumptions, be controlled via the use of modern state space algorithms.       

 

System performance of a decentralized control scheme combined with an input/output 

decoupling strategy has been tested on a MIMO system comprising an axle automotive 

durability test rig.  Vaes argues that modeling of multivariate systems is prone to 

inaccuracies due to the coupling complexities between signals, and that the resulting 

controllers suffer in performance because of the tuning difficulties encountered in MIMO 

systems (Vaes et al. 2004).  The work thus focuses on deriving a decoupled 

transformation of the plant in which a number of independent control loops can be 

designed using SISO H∞ robust techniques from the diagonal components of the new 

transformed plant matrices.   

 

Tests on the rig show that the strategy is able to guarantee robustness for all frequencies.  

One caveat however, is that the scheme is only applicable to square MIMO systems 

having a certain degree of symmetry.  Also, the decoupling strongly depends on the 

choice of frequencies, if the system is not dyadic.  Decentralized controllers that are 

decoupled in this manner can share the same sensitivity and complementary sensitivity 

singular values, and lack robustness, whereas robust decentralized controllers can violate 

the performance bounds and still be robust.   This ambiguity, together with the absence of 

a generalized approach for the decoupling of unsymmetrical system matrices, makes the 

scheme impractical for varying hybrid configurations.  The paper also acknowledges that 

it is current industry practice to implement high performance MIMO controllers that 

reduce the number of numerical iterations.  It is thus not viable to use a decentralized 

control scheme on a hybrid application, because of the unsymmetrical nature of the 

system matrices, and the high degree of coupling between states.      

 

Iwasaki developed a state space controller that meets multiple frequency domain 

specifications for semi-infinite frequency ranges without the introduction of weighting 

matrices (Iwasaki et al. 2004).  For the most part, weighting matrices are introduced as 

adaptors to the robust algorithm in order to fit the small sensitivity at low frequencies and 
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the control roll-off at high frequencies requirements into the control law.  The form and 

order of these weights can however, increase the complexity of the controller, and the 

iterative effort to realize them can become tedious and time consuming.  The design 

specifications are met in the frequency domain by the use of transfer function loop 

shaping techniques, similar to the ones used in H∞ control.  Iwasaki proves the utility of 

the algorithm via the benchmark cart spring system plant application, where a stabilizing 

state feedback controller forces the closed loop transfer function frequency response to be 

within performance bounds.   

 

Model based control has been successfully implemented in combustion rigs for the 

purpose of stabilizing flame instabilities.  Morgans presents the study of how an 

empirically derived transfer function of a combustion system has greater applicability in 

designing a controller, than an analytically derived model would have (Morgans et al. 

2005).  Morgans is able to design three separate controllers and prove their effectiveness 

by the use of an experimental transfer function measured via the oscillation of a fuel 

valve input signal.  The rig consists of a scaled down version of a combustor setup that 

represents one of the nine combustor chambers in the Rolls-Royce RB211-DLE industrial 

gas turbine.  Among the controllers derived are a Nyquist designed phase-lag 

compensator, a notch filter, and an H∞ robust controller.  These are compared to a time 

delay controller that is also derived experimentally.  The actuator control signal is that of 

a fuel valve, whereas the feedback signal of the SISO system is that of a pressure 

transducer.   

 

For three different equivalence ratios, the controllers, based solely on the empirical plant, 

show a satisfactory response in the face of the flame instabilities.  The system plant is 

obtained by dividing the Fourier transform of the input valve voltage and output pressure 

transducer voltage and plotting the frequency response on Bode Plots for a range of 75Hz 

to 350Hz.  The frequency sweep includes the system dynamics seen in the open loop 

power spectra of the pressure signal.  From the Bode Plots for the three different 

equivalence ratios, the gain spikes were assumed to pertain to second order systems.  The 

transfer function is then derived by hand-fitting mode coefficients into the generic second 
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order polynomials.  Once the empirical TF was obtained, the controllers were designed to 

stabilize the 200Hz instability.  Out of the three, the notch filter demonstrated the greatest 

capability to reduce noise, be robust, and avoid fuel valve saturation.      

 

This paper aims at proposing a methodology by which any hybrid configuration can 

achieve a stable appropriate control using solely experimental data.  One beneficial 

consequence to this approach is the avoidance of high fidelity models that are inherently 

time consuming to develop and computationally difficult to implement.  If a robust 

controller can be designed with an estimated empirical plant via the use of simple tests, 

then further state space algorithms can be built upon this safety benchmark.  Thus the 

following sections outline a straightforward procedure of deriving the plant dynamics 

from experimental observations, leading to a dynamic MIMO controller.          
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3 Method of Analysis 

 
The present chapter discusses the development and subsequent analysis of a multivariate 

empirical model of the Hybrid Performance facility at NETL, obtained via a set of 

frequency response tests pertaining to all input signals of the built hybrid configuration.  

With the use of experimental Bode plots, a set of Transfer Function equations are derived 

that can in turn result in a state space representation of the system.  By the use of singular 

value decomposition, a multivariable Bode plot can be drawn to show overall MIMO 

system behavior that accounts for the interaction between all inputs and outputs for the 

given hybrid configuration.   

 

This approach makes it feasible to outline a methodology for the control implementation 

of other hybrid configurations having different geometric scales and BOP arrangements.  

A robust multivariate state space controller is then designed for the empirical plant that 

meets sensitivity and co-sensitivity frequency domain criteria.  The control law is 

intended to serve as a benchmark that gives both robust stability and performance, by 

regulating the cathode inlet states in the face of sudden perturbations to the thermal 

system representing the fuel cell stack. 

 

In addition to the aforementioned empirical Transfer Function Matrix, a nonlinear 

lumped parameter analytical model of the facility is constructed in parallel to the 

experimental plant.  The model includes balance of plant components, such as heat 

exchangers, air plenums, and turbo machinery, as well as fuel cell hardware element 

representations i.e. cathode volume and heat exhaust, with energy, continuity and 

momentum equations for each element.  The model is intended to faithfully describe the 

entire system, and can be used as a test tool for future control law implementations.  In 

subsequent chapters, the analytical model is validated for disturbances and startup tests, 

by comparing its response to relevant experimental data. 
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3.1 Hybrid Performance Facility Description 

 
As described in Chapter 2, the HyPer hardware configuration makes use of a combustor 

and air plenums to simulate the heat effluence and stack volume of a 300kW solid oxide 

fuel cell.  Heat exchangers recuperate exhaust heat from a turbine to increase the 

compressed inlet air to the fuel cell stack, closing the loop on an efficient bottoming and 

recuperated cycle.  Figure 3.1 shows the HyPer facility and Figure 3.2 a rendering of the 

hardware in AutoCAD.  Appendix H provides a Process and Instrumentation Diagram 

detailing piping arrangement, component material, and sensor/actuator specifications.  

Operation envelope, startup sequence, and bypass valve characterizations of the hybrid 

system are described by the earlier works of Tucker and Liese (Tucker et al. 2005, 

2006b,c).   

 

   

Figure 3.1 NETL HyPer Facility 
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Figure 3.2 AutoCAD Rendering of HyPer Hardware Facility, courtesy of NETL 

 

3.1.1 Auxiliary Power Unit 

 
The gas turbine used in the HyPer configuration is a 120kW Garret Series 85 Auxiliary 

Power Unit (APU).  The single shaft compressor/turbine assembly was designed to 

produce 400Hz of synchronous power, at a nominal speed of 40,500rpm.  The turbine 

drives a double stage centrifugal compressor, producing approximately 2kg/s of 

compressed air at a pressure ratio of 4.  The turbine is encased inside the compressor 

scroll.  Compressed air exits the scroll around an insert shown in Figure 3.4, where the 

blue arrows indicate compressor airflow, and the orange arrow high temperature turbine 

inlet flow.  This insert provides concentric cooling flow to the inlet of the turbine.   The 

partially disassembled turbo machinery is shown in Figure 3.3.      
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Figure 3.3 Turbine/Compressor Assembly 

 

 

 

Figure 3.4 AutoCAD Drawing of Turbine Scroll Insert 
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3.1.2 Primary Surface Recuperators 

 
The hybrid configuration utilizes two parallel counter flow heat exchangers from Solar 

Turbines.  These primary surface recuperators transfer heat from the turbine exhaust to 

the compressed air preceding the FC cathode.  In doing so, the air temperature entering 

the plenum is increased efficiently, reducing combustor fuel usage.   The effectiveness of 

the recuperation is 89%, with hot side and cold side pressure loss of 3% and 2.5% 

respectively.  The maximum design temperature conditions for cold side and hot side are: 

1000F, and 1150F, for a maximum flow of 3.9lb/s, and 4.03lbs/s respectively.  Test data 

for the HyPer facility give an inlet temperature of 395F for the cold side, and an inlet 

temperature of 1085F for the hot side.  An uneven flow has been observed through the 

heat exchangers, one sustaining 90% of the total flow.  Figure 3.5 shows the heat 

exchanger setup.       

 

 

Figure 3.5 Heat Exchangers and Blower 
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3.1.3 Combustor and Swift Valve 

 
The combustor canister simulates FC thermal effluence and it is located within an Incaloy 

pipe prior to the entrance of the post combustor plenum PC.  The PC plenum serves as a 

vessel in which to burn unutilized fuel exiting the FC.  Figure 3.6 is an AutoCAD 

rendering of the pierced canister, whose perforations allow for the adequate mixture of 

air/fuel ratio.  A plasma igniter receives regulated fuel flow from a Woodward Industrial 

Controls Swift valve, fueling the combustion process by burning natural gas.  This Swift 

valve is activated by a fast acting stepper motor, controlled with a PID controller using as 

feedback turbine speed.  The valve comprises a sonic needle and nozzle arrangement.        

 

Figure 3.6 AutoCAD Rendering of the Combustor Canister 

 

3.1.4 Air Plenum and Post Combustor 

 
The air plenum is a 2m3 vessel that represents a SOFC cathode volume and associated 

piping manifolds.  Its purpose is to simulate the flow impedance a 300kW fuel cell would 

impart if it were coupled to a hybrid configuration as the one in HyPer.  The volume of 

the module can be increased or decreased with the use of extractable apertures, or by the 

insertion of metallic floats, to allow for a variety of fuel cell sizes to be tested.  The post 

combustor is a 0.78m3 vessel that precedes the turbine/compressor unit.  This vessel 

receives airflow from three possible paths, those of the mainstream, and bypass routes.  
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The volume thus allows for uniform temperature distribution of the airflows before 

reaching the turbine.  The post combustor is fabricated from 1” Incaloy 800AT, capable 

of sustaining a design temperature of 1700F.  Figure 3.7 and 3.8 show the plenum and 

post combustor before insulation was placed, and Figure 3.9 an AutoCAD rendering.       

 

 

Figure 3.7 FC Cathode Simulator Without Insulation 

 

 

Figure 3.8 Post Combustor Without Insulation 
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Figure 3.9 AutoCAD Rendering of the Midsection Post Combustor 

 

3.1.5 Bypass Valves 

 
The HyPer hardware configuration controls airflow to the air plenum via the use of 

bypass valves placed along flow loops parallel to the mainstream flow path.  The three 

main valves, Cold Air CA, Hot Air HA, and Bleed Air BA each have particular attributes 

that affect system efficiency and performance.  As discussed in Chapter 2, thermal 

management is possible with the use of these valves, when transient disturbances such as 

those occurring from compressor stall and surge, or sudden fuel cell load fluctuations 

threaten system stability.  With the use of these valves, large system pressure drops are 

avoided in the mainstream path, which would otherwise lead to decreased stall/surge 

margin.  In this manner airflow can be controlled at the fuel cell inlet.    A detailed 

description of the effect each valve has on the hybrid plant is given by Tucker (2003).  

Figures 3.10 and 3.11 show the location of these valves, as well as the direction of 

airflow.  All of the bypass valves are characterized according to their frequency response 

via Bode plots in Chapter 4.  The HA and BA valves are Valteck MaxFlow and 

ShearStream eccentric plug rotary control valves, with full range slew rates of 2s and 1.5s 

respectively.  The CA valve is a Fisher-Rosemont V-Ball with slew rate of 1.5s.  All the 

valves are 15.4cm ID.   
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Figure 3.10 Cold Air and Bleed Air Bypass Valves 

 

 

Figure 3.11 Hot Air Bypass Valve and Flow Paths 



3 Method of Analysis 49

3.1.6 Instrumentation and Data Acquisition 

 
Monitoring of 104 process variables is accomplished by three separate control systems.  

The Atlas control system is manufactured by Woodward Controls, and its main task is to 

control the Swift valve that regulates fuel flow to the combustor.  This system can also 

acquire data at a sampling rate of 80ms.  All the subsequent data presented in Chapter 4 is 

obtained from the Atlas system.  The second control system is the APACS, manufactured 

by Moore Products.  Its main objective is to protect the equipment through a series of 

operational interlocks.  The sampling time of the APACS is 400ms.  The third control 

system, QUADLOG, is also manufactured by Moore Products and it serves as the 

primary safety system by ensuring proper purge times and vent of gases (Tucker et al. 

2003). 

 

As stated above, speed control is achieved by the Atlas system, through a PI controller.  

The turbine speed is measured by an optical sensor placed at the end of the APU 

generator shaft, receiving a 1200Hz signal at the nominal rotational speed.  Type K 

thermocouples and pressure transducers positioned throughout the piping comprise the 

bulk of the instrumentation, while annubar flow elements measure airflow.  The relative 

errors and measurement precisions are given in previous works (Tucker et al. 2005).           

 

 

Figure 3.12 HyPer Control Panel 
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3.2 Experimental Procedure 

 
The hybrid configuration under study manages thermal transients with the use of parallel 

piping routes having bypass valves, as explained in Chapter 2.  There are five system 

inputs for the HyPer assembly: fuel flow, generator load, and the CA, HA, and BA 

bypass valves (Tucker et al. 2005).  If each of these inputs is perturbed sinusoidally 

within the linear region of the nominal operating point, frequency response data in the 

form of magnitude and phase gains can be plotted for a characteristic range of system 

frequencies.  These Bode Plots are used as a system identification tool to determine the 

Transfer Functions for outputs of interest.  The aim of the controller is to maintain a 

prescribed mass flow at the inlet of the fuel cell within an acceptable window of 

operation, for disturbances in turbine shaft speed, fuel cell exhaust heat, and turbine 

generator load.  Thus the plant Transfer Functions are derived for these outputs as a 

function of each of the abovementioned inputs independently.   

 

3.2.1 GAP Programming Sequence 

 
The control platform in use as described in earlier sections is the Graphical Application 

Programmer GAP, provided by Woodward Industrial Controls.  The block oriented 

programming software can incorporate compiled code from a Simulink/MatLab source 

file and run it in real time, to the hardware-in-the-loop HyPer arrangement.  Figure 3.13 

and 3.14 show the command blocks that generate the sinusoids in each of the input 

channels, based on the Simulink sinusoid signal.  Appendix G details the test plan for 

various tests, and the sequential use of these blocks during test operation.   
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Figure 3.13 Simulink Sinusoid Subsystem 

 

 

 

 
 

Figure 3.14 GAP MatLab Signal Blocks 

 
 

3.2.2 Frequency Response Tests 

 
Scoping tests were done to determine the allowable magnitude range of all the actuator 

inputs before a mechanical limit would hinder operation.   The study was done in 

preparation for the frequency response tests that followed. Each input was fluctuated at 

given amplitude and frequency, for two separate chosen frequencies, specifically 
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0.017Hz~60s, and 1.67Hz~0.6s.  The nominal value and initial range of fluctuation for 

the fuel valve, load bank, and BA, HA, CA bypass valves were respectively: 

13.5g/s~39%+/-10%, 45kW+/-5kW, 14% +/-4% opened, 40%+/-10% opened, and 

40%+/-10% opened.  Each magnitude was then slowly increased at 1% steps, until a 

speed interlock was activated, or the EGT limit was reached.  The speed limit interlock is 

set to avoid speeds below 38,475rpm to prevent circuit burn.  For each case, the signal 

remained at a given frequency for up to 10 periods of oscillation, before the next 

frequency was tested.  It is important to note that each individual input was excited with 

all the other inputs closed, except for the fuel valve, which remained opened at nominal 

value corresponding to 40,500rpm.  

 

The purpose of the operational tests was to determine system structure by means of 

frequency response data.  The excitation of each input covered a range of frequencies of 

three orders in magnitude, starting at 0.001Hz and ending at 1Hz, for a total of 28 

frequency points having 10 samples per decade.  The signal remained at a given 

frequency for up to 10 periods of oscillation for the first two decades, before dropping to 

5 periods of oscillation for the last decade having the slowest frequency tested.  The total 

test duration for each input was approximately 9.5 hours, including system startup time, 

system shutdown time, and elapsed time between frequency samples for the states to 

reach their steady state nominal values.  Detailed test plans of the experimental procedure 

are shown in Appendix G.  Appendix J shows the time series frequency response data for 

three frequencies under study, while Appendix F gives key programming sheets in 

Woodward’s GAP software for turbine control.   

 
3.3 Empirical Transfer Function Matrix 

 
Transfer functions for states at the inlet of the air plenum, and turbo machinery are 

derived as a function of all system inputs of the HyPer plant.  While these are obtained 

individually, they are tied into a matrix that aims at representing the entire coupled 

system.  The proceeding subsections outline the steps by which the experimental model 

was generated. 
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3.3.1 Transfer Function Generation 

 
In order to obtain the magnitude and phase Bode Plots, the input and output signals are 

transformed to the frequency domain with a FFT algorithm.  The output is divided by the 

input signal, as defined by the Transfer Function relationship.  For LTI systems, the 

output signal of a sinusoidal perturbed system has the same frequency component as the 

input signal.  Hence the input frequency vector can serve as an index to extract the 

transformed output/input FFT element from the gain vector corresponding to a particular 

test frequency.  This assumption holds valid if the fluctuations remain within the linear 

region of operation for each actuator.  Chapter 4 shows the generated Bode Plot for the 

air plenum inlet pressure, temperature, and flow as a function of fuel flow fluctuation.  

The gain is converted to decibels dB, as a function of frequency Hz.  The m-file that 

generates these graphs is included in Appendix E. 

 

Equations 3.3.1-3.3.3 present various ways in which the pole zero rational polynomials 

can be written in classical Transfer Function format.  These equations are derived from 

the open loop frequency response; in particular the rise and fall of the magnitude plot 

slopes, according to (Umez-Eronini 1999).  On a semi log scale, a rise of 20dB/dec 

implies a zero in the vicinity of the inflection point, whereas –20dB/dec identifies a pole.       
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Figure 3.14 shows how a particular Transfer Function was approximated from test data 

with the use of asymptotes at three corner frequencies from the magnitude plot.  Note the 

presence of double zeros and poles with the rise and fall of the magnitude curve at +/-
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40dB/dec in the corner frequencies. The Transfer Function of Figure 3.15 follows the 

format expressed in Eq.3.3.3.  Once the corner frequencies and corresponding slope rates 

are identified in the magnitude plot, the phase plot is examined for nonminimum phase 

behavior (Franklin et al. 2006).      

 

 

Figure 3.15 Graphical Generation of Transfer Function 

 

For the most part, thermal systems have inherent time delays that perturb the phase plot 

in a decaying fashion.  Pure phase lags can be expressed in Transfer Function format as 

( ) dTj

d ejG
⋅−= ωω , where Td is the time delay. The phase lag can then be incorporated to 

the nominal plant as an exponential elevated to an integral or fractional power that is 

multiplied to the minimum phase Transfer Function as in Eq.3.3.4 (Katsuhiko 2002).  
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The addition of the exponential only affects the phase plot, as it is seen in Eqs.3.3.5-3.3.6, 

where the subscripts “non” and “min” stand for non-minimum and minimum Transfer 

Functions and phase angles.  The delay time can then be obtained by reading the 

measured phase at a particular frequency ωi as shown in Equation 5.    
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Hence from the experimental data, it will be seen that the derived Transfer Functions for 

mass flow, pressure, and temperature as a function of fuel flow excitation are 

respectively: 
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Chapter 4 shows the resulting plots of Eq.3.3.7-3.3.9 in [rad/s].  Repeating this procedure 

for all the other controllable inputs results in a MIMO Transfer Function Matrix for the 

measurable states, as shown in Eq.3.3.10. 
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( ) ( ) ( )sUsGsY jjii ⋅= ,                                       Eq.3.3.11 

 

The rows of the TF matrix in Eq.3.3.10 are defined by the outputs of interest, while the 

columns pertain to the available inputs for control.  This matrix will be extended to 

include the speed of the turbine shaft and the exhaust gas temperature as a row outputs, 

and the generator load bank as a column input, augmenting the plant to a 5 x 5 MIMO 

system.  The complete analysis also includes calculating the poles and zeroes of the TF 

matrix, by solving a pole polynomial from the least common denominator of all the 

minors of Gp(s) (Glad et al. 2000).  To find the zeroes, the maximal minor of the matrix is 

normalized with the pole polynomial, and the roots of Gp(s)-1 determines the MIMO 

zeroes.   

 

3.3.2 Multivariable Bode Plot and SVD 

 
In order to account for the interaction of each individual input to a particular output in a 

graphical manner, a multivariable Bode Plot has been formulated to accommodate the 

gain and phase shift properties of a matrix Transfer Function, by use of the singular value 

decomposition SVD methodology (Lewis 1992).  The singular values of a matrix give a 

measure of the size of the matrix, just as the norm gives a measure of the size of a vector.  

For any input signal, the magnitude of this matrix is bounded above and below by its 

maximum and minimum singular value respectively.  This induced gain is the ratio of the 

2-norm of two signals, as given in Eqs.3.3.12-3.3.13.  Singular values are thus dependent 

on the direction of the input vector, which is most often normalized as shown in 

Eq.3.3.15 and Eq.3.3.16. 

  

dGy ⋅=                                                     Eq.3.3.12 
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Equation 3.3.17 expresses the SVD notation for a square matrix G, with U and V being 

unitary square matrices, and Σ a diagonal matrix containing the singular values.  In 

Eq.3.3.17, *
V denotes the complex conjugate ofV . 
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In Eq.3.3.18, the rank of the matrix G determines the number of singular values, which 

are ordered from highest to smallest σ1>σ2>…>σr.  For a complex valued matrix H(ω), 

the maximum and minimum singular values ( )( )ωσ jH , and ( )( )ωσ jH , are an induced 

matrix norm, having the following properties: 
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( ) ( ) ( )BABA σσσ ⋅≤⋅                                         Eq.3.3.21 

 

 

where λmax, min are the largest and smallest eigenvalues of H*H , and H* denotes the 

complex conjugate transpose of matrix H (Belanger 1995).  Equation 3.3.21 is an 

important norm inequality useful in the derivation of optimal controllers, as will be seen 

in section 3.4.  Figure 3.16 shows a sample SV plot of a generic MIMO system.  Thus the 

gain of a multivariate system lies within its maximum and its minimum singular values.   

 

Figure 3.16 Singular Values of a Sample 2x2 TF matrix 

 

 

It will later be shown that design specifications for MIMO systems in the frequency 

domain are stated in terms of singular values and their norm properties.  Thus computing 

the singular values of a Transfer Function matrix allows for a multivariate Bode Plot that 

in turn can be utilized for control design by the use of loop shaping techniques.  The 

singular values in this case are functions of frequency, and thus can provide classical 

frequency response information i.e. poles, zeroes of the overall MIMO system.  Robust 
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control designs use algorithms that are based on limit bounds of a loop gain, following 

criteria from the open loop TF plot i.e. its singular values.   

 

3.3.3 Relative Gain Array and MIMO Limitations 

 
Another useful analysis that can be performed on a complex valued Transfer Function 

matrix is that of the measure of the degree of coupling between input and output signals.  

The Relative Gain Array RGA provides such a measure by observance of the deviation of 

its elements from a unitary matrix.  Strong cross coupling is then associated with 

elements that deviate the most from 1 (Glad et al. 2000).  For a square matrix A, RGA is 

defined as ( ) ( )TAAARGA 1. −⋅= , where A. implies element wise multiplication.   The 

term ‘Relative Gain’ comes from the ratio of matrix terms when: all loops are left opened 

with only one input acting, and all loops are closed, with the rest of the inputs forcing all 

the other outputs to zero.  The signs and magnitudes are interpreted in various ways in the 

literature, but they mostly agree in the avoidance of decentralized pairing when negative 

signs arise, and that the control difficulty rises when there is a deviation from the unitary 

matrix i.e. large RGA elements (Glad et al. 2000).  A frequency dependent RGA plot can 

give insight on the time it takes for a system to fully develop coupling among all its 

input/output signals. 

 

The open loop response of a MIMO system also provides valuable data concerning 

bandwidth limits for systems having time delays 
d

BW
t

1
<ω , unstable system poles 

pBW 2≥ω , and nonminimum phase zeroes 
2

z
BW ≤ω .  It will be seen that the 

performance of the compensated system is always degraded in the presence of RHP 

transmission zeros that are too close to the origin.  Even though there are alternatives to 

bypassing this detrimental effect to another output channel (Skogestad et al. 2005), it is 

unlikely to do so in a highly coupled system having orders of magnitude between 

component time constants.  There will therefore be a compromise between speed and 

stability, whenever RHP transmission MIMO zeros arise.     
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One measure used to characterize the ease or difficulty of controlling a MIMO plant is 

given in terms of the condition number κ.  It is defined as the ratio of maximum and 

minimum singular values at a given frequency: 
( )
( )G

G

σ

σ
κ = .  Large condition numbers hint 

at ill-conditioned plants, and are problematic with respect to control implementation.  The 

ability to suppress the magnitude of this criterion justifies any plant reduction and 

simplification, for control purposes. 

 

3.4 Robust H∞ Control Algorithm 

 
Modern state space control algorithms are most commonly identified with the time 

domain for MIMO systems, whereas the well-known classical SISO control schemes 

pertained to the frequency domain.  The elegance of the H∞ control methodology 

becomes apparent when the two domains fuse, synthesizing a state space MIMO 

controller from data based on classical methods. 

 

3.4.1 Closed Loop Transfer Function Descriptions 

 
Controllers for MIMO systems designed in the frequency domain use loop shaping 

techniques in their algorithms, to guarantee closed loop stability in spite of plant 

variations and unmodeled dynamics.  This is known as stability robustness.  On the other 

hand, performance robustness accounts for exogenous disturbances and sensor noise 

(Lewis 1992). In particular, robustness is specified in terms of Transfer Function bounds 

and sensitivity correlations.  In essence, sensitivity is defined as the ratio of the fractional 

change of the system TF to the change of a process TF for a small incremental difference, 

as expressed in Eq.3.4.1 (Dorf et al. 1998), (Nise 1995).   

 

T

G

G

T

GG

TT
S ⋅

∂

∂
=

∂

∂
=

/

/
                                      Eq.3.4.1 

 



3 Method of Analysis 61

For a closed loop system depicted in Figure 3.17, the sensitivity, complementary 

sensitivity, closed loop, and input sensitivity functions are expressed in Eq.3.4.2-3.4.9, 

where r  is the reference signal, uw  the controller disturbance, w  the plant variations, 

and n  the measurement noise (Glad et al. 2000).  The subscripts r, p, and y refer to the 

reference, plant, and feedback signal respectively. 

 

 

Figure 3.17 Closed Loop Control System [Glad] 
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( ) nTwSwSGrGIzre uuc ⋅+⋅−⋅⋅−⋅−=−=                Eq.3.4.9 

 

Equation 3.4.9 defines the error signal, while the sensitivity and complementary 

sensitivities are given by: 

 

( ) 1−
⋅+= yFGIS                                                Eq.3.4.10 

 

( ) 1−
⋅+⋅⋅=−= yy FGIFGSIT                                  Eq.3.4.11 

 

It is worth noting that for the case where Fy=Fr, T=Gc: the closed loop TF.  It also can be 

seen that the TF between the plant disturbances w, and the control input u is given by: 
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−
=                                      Eq.3.4.12 

 

3.4.2 Frequency Domain Specifications 

 
For the case of MIMO systems, these TF’s are matrices whose singular values define the 

system’s closed loop response.  System disturbances and reference inputs for example, 

are both low frequency phenomena, while measurement noise perturbations occur at high 

frequencies.  It is thus desired to maintain the sensitivity function S small for the range of 

frequencies where the reference input and disturbances are large, and the complementary 

sensitivity function T small where noise effects dominate (Levine 1996).  These 

restrictions cannot be met simultaneously, because of Eq.3.4.11.  However, the 

magnitude of their singular values can be shaped by the use of weighting functions 

applied within the corresponding frequency range.  Equations 3.4.13 and 3.4.14 express 

the S and T constraints, where K is the controller, and Figure 3.18 depicts the desired 

loop shapes. 
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Figure 3.18 Sensitivity and Complementary Sensitivity Constraints [Lewis] 

 

 

The low frequency specifications for robust performance requires that the minimum SV 

of the loop gain GK be ( )( ) 1>>⋅ ωσ jKG for dωω ≤ , and for good reference tracking 

and bounded steady state error that ( )( )
∞

>⋅
δ

σ
r

KG 0 , where δ∞ is the upper bound of the 

steady state error, and r is a step input.  If the bandwidth is limited by high frequency 

noise considerations, it is required that the largest singular value, ( )( ) 1=⋅ ωσ jKG at the 

cutoff frequency, ωc.  Disturbance rejection due to plant parameter variations is satisfied 

my making the minimum SV loop gain high on the low frequency range.  This is because 

S is the Transfer Function between system disturbance and system output.  The high 

frequency specifications require that ( )( ) 1<<⋅ ωσ jKG  for nωω ≥ , and that the high 
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frequency multiplicative modeling uncertainty be bounded as shown in the following 

equations, were M is the unknown discrepancy (Lewis 1992). 

 

( ) ( ) ( )[ ]ωωω jMIjGjG +⋅='                                 Eq.3.4.15 
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<⋅                      Eq.3.4.16 

 

The resultant desired frequency response in terms of singular values and their bounds are 

noted in Figure 3.19. 

 

 

Figure 3.19 Low and High Frequency SV Bounds [Lewis] 

 

3.4.3 H∞ Control Formulation 

 
In recent years, robust modern control theory has primarily focused its attention on the 

algorithms proposed by Glover and McFarlane (1992).  These control schemes aim at 

minimizing the infinity norm of a series of closed loop transfer functions as defined in the 

following sections.  In doing so, the detrimental effect of a disturbance signal can be 
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attenuated at the plant’s outputs with guaranteed closed loop stability for all channels of 

the system.  Although there have been a wide variety of modifications to these two 

methodologies, the mixed sensitivity and the robustification theory will be presented, 

together with their pro’s and con’s.    

3.4.3.1 Mixed Sensitivity 

 
As stated before, the sensitivity S, complementary sensitivity T, and the TF from system 

disturbance to control input Gwu cannot be made small simultaneously.  Therefore, 

diagonal weighting matrices are chosen such that the aforementioned Transfer Functions 

are small for all frequencies.  For “p” measured outputs and “m” control inputs, the TF 

sensitivity and co-sensitivity weights WS, WT have dimensions (p x p), while the weight 

of Gwu is an (m x m) matrix.  In terms of norms, this result can be expressed as: 

 

( ) ( ) γωω ≤⋅ || jSjWS                                       Eq.3.4.17 

 

( ) ( ) γωω ≤⋅ || jTjWT                                       Eq.3.4.18 

 

( ) ( ) γωω ≤⋅ || jGjW wuu                                    Eq.3.4.19 

 

An extended closed loop system of Figure 3.17 is built so as to derive a combined 

Transfer Function matrix from inputs and disturbances “w” to the outputs “z”, so that the 

requirements of Eq.3.4.17-3.4.19 are met with a single norm (Glad et al. 2000).  Figures 

3.20 and 3.21 precede the derivation of the norm. 

 

Figure 3.20 Generation of “z” variables from “u” and “w” 
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Figure 3.21 Closed Loop and Extended Transfer Functions [36] 

 

To force the extended system Ge to be solely a function of the weighting matrices and the 

system plant G, the following relations are formulated: uWz u ⋅=1 , uGWz T ⋅⋅=2 , 

( )wuGWz S +⋅⋅=3 , and wuGy +⋅= .  If yFu y ⋅−= is substituted in the output 

equations, then: 

wGw

SW

TW

GW

z

z

z

z ec

S

T

wuu

⋅=⋅

















⋅

⋅−

⋅−

=

















=

3

2

1

                            Eq.3.4.20 

 

The extended open loop plant Ge can then be transformed to state space by individually 

setting up states in controllable canonical form, with the resulting matrices: 

 

wNuBxAx ⋅+⋅+⋅=&                                       Eq.3.4.21 

 

uDxMz ⋅+⋅=                                            Eq.3.4.22 

 

wxCy +⋅=                                               Eq.3.4.23 

 

From the previous state space realization, a controller can be derived following H∞ 

algorithms, by solving a Ricatti equation that minimizes the infinity norm of the extended 

Transfer Function matrix Gec.  One such solution would proceed by obtaining the state 

space realization of the plant Transfer Function G, after incorporating the appropriate 
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weighting matrices Wu, WS, and WT.  An upper bound γ would be chosen to solve the 

given Ricatti equation Eq.3.4.24 for a positive semidefinite solution S=Sγ subject to 

γSBBA
T ⋅⋅−  stable. 

 

( ) 02 =⋅⋅−⋅⋅⋅+⋅+⋅+⋅ − SBBNNSMMASSA TTTT γ         Eq.3.4.24 

 

( )xCyNuBxAx ˆˆˆ ⋅−⋅+⋅+⋅=&                            Eq.3.4.25 

 

xSBu
T ˆ⋅⋅−= γ                                          Eq.3.4.26 

 

The controller is given by Eq.3.4.26, and the state estimator by Eq.3.4.25.  If no solution 

exists, either the bound γ is chosen again through a number of iterations, or there simply 

isn’t a linear controller that bounds the infinity norm of Gec.  Although this method has 

proven to be efficient in terms of robustness, problems could arise when attempting to 

satisfy the three different weight requirements simultaneously, since most often they have 

conflicting specifications, as is the case of the S and T functions.  Also, the trial and error 

nature of the weight selection process makes it a tedious task to converge the iterative 

process.  The proceeding sections discuss norm definitions and another more systematic 

approach to robust loop shaping i.e. maximally robust H∞ controller. 

3.4.3.2 Loop Gain Robustification 

 
In deriving this particular algorithm, it has been noted that the gain of a Transfer Function 

matrix can be expressed as a norm |||| ⋅ in its singular values, and as such, can be 

minimized accordingly.  Minimization of this gain reduces the undesirable outputs 

subject to disturbance effects and noise interactions.  The H2 norm, and the H∞ norms of 

the Transfer Function matrix between “w” and “z” are defined as follows (Boyd 1987) 

 

( ) ( )( ) ( )∑ ∫∫
∞

∞−

∞

∞−

=≡
ji

ji djHdjHjHtrH
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|||| ωω
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π

       Eq.3.4.27  
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( ) ( )( ) ( )( )ωσωλ
ωω

jHjwHjHH maxmax||||
*

=≡∞                Eq.3.4.28 

 

where H(jω) is the previously defined closed loop TF Gec.  ||H||2 is defined as the total 

energy of the impulse response of a plant matrix.  It is also the RMS value of the output 

“z” when the input “w” is driven by white noise.  In contrast with the infinity norm of H, 

||H||2 is not a gain.  ||H||∞ on the other hand, is the maximum singular value over the entire 

frequency spectrum and it is sometimes referred to as the worst case RMS value of the 

output for a given input of unknown spectrum (Boyd 1987).  The minimization of the H∞ 

norm thus guarantees stability margins and robustness.   

 

As a type of optimal control, this approach wishes to minimize a cost function given by 

Eq.3.4.29, such that Eq.3.4.30 holds for some small value ε (Green et al. 1995). 

 

( ) ( ) ( )∫ ⋅≤⋅∆⋅+⋅⋅−⋅=
f
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wTxTxdtwwzzJ
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],0[,2

2 ||||εγ      Eq.3.4.29 
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2

2

2

22

2 |||||||||||| wwz ⋅−≤⋅− εγ                                Eq.3.4.30 

 

 

Thus the H∞ solution satisfies two Hamiltonian matrices Eq.3.4.31 and Eq.3.4.32, for the 

state space plant partitioned as in Eq.3.4.33-3.4.35 (Belanger 1995). 
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uBwBxAx ⋅+⋅+⋅= 21
&                                     Eq.3.4.33 

 

uDwDxCz ⋅+⋅+⋅= 12111                                   Eq.3.4.34 

 

uDwDxCy ⋅+⋅+⋅= 22212                                   Eq.3.4.35 

 

Glover and McFarlane derive an H∞ algorithm that shapes the open loop singular values 

with one diagonal pre-compensator before realizing the loop gain in state space and 

forming the controller from two Ricatti equations that stem from the Hamiltonians of 

Eq.3.4.31-3.4.32 (Glad et al. 2000) for the state realization uBxAx ⋅+⋅=& , xCy ⋅= . 

 

0=⋅+⋅⋅⋅−⋅+⋅ TTT
BBZCCZAZZA                       Eq.3.4.36 

 

0=⋅+⋅⋅⋅−⋅+⋅ CCXBBXAXXA
TTT                      Eq.3.4.37 

 

The solution of Eq.3.4.36-3.4.37 requires that the matrices X and Z be positive definite.  

An algorithm that automatically adjusts the controller to achieve maximum degree of 

stability margin is given below: 

 

( )ZXeigenm ⋅=
max

λ                                         Eq.3.4.38 

 

( )mλαγ +⋅= 1                                          Eq.3.4.39 

 

( )XZIIR ⋅+⋅−=
2

1

γ
                                   Eq.3.4.40 

 

XBL T ⋅=                                               Eq.3.4.41 

 

T
CZRK ⋅⋅= −1                                            Eq.3.4.42 
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( )xCyKuBxAx ˆˆˆ ⋅−⋅+⋅+⋅=&                               Eq.3.4.43 

 

xLu ˆ⋅−=                                                Eq.3.4.44 

 

where α is a scaling factor greater than 1.  So in order to get the best stability margins, γ 

should be chosen as small as possible.  The previous algorithm of Eq.3.4.36-3.4.44 will 

be applied to the empirical Transfer Function matrix obtained in section 3.2.1.     

 

Figure 3.22 shows a desired loop shape of a robustly compensated system, with high 

lower singular values at the low frequencies for good performance, and low higher 

singular values in the high frequency range for robustness.  Note the transition crossover 

slope of –20dB/dec.  This slope rate ensures a safe stability margin, as seen in the phase 

plot.   

 

 

Figure 3.22 Simplified Desired Loop Gain Shape 
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For systems having multiple singular values, as is in the MIMO case, forcing the singular 

values to be close to each other around the crossover frequency is not a simple matter.  

Glad suggests a way to manipulate a particular singular value around a specified 

frequency to match the location of an adjacent singular value.  Equation 3.4.45 

successfully accomplishes this for a system having two singular values.  This gain matrix 

consists of the input unitary matrix V and its transpose VT evaluated at the crossover 

frequency, multiplied by a constant.  The weight shown closes the gap between the first 

and third singular values at a given frequency.  This weight is post multiplied to a scaled 

plant matrix as expressed in Eq.3.4.47.    

 

( ) T
VVIW ⋅⋅

−
+=

3

31
1

σ

σσ
                                   Eq.3.4.45 

 

A dynamic pre-compensator accomplishes the open loop gain shape, while the robust 

controller stemming from Eq.3.4.36-3.4.37 guarantees stability.  The resulting diagonal 

compensator is pre-multiplied to the scaled plant.  This pre-compensator is typically a 

first or second order Transfer Function that amplifies the gain at low frequency, and 

attenuates input signals at high frequency.  One such example is given below, for a 

diagonal matrix, 

( )
( ) ( )

I
sss

sA
W

nn

c
p ⋅

+⋅+⋅

+⋅
=

21 ωω

ω
                                  Eq.3.4.46 

 

where the zero is meant to smooth the SV transition at the crossover frequency, the 

integrator increase the dc gain at low frequencies, and the poles roll off SV prior to the 

noise and uncertainty levels.  Before the algorithm outlined in Eqs.3.4.38-3.4.44 can be 

used, the Transfer Function Matrix must first be scaled.  It is after scaling that the loop 

gain of Eq.3.4.50 can be utilized in state space format for the solution of Eq.3.4.36 and 

Eq.3.4.37.  The pre-scaling matrix Wpre is a diagonal matrix of the maximum expected 

deviation in each of the controlled states, whereas the post-scaling matrix Wpost includes 

the allowable changes of the actuator signals within their nominal operating point.  These 

values are given in subsequent chapters.   



3 Method of Analysis 72

 

( ) ( ) postpprescaled WsGWsG ⋅⋅= −1                                    Eq.3.4.47 

 

( )∆Ω∆∆∆∆= ,,,, TITFCFCFCpre TTPmdiagW &                        Eq.3.4.48 

 

( )LBPVHACABAdiagWpost ∆∆∆∆∆= ,,,,                         Eq.3.4.49 

 

( ) 12 WsWGWL Pscaledloop ⋅⋅⋅=                                   Eq.3.4.50 

 

The results of this algorithm will be analyzed for various uncertainty ranges in terms of 

parametric and unstructured uncertainty. The practicality of this approach can aid in the 

interpretation of underlying control complexities that can arise in the development of 

other control schemes.   
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4 Empirical Results 

 
The results of the control methodology detailed in the preceding chapters are summarized 

presently for the empirical model.   Analysis demonstrates the difficulty in controllability 

due to the strong coupling between system components, and a further need of model 

reduction in order to achieve good results that are applicable to the real system.  The 

robust algorithm is then tested under various ranges of parametric and unstructured 

uncertainty, for regulation and reference tracking.   

 

The following sections pertain to the analysis and further testing of an H∞ controller 

derived from an experimental plant.  First, frequency response plots of magnitude and 

phase are shown, followed by Bode plots of the generated Transfer Functions that fit test 

data.  The scaled singular values are graphed before and after compensation of the chosen 

dynamic and scalar weights.  Finally, the controller performance is tested for disturbance 

rejection and robustness in a Simulink/MatLab platform.      

 

4.1 Frequency Response Plots 

 
As stated in Chapter 3, the sinusoidal modulation of all input actuators to the HyPer plant 

was carried out individually, one valve at a time, around a nominal operating point.  The 

fuel valve was excited at 45kW load with all the other bypass valves closed, and so were 

the rest of the bypass valves, one at a time.  Figures 4.1-4.5 show the time series of the 

fuel valve modulation tests, from 0.001Hz to 1Hz.  The signals graphed are those of the 

command signal PV432, fuel flow transmitter FT432, fuel flow signal auto-correlation 

function, plenum airflow FT380, turbine inlet temperature T350, and turbine speed 

S502A.  Plots for the plenum temperature and pressure signals are not shown, for reasons 

discussed in subsequent sections. It is noted however, that the high frequency response 

trend is dominated by noise, for frequencies faster than 0.2Hz.   
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Figure 4.1 Time Series: Fuel Valve Modulation @ 1Hz 

 

 

Figure 4.2 Time Series of Fuel Valve Modulation @ 0.5Hz 
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Figure 4.3 Time Series: Fuel Valve Modulation @ 0.1Hz 

 

 

Figure 4.4 Time Series: Fuel Valve Modulation @ 0.01Hz 
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Figure 4.5 Time Series: Fuel Valve Modulation @ 0.001Hz 

 

In the previous plots, the auto-correlation function for the fuel flow transmitter is used as 

an indicator of how well the driving signal form matches that of a sinusoid.  The greater 

the red and blue uncertainty bounds, the more randomness the signal has, and the less 

confidence there is on the input signal being correlated in a sinusoidal fashion.  As the 

number of data points increase, these bounds lessen, and the data becomes more reliable 

in terms of frequency response to a sine wave.  Figures 4.6 and 4.7 show the magnitude 

and phase Bode plots for plenum airflow, pressure, and temperature, as well as turbine 

inlet temperature and speed.  Each of the 28 data points covering three orders in 

magnitude are Fourier transformed ratios of the aforementioned outputs as a function of 

the command signal PV432.  It is worth noting that discontinuities in the phase plots are a 

result of folding of the phase diagram about -180 degrees, meaning that a sample lag of -

200° is instead shown as +160°.  Thus all the phase graphs have default windows of +/-

200 degrees.  Figures 4.8 and 4.9 are the Bode plots of all the outputs of interest as a 

function of load bank fluctuation.                
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Figure 4.6 Fuel Valve Modulation Bode Plots: m& , PFC, TFC  

 

 

Figure 4.7 Fuel Valve Modulation Bode Plots: TIT, Ω 
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Figure 4.8 Load Bank Modulation Bode Plots: m& , PFC, TFC 

 

 

Figure 4.9 Load Bank Modulation Bode Plots: TIT, Ω 
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Figures 4.10-4.15 show the Bode plots of the BA, CA, and HA bypass valves.  The 

response of the valves is characterized in an additional magnitude/phase plot.  In this 

manner, the range of reliable data can thus be related to the bandwidth of each actuator, 

as determined experimentally.  Blue crosshairs pertain to good data points, whereas red 

crosshairs, noisy data.  This is seen in Figure 4.10 for the BA modulation of TF4.  The 

red crosshairs commence at approximately 3dB below dc magnitude value.  Table 4.1 

displays the bandwidth, time constants, settling times, and range of operation of each of 

the bypass valves from the experimental data. 

 

Inputs Min Ave Max Units Bandwidth 

[Hz] 

Bandwidth 

[rad/s] 

τ 

[sec] 

ts~2% 

[sec] 

BA 0 14 16 % 0.04 0.2513 3.98 15.92 

CA 0 40 100 % 0.35 2.1991 0.45 1.82 

HA 0 40 100 % 0.2 1.2566 0.80 3.18 

FV 32 35 38 % Specification Specification N/A N/A 

LB 0 45000 98000 kW N/A N/A N/A N/A 

 

Table 4.1 Bypass Valve Characterization 

 

Further discussion in upcoming sections will address the reasons behind the final 

selection of controlled variables and control signals.   All of the outputs of interests are 

shown nonetheless, with the added variables of air plenum pressure PT305, and air 

plenum temperature TE326.  
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Figure 4.10 Bleed Air Modulation Bode Plots: TIT, Ω, Stem 

 

 

Figure 4.11 Bleed Air Modulation Bode Plots: m& , PFC, TFC 
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Figure 4.12 Cold Air Modulation Bode Plots: TIT, Ω, Stem 

 

 

Figure 4.13 Cold Air Modulation Bode Plots: m& , PFC, TFC 
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Figure 4.14 Hot Air Modulation Bode Plots: TIT, Ω, Stem  

 

 

Figure 4.15 Hot Air Modulation Bode Plots: m& , PFC, TFC 
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4.2 Transfer Function Derivation 

 
Following the methodology of Chapter 3, a Transfer Function equation is derived from 

all the plots of the previous section, for each of the fluctuated inputs.  As stated 

previously, Transfer Functions for all 25 input/output combinations where obtained and 

inserted into the matrix of Eq.4.1.1.  This matrix is further reduced to that of Eq.4.1.2, as 

explained later in the section.  The individual Transfer Functions are listed below 

followed by their magnitude plot, which is compared to the experimental data.  This 

superimposed Transfer Function Bode plot is graphed in Figures 4.16-4.20, where the 

blue crosshairs denote test data, and the solid line, the Transfer Function approximation.     
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CA Bypass Valve Input Signal Transfer Functions: 
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HA Bypass Valve Input Signal Transfer Functions: 
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Fuel Valve Input Signal Transfer Functions: 
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Load Bank Signal Transfer Functions: 
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BA Bypass Valve Input Signal Transfer Functions: 
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Figure 4.16 Generated and Test Data Bode Plots: Fuel Valve 

 

 

Figure 4.17 Generated and Test Data Bode Plots: Load Bank 
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Figure 4.18 Generated and Test Data Bode Plots: Bleed Air Valve 

 

 

Figure 4.19 Generated and Test Data Bode Plots: Cold Air Valve 
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Figure 4.20 Generated and Test Data Bode Plots: Hot Air Valve 

 

In order to incorporate the effect of the individual time delays, the exponential terms 

where replaced in MatLab by all pass first order Pade approximations, as given in 

Eq.4.1.28.  This low order conversion is a possible source of error, but is required if the 

non-minimum phase behavior is to be modeled faithfully.  The use of higher order Pade 

approximations is usually not warranted, for they add to the complexity of the model, and 

are most often the cause of detrimental effects in terms of computational time. 
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                                           Eq.4.1.28 

 
The system responses of the 3x3 matrix of Eq.4.1.2 for the CA, HA, and fuel valve step 

inputs are shown respectively in Figures 4.21-4.23.  These are all open loop responses of 

the plenum airflow FT380, turbine inlet temperature TE350, and turbine speed S502A 

outputs of interest, as functions of CA valve Z170, HA valve ZC380, and fuel valve 

PV432.  The solid blue line corresponds to the TF model response, while the noisy dark 
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plots are those of experimental data.  The step values given to the manipulated variables 

are actual step percentages assigned during experimental tests.  It is worth noting that the 

observed discrepancy between the model and data mass flow rates of Figure 4.23 are due 

to the fact that the open loop test data was conducted with the CA valve being opened at 

34%.  This would cause air that would otherwise route to the air plenum to be diverted.  

At no electrical load, the CA can divert as much as 20% of the airflow into the cathode, 

when opened at 35%.  The model thus seems to overshoot the steady state value of the 

response by approximately 2.5%, at 45kW of electrical load.   

 

 

Figure 4.21 Cold Air Bypass Open Loop Step Response 
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Figure 4.22 Hot Air Bypass Open Loop Step Response 

 

These figures also show the measurement noise levels and quantization errors of the 

output signals, in particular that of the TIT.  Due to the extensive use and hours of 

operation, most sheathed thermocouples of the HyPer facility required frequent 

replacement.  This lead to sporadic instances of signal loss.    
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Figure 4.23 Fuel Valve Open Loop Step Response 

 

When the 5x5 matrix is analyzed, large RGA numbers appear in the matrix elements.  

This is indicative of an ill-conditioned plant that is extremely difficult to control.  The 

condition number for this plant was in fact κ = 253.5, too high for adequate control.  As a 

comparison, literature suggests that condition numbers in the range between 10-20 are 

feasible plants to control.  As will be further discussed, convergence of the state space 

robust algorithm was unsuccessful for the 5x5 system, proof of the need for additional 

inputs, and loss of controllability.               
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It was stated that the original 5x5 Transfer Function matrix was reduced to a 3x3 system.  

The simplified version consists of the CA, HA, and fuel valve actuator inputs, and the FC 

mass flow rate, TIT, and turbine speed outputs, as expressed in Eq.4.1.2.  One of the 

main rationales for the revision is the physical inability to successfully control the 

plenum temperature without the use of an additional bypass valve.  All the existing 

valves have a strong influence on the plenum flow, but not on temperature in an 

uncoupled manner.  Also, the plenum pressure is more constrained by the difference in 

pressure across the electrolyte membrane of a fuel cell, rather than on the cathode side 

route.   

 

The BA valve has shown to be more effective in mitigating emergency transient effects, 

such as avoidance of compressor stall/surge, than as a mass flow rate control actuator that 

would be used under normal operation.  The load bank input on the other hand is best 

modeled as a disturbance rather than a command signal, as would be the case in real life. 

 

Equation 4.1.29 shows a disturbance model matrix that will be used as part of the 

controller shown in the upcoming sections.  The disturbance model incorporates both the 

load bank and the fuel valve as inputs.  The fuel valve TF is used in the disturbance 

model because FC disturbance heat is superimposed on the combustor heat when the 

syngas FC model is in use.  The syngas model activates the fuel valve in response to 

measured HyPer variables.  A steady heat flow however is always required to run the 

turbine at nominal speed.  This matrix is incorporated into the Simulink control 

configuration shown in section 4.1.5.2. 
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4.3 RGA and System Singular Values 

 

Equation 4.1.30 shows the Relative Gain Array values of the Transfer Function matrix of 

Eq.4.1.2, evaluated at zero frequency.  According to this matrix, the plenum airflow is 

best controlled with the HA valve, the turbine inlet temperature with the CA and fuel 

valves, and the turbine speed with the fuel valve.  The negative numbers indicate cross 

couplings to avoid, if decentralized control is attempted.  Note that the order of rows are: 

FCm& , TIT, Ω, and the order of the columns are: CA, HA, and fuel valve.  Figure 5.24 

displays the RGA values as a function of frequency.  These values are obtained by 

evaluating the RGA matrix one frequency at a time, and expressing the complex results 

as positive scalars i.e. absolute values.  Hence the figure illustrates times at which 

coupling between inputs and outputs have fully developed, and have the greatest impact 

on each other.  Each of the plotted lines corresponds to the absolute value of one of the 9 

elements of the RGA matrix.   Shown in red is element (1,2), mass flow rate as a function 

of HA bypass valve opening.   
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Figure 4.24 Relative Gain Array 

 

Figure 4.24 illustrates the development of full system coupling at frequencies between 

0.01rad/s and 0.1rad/s.  The values below these frequencies pertain to the absolute value 

of the elements in Eq.4.1.30.  The high frequency region above 1rad/s gives no valuable 

information, in terms of the effective coupling between variables, mostly because the 

frequencies are physically unattainable.  The distorted contour in this range is a 

consequence of the mathematical computation of the RGA matrix.     
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Figure 4.25 Scaled and Unscaled Open Loop Singular Values 

 
When analyzing the plant, scaling is of the utmost importance, for without it, there is no 

equative degree of comparison between individual disturbances.  Figure 4.25 is a plot of 

the scaled and unscaled singular values of the matrix of Eq.4.1.2 as a function of 

frequency.  The black lines are the singular values of the 3x3 matrix, whereas the red 

lines correspond to the scaled singular values.  Scaling is necessary to properly interpret 

and manipulate the sensitivity function.  An unscaled sensitivity function is of no value 

when deriving a controller because of the disparate representation of the system gains.  It 

also lessens the effort of designing and selecting shaping weights, as described in the 

following sections.  By pre and post multiplication of input and output scaling matrices to 

the open loop matrix, a bounded unitary response can thus be attributed to the maximum 

allowable value a certain output can have, for a bounded unitary input.  Equations 4.1.31-

4.1.33 give the scaling factor matrices, where Wpre contains the allowable output 

deviations, and Wpost, the allowable input deviations.  
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( ) ( ) postpprescaled WsGWsG ⋅⋅= −1                           Eq.4.1.31 
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( ) ( )%1%,10%,10,, diagPVHACAdiagWpost =∆∆∆=              Eq.4.1.33 

 

Figure 4.26 shows the sensitivity function of Equation 4.1.31.  It is clearly seen that the 

scaled plant is sensitive to low frequency perturbations, as noted by the upper singular 

value peak above 0dB.  The plot also shows that there is poor reference tracking due to 

the position of the open loop gain singular values being dispersed as well.  The scaled 

system is sensitive to disturbances because dB0>σ at all tested frequencies.    

 

Figure 4.26 Open Loop Sensitivity Function 

 
4.4 Loop Gain Weight Selection 

 
In order to properly select the loop gain weights as described in the procedure of Chapter 

3, time delays and RHP zeros must first be determined for the MIMO plant.  These 
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constitute restrictions on the performance weights in terms of achievable control 

bandwidth.  A transmission zero of z = 0.1455rad/s was found to limit the first order 

Transfer Function weight given in Equation 4.1.34.  The RHP zero is given by ωc , while 

ωs is a small arbitrarily chosen frequency.  With the use of ωs computational errors in the 

solution of the Hamiltonian matrices of the H∞ algorithm are avoided.  Equation 4.1.34 

gives the lower bound for the control performance criteria that must be met.  In this case, 

the crossover frequency is that of the RHP zero.  The zero of Eq.4.1.34 is placed at 10 

decades before the crossover frequency to allow enough margin for all the singular values 

to roll off before ωc.  This gives a crossover slope of –20dB/dec when multiplied to the 

open loop plant singular values.   
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An upper admissible bound for system robustness is given in Eq.4.1.35.  To make this 

Transfer Function weight proper, a zero is included two decades after the weight pole, 

located at 100ωc.  The inclusion prevents the weight from affecting the plant dynamics.  

Figure 4.27 shows the upper and lower bounds, together with the scaled open loop 

singular values.  The blue line corresponds to the performance weight of Eq.4.1.34, and 

the red line to the robustness weight of Eq.4.1.35, in particular WT
-1.   
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The goal of the controller as seen in the frequency domain, is to manipulate the loop gain 

singular values, shown in black, to lay within the area encapsulated by the intersection of 

the upper and lower bounds.   
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Figure 4.27 Performance and Robustness Bounds 

 
According to the algorithm detailed in Chapter 3, the open loop Transfer Function scaled 

matrix is first multiplied by a dynamic weight, to shape the loop gain.  The performance 

weight is given in Equation 4.1.36.  This weight includes double poles at ωs so that the 

low frequency gain is increased at a rate of 40dB/dec.  The pole at 0.05ωn rolls off the 

compensated singular values at –40dB/dec, right before the uncertainty frequency limit 

pertaining to the highest frequency tested of 1Hz.  The dynamics of the weight is equally 

introduced in all the input channels with the diagonal identity matrix.  Finally, the 

constant A adjusts the weight’s magnitude, so that the zero at 0.02ωc can smoothly roll 

off the singular values at the crossover frequency.  The value of A is 0.0024.     
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Once the singular values of the open loop matrix are shaped with the use of the dynamic 

compensator Wp, they must be brought close together around the crossover frequency in 

order to meet the performance and robustness bounds simultaneously.  Glad and Ljung 

propose a method by which a specific SV loop gain can be moved to the vicinity of an 

adjacent SV.  Eq.4.1.37 defines the loop gain, where LL is evaluated at half the crossover 

frequency.  This constant gain matrix W1 is given by Eq.4.1.41, U and V being the output 

and input direction matrices of the singular value decomposition representation. 

 

*
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The pre-compensated gain matrix above is post multiplied to the loop gain of Eq.4.1.37 

as shown in Eq.4.1.43.  It is this new compensated loop gain L that is represented in state 

space form and subsequently used as the plant in the robust H∞ algorithm. 
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( ) 1WsWGL Pscaled ⋅⋅=                                    Eq.4.1.43 

 
 

4.5 Controller Performance 

 

The current section presents the results of the Glover-McFarlane H∞ algorithm, for two 

slightly distinct versions, one proposed by Glad and Ljung (2000), and the other by 

Skogestad and Postlewaithe (2005)  Appendix E lists the MatLab m-files that generate 

the robustification solution described in Chapter 3.  The infinity norms of the Glover-

McFarlane, and the Co-Prime algorithms were 9111.1=γ , and 7374.1=γ  respectively.  

These values, being less than 4, indicate a successful derivation of a robust controller. 

 

4.5.1 Compensated Singular Values 

 
Figure 4.28 shows the loop gain singular values of the compensated plant.  It can be seen 

that all lay within the performance and robust bounds, with a transition slope of 

approximately –20dB/dec at the crossover frequency.  The singular values are also closer 

at the crossover.  This is the best shape achievable under the RHP zero limitation.  A 

closer look at the plot shows of singular values lumped together within a third of a 

decade. 

 

Figures 4.29 and 4.30 display the compensated sensitivity and co-sensitivity function 

singular values.  There is a smooth decay of both functions for the low and high 

frequency ranges, as desired.  This means that disturbance rejection and good tracking is 

achieved for the low frequencies, and uncertainties due to un-modeled dynamics are 

taken care of.  Comparison between Figures 4.26 and 4.29 demonstrates the effectiveness 

of the methodology in rejecting disturbances. 
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Figure 4.28 Compensated Loop Gain Singular Values 

 

Figure 4.29 Compensated Sensitivity Function Singular Values 
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Figure 4.30 Compensated Complementary Sensitivity Function SV 

 

4.5.2 Controller Implementation 

 
The controller detailed in Chapter 3 is implemented in the Simulink environment, shown 

in Figure 4.31.  Skogestad and Postlewaite suggest the given configuration with the use 

of a pre-filter Kc, used in the forward path, preceding the control loop.  This pre-filter is 

nothing but the H∞ controller evaluated at dc, and is given in Eq.4.1.44.  It is placed 

outside the control loop to avoid large overshoots that would result from excitation of the 

reference signals.  The location of this pre-filter does not affect the dynamics of the 

robust controller in the feedback loop (Skogestad 2005).   
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Figure 4.31 Simulink Control Configuration 
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4.5.3 Reference Tracking and Regulation 

 
Figures 4.32 to 4.43 plot various cases of the compensated system’s simultaneous 

response for plenum airflow, TIT, and turbine speed, to fuel and load disturbances as well 

as for desired output tracking commands.  Plots of the actuator control signals for the CA, 

HA, and fuel valve are also given.  The values shown are for the scaled plant, thus the 

CA and HA valves must be multiplied by a factor of 10 in order to scale back to the 

actual valve positions.  The fuel valve position shown is the actual valve value, because 

the scale factor used was 1.  Note that tracking is to step input signals.  The actual outputs 

must be scaled back to real values by piecewise multiplication of Eq.4.1.32.  Speed of 

response, once again, is affected by the transmission MIMO zero.  The largest time 

constant observed for a transient event is approximately 2min for the speed output signal.  

On average, the time constants of the output responses lay within 1min.    

 

 

Figure 4.32 Signal Reference Tracking: Step Command 
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Figure 4.33 Control Signal: Simultaneous Step Tracking 

 

 

Figure 4.34 Signal Tracking: m& FC   
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Figure 4.35 Control Signal: m& FC  Tracking 

 

 

Figure 4.36 Signal Tracking: Ω 
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Figure 4.37 Control Signal: Ω Tracking 

 

Figure 4.38 Signal Tracking: TIT 
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Figure 4.39 Control Signal: TIT Tracking 

 

Figure 4.40 Load Step Disturbance Attenuation 
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Figure 4.41 Control Signal: Load Disturbance 

 

Figure 4.42 Heat Step Disturbance Attenuation 
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Figure 4.43 Control Signal: Heat Disturbance 

 

In Figures 4.32 to 4.43 the input signals of CA, HA, and PV are scaled, hence their true 

values are obtained by multiplying factors of 10, 10, and 1 to each signal respectively.  

Thus in Figure 4.33 for example, the CA, HA, and PV actual steady state valve 

percentages are approximately 27% opened, 23% closed, and 2.6% opened from their 

nominal operating values, defined by the zero set point.  The mass flow rate, TIT, and 

turbine speed must be multiplied by factors of 0.3kg/s, 50K, and 1500rpm to scale back 

to their true values.   

 

Figure 4.32 shows the system response to simultaneous steps in mass flow, TIT, and 

turbine, while Figure 4.33 the respective control law.  In the same manner, plots of 

system response and consequent actuator response are given for individual one at a time 

reference steps.  In Figure 4.35 for example, a mass flow step increase of 0.3kg/s is 
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commanded, causing the CA valve to decrease by 20%, the HA valve to increase by 60%, 

and the PV valve to decrease by 1% from their nominal values.  It might seem counter 

intuitive to open the HA this much, but a closer look indicates this is necessary if TIT and 

turbine speed response are to remain unvaried.  When the fuel valve decreases by 

1%~26kW, the TIT becomes colder as seen in Figure 4.34.  It is then necessary to 

increase the HA valve to compensate for this and to increase speed at the same time, 

while closing the CA to augment airflow into the cathode.  The result of the multivariate 

control law is that the mass flow tracks the command signal, regulating TIT and turbine 

speed at the same time, as seen in Figure 4.34.               

 

In Figure 4.37, the detrimental effect of the RHP zero is seen as the system tracks a step 

increase in speed of 1500rpm.  For this scenario the CA valve decreases by 2%, the HA 

decreases by 5%, and the fuel valve increases by 2.8%~74kW, or 24.7% of the fuel cell 

power.  This results in almost negligible mass flow and TIT peaks, at the expense of 

controller tracking speed.  This is the slowest response observed for the fuel valve, with a 

time constant of approximately 2.5min.  It is possible that the sluggish behavior of the 

fuel valve for this scenario can be corrected by a shift of the RHP zero to a different 

output channel of least importance.  This is further discussed in Chapter 6.   

 

Figure 4.39 shows the control law response to a TIT command step of 50K.  In this case, 

CA increases by 50%, fuel valve increases by 1%~26kW or 10% of the fuel cell power, 

while HA decreases by 75%.  Closing the HA by this amount is not possible if the 

nominal operating valve opening is at 40%.  If possible, closing the HA would maintain 

cathode airflow constant as seen in Figure 4.38.  This indicates the necessary inclusion of 

an anti windup scheme that would compensate for valve saturation effects such as this 

one.  The CA increase helps mitigate TIT overshoots by cooling it down, while 

increasing the cathode airflow.  It is because of this additional increment in cathode 

airflow due to the CA opening, that the HA valve responds so drastically. 

 

In Figures 4.40 to 4.43 the system response to input disturbances of generator load and 

fuel cell exhaust are seen.  Figure 4.40 demonstrates the effectiveness in mitigating a 
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5kW~5% increase in electrical load.  For this case, the fuel valve closes slightly, 

approximately 0.4%~10kW, while the HA valve opens to 3% to speed up the turbine.  To 

regulate airflow to the cathode, the CA valve closes 2.5%.  Similarly, Figures 4.42 and 

4.43 show control regulation when a 1%~26kW step in fuel cell heat exhaust occurs.  

This heat increase is close to 10% of the total fuel cell power output.  For this case, the 

CA and HA valves activate initially, but eventually drop to their nominal operating 

values.  The fuel valve on the other hand, decreases by 1%, the same amount required to 

counteract the heat increase effect.          

 

4.5.4 Uncertainty Analysis and Regulation 

 
Model uncertainty is mostly expressed as parametric or unstructured uncertainty.  

Parametric uncertainty assigns a probability range to a set of variables within the model, 

mainly the poles and zeros of the Transfer Functions.  In unstructured uncertainty, a 

frequency dependent bound is defined via a first order Transfer Function, such that the 

un-modeled dynamics are accounted for, similar to the post multiplication of the dynamic 

compensator in the robust algorithm.  The approach used in this work is that of 

parametric uncertainty due to the seeming repeatability of poles and zeros in the derived 

Transfer Functions.  By varying a common pole or zero that is present in various Transfer 

Functions, one can determine the analytical model accuracy needed for a certain 

identified balance of plant component.  The complete MatLab script that analyzes 

uncertainty can be found in Appendix E.   

 

In the written code, one or several Transfer Functions can be parametrically varied with 

the use of MatLab’s “ultidyn” function.  This function allows the user to build an 

uncertain linear time invariant dynamic model that contains varied poles and zeros.  It is 

because of this that a wide variety of pole/zero combinations can be studied and 

examined for any divergence effects in the robust algorithm.  Figure 4.44 shows one such 

combination, where all the poles and zeros of one particular Transfer Function were 

varied by 10%.  There are 20 plotted lines representing 20 various random values of the 
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10% pole/zero variation.  The controller allows for up to 41% variation in the poles and 

zeros of the particular Transfer Function.  

 

Figure 4.44 Step Response to 10% Zero/Pole Parametric Uncertainty 

 
The actuator dynamics can also be incorporated into the uncertainty model by the use of 

multiplicative uncertainties.  This is accomplished by multiplying the nominal plant by a 

first order diagonal weight that has high and low frequency uncertainty percent values.  

Equations 4.1.45 to 4.1.47 express this relationship, where ∆I is the multiplicative 

diagonal matrix containing the scalar perturbations for each input channel, τ is the time 

constant where there is 100% uncertainty, r0 the relative dc uncertainty magnitude, and r∞ 

the high frequency weight magnitude (Skogestad et al. 2005).   

 

( )IInomunc WIGG ∆⋅+⋅= ⋅                                    Eq.4.1.45 
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{ }lI diag δ=∆ , { }II diagW ϖ=                                Eq.4.1.46 
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The MatLab command “makeweight” produces a first order state space system similar to 

that of Equation 4.1.46 and 4.1.47.  Low and high frequency uncertainties can then be 

combined with each actuator’s bandwidth to represent input uncertainty for all channels.   
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5 Analytical Model 

 
The nonlinear model is comprised of ordinary differential equations stemming from 

energy, continuity, and momentum balances.  The HyPer facility is virtually built in a 

Simulink-MatLab environment, in which subsystem block components interconnect in 

the same way piping elements route the airflow path in the hardware facility.  In 

particular, this model does not make use of the compressor maps utilized on the simple 

cycle Brayton model.  This allows for a simulation run that starts at a much lower rpm, 

approximating the actual rpm’s at ignition.  Although Chapter 2 had described the HyPer 

assembly in general, Appendix H provides the facility’s Process and Instrumentation 

Diagram.  This model is built in parallel to the empirical plant, and is intended as a 

complementary tool to the analysis presented in Chapter 3.    

 
5.1 Brayton Cycle 

 
The simple gas turbine cycle was described in Chapter 2 as the Brayton cycle.  The ideal 

behavior of this cycle produces the highest thermal efficiency for isentropic and adiabatic 

processes enabling the comparison of other cycle efficiencies to this one.  The main 

difference between this and the HyPer model is the large amount of volume inserted 

between the compressor and the turbine, as well as the heat recuperation scheme for the 

latter.  As an initial means of comparison between the simple cycle and the more complex 

hybrid cycle, a model of the Brayton cycle was constructed using compressor maps.  The 

HyPer model was then built upon the simple cycle by the addition of subsystem blocks, 

symbolizing the various system pipes, plenums, and recuperators.  As will be later noted, 

the compressor maps were replaced with algebraic equations.  Due to the fact that some 

subsystems of the simple cycle are used in the nonlinear model, these will be further 

presented in the BOP model section instead.  System response plots will be shown in 

Chapter 5 for open and closed loop tests.  

 

Figure 5.1 shows a schematic of a simple gas turbine cycle.  The 250 kW APU used in 

the HyPer facility has an air intake at point “a”.  A two-stage centrifugal compressor 
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provides approximately a 4:1 pressure ratio with a 200°C temperature rise at point “b”.  

The combustor ignites this flow to 1600°F by the use of a 1MW heat source at point “c” 

before it expands in the turbine.  The hot gasses exhaust at point “d”, where they are 

routed to a stack, kept at atmospheric conditions.  Work is extracted from the turbine 

mainly for running the compressor and generating electrical power if connected to a 

generator. 

 

Figure 5.1 Gas Turbine Brayton Cycle 

 
 

Figure 5.2 shows a graphical wire up of the gas turbine components as they appear in the 

Simulink workspace.  Each block represents a subsystem that houses algebraic or 

differential equations.  The arrangement is fashioned according to the Brayton Cycle 

schematic shown in Figure 5.1.  This model receives two heat sources as inputs, along 

with ambient temperature and pressure.  “Qin ” is the 950 kW heat source that ignites at 

once when the model is started, while “Qin Inc” is an incremental change in heat, 

specified as a percentage of “Qin” at some instant of time.  This is done to test the 

stability and validity of the model response to sudden perturbations of the heat source.  

Each subsystem and its corresponding set of equations will be described in the following 

figures. 
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One thing to note is that the representation given is that for an open loop system.  No 

feedback loop is present and no relationship has been shown for fuel flow vs. heat input.  

For the time being the heat source will be applied as a constant as is the case for the 

ambient pressure and temperature conditions.  Also, there is no controller of any type or 

transducer transfer function.  These will be added, once all pertinent components are 

added.   

 
 

Figure 5.2 Gas Turbine Simulink Model 

 
The state variables of interest for the compressor are the pressure ratio and the 

temperature of compression.  These two signals and their respective equations in 

Simulink are presented below (Saad 1997).  The compressor efficiency is set to 65%. 
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Figure 5.3 Compressor Temperature Subsystem 
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Inputs to the subsystem are shown in blue, while outputs are in green.  Occasionally 

scopes or numeric displays are placed along the signal path to graph signals of interest.  

These are shown in gray.   

 
 
 

 
 

Figure 5.4 Compressor Pressure Subsystem 

 
 

Figure 5.4 shows the contents of the compressor pressure subsystem.  A lookup table 

takes in referred mass flow and percentage speed values in terms of a reference pressure 

and temperature of 101.3kPa and 293.15K, and outputs pressure ratio.  The table used is 

given in Appendix B.  The equations that comprise most of Figure 5.4 are those to 

convert calculated mass flow rate to the referred flow from the graph, which is in English 

units as well.  Below are the conversion factors (Larminie et al. 2003). 
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The combustor wire up is given in Figure 5.5, with the corresponding 1st order 

differential equation outlined in Eq.5.1.3-5.1.5.  Here, the thermal resistance is calculated 

in a MatLab script file in Appendix E and shown here as a gain.  Although not shown, the 

integrator has the ambient temperature as an initial condition. 

 

 
 

Figure 5.5 Combustor Temperature Subsystem 
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In Eq.5.1.4, Tc is sometimes expressed as the average of Tb and Tc instead.  In Eq.5.1.3, 

Tc is the only temperature differentiated in time since the volume and the mass within this 

volume is relatively small, and it is thus assumed that Tc has a greater rate of change due 

to inQ&  than does Tb (Incropera et al. 1990).  It is also worth noting that the convection 

coefficient inside and outside the combustor is set as a constant.  The inner h0 is in the 

upper range for forced convection of a gas, while hamb is within the upper bound for free 

convection.   
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Figure 5.6 shows Eq.5.1.6-5.1.7 in the Simulink workspace.   This essentially is a power 

balance between the output shaft torque produced by the turbine and all the combined 

loads that counteract this shaft torque.  An electrical load of 45 kW is given as a constant 

input, since this is the base case resistive loading as defined by the HyPer group.  The 

windage losses are lumped into other losses that will be modeled explicitly later, since 

windage loss is not the only loss mechanism and the compressor is not isentropic.  These 

factors will be taken into account eventually.   

 

 
 

Figure 5.6 Turbine Power Subsystem 
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In Eq.5.1.8 air is assumed to be an ideal gas, undergoing a polytropic process (Lindeburg 

2002).  The values for the constants and their meaning are given in the MatLab m-file, 

Appendix E.  The turbine efficiency is set to 70%.  As noted earlier, some subsystems 

such as the “Mass Flow Rate” and the “Combustor Temperature” blocks are utilized in 
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the subsequent HyPer model, and are omitted here to avoid redundancy.  To finalize the 

simple cycle modeling, a PID controller is affixed to maintain turbine speed, as shown in 

Figures 5.7 and 5.8 (Katsuhiko 2002). 

 

 

Figure 5.7 Gas Turbine Components with Speed Feedback Control 

 

 

 
 

Figure 5.8 PID Controller Subsystem 

 
5.2 Balance of Plant 

 
Figure 5.9 shows the Simulink nonlinear model of the HyPer facility.  It is composed of 

subsystems that represent the analytical equations described in later sections.  Each 

subsystem has a hierarchy of inner subsystems as will be shown.  The outermost layer of  
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Figure 5.9  Simulink Nonlinear Model 
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the model has the main piping routes, heat exchangers, post combustor, valve logic, and 

gas turbine subsystems presented. The schematic of Fig.5.9 has numbers assigned to 

identify the various components.  These regions are: 

 

1. Gas Turbine/ Compressor Model 

2. Primary Surface Recuperator Model 

3. Air Plenum, representative of Fuel Cell Cathode Volume 

4. Combustor Subsystem 

5. Post Combustor Subsystem 

6. Mass Flow Rate Distribution 

7. Input Parameters: Valve Positions, Load, Ambient Conditions 

8. Fuel Valve Mode: Open Loop or Closed Loop 

9. Displays and Scopes 

10. Brayton Cycle Reference Model 

 

All other subsystems represent the different piping routes between the main components.  

The following figures show how the piping is assembled according to the process and 

instrumentation diagram as built.  Appendix I shows the inner routing of the piping main 

subsystems. 

 

In Appendix I, the blue subsystems have the temperature and pressure loss equations for 

straight pipes within, while the yellow systems represent the pressure drop due to minor 

losses from pipe bends, geometry changes, expansions and the like.  The model runs 

under the following logic:   

 

− Starting at 1000rpm, the air plenum receives a ramp input which represents 

the blower mass flow rate i.e. input blocks before “3” in Figure 4.9.  This is 

actually intended for the case where the model begins at a lower initial 

velocity, and the combustor is not ignited.  The mass flow ramp input allows 

for an increase in plenum temperature and pressure that would enable the 

turbine to reach ignition speed prior to combustor activation. 
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− When the turbine speed reaches 9000rpm, the mass flow rate into the plenum 

switches from the ramp input to the mass flow assigned by the valve logic 

subsystem in “6”.  This flow rate depends on whether any bypass valves are 

opened and is sequentially connected to the compressor exit mass flow rate 

through the heat exchanger path.  All the input parameters can be changed 

while the model is running via the use of step blocks located at “7”.  In “7” 

there are step blocks for the cold air (CA), hot air (HA), and bleed air (BA) 

percent openings, as well as electrical load and model mode inputs. 

− The model mode allows the model to run under open or closed loop operation 

in the subsystem of region “8” of Figure 5.9.  There, the fuel valve can either 

have a saturated ramp opening if in open loop mode, or can respond to a PID 

controller signal under a selected desired speed if closed loop mode is chosen.  

Ambient pressure and temperature are also included in region “7” for 

parametric studies.  As a reference, the original Brayton cycle is included in 

region “10”, as a means to compare expected simple cycle results, to those 

due to the volumetric expansion between compressor and turbine.  Detailed 

models, equations and their operational logic will be presented in subsequent 

sections.   

 

The gas turbine model follows the same isentropic relations as those for the simple cycle 

to calculate exit pressure and temperatures.  Mass flow rate is derived from a vectorial 

analysis of the compressor blade and geometry.  The equations and their respective 

Simulink representation are given below and represent subsystem “1” in Fig.5.9. 
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Figure 5.10 Gas Turbine Simulink Model 

 
 

The gas turbine model is composed of four subsystems.  This model can be used for a 

simple cycle just as long as the inlet pressure, temperature and mass flow rates of the 

turbine are those corresponding to outlet conditions of the compressor. 

 
5.3 Compressor Model 

 
The mechanical power of a turbo machine is given by the dot product of the angular 

velocity of the rotor and the applied shaft torque as (Fox et al. 1992): 

 

shaftmech TW ⋅= ω&                                            Eq.5.3.1 

 
The angular momentum principle states that the rate of change of the angular momentum 

denoted by “H” is equal to the total torque exerted by the surroundings on the system.  In 

essence, Eq.5.3.2 expresses the time variation of the system extensive property “H” in 

terms of its change associated to a specified control volume.  The extensive property of 

angular momentum is defined as ( ) mvrH ⋅×=
rrr

, while its intensive property η is given 

by ( )vr
rr

×=η .    

 

The first term of Eq.5.3.2 corresponds to the time rate of change of the total amount of 

angular momentum for an element of mass within the control volume, whereas the 

second term pertains to the net rate of flux of the extensive property “H” through the 
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control surface.  The symbol “◦” denotes the dot product of terms.  The terms on the right 

hand side of Eq.5.3.3 correspond to pressure surface moments, gravitational moments 

and shaft torques respectively.  If the first two effects of Eq.5.3.3 are neglected, Eq.5.3.2 

can be reduced to the Euler Turbo Machine equation for steady flow.  This equation is 

applicable to all turbo machines and is given by Eq.5.3.10 (Fox et al. 1992).  Figure 5.11 

shows the control volume representation to be used in deriving Eq.5.3.10 from Eq.5.3.2 

and Eq.5.3.3.   

    

  

 

Figure 5.11 Compressor Blades, Control Volume, and Infinitesimal Volume Element 
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As stated previously, the first term of Eq.5.3.2 is the rate of change of the angular 

momentum within the control volume, and can be expressed in scalar form as: 
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where ρ~  is a density approximation of inlet and outlet conditions, as: 
( )

2
~ 21 ρρ
ρ

+
= .  

Following with the derivation of Eq.5.3.4, for unsteady flow, the rate of change of “H” is 

given by Eq.5.3.6. 
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For the second term of Eq.5.3.2, the net flux of “H” across the control surface in scalar 

form is derived in Eq.5.3.7-5.3.8, noting that the incoming flow profile is assumed to be 

uniform and perpendicular to the surface area, hence inlet mass flows have a negative 

sign convention.  
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Combining Eq.5.3.3 through Eq.5.3.8 gives the total torque exerted by a turbo machine 

as:  
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Since the compressor impeller dimensions are quite small, the first unsteady term of 

Eq.5.3.9 can be discarded with no loss of accuracy, and so Eq.5.3.9 reduces to the Euler 

Turbo Machine equation Eq.5.3.10 (Fox et al. 1992). 

 

( )1122 ttshaft vrvrmT ⋅−⋅⋅= &                                  Eq.5.3.10 

 
The velocities of Eq.5.3.10 are tangential components of the absolute velocity entering 

and exiting the compressor blades.  The components of the absolute air velocity at inlet 

and outlet sections of a radial compressor are shown schematically in Figure 5.12.   

 

 
 

Figure 5.12 Velocity polygons of a radial flow compressor [31] 

 
 

Subscripts 1 and 2 denote the entrance and exit ports of the compressor, rbv and u are the 

flow velocity relative to the blade, and the runner speed that is specified by impeller 

geometry and rotational speed, α and β are angles of velocity vectors relative to normal 

and tangential blade directions, 1v  and 2v  are the absolute velocities of the air, and ω, is 

the rotor’s rotational speed.  The normal component of the velocity at section 2, 2nv , is 
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derived from the conservation of mass equation at inlet and outlet ports, as will be shown 

shortly.  The tangential components of the absolute velocity are the only ones capable of 

doing work according to Eq.5.3.10.  Figure 5.13 shows the inlet segment of the 

compressor blades with tv and nv being the tangential and normal components of the 

absolute velocity of the air.  Eq.5.3.11 through Eq.5.3.14 give the geometric relationships 

used to obtain 1nv and 1tv .   

 
 

Figure 5.13 Absolute velocities in terms of relative and rotor velocities [31] 
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In order to obtain the tangential and normal components of the velocities at section 2, the 

continuity equation is used in conjunction with the polygon analysis as shown in 

Eq.5.3.15 to Eq.5.3.16. 
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( )222 tan α⋅= nt vv                                      Eq.5.3.19 

 
The mass flow rate leaving the compressor can be calculated with Eq.5.3.20, where “h” is 

the average blade height, and d2 is the outer diameter.   

 

( )hdvm noutout ⋅⋅⋅⋅= 22 πρ&                               Eq.5.3.20 

 
For this case, it is assumed that the absolute velocity of the air at the inlet enters radially 

and hence α1=0°.  This assumption holds true whenever the inlet flow is swirl free.  Also, 

because changes in density within the relatively small control volume of the compressor 

are difficult to conceptualize, and the system is mostly analyzed as a quasi-steady state 

condition, the last term of Eq.5.3.18 can be neglected with no appreciable loss of 

accuracy.  It is not uncommon to assume incompressible flow of air at standard 

conditions in developing compressor equations, considering benchmark models have 

used this assumption with no loss of generality i.e. Greitzer (1976a).  Further vectorial 

analysis and accompanying MathCAD file are shown in Appendix D.  Below is the 

Simulink subsystem that calculates compressor work and mass flow rate. 
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Figure 5.14 Mass Flow Rate and Compressor Work Subsystem 

 
 

The compressor outlet pressure is calculated from the isentropic relation below as: 
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In Eq.5.3.21, “k” is the specific heat ratio and for air as an ideal gas it is assigned a value 

of 1.4.  The efficiency of the compressor should ideally be obtained from maps provided 

by the manufacturer.  However, for this approach it is assigned a constant value of 75%, 

as observed for the constrained speed range window of the compressor map.  Below is 

the Simulink subsystem for the pressure output. 
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Figure 5.15 Compressor Pressure Subsystem 

 
 
The temperature out of the compressor is also given by the isentropic relationship as: 
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                                Eq.5.3.22 

 
The Simulink block diagram is given in Figure 5.16. 
 
 

 
 

Figure 5.16 Compressor Temperature Subsystem 

 

5.4 Turbine Model 

 
The turbine work equation is given by the isentropic relationship of Eq.5.4.1, and 

modeled in Simulink in Figure 5.17.  This figure also includes the speed calculation, as 

well as the temperature and pressure outputs.  The combined mechanical energies of the 

turbine and compressor, and the energy related to the electrical load and irreversible heat 

losses are incorporated into Eq.5.4.4.  The turbine back pressure is a function of an 

empirical curve that is dependent on shaft speed. 
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In the previous equations, γ is the ratio of specific heats as noted by
v

p

c

c
=γ .  Tout refers to 

the turbine exhaust temperature, Tin to the turbine inlet temperature, and Pin to the inlet 

turbine pressure.  All the power losses are a constant value of the turbine power, set at 

10%, while the electrical power elecW&  losses are assigned during the model run, according 

to a particular scenario.    
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Figure 5.17 Turbine Equation Subsystem 



5 Analytical Model 135

 
5.5 Air Plenum Model 

 
The continuity equation states that the sum of the rate of change of mass within a control 

volume and the mass flux crossing the control surface boundary are equal to zero.  In 

integral form, this equation is given by: 
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In this case the vessel volume is fixed, and thus the variable becomes the plenum density.   

The mass flow out of a vessel is dependent on the pressure difference across the outlet 

section and the discharge coefficient of the orifice, given by: 
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TRP ⋅⋅= ρ                                                     Eq.5.5.5 

 
where the pressure inside is calculated by the ideal gas law relationship given above.  The 

vessel’s backpressures are curved fitted from experimental data relating the outlet 

pressure as a function of turbine speed.  This data is provided in Appendix A. 

 

5.5.1 Energy Conservation Equations: Plenum Control Volume  

 
The first law of thermodynamics states that the rate of change of total energy within a 

system is equal to the heat transfer rate minus the rate of work done on or by the system.  

If heat is added to the system Q takes a positive value, whereas W is positive, if work is 

done by the system on its surroundings.  The intensive property of energy is denoted by 
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“e” and is equal to the internal, kinetic and potential energies combined.  The integral 

form of the first law is given by: 
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For the plenum, the potential energy is neglected as well as work done by or on the 

system.  If no external heat is introduced, for steady flow in and out of the vessel the 

energy equation becomes: 
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where the enthalpy “h” is the sum of the internal energy and the pressure energy “pν”.  

The first term on the right of Eq.5.5.8 can be evaluated by using the chain rule as:  
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Substitution of Eq.5.5.9 and Eq.5.5.10 into Eq.5.5.8 gives the ordinary differential 

equation that is solved for the temperature inside of the plenum as shown in Eq.5.5.11. 
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It is easily seen that Eq.5.5.11 is dependent on the amount of heat lost to the environment.  

This heat flux is assumed to be constant, and calculated via a partial heat transfer 
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coefficient that extends from the inside surface of the vessel to the ambient medium at the 

outside of the plenum.  These equations are given by: 
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5.5.2 Energy Conservation Equation: Plenum Shell Control Volume 

 
In order to solve for Eq.5.5.14, the plenum’s surface temperature must be known.  Thus 

an energy balance is performed for a control volume that surrounds the plenum’s solid 

shell.  Equations 5.5.17 and 5.5.18 give the heat balance and temperature equation for the 

solid shell respectively.  This equation is coupled to Eq.5.5.11 and both temperatures are 

solved for simultaneously. 

 

The plenum in this case is simulated as a very wide pipe, whose bulk inner velocity is 

assumed to be very small.  In this manner a convection coefficient can be approximated 

and a surface temperature obtained from the aforementioned equations.  Figure 5.19 

shows the plenum subsystem in its entirety, and Figure 5.18 the simplified cross-section 

of the plenum with the corresponding thermal resistances.   

 

In Figure 5.18 the heat flux is denoted by Q”, while the thermal resistances of the shell 

surface, insulation, and ambient air are denoted by R2, R3, and R4 respectively.  These 

thermal resistances are defined in the denominator of Eq.5.5.17.  The surface temperature 

of Eq.5.5.18 corresponds to Ts1 in Figure 5.18.   
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Figure 5.18 Cross-Section of Air Plenum 
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Figure 5.19 Air Plenum Subsystem: Mass Conservation 

 

 

Figure 5.20 Air Plenum Subsystem: Empirical Backpressure 

 

 

Figure 5.21 Air Plenum Subsystem: Energy Conservation 
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Figure 5.22 Air Plenum Subsystem: Heat Flux and Convection Coefficient 

 

 

Figure 5.23 Air Plenum Subsystem: Solid Shell Energy Conservation 

 

 
5.6 Piping Model 

 
The piping model consists of temperature and pressure subsystem equation blocks that 

are combined for straight pipe routing segments of the HyPer system.  Figure 5.25 is a 

Simulink schematic showing one pipe segment and its corresponding geometry. 

5.6.1 Temperature Equation 

 
The energy equation of Eq.5.6.1 is applied to all the system piping.  In this case, there is 

no control volume of the air inside the pipe because the residence time of the air at the 

operating mass flows is almost negligible for each pipe segment.  A control volume is 

then fixed to the pipe shell where the pipe’s surface temperature is calculated from the 
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usual energy balance equation.  A constant flux assumption allows for the calculation of 

the exit pipe temperature of the fluid.  For this analysis, an overall and a partial heat 

transfer coefficient are used, where the difference lies in the exclusion of the insulation 

and ambient thermal resistances in the partial heat transfer coefficient term.  Figure 5.24 

shows a schematic of the pipe cross-section, and the relevant parameters. 
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Following are the Simulink subsystems for Equations 5.6.1 to 5.6.5. 
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Figure 5.24 Pipe Cross-Sectional Schematic 

 
 
In Figure 5.24, the radial heat flux is indicated by Q”, while the thermal resistances for 

the inlet air, metal pipe, insulation, and ambient air are shown as R1, R2, R3, and R4 

respectively.  These resistances are defined in the denominator of Eq.5.6.3.  In Eq.5.6.1, 

Tsurf is the surface temperature Ts2 shown in the diagram, while Tin is the inner 

temperature of the air, at the outlet of the pipe section.  The contact resistances between 

the insulation and the pipe are omitted in the diagram, and excluded from the analysis. 
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Figure 5.25 Pipe Element: Temperature and Pressure Subsystems 
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Figure 5.26 Temperature Equation Subsystem 
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Figure 5.27 Overall and Partial Heat Transfer Coefficient Subsystem 
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Figure 5.28 Convection Coefficient Subsystem 
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5.6.2 Pressure Equation 

 
The pressure drop of the air within each pipe segment is calculated from the derivation of 

the energy equation Eq.5.5.6 considering incompressible flow with variable density.  It is 

assumed that the pressure is uniform along cross sectional areas of the piping and that the 

flow is steady flow.  With no work done or heat added, the energy equation becomes: 
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The terms in parenthesis on the left hand side of Eq.5.6.6 correspond to the mechanical 

energy per unit mass at inlet and outlet sections.  The velocity term is multiplied by a 

kinetic energy coefficient “α”.  This term approaches unity with high Reynolds numbers 

but may be influential for developing flows (Fox et al. 1992).  For our purpose α1=α2, 

and this coefficient is equal to 1.  The right hand side of Eq.5.6.6 represents the 

difference in mechanical energy between inlet and outlet sections of a pipe, and can be 

related via the Buckingham π Theorem to Eq.5.6.8.  This energy dissipation can be 

expressed as a “head loss” composed of major and minor frictional effects.  Major effects 

are frictional losses in piping having constant cross sectional area, whereas minor losses 

are associated with loss due to pipefittings, geometry changes and the like.  Eq.5.6.8 

expresses the head loss in terms of major “hl” and minor “hlm” frictional losses (Fox et al. 

1992).   
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The friction factor is a function of the relative roughness of the pipe ε/d, and Reynolds 

number for the most general case.  There are various correlations for the friction factor, 

but the Miller (Fox et al. 1992) correlation provides results with no iterative loop 

calculations.   

 

2

9.0Re

74.5

7.3

/
ln

25.0

















+

=

ind
f

ε
                              Eq.5.6.11 

 
 

In order to develop a model that is faithful to the process and instrumentation diagram of 

the HyPer facility, all the piping routes were traced to record pipe diameters, lengths, 

fittings, expansions and contractions.  They Hyper model includes three different loss 

factors for different minor loss cases.  Appendix C show spreadsheets containing all pipe 

data. 

 

 

Figure 5.29 Pressure Major Losses in Straight Pipe 
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Figure 5.30 Friction Factor Subsystem 

 

 

 

 

Figure 5.31 Minor Pressure Losses Subsystem: Le/D Case 

 

 
5.7 Heat Exchanger Model 

 
The heat exchangers are analyzed with the use of the number of transfer units’ method, 

the NTU method (Incropera 1990).  Under steady state operation, this method calculates 

a maximum heat transfer rate based on a minimum heat capacity rate Cmin between the 

hot and cold air sides.  The heat exchangers in use are primary surface recuperators that 
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combine cross and counter flows.  The bulk of the exchanger is counter flow, and thus the 

effectiveness given by Eq.5.7.4 uses the correlation of counter flow behavior.  All heat 

exchanger data is approximated on the basis of geometry and exchanger type. 
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For a counter flow heat exchanger, Eq.5.7.5 gives the NTU-effectiveness relationship. 
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The overall heat transfer coefficient U, and the gas-side surface area A, must be obtained 

from the manufacturer, through experimental data, or approximated from geometry.  The 

heat capacity rates Cmin and Cmax are determined by Eq.5.7.3, where Cmin is the smaller of 

the two capacity values between the cold and hot air sides.  The exit temperatures for 

both sides are given as: 
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During transient operation the heat in and out of the heat exchanger wall are computed 

according to a sequential logic described later in the paper, using the equations below. 

 

( ) ( ) ( ) ( )wallcoldcoldsurfconvwallhothotsurfconvin TTAhTTAhQ −⋅⋅+−⋅⋅=&     Eq.5.7.9 
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0=outQ&  or  ( ) ( )coldwallcoldsurfconvout TTAhQ −⋅⋅=&            Eq.5.7.10 

 
 

The first heat rate in Eq.5.7.10 is for  Twall<Tcold, while the second is for Twall>Tcold.  

Figures 5.32-5.39 show the heat exchanger subsystem and logic. 

 
 

Figure 5.32 Heat Exchanger Subsystem: Wall Balance 

 

 
 

Figure 5.33 Heat Exchanger Subsystem: Heat Calculation 

 

 
 

Figure 5.34 Heat Exchanger Subsystem: Cold Side Temperature Equation 
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Figure 5.35 Heat Exchanger Subsystem: Hot Side Temperature Equation 

 
 
 

 
 

Figure 5.36 Heat Exchanger Subsystem: NTU Block 
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Figure 5.37 Heat Exchanger Subsystem: NTU Subsystem 
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Figure 5.38 NTU Effectiveness Equation 

 
 

The convection coefficient is approximated from heat exchanger cross sectional passage 

geometry, wetted flow perimeter and Nusselt number for fully developed laminar flow.  

Manufacturer data is still required to obtain a more accurate model and thus analysis. 

 
In order to allow the heat exchanger metal to heat up properly during system startup, a 

logic subsystem compares the cold side air temperature with the heat exchanger “wall” 

temperature.   During transient periods, both the hot and cold air streams heat the wall.  

Therefore, heat in or out of the wall is assigned accordingly to whether the comparison 

condition holds true.  The equations for Qin and Qout  are given in Eq.5.7.9 and Eq.5.7.10.  

Once at steady state, the NTU method is activated until system shutdown, when the 

temperature condition is again revised and a heat input or output assigned.   



5 Analytical Model 155

 

 

Figure 5.39 Heat Flux Calculation Logic 



5 Analytical Model 156

5.8 Combustor Model 

 
The combustor is modeled as a cylindrical can lying within the inner layers of the piping 

that connects to the post combustor.  The combustion process itself is not modeled, but 

rather the temperature rise is derived by a simplification of the energy equation Eq.5.5.6, 

in which work input and changes in density within the can are neglected.    Because the 

change in kinetic energy is insignificant compared to the change in enthalpy within the 

control volume of the canister, the energy equation becomes (Incropera 1990): 
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Applying the chain rule to the first term in the right hand side of Eq.5.8.1, and assuming 

Tin=constant, gives: 
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Figure 5.40 Combustor Block Diagram 
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5.9 Post Combustor Model 

 
The continuity and energy equations for the post combustor are derived in a similar 

fashion as the ones for the air plenum.  In this case, there are now more inlet ports 

connecting the combustor route with the cold air and hot air bypass routes.  These 

equations are presented below, where stQ&  is the stored heat within the post combustor 

control volume, and "

fluxQ  is the heat loss radially through the post combustor skin.  The 

index “i”= 1,2,3 corresponds to combustor, cold air, and hot air terms respectively. 

 

outinHAinCAinCombst mmmmm &&&&& −++=                               Eq.5.9.1 
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For simplicity, all incoming routes will be examined at the same elevation, thus canceling 

the potential energy terms as shown in Eq.5.9.3. 
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Figure 5.41 Post Combustor Subsystem:  Mass Conservation 

 
 
 

 

Figure 5.42 Post Combustor Subsystem:  Inlet Air Energy Conservation 
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Figure 5.43 Post Combustor Subsystem: Shell CV 

 
 
 

 
 

Figure 5.44 Post Combustor Subsystem: Energy Equation 

 
 
5.10 Bypass Valve Mass Flows 

 
The valve subsystem assigns a mass flow rate to the heat exchangers, air plenum and post 

combustor depending on whether any of the three bypass valves are activated.  Each 

valve was empirically characterized for pressure drop and mass flow rate across it.  Look-

up tables in Simulink provide the pressure and flow for all the valves.  The cold and hot 

air piping routes are shown in Appendix I.  Temperature, pressure and mass flow are 

redirected throughout the piping routes, when a corresponding bypass valve is either 

opened or closed.  The post combustor subsystem receives routed flows upon bypass 

valve activation.   
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Figure 5.45 Bypass Valve Mass Flow Characteristics 

 

5.11 Fuel Valve Logic 

 
The fuel valve can be used in either open loop or closed loop mode.  Figure 5.46 shows 

both subsystems, and Figures 5.47 and 5.48 the inner workings of the closed loop block.   

 

 
 

Figure 5.46 Combustor Heat Input Logic 

 
The output of either one block is the calculated heat in kW that goes to the combustor.  

Regardless of what mode is chosen, the model always begins with the blower providing 

mass flow rate to the air plenum.  This blower is modeled as a ramp with a pre-

determined slope, which spins the turbine before the combustor is activated.  Once 
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9000rpms are reached, the combustor ignites from either closed loop or open loop fuel 

flow control mode.   

 

5.11.1 Open Loop Command 

 
 
In Figure 4.9 region “7” allows the user to select a system “mode” from a step input 

block.  If open loop is chosen, the fuel valve, modeled as a ramp input sends a signal at a 

predetermined ramp slope, representing the fuel valve flow rate.  This signal is amplified 

by a slider gain that has the empirical flow rate limits.  Heat input into the combustor is 

then modeled according to the LHV of the natural gas.   

 

5.11.2 Closed Loop Command 

 
If in turn the closed loop mode is chosen, the fuel valve is activated by a PID controller, 

which resembles the actual speed controller the HyPer system utilizes.  Turbine speed 

response is dependent on the gains chosen for the proportional, integral and derivative 

controller terms.  Figure 5.48 includes the PID gains, and the fuel valve dynamics as 

described in the polynomial equation.  This translates valve demand in percentage, to fuel 

flow in [g/s].  The LHV is multiplied to this flow, yielding heat in [kW]. 

 

 

Figure 5.47 PID Controller Subsystem 
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Figure 5.48 PID Controller Subsystem Inner Works 

 
 

5.12 Analytical Model Results 

 
As described in Chapter 4, the analytical nonlinear model of the HyPer facility was built 

in the Simulink/MatLab platform as a tool for both system scale up and control testing.  

This parallel effort to the work conducted in Chapter 3, proved to be quite challenging.  

The complexity of the model, in its numerous assumed parameters has lead to the need of 

further revision and work.  In the upcoming chapter, the pros and cons of the current 

version will be discussed, and ideas for its improvement detailed.  The immediate 

sections however, present model validation plots for various experimental tests carried at 

NETL.   

 

5.12.1 Ramp Rate Startup Tests 

 
One attractive feature the nonlinear model possesses is the ability to be run at close to 

zero speed, as compared to that of the plant’s nominal value of 40,500rpm.  Startup 

profiles for speeds of approximately 2% of nominal are shown in Figures 5.49 and 5.51, 

for four different test runs.  The plots show the startup blower effect on turbine speed up 

to 9000rpm.  After the purge cycle the PI controller takes command of the fuel valve, up 
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to the start of the test procedure, where the valve can be toggled between open loop, 

closed loop, or fuel cell model control.  The different colors represent turbine speeds for 

various combinations of proportional and integral gains, black being the model data.  It is 

important to note that the gains used in the GAP software are based on the measured 

turbine speed, and not the error signal.  Thus the real system uses a proportional gain of 

0.001, and an integral of 0.00075, whereas the model utilizes a variety of gains based on 

the error signal.  Figure 5.51 for example, shows the speed response to a PI controller 

having a proportional gain of 40, and an integral of 2. 

 

 
 

Figure 5.49 Startup Profile: PID Controller in Model 
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Figure 5.50 Startup Profile PI Controller in Model 

 
 

 
 

Figure 5.51 Startup Profile PI Controller in Model 
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5.12.2 Bypass Valve Simulation 

 
Figures 5.52 to 5.56 show the model response to a 25% CA step increase.  The various 

outputs plotted show a moderate agreement with the test data during the transient periods.  

The gain combinations described in the previous section, and the compressor geometric 

angles, are the model parameters that mostly influence the startup response of the plant.  

Here it is seen, that the model overshoots and undershoots at the time the CA is opened, 

but eventually converges after some time.  The magnitude of the peaks is still great 

compared to those of the actual data,  

 

Besides the obvious discrepancies, the model does show the expected trends of response 

for the majority of the outputs shown.  As an example, Figure 5.56 has the turbine inlet 

temperature drop when the CA is opened, as well as Figure 5.52, which demonstrates that 

the plenum airflow decreases with the use of the bypass valve, very similarly to the 

experimental data.   

 
 

 
 

Figure 5.52 Plenum Airflow Response to CA Step Increase: 25% 
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Figure 5.53 Plenum Temperature Response to CA Step Increase: 25% 

 
 

 
 

Figure 5.54 Plenum Pressure Response to CA Step Increase: 25% 
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Figure 5.55 Turbine Speed Response to CA Step Increase: 25% 

 
 

 
 

Figure 5.56 TIT Response to CA Step Increase: 25% 
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5.12.3 Electrical Load Simulation 

 

The nonlinear model also allows for the successive addition of resistive load to the 

turbine shaft.  Figures 5.57 to 5.61 show the combined effect of BA and electrical 

load disturbance.  There are three instances where the transients are applied, namely 

one at 60s, and two at 250s and 350s.  The first excitation is that of the BA valve, 

with a step increase of 13%, and the two subsequent, load bank step increments of 

15kW each.  Once again, there are notable differences between model and data, still 

sharing the expected dynamic trend.  The one recurring phenomena in all the plots 

is the large overshoot in speed, plenum pressure, and mass flow rate.  Figures 5.59 

and 5.61 show increasing oscillatory peaks when the two 15kW loads combine, 

whereas Figures 5.58 and 5.61 display a smoother transition of their dynamic 

response, despite the magnitude difference between them.   

 
 

 
 

Figure 5.57 Plenum Airflow Response to BA and EL Steps: PID 
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Figure 5.58 Plenum Temp Response to BA and EL Steps: PID 

 
 

 
 

Figure 5.59 Turbine Speed Response to BA and EL Steps: PID 
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Figure 5.60 TIT Response to BA and EL Steps 

 
 

 
 

Figure 5.61 Plenum Press Response to BA and EL Steps: PID 
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6 Conclusions and Discussion 

 
The results presented in the previous chapter are discussed in the sections to follow, for 

both the empirical system model and the analytical nonlinear model.  System response to 

the chosen control methodology for the given hybrid configuration is favorable for the 

reduced order plant matrix.  More work is still required in the analytical model, if the 

behavior of this, or another control algorithm, is to be accurately depicted prior to any 

real time implementation.  

 

6.1 Multivariate Transfer Function Matrix 

 
In order to build the empirical MIMO system, frequency response data was first 

generated as described in Chapter 3.  The tests prove that the open loop response is stable 

under the window of excitation each signal undergoes, when the phase margins are 

examined.  If it weren’t, no sinusoid could have been sustained at steady state, without 

the occurrence of an unbounded system response.  It is clearly seen that Figures 4.6 to 

4.14 show a positive phase margin for all the Bode plots, indicating a stable system.  The 

thermal system also exhibits large delays, which are evident in the phase plots.  These 

steep phase roll-off rates are indicative of non-minimum phase behavior, and can be 

expressed as pure exponentials, as described in Chapter 3. 

 

Actuator and instrumentation bandwidths can also be described with the use of the Bode 

plots, as is seen in Figures 4.10, 4.12, 4.14, and 4.16, where in the latter the fuel flow 

transmitter is characterized as a function of fuel valve command signal.  Although not 

given, the Transfer Function correlating the fuel valve transmitter to the command signal 

gave insight into the proper selection of the input used in the FFT algorithm i.e. the 

choice between the fuel valve signal over the transmitter signal, based on the instrument’s 

bandwidth restriction.  

 

The Bode plots can also provide steady state error detection as defined by the static 

position, static velocity, and static acceleration error constants described in linear control 
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theory (Katsuhiko 2002).  By observing the dc gain of each magnitude plot, and the 

corresponding slope at the low frequencies, the steady state error can be calculated for 

step inputs when the system type is formulated from the derived Transfer Functions.  In 

the derived equations, the system type is 0, meaning there are no free integrators in the 

open loop characteristic equation.  The resulting steady state error is then defined as: 

dc

SS
K

e
+

=
1

1
 for each separate Bode plot.   

 

The individual Transfer Functions were derived manually from the Bode plots with the 

methodology for LTI systems.  Figures 4.16 to Figure 4.20 demonstrate that the derived 

equations fit the data well.  Useful and noisy data ranges are distinguished by color, red 

crosshairs being unreliable data.  The bandwidth of each valve, based on experimental 

data, serves as the threshold where the data is considered to be reliable or not, as shown 

in Figures 4.18 and 4.20.  Hence the derived Transfer Functions are valid up to the 

actuator and sensor bandwidths, although the latter was not taken into consideration 

during the analysis.  Unfortunately, because of the nature of the TF approximation, being 

manual, estimating the error and model accuracy is primarily left to the observable fit 

between data and model, and not on a least squares calculation, where the model would 

instead be derived from a minimization of the error signal.  Analytical identification of 

the physical parameters that generate the Transfer Function poles and zeros would 

eventually refine the existing equations.  It is likely that some of the singularities will be 

found to repeat and one or more of the functions will be adjusted.  For example, note that 

G24, G34 and G54 all have a pole at s = -0.04, so it is possible that the pole in G14 currently 

assigned to s = -0.033 might not rather be at s = -0.04 instead.  One way of interpreting 

the origins of the poles and zeros is to isolate each physical component’s input/output 

frequency data, deriving thus an internal Transfer Function.  In doing so, a pole can then 

be attributed to the time constant of a particular component such as the air plenum, post 

combustor, or heat exchanger.  

 
The original plant model was based on all of the physical input actuators, and five 

particular outputs of interest, mainly air plenum inlet conditions, and the turbo machinery 
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states of TIT and turbine speed.  A study of the RGA matrix, the condition number, and 

the loop gain singular values, proved that the selected control variables could not robustly 

control all of the chosen outputs of interest simultaneously for the 5x5 plant.  For 

instance, the RGA of the 5x5 matrix contained large numbers, relating to strong coupling 

between input and output channels, as well as numerous negative matrix elements, 

hinting to difficulties in controllability of the system.   

 

The condition number, defined as the ratio of upper and lower singular values was found 

to be κ = 253.5, much too high for control, as compared to values suggested in literature 

of one to two orders in magnitude less (Skogestad 2005).  Simplification of the matrix to 

a 3x3 plant reduced the condition number to κ = 12.5.   

 

As noted in Chapter 3, the open loop SV are indicative of maximum and minimum 

induced gains of a MIMO plant.  The more singular values a system has, the more 

complex their contour in the frequency domain is, and the harder it becomes to 

manipulate all of them at one frequency, when loop-shaping techniques are utilized.  As 

an example, robust loop shaping requires that dynamic compensators shape the scaled 

singular values prior to conversion to state space and insertion into the Hamiltonian 

equations.  Closeness of the SV is also desired at the crossover frequency, so that all the 

input channels have approximately the same bandwidth.  When there are many, separated 

SV, each with its own frequency response, it is extremely problematic to derive the pre-

compensation gain matrix of Glad/Ljung that accomplishes closeness at the crossover 

frequency.  Hence, even if a weight gain matrix is derived to produce a desired loop gain 

shape, the Hamiltonian matrices will most often not converge, and the closed loop 

Transfer Functions will be unstable.  A fallback to H∞ control is that a solution does not 

always exist for the choice of weights or size of plant.     

 

Asides from the problems that arise from the logistics of the control algorithm, a physical 

handicap stems from an insufficient number of actuators.  Due to the strong system 

coupling, it is not possible to efficiently control one state variable without affecting 

drastically another, under the current built configuration.  For example, the temperature at 
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the inlet of the plenum cannot be controlled without affecting turbine speed, or TIT, or 

plenum flow.  This is because the bypass valves, which redirect airflow, must be used to 

regulate plenum temperature, if the speed is to be kept synchronous and steady.  This 

restriction forbids the practical regulation of temperature, and it is why this output state is 

removed from the original Transfer Function matrix.  One possible fix is the addition of 

yet another valve that can bypass the heat exchangers, thus relaxing the coupling issue 

between actuators.   

 

Plenum pressure has also been excluded from the original matrix as an output of interest 

due to the relative significance it has on the cathode path of the fuel cell, in comparison to 

the combined anode/cathode sides, and corresponding pressure differential.  It has been 

determined that the pressure differential across the fuel cell electrolyte is much more 

critical to fuel cell performance and safety, than longitudinal pressure across one 

membrane alone, i.e. cathode or anode sides separately.  Note that the HyPer facility 

symbolizes the physical cathode volume of a fuel cell, and accompanying balance of 

plant components.   

 

One final reason that weighted on the decision to exclude the plenum pressure signal is 

its relation to mass flow.  Pressure is inversely related to mass flow rate, and hence 

controlling mass flow would indirectly control pressure.  The inclusion of pressure, as a 

controlled variable is then unjustified, as it not only affects the degree of complexity and 

convergence of the model, but it becomes a redundant state for control. 

 

Reducing the matrix order to a square system implied removing the BA and load bank 

inputs as well.  The BA exclusion is justified by its own purpose.  This valve is mainly 

used during a fuel cell thermal transient event, where a BA opening would attenuate a 

sudden increase in turbine speed in response to this extra heat input, by imposing a load 

on the shaft.  The BA also helps increase the stall/surge margin by decreasing the 

pressure drop across the system.  In both of these cases, the valve is used as an 

emergency device, triggered by unexpected transient behavior, and it is not considered in 
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use for normal control purposes of plenum flow, or turbine speed regulation.  This valve 

can then be used in a decentralized PID loop for such unplanned cases. 

 

The last signal to be removed as a control signal was that of the resistive load bank.  

Instead, the load bank is used in the disturbance model, because in the present hybrid 

configuration, the turbine speed is meant to run synchronously.  Real life scenarios would 

typically involve unexpected disturbances from the load bank side, which is connected to 

the power grid.     

 

When the simplified 3x3 Transfer Function is analyzed, it is seen that the RGA, condition 

number, and open loop SV all improve greatly.  The RGA matrix elements of Equation 

4.1.30 corroborate the intuition that plenum mass flow rate is best controlled with the HA 

valve, the TIT with the CA valve, and turbine speed with the fuel valve.  This new matrix 

given in Equation 4.1.2 is validated against open loop data, and is seen to predict well the 

dynamic behavior of the system, as seen in Figures 4.21-4.23.  It is important to note that 

adjustments to the derived Transfer Functions were made during the comparison of the 

open loop step response data.  For example, the dc gain of the TF pertaining to Figure 

4.23 was increased to better depict the speed response.  Step response comparisons thus 

aids in the adjustments of parameters.   

 

One interesting observation of the open loop step tests was that for the HA valve 

response of Figure 4.22 the step signal was actually stepped down in the TF model, rather 

than up.  This valve is adjacent to the air plenum, but on a different airflow path, that is 

parallel to the main airflow stream as noted in Figure 3.2 and 3.11.  Hence an opening of 

the valve would decrease plenum airflow and temperature, and vice versa.  This seems to 

indicate that the HA bypass Transfer Function data is inversely related to valve opening.  

Model data fits very well the experimental data when the role of the valve is reversed.    

 

The control implementation of Figure 4.31 proved to be effective in both rejecting fuel 

cell heat transients and resistive load disturbances, and in following reference signals, as 

shown in Figures 4.32 to 4.43.  The time scale is in minutes, and the abscissa axes are 
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scaled according to Equations 4.1.32 and 4.1.33.  Thus the actuator and output signals 

must be multiplied by Equations 4.1.32 and 4.1.33 respectively in order to scale back to 

the real state values.    

 
This controller is also proven to be robust for a variety of uncertain pole/zero 

combinations in the Transfer Functions.  The MatLab script found in Appendix E allows 

the user to randomly select zero/pole uncertainty ranges to determine the degree of 

system robustness before instability ensues.  One at a time, or all simultaneous Transfer 

Function equations can be tested under the uncertain plant model.  One such 

combination, assigned a 10% uncertainty to all the poles and zeros of an individual 

Transfer Function.  The m-file outputs the maximum allowable variation possible for a 

stable result, which in this case resulted in 41% allowed variation.  This means robustness 

is assured for the MIMO system, even if one Transfer Function has close to 50% 

uncertain poles/zero parameters.  A large number of combinations can be thus examined, 

resulting in a test tool that can be used to help build analytical models in lessening the 

bounds of accuracy for system parameters.   

 

In conclusion, this work has theoretically proven the functionalilty of a robust, stable, 

multivariable controller for a simulated SOFC/GT hybrid plant, based on an empirical 

mathematical formulation.  The controller successfully tracks command signals, rejects 

generator load and fuel cell heat disturbances, and demonstrates to perform robustly 

under plant uncertainty.  This work demonstrates that the up to date tacit assumption of 

base loading a hybrid system to achieve controllability by manipulating turbine speed is 

not necessarily valid.  Furthermore, this work proposes a multivariate state space method 

that manages fuel cell airflow solely with the use of bypass valves.  Hence the more 

realistic scenario of maintaining turbine/generator constant load for grid-connected 

systems is realizable under the proposed control methodology.  This is a desireable 

control feature if the proposed methodology is to be scaled and implemented in larger 

sized plants having similar hybrid configurations.   
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6.2 Nonlinear Analytical Model 

 
The analytical model response plots of Chapter 5 indicate that the model closely matches 

experimental data for some variables, and deviates in magnitude for others.  Even though 

there is much room for improvement, overall, the model predicts well the dynamic trends 

of a transient event.  As an example, Figure 5.49 shows a very good match of the turbine 

speed response, considering the model complexity and the fact that it is run at almost zero 

speed.  No other model thus far built for the HyPer facility can predict startup speed 

profiles at such a low rpm.  The closest tested model can only predict speeds beginning at 

more than half the steady state nominal value of 40,500rpm.   

 

Startup profiles in the model are heavily dependent on the closed loop controller gains, 

and the compressor geometric blade angles.  Figures 5.50 and 5.51 are two very different 

contours from that of Figure 5.49.  They only differ in the type of controller used i.e. PI 

vs. PID, and the value of their gains.  The real facility uses a PI speed controller based on 

the configuration given in Figure 6.1, where the proportional gain is kP = 0.001, and the 

integral gain is kI = 0.75kP.  This PI controller has as its input the difference between the 

measured speed signal, and the signal itself after integration.  The integration block has a 

saturation limit, given as the nominal speed of 40,500rpm.  In contrast, the nonlinear 

model arrangement shown in Figure 5.48 is a function of the error signal between the set 

point and the measured speed, having gains of kP = 0.00022, and kI = 0.6kP, and kD = 

0.007.  This last set of values produces the more realistic response of Figure 5.49.   

 

 

Figure 6.1 Actual HyPer PI Scheme 
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When the bypass valves are tested, there is a greater error margin, as seen in the 

responses of Figures 5.52 and 5.56.  While the plenum pressure and temperature vary less 

than 50kPa and 50 degrees each before the transient, the TIT response varies by more 

than 100 degrees.  In the first two cases, the model under predicts the temperature, 

whereas in the latter it over predicts it. This may be due to the possible fluctuation in the 

LHV parameter.  The LHV is assumed to remain constant in the model, even though it 

varies from day to day.  Lowering this value could possibly decrease the error margin, 

and maintain the plenum pressure and temperature unaffected.  This is because the heat 

exchangers have yet to reach their effectiveness level i.e. the HX time constant is 

approximately 10min.   

 

Compared to the test data, the model transient behavior assimilates correctly the change 

in direction of an output, but not the magnitude trend.  The model overshoots and 

undershoots every time for all outputs, to various degrees.  It is possible that the 

subsystem logic of the CA bypass-piping route is at fault, or that the tabulated valve 

characterization data is inaccurate.  The model applies a series of assumptions via logic 

blocks, downstream of the bypass valve whenever a valve is opened or closed, as 

described in Chapter 5.  For instance, if the CA valve is closed, the temperature at the 

very end of that piping route is assumed to be that of the post combustor temperature.  

When the valve opens, there is temperature drop distributed downstream of the pipe.  

However, there are far more complex dynamics involved in real life, which are not taken 

into account in the model.  This is a major source of error when the valves are either 

entirely shut or entirely opened.   

 

The model response to electrical load perturbations was also examined, and shown in 

Figures 5.57 to 5.61.  Once again, the model trend appears to follow that of real life, 

except for the magnitude gap and overshoot peaks.  Figure 5.58 exhibits the greatest 

margin of error, with an augmenting value.  This may be the result of erroneous heat 

exchanger parameters, since the times shown should have displayed some sort of activity 

from the recuperators.  Most of these parameters are assumed, such as the overall heat 
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transfer coefficient, the effective surface area, and the mass of the primary surface 

recuperators.   

 

Other possible sources of error can be found within the turbine/compressor model 

subsystem.  The compressor and turbine efficiency for example, are assumed to be 

constant at all speeds.  This is obviously incorrect, but needed if the model was to be free 

of compressor/turbine maps.  These maps are computationally troublesome at low speeds, 

and their avoidance makes it possible to model startup profiles that begin at 

approximately 2% of the turbine nominal speed.  Un-modeled generator winding losses, 

which are a function of speed, also contribute to model error.  The last chapter of this 

work addresses these issues and suggests possible fixes for the improvement of the 

model.   
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7 Future Work 

 
The accomplishments garnered in this work can be further expanded to produce an 

implementable controller that can be tested on the physical facility, once it is validated in 

the nonlinear analytical model.  It is therefore necessary to correct the sources of error in 

the model before any controller-induced response is studied.  An immediate controller 

validation can be carried out with the use of existing HyPer models, such as the lumped 

parameter model described in the literature review section.   

 

One such model improvement would include the substitution of the air plenum and post 

combustor backpressure empirical equations, which are currently a function of turbine 

speed, with an assumed pressure, that is updated constantly.  An iterative process can 

assign the value of the backpressure by verifying if the downstream pressure of the stack 

pipe exhaust is atmospheric.  A positive match of atmospheric pressures at this point 

would then indicate that the assumed pressure value is correct, if the all the losses 

between the plenum and the stack exhaust are adequately modeled. 

 

Minor and less time consuming fixes are those pertaining to the physical parameters of 

the balance of plant components, such as the ones for pipes, heat exchangers, and vessels.  

Thermal conductivity constants, pressure loss coefficients, relative roughness factors and 

the like, are all possible sources of error.  These variables were chosen conservatively 

mostly from literature, and sometimes, as is the case with the heat exchangers, they were 

simply assumed for lack of information.  This work is currently ongoing.   

 

With regard to the empirically derived Transfer Functions, the poles and zeros can be 

further analyzed to identify what are the plant components attributable to their respective 

locations, and what is the physical significance of this.  If for instance a particular pole is 

correlated to the heat exchanger time constant, and the heat exchanger is removed, would 

this change affect all the other poles as well?  Due to the strong system coupling, would a 

change in one pole result in several zero changes?  Note that even though zeros are 
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generally indicative of rates of change of input signals, or initial conditions, they can also 

stem indirectly from poles, if system has inner loops, similar to the well known positive 

and negative feedback loop block diagrams.   

 

Scaling is yet another issue worth considering in the study of the system poles and zeros.  

It would be interesting to determine whether a larger size plant can be accurately 

described by the same set of Transfer Functions, solely by the inclusion of a scaling 

factor for each pole and zero combination.  The relative dc gain can be easily modified as 

well, and it is likely to be the case. 

 

The frequency response techniques discussed in this work can also be compared to 

alternate methods for gathering magnitude and phase data.  One way would be to apply 

colored noise to a fast acting actuator, as in the case of the fuel valve.  Theory requires 

the use of white noise, but this is unobtainable in bandwidth-limited actuators.  

Nonetheless, close to white noise signals could be attained with the fast acting fuel valve, 

where the Transfer Functions would then be derived as the ratio between the covariance 

matrix of input and output signals.  Exercising this test procedure could reduce testing 

times by orders of magnitude i.e. each individual Bode plot required a point by point 

steady state data window, lasting an approximate 10hr/test for all points in the studied 

frequency range.  

 

It is important to note that the frequency response Bode Plot generated data is for the 

nominal operating point of the HyPer facility.  This work can be extended to address a 

broader operating envelope at various operating points.  A design of experiments test plan 

can be developed to further expand the frequency response database.    

 

Concerning the controller, it can also be modified with an anti-windup scheme, in order 

to avoid large actuator signal overshoots that can otherwise saturate the valves.  Other 

dynamic compensating shaping weights can be implemented for enhanced performance.  

The detrimental effect of the RHP zero in one output channel for example, can be moved 

to another output channel, by manipulating the diagonal independent weight bandwidths.  
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The physical addition of heat exchanger bypass valve to control plenum temperature, can 

aid the controllability of the system, lessening the weight selection criteria constraints. 

 

Finally, there is a real need to demonstrate the proven theoretical results in the HyPer 

working testbed.  The control algorithm can be modified to include additional states from 

the fuel cell cathode and anode sides, with the use of a high fidelity fuel cell model 

incorporated into the control scheme.  Fuel cell inlet temperature and cathode/anode 

pressure gradient are examples of important states that will most likely require added 

control input signals.  Irrespective of the number of added states, multivariable control 

holds the promise of a practical, implementable, robust design suited for optimal 

performance of hybrid systems.    

 

There are still vast amounts of tasks that can complement the present work.  This paper 

serves as the starting point to multivariate robust control of mathematically empirically 

based hybrid plant models.   
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Typical Fuel Cell Voltage Losses for High and Low Temperature Fuel Cells 
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Sample Generic Compressor Map 

Note: The Referred Mass Flow Rate has Units of 

















⋅
Pa

K

s

kg 2

1

 

 
 

 
 
 
 



Appendix B 192

 
 

Compressor Pressure Ratio 
 

 % N referred 

refm&  
20 30 40 50 60 70 80 90 100 

0 1.12 1.2 1.35 1.6 1.8 2.22 2.7 3.3 4.12 

0.2 1.12 1.2 1.35 1.6 1.8 2.22 2.7 3.3 4.12 

0.4 1.11 1.2 1.35 1.6 1.8 2.22 2.7 3.3 4.12 

0.6 1.1 1.2 1.35 1.6 1.8 2.22 2.7 3.3 4.12 

0.8 1.09 1.18 1.34 1.6 1.8 2.22 2.7 3.3 4.12 

1 1.05 1.16 1.3 1.6 1.8 2.22 2.7 3.3 4.12 

1.2 1 1.15 1.29 1.6 1.8 2.22 2.7 3.3 4.12 

1.4 1 1.12 1.27 1.55 1.8 2.22 2.7 3.3 4.12 

1.6 1 1.08 1.24 1.5 1.8 2.22 2.7 3.3 4.12 

1.8 1 1.06 1.2 1.48 1.78 2.22 2.7 3.3 4.12 

2 1 1 1.18 1.45 1.75 2.22 2.7 3.3 4.12 

2.2 1 1 1.15 1.4 1.73 2.22 2.7 3.3 4.12 

2.4 1 1 1.1 1.35 1.72 2.2 2.7 3.3 4.12 

2.6 1 1 1 1.25 1.7 2.19 2.7 3.3 4.12 

2.8 1 1 1 1 1.65 2.17 2.7 3.3 4.12 

3 1 1 1 1 1.55 2.15 2.69 3.3 4.12 

3.2 1 1 1 1 1.32 2.1 2.68 3.3 4.12 

3.4 1 1 1 1 1 2 2.65 3.3 4.12 

3.6 1 1 1 1 1 1.7 2.6 3.29 4.12 

3.8 1 1 1 1 1 1.5 2.55 3.27 4.12 

4 1 1 1 1 1 1.3 2.5 3.26 4.12 

4.2 1 1 1 1 1 1 2.25 3.25 4.12 

4.4 1 1 1 1 1 1 1.9 3.15 4.1 

4.6 1 1 1 1 1 1 1.35 3.05 4.05 

4.8 1 1 1 1 1 1 1 2.9 4.03 

5 1 1 1 1 1 1 1 2.75 4.01 

5.2 1 1 1 1 1 1 1 2.3 3.9 

5.4 1 1 1 1 1 1 1 1.6 3.8 

5.6 1 1 1 1 1 1 1 1 3.5 

5.8 1 1 1 1 1 1 1 1 3 

6 1 1 1 1 1 1 1 1 1 

 
 

Generated Compressor Map:  Pressure Ratio Table 
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Appendix C 
 

 
 

 
 

Sample Sketch of Pipe Routing Data: Compressor Exit Route 
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Piping Pressure Loss Coefficient for Minor Losses 
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Appendix E 
 
M-file to Generate Transfer Functions from Bode Plots: Fuel Flow Input 

 
% Alex Tsai: 10/2/06 
% Generate Transfer Function 
clc; clear all; close all 
 
% Note: Zeroes and Poles are given in [rad/s] 
%__________________________________________________________________________ 
% First Transfer Function: FT380/FT432 
% Open Loop Gain 
Kol1=10^(-22.5/20); 
% Zeroes 
z11=.021; z21=.3; 
% Poles 
p11=.033; p21=.061; 
% Transfer Function 
num1=Kol1*p11*p21*conv([1 z11],[1 z21]); 
den1=z11*z21*conv([1 p11],[1 p21]); 
TF1=tf(num1,den1); 
TF1.inputdelay=1.4; 
%__________________________________________________________________________ 
% Second Transfer Function: PT305/FT432 
% Open Loop Gain 
Kol2=10^(26/20); 
% Zeroes 
z12=.03; z22=1; 
% Poles 
p12=.04; p22=.1; 
% Transfer Function 
num2=Kol2*p12*p22*conv([1 z12],[1 z22]); 
den2=z12*z22*conv([1 p12],[1 p22]); 
TF2=tf(num2,den2); 
TF2.inputdelay=.8; 
%__________________________________________________________________________ 
% Third Transfer Function: TE326/FT432 
% Open Loop Gain 
Kol3=10^(-12/20); 
% Zeroes 
z13=.01; z23=.015; 
% Poles 
p13=.04; p23=.05; p33=.1; p43=.15; 
% Transfer Function 
num3=Kol3*p13*p23*p33*p43*conv([1 z13],[1 z23]); 
den3=z13*z23*conv(conv(conv([1 p13],[1 p23]),[1 p33]),[1 p43]); 
TF3=tf(num3,den3); 
TF3.inputdelay=.5; 
% Approximated Bode Plots 
wmin=.0063; wmax=1; 
subplot(1,3,1) 
bode(TF1,{wmin,wmax}); title('TF1 Gen FT380/FT432') 
grid on 
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subplot(1,3,2) 
bode(TF2,{wmin,wmax}); title('TF2 Gen PT305/FT432') 
grid on 
subplot(1,3,3) 
bode(TF3,{wmin,wmax}); title('TF3 Gen TE326/FT432') 
grid on 
%__________________________________________________________________________ 
% End of Program 
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M-file to Create Bode Plots from Frequency Response Data 

 
% Alex Tsai: 9/25/06 
% Final Bode Plot 
clc; clear all; close all 
%_____________________________________________________________________ 
% Input Frequency 0.001Hz 
 
datalogdot001=dlmread('logdot001.txt'); 
 
time28=datalogdot001(:,1); 
signal28=datalogdot001(:,31); 
PV432_28=datalogdot001(:,2); 
 
FT432_28=datalogdot001(:,3); 
PT305_28=datalogdot001(:,7); 
FT380_28=datalogdot001(:,8); 
TE326_28=datalogdot001(:,21); 
 
fs=12.5; fdot001=.001; 
Ndot001=length(time28); 
 
FFT_FT432dot001=fft(FT432_28); ft432magdot001=abs(FFT_FT432dot001); 
FFT_PT305dot001=fft(PT305_28); 
FFT_FT380dot001=fft(FT380_28); 
FFT_TE326dot001=fft(TE326_28); 
 
TF1dot001=FFT_FT380dot001./FFT_FT432dot001; 
TF2dot001=FFT_PT305dot001./FFT_FT432dot001; 
TF3dot001=FFT_TE326dot001./FFT_FT432dot001; 
 
df_dot001=fs/Ndot001; 
faxisdot001=0:df_dot001:df_dot001*(Ndot001-1); 
 
edot001=fdot001*.4; 
indexdot001=find(faxisdot001 < fdot001+edot001 & faxisdot001 > fdot001-edot001); 
 
magTF1dot001=abs(TF1dot001(indexdot001)); 
magTF2dot001=abs(TF2dot001(indexdot001)); 
magTF3dot001=abs(TF3dot001(indexdot001)); 
 
dBTF1dot001=20*log10(magTF1dot001); 
dBTF2dot001=20*log10(magTF2dot001); 
dBTF3dot001=20*log10(magTF3dot001); 
 
phase_radTF1dot001=angle(TF1dot001(indexdot001)); 
phase_radTF2dot001=angle(TF2dot001(indexdot001)); 
phase_radTF3dot001=angle(TF3dot001(indexdot001)); 
 
phase_degTF1dot001=phase_radTF1dot001*180/pi; 
phase_degTF2dot001=phase_radTF2dot001*180/pi; 
phase_degTF3dot001=phase_radTF3dot001*180/pi; 
 
dB_dot001=[dBTF1dot001 dBTF2dot001 dBTF3dot001]; 
phase_dot001=[phase_degTF1dot001 phase_degTF2dot001 phase_degTF3dot001]; 
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[ACFdot001,Lagsdot001,Boundsdot001] = autocorr(FT432_28,Ndot001-1,[],5); 
 
entdot001=length(ACFdot001); 
for i=1:entdot001 
    bdot001(:,i)=Boundsdot001; 
end 
 
figure; 
subplot(3,2,1,'align') 
plot(time28,signal28,'k'); hold on; plot(time28,PV432_28) 
title('Command and PV432: 0.001Hz');  
ylabel('Percent [%]'); xlabel('[sec]') 
 
subplot(3,2,3,'align') 
plot(time28,FT432_28); ylabel('FT432 [g/s]'); xlabel('[sec]') 
 
subplot(3,2,5,'align') 
plot(ACFdot001); hold on; plot(Lagsdot001,ACFdot001,Lagsdot001,bdot001)  
ylabel('AutoCorr FT432'); xlabel('Lag \tau') 
 
subplot(3,2,2,'align') 
plot(time28,FT380_28); 
title('FT380'); ylabel('[kg/s]') 
 
subplot(3,2,4,'align') 
plot(time28,PT305_28) 
title('PT305'); ylabel('[kPag]') 
 
subplot(3,2,6,'align') 
plot(time28,TE326_28); title('TE326') 
ylabel('[C]'); xlabel('[sec]') 
 
%_____________________________________________________________________ 
 
{The above code is repeated for 28 frequencies up to 1Hz} 

 

%__________________________________________________________________________ 
% Final Empirical Bode Plot 
 
dBTF1_final=[dB_dot001(1); dB_dot002(1); dB_dot003(1); dB_dot004(1);dB_dot005(1); dB_dot006(1); 
dB_dot007(1); dB_dot008(1); dB_dot009(1);dB_dot01(1); dB_dot02(1); dB_dot03(1); dB_dot04(1); 
dB_dot05(1);dB_dot06(1); dB_dot07(1); dB_dot08(1); dB_dot09(1); dB_dot1(1); dB_dot2(1); dB_dot3(1); 
dB_dot4(1); dB_dot5(1); dB_dot6(1); dB_dot7(1); dB_dot8(1); dB_dot9(1); dB_1(1)];  
 
dBTF2_final=[dB_dot001(2); dB_dot002(2); dB_dot003(2); dB_dot004(2); dB_dot005(2); dB_dot006(2); 
dB_dot007(2); dB_dot008(2); dB_dot009(2); dB_dot01(2); dB_dot02(2); dB_dot03(2); dB_dot04(2); 
dB_dot05(2); dB_dot06(2); dB_dot07(2); dB_dot08(2); dB_dot09(2); dB_dot1(2); dB_dot2(2); 
dB_dot3(2); dB_dot4(2); dB_dot5(2); dB_dot6(2); dB_dot7(2); dB_dot8(2); dB_dot9(2); dB_1(2)]; 
 
dBTF3_final=[dB_dot001(3); dB_dot002(3); dB_dot003(3); dB_dot004(3); dB_dot005(3); dB_dot006(3); 
dB_dot007(3); dB_dot008(3); dB_dot009(3); dB_dot01(3); dB_dot02(3); dB_dot03(3); dB_dot04(3); 
dB_dot05(3); dB_dot06(3); dB_dot07(3); dB_dot08(3); dB_dot09(3); dB_dot1(3); dB_dot2(3); 
dB_dot3(3); dB_dot4(3); dB_dot5(3); dB_dot6(3); dB_dot7(3); dB_dot8(3); dB_dot9(3); dB_1(3)]; 
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angleTF1_final=[phase_dot001(1); phase_dot002(1); phase_dot003(1); phase_dot004(1); phase_dot005(1); 
phase_dot006(1); phase_dot007(1); phase_dot008(1); phase_dot009(1); phase_dot01(1); phase_dot02(1); 
phase_dot03(1); phase_dot04(1); phase_dot05(1); phase_dot06(1); phase_dot07(1); phase_dot08(1); 
phase_dot09(1); phase_dot1(1); phase_dot2(1); phase_dot3(1); phase_dot4(1); phase_dot5(1);    
phase_dot6(1); phase_dot7(1); phase_dot8(1); phase_dot9(1); phase_1(1)]; 
 
angleTF2_final=[phase_dot001(2); phase_dot002(2); phase_dot003(2); phase_dot004(2); phase_dot005(2); 
phase_dot006(2); phase_dot007(2); phase_dot008(2); phase_dot009(2); phase_dot01(2); phase_dot02(2);    
phase_dot03(2); phase_dot04(2); phase_dot05(2); phase_dot06(2); phase_dot07(2); phase_dot08(2); 
phase_dot09(2); phase_dot1(2); phase_dot2(2); phase_dot3(2); phase_dot4(2); phase_dot5(2);    
phase_dot6(2); phase_dot7(2); phase_dot8(2); phase_dot9(2); phase_1(2)]; 
 
angleTF3_final=[phase_dot001(3); phase_dot002(3); phase_dot003(3); phase_dot004(3); phase_dot005(3); 
phase_dot006(3); phase_dot007(3); phase_dot008(3); phase_dot009(3); phase_dot01(3); phase_dot02(3);    
phase_dot03(3); phase_dot04(3); phase_dot05(3); phase_dot06(3); phase_dot07(3); phase_dot08(3); 
hase_dot09(3); phase_dot1(3); phase_dot2(3); phase_dot3(3); phase_dot4(3); phase_dot5(3);    
phase_dot6(3); phase_dot7(3); phase_dot8(3); phase_dot9(3); phase_1(3)]; 
 
faxis_final=[fdot001; fdot002; fdot003; fdot004; fdot005; fdot006; fdot007; fdot008; fdot009; fdot01; 
dot02; fdot03; fdot04; fdot05; fdot06; fdot07; fdot08; fdot09; fdot1; fdot2; fdot3; fdot4; fdot5; fdot6;    
fdot7; fdot8; fdot9; f1] 
 
xx=faxis_final; yy=dBTF1_final; zz=dBTF2_final; ww=dBTF3_final; dd=angleTF1_final; 
ee=angleTF2_final; hh=angleTF3_final; 
 
figure; 
subplot(2,3,1) 
semilogx(xx(1:20),yy(1:20),xx(21:28),yy(21:28),'r+') 
title('TF1: FT380(s)/FT432(s)') 
ylabel('Magnitude [dB]'); xlabel('[Hz]');  
 
subplot(2,3,2) 
semilogx(xx(1:20),zz(1:20),xx(21:28),zz(21:28),'r+') 
title('TF2: PT305(s)/FT432(s)') 
ylabel('Magnitude [dB]'); xlabel('[Hz]');  
 
subplot(2,3,3) 
semilogx(xx(1:20),ww(1:20),xx(21:28),ww(21:28),'r+') 
title('TF3: TE326(s)/FT432(s)') 
ylabel('Magnitude [dB]'); xlabel('[Hz]');  
 
subplot(2,3,4) 
semilogx(xx(1:20),dd(1:20),xx(21:28),dd(21:28),'r+') 
ylabel('Phase [deg]'); xlabel('[Hz]') 
 
subplot(2,3,5) 
semilogx(xx(1:20),ee(1:20),xx(21:28),ee(21:28),'r+') 
ylabel('Phase [deg]'); xlabel('[Hz]') 
 
subplot(2,3,6) 
semilogx(xx(1:20),hh(1:20),xx(21:28),hh(21:28),'r+') 
ylabel('Phase [deg]'); xlabel('[Hz]') 
 
% Plots in [rad/s] 
 
xxx=xx.*2*pi; % conversion 
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figure; 
subplot(2,3,1) 
semilogx(xxx(1:20),yy(1:20),xxx(21:28),yy(21:28),'r+') 
title('TF1: FT380(s)/FT432(s)') 
ylabel('Magnitude [dB]'); xlabel('[rad/s]');  
 
subplot(2,3,2) 
semilogx(xxx(1:20),zz(1:20),xxx(21:28),zz(21:28),'r+') 
title('TF2: PT305(s)/FT432(s)') 
ylabel('Magnitude [dB]'); xlabel('[rad/s]');  
 
subplot(2,3,3) 
semilogx(xxx(1:20),ww(1:20),xxx(21:28),ww(21:28),'r+') 
title('TF3: TE326(s)/FT432(s)') 
ylabel('Magnitude [dB]'); xlabel('[rad/s]');  
 
subplot(2,3,4) 
semilogx(xxx(1:20),dd(1:20),xxx(21:28),dd(21:28),'r+') 
ylabel('Phase [deg]'); xlabel('[rad/s]') 
 
subplot(2,3,5) 
semilogx(xxx(1:20),ee(1:20),xxx(21:28),ee(21:28),'r+') 
ylabel('Phase [deg]'); xlabel('[rad/s]') 
 
subplot(2,3,6) 
semilogx(xxx(1:20),hh(1:20),xxx(21:28),hh(21:28),'r+') 
ylabel('Phase [deg]'); xlabel('[rad/s]') 
 
%______________________________________________________________________ 
% End of Program 
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M-file of Nonlinear Brayton Cycle 

 
% Hybrid Model Parameters 
% Alex Tsai 7/13/05 
clc; clear all; 
pi=3.1416; 
 
% Mass Flow Rate Constants 
 
convlen=.0254; % Inches to meters 
convang=.0175; % Deg to radians 
d2=6.605; % Outer impeller diam [in] 
d2si=d2*convlen; % [m] / Conversion 
r2si=d2si/2; % Outer impeller radius / Compressor [m] 
d1=4.354; % Inner diameter of impeller [in] 
d1si=d1*convlen; % [m] / Conversion 
r1si=d1si/2; % Radius [m] 
alp2=60; % Absolute fluid velocity angle at outlet of compressor blade [deg] 
alp2si=alp2*convang; % [rad] / Conversion 
bet2=60; % Blade outlet angle [deg] 
bet2si=bet2*convang; % [rad] / Conversion 
alp1=45; alp1si=alp1*convang; bet1=45; bet1si=bet1*convang; 
rho2=1.3; % Density of air leaving compressor blade [kg/m^3] 
n=13; % Number of blades 
theta=2*pi/n; % Angle between 2 blades 
s=r2si*theta; % Arc length of outlet of compressor 
h=.659; % Height of outlet compressor blade [in] 
hsi=h*convlen; % [m] 
A2=s*hsi; % Cross sectional area of outlet of compressor between 2 blades 
 
% Compressor Pressure Constants 
 
T1=293.15; % Ambient temperature [K] 
P1=101300; % Ambient pressure [Pa] 
mslope=2.26; % Slope of linear region of compressor map [s/kg] 
bint=8; % y-intercept  
Pref=101300; % Reference pressure / Ambient [Pa] 
Tref=293.15; % Reference temperature / Ambient [K] 
%mdot=1.767; % Mass flow rate [kg/s] 
data=dlmread('data.txt'); % Reads txt matrix of compressor map values 
Nmax=40500; % Max speed [rev/min] 
datamass=dlmread('Book2.txt'); % Reads column vector of mdot increments 
betalines=dlmread('beta.txt'); % Reads beta line matrix 
datamassbeta=dlmread('datamassbeta.txt'); % Outputs beta line no.: 68 rows 
datamassPR=dlmread('datamassPR.txt'); % Outputs PR; 12 rows 
datamassbeta71905=dlmread('datamassbeta71905.txt'); % Adds 0-20 speed 
datamassPR71905=dlmread('datamassPR71905.txt'); % Adds 0-20 speed correction 
datamassoriginal71905=dlmread('datamassoriginal71905.txt'); % Mass flow, N outputs PR from 0-110 
data72005=dlmread('data72005.txt'); % original PR fixed 
data72005rows=dlmread('data72005rows.txt'); % rows of this PR 
ajullir=dlmread('ajullir.txt'); 
ajullir2=dlmread('ajullir2.txt'); 
 
% Compressor Temperature Constants 
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%vout=154; % Normal velocity component at compressor outlet [m/s] 
%vin=104.8; % Normal vel component at comp inlet [m/s] 
Cp=1160; % Specific heat [J/kgK] 
eta=.65; % Compressor efficiency 
%Wcomp=129809; % Compressor backwork [W] 
 
% Combustor Temperature Constants 
 
dcomb=8.625; % Combustor outer diam [in] 
dcombsi=dcomb*convlen; 
dcomi=8.125; % Combustor inner diam [in] 
dcomisi=dcomi*convlen; 
insthick=2; % Insulation thickness [in] 
insthicksi=insthick*convlen; 
dcominssi=dcombsi+2*insthicksi; % Diam of insulation [m] 
Lcom=12; % Combustor length [in] 
Lcomsi=Lcom*convlen; 
Asin=pi*dcomisi*Lcomsi; % Inlet surface area of combustor [m^2] 
Asout=pi*dcominssi*Lcomsi; % Outer surface area including insulation [m^2] 
LHV=50000000; % Lower heating value of fuel [J/kg] 
mdotfuel=.019; % Mass flow rate of fuel [kg/s] 
Qin=mdotfuel*LHV; % Fuel valve input [W] 
%Qin=800000; 
%Tb=473.15; % Compressor outlet temperature 
Areacomb=(pi*dcomisi^2)/4; % Cross sectional area of combustor [m^2] 
Vol=Areacomb*Lcomsi; % Volume of combustor [m^3] 
rhocomb=2.986; % Assign density as outlet of compressor / temporary 
m=rhocomb*Vol; % Mass of air inside combustor [kg] 
 
% Thermal Resistance Constants 
 
ho=250; % Inner fluid convection coefficient [W/m^2K] / Forced convection 
ha=25; % Outer convection coefficient [W/m^2K] / Free convection 
kk1=80; % Incaloy thermal conductivity [W/mK] 
kk2=.075; % Insulation Microtherm thermal conductivity [W/mK] 
Cv=872.2; % Specific heat constant volume / Plenum [J/kgK] 
Rt=2*pi*Lcomsi*(1/(ho*Asin) + 1/(ha*Asout)) + (log(dcombsi/dcomisi))/kk1 + 
(log(dcominssi/dcombsi))/kk2; % [mK/W] 
 
% Turbine Constants 
 
%Tc=900; % Temperature out of combustor [K] 
%Pb=4*P1; % Outer pressure of compressor [Pa] 
k=Cp/Cv; % Gamma ratio 
a=(k-1)/k; % Simplified exponent 
etat=.7; % Turbine efficiency 
I=.027; % Shaft inertia [kgm^2] 
Welecload=45000; % Electrical load on shaft [W] 
percentage=.5; % Percent for initial speed 
rpm=percentage*Nmax; % Initial velocity [rpm] 
rpmact=rpm; % Used in the step input for the controller 
wini=rpm*2*pi/60; % Initial velocity of turbine [rad/s] 
percntdes=.7; % Desired percent of speed 
rpmdes=percntdes*Nmax; % Desired speed [rpm] 
wdes=rpmdes*2*pi/60; % Desired speed [rad/s] / Not needed 
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% Controller Parameters 
 
Kp=100; % Proportional Gain 
Ki=5; % Integral Gain 
Kd=10; % Derivative Gain 
Kv=1; ; % Valve opening position per voltage 
Kq=10; % Heat input per valve position / Characterization 
 
% Plots of Nonlinear Block Diagram: Linear Compressor Pressure 
 
% Load command is after running the Simulink model, then saving 
load linearvalues  % After the "save linearvalues" command in workspace 
N=size(Wcomp.signals.values); 
t=1:N; 
t1=t/26.5; 
subplot(3,1,1) 
plot(t1,Wcomp.signals.values,t1,Wturb.signals.values) 
title('Wcomp,Wturb Plots'); 
ylabel('kW'); 
legend('Wcomp','Wturb') 
subplot(3,1,2) 
plot(t1,mdot.signals.values) 
title('Mass Flow Rate') 
ylabel('[kg/s]') 
subplot(3,1,3) 
plot(t1,Tblinear.signals.values,t1,Tclinear.signals.values) 
title('Tb, Tc Temperatures') 
ylabel('[K]') 
legend('Tb','Tc') 
xlabel('Seconds') 
figure; 
plot(t1,rpm.signals.values) 
title('Shaft Speed') 
ylabel('[rpm]') 
xlabel('Seconds') 
 
% Nonlinar Simulation 
 
load nonlinearvalues 
 
N=size(Wcomp1.signals.values); 
t=1:N; 
t1=t/26.5; 
subplot(3,1,1) 
plot(t1,Wcomp1.signals.values,t1,Wturb1.signals.values) 
title('Wcomp,Wturb Plots'); 
ylabel('kW'); 
legend('Wcomp','Wturb') 
subplot(3,1,2) 
plot(t1,mdot1.signals.values) 
title('Mass Flow Rate') 
ylabel('[kg/s]') 
subplot(3,1,3) 
plot(t1,Tb1.signals.values,t1,Tc1.signals.values) 
title('Tb, Tc Temperatures') 
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ylabel('[K]') 
legend('Tb','Tc') 
xlabel('Seconds') 
figure; 
plot(t1,w1.signals.values) 
title('Shaft Speed') 
ylabel('[rpm]') 
xlabel('Seconds') 
 
% Nonlinear Simulation with Feedback Control 
 
load controlvalues 
 
N=size(Wcomp3.signals.values); 
t=1:N; 
t1=t/32.6; 
subplot(3,1,1) 
plot(t1,Wcomp3.signals.values,t1,Wturb3.signals.values) 
title('Wcomp,Wturb Plots'); 
ylabel('kW'); 
legend('Wcomp','Wturb') 
subplot(3,1,2) 
plot(t1,mdot3.signals.values) 
title('Mass Flow Rate') 
ylabel('[kg/s]') 
subplot(3,1,3) 
plot(t1,Tb3.signals.values,t1,Tc3.signals.values) 
title('Tb, Tc Temperatures') 
ylabel('[K]') 
legend('Tb','Tc') 
xlabel('Seconds') 
figure; 
plot(t1,w3.signals.values,t1,step1.signals.values) 
legend('Actual w','Desired w') 
title('Shaft Speed') 
ylabel('[rpm]') 
xlabel('Seconds') 
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M-file of Nonlinear “Hyper” Facility 

 
% Alex Tsai 3/28/06 
% NETL Hyper Project: Nonlinear Model 
% Accompanying m.file: Physical Data 
%__________________________________________________________________________ 
clc; clear all % Remember to leave as comment when plotting from Simulink 
%__________________________________________________________________________ 
% Conversion Factors 
 
convlen=.0254; % Inches to meters 
convang=.0175; % Degrees to radians 
%__________________________________________________________________________ 
% Ambient and Reference Conditions 
 
Tref=600;%394.95;%293.15; % [K] Reference temperature: Ambient 
Pref=101300; % [Pa] Reference pressure: Ambient  
T1=Tref; % [K] Ambient temperature 
P1=Pref; % [Pa] Ambient pressure  
% Linear Version Data 
mslope=2.26; % [s/kg] Slope of linear region of compressor map  
bint=8; % [P/Pref] Y-intercept  
% 
%__________________________________________________________________________ 
% Initial Conditions at ".88kg/s" from experimental data 
densPCini=1.3; % [kg/m^3] 
TPCini=924.71; % [K] 
Tcombini=747.5; % [K] 
Tplenumini=362.96; % [K] 
Tplenuminisurf=297.01; % [K] 
densplenumini=2.394; % [kg/m^3] 
TinletHX=381.77; % [K] 
Tcompressorini=394.95; % [K] 
TPCsurfini=713.53; % [K] 
Treflast=1126; % [K] Last piping segment after PC, from data @ 20250rpm 
 
%__________________________________________________________________________ 
% Organized Initial Conditions by Piping Label 
 
Tamb=293.15; % [K] 
Tpipe1=Tamb; % Piping out of Compressor: Air 
Tpipe1surf=Tamb; % Surface  
Tpipe2=Tamb; % Piping out of HXs: Air 
Tpipe2surf=Tamb; % Surface 
Tpipe3=Tamb; % Piping out of Plenum: Air 
Tpipe3surf=Tamb; % Surface 
Tcombustini=Tamb; % Combustor Air 
Tpipe4=Tamb; % Piping out of Post Combustor: Air 
Tpipe4surf=Tamb; % Surface 
Tpipe5=Tamb; % Piping out of Turbine 
Tpipe5surf=Tamb; % Surface 
Tplenini=Tamb; % Air inside Plenum 
Tplensurfini=Tamb; % Surface Plenum 
Tpostini=Tamb; % Air inside Post Combustor 
Tpostsurfini=Tamb; % Surface Post Combustor 
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Tcold1=Tamb; % Piping of CA: Air 
Tcold1surf=Tamb; % Surface 
Thot1=Tamb; % Piping of HA: Air 
Thot1surf=Tamb; % Surface 
winitial=100;%943; % rad/s initial of turbine 
densityiniplen=1.3; % Plenum density 
densityinipost=1.3; % Post density 
 
%__________________________________________________________________________ 
% Piping Diameters and Lengths: See Excel Spreadsheet for Nomenclature  
 
% Inside Diameters [m] 
dco1in=.110998; dco2in=.161925; dco3in=.161925; dco4in=.110998;  
dco5in=.110998; dco6in=.110998; dco7in=.110998; dho1in=.154051;  
dho2in=.154051; dho3in=.154051; dho4in=.154051; dpo1in=.154051; 
dpo2in=.154051; dpo3in=.193675; dti1in=.193675; dti2in=.193675; 
dcb1in=.10226; dcb2in=.154051; dcb3in=.154051; dcb4in=.154051; 
dcb5in=.154051; dcb6in=.154051; dcb7in=.201727; dcb8in=.202717;  
dcb9in=.154051; dcb10in=.154051; dcb11in=.193675; dcb12in=.193675; 
dto1in=.198984; dto2in=.198984; dto3in=.198984; dto4in=.198984; 
dto5in=.198984; dto6in=.198984; dto7in=.198984; dto8in=.202717; 
dto9in=.202717; dto10in=.202717; dto11in=.202717; dto12in=.202717;  
% Outside Diameters [m] 
dco1out=.1143; dco2out=.16828; dco3out=.16828; dco4out=.1143;  
dco5out=.1143; dco6out=.1143; dco7out=.1143; dho1out=.16828;  
dho2out=.16828; dho3out=.16828; dho4out=.16828; dpo1out=.16828; 
dpo2out=.16828; dpo3out=.21908; dti1out=.21908; dti2out=.21908; 
dcb1out=.1143; dcb2out=.16828; dcb3out=.16828; dcb4out=.16828;  
dcb5out=.16828; dcb6out=.16828; dcb7out=.21908; dcb8out=.21908; 
dcb9out=.16828; dcb10out=.16828; dcb11out=.21908; dcb12out=.21908; 
dto1out=.2032; dto2out=.2032; dto3out=.2032; dto4out=.2032; 
dto5out=.2032; dto6out=.2032; dto7out=.2032; dto8out=.21908; 
dto9out=.21908; dto10out=.21908; dto11out=.21908; dto12out=.21908; 
% Insulation Diameters [m] 
dinsco1=.1651; dinsco2=.21908; dinsco3=.21908; dinsco4=.1651; 
dinsco5=.1651; dinsco6=.1651; dinsco7=.1651; dinsho1=.26988; 
dinsho2=.26988; dinsho3=.26988; dinsho4=.26988; dinspo1=.26988;  
dinspo2=.26988; dinspo3=.32068; dinsti1=.32068; dinsti2=.32068; 
dinscb1=.2159; dinscb2=.26988; dinscb3=.26988; dinscb4=.26988; 
dinscb5=.26988; dinscb6=.26988; dinscb7=.32068; dinscb8=.32068; 
dinscb9=.26988; dinscb10=.26988; dinscb11=.32068; dinscb12=.32068; 
dinsto1=.3048; dinsto2=.3048; dinsto3=.3048; dinsto4=.3048;  
dinsto5=.3048; dinsto6=.3048; dinsto7=.3048; dinsto8=.26988;  
dinsto9=.26988; dinsto10=.26988; dinsto11=.26988; dinsto12=.26988; 
% Lengths [m] 
Lco1=.127; Lco2=.7874; Lco3=.254; Lco4=.7874; Lco5=.7874; Lco6=.6604; 
Lco7=.6604; Lho1=.6096; Lho2=.6858; Lho3=.508; Lho4=.254; Lpo1=1.4478; 
Lpo2=.9652; Lpo3=.9144; Lti1=.2286; Lti2=.4064; Lcb1=.4572; Lcb2=1.1176; 
Lcb3=.3302; Lcb4=1.1176; Lcb5=.508; Lcb6=1.5748; Lcb7=.3048; Lcb8=4.572; 
Lcb9=.3048; Lcb10=.3048; Lcb11=.9398; Lcb12=1.6256; Lto1=.9398; Lto2=.508; 
Lto3=.3556; Lto4=.4318; Lto5=.4318; Lto6=.5842; Lto7=.5842; Lto8=.381; 
Lto9=.381; Lto10=.4064; Lto11=.4064; Lto12=.2286; 
%__________________________________________________________________________ 
% Piping Parameters for Temperature and Pressure Calculations 
 
% tempvec=dlmread('tempvec.txt'); % temperature vector values 
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% tempsteel=dlmread('tempsteel.txt'); % temp vector for steel pipe prop 
% visc=dlmread('visc.txt'); % kinematic viscosity nu 
% viscu=dlmread('viscu.txt'); % dynamic viscosity mu 
% kcond=dlmread('kcond.txt'); % air conductivity as funct of temp 
% Cp=dlmread('Cp.txt'); % air heat capacitance 
% Prndtl=dlmread('Prndtl.txt'); % Prandlt number 
% dens=dlmread('dens.txt'); % air density as a function of temp 
% cmetal=dlmread('cmetal.txt'); % stainless steel Cp [J/kgK] 
% kmetal=dlmread('kmetal.txt'); % metal conductivity [W/mK] 
densmetal=7900; % [kg/m^3] steel metal density 
convlen=.0254; % Inches to meters 
d1=convlen*4; % inner diameter of first section of pipe 
d2=convlen*4.5; % pipe outer diameter / thickness 1/4" 
d3=convlen*8.5; % insulation outer diameter 
L=convlen*60; % length of one segment of pipe / 5ft 
hout=10; % free outside convection 
r1=d1/2; r2=d2/2; r3=d3/2;  
ka=80; kb=.075; % metal and insulation conductivities respectively 
matR=(r1/ka)*log(r2/r1)+(r1/kb)*log(r3/r2); 
outR=(r1/r3)/hout; 
Rcomb=matR+outR; % combined resistances 
Ah=40; % area calculated as in example pg. 665 
 
effNTU=dlmread('effNTU.txt'); % vector column of NTU values 
effCr=dlmread('effCr.txt'); % row vector of Cr 
effect=dlmread('effect.txt'); % table values of effectiveness 
% f=.03; % this value needs to be calculated from Re / e/D=.004 
% Kloss=2; % loss coefficients 
%  
% % properties dependent on both temperature and pressure 
% tempvector=dlmread('tempvector.txt'); 
% density=dlmread('density.txt'); 
% pressure=dlmread('pressure.txt'); 
% specificheat=dlmread('specificheat.txt'); 
%Tamb=300; 
%Pamb=405300; 
 
%__________________________________________________________________________ 
% Minor Pressure Loss Coefficients for Piping Elements 
 
% Equivalent Length: Le [m] 
Kco0=.1981; Kco2=6.401; Kco7=.1981; Kco8=.1981; Kcb3=.1981; Kcb11=.1981; 
Kho6=.1981; Kho9=.1981; Kpo1=.1981; Kpo3=.1981; Kpo5=.1981; Kpo6=.1981; 
Kti1=.1981; Kti3=.1981; Kto9=.1981; Kto10=.1981; Kto14=.1981; 
% Le/D 
Kco1=800; Kco3=2; Kco4=12; Kco5=5; Kco6=5; Kcb1=20; Kcb4=30; Kcb5=20; 
Kcb6=3; Kcb7=20; Kcb8=3; Kcb9=60; Kcb10=30; Kho3=30; Kho4=30; Kho5=50; 
Kho8=3; Kpo2=30; Kti2=10; Kti4=10; Kto2=5; Kto3=8; Kto4=24; Kto5=16; 
Kto6=16; Kto11=16; Kto12=16; Kto13=40; Kto15=60; 
% K Factor 
Kcb2=.3086; Kcb12=.9648; Kho1=.3086; Kho2=.3086; Kho7=.969; Kho10=.0934; 
Kho11=.7901; Kpo4=.1914; Kpo7=.9648; Kto1=.1914; Kto7=.0846; Kto8=.0846;  
 
%__________________________________________________________________________ 
% Relative Roughness 
eco1=1.35e-4; eco2=9.26e-5; eco3=9.26e-5; eco4=1.35e-4; eco5=1.35e-4; 
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eco6=1.35e-4; eco7=1.35e-4; eho1=9.74e-5; eho2=9.74e-5; eho3=9.74e-5;  
eho4=9.74e-5; epo1=9.74e-5; epo2=9.74e-5; epo3=7.74e-5; eti1=7.74e-5; 
eti2=7.74e-5; ecb1=1.47e-4; ecb2=9.74e-5; ecb3=9.74e-5; ecb4=9.74e-5;  
ecb5=9.74e-5; ecb6=9.74e-5; ecb7=7.4e-5; ecb8=7.4e-5; ecb9=9.74e-5; 
ecb10=9.74e-5; ecb11=7.74e-5; ecb12=7.74e-5; eto1=7.54e-5; eto2=7.54e-5; 
eto3=7.54e-5; eto4=7.54e-5; eto5=7.54e-5; eto6=7.54e-5; eto7=7.54e-5; 
eto8=7.4e-5; eto9=7.4e-5; eto10=7.4e-5; eto11=7.4e-5; eto12=7.4e-5; 
%__________________________________________________________________________ 
% Air Plenum V-301 Physical Data [m] 
 
% dapin=1.2192; dapout=1.27; dinsap=1.3716; Lap=2.4384; % This is of tank 
dapin=1.2192; dapout=1.2319; dinsap=1.3335; Lap=1.524; % New Info 
% Conversion Factors, Gas, Metal and Insulation Properties 
conv=.0254; % [in to m] 
Rgas=286; % [J/kgK] Universal Gas Constant 
densm=7900; % [kg/m^3] Density of metal 
kins=.075; % [kg/m^3] Insulation conductivity 
kmetal=80; % [kg/m^3] Metal conductivity : This conflicts with kmetal matrix 
hamb=10; % [W/m^2K] Free outside convection coefficient 
Pamb=101325; % [Pa] Ambient pressure 
velaire=10; % [ft/s] Velocity of air inside plenum: Assumed 
velair=velaire*conv*12; % [m/s] 
 
% Ambient and Initial Conditions 
Tamb=293.15; % [K] Ambient temperature 
rhotankini=1.3; % [kg/m^3] Initial density of air in tank 
rhotankini2=2.4; % [kg/m^3] Initial dens from 89C, 148kPag at "wini" experimental 
rhotankini3=.5; 
rhotankini4=2.394; % @ TinIC and PinIC start simulation 
Ttankini=Tamb; % [K] Tank initial temperature 
Tsini=Tamb; % [K] Initial surface area temperature 
Pback=225100; % [Pa] Initial back pressure of vessel 
Tin=723; % [K] Incoming plenum temperature, At component practice level 
TinIC=362.96; % [K] Temp @ .88kg/s start simulation ~89.81C 
PinIC=Pref+148590; % [Pa] Press @ .88kg/s start simulation 
 
% Air Plenum Physical Data 
% dapinn=dapin*conv; This was WRONG! 
% dapoutt=dapout*conv; 
% Lapp=Lap*conv; 
% thicke=1; % [in] Thickness of vessel: Old Measurement 
thicke=.25; % [in] New Measurement 
thick=thicke*conv; % [m] 
thickinse=2; % [in] Thickness of insulation 
thickins=thickinse*conv; % [m] 
dtanke=48.5; % [in] Outer diameter of air vessel 
dtank=dtanke*conv; % [m] 
dins=dtank+2*thickins; % [m] Insulation diameter 
d1=dtank-2*thick; % [m], Internal diameter of plenum 
Ltanke=60;   %96; % [in] Length of vessel 
Ltank=Ltanke*conv; % [m] 
Vt=(pi*(d1^2)/4)*Ltank; % [m^3] Volume of air plenum: inside 
Asin=pi*d1*Ltank; % [m^2], Inner surface area of air plenum 
dexite=6; % [in] Exit diameter of tank 
dexit=dexite*conv; % [m] 
Aexit=(pi*dexit^2)/4; % [m^2] Exit area of tank 
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AreaIn=Aexit; % Assume inlet cross sectional area is the same 
Cd=.61; % Discharge coefficient for tank: Sharp edge exit REF: EIT 
R1=d1*log(dtank/d1)/kmetal; % Resistance of metal shell 
R2=d1*log(dins/dtank)/kins; % Resistance of insulation 
dellP=225100; % delP added to Pref to equate plenum back P 
 
 
Up=1/((dtank/2)*log(dins/dtank)/kins+(1/hamb)); % Partial overall heat transfer coefficient 
 
Vmout=((pi*dtank^2)/4)*Ltank; % Outer volume of plenum 
Vmin=((pi*d1^2)/4)*(Ltank-2*thick); % Inner volume of plenum 
Vm=Vmout-Vmin; % [m^3], Volume of metal plenum 
 
tempvecenthalpy=dlmread('tempvecenthalpy.txt'); % Temperature vector values for enthalpy 
enthalpy=dlmread('enthalpy.txt'); % Enthalpy table dependent on Temp 
 
% Properties dependent on both temperature and pressure 
 
tempvectorTP=dlmread('tempvectorTP.txt'); % temp vector for Temp and Press dependent variables 
density=dlmread('density.txt'); 
pressure=dlmread('pressure.txt'); 
specificheat=dlmread('specificheat.txt'); 
%  
temp=dlmread('temp.txt'); % Temperature vector for Temp dependent variables 
tempmetal=dlmread('tempmetal.txt'); % Temp vector for metal 
Cpmetal=dlmread('Cpmetal.txt'); % [J/kgK] Cp for metal 
kmetal=dlmread('kmetal.txt'); % [W/mK] Conductivity of metal 
%  
visc=dlmread('visc.txt'); % [m^2/s] kinematic viscosity nu 
viscu=dlmread('viscu.txt'); % [Ns/m^2] dynamic viscosity mu 
kcond=dlmread('kcond.txt'); % [W/mK] air conductivity as funct of temp 
Prndtl=dlmread('Prndtl.txt'); % Prandlt number 
 
Tinternal=dlmread('Tinternal.txt'); % [K] Temp vector for internal energy values 
internal=dlmread('internal.txt'); % [J/kgK] Internal energy values 
 
 
%__________________________________________________________________________ 
% Post Combustor V-304 Physical Data [m] : Note: Material is Incaloy 
 
% Double check these dimensions, they might not correspond to actual 
% dpcin=.4572; dpcout=.508; dinspc=.6096; Lpc=1.3716; Older Values 
dpcin=.813; dpcout=.864; dinspc=.965; Lpc=1.219; 
kpc=80; % [W/mK] Thermal conductivity of post combustor: Incaloy 
 
Vpost=(pi*(dpcin^2)/4)*Lpc; % [m^3] Volume of inside of post combustor: air 
Aexitp=(pi*dti1in^2)/4; % [m^2] Area exit post combustor 
Cdp=.68; % Post combustor discharge coefficient: Assumed 
Asurf=pi*dpcin*Lpc; % [m^2] Surface area of inside post combustor 
R3=dpcin*(log(dpcout/dpcin))/kpc; % Sheet metal resistance: Should be f(T) 
R4=dpcin*(log(dinspc/dpcout))/kins; % Insulation resistance 
dpost=dpcin; % Inner post comb diameter 
velairp=.1; % Inner post comb air velocity: Assumed 
Lpost=Lpc; % Length of post comb 
Vps=pi*(dpcout^2-dpcin^2)*Lpc/4; % Volume post comb of sheet metal 
Tpcwini=362.15; % [K] Initial PC temp from exp data @ wini condition 
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%__________________________________________________________________________ 
% Heat Exhanger E-300, E-305 Physical Data 
 
densHX=7900; % [kg/m^3] Density of stainless steel 
heightHX=.7697; lengthHX=2.67; widthHX=1.27; % [ft]  
hHX=.2346; lHX=.81382; wHX=.3871; % [m] 
HXsolidVol=.30; % [%] Percent of volume that is solid: Approximate 
VolHX=hHX*lHX*wHX*HXsolidVol; % [m^3] HX approximated mass volume 
THXini=Tamb;  
Nplates=10; % Approximate number of plates in HX 
HXAsurf=2*hHX*wHX*Nplates; % [m^2] Surface Area of HX 
Uhx=20; % Approximate from internet [W/m^2K] 
HXVolHot=(VolHX/HXsolidVol)*.35; % Approximate bulk volume of hot side [m^3] 
HXAcrossCold=lHX*wHX*.8; % [m^2] Cold Side Approx Cross sectional area 
HXAcrossHot=HXAcrossCold; 
HXVolCold=HXVolHot; 
Perimeter=wHX*2+lHX*2;%.02+.01; % [m] Wetted perimeter of one entrance: 1cm=width, .5cm=height 
Acc=HXAcrossCold*.5;%5e-5; % [m^2] cross sect area of one entrance 
Dh=4*Acc/Perimeter; % [m] Hydraulic Diameter of rectangle cross sect area 
 
%__________________________________________________________________________ 
% Compressor C-100 Parameters 
 
d2=6.605; % [in] Outer impeller diameter 
d2si=d2*convlen; % [m] Conversion 
r2si=d2si/2; % [m] Compressor outer impeller radius  
d1=4.354; % [in] Inner diameter of impeller 
d1si=d1*convlen; % [m] Conversion 
r1si=d1si/2; % [m] Radius  
alp2=60;%64 %60; % [deg] Absolute fluid velocity angle at outlet of compressor blade 
alp2si=alp2*convang; % [rad] Conversion 
bet2=60;%80 %60; % [deg] Blade outlet angle 
bet2si=bet2*convang; % [rad] Conversion 
alp1=45; alp1si=alp1*convang; bet1=45; bet1si=bet1*convang; 
rho2=1.3; % [kg/m^3] Density of air leaving compressor blade  
n=13; % Number of blades 
theta=2*pi/n; % [rad] Angle between 2 blades 
s=r2si*theta; % [m] Arc length of outlet of compressor 
h=.659; % [in] Height of outlet compressor blade  
hsi=h*convlen; % [m] Conversion 
A2=s*hsi; % [m^2] Cross sectional area of outlet of compressor between 2 blades 
mdotwini=.9; % [kg/s] Minimum mdot at "wini" speed 
 
% Compressor Data and .txt Files 
 
% data=dlmread('data.txt'); % Reads txt matrix of compressor map values 
% datamass=dlmread('Book2.txt'); % Reads column vector of mdot increments 
% betalines=dlmread('beta.txt'); % Reads beta line matrix 
% datamassbeta=dlmread('datamassbeta.txt'); % Outputs beta line no.: 68 rows 
% datamassPR=dlmread('datamassPR.txt'); % Outputs PR; 12 rows 
% datamassbeta71905=dlmread('datamassbeta71905.txt'); % Adds 0-20 speed 
% datamassPR71905=dlmread('datamassPR71905.txt'); % Adds 0-20 speed correction 
% datamassoriginal71905=dlmread('datamassoriginal71905.txt'); % Mass flow, N outputs PR from 0-110 
data72005=dlmread('data72005.txt'); % original PR fixed 
data72005rows=dlmread('data72005rows.txt'); % rows of this PR 
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% ajullir=dlmread('ajullir.txt'); 
% ajullir2=dlmread('ajullir2.txt'); 
 
Cp=1160; % [J/kgK] Specific heat: Note: Might need to change to 1004 
eta=.75;%.65; % Compressor efficiency 
 
%__________________________________________________________________________ 
% New Compressor Parameters 
 
conversion=.0254; hh=.659; hc=hh*conversion; dd2=6.605; dc2=dd2*conversion; 
rc2=dc2/2; dd1=4.354; dd0=1.572; ddd=dd1-dd0; ddd1=ddd*conversion; 
rc1=ddd1/2; dc1=dd1*conversion; 
degreeconversion=2*pi/360; al1=0; bb1=48; bet1=bb1*degreeconversion; 
aal2=70; al2=aal2*degreeconversion; bb2=110; bet2=bb2*degreeconversion; 
Ac2=pi*dc2*hc; dc0=dd0*conversion; 
% changed again bb1 from 55 to 48 
% changed al1 from 0 to 10 
 
%  
% rc1=.035; 
% al1=0; bet1=.837758; rc2=.0838835; al2=1.2217; 
% dc2=.167767; hc=.0167386; 
% Ac2=pi*dc2*hc; dc1=.1105916; dc0=.0399288; 
 
 
%__________________________________________________________________________ 
% Combustor Data 
 
dcomb=8.625; % Combustor outer diam [in] 
dcombsi=dcomb*convlen; 
dcomi=8.125; % Combustor inner diam [in] 
dcomisi=dcomi*convlen; 
insthick=2; % Insulation thickness [in] 
insthicksi=insthick*convlen; 
dcominssi=dcombsi+2*insthicksi; % Diam of insulation [m] 
Lcom=12; % Combustor length [in] 
Lcomsi=Lcom*convlen; 
Asin=pi*dcomisi*Lcomsi; % Inlet surface area of combustor [m^2] 
Asout=pi*dcominssi*Lcomsi; % Outer surface area including insulation [m^2] 
LHV=34600000; % Lower heating value of fuel [J/kg] 
mdotfuel=.019; % Mass flow rate of fuel [kg/s] 
Qin=mdotfuel*LHV; % Fuel valve input [W] 
%Qin=800000; 
%Tb=473.15; % Compressor outlet temperature 
Areacomb=(pi*dcomisi^2)/4; % Cross sectional area of combustor [m^2] 
Vol=Areacomb*Lcomsi; % Volume of combustor [m^3] 
rhocomb=2.986; % Assign density as outlet of compressor / temporary 
m=rhocomb*Vol; % Mass of air inside combustor [kg] 
 
 
ho=250; % Inner fluid convection coefficient [W/m^2K] / Forced convection 
ha=25; % Outer convection coefficient [W/m^2K] / Free convection 
kk1=80; % Incaloy thermal conductivity [W/mK] 
kk2=.075; % Insulation Microtherm thermal conductivity [W/mK] 
Cv=872.2; % Specific heat constant volume / Plenum [J/kgK] 
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Rt=2*pi*Lcomsi*(1/(ho*Asin) + 1/(ha*Asout)) + (log(dcombsi/dcomisi))/kk1 + 
(log(dcominssi/dcombsi))/kk2; % [mK/W] 
 
%__________________________________________________________________________ 
% Turbine T-101 Parameters 
 
Nmax=40500; % [rev/min] Max turbine speed  
%Tc=900; % Temperature out of combustor [K] 
%Pb=4*P1; % Outer pressure of compressor [Pa] 
k=Cp/Cv; % Gamma ratio 
a=(k-1)/k; % Simplified exponent 
etat=.7; % Turbine efficiency 
I=.027; % Shaft inertia [kgm^2] 
Welecload=0; % Electrical load on shaft [W] Runs well with 15, 30 or 45kW 
percentage=.222; % Percent for initial speed 
rpm=percentage*Nmax; % Initial velocity [rpm] 
rpmact=rpm; % Used in the step input for the controller 
wini=rpm*2*pi/60; % Initial velocity of turbine [rad/s] 
percntdes=1;%.7; % Desired percent of speed 
rpmdes=percntdes*Nmax; % Desired speed [rpm] 
wdes=rpmdes*2*pi/60; % Desired speed [rad/s] / Not needed 
delPb=9000; % [Pa] Delta P of piping from outlet of turbine to exhaust stack 
Pbturb=Pref+delPb; % [Pa] Turbine back pressure assumed 
TIT=1033.15; % [K] Turbine inlet temperature, for 60kW case 
TIP=326400; % [Pa] Turbine inlet press, for 60kW case; = 225kPag + 101.3kPa 
TET=776.15; % [K] Turbine exit temp, for 60kW case 
TOP=110400; % [Pa] Turbine outlet pressure, for 60kW case 
 
 
%__________________________________________________________________________ 
% Valve Data 
CAopening=dlmread('CAopening.txt'); % Vector of 10,30,50,70% opening, used for deP block 
CAopening2=dlmread('CAopening2.txt'); % -10,10,30,50,70, used for mdot block 
CAspeed=dlmread('CAspeed.txt'); % Vector of 10500,20500,30500,40500 rpm 
CApress=dlmread('CApress.txt'); % Vector of gage pressures [Pa] 
CAopenmdot=dlmread('CAopenmdot.txt'); % Vector 30,50,70 since no readings for 10 
CAmdot=dlmread('CAmdot.txt'); % CA mdot values 
BAopening=dlmread('BAopening.txt'); % 0,2,4,6,8,10,12,14,16,18 % opening 
BAopen=dlmread('BAopen.txt'); % 14,16,18 
BApress=dlmread('BApress.txt'); % BA gage values 
BAmdot=dlmread('BAmdot.txt'); % mdot values for BA 
HAopenings=dlmread('HAopenings.txt'); % 10-100% in 5% increments, used for press block 
HAopening2=dlmread('HAopening2.txt'); % starts from 0-100, at 5% increments, used for mdot block 
HAmdot=dlmread('HAmdot.txt');  
HApress=dlmread('HApress.txt'); 
%__________________________________________________________________________ 
% Controller Parameters: Original Brayton Report 
 
Kp=50;%10;%100; % Proportional Gain 
Ki=2;%5; % Integral Gain 
Kd=0;%50;%10; % Derivative Gain 
Kv=1; ; % Valve opening position per voltage 
Kq=1;%10; % Heat input per valve position / Characterization 
%__________________________________________________________________________ 
% Report Test Simulation Runs 
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% load xx1 xx2 xx3 xx4 xx5 xx6 xx7 xx8 xx9 
% y=xx1.signals.values; 
% y1=xx2.signals.values; 
% y2=xx3.signals.values; 
% yyy=xx8.signals.values; 
% yyyy=xx9.signals.values; 
% N=length(xx2.signals.values); 
%  
% % Compressor Parameters 
% tt=1:N; t=600*tt/N; 
% subplot(4,1,1);plot(t,y) 
% title('Compressor Outlet Parameters') 
% ylabel('Flow Rate [kg/s]'); hold on 
% subplot(4,1,2); plot(t,y1) 
% ylabel('Temp [K]'); hold on 
% subplot(4,1,3); plot(t,y2) 
% ylabel('Press [Pa]'); hold on 
% subplot(4,1,4); plot(t,yyyy) 
% ylabel('RPM') 
% xlabel('Time [Seconds]'); hold off 
%  
% % Turbine and Heat Exchanger Parameters 
% figure 
% y3=xx4.signals.values; 
% y4=xx5.signals.values; 
% y5=xx6.signals.values; 
% y6=xx7.signals.values; 
%  
% subplot(4,1,1);plot(t,y3) 
% title('Turbine and Heat Exchanger Parameters') 
% ylabel('Turb Temp [K]'); hold on 
% subplot(4,1,2); plot(t,y4) 
% ylabel('Turb Press [Pa]'); hold on 
% subplot(4,1,3); plot(t,y5) 
% ylabel('HX Inlet [K]'); hold on 
% subplot(4,1,4); plot(t,y6) 
% ylabel('HX Exit [K]') 
% xlabel('Time [Seconds]'); hold off 
%__________________________________________________________________________ 
% End of Program 
 

M-File that Generates 3x3 MIMO Plant 
 
% 3x3 system: Eliminate Tfc, Pfc and LB, BA 
  
clc; clear all 
  
%_____________________________________________ 
% Individual Transfer Functions 
  
% Nomenclature: Gij, i-output, j-input 
  
% Input No.1: BA - Bleed Air Bypass Valve 
g11=zpk([],[-.12 -.32 -.8],5.339e-4,'iodelay',2.29); 
g21=zpk(-.042,[-.073 -.2 -.2 -.2],.047,'iodelay',2.56); 
g31=zpk([],[-.025 -.2 -.3],3.991e-3,'iodelay',3.92); 
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g41=zpk([],[-.12 -.2 -.2 -.9],2.429e-3,'iodelay',1.03); 
g51=zpk([-.03 -5.1],[-.046 -.09 -1.1 -.25],1.485,'iodelay',1.12); 
% Input No.2: CA - Cold Air Bypass Valve 
g12=zpk([-.085],[-.08 -1.91],.032,'iodelay',.51); 
g22=zpk([-.015 -.085 -.4],[-.01 -.15 -.25 -.95],.099,'iodelay',3.29); 
g32=zpk([-2.5 -2.5],[-.025 -.2],6.731e-4,'iodelay',2.77); 
g42=zpk([],[-.32 -1.1],.788,'iodelay',.125); 
g52=zpk([roots([1 7.5e-3 .0056])'],[-.077 -.082 -2],26.682,'iodelay',.66); 
% Input No.3: HA - Hot Air Bypass Valve 
g13=zpk([-.7],[-.91 -2.5],.04,'iodelay',.77); 
g23=zpk([-.03 -.8],[-.059 -.081 -4],.178,'iodelay',1.57); 
g33=zpk([-2.5 -2.5],[-.025 -.2],3.185e-4,'iodelay',1.07); 
g43=zpk([],[-.2 -2],.357,'iodelay',.22); 
g53=zpk([-.03],[-.06 -.09],2.543,'iodelay',.85); 
% Input No.4: PV - Fuel Valve 
g14=zpk([-.022 -.3],[-.033 -.061 -1 -4],.041,'iodelay',1.38); 
g24=zpk([-.03],[-.04 -.07 -4],3.524,'iodelay',.43); 
g34=zpk([-.005 -.015],[-.04 -.05 -.1 -.15],.024,'iodelay',3.4); 
g44=zpk([-.054 -.054],[-.085 -.085 -.53 -.53],2.201,'iodelay',.18); 
g54=zpk([-.03 -3],[-.04 -.07],17.495,'iodelay',.2); 
% Input No.5: LB - Load Bank 
g15=zpk([-.022 -.3 -1.5],[-.043 -.071 -1 -3.5 -3.5],.048,'iodelay',1.59); 
g25=zpk([-.03],[-.05 -.07 -4],1.476,'iodelay',.92); 
g35=zpk([-2.5 -2.5],[-.025 -.1],1e-3,'iodelay',2.71); 
g45=zpk([],[-.15 -.15],.071,'iodelay',5.9); 
g55=zpk([-.02],[-.04 -.06],21.339,'iodelay',.153); 
  
%_____________________________________________ 
% Transfer Function Matrix 
  
Gp=[g12 g13 g14;... 
    g42 g43 g44;... 
    g52 g53 g54]; 
  
% Left: Inputs - CA, HA, PV 
% Left: Outputs - mdot, TIT, speed 
  
%_____________________________________________ 
% Time Delay Vector 
  
td=[2.29 .51 .77 1.38 1.59...     
    2.56 3.29 1.57 .43 .92... 
    3.92 2.77 1.07 3.4 2.71... 
    1.03 .125 .22 .18 5.9... 
    1.12 .66 .85 .2 .153]';  
  
td_max=max(td); td_min=min(td); % Max and Min Delay Times 
wd_m=1/td_max; % Frequency at Max Delay Time 
 
 

M-File that Analyzes MIMO Plant 
 
% Alex Tsai: 8/6/07 
% Multivariate Bode Plot, DC Gain, RGA, SVD, Transmission Zeros  
% 
% The code plots the Open Loop Singular Values of the Unscaled and Scaled 
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% Transfer Function Matrices. It also plots the Singular Values of the Open 
% Loop Sensitivity Function. The Relative Gain Array is calculated from the 
% plant's DC Gain, as well as from a Frequency Dependent Loop. Singular 
% Value Decomposition gives Input and Output Directions for the 5 Singular 
% Values at DC Gain. 
% 
% The plant has been modified to 3x3 dimensions 
  
clc; clear all 
  
%___________________________________________ 
% Loading the Unscaled and Simplified Plants 
load Gp 
load wd_m 
  
%___________________________________________ 
%Scaling Diagonal Input and Output Matrices 
  
dm=0.3; dTIT=50; dS=1500; % Units: [kg/s,C,rpm] 
dCA=10; dHA=10; dPV=1; % Units: [%,%,%] 
  
post=diag([dCA dHA dPV]);  
pre=diag([dm dTIT dS]);  
  
%__________________________________________ 
% Scaled Transfer Function Matrix 
  
Gscaled=inv(pre)*Gp*post;  
Gscaled=pade(Gscaled); % See Note 
  
%__________________________________________ 
% Multivariate Bode Plot for Gp, Gpscaled, S, T 
  
figure(1) % Unscaled and Scaled SV Plots 
sigma(Gp,'k'); hold on; sigma(Gscaled,'r'); hold off; grid on 
title('MIMO Open Loop Singular Values'); legend('Unscaled','Scaled') 
  
Sf=inv(eye(3)+Gscaled); % Open Loop Sensitivity Function 
Tf=eye(3)-Sf; % Open Loop Complementary Sensitivity Function 
  
figure(2) % Open Loop Sensitivity Function and Co-Sensitivity Function 
w=logspace(-4,3); sigma(Sf,'k',w); grid on 
title('MIMO Sensitivity Function Singular Values: Open Loop') 
  
%__________________________________________ 
% DC Gain and RGA: Unscaled and Scaled 
  
Gpz=evalfr(Gp,0); % Gain at Steady State, Unscaled 
Gpzs=evalfr(Gscaled,0); % Scaled DC Gain: See Note 
RGAz=Gpz.*inv(Gpz');  
  
%__________________________________________ 
% Frequency Dependent RGA: Ref [Oskar Vivero] 
  
w=logspace(-6,2); 
Gf=freqresp(Gp,w); 
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for i=1:length(w);  
    Grga(:,:,i)=Gf(:,:,i).*inv(Gf(:,:,i)'); 
end 
  
figure(3) % RGA(jw) Plot 
for i=1:3 
  for j=1:3 
    rgaij=Grga(i,j,:); 
    rgaint=Grga(1,2,:); 
    rgaijabs=abs(rgaij); rgaints=abs(rgaint); 
    uplot('liv,lm',w,rgaijabs(:),'k',w,rgaints(:),'r'); grid off 
    hold on 
 end 
end 
title('RGA(jw) Values'); ylabel('RGA Number'); xlabel('[rad/s]') 
hold off;  
  
%__________________________________________ 
% Input and Output Directionality: Condition Number 
  
[U,S,V]=svd(Gpz); % Unscaled Plant at DC 
[Us,Ss,Vs]=svd(Gpzs); % Scaled Plant at DC 
condnum=Ss(1,1)/Ss(3,3); % See Note 
  
%__________________________________________ 
% Open Loop Transmission Zeros 
  
Gsys=pade(Gp); Gsys=minreal(Gsys); %Gsys=minreal(Gp); 
[a,b,c,d]=ssdata(Gsys); 
z=tzero(a,b,c,d); 
zb_high=max(z); zb_low=min(z); 
index=find(z>0); 
zv=z(index);  
RHPfz=max(zv);RHPsz=min(zv); 
wc=real(RHPsz); 
  
%__________________________________________ 
% Notes: 
%   1. In the scaling diagonal matrices, 'pre' refers to the allowed errors 
%   of the outputs i.e. for m' in the fuel cell, the maximum allowed change 
%   in its value is +/-0.2kg/s from the nominal value. This is considered 
%   to be the 'window' of operation. The 'post' refers to the allowed 
%   changes from nominal of the input actuators i.e. the CA is not allowed 
%   to change more than 10% from its nominal value, without causing a stall. 
  
%   2. Pade is used on the scaled plant in order to obtain the inverse in 
%   the Sensitivity calculation. To have any meaning, scaling must be done 
%   prior to obtaining the Sensitivity Function. When using Pade prior to 
%   the SV Plot, the actual plot is lower in magnitude than without Pade. 
%   This might indicate either an approximation error, or the delays not 
%   being taken into account when Pade is not used. The choice is to use 
%   Pade before anything. 
  
%   3. RGAz is the RGA evaluated at 0 frequency. 
  
%   4. V is the unitary matrix corresponding to the input directions, 
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%   whereas U relates to the output directions. Will use U,S,V for the 
%   unscaled plant 
  
%   5. To track what is the Open Loop cross-over frequency, the norm 
%   function can be used on the upper singular values of Gscaled 
  
%   6. When computing the transmission zeros, it makes a difference whether 
%   Pade is used or not. If its not used prior to the command 'tzero', the 
%   maximum value of the Z vector is half that, when Pade is used i.e. 
%   without Pade zb_high=21.9, with Pade zb_high~56 
  
%   7. The condition number depends greatly on scaling. 
  
%___________________________________________ 
% End of Program 
 
 

M File that Generates Controller 
 
% Alex Tsai: 8/14/07 
% Robust Loop Shaping followed by Robustification 
% H-Infinity Algorithm: [Ref. Skogestad/Postlethwaite] 
  
clc; clear all 
%____________________________ 
load Gscaled 
load wc 
  
[AA,BB,CC,DD]=ssdata(Gscaled); 
  
%____________________________ 
% Upper and Lower Admissible Bounds 
  
s=tf('s'); 
wn=1*2*pi; % [1Hz] Uncertainty Bound i.e. Unmodeled Dynamics 
At=wc^2/(100*wc); 
Wt=(s+wc)^2/(At*(s+100*wc)); % High Frequency Weight 
  
ee=1.e-4; 
Ws=(s+.1*wc)/(2*s+ee); % Low Frequency Weight 
  
figure(1) % Bounds and Open Loop Scaled Singular Values 
w=logspace(-3,2); 
sigma(Ws,'b',w); hold on; sigma(Wt^-1,'r',w);  
hold on; sigma(Gscaled,'k',w); hold off 
title('Upper and Lower Robust and Performance Bounds');  
legend('Ws','Wt','Gscaled') 
grid on 
  
%_____________________________ 
% Loop Gain Dynamic Weight Wp 
  
A=wn*ee/wc; B=10^(100/20); A=A*B; C=10^(-45/20);  
A=A*C; A=A*10^(-20/20); A=A*10^(-40/20); 
  
Wp=A*(s+.02*wc)/((s+ee)^2*(s+.051*wn)^2);  
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Wp=Wp*eye(3); 
L=1*Gscaled*Wp; 
  
%____________________________ 
% Pre-Compensator Weight W1 [Ref. Glad/Ljung] 
  
Gf=evalfr(L,.41*wc); 
[U,S,V]=svd(Gf); 
  
p1=1; p2=3; 
alpha=(S(p1,p1)-S(p2,p2))/S(p2,p2); 
W1a=eye(3)+alpha*V(:,p2)*V(:,p2)'; 
  
W11=Wp*W1a; 
[x1,x2,x3,x4]=ssdata(W11); 
  
%____________________________ 
% Compensated Loop Gain 
  
L=L*W1a; 
  
figure(2) % Pre-Compensating Gscaled 
w=logspace(-5,1); 
sigma(Ws,'b',w); hold on; sigma(Wt^-1,'r',w); hold on; sigma(L,'k',w); hold off 
title('Compensated System'); legend('Ws','Wt','G*Wp') 
grid on 
  
figure(3) % Sensitivity Function 
S=inv(eye(3)+L); 
sigma(S,'b'); title('Compensated Sensitivity Function SV'); grid on 
  
figure(4) % Complementary Sensitivity Function 
T=eye(3)-S; 
sigma(T,'b'); title('Co-Sensitivity Function SV'); grid on 
  
% ____________________________ 
% H-Infinity Controller Algorithm [Ref. Skogestad/Postlethwaiste] 
  
[a,b,c,d]=ssdata(L);  
gamrel=1.1; 
[Ac,Bc,Cc,Dc,gammin] = coprimeunc(a,b,c,d,gamrel); 
  
%____________________________ 
% H-Infinity Controller Algorithm [Ref. Glad/Ljung] 
  
Ar1=a'; Br1=c'; Qr1=b*b'; 
[X,L1,G1,report1]=care(Ar1,Br1,Qr1); 
Ar2=a; Br2=b; Qr2=c'*c; 
[Z,L2,G2,report2]=care(Ar2,Br2,Qr2); 
  
lam=max(eig(X*Z)); 
al=1.1; 
gam=al*sqrt(1+lam); 
R=eye(size(X*Z))-(1/(gam^2))*(eye(size(X*Z))+Z*X); 
Lc=Br2'*X; 
K=inv(R)*Z*Br1; 
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Ke=K; Kc=Lc; 
  
%_____________________________ 
% Constant Pre-Filter Matrix: Evaluated at Steady State 
  
[Knum1,Kden1]=ss2tf(Ac,Bc,Cc,Dc,1); 
[Knum2,Kden2]=ss2tf(Ac,Bc,Cc,Dc,2); 
[Knum3,Kden3]=ss2tf(Ac,Bc,Cc,Dc,3); 
  
Gcnum={[Knum1(1,:)] [Knum2(1,:)] [Knum3(1,:)];... 
       [Knum1(2,:)] [Knum2(2,:)] [Knum3(2,:)];... 
       [Knum1(3,:)] [Knum2(3,:)] [Knum3(3,:)]}; 
    
Gcden={[Kden1] [Kden2] [Kden3];... 
       [Kden1] [Kden2] [Kden3];... 
       [Kden1] [Kden2] [Kden3]}; 
  
KKc=tf(Gcnum,Gcden); % Transfer Function Matrix 
Kzc=evalfr(KKc,0); % Controller/Filter Kc(0) 
  
%_______________________________________ 
% Disturbance Model Gd 
  
% Input No.5: LB - Load Bank 
g15=zpk([-.022 -.3 -1.5],[-.043 -.071 -1 -3.5 -3.5],.048,'iodelay',1.59); 
g45=zpk([],[-.15 -.15],.071,'iodelay',5.9); 
g55=zpk([-.02],[-.04 -.06],21.339,'iodelay',.153); 
  
% Input No.4: PV - Fuel Valve 
g14=zpk([-.022 -.3],[-.033 -.061 -1 -4],.041,'iodelay',1.38); 
g44=zpk([-.054 -.054],[-.085 -.085 -.53 -.53],2.201,'iodelay',.18); 
g54=zpk([-.03 -3],[-.04 -.07],17.495,'iodelay',.2); 
  
Gdd=[g14 g15;g44 g45;g54 g55]; % Disturbance Plant 
  
% Scaling Factors 
dL=1; dm=.3; dTIT=50; dS=1500; dPV=1; 
post3=diag([dPV dL]);  
pre3=diag([dm dTIT dS]);  
  
Gddscaled=inv(pre3)*Gdd*post3; % Scaled Disturbance Matrix 
Gddscaled=pade(Gddscaled); 
  
[ALL,BLL,CLL,DLL]=ssdata(Gddscaled); 
  
%__________________________________ 
% End of Program 
 

M-File that Generates Co-Prime Solution [Ref.Skogestad/Postlewaite] 
 
%function [Ac,Bc,Cc,Dc,gammin] = coprimeunc(a,b,c,d,gamrel) 
% 
% Finds the controller which optimally robustifies a given 
% shaped plant in terms of tolerating maximum coprime uncertainty. 
% Used in the McFarlane-Glover H-infinity loopshaping procedure. 
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% --- Uses the robust control toolbox --- 
% 
%    a,b,c,d:     State-space description of (shaped) plant   
%    gamrel:      Final gamma used is gamrel*gammin [default: gamrel=1.1] 
%    Ac,Bc,Cc,Dc: State-space description of "robustifying" controller 
%                 assuming positive feedback 
% 
% Copyright 1996-2003 Sigurd Skogestad & Ian Postlethwaite 
  
% $Id: coprimeunc.m,v 1.2 2004/04/15 08:10:13 vidaral Exp $ 
  
function [Ac,Bc,Cc,Dc,gammin] = coprimeunc(a,b,c,d,gamrel) 
if nargin <4,  
   disp('usage:  [Ac,Bc,Cc,Dc] = coprimeunc(a,b,c,d,gamrel)'); return; end 
if nargin <5, gamrel=1.1; end 
  
% Find Normalized Coprime factors of the shaped plant 
S=eye(size(d'*d))+d'*d; 
R=eye(size(d*d'))+d*d'; 
Rinv=inv(R);Sinv=inv(S); 
  
A1 = (a-b*Sinv*d'*c); R1 =S; B1=b; Q1 = c'*Rinv*c; 
[X,XAMP,G,REP]=care(A1,B1,Q1,R1); 
if REP == -1 
    disp('The Hamiltonian matrix has jw-axis eigenvalues') 
elseif REP == -2 
    disp('There is no finite stabilizing solution X') 
else 
    sprintf('X: Frobenius norm of relative residual= %0.5g',REP) 
end     
  
A2 = A1'; Q2 = b*Sinv*b'; B2=c'; R2 = R; 
[Z,ZAMP,G,REP]=care(A2,B2,Q2,R2); 
if REP == -1 
    disp('The Hamiltonian matrix has jw-axis eigenvalues') 
elseif REP == -2 
    disp('There is no finite stabilizing solution X') 
else 
    sprintf('Z: Frobenius norm of relative residual= %0.5g',REP); 
end    
  
% display optimal gamma 
XZ = X*Z; gammin=sqrt(1+max(eig(XZ))) 
  
% Use higher gamma  
gam=gamrel*gammin; gam2 = gam*gam; gamconst = (1-gam2)*eye(size(XZ));  
Lc = gamconst + XZ; Li = inv(Lc'); Fc = -Sinv*(d'*c+b'*X); 
Ac = a + b*Fc + gam2*Li*Z*c'*(c+d*Fc); 
Bc = gam2*Li*Z*c'; 
Cc = b'*X;  
Dc = -d'; 
%--------------------------------------------------------------------- 
  

M-File that Compares Open Loop TF Step Response with Data 
 
% Alex Tsai: 9/1/07 
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% Step Data for Comparison with Transfer Function Matrix 
% Open Loop Step Response: Test Date 8/3/06, pg.4 PV = 39 to 41% 
  
clc; clear all 
load mdot 
load TIT 
load speed 
  
% Simulink Run Workspace Values: g14 
mdot_y=mdot.signals.values; mdot_y=mdot_y+1.12; 
mdot_time=mdot.time; 
  
TIT_y=TIT.signals.values; TIT_y=TIT_y+703; 
speed_y=speed.signals.values; speed_y=speed_y+40120; 
  
g14=zpk([-.022 -.3],[-.033 -.061 -1 -4],.041,'iodelay',1.38);  
g44=zpk([-.054 -.054],[-.085 -.085 -.53 -.53],2.201,'iodelay',.18); 
g54=zpk([-.03 -3],[-.04 -.07],17.495,'iodelay',.2); 
  
% PV Step Input - [2%] : Note: CA was 34% Opened 
  
%______________________________ 
% FT380 = Fuel Cell Mdot 
  
subplot(3,1,1) 
FT380_mfc=dlmread('PVstepFT380.txt'); 
time_v=FT380_mfc(:,1); 
FT380_v=FT380_mfc(:,2); 
  
plot(time_v./60,FT380_v,'k'); hold on 
plot(mdot_time./60,mdot_y); hold off; grid on 
title('FT380 Response to PV432 2% Open Loop Step') 
xlim([0 time_v(length(time_v))/60]) 
ylim([1.1 1.2]) 
ylabel('m dot [kg/s]') 
  
mdotss=1.165; % From Test Data 
error_mdot=(mdot_y(length(mdot_y))-mdotss)/mdotss; 
  
%______________________________ 
% TE350 = Turbine Inlet Temperature 
  
subplot(3,1,2) 
TIT_T=dlmread('PVstepTE350.txt'); 
time_v=TIT_T(:,1); 
TE350_v=TIT_T(:,2); 
  
plot(time_v./60,TE350_v,'k'); hold on 
plot(mdot_time./60,TIT_y); hold off; grid on 
title('TE350 Response to PV432 2% Open Loop Step') 
xlim([0 time_v(length(time_v))/60]) 
ylabel('TIT [C]') 
  
TITss=711; % From Test Data 
error_TIT=(TIT_y(length(TIT_y))-TITss)/TITss; 
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%______________________________ 
% S502A = Turbine Speed 
  
subplot(3,1,3) 
S502A=dlmread('PVstepS502.txt'); 
time_v=S502A(:,1); 
S502_v=S502A(:,2); 
  
plot(time_v./60,S502_v,'k'); hold on 
plot(mdot_time./60,speed_y); hold off; grid on 
title('S502A Response to PV432 2% Open Loop Step') 
xlim([0 time_v(length(time_v))/60]) 
xlabel('Time [min]') 
ylabel('Speed [rpm]') 
  
speedss=41030; % From Test Data 
error_speed=(speed_y(length(speed_y))-speedss)/speedss; 
  
% Notes:  
%   1.  The step is from 39%-41%. If problems arise with the model, use 
%       these limits instead 
%   2.  To acquire all the data, must run the Simulink file 'StepResponse', 
%       save the corresponding Workspace output variables on the MatLab 
%       workspace, and then run this mfile. 
%   3.  Need to verify the speed transfer function in generated Bode file 
%   4.  The zpk gain of the speed TF was changed from -17 to -40. There was 
%       a better fit of the step response. 
  
%______________________________ 
% End of Program 
 
 
% Alex Tsai: 9/1/07 
% Step Data for Comparison with Transfer Function Matrix 
% Open Loop Step Response: Test Date 12/15/05, pg.4 CA = 45 to 42% 
  
clc; clear all 
% Loading Simulink Workspace Output Variables 
load mdotCA 
load TITCA 
load speedCA 
  
% Simulink Run Workspace Values: g14 
mdot_y=mdotCA.signals.values; mdot_y=mdot_y+1; 
mdot_time=mdotCA.time; 
  
TIT_y=TITCA.signals.values; TIT_y=TIT_y+662; 
speed_y=speedCA.signals.values; speed_y=speed_y+40400; 
  
% Equations that need to be Inserted in Simulink, from Pade Approx. 
g12=zpk([-.085],[-.08 -1.91],.032,'iodelay',.51); 
g42=zpk([],[-.32 -1.1],.788,'iodelay',.125); 
g52=zpk([roots([1 7.5e-3 .0056])'],[-.077 -.082 -2],26.682,'iodelay',.66); 
  
% CA Step Input Decrement - [3%]  
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%______________________________ 
% FT380 = Fuel Cell Mdot 
  
subplot(3,1,1) 
FT380_mfc=dlmread('CAstepFT380.txt'); 
time_v=FT380_mfc(:,1); 
FT380_v=FT380_mfc(:,2); 
  
plot(time_v./60,FT380_v,'k'); hold on 
plot(mdot_time./60,mdot_y); hold off; grid on 
title('FT380 Response to ZC170 3% Open Loop Step Decrement') 
xlim([0 time_v(length(time_v))/60]) 
ylabel('m dot [kg/s]') 
  
mdotss=1.06; % From Test Data 
error_mdot=(mdot_y(length(mdot_y))-mdotss)/mdotss; 
  
%______________________________ 
% TE350 = Turbine Inlet Temperature 
  
subplot(3,1,2) 
TIT_T=dlmread('CAstepT350.txt'); 
time_v=TIT_T(:,1); 
TE350_v=TIT_T(:,2); 
  
plot(time_v./60,TE350_v,'k'); hold on 
plot(mdot_time./60,TIT_y); hold off; grid on 
title('TE350 Response to ZC170 3% Open Loop Step Decrement') 
xlim([0 time_v(length(time_v))/60]) 
ylabel('TIT [C]') 
  
TITss=667; % From Test Data 
error_TIT=(TIT_y(length(TIT_y))-TITss)/TITss; 
  
%______________________________ 
% S502A = Turbine Speed 
  
subplot(3,1,3) 
S502A=dlmread('CAstepS502.txt'); 
time_v=S502A(:,1); 
S502_v=S502A(:,2); 
  
plot(time_v./60,S502_v,'k'); hold on 
plot(mdot_time./60,speed_y); hold off; grid on 
title('S502A Response to ZC170 3% Open Loop Step Decrement') 
xlim([0 time_v(length(time_v))/60]) 
xlabel('Time [min]') 
ylabel('Speed [rpm]') 
  
speedss=40400; % From Test Data 
error_speed=(speed_y(length(speed_y))-speedss)/speedss; 
  
% Notes:  
%   1.  The step is from 45%-42%. If problems arise with the model, use 
%       these limits instead 
%   2.  To acquire all the data, must run the Simulink file 'StepResponse', 
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%       save the corresponding Workspace output variables on the MatLab 
%       workspace, and then run this mfile. 
%   3.  Need to verify the speed transfer function in generated Bode file 
%   4.  The step decrement plot of the CA command is also in txt format 
%   5.  There seems to be a lot of SNR. Find this value. The sampling 
%       frequency is 25Hz or 0.04sec 
  
  
%______________________________ 
% End of Program 
 
% Alex Tsai: 9/1/07 
% Step Data for Comparison with Transfer Function Matrix 
% Open Loop Step Response: Test Date 1/12/06, pg.4 HA = 33 to 37% 
  
clc; clear all 
% Loading Simulink Workspace Output Variables 
load mdotHA 
load TITHA 
load speedHA 
  
% Simulink Run Workspace Values: g14 
mdot_y=mdotHA.signals.values; mdot_y=mdot_y+.945; 
mdot_time=mdotHA.time; 
  
TIT_y=TITHA.signals.values; TIT_y=TIT_y+777.5; 
speed_y=speedHA.signals.values; speed_y=speed_y+40450; 
  
% Equations that need to be Inserted in Simulink, from Pade Approx. 
g13=zpk([-.7],[-.91 -2.5],.04,'iodelay',.77); 
g43=zpk([],[-.2 -2],.357,'iodelay',.22); 
g53=zpk([-.03],[-.06 -.09],2.543,'iodelay',.85); 
  
% HA Step Input Increment - [4%]  
  
%______________________________ 
% FT380 = Fuel Cell Mdot 
  
subplot(3,1,1) 
FT380_mfc=dlmread('HAstepFT380.txt'); 
time_v=FT380_mfc(:,1); 
FT380_v=FT380_mfc(:,2); 
  
plot(time_v./60,FT380_v,'k'); hold on 
plot(mdot_time./60,mdot_y); hold off; grid on 
title('FT380 Response to ZC380 4% Open Loop Step') 
xlim([0 time_v(length(time_v))/60]) 
ylabel('m dot [kg/s]') 
  
mdotss=1.165; % From Test Data 
error_mdot=(mdot_y(length(mdot_y))-mdotss)/mdotss; 
  
%______________________________ 
% TE350 = Turbine Inlet Temperature 
  
subplot(3,1,2) 
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TIT_T=dlmread('HAstepT350.txt'); 
time_v=TIT_T(:,1); 
TE350_v=TIT_T(:,2); 
  
plot(time_v./60,TE350_v,'k'); hold on 
plot(mdot_time./60,TIT_y); hold off; grid on 
title('TE350 Response to ZC380 4% Open Loop Step') 
xlim([0 time_v(length(time_v))/60]) 
ylabel('TIT [C]') 
  
TITss=711; % From Test Data 
error_TIT=(TIT_y(length(TIT_y))-TITss)/TITss; 
  
%______________________________ 
% S502A = Turbine Speed 
  
subplot(3,1,3) 
S502A=dlmread('HAstepS502A.txt'); 
time_v=S502A(:,1); 
S502_v=S502A(:,2); 
  
plot(time_v./60,S502_v,'k'); hold on 
plot(mdot_time./60,speed_y); hold off; grid on 
title('S502A Response to ZC380 4% Open Loop Step') 
xlim([0 time_v(length(time_v))/60]) 
xlabel('Time [min]') 
ylabel('Speed [rpm]') 
  
speedss=41030; % From Test Data 
error_speed=(speed_y(length(speed_y))-speedss)/speedss; 
  
% Notes:  
%   1.  The step is from 45%-42%. If problems arise with the model, use 
%       these limits instead 
%   2.  To acquire all the data, must run the Simulink file 'StepResponse', 
%       save the corresponding Workspace output variables on the MatLab 
%       workspace, and then run this mfile. 
%   3.  Need to verify the speed transfer function in generated Bode file 
%   4.  The step decrement plot of the HA command is also in txt format 
%   5.  The step increase in HA is really a step decrease in Simulink, 
%       since opening the valve, reduces the flow to the fuel cell.   
%______________________________ 
% End of Program 
 

M-File that Generates Controller Plots of Simulink Control Configuration 
 
% Alex Tsai: 9/3/07 
% Simulink Control Diagram Plots 
  
clc; clear all 
  
load outputstates 
load actuators 
  
%_____________________________ 
% Output State Plot 
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outputvalues=outputstates.signals.values; 
outputtime=outputstates.time; 
  
mdotvalue=outputvalues(:,1); 
TITvalue=outputvalues(:,2); 
speedvalue=outputvalues(:,3); 
  
figure(1) 
subplot(3,1,1) 
plot(outputtime./60,mdotvalue); title('Compensated Ref Tracking: Simult Steps') 
ylabel('mdot [kg/s]-norm'); grid on 
subplot(3,1,2) 
plot(outputtime./60,TITvalue); 
ylabel('TIT [C]-norm'); grid on 
subplot(3,1,3) 
plot(outputtime./60,speedvalue); 
ylabel('\Omega [rpm]-norm'); grid on 
xlabel('Time [min]') 
  
% Info on the Step Response of the States 
S_mdot=stepinfo(mdotvalue,outputtime,1); 
S_TIT=stepinfo(TITvalue,outputtime,1); 
S_speed=stepinfo(speedvalue,outputtime,1); 
  
%______________________________ 
% Actuator Plot 
  
actuatorvalues=actuators.signals.values; 
actuatortime=actuators.time; 
  
CAvalue=actuatorvalues(:,1); 
HAvalue=actuatorvalues(:,2); 
PVvalue=actuatorvalues(:,3); 
  
figure(2) 
subplot(3,1,1) 
plot(actuatortime./60,CAvalue); title('Compensated Ref Tracking: Simult Steps') 
ylabel('CA [%]'); grid on 
subplot(3,1,2) 
plot(actuatortime./60,HAvalue); 
ylabel('HA [%]'); grid on 
subplot(3,1,3) 
plot(actuatortime./60,PVvalue); 
ylabel('PV [%]'); grid on 
xlabel('Time [min]') 
  
% Info on the Step Response of the Valves 
S1_CA=stepinfo(CAvalue); 
S1_HA=stepinfo(HAvalue); 
S1_PV=stepinfo(PVvalue); 
  
% Note: The Simulink mdl file 'AlexLast' mus be ran first, and then the 
% Workspace Variables saved on the MatLab workspace. This m-file runs 
% afterwards. 
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%_____________________________ 
% End of Program 
  

M-File that Analyzes Robustness to Uncertainty of Plant 
 
% Alex Tsai: 8/28/07 
% Uncertainty Analysis: HyPer Pant 
  
clc; clear all 
  
%__________________________ 
% Piecewise Nominal and Perturbed Transfer Functions 
  
% CA - Cold Air Bypass Valve 
  
% Nominal Unperturbed TF: 
 g12=zpk([-.085],[-.08 -1.91],.032,'iodelay',.51);  
% g42=zpk([],[-.32 -1.1],.788,'iodelay',.125);  
 g52=zpk([roots([1 7.5e-3 .0056])'],[-.077 -.082 -2],26.682,'iodelay',.66); 
g12=pade(g12);  
% g42=pade(g42);  
g52=pade(g52); 
  
% Perturbed TF: g12 
% p=10; per='percentage'; 
% z12a=ureal('z12a',.085,'per',p); z12b=ureal('z12b',-3.922,'per',p); 
% p12a=ureal('p12a',.08,'per',p); p12b=ureal('p12b',1.91,'per',p); 
% p12c=ureal('p12c',3.922,'per',p); 
%  
% g12=tf(-.032*[1 (z12a+z12b) (z12a*z12b)],... 
%     [1 (p12a+p12b+p12c) (p12a*p12c + p12b*p12c + p12a*p12b) (p12a*p12b*p12c)]);  
  
% Perturbed TF: g42 
p=10; per='percentage'; 
z42a=ureal('z42a',-16,'per',p); 
p42a=ureal('p42a',.32,'per',p); p42b=ureal('p42b',1.1,'per',p); 
p42c=ureal('p42c',16,'per',p); 
  
g42=tf(-.788*[1 z42a],... 
    [1 (p42a+p42b+p42c) (p42a*p42c + p42b*p42c + p42a*p42b) (p42a*p42b*p42c)]);  
  
% Perturbed TF: g52 
% p52=p; 
% z52a=ureal('z52a',-3.03,'per',p52); p52a=ureal('p52a',.077,'per',p52); 
% p52b=ureal('p52b',.082,'per',p52); p52c=ureal('p52c',2,'per',p52); 
% p52d=ureal('p52d',3.03,'per',p52); 
%  
% A52=p52a+p52b+p52c;  
% B52=p52a*p52c + p52b*p52c + p52a*p52b; 
% C52=p52a*p52b*p52c; 
% g52=tf(-26.682*[1 (z52a+.0075) (z52a*.0075+.0056) (z52a*.0056)],... 
%     [1 (A52+p52d) (B52+A52*p52d) (C52+B52*p52d) (C52*p52d)]); 
  
% HA - Hot Air Bypass Valve 
  
% Nominal Unperturbed TF: 
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g13=zpk([-.7],[-.91 -2.5],.04,'iodelay',.77); 
g43=zpk([],[-.2 -2],.357,'iodelay',.22); 
g53=zpk([-.03],[-.06 -.09],2.543,'iodelay',.85); 
g13=pade(g13);  
g43=pade(g43);  
g53=pade(g53); 
  
% % Perturbed TF: g13 
% z13a=ureal('z13a',.75,'per',p); z13b=ureal('z13b',-2.597,'per',p); 
% p13a=ureal('p13a',.91,'per',p); p13b=ureal('p13b',2.5,'per',p); 
% p13c=ureal('p13c',2.597,'per',p); 
%  
% g13=tf(-.04*[1 (z13a+z13b) (z13a*z13b)],... 
%     [1 (p13a+p13b+p13c) (p13a*p13c + p13b*p13c + p13a*p13b) (p13a*p13b*p13c)]); 
  
% % Perturbed TF: g43 
% z43a=ureal('z43a',-9.091,'per',p); 
% p43a=ureal('p43a',.2,'per',p); 
% p43b=ureal('p43b',2,'per',p); 
% p43c=ureal('p43c',9.091,'per',p); 
%  
% g43=tf(-.357*[1 z43a],... 
%     [1 (p43a+p43b+p43c) (p43a*p43c + p43b*p43c + p43a*p43b) (p43a*p43b*p43c)]); 
  
% % Perturbed TF: g53 
% z53a=ureal('z53a',.03,'per',p); z53b=ureal('z53b',-2.353,'per',p); 
% p53a=ureal('p53a',.06,'per',p); p53b=ureal('p53b',.09,'per',p); 
% p53c=ureal('p53c',2.353,'per',p); 
%  
% g53=tf(-2.543*[1 (z53a+z53b) (z53a*z53b)],... 
%     [1 (p53a+p53b+p53c) (p53a*p53c + p53b*p53c + p53a*p53b) (p53a*p53b*p53c)]); 
  
% PV - Fuel Valve 
  
% Nominal Unperturbed TF: 
g14=zpk([-.022 -.3],[-.033 -.061 -1 -4],.041,'iodelay',1.38); 
g44=zpk([-.054 -.054],[-.085 -.085 -.53 -.53],2.201,'iodelay',.18); 
g54=zpk([-.03 -3],[-.04 -.07],17.495,'iodelay',.2); 
g14=pade(g14);  
g44=pade(g44);  
g54=pade(g54); 
  
% % Perturbed TF: g14 
% z14a=ureal('z14a',.022,'per',p); z14b=ureal('z14b',.3,'per',p); 
% z14c=ureal('z14c',-1.449,'per',p); p14a=ureal('p14a',.033,'per',p); 
% p14b=ureal('p14b',.061,'per',p); p14c=ureal('p14c',1,'per',p); 
% p14d=ureal('p14d',1.449,'per',p); 
%  
% A14=p14a+p14b+p14c;  
% B14=p14a*p14c + p14b*p14c + p14a*p14b; 
% C14=p14a*p14b*p14c; 
% g14=tf(-.041*[1 (z14a+z14b+z14c) (z14a*z14c + z14b*z14c + z14a*z14b) (z14a*z14b*z14c)],... 
%     [1 (A14+p14d) (B14+A14*p14d) (C14+B*p14d) (C14*p14d)]); 
  
% % Perturbed TF: g44 
% z44a=ureal('z44a',.054,'per',p); z44b=z44a; 
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% z44c=ureal('z44c',-11.11,'per',p); p44a=ureal('p44a',.085,'per',p); p44b=p44a; 
% p44c=ureal('p44c',.53,'per',p); p44d=p44c; p44f=ureal('p44f',11.11,'per',p); 
%  
% A44=p44a+p44b+p44c;  
% B44=p44a*p44c + p44b*p44c + p44a*p44b; 
% C44=p44a*p44b*p44c; 
% H44=A44+p44d; 
% M44=B44+A44*p44d; 
% N44=C44+B44*p44d; 
% O44=C44*p44d; 
% g44=tf(-2.201*[1 (z44a+z44b+z44c) (z44a*z44c + z44b*z44c + z44a*z44b) (z44a*z44b*z44c)],... 
%     [1 (H44+p44f) (M44+p44f*H44) (N44+p44f*M44) (O44+p44f*N44) (p44f*O44)]);  
  
% % Perturbed TF: g54 
% z54a=ureal('z54a',.03,'per',p); 
% z54b=ureal('z54b',-10,'per',p); 
% p54a=ureal('p54a',.04,'per',p); 
% p54b=ureal('p54b',.07,'per',p); 
% p54c=ureal('p54c',10,'per',p); 
%  
% g54=tf(-17.495*[1 (z54a+z54b) (z54a*z54b)],... 
%     [1 (p54a+p54b+p54c) (p54a*p54c + p54b*p54c + p54a*p54b) (p54a*p54b*p54c)]); 
  
%___________________________ 
% Disturbed Plant 
  
Gp=[g12 g13 g14;... 
    g42 g43 g44;... 
    g52 g53 g54]; 
  
%__________________________ 
% Scaled Plant 
  
dm=0.3; dTIT=50; dS=1500; dCA=10; dHA=10; dPV=1;  
post=diag([dCA dHA dPV]); pre=diag([dm dTIT dS]);  
  
Gscaled=inv(pre)*Gp*post; 
Gnom=Gscaled; 
  
lfu=.05; % Low Frequency Uncertainty Percent: x100=[%] i.e. 5% 
hfu=10; % High Frequency Uncertainty Percent i.e. 1000% 
  
%_____________________________ 
% Including Actuator Dynamics as Uncertainty Parameters 
  
wca=2.2; wha=1.26; pv=20; % Actuator Bandwidth: CA,HA,PV 
Wca=makeweight(lfu,wca,hfu); 
Wha=makeweight(lfu,wha,hfu); 
Wpv=makeweight(lfu,pv,hfu); 
del1=ultidyn('del1',[1 1]); 
del2=ultidyn('del2',[1 1]); 
del3=ultidyn('del3',[1 1]); 
Gunc=Gnom*blkdiag(1+Wca*del1,1+Wha*del2,1+Wpv*del3); 
  
load Ac Bc Cc Dc 
load x1 x2 x3 x4 
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load Kzc 
  
sysK=ss(Ac,Bc,Cc,Dc); % Robust Controller 
sysPreC=ss(x1,x2,x3,x4); % Pre-Compensator 
sysPreF=Kzc; % Pre-Filter 
  
feedF=Gunc*sysPreC; % FeedForward Path 
feedB=feedback(feedF,sysK,+1); % Feedback Path 
sysCL=-Kzc*feedB; % Feedback + Pre-Compensator 
  
figure(1) 
step(sysCL); % title({'MIMO Step Response';''}) 
  
% Use the Below Commands for the Simulink Response 
% figure(2) 
% [ax,bx,cx,dx]=ssdata(sysCL); 
% [y,x,t] = step(ax,bx,cx,dx,1);  
% S=stepinfo(y,t,1); 
  
%____________________________ 
% A: Robustness Analysis: For Inclusion of Actuator Dyanmics 
  
[stabmarg,destabu,report]=robuststab(sysCL); 
  
% % Output Sensitivity of Uncertain System 
%  
% sysSen=feedback(sysK,feedF,+1); 
% [maxgain,wcu]=wcgain(sysSen); 
%  
% figure(2) 
% bodemag(sysSen.NominalValue,'b',usubs(sysSen,wcu),'r'); 
%  
% % Closed Loop Analysis: Transmission of disturbances from plant I/O 
%  
% F=loopsens(feedF,-sysK); 
%  
% figure(3) 
% bodemag(F.PSi,{1e-4 100}); title('I/O Plant Disturbance Transmission'); 
%  
% [stabmargx,destabux,reportx]=robuststab(F.So); % Repeat for F.So 
%  
% figure(4) 
% bodemag(F.So.NominalValue,{1e-4 100}) % Worst Case Gain Analysis 
%  
% [PeakNom,Freq]=norm(F.So.NominalValue,'inf'); 
% [maxgainS,wcuS]=wcgain(F.So); 
%  
% figure(5) 
% step(F.To.NominalValue,usubs(F.To,wcuS));  
% title('Worst Case Step Response'); 
  
%_____________________________ 
% B: Robustness Analysis: Unstructured Uncertainty 
  
% wwc=1*2*pi; % Weight Cross Over Frequency 
% W=makeweight(lfu,wwc,hfu);  
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% no_out=3; no_in=3; % Number of Outputs, Inputs 
% pu=1; % Percent Uncertainty 
% delta=ultidyn('delta',[no_out no_in],'Bound',pu);  
% I=eye(size(Gnom)); 
% Gunc=Gnom*(I+W*delta); % Uncertain Plant 
% % load Ac Bc Cc Dc 
% load x1 x2 x3 x4 
% load Kzc 
%  
% sysK=ss(Ac,Bc,Cc,Dc); % Robust Controller 
% sysPreC=ss(x1,x2,x3,x4); % Pre-Compensator 
% sysPreF=Kzc; % Pre-Filter 
%  
% feedF=Gunc*sysPreC; 
% feedB=feedback(feedF,sysK,+1); 
% sysCL=-Kzc*feedB; 
%  
% step(sysCL); 
%  
% [stabmarg,destabu,report]=robuststab(sysCL); 
%  
% % Output Sensitivity of Uncertain System 
%  
% sysSen=feedback(sysK,feedF,+1); 
% [maxgain,wcu]=wcgain(sysSen); 
%  
% figure(2) 
% bodemag(sysSen.NominalValue,'b',usubs(sysSen,wcu),'r'); 
%  
% % Closed Loop Analysis: Transmission of disturbances from plant I/O 
%  
% F=loopsens(feedF,-sysK); 
%  
% figure(3) 
% bodemag(F.PSi,{1e-4 100}); title('I/O Plant Disturbance Transmission'); 
%  
% [stabmargx,destabux,reportx]=robuststab(F.So); % Repeat for F.So 
%  
% figure(4) 
% bodemag(F.So.NominalValue,{1e-4 100}) % Worst Case Gain Analysis 
%  
% [PeakNom,Freq]=norm(F.So.NominalValue,'inf'); 
% [maxgainS,wcuS]=wcgain(F.So); 
%  
% figure(5) 
% step(F.To.NominalValue,usubs(F.To,wcuS));  
% title('Worst Case Step Response');  
%_____________________________ 
% % Notes: 
% %   1. The code tests range of uncertainty for poles/zeros at various 
% %   transfer function combinations. 
% %   2. The peturbed transfer functions have added poles/zeros 
% %   corresponding to the pade approximation. See Note on 'Ub.m' 
% %__________________________ 
% % End of Program 
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Appendix F 
 

Woodward GAP Programming Sheet 
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Appendix G 
 

HYPER Test Plan and Check List 

August 25 2006 

 
Purpose: The purpose of the startup test is to bring the turbine up to the operational 

steady state nominal speed of 40,500rpm, with all valves closed at 45kW 
electrical load. 

 
 The purpose of the operational test is to determine the magnitude range of the 

fuel flow valve when the valve is fluctuated sinusoidally.  This test is 
intended to be a scoping study in preparation for the frequency response test 
that follows. The fuel valve is to be fluctuated at given amplitude and 
frequency, for two separate chosen frequencies. 

 
 The test will ramp up the speed to the nominal value of 40,500rpm under 

speed control, and switch to open loop mode.  At this point, the fuel valve is 
to be fluctuated sinusoidally, starting with a magnitude of +/-10.15% of the 
nominal fuel flow, corresponding to 13.5g/s i.e. 40,500rpm, and a frequency 
of 0.017Hz i.e. 60s period.  This magnitude limit is set to avoid the lower 
speed limit restriction set at 38,475rpm. The magnitude percentage will be 
slowly increased in 1% steps, until a speed interlock warning flashes or any 
other interlock is activated.  This test will be repeated for a frequency of 
1.667Hz i.e. 0.6s period.  For each case, the signal will remain at a given 
frequency for up to 3 periods of oscillation, before the next frequency is 
tested.   

  
 All Hyper states will be recorded. 
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Start Procedure of Startup Test (060825) 
             

   

     DR Pre-Operational inspection  COMPLETE.   

   DR GAP and Watchwindows  OPEN.  Note GAP version:    
 

   AT APACS and Atlas Clocks  SYNCHONIZED.   

   AT Live Engineering Data Spreadsheet  INITIALIZED. 
 

   DR Natural Gas Totalizer  RESET.   

   DR HV-414, HV-408 and HV-430  CLOSED.   
 

   AT Set Gas Valve FV-432 Mode to Auto Ramp (Ramp initiated at 

9000rpm) 

   AT Set All OTHER GAP Gains  to DEFAULT settings 
 

   DR Set Hot Air By-Pass FV-380 Mode to 1:  Manual, 0% Open 

   DR Set Bleed Air FV-162 Mode to 2:  Manual, 100% Closed 

   DR Set Cold Air By-Pass FV-170 Mode to 1:  Manual, 0% Open  

   DR Blower  ON  (Alt-Tab) 
 

   DR APACS Log  START 

   AT Data Log  START 

  

   DR HV-600  OPEN  (Alt-Tab) 
 

   AT System Purge  ON 

   DR FE-380 positive flow ≥ 0.10kg/s  CHECK 

 

   DR HV-408 and HV-430  REQUEST OPEN 

 

   DR Purge Complete  CHECK 

   DR HS-460C Burner Ignition Automated at 9,000rpm  CHECK 

   DR If purge complete over 9,000rpm, HS-460A Manual Ignition  ON 

   DR TE-333 shows flame  CHECK 

   DR ST-502 > 35,000rpm, I-4 enabled CHECK 

   DR ST-502 > 41,000rpm, HV-600  CLOSED 

   DR Blower  OFF 

 

Procedure of Operational Test (060825) 
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   AT At 40,500rpm, verify the default rate of Time Ramp Block to be 1, 
CHECK 

   AT Verify that Phase Block has input 0, %NomFuel has input 10.15% and 
NomFuelFlow is at 13g/s.  CHECK 

  AT Input frequency of 0.017Hz i.e. 60s period, in Frequency Block, and 
input multiple of 60 second times in the Ramp Upper Limit Box i.e. 
1*60, 2*60, 3*60 to discretion  

 

   AT Enable the Activate Signal Block by selecting IN to be TRUE  

 

   DR Observe that the speed response and TIT temperature do not exceed 
operational limits 

 

 

        AT Increase the %NomFuel Block by 1% and observe speed response.  
Repeat increasing until an interlock warning displays  

 

 

  AT Disable the Activate Signal Block by selecting IN to be FALSE  
 

   AT Verify that TIT and Shaft speed are stabilized at their nominal value 
 

  AT Input frequency of 1.667Hz i.e. 0.6 s period, in the Frequency Block, 
and input multiple of 0.6 second times in the Ramp Upper Limit Box 
at discretion 

 

   AT Enable the Activate Signal Block by selecting IN to be TRUE  

 

   DR Observe that the speed response and TIT temperature do not exceed 
operational limits 

 

 

        AT Increase the %NomFuel Block by 1% and observe speed response.  
Repeat increasing until an interlock warning displays  

 

 

  AT Disable the Activate Signal Block by selecting IN to be FALSE  
 

   AT Verify that TIT and Shaft speed are stabilized at their nominal value 
 

System Shutdown 
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   DR Select GAP Speed Sheet-  Set Gas Valve Mode to Automated fuel 
shutdown ramp. 

 

   DR At stall or 28,000rpm, Fuel OFF (Control #1) 

 

           AT   Data Log  STOP, RETRIEVE, RENAME and SAVE. 
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HYPER Test Plan and Check List 

November 7, 2006 

 
Purpose: The purpose of the startup test is to bring the turbine up to the operational 

steady state nominal speed of 40,500rpm, with all valves closed at 45kW 
electrical load. 

 
 The purpose of the operational test is to determine the magnitude range of all 

the bypass valves and the load bank when these are fluctuated sinusoidally.  
This test is intended to be a scoping study in preparation for the frequency 
response test that follows. The cold, hot and bleed air bypass valves as well as 
the load bank are to be fluctuated at given amplitude and frequency, for two 
separate chosen frequencies. 

 
 The test will ramp up the speed to the nominal value of 40,500rpm under 

speed control, and switch to open loop mode once the bypass valve position 
or load bank nominal value is set.  At this point, each valve is to be fluctuated 
separately in a sinusoidal fashion, from the valve’s 40% opened position for 
the CA and HA valves.  The fluctuation for the load bank is to be around the 
offset of 45kW i.e. the operational midrange of the available load.  Sinusoidal 
fluctuation of the BA is to have an offset of the midrange between minimum 
and maximum safe values as observed from valve characterization tests.  This 
offset is found to be 14% opened with a maximum allowable fluctuation of 
+/- 4%.  Each individual CA and HA bypass valve will be fluctuated with 
amplitudes of +/-5% of its above mentioned designated nominal values, 
increased by 5% steps until the lower speed limit restriction of 38,475rpm is 
reached or any other interlock is activated.  The load bank will be fluctuated 
at +/-5kW with an increment of 1kW steps i.e. 50kW~11.1%, 55kW~22.2% 
of 45kW.  The frequencies of oscillation under study are 0.05Hz and 
0.004Hz.  For each case, the signal will remain at a given frequency for up to 
5 periods of oscillation, before the next frequency is tested.   

  
 All Hyper states will be recorded. 
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Start Procedure of Startup Test (061107) 
             

   

      DR Pre-Operational inspection  COMPLETE.   

   DR GAP and Watchwindows  OPEN.  Note GAP version:    
 

   AT APACS and Atlas Clocks  SYNCHONIZED.   

   AT Live Engineering Data Spreadsheet  INITIALIZED. 
 

   DR Natural Gas Totalizer  RESET.   

   DR HV-414, HV-408 and HV-430  CLOSED.   
 

   AT Set Gas Valve FV-432 Mode to Auto Ramp (Ramp initiated at 

9000rpm) 

   AT Set All OTHER GAP Gains  to DEFAULT settings 
 

   DR Set Hot Air By-Pass FV-380 Mode to 1:  Manual, 0% Open 

   DR Set Bleed Air FV-162 Mode to 2:  Manual, 100% Closed 

   DR Set Cold Air By-Pass FV-170 Mode to 1:  Manual, 0% Open  

 

   AT Verify that the Fuel Valve Control, CA Control Selector, and HA 
Control Selector blocks SEL input is at 1.   

 

   DR Blower  ON  (Alt-Tab) 
 

   DR APACS Log  START 

   AT Data Log  START 

  

   DR HV-600  OPEN  (Alt-Tab) 
 

   AT System Purge  ON 

   DR FE-380 positive flow ≥ 0.10kg/s  CHECK 

 

   DR HV-408 and HV-430  REQUEST OPEN 

 

   DR Purge Complete  CHECK 

   DR HS-460C Burner Ignition Automated at 9,000rpm  CHECK 

   DR If purge complete over 9,000rpm, HS-460A Manual Ignition  ON 

   DR TE-333 shows flame  CHECK 

   DR ST-502 > 35,000rpm, I-4 enabled CHECK 

   DR ST-502 > 41,000rpm, HV-600  CLOSED 
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   DR Blower  OFF 

 

Preheat System Piping and Vessels 

 

   DT   Load Bank Cooling Fan (HS-530) ON 

   DT   Interlock 14 ENABLED 

   DT   Load Bank in Manual Mode CHECK 

   DT   Set Bleed Air By-Pass FV-162 Mode to 2: Manual, 85% Closed 

   DT   Increase load to 45kW 

   DT   ST-502 at approximately 40,500rpm CHECK 

   DT   Wait until TE-344 is at about 1000F CHECK  

   DT   Select Bleed Air By-Pass FV-162 Mode to 2: Manual, 100% Closed 
 

   AT   Data Log STOP, RETRIEVE, RENAME, SAVE and START NEW 

LOG 

        Stop Time: 

        Start Time: 

   DT   Wait until TE-344 is constant for 30s (+/-0.1C) CHECK  

   DT   If stall indicated, implement stall recovery 
 
 

Procedure of Operational Test: CA Scoping (061107) 
 

   AT At 40,500rpm, under speed control input 40% in the SS Valve 
Opening block 

   

   AT At 40,500rpm, under speed control change the CA Control Selector 
SEL input from 1 to 2.  Check that the Fuel Valve Control block and 
the HA Control Selector block SEL are both at 1.  CHECK 

   AT At 40,500rpm, switch to Open Loop Mode by inputting the Measured 
Fuel Flow on the Demanded Valve Position.  CHECK  

   AT Once speed is stabilized to 40,500rpm, verify the default rate of Time 
Ramp Block to be 1, CHECK 

   AT Verify that Phase Block has input 0, SS Valve Opening has input 40% 
and % +/- Bypass Valve Opening is at 5%.  CHECK 

  AT Input frequency of 0.05Hz i.e. 20s period, in Frequency Block, and 
input multiple of 20 second times in the Ramp Upper Limit Box i.e. 
5*20=100 second duration for 5 oscillations  

   AT Enable the Switching block by selecting IN_1 to be TRUE  

 

   AT Start the fluctuations by selecting TRUE in the Reset Ramp Output 
block. CHECK 
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   DR Observe that the speed response and TIT temperature do not exceed 
operational limits 

 

   AT When Time Ramp reaches the final time, set IN_1 of Switching block 
to FALSE, input 0 in the Ramp Upper Limit block, and increase the 
DFLT rate of Time Ramp as desired. CHECK 

 

   AT When Time Ramp stops, select Reset Ramp Output to FALSE, input 1 
in the DFLT rate of Time Ramp and set new test time i.e. multiples of 
20 seconds. CHECK 

 

   AT Increase the %+/- Bypass Valve Opening input by 5%, CHECK 

 

   AT Repeat last 10 steps until operational limits are exceeded either on 
speed or TIT temperature. 

 

   AT Repeat last 11 steps for a frequency of 0.004Hz. 
 

   AT Switch back to speed control, CHECK 

 

   AT Input 1 in the CA Control Selector block, CHECK 

 

Procedure of Operational Test: HA Scoping (061107) 
 

   AT At 40,500rpm, under speed control input 40% in the SS Valve 
Opening block 

   

   AT At 40,500rpm, under speed control change the HA Control Selector 
SEL input from 1 to 2.  Check that the Fuel Valve Control block and 
the CA Control Selector block SEL are both at 1.  CHECK 

   AT At 40,500rpm, switch to Open Loop Mode by inputting the Measured 
Fuel Flow on the Demanded Valve Position.  CHECK  

   AT Once speed is stabilized to 40,500rpm, verify the default rate of Time 
Ramp Block to be 1, CHECK 

   AT Verify that Phase Block has input 0, SS Valve Opening has input 40% 
and % +/- Bypass Valve Opening is at 5%.  CHECK 

  AT Input frequency of 0.05Hz i.e. 20s period, in Frequency Block, and 
input multiple of 20 second times in the Ramp Upper Limit Box i.e. 
5*20=100 second duration for 5 oscillations  

   AT Enable the Switching block by selecting IN_1 to be TRUE  

 

   AT Start the fluctuations by selecting TRUE in the Reset Ramp Output 
block. CHECK 
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   DR Observe that the speed response and TIT temperature do not exceed 
operational limits 

 

   AT When Time Ramp reaches the final time, set IN_1 of Switching block 
to FALSE, input 0 in the Ramp Upper Limit block, and increase the 
DFLT rate of Time Ramp as desired. CHECK 

 

   AT When Time Ramp stops, select Reset Ramp Output to FALSE, input 1 
in the DFLT rate of Time Ramp and set new test time i.e. multiples of 
20 seconds. CHECK 

 

   AT Increase the %+/- Bypass Valve Opening input by 5%, CHECK 

 

   AT Repeat last 10 steps until operational limits are exceeded either on 
speed or TIT temperature. 

 

   AT Repeat last 11 steps for a frequency of 0.004Hz. 
 

   AT Switch back to speed control, CHECK 

 

   AT Input 1 in the HA Control Selector block, CHECK 

 

Procedure of Operational Test: BA Scoping (061107) 
 

   AT At 40,500rpm, under speed control input 14% in the SS Valve 
Opening block 

 

   AT Under Apacs Vision/Atlas button, select ATLAS, CHECK 
   

   AT At 40,500rpm, under speed control, change the SEL_FV162 SEL input 
to 1.  Check that the Fuel Valve Control block, the CA Control 
Selector and the HA Control Selector blocks SEL are both at 1.  
CHECK 

   AT At 40,500rpm, switch to Open Loop Mode by inputting the Measured 
Fuel Flow on the Demanded Valve Position.  CHECK  

   AT Once speed is stabilized to 40,500rpm, verify the default rate of Time 
Ramp Block to be 1, CHECK 

   AT Verify that Phase Block has input 0, SS Valve Opening has input 14% 
and % +/- Bypass Valve Opening is at 4%.  CHECK 

  AT Input frequency of 0.05Hz i.e. 20s period, in Frequency Block, and 
input multiple of 20 second times in the Ramp Upper Limit Box i.e. 
5*20=100 second duration for 5 oscillations  

   AT Enable the Switching block by selecting IN_1 to be TRUE  
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   AT Start the fluctuations by selecting TRUE in the Reset Ramp Output 
block. CHECK 

 

   DR Observe that the speed response and TIT temperature do not exceed 
operational limits 

 

   AT When Time Ramp reaches the final time, set IN_1 of Switching block 
to FALSE, input 0 in the Ramp Upper Limit block, and increase the 
DFLT rate of Time Ramp as desired. CHECK 

 

   AT When Time Ramp stops, select Reset Ramp Output to FALSE, input 1 
in the DFLT rate of Time Ramp and set new test time i.e. multiples of 
20 seconds. CHECK 

 

   AT Increase the %+/- Bypass Valve Opening input by 1%, CHECK 

 

   AT Repeat last 10 steps until operational limits are exceeded either on 
speed or TIT temperature. 

 

   AT Repeat last 11 steps for a frequency of 0.004Hz. 
 

   AT Switch back to speed control, CHECK 

 

   AT Input 2 in the SEL_FV162 block, CHECK 

 

   AT Under Apacs Vision/Atlas button, select VISION, CHECK 

 

Procedure of Operational Test: Load Bank Scoping (061107) 

 

   AT At 40,500rpm, under speed control switch the Apacs Vision/Atlas 
button to VISION, CHECK 

 

   AT At 40,500rpm, under speed control input 45% in the SS Valve 
Opening block 

   

   AT At 40,500rpm, under speed control, change the SEL_FV162 SEL input 
to 1.  Check that the Fuel Valve Control block, the CA Control 
Selector and the HA Control Selector blocks SEL are both at 1.  
CHECK 

   AT At 40,500rpm, switch to Open Loop Mode by inputting the Measured 
Fuel Flow on the Demanded Valve Position.  CHECK  

   AT Once speed is stabilized to 40,500rpm, verify the default rate of Time 
Ramp Block to be 1, CHECK 
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   AT Verify that Phase Block has input 0, SS Valve Opening has input 50% 
and % +/- Bypass Valve Opening is at 5%.  CHECK 

  AT Input frequency of 0.05Hz i.e. 20s period, in Frequency Block, and 
input multiple of 20 second times in the Ramp Upper Limit Box i.e. 
5*20=100 second duration for 5 oscillations  

   AT Enable the Switching block by selecting IN_1 to be TRUE  

 

   AT Start the fluctuations by selecting TRUE in the Reset Ramp Output 
block. CHECK 

 

   DR Observe that the speed response and TIT temperature do not exceed 
operational limits 

 

   AT When Time Ramp reaches the final time, set IN_1 of Switching block 
to FALSE, input 0 in the Ramp Upper Limit block, and increase the 
DFLT rate of Time Ramp as desired. CHECK 

 

   AT When Time Ramp stops, select Reset Ramp Output to FALSE, input 1 
in the DFLT rate of Time Ramp and set new test time i.e. multiples of 
20 seconds. CHECK 

 

   AT Increase the %+/- Bypass Valve Opening input by 5%, CHECK 

 

   AT Repeat last 10 steps until operational limits are exceeded either on 
speed or TIT temperature. 

 

   AT Repeat last 11 steps for a frequency of 0.004Hz. 
 

   AT Switch back to speed control, CHECK 

 

   AT Input 2 in the SEL_FV162 block, CHECK 

 
 
 

System Shutdown 
 

   DR Select GAP Speed Sheet-  Set Gas Valve Mode to Automated fuel 
shutdown ramp. 

 

   DR At stall or 28,000rpm, Fuel OFF (Control #1) 

 

   AT Data Log  STOP, RETRIEVE, RENAME and SAVE.  
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HYPER Test Plan and Check List 

December 27, 2006 

 
Purpose: The purpose of the startup test is to bring the turbine up to the operational 

steady state nominal speed of 40,500rpm, with all valves closed at 45kW 
electrical load. 

 
 The purpose of the operational test is to determine system structure by means 

of frequency response data.  The fuel valve is to be fluctuated at given 
amplitude and frequency, over a range of frequencies covering three orders in 
magnitude.  System delay and order are obtained from magnitude and phase 
plots covering the frequency range i.e. with the use of a Bode Plot.  Transfer 
functions for states at the inlet of the air plenum are derived as a function of 
valve flow.  This test will validate the analytical transfer function for the 
above mentioned variables, provide steady state error detection, give a 
stability margin criteria for the fuel valve input, estimate system bandwidth, 
identify any nonminimum phase system behavior, pinpoint unstable 
frequencies, and serve as an element of the piecewise transfer function in the 
development of an overall transfer function matrix covering all system inputs 
and outputs of interest.  Further loop shaping techniques and state space 
representation can be applied to this matrix.   

 
 The test will ramp up the speed to the nominal value of 40,500rpm under 

speed control, and switch to open loop mode once the system is under steady 
state with all temperatures and pressures within nominal operating values.  At 
this point, the fuel valve is to be fluctuated sinusoidally at a magnitude of +/-
10% of the nominal valve position % demand value.  This is to avoid the 
lower speed limit restriction set at 38,475rpm.  The signal is to start with a 
period of 1 seconds i.e. 1Hz, and decrease to 0.1Hz down to 0.01Hz down to 
0.001Hz.  A frequency input will consist of 10 samples between decades i.e. 
10 frequency inputs from 1Hz-0.1Hz, 10 frequency inputs from 0.1Hz-
0.01Hz, and 10 frequency inputs from 0.01Hz-0.001Hz.  In terms of input 
periods for ten periods of oscillation for the highest decade, the waiting time 
for each data window will increase as follows: 10, 11.11, 12.5, 14.29, 16.67, 
20, 25, 33.3, 50, and 100 seconds.  The signal will remain at a given 
frequency for up to 10 periods of oscillation, for the first two decades, before 
dropping to 5 periods of oscillation for the last decade having the slowest 
frequencies tested.  The total test duration is approximately 9.5 hours, 
including system startup time, system shutdown time, and elapsed time 
between frequency samples for the states to reach their steady state nominal 
values.  

  
 All Hyper states will be recorded. 
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Start Procedure of Startup Test (061227) 
             

   

    DR Pre-Operational inspection  COMPLETE.   

   DR GAP and Watchwindows  OPEN.  Note GAP version: 
HyperAlexBodeAllBypass   

 

   AT APACS and Atlas Clocks  SYNCHONIZED.   

   AT Live Engineering Data Spreadsheet  INITIALIZED. 
 

   DR Natural Gas Totalizer  RESET.   

   DR HV-414, HV-408 and HV-430  CLOSED.   
 

   AT Set Gas Valve FV-432 Mode to Auto Ramp (Ramp initiated at 

9000rpm) 

   AT Set All OTHER GAP Gains  to DEFAULT settings: EGT@625 
 

   DR Set Hot Air By-Pass FV-380 Mode to 1:  Manual, 0% Open 

   DR Set Bleed Air FV-162 Mode to 2:  Manual, 100% Closed 

   DR Set Cold Air By-Pass FV-170 Mode to 1:  Manual, 0% Open  

 

   AT Verify that the Fuel Valve Control, CA Control Selector, BA/Load 
Selector and HA Control Selector blocks SEL input is at 1.  CHECK 

 

   DR Blower  ON  (Alt-Tab) 
 

   DR APACS Log  START 

   AT Data Log  START 

  

   DR HV-600  OPEN  (Alt-Tab) 
 

   AT System Purge  ON 

   DR FE-380 positive flow ≥ 0.10kg/s  CHECK 

 

   DR HV-408 and HV-430  REQUEST OPEN 

 

   DR Purge Complete  CHECK 

   DR HS-460C Burner Ignition Automated at 9,000rpm  CHECK 

   DR If purge complete over 9,000rpm, HS-460A Manual Ignition  ON 

   DR TE-333 shows flame  CHECK 

   DR ST-502 > 35,000rpm, I-4 enabled CHECK 
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   DR ST-502 > 41,000rpm, HV-600  CLOSED 

   DR Blower  OFF 
 

Preheat System Piping and Vessels 

 

   DT   Load Bank Cooling Fan (HS-530) ON 

   DT   Interlock 14 ENABLED 

   DT   Load Bank in Manual Mode CHECK 

   DT   Set Bleed Air By-Pass FV-162 Mode to 2: Manual, 85% Closed 

   DT   Increase load to 45kW 

   DT   ST-502 at approximately 40,500rpm CHECK 

   DT   Wait until TE-344 is at about 1300F CHECK  

   DT   Select Bleed Air By-Pass FV-162 Mode to 2: Manual, 100% Closed 
 

   AT   Data Log STOP, RETRIEVE, RENAME, SAVE and START NEW 

LOG 

        Stop Time: 

        Start Time: 

   DT   Wait until TE-344 is constant for 30s (+/-0.1C) CHECK  

   DT   If stall indicated, implement stall recovery 
 

Procedure of Operational Test: Fuel (061227) 

 

   AT Check that the Fuel Valve Control, the BA/Load Selector, the CA 
Control Selector and the HA Control Selector blocks SEL are at 1.  
CHECK 

 

   AT At 40,500rpm, under speed control, input the % fuel demand in the SS 
Nominal Value block.  CHECK 

   

   AT At 40,500rpm, switch to Open Loop by changing the Fuel Valve 
Control Selector SEL input from 1 to 2.  CHECK 

 

   AT Once speed is stabilized to 40,500rpm, verify the default rate of Time 
Ramp Block to be 1, CHECK 

 

   AT Verify that Phase Block has input 0, SS Nominal Value has the % fuel 
demand, and % +/- Fluctuation is at 10%.  CHECK 

 

  AT Input first frequency of 1Hz i.e. 1s period, in Frequency Block, and 
input multiple of 1 second times in the Ramp Upper Limit Box i.e. 
10*1=10 second duration for 10 oscillations  
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   AT Enable the Switching block by selecting IN_1 to be TRUE  

 

   AT Start the fluctuations by selecting TRUE in the Reset Ramp Output 
block. CHECK 

 

   DR Observe that the speed response and TIT temperature do not exceed 
operational limits 

 

   AT When Time Ramp reaches the final time, set IN_1 of Switching block 
to FALSE, input 0 in the Ramp Upper Limit block, and increase the 
DFLT rate of Time Ramp as desired. CHECK 

 

   AT When Time Ramp stops, select Reset Ramp Output to FALSE, input 1 
in the DFLT rate of Time Ramp and set new test time from the 
attached frequency table, CHECK 

 

   AT Change the frequency input in the Frequency Block to the next value 
listed in the table, CHECK 

 

   AT Repeat last 10 steps for all the frequencies listed in the attached table 
until operational limits are exceeded either on speed or TIT 
temperature. 

 

   AT Switch back to speed control, CHECK 

 

System Shutdown 

   DT Unload Generator.  CHECK 

 

   AT Open CA to 20% for 2 min.  CHECK 

 

   DT Load Bank Cooling Fan OFF.  CHECK 
 

   DR Select GAP Speed Sheet-  Set Gas Valve Mode to Automated fuel 
shutdown ramp. 

 

   DR At stall or 28,000rpm, Fuel OFF (Control #1) 

 

   AT Data Log  STOP, RETRIEVE, RENAME and SAVE.  
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HYPER Test Plan and Check List 

November 21, 2006 

 
Purpose: The purpose of the startup test is to bring the turbine up to the operational 

steady state nominal speed of 40,500rpm, with all valves closed at 45kW 
electrical load. 

 
 The purpose of the operational test is to determine system structure by means 

of frequency response data.  The load bank is to be fluctuated at given 
amplitude and frequency, over a range of frequencies covering three orders in 
magnitude.  System delay and order are obtained from magnitude and phase 
plots covering the frequency range i.e. with the use of a Bode Plot.  Transfer 
functions for states at the inlet of the air plenum are derived as a function of 
input load fluctuations.  This test will validate the analytical transfer function 
for the above mentioned variables, provide steady state error detection, give a 
stability margin criteria for the fuel valve input, estimate system bandwidth, 
identify any nonminimum phase system behavior, pinpoint unstable 
frequencies, and serve as an element of the piecewise transfer function in the 
development of an overall transfer function matrix covering all system inputs 
and outputs of interest.  Further loop shaping techniques and state space 
representation can be applied to this matrix.   

 
 The test will ramp up the speed to the nominal value of 40,500rpm under 

speed control, and switch to open loop mode once the load bank has been set 
to 45kW and the system is under steady state with all temperatures and 
pressures within nominal operating values.  At this point, the load bank is to 
be fluctuated sinusoidally at a magnitude of +/-11.11% of 45kW 
corresponding to +/-5kW.  This is to avoid the lower speed limit restriction 
set at 38,475rpm.  The signal is to start with a period of 1 seconds i.e. 1Hz, 
and decrease to 0.1Hz down to 0.01Hz down to 0.001Hz.  A frequency input 
will consist of 10 samples between decades i.e. 10 frequency inputs from 
1Hz-0.1Hz, 10 frequency inputs from 0.1Hz-0.01Hz, and 10 frequency inputs 
from 0.01Hz-0.001Hz.  In terms of input periods for ten periods of oscillation 
for the highest decade, the waiting time for each data window will increase as 
follows: 10, 11.11, 12.5, 14.29, 16.67, 20, 25, 33.3, 50, and 100 seconds.  The 
signal will remain at a given frequency for up to 10 periods of oscillation, for 
the first two decades, before dropping to 5 periods of oscillation for the last 
decade having the slowest frequencies tested.  The total test duration is 
approximately 9.5 hours, including system startup time, system shutdown 
time, and elapsed time between frequency samples for the states to reach their 
steady state nominal values.  

  
 All Hyper states will be recorded. 
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Start Procedure of Startup Test (061121) 
             

   

      DR Pre-Operational inspection  COMPLETE.   

   DR GAP and Watchwindows  OPEN.  Note GAP version:  
HyperAlexBodeAllBypass  

 

   AT APACS and Atlas Clocks  SYNCHONIZED.   

   AT Live Engineering Data Spreadsheet  INITIALIZED. 
 

   DR Natural Gas Totalizer  RESET.   

   DR HV-414, HV-408 and HV-430  CLOSED.   
 

   AT Set Gas Valve FV-432 Mode to Auto Ramp (Ramp initiated at 

9000rpm) 

   AT Set All OTHER GAP Gains  to DEFAULT settings 
 

   DR Set Hot Air By-Pass FV-380 Mode to 1:  Manual, 0% Open 

   DR Set Bleed Air FV-162 Mode to 2:  Manual, 100% Closed 

   DR Set Cold Air By-Pass FV-170 Mode to 1:  Manual, 0% Open  

 

   AT Verify that the Fuel Valve Control, CA Control Selector, and HA 
Control Selector blocks SEL input is at 1.   

 

   DR Blower  ON  (Alt-Tab) 
 

   DR APACS Log  START 

   AT Data Log  START 

  

   DR HV-600  OPEN  (Alt-Tab) 
 

   AT System Purge  ON 

   DR FE-380 positive flow ≥ 0.10kg/s  CHECK 

 

   DR HV-408 and HV-430  REQUEST OPEN 

 

   DR Purge Complete  CHECK 

   DR HS-460C Burner Ignition Automated at 9,000rpm  CHECK 

   DR If purge complete over 9,000rpm, HS-460A Manual Ignition  ON 

   DR TE-333 shows flame  CHECK 

   DR ST-502 > 35,000rpm, I-4 enabled CHECK 
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   DR ST-502 > 41,000rpm, HV-600  CLOSED 

   DR Blower  OFF 
 

Preheat System Piping and Vessels 

 

   DT   Load Bank Cooling Fan (HS-530) ON 

   DT   Interlock 14 ENABLED 

   DT   Load Bank in Manual Mode CHECK 

   DT   Set Bleed Air By-Pass FV-162 Mode to 2: Manual, 85% Closed 

   DT   Increase load to 45kW 

   DT   ST-502 at approximately 40,500rpm CHECK 

   DT   Wait until TE-344 is at about 1000F CHECK  

   DT   Select Bleed Air By-Pass FV-162 Mode to 2: Manual, 100% Closed 
 

   AT   Data Log STOP, RETRIEVE, RENAME, SAVE and START NEW 

LOG 

        Stop Time: 

        Start Time: 

   DT   Wait until TE-344 is constant for 30s (+/-0.1C) CHECK  

   DT   If stall indicated, implement stall recovery 
 

Procedure of Operational Test: Load Bank Scoping (061121) 

 

   DT At 40,500rpm, under speed control check that the Apacs Vision/Atlas 
button is set to Vision, CHECK 

 

   AT At 40,500rpm, under speed control input 45%~45kW in the SS 
Nominal Value block 

 

   DT Change the load bank control window in Apacs to AUTO, CHECK 
   

   AT At 40,500rpm, under speed control, change the SEL_FV162 SEL input 
to 1. CHECK 

 

   AT Check that the Fuel Valve Control block, the CA Control Selector, the 
BA/Load Selector and the HA Control Selector blocks SEL are at 1.  
CHECK 

 

   AT Wait until TE-344 comes to steady state.  CHECK  
 

   AT At 40,500rpm, in Sheet 5, BA/Load Selector Block, input 2 in SEL.  
CHECK 
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   AT In Sheet 17, input 2 in SEL entry of RFV_SEL block to be in Open 
Loop.  CHECK 

 

   AT Once speed is stabilized to 40,500rpm, verify the default rate of Time 
Ramp Block to be 1, CHECK 

 

   AT Verify that Phase Block has input 0, SS Nominal Value has input 45% 
and % +/- Fluctuation is at 11.11%~5kW.  CHECK 

  AT Input frequency of 1Hz i.e. 1s period, in Frequency Block, and input 
multiple of 1 second times in the Ramp Upper Limit Box i.e. 10*1=10 
second duration for 10 oscillations  

   AT Enable the Switching block by selecting IN_1 to be TRUE  

 

   AT Start the fluctuations by selecting TRUE in the Reset Ramp Output 
block. CHECK 

 

   DR Observe that the speed response and TIT temperature do not exceed 
operational limits 

 

   AT When Time Ramp reaches the final time, set IN_1 of Switching block 
to FALSE, input 0 in the Ramp Upper Limit block, and increase the 
DFLT rate of Time Ramp as desired. CHECK 

 

   AT When Time Ramp stops, select Reset Ramp Output to FALSE, input 1 
in the DFLT rate of Time Ramp and set new test time from attached 
table. CHECK 

 

   AT Change the frequency input of the Frequency Block to new value from 
the attached table, CHECK 

 

   AT Repeat last 10 steps until operational limits are exceeded either on 
speed or TIT temperature. 

 

   AT Switch back to speed control, CHECK 

 

   AT Set load bank control window back to MANUAL, CHECK 
 

   AT Input 2 in the SEL_FV162 block, CHECK 

 
 

System Shutdown 

 

   DT Unload Generator.  CHECK 
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   DT Open CA to 20% for 2 min.  CHECK 
 

   DR Select GAP Speed Sheet-  Set Gas Valve Mode to Automated fuel 
shutdown ramp. 

 

   DR At stall or 28,000rpm, Fuel OFF (Control #1) 

 

         AT    Data Log  STOP, RETRIEVE, RENAME and SAVE.  
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HYPER Test Plan and Check List 

December 28, 2006 

 
Purpose: The purpose of the startup test is to bring the turbine up to the operational 

steady state nominal speed of 40,500rpm, with all valves closed at 35kW 
electrical load. 

 
 The purpose of the operational test is to determine system structure by means 

of frequency response data.  The bleed air BA bypass valve is to be fluctuated 
at given amplitude and frequency, over a range of frequencies covering three 
orders in magnitude.  System delay and order are obtained from magnitude 
and phase plots covering the frequency range i.e. with the use of a Bode Plot.  
Transfer functions for states at the inlet of the air plenum are derived as a 
function of BA bypass mass flow.  This test will validate the analytical 
transfer function for the above mentioned variables, provide steady state error 
detection, give a stability margin criteria for the valve input, estimate system 
bandwidth, identify any nonminimum phase system behavior, pinpoint 
unstable frequencies, and serve as an element of the piecewise transfer 
function in the development of an overall transfer function matrix covering all 
system inputs and outputs of interest.  Further loop shaping techniques and 
state space representation can be applied to this matrix.   

 
 The test will ramp up the speed to the nominal value of 40,500rpm under 

speed control, and switch to open loop mode once the BA valve has been set 
to 88% closed and the system is under steady state with all temperatures and 
pressures within nominal operating values.  At this point, the BA bypass 
valve is to be fluctuated sinusoidally at a magnitude of +/-2.27% ~ +/-2% 
valve, of the nominal valve position corresponding to 88% closed.  This is to 
avoid the lower speed limit restriction set at 38,475rpm.  The signal is to start 
with a period of 1 seconds i.e. 1Hz, and decrease to 0.1Hz down to 0.01Hz 
down to 0.001Hz.  A frequency input will consist of 10 samples between 
decades i.e. 10 frequency inputs from 1Hz-0.1Hz, 10 frequency inputs from 
0.1Hz-0.01Hz, and 10 frequency inputs from 0.01Hz-0.001Hz.  In terms of 
input periods for ten periods of oscillation for the highest decade, the waiting 
time for each data window will increase as follows: 10, 11.11, 12.5, 14.29, 
16.67, 20, 25, 33.3, 50, and 100 seconds.  The signal will remain at a given 
frequency for up to 10 periods of oscillation, for the first two decades, before 
dropping to 5 periods of oscillation for the last decade having the slowest 
frequencies tested.  The total test duration is approximately 9.5 hours, 
including system startup time, system shutdown time, and elapsed time 
between frequency samples for the states to reach their steady state nominal 
values.  

  
 All Hyper states will be recorded. 
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Start Procedure of Startup Test (061228) 
             

   

     DR Pre-Operational inspection  COMPLETE.   
 

   DR GAP and Watchwindows  OPEN.  Note GAP version: 
HyperAlexBodeAllBypass   

 

   AT APACS and Atlas Clocks  SYNCHONIZED.   

   AT Live Engineering Data Spreadsheet  INITIALIZED. 
 

   DR Natural Gas Totalizer  RESET.   

   DR HV-414, HV-408 and HV-430  CLOSED.   
 

   AT Set Gas Valve FV-432 Mode to Auto Ramp (Ramp initiated at 

9000rpm) 

   AT Set All OTHER GAP Gains  to DEFAULT settings 
 

   DR Set Hot Air By-Pass FV-380 Mode to 1:  Manual, 0% Open 

   DR Set Bleed Air FV-162 Mode to 2:  Manual, 100% Closed 

   DR Set Cold Air By-Pass FV-170 Mode to 1:  Manual, 0% Open  

 

   AT Verify that the Fuel Valve Control, CA Control Selector, and HA 
Control Selector blocks SEL input is at 1.   

 

   DR Blower  ON  (Alt-Tab) 
 

   DR APACS Log  START 

   AT Data Log  START 

  

   DR HV-600  OPEN  (Alt-Tab) 
 

   AT System Purge  ON 

   DR FE-380 positive flow ≥ 0.10kg/s  CHECK 

 

   DR HV-408 and HV-430  REQUEST OPEN 

 

   DR Purge Complete  CHECK 

   DR HS-460C Burner Ignition Automated at 9,000rpm  CHECK 

   DR If purge complete over 9,000rpm, HS-460A Manual Ignition  ON 

   DR TE-333 shows flame  CHECK 

   DR ST-502 > 35,000rpm, I-4 enabled CHECK 
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   DR ST-502 > 41,000rpm, HV-600  CLOSED 

   DR Blower  OFF 
 

Preheat System Piping and Vessels 

 

   DT   Load Bank Cooling Fan (HS-530) ON 

   DT   Interlock 14 ENABLED 

   DT   Load Bank in Manual Mode CHECK 

   DT   Set Bleed Air By-Pass FV-162 Mode to 2: Manual, 85% Closed 

   DT   Increase load to 45kW 

   DT   ST-502 at approximately 40,500rpm CHECK 

   DT   Wait until TE-344 is at about 1300F CHECK  

   DT   Select Bleed Air By-Pass FV-162 Mode to 2: Manual, 88% Closed 

   DT   Decrease load to 35kW 
 

   DT   Wait until TE-344 is constant for 30s (+/-0.1C) CHECK 

 

   AT At 40,500rpm, under speed control input 88% closed in the SS 
Nominal Value block 

 

   AT Check that the Fuel Valve Control block, the CA Control Selector, the 
BA/Load Selector and the HA Control Selector blocks SEL are both at 
1.  CHECK 

 

   AT   Data Log STOP, RETRIEVE, RENAME, SAVE and START NEW 

LOG 

        Stop Time: 

        Start Time: 

   DT   If stall indicated, implement stall recovery 
 

Procedure of Operational Test: BA (061228) 
 
 

   AT Under the Apacs Vision/Atlas button, select ATLAS, CHECK 
 

   AT At 40,500rpm, enter the % fuel demand in Fuel Valve Control Block 
IN_3.  CHECK  

 

   AT Switch to Open Loop by selecting Fuel Valve Control Block SEL 
input to 3.  CHECK 
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   AT Once speed is stabilized to 40,500rpm, verify the default rate of Time 
Ramp Block to be 1, CHECK 

 

   AT Verify that Phase Block has input 0, SS Nominal Value has input 88% 
and % +/- Fluctuation is at 2.27% ~ 2% valve.  CHECK 

 

  AT Input frequency of 1Hz i.e. 1s period, in Frequency Block, and input 
multiple of 1 second times in the Ramp Upper Limit Box i.e. 10*1=10 
second duration for 10 oscillations  

   AT Enable the Switching block by selecting IN_1 to be TRUE  

 

   AT Start the fluctuations by selecting TRUE in the Reset Ramp Output 
block. CHECK 

 

   DR Observe that the speed response and TIT temperature do not exceed 
operational limits 

 

   AT When Time Ramp reaches the final time, set IN_1 of Switching block 
to FALSE, input 0 in the Ramp Upper Limit block, and increase the 
DFLT rate of Time Ramp as desired. CHECK 

 

   AT When Time Ramp stops, select Reset Ramp Output to FALSE, input 1 
in the DFLT rate of Time Ramp and set new test time as listed on the 
attached table, CHECK 

 

   AT Input new frequency in the Frequency Block from given table, 
CHECK 

 

   AT Repeat last 10 steps until operational limits are exceeded either on 
speed or TIT temperature. 

 

   AT Switch back to speed control, CHECK 

 

   AT Under the Apacs Vision/Atlas button, select VISION, CHECK 

 
 

System Shutdown 

 

   DT Unload Generator.  CHECK 

 

   DT Turn off fan.  CHECK 

 

   AT Open CA to 20% for 2 min.  CHECK 
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   DR Select GAP Speed Sheet-  Set Gas Valve Mode to Automated fuel 
shutdown ramp. 

 

   DR At stall or 28,000rpm, Fuel OFF (Control #1) 

 

   AT Data Log  STOP, RETRIEVE, RENAME and SAVE.  
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HYPER Test Plan and Check List 

December 14, 2006 

 
Purpose: The purpose of the startup test is to bring the turbine up to the operational 

steady state nominal speed of 40,500rpm, with all valves closed at 45kW 
electrical load. 

 
 The purpose of the operational test is to determine system structure by means 

of frequency response data.  The cold air CA bypass valve is to be fluctuated 
at given amplitude and frequency, over a range of frequencies covering three 
orders in magnitude.  System delay and order are obtained from magnitude 
and phase plots covering the frequency range i.e. with the use of a Bode Plot.  
Transfer functions for states at the inlet of the air plenum are derived as a 
function of valve flow.  This test will validate the analytical transfer function 
for the above mentioned variables, provide steady state error detection, give a 
stability margin criteria for the fuel valve input, estimate system bandwidth, 
identify any nonminimum phase system behavior, pinpoint unstable 
frequencies, and serve as an element of the piecewise transfer function in the 
development of an overall transfer function matrix covering all system inputs 
and outputs of interest.  Further loop shaping techniques and state space 
representation can be applied to this matrix.   

 
 The test will ramp up the speed to the nominal value of 40,500rpm under 

speed control, and switch to open loop mode once the CA valve has been set 
to 40% opened and the system is under steady state with all temperatures and 
pressures within nominal operating values.  At this point, the CA bypass 
valve is to be fluctuated sinusoidally at a magnitude of +/-25% (+/-10% 
valve) of the nominal valve position corresponding to 40%.  This is to avoid 
the lower speed limit restriction set at 38,475rpm.  The signal is to start with a 
period of 1 seconds i.e. 1Hz, and decrease to 0.1Hz down to 0.01Hz down to 
0.001Hz.  A frequency input will consist of 10 samples between decades i.e. 
10 frequency inputs from 1Hz-0.1Hz, 10 frequency inputs from 0.1Hz-
0.01Hz, and 10 frequency inputs from 0.01Hz-0.001Hz.  In terms of input 
periods for ten periods of oscillation for the highest decade, the waiting time 
for each data window will increase as follows: 10, 11.11, 12.5, 14.29, 16.67, 
20, 25, 33.3, 50, and 100 seconds.  The signal will remain at a given 
frequency for up to 10 periods of oscillation, for the first two decades, before 
dropping to 5 periods of oscillation for the last decade having the slowest 
frequencies tested.  The total test duration is approximately 9.5 hours, 
including system startup time, system shutdown time, and elapsed time 
between frequency samples for the states to reach their steady state nominal 
values.  

  
 All Hyper states will be recorded. 
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Start Procedure of Startup Test (061214) 
             

   

      DR Pre-Operational inspection  COMPLETE.   

   DR GAP and Watchwindows  OPEN.  Note GAP version: 
HyperAlexBodeAllBypass   

 

   AT APACS and Atlas Clocks  SYNCHONIZED.   

   AT Live Engineering Data Spreadsheet  INITIALIZED. 
 

   DR Natural Gas Totalizer  RESET.   

   DR HV-414, HV-408 and HV-430  CLOSED.   
 

   AT Set Gas Valve FV-432 Mode to Auto Ramp (Ramp initiated at 

9000rpm) 

   AT Set All OTHER GAP Gains  to DEFAULT settings 
 

   DR Set Hot Air By-Pass FV-380 Mode to 1:  Manual, 0% Open 

   DR Set Bleed Air FV-162 Mode to 2:  Manual, 100% Closed 

   DR Set Cold Air By-Pass FV-170 Mode to 1:  Manual, 0% Open  

 

   AT Verify that the Fuel Valve Control, CA Control Selector, and HA 
Control Selector blocks SEL input is at 1.   

 

   DR Blower  ON  (Alt-Tab) 
 

   DR APACS Log  START 

   AT Data Log  START 

  

   DR HV-600  OPEN  (Alt-Tab) 
 

   AT System Purge  ON 

   DR FE-380 positive flow ≥ 0.10kg/s  CHECK 

 

   DR HV-408 and HV-430  REQUEST OPEN 

 

   DR Purge Complete  CHECK 

   DR HS-460C Burner Ignition Automated at 9,000rpm  CHECK 

   DR If purge complete over 9,000rpm, HS-460A Manual Ignition  ON 

   DR TE-333 shows flame  CHECK 

   DR ST-502 > 35,000rpm, I-4 enabled CHECK 
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   DR ST-502 > 41,000rpm, HV-600  CLOSED 

   DR Blower  OFF 
 

Preheat System Piping and Vessels 

 

   DT   Load Bank Cooling Fan (HS-530) ON 

   DT   Interlock 14 ENABLED 

   DT   Load Bank in Manual Mode CHECK 

   DT   Set Bleed Air By-Pass FV-162 Mode to 2: Manual, 85% Closed 

   DT   Increase load to 45kW 

   DT   ST-502 at approximately 40,500rpm CHECK 

   DT   Wait until TE-344 is at about 1000F CHECK  

   DT   Select Bleed Air By-Pass FV-162 Mode to 2: Manual, 100% Closed 
 

   AT   Data Log STOP, RETRIEVE, RENAME, SAVE and START NEW 

LOG 

        Stop Time: 

        Start Time: 

   DT   Wait until TE-344 is constant for 30s (+/-0.1C) CHECK  

   DT   If stall indicated, implement stall recovery 
 

Procedure of Operational Test: CA (061214) 

 

   AT Check that the Fuel Valve Control, the BA/Load Selector, the CA 
Control Selector and the HA Control Selector blocks SEL are at 1.  
CHECK 

 

   AT At 40,500rpm, under speed control input 40% in the SS Nominal 
Value block 

   

   AT At 40,500rpm, under speed control change the CA Control Selector 
SEL input from 1 to 2.  CHECK 

 

   DT Wait until TE-344 comes to steady state.  CHECK 

 

   AT Under speed control, observe the % fuel valve demand in Sheet 12. 
CHECK  

 

   AT Input the observed % demand in IN_3 of the Fuel Valve Control 
Block, and switch to Open Loop by selecting 3 in SEL.  CHECK 
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   AT Once speed is stabilized to 40,500rpm, verify the default rate of Time 
Ramp Block to be 1, CHECK 

 

   AT Verify that Phase Block has input 0, SS Nominal Value has input 40% 
and % +/- Fluctuation is at 25% ~10% valve.  CHECK 

 

  AT Input first frequency of 1Hz i.e. 1s period, in Frequency Block, and 
input multiple of 1 second times in the Ramp Upper Limit Box i.e. 
10*1=10 second duration for 10 oscillations  

 

   AT Enable the Switching block by selecting IN_1 to be TRUE  

 

   AT Start the fluctuations by selecting TRUE in the Reset Ramp Output 
block. CHECK 

 

   DR Observe that the speed response and TIT temperature do not exceed 
operational limits 

 

   AT When Time Ramp reaches the final time, set IN_1 of Switching block 
to FALSE, input 0 in the Ramp Upper Limit block, and increase the 
DFLT rate of Time Ramp as desired. CHECK 

 

   AT When Time Ramp stops, select Reset Ramp Output to FALSE, input 1 
in the DFLT rate of Time Ramp and set new test time from the 
attached frequency table, CHECK 

 

   AT Change the frequency input in the Frequency Block to the next value 
listed in the table, CHECK 

 

   AT Repeat last 10 steps for all the frequencies listed in the attached table 
until operational limits are exceeded either on speed or TIT 
temperature. 

 

   AT Switch back to speed control, CHECK 

 

   AT Input 1 in the CA Control Selector block, CHECK 

 
 

System Shutdown 

 

   DT Unload Generator.  CHECK 

 

   AT Open CA to 20% for 2 min.  CHECK 
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   DT Load Bank Cooling Fan OFF.  CHECK 
 

   DR Select GAP Speed Sheet-  Set Gas Valve Mode to Automated fuel 
shutdown ramp. 

 

   DR At stall or 28,000rpm, Fuel OFF (Control #1) 

 

   AT Data Log  STOP, RETRIEVE, RENAME and SAVE.  
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HYPER Test Plan and Check List 

December 21, 2006 

 
Purpose: The purpose of the startup test is to bring the turbine up to the operational 

steady state nominal speed of 40,500rpm, with all valves closed at 45kW 
electrical load. 

 
 The purpose of the operational test is to determine system structure by means 

of frequency response data.  The hot air HA bypass valve is to be fluctuated at 
given amplitude and frequency, over a range of frequencies covering three 
orders in magnitude.  System delay and order are obtained from magnitude 
and phase plots covering the frequency range i.e. with the use of a Bode Plot.  
Transfer functions for states at the inlet of the air plenum are derived as a 
function of valve flow.  This test will validate the analytical transfer function 
for the above mentioned variables, provide steady state error detection, give a 
stability margin criteria for the fuel valve input, estimate system bandwidth, 
identify any nonminimum phase system behavior, pinpoint unstable 
frequencies, and serve as an element of the piecewise transfer function in the 
development of an overall transfer function matrix covering all system inputs 
and outputs of interest.  Further loop shaping techniques and state space 
representation can be applied to this matrix.   

 
 The test will ramp up the speed to the nominal value of 40,500rpm under 

speed control, and switch to open loop mode once the HA valve has been set 
to 40% opened and the system is under steady state with all temperatures and 
pressures within nominal operating values.  At this point, the HA bypass 
valve is to be fluctuated sinusoidally at a magnitude of +/-25% (+/-10% 
valve) of the nominal valve position corresponding to 40%.  This is to avoid 
the lower speed limit restriction set at 38,475rpm.  The signal is to start with a 
period of 1 second i.e. 1Hz, and decrease to 0.1Hz down to 0.01Hz down to 
0.001Hz.  A frequency input will consist of 10 samples between decades i.e. 
10 frequency inputs from 1Hz-0.1Hz, 10 frequency inputs from 0.1Hz-
0.01Hz, and 10 frequency inputs from 0.01Hz-0.001Hz.  In terms of input 
periods for ten periods of oscillation for the highest decade, the waiting time 
for each data window will increase as follows: 10, 11.11, 12.5, 14.29, 16.67, 
20, 25, 33.3, 50, and 100 seconds.  The signal will remain at a given 
frequency for up to 10 periods of oscillation, for the first two decades, before 
dropping to 5 periods of oscillation for the last decade having the slowest 
frequencies tested.  The total test duration is approximately 9.5 hours, 
including system startup time, system shutdown time, and elapsed time 
between frequency samples for the states to reach their steady state nominal 
values.  

  
 All Hyper states will be recorded. 
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Start Procedure of Startup Test (061221) 
             

   

     DR Pre-Operational inspection  COMPLETE.   
 

   DR GAP and Watchwindows  OPEN.  Note GAP version: 
HyperAlexBodeAllBypass   

 

   AT APACS and Atlas Clocks  SYNCHONIZED.   

   AT Live Engineering Data Spreadsheet  INITIALIZED. 
 

   DR Natural Gas Totalizer  RESET.   

   DR HV-414, HV-408 and HV-430  CLOSED.   
 

   AT Set Gas Valve FV-432 Mode to Auto Ramp (Ramp initiated at 

9000rpm)  
  

   AT Set All OTHER GAP Gains  to DEFAULT settings 
 

   DR Set Hot Air By-Pass FV-380 Mode to 1:  Manual, 10% Open 

   DR Set Bleed Air FV-162 Mode to 2:  Manual, 100% Closed 

   DR Set Cold Air By-Pass FV-170 Mode to 1:  Manual, 0% Open  

 

   AT Verify that the Fuel Valve Control, CA Control Selector, and HA 
Control Selector blocks SEL input is at 1.   

 

   DR Blower  ON  (Alt-Tab) 
 

   DR APACS Log  START 

   AT Data Log  START 

  

   DR HV-600  OPEN  (Alt-Tab) 
 

   AT System Purge  ON 

   DR FE-380 positive flow ≥ 0.10kg/s  CHECK 

 

   DR HV-408 and HV-430  REQUEST OPEN 

 

   DR Purge Complete  CHECK 

   DR HS-460C Burner Ignition Automated at 9,000rpm  CHECK 

   DR If purge complete over 9,000rpm, HS-460A Manual Ignition  ON 

   DR TE-333 shows flame  CHECK 
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   DR ST-502 > 35,000rpm, I-4 enabled CHECK 

   DR ST-502 > 41,000rpm, HV-600  CLOSED 

   DR Blower  OFF 
 

Preheat System Piping and Vessels 

 

   DT   Load Bank Cooling Fan (HS-530) ON 

   DT   Interlock 14 ENABLED 

   DT   Load Bank in Manual Mode CHECK 

   DT   Set Bleed Air By-Pass FV-162 Mode to 2: Manual, 85% Closed 

   DT   Increase load to 45kW 

   DT   ST-502 at approximately 40,500rpm CHECK 

   DT   Wait until TE-344 is at about 1000F CHECK  

   DT   Select Bleed Air By-Pass FV-162 Mode to 2: Manual, 100% Closed 
 

   AT   Data Log STOP, RETRIEVE, RENAME, SAVE and START NEW 

LOG 

        Stop Time: 

        Start Time: 

   DT   Wait until TE-344 is constant for 30s (+/-0.1C) CHECK  

   DT   If stall indicated, implement stall recovery 
 

Procedure of Operational Test: HA (061221) 
 

   AT Check that the Fuel Valve Control, the BA/Load Selector, the CA 
Control Selector and the HA Control Selector blocks SEL are at 1.  
CHECK 

 

   AT At 40,500rpm, under speed control input 40% in the SS Nominal 
Value block 

   

   AT At 40,500rpm, under speed control change the HA Control Selector 
SEL input from 1 to 2.  CHECK 

 

   DT Wait until TE-344 comes to steady state.  CHECK 

 

   AT Under speed control, observe the % fuel valve demand in Sheet 12. 
CHECK  

 

   AT Input the observed % demand in IN_3 of the Fuel Valve Control 
Block, and switch to Open Loop by selecting 3 in SEL.  CHECK 
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   AT Once speed is stabilized to 40,500rpm, verify the default rate of Time 
Ramp Block to be 1, CHECK 

 

   AT Verify that Phase Block has input 0, SS Nominal Value has input 40% 
and % +/- Fluctuation is at 25% ~10% valve.  CHECK 

 

  AT Input first frequency of 1Hz i.e. 1s period, in Frequency Block, and 
input multiple of 1 second times in the Ramp Upper Limit Box i.e. 
10*1=10 second duration for 10 oscillations  

 

   AT Enable the Switching block by selecting IN_1 to be TRUE  

 

   AT Start the fluctuations by selecting TRUE in the Reset Ramp Output 
block. CHECK 

 

   DR Observe that the speed response and TIT temperature do not exceed 
operational limits 

 

   AT When Time Ramp reaches the final time, set IN_1 of Switching block 
to FALSE, input 0 in the Ramp Upper Limit block, and increase the 
DFLT rate of Time Ramp as desired. CHECK 

 

   AT When Time Ramp stops, select Reset Ramp Output to FALSE, input 1 
in the DFLT rate of Time Ramp and set new test time from the 
attached frequency table, CHECK 

 

   AT Change the frequency input in the Frequency Block to the next value 
listed in the table, CHECK 

 

   AT Repeat last 10 steps for all the frequencies listed in the attached table 
until operational limits are exceeded either on speed or TIT 
temperature. 

 

   AT Switch back to speed control, CHECK 

 

   AT On Sheet 10, input 0% in the Manual FV380 block.  CHECK  

 

   AT Input 1 in the HA Control Selector block, CHECK 
 

System Shutdown 
 

   DT Unload Generator.  CHECK 

 

   AT Open CA to 20% for 2 min.  CHECK 
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   DT Load Bank Cooling Fan OFF.  CHECK 
 

   DR Select GAP Speed Sheet-  Set Gas Valve Mode to Automated fuel 
shutdown ramp. 

 

   DR At stall or 28,000rpm, Fuel OFF (Control #1) 

 

   AT Data Log  STOP, RETRIEVE, RENAME and SAVE. 
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Appendix H 
 

 
 

HyPer Process and Instrumentation Diagram 
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AutoCAD Rendering of the “Hyper” Facility 
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Appendix I 
 

 
Compressor Exit to Heat Exchangers Pipe 

 
 

 
Turbine Exit to Heat Exchangers Pipe 

 
 

 
 Heat Exchangers to Air Plenum Pipe 

 
 

 
Air Plenum Exit to Post Combustor Pipe 

 

 
Post-Combustor to Turbine Inlet Pipe 
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Cold Air Bypass Pipe and Logic 

 
 
 

 
 

Hot Air Bypass Pipe and Logic 
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