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ABSTRACT 

 

 

Modeling and Optimization of Woody Biomass Harvest and 

Logistics in the Northeastern United States 

 

 

Damon S. Hartley 

World energy consumption is at an all-time high and is projected to continue growing for 

the foreseeable future.  Currently, much of the energy that is produced comes from non-

renewable fossil energy sources, which includes the burden of increased greenhouse gas 

emissions and the fear of energy insecurity.  Woody biomass is being considered as a material 

that can be utilized to reduce the burden caused by fossil energy.  While the technical capability 

to convert woody biomass to energy has been known for a long period of time, the cost of the 

feedstock has been considered too costly to be implemented in a large commercial scale.  

Increasing the use of woody biomass as an energy source requires that the supply chains are 

setup in a way that minimizes cost, the locational factors that lead to development are 

understood, the facilities are located in the most favorable locations and local resource 

assessments can be made. 

 A mixed integer linear programming model to efficiently configure woody biomass 

supply chain configurations and optimize the harvest, extraction, transport, storage and 

preprocessing of the woody biomass resources to provide the lowest possible delivered price. 

The characteristics of woody biomass, such as spatial distribution and low bulk density, tend to 

make collection and transport difficult as compared to traditional energy sources. These factors, 

as well as others, have an adverse effect on the cost of the feedstock. The average delivered cost 

was found to be between $64.69-98.31 dry Mg for an annual demand of 180,000 dry Mg. The 

effect of resource availability and required demand was examined to determine the impact that 

each would have on the total cost. 

The use of woody biomass for energy has been suggested as a way to improve rural 

economies through job creation, reduction of energy costs and regional development. This 

study examined existing wood using bio-energy facilities in the northeastern United States to 

define the drivers of establishment of bio-energy projects. Using a spatial econometric 

framework, a spatial autoregressive probit model was estimated based on the Bayesian methods 

to define the factors that impact the location of wood using bio-energy facilities in the United 

States. Through the analysis it was found that the energy policy of the state is the biggest driver 

of the choice of location for bioenergy facilities. 



 

 

The choice of site is of great importance when trying to meet the goal of producing cost-

effective biofuels, due to the spatial dispersion of the biofuels and the high proportion of total 

cost that is incurred by transportation to the processing facility. The proximity to the fuel supply 

and the resulting transportation cost are the primary concern of the operators of the facilities, 

although this is not the primary driver that leads to the development of these projects.  In order 

to make these endeavors successful, there must also be buy-in from the local community and its 

government.  Previous studies have found that in addition to the environmental benefits and 

improved energy security, the impact that the facilities have on the local economy, in terms of 

job creation, improved industrial competitiveness and regional development are key drivers of 

bioenergy projects.  A two-stage site selection approach is developed for the siting of woody 

biomass facilities, which combines multi-criteria analysis with mixed integer linear 

programming to rank potential development sites. This approach was then applied to the siting 

of a Coal/Biomass to liquids plant, and was able to objectively identify the optimal location of 

the facility.  

Finally, a simulation model was developed to assess the locally available quantities and 

prices for biomass feedstocks.  The simulation uses machine tractability in conjunction with 

graph theory to assess machine productivity and harvesting cost. The model was then applied to 

a demonstration project in which a 10,000 bbl per day Coal/Biomass to Liquid plant is being 

used to examine if there are sufficient feedstocks available to warrant the project.  It was found 

that within the proposed three county procurement area that there were approximately 34% less 

material available than was assumed to be available from large scale feedstock data. Also, the 

simulation model was able to determine that the total feedstock requirement could be met at a 

price of $66 per dry Mg.   
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1 INTRODUCTION 

World energy consumption is at an all-time high and is projected to continue growing for the 

foreseeable future.  According to 2010 projections from the Energy Information Administration 

(EIA), world-wide energy consumption is expected to increase from 522.25 PJ (495 quadrillion 

BTU’s) in 2007 to 779.69 PJ (739 quadrillion BTU’s) in 2035, which is an increase of 49% 

(EIA, 2010).  This projected increase is mostly attributed to increased energy demand in China 

and India.  Energy consumption in these areas is projected to increase more than 110% over the 

next 25 years.  While in North America and Europe the demand for energy is projected to 

increase by 9.6% over the same time period (EIA, 2010).  

The United States and the European Union consumed over 188.85 PJ (176 quadrillion 

BTU’s) of energy in 2008.  In the United States approximately 40% of the demand is from the 

electric power sector.  The production of electricity in the United States is dominated by fossil 

fuels, which account for more than two thirds of all electricity produced.  In the European Union 

the story is similar, about 40% of all energy consumed is in the form of electricity and over half 

of the production comes from fossil fuels (EIA, 2010).   

The burning of fossil fuels contributes to an increase in the atmospheric concentrations of 

greenhouse gasses which has been linked to global climate change.  Additionally, political 

instability in fuel rich countries has led to increased energy security concerns by countries 

dependent on imported fuel sources.  For this reason many countries are searching for renewable 

and sustainable alternatives to conventional fossil fuel production. 
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Renewable energy sources, such as solar, wind and biomass are being considered for use as 

a feedstock for large scale energy production, but each type has limitations on the locations 

where they would be effective.  In the northeastern region of the United States, the prospect of 

using solar or wind for energy generation might not be very promising due to geographical and 

weather related factors.  A study by the National Renewable Energy Laboratory (National 

Renewable Energy Laboratory, 2010) found that only 14.86% of the land area in the northeast 

region was suitable for harvesting wind energy at a 30% gross capacity level.  Similarly, climate 

data from the Northeast Regional Climate Center found that, on average there are only 80.27 

clear days per year and nearly 50% of the days have 80% or more cloud cover.  

In areas where solar and wind energy generation might not be very suitable, the use of 

biomass may be a feasible solution.  This is especially true for the areas covered by temperate 

forests.  Wood has been shown to produce much lower levels of air pollution than coal.  This is 

because the sulfur and nitrogen content of wood is low which produces negligible amounts of 

SOx and NOx emissions.  In addition the combustion of wood also produces much less CO2 than 

the combustion of coal (McIlveen-Wright et al., 2001).  Also, the use of biomass also promotes a 

more secure energy environment as having multiple fuel sources increases the power grids 

ability to respond to resource supply disruptions (Brown and Mann, 2008). Forest derived 

biomass, which has historically produced more than 14% of the world’s energy, is one of the 

largest and most sustainable energy resources.  Woody biomass, which includes residues from 

timber harvest, residues from primary and secondary wood processing and tree removals during 

fuels reduction and pre-commercial thinning, residues from surface mining and shale gas 

drilling, and short rotation woody crops, has the potential to be a feedstock for both liquid fuels 
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and the production of electricity (Kaylen et al., 2000; Bridgwater et al., 2002; Tembo et al., 

2003; Thek and Obernberger, 2004; Caputo et al., 2005, Wang et al., 2006). 

 The potential worldwide woody biomass supply is estimated to be able to produce 150 

EJ/yr or 1.43 times the annual energy consumption of the United States (Faaij and Domac, 

2006).  In the United States, temperate forests are located in the eastern and northwestern 

portions of the country, and are estimated to be able to produce approximately 51.71 million dry 

tonnes (57 million dry tons) of biomass at a price of $66.14 per dry tonne ($60 per dry ton) 

(Perlack et al., 2011). That is enough material to produce approximately 88 billion kWh or 12.87 

billion liters (3.4 billion gallons) of liquid fuel, based on 15.18 GJ per tonne (16 million Btu per 

ton) and 33% efficiency for electricity and 227.12 liters (60 gallons) per dry ton (American 

Physical Society, 2013; Perlack et al., 2011). 

Traditionally, woody biomass has been considered a low value product, because of this 

little emphasis has been placed on the efficient harvest, extraction and transport.  As energy 

markets develop, value will be added to these products, which will lead to increased harvest and 

collection (Becker et al., 2009).  Even with the increases in market value associated with 

increased demand, harvesting and collection costs may be a limiting factor in the true availability 

of woody biomass feedstock.  While collection and primary transport of logging residues can be 

completed using current timber harvesting systems, their efficiency is dependent on machine 

payloads, the terrain in which they are working and the spatial distribution of the residue.  Short 

rotation woody crops (SRWC) provide similar challenges, currently available technology is not 

mature enough to meet efficiency goals, and similarly to forest residues the spacing of SRWC 

planting causes transportation challenges. Each one of these factors will affect the cost of the 
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feedstock production.  In addition, transportation of woody biomass is also a challenge due to the 

material’s low bulk density, which makes it hard to maximize allowable load limits (Spinelli et 

al., 2007). 

Therefore, this project will specifically optimize biomass feedstock logistics with 

considerations of maximizing positive economic impact and minimizing environmental impact. 

This will be accomplished through: (1) Analysis and optimization of woody biomass harvest and 

logistics in the northeastern United States. (2)Assessments of the regional drivers for bioenergy 

development using econometric techniques.(3) Analysis of biomass business development using 

multi-criteria optimization of environmental and economic impacts.(4) Economic modeling of 

woody biomass utilization for bioenergy under constraints of  terrain, machine capability and 

harvest. 
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Abstract 

Biomass derived from forests and short rotation woody crops (SRWC), could hold the key 

for renewable energy production in the Northeastern United States. While woody biomass is a 

potential feedstock for a diverse set of energy development options, little emphasis has been 

placed on developing supply chains to efficiently deliver the resource to the end user in this 

region. This study developed a mixed integer linear programming model to efficiently configure 

woody biomass supply chain configurations and optimize the harvest, extraction, transport, 

storage and preprocessing of the woody biomass resources to provide the lowest possible 

delivered price. The characteristics of woody biomass, such as spatial distribution and low bulk 

density, tend to make collection and transport difficult as compared to traditional energy sources. 

These factors, as well as others, have an adverse effect on the cost of the feedstock. The average 

delivered cost was found to be between $64.69-98.31 for the base scenario. The effect of 

resource availability and required demand was examined to determine the impact that each 

would have on the total cost. Through analysis the optimal location of facilities and their 

respective capacities were determined along with the configuration of the supply chain that is 

used to deliver feedstocks to the facilities. 

2.1 INTRODUCTION 

Currently in the northeast United States, as well as the rest of the country, a majority of 

energy consumption is based on fossil fuels. The burning of fossil fuels has been shown to have 

negative environmental impacts, and in the case of petroleum, the largest used fossil fuel, the 

majority is imported; threatening the national energy’s independence and diversity. Biomass, on 
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the other hand, has been shown to have less environmental impact and can be produced 

domestically, reducing security concerns and enhancing local, rural economies. While 

environmental benefits and domestic energy security are touted during the development of 

bioenergy projects, the real drivers are the potential for job creation, improved industrial 

competitiveness and regional development (Domac et al., 2005).  

Biomass for bioproducts and bioenergy can be sourced from forests, agricultural crops, 

various residue streams, and dedicated woody or herbaceous crops. Woody biomass feedstocks 

have several advantages over agricultural sources, especially in the northeastern US (NE) where 

forests make up 67.4% of the total land area (Smith et al., 2009) and agricultural production has 

been in a 20-year decline. Woody biomass is available year-round from multiple sources, so end 

users are not dependent on a single source of material; this ensures a consistent feedstock supply, 

reduces the risk of dramatic price fluctuations, and eliminates the needs for complicated and 

expensive long-term storage of material. As perennial cropping systems, both forests and short 

rotation woody crops (SRWC), like willow and hybrid poplar, produce a number of 

environmental benefits beyond a renewable source of biomass and are relatively less prone to 

fluctuations in yield due to abnormal weather patterns or pest and disease outbreaks than annual 

crops. 

The Northeast already has a wealth of existing feedstocks and the potential to increase 

supplies in the future. There are currently between 1.35 and 25.64 million dry tons of woody 

biomass available per year in the northeast at a price between 60 and 90 per dry ton (a citation). 

It is also estimated that the region will be able to sustainably produce between 80.7 and 141.5 

million dry tons of biomass per year, in the form of Short Rotation Woody Crops and energy 
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grasses, by the year 2030 (Perlack et al., 2011) . The availability of these resources provide a 

competitive advantage for economic development (Marcouiller et al., 2004). Biomass harvesting, 

transportation and processing are labor intensive, and the spatial distribution and relatively low 

bulk density limit the economical transportation distance of these materials; leading to markets 

that are distributed throughout a region. 

In terms of energy production, the biomass supply chain possesses characteristics that 

make it markedly different from those of conventional energy sources (Rentizelas et al., 2009). 

Supply chains for bioenergy feedstocks have adopted their structure from the traditional 

industries from which they have been derived, i.e. agriculture and forest products (Kenney et al., 

2013). The biomass supply chains are rigid and minimally adaptable to changes in the type of 

feedstocks. Additionally, there are challenges that are faced in bioenergy supply chains that are 

not faced by conventional energy. First is the temporal availability of the biomass. In the case of 

woody biomass, the availability is affected by seasonal weather patterns while dedicated energy 

crops and agricultural residue availability are primarily controlled by harvest timing 

(Abrahamson et al., 2010; Inman et al., 2010; Wu et al., 2011) . As a result, individual feedstock 

types may not be capable of producing quantities that are sufficient to ensure a continuous 

supply at a price demanded by industries. The second factor that differentiates the supply chains 

of woody or herbaceous biomass from those of conventional fuels is the spatial availability of the 

biomass. The wide dispersion pattern of individual biomass types results in increased 

transportation cost in order to meet production demands (Gonzalez et al., 2011). Finally, the 

energy density of biomass feedstocks are much lower than that of traditional energy feedstocks, 

approximately 40%-55% lower than coal or petroleum (McKendry, 2002), requiring a greater 
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quantity of feedstocks to equal the energy output that is being replaced. The result is a further 

increase in the cost of transporting the biomass materials (Caputo et al., 2005). 

The method of harvesting used for woody biomass is dependent on the source of the 

biomass, i.e. forest grown biomass, residues or SRWC. For forest grown biomass, the most 

common method is to harvest biomass in conjunction with commercial timber harvest.  As a 

result the majority of the harvesting of forest grown biomass is accomplished with conventional 

logging equipment, while SRWC is generally harvested with a cut and chip type machine; that 

uses a converted agricultural harvester as the base machine. Forest biomass is transported from 

the harvest site as either loose residue or chips. The transportation of loose residue is only a 

preferred method of transport when the hauling distances are short, since vehicle payloads are 

rarely fully utilized, in terms of weight (Spinelli et al., 2007) . The process of chipping or 

grinding woody material, or even bundling of loose residues is generally preferable, as the 

process can improve bulk density, homogeneity, and handling characteristics of the raw material 

from the forest (Hartsough et al., 1997; Jeuck and Duncan, 2009; Johansson et al., 2006). 

The issues faced by bioenergy feedstock supply chains; such as temporal availability, 

insufficient local supply, variability of material and low bulk and energy densities, could be 

mitigated by the use of mixed feedstocks, biomass material size reduction and densification or 

other management practices. Supply chains that are comprised of both woody and herbaceous 

materials including dedicated energy crops (i.e. Shrub Willow, Switchgrass, Miscanthus), 

agricultural and forest residues. Thermally pretreating the materials will homogenize the 

different materials, creating a material that is uniform and more energy dense than the original 

raw feedstocks (Ciolkosz and Wallace, 2011; Lehtikangas and Skogshushållning, 1999) further 
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pretreatment by densification will further improve the transportation properties (Ciolkosz and 

Wallace, 2011). In areas where multiple feedstocks exist, and quantities are not sufficient to 

completely meet demand; it is reasonable to expect that the supply chains will become mixed. 

The added benefit would be that as technology advances, the mixing of feed- stocks may 

enhance yields and improve the overall feedstock characteristics (Shi et al., 2013). Through 

mixing and formulation, consistent supplies will be able to be delivered to meet the tonnage 

demands of the bioenergy facilities (Shi et al., 2013), while simultaneously minimizing the 

procurement radius. 

The optimization of biomass supply chains has been examined from a variety of 

perspectives, but essentially there has been two main goals: maintaining competitive prices and 

ensuring a continuous supply (Gold and Seuring, 2011). DeMol et al. (1997) used optimization 

to determine the lowest cost network structure and resulting biomass flows of a multi-source 

(tree prunings, wood waste, waste paper, and forest thinnings) woody biomass system in the 

Netherlands.  The modelswere solved by first solving sub-models for each feedstock source and  

then combining the results into a knapsack model to find the optimal set of facility locations and 

transportation routes. Troncoso and Garrido (2005) used  a  mixed-integer linear programming 

(MILP) formulation to simultaneously solve a combined production, facility location and freight 

distribution problem to minimize transportation costs and ensuring demand is met for the forest 

products industry in Chile. This methodology could readily be adapted to the bio-energy sector, 

but may be limited to the size of problems that can feasibly be solved. Ravula et al. (2008) used 

cotton logistics in Virginia as an analog for biomass transport and optimized the logistics system 

via the use of greedy algorithms and an implementation of the knapsack problem with travel 
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times. Wu et al.(2012, 2011, 2010) used a MILP approach to estimate the optimal delivered cost 

of harvesting and mill residues for the production of liquid fuels in the Central Appalachian 

region of the United States. These models aggregated the supply to a central location within a 

county, which simplified the formulation of the answer but aliased the true transportation costs 

from the field to the conversion facility. 

The utilization of biomass as an energy feedstock in the northeastern United States can 

potentially provide a means toward energy security and independence, while simultaneously 

creating environmental and economic benefits for the region. Biomass has been shown to have 

less environmental impact and can be produced domestically, reducing security concerns and 

enhancing local, rural economies. However, the current methods and logistics used to harvest 

and transport renewable energy feedstocks are unable to deliver these feedstocks at a price, at 

which they can compete with traditional fossil fuels for energy production. If the large scale 

adoption of biomass as an energy feedstock is to occur in the region, methods of harvest and 

logistics must be employed that minimize costs while maintaining the environmental benefits.  

2.2 MODEL DEVELOPMENT 
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Figure 2-1 Graphic representation of proposed woody biomass supply chains. 

 

In terms of energy production, the biomass supply chain possesses characteristics that 

make it markedly different from those of conventional energy sources (Rentizelas et al., 2009). 

Supply chains for bioenergy feedstocks have adopted their structure from the traditional 

industries from which they have been derived, i.e. agriculture and forest products (Kenney et al., 

2013).  The biomass supply chains should be rigid and minimally adaptable to changes in the 

type of feedstocks.  Additionally, there are challenges that are faced in bioenergy supply chains 

that are not faced by conventional energy. First is the temporal availability of the biomass. In the 

case of woody biomass, the availability is affected by seasonal weather patterns while dedicated 

energy crops and agricultural residue availability are primarily controlled by harvest timing 

(Abrahamson et al., 2010; Inman et al., 2010; Wu et al., 2011).  As a result, individual feedstock 

types may not be capable of producing quantities that are sufficient to ensure a continuous 
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supply at a price demanded by industries. The second factor that differentiates the supply chains 

of woody or herbaceous biomass from those of conventional fuels is the spatial availability of the 

biomass.  The wide dispersion pattern of individual biomass types results in increased 

transportation cost in order to meet production demands (Gonzalez et al., 2011). Finally, the 

energy density of biomass feedstocks are much lower than that of traditional energy feedstocks, 

approximately 40%-55% lower than coal or petroleum (McKendry, 2002), requiring a greater 

quantity of feedstocks to equal the energy output that is being replaced.  The result is a further 

increase in the cost of transporting the material (Caputo et al., 2005). The potential supply chain 

that is being proposed (figure 1), integrates the harvesting of forest and SRWC biomass into a 

single supply chain.  In addition, processes for improving the transportation properties are 

considered (i.e. centralized chipping and pelletization) along with storage to ensure that 

consistent supplies are available at all time periods. 

A MILP model was formulated to maximize the economic profit of delivering woody 

biomass feedstocks to the gate of a conversion facility. The optimal levels for the decision 

variables include quantity of feedstock harvested and the quantity of feedstock transported 

between harvest, processing, storage and conversion for each time period of the year, the 

location of storage, processing and conversion facilities. An explanation of the objective function 

and the constraints of the proposed model are given in the following sections. 

2.2.1 Objective function 

The objective of the proposed model is the maximization of economic profit (ψ) that is 

realized by the production of woody biomass energy feedstocks. Total profit takes into account 

the revenue(φ) that is earned by delivery of a feedstock to the gate of a bioenergy facility; and 
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subtracts the costs that are associated with the harvest (η), processing (ρ), storage (µ) and 

transport (τ ) of the feedstock. Equation 1 gives the formulation of the objective function. 

 

The revenue is calculated through the use of the following equation: 

 

where xhcmijt represents the quantity of material m that is shipped to the biomass facility j from 

the harvest site i during time period t, xpcmjkt is the quantity of material m that is shipped to the 

biomass facility j from processing facilities k during time period t and xscmjkt is the quantity of 

material that is shipped to the biomass facilities j from storage k during time period t. The total 

volume is then multiplied by the material selling price denoted by mpricem. 

In addition to the revenue, cost must also be considered. The cost of harvesting the 

biomass feedstock is primarily made up of two parts: the cost of the actual harvesting operations 

and payment to the landowner. The cost of the harvesting operations is made up of fixed and 

variable cost of the machinery and operators; including taxes, insurance and fringe benefits. 

Additionally, there is also an expense of paying the landowner for the right to harvest their 

material and to pay for the expenses that were incurred during the establishment and growing of 

the feedstock. In this model three harvest methods were considered: Extracting forest material 

with a grapple skidder and shipping the material in loose form to a centralized chipping facility, 
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extracting forest material with a grapple skidder and chipping on site, and harvesting SRWC 

with a single pass cut and chip machine. This model also makes the assumption that all 

feedstocks are accumulated at the centroid of the source county, to ensure that costs were not 

underestimated an aggregation cost was added to each of the feedstocks. The total harvesting 

cost was calculated using the following equation: 

 

With itcip being calculated by the following equation: 

 

where Areai is the area of the source county i. wf is a winding factor and trp is the transportation 

cost $ton−1mile−1 for the materials produced by process p. 

The model also considers the cost of processing before delivery to the gate of the 

bioenergy facility. Through preprocessing the material it is possible to improve these 

characteristics and gain efficiency through the chain by reducing the material size, increasing the 

bulk density and/or increasing the energy density. Size reduction of the material from whole 

stems or large sections into chips is one of the most common processing methods to improve 

transportation properties. Chipping alone increases the bulk density of woody biomass by 243 

percent, and the larger surface area allows for more transporational drying and improving the 

energy characteristics; on the down side the material is more sensitive to precipitation (Angus-

Hankin et al., 1995; T. L. Richard, 2010). In addition to size reduction, pre-processing through 
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densification can also improve the logistical properties of woody biomass. Biomass can be 

densified at the harvest site through the use of baling or bundling. Baling or bundling involves 

compressing a material and tightly binding the compressed material to maintain the compression, 

for woody biomass this process has the ability to double the bulk density over loose material 

(Angus-Hankin et al., 1995). Also, densification can take the form of pelleting or briquetting; in 

this process comminuted woody biomass is compressed under high pressure and increased 

temperature then extruded through a die to produce cylindrical com-pressed biomass. The 

increased temperature softens the lignin in the material, which then serves as a binder when it 

cools. Pelletizing and briquetting improves the energy density in addition to the bulk density 

resulting in a feedstock with improved properties transportation, storage, conversion and material 

handling (Uslu et al., 2008). The cost of preprocessing is calculated with the following equation: 

 

 

In which the volume of material processed during a period (zppjt) is multiplied by the variable 

cost for the process (Pcostp) and added to the fixed processing cost (PFcostp) associated with an 

opened facility (yppj ) located at a candidate location. 

The ability to store woody biomass will be a key in ensuring that a sufficient supply is 

available throughout the year (Inman et al., 2010). The supply of woody biomass is affected by 

seasonality. The seasonal availability of feedstocks from SRWC is controlled by the timing of 

the harvest.  The recommendation is for harvest to occur during the dormant seasons 
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(Abrahamson et al., 2010). Recommending a winter harvest will require that the chips are 

stockpiled for use during the remainder of the year. Logging residues are not limited to a specific 

season of harvest, but can be impacted by seasonal variations in the weather, with wet periods 

limiting the production capabilities of harvesting firms (Wu et al., 2011). This uncertainty in 

supply will also necessitate a certain level of storage to ensure sufficient supply during periods of 

reduced production. The cost of storage is included in the model and also includes the cost that 

arise from the loss of material during storage. The cost of storage is calculated with the following 

equation: 

 

In which the volume of the material that is stored during using method p  at location j during 

time period t  is multiplied times the storage loss factor for storage method p  and the variable 

storage cost for storage method p.  This term is added to the fixed cost for storage method p  

which is multiplied by the binary variable that signifies if a storage facility that uses method p is 

open at location j. 

Transportation of biomass is a major cost element in all energy projects and is of great 

importance in regards to bioenergy development and production, because of the relatively low 

energy density in comparison to fossil fuels (Saidur et al., 2011). It is estimated that 35% to 50% 

of the total cost of producing energy from biomass is made up of the delivered cost of the 

feedstock (Sultana and Kumar, 2011). The transportation of biomass feedstocks is affected by 

many factors including availability, demand and spatial distribution (Gonzalez et al., 2011) . 
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With all these factors being equally considered, the transportation of woody biomass comes 

down to the properties of the feedstock itself. In particular, the factors of most concern are the 

bulk density, moisture content and heating value (Frombo et al., 2009). The bulk density of 

woody biomass varies from 140 kg/m3 to 340 kg/m3 depending on form, loose materials are the 

lowest and wood chips being the highest (Angus-Hankin et al., 1995). Transportation cost is 

calculated with the following equations: 

 

where τh is the cost of transporting materials from the harvest locations, τs is the cost of 

transporting materials from storage and τp is the cost of transporting materials from processing 

facilities. The equations that are used to calculate each component are: 

 

 

Where xhcmijt,xhpmijt and xhsmijt are the volumes  of material m that are shipped from harvest 

location i to the facility location j during period t  for each type of facility conversion, processing 

and storage, respectively. The term distij is the distance in kilometers between harvest location i 

and facility location j.  The term tcm is the transportation cost for material m 
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2.2.2 Constraints 

The objective function presented in the previous section is subject to a series of material 

balance, resource availability and operational constraints. The following equations represent the 

balance of materials flowing in and out of processes. Equations (11) and (12) consider the 

material balance for the harvesting operations. Equation (11) ensures that the amount of a 

material that is produced is less or equal to the available material plus material losses during 

harvesting; with amp being the material input coefficient for harvesting material m using process 

p, zhpit being the quantity of material harvested using process p at harvest location i during time 

period t, and hmit is the amount of available harvestable material m available at harvest location i 

during period t. 

 

Equation (12) ensures that the amount of material that is transported from a harvest site is 

less than or equal to the material that is produced at the harvesting site. 

 

The next two equations, equations (13) and (14) represent the material balance equations 

for processing. Equation 13 ensures that the quantity of material that is output from processing is 
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less than or equal to the material that is input plus any processing losses that are associated with 

the processing of material. 

 

Equation (14) ensures that the amount of material that is shipped from a processing 

location is less than or equal to the quantity that is produced at that location. 

 

The final material balance constraint, ensures that the storage level for a storage location 

equals the quantity of material that remains from the previous period plus the quantity that is 

shipped to the storage location during the current period. 

 

The next section of constraints are classified as capacity constraints. Each location in the 

supply chain from harvest to conversion has an associated capacity. Harvest areas have a finite 

quantity of material that is available and the amount of harvestable material that is available is 

limited by the temporal availability factor. Wu et al. utilized a temporal availability factor to 

account for changes in accessibility of forest biomass throughout the year. Similarly, the harvest 
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of SRWC are carried out during the dormant period which allows for the use of a temporal 

availability factor. The capacity constraint on the harvest of materials is given in Equation (16), 

which limits the harvest during a period to the total available biomass for the location(BAVAILmi) 

multiplied by the temporal availability factor(TAmt) for the material that is being harvested during 

a time period. 

 

For the processing portion of the supply chain there are two processing technologies that 

are being considered: centralized chipping and pelletization. Each of these processes require 

substantial capital investment and therefore if a facility is to be opened it is assumed that the 

capacity will be at least 75% utilized. Additionally each of the technologies has an upper limits 

on its productive capacities. The upper bound on processing is given by equation (17) and the 

lower bound is given by equation (18) 

 

where yppj  is a binary variable signifying if a processing method is opened at a candidate  

location. 

The storage capacity constraint is similar to the processing upper bound, in that the 

largest quantity of material that can be stored at a location during a time period must be less than 

the storage capacity that is available at the location (equation (19)). 
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The quantities of each fuel type demanded are relative to the energy content of oven dried 

woody biomass (equation (20)). 

 

2.3 MODEL APPLICATION   

2.3.1 Model Assumptions for Base Scenario 

The model was applied to an area in the northeastern United States that is made up of 

New York, Pennsylvania and West Virginia. The Northeast already has a wealth of existing 

feedstocks and the potential to increase supplies in the future. In the northeastern US (NE) where 

forests make up 2/3 of the total land area (Smith et al., 2009). Additionally, the decline in rural 

economies has led to outmigration from rural communities to urban areas, weakening local 

economies. The production of bioenergy has been viewed as having the potential to contribute to 

rural revitalization, with products derived from multiple sources having a greater potential than 

shifting the use of current food crops (Rossi and Hinrichs, 2011). Bioenergy feedstocks can be 

used as the basis for manufacture of biomaterials, chemicals and energy. Multiple uses provide 

opportunities for diversification of the use of cellulosic feedstocks, by providing new 

opportunities along an extended supply chain for business development and market creation. 
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Table 2-1 Assumptions for the base Model. 

Parameter Values 

Forest Availability 3.32 million dry Mg (3.68 million odt) 

SRWC ( 10% of marginal land) 3.4 million dry Mg (3.78 million odt) 

Harvesting Rate:  

Foresta  

Loose Residue $32.12/ dry Mg 

In-wood Chipping $35.25/dry Mg 

SRWCb $17/dry Mg 

Stumpage/Growers payment  

Forestc $26.40/dry Mg 

SRWCb $32.43/dry Mg 

Intermediate Processing:  

Centralized Chippingd Capacity( dry Mg/month):9450 

 Fixed Cost: 56,452/month Variable Cost: 

 Variable Cost: 3.15 per dry Mg 

 

Pelletizatione Capacity(dry Mg/month): 3750 

 Fixed Cost: $27,400 per Month 

 Variable Cost: 55.49 per dry Mg 

Storage Methodse,f  

Chips:  

Open Capacities (dry Mg):5132,10265,18249,45624 

 Fixed Costs ($/month):4641, 5353, 5512, 5926 

 Material Loss: 2% per month 

 

Building Capacity (dry Mg):5040 

 Fixed Cost ($/month): 6400 

 Material Loss:0.5% per month 

 

Silo Capacity (dry Mg): 7396 

 Fixed Cost ($/month):11950 

 Material Loss:0.25% per month 

Pellets:  

Building Capacity (dry Mg): 9365 

 Fixed Cost ($/month):6400 

 Material Loss: 0% 

 

Silo Capacity (dry Mg): 19726 

 Fixed Cost ($/month):11950 

 Material Loss: 0% 

Gate Price:  

Chips $88/dry Mg 

Pellets $220/dry Mg 

 

Demand at Conversion Facility 180,000 dry Mg/yr 

a Wu et al., 2011 

b Ecowillow, 2014 

c AHC, 2014 

d Norman and Oscarsson, 2002 

e Pantaleo and Shah, 2013 
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f Badger, 2002 

 

 

(a)       (b)  

Figure 2-2 Biomass quantities and potential facility location candidates, (a) Forest Biomass, (b) 

SRWC 

 

The base scenario for the model considered delivering biomass to facilities that required 

180,000 dry Mg (200,000 odt) per year, the assumptions that are used are listed in table 2-1. 

Each county in the study area was considered a potential biomass supply location and it was also 

assumed that the feedstocks were aggregated to the centroid of the county (Figure 2-2a and 2-

2b). Candidate biomass facility locations were selected from census designated places in each 

state, and each candidate was selected based on population and distance between the nearest 

neighboring candidate (Figure 2-3). The minimum distance between candidates is 120 km (75 

miles) Euclidean distance.  
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Figure 2-3 Locations of Candidate Facilities within the Study Area. 

 

There were two harvesting systems that were considered for forest residue and a single 

harvesting system that was considered for SRWC. Forest residue harvesting systems were a 

grapple skidder system for loose residue and a grapple skidder-chipper system that for forest 

chips. SRWC were assumed to be harvested using a modified agricultural harvester with a 

specially designed header for the harvest of bioenergy crops. The production cost of each 

machine was taken from previous studies. The productivities and cost of the forest harvesting 

systems were taken from Wu et al. (2011) and adjusted to represent the harvesting cost per oven 

dry ton. The productivity and cost of the SRWC harvesting system was defined using the 
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Ecowillow model version 1.7 by SUNY ESF (Ecowillow, 2014). The output of the Ecowillow 

model provides harvesting cost per oven dry ton.  

Transportation was assumed to be completed by tractor trailers with a maximum payload 

of 22.7 Mg (25 tons). Based on the bulk density of the materials it was assumed that chips and 

pellets would utilize the entire payload capacity of the trailers while loose material would only 

provide a payload of 15.9 Mg (16.6 tons). The distances between the feedstock sources and the 

facility locations, as well as the distances between facility locations were determined using the 

ArcGIS 10.2 Network Analyst, origin-destination cost matrix tool. Detailed transportation 

networks we created from OpenStreetMap data (Open Street Map, 2014). The cost of 

transporting biomass feedstocks is dependent on both the bulk density and the moisture content 

of the material.  Table 2 lists the transportation rates adjusted for moisture content in 

$Mg−1km−1 for each of the three considered material forms. 

Table 2-2 Transportation rates for considered feedstocks. 

Material Transport Rate 

$Mg−1km−1 

Loose material 0.168 

Chip 0.106 

Pellet 0.081 

 

The processing options that were considered for the analysis were: centralized chipping 

and pelletization. The use of centralized chipping was chosen as an alternative since the 

productivity is higher and the per unit cost of producing chips is lower in comparison to in- 

woods chipping (Rauch and Gronalt, 2010; Tahvanainen and Anttila, 2011). Centralized 

chipping requires a large initial investment in material handling and conversion equipment. The 
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large investment leads to a higher fixed cost per month for the chipping operation. The variable 

cost based on the volume of chips is assumed to be $3.50 per ton (Norman and Oscarsson, 2002) 

. Pelletization was considered as a method to improve transportation and storage characteristics 

of the feedstocks, as the bulk and energy density is increased and pellets are able to be stored for 

long periods without experiencing degradation (Pantaleo and Shah, 2013). The assumed capacity 

of the pellet plants is the average size of pellet production facilities in the Northeastern United 

States, approximately 50,000 tons per year (Biomass Magazine, 2014). The fixed cost of pellet 

plants of this capacity is approximately $27,400 per month, with a variable cost of $61.65 per ton 

(Pantaleo and Shah, 2013). 

There are three types of storage that is being considered for wood chips and two types 

that are being considered for wood pellets. For wood chips, the types of storage are open air 

storage of different capacities; as well as covered storage and silo storage. Pellet storage options 

include building and silo type storage, as pellets cannot withstand precipitation. The amount of 

dry matter loss differs with each type of chip storage process, the fixed cost, capacity and 

associated material losses are presented in Table 2-1. 

The model is also constrained by the requirements of feedstock material needed by the 

conversion processes. There are five gate demand levels in this model which assumes that the 

processes can use either chips or pellets as a feedstock. The material requirements for both chips 

and pellets as well as the equivalent size for electricity production and liquid fuels production are 

given in Table 4. 
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Table 2-3 Material demands for each conversion level. 

 Electric Production 

(Mw) 

 

 

 

(MW) 

Liquid Fuel 

bbl ∗ day−1 

Chips 

Mg ∗ month−1 

Pellets 

Mg ∗ month−1 

Extra Small 5 145 4511 3817 

Small 10 360 8986 7630 

Medium 20 720 16000 13538 

Large 50 1000 40000 33847 

Extra Large 100 2000 80005 67695 

Sources:(Badger, 2002; Perlack et al., 2011) 

2.4 RESULTS AND DISCUSSION 

2.4.1 Base Scenario 

 

Figure 2-4 Location of Sited Facilities under Base Assumptions. 

 



31 

 

 

The optimization of the base scenario of a biomass plant demand of 180,000 dry Mg of 

woody biomass per year was summarized by the delivered cost, average hauling distance and 

optimal plant locations.  The results show that in the three-state there are 15 plants that are sited 

under optimality.  The locations of the facilities are shown in figure 2-4.  The distance that 

material needed to be transported to reach the mill ranged from 3.21 km (2.24 mi) to over 292 

km (181 mi) with the overall average transport distance being 71.65 km (44.52 mi).  The average 

delivered cost for the 15 plant locations was found to be $72. 58 per dry Mg ($65.99 per odt), 

with a range from a low of $64.69 per dry Mg ($58.81per odt) to a high of $98.31 per dry Mg 

($89.37 per odt) (table 2-4).  The results show that the candidates that had the highest transport 

distances also have the highest delivered cost.  In fact, some of the facilities had a portion of their 

feedstocks that had a delivered price that was higher than the assumed gate price, suggesting that 

it was necessary to pay a premium for this material.  Suppliers will not generally deliver material 

to a facility if they are going to take a loss, instead the facilities may need to pay a distance 

bonus to acquire the material that is needed for operation when it is not possible to procure it at 

market price. 

The base scenario proposed the inclusion of storage and processing options to improve 

the cost structures involved in the biomass supply chains. The results showed that while there are 

efficiency improvements leading to lower per unit costs, associated with the use of centralized 

chipping and pelletizing facilities the investment that is required actually impairs the economics 

of bioenergy feedstock production. This is the same result as found by Pantaleo et al. (2013) who 

stated, ”The higher cost...makes this choice not profitable, despite its lower transport and storage 

cost, and higher energy conversion”.  Potentially if the required demand is high enough or if the 
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premium paid for these feedstocks is high enough then these or similar technologies would be 

employed.  

Table 2-4 Transport Distances and Delivered Cost for Facilities Sited in Base Scenario. 

  Transport Distance   Delivered Cost 

Candidate Min Avg Max   Min Avg Max 

Altoona 8.30 62.99 107.07  65.24 71.59 76.72 

Bethel Park 20.16 69.77 180.39  66.62 72.38 85.24 

Bluefield 27.41 89.24 154.81  67.46 74.64 82.27 

Charleston 15.25 78.54 155.78  66.05 73.40 82.38 

Cheektowaga 20.62 78.21 235.09  66.67 73.36 91.60 

Elkins 18.37 62.62 137.49  66.41 71.55 80.25 

Ithaca 3.60 60.94 154.36  64.69 71.36 82.21 

Martinsburg 5.23 71.26 181.59  64.88 72.55 85.38 

Meadville 5.32 56.99 129.43  64.89 70.90 79.32 

Reading 9.48 64.27 292.80  65.37 71.74 98.30 

Schenectady 12.61 73.29 204.95  65.74 72.79 88.09 

Utica 27.50 83.10 193.31  67.47 73.93 86.74 

Watertown 8.17 102.46 235.11  65.22 76.18 91.60 

Wellsville 19.79 62.11 129.78  66.57 71.49 79.36 

Williamsport 13.48 58.68 118.92   65.84 71.09 78.09 

 

Conversely, storage is employed in all cases to take advantage of the relatively lower cost 

of SRWC feedstocks, the more of the low cost feedstock that can be stored results in less 

consumption of the higher cost feedstocks reducing the overall costs associated with production. 

Storage was utilized for the base scenario, in total 13.09% percent of the material resided in 

storage before being used for conversion.  The use of storage allowed for the use of material that 

came from SRWC to be utilized well beyond the harvest window for the material.  Fourteen of 

the sited facilities utilized outdoor, open storage and one used building storage.  In all cases, the 

storage facilities were co-located with the conversion facilities and the storage capacity was 

filled by the third month, which coincides with the end of the SRWC harvest window, and 



33 

 

 

gradually decreased until the ninth month when the supplies were exhausted.  The lone facility 

that utilized building storage was located in Charleston, WV.  This facility is located in an area 

that has one of the highest availabilities of forest biomass and the lowest availability of SRWC 

(figure 2-2).  The access to feedstocks that are less temporally dependent removes the 

requirement for storage, allowing for storage that is smaller in capacity. 

 

Figure 2-5 Percentage of Storage Capacity Utilized per Month. 

The average delivered cost of the biomass feedstocks for the base scenerio ranged 

between $70.91 and $76.19 odt−1, which is reasonable compared to past research by Grushecky 

etal.( 2007)  who estimated the true price to be within a fairly wide range of $29.7 to $97.1 per 

dry Mg when considering the entire process including felling to delivery to the conversion 
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reported cost while being lower than the target price, is dependent on SRWC, which has not been 

established widely throughout the region and does not include required profit or payment for risk 

for the producers, leading to a price that remains above the target. 

 

2.4.2 Sensitivity Analysis 

2.4.2.1 Material Availability 

In addition to the base case analysis of a 10% conversion of marginal land to SRWC, the 

impact of different levels of feedstock availability were also examined. For the analysis scenarios 

were examined in which there is 0%, 5% and 15% conversion to SRWC and also the case where 

there is no available forest derived woody biomass material (figure 2-6). The 0% case, or only 

have access to forest derived biomass was found to be the highest costs case with an average 

delivered price of $81.49 per dry Mg(73. 34 per odt) with a range between $72.40 and $100.74 

per dry Mg ($65.61-$90.67 per odt).  The lowest delivered cost was found in the case where 15% 

of the marginal land was utilized to grow SRWC.  The delivered cost for the 15% conversion 

case was $71.28 per dry Mg ($64.15 per odt) a reduction in delivered cost of 1.8% when 

compared to the base scenario.  Alternatively, when the availability of SRWC material was 

reduced 5% from the base scenario, the delivered price was increased by 4.3% to $75.71 per dry 

Mg ($ 68.14 per odt). 
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Figure 2-6 Delivered Feedstock Cost for 0%,5%,10% and 15% Conversion of Marginal Crop 

Land by Transport Distance. 

  

The availability of SRWC material also had an effect on the procurement area (i.e the 

distance that the material was transported) (figure 2-7).  As more SRWC material was available 

the distance that needed to be traveled to procure the material was reduced.  In the forest only 

scenario, the average distance traveled to deliver material was approximately 83.5 km, increasing 

the amount of land in SRWC to 15% decreased the travel distance by nearly 20% which equates 

to a reduction in delivered price by $1.87 per dry Mg ($1.70 per odt).  At the base analysis level 

of 180,000 dry Mg per year it would equate to an annual savings of more than $336,000 per year. 
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Figure 2-7 Average Transport Distance by SRWC Availability Scenario. 

  

 Similarly, the amount of available SRWC material had a positive relationship with the 

reduction of harvesting cost.  Results showed that as the availability of SRWC material increased 

the average harvesting cost for the delivered material decreased.  This was to be expected as the 

harvesting equipment has been designed especially for the harvest of SRWC, which provides an 

edge in operational efficiency and production over the equipment utilized to harvest forest 

derived biomass.  It was seen in the results that as the quantity of SRWC material increased the 

proportion of the total harvest that was made up of SRWC also increased. 

2.4.2.2 Harvesting &Extraction Cost 

The cost of harvesting and extraction of biomass feedstocks is not a fixed parameter. Changes in 

technology and/or regulations governing biomass removal have the potential to either decrease or 
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increase harvesting costs.  In the analysis, the cost to harvest and extract were varied between 

10% below and 10% above the base scenario.  It was assumed that the changes that resulted in 

the changes to the harvesting cost did not change handling properties or affect operations along 

the supply chain. 

 The results showed that the delivered cost of biomass feedstocks is not very sensitive to 

changes in harvesting cost alone, since the change in delivered cost is only a fraction of the 

change in harvesting cost.  In fact, the change in delivered cost was found to range from 30% to 

40% of the change in cost, decreasing as travel distances get longer.  Since it was assumed that 

the handling and transportation characteristics were not affected the reduction in cost begins to 

be diminished as transportation distances get longer, as harvesting cost account for decreasing 

proportion of the total cost (figure 2-8).  For example, from the results it was found that when 

there is a 10% reduction in harvesting cost and the material is transported 10 km then the total 

cost reduction is 4 percent; for the same harvesting cost reduction, if the material is transported 

150km then the total delivered cost is reduced by 3.3%.  While any cost reduction is welcomed 

in the effort to provide cost effective renewable energy feedstocks, changes to work methods and 

modifications to equipment that only result in modest cost improvements, will not likely be 

enough to result in substantial reductions in cost by the time that the material arrives at the 

conversion efficiency. 
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Figure 2-8 Sensitivity of Delivered Cost to a Reduction in Harvesting Cost by Distance. 

 

2.4.2.3 Moisture Content 

In transportation, the weight of the water reduces effective payloads. For example: assuming that 

a truck has the capacity of 25.2 tons of wood chips, at 50% moisture content wet basis, the 

payload of oven dry material would be 12.6 Mg.  Reducing the moisture content by 20% would 

increase the payload by 4.5 Mg of oven dry material.  For this reason, moisture content can have 

a significant impact on the delivered price of bioenergy feedstocks.  Distance is a contributing 

factor that moisture content has on the impact of the delivered cost of feedstocks (figure 2-9).  

When transport distances are small(below 75 km), little difference is noticed as difference 

between the 10% moisture content and 50% moisture content is $5 per dry Mg, or less.  When 

the distances are greater the difference is more pronounced, for example at 300 km, the 
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difference in price between 10% moisture content and 50% moisture content would be 

approximately $22 per dry Mg. Typically, material harvested in the Northeastern United State 

ranges from 55% moisture content to 40% moisture content, allowing material to dry in the field 

before transport may lead to an overall reduced cost.  Studies have found that drying material in 

field lead to a cost reduction of approximately 20% on a dry material or energy basis and reduce 

self-heating and dry matter loss (Jirjis,1995;Cutshall et al., 2013).  In field drying will lead to 

there being large amounts of dry material left on the ground, increasing fuel loads and potentially 

fire risk; but the climate in the northeastern United States makes the risk of fire minimal due to 

the relatively high amounts of precipitation and higher levels of relative humidity. 

 

Figure 2-9 Sensitivity of Delivered Cost to Moisture Content and Distance. 
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2.4.2.4 Facility Demand 

The scale of a facility will dictate the quantity of material that is needed for the facility to 

operate.  Additionally, due to “economies of scale”, it is often suggested that the plants that are 

to be built should tend to the larger size rather than smaller (Uslu et al., 2008).  The down side of 

this pattern of thinking, in terms of bioenergy, is that biomass feedstocks are not as energy dense 

as traditional energy sources and transportation is a limiting factor in their economic feasibility 

(Caputo et al., 2005; McKendry, 2002). The size of the facility was found to have an impact on 

the delivered price of the feedstocks and the number of facilities that are able to be sited in a 

region (table 2-5).  The smallest demand level that was examined was 49,500 dry Mg per year, 

the average delivered price was $69.58 per dry Mg ($62.62 per odt) with a range between $66.46 

per dry Mg ($59.81 per odt) and $73.97 per dry Mg ($66.57 per odt) for the 24 facilities that 

were sited.  The highest delivered cost was found for the highest demand level (900000 dry Mg), 

with an average cost of $81.28 per dry Mg ($73.15 per odt). In addition at the highest level there 

were only two facilities able to be sited. 

Table 2-5 Transport Distance, Delivered Cost and Number of Facilities Sited for Differing 

Demand Levels. 

  Transport Distance(km)   Delivered Cost ($/dry Mg)       

Demand 

Level Min Avg Max   Min Avg Max   # of Facilities 

49500 19.50 46.37 84.15  66.46 69.58 73.97  24 

90000 39.55 68.11 127.67  70.95 74.27 81.19  24 

180000 56.97 71.63 102.46  70.91 72.61 76.19  15 

450000 101.19 106.13 109.12  76.13 76.71 77.06  5 

900000 145.29 145.90 146.52   81.21 81.28 81.35   2 

 



41 

 

 

The average transport distance and average cost for feedstocks each increased as the 

demand of the facilities increased. This is to be expected as when more material is needed the 

distance that must be traveled is also greater. Additionally, since transportation cost is directly 

related to hauling distance, as distance increases the delivered cost will go up. Examination of a 

curve that depicts the relationship between facility size and distance traveled (Figure 9), a change 

in slope of the curve is noticeable between the medium and extra-large demand categories. The 

change in slope is an indicator that as the facility demand surpasses the 180,000 dry Mg per year 

threshold that the material is becoming scarcer and the distance traveled increases at a faster rate. 

Further evidence of this can be seen by examining the resource utilization at the various demand 

levels. Figure 10, displays the resource utilization as a percentage of the total available resource. 

It is easily seen that utilization peaks at medium demand facilities. For facilities that require less 

material, their entire demand is available within relatively close proximity of the facility.  The 

facilities that require more material, forces competition between the facilities leading to fewer 

facilities and a larger portion of the area that contains material but not in sufficient quantities to 

support the required demand. 
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Figure 2-10 Average Transport distance by Demand Level. 

 

Figure 2-11 Resource Utilization by Demand Level. 
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While it is likely that a variety of facility sizes will be utilized as the bioenergy industry 

develops. In the case that a single demand level is required then the optimal size is a facility that 

requires 200,000 odt yr−1, based on resource utilization and total output. For example the region 

can support 24-200,000 odt yr−1 which is roughly equivalent to the production of 480 MW of 

electricity production. For a 500,000 odt yr−1 demand, the region can support 8 facilities, 

equating to 400 MW of electricity production. Similarly, if the demand is required to be 

1,000,000 odt yr−1 then there can be only 3 facilities supported with a production of 300 MW of 

electricity. 

 

2.5 CONCLUSIONS 

The mixed integer programming model that has been developed can be used to identify 

locations for potential development of biomass energy facilities as well as defined the supply 

chain configuration for each facility; under different supply and demand scenarios. The base-

case scenario, showed that based on feedstock availability that it is possible to have a bioenergy 

facility in 15 of the potential candidate locations at a price range of $70.91-$76.19 per dry Mg.  

With smaller demand levels it is possible to expand the number of facilities to 24 of the 25 

potential candidate locations and the cost is also reduced to $66.46-$73.97 per dry Mg. 

Conversely when the demand exceeded 180,000 dry Mg per year (200,000 odt per year), cost 

dramatically increased to over $80 per dry Mg and procurement areas grew rapidly; doubling the 

size of the procurement area in the base scenario, leading to fewer facilities that were able to be 

sited. The candidate facilities were sited based on even coverage of the study area and relatively 
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uniform spacing between locations. These locations may or may not represent true best locations 

for facilities, based on current infrastructure, local and regional incentive programs, competing 

industries, etc. It is for this reason that it can only be stated that the location of a facility is 

located in the area that is represented by a 37.5 mile radius around the candidate point; and that 

secondary analysis should be conducted to account for the additional factors associated with final 

facility locations. 

Developments in technology leading to large scale adoption of these technologies may 

lead to increased competition and resulting in an increase in the price of the raw materials. 

Conversely, if development progresses specialized technology will be developed to improve the 

efficiency in which the materials are handled, which may lead to a reduction in the delivered cost 

of energy feedstocks. In addition to demand and technology changes there are other factors that 

may impact the cost of feedstocks, such as weather, disease, etc. 

The utilization of the biomass resource indicates that it may be better for distributed 

production scenarios that included multiple demand levels over scenarios that had a fixed 

demand level. Woody biomass harvesting, transportation and processing are labor intensive, and 

the spatial distribution and relatively low bulk density limit the economical transportation 

distance of these materials. These two factors suggest that future woody biomass energy markets 

will be distributed and region specific. As a result, the potential will exist for the creation of jobs 

in regions that adopt these technologies. It is estimated that for each megawatt of power 

produced from wood that at least four jobs are created, not including additions due to increased 

transportation needs and operation of the conversion facility (Byrnett et al., 2009).  
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This study illustrated that the inclusion of SRWC into woody biomass supply chains that 

it will be possible to reach the targets that have been set by the US. Department of Energy. This 

means that meeting the goal is incumbent on the establishment of  SRWC throughout the area.  

Additionally, this study provided an example of how optimization of facility site and scale can be 

used to determine how well the proposed facilities will utilize resources and identify the 

necessary procurement areas. This information can be used as a method of comparison, to 

examine how improvements in feedstock yield, harvest technology and processing and 

conversion techniques are improving the economics of bio-energy in the region. Additionally, 

the model can be adapted for use in other regions as well as be scaled for assessments of sub-

regions. 
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BIO-ENERGY FACILITY DEVELOPMENT USING A SPATIAL 
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ABSTRACT 

Concern about the sustainability of traditional fossil fuel energy sources has increased the 

development of alternative energy resources. In the temperate forest regions of the United States 

the most promising alternative is the use of woody biomass. Woody biomass includes residue 

from forest products and forest management operations, clearing of land for the development of 

coal and natural gas, and dedicated energy crops. In addition, the use of woody biomass for 

energy has been suggested as a way to improve rural economies through job creation, reduction 

of energy costs and regional development. This study examined existing wood using bio-energy 

facilities in the northeastern United States to define the drivers of establishment of bio-energy 

projects. Using a spatial econometric framework, a spatial autoregressive probit model was 

estimated based on the Bayesian methods to define the factors that impact the location of wood 

using bio-energy facilities in the United States.  

3.1 INTRODUCTION 

According to projections from the Energy Information Administration (EIA), worldwide 

energy consumption is expected to increase from 495 quadrillion BTUs in 2007 to 739 

quadrillion BTUs in 2035, an increase of 49%. This projection is mostly attributed to increased 

energy demand in China and India, which is expected to expand by more than 110% over the 

next 25 years. During the same period, the demand for energy in North America is projected to 

increase by 9.6%(EIA, 2010).  

In the U.S., the production of electricity relies heavily on fossil fuel resources, with 

nearly 66% of the electricity produced coming from fossil fuel sources(EIA, 2010) . The burning 

of fossil fuels contributes to an increase in the atmospheric concentrations of greenhouse gases 
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which has been linked to global climate change and an increase in extreme weather events. 

Additionally, energy dependence on fuel rich countries and the fear of dwindling energy supplies 

has led to increased concerns about future energy security. For this reason many countries are 

searching for renewable and sustainable alternatives to conventional fossil fuel production which 

can be implemented using local resources. 

Woody biomass, which has historically produced more than 14% of the world’s energy, 

is one of the largest and most sustainable energy resources(McIlveen-Wright et al., 2001) . 

Woody biomass, which includes residues from: timber harvest, residues from primary and 

secondary wood processing as well as tree removals during fuels reduction, pre-commercial 

thinning, residues from surface mining and shale gas drilling and short rotation woody crops; has 

the potential to be a feedstock for both liquid fuels and the production of electricity(Bridgwater 

et al., 2002; Caputo et al., 2005; Kaylen et al., 2000; Tembo et al., 2003; Thek and Obernberger, 

2004; Wang et al., 2006) . The potential worldwide woody biomass supply is estimated to be 

able to produce 150 EJ/yr or 1.43 times the annual energy consumption of the United States 

(Faaij and Domac, 2006). In the United States, temperate forests are located in the eastern and 

northwestern portions of the country, and are estimated to be able to produce approximately 57 

million dry tons of biomass annually at a price of $66.14 per dry tonne ($60 per dry ton) (Perlack 

et al., 2011). That material could be used to produce approximately 88 billion kWh of electricity 

or 12.87 billion liters (3.4 billion gallons) of liquid fuel, based on 15.81 GJ per tonne (16 million 

Btu per ton) and 33% efficiency for electricity and227.12 liters (60 gallons per dry 

ton)(American Physical Society, 2013; Perlack et al., 2011) . Wood has been shown to produce 

much lower levels of air pollution than coal. This is because the sulfur and nitrogen content of 
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wood is low which produces negligible amounts of SOx and NOx emissions. In addition, the 

combustion of wood also produces much less CO2 than the combustion of coal (McIlveen-

Wright et al., 2001). The use of biomass also promotes energy security having multiple fuel 

sources increases the power grids ability to respond to resource supply disruptions (Brown and 

Mann, 2008). 

While environmental benefits and domestic energy security are touted during the 

development of bio-energy projects, the real drivers are the potential for job creation, improved 

industrial competitiveness and regional development(Domac et al., 2005). Woody biomass 

harvesting, transportation and processing are labor intensive. Additionally, the spatial 

distribution and relatively low bulk density of woody biomass limits the economical 

transportation distance of these materials. These factors suggest that future woody biomass 

energy markets will be distributed and region specific. As a result, the potential will exist for the 

creation of jobs in regions that adopt these technologies (Gan, 2006). It is estimated that for each 

megawatt of power produced from wood that at least four jobs are created, not including 

additions of jobs due to increased transportation needs and operation of the conversion facility 

(Byrnett et al., 2009). A study conducted by ECOTEC Research and Consulting Ltd/Directorate 

General for Energy, European Commission (1999) in the European Union estimated that 

doubling the use of bio-energy will lead to the creation of 900,000 jobs of which 500,000 will be 

in the agricultural sector. While the ECOTEC study included only the direct and indirect impacts 

of bio-energy projects on employment, similar projects can also be expected to contribute 

significantly to the local and regional economies by increasing economic growth through 

business expansion, import substitution, improved efficiency, energy security and diversification.   
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The importance of industry location is a concept that was theorized beginning in the late 

19th century by Ross (1896). In his work, “The location of industries”, Ross proposed a theory 

that geographic location gave economic and cost advantages to certain industries. More 

specifically, the availability of labor, raw materials, transportation and the ability to exchange 

information are factors that influence the locations of industries(Marshall and Marshall, 1920; 

Predöhl, 1928). Consequently, industries tend to locate where the access to raw materials, the 

cost of inputs and technical restrictions are at optimal levels (Rawstron, 1958; Renner, 1947). 

While initial location theory appeared to explain the rationale that goes into industrial location 

decisions, in terms of economics; it was not very useful for empirical analysis as it focused on 

geometry instead of economics and did not produce models that could be used to test hypotheses 

(Krugman, 1997). 

 New Economic Geography and Cluster Theory have emerged as two improvements on 

Location theory. New Economic Geography proposes the use of a model that explicitly include 

factors that draw or push industry to or from a location (Fujita and Krugman, 2003; Krugman, 

1990). Similarly, Cluster Theory suggests that similar businesses group together where there a 

competitive advantage is experienced (Porter, 1998). In addition to these theories, the 

introduction of new statistical tools has allowed for empirical analysis of industry’s location 

choices (Aguilar, 2009). 

Spatial econometric methods, specifically the use of the spatial probit model, has been 

used to investigate the impact of location on binary choices (i.e. yes or no, build or do not build, 

etc.). Altman et al.(2007) used a probit model that contained a spatial factor to examine a firm’s 

decision to purchase inputs internally or externally. Aguilar (2009) employed the use of a spatial 
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autoregressive probit model to examine the lumber industry in the southeastern United States. He 

found that in addition to the factors of stumpage price, availability of labor, access to 

transportation, land values, availability of resources and energy costs that the spatial location of 

the facilities was an important predictor of the occurrence of a lumber industry facility. 

Additionally, he carried the analysis one step further using the developed model to predict 

additional locations where the industry could expand. Stewart and Lambert (2011) used a 

bivariate probit regression to examine the investment activity of ethanol plants in the United 

States. In their investigation, they looked at the presence (or announcement) or absence of 

ethanol plants in the contiguous 48 states at a county level. The differences between facilities 

that had been built versus facilities that had been announced were compared. They found that 

that proximity to feedstock supply and road density were important factors for the plants that had 

been built, but not so for announced facilities. The early plants had fully utilized the prime 

locations and new facilities are being allocated to more marginal areas. Additionally, they found 

that the spatial dependence between firms was negative, indicating that if a facility already 

existed near the location it was less likely to be suitable for new locations. Similarly, Fortenbery 

et al. (2013) carried out similar analysis for the siting of biodiesel refineries. Their analysis found 

that while policy mandates and incentives were driving factors, the presence or absence of other 

operating plants was not important in the siting of new facilities. 

The factors that determine the choice of location for the development wood based bio-

energy facilities, aside from feedstock availability and transportation, has not been a topic that 

has been widely explored in the literature. The majority of work that has been published focuses 

on the siting of facilities based on the minimization of delivered cost of the feedstock or 
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feedstock availability. While both cost and availability are two of the most important factors in 

the success of a wood using bio-energy plant, there are certainly additional factors that will 

influence the choice of one site over another.  

The variety of factors that are considered drivers for renewable energy production 

suggests that the future development of bio-energy will take into account more than resource 

availability when choosing sites for construction.  It is expected that through analysis of 

currently established wood based bio-energy facilities that it will be possible to identify factors 

that indicate high suitability for future development. This study aims to develop a better 

understanding of additional factors that lead to the installation of wood using bio-energy 

facilities by examining the relationship between a set of chosen explanatory variables and the 

location of current wood based bio-energy facilities. Therefore, the objectives of this study were 

to examine the locational drivers for the development of wood based bio-energy facilities. 

 

3.2 METHODS 

 

Study Area 

 The study area for this project included 12 states and a total of 299 counties in the 

northeastern United State (Figure 1). The Northeast already has a wealth of existing feedstocks 

and the potential to increase supplies in the future. There are currently between 1.35 and 25.64 

million dry tons of woody biomass available per year in the northeast at a price between 60 and 

90 per dry ton. It is also estimated that the region will be able to sustainably produce between 

80.7 and 141.5 million dry tons of biomass per year, in the form of Short Rotation Woody Crops 
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and energy grasses, by the year 2030(Kaylen et al., 2000)]. The availability of these resources 

provide a competitive advantage for economic development(Bridgwater et al., 2002). Biomass 

harvesting, transportation and processing are labor intensive, and the spatial distribution and 

relatively low bulk density limit the economical transportation distance of these materials; 

leading to markets that are distributed throughout a region.   

 

 

Figure 3-1 Location of wood using bioenergy facilities in the Northeastern United States. 

Modeling Approach 

It is assumed that similar resources are needed to those of the lumber industry, similar 

methodologies can used for wood based bio-energy as have been used for the analysis of spatial 

behavior in the forest products industry. A methodology proposed by Aguilar (2009) on 

modeling the spatial behavior of the lumber industry was used in this study. The basic 
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assumption for any biomass energy projects is to maximize profits as a means to maximize 

utility. Profit maximization will be accomplished by the facilities locating in the counties that 

provide the highest levels of utility, given that the utility for each county is derived from a 

combination of characteristics (Lancaster, 1966). Additionally, it is assumed that there are a large 

number of sites available so that there is a variety in the combinations of the characteristics. 

Finally, it is assumed that the decision makers have full availability of information and the cost 

of establishment is equal across all locations. 

Utility is an unobservable variable; as such, the presence of a bio-energy facility in a 

county, defined as a binary variable (1 if present; 0 if absent), will be used to represent the utility 

of a given county. This can be done because the model for a binary dependent variable derives 

the latent utility from an underlying latent variable model and is equivalent to the marginal 

benefit-cost based on the utility of siting a facility in a county versus another county (Aguilar, 

2009). The utility of a site can be defined as function of a set of explanatory variables used for 

determining preference and can be expressed as: 

  

 

Where 𝑦𝑖
∗ is a continuous variable representing presence or absence of bioenergy 

facilities, X is a vector of independent variables representing the factors that influence presence 

or absence of , βi is a vector of parameters associated with the X vector, and ε is an error term. 

Since the net benefit or utility is unobserved, the dependent variable takes on a value of 1 if the 

net utility is positive and 0 if the net utility is less than or equal to 0. The goal of the binary 

response model is to define the probability that the dependent variable is equal to 1, given a set 
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of independent variables, referred to as a probit model. This can be modeled as follows: 

 

 

 

Where G is a nonlinear function that can only have values between zero and one. 

 

Spatial econometric analysis 

Spatial dependence, in terms of bioenergy facility location, is the situation where the 

likelihood of a facility being sited at a location  is related to whether or not another bioenergy 

facility is located at nearby locations (LeSage and Pace, 2009). If spatial dependence is present 

in the data, the models that are used must take into account this factor, since it violates the 

traditional assumption of independence of observations. Spatial dependence is accounted for in 

the models by the addition of a spatial weight matrix. The spatial weight matrix is used to define 

which additional observations have an impact on the dependent variable. The weight matrix is 

used to spatially lag the independent variable as follows: 

 

 

 

Where Wy is an n × 1 vector of observations of the weight of the neighbors influence on 

the presence or absence of bioenergy facilities. The standard binary response model is then 

modified by incorporating the weighted dependent variable in to the model. For the probit model 
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the resulting spatial variant can be expressed as: 

 

 

 

Where, y* is the utility at a location, and ρ is the spatial autoregressive coefficient.  The spatial 

probit can be expressed as: 

 

 

The incorporation of the spatial lag into the model allows for the examination of 

spillovers between regions. Since the dependent variable in this study can only take on two 

values (i.e. present or absent), the Probit model was chosen for use. While estimating a probit 

model is fairly straight forward if the error term is normally distributed, using maximum 

likelihood techniques, the presence of spatial dependence makes estimation extremely hard, if 

not impossible. LeSage and Pace (2009) proposed the use of Bayesian estimation using a Gibbs 

sampling approach. This method allows for inferences of both mean and dispersion of all model 

parameter including spatial lag (Aguilar, 2009). 

 

 
 

3.3 ECONOMETRIC DATA 

 
The econometric analysis was performed on county level data for the northeastern United 
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States ( Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, 

New York, Pennsylvania, Rhode Island, Vermont and West Virginia) , where each county was 

identified by its Federal Information Processing code (FIPS). Each 299 counties was defined 

spatially by using the geographic center point of the county. The latitude and longitude of the 

center points were then used to define the location of the county. For the econometric model, the 

dependent variable (Presence of Biomass Facilities) was set to a value of 1 if there were one or 

more wood based bio-energy facilities located in the county, and 0 otherwise. Wood based bio-

energy facility locations in the northeastern U.S. were based on data from Biomass Magazine’s 

database of biomass energy facilities (Biomass Magazine, 2014). Geo-coded facility locations 

for all were used for the analysis. Facilities that used Municipal Solid Waste exclusively were 

excluded from the dataset, to focus on the factors that drive bio-energy facilities that directly use 

woody biomass resources. 

Unemployment rate was used as a proxy for the availability of labor within a county. 

Previous studies have concluded that the access to labor is one of the major driving forces in the 

development of an industry (Aguilar, 2009). Additionally, median household income was also 

included because it is assumed that areas that have a lower median income would be more 

willing to develop new industries as a way of improving the earnings of the areas inhabitants. 

Unemployment and median household income data came from the Economic Research Service, 

U.S. Department of Agriculture (USDA, 2012a). 

Timber Product Output U.S. Department of Agriculture (USDA, 2012b) was used as a 

proxy for both the quantity of forest resources and the quantity of forest products industry 

present. Higher levels of timber products produced in a region is expected to have a positive 
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impact on the location of a bio-energy facility in an area for two main reasons. First, in areas of 

high timber products output there is an already demonstrated availability of the raw resources 

that can be used directly for feedstock in the form of lower grade/value forest material. Second, 

high levels of timber products output also mean that there is a functioning forest products 

industry, which would be a supplier of secondary feedstocks in the form of mill residues. 

The additional factors included in the model are electricity prices, road density, political 

majority and the production of fossil fuels. Electricity price data came from the Energy 

Information Administration; it is assumed that areas that have high energy cost would be more 

likely to implement alternative energy (EIA, 2010). Road density is the relative measure of the 

quantity of road coverage in an area; information for major roads came from the National 

Atlas.gov and road density was calculated in ESRI ArcGis 10.1 by taking the total length of road 

divided by the land area in square kilometers to give km/km2. The factor of road density is 

expected to have a positive impact on the probability that a bio-energy facility is present in an 

area, as ease of delivery of the raw materials should be highly correlated to the amount of roads. 

Political majority was defined by the results of the 2012 Presidential Election, where 1 was used 

if the majority of people in a county voted for President Obama and 0 otherwise.  The production 

of fossil fuels in the county were stored as a binary variable in which the variable was coded to 1 

if Natural Gas, Petroleum and/or Coal were produced in the county. 

Finally, the model includes binary variables for each state that are used to proxy the 

presence of state level policies and or programs that may either promote or discourage the 

development of bioenergy facilities in that state.  The variable for West Virginia was left out of 

the model to act as a base case and to avoid multi-colinerarity issues that would have arisen 
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through the inclusion of the variable.  It is assumed that if policies are in place that will attract 

biomass energy production then the coefficient will be positive, while policies that discourage 

growth will be negative. 

3.4 RESULTS  

The results of the spatial autoregressive probit model and the non-spatial probit model are 

presented in Table 1. Each of the models was estimated thorough Bayesian Estimation using 

Markov Chain Monte Carlo simulation with 10,500 draws and a burn in of 500 draws. In the 

spatial probit model, the variable for Timber Products Output and Political Majority as well as 

the binary variables for the states of Connecticut, New Hampshire, Massachusetts, Maine, New 

York and Rhode Island were significant. The signs on the coefficients indicate the type of impact 

each variable has on the presence or absences of biomass energy facilities.  From the coefficients 

we can see that higher timber output improves the likelihood that a facility will be located in that 

county. For all the states that were significant the coefficient indicates that there are policy 

mechanisms in place to entice the development of bioenergy in the area.  The model was found 

to have correctly predicted approximately 93% of the choices.  
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Table 3-1 Results of the SAR-PROBIT and Non-spatial Probit Models. 

 SAR- Probit Non-Spatial Probit 

Variable Coefficient p-Value Coefficient p-Value 

     

Constant -14.3276 0.0385* -2.8782 0.1374 
Unemployment    0.1711 0.2772 0.1143 0.3624 

Median Household Income   -0.0037 0.8456 -0.0037 0.8200 
Timber Products Output  0.0434 0.0278* 0.0368 0.0335* 

Population  0.0056 0.3316 0.0035 0.4782 
Road Density  29.8480 0.1282 14.6754 0.3352 

Electricity Price -01371 0.2504 -0.0533 0.5358 
Fuel Production -0.5660 0.2084 -0.5982 0.1420 
Political Majority -0.0037 0.0484* -0.0002 0.7318 

CT 13.6573 0.0301* 1.8753 0.0300* 
DE -11.8981 0.4208 -0.2118 0.9344 
MA 12.9103 0.0399* 1.1876 0.1565 
MD 12.1002 0.0598 0.7798 0.3258 
ME 12.9129 0.0423* 1.4974 0.0753 
NH 15.6872 0.0110* 3.2733 0.0007* 
NJ 2.9595 0.7180 -0.6365 0.7170 
NY 12.6740 0.0442* 1.0711 0.1154 
PA 12.2502 0.0531 0.9118 0.1611 
VT -1.6316 0.8754 -0.6133 0.7571 
RI 14.2698 0.0214* 1.9384 0.0522 

 -0.0312 0.7489 - - 
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Table 3-2 Direct and Indirect Effect coefficients from SAR-Probit. 

 Direct Effects Indirect Effects 

 Mean Lower 95% Upper 95% Mean Lower 95% Upper 95% 

Unemployment 0.016 -0.0086 0.04 -1.44E-04 -3.52E-03 0.003 

Median HH Inc. -0.0003 -0.0033 0.003 2.37E-05 -2.26E-04 0 

Timber Products 0.0041 0.0014 0.008 -1.05E-04 -8.37E-04 0.001 

Population 0.0005 -0.0004 0.001 -9.83E-06 -1.37E-04 0 

Road Density 2.7996 -0.3146 5.811 -5.10E-02 -5.95E-01 0.451 

Electricity Price -0.0129 -0.0331 0.004 3.95E-04 -2.01E-03 0.004 

Fossil Fuel Prod. -0.0532 -0.1279 0.014 6.82E-04 -1.01E-02 0.012 

Political Majority -0.0004 -0.0007 0 5.24E-06 -5.87E-05 0 

CT 1.306 0.3885 2.381 -1.11E-02 -1.83E-01 0.198 

DE -1.1287 -3.6464 1.118 4.80E-02 -1.81E-01 0.388 

MA 1.2361 0.33 2.288 -9.56E-03 -1.75E-01 0.189 

MD 1.1589 0.2396 2.217 -5.93E-03 -1.58E-01 0.183 

ME 1.2352 0.3259 2.292 -9.89E-03 -1.73E-01 0.187 

NH 1.4965 0.5694 2.558 -1.65E-02 -2.18E-01 0.222 

NJ 0.2806 -0.8605 1.659 -2.67E-03 -1.17E-01 0.111 

NY 1.2133 0.3022 2.259 -8.77E-03 -1.68E-01 0.185 

PA 1.173 0.2661 2.213 -7.06E-03 -1.60E-01 0.181 

RI -0.1437 -1.8634 1.395 2.11E-02 -9.17E-02 0.172 

VT 1.3632 0.4418 2.415 -1.29E-02 -1.96E-01 0.205 

 

  In a probit model, the coefficients cannot be used directly to determine the effects of each 

variable instead the marginal effects must be used.  In the spatial model, the marginal effects are 

broken into two components: the direct and indirect effects.  The direct effects are the effects that 

a variable has on its own location, while the indirect effects are the effects that a variable has on 

its neighboring locations. Indirect effects are sometimes called “spillover” effects.  Table 2 

shows the direct, indirect effect for each variable in the spatial probit model, the total effect can 

be found by summing the two values. It can be seen that the direct effects are significant for all 

the variables that are significant in the full model. The significant direct effects are Timber 

Products Output, Political Majority, the States: Connecticut, Massachusetts, Maine, New 
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Hampshire, New York and Rhode Island.  Examination of the indirect effects shows that none of 

the indirect effect are significant, suggesting that the effect in a county does not spill over into 

the neighboring counties. The absence of spillovers is further evidenced by the fact that the 

spatial parameter  was not significant (p-Value=0.7489) indicating that there are not any spatial 

processes that are influencing the presence or absence of the location of bioenergy facilities in 

the northeastern United States.   

The insignificance of the spatial parameter, led to a non-spatial model being estimated, 

the results of which are shown in Table 1.  In the full model, only Timber Products Output and 

the state binary variables for Connecticut and New Hampshire were significant while the 

variables for Maine and Vermont were nearly significant with p-values of 0.0753 and 0.0521, 

respectively.  The percentage of correct predictions for the full non-spatial model was 93%. 

With only three significant variables in the model, a backward elimination process was 

used to eliminate extraneous variables iteratively until only significant variables remained in the 

model.  Upon completion of the backward elimination process, the variables that remained in the 

model were the variables for Timber Products Output and Fossil Energy production, as well as 

the binary variable for the state of New Hampshire.  The reduced model had an Akaike 

Information Criterion (AIC) value of 75.71, compared to the AIC value of the full model of 

122.86, making the full model only 4.408 x 10-11 times as probable as the reduced model to 

minimize the information loss (Table 3).  
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Table 3-3 Variables remaining in the model after completion of the Backward Selection 

Procedure. 

Variable Coefficient p-Value 

Constant -1.52956 <2.00E-16 

Timber Products Output 0.05174 0.000209 

Fossil Fuel Production -0.74463 0.016276 

NH 1.56563 0.000196 

 

The coefficients for the explanatory variables representing Timber Products Output and 

the state of New Hampshire were both positive.  The positive variable for timber output, 

represents that for each million cubic foot increase in timber output increases the probability that 

there is an increased chance that there is a bioenergy facility located in the county.  This is to be 

expected, since timber output is being used as a proxy for both the availability of forest resources 

and the presence of an industry that uses forest resources.  Additionally, the presence of a strong 

forest products industry in the region will, increase the output of mill and forest product residue 

that can also be used for fuel.  Similarly the positive coefficient in the reduced model for the 

state of New Hampshire, indicates that there is/are state level incentives for developing 

bioenergy facilities.  In fact there is at least one biomass energy facility in 60% of the counties in 

New Hampshire.  While it is not possible to determine what exactly is driving the development, 

the significance of the variable indicates that there are forces at work that are not present in the 

other counties. Alternatively, the coefficient for the production of fossil fuel was negative, again 

this intuitively makes sense.  If there is already an energy industry in the county that is based on 

fossil fuels, the establishment of a bioenergy industry could be viewed as competition and thus 

policies may exist to protect the established industry.   
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3.5 DISCUSSION AND CONCLUSIONS 

The findings that the locations of wood-based bio-energy facilities do not contain an 

element of spatial dependence was unexpected. Intuitively, since forested areas are not evenly 

distributed throughout the northeastern United States, it was assumed that would be intrinsic 

spatial correlation.  The inclusion of timber products output in the final model is evidence that 

the facilities will be located in areas where forest and forest products are plentiful. Timber 

products output is basically a proxy for the amount of resource in an area; but additionally, areas 

that have a strong base in traditional forest products would also have an infrastructure in place 

for the transportation of the feedstocks. Additional to proximity to the source of feedstock, it is 

important to identify additional factors that affect why a particular site is selected over another. 

Through the assumption that firms are free to locate anywhere, that they have all the information 

needed to make such a decision, and they will try to maximize their utility; it was possible define 

the relative contributions to utility that each decision variable made by analyzing the location of 

existing facilities. 

Through Bayesian estimation of a spatial autoregressive probit model and also the 

estimation of a non-spatial probit model, it was found that in the northeastern United States the 

factors that could be positively affect the utility of an area, were the level of feedstock resource, 

the absence of competition from traditional fuels and local government policy.  Throughout the 

northeastern United States, there is a large quantity of potential woody biomass energy 

resources, but the marginal effect for that variable is the lowest in the model increasing the 
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probability of presence by only 0.6 percent for each million cubic feet of forest products 

produced.  In fact, if there is fossil energy produced in a county there would need to be 13 

million more cubic feet of forest products produced in an area than in an area where there is not 

fossil energy production.  However, it is government policy that the results have shown to be the 

biggest driver of bioenergy development with an absolute magnitude that is 30 times greater than 

the availability of feedstocks and more than twice as large as the magnitude of the factor for 

fossil fuel production. 

However, there is no evidence that socio-economic factors such as unemployment, 

median household income, etc. are truly drivers of the development of bioenergy facilities, as 

suggested by Gan (2006). The results did not point to any factors that would suggest that 

facilities are being located in areas of high unemployment to spur job growth or in low income 

levels as a community development and wealth creation tool. Additionally, since the price of 

energy was not found to be a significant factor, the evidence suggest that energy prices have not 

yet reached levels where the choice to change to an alternative energy source is being made.  

Again, this is a discrepancy with one of the cited reasons why bioenergy should be developed 

(Bridgwater et al., 2002; Caputo et al., 2005; EIA, 2010; Faaij and Domac, 2006; Kaylen et al., 

2000; McIlveen-Wright et al., 2001; Tembo et al., 2003; Thek and Obernberger, 2004; Wang et 

al., 2006).  Perhaps rising energy prices will be a driver for bioenergy in the future, but there is 

no evidence that that is currently the case. 

While this study has provided some insight into the factors that are playing a role in 

where bioenergy development is happening, there are still questions that need to be answered.  

Additionally, the relatively small sample size of 26 locations containing bioenergy facilities out 
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of the 299 total locations, it is not possible to account for all possible factors that lead to the 

siting of bioenergy facilities.  This provides a basis for continuing work. These efforts should 

focus on expanding the current model to provide more detail into the factors that drive these 

decisions. Additionally, the concept of the use of bio-energy development as a driver for 

economic development can be explored under a spatial context. The continuation of this research 

could serve as a platform for further development of bio-energy in the United States.                                                                                                                                                                                                                                                                                                                                                                           
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4 GIS-BASED SUITABILITY MODELING AND FACILITY 

LOCATION OPTIMIZATION FOR SITING A COAL-BIOMASS 

TO LIQUID PLANT 

  



75 

 

 

ABSTRACT 

The choice of site is of great importance when trying to meet the goal of producing cost-effective 

biofuels, due to the spatial dispersion of the biofuels and the high proportion of total cost that is 

incurred by transportation to the processing facility. The proximity to the fuel supply and the 

resulting transportation cost are the primary concern of the operators of the facilities, although 

this is not the primary driver that leads to the development of these projects.  In order to make 

these endeavors successful, there must also be buy-in from the local community and its 

government.  Previous studies have found that in addition to the environmental benefits and 

improved energy security, the impact that the facilities have on the local economy, in terms of 

job creation, improved industrial competitiveness and regional development are key drivers of 

bioenergy projects.  This study presents a two-stage site selection approach for the siting of 

woody biomass facilities, which combines multi-criteria analysis with mixed integer linear 

programming to rank potential development sites.  Site suitability was first determined through 

the use of multi-criteria analysis the used weighting along with fuzzy logic to assign suitability 

scores, based on economic and environmental attributes.  The top 5% of the suitability scores 

were then used to identify the final candidate locations.  Mixed integer linear programming was 

then used to optimize the facility location based on delivered cost of biomass materials.  This 

approach was then applied to the siting of a Coal/Biomass to liquids plant, and was able to 

objectively identify the optimal location of the facility.  

4.1 INTRODUCTION  

Concerns about tightening global supplies of oil, energy security, and climate change 

have caused a renewed interest in alternative sources of energy. The production of liquid fuels 
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from coal provides an option of reducing petroleum use in the U.S. transportation sector and 

enhancing national and economic security by decreasing the nation’s reliance on foreign oil 

(Paul, 2009; Ramage and Katzer, 2009). The technologies of coal-to-liquids (CTL) are well 

established and have existed for more than 80 years(Van Bibber et al., 2007). Two basic 

approaches can be used to produce liquid fuels from coal: direct coal liquefaction (DCL) and 

indirect coal liquefaction (ICL). Today, the world’s major CTL production is located in South 

Africa, based on locally available low cost coal. Coal liquefaction is also given high priority in 

China. The largest coal producer, Shenhua Group, has launched a DCL plant with a capacity of 

24,000 barrels per day.  The obvious drawback of CTL technologies is the high carbon footprint 

of the process (Bartis et al., 2008; Gray et al., 2007). The life-cycle greenhouse-gas (GHG) 

emissions are about twice those of petroleum-based fuels (Bartis et al., 2008) . The ability to 

capture and store carbon dioxide is very important to producing liquid fuels from coal. If carbon 

capture and storage (CCS) technologies were employed, a reduction of 5-12% lifecycle GHG 

emissions could be achieved compared to the average emissions that result from petroleum-

derived diesel production (Tarka et al., 2009).  

Biomass is the only carbon-based renewable energy resource, which makes it especially 

valuable for making carbon-bearing liquid transportation fuels. Additionally, the introduction of 

biomass in a CTL process as coal-biomass to liquids (CBTL) could further reduce GHG 

emissions (Gray et al., 2007; Paul, 2009; Tarka et al., 2009; Van Bibber et al., 2007). Since the 

carbon contained in biomass is the result of removing carbon from the atmosphere through the 

process of photosynthesis, it is considered carbon neutral because it is assumed that the carbon 

emitted will be used by the plants that are reestablished after the biomass is removed (Gray et al., 
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2007). A study from the U.S. Department of Energy (DOE) National Energy Technology 

Laboratory (NETL) reported that a mixture of 8% biomass and 92% coal (by weight) can 

produce fuels which have 20% lower life cycle GHG emissions than petroleum-derived diesel 

fuel (Tarka et al., 2009). The GHG emissions that are associated with biomass in a conversion to 

liquid fuel process are low and primarily associated with the cultivation, harvest and transport 

processes (Bartis et al., 2008). 

The abundant coal and biomass resources in West Virginia provide a great opportunity 

for the production of liquid fuels using coal/biomass-to-liquid (CBTL) technologies, but it is 

imperative that these resources are able to reach the facility at a reasonable price. The cost of 

feedstocks for energy production is highly location specific (Graham et al., 1997).  There are 

many factors that influence the siting of industrial facilities including economic, environmental 

and social interests.  Each of these individual and possibly conflicting interest must be 

considered and appropriately balanced during the site selection process.  One possible method of 

balancing these factors is through the use of a multi-criteria decision analysis method. Weighted 

Linear Combination is the most common procedure used in Multi-Criteria Decision Analyis 

(MCDA).  During this process, each of the factors that is being considered is weighted based on 

the importance that is placed on the factor. The determination of weights can be done in several 

ways with the four most popular being ranking, rating, pair-wise comparison and trade-off 

analysis.  Each of these methods has inherent differences based on their ease of use, accuracy, 

and degree of understanding by the decision makers (Greene et al., 2011).  While each of the 

alternatives has their place,  the pairwise comparison technique in the construct of the Analytical 

Hierarchy Process (AHP), as developed by Sattay (1994), has become the preferred method 
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based on its stronger theoretical foundation than the alternatives (Greene et al., 2011).  AHP has 

been demonstrated in selecting the location of facilities in a variety of context, including the 

siting of renewable energy facilities including biomass, solar and wind (Gorsevski et al., 2013; 

Kaya and Kahraman, 2010; Kühmaier et al., 2014; San Cristóbal, 2011; Uyan, 2013). 

In the biofuel sector, one of the largest factors that must be faced, in order to be 

competitive, is the ability to access the required feedstocks at the lowest possible price (Perlack 

et al., 2011). This has most often been looked at through optimization modeling. Facility location 

is just one of the many applications of mathematical optimization modeling. DeMol et al. (1997) 

used optimization to determine the lowest cost network structure and resulting biomass flows of 

a multi-source (tree pruning, wood waste, waste paper, and forest thinnings) woody biomass 

system in the Netherlands.  The models were solved by first solving sub-models for each 

feedstock source and combining the results into a knapsack model to find the optimal set of 

facility locations and transportation routes. Troncoso and Garrido (2005) used  a  mixed-integer 

linear programming (MILP) formulation to simultaneously solve a combined production, facility 

location and freight distribution problem to minimize transportation costs and ensuring demand 

is met for the forest products industry in Chile. This methodology could readily be adapted to the 

bio-energy sector, but may be limited to the size of problems that can feasibly be solved. Ravula 

et al. (2008) used cotton logistics in Virginia as an analog for biomass transport and optimized 

the logistics system via the use of greedy algorithms and an implementation of the knapsack 

problem with travel times. Wu et al. (2012a, 2011, 2010) used a MILP approach to estimate the 

optimal delivered cost of harvesting and mill residues for the production of liquid fuels in the 

Central Appalachian region of the United States. 
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Much of the previous work that deals with facility siting has focused on the price of delivered 

material and/or the total transportation cost of delivering resources or feedstocks for production 

(Wu et al. 2011, Zhang et al. 2011).  There are few studies that examine the balance between the 

social and economic factors that interact when a site location is chosen. The determination of site 

location based on these factors will provide a more accurate estimate of the project feasibility 

than could be obtained through methods that minimize cost or maximize profit.  As part of this 

project we looked at a region as containing a set of potential facility locations and choosing 

candidate(s) based on multi-objective decision making methods, taking into account economic, 

societal and environmental factors.  In addition sensitivity analyses are being conducted to 

examine the uncertainties of biomass availability and cost, plant capacity, capital cost, coal price 

and the liquid fuel yield on the feedstock price per ton. 

The ultimate goal for this study was to optimize siting for a 10,000 barrel per day CBTL 

facility using a mix of 92% and 8% woody biomass, which minimizes environmental impact and 

improves the economies for the areas in which they are located.   

 

4.2 METHODS 

4.2.1 Study Area 

The study was carried out in an 18-county area in southern West Virginia (Figure 1). The 

study area is geographically located between 3710’ to 3842’ north latitude and 7958’ to 

8240’ west longitude. West Virginia (WV) is the nation’s second largest coal-producing state, 

producing more than 120 million metric tons of coal in 2012, about 12% of the U.S. total (EIA, 
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2013). The majority of the coal in the state is produced in the southern half of the state. Eight 

counties in the southern central part of the state (Boone, Kanawha, Logan, McDowell, Mercer, 

Mingo, Raleigh and Wyoming) produce approximately 55% of the state’s coal. Based on the 

yield of 3bbl of liquids per ton of coal, this 8-county area could support the production of 

645,000 bbl. per day. 

 

Figure 4-1. Coal production in West Virginia and neighboring areas by county. 

 

In addition to the abundant coal resources, WV is also the third most heavily forested 

state and the harvesting process annually yields approximately 2.2 million dry Mg (2.4 million 

dry tons) of woody biomass which can be utilized as feedstock for liquid fuels (Wang et al., 



81 

 

 

2006). Logging residue is present and available in each of the WV counties (Figure 2).  The 

amounts shown in Figure 1 were derived using 2006 harvesting data from West Virginia and 

2007 TPO (Timber Product Output) data from USDA Forest Service for Kentucky and Virginia.  

The logging residue densities in the counties of southern West Virginia were based on the 

surveys completed in recent years to determine logging residue inventory (Grushecky et al., 

2007).   

 

Figure 4-2. Biomass potential in West Virginia and neighboring areas by county. 

 

It was reported that on average there was 23.3 Mg per hectare (10.4 tons per acre) of 

logging residue left behind after the timber harvest was complete in this region.  Multiplying the 



82 

 

 

harvested acres by the logging residue density for each county in southern West Virginia, the 

amount of logging residue by county can be determined, which ranged from approximately 

19,000 to 71,000 dry tons per year. Considering the terrain constraints and environmental 

protection regulations, the recovery rate of logging residues was assumed as 65%. The amount of 

logging residue (in cubic feet) projected were converted to the unit of dry tons by multiplying the 

density of logging residues 0.616  dry Mg/cubic meter (0.016 dry tons/cubic feet) which was also 

derived from Grushecky et al. (2006).  Mill residue also makes up a significant portion of the 

woody biomass supply in the region, where there can be as much as 1357.2 dry Mg (1508 dry) 

tons per week produced (USDA, 2012b), and of the residues produced it is estimated that more 

than 85% of the mill residues are available of use as a bioenergy feedstock. 

Aside from the residue that is available from forest operations and industry, there are two 

other potential sources of woody biomass available in the region; removals from surface mine 

operations and short rotation woody crops.  For example, in West Virginia, surface mining of 

coal disturbs large areas of forested land annually (Townsend et al., 2009), this produces a fiber 

resource which has not been highly utilized.  The amount of biomass that is potentially available 

from land clearing prior to surface mining has been studied by Grushecky et al. (2012).  They 

found that an average of 70.1 green Mg per hectare (31.3 green tons per acre) is removed during 

surface mining operations.  While there are currently not large quantities of Short Rotation 

Woody Crops available in the region, the potential in the future is great.  There are an estimated 

0.49 million hectares (1.2 million acres) of surface mine sites and 3.64 million hectares (9 

million acres) of marginal crop land potentially available in the central Appalachian region.  At 
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current yields this would produce approximately 31 million dry tons of biomass per year, given 

full site utilization.  

4.2.2 First Stage Modeling – Site Suitability Analysis 

 The first stage of modeling is computing the site suitability index for the study area using 

a fuzzy logic prediction model.  In this model, fuzzy-logic membership functions are used to 

standardize and transform variables, which are measured at differing scales, to ensure that a 

positive change in the value of the criterion is associated with a positive change in the suitability 

index (Wu et al., 2012b). 

𝑆𝑆𝐼 = ∑(𝑓𝑚𝑤𝑚) ∗ ∏ 𝑏𝑛.         (4-1) 

Where SSI is the site suitability index, fm is the value of criteria m, wm is the weight of 

criteria m and bn is the criteria score of constraint n.  Since the criteria will be measured at different 

scales, the variables will be transformed and normalized so that a positive change in the variable 

will be reflected as a positive change in the suitability of the outcome. 

 The inputs that may be utilized to assess the site suitability of coal-biomass to liquid 

facilities include general physical properties (i.e. topography, land cover, etc.), proximity to 

infrastructure (distance from road or rail), access to utilities (distance to electricity, water or 

natural gas), the availability of raw materials, and environmental factors.  In this study, site 

suitability was evaluated on factors that minimize cost, minimize impact to the environment and 

maximize benefits to the local economy.   In this study, 12 variables were utilized for the 

evaluation of site suitability (Table 1).  The primary focus of the suitability analysis was to 
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minimize the direct cost for the investors and also the environmental impacts for the surrounding 

community, while placing facilities in areas that would have the greatest economic impact.  

Fuzzy membership functions were constructed for the evaluation criteria, and normalized on the 

basis of site preference.  

Table 4-1. Evaluation variables and criteria for siting a CBTL facility. 

Criteria Evaluation Criteria 

Distance from Rail Euclidian Distance from Rail Line with preference for areas 

that are closer to rail lines 

Distance from Population Euclidian Distance from the centroid of US Census 

Designated places with population over 10,000 people, with 

preference for areas that are further away. 

Distance from Fuel Terminals Network distance from established wholesale fuel terminals 

with preference for areas that are closer 

Biomass availability within 75 

Miles 

Total Number of Oven Dry Tons available within 75 miles 

with preference for areas that have higher amounts of 

Woody Biomass.  Must have a minimum of 125,000 odt 

available. 

Unemployment Unemployment rate as a percentage of the population with 

preference given to areas with higher unemployment. 

Population Population density of Area: maximum population density 

800 persons per square mile and minimum 75 persons per 

square mile 

Distance from Electricity 

Substation 

Euclidean distance from nearest Electricity Subsatation, 

with preference given to areas that are closer to substations 

Flood Risk Areas within the flood plain excluded 

Direction to nearest population 

center 

Preference given to areas where prevailing wind is away 

from population center 

Land use Preference given to population center 

Ownership Publicly owned land excluded 

Distance to water Preference given to areas near fresh water source 
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The weights were determined through the use of the AHP approach, in which each 

variable was compared to the others.  A focus group that included bioenergy experts, engineers, 

project development experts and environmental experts, were used to rank the criteria. A four-

point scale was used to indicate strength of preference in which 1 was used to indicate equality, 3 

for slightly prefer, 5 for prefer, and 7 for strongly prefer.  A consistency test was preformed to 

assure that the choices were different from random.  The criteria for the test was that if the 

consistency ratio is less than 0.1, the comparisons are consistent and the weight values are valid.  

For our test the consistency ratio was 0.0264, which confirmed the validity of the weights. 

 Applying the suitability model through the use of map algebra results in the suitability 

index, a value from 0 to 1, for each cell in a raster to being defined.  The delineation of site 

suitability on the basis of suitability index can be completed by categorizing them according to 

threshold values to determine relative suitability. 

4.2.3 Second Stage Modeling – Facility Location Optimization 

 

4.2.3.1 Objective function 

A MILP model was formulated with the objective of minimizing the cost of delivering 

woody biomass feedstocks to the gate of a conversion facility. The optimal levels for the 

decision variables include quantity of feedstock harvested, the quantity of feedstock transported 

between harvest and conversion sites for each time period, and the location of the conversion 

facilities.  The objective function describes the total costs involved with the harvest, transport 

and processing of the woody biomass materials that are needed for conversion.  The components 
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that are considered in the function are the harvesting cost, transportation cost, and processing 

cost.  The formulation of the objective function is as follows: 

𝑀𝑖𝑛 𝑍 =  𝜌 + 𝜏 + 𝜇                            (4-2) 

Where Z represents the total cost and , and  represent the harvesting, transportation 

and processing cost, respectively. 

Table 4-2. Harvesting cost components for considered harvesting processes. 

 Harvesting Cost 

($/odt) 

Stumpage 

($/odt) 

Total Cost 

($/odt) 

Loose Residue 25.24-29.40 3.00 28.24-31.40 

In-Wood Chipping 32.41-40.52 3.00 35.41-43.52 

The cost of harvesting the feedstock is made up of two parts: the cost of the actual 

harvesting operations and payment to the landowner. The cost of the harvesting operations 

consists of fixed and variable cost of the machinery and operators; including taxes, insurance and 

fringe benefits. Additionally, there is also an expense of paying the landowner for the right to 

harvest their material. In this model two harvest methods were considered: Extracting forest 

material with a grapple skidder and shipping the material in loose form to a centralized chipping 

facility, extracting forest material with a grapple skidder and chipping on site. The conversion 

process requires that the chips are bark free, and thus the chipper that is used must have 

debarking and screening capability. The cost for each harvesting method is presented in Table 2.  

A grower’s payment of $3 o.d.ton−1 was used in all cases. Also, this model makes the assumption 

that all feedstocks are accumulated at the centroid of the source county, to ensure that costs were 
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not underestimated an aggregation cost was added to each of the feedstocks. The total harvesting 

cost was calculated using the following equation: 

 

∑ ∑ ∑[𝐻𝑀𝑚𝑠𝑡 × (𝐻𝐶𝑚 + 𝑖𝑡𝑐𝑚𝑠)]                                             (4 − 3)

𝑇𝑆𝑀

 

Where HMmst is the quantity of material harvested from source location s during period t, 

HCm is the harvesting cost associated with a material form and itcms is the intra-county transport 

cost for a material m from source s. itcms is calculated by the following equation: 

𝑖𝑡𝑐𝑚𝑠 = 2
3⁄ √

𝐴𝑟𝑒𝑎𝑠

𝜋
× 𝑤𝑓 × 𝑡𝑟𝑚                                                           (4 − 4) 

where Areas is the area of the source county s, wf is a winding factor and trm is the 

transportation cost $ton−1mile−1 for the materials produced. 

Transportation of biomass is a major cost element in all energy projects and is of great 

importance in regards to bioenergy projects, because of the relatively low energy density in 

comparison to fossil fuels (Saidur et al., 2011). It is estimated that 35% to 50% of the total cost 

of producing energy from biomass is made up of the delivered cost of the feedstock (Sultana and 

Kumar, 2011). The cost of transporting biomass feedstocks is dependent on the bulk density the 

moisture content of the material, and hauling distance. The transportation rates for the woody 

materials are $0.19/Mg/km ($0.27/ton/mi) and $0.12/Mg/km ($0.17/ton/mi) for loose residue and 

chips, respectively.  
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Transportation costs are calculated with the following equation: 

𝜏 = ∑ ∑ ∑ ∑ ((𝑇𝑃𝑓𝑚𝑠𝑡 × 𝐷𝑖𝑠𝑡𝑓𝑠 × 𝑇𝐶𝑚))                                    (4 − 5)         

𝑇𝑆𝑀𝐹

 

where TPfmst is the quantity of material m shipped between the source location s and 

facility f  during time period t, Distfs  is the network distance between facility f and source s in 

miles and TCm is the transportation cost of material m in $/Mg/km.  

Processing raw material at the facility is also considered part of the feedstock delivery 

cost, because it is necessary in order to have all the biomass in a uniform format for conversion.  

The processing of biomass at the facility can reduce the cost since the chippers that are utilized 

centrally are of very high efficiency and of higher throughput; also when quality of the material 

is a concern it eliminates the need for debarkers and screens on site. (Tahvanainen and Anttila, 

2011).  The cost of processing at the facility is calculated with the following equation: 

𝜇 = ∑ ∑ ((𝑀𝑃𝑚𝑓𝑡 × 𝑝𝑣𝑐) + 𝑝𝑓𝑐)            𝑚 = 𝑟𝑒𝑠𝑖𝑑𝑢𝑒                             (4 − 6)

𝑇𝐹

 

where MPmft  is the quantity of material processed a facility f during period t,  pvc is the variable 

cost of processing and pfc is the fixed cost of processing. 

4.2.3.2 Constraints 

The objective function presented in the previous section is subject to a series of material 

balance, resource availability and operational constraints. The following equations represent the 

balance of materials flowing in and out of processes. Equations (7) and (8) describe the material 
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balance for the harvesting operations. Equation (7) ensures that the amount of a material that is 

produced is less or equal to the available material plus material losses during harvesting. 

∑ 𝐻𝑀𝑚𝑠𝑡

𝑀

≤ 𝐵𝐴𝑠 × 𝑇𝐴𝑡                            ∀𝑠, 𝑡                   (4 − 7) 

Where HMmst is the quantity of material m that is harvested from source s during 

time period t, BAs is the total amount of biomass that is available at a source location and 

TAt is a temporal availability factor.  The temporal availability factor accounts for changes 

in accessibility due to seasonal weather patterns.  Equation (8) ensures that the amount of 

material that is transported from a harvest site is less than or equal to the material that is 

harvested from the source. 

∑ 𝑇𝑃𝑓𝑚𝑠𝑡 ≤ 𝐻𝑀𝑚𝑠𝑡                            ∀𝑚, 𝑠, 𝑡               (4 − 8)

𝐹

 

Equation (9) states that the quantity of material that is processed at a facility (MPmft) 

cannot exceed that quantity of material that has been transported to the facility (TPfmst) for 

all time periods and facilities.   

𝑀𝑃𝑚𝑓𝑡 ≤ ∑ 𝑇𝑃𝑓𝑚𝑠𝑡        ∀𝑓, 𝑡           𝑚 = 𝑟𝑒𝑠𝑖𝑑𝑢𝑒                  (4 − 9)

𝑆

 

Equation (10) is the constraint on the feedstock that is required for the plant to 

operate.  The constraint requires the total biomass of both chips and residues that are 
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transported to the facility and the material that is processed at the site equates the demand 

for the time period if the facility is open. 

∑ 𝑇𝑃𝑓𝑚𝑠𝑡|𝑚=𝑐ℎ𝑖𝑝
+ 𝑀𝑃𝑚𝑓𝑡 = 𝐹𝑅𝑓 × 𝑦𝑓               ∀𝑓, 𝑡            (4 − 10) 

4.3 RESULTS AND DISCUSSION 

4.3.1 Analysis Scenario 

4.3.2 Weight Preference 

A pairwise comparison matrix was created to reflect the preference of the proposed 

evaluation criteria.  The eigenvector method was used to derive both the weights and the test for 

inconsistency between responses as proposed by Saaty (1994).  The consistency ratio value 

(0.026) for the responses was lower than 0.1, validating that the responses were consistent 

among respondents.  The distance from rail (weight=.2257) was judged to be the most important 

factor,   since requirement for coal is of such importance to the process and rail is the primary 

and most cost effective way that coal is transported.  Having a facility that is capable of taking 

rail delivery of coal shipments will reduce costs and enhance the profitability of the facility.  The 

factors availability of biomass and distance to water were seen as slightly less important than 

access to rail, but equal to each other in weight (weight=.1698).  The pairwise comparison matrix 

with weights for all the factors in the fuzzy logic prediction model can be seen in Table 4.  
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Table 4-3. Pairwise comparison matrix and relative weights of fuzzy logic model variables. 
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4.3.3 Site Suitability 

Using ArcGIS 10.2, the SSI for each cell in the study area was computed based on 

Equation 1.  The suitability ranged from 0 to 0.7837.  The top 5% of suitability indices were 

selected as areas that were considered suitable for siting a CBTL facility.  The range of 

suitability indices for the selected area ranged from .7683 to 7837.  The location of suitable areas 

can be seen in figure 3. 

 

Figure 4-3. Location of calculated suitable areas. 
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Each of the sites had all of the necessary requirements for a CBTL facility, including rail 

access, a sufficient water supply, and close access to three phase electricity.  Additionally, 

industrial areas were added to the analysis. Within the study area there were 94 industrial sites. 

Of the industrial sites within the study area there were only nine that lay within the areas found 

suitable for building a CBTL facility.  The nine sites that were within the suitable areas were 

selected a candidate locations for use in the facility location model.  The location of the 

candidate facilities in the study area are shown in Figure 4 and the suitability scores for each 

location are presented in Table 5. 

 

Figure 4-4. Location of selected candidate facilities based on suitability analysis. 
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Table 4-4. Suitability indices for selected candidate sites. 

Site Nearest City Suitability Score 

North Gate Charleston 0.7790 

Longacre Bottom Smithers 0.7780 

Ronald Lane Charleston 0.7768 

Handley Handley 0.7748 

McDonald Taplin 0.7744 

Wash Branch Danville 0.7743 

Glade Creek Summersville 0.7728 

Mink Shoals Charleston 0.7722 

Washington Heights Charleston 0.7708 

 

4.3.4 Ranking of Sites 

The nine sites that were identified during the suitability analysis were used as inputs for 

facilities in the facility-location model.  The model was then used to evaluate the cost of 

delivering biomass to each facility.  The base scenario used a facility demand of 10800 dry Mg 

per year, or 10,000 odt per period based on a 10,000 bbl per day facility using 92% coal and 8% 

biomass by weight.  Each site was compared on the total delivered cost per ton of biomass, it 

was assumed that the quantity of coal that would be necessary would not be a limiting factor in 

production.  Glade Creek was found to have the lowest delivered cost for biomass at $36.92 per 

odt, nearly three dollars per ton less than the next closest site, Handley, with a cost of $39.78 

per odt (Table 6).  The site that had the highest delivered cost was the Longacre Bottom site, 

with a delivered cost of $47.70 per odt.  The site with the highest suitability index, North Gate, 

ended up ranking fourth out of nine, with a delivered cost of $40.27 per odt. 
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Table 4-5. Delivered cost and ranking of candidate sites. 

Site Delivered Cost Rank 

 Glade Creek 36.92 1 

 Handley 39.78 2 

 Mink Shoals 39.88 3 

 North Gate 40.27 4 

 Washington Heights 40.3 5 

 Ronald Lane 40.92 6 

 Wash Branch 41.98 7 

 McDonald  42.47 8 

 Longacre Bottom 47.7 9 
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Figure 4-5. Locations and ranking of candidate sites for a CBTL facility. 

 

4.3.5 Factors Contributing to Site Ranking 

The percentage of feedstock demand that must be met using material that comes from in-

woods chipping operations had a negative effect on where the sites ranked.  Of the nine sites, 

only the three lowest ranking sites used in-woods chipped material to meet demand. The lowest 

ranked site, Longacre Bottom, used 97.6% in-woods chipped material to meet demand.  

Similarly the next two lowest ranked sites McDonald and Wash Branch, met their demand with 

17% and 16.3% in-woods chipped material, respectively.  The use of in-wood chipped material 

raises harvesting cost, and indicates that the material is located at a distance that is too far to 

transport in loose form economically.  The average distance that the three in-woods chip using 
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facilities transported was over 80 km (50 miles), while the facilities that transported residue and 

processed at the facility had an average transport distance of 44.03 km (27.36 miles).  While 

each site selected had sufficient volumes of woody biomass within an assumed economic 

transport distance of 120 km (75 miles), it is clear that the highest ranked sites were placed amid 

the resource and not merely close to the resource, allowing them to have an advantage in terms 

of cost of feedstock. 

4.4 DISCUSSION AND CONCLUSIONS 

 

This study has presented a methodology to identify and select the locations for 

coal/biomass to liquid facilities using GIS based suitability analysis and facility-location 

optimization.  The suitability analysis allows for the identification of areas that meet a minimum 

set of criteria for varying and sometimes disparate objectives.  We evaluated that sites based on 

factors that contribute to the cost for the investors, environmental and potential economic 

impacts.  The suitability index for each cell (size) in a raster that covered the study area was 

calculated using a fuzzy-logic prediction model that incorporated AHP results.  Industrial sites 

that were contained within the defined suitable areas were chosen a candidate sites. The 

identification of suitable sites incorporated a considerable amount of economic and 

environmental data, with decision rules about which factors are necessary when siting a CBTL 

facility.  While this study included all the basic factors necessary for evaluation, there are a 

myriad of factors that could be included in the site selection process to refine site selection 

further. 
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 The proposed approach was applied in an 18 county area in southern West Virginia, and 

was successful in taking spatial data of differing scales and subject matter and integrating it 

together to identify and rank potential sites for CBTL facilities.  In addition to selecting the site 

the inclusion of optimization modeling allows for the examination of factors that contribute to 

the rank and provides a basis for the investors for determining costs.   The results can be utilized 

as inputs into financial models as the planning process continues. 

 Future research will be needed to evaluate the economics of siting plants in the areas that 

have been identified.  The study area has a demonstrated high level of the resources that are 

needed.  The economic impacts (i.e. job growth, tax revenue, and rural development) can be 

evaluated through the use of a variety of economic analysis tools such as input-output analysis or 

computable general equilibrium modeling.  The environmental impacts can be evaluated further 

using Life Cycle Analysis.  The Life Cycle Analysis will provide baseline estimates of the 

impacts to soil, water and air and provide information on areas where improvement may be 

possible. 

 This study provide a framework that can be used to screen and ultimately rank potential 

areas for development and siting of CBTL facilities.  Additionally, these methods could be 

extended into the siting of a variety of types of facilities that have the delivery of feedstocks as a 

major cost component. The limitations of this method lay in the defining of the criteria weights 

and the inherent subjectivity contained within.  It is possible to vary the weighting schemes, and 

compare the results to find areas of overlap.  
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ABSTRACT 

 A simulation model was developed to assess the locally available quantities and prices 

for biomass feedstocks.  The simulation uses machine tractability in conjunction with graph 

theory to assess machine productivity and harvesting cost.  Terrain information from digital 

elevation models along with land cover and forest inventory data were used to create weighted 

graphs of forest stands.  The weighted graphs were analyzed using Dijkstra’s algorithm to find 

the shortest path between each forest supply point and the landing.  The paths were then 

analyzed for machine tractability to determine the quantity of material that can be transported 

from each supply point to the landing.  The model was then applied to a demonstration project in 

which a 10,000 bbl per day Coal/Biomass to Liquid plant is being used to examine if there are 

sufficient feedstocks available to warrant the project.  It was found that within the proposed three 

county procurement area that there were approximately 34% less material available than was 

assumed to be available from large scale feedstock data. Also, the simulation model was able to 

determine that the total feedstock requirement could be met at a price of $66 per dry Mg. 

5.1 INTRODUCTION 

The social and political environment in the United States has led to expanded interest in 

the role of biomass energy into the future.  The increased frequency of extreme weather events, 

which have resulted in billions of dollars of economic losses, in the United States, has been 

suggested to be a result of global climate change (Banholzer et al., 2014),  which has led to 

policy such as the Renewable Fuel Standard as well as numerous tax incentives for the 

production of renewable energy.  Additionally, many states have followed the federal 

government’s lead, and have adopted Renewable Portfolio Standards (RPS) in efforts to reduce 
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the emission of greenhouse gasses in to the atmosphere, and slow the rate of climate change (US 

EPA,2010). 

Biomass is being considered for the production of energy in areas where the use of wind 

and solar is not feasible. Biomass for bioproducts and bioenergy can be sourced from forests, 

agricultural crops, various residue streams, as well as dedicated woody and herbaceous crops 

(USDOE 2011). Woody biomass feedstocks have several advantages over agricultural sources, 

especially in the northeastern US (NE) where forests make up 67.4% of the total land area 

(Smith 2009) and agricultural production has been in a 20-year decline. Woody biomass is 

available year-round from multiple sources, so end users are not dependent on a single source of 

material; this ensures a consistent feedstock supply, reduces the risk of dramatic price 

fluctuations, and eliminates the needs for complicated and expensive long-term storage of 

material. As perennial cropping systems, both forests and short rotation woody crops (SRWC), 

like willow and hybrid poplar, produce a number of environmental benefits beyond a renewable 

source of biomass and are less prone to fluctuations in yield due to abnormal weather patterns or 

pest and disease outbreaks than annual crops.  

The Northeast already has a wealth of existing feedstocks and the potential to increase 

supplies in the future. There are currently between 1.35 and 25.64 million dry tons of woody 

biomass available per year from integrated forest operations in the northeast at a price between 

$60 and $90 per dry ton (Perlack et al., 2011). It is also estimated that the  region will be able to 

sustainably produce between 80.7 and 141.5  million dry tons of biomass per year, in the form of 

Short Rotation Woody Crops and energy grasses, by the year 2030 (Perlack et al., 2011). The 

availability of these resources provide a competitive advantage for economic development 



105 

 

 

(Marcouiller et al., 2004). Biomass harvesting, transportation, and processing are labor intensive, 

and the spatial distribution and relatively low bulk density limit the economical transportation 

distance of these materials; leading to markets that are distributed throughout a region.   

In the northeastern United States, the primary method of extraction of forest residues 

would be through the use of a skidder or a forwarder ( Li et al., 2006; Grushecky et al., 2007).  

The residues can then either loaded directly to a truck or comminuted, in order to improve 

transportation and handling characteristics, using in-woods chipping.  The transportation of loose 

material is preferable when the material is large enough to meet the weight capacity before 

exceeding the dimensional limits.  If this criterion is met, or the transportation distances are short 

(less than 35 miles), it is preferable to utilize centralized chipping, due to the centralized 

chipper’s increased efficiency and lower per unit cost (Rauch and Gronalt, 2010; Tahvanainen 

and Anttila, 2011).  In cases where full loads cannot be obtained with the raw material it is 

preferable to comminute the material to increase the bulk density.  Increase of the bulk density 

improves the transportation characteristics, transforming the material into a form that can 

transported economically (Tom L. Richard, 2010).  Both types of operations require large capital 

investments. 

Traditionally, woody biomass has been considered a low value product, and consequently 

little emphasis has been placed on the efficient harvest, extraction and transport of this 

potentially valuable material.  As energy markets develop, value will be added to these products 

and lead to increased harvest and collection (Becker et al., 2009).  Even with the increases in 

market value associated with increased demand, harvesting and collection cost may be a limiting 

factor in the true availability of woody biomass feedstock.  While collection and primary 
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transport of logging residues can be completed using current timber harvesting systems, their 

efficiency is dependent on machine payloads; the terrain in which they are working; and the 

spatial distribution of the residue.  Each one of these factors will affect the cost of the feedstock.  

In addition, transportation of woody biomass is also a challenge due to the material’s low bulk 

density, making it difficult to maximize allowable load limits (Spinelli et al., 2007). 

 The economic availability of biomass feedstocks is a topic that has been well developed 

in the literature.  There are several resource assessments that have been developed on a national 

scale, two examples are: (Gan and Smith, 2006; Perlack et al., 2011). Perhaps the most cited 

assessment is the U.S. Billion-Ton Update: Biomass Supply for a Biofuels Industry by (Perlack 

et al., 2011).  In this report, an assessment is made for the nation, at a county level scale, on the 

availability of biomass feedstocks by price. While this report provides a good baseline for 

biomass availability, the assumptions that were made result in a lack of detail. Additionally, 

there have been several studies that examine the extraction cost of feedstocks at the compartment 

or individual stand level (Yoshioka et al., 2011; Zambelli et al., 2012). 

 The capacity of an extraction machine is highly correlated to the topography in which the 

harvesting operations are taking place (Greulich et al., 1999).  The ground conditions of a 

specific site can limit the movement of the machines and reduce effective payloads, to the point 

where the machine is rendered ineffective (Spong, 2001).    The examination and modeling of 

machine tractability has been studied in forest operations since the mid 1950’s. Herrick (1955) 

published “Tractive effort required to skid hardwood logs”.  In 1977, Perumpral et al. (year) 

published mathematical models that predicted the skidding forces on logs.  In the early 1980’s 

Olsen et al. (1983) published “Predicting Skidder Productivity: A Mobility Model “, in effort to 
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have a computer program that would be able to predict the production that could be expected in 

ground based logging operations, based on terrain information.  Additionally, Hassler et al. 

(1983) produced SKIDLOG, an interactive computer simulation model that was intended to 

evaluate skidder productivity under various ground conditions. 

 The use of machine capability will allow for the estimation of the productivity of forestry 

operations at a localized level.  Traditionally, biomass availability assessments have been carried 

out on a large scale and have not been able to provide detailed information to perspective 

bioenergy developers. The objectives of this study were to demonstrate a method in which 

simulation can be used to assess the local economic availability of forest biomass for use in the 

development of bioenergy projects.   

5.2 DATA AND METHODS 

5.2.1 Data 

 Three types of spatial data were utilized in this study: land cover, elevation and county 

boundaries. The land cover data used was the 2006 National Land Cover Database provided by 

the Multi-Resolution Land Characteristics Consortium, of the US Department of the Interior and 

the U.S. Geological Survey (USGS).  The land cover data were at a 30 meter spatial resolution, 

and was the most current available at the time of this study, and they were clipped to the 

boundary of the state of West Virginia to minimize file size and facilitate use.  Elevation data 

came from the 30 meter National Elevation Dataset from the USGS, a UTM NAD83, 1:24000 

scale subset of the data were acquired from the West Virginia GIS Technical Center.  The county 

boundary data, were also acquired from the West Virginia GIS Technical center.  The county 
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boundaries were at a spatial scale of 1:24000 and were projected to a UTM NAD83 (Zone 17) 

projection.  In addition to the spatial data, forest inventory data for annual growth and above 

ground biomass were used and acquired from the U.S. Forest Service, through their Forest 

Inventory Data Online (FIDO) data retrieval interface. 

 

Figure 5-1 Flow chart of modeling process. 

 

5.2.2 Extraction of Forest Areas 

 The first step of the process was to extract the forest areas from the land cover raster. The 

land use codes 41, 42 and 43 in the National Land Cover Database correspond to Deciduous 

Forest, Evergreen Forest and Mixed Forest respectively. The map algebra tool, in ARCGIS 10.2, 
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was used to reclassify the land cover raster. A binary classification system was used in which 

forest area was set to a value of 1 and all other land uses were set to 0. After classification, the 

raster, that now represented the forest area in the state, was converted to polygons that 

represented the individual forest areas, and non-forest areas.  The non-forest areas were removed 

from the dataset, to leave only the polygons that represented the forest area of the state.  The 

statewide forest polygon shapefile was then clipped to the boundary of each county to establish a 

county-level coverage of forestland boundaries that will be used to extract the elevation data for 

each forest area in a county. 

5.2.3 Extraction of Forest Elevation Data 

 The analysis of machine working payloads requires information about the terrain in 

which the machine is being utilized.  The only elevation information that was required, was the 

elevations for the stands themselves.  To that end, the elevation raster was clipped to each 

individual forested area.  Before the elevation raster was clipped, the forest area shapefiles were 

cleaned of any areas that were below a threshold size that would make it economically infeasible 

to harvest.  In this study, the minimum threshold was 8.092 ha. (20 ac.).  After the clipping, there 

was an individual elevation raster for each forest area.  Each raster was processed using the 

Geospatial Data Abstraction Library(GDAL) and Raster packages in R 3.1.1 to obtain arrays of 

X, Y and Z values for each forested area.  

5.2.4 Creation of Weighted Graphs 

 The graph theory has been widely used to solve a host of problems in the area of forest 

networks (Sakurai et al., 2002; Stückelberger, 2008).  A graph is simply a set of nodes or points 

that are connected with edges or links that connect two of the nodes.  A weighted graph is 
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essentially the same but the edges are weighted or have a cost associated with the travel between 

two nodes.  In general, graphs are used to facilitate finding the shortest or least cost path between 

two locations on the graph.  For this project, the nodes of the graph are represented by the arrays 

of X, Y, Z coordinates, which is the center of each cell in the forest area level elevation rasters.   

 

Figure 5-2 Graphic representation of node connection pattern. 

 

 The links or edges are created based on each point having a maximum of 32 

connections (Figure 5-1).  The slope distance between nodes was recorded as a weight 

parameter for each link or arc (Equation 5-1). 

  𝑆𝐷 = √∆𝑥2 + ∆𝑦2 + ∆𝑧2                                              (5-1) 

   Where: 

    SD=Slope Distance 

    ∆x =change in x direction (longitude) 
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    ∆y =change in y direction (latitude) 

    ∆z =change in z direction (elevation) 

 In an attempt to reduce the number of links that would need to be visited during the 

search process and to ensure that the average gradient of the extraction route would be less than 

20% slope, links would only be added to the graph if the slope was less than or equal to 20%.  In 

addition to the initial weights, for the links added to the graph, a slope penalty was implemented 

for slopes over 5% to ensure that there was a preference for flatter terrain. 

5.2.5 Identifications of Landing Locations 

 The log landing serves as the hub of harvesting activity, it is in this location that material 

is stored, process and made ready for transport.  In general, landings are located in areas in which 

the terrain is gentle and provides a staging area in which the processing machines can be 

stationed and work efficiently.  To identify candidate landing areas within the forest areas, each 

graph was searched to find areas of approximately of 0.10 ha (0.25 ac) in size with a slope of  

less than 5%, in accordance with the timber harvesting Best Management Practices of West 

Virginia (WV Div. of Forestry, 2014).  The search algorithm selected a point and checked the 

slope in each of the cardinal directions and on each diagonal.  If all slopes were less than or equal 

to 5%, the node was added to a candidate list.  After the entire graph was searched and all 

potential landings were identified, the candidate list was used to identify which of the landing 

candidates would be used in the distance analysis.  This step was necessary, since many times 

there were several candidates that were spatially close together.  Candidate landings were 

selected in the order in which they were placed in the candidacy list, and the selected candidate 
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was placed in the final landing list.  The candidate list was searched to find all the candidates that 

were within a minimum distance threshold, and any candidate that fell within the threshold was 

deleted from the list.  For this study the threshold that was used was 630 meters, equates roughly 

to the average economic travel distance in the region (cite). The resulting list was then used as 

landing sites for the payload analysis. 

5.2.6 Allocation of Nodes to Landings and Determining Travel Distance 

 The irregularity of the shape of the forest area boundaries as well as the heterogeneity of 

topography that was found in the forest areas did not allow for the arbitrary assignment of graph 

nodes to landings based on Euclidean distance, instead nodes were allocated to landings based on 

the least cost of extractions.   The least cost extraction distance was calculated for each node to 

each of the final landings using Dijkstra’s algorithm (Dijkstra, 1959), with each node being 

allocated to at most one landing. If the node attribute for landing allocation was null, which 

specifies if the node had not been allocated to a landing, and the distance found was less than an 

arbitrarily large distance of 100,000 m, then the node was allocated to the current landing, and 

the distance was stored as an attribute of the node.  If the allocated landing property was not null, 

indicating the node had been previously allocated to a landing, the calculated distance was 

compared to the current distance attribute.  If the current calculated distance was less than the 

value that is currently stored, the current landing replaces the stored landing in the allocated 

landing attribute and the calculated distance is stored as the distance to the landing.  This process 

is continued until all nodes are either allocated to a landing or it is determined that a point is not 

connected to any of the landing locations in the graph. 
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5.2.7 Determination of Payload to the Landing  

 The payload that an extraction  machine can take to the landing is a combination of the 

tractive force of the machine and the resistive force of gravity and the load that it is carrying 

(Hassler et al., 1983).  The formula for calculating payload is given by equation 5-2. 

𝑃𝑎𝑦𝑙𝑜𝑎𝑑 =
[(2 × 𝐹𝑜𝑟𝑐𝑒) − (0.4 × 𝑤𝑡 × cos 𝜃) − (2 × 𝑤𝑡 × sin 𝜃)]

1.05 cos 𝜃 + 2 sin 𝜃
                 (5 − 2) 

Where: 

 Force = Drawbar force of the machine 

 wt= the weight of the machine 

 = the angle of the slope in degrees 

 The drawbar force of the machine is variable and depends on both horsepower and speed.  

Figure 4-2 gives a graphical representation of the relationship between speed and pulling 

capacity of a machine.  The calculation for drawbar pull in that was used for this study was based 

on a Caterpillar 525 Skidder (Caterpillar, Inc, 1998) and the formula is given by equation 5-3 

𝐹𝑜𝑟𝑐𝑒(𝑀𝑔) = (0.8971𝑒−0.262 𝑆𝑝𝑒𝑒𝑑) × 20                                         (5 − 3) 

 

 The angle of the slope () is found by taking the arctangent of the slope between the two 

terrain points.  During the landing allocation and distance calculation process the preceding node 

on the path is stored as an attribute for the node.  Both the current node and preceding node have 

X, Y, and Z coordinates stored as attributes, which allows for the slope to be calculated between 
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the nodes.  The inverse slope must be used, because the direction of travel is opposite the 

direction of analysis. The slope between the nodes is calculated using formula 5-4. 

𝑆𝑙𝑜𝑝𝑒 = −
𝑍𝑝𝑟𝑒𝑑−𝑍𝑐𝑢𝑟𝑟

√(𝑋𝑝𝑟𝑒𝑑−𝑋𝑐𝑢𝑟𝑟)
2

+(𝑌𝑝𝑟𝑒𝑑−𝑌𝑐𝑢𝑟𝑟)
2 

                                                            (5 − 4)  

 The payload formula (equation 5-2) provides the amount of payload that can be 

transported between two nodes, but it is not always possible to bring the full load from a node to 

the landing due to a payload limitation at an intermediate node on the path.  Points that limit the 

payload are termed limiting points and their identification is a tracing process that must proceed 

from the landing to the node being analyzed.  The identification of the limiting points in the path 

starts with the connection between the landing and the first connected node.  The payload for that 

link is compared to the maximum safe working load, if the calculated payload is less than the 

max payload then the calculated payload becomes the maximum load that can be transported past 

that node.  The process continues iteratively until all points have a limited payload attribute or a 

point is identified, in which the limiting payload is zero.  

5.2.8 Calculation of Cycle Time and Cost per Ton 

 The determination of the break-even cost per Mg for each node, begins with a 

determination of cycle time.  Cycle time is essentially a function of distance and speed with the 

addition of non-travel working time and delays.  The formula for estimating the cycle time in 

seconds is given by equation 5-5. 

𝐶𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒 = (𝐷𝑖𝑠𝑡 ÷ 𝑈𝑛𝑙𝑜𝑎𝑑𝑒𝑑 𝑆𝑝𝑒𝑒𝑑) + (𝐷𝑖𝑠𝑡 ÷ 𝐿𝑜𝑎𝑑𝑒𝑑 𝑆𝑝𝑒𝑒𝑑) + 𝑁𝑜𝑛𝑇𝑟𝑎𝑣𝑒𝑙     (5 − 5) 

  Where: 
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Cycle time= the time to complete one productive cycle in seconds 

Dist= the travel distance from the landing to the current node in meters 

Unloaded speed= Machine speed when unloaded in m/s 

Loaded Speed= Machine speed when loaded in m/s 

NonTravel= Time taken for non-travel work and delay 

 

 After cycle time in seconds is determined the cost per cycle is determined through 

equation 5-6  

𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒 = (𝐶𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒 ÷ 3600) ∗ 𝐻𝑀𝑅                                    (5 − 6) 

Where: 

 Cost per cycle= the cost in dollars for a productive cycle 

 Cycle time= the time to complete a cycle in seconds 

 HMR= the hourly cost of the machine in dollars per hour 

 Finally, cost per Mg is determined by equation 5-7 

𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑀𝑔 = 𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒 ÷ 𝑝𝑎𝑦𝑙𝑜𝑎𝑑                                    (5 − 7) 

Where: 

 Cost per Mg= the cost in dollars of a Mg of biomass 

 Cost per cycle=the cost per cycle in dollars 
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 payload= the payload to the landing in Mg 

5.3 APPLICATION 

The model and analysis procedures developed were utilized to examine the economic availability 

of biomass feedstocks for a proposed 10,000 bbl per day Coal/Biomass to Liquids (CBTL) 

facility to be sited near Summersville, WV.  The selection of this site is an extension of the 

analysis completed in Chapter 4, and is the site selected as result of the preliminary facility siting 

analysis. It is assumed that the facility will use 92% coal and 8% woody biomass as feedstocks 

for production, which was also used for the previous study, equating to an annual biomass 

demand of approximately 109,000 dry Mg.  During the previous study, the areas were identified 

that will serve as supply areas for the plant.  For this study the same procurement area was 

assumed and included the three West Virginia counties of Clay, Fayette, and Nicholas (Figure 5-

3).   

 

 

Figure 5-3 Proposed CBTL Plant Location and Assumed Procurement Area. 
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 All harvesting was assumed to be completed using an integrated harvest in which 

biomass is harvested in conjunction with the removal of saw timber, to improve productivity and 

reduce costs (Grushecky et al., 2007; Perlack et al., 2011).  The machines that were used in the 

harvest of the material consisted of a feller-buncher and grapple skidder system, which is a 

common harvesting system in the region.  It was assumed that the feller-buncher would cost 

$110.54 per scheduled machine hour and that the grapple skidder would cost $91.32 per 

scheduled machine hour.  These cost were taken from Li et al. (2006) and adjusted for inflation 

and moisture content. This study also assumed that there are enough harvesting contractors 

within the area to be able to satisfy the demand of the CBTL facility and that all biomass is 

available to the market.  Also to ensure that feedstock is available into the future, a limit was 

placed on the quantity of material that can be harvested.  The total harvest was limited to the 

average annual growth of forests or 2.4% of the total volume.   

 

5.4 RESULTS & DISCUSSION 

5.4.1 Biomass Availability 

 The three counties in the procurement area were analyzed independently to 

determine the cost of the biomass to the landing.  The number of individual forested areas that 

were examined in each county ranged from 97 in Clay County to 255 in Nicholas County.  The 

land area of the contiguous forested areas ranged from 8.09 ha (20 ac) to 17,587 ha (43,411 ac).  

After completion of the analysis it was found that the only 68%, 78% and 79% of the forested 

areas were able to be harvested in Clay, Fayette and Nicholas, respectively.  The remaining 

forested areas that could be harvested in accordance with the slope requirements, equated to 40% 
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of the forest land area in Clay, 33% of the forest land in Fayette and 39% of the forest land in 

Nicholas.  

The analysis for each county yielded both the quantity and price at which forest biomass 

feedstocks are available.  The total amount of forest derived woody biomass available at the 

landing for Clay County was found to be 44,338 dry Mg (49,265 odt) at prices ranging from $11 

to $220 per dry Mg ($10 to 200 per odt) (Table 5-2).  Approximately, 72% of which is available 

at a price of $66 per dry Mg ($60 per odt).  Figure 5-4A illustrates the supply curve for biomass 

feedstocks for Clay County, it can be easily seen that the slope of the supply curve quickly rises 

after reaching a price of approximately $75 per Mg ($67.50 per odt). It indicates an area of 

inelasticity in price; or even with large increases in price, the quantity of biomass that will be 

available to the market will not change much. Alternatively, while the total amount of biomass 

that is technically available is more than 44,000 dry Mg, the total that can reasonably expected to 

reach the market is less than 38,000 dry Mg or 86%, due to the rapidly increasing costs of 

accessing and harvesting the material. 
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 The total material availability for Fayette County was found to be 54970 dry Mg (61078 

odt), with nearly 60% being available at a price of $66 per dry Mg ($60 per odt) (Table 5-2).  

Figure 5-4B is the supply curve for Fayette County.  The curve does not have such a pronounced 

inelastic region as the supply curve for Clay County.  The absence of the inelastic region suggest 

that prices will increase proportionally with demand. Meaning in times where there is a shortage 

of supply, it would be possible to acquire more material if the facility is willing to pay more.  

This differs from the situation in Clay County, where after a certain point it is not possible to pay 

enough to make up the missing demand.  
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Figure 5-4 Supply Curve of Forest Derived Woody Biomass for (A) Clay County, (B) Fayette 

County and (C) Nicholas County, WV. 
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Table 5-1 Biomass Quantities Available by Price for each County. 

 Biomass Availability By County (Mg)  

Price ($/Mg) Clay Fayette Nicholas Total 

11 29 77 154 260 

22 5867 10323 13891 30081 

33 14794 19360 27519 61673 

44 22097 24525 38314 84936 

55 27689 28525 45611 101825 

66 32069 31536 50385 113990 

77 35389 33901 54843 124133 

88 37209 36100 58300 131609 

99 38608 38627 60609 137844 

110 39802 40581 62649 143032 

121 41366 42259 64140 147765 

132 42109 44029 65286 151424 

143 42589 45838 66254 154681 

154 42958 47346 66983 157287 

165 43303 48650 67515 159468 

176 43801 50327 67905 162033 

187 44053 52340 68238 164631 

198 44180 53643 68596 166419 

209 44251 54452 68969 167672 

220 44338 54970 69236 168544 

  

Finally, the total material availability for Nicholas County was found to be 69,236 dry 

Mg (76929 odt) of woody biomass. Similar to Clay County, slightly over 72% percent of the 

material is available at a price of $66 per dry Mg ($60 per odt).  Also similar to Clay County the 

supply curve (Figure 5-4C) demonstrates that the price elasticity of supply becomes highly 

inelastic as it approaches the available capacity.  Examination of the supply curve, indicates that 

after approximately $66 per dry Mg, price increases will not return a quantity of supply that is 
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proportional to the price increase, and that the cost of recovering the nearly final 15,000 dry Mg 

of material would for all intents and purposes be too expensive, except in extreme cases. 

 The total available material available annually from the three counties totals 168,545 dry 

Mg (185,399 odt) at a price of $220 per dry Mg ($200 per odt), which is substantially more than 

the 109,000 dry Mg (120,000 odt) that are needed to supply a 10,000 bbl/day CBTL facility that 

is using 92% Coal and 8% biomass, however at $220 per dry Mg the cost of feedstock would 

likely be too expensive to make financial sense.  Through examination of the composite supply 

of the three counties it is determined that the requisite demand can be met at the price of $66 per 

dry Mg, since it has been determined that approximately 113,991 dry Mg (126,657 odt) will be 

available at this price, using the assumptions of this study (Figure 5-7). 
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Figure 5-5 Composite Supply Curve of Woody Biomass for the Three County Procurement Area. 

 

5.4.2 Comparison to Regional Estimates 

 The 2011 U.S. billion-ton update: biomass supply for a bioenergy and bioproducts 

industry (Perlack et al., 2011), is one of the most cited references that refers to estimates of 

woody biomass availability.  The estimates of woody biomass were made for the United States at 

the county level, to estimate the ability to reach 1 billion dry tons of biomass feedstocks for the 

use in the energy and bioproducts industry.  Table 5-3 provides the estimate of biomass 

availability from both the simulation and the billion-ton study along with the average percent 

difference for all prices between $10 and $200 per odt.  Additionally, the results in the 

simulations have been reduced by 30% to account for the sustainability factor that is utilized by 

the Billion-ton study. 
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Table 5-2 Comparison of Simulation Results to the Billion-ton Studya. 

County Simulation Results 

(odt) 

Billion-ton Study 

(odt) 

Mean difference (%) 

Clay 34485 19200 60% 

Fayette 42755 87300 -63% 

Nicholas 53850 57100 -19% 

Total 131090 163600 -34% 

a. The results in this section have been converted to odt for comparison using the conversion 

factor of 1.1 odt per Mg.  

 

 It can be seen from Table 5-3 that there is a large difference between the results from the 

simulation and the billion ton study.  In two of the three cases the billion-ton study estimated a 

higher level of material availability than our simulations.  In the billion-ton study, it was 

necessary to make some broad assumptions based solely on large scale terrain factors and it was 

impractical to assess site accessibility at the forested parcel level for an analysis at the national 

level.  Assessing harvesting cost at a county level resolution is likely to be one of the major 

factors contributing to the differences between the simulation results and the results of the 

billion-ton study.  For example, the billion-ton study used a Forest Inventory and Analysis (FIA) 

variable that was the distance to the nearest road as a proxy for accessibility.  This is likely the 

cause for the low estimate for Clay County, which has large roadless areas that are not counted 

toward the potential supply, when access is not truly limited.  While this is adequate for a course 

resolution study, it is necessary to truly assess the path that must be taken to extract the material 

to be able to define the final cost.  Similarly, it would not be practical to assess machine 
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movement on such a large scale as the terrain information that would be needed would most 

likely quickly become too large to be able to analyze in a reasonable manner. 

5.5 CONCLUSIONS 

 Assessing the economic availability of biomass feedstocks is imperative for bioenergy 

projects that are in the final planning stages before construction.  While there have been several 

studies that have been carried out on both the regional and national levels, neither type generally 

has the detail needed to truly inform the decisions of those that are investing in the development 

of these large projects. The ideal situation would be to complete a total inventory of all the 

available feedstocks that are within the potential procurement area, and this would not only be 

too costly and time consuming but also impractical.  The modeling process and assessing method 

presented in this paper, provides a way to improve on the estimates that are given by the broader 

assessments, in a way that is cost effective and minimally time consuming.  Additionally, this 

method is also flexible enough to be able to be modified to represent the harvesting operations 

that an individual may be using. 

 The results of the test case on a 10,000 bbl/day CBTL plant, returned an estimate of 

available feedstocks that were more conservative than those given by a large scale assessment. 

The methods employed were able to provide an estimate of both the availability and expected 

price, which can be used to aid in the further planning of the project.  While it is not possible to 

completely validate the results at such a large scale, it is felt that the estimates were reasonable 

based on the assumptions that were utilized for the analysis.  Additionally, the prices that were 

returned are in-line with the prices reported by the North American Wood Fiber Review (2013).   
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 The simulation model was constructed using productivity and cost data for typical 

harvesting operations in the central hardwood region.  The applicability of this model outside of 

this region, may require adjustments to account for differences in machinery and work method.  

Additionally, the costs related to harvesting tend to vary widely from region to region and should 

be examined if being used outside of the region for which it was created.  Future development 

will include a more user friendly interface to allow access to more users, additionally the 

interface will also allow for the adjustment of factors that may vary between feedstock regions. 
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6 SUMMARY 

A combination of modeling techniques were used to examine the economics of the use of 

woody biomass for the development of a bio-energy industry in the Northeastern United States.  

Based on the results of the modeling processes and case scenarios, along with sensitivity analysis 

the following conclusions can be drawn: 

1) The delivered cost of woody biomass feedstock for a base case scenario in which the 

facility requires 180,000 dry Mg( 200,00 odt) per year ranged from $70.91-$76.19 per dry Mg, 

supporting 15 facilities of this size in the three state region of NY, PA and WV.  With smaller 

demand levels it is possible to expand the number of facilities to 24 of the 25 potential candidate 

locations and the cost is also reduced to $66.46-$73.97 per dry Mg. Conversely when the 

demand exceeded 180,000 dry Mg per year (200,000 odt per year), cost dramatically increased to 

over $80 per dry Mg and procurement areas grew rapidly; doubling the size of the procurement 

area in the base scenario, leading to fewer facilities that were able to be sited. 

2)  The findings suggest that, at least in the northeastern United States, that the locations of 

wood-based bio-energy facilities are not spatially dependent. Intuitively, since forested areas are 

not evenly distributed throughout the northeastern United States, it was assumed that would be 

intrinsic spatial correlation. However, the inclusion of timber products output in the final model 

is evidence that the facilities will be located in areas where forest and forest products are 

plentiful. Timber products output is basically a proxy for the amount of resource in an area; but 

additionally, areas that have a strong base in traditional forest products would also have an 

infrastructure in place for the transportation of the feedstocks. However, there is no evidence that 
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socio-economic factors such as unemployment, median household income, etc. are truly drivers 

of the development of bioenergy facilities, as had been suggested. The results did not point to 

any factors that would suggest that facilities are being located in areas of high unemployment to 

spur job growth or in low income levels as a community development and wealth creation tool. 

Additionally, since the price of energy was not found to be a significant factor, the evidence 

suggest that energy prices have not yet reached levels where the choice to change to an 

alternative energy source is being made.  Again, this is a discrepancy with one of the cited 

reasons why bioenergy should be developed. Perhaps rising energy prices will be a driver for 

bioenergy in the future, but there is no evidence that that is currently the case. 

3)  Applying a two-stage site identification model in an 18 county area in southern West 

Virginia, and was successful in taking spatial data of differing scales and subject matter and 

integrating it together to identify and rank potential sites for CBTL facilities.  It identified the 

Glade Creek area, near Summersville, WV as the most preferable location for development.In 

addition to selecting the site the inclusion of optimization modeling allows for the examination 

of factors that contribute to the rank and provides a basis for the investors for determining costs.   

The results can be utilized as inputs into financial models as the planning process continues. 

4) Simulation of biomass extraction was used to examine if the study area identified for the 

establishment of a coal/biomass to liquids facility had access to sufficient levels of feedstocks in 

the areas that were identified as suppliers in the siting model.  Through simulation it was 

determined that there would be nearly 114,000 dry Mg(126,667 odt) of material available at a 

price of $66 per dry Mg ($60 per odt) which is more than the requirement of the 10,000 bbl per 

day test case, which required 109,000 dry Mg (120,000 odt) per year. 
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APPENDIX A GAMS CODE FOR SUPPLY CHAIN OPTIMIZATION 

*$call ="c:\gams\win64\24.2\xls2gms.exe" 

@C:\Users\dhartle4\Documents\gamsdir\projdir\Biomass_Optimization_75.txt 

 

*$call ="c:\gams\win64\24.2\xls2gms.exe" 

@C:\Users\dhartle4\Documents\gamsdir\projdir\Biomass_Optimization_75_5.txt 

 

*$call ="c:\gams\win64\24.2\xls2gms.exe" 

@C:\Users\dhartle4\Documents\gamsdir\projdir\Biomass_Optimization_75_15.txt 

 

*$call ="c:\gams\win64\24.2\xls2gms.exe" 

@C:\Users\dhartle4\Documents\gamsdir\projdir\Biomass_Optimization_75_nf.txt 

 

*$call ="c:\gams\win64\24.2\xls2gms.exe" 

@C:\Users\dhartle4\Documents\gamsdir\projdir\Biomass_Optimization_75_ns.txt 

 

*$call ="c:\gams\win64\24.2\xls2gms.exe" 

@C:\Users\dhartle4\Documents\gamsdir\projdir\Biomass_Optimization_75_60.txt 

 

*$call ="c:\gams\win64\24.2\xls2gms.exe" 

@C:\Users\dhartle4\Documents\gamsdir\projdir\Biomass_Optimization_75_70.txt 

 

*$call ="c:\gams\win64\24.2\xls2gms.exe" 

@C:\Users\dhartle4\Documents\gamsdir\projdir\Biomass_Optimization_75_90.txt 

 

*$call ="c:\gams\win64\24.2\xls2gms.exe" 

@C:\Users\dhartle4\Documents\gamsdir\projdir\Biomass_Optimization_75_100.txt 

 

*$call ="c:\gams\win64\24.2\xls2gms.exe" 

@C:\Users\dhartle4\Documents\gamsdir\projdir\Biomass_Optimization_75_xs.txt 
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*$call ="c:\gams\win64\24.2\xls2gms.exe" 

@C:\Users\dhartle4\Documents\gamsdir\projdir\Biomass_Optimization_75_sm.txt 

 

*$call ="c:\gams\win64\24.2\xls2gms.exe" 

@C:\Users\dhartle4\Documents\gamsdir\projdir\Biomass_Optimization_75_md.txt 

 

*$call ="c:\gams\win64\24.2\xls2gms.exe" 

@C:\Users\dhartle4\Documents\gamsdir\projdir\Biomass_Optimization_75_lg.txt 

 

*$call ="c:\gams\win64\24.2\xls2gms.exe" 

@C:\Users\dhartle4\Documents\gamsdir\projdir\Biomass_Optimization_75_xl.txt 

 

*$call ="c:\gams\win64\24.2\xls2gms.exe" 

@C:\Users\dhartle4\Documents\gamsdir\projdir\Biomass_Optimization_75_xl.txt 

 

*$call ="c:\gams\win64\24.2\xls2gms.exe" 

@C:\Users\dhartle4\Documents\gamsdir\projdir\Biomass_Optimization_75_HC_10l.txt 

 

*$call ="c:\gams\win64\24.2\xls2gms.exe" 

@C:\Users\dhartle4\Documents\gamsdir\projdir\Biomass_Optimization_75_HC_5l.txt 

 

*$call ="c:\gams\win64\24.2\xls2gms.exe" 

@C:\Users\dhartle4\Documents\gamsdir\projdir\Biomass_Optimization_75_HC_5h.txt 

 

*$call ="c:\gams\win64\24.2\xls2gms.exe" 

@C:\Users\dhartle4\Documents\gamsdir\projdir\Biomass_Optimization_75_HC_10h.txt 

 

*$call ="c:\gams\win64\24.2\xls2gms.exe" 

@C:\Users\dhartle4\Documents\gamsdir\projdir\Biomass_Optimization_75_all.txt 

 

set m/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\setm.inc" 
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/; 

set mhi(m)/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\setmhi.inc" 

/; 

set mho(m)/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\setmho.inc" 

/; 

set mpi(m)/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\setmpi.inc" 

/; 

set mpo(m)/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\setmpo.inc" 

/; 

set mhs(m)/Chip/; 

set mc/Chip,Pellet/; 

set mhp(m)/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\setmhp.inc" 

/; 

set mhc(m)/Chip/; 

set msp(m)/Chip/; 

set msc(m)/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\setmsc.inc" 

/; 

set mps(m)/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\setmps.inc" 

/; 

set mpc(m)/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\setmpc.inc" 
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/; 

set p/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\setp.inc" 

/; 

set ph(p)/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\setph.inc" 

/; 

set psc(p)/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\setpsc.inc" 

/; 

set psp(p)/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\setpsp.inc" 

/; 

set pp(p)/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\setpp.inc" 

/; 

set i/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\seti.inc" 

/; 

set j/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\setj.inc" 

/; 

set c/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\setc.inc" 

/; 

set t/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\sett.inc" 

/; 
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table a(m,p) 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\para.inc" 

; 

parameter hc(p)/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\parhc.inc" 

/; 

parameter scost(p)/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\parscost.inc" 

/; 

parameter sloss(p)/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\parsloss.inc" 

/; 

parameter scap(p)/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\parscap.inc" 

/; 

parameter pcost(p)/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\parpcost.inc" 

/; 

parameter pfcost(p)/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\procfc.inc" 

/; 

parameter pcap(p)/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\parpcap.inc" 

/; 

table dem(m,c) 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\pardem.inc" 

; 

parameter mprice(m)/ 
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$include "C:\Users\dhartle4\Documents\gamsdir\projdir\parmprice.inc" 

/; 

table bavail(i,m) 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\parbavail.inc" 

; 

table ijdist(i,j) 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\parijdist.inc" 

; 

table jkdist(j,j) 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\parjjdist.inc" 

; 

table itc(p,i) 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\paritc.inc" 

; 

table ta(t,m) 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\parta.inc" 

; 

parameter tc(m)/ 

$include "C:\Users\dhartle4\Documents\gamsdir\projdir\partc.inc" 

/; 

 

alias(j,k); 

 

 

Variables 

        zh(p,i,t)           Harvest Level at location i during time t 

        zsc(p,j,t)          Chip Storage Level at location j during time t 

        zsp(p,j,t)          Pellet Storage Level at location j during time t 
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        zp(p,j,t)           Processing Level at location j during time t 

        xhs(m,i,j,t)        Quantity of Material Shipped To Storage from Harvest Site 

        xhp(m,i,j,t)        Quantity of Material Shipped to Processing from Harvest Site 

        xhc(m,i,j,t)        Quantity of Material Shipped to Conversion from Harvest Site 

        xsp(m,j,j,t)        Quantity of Material Shipped to Processing from Storage 

        xsc(m,j,j,t)        Quantity of Material shipped to Conversion from Storage 

        xps(m,j,j,t)        Quantity of Material shipped to storage from processing 

        xpc(m,j,j,t)        Quantity of Materila shipped to conversion from processing 

        h(m,i,t)            Amount of Material harvested from harvest site 

        rc(m,j,t)           Amount of Chip Material Remaining at storage site. 

        rp(m,j,t)           Amount of Pellet Material Remaining at storage site. 

        sc(p,j,t)           storage cost 

        pi                  Total Profit 

        phi(t)              Revenue for time period 

        phih(t)             Revenue from harvest materials 

        phis(t)             Revenue from stored materials 

        phip(t)             Revenue from processed materials 

        eta(t)              Harvesting Cost for time period 

        mu(t)               Total Transportation Cost for time t 

        muh(t)              Transport Cost for harvested material for a time period 

        mus(t)              Transport Cost for stored material 

        mup(t)              Transport cost between nodes for a time period 

        rho(t)              Total Storage Cost for time period 

        rhoc(t)             Storage Cost for chips 

        rhop(t)             Storage Cost for pellets 

        tau(t)              Total processing Cost for time period 

        tauc(t)             Processing cost for chips 

        taup(t)             Processing cost for pellets 
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        ys(p,j)             Binary Variable for open storage facilities 

        yp(p,j)             Binary Variable for open processing facilities 

        yc(m,c,j)           Binary Variable for open conversion facilities 

        fdem(m,j,t) 

        pdemu(p,j,t) 

        pdeml(p,j,t) 

        ; 

Positive Variables zh,zp,zsc,zsp,xhc,xhp,xhs,xpc,xps,xsc,xsp,h,fdem,pdemu,pdeml;Binary 

Variables yc,yp,ys; 

 

Equations 

 

HBI(m,i,t)         Harvest Balance Inputs 

HBO(m,i,t)        Harvest Balance Outputs 

PBI(m,j,t)         Processing Balance Inputs 

PBO(m,j,t)        Processing Balance Outputs 

 

SBC(m,j,t)        Storage Balance Chips 

SBP(m,j,t)        Storage Balance Pellets 

HAC(m,i,t)        Harvest Availability Constraint 

ProCapU(p,j,t)    Processing Capacity Upper Bound 

ProCapL(p,j,t)    Processing Capacity Lower Bound 

STCapC(p,j,t)  Storage Capacity of Chips 

STCapP(p,j,t)  Storage Capacity of Pellets 

CSP1   Chip Storage during Period 1 

PSP1   Pellet Storage during Period1 

CSPS   Quantity of Chips stored in Pellet Storage 

PSCS   Quantity of Pellets stored in Chip Storage 

ISTOR(m,t)  Initial Storage 



139 

 

 

FacDem(m,j,t)  Facility Demant 

CDEMC(m,j,t) Chip Demand for Conversion 

CDEMP(m,j,t)  Chip Demand for Processing 

POpen(j)  Processing Open 

SCOpen(j)  Chip Storage Open 

SPOpen(j)  Pellet Storage Open 

HCost(t)           Harvest Cost 

PRCost(t)         Processing Cost 

STORC(t)          Storage Cost Chips 

STORP(t)          Storage Cost Pellets 

STOR(t)           Total Storage Cost 

TCost(t)           Transportation Cost 

HTCost(t)         Transport Cost Harvest 

PTCost(t)          Transport Cost Processing 

STCost(t)          Tranport Cost Storage 

HRevenue(t)       Harvest Revenue 

PRevenue(t)       Processing Revenue 

SRevenue(t)       Storage Revenue 

Revenue(t)        Revenue 

Profit             Profit 

; 

 

HBI(m,i,t)..             sum(p$ph(p),a(m,p)*zh(p,i,t))$mhi(m)+h(m,i,t)$mhi(m)=g=0; 

 

HBO(m,i,t)..             

sum(p$ph(p),a(m,p)*zh(p,i,t))$mho(m)=g=sum(j,xhc(m,i,j,t))$mhc(m)+sum(j,xhp(m,i,j,t))$mhp(

m)+sum(j,xhs(m,i,j,t))$mhs(m); 
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PBI(m,j,t)..            

sum(p$pp(p),a(m,p)*zp(p,j,t))$mpi(m)+sum(i,xhp(m,i,j,t))$mhp(m)+sum(k,xsp(m,k,j,t))$mps(m

)=g=0; 

 

PBO(m,j,t)..            

sum(p$pp(p),a(m,p)*zp(p,j,t))$mpo(m)=g=sum(k,xpc(m,j,k,t))$mpc(m)+sum(k,xps(m,j,k,t))$mp

s(m); 

 

SBC(m,j,t)..             

sum(p$psc(p),a("Chip",p)*zsc(p,j,t))+sum(i,xhs("Chip",i,j,t+1))+sum(k,xps("Chip",k,j,t+1))=e=s

um(p$psc(p),zsc(p,j,t+1))+sum(k,xsc("Chip",j,k,t+1))+sum(k,xsp("Chip",j,k,t+1)); 

 

SBP(m,j,t)..             

sum(p$psp(p),a("Pellet",p)*zsp(p,j,t))+sum(k,xps("Pellet",k,j,t+1))=e=sum(p$psp(p),zsp(p,j,t+1)

)+sum(k,xsc("Pellet",j,k,t+1)); 

 

CSP1..                   sum((p,j),zsc(p,j,"t1"))=e=0; 

 

PSP1..                   sum((p,j),zsp(p,j,"t1"))=e=0; 

 

CSPS..                   sum((p,j,t)$psp(p),zsc(p,j,t))=e=0; 

 

PSCS..                   sum((p,j,t)$psc(p),zsp(p,j,t))=e=0; 

 

ISTOR(m,t)..             sum((j,k),xsc(m,j,k,"t1")+xsp(m,j,k,"t1"))=e=0; 

 

ProcDemU(p,j,t)..        pdemu(p,j,t)=e=pcap(p)*yp(p,j); 

 

ProcDemL(p,j,t)..        pdeml(p,j,t)=e=pcap(p)*yp(p,j)*.75; 

 

ProCapU(p,j,t)..         zp(p,j,t)$pp(p)=l=pdemu(p,j,t); 
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ProCapL(p,j,t)..         zp(p,j,t)$pp(p)=g=pdeml(p,j,t); 

 

STCapC(p,j,t)..          zsc(p,j,t)$psc(p)=l=(scap(p)*ys(p,j))$psc(p); 

 

STCapP(p,j,t)..          zsp(p,j,t)$psp(p)=l=(scap(p)*ys(p,j))$psp(p); 

 

FacDem(m,j,t)..          fdem(m,j,t)=e=sum(c,dem(m,c)*yc(m,c,j)); 

 

CDEMC(m,j,t)..           

sum(i,xhc("Chip",i,j,t))+sum(k,xpc("Chip",j,k,t))+sum(k,xsc("Chip",j,k,t))=e=fdem("Chip",j,t); 

 

CDEMP(m,j,t)..           sum(k,xpc("Pellet",j,k,t))+sum(k,xsc("Pellet",j,k,t))=e=fdem("Pellet",j,t); 

 

POpen(j)..               sum((m,c)$mpc(m),yc(m,c,j))=l=1; 

 

SCOpen(j)..              sum(p$psc(p),ys(p,j))=l=1; 

 

SPOpen(j)..              sum(p$psp(p),ys(p,j))=l=1; 

 

HAC(m,i,t)..             h(m,i,t)=l=bavail(i,m)$mhi(m)*ta(t,m)$mhi(m); 

 

HCost(t)..               eta(t)=e=sum(p$ph(p),sum(i,zh(p,i,t))*hc(p)+sum(i,zh(p,i,t)*itc(p,i))); 

 

PRCost(t)..              

tau(t)=e=sum(p$pp(p),(sum(j,zp(p,j,t))*pcost(p))+(sum(j,pfcost(p)*yp(p,j)))); 

 

STORC(t)..               

rhoc(t)=e=sum(p$psc(p),sum(j,zsc(p,j,t)*sloss(p)*60)+sum(j,scost(p)*ys(p,j))); 
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STORP(t)..               rhop(t)=e=sum(p$psp(p),sum(j,zsp(p,j,t)*0)+sum(j,scost(p)*ys(p,j))); 

 

STOR(t)..                rho(t)=e=rhoc(t)+rhop(t); 

 

HTCost(t)..              

muh(t)=e=sum(m,sum((i,j),xhc(m,i,j,t)*ijdist(i,j)*tc(m))+sum((i,j),xhp(m,i,j,t)*ijdist(i,j)*tc(m))+

sum((i,j),xhs(m,i,j,t)*ijdist(i,j)*tc(m))); 

 

PTCost(t)..              

mup(t)=e=sum(m,sum((j,k),xpc(m,j,k,t)*jkdist(j,k)*tc(m))+sum((j,k),xps(m,j,k,t)*jkdist(j,k)*tc(

m))); 

 

STCost(t)..              

mus(t)=e=sum(m,sum((j,k),xsp(m,j,k,t)*jkdist(j,k)*tc(m))+sum((j,k),xsc(m,j,k,t)*jkdist(j,k)*tc(

m))); 

 

TCost(t)..               mu(t)=e=muh(t)+mup(t)+mus(t); 

 

HRevenue(t)..            phih(t)=e=sum(m$mhc(m),sum((i,j),xhc(m,i,j,t))*mprice(m)); 

 

PRevenue(t)..            phip(t)=e=sum(m$mpc(m),sum((j,k),xpc(m,j,k,t))*mprice(m)); 

 

SRevenue(t)..            phis(t)=e=sum(m$msc(m),sum((j,k),xsc(m,j,k,t))*mprice(m)); 

 

Revenue(t)..             phi(t)=e=phih(t)+phip(t)+phis(t); 

 

Profit..                 pi=e=sum(t,phi(t)-eta(t)-tau(t)-mu(t)-rho(t)); 

 

 

option threads=6; 
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model bio_fc /all/; 

 

 

bio_fc.ResLim=259200; 

bio_fc.OptCR=0.05; 

*bio_fc.Cheat=100000 

solve bio_fc using mip maximizing pi; 

 

 

$Ontext 

$libinclude xldump zh.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx Harvest!A1 

 

$libinclude xldump yp.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx 

Processing_Open!A1 

 

$libinclude xldump yc.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx 

Conversion_Open!A1 

 

$libinclude xldump ys.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx Storage_Open!A1 

 

*Harvesting 

 

$libinclude xldump h.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx HarvestMaterial!A1 

 

$libinclude xldump xhc.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx 

Harvest_Conversion!A1 

 

$libinclude xldump xhs.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx 

Harvest_Storage!A1 
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$libinclude xldump xhp.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx 

Harvest_Processing!A1 

 

$libinclude xldump muh.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx 

Harvest_Trans!A1 

 

$libinclude xldump zp.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx Processing!A1 

 

*Processing 

 

$libinclude xldump xpc.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx 

Processing_Conversion!A1 

 

$libinclude xldump xps.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx 

Processing_Storage!A1 

 

$libinclude xldump mup.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx 

Processing_Trans!A1 

 

$libinclude xldump pdeml.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx ProcCapl!A1 

 

$libinclude xldump pdemu.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx ProcCapU!A1 

 

*Storage 

 

$libinclude xldump zsc.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx ChipStorage!A1 

 

$libinclude xldump zsp.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx PelletStorage!A1 
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$libinclude xldump xsc.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx 

Storage_Conversion!A1 

 

$libinclude xldump xsp.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx 

Storage_Processing!A1 

 

*Conversion 

$libinclude xldump fdem.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx 

Conversion_Demand!A1 

 

*Revenue and Cost 

$libinclude xldump phi.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx Revenue!A1 

$libinclude xldump eta.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx Harvest_Cost!A1 

$libinclude xldump tau.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx 

Processing_Cost!A1 

$libinclude xldump rho.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx StorageCost!A1 

$libinclude xldump mu.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx Trans_Cost!A1 

$libinclude xldump pi.l C:/Users/dhartle4/Documents/OPT_RES_Base1.xlsx Yearly_Profit!A1 

$Offtext 

 

$Ontext 

$libinclude xldump zh.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx Harvest!A1 

 

$libinclude xldump yp.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx Processing_Open!A1 

 

$libinclude xldump yc.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx Conversion_Open!A1 

 

$libinclude xldump ys.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx Storage_Open!A1 

 

*Harvesting 
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$libinclude xldump h.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx HarvestMaterial!A1 

 

$libinclude xldump xhc.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx 

Harvest_Conversion!A1 

 

$libinclude xldump xhs.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx Harvest_Storage!A1 

 

$libinclude xldump xhp.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx 

Harvest_Processing!A1 

 

$libinclude xldump muh.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx Harvest_Trans!A1 

 

$libinclude xldump zp.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx Processing!A1 

 

*Processing 

 

$libinclude xldump xpc.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx 

Processing_Conversion!A1 

 

$libinclude xldump xps.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx 

Processing_Storage!A1 

 

$libinclude xldump mup.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx Processing_Trans!A1 

 

$libinclude xldump pdeml.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx ProcCapl!A1 

 

$libinclude xldump pdemu.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx ProcCapU!A1 

 

*Storage 
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$libinclude xldump zsc.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx ChipStorage!A1 

 

$libinclude xldump zsp.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx PelletStorage!A1 

 

$libinclude xldump xsc.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx 

Storage_Conversion!A1 

 

$libinclude xldump xsp.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx 

Storage_Processing!A1 

 

*Conversion 

$libinclude xldump fdem.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx 

Conversion_Demand!A1 

 

*Revenue and Cost 

$libinclude xldump phi.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx Revenue!A1 

$libinclude xldump eta.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx Harvest_Cost!A1 

$libinclude xldump tau.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx Processing_Cost!A1 

$libinclude xldump rho.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx StorageCost!A1 

$libinclude xldump mu.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx Trans_Cost!A1 

$libinclude xldump pi.l C:/Users/dhartle4/Documents/OPT_RES_5.xlsx Yearly_Profit!A1 

$Offtext 

 

$Ontext 

$libinclude xldump zh.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx Harvest!A1 

 

$libinclude xldump yp.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx Processing_Open!A1 
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$libinclude xldump yc.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx Conversion_Open!A1 

 

$libinclude xldump ys.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx Storage_Open!A1 

 

*Harvesting 

 

$libinclude xldump h.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx HarvestMaterial!A1 

 

$libinclude xldump xhc.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx 

Harvest_Conversion!A1 

 

$libinclude xldump xhs.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx Harvest_Storage!A1 

 

$libinclude xldump xhp.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx 

Harvest_Processing!A1 

 

$libinclude xldump muh.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx Harvest_Trans!A1 

 

$libinclude xldump zp.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx Processing!A1 

 

*Processing 

 

$libinclude xldump xpc.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx 

Processing_Conversion!A1 

 

$libinclude xldump xps.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx 

Processing_Storage!A1 

 

$libinclude xldump mup.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx 

Processing_Trans!A1 
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$libinclude xldump pdeml.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx ProcCapl!A1 

 

$libinclude xldump pdemu.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx ProcCapU!A1 

 

*Storage 

 

$libinclude xldump zsc.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx ChipStorage!A1 

 

$libinclude xldump zsp.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx PelletStorage!A1 

 

$libinclude xldump xsc.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx 

Storage_Conversion!A1 

 

$libinclude xldump xsp.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx 

Storage_Processing!A1 

 

*Conversion 

$libinclude xldump fdem.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx 

Conversion_Demand!A1 

 

*Revenue and Cost 

$libinclude xldump phi.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx Revenue!A1 

$libinclude xldump eta.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx Harvest_Cost!A1 

$libinclude xldump tau.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx Processing_Cost!A1 

$libinclude xldump rho.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx StorageCost!A1 

$libinclude xldump mu.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx Trans_Cost!A1 

$libinclude xldump pi.l C:/Users/dhartle4/Documents/OPT_RES_15.xlsx Yearly_Profit!A1 

$Offtext 
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$Ontext 

$libinclude xldump zh.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx Harvest!A1 

 

$libinclude xldump yp.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx Processing_Open!A1 

 

$libinclude xldump yc.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx Conversion_Open!A1 

 

$libinclude xldump ys.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx Storage_Open!A1 

 

*Harvesting 

 

$libinclude xldump h.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx HarvestMaterial!A1 

 

$libinclude xldump xhc.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx 

Harvest_Conversion!A1 

 

$libinclude xldump xhs.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx Harvest_Storage!A1 

 

$libinclude xldump xhp.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx 

Harvest_Processing!A1 

 

$libinclude xldump muh.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx Harvest_Trans!A1 

 

$libinclude xldump zp.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx Processing!A1 

 

*Processing 
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$libinclude xldump xpc.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx 

Processing_Conversion!A1 

 

$libinclude xldump xps.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx 

Processing_Storage!A1 

 

$libinclude xldump mup.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx 

Processing_Trans!A1 

 

$libinclude xldump pdeml.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx ProcCapl!A1 

 

$libinclude xldump pdemu.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx ProcCapU!A1 

 

*Storage 

 

$libinclude xldump zsc.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx ChipStorage!A1 

 

$libinclude xldump zsp.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx PelletStorage!A1 

 

$libinclude xldump xsc.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx 

Storage_Conversion!A1 

 

$libinclude xldump xsp.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx 

Storage_Processing!A1 

 

*Conversion 

$libinclude xldump fdem.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx 

Conversion_Demand!A1 

 

*Revenue and Cost 

$libinclude xldump phi.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx Revenue!A1 
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$libinclude xldump eta.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx Harvest_Cost!A1 

$libinclude xldump tau.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx Processing_Cost!A1 

$libinclude xldump rho.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx StorageCost!A1 

$libinclude xldump mu.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx Trans_Cost!A1 

$libinclude xldump pi.l C:/Users/dhartle4/Documents/OPT_RES_nf.xlsx Yearly_Profit!A1 

$Offtext 

 

$Ontext 

$libinclude xldump zh.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx Harvest!A1 

 

$libinclude xldump yp.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx Processing_Open!A1 

 

$libinclude xldump yc.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx Conversion_Open!A1 

 

$libinclude xldump ys.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx Storage_Open!A1 

 

*Harvesting 

 

$libinclude xldump h.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx HarvestMaterial!A1 

 

$libinclude xldump xhc.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx 

Harvest_Conversion!A1 

 

$libinclude xldump xhs.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx Harvest_Storage!A1 

 

$libinclude xldump xhp.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx 

Harvest_Processing!A1 

 

$libinclude xldump muh.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx Harvest_Trans!A1 
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$libinclude xldump zp.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx Processing!A1 

 

*Processing 

 

$libinclude xldump xpc.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx 

Processing_Conversion!A1 

 

$libinclude xldump xps.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx 

Processing_Storage!A1 

 

$libinclude xldump mup.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx 

Processing_Trans!A1 

 

$libinclude xldump pdeml.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx ProcCapl!A1 

 

$libinclude xldump pdemu.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx ProcCapU!A1 

 

*Storage 

 

$libinclude xldump zsc.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx ChipStorage!A1 

 

$libinclude xldump zsp.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx PelletStorage!A1 

 

$libinclude xldump xsc.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx 

Storage_Conversion!A1 

 

$libinclude xldump xsp.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx 

Storage_Processing!A1 
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*Conversion 

$libinclude xldump fdem.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx 

Conversion_Demand!A1 

 

*Revenue and Cost 

$libinclude xldump phi.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx Revenue!A1 

$libinclude xldump eta.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx Harvest_Cost!A1 

$libinclude xldump tau.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx Processing_Cost!A1 

$libinclude xldump rho.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx StorageCost!A1 

$libinclude xldump mu.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx Trans_Cost!A1 

$libinclude xldump pi.l C:/Users/dhartle4/Documents/OPT_RES_ns.xlsx Yearly_Profit!A1 

$Offtext 

 

$Ontext 

$libinclude xldump zh.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx Harvest!A1 

 

$libinclude xldump yp.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx Processing_Open!A1 

 

$libinclude xldump yc.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx Conversion_Open!A1 

 

$libinclude xldump ys.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx Storage_Open!A1 

 

*Harvesting 

 

$libinclude xldump h.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx HarvestMaterial!A1 

 

$libinclude xldump xhc.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx 

Harvest_Conversion!A1 
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$libinclude xldump xhs.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx Harvest_Storage!A1 

 

$libinclude xldump xhp.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx 

Harvest_Processing!A1 

 

$libinclude xldump muh.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx Harvest_Trans!A1 

 

$libinclude xldump zp.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx Processing!A1 

 

*Processing 

 

$libinclude xldump xpc.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx 

Processing_Conversion!A1 

 

$libinclude xldump xps.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx 

Processing_Storage!A1 

 

$libinclude xldump mup.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx 

Processing_Trans!A1 

 

$libinclude xldump pdeml.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx ProcCapl!A1 

 

$libinclude xldump pdemu.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx ProcCapU!A1 

 

*Storage 

 

$libinclude xldump zsc.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx ChipStorage!A1 

 

$libinclude xldump zsp.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx PelletStorage!A1 
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$libinclude xldump xsc.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx 

Storage_Conversion!A1 

 

$libinclude xldump xsp.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx 

Storage_Processing!A1 

 

*Conversion 

$libinclude xldump fdem.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx 

Conversion_Demand!A1 

 

*Revenue and Cost 

$libinclude xldump phi.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx Revenue!A1 

$libinclude xldump eta.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx Harvest_Cost!A1 

$libinclude xldump tau.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx Processing_Cost!A1 

$libinclude xldump rho.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx StorageCost!A1 

$libinclude xldump mu.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx Trans_Cost!A1 

$libinclude xldump pi.l C:/Users/dhartle4/Documents/OPT_RES_xs.xlsx Yearly_Profit!A1 

$Offtext 

 

$Ontext 

$libinclude xldump zh.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx Harvest!A1 

 

$libinclude xldump yp.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx Processing_Open!A1 

 

$libinclude xldump yc.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx Conversion_Open!A1 

 

$libinclude xldump ys.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx Storage_Open!A1 

 

*Harvesting 
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$libinclude xldump h.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx HarvestMaterial!A1 

 

$libinclude xldump xhc.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx 

Harvest_Conversion!A1 

 

$libinclude xldump xhs.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx Harvest_Storage!A1 

 

$libinclude xldump xhp.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx 

Harvest_Processing!A1 

 

$libinclude xldump muh.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx Harvest_Trans!A1 

 

$libinclude xldump zp.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx Processing!A1 

 

*Processing 

 

$libinclude xldump xpc.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx 

Processing_Conversion!A1 

 

$libinclude xldump xps.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx 

Processing_Storage!A1 

 

$libinclude xldump mup.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx 

Processing_Trans!A1 

 

$libinclude xldump pdeml.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx ProcCapl!A1 

 

$libinclude xldump pdemu.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx ProcCapU!A1 
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*Storage 

 

$libinclude xldump zsc.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx ChipStorage!A1 

 

$libinclude xldump zsp.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx PelletStorage!A1 

 

$libinclude xldump xsc.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx 

Storage_Conversion!A1 

 

$libinclude xldump xsp.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx 

Storage_Processing!A1 

 

*Conversion 

$libinclude xldump fdem.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx 

Conversion_Demand!A1 

 

*Revenue and Cost 

$libinclude xldump phi.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx Revenue!A1 

$libinclude xldump eta.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx Harvest_Cost!A1 

$libinclude xldump tau.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx Processing_Cost!A1 

$libinclude xldump rho.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx StorageCost!A1 

$libinclude xldump mu.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx Trans_Cost!A1 

$libinclude xldump pi.l C:/Users/dhartle4/Documents/OPT_RES_sm.xlsx Yearly_Profit!A1 

$Offtext 

 

$Ontext 

$libinclude xldump zh.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx Harvest!A1 

 

$libinclude xldump yp.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx Processing_Open!A1 
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$libinclude xldump yc.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx Conversion_Open!A1 

 

$libinclude xldump ys.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx Storage_Open!A1 

 

*Harvesting 

 

$libinclude xldump h.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx HarvestMaterial!A1 

 

$libinclude xldump xhc.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx 

Harvest_Conversion!A1 

 

$libinclude xldump xhs.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx Harvest_Storage!A1 

 

$libinclude xldump xhp.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx 

Harvest_Processing!A1 

 

$libinclude xldump muh.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx Harvest_Trans!A1 

 

$libinclude xldump zp.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx Processing!A1 

 

*Processing 

 

$libinclude xldump xpc.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx 

Processing_Conversion!A1 

 

$libinclude xldump xps.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx 

Processing_Storage!A1 
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$libinclude xldump mup.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx 

Processing_Trans!A1 

 

$libinclude xldump pdeml.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx ProcCapl!A1 

 

$libinclude xldump pdemu.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx ProcCapU!A1 

 

*Storage 

 

$libinclude xldump zsc.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx ChipStorage!A1 

 

$libinclude xldump zsp.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx PelletStorage!A1 

 

$libinclude xldump xsc.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx 

Storage_Conversion!A1 

 

$libinclude xldump xsp.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx 

Storage_Processing!A1 

 

*Conversion 

$libinclude xldump fdem.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx 

Conversion_Demand!A1 

 

*Revenue and Cost 

$libinclude xldump phi.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx Revenue!A1 

$libinclude xldump eta.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx Harvest_Cost!A1 

$libinclude xldump tau.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx Processing_Cost!A1 

$libinclude xldump rho.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx StorageCost!A1 

$libinclude xldump mu.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx Trans_Cost!A1 

$libinclude xldump pi.l C:/Users/dhartle4/Documents/OPT_RES_md.xlsx Yearly_Profit!A1 



161 

 

 

$Offtext 

 

*$Ontext 

$libinclude xldump zh.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx Harvest!A1 

 

$libinclude xldump yp.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx Processing_Open!A1 

 

$libinclude xldump yc.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx Conversion_Open!A1 

 

$libinclude xldump ys.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx Storage_Open!A1 

 

*Harvesting 

 

$libinclude xldump h.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx HarvestMaterial!A1 

 

$libinclude xldump xhc.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx 

Harvest_Conversion!A1 

 

$libinclude xldump xhs.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx Harvest_Storage!A1 

 

$libinclude xldump xhp.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx 

Harvest_Processing!A1 

 

$libinclude xldump muh.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx Harvest_Trans!A1 

 

$libinclude xldump zp.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx Processing!A1 

 

*Processing 
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$libinclude xldump xpc.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx 

Processing_Conversion!A1 

 

$libinclude xldump xps.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx 

Processing_Storage!A1 

 

$libinclude xldump mup.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx 

Processing_Trans!A1 

 

$libinclude xldump pdeml.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx ProcCapl!A1 

 

$libinclude xldump pdemu.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx ProcCapU!A1 

 

*Storage 

 

$libinclude xldump zsc.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx ChipStorage!A1 

 

$libinclude xldump zsp.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx PelletStorage!A1 

 

$libinclude xldump xsc.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx 

Storage_Conversion!A1 

 

$libinclude xldump xsp.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx 

Storage_Processing!A1 

 

*Conversion 

$libinclude xldump fdem.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx 

Conversion_Demand!A1 

 

*Revenue and Cost 

$libinclude xldump phi.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx Revenue!A1 
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$libinclude xldump eta.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx Harvest_Cost!A1 

$libinclude xldump tau.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx Processing_Cost!A1 

$libinclude xldump rho.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx StorageCost!A1 

$libinclude xldump mu.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx Trans_Cost!A1 

$libinclude xldump pi.l C:/Users/dhartle4/Documents/OPT_RES_lg.xlsx Yearly_Profit!A1 

*$Offtext 

 

$Ontext 

$libinclude xldump zh.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx Harvest!A1 

 

$libinclude xldump yp.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx Processing_Open!A1 

 

$libinclude xldump yc.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx Conversion_Open!A1 

 

$libinclude xldump ys.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx Storage_Open!A1 

 

*Harvesting 

 

$libinclude xldump h.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx HarvestMaterial!A1 

 

$libinclude xldump xhc.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx 

Harvest_Conversion!A1 

 

$libinclude xldump xhs.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx Harvest_Storage!A1 

 

$libinclude xldump xhp.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx 

Harvest_Processing!A1 

 

$libinclude xldump muh.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx Harvest_Trans!A1 
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$libinclude xldump zp.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx Processing!A1 

 

*Processing 

 

$libinclude xldump xpc.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx 

Processing_Conversion!A1 

 

$libinclude xldump xps.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx 

Processing_Storage!A1 

 

$libinclude xldump mup.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx 

Processing_Trans!A1 

 

$libinclude xldump pdeml.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx ProcCapl!A1 

 

$libinclude xldump pdemu.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx ProcCapU!A1 

 

*Storage 

 

$libinclude xldump zsc.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx ChipStorage!A1 

 

$libinclude xldump zsp.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx PelletStorage!A1 

 

$libinclude xldump xsc.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx 

Storage_Conversion!A1 

 

$libinclude xldump xsp.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx 

Storage_Processing!A1 
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*Conversion 

$libinclude xldump fdem.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx 

Conversion_Demand!A1 

 

*Revenue and Cost 

$libinclude xldump phi.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx Revenue!A1 

$libinclude xldump eta.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx Harvest_Cost!A1 

$libinclude xldump tau.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx Processing_Cost!A1 

$libinclude xldump rho.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx StorageCost!A1 

$libinclude xldump mu.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx Trans_Cost!A1 

$libinclude xldump pi.l C:/Users/dhartle4/Documents/OPT_RES_xl.xlsx Yearly_Profit!A1 

$Offtext 

 

$Ontext 

$libinclude xldump zh.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx Harvest!A1 

 

$libinclude xldump yp.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx Processing_Open!A1 

 

$libinclude xldump yc.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx Conversion_Open!A1 

 

$libinclude xldump ys.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx Storage_Open!A1 

 

*Harvesting 

 

$libinclude xldump h.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx HarvestMaterial!A1 

 

$libinclude xldump xhc.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx 

Harvest_Conversion!A1 
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$libinclude xldump xhs.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx Harvest_Storage!A1 

 

$libinclude xldump xhp.l C:/Users/dhartle4/Documents/OPT_RES_.xlsx Harvest_Processing!A1 

 

$libinclude xldump muh.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx Harvest_Trans!A1 

 

$libinclude xldump zp.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx Processing!A1 

 

*Processing 

 

$libinclude xldump xpc.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx 

Processing_Conversion!A1 

 

$libinclude xldump xps.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx 

Processing_Storage!A1 

 

$libinclude xldump mup.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx 

Processing_Trans!A1 

 

$libinclude xldump pdeml.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx ProcCapl!A1 

 

$libinclude xldump pdemu.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx ProcCapU!A1 

 

*Storage 

 

$libinclude xldump zsc.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx ChipStorage!A1 

 

$libinclude xldump zsp.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx PelletStorage!A1 
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$libinclude xldump xsc.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx 

Storage_Conversion!A1 

 

$libinclude xldump xsp.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx 

Storage_Processing!A1 

 

*Conversion 

$libinclude xldump fdem.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx 

Conversion_Demand!A1 

 

*Revenue and Cost 

$libinclude xldump phi.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx Revenue!A1 

$libinclude xldump eta.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx Harvest_Cost!A1 

$libinclude xldump tau.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx Processing_Cost!A1 

$libinclude xldump rho.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx StorageCost!A1 

$libinclude xldump mu.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx Trans_Cost!A1 

$libinclude xldump pi.l C:/Users/dhartle4/Documents/OPT_RES_60.xlsx Yearly_Profit!A1 

$Offtext 

 

$Ontext 

$libinclude xldump zh.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx Harvest!A1 

 

$libinclude xldump yp.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx Processing_Open!A1 

 

$libinclude xldump yc.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx Conversion_Open!A1 

 

$libinclude xldump ys.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx Storage_Open!A1 

 

*Harvesting 
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$libinclude xldump h.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx HarvestMaterial!A1 

 

$libinclude xldump xhc.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx 

Harvest_Conversion!A1 

 

$libinclude xldump xhs.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx Harvest_Storage!A1 

 

$libinclude xldump xhp.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx 

Harvest_Processing!A1 

 

$libinclude xldump muh.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx Harvest_Trans!A1 

 

$libinclude xldump zp.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx Processing!A1 

 

*Processing 

 

$libinclude xldump xpc.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx 

Processing_Conversion!A1 

 

$libinclude xldump xps.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx 

Processing_Storage!A1 

 

$libinclude xldump mup.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx 

Processing_Trans!A1 

 

$libinclude xldump pdeml.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx ProcCapl!A1 

 

$libinclude xldump pdemu.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx ProcCapU!A1 

 



169 

 

 

*Storage 

 

$libinclude xldump zsc.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx ChipStorage!A1 

 

$libinclude xldump zsp.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx PelletStorage!A1 

 

$libinclude xldump xsc.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx 

Storage_Conversion!A1 

 

$libinclude xldump xsp.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx 

Storage_Processing!A1 

 

*Conversion 

$libinclude xldump fdem.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx 

Conversion_Demand!A1 

 

*Revenue and Cost 

$libinclude xldump phi.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx Revenue!A1 

$libinclude xldump eta.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx Harvest_Cost!A1 

$libinclude xldump tau.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx Processing_Cost!A1 

$libinclude xldump rho.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx StorageCost!A1 

$libinclude xldump mu.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx Trans_Cost!A1 

$libinclude xldump pi.l C:/Users/dhartle4/Documents/OPT_RES_70.xlsx Yearly_Profit!A1 

$Offtext 

 

$Ontext 

$libinclude xldump zh.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx Harvest!A1 

 

$libinclude xldump yp.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx Processing_Open!A1 
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$libinclude xldump yc.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx Conversion_Open!A1 

 

$libinclude xldump ys.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx Storage_Open!A1 

 

*Harvesting 

 

$libinclude xldump h.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx HarvestMaterial!A1 

 

$libinclude xldump xhc.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx 

Harvest_Conversion!A1 

 

$libinclude xldump xhs.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx Harvest_Storage!A1 

 

$libinclude xldump xhp.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx 

Harvest_Processing!A1 

 

$libinclude xldump muh.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx Harvest_Trans!A1 

 

$libinclude xldump zp.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx Processing!A1 

 

*Processing 

 

$libinclude xldump xpc.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx 

Processing_Conversion!A1 

 

$libinclude xldump xps.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx 

Processing_Storage!A1 
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$libinclude xldump mup.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx 

Processing_Trans!A1 

 

$libinclude xldump pdeml.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx ProcCapl!A1 

 

$libinclude xldump pdemu.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx ProcCapU!A1 

 

*Storage 

 

$libinclude xldump zsc.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx ChipStorage!A1 

 

$libinclude xldump zsp.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx PelletStorage!A1 

 

$libinclude xldump xsc.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx 

Storage_Conversion!A1 

 

$libinclude xldump xsp.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx 

Storage_Processing!A1 

 

*Conversion 

$libinclude xldump fdem.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx 

Conversion_Demand!A1 

 

*Revenue and Cost 

$libinclude xldump phi.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx Revenue!A1 

$libinclude xldump eta.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx Harvest_Cost!A1 

$libinclude xldump tau.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx Processing_Cost!A1 

$libinclude xldump rho.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx StorageCost!A1 

$libinclude xldump mu.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx Trans_Cost!A1 

$libinclude xldump pi.l C:/Users/dhartle4/Documents/OPT_RES_90.xlsx Yearly_Profit!A1 
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$Offtext 

 

$Ontext 

$libinclude xldump zh.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx Harvest!A1 

 

$libinclude xldump yp.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx Processing_Open!A1 

 

$libinclude xldump yc.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx 

Conversion_Open!A1 

 

$libinclude xldump ys.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx Storage_Open!A1 

 

*Harvesting 

 

$libinclude xldump h.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx HarvestMaterial!A1 

 

$libinclude xldump xhc.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx 

Harvest_Conversion!A1 

 

$libinclude xldump xhs.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx Harvest_Storage!A1 

 

$libinclude xldump xhp.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx 

Harvest_Processing!A1 

 

$libinclude xldump muh.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx Harvest_Trans!A1 

 

$libinclude xldump zp.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx Processing!A1 

 

*Processing 
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$libinclude xldump xpc.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx 

Processing_Conversion!A1 

 

$libinclude xldump xps.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx 

Processing_Storage!A1 

 

$libinclude xldump mup.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx 

Processing_Trans!A1 

 

$libinclude xldump pdeml.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx ProcCapl!A1 

 

$libinclude xldump pdemu.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx ProcCapU!A1 

 

*Storage 

 

$libinclude xldump zsc.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx ChipStorage!A1 

 

$libinclude xldump zsp.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx PelletStorage!A1 

 

$libinclude xldump xsc.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx 

Storage_Conversion!A1 

 

$libinclude xldump xsp.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx 

Storage_Processing!A1 

 

*Conversion 

$libinclude xldump fdem.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx 

Conversion_Demand!A1 

 

*Revenue and Cost 



174 

 

 

$libinclude xldump phi.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx Revenue!A1 

$libinclude xldump eta.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx Harvest_Cost!A1 

$libinclude xldump tau.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx Processing_Cost!A1 

$libinclude xldump rho.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx StorageCost!A1 

$libinclude xldump mu.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx Trans_Cost!A1 

$libinclude xldump pi.l C:/Users/dhartle4/Documents/OPT_RES_100.xlsx Yearly_Profit!A1 

$Offtext 

 

$Ontext 

$libinclude xldump zh.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx Harvest!A1 

 

$libinclude xldump yp.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx 

Processing_Open!A1 

 

$libinclude xldump yc.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx 

Conversion_Open!A1 

 

$libinclude xldump ys.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx 

Storage_Open!A1 

 

*Harvesting 

 

$libinclude xldump h.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx 

HarvestMaterial!A1 

 

$libinclude xldump xhc.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx 

Harvest_Conversion!A1 

 

$libinclude xldump xhs.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx 

Harvest_Storage!A1 
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$libinclude xldump xhp.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx 

Harvest_Processing!A1 

 

$libinclude xldump muh.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx 

Harvest_Trans!A1 

 

$libinclude xldump zp.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx Processing!A1 

 

*Processing 

 

$libinclude xldump xpc.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx 

Processing_Conversion!A1 

 

$libinclude xldump xps.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx 

Processing_Storage!A1 

 

$libinclude xldump mup.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx 

Processing_Trans!A1 

 

$libinclude xldump pdeml.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx ProcCapl!A1 

 

$libinclude xldump pdemu.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx 

ProcCapU!A1 

 

*Storage 

 

$libinclude xldump zsc.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx ChipStorage!A1 

 

$libinclude xldump zsp.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx 

PelletStorage!A1 
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$libinclude xldump xsc.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx 

Storage_Conversion!A1 

 

$libinclude xldump xsp.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx 

Storage_Processing!A1 

 

*Conversion 

$libinclude xldump fdem.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx 

Conversion_Demand!A1 

 

*Revenue and Cost 

$libinclude xldump phi.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx Revenue!A1 

$libinclude xldump eta.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx 

Harvest_Cost!A1 

$libinclude xldump tau.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx 

Processing_Cost!A1 

$libinclude xldump rho.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx StorageCost!A1 

$libinclude xldump mu.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx Trans_Cost!A1 

$libinclude xldump pi.l C:/Users/dhartle4/Documents/OPT_RES_HC10L.xlsx Yearly_Profit!A1 

$Offtext 

 

$Ontext 

$libinclude xldump zh.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx Harvest!A1 

 

$libinclude xldump yp.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx 

Processing_Open!A1 

 

$libinclude xldump yc.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx 

Conversion_Open!A1 

 

$libinclude xldump ys.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx Storage_Open!A1 
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*Harvesting 

 

$libinclude xldump h.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx HarvestMaterial!A1 

 

$libinclude xldump xhc.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx 

Harvest_Conversion!A1 

 

$libinclude xldump xhs.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx 

Harvest_Storage!A1 

 

$libinclude xldump xhp.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx 

Harvest_Processing!A1 

 

$libinclude xldump muh.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx 

Harvest_Trans!A1 

 

$libinclude xldump zp.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx Processing!A1 

 

*Processing 

 

$libinclude xldump xpc.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx 

Processing_Conversion!A1 

 

$libinclude xldump xps.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx 

Processing_Storage!A1 

 

$libinclude xldump mup.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx 

Processing_Trans!A1 

 

$libinclude xldump pdeml.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx ProcCapl!A1 
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$libinclude xldump pdemu.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx ProcCapU!A1 

 

*Storage 

 

$libinclude xldump zsc.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx ChipStorage!A1 

 

$libinclude xldump zsp.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx PelletStorage!A1 

 

$libinclude xldump xsc.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx 

Storage_Conversion!A1 

 

$libinclude xldump xsp.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx 

Storage_Processing!A1 

 

*Conversion 

$libinclude xldump fdem.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx 

Conversion_Demand!A1 

 

*Revenue and Cost 

$libinclude xldump phi.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx Revenue!A1 

$libinclude xldump eta.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx Harvest_Cost!A1 

$libinclude xldump tau.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx 

Processing_Cost!A1 

$libinclude xldump rho.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx StorageCost!A1 

$libinclude xldump mu.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx Trans_Cost!A1 

$libinclude xldump pi.l C:/Users/dhartle4/Documents/OPT_RES_HC5L.xlsx Yearly_Profit!A1 

$Offtext 

 

$Ontext 
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$libinclude xldump zh.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx Harvest!A1 

 

$libinclude xldump yp.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx 

Processing_Open!A1 

 

$libinclude xldump yc.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx 

Conversion_Open!A1 

 

$libinclude xldump ys.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx Storage_Open!A1 

 

*Harvesting 

 

$libinclude xldump h.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx 

HarvestMaterial!A1 

 

$libinclude xldump xhc.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx 

Harvest_Conversion!A1 

 

$libinclude xldump xhs.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx 

Harvest_Storage!A1 

 

$libinclude xldump xhp.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx 

Harvest_Processing!A1 

 

$libinclude xldump muh.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx 

Harvest_Trans!A1 

 

$libinclude xldump zp.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx Processing!A1 

 

*Processing 
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$libinclude xldump xpc.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx 

Processing_Conversion!A1 

 

$libinclude xldump xps.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx 

Processing_Storage!A1 

 

$libinclude xldump mup.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx 

Processing_Trans!A1 

 

$libinclude xldump pdeml.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx ProcCapl!A1 

 

$libinclude xldump pdemu.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx ProcCapU!A1 

 

*Storage 

 

$libinclude xldump zsc.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx ChipStorage!A1 

 

$libinclude xldump zsp.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx PelletStorage!A1 

 

$libinclude xldump xsc.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx 

Storage_Conversion!A1 

 

$libinclude xldump xsp.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx 

Storage_Processing!A1 

 

*Conversion 

$libinclude xldump fdem.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx 

Conversion_Demand!A1 

 

*Revenue and Cost 

$libinclude xldump phi.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx Revenue!A1 
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$libinclude xldump eta.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx Harvest_Cost!A1 

$libinclude xldump tau.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx 

Processing_Cost!A1 

$libinclude xldump rho.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx StorageCost!A1 

$libinclude xldump mu.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx Trans_Cost!A1 

$libinclude xldump pi.l C:/Users/dhartle4/Documents/OPT_RES_HC5U.xlsx Yearly_Profit!A1 

$Offtext 

 

$Ontext 

$libinclude xldump zh.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx Harvest!A1 

 

$libinclude xldump yp.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx 

Processing_Open!A1 

 

$libinclude xldump yc.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx 

Conversion_Open!A1 

 

$libinclude xldump ys.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx 

Storage_Open!A1 

 

*Harvesting 

 

$libinclude xldump h.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx 

HarvestMaterial!A1 

 

$libinclude xldump xhc.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx 

Harvest_Conversion!A1 

 

$libinclude xldump xhs.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx 

Harvest_Storage!A1 

 



182 

 

 

$libinclude xldump xhp.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx 

Harvest_Processing!A1 

 

$libinclude xldump muh.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx 

Harvest_Trans!A1 

 

$libinclude xldump zp.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx Processing!A1 

 

*Processing 

 

$libinclude xldump xpc.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx 

Processing_Conversion!A1 

 

$libinclude xldump xps.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx 

Processing_Storage!A1 

 

$libinclude xldump mup.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx 

Processing_Trans!A1 

 

$libinclude xldump pdeml.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx ProcCapl!A1 

 

$libinclude xldump pdemu.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx 

ProcCapU!A1 

 

*Storage 

 

$libinclude xldump zsc.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx ChipStorage!A1 

 

$libinclude xldump zsp.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx 

PelletStorage!A1 
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$libinclude xldump xsc.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx 

Storage_Conversion!A1 

 

$libinclude xldump xsp.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx 

Storage_Processing!A1 

 

*Conversion 

$libinclude xldump fdem.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx 

Conversion_Demand!A1 

 

*Revenue and Cost 

$libinclude xldump phi.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx Revenue!A1 

$libinclude xldump eta.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx 

Harvest_Cost!A1 

$libinclude xldump tau.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx 

Processing_Cost!A1 

$libinclude xldump rho.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx StorageCost!A1 

$libinclude xldump mu.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx Trans_Cost!A1 

$libinclude xldump pi.l C:/Users/dhartle4/Documents/OPT_RES_HC10U.xlsx Yearly_Profit!A1 

$Offtext 

 

$Ontext 

$libinclude xldump zh.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx Harvest!A1 

 

$libinclude xldump yp.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx 

Processing_Open!A1 

 

$libinclude xldump yc.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx 

Conversion_Open!A1 

 

$libinclude xldump ys.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx Storage_Open!A1 



184 

 

 

 

*Harvesting 

 

$libinclude xldump h.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx HarvestMaterial!A1 

 

$libinclude xldump xhc.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx 

Harvest_Conversion!A1 

 

$libinclude xldump xhs.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx 

Harvest_Storage!A1 

 

$libinclude xldump xhp.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx 

Harvest_Processing!A1 

 

$libinclude xldump muh.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx 

Harvest_Trans!A1 

 

$libinclude xldump zp.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx Processing!A1 

 

*Processing 

 

$libinclude xldump xpc.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx 

Processing_Conversion!A1 

 

$libinclude xldump xps.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx 

Processing_Storage!A1 

 

$libinclude xldump mup.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx 

Processing_Trans!A1 

 

$libinclude xldump pdeml.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx ProcCapl!A1 
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$libinclude xldump pdemu.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx ProcCapU!A1 

 

*Storage 

 

$libinclude xldump zsc.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx ChipStorage!A1 

 

$libinclude xldump zsp.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx PelletStorage!A1 

 

$libinclude xldump xsc.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx 

Storage_Conversion!A1 

 

$libinclude xldump xsp.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx 

Storage_Processing!A1 

 

*Conversion 

$libinclude xldump fdem.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx 

Conversion_Demand!A1 

 

*Revenue and Cost 

$libinclude xldump phi.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx Revenue!A1 

$libinclude xldump eta.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx Harvest_Cost!A1 

$libinclude xldump tau.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx 

Processing_Cost!A1 

$libinclude xldump rho.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx StorageCost!A1 

$libinclude xldump mu.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx Trans_Cost!A1 

$libinclude xldump pi.l C:/Users/dhartle4/Documents/OPT_RES_ALL.xlsx Yearly_Profit!A1 

$Offtext 
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APPENDIX B R CODE FOR SAR-PROBIT AND PROBIT 

\documentclass{article} 

 

\begin{document} 

\SweaveOpts{concordance=TRUE} 

<<echo=False>>= 

setwd("F:/Final_Paper") 

library(xlsx) 

library(spatialprobit) 

dat<-read.xlsx("Biomass_Facility_Data.xlsx",sheetName="Biomass_Facility_Data") 

attach(dat) 

lat<-cbind(Lat[1:299]) 

long<-cbind(Long[1:299]) 

Y<-cbind(Biomass[1:299]) 

X1<-cbind(rep(1,299)) 

X2<-

cbind(Unemp[1:299],MHI2011[1:299],TPO_MCF[1:299],POP[1:299],RD_Dens[1:299],Elec[1:

299],Alt_Energy[1:299],Obama[1:299],CT[1:299],DE[1:299],ME[1:299],MD[1:299],MA[1:299

],NH[1:299],NJ[1:299],NY[1:299],PA[1:299],VT[1:299],RI[1:299]) 

X3<-cbind(TPO_MCF[1:299],Alt_Energy[1:299],NH[1:299]) 

X<-cbind(X1,X2) 

colnames(X)=c("Intercept","Unemploy","MHI","TPO","POP","RD","EP","Energy","Obama","C

T","DE","ME","MD","MA","NH","NJ","NY","PA","VT","RI") 

colnames(X2)=c("Unemploy","MHI","TPO","POP","RD","EP","Energy","Obama","CT","DE","

ME","MD","MA","NH","NJ","NY","PA","VT","RI") 

colnames(X3)=c("TPO","Energy","NH") 

 

W<-kNearestNeighbors(x=long,y=lat,k=8) 

@ 
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<<echo=True>>= 

sarprobit.fit1<-sar_probit_mcmc(Y,X,W,ndraw=10200,burn.in=200) 

summary(sarprobit.fit1) 

impacts(sarprobit.fit1) 

@ 

 

<<echo=true>>= 

library(arm) 

probit<-bayesglm(Y~X2,family=binomial (link="probit"),n.iter=10000) 

summary(probit) 

ProbitScalar<-mean(dnorm(predict(probit,type="link"))) 

MarginalEffects<-ProbitScalar*coef(probit) 

summary(MarginalEffects) 

pprobit<-predict(probit,type="response") 

summary(pprobit) 

table(true=Y, pred=round(fitted(probit))) 

 

probit0<-update(probit,formula=Y~1) 

McFadden<-1-as.vector(logLik(probit)/logLik(probit0)) 

McFadden 

 

library(mcmc) 

probit3<-bayesglm(Y~X3,family=binomial (link="probit")) 

summary(probit3) 

ProbitScalar<-mean(dnorm(predict(probit3,type="link"))) 

MarginalEffects<-ProbitScalar*coef(probit3) 

MarginalEffects 

pprobit2<-predict(probit3,type="response") 
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summary(pprobit) 

table(true=Y, pred=round(fitted(probit))) 

 

probit00<-update(probit3,formula=Y~1) 

McFadden1<-1-as.vector(logLik(probit3)/logLik(probit00)) 

McFadden1 

@ 

 

\end{document} 
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APPENDIX C GAMS CODE FOR OPTIMAL FACILITY LOCATION 

set s; 

set f; 

set t; 

parameter ba(s); 

parameter avail(t); 

parameter dist(s,f); 

 

$call "del gdxcbtl.gdx" 

$call gdxxrw opt_data.xlsx o=gdxcbtl.gdx index=myindex!a1 

 

$gdxin gdxcbtl 

$load s f t ba avail dist 

display s; 

display f; 

display t; 

display ba; 

display avail; 

display dist; 

 

variables 

 

hc(s,t)          Quantity of Chips Harvested from Site s during Period t 

hr(s,t)          Quantity of Residue Harvested from Site s during Period t 

ctp(s,f,t)       Quantity of Chips transported for processing from Site s to Facility f during Period t 

rtp(s,f,t)       Quantity of Residue transported for processing from Site s to Facility f during 

Period t 
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rts(s,f,t)       Quantity of Residue transported for storage from Site s to Facility f during Period t 

smp(f,t)         Quantity of Stored Material Processed at Facility f during Period t 

mpf(f,t)         Quantity of Residue processed at Facility f during Period t 

msf(f,t)         Quantity of Residue stored at Facility f during Period t 

y(f)             Binary variable for open facility (1 if open--0 otherwise) 

 

Harv(t)          Harvesting Cost 

TransC(s,t)      Transport Cost Chips 

TransR(s,t)      Transport Cost Residue 

Trans(t)         Transport Cost 

Proc(t)          Processing Cost 

Z(t) 

Tot 

; 

 

positive variables hc, hr, ctp, rtp, rts, smp,mpf, msf; binary variables y; 

 

equations 

 

HarvBal(s,t)     Harvest Balance 

ChipTBal(s,t)    Chip Transport Balance 

ResTBal(s,t)     Residue 

ProceBal(f,t)    Processing Balance 

StorBal(f,t)     Storage Balance 

StorCap(f,t)     Storage Capacity 

FeedReq(f,t)     Feedstock Requirement 

Open             Constraint on open facilities 

HCost(t)         Harvesting Cost 
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TCostC(s,t) 

TCostR(s,t) 

TCost(t)         Transportation Cost 

PCost(t)         Processing Cost 

PerTot(t)        Total Cost per Period 

OTot             Overall Total 

startstor(f)     Starting Storage 

stoproc(f,t) 

*facility         Specified Facility 

; 

 

 

HarvBal(s,t)..   1.053*hc(s,t)+1.01*hr(s,t)=l=ba(s)*avail(t); 

 

ChipTBal(s,t)..  sum(f,ctp(s,f,t))=l=hc(s,t); 

 

ResTBal(s,t)..   sum(f,rtp(s,f,t)+rts(s,f,t))=l=hr(s,t); 

 

ProceBal(f,t)..  1.053*mpf(f,t)=l=sum(s,rtp(s,f,t))+smp(f,t); 

 

StorBal(f,t)..   msf(f,t-1)+sum(s,rts(s,f,t))=e=msf(f,t)+smp(f,t); 

 

StorCap(f,t)..   msf(f,t)=l=4800*y(f); 

 

FeedReq(f,t)..   sum(s,ctp(s,f,t))+mpf(f,t)=e=10000*y(f); 

 

Open..           sum(f,y(f))=g=1; 
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HCost(t)..       Harv(t)=e=36.52*sum(s,hc(s,t))+27.4*sum(s,hr(s,t)); 

 

TCostC(s,t)..    TransC(s,t)=e=sum(f,ctp(s,f,t)*dist(s,f)*0.17); 

 

TCostR(s,t)..    TransR(s,t)=e=sum(f,(rtp(s,f,t)+rts(s,f,t))*dist(s,f)*.27); 

 

TCost(t)..       

Trans(t)=e=sum((s,f),(ctp(s,f,t)*dist(s,f)*0.17)+((rtp(s,f,t)+rts(s,f,t))*dist(s,f)*.27)); 

 

Pcost(t)..       Proc(t)=e=sum(f,mpf(f,t))*2.47; 

 

PerTot(t)..      Z(t)=e=Harv(t)+Trans(t)+Proc(t); 

 

OTot..           Tot=e=sum(t,Z(t)); 

 

startstor(f)..   msf(f,"1")=e=0; 

 

*facility..       y("WashingtonHeights")=e=1; 

 

stoproc(f,t)..   smp(f,t)=l=msf(f,t-1); 

 

 

option threads=7; 

 

model CBTL_Opt /all/; 

 

 

*bio_fc.ResLim=259200; 

CBTL_Opt.OptCR=0.01; 
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*bio_fc.Cheat=100000 

solve CBTL_Opt using mip minimizing Tot; 

 

 

$libinclude xldump hc.l C:/Users/dhartle4/Documents/CBTL_RES.xlsx ChipHarv!A1 

$libinclude xldump hr.l C:/Users/dhartle4/Documents/CBTL_RES.xlsx ResHarv!A1 

$libinclude xldump ctp.l C:/Users/dhartle4/Documents/CBTL_RES.xlsx ChipTran!A1 

$libinclude xldump rtp.l C:/Users/dhartle4/Documents/CBTL_RES.xlsx ResToProc!A1 

$libinclude xldump rts.l C:/Users/dhartle4/Documents/CBTL_RES.xlsx ResToStor!A1 

$libinclude xldump smp.l C:/Users/dhartle4/Documents/CBTL_RES.xlsx StorMatProc!A1 

$libinclude xldump mpf.l C:/Users/dhartle4/Documents/CBTL_RES.xlsx MaterialProc!A1 

$libinclude xldump msf.l C:/Users/dhartle4/Documents/CBTL_RES.xlsx MaterialStored!A1 

$libinclude xldump y.l C:/Users/dhartle4/Documents/CBTL_RES.xlsx OpenFacility!A1 

$libinclude xldump Harv.l C:/Users/dhartle4/Documents/CBTL_RES.xlsx HarvestingCost!A1 

$libinclude xldump TransC.l C:/Users/dhartle4/Documents/CBTL_RES.xlsx TransCostChips!A1 

$libinclude xldump TransR.l C:/Users/dhartle4/Documents/CBTL_RES.xlsx TransCostRes!A1 

$libinclude xldump Trans.l C:/Users/dhartle4/Documents/CBTL_RES.xlsx TransCost!A1 

$libinclude xldump Proc.l C:/Users/dhartle4/Documents/CBTL_RES.xlsx ProcessCost!A1 

$libinclude xldump Z.l C:/Users/dhartle4/Documents/CBTL_RES.xlsx TotalCost(Period)!A1 

$libinclude xldump Tot.l C:/Users/dhartle4/Documents/CBTL_RES.xlsx Total!A1 
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APPENDIX D HARVESTING SIMULATION CODE 

MAIN() 

using System; 
using System.Runtime; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.IO; 
using System.Data; 
using System.Threading; 
using System.Threading.Tasks; 
using Excel = Microsoft.Office.Interop.Excel; 
 
 
namespace ConsoleApplication2 
{ 
    class Program 
    { 
        static void Main(string[] args) 
        { 
            Console.WriteLine("Enter County for Analysis:"); 
            var county = Console.ReadLine(); 
            var countlow = county.ToLower(); 
            var count4 = countlow.Substring(0, 4); 
 
 
            int directory = 
Directory.GetFiles(@"C:\Users\dhartle4\Dropbox\WVU\WoodyBiomassHarvestSim\" + 
count4).Length; 
 
 
            for (int c =1; c <= directory; c++) 
            { 
                Console.WriteLine("\r Processing Forest Area:{0}                                          
", c); 
                //Initialize a new Graph 
                Graph graph = new Graph(); 
                //Read Data from CSV file and Create graph 
                string filePath = 
@"C:\Users\dhartle4\Dropbox\WVU\WoodyBiomassHarvestSim\"+count4+"\\"+ c + ".csv"; 
                CsvToGraph graphCreator = new CsvToGraph(); 
                var data = graphCreator.ReadCsv(filePath); 
                graphCreator.ArraytoNode(data, graph); 
                graphCreator.CreateConnections(graph); 
 
                //Define Landing Locations 
                LandingFinder landinglocator = new LandingFinder(); 
                var landings = 
landinglocator.TrimLandingList(landinglocator.LandingLocator(graph), graph); 
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                Console.Write("\r Number of Landings:{0}                                                  
", landings.Count); 
                Thread.Sleep(3000); 
                foreach (var l in landings) 
                { 
                    var x = graph.Nodes.Where(s => s.Value.ID == l); 
                    foreach (var y in x) 
                    { 
                        y.Value.isLanding = true; 
                    } 
                } 
 
 
                //Allocate Nodes to Landings 
                DistanceCalculator distcalc = new DistanceCalculator(); 
                if (landings.Count < 1) 
                { 
                    distcalc.DistCalc(graph, "1"); 
                    foreach (var n in graph.Nodes.Where(x => x.Value.isLanding != true)) 
                    { 
                        n.Value.AllocatedLanding = "1"; 
                        n.Value.AllocatedDistance = n.Value.DistanceFromStart["1"]; 
                    } 
                } 
                else 
                { 
                    foreach (var l in landings) 
                    { 
                        distcalc.DistCalc(graph, l); 
                        foreach (var n in graph.Nodes.Where(x => x.Value.isLanding != 
true)) 
                        { 
                            var dist = n.Value.DistanceFromStart[l]; 
                            if (n.Value.AllocatedLanding == null && dist < 
double.PositiveInfinity) 
                            { 
                                n.Value.AllocatedLanding = l; 
                                n.Value.AllocatedDistance = dist; 
                            } 
                            else if (dist < double.PositiveInfinity && dist < 
n.Value.AllocatedDistance) 
                            { 
                                n.Value.AllocatedLanding = l; 
                                n.Value.AllocatedDistance = dist; 
                            } 
                        } 
                    } 
                } 
 
                // 
 
                PathCreator pathCreator = new PathCreator(); 
 
                var path = pathCreator.ReturnPath(landings, graph); 
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                var excelApp = new Excel.Application(); 
                var excelWB = excelApp.Workbooks.Add(); 
               // string outpath = @"C:\Users\Damon\My Documents\WBET\Output\"; 
                //string outfile2 = outpath + Path.GetFileNameWithoutExtension(filePath); 
 
                 
                foreach (var l in landings) 
                { 
                   Excel.Worksheet ws=excelWB.Worksheets.Add(); 
                     
                    List<string> added = new List<string>(); 
                    { 
                        var row=1; 
                        foreach (var n in graph.Nodes.Where(j => j.Value.AllocatedLanding 
== l)) 
                        { 
                            foreach (var p in path[l + "-" + n.Key]) 
                            { 
                                if (added.Contains(p)) 
                                { 
                                    continue; 
                                } 
                                else 
                                { 
                                    var cost = graph.Nodes[p].CostPerTon; 
                                    if (cost > 0) 
                                    { 
                                        ws.Cells[row, 1] = l; 
                                        ws.Cells[row, 2] = n.Key; 
                                        ws.Cells[row, 3] = cost; 
                                        row++; 
                                    } 
                                    else 
                                        continue; 
                                    added.Add(p); 
                                     
                                } 
 
                            } 
                        } 
                    } 
                } 
                excelWB.SaveAs(@"C:\Users\dhartle4\Documents\WBET\Output\" + count4 + "_" 
+ c + ".xlsx"); 
                excelWB.Close(); 
 
            } 
            Console.WriteLine("Processing Complete [Press Enter to Close]"); 
            Console.ReadLine(); 
        } 
    } 
} 
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GRAPH CLASS 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace ConsoleApplication2 
{ 
    public class Graph 
    { 
        internal IDictionary<string, Node> Nodes { get; private set; } 
 
        public Graph() 
        { 
            Nodes = new Dictionary<string, Node>(); 
        } 
 
        public void AddNode(string id,double x, double y, double z) 
        { 
            var node = new Node(id,x,y,z); 
            Nodes.Add(id, node); 
        } 
 
        public void AddConnection(string fromNode, string toNode, double distance,double 
travdist, bool twoWay) 
        { 
            Nodes[fromNode].AddConnection(Nodes[toNode], distance, travdist,twoWay); 
        } 
    } 
} 

 

NODE CLASS 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace ConsoleApplication2 
{ 
    internal class Node 
    { 
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        IList<NodeConnection> _connections; 
 
        internal string ID { get; private set; } 
 
        internal double X { get; set; } 
 
        internal double Y { get; set; } 
 
        internal double Z { get; set; } 
 
        internal bool isLanding { get; set; } 
 
        internal IDictionary<string,double> DistanceFromStart { get; set; } 
 
        internal double TravelDistFromStart { get; set; } 
 
        internal string AllocatedLanding { get; set; } 
 
        internal double AllocatedDistance { get; set; } 
 
        internal Node Pred { get; set; } 
 
        internal Node Post { get; set; } 
 
        internal double Payload { get; set; } 
 
        internal double Cost { get; set; } 
 
        internal int No_Trips { get; set; } 
 
        internal double CostPerTon { get; set; } 
 
        internal IEnumerable<NodeConnection> Connections 
        { 
            get { return _connections; } 
        } 
 
        internal Node(string id, double x, double y, double z) 
        { 
            ID = id; 
            X = x; 
            Y = y; 
            Z = z; 
            isLanding = false; 
            DistanceFromStart = new Dictionary<string, double>(); 
            _connections = new List<NodeConnection>(); 
        } 
 
        internal void AddConnection(Node targetNode, double distance,double travdist, 
bool twoWay) 
        { 
            if (targetNode == null) throw new ArgumentNullException("targetNode"); 
            if (targetNode == this) throw new ArgumentException("Node may not connect to 
itself."); 
            if (distance <= 0) throw new ArgumentException("Distance must be positive."); 
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            _connections.Add(new NodeConnection(targetNode, distance,travdist)); 
            if (twoWay) targetNode.AddConnection(this, distance,travdist, false); 
        } 
    } 
} 

 

NODE CONNECTION CLASS 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace ConsoleApplication2 
{ 
    internal class NodeConnection 
    { 
        internal Node Target { get; private set; } 
        internal double Distance { get; private set; } 
        internal double TravelDist { get; private set; } 
 
        internal NodeConnection(Node target, double distance,double travdist) 
        { 
            Target = target; 
            Distance = distance; 
            TravelDist = travdist; 
        } 
    } 
} 

 

CSVTOGRAPH CLASS 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.IO; 
 
namespace ConsoleApplication2 
{ 
    public class CsvToGraph 
    { 
        public string[][] ReadCsv(string filePath) 
        { 
            StreamReader sr = new StreamReader(filePath); 
            var lines = new List<string[]>(); 
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            var Row = 0; 
            while (!sr.EndOfStream) 
            { 
                string[] Line = sr.ReadLine().Split(','); 
                lines.Add(Line); 
                Row++; 
                Console.Write("\r{0}    ", Row); 
            } 
            var data = lines.ToArray(); 
            return data; 
        } 
 
        public void ArraytoNode(string[][] array,Graph graph) 
        { 
            var id = 0; 
            foreach (string[] record in array) 
            { 
                id++; 
                var x = Convert.ToDouble(record[0]); 
                var y = Convert.ToDouble(record[1]); 
                var z = Convert.ToDouble(record[2]); 
                Console.Write("\r {0} Nodes added to Graph       ", id); 
                graph.AddNode(Convert.ToString(id), x, y, z); 
            } 
        } 
 
        public void CreateConnections(Graph graph) 
        { 
            foreach (var i in graph.Nodes) 
            { 
                var ikey = i.Key; 
                var ivalue1 = i.Value.X; 
                var ivalue2 = i.Value.Y; 
                var ivalue3 = i.Value.Z; 
                foreach (var j in graph.Nodes) 
                { 
                    var jkey = j.Key; 
                    var jvalue1 = j.Value.X; 
                    var jvalue2 = j.Value.Y; 
                    var jvalue3 = j.Value.Z; 
                    if (jvalue1 == ivalue1 && jvalue2 == ivalue2 + 30 || jvalue1 == 
ivalue1 && jvalue2 == ivalue2 - 30 || jvalue1 == ivalue1 + 30 && jvalue2 == ivalue2 || 
jvalue1 == ivalue1 - 30 && jvalue2 == ivalue2 || jvalue1 == ivalue1 + 30 && jvalue2 == 
ivalue2 + 30 || jvalue1 == ivalue1 + 30 && jvalue2 == ivalue2 - 30 || jvalue1 == ivalue1 
- 30 && jvalue2 == ivalue2 + 30 || jvalue1 == ivalue1 - 30 && jvalue2 == ivalue2 - 30 || 
jvalue1 == ivalue1 + 30 && jvalue2 == ivalue2 + 60 || jvalue1 == ivalue1 + 30 && jvalue2 
== ivalue2 - 60 || jvalue1 == ivalue1 - 30 && jvalue2 == ivalue2 + 60 || jvalue1 == 
ivalue1 - 30 && jvalue2 == ivalue2 - 60 || jvalue1 == ivalue1 + 30 && jvalue2 == ivalue2 
+ 90 || jvalue1 == ivalue1 + 30 && jvalue2 == ivalue2 - 90 || jvalue1 == ivalue1 - 30 && 
jvalue2 == ivalue2 + 90 || jvalue1 == ivalue1 - 30 && jvalue2 == ivalue2 - 90 || jvalue1 
== ivalue1 + 60 && jvalue2 == ivalue2 + 30 || jvalue1 == ivalue1 + 60 && jvalue2 == 
ivalue2 - 30 || jvalue1 == ivalue1 - 60 && jvalue2 == ivalue2 + 30 || jvalue1 == ivalue1 
- 60 && jvalue2 == ivalue2 - 30 || jvalue1 == ivalue1 + 60 && jvalue2 == ivalue2 - 90 || 
jvalue1 == ivalue1 + 60 && jvalue2 == ivalue2 - 90 || jvalue1 == ivalue1 - 60 && jvalue2 
== ivalue2 + 90 || jvalue1 == ivalue1 - 60 && jvalue2 == ivalue2 - 90 || jvalue1 == 
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ivalue1 + 90 && jvalue2 == ivalue2 + 30 || jvalue1 == ivalue1 + 90 && jvalue2 == ivalue2 
- 30 || jvalue1 == ivalue1 - 90 && jvalue2 == ivalue2 + 30 || jvalue1 == ivalue1 - 90 && 
jvalue2 == ivalue2 - 30 || jvalue1 == ivalue1 + 90 && jvalue2 == ivalue2 + 60 || jvalue1 
== ivalue1 + 90 && jvalue2 == ivalue2 - 60 || jvalue1 == ivalue1 - 90 && jvalue2 == 
ivalue2 + 60 || jvalue1 == ivalue1 - 90 && jvalue2 == ivalue2 - 60) 
                    { 
                        var slope = (ivalue3 - jvalue3) / (Math.Sqrt(Math.Pow(ivalue1 - 
jvalue1, 2) + Math.Pow(ivalue2 - jvalue2, 2))); 
                        var weight = Math.Sqrt(Math.Pow(ivalue1 - jvalue1, 2) + 
Math.Pow(ivalue2 - jvalue2, 2) + Math.Pow(ivalue3 - jvalue3, 2)); 
 
                        if (Math.Abs(slope) <= .2) 
                        { 
                            if (Math.Abs(slope) <= 0.05) 
                            { 
                                graph.AddConnection((string)ikey, (string)jkey, weight, 
weight, false); 
                                Console.Write("\r Connection Added: {0}--{1}           ", 
ikey, jkey); 
                            } 
                            else if (Math.Abs(slope) > 0.05) 
                            { 
                                graph.AddConnection((string)ikey, (string)jkey, weight * 
(weight + (slope * (Math.Abs(slope) * 0.2))), weight, false); 
                                Console.Write("\r Connection Added: {0}--{1}           ", 
ikey, jkey); 
                            } 
                        } 
                    } 
                } 
            } 
        } 
    } 
} 

 

DISTANCECALCULATOR CLASS 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace ConsoleApplication2 
{ 
    public class DistanceCalculator 
    { 
        public void DistCalc(Graph graph, string startingNode) 
        { 
            if (!graph.Nodes.Any(n => n.Key == startingNode)) 
                throw new ArgumentException("Starting node must be in graph."); 
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            InitialiseGraph(graph, startingNode); 
            ProcessGraph(graph, startingNode); 
        } 
 
        public Dictionary<string, double> CalculateDistances(Graph graph, string 
startingNode) 
        { 
            if (!graph.Nodes.Any(n => n.Key == startingNode)) 
                throw new ArgumentException("Starting node must be in graph."); 
 
            InitialiseGraph(graph, startingNode); 
            ProcessGraph(graph, startingNode); 
            return ExtractDistances(graph,startingNode); 
        } 
 
        public IList<string> ReturnPath(Graph graph, string startingNode, string 
endingNode) 
        { 
            if (!graph.Nodes.Any(n => n.Key == startingNode)) 
                throw new ArgumentException("Starting node must be in graph."); 
            if (!graph.Nodes.Any(n => n.Key == endingNode)) 
                throw new ArgumentException("Ending node must be in graph."); 
            return ExtractPath(graph, startingNode, endingNode); 
        } 
 
        private void InitialiseGraph(Graph graph, string startingNode) 
        { 
            foreach (Node node in graph.Nodes.Values) 
                node.DistanceFromStart[startingNode] = double.PositiveInfinity; 
            graph.Nodes[startingNode].DistanceFromStart[startingNode] = 0; 
        } 
 
        private void ProcessGraph(Graph graph, string startingNode) 
        { 
            bool finished = false; 
            var queue = graph.Nodes.Values.ToList(); 
            while (!finished) 
            { 
                Node nextNode = queue.OrderBy(n => 
n.DistanceFromStart[startingNode]).FirstOrDefault(n => 
!double.IsPositiveInfinity(n.DistanceFromStart[startingNode])); 
                if (nextNode != null) 
                { 
                    ProcessNode(nextNode,startingNode, queue); 
                    queue.Remove(nextNode); 
                } 
                else 
                { 
                    finished = true; 
                } 
            } 
        } 
 
        private void ProcessNode(Node node,string startingNode, List<Node> queue) 
        { 
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            var connections = node.Connections.Where(c => queue.Contains(c.Target)); 
            foreach (var connection in connections) 
            { 
                double distance = node.DistanceFromStart[startingNode] + 
connection.Distance; 
                double travdist = node.TravelDistFromStart + connection.TravelDist; 
                if (distance < connection.Target.DistanceFromStart[startingNode]) 
                { 
                    connection.Target.DistanceFromStart[startingNode] = distance; 
                    connection.Target.TravelDistFromStart = travdist; 
                    connection.Target.Pred = node; 
                    node.Post = connection.Target; 
                    Console.Write("\r Processing Node:{0}", node.ID); 
                } 
            } 
        } 
 
        private Dictionary<string, double> ExtractDistances(Graph graph,string 
startingNode) 
        { 
            return graph.Nodes.ToDictionary(n => n.Key, n => 
n.Value.DistanceFromStart[startingNode]); 
        } 
 
        private IList<string> ExtractPath(Graph graph,string start,string end) 
        { 
            IList<string> Path=new List<string>(); 
            if (end != start) 
            { 
                while (end != start) 
                { 
                    Path.Add(end); 
                    if (graph.Nodes[end].AllocatedDistance == 0) 
                    { 
                        break; 
                    } 
                    else 
                    { 
                        end = graph.Nodes[end].Pred.ID; 
                    } 
 
                } 
                Path.Add(end); 
            } 
            return Path; 
             
        } 
    } 
} 
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LANDING FINDER CLASS 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.Threading; 
 
namespace ConsoleApplication2 
{ 
   public class LandingFinder 
    { 
       public List<string> LandingLocator(Graph graph) 
        { 
            double s1 = 0; 
            double s2 = 0; double s3 = 0; double s4 = 0; double s5 = 0; double s6 = 0; 
double s7 = 0; double s8 = 0; 
            var counter = 0; 
            List<string> list = new List<string>(); 
            foreach (var l in graph.Nodes) 
            { 
                counter++; 
                var lvalx = l.Value.X; 
                var lvaly = l.Value.Y; 
                var lvalz = l.Value.Z; 
                foreach (var s in graph.Nodes) 
                { 
                    var svalx = s.Value.X; 
                    var svaly = s.Value.Y; 
                    var svalz = s.Value.Z; 
                    if (svalx == lvalx - 30 && svaly == lvaly + 30) 
                    { 
                        s1 = (svalz - lvalz) / Math.Sqrt(Math.Pow(svalx - lvalx, 2) + 
Math.Pow(svaly - lvaly, 2)); 
                    } 
 
                    if (svalx == lvalx && svaly == lvaly + 30) 
                    { 
                        s2 = (svalz - lvalz) / Math.Sqrt(Math.Pow(svalx - lvalx, 2) + 
Math.Pow(svaly - lvaly, 2)); 
                    } 
 
                    if (svalx == lvalx + 30 && svaly == lvaly + 30) 
                    { 
                        s3 = (svalz - lvalz) / Math.Sqrt(Math.Pow(svalx - lvalx, 2) + 
Math.Pow(svaly - lvaly, 2)); 
                    } 
 
                    if (svalx == lvalx - 30 && svaly == lvaly) 
                    { 
                        s4 = (svalz - lvalz) / Math.Sqrt(Math.Pow(svalx - lvalx, 2) + 
Math.Pow(svaly - lvaly, 2)); 
                    } 
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                    if (svalx == lvalx + 30 && svaly == lvaly) 
                    { 
                        s5 = (svalz - lvalz) / Math.Sqrt(Math.Pow(svalx - lvalx, 2) + 
Math.Pow(svaly - lvaly, 2)); 
                    } 
 
                    if (svalx == lvalx - 30 && svaly == lvaly - 30) 
                    { 
                        s6 = (svalz - lvalz) / Math.Sqrt(Math.Pow(svalx - lvalx, 2) + 
Math.Pow(svaly - lvaly, 2)); 
                    } 
 
                    if (svalx == lvalx && svaly == lvaly - 30) 
                    { 
                        s7 = (svalz - lvalz) / Math.Sqrt(Math.Pow(svalx - lvalx, 2) + 
Math.Pow(svaly - lvaly, 2)); 
                    } 
 
                    if (svalx == lvalx + 30 && svaly == lvaly - 30) 
                    { 
                        s8 = (svalz - lvalz) / Math.Sqrt(Math.Pow(svalx - lvalx, 2) + 
Math.Pow(svaly - lvaly, 2)); 
                    } 
                } 
 
                Console.Write("\r Node Checked:{0}                                         
", counter); 
                if (Math.Abs(s1) <= .05 && Math.Abs(s2) <= .05 && Math.Abs(s3) <= .05 && 
Math.Abs(s4) <= .05 && Math.Abs(s5) <= .05 && Math.Abs(s6) <= .05 && Math.Abs(s7) <= .05 
&& Math.Abs(s8) <= .05) 
                { 
                    list.Add(l.Value.ID); 
                    Console.Write("\r Landing Added:{0}                                 
", l.Value.ID); 
                } 
                 
            } 
           Console.Write("\r Number of Landing Candidates:{0}", list.Count); 
           Thread.Sleep(3000); 
           return list;  
        } 
 
       public List<string> TrimLandingList(List<string> list,Graph graph) 
       { 
           var candidate = list; 
           List<string> final=new List<string>(); 
           for (int i = 0; i < list.Count; i++) 
           { 
               var current = list[i]; 
               var currentx = graph.Nodes[current].X; 
               var currenty = graph.Nodes[current].Y; 
               bool contain_can=candidate.Contains(current); 
               bool contain_fin=final.Contains(current); 
               if (contain_can==true && contain_fin==false) 
               { 
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                   final.Add(current); 
                   var remove = graph.Nodes.Where(y => Math.Abs(y.Value.X - currentx) > 1 
&& Math.Abs(y.Value.X - currentx) < 630 || Math.Abs(y.Value.Y - currenty) > 1 && 
Math.Abs(y.Value.Y - currenty) > 630 && y.Value.ID != current); 
                   foreach (var r in remove) 
                   { 
                       candidate.Remove(r.Key); 
                       Console.Write("\r Point {0} removed                                 
", r.Key); 
                   } 
               } 
           } 
           return final; 
       } 
 
    } 
} 

 

PATHCREATOR CLASS 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace ConsoleApplication2 
{ 
    public class PathCreator 
    { 
        public Dictionary<string,List<string>> ReturnPath(List<string>list, Graph graph) 
        { 
            Dictionary<string, List<string>> path = new Dictionary<string, 
List<string>>(); 
            var calculator = new DistanceCalculator(); 
            if (list.Count >= 1) 
            { 
                foreach (string land in list) 
                { 
                    var allocLand = graph.Nodes.Where(l => l.Value.AllocatedLanding == 
land && l.Value.AllocatedLanding != null); 
                    foreach (KeyValuePair<string, Node> n in allocLand) 
                    { 
                        List<string> pathNodes = new List<string>(); 
                        var end = n.Key; 
                        string pathkey = land + "-" + end; 
                        var paths = calculator.ReturnPath(graph, land, end); 
                        var c=1; 
                        var point=1; 
                        foreach (string p in paths) 
                        { 
                            pathNodes.Add(p); 
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                            point++; 
                        } 
                        c++; 
                        pathNodes.Reverse(); 
                        path.Add(pathkey, pathNodes); 
                     
                        double limit_pay = 22000; 
                        var pathorder = path[land + "-" + n.Key].ToList(); 
                        pathorder.Reverse(); 
                        foreach (var o in pathorder) 
                        { 
                            if (graph.Nodes[o].Post != null) 
                            { 
                                var firstx = graph.Nodes[o].X; 
                                var firsty = graph.Nodes[o].Y; 
                                var firstz = graph.Nodes[o].Z; 
                                var nextx = graph.Nodes[o].Post.X; 
                                var nexty = graph.Nodes[o].Post.Y; 
                                var nextz = graph.Nodes[o].Post.Z; 
                                var slope = -(nextz - firstz) / Math.Sqrt(Math.Pow(nextx 
- firstx, 2) + Math.Pow(nexty - firsty, 2)); 
                                var wt = 23690; 
                                var speed = 5; 
                                var force = 0.8971 * Math.Exp(-0.262 * speed) * 44000; 
                                var theta = Math.Atan(slope); 
                                var payload = ((2 * force) - (0.4 * wt * Math.Cos(theta)) 
- (2 * wt * Math.Sin(theta))) / ((1.05 * Math.Cos(theta)) + (2 * Math.Sin(theta))); 
                                Random random = new Random(); 
                                var nontravel = random.Next(180, 300); 
                                var cycletime = graph.Nodes[o].Post.AllocatedDistance / 
(speed * .44704) + 289.8; 
                                double costperturn = 0; 
                                if (payload < limit_pay) 
                                { 
                                    limit_pay = payload; 
                                    graph.Nodes[o].Post.Payload = limit_pay; 
                                    costperturn = ((cycletime / 3600) * 81.34); 
                                    graph.Nodes[o].Post.Cost = costperturn; 
                                    if (limit_pay > 3822) 
                                    { 
                                        graph.Nodes[o].Post.No_Trips = 1; 
                                    } 
                                    else 
                                    { 
                                        graph.Nodes[o].Post.No_Trips = 
(int)Math.Ceiling(3822 / limit_pay); 
                                    } 
                                    graph.Nodes[o].Post.CostPerTon = (.35*costperturn * 
graph.Nodes[o].Post.No_Trips / 1.275)+13.70; 
                                } 
                                else 
                                { 
                                    graph.Nodes[o].Post.Payload = limit_pay; 
                                    costperturn = ((cycletime / 3600) * 81.34); 
                                    graph.Nodes[o].Post.Cost = costperturn; 
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                                    if (limit_pay > 3822) 
                                    { 
                                        graph.Nodes[o].Post.No_Trips = 1; 
                                    } 
                                    else 
                                    { 
                                        graph.Nodes[o].Post.No_Trips = 
(int)Math.Ceiling(3822 / limit_pay); 
                                    } 
                                    graph.Nodes[o].Post.CostPerTon = (.35*costperturn * 
graph.Nodes[o].Post.No_Trips / 1.275)+13.70; 
                                } 
                            } 
                        } 
                    }    
                } 
            } 
            return path; 
        } 
    } 
} 

 

PAYLOADANALYZER CLASS 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace ConsoleApplication2 
{ 
    public class PayloadAnalyzer 
    { 
        double payload(Machine machine, double slope, double speed) 
        { 
            var wt = machine.Weight; 
            var force = 0.8971 * Math.Exp(-0.262 * speed) * 44000; 
            var theta = Math.Atan(slope); 
            double payload = ((2 * force) - (0.4 * wt * Math.Cos(theta)) - (2 * wt * 
Math.Sin(theta))) / ((1.05 * Math.Cos(theta)) + (2 * Math.Sin(theta))); 
            return payload; 
        } 
    } 
} 
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