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ABSTRACT 

 

Estimating Ultimate Recovery for Shale Based on Facts 

Faegheh Javadi 

 

Natural gas, as one of the nation’s major energy sources plays a vital role in the US 

energy mix. In recent years, the production from Shale has focused much attention on this 

source of hydrocarbon. As an essential step for the production planning, natural gas 

professionals estimate production and ultimate recovery (EUR) throughout the life of 

wells. The fluid production rate (q) usually varies as a function of rock properties, well, 

and completion design parameters. The variation associated with these parameters is a 

source of uncertainty in estimating the long term production for unconventional 

reservoirs. 

A number of methodologies have been suggested to estimate the long term production of 

shale wells. Decline curve analysis is the most widely used methodology in the 

estimation of the future production profile (Arps, 1945). However, its results have been 

determined to be over optimistic (Fanchi et al. 2013 and Dinh et al. 2014).  

Discrepancies between actual and estimated production values by Arps decline curves 

have been observed. This is dominant in low permeability reservoirs characterized by 

production over-estimation that is a consequence of large values of hyperbolic 

component (b-values higher than 1). A combination of Arps hyperbolic (in early time) 

and exponential decline (in later time) is employed to overcome this deficiency 

(production over estimation). This combination of Arps declines curves are referred to as 

Combined Decline Curves (CDC). The resulting estimation of EUR is quite conservative 

such that it provides lower EUR values than Power Law Exponential and the Stretched 

Exponential Decline Curve.  

The major objective of this research is to condition the results of the CDC-EUR of shale 

wells to rock properties, well characteristics, and completion design parameters in a given 

shale asset. The first step of this study is CDC-EUR estimation using Arps combined 

decline curves. In order to have a more accurate (conservative) estimation, the hyperbolic 

curve will be switched to exponential decline during later time in the well’s life. Then, 

artificial intelligence will be employed to condition the CDC-EUR to rock properties, 

well characteristics, and completion design parameters.  

The major rock properties that will be studied in this research as input parameters include 

porosity, total organic carbon, net thickness, and water saturation. Moreover, the effect of 

several design parameters, such as well trajectories, completion, and hydraulic fracturing 

variables on CDC-EUR will be investigated. This model will help natural gas 

professionals to have a better understanding of the effect of rock properties and design 

parameters on future gas production of shale.  
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Introduction  

Natural gas, as one of the nation’s major energy sources has a vital role in the US energy mix. In 

recent years, developments in well completion technologies made the unconventional shale gas 

production economically feasible. Therefore, the production from Shale has focused much 

attention on this source of hydrocarbon. As an essential step for the production planning, natural 

gas professionals estimate production and ultimate recovery (EUR) throughout the life of wells. 

The fluid production rate (q) may vary by rock properties, well, and completion design 

parameters. The variation associated with these parameters is a source of uncertainty in 

estimating the long term production for unconventional reservoirs.  

In this thesis a data driven model has been generated in order to predict EUR for shale walls. 

Furthermore the effect of rock properties and design parameters has been studied. These analyses 

can provide valuable completion and stimulation strategies for operators.  

Unconventional Reservoirs 
 

Based on the reservoirs rock type and hydrocarbon properties hydrocarbon deposits are either 

conventional or unconventional reservoirs. Conventional reservoirs are known as the highly 

permeable oil and gas reservoirs which can produce at almost high rates relying on reservoirs 

own initial pressure. On the other hand, unconventional reservoirs such as tight gas sands, coal 

bed gas, shale gas, and tight oil refers to formations with the permeability on the micro-Darcy 

scale that makes it too complicated and difficult to produce despite their huge amount of reserves 

inside [Ilk, 2008]. Figure 2 shows different resources of natural gas. 

The increases in U.S. natural gas production have come from unconventional development of 

energy resource plays, which have become more accessible and economic due to advancements in 

horizontal drilling and hydraulic fracturing. Since 1998 unconventional natural gas production 

has increased nearly 150%. This increase has resulted in unconventional production becoming an 

increasingly larger portion of total natural gas production, growing from 28 percent in 1998 to 

more than 70 percent of total natural gas production in 2012FF Figure 2 shows U.S. natural gas 

production by different sources from 1990 to 2040 [U.S. EIA, 2014]. 

Shale gas reservoirs are the most important and fast-growing source of natural gas in U.S. It has 

the potential to significantly increase America’s security of energy supply, reduce greenhouse gas 
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emissions, and lower prices for consumers. The U.S. Energy Information Administration (EIA) 

estimates shale gas currently contributes about 33 percent of U.S. natural gas production, an 

amount that is expected to grow significantly as this huge resource is developed [U.S. EIA, 

2014]. 

Shale gas reservoirs are known as very fine grained, dark-gray or black organic-rich and are the 

most common sedimentary source rocks in the world. Shale gas is natural gas that is attached to, 

or adsorbed onto, organic matter or it is contained in thin, porous silt or sand beds interbedded in 

the shale [Alberta Energy, 2009]. For decades, shale was known that large gas resources are 

trapped in shale formations, the low permeability of this formation made gas production 

economically unfeasible. Nevertheless, several factors such as advanced horizontal drilling and 

hydraulic fracturing have come together in recent years to change this unfavorable economic 

assessment and make shale gas production economically viable. As it is shown in Figure 2 the 

shale gas share of total U.S. natural gas production increases from 40% in 2012 to 53% in 2040. 

 

 

Figure 1. Schematic geology of natural gas resources (http://www.eia.gov/todayinenergy/detail.cfm?id=110) 
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Figure 2. U.S. natural gas production by sources (1990-2040) [U.S. EIA, 2014] 

 

The most important shale gas plays found in the US are Barnett Shale, Fayetteville Shale, 

Woodford Shale, Haynesville Shale, and Marcellus Shale. Each of these gas shale basins is 

different and each has a unique set of exploration criteria and operational challenges. Because of 

these differences, the development of shale gas resources in each of these areas faces potentially 

unique challenges. Figure 3 shows the wide distribution of highly organic shale plays in United 

States. The United States houses some of the largest shale gas reservoirs in the world which 

contribute majorly to the total domestic natural gas production in North America like the Barnett 

Shale of the Fort Worth Basin. Barnett Shale play in Texas produces about 6% of all natural gas 

produced in United States.  
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Figure 3. Shale plays distribution in United States [U.S. DOE, 2009] 

The total recoverable gas resources in four new shale gas plays (the Haynesville, Fayetteville, 

Marcellus, and Woodford) may be over 550 TCF. Total annual production volumes of 3 to 4 TCF 

may be sustainable for decades. This potential for production in the known onshore shale basins, 

coupled with other unconventional gas plays, is predicted to contribute significantly to the U.S.’s 

domestic energy outlook [U.S. DOE, 2009]. Table 1 compares the geologic differences between 

major shale gas plays in the United States. 
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Table 1. Comparison of Unconventional Shale in the United States [U.S. DOE, 2009] 
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Marcellus Shale 

The Marcellus Shale is the most expansive shale gas in the United States. The Marcellus Shale, 

also referred to as the Marcellus Formation, is a Middle Devonian-age black, low density, 

carbonaceous (organic rich) shale. This formation runs across the north-east south-west trend 

from west central of New York into Pennsylvania, eastern Ohio, through western Maryland, and 

throughout most of West Virginia extending across the state line into extreme western Virginia. 

Figure 4 shows the distribution of shale plays in the United States.  

The Marcellus Shale covers an area of 95,000 square miles at an average thickness of 50 ft. to 

200 ft. The depth of the formation is typically between 4000 to 85000 ft. While the Marcellus is 

lower in relative gas content at 60 scf/ton to 100 scf/ton, the much larger area of this play 

compared to other shale gas plays results in a higher original gas-in-place estimate of up to 1,500 

TCF [U. S. DOE, 2009]. 

Measured total organic content of the Marcellus Formation ranges from less than 1% in eastern 

New York, to over 11% in the central part of the state and the shale may contain enough carbon 

to support combustion. The more organic-rich black shale can be bituminous, but are too old to 

contain 25 bituminous coal formed from land plants. In petroleum geology, this black shale are an 

important source rock that filled conventional petroleum reservoirs in overlying formations, are 

an unconventional shale gas reservoir, and are an impermeable seal that traps underlying 

conventional natural gas reservoirs. To the west, the formation may produce liquid petroleum; 

further east heating during deeper burial more than 240 million years ago cracked this oil into gas 

[Laughrey, et. al., 2004]. 

The Marcellus Shale filed under study in this thesis is a part of an asset which is located in 

Southern Pennsylvania and Northern West Virginia. 
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Figure 4. Marcellus shale play Distribution in [U.S. EIA, 2009] 
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Literature Review 

For the most of gas and oil wells, the production analysis should be applied. The diffusivity 

equation which is a combination of continuity equation, flux equation (Darcy’s Law) and an 

equation of state are the origin of all these analyses methods [Esmaili, 2013]. Production analysis 

for shale have been developed over the last 50 years based on models for gas production from 

coal beds and applied initially to low pressure fractured reservoirs [Walton, 2012]. With rapid 

demand for production from shale the need for development of a reliable, fast and cost efficient 

model is developing quickly. 

Accordingly, different approaches have been discussed in the literature for production 

performance analysis and estimating the hydrocarbon reserves. Numerical reservoir simulation 

and modeling is one of these methods that are being used for this purpose [Freeman et al., 2009].  

Numerical modeling of shale gas reservoir carries a very specific problem due to its distinct 

properties such as multiple gas-storage mechanisms, complex interaction between natural 

fractures and induced (hydraulic) fractures, and inherent heterogeneity associated with rock 

properties. Since most of the shale gas reservoirs are naturally fractured, the dual porosity models 

fit the best for modeling of fluid flow in this type of reservoir. Dual porosity approaches were 

introduced as dual porosity models in early 1960s by Warren and Root [1963]. Modeling the 

hydraulic fractures by using commercial reservoir simulators is usually done by generating the 

local grid refinement and inclusion of high conductivity to those fine grids to represent the 

hydraulic fractures. Several authors have used this technique [Kalantari et al. (2010), Li et al. 

(2011), Osholake et al. (2011)] to numerically model a shale reservoir.  

 

In the workflow presented by Cipolla et al. [2009] discrete modeling of shale matrix and fracture 

network to that of dual porosity models are used to contract numerical reservoir simulation 

techniques. It is mentioned in the literature that numerical reservoir simulation is costly and 

difficult approach, especially for shale formations [Mohaghegh et al., 2011]. Alternatively, data-

driven techniques are novel approaches for modeling shale reservoirs which take into account all 

aspect of the reservoirs from reservoir characteristics to completion etc [Esmaili et al., 2012]. 

Analytical and empirical approaches have been applied to large multi-variable data set from shale 

assets with different degrees of success. Different methods for analysis and forecasting the shale 

gas production in literature are related to various aspects of gas shale, including operational (e.g., 

drilling, completion, and production) and technological challenges.  
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Data-driven modeling has been developed with contributions from artificial intelligence, data 

mining, machine learning, and pattern recognition. These models can complement or replace the 

“knowledge-driven” models describing behavior of physical systems [Solomatine et al., 2008]. 

Top-Down modeling, which is an AI-based approach, is a novel reservoir modeling technique as 

an alternative to traditional reservoir simulation and modeling [Mohaghegh, 2009]. 

The other approach which is the most commonly used procedures is decline-curve analysis 

(DCA). Analysis of past production decline to predict future production performance is valuable 

to oil and gas industry operators and financial resource institutions. Prior to the development of 

DCA models, estimation of oil reserves was accomplished by calculating the contents of a 

reservoir based on saturation and percentage of recoverable oil over a certain known area [Valko, 

2009]. This resulted in a very rough estimate of recoverable hydrocarbons [Valko, 2009].  

Since the publication of Arps’ decline curve equations [Arps, 1945], estimation of ultimate 

recovery has been primarily performed using his methods. Traditional Arps’ Decline Analysis 

equation estimates a reliable ultimate recovery for conventional oil and gas wells; since they 

exhibit boundary dominated flow (BDF) to abandonment. This assumption does not apply to tight 

permeability shales, which are dominated by long transient flow regimes. Fetkovich’s works 

[1980, 1987] brought a better understanding and tried to add an analytical meaning to the 

problem. These approaches seemed to satisfy the industry until unconventional reservoir systems 

became a significant potential of reserves growth and future production. Unlike conventional 

reservoirs, analyzing shale production data using traditional decline curve methods is problematic 

because of the nature of the reservoir properties and flow behavior. Shale wells have a long 

transient flow due to the very low matrix permeability [Kanfar and Wattenbarger, 2012]. 

Therefore, application of Arps’ DCA to production data from the unconventional reservoirs 

results in significant overestimation of reserves [Okouma, 2012]. Power Law Exponential has 

been proposed by Ilk et al. [2008] to address the problems with EUR overestimation. This is an 

empirical method for unconventional (shale) gas production data by matching early transient flow 

without overestimation. Another method for extrapolating the future production for shale gas is 

Stretched Exponential Method [Valko, 2009]. This method is able to calculate the recovery 

potential using differential equations and can estimate the ultimate recovery for tight gas.  

Future production performance predictions using hydrocarbon production analysis is very 

valuable for gas and oil industry operators and financial resource institutions. In 1945 Arps 

developed methods to generate decline trends in conventional reservoirs with great success. 
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Hydrocarbon recovery from unconventional shale reservoirs is increasingly crucial, especially in 

the US and Canada; it is important to analyze current production trends, predict future production 

performance and evaluate the productiveness of different hydraulic fracture stimulations and 

completion designs. The traditional Arps decline models have not successfully estimated recovery 

or future production in low permeability reservoirs [Duong, 2011]. 

Trend analysis for data has always been used to find the impact of different parameter on each 

other. As indicated earlier another objective of this thesis is conditioning EUR with rock 

properties, well, completion, and stimulation parameters for a large number of wells in Marcellus 

shale. Unconventional reservoirs have complex geological features and very low permeability of 

the matrix rock. These characteristics are different from conventional reservoirs and scientist try 

to better understand these complex behaviors in order to predict the future performance.  

We know that technology improvements – hydraulic fracturing and horizontal drilling – enable 

natural gas to be economically produced from shale. However, making completion and 

stimulation decisions and analyzing well performance behavior based on available tools such as 

analytical and numerical techniques could be challenging [Mohaghegh, et al., 2013]. The problem 

of understanding shale gas production has been much involved due to the complicated and 

unpredicted response of these reservoirs to fluid and proppant injection [Esmaili, et al., 2013]. 

Furthermore, each of reservoir characteristics of shale such as TOC and thickness as well as 

geomechnical properties of rock are different within the same producing area of the reservoir. All 

these variations have impact on hydrocarbon production behavior in shale wells. 

The limitations in our understanding of the complex phenomenon have eventuated in limitations 

in our ability to represent accurate modeling of the production from shale formations. Therefore 

several assumptions have been made to make the models work [Mohaghegh, 2013]. Making these 

assumptions as well as modifying different parameters in history matching process due to 

reservoir simulation model validation can result the non-unique sensitivity results in complex 

shale gas reservoirs. 

Data Mining and pattern recognition technologies are one of the most reasonable alternatives for 

extracting useful information from large data sets and studding well performance behavior in 

shale [Gharehlo, 2012].  

Data mining is a powerful new technology to process data and explore patterns or relationships 

between variables in the shale gas development process and it have proven to be capable of 

extracting useful information from large data sets and are extensively used in many industries. It 
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is widely used in different areas such as financial, medical, face and text recognition, and etc.  

Data mining techniques have a close relationship with artificial Intelligence, pattern recognition 

and machine learning and they enable to discover and present the information in a way which is 

understandable for humans.  

Unlike conventional methods, data mining methods are able to detect and generate hidden 

patterns in the data [Mohaghegh, 2000]. In this research the advanced data mining technology 

being used is called Fuzzy Pattern Recognition. 

Pattern Recognition is a branch of artificial intelligence focused on classification or description of 

observations. Pattern Recognition aims to classify data and extract useful information from the 

pattern. The patterns to be classified are usually groups of measurements or observations, 

defining points in an appropriate multidimensional space. In the other side fuzzy set theory is 

used to determine the appropriate multidimensional space that would provide optimum separation 

of overlapping classes, the result is known as Fuzzy Pattern Recognition [Mohaghegh, 2000]. 

When Fuzzy Pattern Recognition is applied to a limited number of classes of wells (Such as Poor, 

Average and Good wells) the process is called the Step Analysis or Well Quality Analysis 

(WQA). When a similar analysis is performed while every single well in the dataset is treated as a 

potential unique well quality the result is a continuous curve (rather than a discrete set of steps), 

called a Fuzzy Trend Analysis (FTA). The objective of these Fuzzy Pattern Recognition analyses 

is to discover hidden but important trends in the data set which cannot be discovered by statistical 

approaches [Esmaili et al., 2013]. 

 

  



 

  

12 

  

Background 

Decline Curve Analysis 

Shale gas reservoirs have become an important source of natural gas supply in North America. 

Advancement of drilling and stimulation techniques has caused exploitation of these ultra-low 

permeability formations viable. Therefore well performance analysis for shale has become more 

significant. It is very essential for natural gas professionals to estimate the ultimate recovery for 

shale. 

One of the common methods for calculating EUR is decline curve analysis. In this section two 

common decline curve methods, Arps’ decline curves and Power Law Exponential, have been 

introduced.  

Arps Decline Curve Analysis 

Arps developed the mathematical relations for three types of graphical representation of 

production decline for conventional reservoirs [Arps, 1945]. These empirical equations define the 

historical exponential, hyperbolic, and harmonic decline types observed for different qualities of 

traditional reservoirs during boundary dominated flow of the wells. The basic concept of decline 

analysis involves fitting a trendline through a well’s historical performance on a semi-log plot and 

extrapolating that line to estimate future production performance and ultimate recovery, assuming 

the past trend will not change under constant operational conditions. Aprs models decline types 

using the concept of loss ratio (D) and its derivative (b) where D and b parameters are the decline 

parameter and decline exponent, respectively, expressed as follows: 

Loss-Ratio 1� = −�
[����] 

(1) 

Derivative of Loss – 

Ratio 
 = ��� �1�� = − ���  ����� � 	�ℎ���	0≤ 
 ≤ 1. 
(2) 

When D is constant , equation 1 leads to an exponential decline which can be derived for the case 

of pseudo-steady state (or boundary dominated) flow in a closed reservoir containing a constant 

compressibility liquid and being produced at a constant wellbore flowing pressure (Ilk, 2008).  
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The three decline types have b values from 0 to 1. For the exponential case b value equals to 0. 

Values 0<b<1 indicate hyperbolic decline, and a b value equal to 1 shows harmonic decline 

(Arps, 1945).  

In 1980, Fetkovitch provided some more theoretical bases to the Arps decline equations by 

developing type curves for early transient flow [Fetkovitch, 1980]. 

In the Hyperbolic model, the production time declines with time. The empirical equation for 

Hyperbolic decline is  

� = �� ∗ 1
�1 + 
������ 

(3) 

Where, q is time-varying production rate, qi is the initial production rate parameter, b is the 

hyperbolic decline exponent parameter (0<b<1), and Di is the initial decline rate parameter. 

Integration of Eq. (3) leads to an expression for cumulative production, Gp 

�� = ������
 − 1� ������ � − ��� �� (4) 

Analysis of production decline from tight gas and shale gas wells using Eq. (3) typically results in 

a best-fit value of greater than unity for the decline exponent parameter, b [Lee and Sidle, 2010]. 

This leads to the physically unrealistic result that cumulative production becomes unbounded as 

time increases, as can be seen from the following: 

lim$→	&�� =	 ������
 − 1� ' 1����� � − ���� �(→ 	∞ 

(5) 

Fetkovich et al. [1987] have argued that such anomalous behavior, i.e., values of b > 1 in Eq. (3) 

or Eq. (4), arises when data from the transient-flow period are used to fit a model that is only 

appropriate during boundary-dominated flow. Supporting this assertion is the observation that 

best-fit b values that start out being greater than one tend to decrease with time as more and more 

data become available [Blasingame et al., 2005]. However, the use of the hyperbolic model 

continues to remain popular for EUR estimation purposes. A heuristic approach to keeping the 

long-term reserve estimates finite, with best-fit b values greater than unity, involves switching to 
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an exponential decline with a prescribed minimum decline rate based on analogy or intuition 

[Harrell et al., 2004]. 

Power Law Exponential Decline Curve (PLE) 

Arps’ decline curve analysis results in overestimation of EUR for shale reservoirs. Therefore 

several alternative decline curve methods which are empirically formulated for shale have been 

used to calculate EUR. One of the recent methods is Power Law Exponential Decline Curve 

(PLE) which has been proposed by Ilk et al. [2008] to overcome the deficiencies of Arps’ 

method. Power Law Exponential decline model is empirically developed for shale gas production 

data analysis by matching early transient data without overestimating reserves as compared to 

hyperbolic decline prediction with a high b-exponent. 

Loss ratio during transient linear and bilinear flow has a power law relation with time. Therefore, 

the PLE loss ratio (D) can be calculated by the following equation: 

� = �&+	��	� �� *�			 (6) 

As the behavior of the proposed relation (Eq. 6) is a decaying power law formulation, this result 

is called the power law loss-ratio formulation. Forecasting D parameter is sensitive to �& values. 

It sets a limit on how the loss ratio can become and prevents the model from over-prediction 

[Seshdari and Mattar, 2010]. It should be noted that this model is able to model transient, 

transition and boundary dominated flow.  

The following Power Law rate-time relation is resulted by substituting Eq. (6) into Eq. (3): 

� = ��exp	�−�&� − ��. 	�*� (7) 

Where �� is the initial flow rate, D is decline constant at time one, �& is decline constant at 

infinite time, and n is the decline exponent. 

Soft Computing 

Soft computing is the collection of techniques that uses the human mind as model aiming to 

formalize human cognitive processes [Cabrera et al., 2009]. Soft computing methods can handle 

imprecision, uncertainty, partial truth, and approximation. The objective of the soft computing 

methods is to make low cost, analytic and complete solutions for complex systems in which 

traditional computational methods have not yielded such solutions [Zadeh, 1994]. Soft computing 

techniques are comprised of fuzzy logic, neuro-computing, evolutionary and genetic computing, 
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and probabilistic computing. Artificial neural networks are one of the main branches of soft 

computing. They have been applied to numerous applications such as signal processing, image 

processing, control, etc. 

Artificial neural networks have been used in several aspects of reservoir engineering. The 

advantages of computer process and artificial neural networks in solving some fundamental 

petroleum engineering problems are discussed by Mohaghegh and Ameri [Mohaghegh and 

Ameri, 1995]. One of the neural networks applications in reservoir engineering is estimating 

ultimate recovery, which is an essential step for the production planning [Basinski, et al., 1997; 

Ouenes, et al., 1998]. Moreover, petrophysical properties estimation using artificial neural 

networks such as permeability estimation [Mohaghegh et al., 1995; Elshafei and Hamada, 2009a; 

Malki et al., 1996; Shokir et al., 2006], hydrocarbon saturation estimation [Morshed and Jagath, 

1998; Elshafei and Hamada, 2009b], and relative permeability predictions [Guler et al., 2003; 

Silpngarmlers et al., 2002] have been widely studied for different scenarios.  

Neural network applications in reservoir engineering also include PVT and fluid analysis 

[Elsharkawy, 1998; Hegeman et al., 2009], history matching [Esmaili, et, al., 2012; Ramgulam, 

2006; Sampaio et al., 2009; Mohaghegh, et al., 2011; Shahkarami, et al., 2014; Firoozjaee and 

Khamehchi, 2014], and field development strategies [Ayala et al., 2007; Doraisamy et al., 2000; 

Gorucu et al., 2005, Zargari, et al., 2011]. Since in this study artificial expert systems are used to 

perform to estimate ultimate recovery, in the upcoming sections artificial neural networks and 

reservoir characterization techniques are described in more details. 

Artificial Neural Networks 

Artificial neural networks (ANNs) now are computational methodologies that perform 

multifunctional analyses. They have become well established as viable, multipurpose, powerful 

computational methodologies with solid theoretic support and with strong potential to be effective 

in solving complex non-linear problems [Dayhoff and James, 2001]. This methodology is 

inspired by functionality of human brain and the ability of neuron networks to process 

information in parallel. The fundamental processing unit of human brain is called neuron. A 

neuron consists of a soma (cell body), axons (sends signals), and dendrites (receives signals). A 

schematic of a biological neuron is shown in Figure 5. 
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Figure 5. Structure of a neuron [source: 

http://www.wpclipart.com/medical/anatomy/cells/neuron/neuron.png.html] 

ANNs are able to recognize patterns (pattern recognition is the study of how machine can observe 

the environment, learn to discover patterns of interest from their background and make good and 

reasonable decisions about categories of the patterns [Basu et al., 2010]), detect trends, classify, 

predict, and solve highly non-linear problems through deriving meaning from complicated or 

imprecise data [Esmaili, 2014]. A very important feature of these networks is their adaptive 

nature, where “learning by example” replaces “programming” in solving problems [Jha, 2004]. 

Therefore, data availability is the key factor in this method. 

ANNs consist of simple computational unit called neurons, which are richly interconnected by 

weighted connection lines. Figure 6 shows the mathematical structure of a neuron. The input 

vector of the artificial neuron is a vector X which has n elements with connection to weight w(n). 

Each of these inputs is multiplied by the connection weight. The neuron has also another input, 

b(n), which is bias or threshold connections. This helps the learning of the data and ultimately 

improves representation of the data by neural network. Then, inputs are passed to activation or 

transfer function. Activation functions are the most important part of an ANN which transforms 

input signals to output signals. There are too many transfer functions available for different 

systems. The most popular activation functions are logistic or sigmoid. The typical ranges of 

these functions are between 0 and 1 or -1 and 1, depending on the function type. The 

mathematical equation of each neuron can be shown by the following equation: 

 

/ = 0�12� . �� + 
*
�3� � (8) 

(Soma)



 

  

17 

  

 

Figure 6. Mathematical structure of neuron. [Gharehlo, 2012] 

The most common type of activation function is the sigmoid function. A S-shaped graph, which 

is non-linear, well behaved, differentiable, and strictly increasing function. A sigmoid function 

can be shown as the equation below: 

0�/� = 11 + � 45 
(9) 

Where α is the slope parameter and is able to obtain different shapes of the function. 

ANNs consist of several layers of neurons (nodes). The first or the lower layer is an input layer 

where external information is received. The middle layer is hidden layer and can be consist of one 

or more layers. The last or the highest layer is an output layer. Figure 7 shows the architecture of 

an ANN with one hidden layer. All the layers are fully connected by synaptic weights. 

Data processing procedure in an ANN consists of three steps including training, testing 

(calibration), and verification. In training phase an input-output dataset is used to adjust the 

weights of the network. A set of data is used to test and estimate how good the model has been 

trained. In order to verify the model, a set of examples (not used in previous steps) are used to 

assess the performance or generalization of a trained model [Esmaili, 2012]. 

A popular method of learning, called supervised learning or associate learning, involves 

modifications of the synaptic weights of a neural network by providing input and matching output 

patterns. The training of the network is repeated for many examples in the set, until the network 

reaches a steady state. Once the network is trained, the connecting weights between neurons are 

established and it is said the network has “learned” or “trained”. When the training continues for 
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too long, the network is overlearned or overfitted. Overlearning or memorization means that the 

neural network extracts too much information from the individual cases and forgetting the 

relevant information of the general case [Mohaghegh 2000]. In order to avoid this problem, cross-

validation methods can be used. In cross-validation, testing set (instead of training set) is used in 

order to compare the performance of the resulting network. Since the output of testing data is not 

provided for the network, the generalization capability can be evaluated by the predicted outputs 

of testing set. Once the network is trained the verification process can be started. 

 

 

Figure 7. Artificial Neural Network architecture. 

 

Feed-Forward Backpropagation Networks 

One of the most commonly used supervised training algorithms is Backpropagation. The Feed 

Forward Backpropagation network is a network in which the artificial neurons are organized in 

layers, send their signals forward, and then the errors are propagated backwards. The network 

receives inputs by neurons in the input layer, and the output of the network is given by the 

neurons on an output layer. There may be one or more intermediate hidden layer. The 

Backpropagation algorithm uses supervised learning, which means that the inputs and outputs is 

provided into the network and then the error which is the difference between actual and expected 

results, is calculated. The idea of the Backpropagation algorithm is to reduce the error, until the 
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ANN learns the training data. The training usually begins with random weights, and the goal is to 

adjust them so that error will be minimal [Gershenson]. 

Consider a feed-forward network with n input and m output units. It can consist of any number of 

hidden units and can exhibit any desired feed-forward connection pattern. We are also given a 

training set {(x1, t1), . . .,(xp, tp)} consisting of p ordered pairs of n- and m-dimensional vectors, 

which are called the input and output patterns. Let the primitive functions at each node of the 

network be continuous and differentiable. The weights of the edges are real numbers selected at 

random. When the input pattern xi from the training set is presented to this network, it produces 

an output oi different in general from the target ti. What we want is to make oi and ti identical for i 

= 1, . . ., p, by using a learning algorithm. More precisely, we want to minimize the error function 

of the network, defined as 

6 = 1218|:� − ��|8;�
�3�  

(10) 

For each input j, its output is defined as 

:< = 0�=�� = 	0�1�><2>*
>3� � (11) 

The variable wij denotes the weight between neurons i and j.  

To look at how to reduce the error, we look at how the error changes as we change the weights. 

We start at the layer immediately before the output. Working out the effects of earlier layers will 

be more complex. First we can write total error as a sum of the errors at each node: 

6 = 6� + 6; +⋯+ 6@ (12) 

Calculating the partial differential of the total error with respect to a weight wij is defined as: 

A6A��< = A6A=� A=�A��< = A6A=� 	2�		 (13) 

BCBDE can be represented by F�. Consider that G ∈ IJ�KJ�L. Since the output of all units M ≠ G are 

independent of ��<, the summation of error can be dropped and the contribution of E by j is 

considered: 

F� =	 BCBDE = BBDE �; ��� − :��; =	−��� − (14) 
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:�� BOEBDE  
=  −��� − :�� BBDE 0�=��	 
=	−��� − :��P1 − 0�=��Q0�=�� 
= −��� − :�� − �1 − :��:� 
The change in weight, which is added to the old weight, is equal to the product of the learning 

rate and the gradient, multiplied by -1 

∆��< =	−S A6A��< = −SF�2� (15) 

Where, 2� is the output of the node in the feed-forward step and S is the learning rate (0 ≤ S ≤1). This coefficient affects networks teaching speed. When the error signal for each node is 

computed, the weights of each node are updated. The training process continues until the error is 

reached the minimum threshold. 
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Problem Statement 

As an essential step for the production planning, natural gas professionals estimate production 

and ultimate recovery (EUR) throughout the life of wells. Decline curve analysis is the most 

widely used methodology in the estimation of the future production profile. However, it results 

have been determined to be over optimistic for unconventional reservoirs. Decline curve analysis 

is a graphical-mathematical method that does not include the effect of reservoir characteristics 

and completion design parameters on production behavior.  

The major objective of this research is to condition EUR of shale wells extracted from decline 

curve analysis to rock properties, well, and completion design parameters. The first step of this 

study is EUR estimation using Arps decline curves. In order to have a more accurate estimation, 

the hyperbolic curve will be switched to exponential decline during later time in the well’s life. In 

this study, artificial intelligence will be employed to condition production characteristics such as 

“EUR” to rock properties, well, and completion design parameters. The data-driven model is 

capable of finding the hidden patterns among reservoir properties, well, and completion 

parameters and the production of the wells. In this case statistical methods are not able to find a 

relationship between the EUR and rock properties, well and completion parameters. One of the 

reasons is that these parameters are not independent and each of them may have an impact on 

other parameters. Therefore the best tool to develop a model and condition EUR to these 

parameters is Artificial Neural Networks (ANN). 
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Methodology 

As described earlier, this research aims estimating ultimate recovery and connecting reservoir 

characteristics, well properties, and completion design parameters to EUR for shale wells. The 

process is divided to three different key steps: 

1) Data preparation 

2) Artificial neural network training 

3) Model validation 

Figure 9 shows the general work flow of development AI-based shale reservoir model. 

 

  

Figure 8. Work Flow of Development AI-Base Shale Reservoir Model  

 

Data preparation 

The first and most important step in development of data-driven model is preparing the dataset 

which is going to be used in training the model. This dataset consists of reservoir characteristics, 

geomechanical properties, completion and stimulation data and the amount of EUR associated 

with each well. An extensive data mining and analysis process should be conducted at this step to 

fully understand the data that is housed in this database. The data compilation, quality control and 
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preprocessing are the most important and time consuming steps in developing an AI-based 

reservoir Model. 

This study focused on a part of Marcellus Shale including 164 wells with multiple pads, different 

landing targets, diverse reservoir properties and different completion and stimulation information. 

Marcellus shale in the area of Pennsylvania is consists of two layers as Upper Marcellus (UM) 

and Lower Marcellus). A thin bed limestone layer known as Purcell is separated Marcellus layers. 

Based on the well deviation and completion strategy, one or both layers may be exposed to the 

production. Reservoir characteristics of each layer including matrix porosity, matrix permeability, 

pay thickness, net to gross (NTG), initial water saturation and total organic content (TOC) of each 

well was given by the operator. In order to have consistent values for each well an average of 

reservoir properties based on well completion zone was calculated (Esmaili, 2013). 

The interpreted geomechanical logs including shear modulus, minimum horizontal stress, young’s 

modulus, and poisson’s ratio for all wells in the area were provided. 

The completion data of the wells include some information regarding the shot density, 

perforated/stimulated lateral length, number of stages and etc. which was imported into the 

database. The stimulation data, on the other hand, was provided in stage base by operator which 

comprises complete information about the amount of injected clean water, rate of injection, 

injection pressure, amount of injected slurry and etc. Since the production is available on a per 

well basis, the volumes of fluid and proppant for multiple hydraulic fracture stages performed on 

the same well were summed while the rates and pressures for these cases were averaged. 

The production history of the wells contains the dry gas rate, condensate rate, water rate, casing 

pressure and tubing pressure in daily format. The maximum and minimum length of production 

history is about five years and one and half years respectively. Because of scattered condensate 

rates and also low condensate to gas ratio (maximum is about 16 STB/MMCF), this data was 

combined with the dry gas and the rate of rich gas was estimated for the wells. 

�6TO*U = 133,800 YOZO [\][^_ 1 (14) 

 

Where YO = �`�.aTO*Ub*cd$b	efgh�i�.a	and ZO = ``.`ijk�.llm jk. 
Estimated ultimate recovery should be calculated for all 164 wells. Analytical tools, used widely 

for unconventional reservoirs, appear to work quite well in tight gas reservoirs. Several analytical 

                                                           
1
 William D.McCain, Ir (1990), “The Properties of Petroleum Fluids”, Page 195. 
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methods in the literature are used for calculating EUR. These techniques such as Power Law 

Exponential (PLE), Stretched Exponential Decline Curve (SEDC) have improved the results of 

Arps’ hyperbolic decline curve for shale wells. In this study the combination of hyperbolic and 

exponential decline curves are used to determine the EUR which is called Combined Decline 

Curve (CDC). Arps’ hyperbolic decline curves for shale result over estimation of EUR 

calculation. Therefore, in order to have more accurate (conservative) estimation, the hyperbolic 

curve will be switched to exponential decline during later time in the well’s life. This tool is 

providing a good estimation of EUR using CDC. Figure 9 shows the result of gas production 

estimation in log-log plot using Power Law Exponential (PLE), Hyperbolic, Stretched 

Exponential Decline Curve (SEDC), and Combined Decline Curve (CDC) for a shale well. Result 

shows that Arp’s hyperbolic decline and combination decline (exponential for tail) are the 

optimistic and conservative methods respectively. Therefore, the most conservative method is 

selected for EUR calculation to avoid over estimation. Figure 10 shows how CDC changes from 

hyperbolic to exponential. 

After all above-mentioned calculations the data set includes six groups of data as well 

information, reservoir characteristics, geomechanical properties, completion data, stimulation 

data and production estimation. 

 

Figure 9. Comparing different decline curve methods for estimating gas production in a shale well 
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Figure 10. Combination of hyperbolic decline and exponential decline curve (CDC) for EUR calculation 

 

Input Selection and Data Partitioning 

Sampling is very important because it helps to reduce the complexities of the data and provide a 

unified data set for training and testing the networks. As mentioned before, for developing an 

ANN three sets of data are needed, training set, calibration set, and validation set. In this study 

the whole number of data points (wells) are 164. In order to prevent the network from over 

training, 10% of the data are selected as calibration set. For validating the model, 10% of data is 

set aside. In other words, the neural network does not see these data during the training process. 

Then the outcome of the network for validation set determines how the model results for blind 

cases. 

After preparing the dataset, the next step is to determine the input and output parameters of the 

neural network. In this study we have 36 parameters for describing each well and one output 

parameter which is EUR. Table 2 shows all parameters including well information, reservoir 

characteristics, geochemical properties, completion data, stimulation data, and production 

estimation. Selecting all 36 parameters as input results a very complex model. Therefore it was 

tried to minimize the number of parameters as long as getting better results. In order to do this, 

key performance indicator (KPI) tool which is provided by IMprove
TM

 software is used to 

identify the influence of each parameter on output (EUR). KPI is a useful tool to determine the 
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degree of contribution of each parameter on output. Figure 11 shows the list of parameters and 

their degree of influence on EUR. 

Table 2. Six groups of Parameters in the dataset 

Group 1- Well 

Information 

Easting 

Group 5- 

Stimulation Data 

Avg. Inj. Pressure(psi) 

Northing Avg. ISIP 

MD (ft) 
Avg. Breakdown 

Pressure 

BTU Area* 
Avg. Maximum 

Pressure 

Deviation Type 
Avg. Injection 

Rate(bbl/min) 

Group 2- 

Reservoir 

Characteristics 

Matrix Porosity Avg. Max Rate 

Matrix Permeability 

(mD) 
Avg. Breakdown Rate 

Net Thickness (ft) Fluid Vol.(bbl) 

Water Saturation (%) 
Slurry Vol. per 

Stage(bbl) 

TOC (%) 
Clean Water Vol. per 

Stage (bbl) 

Avg. Langmuir Vol. 

(scf/tom) 

Max Proppant 

Concentration(lb/gal) 

Avg. Langmuir 

Pressure (psi) 
Proppant per Stage(lb) 

Group 3- 

Geomechanical 

Properties 

Bulk Modulus Total Proppant Inj.(lb) 

Shear Modulus Avg. Fracture Gradient 

Young’s Modulus Group 6- 

Production 

Estimation 

Estimated Ultimate 

Recovery 
Poisson’s Ratio 

Min Horizontal Stress 

* The area is divided into 4 BTU 

sections of Dry Low, Medium and 

Wet based on the condensate 

Cluster Spacing content of gas 

Group 4- 

Completion 

Data 

Stimulated Lateral 

Length (ft) 

Shot Density (shot/ft) 

No. of 

Clusters per 

Stage 

Total No. of 

Stages 

Cluster 

Spacing 
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Figure 11. Key Performance Indicator Sorts All Parameters Based on Their Influence on EUR 

 

Another technique which is used for input selection is fuzzy pattern recognition. This technique is 

also provided by IMprove
TM 

software. One application of fuzzy pattern recognition is deducing 

understandable trends from complex behavior. Figure 12 shows an example of fuzzy pattern 

recognition on minimum horizontal stress and 10-year-EUR. Actual data shows no relation or 

trend between data. However fuzzy pattern recognition demonstrates that more minimum 

horizontal stress result more EUR.  

Both KPI selection and fuzzy pattern recognition tools are performed to select the most effective 

parameters as an input for neural network. Table 3 illustrates 18 parameters as input for neural 

network. 
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Figure 12. Fuzzy pattern recognition is able to find the trends between parameters. 

 

Table 3. Input parameters of neural network 

Neural network Input Parameters 

Easting 
Avg. Langmuir Vol. 

(scf/tom) 

MD (ft) 
Avg. Langmuir Pressure 

(psi) 

BTU Area Young's Modulus 

Deviation Type Min Horizontal Stress 

Matrix Porosity 
Stimulated Lateral Length 

(ft) 

Net Thickness 

(ft) 
Cluster Spacing 

Water 

Saturation (%) 

Avg. Injection 

Rate(bbl/min) 

TOC (%) Avg. Breakdown Rate 

Proppant per 

Stage(lb) 
Clean Water Vol.(bbl) 
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Artificial Neural Network Training 

After preparing the data set and selecting the input parameters, artificial neural network can be 

trained. For this purpose IMprove
TM

 software was used to train and validate the network.  In this 

thesis different data-driven models have been developed using the IMprove
TM

 software to 

estimate the ultimate recovery for shale wells and discover the impact of completion parameters 

on EUR. The networks have three layers (input, output, and single hidden layer) and using feed-

forward backpropagation as training mechanism. Back propagation algorithm is one of the most 

widely used and popular techniques to optimize the feed forward neural network training. The 

number of nodes in hidden layer is determined by the total number of input parameters.  

The parameters of feed-forward backpropagation which are responsible for the algorithm 

convergence are learning rate, momentum, and weight decay. Learning rate is a control parameter 

of training algorithm, which controls the step size when weights are iteratively adjusted. 

Momentum determines how much influence the previous iterations learning will have on the 

current iteration’s. Finally, weight decay has the effect of controlling the growth of weights and 

results in the learning rule preferring smaller weights. These parameters remain constant during 

the learning process. The default values of these parameters in IMprove
TM

 software are used to 

develop neural network models. Figure 13 shows the architecture of the neural network in this 

thesis. 

IMprove
TM

 provides different activation functions such as Logistic (Sigmoid), Gaussian and 

tangent Hyperbolic and Gaussian Complement but for the purpose of this thesis the activation or 

transfer function of Sigmoid or Logistic is used. 

As explained before 80% of data was used for training the neural network and 20% for calibration 

and validation (blind set). A neural network is trained when R-squared is above 0.09 for all cases. 

Figure 14 illustrates the cross plot of a trained neural network for 10-year-EUR with R-squared of 

0.96 for all cases. The network response was also studied for blind data and resulted R-squared of 

0.85. Accurate achieved results are demonstrated the capability of Artificial Intelligence and Data 

mining tools in predicting highly nonlinear relationships between parameters. 



 

  

30 

  

 

Figure 13. Neural Network Architecture in this thesis 

 

Figure 14. All Cases Cross Plot 

R-squared = 0.96 
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Given all the facts about the complexity of the shale reservoirs, the physics of production from 

these reservoirs are not fully understood. Therefore, using conventional statistical approaches are 

not a good choice for decision making. Data mining technology is a powerful alternative for this 

purpose. These methods are able to extract the trend between data. One of the objectives of this 

study is providing meaningful analysis of reservoir, completion, and stimulation parameters of 

Marcellus shale on EUR. Therefore, the result of these analyses can be suggested as optimum 

completion and stimulation design for Marcellus shale.  

In this study conventional statistical methods are applied to show its weakness. Then pattern 

recognition techniques as well as fuzzy set theory were used to do more accurate analysis. When 

fuzzy set theory is used to determine the appropriate multidimensional space that would provide 

optimum separation of overlapping classes, the result is known as “Fuzzy Pattern Recognition”. 

This analysis was also performed by using IMprove
TM

. 

The main objective of this section is to provide insight into the operation practice of Marcellus 

Shale and to evaluate the role of each native and design parameters in EUR. The outcome of this 

analysis is used to identify the optimum completion and stimulation design to achieve maximum 

EUR which are the key factors in shale reservoir management. 

Pattern recognition is tool to identify the relationship in raw data. This technique tries to classify 

data and extract the pattern between them. Well Quality Analysis (WQA) is a unique and 

proprietary process through which the data in the data set is averaged using the principles of 

Fuzzy Set Theory and plotted using bar charts in order to reveal hidden patterns in the data. 

During this process nothing is added or removed from the data. When a similar analysis is 

performed while every single well in the dataset is treated as a potential unique well quality the 

result is a continuous curve (rather than a discrete set of steps), called a “Fuzzy Trend Analysis 

(FTA)”. It is important to note that the result of “Fuzzy Trend Analysis” is usually a non-linear 

two-dimensional line. This analysis was also performed by using IMprove
TM

. 

One of the methods for evaluating some reservoir properties is type curves. Different kinds of 

type curves such as Blasingame, Fetkovich, and Agarwal et al. curves are used for production 

analysis from shale. Because of the complexity of fluid flow in shale, the generated type curves 

are usually based on some assumptions such as elliptical shape of fractures, the limited outer and 

etc. Nevertheless for a quick look shale reservoir interpretation, having type curves will make the 

production analysis even more convenient for practical purposes. Data-driven methods are 

proposing a new type curve which can be used to assist operators for decision making. This type 
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curves are developed by plotting one of the model outputs (in this study 10 or 15 years EUR) 

against another parameter while selecting a third parameter for the type curves. By changing the 

value of the third parameter from minimum to maximum in several steps a set of type curves can 

be generated. During this operation one can hold the values of all other involved parameters at 

overall average or select the minimum or the maximum from the entire data set for all the 

parameters. In this thesis IMprove
TM

 software was used in order to generate type curves for our 

data set. 

Results and Discussion 

In this chapter the results and discussion of the work is presented. As mentioned earlier the 

objective of this research is to estimate the amount of EUR in shale and investigate the 

relationship between well and completion design parameters with EUR. This study focused on 

part of Marcellus shale including 164 horizontal wells with different completion, stimulation 

characteristics, and reservoir properties. Two AI-based models are developed for this purpose 

using IMprove
TM

 for predicting 10-year-EUR and 15-year-EUR. 

The AI-based model for 10-year-EUR is trained and validated using 132 data points (80 percent) 

for training and 32 wells (20 percent) as blind set for validation and calibration. The result of this 

process is illustrated in Figure 15. This scatter plot shows all data (training and testing data) and 

their actual and predicted 10-year-EUR values (blue dots for models output and green triangles 

for the actual data). Figure 16 and Figure 17 show the cross plot for all cases and blind data set 

respectively. In these figures, the x-axis is the predicated 10-year-EUR by neural network while 

the y-axis is the actual data. R-squared for all cases and blind case is 0.96 and 0.86 

correspondingly. These results represent high accuracy of the model. It should be noted that the 

blind dataset was never introduced to the network during the training process. In other words, it 

has not been used, in any shape or form, during the development of the model. 



 

  

33 

  

 

Figure 15. Trained AI-Based Model for 10-year-EUR (R2 = 0.96) 

 

Figure 16. Neural Network Cross Plot for All Cases – 10-year-EUR (R2=0.96) 
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Figure 17. Neural Network Testing with Blind Set Cross Plot - 10-year-EUR (R2=0.85) 

 

The AI-based model for 15-year-EUR is developed using 113 (80 percent) training data and 28 

wells (20 percent) as blind set for validation and calibration. The scatter plot of trained model for 

all cases is shown in Figure 17. This plot shows all training and testing data and their actual and 

virtual values for 15-year-EUR (blue dots shows the output of the model and green triangles 

shows the actual data). The cross plot for all cases and blind data set are illustrated in Figure 18 

and Figure 19 respectively. R-squared for all cases is 0.92 and for blind case is 0.82. These plots 

show that the trained network works well for both training and blind data. 
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Figure 18. Trained AI-Based Model for 15-year-EUR (R2 = 0.92) 
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Figure 19. Neural Network Cross Plot for All Cases – 15-year-EUR (R2=0.82) 

 

The models trained in this research can be applied for predicting the EUR for the wells which 

have not produced for enough time. As mentioned before, one of the common ways to estimate 

the ultimate recovery is using decline curves. But it should be noted that this method needs 

enough production data in order to generate the curves and predict the EUR. Therefore this 

technique cannot employ on wells with short production profile. In this case our approach is very 

useful. The developed models in this study are able to predict the amount of EUR for young wells 

and also for the wells which have not produced or drilled yet. 

The other objective of this study is discovering the trends and relationship between reservoir 

characteristics, completion, and stimulation properties and EUR in Marcellus shale. Due to the 

complexities of fluid flow in shale reservoirs analytical and numerical tools are not able to extract 

the patterns and relationships between parameters. Therefore suggesting development strategies 

and decision making based on these analyses could be challenging. Therefore, when it comes to 

shale assets AI-based methods may be a proper alternative. 
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In this section some conventional statistical methods are used to show their weakness in extracting the 

trends between data for shale reservoirs. 
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 Figure 20 and 

 

 Figure 22 show statistical analysis for Water Saturation (Sw) and Stimulation Clean Volume 

versus 10-year-EUR. The data consist of 164 horizontal wells drilled in Marcellus shale. The 

figures show Cartesian, semi-log, log-log, and histogram of these parameters. That can be 

observed that these methods could not find any patterns in these plots. However it is obvious that 

higher water saturation results lower production and EUR. The same thing is correct about 

injected clean volume. We know that higher amount of injected clean volume can cause better 

production performance which cannot be found by conventional methods. 
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 Figure 20. . Correlation between Water Saturation (%) with 10-year-EUR 
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Figure 21. Correlation between Stimulation Clean Volume (bbl) with 10-year-EUR 
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The same analysis was done for 15-year-EUR. The data set consists of 143 horizontal wells in Marcellus 

shale. The results show that conventional statistical analysis could not discover any trends between data (
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 Figure 22 and 

 

Figure 23). 

Moreover, we tried to cluster data based on Sw and injected clean volume to find a pattern 

between variables. Figure 24 and Figure 25 represent 10-year-EUR values versus Measured 

Depth. These data are classified into three clusters based on water saturation and injected clean 

volume. Even though the data are clustered still we do not observe a clear trend for these 

parameters. 
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 Figure 22. Correlation between Water Saturation (%) with 15-year-EUR 
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Figure 23. Correlation between Stimulation Clean Volume (bbl) with 15-year-EUR 
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Figure 24. 10-year-EUR vs. Measured Depth Clustering based on Water Saturation 

 

Figure 25. 10-year-EUR vs. Measured Depth Clustering based on Injected Clean Volume 

 

Conventional analysis results illustrated the discrepancies of these methods for data analysis in 

shale reservoirs. To address these complexities advanced fuzzy patter recognition technology is 

used in order to disclose any hidden pattern in dataset. 
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The main objective of this section is to provide insight into the operation practice of Marcellus 

Shale and to evaluate the role of each native and design parameters in EUR. The outcome of this 

analysis is used to identify the optimum completion and stimulation design to achieve maximum 

EUR which are the key factors in shale reservoir management. 

Type curves 

Upon successful development of the data-driven predictive model, type curves are generated to 

assist engineers during the decision-making process. These decisions could be location of the new 

well or completion and stimulation plans. In this type curves y-axis is one of the model outputs 

(in this study 10 or 15 years EUR) and x-axis is an input parameter while a third parameter is 

another input parameter which is represented by type curves. It should be noted that all other 

parameters was kept constant which is equal to the average of parameter for all wells. 

In this section the impact of reservoir and completion characteristics is studied on both 10-year-

EUR and 15-year-EUR using type curves. The results of this analysis are shown in figures below. 

Figure 27 shows two sets of type curves (10 years EUR) for measured depth (x-axis) and water 

saturation (curves) for all wells (entire field). In this analysis measured depth is changing as a 

continuous parameter. However for water saturation different discrete values are used. All other 

parameters were kept constant. The generated curves are the results of trained model. Unlike 

statistical methods, it is clearly illustrated that type curves are able to find the pattern of data. 

Here we see that decrease in the water saturation correlates with higher EUR for shale wells in 

this asset. 

In Marcellus shale porosity plays a very important role in the production. In other words, higher 

porosity results higher EUR. It is observed from Figure 27 that more porosity results more EUR. 

Another application of this type curves is predicting the EUR for a new drilled well. In this case 

some stimulation and reservoir information should be available for that well. For example if the 

measured depth of the well is 11,000 feet and the porosity is 7.5% the estimated value for 15-

year-EUR will be around 2500MMCF.  

The thickness of Marcellus shale varies from a few feet to around 250 feet. The range of net 

thickness in the area of this study is 110 to 170 feet. Marcellus shale becomes thicker in east part 

of the reservoir. Higher thickness means better well performance which is clearly presented in 

Figure 28. The figure shows the type curves for net thickness of the reservoir as a function of 

stimulated lateral length for entire asset. It is observed that EUR is significantly impacted by the 
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reservoir thickness. This results show that the model was capable of learning the physics from 

data. 

Marcellus shale has a complex physics and its behavior to stimulation process (injection proppant 

and slurry) is unpredictable. Proppant is a porous material such as sand used in hydraulic 

fracturing to ensure that the fracs remain open. In is mentioned in the literature that the 

performance of fractures is improved through the injection of proppant. The same theory is true in 

this study. Figure 29 demonstrates the effect of injected clean volume and injected proppant on 

10-year-EUR. That means the model was successfully able to discover the relationship between 

injected proppant and clean volume and EUR. In other words, increase in EUR is linked to 

increase of both parameters. These curves show that the EUR is more sensitive to the amount of 

injected proppant. 

Type curves can be generated to address sensitivity of EUR values to all involved parameters. 

Minimum horizontal stress and Young’s modulus are analyzed as examples of rock mechanical properties. 

As mentioned before, in order to get more production from a horizontal well, the well should be 

drilled in the direction of minimum horizontal stress. This situation cause hydraulic fractures 

grow easily with no overlapping. Like fuzzy pattern recognition the results of type curves have 

contrast with this theory (Figure 30). It is because of other parameters that have more effect on 

EUR that minimum horizontal stress. 

We know that when young’s modulus is a large number producing width for the fracturing 

becomes more difficult. It is shown in Figure 31 that higher Young’s modulus can reduce the 

amount of EUR. It should be noted that the effect of Young’s modulus on EUR is insignificant 

which is more clear in 10-year-EUR type curves. 

The effect of cluster spacing is also studies in Figure 32. Cluster spacing is plotted as a function 

of lateral length. The resulted type curves illustrate that decreasing the length of cluster spacing 

has improved the value of 10-year-EUR. It is also observed that increasing lateral length with 

specific cluster spacing has almost no positive effect on EUR. Therefore in order to increase EUR 

we should consider changing the combination of parameters. 

It can be concluded that the data-driven model was successfully learned the physics of the 

reservoir and is able to provide useful information about the reservoir and the impact of different 

parameters on EUR. 
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Figure 26. 10-year-EUR as A Function of Measured Depth and Different Water Saturation values. 
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Figure 27. Type Curves for 10 and 15 years EUR. EUR as A Function of Measured Depth and Different 

Porosities. 
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Figure 28. Type Curves for 10 and 15 years EUR. EUR as A Function of Stimulated Lateral Length and 

Different Net Thickness. 
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Figure 29. Type curves for 10-year EUR. Top: EUR as A Function of Stimulated Lateral Length and Injected 

Clean Volume. Bottom: EUR as A Function of Stimulated Lateral Length and Injected Proppant. 
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Figure 30. Type curves for 10-year EUR and 15-year-EUR. EUR as A Function of Stimulated Lateral Length 

and Minimum Horizontal Stress 
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Figure 31. Type curves for 10-year EUR and 15-year-EUR. EUR as A Function of Stimulated Lateral Length 

and Young’s Modulus 
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Figure 32. Type curves for 10-year EUR. EUR as A Function of Stimulated Lateral Length and Cluster Spacing 
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Conclusion 

• Decline curve analysis was used in order to calculate 10-year-EUR and 15-year-EUR for 

shale wells. In this study Arps hyperbolic curve is used for the earlier time of the production and 

then it was switched to Arps exponential curve. The result of EUR using this method was more 

conservative that other decline curve techniques. 

• Two data-driven models using AI tools and pattern recognition was developed in order to 

estimate the ultimate recovery (10 and 15 years EUR) for the wells with no production history in 

Marcellus shale. This technique could successfully learn the physics complex flow mechanism of 

shale from data.   

• The trained model was validated with blind data set. This data was not introduced to the 

model and the EUR values were predicted by the model. The result shows the accuracy of almost 

85 percent for 10-year-EUR and 82 percent for 15-year-EUR. 

• Applications of fuzzy pattern recognition (WQA and FTA) were used in order to discover 

the relationship between input parameters and EUR. These analyses are applied on data and could 

discover the hidden patterns between EUR and those parameters. These patterns can be used as a 

tool for operators in order to exploit the optimum hydraulic fractures design parameters. 

The results of this research show that higher EUR can be obtained in the east part of the reservoir. 

Also porosity and net thickness as well as minimum horizontal stress has positive impact on 

EUR. It is also observed that increasing Young’s modulus reduces the amount of EUR. It can be 

observed that longer lateral length, more number of stages results more EUR. Moreover, 

Reducing cluster spacing increases the EUR. As it is discussed in the result section, proppant and 

clean injection improves the ultimate recovery of the shale wells. 

• After training the model type curves are generated in order to identify the sensitivity of 

parameters and their impact on EUR. This method provides useful information for operators in 

order to make thoughtful decisions about well performance. The results show similar information 

to the result of pattern recognition method. This means the model is consistent and could learn all 

the information from raw data.  
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Recommendations for future works 

• Different decline curve methods can be used and compared in order to calculate EUR for 

shale wells. 

• The developed model in this thesis can be updated if a longer production history of 

Marcellus shale wells would be available. 

• Trained predictive models and type curve analysis can be used in order to provide the 

optimum value for completion and stimulation parameters 

• It is also recommended to investigate the effect of static and design parameters on other 

reservoirs and formations 

 

 

 

 

 

 

 

 

 

  



 

  

57 

  

References 

Asps, J. J. "Analysis of decline curves." Transactions of the American Institute of Mining, Metallurgical 

and Petroleum Engineers 160 (1945): 228-247. 

Ayala H, Luis F., and Turgay Ertekin. "Neuro-simulation analysis of pressure maintenance operations in 

gas condensate reservoirs." Journal of Petroleum Science and Engineering 58.1 (2007): 207-226.  

Basinski, P., A. Zellou, and A. Ouenes. "Prediction of Mesaverde estimated ultimate recovery using 

structural curvatures and neural network analysis, San Juan Basin, New Mexico USA." Proceedings AAPG 

Rocky Mountain Section, Denver CO, Aug (1997).  

Basu, Jayanta Kumar, Debnath Bhattacharyya, and Tai-hoon Kim. "Use of artificial neural network in 

pattern recognition." International journal of software engineering and its applications 4.2 (2010). 

Blasingame, Thomas Alwin, and Jay Alan Rushing. "A Production-Based Method for Direct Estimation of 

Gas in Place and Reserves." SPE Eastern Regional Meeting. Society of Petroleum Engineers, 2005.  

Cabrera, Inma P., Pablo Cordero, and Manuel Ojeda-Aciego. "Fuzzy logic, soft computing, and 

applications." Bio-Inspired Systems: Computational and Ambient Intelligence. Springer Berlin Heidelberg, 

2009. 236-244. 

Cipolla, Craig L., et al. "Reservoir modeling in shale-gas reservoirs." SPE Reservoir Evaluation & 

Engineering 13.04 (2010): 638-653.  

Dayhoff, Judith E., and James M. DeLeo. "Artificial neural networks." Cancer91.S8 (2001): 1615-1635. 

Doraisamy, H., T. Ertekin, and A. S. Grader. "Field development studies by neuro-simulation: an effective 

coupling of soft and hard computing protocols."Computers & Geosciences 26.8 (2000): 963-973 

Duong, Anh N. "Rate-decline analysis for fracture-dominated shale reservoirs."SPE Reservoir Evaluation 

& Engineering 14.03 (2011): 377-387.  

Elshafei, Moustafa, and Gharib M. Hamada. "Neural network identification of hydrocarbon potential of 

shaly sand reservoirs." Petroleum Science and Technology 27.1 (2009a): 72-82. 

Elshafei, Moustafa, and Gharib Moustafa Hamada. "Petrophysical Properties Determination of Tight Gas 

Sands From NMR Data Using Artificial Neural Network." SPE Western Regional Meeting. Society of 

Petroleum Engineers, 2009b. 

Elsharkawy, Adel M. "Modeling the properties of crude oil and gas systems using RBF network." Asia 

Pacific oil & gas conference, 1998. 

Esmaili, Soodabeh. “Production History Matching and Forecasting of Shale Assets Using Pattern 

Recognition”, PhD Diss., West Virginia University, 2013. 

Esmaili, S., S. D. Mohaghegh, and A. Kalantari-Dahaghi. "Which Parameters Control Production in Shale 

Assets? A Pattern Recognition Study.", 2013. 

Esmaili, Soodabeh, Amirmasoud Kalantari Dahaghi, and Shahab D. Mohaghegh. "Modeling and history 

matching of hydrocarbon production from Marcellus shale using data mining and pattern recognition 

technologies." SPE Eastern Regional Meeting. Society of Petroleum Engineers, 2012. 

Fetkovich, M. J. "Decline curve analysis using type curves." Journal of Petroleum Technology 32.6 (1980): 

1065-1077. 



 

  

58 

  

Fetkovich, M. J., et al. "Decline-Curve Analysis Using Type Curves—Case Histories." SPE Formation 

Evaluation, 1987. 

Firoozjaee, Rezvan Askari, and Ehsan Khamehchi. "A Novel Approach to Assist History Matching Using 

Artificial Intelligence." Chemical Engineering Communications, 2014. 

Freeman, C. M., Moridis, G., Ilk, D., and Blasingame, T. A. "A numerical study of performance for tight 

gas and shale gas reservoir systems." paper SPE 124961 (2009).  

Gershenson, Carlos, “Artificial Neural Networks for Beginners”, 2003. 

Gharehlo, Amir Mohammadnejad, “Development of Artificial Expert Reservoir Characterization Tools for 

Unconventional Reservoirs”, PhD Diss., Pennsylvania State University, 2012. 

Gorucu, Fatma Burcu, Turgay Ertekin, Grant S. Bromhal, Duane H. Smith, W. Neal Sams, and Sinisha A. 

Jikich. "A Neurosimulation Tool for Predicting Performance in Enhanced Coalbed Methane and CO2 

Sequestration Projects." In SPE Annual Technical Conference and Exhibition. Society of Petroleum 

Engineers, 2005. 

Guler, B., T. Ertekin, and A. S. Grader. "An artificial neural network based relative permeability 

predictor." Journal of Canadian Petroleum Technology 42.4 (2003): 49-57. 

Harrell, D. Ronald, John E. Hodgin, and Thomas Wagenhofer. "Oil and gas reserves estimates: recurring 

mistakes and errors." SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 

2004.  

Hegeman, Peter S., Chengli Dong, Nikos Varotsis, and Vassilis Gaganis. "Application of artificial neural 

networks to downhole fluid analysis." InInternational Petroleum Technology Conference. International 

Petroleum Technology Conference, 2007.  

Intelligent Solution Inc. Software Packages (IDEA, IMprove) 

Jalali, Jalal. “Artificial Neural Networks for Reservoir Level Detection of Carbon Dioxide Seepage 

Location using Permanent Down-Hole Pressure Data”, PhD Diss.,  West Virginia University, 2010 

Jha, Girish Kumar. "Artificial Neural Networks." Indian Agricultural Research Institute (2004): 1-10. 

Kanfar, Mohammed, and Robert Wattenbarger. "Comparison of Empirical Decline Curve Methods for 

Shale Wells." SPE Canadian Unconventional Resources Conference. Society of Petroleum Engineers, 

2012.  

Laughrey, C.D.; Billman, D.A.; Canich, M.R.,  "Petroleum geology and geochemistry of the Council Run 

gas field, north central Pennsylvania", AAPG Bulletin 88 (2): 213–239. doi:10.1306/10060301104, 2004. 

Lee, W. John, and Rod Sidle. "Gas-reserves estimation in resource plays."SPE Economics & 

Management 2.02 (2010): 86-91. 

Malki, H. A., J. L. Baldwin, and M. A. Kwari. "Estimating permeability by use of neural networks in thinly 

bedded shaly gas sands." SPE Computer Applications 8.02 (1996): 58-62. 

Mohaghegh, Shahab. "Virtual Intelligence And Its Applications In Petroleum Engineering." Journal of 

Petroleum Technology, Distinguished Author Series, 2000. 

Mohaghegh, Shahab D., and Soodabeh Esmaili. "Using Data-Driven Analytics to Assess the Impact of 

Design Parameters on Production from Shale." SPE Annual Technical Conference and Exhibition. Society 

of Petroleum Engineers, 2013. 



 

  

59 

  

Mohaghegh, Shahab D., Grujic O. S., Zargari S.,  "Modeling History Matching Forecasting and Analysis of 

Shale Reservoirs performance Using Artificial Intelligence." SPE Digital Energy Conference and 

Exhibition. Society of Petroleum Engineers, 2011. 

Morshed, Jahangir, and Jagath J. Kaluarachchi. "Parameter estimation using artificial neural network and 

genetic algorithm for free‐product migration and recovery." Water Resources Research 34.5 (1998): 1101-

1113. 

Okouma, V., et al. "Practical Considerations for Decline Curve Analysis in Unconventional Reservoirs-

Application of Recently Developed Rate-Time Relations." Paper SPE 162910 presented at the SPE 

Hydrocarbon Economics and Evaluation Symposium, Calgary, Alberta, Canada. 2012.  

Ouenes, Ahmed, A. M. Zellou, P. M. Basinski, and C. F. Head. "Practical use of neural networks in tight 

gas fractured reservoirs: application to the San Juan Basin." paper SPE 39965 (1998).  

Ramgulam, Asha. "Utilization of artificial neural networks in the optimization of history matching." PhD 

diss., The Pennsylvania State University, 2006.  

Sampaio, Tiago Pitchon, Virgilio Jose Martins Ferreira Filho, and Abelardo De Sa Neto. "An Application 

of Feed Forward Neural Network as Nonlinear Proxies for Use During the History Matching Phase." 

In Latin American and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers, 

2009.  

Seshadri, Jagan Nathan, and Louis Mattar. "Comparison of power law and modified hyperbolic decline 

methods." Canadian Unconventional Resources and International Petroleum Conference. Society of 

Petroleum Engineers, 2010. 

Silpngarmlers, N., et al. "Development and testing of two-phase relative permeability predictors using 

artificial neural networks." SPE Journal 7.03 (2002): 299-308.  

Shokir, E., A. Alsughayer, and A. Al-Ateeq. “Permeability estimation from well log responses”. Journal of 

Canadian Petroleum Technology, 45.11  (2006). 

United States Department of Energy, “Modern Shale Gas Development in United States”, 2009 

United States Energy Information Administration (EIA), “Annual Energy Outlook Overview”, 2014 

Valko, Peter P. "Assigning value to stimulation in the Barnett Shale: a simultaneous analysis of 7000 plus 

production hystories and well completion records." SPE Hydraulic Fracturing Technology Conference. 

Society of Petroleum Engineers, 2009. 

Walton, I., “Shale Gas Production Analysis, Phase 1 Final Report”, University of Utah Publication, 2012. 

Zadeh, Lotfi A. "Fuzzy logic, neural networks, and soft computing."Communications of the ACM 37.3 

(1994): 77-84.  

Zargari, Saeed, Shahab D. Mohaghegh, and G. Bromhal. “Field development strategies for bakken shale 

formation.” PhD Diss., West Virginia University Libraries, 2010. 

  



 

  

60 

  

Appendix 1: Type Curves 
 

Type Curves for 10-year- EUR: 

 

 

Figure A- 1. 10-year-EUR as A Function of Measured Depth and Number of Clusters per Stage 

 

Figure A- 2. 10-year-EUR as A Function of Measured Depth and Custer Spacing 
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Figure A- 3. 10-year-EUR as A Function of Measured Depth and Average Maximum Rate 

 

Figure A- 4. 10-year-EUR as A Function of Measured Depth and Average Breakdown Rate 

 

 

Type Curves for 15-year- EUR: 
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Figure A- 5. 15-year-EUR as A Function of Measured Depth and Water Saturation 

 

 

 

Figure A- 6. 15-year-EUR as A Function of Measured Depth and Average Breakdown Rate 
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Figure A- 7. 15-year-EUR as A Function of Measured Depth and Average Langmuir volume 

 

Figure A- 8. 15-year-EUR as A Function of Measured Depth and Lateral Length 
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Figure A- 9. 15-year-EUR as A Function of Measured Depth and Number of Clusters per Stage 

 

Figure A- 10. 15-year-EUR as A Function of Measured Depth and Average Injection Pressure 
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Figure A- 11. 15-year-EUR as A Function of Measured Depth and Average Maximum Injection Rate 

 

Figure A- 12. 15-year-EUR as A Function of Measured Depth and Average Breakdown Rate 
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