
Graduate Theses, Dissertations, and Problem Reports 

2013 

Degradation studies of flexible optoelectronic device electrodes Degradation studies of flexible optoelectronic device electrodes 

Theodros S. Bejitual 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Bejitual, Theodros S., "Degradation studies of flexible optoelectronic device electrodes" (2013). Graduate 
Theses, Dissertations, and Problem Reports. 4951. 
https://researchrepository.wvu.edu/etd/4951 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F4951&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/4951?utm_source=researchrepository.wvu.edu%2Fetd%2F4951&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


DEGRADATION STUDIES OF FLEXIBLE OPTOELECTRONIC DEVICE 

ELECTRODES 
 

Theodros S. Bejitual 

 

Dissertation submitted to the 
Benjamin M. Statler College of Engineering and Mineral Resources 

at West Virginia University 
in partial fulfillment of the requirements 

for the degree of 
 

 

Doctor of Philosophy 

in 

Mechanical Engineering 

 

Darran Cairns, Ph.D., Chair 
Konstantinos Sierros, Ph.D. 

Xueyan Song, Ph.D. 
Xingbo Liu, Ph.D. 

Charter Stinespring, Ph.D. 
 

 

Department of Mechanical and Aerospace Engineering 

 

Morgantown, West Virginia 

2013 

 

 

Keywords: Fatigue-corrosion; ITO; CNT; PET; Optoelectronic 

Copyright 2013 Theodros S. Bejitual 

 

madolan
Typewritten Text

madolan
Typewritten Text

madolan
Typewritten Text

madolan
Typewritten Text



ABSTRACT 

Theodros S. Bejitual 

 

Flexible transparent electrodes offer significant advantages, such as low cost, large area, light 
weight, conformability, robustness, and ease of roll-to-roll manufacturing and processing. They 
are routinely used as anodes in organic light emitting diodes, liquid crystal displays, touch 
panels, solar cells, solid state lightings, energy harvesting, and biomedical applications to name a 
few examples. However, the electromechanical and corrosion issues involved when the device is 
stressed and/or in contact with acid containing components both during manufacturing and/or in 
service conditions have to be investigated in order to improve, and predict reliability. 
 
The primary objective of this research is to investigate the degradation behavior of two types of 
flexible transparent conducting layers, indium tin oxide (ITO) and carbon nanotubes (CNT) on 
polymer substrates, under electromechanical and corrosion conditions. Changes in electrical 
resistance and morphological features of these thin film electrodes are investigated using 
experimental methods such as corrosion, bending, fatigue, bending-corrosion, fatigue-corrosion, 
and tribo-corrosion. Such methods attempt to simulate induced stresses during manufacturing 
and/or in-service conditions. Studies on both patterned and non-patterned surfaces are 
performed.  
 
Furthermore, finite element modeling is used to simulate the stress/strain distribution of the 
electrodes under various deformation modes. The effects and synergies of corrosion, applied 
strain, film thickness, and number of bending cycles on the electrical and structural integrity of 
the electrodes are investigated using design of experiment methods.  
 
During this project it was found that CNT-based electrodes outperform their ITO counterparts 
under fatigue in corrosive environments. However, for most high current electronic devices ITO 
still needs to be utilized. During combined fatigue corrosion experiments of ITO-coated polymer 
electrodes externally applied strain was found to be the most critical factor for degradation. 
Experimental analysis and modeling of thin film electrodes for flexible optoelectronics will aid 
towards the design of more reliable devices in the future.     
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1 INTRODUCTION  

 

1.1 Overview 

 

The next generation of optoelectronic devices is likely to include mechanical flexibility 

and it is expected to enable new applications which are not possible using currently available 

glass-based planar technology. The recent growing interest in the development of flexible 

optoelectronic materials has been spurred by the continuing evolution of large-area applications 

such as organic light emitting diodes (OLEDs), liquid crystal displays (LCDs), touch panels, 

solar cells, solid-state lighting (SSL), biomedical devices, and mechanical energy harvesters [1-

6]. Such devices offer additional advantages, such as thin profiles, low-cost, large-area, light 

weight, conformability, robustness, and ease of roll-to-roll manufacturing [7].  

Flexible optoelectronic device technology includes the utilization and integration of robust 

flexible substrates, transparent conducting materials, reflecting materials, thin film transistor and 

barrier layers [7]. In addition, processes such as roll-to-roll manufacturing and various coating 

technologies must also be further developed and optimized [7]. Moreover, in order for flexible 

optoelectronic devices realize their full commercial potential, the device degradation issues 

involved when the device is stressed, bent, or generally deformed during manufacturing and/or 

in-service conditions have to be investigated.    

One of the most critical components of flexible devices is the electrode component. 

Flexible anodes are usually a hybrid system of transparent conducting layer and a flexible 

substrate. Polymers are routinely used as the substrate material. This is because of their high 

optical transparency and mechanical flexibility when compared to thin glass and metal foils.       
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There are various candidate materials for transparent conducting layers such as metallic 

nanowires (Al, Ag, and Cu), semiconductors (indium tin oxide, indium zinc oxide, and 

aluminum zinc oxide), and carbon-based (conductive polymers, carbon nanotubes, and graphene) 

[8]. However, transparent conducting oxides (TCO) are still enjoying a dominant role. This is 

because of their excellent combination of electrical and optical properties. Although CNT and 

graphene are being developed as promising alternatives due to their mechanical flexibility and 

durability, for most display applications indium tin oxide (ITO) still is a prevailing material [8].   

In optoelectronic devices involving TCO layers deposited on polymer substrates such as 

polyethylene terephthalate (PET), the structural integrity of the anode component in the device 

structure represents a major challenge, to both manufacturing processes and in-service 

conditions. This is due to thermal and mechanical mismatches between the ceramic layer (ITO) 

and the organic substrate [9]. In particular when the high modulus ITO adheres to the polymer 

substrate there is a significant elastic modulus mismatch which can cause cracking and/or 

delamination of the ITO layer [10]. This may lead to electrical and optical degradation of the 

device [11]. Therefore the mechanical behavior of the electrode component under different types 

of loadings is of paramount importance.  

 

1.2 Motivation 

 

The motivation for this work is to investigate the electrochemical, electromechanical, and 

mechanochemical degradation behavior of flexible transparent electrodes which are used as 

anodes in flexible optoelectronic devices. The electrode may corrode due to acid-containing 

pressure sensitive adhesive and/or acid treated components present in the device stacks (Fig. 
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1.1). Also, structural failure may occur due to external applied loading. It is therefore important 

to conduct an experimental-based study of the electrodes under different conditions such as 

corrosion, bending, fatigue, bending-corrosion, and tribo-corrosion. Such conditions simulate 

induced stress and failure both during manufacturing and in-service conditions.  

 

 

 

  

 

Fig. 1.1 A typical (a) organic solar cell and (b) liquid crystal display device stack. 
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This work aims in enhancing the current understanding of the effects and synergies of 

corrosion, film thickness, applied strain, and number of cycles on the electrical, mechanical, and 

corrosion-resistant properties of such electrodes when they are subjected to various degradation 

conditions.  

 

1.3 Objectives 

 

The objective of this study is to investigate the degradation behavior of flexible transparent 

electrodes using electrochemical, electromechanical, and mechanochemical characterization 

protocols. Degradation mechanisms of three types of conducting layers, ITO, CNT, and ITO-

Ag/Ag alloy-ITO multilayers on polymer substrates, are investigated. Changes in structural and 

electrical properties are studied.  

The specific objectives are: 

• Development of new testing protocol and apparatus for the characterization of 

electrodes in order to simulate fatigue-corrosion degradation during in-service 

conditions.   

• Investigation of corrosion, bending, fatigue, bending-corrosion, and fatigue-corrosion 

behavior of ITO and CNT using in-situ electrical resistance measurements and ex-situ 

surface characterization methods.  

• Controlled buckling behavior of various patterned ITO shapes on PET substrates to 

identify critical strains and potential failure mechanisms.      
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• Tribo-corrosion investigation of ITO-Ag/Ag alloy-ITO multilayers in order to 

investigate the suitability of such model systems as durable components in solar energy 

and energy-efficient applications.  

• Simulation of stress distribution and stress intensity of the electrodes under different 

deformation modes using finite element method.  

• Statistical analysis based on design of experiments methods to identify the effects of 

factors such as corrosion, applied strain, film thickness, and number of bending cycles 

and/or time on the change in electrical resistance of the electrodes.  

• Life-stress analysis using the stress values obtained from finite element analysis and 

cycles to failure data from mechanochemical experiments for life prediction.  

 

1.4 Structure of dissertation 

 

This thesis is organized into nine chapters. 

Chapter 1 provides brief overview related to this research. Objectives and organization of the 

thesis are also presented.  

Chapter 2 reviews literature covering several topics that are related to this research work. The 

topics include previous degradation studies mainly of transparent conducting coatings on 

polymer substrates for optoelectronic device applications.   

Chapter 3 provides details of the materials and methods used in this research. A wide range of 

experimental methods is presented. Finite element modeling, design of experiments method, and 

life-stress analysis are also discussed.   
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 Chapter 4 presents the results and discussion of electrochemical degradation studies of ITO on 

PET substrate in acrylic acid solution. Such results are used as an input for chapter 5.  

Chapter 5 discusses the results of mechano-chemical experiments conducted using flexible 

transparent electrodes. In addition, stress intensity of the films is predicted using finite element 

modeling. Furthermore, design of experiments is employed in order to investigate the effects of 

factors affecting the reliability of transparent electrodes. Finally, life-stress analysis is presented.  

Chapter 6 is dedicated to electromechanical studies of patterned ITO on PET substrates. 

Experimental and finite element modeling results of micron-sized shapes including squares, 

circles, and zigzag-based structures will be reported.  

Chapter 7 is, mainly, related to the discussion of tribo-corrosion experimental results on 

metallic/ITO multilayers.  

Chapter 8 is a summary of the results and presents the conclusions drawn from this project.  

Chapter 9 is providing some recommendations for future work.  
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2 LITERATURE REVIEW 

 

As outlined in the introduction, this project proposes to investigate the degradation behavior 

of flexible transparent electrodes and aids towards an understanding of the effects of different 

factors on the electrical and structural integrity of such electrodes. The first section covers a brief 

description of optoelectronic device applications. The next section discusses the most common 

types of transparent electrodes. Finally, the last section provides a detailed review of various 

experimental methods used to assess different failure modes.  

 

2.1 Flexible optoelectronic devices 

 

Flexible transparent conducting films are essential components for a large variety of 

optoelectronic devices, acting as transparent electrical contacts or electrodes. By integrating 

them into a thin, flexible sheet of polymer, one could obtain a durable, lightweight product 

suitable for many applications in the growing market of cell phones, personal digital assistants 

(PDAs) flat panel displays, touch panels, thin film solar cells, SSL, biomedical, energy 

harvesting, and electrochromic devices [12, 13]. 

 

2.1.1 Flexible displays 

 

Unlike rigid glass-based displays, flexible displays are thin and light weight. Also, 

flexible displays can be fabricated by a roll-to-roll process, which is potentially low cost. They 

include, but are not limited to, LCDs, OLEDs, plasma display panels, and field emission displays 
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[14]. Flexible display system includes robust flexible substrates, conducting transparent 

electrodes, electro-optic and reflecting materials, inorganic and organic electronics, and 

packaging technologies [7].  

 

2.1.2 Touch panels 

 

Touch panel mobile devices are becoming more popular with both manufacturers and 

users. As there is no need for physical keyboard to take up space on the device, they can have 

larger screens which can be used more flexibly, meaning a better display as required, for 

example pinching, zooming, and rotating from portrait to landscape [15]. There are a number of 

touch panel technologies but the two most widely used rely on transparent conductive oxides 

(TCOs). For capacitive touch panels a TCO layer is deposited on a substrate and a conducting 

pattern is printed around the edge of the substrate. The conducting pattern is designed such that 

when voltages are applied to the corners a uniform electric field is produced on the screen 

surface. When the screen is touched with a finger, a current is drawn and the position of the 

touch is detected. In a resistive touch panel a TCO coated glass substrate and a similarly coated 

polymer substrate are separated by dielectric spacers. The resistance between the contacts on the 

two substrates is monitored and when a touch forces the substrates to contact, the change in 

resistance between the reference points is measured. The resistance measurements are then used 

to calculate the position of the touch [16].  

 

2.1.3 Solid state lighting 
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Flexible SSL that uses semiconductor technology based on LEDs, OLEDs, or polymer 

light-emitting (PLEDs) is replacing traditional lighting technologies such as incandescent light 

bulbs, fluorescent tubes, or compact fluorescent lamps [17, 18]. SSL offer significant advantage 

such as energy efficiency, compact profile, breakage resistance, light weight, increased color 

quality, and long life. Because of SSL’s flexibility and durability, they are seeing applications in 

areas such as displays, buildings (interior and exterior), transport (automotive, trains, aerospace), 

and telecommunications [19- 22].  

 

2.1.4 Solar cells 

 

There is currently considerable interest in flexible solar cells due to their light weight, 

robust profile, as well as their ease of fabrication using roll-to-roll based thin film technologies 

[23- 25]. Flexible solar cells require a transparent electrode to allow light to enter the 

photovoltaic layer [26]. At the front of a solar cell, the TCO layer acts as an electrical contact as 

well as a window to allow light to pass through the photovoltaic (PV) absorber layer. At the back 

of the cell, the TCO usually acts as an interfacial layer to improve the contact resistance between 

the PV absorber and a metallic reflector and also as an optical coupling layer by improving the 

refractive index matching. In bi-facial solar cells, the back contact must both act as an electrical 

contact and as a window layer to let light through the back of the PV absorber layer [27].    

 

2.2 Flexible transparent electrodes 

 

2.2.1 Flexible substrates 
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Due to their flexibility, robustness, and cost, polymer substrates are preferred than thin-

glass and metal foils in flexible optoelectronic devices. Thin glass is optically clear, can be made 

very smooth and impermeable to water [28].  Also, it exhibits relatively low thermal expansion 

coefficients. However, it is susceptible to cracking and breakage. Metal foils such as Al, Cu and 

stainless steel can be used as a substrate material. However, they have low optical transparency. 

Also, they should be coated with an insulator to prevent short circuit [28]. On the other hand, the 

mechanical flexibility of polyester-based substrates such as polyethylene terephthalate (PET) 

[29], polyethylene naphthalate (PEN) [12], polyethersulfone (PES) [30], and polycarbonate (PC) 

[31] make them ideal candidates for roll-to-roll manufacturing. However, most polymer 

substrates exhibit low thermal stability, a high susceptibility to chemical degradation, relatively 

high surface roughness, and high permeability to oxygen and water vapor. PET and PEN are 

prepared by a process whereby an amorphous cast is drawn in both the machine and transverse 

directions [32]. The biaxially oriented film is then heat set to crystallize the film. The polymers 

are usually heat stabilized during fabrication to control shrinkage. Also, in order to achieve high 

surface quality required for depositing subsequent layers, a planarizing coating is usually applied 

[32, 33]. PET has a Young’s modulus of 5.3 GPa. On the other hand, PEN has a modulus of 6.1 

GPa [34, 35]. Polymers with low stiffness and high Tg are desirable for roll-to-roll process. 

During high temperature roll-to-roll processes above Tg, polymer substrates undergo a molecular 

relaxation process which alters the physical and mechanical properties of the film [36]. Table 2.1 

illustrates comparisons of common polymers for optoelectronic application. 
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Table 2.1 Properties of common polymer substrates [29]. 

 

   

 

2.2.2 Transparent conducting materials 

 

Despite growing efforts to replace them, transparent conducting oxide (TCO) layers 

deposited on polymer substrates are still enjoying a dominant role as the electrode component. 

The diverse nature of the materials integrated into these devices, including semiconductors, 

polymers, ceramics, glass, and metals have necessitated the need for TCO materials with 

enhanced performance, processability and even morphology [37]. Transparent conducing 

materials exhibit a remarkable combination of optical transparency and electrical conductivity 

[38]. The most popular TCOs are tin-doped indium oxide (ITO) and aluminum, gallium or 

indium-doped zinc oxide (AZO, GZO or IZO) [39- 41]. ITO dominates the TCO market and is 

expected to continue dominating the market for the next few years.  AZO has been used as an 

alternative transparent electrode [42] and exhibits a resistivity as low as 8.4 x 10-4 Ω cm with 

optical transmittance approximately equal to 80% [43]. However, harsh environmental 

conditions such as annealing in air or humidity damping significantly increases electrical 

resistivity and surface degradation [44]. Recently, carbon nanotube (CNT) and graphene films 

are considered as a promising alternative to TCOs because they are mechanically strong and 

flexible [45]. Other alternative transparent conductive materials are conductive polymers. 
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Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) PEDOT:PSS is more mechanically 

flexible than ITO. However, it is less conductive [46]. More recently, a resistivity as low as 3.3 x 

10-4 Ω cm was observed with sulfuric acid treated PEDOT:PSS on glass and PET substrates [47].  

Furthermore, ITO-metal-ITO multilayer structures have been also studied as flexible transparent 

electrode in order to take the advantage of mechanical properties of metals [48]. Table 2.2 

illustrates the electrical and optical properties of common transparent electrodes. 

 

Table 2.2 Electrical and optical properties of transparent electrodes [8]. 

 

 
 

2.2.2.1 Indium tin oxide 

 

ITO is a wide bandgap (3.5-4.3 eV) n-type, highly degenerate semiconductor which has a 

relatively low electrical resistivity (~ 10-4 Ω cm) and a high transparency (>90%) to visible light 

[49, 50]. ITO films conduct electricity through a tin-doped In2O3 lattice. The addition of tin 

causes the substitution of Sn4+ with In3+, creating more electrons by means of the n-type donor 

mechanism [50]. At high levels of Sn content (>10 mol %), n-type doping is the dominant factor 

in raising electrical conductivity, while oxygen vacancies play a role in determining the 

conductivity at lower Sn levels [51]. In crystalline form, the semiconducting ceramic contains 
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free electrons generated within the grains and electrons trapped at the grain boundaries [52]. On 

the other hand, amorphous ITO is less conductive. The low temperature sputtering of ITO on 

flexible polymer substrates often leads to an amorphous microstructure [53]. ITO has a 

coefficient of thermal expansion of 7.2 x 10-6 oC-1 [54]. Thin films of ITO are commonly 

deposited on flexible polymer substrates using electron beam evaporation or sputter deposition 

methods [4, 55- 57].  

 

2.2.2.2 Carbon nanotubes   

 

Single-walled carbon nanotubes (SWNTs) are a class of material with molecular structure being 

visualized as graphene sheets rolled-up to certain directions into a seamless cylinder [58].  

Transparent, conductive thin films of CNTs are emerging as a promising alternative to traditional 

transparent conductors such as ITO in low-cost solution-processed applications due to the natural 

abundance of carbon, amenability to spraying and printing, and good wetting properties [59]. 

Applications requiring optical transparency between 80-95% require a CNT film thickness 

between 10 and 50 nm. Therefore, very little mass of CNT material is required to achieve the 

desired film thickness (5-25 mg/m2) and sheet resistance, Rs = 110 Ω/sq [60, 61].  Also, CNTs 

exhibit superior mechanical flexibility [62, 63]. 

 

2.2.3 Deposition methods    

 

Transparent conductive electrodes can be deposited on polymer substrates using various 

methods such as, chemical vapor deposition [64], DC or RF magnetron sputtering [65, 31], and 
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pulsed laser deposition [66]. Magnetron sputtering is one of the most common deposition 

methods because it provides high sputtering rates and can yield large area coatings [30]. During 

magnetron sputtering, a magnetic field is applied around the target and a glow discharge 

produces an electron-trapping effect resulting in an increased collision rate between the electrons 

and the sputtering gas molecules. This leads to increased deposition rates and sputtering gas 

pressures as low as 10-5 torr [67, 68].  

  

2.2 Degradation behavior of flexible transparent conducting materials 

 

The performance of the transparent electrode under mechanical and corrosion conditions 

represents a challenge in terms of the device functionality. For example, a flexible transparent 

electrode may lose its structural integrity, and therefore functionality, when the device is 

conformed to various shapes during manufacturing and in operation. Also, acid containing 

adhesives and/or acid treated components in the device stack may degrade the transparent 

conducting layer. Furthermore, the coefficient of thermal expansion (CTE) between the 

conducting layer and the polymer substrate may lead to loss of functionality of the device under 

temperature changes during both processing and in-service. The reliability of flexible transparent 

electrodes under different degradation mechanisms can be evaluated by electromechanical and/or 

corrosion testing techniques. Such experiments are usually accompanied by in-situ monitoring 

and observation of both the change in conductive coating’s electrical resistance and the crack 

formation on its surface. A commonly-used comparative measure of failure initiation is the crack 

onset strain (COS). The COS can be determined using a direct observation of crack formation on 
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the coating’s surface under microscopy or when the electrical resistance of the coating has 

increased by 10%. This value is arbitrarily chosen for flexible devices [69].        

 

2.2.2 Electromechanical behavior of flexible transparent electrodes 

 

One of the major concerns regarding the development of flexible electronics is the need 

to design devices with a performance that does not degrade due to the application of external 

mechanical stresses. The stresses in the multilayer inorganic/organic composite resulting from 

mechanical loading may cause either cohesive failure of the inorganic layer, or adhesive failure 

between the layer and the substrate [69]. In order to assess such failures, a variety of 

experimental procedures has been proposed and developed by several researchers over the years.  

 

2.2.3 Uniaxial tensile testing  

 

In a uniaxial tensile test, a dog-bone shaped or a strip specimen is loaded in tension and 

in-situ electrical resistance measurements and optical images can be acquired to evaluate the 

degradation of the conductive coating (Fig. 2.1).  

 



16 
 

 

 

Fig. 2.1 Schematic of tensile testing apparatus. 

 

Leterrier et al. [70] used uniaxial testing of a 100 nm silicon oxide layer deposited on 

PET substrate to investigate the effect of substrate properties on coating’s tensile fragmentation 

process (Fig. 2.2). The COS of the coating was identified, using optical microscopy, at 1.2% 

strain. At about 6% strain, transverse cracking of the fragments is initiated. These cracks develop 

parallel to the straining direction due to the lateral contraction of the substrate resulting from 

Poisson’s effects. At 10% strain, tertiary cracks appear which are parallel to the primary cracks 

and are stopped by the secondary cracks. They do not therefore cross the full sample width. At 

10% strain, partial debonding appears along the secondary cracks. The fragments tend to overlap, 

which enhances debonding. The dissociation of the oxide layer from the substrate is at the origin 

of the interruption of the tertiary cracks. At this stage, the stress concentration at the crack front 

will relax over the debonded length and is no longer transmitted directly to the adjacent 

fragment. They also observed, upon unloading samples strained to less than 4% nominal strain, 

strain recovery leads to the closure of coating cracks. 
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Fig. 2.2 Fragmentation morphology of the SiOx coating on the PET substrate at different strains 

parallel to the roll direction [70]. 
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In addition, Cairns et al. [71] used a miniature tensile testing machine attached to a 

microscope stage to investigate the electromechanical behavior of ITO films on PET. The 

increase in electrical resistance is related to the number of cracks in the conducting layer which 

depends upon the applied strain and the film thickness. The onset of cracks between 2% and 

2.5% strain correlates with the sudden increase of the resistance of the sample (Fig. 2.3).  

 

 

 

Fig. 2.3 Fractional change in resistance (ΔR/R) of ITO coated PET as a function strain ε (left 

axis) experimental data for three thicknesses are shown as points (♦) 105, (□) 42, and (○) 16.8 

nm and modeled fits with solid lines. Stress vs strain curve for ITO coated PET (right axis) is 

shown as a dotted line [71]. 

 

The cracks traverse the full width of the section but the electrical resistance remains 

finite. They proposed that the reason for the increasing, but finite in nature, of the resistance is 

the conduction between fragments due to a ductile layer at the interface between the ITO and the 

PET. In addition, they proposed a simple model (Fig. 2.4) that describes the increasing electrical 

resistance for a cracked ITO layer. In this model, at each crack there is a non-conductive gap 
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between the two sides of the conductive layer, but there is a small conducting interfacial layer 

bridging it. As strain increases, the width of the crack increases and new cracks will nucleate and 

propagate.  

  

 

 

Fig. 2.4 A schematic diagram showing bridging material at the PET substrate which results in an 

increasing but finite resistance with increasing strain [71]. 

 

Furthermore, Leterrier et al. [72] investigated the mechanical integrity of ITO thin films 

sputtered onto a high temperature aromatic polyester by means of tensile experiments equipped 

with electrical measurement, and an optical microscope for in-situ observations. They observed 

that damage of ITO coatings under tensile load initiated at defect sites such as pin-holes, and 

propagated in a stable manner until the crack length was of the order of 100–500 times the 

coating thickness. At that stage, the increase in electrical resistance was equal to approximately 

10%, after which crack propagation became unstable and electrical resistance increased by many 

orders of magnitude. Therefore, the loss of functional performance of the ITO coated polymers 

was controlled by crack propagation features, rather than by crack initiation. Also, homogenous 

ITO structures in the amorphous state as well as a fine grained polycrystalline structure were 

both found to be beneficial for the cohesive properties of ITO. This is due to the fact that fine 



20 
 

grained structures are associated with less stress concentrators. They also found that an improved 

surface quality of the polymer substrate due to planarization was a major factor to increase the 

cohesive properties of ITO films. This is because a planarization layer helps to suppress 

superficial flaws such as scratches on the polymer surface which may lead to stress 

concentrations in the interfacial region between the ITO layer and the polymer substrate.      

Furthermore, Cairns and Crawford [10] studied the electromechanical behavior of ITO-

coated PET under tensile loading. The electrical resistance and the crack evolution as a function 

of uniaxial strain is monitored in-situ. Cracking was first observed at 2.3% nominal strain, and 

then the number of cracks increased rapidly to 2.6% strain. At 6% strain, transverse cracking 

occurred due to lateral contraction. Finally, at 10% strain, tertiary cracks appeared parallel to the 

primary cracks, but they were stopped by the secondary cracks.   

Also, Hamasha et al. [73] investigated the behavior of sputtered ITO on PET substrate 

under uniaxial stretching. Two different sheet resistances, 100 and 60 Ω/sq specimens were 

stretched up to 15% strain under three different strain rates, 0.01, 0.1, and 1.0 min-1. The crack 

development was monitored using an optical microscope. For both sheet resistances and different 

stain rates, cracks initiated perpendicular to the tensile loading and propagated towards the edges 

of the sample at 4% applied strain. At 8% strain, transverse cracks initiated and propagated 

between the original cracks. High crack intensity was found for high sheet resistance specimens 

and at a higher strain rate. 

Finally, Sierros et al. [4] studied the mechanical integrity of CNT and ITO coated PET 

films under monotonic and cyclic uniaxial tension with in-situ electrical resistance monitoring. 

They observed that the critical strain for 25% electrical resistance increase is 10 times higher for 

CNT films than that observed for their ITO counterparts. Unlike the ITO brittle layer on 
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compliant substrate, failure of the CNT layer was found to be controlled by catastrophic 

substrate failure.  

 

2.2.4 Bending and buckling experiments 

 

In a two-point bending test, a specimen is bent between two parallel plates. Electrical 

resistance measurements and optical images can be acquired, in-situ, to evaluate the degradation 

of the conductive coating (Fig. 2.5).  

 

 

 

Fig. 2.5 Schematic of bending testing apparatus. 

 

Chen et al. [74] used a controlled buckling test (i.e. two-point bending test with clamped 

ends) to investigate the fracture properties of ITO deposited on PET. The ITO surface was placed 

under both tension and compression. Electrical resistance measurements were monitored in-situ. 

They observed that the critical strain under compression loading for the ITO film was 1.7% 
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while under tensile loading it was 1.1%. Therefore, ITO surface under tension is more critical 

than when it is placed under compression. They also showed that, under tension, the failure 

mechanism is cracking of the film while in compression it is buckling delamination and cracking 

[75].  

In addition, Abdallah et al. [76] investigated the buckle evolution of ITO layers, 

deposited on high temperature aromatic polyester substrates, using a mechanical bending device. 

In-situ optical microscopy of the layered structures under a uniaxial compressive strain was used 

to determine the buckle delamination rate at different applied strains. They observed an increase 

in the delamination rate by increasing the applied compressive strain. This increase was 

attributed to the increase in elastic energy applied to the crack tip. Thus, more elastic energy can 

lead to the creation of a new crack surface. In addition, edge defects were observed to affect not 

only the buckle initiation but also the buckle propagation. Increasing the number of edge defects 

at the specimen edge resulted in a decrease of the residual strains in the vicinity of the edge 

defect. As a consequence, less energy remains available for the delaminated buckle front to 

propagate further and therefore the buckle arrest [77]. 

Furthermore, Yang and Park [78] investigated the effect of inserting ductile metal 

interlayers, such as Ag, on both crack and buckling delamination resistance of ITO-coated 

polymeric substrates. They used a two-point bending device to measure the strains at crack 

initiation and delamination under tension and compression respectively. They found that, 

compared to the samples without interlayers, both the crack and delamination resistances of ITO 

are significantly improved by Ag interlayers over increased thickness. They observed that the 

cohesive and adhesive strength improvement was due to the increase in crystallinity of ITO by 

the Ag interlayer. This improved crystallinity of ITO due to Ag interlayer was observed by XRD. 
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However, as thickness of the ductile interlayer increased, optical transparency was observed to 

decrease. Also, the internal stress relief exhibited by the addition of interlayers was found to 

have a negligible effect on crack resistance, as compared to crystallinity.  

Moreover, Trottier et al. [79] studied the cyclic bending and monotonic tensile 

deformation of CNT films on PET substrates. It was reported that the maximum changes in 

electrical resistance under cyclic bending (0.7% strain and 2500 cycles) and monotonic tensile 

deformation (18% strain) were less than 0.5% and 14%, respectively.    

Finally, the buckle initiation and delamination of ITO lines on arylite substrate was 

investigated previously [77]. The total number of initiated buckles was found to increase with 

increasing compressive strain and/or loading time. Also, buckles were observed to initiate from 

etch defects and imperfections in the ITO layer. For example, the size of an initial defect able to 

initiate layer buckling was found to be approximately 15 times the layer thickness.  

 

2.2.5 Cyclic loading experiments 

 

Fatigue of flexible transparent electrodes is caused by cyclic or repeated loading. A thin 

film subjected to cyclic loading may fail due to progressive and localized damages even if the 

stresses and strains are below the electrode’s yield strength. One advantage using fatigue 

characterization of TCO is that the ability to obtain cycles to failure data. This is very important 

in life prediction of such materials. There are limited previous fatigue studies on TCO.  

Gorkhali et al. [80] used cyclic loading experiments (Fig. 2.6) to investigate the failure 

mechanisms of ITO-coated PET. An ITO-PET sheet was repeatedly rolled and unrolled around 
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mandrels of varying diameters for a strain range between 0.6 and 2% while the resistance was 

monitored in-situ.  

 

 

 

Fig. 2.6 Schematic of custom-built apparatus to monitor resistance during cyclic mandrel 

bending [80].  

 

They observed three regimes of electrical resistance increase for the cyclic loading of 

ITO-coated PET as shown in Fig. 2.7. Between 50-100 cycles there was an increase in resistance 

due to sample dimension changes, as the PET reached dimensional equilibrium. Once the system 

stabilized, a slow increase in resistance up to approximately 50,000 cycles, which was found to 

be due to cracking of the ITO layer, was observed. Above 50,000 cycles severe cracking 

occurred and led to catastrophic failure of the ITO film. 
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Fig. 2.7 Fatigue test until catastrophic failure of ITO samples. Linear scale (left) and logarithmic 

scale (right) [80]. 

 

Alzoubi et al. [81] investigated the high cycle bending fatigue of ITO-coated PET 

substrate in order to establish a base line for comprehensive reliability studies of ITO thin films 

on flexible substrates.  The percent change in electrical resistance was measured at a specific 

number of cycles. It was found that the size of bending diameter and the number of bending 

cycles have a pronounced influence on the conductivity of the ITO layer. For example, at 200 

cycles, the percent change in electrical resistance for samples bent around the 5.0 mm and 8.9 

mm mandrel diameters were 860% and 640%, respectively. However, at 500 cycles, the percent 

change in electrical resistances for samples bent around the same diameters were 6250% and 

3360%, respectively. 

Also, Koniger and Munstedt [82] built a sophisticated device to investigate the electrical 

behavior of conductive layers on flexible substrates under oscillatory bending both in tension and 

under compression. For sputtered ITO coatings on PET substrates, a dramatic increase of the 

electrical resistance was observed for a bending radius smaller than 14 mm (strain ~ 0.6%) due 
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to cracks spanning the whole sample width. The higher the oscillatory bending amplitude, the 

more pronounced the increase of ITO electrical resistance.  

Furthermore, Choa et al. [83] reported the influence of twisting loading on the 

mechanical integrity of indium zinc oxide (IZO) and IZO/Ag/IZO multilayer electrodes 

deposited on PET by continuous roll-to-roll sputtering. They used a lab-made twisting 

configuration (Fig. 2.8). Both crack density and electrical resistance increased with increasing 

twisting angle. They found that the critical twisting angle was 20o for IZO and 26o for 

IZO/Ag/IZO multilayer.   

 

 

 

Fig. 2.8 Photograph of the lab-made twisting test apparatus [83]. 

 

Finally, Lan et al. [84] conducted static and dynamic bending tests in order to investigate 

the durability of ITO films deposited on PET by thermionic emission (TE) enhanced sputtering. 

They found that the critical radius of curvature was 13.9 and 17.0 mm for the ITO-coated PET 
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with and without TE, respectively. The dynamic bending test showed that the ITO-coated PET 

with TE is found to be durable for 1200 cycles, while the corresponding number for the ITO-

coated PET without TE is smaller than 50 cycles. They also observed that the ITO film deposited 

using TE exhibited a higher degree of crystallinity and film adhesion that deposited without TE. 

They concluded that TE improved the optical and electrical properties of the ITO coatings.  

 

2.2.6 Biaxial testing of flexible transparent electrodes 

 

Most of the researches previously reported on the reliability of TCO were performed on 

one-dimensional loadings. However, operations on thin films such as heating and cooling cycles 

during lamination and welding with other polymer films introduce almost always biaxial stress 

states [85]. This is because there is a thermal mismatch and lattice mismatch between brittle 

coatings and polymer substrates. Therefore, investigation of such films by means of biaxial 

loadings is important.   

Leterrier et al. [85] studied the fragmentation process of 53 and 103 nm thick silicon 

oxide coatings on PET films under biaxial loading by means of a bulging cell mounted under an 

optical microscope. The examination of the fragmentation process of the coating under 

increasing pressure levels revealed that the crack onset strain of the oxide coating is similar to 

that measured under uniaxial tension. For example, the crack onset strain under biaxial loading 

was 1.8% and 1.5% for the 53 and the 103 nm thick coatings, respectively. The fragmentation of 

the coating under biaxial tension was also characterized by complex dynamic phenomena 

resulted in considerable broadening of the fragment size distribution. 
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In addition, Andersons et al. [86] investigated crack patterns of 100 nm thick silicon 

oxide coatings on PET, polypropylene (PP), and polyamide (PA) substrates under biaxial 

loading. A bulging cell with a stepwise pressurization system was mounted under an optical 

microscope. Fragment areas were found to follow the exponential distribution at low strains 

close to the COS. With the increase of biaxial strain, change of the fragment area distribution 

was observed due to stress transfer and crack propagation. In silicon oxide on PP and PA, film 

fragmentation proceeded in a binary manner, i.e. coating fragment breakup due to crack 

propagation always lead to generation of two new fragments. By contrast, in silicon oxide on 

PET, sequential crack branching was observed with the increase of strain as an additional failure 

process to binary cracking.  

 

2.2.7 Wear, nanoscratch and nanoindentation experiments 

 

In addition to uniaxial and biaxial stress failure mechanisms, flexible transparent 

electrodes may be subjected to wear during processing and operation.  

Cairns et al. [16] studied the wear damage of ITO coated PET substrate with a pen stroke 

applied repeatedly on the PET surface. The schematic of the system is shown in Fig. 2.9. They 

observed adhesive wear in the form of ITO flakes transferred from the ITO on PET substrate to 

the ITO on glass substrate.  Pitting of polymer was evident between 5,000 and 10,000 cycles. 

After 40,000 cycles a large amount of polymer was pulled through the ITO pits. Also, cracking 

was observed at 50,000 cycles.   
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Fig. 2.9 Schematic diagram of the operation of a resistive touch screen [16]. 

 

In addition, Kim et al. [87] investigated the adhesive and wear properties of ITO thin 

films on glass substrate using scratch and wear tests. In the scratch test, a micro-blade was drawn 

over the films while in the wear test, sapphire, SS (stainless steel), and WC (tungsten carbide) 

balls slid repeatedly on the films with a normally applied constant load. The electrical resistance 

of the ITO surface was monitored in-situ and it was used to measure both the critical load to 

completely cut through the film and the critical number of sliding to completely wear the ITO 

film. The critical numbers of sliding for wear testing using sapphire, SS, and WC balls were 

found to be 7111, 1262, and 5799, respectively. In addition, the critical load of ITO film under 

scratch test was estimated to be 0.54 N. 

Furthermore, Sierros et al. [88] studied the wear of an ITO flat surface against an ITO flat 

counterface using a custom-built reciprocating wear tester at a normal load of 3.5 N and up to 

12,240 cycles. In-situ electrical resistance measurements indicated an abrupt increase above 

10,000 reciprocating cycles. Weight loss in the case of the bottom counterface sample initially 

measured to be around 0.1 mg and increased up to 1 mg with increasing number of reciprocating 

cycles. They proposed that the wear mechanisms of ITO surfaces include cohesive failure within 
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the film, adhesive wear between the ITO film and PET substrate, plastic deformation of the PET 

substrate and abrasive wear of the ITO film.  

Moreover, Tseng [89] used a patterning technique that utilizes an AFM tip as a scratch 

tool, also known as AFM scratching, to study the scratch characteristics of silicon. He 

experimentally studied and mathematically correlated the scratch parameters, including the 

applied tip force and the number of scratches, on the size of the scratched geometry. The 

dimensions of the grooves scratched were related to the normal force in a logarithmic form, and 

with the scratch cycle number in a power law form. He compared hardness, wear coefficient, and 

scratch ratio ( ratio of the scratch penetration depth to the threshold force) in order to assess the 

scratchability property. Scratch ratio was found to be an appropriate indicator for measuring the 

degree of the ease or difficulty of a material scratched by an AFM tip.   

Also, Sierros et al. [90] investigated the effect of normal and tangential spherical loading 

on the mechanical durability of ITO-coated PET film using a spherical nanoindenter and scratch 

tester with built-in optical microscopy capability. They observed that crack initiation at 40 mN 

normal load or 534 MPa mean contact pressure. At higher loads, brittle ring cracking was 

observed and when loading increased to 200 mN, secondary cracks were formed. They also 

found that the indent imprint radius on the ITO surface increased linearly with increasing load. It 

was found that increased thickness led to larger crack spacing. During scratch testing, cracking 

and buckling spallation of the coating were observed. Both failure mechanisms exhibited a 

thickness dependence.  

Finally, Hecht et al. [91] conducted single-point stylus-pen actuation tests on CNT coated 

PET films for resistive touch screens. They reported that no failure is observed up to 3 million 

actuations. 
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2.2.8 Electromechanical and corrosion experiments 

 

Flexible transparent electrodes degrade when subjected to tensile, buckling, bending, 

wear, and cyclic loadings, but the presence of corrosive agents may aggravate this behavior 

either by increasing the rate of crack growth and rate of wear, or decreasing the mechanical load 

required to initiate cracks. 

 

2.2.8.1 Corrosion of flexible transparent electrodes 

 

Degradation of transparent electrodes with acid containing adhesives which are 

commonly used in optoelectronic device manufacturing may lead to reduction in optical 

transmittance, high sheet resistance, and substantial changes in surface morphology and 

composition. In most adhesive polymers a typical concentration of acrylic acid in the range of 

0.05-0.3 M is grafted to improve their properties [92].  

Folcher et al. [93] studied the electrochemical stability of ITO films in different 

concentrations of HCl. The corrosion behavior of the films was investigated using in-situ mass 

measurements and direct imaging of surface morphology. It was found that radical species such 

as Cl0 and OH0 were created during positive potential corrosion conditions and attacked the 

indium-oxygen surface bonds.  TEM images showed a preferential dissolution at grain 

boundaries of the polycrystalline ITO films. In addition, the dissolution rate increased 

significantly when the pH was decreased indicating that the anodic dissolution of ITO in HCl 

solution is not a pure electrochemical process but it involves a chemical contribution such as 

oxygen evolution pushing away the Cl0 radicals.  
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Monk and Man [94] investigated the etching behavior of ITO in varying concentrations 

of aqueous hydrochloric acid in the range of 1 to 10-3 mol.dm-3. They found that, during etching, 

In3+ reduced to metallic indium and the surface of the ITO film became severely rough.     

 

2.2.8.2 Combined stress and corrosion testing  

 

In addition to degradation due to corrosion, transparent electrodes may fail under the 

combined effect of stress and corrosion. Stress corrosion cracking (SCC) occurs when 

mechanical strain is applied to a specimen in the presence of a corroding environment. In such a 

situation both effects (i.e., stress and corrosion) are likely to aggravate and complement each 

other. SCC is also a local phenomenon, and a relatively large region of the material surface may 

remain undamaged. As a crack propagates a crevice may appear, in which the pH of the acid 

steadily rises as corrosion occurs, due to a lack of mixing with more dilute acid from an area 

outside the crevice [95]. This can lead to high acid concentrations in the crevice as well as high 

stress concentrations at the crack tip, which may further enhance the severity of the cracking 

process. In ITO thin films, the cause of SCC failure is the presence of a network of a large 

number of small cracks rather than one critical crack [71], but localized acid concentrations and 

stress concentrations may still play a large role in the failure process.  

Ramji et al. [96] reported that cracks in patterned ITO-PET sheets initiate from 

microcracks caused by the patterning process. It was found that the rate of crack growth in ITO 

film is accelerated by the combined effect of corrosion due to acrylic acid from pressure 

sensitive adhesives and the applied stress.  



33 
 

Also, Sierros et al. [97] investigated the combined effect of applied strain and acrylic acid 

(0.1 – 0.9 M concentration) on transparent conductive layers of ITO sputtered PET substrate. It 

was found that the presence of acid can cause cracks to initiate at strains as low as a quarter of 

those observed for films with no corrosion, indicating that SCC is a significant process. In 

addition, corrosion was most prevalent at regions of high surface roughness, where a larger 

surface area exposed to the acid, and the presence of crevices for increased acid concentration 

are most likely.  

Finally, Hamasha et al. [98] investigated the effect of temperature, humidity, bending 

fatigue and interaction among them on the percent change in electrical resistance of sputtered 

ITO coated PET substrates. Two sets of experiments were conducted on the ITO film. The first 

set of experiments was conducted on samples under different temperature (20 and 70oC) and 

humidity (20 and 80%) combinations while subjected to bending fatigue. The other set of 

experiments was conducted on samples with the same combinations of temperature and humidity 

but without fatigue. The change in electrical resistance of the specimens under the combinations 

of high temperature and high humidity with cyclic bending load was found to be 17%. On the 

other hand, specimens without fatigue loading showed a 4% change in electrical resistance. They 

suggested that cyclic bending with high temperature and humidity of ITO films should be 

avoided during both manufacturing and applications.  

 

2.2.9 Tribo-corrosion behavior of transparent electrodes 
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Investigation of the tribo-corrosion behavior of the electrodes is critical in the design and 

manufacturing of reliable flexible devices which will remain functional after repetitive 

mechanical flexing under harsh environmental conditions.  

The behavior of dry and wet reciprocating sliding of flat ITO against another flat ITO 

surface in acidic solution has been studied previously [90]. The corrosive action of the acidic 

solution on the ITO degradation was observed to be a secondary effect. The primary effect was 

the tribological interaction of the two surfaces that led to wear and loss of functionality. A 

particular advantage when conducting tribological tests on such structures is that one can 

monitor the electrical resistance in-situ and correlate changes of the ITO microstructure with 

electrical resistance changes [87, 90].   

 

 

  



35 
 

3 MATERIALS AND EXPERIMENTAL METHODS  

 

3.2 Materials 

 

In this project ITO and CNT conducing layers on polymer substrates were used. Also, 

patterned ITO layer and multilayers of ITO with metallic alloys were utilized. This chapter 

describes the materials used according to the various experimental methods employed.      

 

3.2.2 Corrosion of ITO films 

 

ITO film (CPFilms Inc., USA) deposited at low temperature on a PET polymer substrate 

by DC magnetron sputtering was used as the working electrode. The thickness of the ITO layer 

is 70 nm with a sheet resistance of 100 Ω/sq. The ITO film is composed of 90 wt. % In2O3 and 

10 wt. % SnO2. The ITO samples were cleaned with distilled water and dried with cold air before 

performing the electrochemical measurements using acrylic acid (Sigma-Aldrich) as an 

electrolyte.  

 

3.2.3 Mechano-chemical experiments 

 

Another set of ITO films (CPFilms Inc., USA) deposited at room temperature on PET 

substrates (180 µm thick) by DC magnetron sputtering (sputtering power ≈ 1 KW) were used in 

the mechano-chemical experiments. During sputtering, the processing gas was argon with a 

partial pressure of approximately 0.5 Pa whereas oxygen was used as a reactive gas with a partial 
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pressure of approximately 2 MPa. The deposition rate of the ITO film was approximately 5 

nm/min. The deposited films, as measured by a stylus profilometer (Veeco Dektak 150), were 70 

and 200 nm thick with sheet resistances of 100 and 70 Ω/sq, respectively. The ITO target was 

composed of 90 wt. % In2O3 and 10 wt. % SnO2. Sheet resistances were measured using a four-

point probe system (Electronic Design to Market, USA).  

Also, CNT films (Unidym, USA) on PET substrates (180 µm thick) were used for 

comparison purpose. The carbon nanotubes were grown via chemical vapor deposition and 

subsequently purified via air oxidation followed by acid washing to remove residual metal 

catalyst and amorphous carbon. The resulting CNTs consisted of largely single-walled and 

double-walled tubes. The CNTs were dispersed in a 1% aqueous solution of sodium dodecyl 

sulfate surfactant at 0.01 wt% and spray coated onto the PET sheet which was heated to 100 °C. 

The films were then rinsed in de-ionized water to remove residual surfactant. The resulting dry 

CNT film is approximately 15 nm thick as measured using atomic force microscopy. A 

polymethyl methacrylate (PMMA) layer was coated with a Mayer rod from a 0.5 wt% solution 

of PMMA in methyl ethyl ketone over the dry CNT film to enhance film adhesion to the PET 

and provide enhanced chemical/environmental resistance. The dry thickness of the binder layer 

is ~50 nm, thin enough such that it does not electrically insulate the surface of the CNT film. The 

polymer coating is not continuous and in some regions the CNT layer is exposed allowing a 

conducting path. The sheet resistance of the CNT film was approximately 350 Ω/sq. 

 

3.2.4 Controlled buckling experiments 
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A 100 Ω/sq ITO film surface was cleaned using isopropyl alcohol and DI water and then 

dried using nitrogen in order to be ready for patterning of different shapes and sizes (Fig. 3.1a) 

using photolithography for controlled-buckling experiments. The specimen surface was spin-

coated (2000 rpm, 1min) with an AZ 3330 photo-resist and then it was pre-baked at 90 0C for 1 

min. After exposure through a photo-mask and post-bake at 90 0C, the resist was developed in an 

AZ 3330 solution. The specimen was then etched in 2% oxalic acid (C2H2O4) at an approximate 

etch rate of 10 nm/min. Finally, the remaining photo-resist was removed using acetone, and 

followed by both cleaning in DI water and nitrogen blowing.  

 

 

 

 

 

Fig. 3.1 Different patterns of ITO coated PET films with (a) smaller size dimensions and (b) 

sharpness of corners. All dimensions are in µm. 
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3.2.5 Tribo-corrosion experiments 

 

A Pure Ag, Ag-Au (2 wt% Au) and Ag-Pd (3 wt% Pd) alloy layer (~10 nm thick) was 

sputtered between two ITO layers of 40 nm thickness each (Fig. 3.2). The bottom ITO layer was 

sputtered at room temperature on a 100 μm thick polyethylene terephthalate (PET) substrate. The 

top ITO surface was sputtered, at room temperature, on top of the Ag/Ag-alloy surface and 

exhibits a root mean square roughness of approximately 6 nm as measured by atomic force 

microscopy in contact mode. The sputtering power was approximately 1 kW and Ar was used as 

the processing gas. Therefore, a multilayer structure was deposited by sputtering successive 

layers of ITO – Ag/alloy – ITO layers on PET substrates.  Polytetrafluoroethylene (PTFE) balls, 

10 mm in diameter, were used as the counter body. Tests done on ITO-Ag-ITO and ITO-

Ag/alloy-ITO flat films using a PTFE ball counterface in a reciprocating fashion are summarized 

in Table 3.1.  During testing NaCl solution (1 M) was used as the corrosive medium. 

 

 

 

Fig. 3.2 Cross-sectional view of the sample under tribo-corrosion investigation. 
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Table 3.1 Materials used in tribo-corrosion experiments. 

 

 

 

3.3 Experimental methods 

 

In order to meet the objective of this research, electrochemical, electromechanical, and 

mechanochemical experimental procedures are performed using new and existing testing 

methods.    

 

3.3.2 In-situ electrical measurements for corrosion experiments 

 

ITO samples were immersed in acrylic acid concentrations ranging from 0.05 to 0.3 M 

and the change in electrical resistance was monitored in-situ using an Agilent 34970A data 

acquisition/switch unit in order to optimize the critical acid concentration.  

 

3.3.3 Electrochemical impedance spectroscopy 

 

Electrochemical measurements were performed for the ITO film, to understand the 

change in the properties of the film with exposure time to acrylic containing adhesives. The 

electrochemical measurements were carried out using a Potentiostat/Galvanostat (Solartron 
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Analytical, 1287) controlled by CorrPlot software version 2.9C (Scribner Associates, Inc., UK) 

and a flat cell (EG & G Model K0235). Platinum gauze was used as a counter electrode and 

saturated Ag/AgCl electrode was employed as a reference electrode. The ITO film, with an 

exposed area of 1 cm2, was used as the working electrode. The open-circuit potential will be 

measured until dynamic stability is achieved between the working TC electrode and acrylic acid 

electrolyte. Before each potentiodynamic polarization and EIS experiments, the electrode was 

allowed to corrode freely and its open circuit potential was recorded as a function of time up to 

60 min. The potentiodynamic polarization measurement was performed by scanning the potential 

starting from -250 mV to 1600 mV with respect to open-circuit potential at a scan rate of 1 

mV/sec. The potentiodynamic polarization data was analyzed using CorrVeiw software. The EIS 

measurements were performed using an impedance analyzer (Solartron Analytical, 1255B) 

connected with a potentiostat (Solartron Analytical, 1287). The EIS spectrum was recorded over 

a frequency range of 1 MHz to 10 mHz. The applied bias voltage and AC amplitude were set at 

open-circuit potential of the electrode and 10 mV, respectively. The EIS data was plotted using 

ZPlot and the curve fitting of EIS data to an electrical equivalent circuit was performed using the 

ZView software version 2.9C (Scribner Associates, Inc., UK). All the electrochemical 

experiments were performed three times to ensure reproducibility of the results. 

 

3.3.4 Mechano-chemical testing 

 

During corrosion testing, non-strained flat ᴫ-shaped samples were immersed in a 0.05 M 

acrylic acid solution, and the change in electrical resistance was monitored in-situ. Bending, 
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fatigue, bending-corrosion, and fatigue-corrosion characterization was conducted by means of a 

custom-built cyclic uni-axial loading apparatus (Fig. 3.3).  

 

 

 

 

 

Fig. 3.3 Schematic, 3D and exploded CATIA model (Dassault Systemes), and picture of the 

custom-built bending cyclic loading apparatus. 
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In this set-up, one end of the specimen is fixed to a mandrel made from chlorinated 

polyvinyl chloride (c-PVC) using a high-density polyethylene (HDPE) plate whereas the other 

end is clamped between a pair of HDPE plates which were connected to a low tension spring (k 

= 68.4 N/m). A strip of copper foil is used for electrical contact. A relatively large c-PVC 

mandrel (R >> r) supported the specimen in a horizontal position and prevents it from sagging. A 

stepper motor (MDrive M-17, IMS) is used to rotate the mandrel at a frequency of 2 cycles/s. 

During both static bending-corrosion and fatigue-corrosion testing the HDPE container is filled 

with acidic solution. The change in electrical resistance is monitored in-situ using an Agilent 

34970A data acquisition/switch unit. Specimens were cut into strips of 10 mm in width and 188 

– 200 mm in length in accordance with the bending diameter used. The diameter of mandrel, 

specimen length, and applied strain are listed in Table 3.2. The approximate bending strain using 

such mandrels is calculated using the following equation, Eq. 3.1 [74]. 

 

 ε = ts+tf
2R

                                                                                                            (3.1) 

 

where ts and tf are the thickness of the substrate and film, respectively.  

 

Table 3.2 Size of mandrel, specimen length, and approximate applied strain. 
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3.3.5 Controlled-buckling testing 

 

Controlled buckling characterization of patterned ITO films was conducted by means of a 

manually operated custom-built apparatus (Fig. 3.4).  

 

 

 

Fig. 3.4 Schematic of the custom-built manually operated buckling apparatus. 

 

In this setup, the two ends of the specimen are firmly clamped on the buckling apparatus. 

The buckling apparatus was placed underneath an optical microscope (Leica) which is equipped 

with a frame grabber (Guppy, Allied Visions Technology). Sample displacement measurements 

were taken using a side-view digital imaging system (Celestron Digital Microscope) and they 

were analyzed using image analysis software (Image J. NIH USA). The buckling radius from the 

testing scheme (Fig. 3.5) was calculated using Eq. 3.2 [74].  

 

 
𝑙
𝑅

= 4K(k)k                                                                                                            (3.2) 
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where K (k) is complete elliptic integral of the first, k = sin (θ/2), l = L/2 for built-in ends. K (k) 

is calculated using MatLab (MathWorks).  

 

 

 

 

Fig. 3.5 Buckling test with built-in ends [74]. 

 

The resulting strain was calculated using Eq. 3.1. In-situ optical microscopy images were 

taken at small increments of applied strain in order to determine both tensile and compressive 

crack onset strains and to monitor the crack propagation. In addition, in-situ electrical resistance 

changes were monitored using a Fluke 45 dual display multimeter.     

 

3.3.6 Tribocorrosion testing 

 

The tribo-corrosion test was carried out in order to assess the combined wear and 

corrosion degradation of the TC electrodes. Testing was conducted by means of a custom-built 

reciprocating wear tester (Fig. 3.6).  
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Fig. 3.6 Schematic of the custom-built reciprocating wear tester apparatus. 

 

In this setup, the bottom counter face sample is clamped to an acrylic base. Particular 

care was taken when clamping the sample to the base in order to avoid stressing the sample. The 

sample was fitted inside a plastic container. Under corrosive sliding conditions the container was 

filled with 1 M sodium chloride solution. A stepper motor (NM34A200, Zaber) controls the 

reciprocating end effector with stroke length L = 50.8 mm. The end effector is a 10 mm diameter 

polytetrafluoroethylene (PTFE) ball mounted on a c-PVC rod and was allowed to float freely in 

the vertical direction. PTFE was chosen because of its low friction coefficient and its corrosion 

resistance. The ball surface was replaced after the completion of each test and a fresh PTFE 

surface was used for the next test. A constant normal load F = 3 N was applied. This load 

introduced a mean Hertzian stress equal to 12.02 MPa. Around 12.02 MPa is a typical contact 

pressure under moderate handling and/or in-service conditions of solar energy components and 

many optoelectronic applications. The change in electrical resistance was monitored in-situ using 
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an Agilent 34970A data acquisition/switch unit. Each test was conducted using a fixed 

reciprocating frequency of 3 cycles/min. Tests were run for up to a few thousand reciprocating 

cycles. In addition, weight measurements were conducted before and after each test for both the 

PTFE ball and TC electrode using a digital balance (DV215CD, Ohaus, 0.01±0.02 mg 

resolution). After testing and before weighing the samples were washed in distilled water and 

dried using compressed air. 

 

3.3.7 Surface characterization  

 

• Stylus profilometry (Veeco Dektak 150) was used to measure film thickness and study its 

topography.    

• Specimen surfaces were studied, after testing, using a Leica optical microscope equipped 

with a frame grabber (Guppy, Allied Visions Technology) at magnifications of 10, 20, 50 x.  

• The surface morphology of the electrodes before and after testing was studied using a JEOL 

JSM – 7600F scanning electron microscopy (SEM) with a field emission gun. Before SEM 

analysis, the specimens were sputter coated with an approximately 10 nm thick Au layer 

using a Cressington 108 sputter coater.  

• X-ray photoelectron spectroscopy (XPS) before and after testing was conducted using a 

Physical Electronics PHI 5000 VersaProbe system to analyze chemical composition through 

depth profiling. The X-ray beam was 100 μm, 25 W, and 15 KV, from a monochromatic Al 

Ka source using charge neutralization and pass energy of 29.35eV.  

 

3.4 Design of experiments 
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Design of experiment (DOE) was used to further investigate the effect of various design, 

process, and environmental factors on the functionality of ITO films under mechano-chemical 

testing. Four study factors were considered while change in electrical resistance was selected as a 

response. The study factors were: acrylic acid concentration, applied strain, film thickness, and 

number of cycles (NOC) for fatigue and combined fatigue-corrosion experiments. In addition, 

for bending and bending-corrosion time was considered as a study factor due to the static nature 

of these experiments. The levels of each factor chosen are presented in Tables 3.3 and 3.4, 

respectively. Furthermore, regression models were developed to predict the significant effects 

and synergies of the factors on the change in electrical resistance of the electrodes.           

 

Table 3.3 Factors and levels for DOE analysis of fatigue and fatigue-corrosion experiments. 

 

 

 

Table 3.4 Factors and levels for DOE analysis of bending and bending-corrosion experiments. 
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Also, DOE with two replicates was used to further investigate the effects of the two factors 

- size and shape - on the change in electrical resistance at crack initiation observed using optical 

microscopy for patterned ITO films under controlled-buckling. The levels of both factors are 

shown in Table 3.5.   

 

Table 3.5 Factors and levels for DOE analysis of controlled-buckling experiments. 

 

 

 

3.5 Finite element analysis 

 

Finite element analysis (FEA) was performed using an engineering simulation software 

(ANSYS, Inc.) in order to predict the stress-strain distributions and potential crack initiation on 

the oxide coatings on polymer substrates under different deformation modes. A two-dimensional 

model was built using shell elements – SHELL91 as reported in previous studies [81, 99, 100]. 

The mechanical properties of the layered structure are shown in Table 3.6.  

 

Table 3.6 Mechanical properties of materials for FEA [101, 102] 
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In order to obtain an accurate model for bending experiments, a part of the sample length 

which is in contact with the mandrel circumference was considered. The length of the sample is 

calculated:  

 

𝑙 = 𝜃
36
𝜋𝑑                                                                                                         (3.3)    

 

where d is the diameter of the mandrel and θ is the angle rotation of the mandrel in half cycle.  A 

vertical displacement constraint was applied to all nodes at both edges of the film (uz = 0). In 

addition, a vertical displacement constraint was applied to all nodes at the mid-section with a 

value (uz = h) obtained from using the following equation. 

 

ℎ = 𝑑
2

(1 − sin𝜃)                                                                                            (3.4)    

   

The dimensions of the sample and the vertical displacement calculated using Eq. 3.3 and 

3.4 are shown Table 3.7. 

 

Table 3.7 Dimensions of specimen for FEA under bending. 
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Also, the same material (Table 3.6) properties were used for FEA for patterned ITO films 

under controlled-buckling testing. However, the values of the constraints and displacements were 

considered in accordance with the buckling apparatus design and dimensions. All nodes at the 

clamped ends were fully constrained and a vertical displacement (uz = 3.5 mm) was also 

considered. The dimensions of the sample used in this model were 20mm in length and 5 mm in 

width. In addition, in order to get a better stress distribution illustration, the sizes of the different 

patterns used were fifteen times that of the sizes shown in Fig. 3.1a. The error incurred, on stress 

values, using this size was found to be less than 1.5%. This is because uniform thickness and 

material properties are considered when utilizing FEA.    

 

3.6 Life-stress model 

 

Furthermore, life-stress analysis was performed using Reliasoft’s software (Reliasoft, 

Corp.).  The stresses obtained from FEA and cycles to failure values calculated from mechano-

chemical experiments under fatigue and combined fatigue-corrosion conditions were applied to 

the life-stress model based on an inverse power law (IPL)-Weibull relationship to determine the 

characteristics life of the Weibull distribution.  The IPL-Weibull relationship can be written as 

[99]: 

 

  𝑓(𝑡,𝑉) = 𝛽𝐾𝑉𝑛(𝐾𝑉𝑛𝑡)𝛽−1𝑒−(𝐾𝑉𝑛𝑡)𝛽                                                            (3.5)    

 

where V represents the applied stress level and t is cycles to failure. K and n are model 

parameters to be determined, and β represents Weibull shape parameter (slope).  
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4 CORROSION OF FLEXIBLE TRANSPARENT ELECTRODES 

 

4.2 Introduction 

 

In this chapter the corrosion behavior of ITO film deposited at room temperature on a 

polymer substrate by DC magnetron sputtering is studied in different concentrations of acrylic 

acid in order to evaluate the stability of ITO in contact with pressure sensitive acrylic acid 

containing adhesives, which are employed in the fabrication of flexible optoelectronics. 

Electrochemical studies are useful in providing information about the processes taking place at 

the interface between the working electrode and the electrolyte. Hence, open-circuit potential 

(OCP) versus time, potentiodynamic polarization (PDP), and electrochemical impedance 

spectroscopy (EIS) measurements were carried out for the as-received ITO film in 0.05 M 

acrylic acid in order to understand the influence of acrylic acid adhesives on the performance of 

ITO film. The surface morphology of ITO film after potentiodynamic polarization was 

characterized by scanning electron microscopy (SEM) and chemical analysis was performed by 

X-ray photoelectron spectroscopy (XPS). A correlation between the electrochemical behavior of 

the ITO film and its surface morphology is established. The parameters obtained in this chapter 

will be used in subsequent chapters.   

 

4.3 Results and discussion 

 

4.3.2 In-situ electrical resistance measurements 
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In-situ electrical measurements were used to assess the reliability of conductive films 

since electrical resistance changes during testing can be associated with surface changes due to 

corrosion processes [88]. Fig. 4.1 shows the normalized change in resistance. The slowest 

increase in resistance was exhibited in the case of 0.05 M acrylic acid concentration and the 

fastest being at 0.3 M concentration indicating corrosion of the ITO. Since corrosion activities 

were noted at 0.05 M, the electrochemical measurements were performed in 0.05 M acrylic acid. 

The pH was measured to be approximately 2.8. 

 

 

 

Fig. 4.1 Normalized electrical resistance vs. time for ITO film in acrylic acid of different 

concentrations 

 

4.3.3 Open-circuit potential measurement 

 

Fig. 4.2 shows the open-circuit potential vs. time curves for ITO film in 0.05 M acrylic 

acid after different immersion times. In all cases, OCP is initially shifted to more negative 
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potentials and then attain a stable potential. The steady state potentials are always more negative 

than the initial immersion potential (EOCP at t=0), suggesting that before a steady state condition 

is achieved a surface layer has to dissolve [103]. Contamination of ITO surface layer due to air 

exposure has been reported by Biswas et al. [104]. They pointed out the existence of In-OH in 

the surface layer of ITO film and a change in Ototal/In ratio due to air exposure. This is also 

consistent with the results reported by Purvis et al. [105]. In the present study, the initial shift of 

OCP to negative potentials may be related to the surface layer. Hence, the steady state OCP 

value corresponds to free corrosion potential of bare ITO film. The steady state OCP value of 

ITO film is shifted to more negative values with increasing immersion time. The shift in the 

steady state OCP to negative values may be due to dissolution of ITO in 0.05 M acrylic acid 

[106].  

 

 

 

Fig. 4.2 Open-circuit potential vs. time curves for ITO film after different immersion times in 

0.05 M acrylic acid. 
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4.3.4 Potentiodynamic polarization measurement 

 

Typical PDP curves for ITO film measured after different immersion time in 0.05 M 

acrylic acid are depicted in Fig. 4.3. The corresponding parameters determined from PDP (Tafel 

fit) curves are presented in Table 4.1. The corrosion potential, Ecorr, increases to higher values 

while the corrosion current density, Icorr, decreases to lower values with increasing immersion 

time which may imply that the electro-activity of ITO film decreases with increasing immersion 

time. This may be due to dissociation of In3+ and O2- which would be the first to be released from 

ITO [107]. The anodic and cathodic Tafel constants do not change significantly with immersion 

time. This observation suggests a charge transfer controlled reaction and the same mechanism is 

effective in both the anodic and cathodic regions [108]. In addition, the Tafel slopes obtained in 

the range of 56-79 mV/decade suggest one electron transfer reaction [109]. It has been reported 

[110] that the first ionization potential of In (5.8 eV) is lower than that of Sn (7.3 eV) and thus 

indium ought to participate readily in single electron transfer processes as compared to tin. 

Therefore, the dissolution of ITO involves reduction of In2O3 into metallic indium. Furthermore, 

the cathodic polarization curves (Fig. 4.3) are assumed to represent the cathodic decomposition 

of ITO through a reduction reaction [111]. When the ITO electrode is cathodically polarized in 

acrylic acid, In2O3 may be reduced to metallic indium [107]. The anodic polarization curves are 

assumed to represent the oxygen evolution reaction through an oxidation reaction. Produced 

oxygen ions are removed from ITO resulting in the formation of metallic indium [112]. 
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Fig. 4.3 Potentiodynamic polarization (Tafel fit) curves for ITO film after different immersion 

times in 0.05 M acrylic acid. 

 

Table 4.1 Potentiodynamic polarization parameters for ITO film after different immersion times 

in 0.05 M acrylic acid 
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4.3.5 Scanning electron microscopy 

 

A typical SEM image of amorphous ITO (as received) is shown in Fig. 4.4a. Figs. 4.4b-f 

show the SEM images of ITO and morphological changes of the ITO surface after 

potentiodynamic polarization measurements for different immersion times in 0.05 M acrylic 

acid. The SEM study confirms the extent of corrosion of ITO film in 0.05 M acrylic acid and it is 

in agreement with the potentiodynamic polarization measurements which suggest the continuous 

dissolution of ITO. As dissolution of ITO increases the film becomes more porous. 

 



57 
 

 

 

Fig. 4.4 SEM image of ITO film for (a) as received ITO, (b) 0 min, (c) 90 min, (d) 180 min, (e) 

270 min, and (f) 360 min of immersion in 0.05 M acrylic acid and after electrochemical 

measurements. 
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4.3.6 X-ray photoelectron spectroscopy 

 

To understand the corrosion phenomena, the surface of ITO film was characterized using 

XPS. XPS spectra of In 3d levels from the as received and corroded ITO films are shown in Fig. 

4.5. The asymmetry of these peaks indicates that multiple species exist. The In 3d region was 

deconvoluted to obtain two peaks which represent the contributions from In0 and In3+ states. 

These peaks were assigned to 443.8 eV and 444.9 eV, respectively, with FWHM ≤ 1.5 eV [113, 

114]. The relative concentrations of the indium species are presented in Table 4.2. These results 

show that in the first 90 minutes of immersion time, nearly half of the initial amount of In0 is 

removed when compared with the as received ITO film. This may be due to dissolution of 

metallic indium after longer immersion time in acrylic acid which is suggested by the 

polarization analysis.  The slight increase of In0 for 360 minutes of immersion may be attributed 

to metallic indium from the newly exposed surfaces that are visible in the SEM micrograph.  

 

Table 4.2 Relative concentrations of indium species for ITO film after different immersion times 

in 0.05 M acrylic acid and electrochemical measurements.  
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Fig. 4.5 XPS spectrum of ITO film for (a) as received ITO, (b) 0 min, (c) 90 min, (d) 180 min, 

(e) 270 min, and (f) 360 min of immersion in 0.05 M acrylic acid and after electrochemical 

measurements. 
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4.3.7 Electrochemical impedance spectroscopy measurement 

 

The experimental data were fitted to an equivalent circuit (Fig. 4.6) consisting of 

resistances (R), capacitances (C) and/or constant phase elements (CPE). In this circuit, Rs is the 

solution resistance, estimated by fitting the impedance data, approximately 100Ω. Csc and Rsc are 

space charge layer capacitance and space charge layer resistance, Cdl and Rct are the double layer 

capacitance and charge transfer resistance, respectively. The equivalent circuit (Fig. 4.6) which 

simulates the ITO film/electrolyte interface is proposed by Serantoni et al. [115] and Lin et al. 

[116]. Csc represents a pseudo-capacitor due to charge accumulated in the 

depletion/accumulation layer that leads to band bending inside the semiconductor and Rsc is the 

resistance due to the movement of electrons inside the space charge layer and depends on the 

potential drop inside the semiconductor and the flowing current [115]. Rct is considered due to 

the resistance to the charge transfer between the semiconductor and the solution and Cdl is 

attributed to the charge layer on the surface of the semiconductor and the counter-ion’s layer on 

the solution side accumulated to neutralize the first layer due to the electrolyte being used [115].  

A constant phase element (CPE) is used, instead of a capacitor, to take into account any non-

homogeneity of the double layer. The impedance of this element is expressed as follows [117]: 

 

ZCPE = 1/C(iω)n       (4.1) 

 

where, n is a measure of capacitive behavior of the film. When n = 1, the CPE resembles to a 

perfect capacitor and the Bode phase angle for this pure capacitive behavior is -90°. When n = 0, 

the CPE resembles to a perfect resistor and the Bode phase angle is 0° [118, 119]. 
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Fig. 4.6 The equivalent circuit used to fit the impedance data for ITO film after different 

immersion times in 0.05 M acrylic acid. 

 

Figs. 4.7-4.9 show the Nyquist and Bode plot for the ITO film after different immersion 

times in 0.05 M acrylic acid, respectively. The Nyquist plot (Fig. 4.7) shows two time constants. 

The time constant observed at low frequency region is attributed to the charge transfer reaction 

taking place at the ITO film/electrolyte interface. The time constant resolved at high frequency 

region (Fig. 4.7 inset) is attributed to the surface charge layer, which is representative of the 

semiconductor ITO film properties.  

 

 

 

Fig. 4.7 Nyquist plot for ITO film after different immersion times in 0.05 M acrylic acid. 
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Table 4.3 shows the fitting parameters for the elements in the equivalent circuit (Fig. 4.6) 

obtained by applying the Non-linear Least Square technique on the EIS data. The charge transfer 

resistance Rct, is an important corrosion parameter and is always inversely proportional to the 

corrosion current density and thus the corrosion rate [120]. Rct increases with increasing 

immersion time. The increase in the charge transfer resistance indicates that the redox reaction at 

the interface is hindered with immersion time. This observation suggests that the dynamic 

processes taking place at the ITO surface may be slowed down due to the loss of charge carrier at 

ITO film, i.e. the dissolution of metallic indium through the reduction of In2O3. The slight 

decrease in Rct observed for 360 min is consistent with the XPS results. The space charge layer 

resistance, Rsc, which is related to the stability of ITO film, increases with increasing immersion 

time. This can be related to the decrease in the electro-activity of ITO film by the expulsion of 

oxygen counter ions. 

 

Table 4.3 The parameters of equivalent circuit obtained by fitting the experimental data of EIS 

for ITO film after different immersion times in 0.05 M acrylic acid (Rs = 100 Ω cm2). 
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The double layer capacitance Cdl, is in the range of mF as ITO film employed in the 

present study is amorphous in nature. It has been reported that the conductivity of amorphous 

phase of ITO is comparatively lower than its crystalline phase [121]. 

The transition from conductive state to resistive state with increasing immersion time can 

be observed on the Bode frequency plot (Fig. 4.8) at the low frequency region. The increase in 

the resistance with immersion time at the low frequency region in the Bode frequency plot, 

which is representative of the ITO film properties, confirms the degradation of ITO film 

conductivity with immersion time in acrylic acid. 

Fig. 4.9 shows the Bode phase angle plot of ITO film after different immersion time in 

0.05 M acrylic acid. Double peaks in the phase-angle curve suggest that two time constants 

existed for the electrochemical process at the electrolyte/film interface [122]. 

 

 

 

Fig. 4.8 Bode frequency plot for ITO film after different immersion times in 0.05 M acrylic acid. 
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Fig. 4.9 Bode phase angle plot for ITO film after different immersion times in 0.05 M acrylic 

acid. 
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5 MECHANO-CHEMICAL DEGRADATION OF FLEXIBLE 

TRANSPARENT ELECTRODES 

 

5.2 Introduction 

 

In this chapter the effects of corrosion, applied mechanical strain, film thickness, and 

number of bending cycles on the electrical and structural integrity of indium tin oxide (ITO) and 

carbon nanotube (CNT) films, both coated on polyethylene terephthalate (PET) substrates, are 

investigated using design of experiment methods.    

In-situ electrical resistance monitoring was conducted during corrosion, bending, fatigue, 

bending-corrosion, and fatigue-corrosion experiments in order to study the combined action and 

further accumulation of both repeated mechanical loading and corrosion which can aggravate the 

loss of functionality of the electrodes. Crack density calculation was performed on images 

acquired using optical microscopy. In addition, scanning electron microscopy was conducted in 

order to determine failure mechanisms.  

 

5.3 Results and discussion 

 

5.3.2 In-situ electrical resistance measurements 

 

In order to investigate the effect of acid concentration, applied strain, film thickness, and 

number of cycles on the mechano-chemical degradation of the transparent electrodes under static 

and dynamic loading, in-situ electrical measurements were conducted. Electrical resistance 
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changes of the transparent conducting layer, during testing, can be associated with loss of coating 

functionality [88]. The normalized electrical resistance versus number of cycles and/or time plots 

under corrosion, bending, bending-corrosion, fatigue, and fatigue-corrosion is shown in Fig. 5.1.  

During the initial stages of fatigue-only case, two regimes of electrical resistance increase 

are observed. At first an increase of electrical resistance due to changes in dimensions of the 

compliant substrate, until an equilibrium size is attained, and then a gradual linear increase that 

may be due to cracking of ITO. Gorkhali et al. [80] reported that the initial increase of electrical 

resistance for an applied strain of 1.5% is 50-100 cycles. In this study the initial increase, for 

0.5% lower applied strain, is observed to lie around 800-1000 cycles (Fig. 5.1f). Also, in all 

cases, the change in electrical resistance for specimens subjected to fatigue-corrosion is observed 

to be the highest. On the other hand the lowest change is observed in the case of corrosion-only 

experimental conditions. Furthermore, the critical number of cycles (Fig. 5.2) for initial loss of 

functionality, under fatigue and combined fatigue-corrosion of ITO films, is determined from an 

increase of 10% in electrical resistance (Fig. 5.1).  

 



67 
 

 

 

Fig. 5.1 Normalized electrical resistance versus experimental number of cycles and/or time for 

ITO-coated PET at applied strain and film thickness of: (a) 70 nm and 0.6%, (b) 200 nm and 

0.6%, (c) 70 nm and 0.8%, (d) 200 nm and 0.8%, (e) 70 nm and 1.0%, (f) 200 nm and 1.0%, 

respectively. 
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Fig. 5.2 Critical number of cycles for fatigue and fatigue-corrosion of ITO-coated PET for film 

thickness of (a) 70 nm and (b) 200 nm.  
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In general, specimens under fatigue-corrosion degradation are observed to exhibit a lower 

critical number of cycles for both 70 and 200 nm thick ITO films. This denotes the significance 

of the combined effect of fatigue and corrosion, which can be used as an accelerated degradation 

experimental protocol that can aid towards identifying the interrelation of the critical factors that 

influence the long-term reliability of the device component.  

Fig. 5.3 shows the effect of applied strain on the electrical degradation of ITO films at 

different degradation conditions. A common observation is that, for each condition and film 

thickness, the higher the applied strain the larger the positive change in electrical resistance. For 

example, we observe that at 150,000 cycles the change in ITO (200 nm) electrical resistance 

during fatigue-corrosion is 300% for 0.6% strain and 1107% for 1.0% applied strain. This is 

denoting a more than a threefold increase. Such phenomenon can be related to the increased film 

crack formation as the applied strain increases.  
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Fig. 5.3 Effect of strain on normalized electrical resistance for different testing conditions at 

150,000 number of cycles for film thickness of (a) 70 nm and (b) 200 nm.   
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Also, the effect of film thickness on the electrical degradation of ITO films was 

investigated at different conditions, as shown in Fig. 5.4. Higher change in electrical resistance 

values are observed for the thicker films, suggesting that they are influenced, more than their 

thinner counterparts, by the pure mechanical or the mechano-chemical imposed degradation. It is 

believed that that the higher concentration of pre-existing flaws and defects in the thicker layer 

may play a role for such a response. On the other hand, it has been reported in the past that 

thinner layers of ITO can better withstand applied strain than thicker layers [71]. However, the 

increase in resistance is not observed to be as large as the one observed during the application of 

different strains. This indicates the higher significance of applied strain as a degradation factor.  
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Fig. 5.4 Effect of film thickness on normalized electrical resistance for different testing 

conditions at 150,000 number of cycles at applied strains (a) 0.6%, (b) 0.8%, and (c) 1.0%.    
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Furthermore, CNT films are tested under the same conditions. In contrast to the ITO film 

behavior, CNT-based electrodes exhibit a different trend as shown in Fig. 5.5.  

 

 

 

Fig. 5.5 Normalized electrical resistance versus experimental time/number of cycles for CNT-

deposited PET at applied strain of: (a) 0.6% and (b) 1.0%.  
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The change in electrical resistance is observed to be negative, indicating enhanced 

electrical conductivity of the CNT films. In the presence of a combined mechano-corrosive 

environment this negative change becomes more pronounced. It is believed that the observed 

behavior is due to the effect of the acrylic acid solution. The role of acid treatment on CNT 

networks has been reported in the past. The acid further treats and enhances the metallicity of the 

CNTs as suggested by both Geng et al. and Nirmalraj et al. [123, 124]. In addition, Hecht et al. 

[125] reported that immersion of CNT films on polycarbonate substrates in 0.1 M acrylic acid 

solution leads to a negative change in electrical resistance (-2.5%). In this study, the combined 

effect of fatigue and acidic corrosion leads to increased binder cracking and, therefore, to a larger 

CNT area exposure. This in turn leads to an increased number of acid-treated CNT bundles and, 

therefore, higher film conductivity. However, the change in electrical resistance value is not 

significant as compared to the ITO film case. It is therefore suggested that CNT films can better 

withstand externally applied strains than their ITO counterparts under the combined actions of 

fatigue and corrosion.  

 

5.3.3 Design of experiments 

 

A further investigation of the effects of corrosion, applied strain, film thickness, and 

number of cycles (NOC) on the electrical degradation of ITO films was conducted using DOE 

methods. Table 5.1 shows the analysis of variance (ANOVA) for the main effects and their two-

way and three-way interactions under fatigue and fatigue-corrosion.   
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Table 5.1 Analysis of variance (ANOVA) for fatigue and fatigue-corrosion  

 

 

 

All design factors and their two-way interactions are found to be significant since their P-

values are less than the confidence level (α = 0.05). However, three-way interactions involving 

thickness are observed to be insignificant. From the main effects plots (Fig. 5.6), the most 

significant effects are acid concentration, strain, and NOC. High initial rate of change of ITO 

electrical resistance is observed for both strain and NOC. The significant contribution of 

corrosion on the change in electrical resistance increase is shown by the two-way interaction 

plots (Fig. 5.7).  
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Fig. 5.6 Main effects plot for change in electrical resistance for ITO films under fatigue and 

fatigue-corrosion.    

 

 

 

Fig. 5.7 Interaction plot for change in electrical resistance for ITO films under fatigue and 

fatigue-corrosion.    
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The ANOVA for bending and bending-corrosion experiments is shown in Table 5.2. All 

design factors and their two-way interactions except a two-way interaction of thickness and time 

are observed to be significant. However, only one three-way interaction involving thickness is 

observed to be significant.  

 

Table 5.2 Analysis of variance (ANOVA) for bending and bending-corrosion  

 

 

 

In addition, comparable trends of main effects and two-way interactions are observed for 

bending and bending-corrosion as in fatigue and fatigue-corrosion as shown in Figs. 5.8 and 5.9 

respectively. However, the maximum change in electrical resistance under bending-corrosion is 

59% whereas under fatigue-corrosion it is observed to be 1107%. This further confirms the long-

term significance of fatigue-corrosion in the design of optoelectronic devices.   
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Fig. 5.8 Main effects plot for change in electrical resistance for ITO films under bending and 

bending-corrosion.    

 

 

 

Fig. 5.9 Interaction plot for change in electrical resistance for ITO films under bending and 

bending-corrosion.    
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The reliability of the ANOVA results is confirmed by the normal probability plots of the 

randomly distributed residuals around the mean as shown in Fig. 5.10.  

 

 

 

Fig. 5.10 Normal probability plot for change in electrical resistance for ITO films under: (a) 

fatigue and fatigue-corrosion (b) bending and bending-corrosion.    

 

The equations of the regression models to predict the significant effects of the factors and 

their interactions on the change in electrical resistance under fatigue-corrosion (Eq. 5.1) and 

static bending-corrosion (Eq. 5.2) are given below.  
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∆𝑅 𝑅⁄ , % = 427 − 17099𝐴𝐶 − 0.0056𝑁𝑂𝐶 + 21311𝐴𝐶 ∗ 𝑆 + 0.0736𝐴𝐶 ∗ 𝑁𝑂𝐶 + 0.00701𝑆

∗ 𝑁𝑂𝐶                                                                                                             (5.1)          

 

∆𝑅 𝑅⁄ , % = 26.6 − 778𝐴𝐶 − 29.7𝑆 − 0.000458𝑇 + 985𝐴𝐶 ∗ 𝑆 + 0.00625𝐴𝐶 ∗ 𝑇

+ 0.000567𝑆 ∗ 𝑇                                                                                          (5.2)          

  

where AC, S, NOC, and T, are acid concentration, applied strain, number of cycles, and time, 

respectively. The terms of p-values (Table 5.3 and 5.4) greater than 0.05 are removed from the 

regression model since they are not statistically significant.  

 

Table 5.3 Regression coefficients for fatigue and fatigue-corrosion 
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Table 5.4 Regression coefficients for bending and bending-corrosion 

 

 

 

5.3.4 Microscopy 

 

Figs. 5.11 and 5.12 show a typical ITO film cracking progression under fatigue and 

fatigue-corrosion degradation. When the number of cycles reaches a critical value, straight line 

cracks perpendicular to the straining direction is observed as shown in Figs. 5.11a and 5.12a.  As 

the number of cycles increases, more cracks are observed to form. This is also confirmed by the 

crack density versus NOC relation shown in Fig. 5.13. However, the crack morphology is 

different for fatigue and fatigue-corrosion experiments. In particular, secondary cracks in the 

transverse direction are observed to form at a higher NOC for specimens under fatigue-corrosion 

as shown in Figs. 5.12e and f. Fatigue striations due to an increment of crack growth and 

simultaneous blunting and resharpening of the crack tip by plastic deformation are observed 

[126]. Furthermore, coating delamination is observed (Fig. 5.12f) for films under fatigue-

corrosion at 150,000 cycles.     
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Fig. 5.11 Optical microscopy images of cracked 200 nm thick ITO films under fatigue. The 

corresponding number of cycle values is indicated on the images. Arrows indicate the tensile 

direction. Applied strain is 1.0%. 
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Fig. 5.12 Optical microscopy images of cracked 200 nm thick ITO films under fatigue-corrosion. 

The corresponding number of cycle values is indicated on the images. Arrows indicate the tensile 

direction. Applied strain is 1.0%. 

 

Figs. 5.14 and 5.15 show an SEM image of ITO and CNT-based conducting surfaces 

under fatigue-corrosion experiments, respectively. Severe coating delamination is observed for 
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the ITO surface after 150,000 cycles of testing. On the other hand under the same conditions, 

very limited binder delamination is observed with the underlying CNTs being mostly intact. This 

is in agreement with the electrical resistance changes observed for both materials.     

 

 

 

Fig. 5.13 Crack density versus number of cycles for 200 nm thick ITO films under fatigue and 

fatigue-corrosion. 
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Fig. 5.14 SEM image showing cracks on the surface ITO coated PET at 1.0 % applied strain and 

150,000 cycles under fatigue-corrosion. Arrows indicate the tensile direction. 
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Fig. 5.15 SEM image showing delamination of top coat on the surface CNT coated PET at 1.0 % 

applied strain and 150,000 cycles under fatigue-corrosion. Arrows indicate the tensile direction. 

 

5.3.5 Finite Element Analysis 

 

Fig. 5.16 shows the Von Mises stress distribution. We observe that the highest stress is 

located in the middle section of the top ITO layer. This is indicating a higher potential for crack 

initiation under fatigue conditions. This is a typical and therefore expected response of thin films 

on compliant substrates [127]. The stress distribution, for the three different bending mandrels 

(Fig. 5.17a) and for the two different film thicknesses (Fig. 5.17b), indicates that the effect of 

applied strain is more significant than the film thickness factor. This is in agreement with our 

DOE results.  
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Fig. 5.16 (a) and (b) Von Mises stress distribution, and (c) and (d) Von Mises strain distribution 

of 200 nm thick ITO-coated PET.  
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Fig. 5.17 (a) Effect of applied strain and (b) effect of thickness on the stress distribution of ITO 

film. 

 

5.3.6 Life-stress model 

 

Life prediction of ITO films are performed for both fatigue and fatigue-corrosion 

experiments. Cycles to failure data obtained from accelerated electromechanical testing and 

stress values from FEA were analyzed using IPL-Weibull model with maximum likelihood 

estimation method. Fig. 5.18 shows a typical relation of cycles to failure versus mechanical 
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stress under fatigue and fatigue-corrosion conditions. The parameters of the assumed model for 

both fatigue and fatigue-corrosion conditions are summarized in Table 5.5.  The parameter n in 

the inverse power relationship (Eq. 3.5) is a measure of the effect of the stress on the cycles to 

failure [128]. Thus, the higher n values observed for the thicker films, under both experimental 

conditions, suggest that they are more sensitive to stress variation and thus, lower cycles to 

failure values than their thinner counterparts.   

 

 

 

Fig. 5.18 Cycles to failure versus stress for the 200 nm thick ITO film under: (a) fatigue and (b) 

fatigue-corrosion.  
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Table 5.5 Parameters for IPL-Weibull model 
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6 CONTROLLED-BUCKLING BEHAVIOR OF PATTERNED 

ELECTRODES 

 

6.2 Introduction 

 

In this chapter the mechanical behavior of various patterned ITO shapes and sizes on PET 

was investigated. Micron-sized shapes include squares, circles, and zigzag-based structures. 

Controlled-buckling experiments were performed in-situ using an optical microscope in order to 

monitor critical strains and potential failure mechanisms. In addition, ITO electrical resistance 

changes were continuously monitored during deformation. Furthermore, ex-situ characterization 

of the tested surfaces using scanning electron microscopy was conducted. Patterned brittle 

structures may be able to accommodate higher mechanical strains than their full film covered 

counterparts because of their controlled shape and size.  

    

6.3 Results and discussion 

 

6.3.2 Finite element analysis results 

 

The Von Mises stress distribution for both the unpatterned and patterned films under buckling 

conditions is shown in Fig. 6.1. In both ITO tensile and compressive buckling modes, the highest 

stress is found to be concentrated around the central part and at the clamped edges of the top ITO 

layer. On the other hand, the lowest stress is observed to occur at the PET substrate. This bell 

shaped stress distribution is typical for relatively high modulus coatings on compliant substrates 
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[127] and it is in agreement with experimental results since cracks are observed to initiate at such 

locations.  

 

 

 

Fig. 6.1 Von Mises stress distribution of (a) unpatterned and (b) square-patterned film under 

tensile buckling; (c) circle and (d) zigzag patterned film under compressive buckling. 

 

The maximum Von Misses stress values for square, circle, and zigzag-patterned ITO films were 

found to be 2.343, 2.346, and 2.360 GPa, respectively. The highest stress is obtained for the 

zigzag-patterned film while the lowest stress is observed for the square-patterned film. This can 

be due to the smaller material volume present in the zigzag patterned film as illustrated in Table 
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6.1. However, the results of the model can only be taken as indicative since a film of uniform 

thickness, without any defect, and no edge-effects was considered. In practice, the edge 

definition of the etched surfaces may play an important role in the mechanical behavior of the 

buckled structure.         

 

Table 6.1 Calculated volume for different patterned shapes of ITO and their corresponding 

values of (a) COS-R, (b) COS-M, and (c) ∆R/R at COS-M. A1/A2 is the change in area along the 

axis of the patterns.  

 

 

 

6.3.3  Controlled buckling experiments 

 

In order to investigate the effect of size and shape of different patterns of ITO coated PET 

films, specimens were strained up to a 6% applied strain under controlled buckling conditions. 

During testing, the ITO surface was placed under both tension and compression with in-situ 

electrical resistance and surface optical microscopy monitoring. The crack onset strain was 
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determined using both the normalized electrical resistance (COS-R) and optical microscopy 

(COS-M) monitoring tools. COS-R values were determined from the sudden increase in 

electrical resistance (Figs. 6.2 and 6.3). In particular, an increase of 10% in electrical resistance 

is chosen arbitrarily to denote the crack onset initiation, COS-R [69].   

 

 

 

Fig. 6.2 Normalized electrical resistance versus applied strain for the smaller size patterned ITO 

coated PET films under (a) tension and (b) compression.   
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Fig. 6.3 Normalized electrical resistance versus applied strain for the larger size patterned ITO 

coated PET films under (a) tension and (b) compression.   

 

Fig. 6.2 and 6.3 show a typical change in ITO electrical resistance for layers under both 

tensile (Fig. 6.2a and 6.3a) and compressive (Fig. 6.2b and 6.3b) buckling modes. A slightly 

more rapid increase in resistance is observed in the case of the smaller size square-shaped 
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patterns, around 1.25% tensile strain and 1.5% compressive strain respectively. The COS-R 

values under tension and compression are summarized in Fig. 6.4. They indicate that the tensile 

mode is more critical than the compressive mode. In particular, the tensile COS-R value for the 

smaller size circular pattern is observed to be 1.379% whereas the compressive COR-R value is 

equal to 1.846%. These COS-R values are comparable with unpatterned ITO films on PET 

substrates [75]. In addition, the higher COS-R values, both under tension and compression, 

observed for the smaller size patterns may suggest that a reduced volume of active brittle 

material leads to improved reliability due to the reduced number of intrinsic defects present in 

the film. The effects of material volume on the mechanical behavior of thin films have been 

discussed previously. As the volume of the material increases, lower values of yield stress were 

obtained [129].  

 

 

 

Fig. 6.4 Crack onset strain from change in electrical resistance monitoring of ITO coated PET 

films.  
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Furthermore, the COS-R values indicate that the smaller size circular and zigzag 

patterned ITO films performed better than the square patterned films. In addition to the volume 

differences, this can be associated with the change in area (A1/A2 is the change in area along the 

axis of the pattern), sharpness, and number of corners present in the patterns. Fig. 3.1b shows the 

sharpness angle, and Table 6.1a illustrates calculated volume and the corresponding COS-R 

values. Considering small size patterns, the square-shaped pattern exhibits the highest 

combination of material volume, change in area (A1/A2), corner angle, and number of corners. It 

is believed that such combination contributes to the stress concentration factor which may 

initiate cracks in the brittle coating earlier as compared to the other patterned film structures.  

   

6.3.4 Microscopy 

 

Fig. 6.5 and 6.6 show a typical cohesive failure progression under tensile and 

compressive buckling deformation modes, respectively. When the externally applied strain 

reaches a critical value, the onset of straight line cracks oriented perpendicular to the 

compression direction is observed (Fig. 6.5b and 6.6b). Initially very few cracks are forming. 

However, as the externally applied strain increases (Fig. 6.5c and 6.6c), more cracks are 

observed to form. Further increase of applied strain, as depicted in Fig. 6.5d and 6.6d, results in 

an increased number of cracks and an associated decrease in spacing between them. The 

contraction of the PET substrate underneath the coating cracked edges shown in Fig. 6.6d 

indicates coating delamination due to the applied compressive mode. Similar cohesive failure 

progression is observed for both square and zigzag-shaped patterns as shown in Fig. 6.7 and 6.8 
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and Fig. 6.9 and 6.10, respectively. The coating delamination of specimens under compressive 

buckling failure mode is confirmed by the SEM micrographs shown in Fig. 7.11b. This is a 

typical buckling-driven delamination case for ITO films on polymer substrates [78, 130]. Fig. 

7.11a shows a typical cohesive cracking failure for specimens under tensile buckling mode. In 

both cases, it is observed that failure is driven by micro-cracks initiating from the edges. 

Controlling the edge etch definition is of paramount importance and can lead to increased 

reliability of the patterned coatings since it will diminish the edge-generated micro-cracks.       

 

 

 

Fig. 6.5 Optical microscopy images of circular-patterned ITO coated PET films under tensile 

buckling deformation mode showing crack initiation and propagation up to 6% strain. Arrows 

indicate the buckling direction.   
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Fig. 6.6 Optical microscopy images of circular-patterned ITO coated PET films under 

compressive buckling deformation mode showing crack initiation and propagation up to 6% 

strain. Arrows indicate the buckling direction. 

 



100 
 

 

 

Fig. 6.7 Optical microscopy images of square-patterned ITO coated PET films under tensile 

buckling deformation mode showing crack initiation and propagation up to 6% strain. Arrows 

indicate the buckling direction.   
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Fig. 6.8 Optical microscopy images of square-patterned ITO coated PET films under 

compressive buckling deformation mode showing crack initiation and propagation up to 6% 

strain. Arrows indicate the buckling direction.  
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Fig. 6.9 Optical microscopy images of zigzag-patterned ITO coated PET films under tensile 

buckling deformation mode showing crack initiation and propagation up to 6% strain. Arrows 

indicate the buckling direction.   
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Fig. 6.10 Optical microscopy images of zigzag-patterned ITO coated PET films under 

compressive buckling deformation mode showing crack initiation and propagation up to 6% 

strain. Arrows indicate the buckling direction.  
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Fig. 6.11 SEM micrographs of patterned ITO coated PET films under (a) tensile and (b) 

compressive buckling deformation. Arrows indicate the buckling direction.  

 

Fig. 6.12 shows COS-M values, for different pattern shapes and sizes, determined using 

the optical microscopy images. These values are found to be significantly higher than their COS-

R counterparts. The latter may suggests earlier failure initiation before cracks can be detected 

with optical microscopy. This is confirmed by the change in electrical resistance values (Fig. 

6.13) at COS-M in which all specimens are observed to have greater than the 10% increase in 

resistance. These results are summarized in Table 6.1. It is believed that the role of the etch 

definition and initiation of edge micro-cracks may play a significant role. In particular, it is 

observed that the patterns under tension exhibit the largest deviation values between COS-M and 

COS-R. This can be related to the cohesive failure mode that is initiated at the pattern edges due 

to pre-mature cracking that is not detectable by optical microscopy. On the other hand smaller 

deviations are observed when the patterned film is under compression. This can be due to the 

lesser effect of the edge cracks on the patterned coating’s delamination from the underlying 

substrate.   
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Fig. 6.12 Crack onset strain from in situ optical microscopy monitoring of ITO coated PET 

films.  

 

 
 

Fig. 6.13 Normalized electrical resistance at COS-M for ITO coated PEN films. 
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6.3.5 Design of experiments 

 

A further investigation of the effects of size and shape on the electrical degradation of 

patterned ITO films was conducted using DOE methods. Table 6.2 and 6.3 show the analysis of 

variance (ANOVA) for the main effects and their interaction for ΔR/R at COS-M under both 

tensile and compressive buckling conditions, respectively. 

 

Table 6.2 Analysis of variance (ANOVA) for ΔR/R at COS-M under tensile buckling.  

 

 

 

Table 6.3 Analysis of variance (ANOVA) for ΔR/R at COS-M under compressive buckling.  

 

 

 

 In both cases, the design factors are found to be significant since their P-values are less 

than the confidence level (α = 0.05). However, their interaction is observed to be insignificant. 

From the main effects plots (Fig. 14), the shape of the patterns is more significant than their size. 
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This may be due to the geometrical variables – change in area (A1/A2), sharpness, and number of 

corners – present in the patterns are associated with the shape factor. Also, square-shaped 

patterns observed to exhibit a higher change in electrical resistance values. This is due to the fact 

that they have the highest combinations of geometrical variables.  

 

 

 

Fig. 6.14 Main effects plot for change in electrical resistance at COS-M for ITO films under: (a) 

tensile and (b) compressive buckling.     

 

The significant contribution of size on the ΔR/R at COS-M is shown by the interactions 

plots (Fig. 15). This is in agreement with previous work by Bouten et al. [69] who investigated 
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the mechanical behavior of ITO line patterns. Using the two-point bending method on narrow 

patterned ITO lines on Arylite substrates, they obtained COS values of 1.35, 1.29, 1.22, and 

1.19%, for ITO lines of 10, 30, 100, and 300 µm width, respectively.   

The reliability of the ANOVA results is confirmed by the normal probability plots of the 

randomly distributed residuals around the mean as shown in Fig. 16.  

 

 

 

Fig. 6.15 Interaction plot for change in electrical resistance at COS-M for ITO films under: (a) 

tensile and (b) compressive buckling. 
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Fig. 6.16 Normal probability plot for change in electrical resistance at COS-M for ITO films 

under: (a) tensile and (b) compressive buckling. 
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7 TRIBO-CORROSION OF FLEXIBLE TRANSPARENT ELECTRODES 

 

7.2 Introduction 

 

The efficiency and long term reliability of multilayered films of Ag/Ag-alloy based ITO 

used in solar energy applications depend on the surface integrity of the film. Surface integrity 

can be breached due to exposure to a harsh outdoor environment and mishandling. It is therefore 

important to study the tribo-corrosion properties of such film systems.  

Surface integrity and durability of solar materials can be an important issue in solar energy 

applications such as heat mirrors used in flat-plate collectors, solar heating, concentrating solar 

power systems, low-emissivity windows and spectrally selective surfaces. This is because 

damaged surfaces can lead to a degradation of optical components and thus to a compromised 

system efficiency. Therefore, the widespread adoption of such technologies depends on the 

development of highly durable and low cost solar films deposited on rigid and flexible substrates 

[131-133]. 

In this chapter a combined tribological and corrosion approach using ITO/Ag/ITO and 

ITO/Ag-alloy/ITO films in aggressive salt environments is undertaken in order to investigate the 

suitability of such model systems as durable components in solar energy and energy-efficient 

applications that are currently emerging. Investigation of the tribo-corrosion behavior of the 

electrodes is critical in the design and manufacturing of reliable flexible devices which will 

remain functional after repetitive mechanical flexing under harsh environmental conditions. 

Also, understanding the tribo-corrosion properties of multilayers can lead to increasing 

efficiency and long term reliability of such electrode components.     



111 
 

 

7.3 Results and discussion 

 

7.3.2 In-situ electrical resistance measurements 

 

In-situ electrical resistance measurements can be an invaluable tool for assessing the 

reliability of conductive multilayers. This is because electrical resistance changes during testing 

can be associated with surface changes due to wear and corrosion processes [88].   

Fig. 7.1 shows the electrical resistance change with number of reciprocating cycles with 

focus on the initial stage of the experiment and up to 540 reciprocating cycles. 

 

 

 

  Fig. 7.1 In-situ electrical resistance measurement against number of reciprocating cycles. 
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The smoothest electrical resistance change is observed in the case of the ITO/Ag-Au/ITO 

multilayer underlying the corrosion resistance to NaCl of Au and its importance as an alloying 

compound. On the other hand, after approximately 200 reciprocating cycles a sharp increase in 

resistance change is observed for the case of the ITO/Ag-Pd/ITO sample. This is a surprising 

result, regarding the contribution of corrosion to the process, since the ITO/Ag/ITO sample could 

exhibit the sharpest electrical resistance increase since it is not alloyed. This may indicate 

reduced adhesion between the ITO and the Ag-Pd layer. 

A change of 20% in electrical resistance can be defined as a typical coating failure 

initiation point in this case. Fig. 7.2 shows a bar graph for the three samples under investigation 

and their 20% resistance change values during reciprocating sliding against a PTFE ball in NaCl 

1 M solution. It is observed that failure initiation for the ITO/Ag-Pd/ITO sample occurs at 

around 200 reciprocating cycles and then the ITO/Ag/ITO sample follows with a failure 

initiation point at around 219 cycles. The Ag-Au based sample exhibits the most durability with 

failure initiation corresponding to 268 reciprocating cycles.  

 

 

 

Fig. 7.2 Critical number of reciprocating cycles for 20% electrical resistance increase. 
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7.3.3 Weight measurements 

 

Weight measurements before and after wear testing were conducted in order to determine 

the wear behavior of sliding surfaces. In this work both the multilayer surface and the PTFE ball 

counterbody were weighed before and after testing. 

Fig. 7.3 shows the relation of weight loss with the number of reciprocating cycles in 1M 

NaCl solution. Minimal weight change is observed up to 540 reciprocating cycles for all three 

samples. Above the 540 cycle threshold, a rapid wear regime is observed until around 1080 

reciprocating cycles. Above 1080 cycles a plateau regime is observed mostly for the 

ITO/Ag/ITO and the ITO/Ag-Au/ITO samples. The ITO/Ag-Pd/ITO multilayer is observed to a 

weight loss above 1080 reciprocating cycles.         

 

 

 

Fig. 7.3 Graph showing the weight loss of multilayer films versus number of reciprocating cycles 

in 1 M NaCl solution.  
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However, it is essential to measure the weight loss of the counterbody (PTFE) ball and 

consider it with respect to the multilayer wear. This is important because the PTFE surface is 

wearing with increasing reciprocating cycles, as shown in Fig. 7.4, resulting in a counterformal-

to-conformal contact transition. 

 

 

 

Fig. 7.4 Graph showing the weight loss of the PTFE sliding balls with respect to number of 

reciprocating cycles in 1M NaCl solution. 

 

Minimal weight loss is observed for tests below 540 reciprocating cycles suggesting 

minimal wear of the ball surface. This can also be attributed to the low friction coefficient of the 

PTFE material. More significant PTFE wear is observed above 540 sliding reciprocating cycles 

in 1M NaCl. This is mostly observed for balls sliding against the Ag and Ag-Au alloy-based ITO 

surfaces. At a high number of reciprocating cycles (above 3240) a rapid PTFE weight loss, for all 
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samples, is observed suggesting possible material transfer and impregnation on to the worn 

polymer substrate. 

 

7.3.4 X-ray photoelectron spectroscopy 

 

Multilayer worn surface investigation was conducted using XPS in order to assess the 

combined effect of wear and corrosion. XPS surface scans were conducted for all three samples 

and for the whole range of reciprocating cycles including untested samples for comparison 

purposes. Typical x-ray photoelectron spectra are shown in Fig. 7.5.  

 

 

 

Fig. 7.5 Typical x-ray photoelectron spectra for the case of Ag-Pd based ITO multilayer and 

increasing number of reciprocating cycles. 
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XPS confirms the transfer and impregnation of PTFE material on to the worn polymer 

surface at high reciprocating cycles. A fluorine peak at 688 eV is observed to first occur at 3240 

cycles. It can then be suggested that some of the PTFE debris particles, previously acted as 

abrasion particles, are impregnating the soft polymer substrate.  This observation is consistent for 

all sample surfaces. Another important information that can be extracted from observing the XPS 

graph is the diminishing intensity of both the In and Sn peaks with increasing number of 

reciprocating cycles indicating progressive wear of the ITO layers until total exposure of the 

underlying substrate. Fig. 7.6 shows a graph of the atomic percentage in In concentration versus 

the number of reciprocating cycles as measured by XPS.  

 

 

 

Fig. 7.6 Graph showing In atomic percentage concentration against number of reciprocating 

slides for all three samples sliding against PTFE balls in 1M NaCl solution. 
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It is observed that the ITO layers are almost totally removed at 3240 cycles for all 

samples since the In concentration has decayed approaching 0%. This coincides with the PTFE 

material transfer mechanism to the polymer substrate. There is no detectable In concentration 

above 3240 reciprocating cycles suggesting total ITO removal. 

 

7.3.5 Electrochemical impedance spectroscopy 

 

EIS is used in order to assess the effect of wear on the corrosion resistance of the Ag and 

Ag-alloy-based ITO structures during the initial stages of the tribo-corrosion process and up to 

540 reciprocating cycles. Fig. 7.7 shows a representative Nyquist plot for Ag-Au –based ITO 

samples worn up to 540 cycles. The complex impedance at each frequency is usually expressed 

by its real component (Z') and its imaginary component (Z'') in a Nyquist plot.    The Nyquist 

plot (Fig. 7.7) shows two time constants; one at higher frequencies as shown in the inset 

indicating ITO top layer breakdown and another at lower frequencies suggesting corrosion of the 

interlayer. It is observed that as the number of reciprocating cycles increases, the corrosion 

resistance of the structure is decreasing. This is highlighting the significant role that the tribology 

component is playing in the corrosion process.  

The equivalent circuit diagram shown in the inset in Fig. 7.8 consists of a solution 

resistance Rs, a film resistance due to defects Rf, a film capacitance Cf, a constant phase element 

CPE and a charge transfer resistance Rct. This is a common model used to investigate the 

localized corrosion of coatings exhibiting pinholes and other permeable defects. When in contact 

with the coating the electrolyte solution is penetrating it at defect sites and corrosion reactions 

are occurring at the interface of the top coating and the interlayer [122].  Fig. 7.8 reveals a 
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decreasing trend of charge transfer resistance Rct with increasing number of reciprocating cycles 

thus indicating an increasing corrosion rate with increasing number of cycles because of removal 

of the top layer due to the sliding wear process. The decrease is more pronounced in the 

ITO/Ag/ITO case suggesting the importance of Ag-alloying for corrosion protection against 

harsh salt-containing environments. It has been reported [122] that corrosion reactions of Ag 

exposed to NaCl include formation of AgCl which is an anodic polarization of the sample 

working electrode.       

 

 

 

Fig. 7.7 Typical Nyquist plot for ITO/Ag-Au/ITO structures worn for up to 540 reciprocating 

cycles. 
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Fig. 7.8 Charge transfer resistance versus number of reciprocating cycles. Inset shows the 

equivalent circuit diagram used to model the multilayer structure.   

 

7.3.6 Microscopic characterization 

 

7.3.6.1 PTFE counterbody 

 

In most cases cohesive wear in the form of abrasion by the ITO counter surface asperities 

and debris particles is observed for the PTFE counterbody. The PTFE surface and subsurface 

material deforms plastically. This is caused by counterface asperities and ITO debris fragments. 

The permanently deformed ridges are oriented parallel to the reciprocating sliding direction and 

their density increases with increasing number of reciprocating cycles. Some plastically 

deformed areas are also observed as shown in the two sides of Fig. 7.9a indicating ploughing and 
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cutting of the polymer. In the middle of Fig. 7.9a a lump of debris is also observed. This is 

confirmed by Fig. 7.9b showing a 3D profile of the worn PTFE ball.   

 

 

 

 

 

Fig. 7.9 (a) Optical microscopy image of a PTFE ball surface sliding against an ITO/Ag/ITO 

surface in reciprocating motion for 4320 cycles, (b) 3-D surface profile of the same PTFE 

surface. Arrows indicate reciprocating motion direction.  
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7.3.6.2 Multilayered sample surfaces 

 

At low numbers of reciprocating cycles and up to 540 cycles, microcutting is observed as 

shown in Fig. 7.10a for the case of an ITO/Ag-Au/ITO samples worn for 540 cycles. Large 

regions of delaminated coating are observed with some corrosion initiation within them. When 

the number of reciprocating cycles increases to 3240 cycles (Fig. 7.10b) the wear track becomes 

well defined and the underlying polymer substrate is exposed. The multilayered film is mostly 

removed by the combined action of the counterbody and the corrosive environment.  Ploughing 

and plastic deformation of the underlying substrate is noted as well as PTFE material 

impregnation.  

Microcutting accompanied with brittle ITO coating fragment failure and initiation of 

coating removal is also observed for a relatively low number of reciprocating cycles, below 540, 

as shown in Fig. 7.11. This is consistent with XPS data which shows a gradual decrease of the In 

concentration even at the low reciprocating cycle regime.     
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Fig. 7.10 (a) Optical image of a worn ITO/Ag-Au/ITO sample surface for 540 reciprocating 

cycles. Scale bar is the same for both images and equal to 0.1 mm (b) Optical image of a worn 

ITO/Ag-Au/ITO sample surface for 3420 reciprocating cycles. The double-headed arrow is the 

same for both images and indicates reciprocating direction. 

 

 

 

Fig. 7.11 SEM image of a worn ITO/Ag-Au/ITO sample surface for 270 reciprocating cycles. 

Double-headed arrow indicates the reciprocating direction.  
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8 CONCLUSIONS  

 

The motivation of this research was to investigate the electromechanical and 

mechanochemical degradation behavior of flexible transparent electrodes which are used as 

anodes in various optoelectronic device applications. The electrodes may corrode due to acid-

containing materials present in the device stacks. In addition, structural failure may occur due to 

external applied loading. It is therefore important to characterize the electrodes under different 

experimental methods which are all simulate induced stress and failure during manufacturing and 

in-service condition.   

A substantial amount of effort was directed towards testing such electrodes under different 

stress states and deformation modes. This effort was divided into four parts: the development of 

new testing techniques, the actual testing of various electrodes, the finite element analysis, and 

the statistical analysis. 

• A fatigue-corrosion apparatus was custom-built in order to accommodate the combined 

action of fatigue and corrosion on flexible electrodes. Also, a previously custom-built 

wear tester was modified in order to accommodate tribo-corrosion testing of multi 

layered electrodes for photovoltaics.    

• During testing, in-situ electrical resistance monitoring was performed in order to 

determine the crack onset strain or cycles to failure. Also, ex-situ surface characterization 

was performed in order to investigate the structural integrity of the electrodes after 

testing.    

• FEA was used in order to predict the stress distribution and potential crack initiation on 

the electrodes.  
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• DOE methods were used to investigate the effects and synergies of corrosion, applied 

strain, film thickness, and number of bending cycles and/or time on the electrical and 

structural integrity of the electrodes. Also, an empirical model was built to predict the 

increase in electrical resistance change based on statistical significant factors. Finally, a 

life-stress analysis was performed using the stresses obtained from FEA and cycles to 

failure values from mechanochemical experiments.  

 

8.1 Conclusions from the corrosion studies 

 

The corrosion behavior of ITO film on PET substrate was investigated in 0.05 M acrylic 

acid to understand its stability in contact with acrylic adhesives. The steady state open circuit 

potential of ITO film is shifted to negative values with immersion time in 0.05 M acrylic acid. 

This observation suggests an increase in the dissolution of ITO film in 0.05 M acrylic acid with 

increasing immersion time. The potentiodynamic polarization results indicate an increase in Ecorr 

and a decrease in Icorr to lower values with time. This suggests that the electro-activity of ITO 

film decreased with increasing immersion time. SEM investigations show corrosion of the ITO 

film whereas XPS analysis indicates a removal of indium from the ITO layer. The EIS 

measurements reveal two time constants and an increase in the charge transfer resistance of the 

Nyquist plot which suggests a decrease in the conductivity of ITO film with increasing 

immersion time. Both the electrochemical and surface characterization studies suggest a 

degradation of the conductivity of ITO film with increasing immersion time in 0.05 M acrylic 

acid. 
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8.2 Conclusions from the mechano-chemical investigations 

 

The effects and synergies of acrylic acid environment, mechanical strain, film thickness, 

and NOC and/or time on the electrical and structural integrity of ITO and CNT films both 

deposited on PET substrates were investigated. CNT-based electrodes are observed to 

outperform their ITO counterparts. In the CNT case it is observed that fatigue leads to an 

increased CNT bundle exposed area, which in turn leads to increased electrode conductivity 

when in contact with acid medium.  

It was also shown that the change in electrical resistance of ITO specimens under fatigue-

corrosion is significantly higher than when they are subjected to corrosion, bending, bending-

corrosion, and fatigue. The severe cohesive and adhesive ITO delamination, from the base 

substrate observed during fatigue-corrosion is associated with the dramatic electrical resistance 

increase. This underlines the importance of the combined action of corrosion and fatigue. DOE 

analysis suggests that the effects of all designed factors are statistically significant. Change in 

electrical resistance is found to be higher at higher strains, higher thickness, and higher number 

of cycles when a corrosive environment is present. From FEA results, it is found that the mid-

section area across the width of the specimen is the most prone location for crack initiation. 

Finally, a life-stress relationship is established using the IPL-Weibull model to predict the life of 

such electrodes under the combined action of fatigue and corrosion.      

 

8.3 Conclusions from controlled-buckling studies 
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Controlled buckling experiments under both tensile and compressive mode with in-situ 

monitoring of electrical resistance and optical microscopy were conducted in order to study the 

effects of shape and size on the mechanical properties of patterned ITO on PET substrates for 

flexible optoelectronics. Higher crack onset values were observed for the smaller size patterns as 

opposed to the larger size patterns.  In addition, square-shaped patterns exhibited lower crack 

onset values. SEM results indicate cracking and crack-driven delamination under tensile and 

compressive buckling condition, respectively. Crack onset strain values based on microscopy do 

not correlate with crack onset strain values calculated based on an increase in electrical 

resistance and exhibit larger deviations when the patterns are placed under tension. In both cases 

the effect of the edge definition was highlighted.  

 

8.4 Conclusions from tribo-corrosion experimental work 

 

The tribology of model systems consisting of Ag, Ag-Pd, and Ag-Au alloy based films 

sputtered between two ITO layers was studied in a corrosive environment. Reciprocating PTFE 

ball-on-multilayer film tests were performed in a NaCl solution under a moderate contact 

pressure and an increasing number of testing cycles. Coating failure initiation, monitored by in-

situ electrical resistance measurements, occurs at a range between 200-268 reciprocating cycles. 

Three distinctive wear regimes are suggested according to weight measurements of the samples 

before and after testing. In the first regime, up to 540 cycles, no significant weight change is 

observed. A rapid wear regime follows up to 1080 reciprocating cycles. Above 1080 cycles, a 

third regime is observed at which a plateau phase is reached. Above 3240 cycles rapid weight 

loss of the PTFE ball is observed leading to material transfer and impregnation on the polymer 
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surface as observed by XPS. EIS studies show that as the number of reciprocating sliding cycles 

increases the corrosion resistance of the structure decreases. Microscopic and profilometry 

results show microcutting and brittle ITO failure at low reciprocating cycles. As the number of 

cycles increases, the film is mostly removed. Also, base polymer substrate ploughing and plastic 

deformation are observed as well as PTFE material impregnation. PTFE wear mechanisms 

include abrasion, plastically deformed areas, and material transfer to the PET substrate.   

In summary, the objectives of this work, investigating the electrochemical, 

electromechanical, and mechanochemical degradation behavior of transparent electrodes, have 

been met.  

• During this study it was found that CNT-based components outperform their ITO 

counterparts when they are subjected to combined fatigue corrosion experiments. Also, 

for ITO electrodes under combined fatigue corrosion, externally applied strain was 

found to be the most critical factor for degradation. These findings underline the 

significance of the combined action of fatigue and corrosion.   

• Patterned layer structures subjected to controlled-buckling experiments are observed to 

exhibit comparable crack onset strains as of their uniform layer counterparts. Results 

suggest that improving the pattern edge definition will be critical for improving the 

mechanical reliability of such structures.    

• The life-stress relationship established using stress values obtained from FEA and 

cycles to failure data from mechanochemical experiments is important in the design of 

flexible electrodes. 
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9 RECOMMENDATIONS FOR FUTURE WORK  

 

9.1 Mechanochemical studies of alternative electrodes 

 

One significant continuation of this study can be mechanochemical investigation of 

alternative materials such as multilayered structures (ITO-metal-ITO), graphene, and conductive 

polymers. The effects and synergies of various factors such as film thickness, acid 

concentrations, applied strain, number of cycles can be evaluated using design of experiment 

methods.  

 

9.2 Life-stress studies 

 

Another potential area can be comprehensive life-stress studies on different alternative 

materials using accelerated life test. Different life-stress models can be developed to predict the 

reliability of such materials. Developed models can help to establish a relationship between 

model parameters and electrode geometry such as width, thickness, and length.   

 

9.3 Ink-jet patterning of shapes 

 

In this project various shapes are patterned using photolithography. Results suggest that 

improving the pattern edge definition will be critical for improving the mechanical reliability of 

such structures. Therefore, in order to better understand edge effects, ink-jet printing of patterns 



129 
 

at low temperature on polymer substrates can be employed. Also, less material can be used by 

avoiding photolithography patterning process.  

 

9.4 Insertion of Ag ink in ITO film crack openings 

 

In flexible optoelectronic device applications involving a stiff transparent conducting oxide 

layer such as ITO on a compliant substrate, cracking of the top layer is the main failure 

mechanism and a challenge for the development of truly flexible devices. This is due to the 

mismatch in mechanical and thermal properties exist in the hybrid system. As discussed in the 

previous chapters the ITO layer may lose its mechanical integrity and operational electrical 

conductivity due to cracking when the optoelectronic device conformed to various shapes during 

manufacturing and operation. In addition to looking for alternative durable transparent electrodes 

such as CNT, conductive polymers, and more recently graphene, there are methods which may 

contribute to the enhancement of the structural and electromechanical stability of conductive 

transparent oxide materials on compliant substrates. A multiple layer structure using highly 

stretchable and conductive metal such as Ag inserted between ITO layers has been suggested by 

many researchers previously [134-137] and investigated in this project under tribo-corrosion 

experiments. However, this layered structure exhibits reduced optical transmission. Another path 

which may lead to an enhancement of the electromechanical behaviors of the oxide layer may be 

the inclusion of metallic interconnects between the coating’s crack openings. The innovation lies 

in putting the highly conductive Ag ink in the crack openings of ITO under different uniaxial 

applied strains. The following method can be followed in order to achieve this goal (Fig. 9.1). 
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• ITO films sputtered on polymer substrates such as PEN will be strained uniaxially to 

generate cracks. 

• Ag ink will be formulated by the reduction of silver nitrate (AgNO3) to yield silver octanoate 

(AgC8H15O2) precipitate which is then will be combined with xylene (C8H10) solvent.  

• Insertion on crack openings will be conducted using a small gauge needle tip luer-lock 

syringe.  

• Curing of film will be performed by means of radiation-conduction-convection heating at 

temperatures as low as 1500C.  

• Optoelectronic and electromechanical characterization will be conducted in order to 

investigate the reliability of the films.    

 

 

 

Fig. 9.1 Schematic of insertion of Ag ink in ITO crack openings. 
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Such structures may be able to accommodate higher mechanical strains than their brittle 

layer counterparts during manufacturing and/or in service conditions. In addition, low electrical 

resistivity can be achieved due to the inclusion of the metallic interconnects.  
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