
Graduate Theses, Dissertations, and Problem Reports

2006

Empirical analysis of software reliability Empirical analysis of software reliability

Margaret L. Hamill
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Hamill, Margaret L., "Empirical analysis of software reliability" (2006). Graduate Theses, Dissertations, and
Problem Reports. 4231.
https://researchrepository.wvu.edu/etd/4231

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230463015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F4231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/4231?utm_source=researchrepository.wvu.edu%2Fetd%2F4231&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Identifying Common Patterns and Unusual

Dependencies in Faults, Failures and Fixes for

Large-scale Safety-critical Software

by

Margaret L. Hamill

Disseration submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy
in

Computer Science

Katerina Goseva-Popstojanova, Ph.D., Chair
HanyAmmar, Ph.D.
Bojan Cukic, Ph.D.
Robyn Lutz, Ph.D.
Arun A. Ross, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2010

Keywords: faults, failures, fixes, quality assurance

Copyright 2010 Margaret L. Hamill

2

Abstract

As software evolves, becoming a more integral part of complex systems, modern society be-

comes more reliant on the proper functioning of such systems. However, the field of software

quality assurance lacks detailed empirical studies from which best practices can be deter-

mined. The fundamental factors that contribute to software quality are faults, failures and

fixes, and although some studies have considered specific aspects of each, comprehensive

studies have been quite rare. Thus, the fact that we establish the cause-effect relationship

between the fault(s) that caused individual failures, as well as the link to the fixes made to

prevent the failures from (re)occurring appears to be a unique characteristic of our work. In

particular, we analyze fault types, verification activities, severity levels, investigation effort,

artifacts fixed, components fixed, and the effort required to implement fixes for a large in-

dustrial case study. The analysis includes descriptive statistics, statistical inference through

formal hypothesis testing, and data mining. Some of the most interesting empirical results

include (1) Contrary to popular belief, later life-cycle faults dominate as causes of failures.

Furthermore, over 50% of high priority failures (e.g., post-release failures and safety-critical

failures) were caused by coding faults. (2) 15% of failures led to fixes spread across multi-

ple components and the spread was largely affected by the software architecture. (3) The

amount of effort spent fixing faults associated with each failure was not uniformly distributed

across failures; fixes with a greater spread across components and artifacts, required more

effort. Overall, the work indicates that fault prevention and elimination efforts focused on

later life cycle faults is essential as coding faults were the dominating cause of safety-critical

failures and post-release failures. Further, statistical correlation and/or traditional data

mining techniques show potential for assessment and prediction of the locations of fixes and

the associated effort. By providing quantitative results and including statistical hypothesis

testing, which is not yet a standard practice in software engineering, our work enriches the

empirical knowledge needed to improve the state-of-the-art and practice in software quality

assurance.

iii

Acknowledgements

First and foremost, I would like to thank Dr. Katerina Goseva-Popstajanova for her

support and guidance in helping me pursue this research. In addition, I would like to thank

my committee members Dr. Hany Ammar, Dr. Bojan Cukic, Dr. Robyn Lutz, and Dr.

Arun Ross for sharing their knowledge and time with me. I would also like to thank the

entire faculty and staff from the WVU CSEE Department for their continuous support and

encouragement and I would like to thank my office mates who have each contributed to the

progression of my research.

The vast majority of this work was funded in part by a grant from the NASA Office

of Safety and Mission Assurance (OSMA) Software Assurance Research Program (SARP)

managed through the NASA IV&V Facility, Fairmont, West Virginia and then independently

by the IV&V facility. I cannot thank the NASA personnel enough for their invaluable

constant support: Jill Broadwater, Pete Cerna, Randolph Copeland, Susan Creasy, James

Dalton, Bryan Fritch, Nick Guerra, John Hinkle, Lynda Kelsoe, Thomas Macaulay, Debbie

Miele, Lisa Montgomery, James Moon, Don Ohi, Chad Pokryzwa, David Pruett, Timothy

Plew, Scott Radabaugh, Dan Solomon, and Sarma Susarla. It should be noted that any

opinions, findings, and conclusions or recommendations expressed in this material are those

of the authors and do not necessarily reflect the views of the NASA personnel.

Finally, I would like to express my sincere gratitude to my parents, siblings and friends.

Although, they may not realize it I could not have completed this degree without them as

they provided me with constant support on a daily basis. Additionally, I would like to thank

my new employer, KeyLogic Systems, for their flexibility as I finished and providing with an

opportunity to continue working with NASA.

iv

Contents

Acknowledgements iii

List of Figures vi

List of Tables viii

1 Introduction 1

2 Research Approach and Goals 5

2.1 Assessment . 8
2.2 Prediction . 11

3 Literature Review 12

3.1 Classification of faults and failures . 12
3.2 Analysis within and across releases . 14
3.3 Analysis considering architectural properties 16
3.4 Predictions using change request data . 19
3.5 Predicting the effort associated with fixes . 20

4 Contributions 23

5 Case Study Description 27

6 Investigating the Fault and Failure Features 34

6.1 Fault Type . 34
6.2 Verification Activity . 37
6.3 Severity . 39
6.4 Investigation Effort . 40

7 Pairwise Associations of Fault and Failure Features 42

7.1 Background on Contingency Coefficient . 43
7.2 Fault Type and Verification Activity . 45
7.3 Fault Type and Severity . 50
7.4 Verification Activity and Severity . 53

CONTENTS v

8 Analysis of trends across releases 56

8.1 The distribution of failures across releases 58
8.2 Common Fault Types within and across Releases 63
8.3 On-orbit failures per release . 65
8.4 Exploring safety–critical failures within and across releases 71

9 Investigation of fixes 73

9.1 Components Fixed . 76
9.1.1 Failed-fixed Component Relationship 77

9.2 Types of Software Artifacts Fixed . 83
9.3 Types of Artifact Fixed per Fault Type . 86
9.4 Types of Artifacts Fixed per Verification Activity 91
9.5 Types of Artifacts Fixed for Safety–critical Failures 91
9.6 Fix Effort . 94

9.6.1 High Fix effort . 98
9.6.2 Fix effort for high-priority failures . 101
9.6.3 Fix Effort with respect to the spread of the fix 103
9.6.4 Fix Effort with respect to the Failed-fixed Component Relationship . 105

10 Prediction 108

10.1 Features . 109
10.2 Background on Data Mining . 110

10.2.1 Background on Classification Rule Learning 111
10.2.2 Background on Association Rule Learning 114

10.3 Prediction Results . 114
10.3.1 Classification Rule Learning Results 114

10.4 Association Rule Learning Results . 119
10.5 Discussion . 120

11 Threats to validity 122

11.1 Internal and Construct Validity . 122
11.2 Conclusion Validity . 126
11.3 External Validity . 127

12 Conclusion 130

12.1 Future Work . 132

References 135

vi

List of Figures

5.1 Distribution of failures across releases . 31

6.1 Distribution of fault types . 36
6.2 Distribution of verification activities . 38
6.3 Investigation effort histogram . 41

7.1 Frequency counts across verification activities and fault types 47
7.2 Distribution of major fault types pre- and post-release 49
7.3 Severity levels per major fault type . 51
7.4 Frequency counts across fault types and severity levels 52
7.5 Frequency counts across verification activities and severity levels 54

8.1 Distribution of failures across components with 2 releases 59
8.2 Distribution of failures across components with 3 releases 59
8.3 Distribution of failures across components with 4 or 5 releases 59
8.4 Distribution of failures across components with 7 releases 59
8.5 The number of failures in release R1 versus the number of failures in release

R2 (rs = 0.42) . 61
8.6 The number of failures in release R2 versus the number of failures in release

R3 (rs = 0.22) . 61
8.7 Major fault types per release . 63
8.8 Box plot showing the number of SCRs due to requirement faults per release . 64
8.9 Box plot showing the number of SCRs due to coding faults per release 64
8.10 Box plot showing the number of SCRs due to data problem faults per release 64
8.11 On-orbit failures per release . 67
8.12 Scatter plot showing the relationship pre- and post-release failures, cumula-

tively over all releases, (rs = 0.80) . 68
8.13 Scatter plot showing the relationship pre- and post-release failures for release

R1, (rs = 0.53). 69
8.14 Scatter plot showing the relationship pre- and post-release failures for release

R2, (rs = 0.51). 69
8.15 Scatter plot showing the relationship pre- and post-release failures for release

R3, (rs = 0.47). 70
8.16 Scatter plot showing the relationship pre- and post-release failures for release

R4, (rs = 0.96). 70

LIST OF FIGURES vii

8.17 Severity levels per release . 72

9.1 Box plot showing the number of fixes linked to individual failures per component 77
9.2 The cumulative number of fixes in each components based on the cumulative

number of failures associated with the failed component 80
9.3 The cumulative number of fixes that led to changes outside the failed component 82
9.4 Types of artifacts fixed . 85
9.5 Frequency counts for types of artifacts fixed per major fault type 87
9.6 Frequency counts for types of artifacts fixed per severity level 94
9.7 Relationships between component size (in KSLOC), the cumulative number

of SCRs filed against the component, and the cumulative effort spent fixing
the component . 96

9.8 2 dimensional projections for the 3 dimensional plot shown in Figure 9.7 . . 97
9.9 Fix effort per individual failure histogram 98
9.10 Cumulative effort (in hours) spent per fault type and fixed artifact group . . 99
9.11 Mean fix effort per failed and fixed components 105

10.1 ROC Curves for (a) high fix effort, (b) medium fix effort and (c) low fix effort 117

viii

List of Tables

5.1 Details of the 21 components . 30

6.1 Distribution of fault types . 35

7.1 Major fault types pre- and post-release . 49
7.2 Severity levels pre- and post-release . 54

8.1 Kruskal-Wallis H statistics and corresponding P-value for major fault types . 65
8.2 Spearman correlation coefficient between pre-release and post–release failures,

at component level, for releases one to four 70

9.1 Number closed SCRs and associated CNs per components 75
9.2 Mean, standard deviation, and coefficient of variation for number of fixes

linked to individual failures per component 78
9.3 Frequency counts for types of artifacts fixed per major fault type 88
9.4 Artifact fixed pre- and post-release . 92
9.5 Total effort spent per fault type and fixed artifact group 99
9.6 Total number of SCRs per fault type and fixed artifact group 100
9.7 Mean effort per failure spent for each fault type and fixed artifact group . . . 100
9.8 Effort spent fixing faults for pre- and post-release failures 102
9.9 Effort spent fixing faults for safety critical, non-critical and unclassified failures.102
9.10 Fix effort per number of different types of artifacts fixed. 103
9.11 Fix effort per number of components fixed. 104
9.12 Fix effort relative to the on spread of fixes across components. 107

10.1 Actual versus predicted outcomes . 113
10.2 Accuracy and Kappa values for the fixed artifact group, the fixed architectural

group, and the fix effort . 115
10.3 Probability of detection for each fixed artifact group 115
10.4 Probability of detection for each fixed architectural group 116
10.5 Probability of detection for fix effort . 116

1

Chapter 1

Introduction

From the convenience of finding the local coffee shop to necessity of supporting human life

people rely on software daily. The consequences of software that fails to perform as expected

vary across instances ranging from a slight inconvenience to the user to loss of human life.

As software continues to evolve, becoming a more integral part of complex systems, the

likelihood that it can contribute to catastrophic accidents increases. Thus, ensuring the

proper functioning of software is of greater concern than ever before.

Quality assurance refers to a planned and systematic pattern of all actions necessary

to provide adequate confidence that an item or product conforms to established technical

requirements. It includes set of activities designed to evaluate the process by which products

are developed or manufactured [39]. Many organization have a separate department devoted

solely to quality assurance, but with respect to software, quality assurance is an emerging

field and thus it lacks empirical studies from which best practices can be determined.

The fundamental factors contributing to software quality are faults and failures. Based

on the fact that various definitions exists, which have been used inconsistently in the past

we begin by providing definitions, which were adapted from [39].

• A fault is an accidental condition or event, which if encountered, may cause the system

or system component to fail to perform as required. Faults are the results of an incorrect

step, process, or data definition in a computer program that can be introduced at any

phase of the software life cycle.

• A failure is the inability of a system or component to perform its required functions

within specified performance requirements.

Margaret L. Hamill Chapter 1. Introduction 2

Failures are caused by faults. However, not every fault will lead to a failure since the

conditions under which a fault would result in a failure may never be met. In fact, the

relationship between faults and failure is very complex and mainly unexplored. Our previous

work [29], [30] which investigated the adequacy, accuracy, scalability, and uncertainty of

architecture-based software reliability models using two large scale open source case studies,

found that certain assumptions pertaining to the relationship between faults and failures

(e.g., the assumption that each failure can be traced to a single component) do not appear

to hold true and some heuristics used in related work (e.g., associating an individual failure

with one unique fault) could not be justified. In fact, we found evidence that a single failure

may be caused by multiple concurrent faults spread across components and a single fault

may cause different failures depending on circumstances. Thus, to avoid making assumptions

or using heuristics we define an additional term, fix.

• A fix refers collectively to all changes made to correct the fault(s) that caused an

individual failure. Thus, a fix encompasses all faults associated with a single failure.

With respect to these definitions there are a few points to be noted. First, faults can

be tied to any software artifact (e.g., requirements, design, source code, etc). Second, we

consider both observed and potential failures, that is, failures that occurred during operation

as well as failures that were prevented from happening by detecting and fixing faults during

development and testing. Lastly, in a few cases, the changes made to implement a fix may be

implementing a work-around that prevents a failure from reoccurring, rather than actually

addressing the root cause fault(s) of the failure (i.e., less than 2%). Throughout this work we

use the term failure to refer to both potential and observed failures, and use the terms fixes

and changes interchangeably since we only consider changes made to fix faults and/or prevent

failures from (re)occurring (i.e., we do not consider changes made for planned updates or

requested enhancements).

Of course, as eluded to earlier not all failures are equal. Clearly, failures that can cause

a loss of human life or a loss of mission critical functionality are of greater concern than, for

example, failures that result in somewhat degraded system performance or a simple incon-

venience. Additionally, operational failures are also of great concern as they can be more

costly to fix, may lead to critical consequences (e.g., loss of mission) and/or can have a signif-

icant impact on an organization’s reputation. Even when some failures do not significantly

Margaret L. Hamill Chapter 1. Introduction 3

impact the system operation or contribute the critical consequences, if similar failures occur

frequently, they too may need to be prevented.

The idea of implementing well planned quality assurance practices is just now becoming

standard practice. It is well known that failures can be prevented by either avoiding the

insertion of faults or by detecting and correcting faults during development and testing.

However, the best practices and effort required for doing so can differ from system to system

and throughout the development life-cycle. For example, as software matures, software

reliability growth usually occurs and thus fault and failure characteristics change. Although,

fault and failure analysis has shown to be quite beneficial in the past (e.g., an estimated seven

million dollars in rework was saved by implementing guidelines and checklists developed

based on a empirical study of software faults in [68]) few comprehensive studies have been

published from which best practices can be drawn. Perhaps, best stated in [40]:

“In traditional engineering disciplines, the value of learning from failure is well
understood, and one could argue that without this feedback loop, software engi-
neering cannot properly claim to be an engineering discipline at all. Of course,
many companies track failures in their own software, but there is little attention
paid by the field as a whole to historic failures and what can be learned from
them”.

As in any scientific field it is necessary to use empirical data to investigate theories,

determine if and when observed phenomena occur, and update the theories accordingly. In

fact, our earlier work showed that in cases when the assumptions made by architecture based

software reliability models hold true the models make reasonable reliability estimates, but

when the assumptions do not hold true, reliability estimates tend to be over optimistic [31].

Thus, not considering the validity of assumptions and heuristics can create a false confidence.

We conducted a systematic comprehensive study of faults, failures and fixes for a large

safety–critical NASA mission. The mission was implemented through Computer Software

Configuration Items (CSCIs), which span a wide range of applications from command and

control; power generation, distribution, storage, and management of supporting utilities;

and failure detection, isolation, and recovery; to human-computer interfaces and scientific

research support. The CSCIs represent large scale software components, and thus are re-

ferred throughout the work as components. To the best of our knowledge, this dissertation

represents the first effort to complete the link from the faults that cause failure (potential

or observed) to the fixes implemented to prevent the failure from (re)occurring. Although,

Margaret L. Hamill Chapter 1. Introduction 4

our work encompasses some of the work conducted by others, we analyzed a much larger set

of fault, failure and fix features than any other study and maintained the link from faults to

failure to fixes throughout the work. By qualitatively and quantitatively analyzing different

features of faults, failures and fixes we improve the empirical knowledge by identifying com-

mon patterns and unusual dependencies that can be used to guide fault prevention, detection

and removal efforts.

This work proceeds by introducing the research approach, goals and specific research

questions investigated in Chapter 2. In Chapter 3 a detailed review of related work is

presented and our unique contributions are explicitly stated in Chapter 4. The details of the

case study as well as the data used are given in Chapter 5. Chapters 6 through 9 contain

the detailed assessment analysis. Chapter 6 includes the exploration of individual fault and

failure features; chapter 7 covers the analysis of pairwise correlation between pairs of fault

and failure features; chapter 8 presents the analysis of the features across releases (i.e., n to

n+1) and within (i.e., pre to post) releases; and chapter 9 concludes the assessment part with

the analysis of fixes made to correct the faults that caused failures. Finally, in Chapter 10

the possibility of predicting features of fixes based on fault and failure features is discussed.

Lastly, we address the threats to the validity of our work in Chapter 11 and then provide

some concluding remarks and directions for future research in Chapter 12.

5

Chapter 2

Research Approach and Goals

Although it is clear that detailed empirical studies of faults and failures can benefit the

software engineering community, such studies are rare. Perhaps best stated by [54], the lack

of studies is in part due to the facts that:

1. Locating and gaining access to empirical fault and failure data is difficult, especially

for large, real-world, complex systems.

2. Collecting and analyzing the necessary data is very time consuming, and therefore can

be quite expensive.

3. Finding qualified personnel with the appropriate skills to perform the studies is often

difficult.

Additionally, we point out that the process of linking faults to failures is often a chal-

lenging, time-consuming task. Furthermore, many organizations are reluctant to make fault

and failure data available for research and publication. However, the ultimate goal of quality

assurance is to improve overall software quality, thus, it is essential that we as a community

overcome these challenges and learn from empirical fault and failure data. Whenever possi-

ble theories should be tested on empirical data to determine if and when observations hold

true, so that the theories can be updated accordingly. By exploiting what is learned we can

improve the software development processes as well as the products they produce.

Clearly, the best way to learn from faults and failures is to study real world instances

of each, including the relationships the fixes implemented to correct the faults and prevent

failures. As suggested in [46], “bug reports from testing and operations are a rich, under-used

Margaret L. Hamill Chapter 2. Research Approach and Goals 6

source of information about requirements”. We believe the applicability of bug reporting

databases (and other change tracking systems) is much broader as these systems provide

valuable sources of information that hold high potential for conducting empirical fault and

failure studies, especially when faults and failures are linked to fixes. Thus, we conduct a

case study based on the change tracking system used by a large NASA mission (which is

implemented through multiple large scale components) to explore different features of faults,

failures and fixes.

The change tracking system provided a rich data set of faults, failures and fixes captured

in software change requests (SCRs) and changes notices (CNs). Specifically, non-conformance

SCRs, which were filed when non-conformance to a requirement was observed (e.g., through

analysis activities, testing, in operation, etc.), represent failures (i.e., observed as well as

potential failures) and describe the associated faults. CNs were used to track the changes

made to address the non-conformance reported, that is, fix the fault(s) that caused the

failure (or those that could potentially lead to a failure). Hence, considering these two types

of change tracking documents together allowed us to link failures to the faults that caused

them and to the changes made to implement fixes.

Overall, the goal was to characterize common patters and unusual dependencies in the

data in order to improve the efficiency and effectiveness of quality assurance practices. To-

wards this end, we systematically investigated and characterized faults, failures and fixes

based on detailed analysis of several features extracted from the change tracking database

for multiple artifact releases of the NASA mission. Specifically, we investigated in the fol-

lowing fault, failure, and fix features:

1. Fault Type - the type of fault that caused the failure (e.g., incorrect requirements,

coding faults, procedural non-compliance etc.).

2. Verification Activity - the verification activity taking place when the fault was detected

or the failure was exposed (e.g., inspections, audits, testing, etc.). The verification

activity also includes ”on-orbit”, which represents the cases where failures actually oc-

curred on-orbit because the verification activities in place did not expose the associated

faults pre-release.

3. Severity - the potential or actual impact of the failure on the system (e.g. safety-critical

or non-critical).

Margaret L. Hamill Chapter 2. Research Approach and Goals 7

4. Failed Component - the component (i.e., CSCI) the non-conformance was reported

against.

5. Release - the software release of the failed component. It should be noted the compo-

nents followed an iterative development process.

6. Investigation Effort - the hours spent investigating the observed non-conformance and

filing the SCR.

7. Fixed Artifacts - the artifacts affected by the changes made to fix faults and prevent

failures from (re)occurring (e.g., requirements documents, design documents, code,

etc.).

8. Fixed Components - the components (i.e., CSCIs) affected by the changes made to fix

faults and prevent failures from (re)occurring. It should be noted that, in general, the

failed component (i.e., the component that exhibited non-conformance) was fixed, but

in very few cases it may not have been fixed at all.

9. Fix Effort - the total effort in hours spent making the changes need implement the fix

per individual failure.

10. Status - the current status of the SCR, that is, open, closed or no action required.

Analyzing these features allowed us to explore the existence of high priority classes of

failures, that is, failures that are of utmost importance to prevent. Specifically we are

interested in (1) safety–critical failures (i.e. failures that present a risk to human life [51]),

(2) operational failures (i.e., post–release failures, which are typically more expensive to fix

and in the case of the NASA mission can cause the loss of the mission), (3) failures whose

faults required a relatively high effort to fix and (4) failures caused by dominating fault

types. By considering the relationships amongst features of faults, failures and fixes we can

help prevent the high priority failures. For example, if we can identify the types of faults

that often lead to post–release failures (or safety-crtical failures), we can direct developers to

focus on preventing the insertion on these types of faults and/or focus activities on detecting

them pre-release.

By conducting and publishing this analysis we are taking a step toward a better under-

stand of the complex relationships between faults, failures and fixes. Further, by exploiting

Margaret L. Hamill Chapter 2. Research Approach and Goals 8

the relationships between features we aim to decrease the time and effort required for future

fixes by helping to identify the artifacts that need to be fixed, components that need be fixed.

Thus, the study was conducted in two parts: assessment and prediction. First, we carefully

assessed all available data to defined the fault, failure and fix features discussed above, and

then qualitatively and quantitatively analyzed each. It should be noted that the detailed

assessment was conducted by our independent research group, but was continually reviewed

by and updated based on comments from NASA personnel involved in the development,

and verification and validation activities associated with the mission. Once the assessment

was completed, we explored the ability of making predictions to improve the efficiency and

effectiveness of quality assurance efforts.

The specific research questions explored in this dissertation are introduced next. Research

Questions RQ1 through RQ4 are relative to the assessment phase of our study; the results

are presented in Chapters 6, 7, 8, and 9, respectively. The set of research questions RQ5,

which relate to the prediction phase of the study, are presented in Chapter 10.

2.1 Assessment

We began our analysis by focusing on each fault and failure feature individually in order

to reveal common trends. Specially, we explored the following sets of research questions:

RQ1: How are failures distributed across the values of each feature (i.e., fault type, verifi-

cation activity, and severity level)?

A. Are some fault types more common than others?

B. Do some verification activities detect more faults than others?

C. Are some severity levels more common than others?

D. Is the effort spent reporting failures uniform per component?

As mentioned earlier, we investigated fault types because identifying the most common

types of faults would help developers determine which types of fault they should focus on

preventing and/or eliminating. Looking at the distribution of failures across verification

activities allowed us to distinguish post–release failures from failures observed during de-

velopment and testing and also consider which types of activities most commonly revealed

Margaret L. Hamill Chapter 2. Research Approach and Goals 9

faults and/or failures. Studying the severity allowed us to distinguish safety-critical failure

from non-critical failures. Thus, the fault type, verification activity and severity features al-

lowed us to focus on the high priority failure classes mentioned earlier. Exploring the effort

spent reporting the failures can be useful with respect to seeing how effort is spread across

the components.

Once the individual features were analyzed, we looked at the relationship(s) amongst

different features to identify trends that could be used to update verification practices in

order to improve effectiveness and efficiency. In particular, we explored pairwise relationships

to answer the following research questions:

RQ2: Does pairwise correlation exist between fault and failure features?

A. Are certain verification activities more likely to detect certain types of faults? Fur-

ther, are failures exposed during post–release activities (i.e. operational failures)

caused by the same types of faults as failures exposed pre-release?

B. Are certain types of faults more likely to result in safety–critical failures?

C. Which verification activities reveal safety–critical failures?

Clearly, the identification of verification activities that are likely to detect common fault

types would be beneficial for planning verification activities and allocating resources. Fur-

ther, quality assurance practices could also be tailored to focus on activities that are most

likely to reveal safety–critical failures or operational failures and/or prevent fault types that

may be more heavily associated with such failures.

Based on the fact that as software evolves, software reliability growth typically occurs

and hence fault and failure behavior changes we investigated trends across releases as quality

assurance practices may need to be reassessed and updated throughout the life-cycle. This

is especially interesting for the NASA mission which used an iterative development process,

meaning functionality was often added in each release. Thus, the following set of research

questions is focused on exploring the distribution of the number of failures and the trends in

fault types, activities, and severity levels within individual releasees (i.e., from development

and testing to on–orbit) and across multiple releases (i.e., from one release to the next).

RQ3: Do trends differ within releases or from one release to the next?

Margaret L. Hamill Chapter 2. Research Approach and Goals 10

A. What is the distribution of the number of failures across releases? Further, is

there a relationship between the number failures reported across releases, that is,

between release n and release n + 1?

B. Does the contribution of dominating fault types change as the software matures

across releases? Specifically, do dominating faults types change from one release

to the next?

C. Are certain releases more likely to exhibit on–orbit failures? Further, is there

a relationship between the number of failures reported during development and

testing and the number of failures reported on–orbit?

D. Does the severity level of failures change as the software matures both within and

across releases? Specifically, are safety–critical failures more likely to occur in

earlier or later releases?

Knowing how failures distribute across releases can be helpful to project managers when

scheduling software engineers’ tasks assignments and time allotments. Additionally, if possi-

ble, identifying which parts of the system are likely to be responsible for failures in operation

or even for failures in the next release would allow resources to be more efficiently focused.

Once the faults and failure were characterized we explored the changes made to fix the

faults and prevent failures from (re)occurring. First, characterized the fixes in terms of the

fixed artifacts, the fixed components and the effort required to implement the fixes. Then,

we explored how fault and failure features where related features of fixes. Specifically, we

investigated the following research questions to complete the assessment phase:

RQ4: What are the common characteristics of fixes? And, how do features of fault and

failures relate to features of fixes?

A. Which components are affected most often by fixes? Further, are any groups of

components commonly fixed together?

B. Which types of software artifacts were fixed most often?

C. Is there any relation between the type of fault that causes a failure and the types

of artifacts that need to be fixed?

D. Is there any relation between the verification activity that revealed the fault(s)

and the types of artifacts fixed?

Margaret L. Hamill Chapter 2. Research Approach and Goals 11

E. In terms of the artifacts fixed, do safety–critical failures differ from non-critical

failures?

F. Is the effort spent implementing fixes uniform per SCR? per component? If not,

what are the common characteristics of fixes that required the most effort?

2.2 Prediction

Once the fault, failure and fix features were characterized we explored the possibility of

predicting features of fixes based on the features describing failures and the associated faults.

Specifically, we explored the following research questions:

RQ5: Can traditional machine learning algorithms be used to predict features of fixes

based on fault and failure features entered in a non-conformance SCR?

A. Can we predict the types of artifacts that will need to be fixed?

B. Can we predict the components that will need to be fixed?

C. Can we predict the amount of effort required to implement the fix?

D. Can high priority failures classes be characterized by common features?

If possible, predictions with respect to the components and types of artifacts to be fixed

would clearly be useful in increasing the efficiency of addressing future SCRs by pointing

out what needs to be fixed and where. Additionally, the ability to predict the amount of

effort require would be useful for planning and adjusting resources, which would be help for

developers better estimate expected effort and allocate resources for the continued sustained

engineering of the mission or perhaps for a similar missions. Finally, characterizing high

priority failures classes would help identify common patterns and unusual dependencies in

the fault and failure features associated with safety-critical failures, on-orbit failures, failures

caused by common fault types, and failures that were associated with a high fix effort which

could be useful in designing against such failures in the future.

12

Chapter 3

Literature Review

In this chapter we review the related work. For clarity, the discussion is split into multiple

sections. In Section 3.1 we discuss works that characterize faults and failures (e.g., by fault

type, life-cycle phase the failure occurred in or the fault was detected in, etc.). In Section

3.2 we discuss works that consider how fault and failure data changes across releases, most

of which focus on predicting fault proneness. In section 3.3 we review works that considered

architectural prosperities of the software for prediction purposes as our results show that

fixes were related to the software architecture. In Section 3.4 we discuss works which use

data from change tracking repositories to make predictions aimed at improving the process

of fixing faults. Finally, in section 3.5 we discuss works that focused on predicting the effort

associated with fixes. Each section provides and explanation of the relevance of the works

discussed to our work; our unique contributions are discussed in Chapter 4.

3.1 Classification of faults and failures

A number of studies by Christmansson and Chillarege [19], Duraes and Madeira [22],

Leszak et al. [43], Lutz and Mikulski [45], and Yu [68] are related to our work because

they focus on characterizing and classifying fault and/or failure data. These studies differ in

terms of their main goals, the systems studied, and variables explored. None of these works

considered the evolution of software across multiple releases.

The goal of the study conducted by Christmansson and Chillarege in [19], as well as the

study by Duraes and Madeira in [22] was to discover representative fault types to be used

for fault injection at the source code level. To do so, each study used the Orthogonal Defect

Margaret L. Hamill Chapter 3. Literature Review 13

Classification (ODC) to classify the fault types; Christmansson and Chillarege studied 408

defect reports from an IBM operating system and Duraes and Madeira studied 668 faults

from twelve open source in [22]. Despite the vast differences in the systems studied in each

work the distribution of faults across ODC defect types was very similar. It should be noted

that both studies limited the analysis to faults directly related to the code and assumed the

specification and requirements were correct. Neither [19] nor [22] explored how faults were

discovered or the consequences of the corresponding failures. In [22] the ODC schema was

extended to further classify faults based on whether the fault represented something missing,

wrong or extraneous.

Leszak et al. analyzed a random sample of defect (i.e., fault and failure) modification

requests (MRs) (i.e., 427 MRs total) from a network element of an optical transmission in

[43]. The MRs were analyzed based on fault types, fault locations, root causes, triggers, the

phase of the life cycle in which the fault was introduced, and the phase in which the fault was

detected. The percentage of modification requests to fall into each classification category

and the effort associated with each category were studied. The authors found that the same

types of implementation faults dominated the entire sample, as well as the post–release

sub–sample. Additionally, the majority of faults were detected during system integration.

Furthermore, it was shown that addressing the implementation faults (which likely included

coding faults and integration faults) consumed 75% of the total effort. However, contrary to

the popular belief the data shows that faults injected during requirements phases on average

do not require much more effort to fix than others.

In a study conducted by Yu, analysis of the phase when faults were introduced into a

switching telecommunication software showed that nearly half of the 600 faults were related

to coding faults and the majority of them could have been prevented [68]. A lower-level

examination of the coding faults revealed that over 50% of them were related to logic,

maintainability and interfaces. Based on additional, detailed root cause analysis the team

identified and then implemented several countermeasures by developing specific coding fault

prevention and inspection guidelines.

Both Leszak [43] and Yu [68] clearly showed that later life cycle faults must be addressed

as they account for a significant percentage of faults and require a significant amount of effort

to correct. The usefulness of such analysis can be seen in [68] as the release following the

institution of the guidelines was one of the best released by the organization. Specifically,

the number of faults delivered to the customer decreased by 35%, lowering the impact of the

Margaret L. Hamill Chapter 3. Literature Review 14

major actionable root causes by 60%.

The study conducted by Lutz and Mikulski in [45] was focused on safety–critical (i.e.

high severity) post–launch anomalies of seven unmanned NASA spacecrafts. An ODC based

technique was used to classify 199 safety–critical anomalies and the following attributes

were considered: defect (i.e., fault) type, verification activity that was taking place when

the anomaly was observed, trigger (i.e., the condition(s) that had to exist for the anomaly

to surface), and target (i.e., the entity that was fixed). Descriptive statistics were used to

explore the association between defect (i.e., fault) type and trigger, and also between target

and trigger. The only formally tested hypotheses were with respect to the distribution of

anomalies across categories for each of the ODC attributes studied. As expected, results

showed that anomalies were not uniformly distributed across the categories of any attribute.

Although correlation between some attributes was suggested by graphs and discussed in the

paper, it was not quantified and the statistical significance was not explored.

3.2 Analysis within and across releases

Another group of papers related to our study, although with different goals, explored

fault and/or failure characteristics across at least two releases by Fenton and Ohlsson in

[26], Andersson and Runeson in [1], Ostrand, Weyuker and Bell in [54], [55], [56], and [9],

Biyani and Santhanam in [11], and Pighin and Marzona in [58].

We start the discussion with a well known study conduced by Fenton and Ohlsson, which

focused specifically on quantitative analysis of fault and failure data [26] for a large Ericsson

telecommunications application. The authors empirically investigated several basic software

engineering hypotheses related to: the Pareto distribution of faults, the use of size metrics

for fault prediction, and the use of fault data to make predictions both across test phases

and from pre– to post–release. The authors claimed the most surprising result found was the

strong evidence that most fault prone modules pre–release are among the least fault prone

post–release. No evidence was found to support the use of popular complexity metrics to

predict fault density.

A literal replication of Fenton and Ohlsson study [26] was recently conducted by An-

dersson and Runeson in [1]. The same hypotheses were explored on three separate software

development projects from a large telecommunications company, two of which were applica-

tion projects developing consumer artifacts and one was an internal platform project. While

Margaret L. Hamill Chapter 3. Literature Review 15

the majority of the results were fairly consistent, the result related to the relationship be-

tween pre– and post–release faults was not. Thus, unlike Fenton and Ohlsson [26], Andersson

and Runeson [1] found that a high incidence of pre–release faults implied a high incidence

of post–release faults. Even more, the claim was supported with formal statistical analysis

based on Pearson correlation coefficient, which showed moderate positive correlation. It

should be noted Anderson and Runeson did not discuss the choice of Pearson correlation

coefficient as a measure of correlation or its underlying assumptions.

The set of closely related studies conducted by Ostrand, Weyuker and Bell in [54], [55],

[56], and [9] analyzed software faults from multiple large industrial systems. In [54], Ostrand

and Weyuker explored ways to identify fault prone files by studying the distribution of

faults, the relation between size metrics and fault density, and the persistence of faults both

pre– to post–release and from one release to the next for twelve releases of an inventory

control system. Similarly to Fenton and Ohlsson[26], the results suggested that the files

that contained the most pre–release faults were not the most likely place to find post–release

faults. Severity was considered in [54], but only to a limited extent, that is, evidence of the

Pareto principle was found when analyzing the system by release and severity. Although the

distribution of faults across the life–cycle phases in which faults were detected (which closely

relates to verification activity) was studied, the relationship with severity was not explored.

A few additional releases of the system studied originally by Ostrand and Weyuker in

[54] were considered in [55] to develop a negative binomial regression model. The model used

selected variables from the current release of code (e.g., file size) and previous releases of

the file change history (e.g., number of faults in previous releases, whether the file had been

changed) to predict which files were likely to contain the most faults in the next release.

The authors stated that although they had initially planned to use the severity rating in the

model, it was determined that the ratings were highly subjective and inaccurate.

Later works [56], [9] by the members of the same group tested the accuracy and ap-

plicability of the model by applying it to even more releases of the original case study (an

inventory system totaling 17 releases) and two new systems (i.e., 9 releases of a service provi-

sioning system, and an automated voice response system which followed a continuous release

pattern, without scheduled releases). In each case, the model proved to be quite accurate.

that is, the top 20% of the files identified in each case contained between 73-83% of the faults.

Although Ostrand, Weyuker and Bell (i.e., [55], [56], and [9]) did not specifically explore the

relationship between the number of faults in two successive releases, the successful prediction

Margaret L. Hamill Chapter 3. Literature Review 16

results indicated an existence of some relationship.

Biyani and Santhanam explored the relationship between the number of faults in con-

secutive releases, as well as the relationship between pre– and post–release fault proneness

for four releases of a commercial application in [11]. The results showed that to predict the

number of faults in the current release it was sufficient to consider only the immediately

previous release. With respect to the relationship between pre– and post–release faults the

authors concluded that modules found to be faulty in development were likely to have a high

number of faults remaining in the field, which is consistent with the result found Andersson

and Runeson in [1]. Clearly, the issue of whether there is a positive or negative correlation

between pre– and post–release faults and/or failures is still an open research problem.

Pighin and Marzona investigated fault persistence through software releases using data

from 23 releases of a management application and 15 releases of a medical application in [58].

Unlike Biyani and Santhanam’s work in [11], which dealt with number of faults, this work

used the average fault density at each release to track the fault proneness across releases.

The core result showed that files with an above average fault density in the first release tend

to have higher than average fault densities in later releases. Specifically, 44% of the faulty

files in the first release of the first project and 50% of the faulty files in the first release of

the second project have a fault density 33% higher than the average fault density in later

releases.

Overall for the the works discussed in this section some specifically explored the fault

proneness within individual releases (i.e., pre– and post–release)([11] and [58]), while others

specifically focused on fault-proneness across consecutive releases ([1], [5], [26], [54], [55],[56],

and [9]. Additionally, it should be noted that these studies were conducted at different levels,

that is, [1], [11], and [26] worked at the module level, while [5], [9], [54], [55],[56], and [58]

worked at the file level. Further, none of these works considered fault types or activities (on

a finer granularity than pre– and post–release) and only [54] considered the severity.

3.3 Analysis considering architectural properties

The papers discussed in this section are not tightly related to our work, but have been

included because they incorporated analyses with respect to software architecture and our

assessment of the characteristics of fixes showed the spread of fixes across components was

related to the architecture. Thus, although the goals were quite different some of observations

Margaret L. Hamill Chapter 3. Literature Review 17

are quite relevant.

In [61] Shereshvsky et al. discussed the use of architectural level metrics to represent

quality attributes based on the idea that architectural-level decisions may have a profound

impact on finished software products. The explored metrics were based on coupling and

cohesion of information, data and control flows in software systems; however due to the

infancy of the work no empirical validation was provided. Abdelmoez et al. [2] derived an

analytical formula to estimate change propagation probability at a system level based the

flow of control and the flow of data between components. By comparing the estimated change

propagation matrix to the empirically derived change propagation probability for a JAVA

application it was shown that the formula could be used to accurately compare potential

architectures.

The ability to identify software components that are likely to be fault (or failure) prone

early on is clearly beneficial to managers in terms of project planning and resource allocation,

as accommodations in the budget, schedule, methods used and resources available could be

accurately scheduled as early as possible. Thus, relationships between software design metrics

and fault and/or failure proneness have been explored by numerous researchers.

One of the first studies focused on design metrics was conducted by Zage and Zage

throughout [69], [70], and [71]. The metrics explored included internal design metrics (i.e.,

stress points within functions) and external design metrics (e.g., control flow-in and -out

of functions) extracted from the code. The results showed such metrics could be used to

correctly identify functions that were likely to have faults.

Ohlsson and Alberg [53] conducted a design metrics study where the metrics were ex-

tracted directly from design documents. Based on the Formal Description Language (FDL)

graphs used in the design documentation they were able to build a tool that analyzed the

design documents automatically and thus easily extracted metrics before code was avail-

able. The FDL graphs represented functions and subroutines within modules. The metrics

used were based on direct and indirect measures of the graphs and included derivations of

McCabe’s cyclomatic complexity. By correlating these metrics with the number of failure

reports it was shown that it was indeed possible to build a useful fault-prediction model

before the code was available.

Chiamber and Kremerer [18] developed a set of design metrics specific to object oriented

development methodologies. The six proposed metrics incorporated the experiences of pro-

fessional software developers and were constructed on a firm basis of theoretical concepts

Margaret L. Hamill Chapter 3. Literature Review 18

in measurement and the ontology of objects. The metrics were defined at the class level

and were based on coupling and cohesion. Using two case studies, one from a software

vendor that used object oriented design to development C++ libraries and the other from

a semiconductor manufacturer that used Smalltalk for developing flexible machine control

and manufacturing, the metrics were shown to be useful in terms of representing design

properties, evaluating design decision and focusing resources most effectively.

Since their introduction the metrics defined in [18] have received a vast amount of atten-

tion and exploration. For example, Basili et al. [6] explored the validity of the metrics on

eight different student development efforts of single information management system. The

authors stated that several of the metrics from [18] appeared to be useful for predicting

fault-proneness at the class level during the early phases of the life-cycle. Xu et al. [67]

explored the use of Chidamber and Kremerers [18] metrics to predict the number of defects

expected in a module for a NASA Public Data Set. The results strongly suggested that al-

though some of the metrics from [18] are reliable defect predictors they do not demonstrate

as powerful of an impact as a simple SLOC measure. Xu et al. [67] included a comparison

of the related work on the metrics defined in [18] and showed that although in each case the

explored metrics were found useful results differed across projects.

More recently, architectural based metrics have been used to specifically predict failure

proneness (e.g., in [10], [74], and [75]). Zimmermann and Nagappan studied failure proneness

of Windows Server 2003 based on dependencies between parts of the code and the complexity

of dependency graphs [74], and [75]. The goal was to help managers choose parts of the

system for the purpose of allocation of quality assurance resources. The results showed that

models accounting for architectural dependencies did better at predicting post-release failures

than models based on the typical complexity metrics. Bird et al. [10] focused on predicting

failure proneness post-release based on the dependency structure between components and

tasks assignments (i.e., who worked on which component how much). The prediction models

were evaluated on Windows operating system Vista and multiple versions of the integrated

development environment Eclipse. The results showed that these models performed as well

as, if not better than models that did not consider the architectural dependency structure

and task assignments.

In [41] and [73] models based on design metrics were compared with those based on code

metrics as well as those based on combinations of code and design metrics. Jiang et. al [41]

compared design and code metrics for 13 NASA datasets and found that the model that

Margaret L. Hamill Chapter 3. Literature Review 19

combine all metrics (design and code) did slightly better than models based on code metrics

only, which did slightly better than models based on design metrics only. Similarly, Zhoa et

al. [73] (which only considered one date set) found that both design and code metrics were

correlated with the number of faults, but using the metrics together led to improvement in

predictions.

Similarly to works discussed in this section we incorporated metrics representing the ar-

chitecture into our prediction models. However, unlike these works, we consider architectural

properties in addition to features of faults and failures.

3.4 Predictions using change request data

It will always remain true that no matter how successful the community becomes at

removing faults some faults will indeed remain, which is why we focused on using data

from change requests to help handle similar requests more efficiently and effectively in the

future. Thus, in this section we discuss works which use data reported through bug reports,

modification requests or change requests for predictions, including works conducted in [16]

and [17] by Canfora and Cerulo, in [47] by Malin, and in [62] by Sheriff et al.

In [16] and [17], Canfora and Cerulo used historical change data stored in open source

software repositories to help determine which files needed to be changed for new change

requests and which developer was best equipped to make the changes. The hypothesis was

that data stored in software repositories served as good descriptors of how past change

requests have been resolved. The approach was based largely on textual similarity and

used the textual descriptions of change requests to index developers and source files. An

information retrieval method was applied to retrieve candidate developers and source files

based on the textual description for a new change request. The accuracy of predicting which

files needed to be changed as well as who was best equipped to make those changes varied

greatly for different systems. The Firefox Mozilla [50] the web browse and three desktop

applications from the kde open-source project [44] were used as case studies. With respect to

files to be changed the first file identified to require a change was indeed changed 36%, 78%,

45%, 39% of the time depending on the system. Additionally, the first developer predicted

as the best developer to handle the job was actually the developer that handled the change

request between 30-50% of the time for kde studies system, and only 10-20% for Mozilla

Firefox.

Margaret L. Hamill Chapter 3. Literature Review 20

In [47] Malin explored the use of text mining and tagging of NASA software change re-

quests to help find “more reports similar to this one” during in-flight anomalies. The authors

used hierarchical aerospace ontologies of concepts and nomenclature to identify problem type

and/or equipment type tags rather than using traditional keyword searches or data mining

techniques, which often fail on natural-language text fields. Due to its infancy, limited results

are publicly available.

In [62], Sheriff et al. proposed a methodology for determining the effects of changes made

to correct failures and prioritize regression test cases needed to ensure fixes were correct

and complete. Data from change requests was complied into a matrix that represented

historically-based usage relationships between files. Clusters of files that historically changed

together were generated by using singular value decomposition on the matrix. By combining

the clusters with test case information the authors were able determine whether additional

regression tests were necessary. It was found that additional regression test were necessary

50% of the time, and test predicted to have the highest priority (in terms of re-running tests)

found a fault 60% of the time.

In summary, it is clear that data stored on change request repositories can be useful for

making predictions. Unlike, [16], [17], [47] and [62] we used change request data to predict

the artifacts fixed, the components fixed and the effort associated with implementing the

fixes, features that none of these works considered.

3.5 Predicting the effort associated with fixes

In this section we discuss works that use features of faults, failures and/or change requests

to predict the effort associated with fixes, including works by Evanco [24], Zeng and Rine

[72], Weib et al. [65], Song [63], and Mockus [48]. It should be noted that these works specif-

ically considered the predictions with respect to correction effort. For more typical effort

estimation, that is, with respect to project development, schedule an/or budget the reader

is referred to [42]. Additionally, with respect to the numerous research efforts focussed on

fault and failure proneness prediction, we note that a good survey was recently published by

Arisholm et al., and review [5] in this section as it was useful for interpretation of prediction

results.

The study conducted by Arisholm et al. in [5] reviewed multiple fault-proneness studies

and clearly showed that no single modeling technique constantly performs well across all

Margaret L. Hamill Chapter 3. Literature Review 21

projects. Further, the authors compared several ways of assessing the performance of the

models and found that the best performing models differed based on evaluation criteria. Ar-

isholm et al. proposed a new evaluation criteria, cost effectiveness (CE), which considers the

cost of inspecting a file based on fault-proneness predictions. However, similarly to the more

traditionally used methods for comparisons between models (e.g., receiver operator curves

(ROC)), the CE measure is useful for binary-class problems, but for multi-class problems it

would be considerably more difficult to conceptualize and interpret the results.

Evanco analyzed the fault correction effort for 509 faults detected during unit testing

and system/acceptance testing for three Ada projects in [24]. Effort was classified in four

categories: less than or equal to one hour, greater than one hour but less than or equal to one

(8 hour) work day, greater than one day but less than or equal to 3 days, and greater than

3 days. The faults were classified based on the number of software components involved,

the complexity of the components, and the testing phase in which the faults occurred. The

analysis clearly showed that fault correction often involves examining and fixing more than

one component. Using an ordered response model the effort was expressed in terms of a log-

linear functional form and fault correction effort were ranked according to expected efforts.

Some interesting results included (1) the indication that the greater the spread of the faults

across components the more effort was required to correct the faults, and (2) faults were

more difficult to isolate during system/acceptance testing than during unit testing.

In [72], Zeng and Rine analyzed fix effort from the NASA IV&V Facility Metrics Data

Program KC1 dataset. The severity of the defect, the mode the system was operating in,

the type of defect (e.g. configuration, design, not a bug etc.), and the number of source

lines of code changed or added were used as input variables to estimate defect fix effort using

dissimilarity matrices and self organizing neural networks. Although the experimental results

indicated good performance for similar software development projects, poorer performance

results were found for project with different development environments.

Weib et al. analyzed 567 issue reports from JBoss [65]. A distance function based on text

similarity was defined using the title and description fields to measure similarity between

issues. Statistical models were used to prediction correction effort for new issues using

a Nearest Neighbor Approach (both with and without thresholds). The most interesting

result showed that the accuracy of prediction varied greatly for different issue types (e.g.,

bugs, feature requests, tasks) and the nearest neighbor approach using thresholds was most

accurate for predicting correction effort for ”bugs”.

Margaret L. Hamill Chapter 3. Literature Review 22

In [63], Song et al. applied association rule mining to NASA’s Software Engineering

Laboratory’s defect data consisting of more than 200 projects over 15 years. Defect asso-

ciations with respect defect isolation effort and defect correction effort were explored. The

attributes considered were defect type and three flags indicating whether the defect was due

to a typographical error, whether code was left out (i.e., an omission error), and/or whether

it was result of an incorrect executable statement (i.e., a commission error). Similarly to [24]

the effort data was classified into 4 categories: less than or equal to one hour, greater than

one hour but less than or equal to one (8 hour) work day, greater than one day but less than

or equal to 3 days, and greater than 3 days. The accuracy of the association rule mining

method was 93.80% predicting defect isolation effort and 94.69% for predicting defect cor-

rection effort, which proved to be significantly better than three other well-known machine

learning methods (i.e., PART, C4.5, and Naive Bayes).

The ability to predict the amount of effort that remained to be spent on a project based

on modification request data was investigated by Mockus et al in [48]. The goal was to

predict the amount and distribution over time of the maintenance effort and repair effort

associated with new features. The authors chose to represent effort in terms of the time from

when the MR was opened to when it was closed due to the difficulty in obtaining actual hours

spent making changes. Although, this study only considers repair effort to a limited extent

(i.e., with respect to new features) the authors claimed the results of applying the model

confirm a fundamental relationship between the new feature and defect repair changes.

Similarly to our work each of these works, our work specifically focused on predicting

effort associated with fixing faults. However, the works in this section did not specifically

considered predictions with respect to the components fixed or artifacts fixed.

23

Chapter 4

Contributions

Although fault and failure studies are becoming more and more common as both re-

search and practitioner communities recognize the benefits, overall the software engineering

community lacks detailed published empirical studies of large complex real world systems.

The lack of studies is likely due to the facts that locating and gaining access to empirical

fault and failure data can be quite difficult (as many organizations are reluctant to make

fault and failure data available for research), and collecting and analyzing the data is very

time consuming and often requires domain expertise. Even more, associating failures with

the fault(s) that caused them, as well as the fixes made to prevent them from re-occurring

is not straight forward. In fact, some related studies could not differentiate changes made to

fix faults from changes made for enhancements, and those that did relied on assumptions or

heuristics that were not completely justified. To best of our knowledge, this work is unique in

that we analyzed the complete link from the faults that cause failure (potential or observed)

to the fixes implemented to prevent them from (re)occurring.

We present a systematic approach for using information stored in software change requests

to qualify and quantify features of faults, failures, and fixes as well as the relationships

between them. Below we outline our major contributions in relation to the related works

discussed in the previous chapter.

• We analyzed a large sample of over 2,500 software change requests (SCRs) entered for

the purpose of fixing faults throughout the life of 21 components from flight software

of a large, complex, safety–critical NASA mission containing millions of lines of code

in over 8,000 files. In particular, we analyzed the types of faults that caused failures,

the verification activities taking place when the failures were reported, the severity of

Margaret L. Hamill Chapter 4. Contributions 24

failures, and the investigation effort associated with reporting failures. Additionally,

we explored the software artifacts fixed, the components fixed to correct faults and the

effort required to implement fixes. We measured the statistical association between

each pair of attributes. Since fault type, verification activity, fixed artifacts and fixed

components were based on a nominal scale, and severity was based on an ordinal

scale, we used the χ2 test for the distribution and the non–parametrical contingency

coefficient C as a measure of the correlation between any two attributes. Based on a

stratified random sample, we tested the statistical significance of the results.

– Some of the related works treated only particular attributes or limited the analysis.

Specifically, [19] and [22] were mainly focused on the types of faults appropriate

for fault injection at source code level only, while we explored fault types through

the software life cycle (e.g., requirements, design, coding), as well as the activities

taking place when the failures occurred, the severity of failures, the artifacts fixed

and component(s) fixed. The work conducted in [43] was the only classification

study that explored investigation effort and fix effort, but neither was discussed

in relation to the artifacts fixed or components fixed.

– In general, severity of software failures has rarely been considered in published

literature. In cases when it was considered, it was only to a limited extend. Thus,

in [54], it was shown that the majority of faults that led to high severity failures

were contained in a small portion of the files. In [19] and [45] severity levels were

used as a way to limit the sample. That is, only faults that had an effect on

users were considered in [19], while only post–launch, safety–critical anomalies

were studied in [45]. Our analysis, in part was focused on safety–critical post–

release failures. However, we considered also the bigger picture, that is, faults

and failures that occurred throughout the entire life cycle, with all severity levels.

Analyzing another safety–critical software system based on data from a broader

portion of the life cycle will certainly enhance the empirical knowledge in area.

– Although some of the related work [68], [43], and [45] analyzed combinations of

attributes, they neither quantified the extent of associations between attributes

nor formally tested the statistical significance of the associations. The only for-

mal statistical test was given in [45] with a goal to test whether the number of

anomalies was uniformly distributed across categories for any attribute.

Margaret L. Hamill Chapter 4. Contributions 25

• We explored the trends of fault type, verification activity, and severity within individual

releases (i.e., pre to post-release) and across multiple releases for a subset of eleven

components, which had sufficient number of non-conformance SCRs and at least two

releases. In addition to studying the trends of fault types, verification activity, and

severity we also explored the raw number of failure within and across releases. For the

number of failures in releases n and n+1 (i.e., across releases) and the number of pre–

release failures and post–release failures (i.e., within individual releases) we used the

Spearman correlation coefficient to quantify the correlation and test for the statistical

significance of the results.

– Related work in this area [54], [55], [56], [9], [58], [26], [1] looked at the relation-

ships between the number of faults or fault density within individual releases (i.e.,

early testing vs. late testing and pre–release vs. post–release) and across multi-

ple releases (typically from one release to the next). It follows that these papers

considered only a limited view on verification activity , in the context of pre– and

post–release. As described in the related work in section 3.1, severity was consid-

ered in a limited context only in [54]. Fault types (overall or their distribution

within and across releases) were not considered in any of these papers.

– Here as well, related works lacked formal statistical methods. The only paper

that did quantify the results statistically was [1]. In particular, the correlation

between pre– and post–release faults and between testing phases was computed

using the Pearson correlation coefficient, without explicitly stating whether the

assumptions required by the Pearson correlation coefficient were valid on the data.

• We also explored the possibility of applying traditional data mining techniques using

fault type, verification activity, severity, investigation effort and architectural metrics

to predict characteristics of fixes, that is, the artifacts to be fixed, the components to

be fixed and the effort required to implement fixes.

– The idea of using change request data to help improve future fixes is relatively

new. Both [16] and [17] as well as the initial work in [47] focused on text-mining

of English language fields describing the requested changes, which varied greatly

from one entry to the next. We focus on using multiple features, some of which

were selected from pre-defined lists and others that were classified from free text

Margaret L. Hamill Chapter 4. Contributions 26

fields (with assistance from the project personnel). In [16] and [17] the ability

to predict files that need to be changed to address a new change request was

explored; the accuracy of results varied greatly across systems. In [62], change

request data was used for prediction purpose, but their goal was very different

than ours, that is, they focused on prioritizing regression test cases that should

be executed to verify changes. None of these works explicitly considered fault

types, verification activities, severity levels, investigation effort, or architectural

properties; nor did they predict effort required to implement fixes.

– The ability to predict the effort associated with fixes was explored in [24], [72],

[65], and [48], but the features used as input differed. In [24], [48], and [72]

features available after the fix was identified were used as input (i.e., the number

of components involved in [24] and the delta with respect to the number of lines

of code changed in [72] and [48]). In our work, we focus on using only the features

available when the change request was submitted. In [65] predictions were based

on text similarity of titles and descriptions, thus fault type, verification activity

and severity were not considered as input features.

Some of the research questions addressed in this dissertation, to the best of our knowledge,

have not been addressed in the past. These include (1) exploring which verification activities

are most likely to reveal high priority failures (and/or the faults associated with high priority

failures), (2) studying distribution of the fault types, activities, and severity across multiple

releases, (3) predicting features of fixes (i.e., artifact fixed, components fixed, and fix effort)

based only information available when a fault was detected or failure was reported. In

addition, we also addressed research questions that have been addressed in the past (e.g.,

with respect to the number of failures within and across releases). Thus, throughout our

work whenever possible we compare our results with recent related studies in order to explore

the external validity of the study.

In addition to the systematic approach we consider the quantification of the associations

and formal tests of hypotheses, including tests for the statistical significance of the results,

to be an important contribution because using formal statistical tests is not yet a standard

practice in software engineering in general, and in software quality assurance in particular.

The rigorous analysis presented enriches the knowledge related to faults, failures and fixes

and we believe it has both scientific and practical software engineering value.

27

Chapter 5

Case Study Description

In this chapter we introduce the details of the NASA mission used as a case study, includ-

ing the data analyzed. The mission studied was implemented through Computer Software

Configuration Items (CSCIs), which span a wide range of applications from command and

control; power generation, distribution, storage, and management of supporting utilities;

and failure detection, isolation, and recovery; to human-computer interfaces and scientific

research support. The mission is still active and requires sustained engineering. The CSCIs

follow an iterative development process, which means new functionality is often added from

one releases to the next. As mentioned earlier, we refer to CSCIs as components.

The analysis is based on a snap shot of data from the change tracking system provided to

us by the project when the research began. Throughout the analysis, project personnel pro-

vided domain expertise which helped us to select the data sample analyzed, understand the

software in the context of the larger system, and clarify the meaning, usage and relationships

of data fields and values. Their input was invaluable and we are very grateful.

The change tracking system stores Software Change Requests (SCRs) entered by ana-

lysts for one of three reasons (1) non-conformance to a requirement was observed (2) the

implementation of pre-planned updates is being requested or (3) additional functionality is

requested. SCRs are filed at the component level per component release1. Since we were

interested in exploring and characterizing the relationships between faults, failures and fixes

we focused on SCRs entered when non-conformance to a requirement was observed. By defi-

nition non-conformance SCRs represent failures and characterize associated faults. It should

be that some failures have been observed (for example during testing or operation), while

1It should be noted the iterative development of each component is on its own release schedule.

Margaret L. Hamill Chapter 5. Case Study Details 28

others were only potential failures that have been prevented from happening by detecting

faults through verification activities (such as analysis, inspection, or testing) and then fix-

ing them pre–release. Throughout the text we use the terms ’non-conformance SCRs’ and

’failures’ interchangeably.

The changes made to correct faults were tracked in the change tracking system through

Change Notices(CNs). Similarly to SCRs, CNs are filed at the component level per com-

ponent release. CNs are consider to be ’child’ documents to their ’parent’ SCRs. Due to

the interdependence of components, each SCR can have multiple children CN documents,

thus, the system allows for the tracking of changes to multiple components in relation single

instances of non-conformance and also to multiple faults within the same component.

To allow better understanding of the data used in this study, we briefly describe the

process followed by the NASA mission for creating and addressing software change requests.

Upon creation of a non-conformance SCR the originator records the component and

release number for which the non-conformance was observed. Additionally, the originator

records how the need for the change was discovered (e.g., inspection, analysis, regression

testing, integration testing, on-orbit, etc.), a textual description of non-conformance, and

the effort spent reporting the problem (which includes any analysis conducted post non-

conformance observance as well as time spent filling out the SCR and in some cases time spent

complying any addition information needed to provide evidence of the non-conformance), as

well as some other mostly clerical information.

Each non-conformance SCR is reviewed by a board to determine whether or not the

observed non-conformance needs to be addressed. If it is deemed the problem needs to be

fixed, the SCR is assigned to an analyst.The analysts also records data in SCR, including

as the source of the failure (selected from a pre-defined list), and the severity of the failure.

Once a solution is identified by the analyst (or in some cases additional software developers)

it must be approved by the board before the fix can be implemented. Upon implementing

fixes analysts record the SCR associated with fix being implemented, a textual descriptions

of the changes being made, the software artifacts changed and the effort spent implementing

the changes. The board must then verifies the fix which lead to the closure of the SCR and

all associated CNs.

Based on the availability of the data (i.e., whether data was available for all consecutive

releases) and some input from project personal we selected 21 components for the analysis,

referred to as components 1 through 21. The 21 components contain millions of lines of code

Margaret L. Hamill Chapter 5. Case Study Details 29

in over 8,000 files. The components are arranged in 3-tier hierarchical structure. Component

20 is the single top level component in the hierarchical architecture and is directly connected

to six components, 1, 14, 17, 18, 19, and 21, each of which resides within the second tier

of the architecture. Each of these components connects a group of additional components

to component 20. The components within these groups span the second and third levels of

the architecture. It should be noted that components in one group can only interact with

components in another group through the hierarchical structure, that is, through component

20. The number of release differed per components, ranging from one release to seven releases

(see Table 9.1). Based on an initial review of the data available in the SCRs we removed

SCRs with clearly erroneous data (e.g., missing multiple mandatory fields), SCRs that were

withdrawn by the user, SCRs tagged as duplicates and SCRs tagged as operator errors. This

process resulted in a sample of just over 2,500 SCRs which were entered throughout the life

cycle (e.g., development, testing, and operation) of 21 components over a period of almost

10 years.

Details for each component, including the number of releases, the number of files, source

lines of code, the cumulative number of non–conformance SCRs over all releases, the number

of non-conformance SCRs per file, and the cumulative number of CNs over all releases are

shown in Table 9.1. The distribution of the cumulative number of SCRs for all releases across

components is shown in Figure 5.1. The components are grouped by the number of releases

each has undergone.

As it can be seen from Table 9.1 and Figure 5.1, the size of components and number of

SCRs written against each component differ greatly between components. Component size

ranged from about 27,000 LOC to almost 740,000 LOC; the number of non-conformance

SCRs ranged from 9 to 861; and the number of CNs ranged from 5 to 431. As expected, the

single top-level component (i.e., component 20) was the largest component and had the most

SCRs and the most CNs filed against. It should be noted that component 20, the component

which has a much larger number of failures than any other component (see Figure 8.4), is

significantly larger in terms of number of files than any other component but actually has

less non-conformance SCRs per file than component 1, 15, and 16 (see Table 9.1, column 5).

Additionally, component 20 is the oldest component, and it is the only component at the

top level in the system hierarchy. Therefore, component 20 is a central point of interaction

and communication between all components and hence it makes sense that a larger number

of failures would be associated with component 20.

Margaret L. Hamill Chapter 5. Case Study Details 30

of # of # of non # of non-conf # of

Component releases SLOC files -conf SCRs SCRs per file CNs

1 1 48,910 207 350 1.69 418
2 2 60,386 200 22 0.11 44
3 2 78,854 287 8 0.03 43
4 2 46,657 228 15 0.07 30
5 2 71,953 269 13 0.05 52
6 2 92,978 321 21 0.07 54
7 2 34,938 289 73 0.25 121
8 2 43,012 270 103 0.38 233
9 2 21,266 125 19 0.15 116
10 3 83,134 356 27 0.08 62
11 3 103,145 444 40 0.09 72
12 3 55,475 277 12 0.04 44
13 3 57,800 599 104 0.17 158
14 3 27,940 280 75 0.27 149
15 3 38,882 84 81 1.04 130
16 3 47,541 169 129 0.76 231
17 4 147,520 587 202 0.27 202
18 5 174,614 552 239 0.41 252
19 7 164,419 747 183 0.33 313
20 7 737,504 1368 735 0.54 1430
21 7 74,618 415 104 0.25 120

Total - 2,211,546 8,071 2,558 0.32 3,764

Table 5.1: Details of the 21 components

Margaret L. Hamill Chapter 5. Case Study Details 31

Figure 5.1: Distribution of failures across releases

Margaret L. Hamill Chapter 5. Case Study Details 32

It should be noted that a review board exists that to verifies the data recorded in SCRs

and CNs in terms of consistency and correctness. The board can make changes to recorded

data as deemed appropriate, which helps ensure the validity and accuracy of the data we

analyze. Additionally, the board must approve any solution before it can be implemented,

which helps ensure that the changes made to software artifacts fix the appropriate faults, or

at minimum prevent the failure from reoccurring through a work around.

Through detailed exploration of fields in the in change tracking database we selected

fields representing features of failures and the associated faults. Specifically, the following

fault and failure features were defined based on fields in the non-conformance SCRs.

• Fault Type - the type of fault that caused the failure (e.g., incorrect requirements,

coding faults, procedural non-compliance etc.) based on the ’source of failure’ field.

• Verification activity - the verification activity taking place when the fault was detected

or failure was exposed (e.g., inspections or audits, testing, etc.) based on the ’discovered

by field’. It should be noted that the all SCRs that were entered based on non-

conformance observed on-orbit are referred to as post-release failures; all other are

referred to pre-release failures.

• Severity - the potential or actual impact of the failure on the system (e.g. safety-critical

or non-critical) based on the ’severity’ field.

• Failed Component - the component (i.e., component) the non-conformance was re-

ported against based on the ’component’ field.

• Release - the software release of the failed component which was also based on the

release numbers included in the ’component’ field .

• Investigation Effort - the time in hours spent post non-conformance observance (which

includes any analysis conducted post non-conformance observance as well as time spent

filling out the SCR and time spent complying any addition information needed to

provide evidence of the non-conformance) based on the ’effort’ field.

For each failure we consider all changes implemented cumulatively across CNs, thus we

defined the following fix features based on fields in CNs.

Margaret L. Hamill Chapter 5. Case Study Details 33

• Fixed Artifacts - the types of artifacts affected by the changes made to fix faults and

prevent failures from (re)occurring (e.g., requirements documents, design documents,

code, etc.) based on the ’affect product’ field.

• Fixed Components - the components (i.e., components) affected by the changes made

to fix faults and prevent failures from (re)occurring based on the ’component’ field.

• Fix Effort - the total effort in hours spent making the changes need implement the fix

per individual failure based on the ’effort’ field.

Chapters 6 through 9 present the detailed analysis of these features and the relationships

amongst them.

34

Chapter 6

Investigating the Fault and Failure

Features

In this chapter, we present the result of our investigation of fault and failure features,

that is, we explored the first set of research questions:

RQ1: How are failures distributed across the values of each feature (i.e., fault type, verifi-

cation activity, and severity level)?

A. Are some fault types more common than others?

B. Do some verification activities detect more faults than others?

C. Are some severity levels more common than others?

D. Is the effort spent reporting failures uniform per component?

The specifics of each feature and category values used throughout the analysis are de-

tailed in the section that follow. This analysis is based on all 2,558 non-conformance SCRs

associated with the 21 components we studied.

6.1 Fault Type

We started the analysis by exploring the distribution of different types of faults based on

the ‘source of failure’ field in non-conformance SCRs, to answer research question RQ1–A:

RQ1–A: Are some fault types more common than others?

Margaret L. Hamill Chapter 6. Fault and Failures Features 35

Types of Faults % of SCRs

Requirements fault 34.71
Design fault 6.14
Coding fault 36.00
Data problem 14.89
Integration fault 2.38
I/O problem 0.63
Compilier/linker/sfw dev or test tool error 0.55
Simulation problem 0.16
Procedural non–compliance 1.02
Process problem 2.07
Fabrication/Manufacturing fault 0.39
None identified 1.06

Table 6.1: Distribution of fault types

The fault type was assigned by project personnel, based on a pre-defined list of values.

The category values and the percent of SCRs associated with each value are shown in Table

6.1 and Figure 6.1. The most common sources of failures were requirements faults and coding

faults , each contributing to about 35% of the failures. It should be noted that requirements

faults included incorrect requirements, changed requirements, and missing requirements and

coding faults included common coding mistakes such as logical errors, typos etc. The third

most common fault type was data problems , which accounted for 15% of the failures. Data

problems include faults with respect to components (or some case sub-components) inter-

action with shared data (e.g., reading and the reporting instrument values). Surprisingly,

design faults were only associated with 6% of the failures. Design faults include faults

relative to the design of the system (e.g., omission of component interaction in the design

that need for was later realized). The small number of design faults may in part be due

to the iterative development process followed by the mission, which allowed them to work

with out a detailed design document and led to design decisions that were only implemented

in the code. Additionally, 3% of the failures were due to process or procedural issues, 2%

were due to integration faults, and 2% were due to simulation and testing problems or other

problem which were not directly related to the software artifacts being developed. The fault

types was not recorded for only about 1% of the non–conformance SCRs.

The contributions of some of the fault types to the total number of SCRs in the case of

NASA mission, differ significantly from the results of some of the older empirical studies.

Margaret L. Hamill Chapter 6. Fault and Failures Features 36

Figure 6.1: Distribution of fault types

Margaret L. Hamill Chapter 6. Fault and Failures Features 37

For example, the main conclusion of a study done at TRW [13], which was based on 224

faults, was that design faults outweigh coding faults, 64 percent versus 36 percent. Although

the percentage of coding faults in our case study is rather consistent (i.e., 36%), the design

faults contribute significantly less (i.e., only 6%). Even more, the faults that originated in

the early life cycle (i.e., requirements related and design faults) together are less than 41%,

which is significantly less than 60 – 70% found in [7], [13], [23].

To explore the external validity, in [37] we compared our results related to fault types to

the results of several more recent large scale empirical studies (i.e., [19], [22], [45], [43], [68]).

It appeared that the main results were consistent, regardless of the fact that these studies

were conducted for different reasons, by different groups, and spanned different domains,

implementation languages, development processes and organizations. Specifically, we found

that across all studies the percent of problems reported due to coding, interface, and integra-

tion faults together was approximately the same or even higher than the percent of faults due

to early life cycle activities (i.e., requirements and design). The two main implications of

this finding are as follows: (1) It contradicts the common belief that the majority of faults

are entered during early life cycle activities (e.g., requirements, specification, and design ac-

tivities), which dates back to some of the older empirical studies [7], [13], [23], [28]. (2) The

consistency of results across multiple recent projects (i.e., [19], [22], [45], [43], [68]) suggests

that this trend is likely to be an intrinsic characteristic of software faults and failures, rather

than a project specific characteristic. Clearly, the software engineering field has grown sig-

nificantly over the years and the differences are likely a result of new development processes

and coding languages, as well as the increased complexity and size of software products.

6.2 Verification Activity

Next, we explore verification activities based on the ‘discovered by’ field to answer re-

search question:

RQ1–B: Do some verification activities detect more faults than others?

The ‘discovered by’ field was a free text field that contained short descriptions of the

verification activity taking place when then non-conformance to a requirement was identi-

fied. Entries included ”testing”, ”analysis”, ”integration testing” , ”unit testing”, etc. Each

unique textual description was grouped into one of the following categories based on manual

Margaret L. Hamill Chapter 6. Fault and Failures Features 38

Figure 6.2: Distribution of verification activities

analysis of example SCRs and input from project personnel: inspections and audits, analy-

sis1, testing, and other (representing rarely seen entries). In some cases, the discovered by

field contained the value ”on-orbit”, which represents cases where the verification activities

did not successfully reveal the faults during development and testing, thus allowing the fault

to lead to an on-orbit failures. Throughout our work we used the term on-orbit and post-

release interchangeably since on-orbit failures are the only failures that occurred post-release.

All other verification activity values represent non-conformance observed pre-release.

Figure 6.2 shows the percentage of non-conformance SCR discovered through each verifi-

cation activity. It can be seen that almost 50% of the non-conformance SCRs were discovered

during analysis and 38% were discovered during various types of testing. Only 7% were dis-

covered during inspections or audits, and 3% on–orbit. The fact that only 3% of failures

occurred post launch (i.e., the verification activity was on–orbit) shows that the verification

procedures and process in place are very effective at discovering and fixing faults during de-

velopment and testing (i.e., pre–release). Furthermore, the percentage of non–conformance

SCRs entered post–release is comparable or even smaller than in other studies; thus, in [54]

3% of the total faults surfaced post–release and for three large scale systems in [1] between

4% and 10% of the faults were discovered post–release.

It should be noted that we do not conclude that any verification activity did better

or worse than any other verification activity because the information of the relative effort

spent on each verification activity was not available. However, this is a common unknown

1Analysis includes activities such as informal reviews or walkthroughs, which differ from more formal
inspections that follow specified steps and assign specific roles to individual reviewers [52].

Margaret L. Hamill Chapter 6. Fault and Failures Features 39

in studies that explore activities, for example [1], [26], [43], and [45] each looked at activities

but no discussion was provided with respect to the relative effort put forth to complete the

activity.

Additionally, we note the small size of the post-release sample compared to the pre-release

sample. However, a small post-release sample is an inherent characteristic of any high-quality

software project. Thus despite the large difference in sample size we do continually compare

pre- and post-release failures, but remind the reader to keep the sample size in mind.

6.3 Severity

The NASA mission kept track of the severity level for each non-conformance SCRs to

capture the impact of each potential or observed failure. This allowed us to explore the

following research question:

RQ1–C: Are some severity levels more common than others?

Severity values were assigned by project personnel from a pre-defined list with the fol-

lowing values:

• Sev 1 represents failures which would result in loss of a safety–critical function.

• Sev 1N are those problems which would be Sev 1 but an established reasonable mission

procedure precludes any operational scenario in which the problem might occur.

• Sev 2 represents failures which could results in loss of a critical mission support capa-

bility.

• Sev 2N are those problems which would be Sev 2 but an established reasonable mission

procedure precludes any operational scenario in which the problem might occur.

• Sev 3 are failures perceivable by an operator that is neither Sev 1 or Sev 2.

• Sev 4 represents a discrepancy not perceivable to the flight software user and usually

involves an insignificant violation of flight software requirements.

• Sev 5 is condition not perceivable to the flight software user and usually is the case

where flight software requirements are not violated, but maybe a programming stan-

dard is violated.

Margaret L. Hamill Chapter 6. Fault and Failures Features 40

For the purpose of our analysis, we group the severity levels used by the project into

two categories: safety–critical (Sev 1, Sev 1N, Sev 2, and Sev 2N) and non-critical (Sev 3,

Sev 4, and Sev 5). Thus, we found that Safety–critical failures were rare. Overall, across

all 2,558 failures, less than 9% were classified as safety–critical; 64%of the total number of

failures were classified as non-critical, and about 27% of the total number of failures were

unclassified (i.e., no severity has been assigned). Although safety–critical failures are rare

fixing them has a high priority as they can lead to unacceptable consequences, which is

why we choose to characterize them. It should be noted that the sample size of safety-

critical failures is significantly smaller than the sample size of non-critical failures, which is

an inherent characteristic of any high-quality safety-critical software project.

6.4 Investigation Effort

Analysts record the time spent from the observance of non-conformance through the

competition of the submitted SCR. In some cases, this time period simply includes the time

spent filing the SCR, while in others it includes additional time spent gathering evidence of

the non-conformance to be presented to the board (e.g., re-run test cases, building data files,

etc.). Based on the effort fields we explored the following research question:

RQ1–D: Is the effort spent reporting failures uniform per component?

Of the 2,558 non-conformance SCRs, 99% recorded the investigation effort for a cumu-

lative effort across all components and all SCRs of over 15,000 hours. Figure 6.3 shows

the histogram of the investigation effort per failure; effort is shown on a the y axis using

logarithmic scale. The median report effort per SCR was 2 hours and values ranged from 0

to 500 hours (less than 0.5% reported 0 hours). By sorting SCRs based on report effort we

found evidence of the Pareto principle, that is, 20% of SCRs accounted for 77% of the total

effort spent reporting the SCRs, which indicates a very skewed distribution. In fact 80% of

SCRs required one hour or less to report.

Margaret L. Hamill Chapter 6. Fault and Failures Features 41

Figure 6.3: Investigation effort histogram

42

Chapter 7

Pairwise Associations of Fault and

Failure Features

In this chapter we study the associations between pairs of the features explored in Chapter

6. The goal was to identify correlations between features that could be used to improve fault

prevention and elimination methods and/or the process of resolving failures. Specifically, we

explore the second set of research questions:

RQ2: Does pairwise correlation exist between fault and failure features?

A. Are certain verification activities more likely to detect certain types of faults? Fur-

ther, are failures exposed during post–release activities (i.e. operational failures)

caused by the same types of faults as failures exposed pre-release?

B. Are certain types of faults more likely to result in safety–critical failures?

C. Which verification activities reveal safety–critical failures?

Based on the fact that we want to measure the association between the values of two fea-

tures we used statistical tests including the statistical significance to formalize the observed

results. In order to be able to determine the significance of the results of any statistical test,

one needs to use a random sample from a given population. For all statistical tests in this

chapter we selected a random sample of failures (i.e., SCRs entered due to non–conformance

with a requirement). To ensure that the relative contribution of each component to the

overall sample of failures is preserved, we conducted stratified random sampling. In partic-

ular, we randomly selected half of the failures from each component. In the case where a

Margaret L. Hamill Chapter 7. Pairwise correlation 43

component had an odd number of failures associated with it, we rounded up. Hence, our

random sample consists of N = 1, 436 failures. For each feature considered in our work, we

checked to ensure that the trends seen in the random sample accurately represent those seen

in the population. It should be emphasized that the stratified random sample was only used

for the statistical tests. The figures and observations presented always represent the entire

sample of 2,558 failures.

7.1 Background on Contingency Coefficient

Each feature (i.e., fault type, verification activity, severity) was considered to be a random

variable. For any two random variables, X and Y , where n is the number of categories in

X and m is the number of categories in Y , we explore whether the distribution of failures

across the m categories of Y was the same for each of the n samples (i.e., categories) in X .

For example, for RQ2–A we tested whether the distribution of n types of faults is the same

across m different activities. In order to test whether or not the n samples come from the

same distribution, we built a m x n contingency table using the observed frequencies for

each pair of categories, and then calculated the standard χ2 statistic which can be shown

to be approximated by a chi–square distribution with (m − 1)(n − 1) degrees of freedom.

It should be noted that the χ2 test is applicable to data in a contingency table only if the

expected frequencies are sufficiently large. Specifically, it is commonly accepted that for the

contingency tables with degrees of freedom grater than one, as suggested by [20], χ2 statistics

may be used if no cell has an expected frequency less than 1 and fewer than 20% of the cells

have an expected frequency less than 5. If these requirements are not met by the data in the

form in which they were originally collected, categories must be combined in a meaningful

way in order to increase the expected frequencies in various cells.

Once the χ2 statistic has been calculated, we can determine the probability under the

null hypothesis (i.e., that the distribution of failures across the m categories in Y is the same

for each of the n samples (categories) of X) that a value as large as the calculated χ2 value is

obtained. If the probability is equal to or less than the significance level α (for our purpose

α = 0.05), the null hypothesis is rejected. The fact that the distribution of failures across

the m categories differs significantly for the n samples suggests that there is some correlation

between the two variables. Therefore, we also measure the extent of the correlation between

the two variables. The null hypothesis in this case, would state that there is no relation

Margaret L. Hamill Chapter 7. Pairwise correlation 44

between the two variables and any correlation observed in the sample is due to chance.

In this chapter we use the contingency coefficient C as a measure of correlation, since

it is uniquely useful in cases when the information about at least one of the features is

categorical (i.e., given on a nominal scale). In out case, the fault type and the verification

activity features were based on the nominal scale, while the severity feature was based on an

ordinal scale. The contingency coefficient C does not require underlying continuity for the

various categories used to measure either one or both features. Even more, the contingency

coefficient has the same value regardless of how the categories are arranged in the rows and

columns. The contingency coefficient C is calculated as

C =

√

χ2

N + χ2
(7.1)

where N is the total number of observations [60].

It is important to note that, unlike the other measures of correlation, the maximum value

of C is not equal to 1; rather, it depends on the size of the table. Specifically, the maximum

value of the contingency coefficient Cmax is given by:

Cmax =
4

√

m− 1

m
·
n− 1

n
. (7.2)

where m is the number of rows and n is the number of columns in the contingency table.

Hence, even small values of C often may be evidence of statistically significant correlation

between variables. Further, C values for contingency tables with different sizes are not

directly comparable. However, by normalizing C with the corresponding Cmax as in equation

(7.3), we ensure that the range will be between 0 and 1, and hence, C∗ values for different

sized tables can be compared in terms of the measured correlation with respect to the

maximum correlation possible [12]

C∗ = C/Cmax. (7.3)

Since the test of significance for the contingency coefficient C is based solely on the

χ2 statistics, it follows that if the null hypothesis that the n samples come from the same

distribution is rejected, than the calculated C value will be significant. Of course, calculating

the values of C and C∗ allows us to compare the extent of correlation for different pairs of

features.

Throughout following sections we explore the pairwise relationships amongst fault types,

detection activities, and severities.

Margaret L. Hamill Chapter 7. Pairwise correlation 45

7.2 Fault Type and Verification Activity

Surely, if we can determine which activities are most effective for revealing common

faults types, we should be able to improve the effectiveness and efficiency of verification and

validation processes. Hence, we started the pairwise analysis by investigating the relationship

between the type of fault that caused the failure and the verification activity being performed

when the non–conformance SCR was reported (i.e., the failure was observed). Our goal was

to explore whether certain types of faults are more likely to be discovered (i.e., associated)

with certain types of activities, that is, research question:

RQ2–A: Are certain verification activities more likely to detect certain types of
faults? Further, are failures exposed during post–release activities (i.e. opera-
tional failures) caused by the same types of faults as failures exposed pre-release?

For this purpose, we formally test the following null hypothesis:

H10: The distribution of failures across detection activities is the
same for all types of faults.

As described earlier, to ensure the χ2 statistic would be reasonably accurate we had to

combine categories for each feature so that the expected frequencies in combined cells satisfy

the requirements as suggested in [20]. Clearly, it is important that these groupings make sense

from a software engineering perspective and do not hide important categories. Hence, based

on discussions with the project team members, we ended up with the following categories for

activities: analysis, inspection/audit, testing (which included all types of testing activities),

on–orbit and other (which included simulation, ‘n/a’, and the original ‘other’ category from

Figure 6.2).

With respect to fault type categories for the purpose of using the χ2 test we have the

following categories: requirement faults, design faults, coding faults, interface & integra-

tion faults (which includes ‘integration faults’ and ‘data problems’ from Figure 6.1), and

other (which includes ‘procedural problems’, ‘process problems’, ‘fabrication/manufacturing

faults’, ‘complier/linker/software development or testing tool errors’, ‘i/o problem’, ‘simu-

lation problem’, and ‘not given’ from Figure 6.1). It should be noted that all categories

associated with the newly formed fault type category other are not directly related to the

software artifact.

Based on the 5 x 5 contingency table we calculated χ2 = 87.76, which has a probability

of less than 0.001 under that null hypothesis. Hence, we reject H10 at α = 0.05 significance

Margaret L. Hamill Chapter 7. Pairwise correlation 46

level in favor of the alternative hypothesis that the distribution of failures across activities

is not the same for each fault type. We then calculated C = 0.25, Cmax = 0.89, and

C∗ = 0.28. Although, the correlation is weak, based on the fact that the probability of

obtaining χ2 = 87.76 is less than 0.001 which is less than α, we know that the correlation

between the verification activity and fault type attributes is in fact statistically significant.

This result, in other words, suggests that certain activities are more likely to detect failures

caused by certain type of faults. However, the fact that the correlation is weak reminds us

that each of the major activities (i.e., inspections/audits, analysis, testing, and on-orbit) are

necessary as each is responsible for revealing some of the failures caused by each fault type.

A 3-dimensional plot of the frequency counts for the 5 x 5 contingency table for activities

and fault types is shown in Figure 7.1. By examining the contingency table with respect

to the effectiveness of different activities it can be seen that analysis and testing activities

revealed the majority of faults for each fault type. In general a smaller percentage of total

failures are detected by testing than by analysis (i.e., 38% of failures were detected by testing

compared to 49% detected by analysis). However, when focusing on the failures caused by

coding faults we see that testing activities were more effective than analysis in revealing

coding faults (i.e., 50% of coding faults were detected during testing while only 39% were

detected through analysis). With respect to requirement faults, the analysis verification

activity revealed more faults than testing (i.e., 58% of requirement faults were detected

through analysis while only 30% were detected during testing). It should be noted that the

Inspection/Audit activities, which revealed close to 7% of the total number of failures, seem

to be more likely to reveal requirement faults than any other type of faults (i.e., 47% of the

total number of failures revealed by Inspection/Audit activities were caused by requirement

faults). Additionally, it can be seen that the majority of on-orbit failures were caused by

coding faults (i.e., 53% of on-orbit failures were cause by coding faults).

Since on-orbit failures are one of the high priority failure classes in terms of prevention

and detection, we explored the characteristics of on-orbit failures compared to all other

failures by focusing on another meaningful grouping of verification activity categories which

differentiates only between failures reported on–orbit (i.e., post–release) and failures reported

during any development and testing activities (i.e., pre-release). Hence, we defined a binary

random variable ‘on-orbit detection’ which was set to one if the failure occurred on-orbit

and to zero otherwise. Of course, this explores a different question:

What types of faults commonly led to on–orbit failures?

Margaret L. Hamill Chapter 7. Pairwise correlation 47

Figure 7.1: Frequency counts across verification activities and fault types

Margaret L. Hamill Chapter 7. Pairwise correlation 48

In other words, we are interested to discover which fault types are most likely to escape the

pre–release detection, which obviously has a practical value.

Figure 7.2 presents the distribution of fault types for failures reported during development

and testing and the distribution of fault types for failures reported on–orbit. (Note that a

logarithmic scale is used to allow the trends in the small number of on–orbit failures to be

seen.) The same information is given in tabular form in Table 7.1. Based on Figure 7.2 and

Table 7.1 we make the following main observations:

• Coding faults and requirement faults were major causes of failures observed

during development and testing, as well as on-orbit. As it can be seen from

Table 7.1 the relative contribution of the coding faults to the total number of failures

increased from approximately 35% during development and testing to almost 53% on-

orbit. On the other hand, the contributions of the requirements faults and data problems

to the total number of failures decreased from 35% and 15% to approximately 14% and

6%, respectively. Coding faults, requirements faults, and data problems (the three most

common fault types overall) together are ’sources’ for around 86% of the total number

of failures during development and testing, and about 73% of on-orbit failures.

• The relative contribution of failures due to design faults and integration

faults was larger on–orbit than during the development and testing. In

particular, the relative percentage of failures caused by design faults increased from

around 6% of failures reported during development and testing to around 13% for

on-orbit failures, while the relative percentage of failures caused by integration faults

increased from around 2% of failures reported during development and testing to 11%

for on-orbit failures. The fact that the relative contribution of failures caused by inte-

gration faults actually increases on-orbit suggests that components may be interacting

in unexpected ways and that more integration testing before components are released

to fly on on-orbit may be beneficial.

Coding faults and requirement faults, which were the two main fault types responsible for

all failures, are also the main contributors to post–release (i.e., on–orbit) failures. Similar

results were found in [43], that is, the most common types of faults identified from the overall

modification requests were the same as those identified from the post–release modification

requests. However, when only on–orbit failures are considered, coding faults contribute

Margaret L. Hamill Chapter 7. Pairwise correlation 49

Figure 7.2: Distribution of major fault types pre- and post-release

Fault Type % of Development % of On-

& Testing SCRs orbit SCRs

Requirements fault 35.42 14.12
Coding fault 35.42 52.94
Data problem 15.20 5.88
Design fault 5.90 12.94
Process and Procedure 3.19 0.00
Integration fault 2.10 10.59
Other 1.66 3.53
Not Identified 1.09 0.00

Table 7.1: Major fault types pre- and post-release

Margaret L. Hamill Chapter 7. Pairwise correlation 50

significantly more than requirements faults, followed closely by design faults and integration

faults. It is clear that although common fault types during development and testing tend to

be common on–orbit as well, their relative contributions can change. Therefore, we explore

whether the likelihood that a failure occurs on–orbit depends on the type of faults that

caused the failure. We formulate and test the following null hypothesis:

H20: The distribution of fault types is the same for failures reported
pre-release and failures reported post–release (i.e., on-orbit).

We calculated χ2 = 7.9, C = 0.08, Cmax = 0.79, and C∗ = 0.10. Since the probability of

obtaining χ2 = 7.9 is less than 0.001 which is less than α = 0.05, the null hypothesis H20

can be rejected in favor of the alternative hypothesis that the fault types are not distributed

the same way across failures reported pre- and post–release. Furthermore, although the

correlation between on-orbit detection status and fault types is statistically significant, the

degree of association is less than that of verification activity and fault type (i.e, C∗ = 0.10

compared to C∗ = 0.28).

Referring back to Figure 7.1 and focusing on the on–orbit verification activity we make an

interesting observation: coding faults and design faults are the most likely types of faults to

escape pre-release detection, that is, a larger percent of each of these fault types were revealed

on-orbit when compared to the percentage of failures caused by other fault types that were

revealed on-orbit. Considering the fact that coding faults are significantly more commonly

responsible for on-orbit failures than design faults (see Table 7.1) suggests that focusing on

the prevention and elimination of coding faults would be most beneficial in decreasing the

number of on-orbit failures.

7.3 Fault Type and Severity

Identifying which types of faults are likely to lead to safety–critical failures can be useful

when prioritizing fixes. Surely, faults that are likely to lead to safety–critical failures should

be addressed immediately. Hence, we explored the following research question:

RQ2–B: Are certain types of faults more likely to result in safety–critical failures?

The breakdown of the severity level across the major fault types, which is shown in

Figure 7.3, indicates that:

Margaret L. Hamill Chapter 7. Pairwise correlation 51

Figure 7.3: Severity levels per major fault type

• All major fault types can cause safety–critical failures. 11% of the failures

caused by coding faults were classified as safety–critical. Note that 11% is rather

significant percentage considering that coding faults were responsible for 36% of the

total number of failures. Although 23% of the failures caused by integration faults were

classified as safety–critical their contribution to safety–critical failures was significantly

smaller since only 2% of the total number of failures were caused by integration faults

(as shown in Figure 6.1). Similarly, 18% of the failures caused by design faults were

classified as safety–critical, but only 6% of the total number of failures were caused by

design faults (as shown in Figure 6.1).

Based on this initial descriptive analysis, we formulated and tested the following hypoth-

esis:

H30: The distribution of the severity of failures is the same across
all fault types.

Here, we used safety–critical, non–critical, and unclassified categories for severity and the

same categories for fault types as in H10 (i.e., requirement faults, design faults, coding faults,

interface & integration faults, and other). In this case, χ2 = 67.87, C = 0.22, Cmax = 0.85

and C∗ = 0.26, which means we should reject H30 and the correlation between severity and

fault types is statistically significant.

The frequency counts of the main fault types in each severity level are shown in the

3-dimensional plot in Figure 7.4. It can be seen that for each fault type (excluding other)

Margaret L. Hamill Chapter 7. Pairwise correlation 52

Figure 7.4: Frequency counts across fault types and severity levels

the most common severity class is non–critical, followed by unclassified and then safety–

critical. However, when focusing on safety–critical failures only, it can be seen that 45%

of the total number of safety–critical failures were caused by coding faults ; about 24% of

the total number of safety–critical failures were caused by requirement faults ; Interface &

integration faults were responsible for 15% of the total number of safety–critical failures;

and design faults and were responsible for causing 12% of the total number of safety–critical

failures.

When integrating these results with the results of research questions RQ1–A and RQ2–A,

it appears that coding faults were not only responsible for a significant percentage of the total

number of failures (i.e., 36%, see Figure 6.1) and more than 50% of the total number of on-

orbit failures (see Table 7.1), they were responsible for almost 50% of the total safety–critical

failures (see Figure 7.4) and 52% of the safety–critical on–orbit failures.

Although it is commonly believed that the most beneficial way to improve software quality

is to focus on so called early-life cycle faults (i.e., faults introduced during requirement and

design phases), our results suggest that it is also very important to focus on preventing the

introduction and improving the detection and removal of coding faults as they are heavily

associated with high priority failures (i.e., safety–critical failures and on-orbit failures).

At first sight it appears that our observations related to coding faults contradict the

observation made in [45] based on analysis of nearly 200 safety–critical post-launch anomalies

from seven unmanned spacecraft. More detailed analysis of the results presented in [45]

Margaret L. Hamill Chapter 7. Pairwise correlation 53

reveals that the percentage of anomalies caused by coding faults in [45] is comparable to the

percentage of anomalies related to requirements and design faults together. As we pointed

out in [37], the lower total percentage of requirements, design, and coding faults (32.7%)

in [45] is due to the fact that the study analyzed anomalies, with a large percentage of

procedure and process faults (29.2%) and large percentage of anomalies for which nothing

was fixed (13.6%).

7.4 Verification Activity and Severity

Considering both the verification activity and severity together, we explored the following

research question:

RQ2–C: Which verification activities reveal safety–critical failures?

For this purpose we tested the following null hypothesis:

H40: The distribution of safety–critical and non-critical failures is
the same across activities.

To test this hypothesis we used the same categories for verification activity as in case

of hypothesis H10: analysis, inspection/audit, testing, on–orbit and otherand as mentioned

earlier, for severity we use: safety–critical, non–critical, and unclassified. Based on the 5 x 3

contingency table, we calculated χ2 = 69.44, C = 0.23, Cmax = 0.85, and C∗ = 0.27. Since

the probability of obtaining χ2 = 69.44 is less 0.001 which is less than α, we reject the null

hypothesis in favor of the alternative hypothesis that safety–critical failures are more likely

to be revealed by certain activities. Further, we conclude that although C∗ = 0.27 repre-

sents fairly weak correlation, the value is statistically significant; the degree of correlation

between verification activity and severity is comparable to the degree of correlation between

verification activity and fault type.

Similarly as in the case of types of faults, safety–critical failures were related more often

with some activities than with others. Figure 7.5 shows a 3-dimensional plot of the frequency

counts for verification activity and severity features. Notice that for both non-critical failures

and unclassified failures analysis was the most successful verification activity in detecting

failures (i.e, 51% of non-critical failures and 51% of unclassified failures were discovered by

analysis). However, it can be seen that slightly more safety–critical failures were discovered

Margaret L. Hamill Chapter 7. Pairwise correlation 54

Figure 7.5: Frequency counts across verification activities and severity levels

Severity % of Development % of On-

& Testing SCRs orbit SCRs

Safety–critical 7.93 34.12
Non–critical 64.50 52.94
Unclassified 27.58 12.94

Table 7.2: Severity levels pre- and post-release

by testing than by analysis. Specifically, 40% of the total number of safety–critical failures

were discovered through some testing verification activity, while 35% were discovered during

analysis. Inspection/Audit activities revealed approximately 7% of failures in each severity

class. Focusing on the safety–critical failures, it can be seen that a fairly significant portion

(i.e., 13%) of the total number of safety–critical failures occurred on-orbit.

Hence, we also explored the relationship between severity and on–orbit detection sta-

tus. Table 7.2 shows the percentage of safety–critical, non-critical and unclassified failures

reported during development and testing, and on–orbit. We formally tested the following

hypothesis:

H50: The distribution of the severity is the same for pre–release and
post–release failures.

By calculating χ2 = 51.49, C = 0.20, Cmax = 0.76, and C∗ = 0.26 we reject H50

in favor of the alternative hypothesis that the distribution of the severity of pre-release

failures differs from the distribution of the severity of post–release failures. Once again,

Margaret L. Hamill Chapter 7. Pairwise correlation 55

although the correlation is weak, it is statistically significant. Unlike the fault type, severity

is comparably correlated for both the on-orbit detection status and the more fine-grained

verification activity feature.

Based on Table 7.2 and the statistical results we made the following observations:

• A larger percentage of on-orbit failures were safety–critical. As shown in

Table 7.2, 34% of the total number of on–orbit failures are safety–critical, while less

than 8% of the total number of failures reported during development and testing are

safety–critical.

• Greater emphasis was placed on fixing and documenting on-orbit failures.

This is shown by the fact that only 13% of on-orbit failures were unclassified compared

to 28% unclassified failures during development and testing.

Further study of the differences between the safety–critical failures detected during de-

velopment and testing and the safety–critical failures that occurred on-orbit may provide

insights on how to pro-actively decrease the number of safety–critical on-orbit failures.

56

Chapter 8

Analysis of trends across releases

In this chapter we present the analysis of trends in features within and across releases

for types of faults, activities (i.e., pre-release and post–release), and severity (i.e., critical

and non-critical). For this analysis we selected a subset of components with two or more

releases that had at least 70 failures reported against them (i.e., at least 70 non–conformance

SCRs were filed against the component). We believe that less failures, when broken down

per release, would not show realistic trends, or at least the results would be very sensitive to

small variations. Thus, the analysis presented in this chapter was based on the data from the

following eleven components: components 7 and 8 (each with two releases), components 13,

14, 15, 16 (each with three releases), component 17 (with four releases), component 18 (with

five releases), componenta 19, 20, 21 (each with seven releases). This subset contains almost

70% of the total non-conformance SCRs explored in Chapters 6 and 7 and , that is, 2, 029

SCRs were reported against the selected eleven components. As expected this subset shows

strong support for the observations made in chapter 6 based on the entire data set. It should

be noted that only four components have more than four releases (i.e., R5 to R7) and in

some cases the number of failures reported in later releases was very small (e.g., component

20 has only two recorded failures in release seven) which limits the analysis for later releases.

We consider trends in features across releases, first collectively for all eleven components

and then individually for each component. Additionally, the per release data allowed us to

explore relationships between the number of failures across releases (i.e., from one release to

the next) and within individual releases (i.e., from pre- to post–release).

This chapter address the third set of research questions:

RQ3: Do trends differ within releases or from one release to the next?

Margaret L. Hamill Chapter 8. Analysis of Trend Across Releases 57

A. What is the distribution of the number of failures across releases? Further, is

there a relationship between the number failures reported across releases, that is,

between release n and release n + 1?

B. Does the contribution of dominating fault types change as the software matures

across releases? Specifically, do dominating faults types change from one release

to the next?

C. Are certain releases more likely to exhibit on–orbit failures? Further, is there

a relationship between the number of failures reported during development and

testing and the number of failures reported on–orbit?

D. Does the severity level of failures change as the software matures both within and

across releases? Specifically, are safety–critical failures more likely to occur in

earlier or later releases?

Based on the fact that some of the features explored to answer the third set of research

questions were on the ratio scale we were able to use a stronger measures for correlation. To

determine the appropriate measure of correlation, we test for normality using the Shapiro–

Wilks W test which is commonly used on samples sizes less than fifty [21]. Pearson coefficient

of correlation is the best in terms of power, but it cannot be used if the random variables fail

the test for normality. In such case one can use the Spearman’s rank correlation coefficient,

which does not assume normality. Suppose we have two random variables X and Y whose

values are sorted and ranked with corresponding rankings denoted by X1, X2, . . . , XN and

Y1, Y2, . . . , YN . Correlation between the two variables would be perfect if and only if Xi = Yi

for all i’s, which makes it logical to use the differences Di = Xi − Yi as an indication of

the disparity between the two sets of rankings. Spearman’s rank correlation coefficient is

calculated by

rs = 1−
6
∑

N

i=1D
2
i

N(N2 − 1)
(8.1)

Unlike the contingency coefficient C used in the previous chapter, Spearman’s rank cor-

relation coefficient is a number between −1 and 1 (−1 ≤ rs ≤ 1), with -1 and 1 representing

perfect negative and positive correlation, respectively. In order to test for the significance of

the correlation coefficient the sample must be randomly drawn from the population. In this

chapter the population consists of eleven components, thus we randomly sampled six com-

ponents five different times and conducted the statistical test on each sample. The test of

Margaret L. Hamill Chapter 8. Analysis of Trend Across Releases 58

significance of rs is based on possible permutation of ranks and the probability of obtaining

the calculated value of rs. In other words, the result is significant if the calculated value of

rs is larger than the critical value of Spearman’s rank correlation. For sample size N = 6

and significance level α = 0.05, the critical value is rs = 0.83.

8.1 The distribution of failures across releases

First, we explored the number of failures recorded per release for each of the selected

eleven components in order to answer the following research question:

RQ3–A: What is the distribution of the number of failures across releases? Fur-
ther, is there a relationship between the number failures reported across releases,
that is, between release n and release n + 1?

Figures 8.1 through 8.4 present the distribution of failures across releases, where com-

ponents are grouped by the number of consecutive releases in the data. The distribution of

SCRs across releases follows a bell shaped curve for the majority of the components (i.e.,

components 14, 15, 17, 19, 20, 21), which implies that despite the iterative development

process and added functionality between releases, components tend to exhibit fewer failures

in later releases and software reliability growth has occurred. The few exceptions are ex-

plainable. Component 13 shows a monotonically increasing trend, which we believe believe

will follow a bell shaped curve as it matures through releases. Additionally, as shown in

Figure 8.1, for components 7 and 8 (which only have two releases and are the youngest com-

ponents studies) the number of failures decreases from release one to release two, similarly

as component 16 (see Figure 8.2). We suspect this behavior may be explained by the func-

tionality added between releases. In other words, release 2 may not have included significant

additional functionality, the components may have been updated only to fix faults in release

1.

Next, we explored whether the number of failures in release n provided any indication

of the number of failures that occurred in the next release n + 1. Based on the fact the

every non-conformance SCR was assigned to one of the 21 components, but many could

not be mapped to files we explored the relationship in the number of failure per release per

component.

For this purpose we formulated the following null hypothesis:

Margaret L. Hamill Chapter 8. Analysis of Trend Across Releases 59

Figure 8.1: Distribution of failures across
components with 2 releases

Figure 8.2: Distribution of failures across
components with 3 releases

Figure 8.3: Distribution of
failures across components
with 4 or 5 releases

Figure 8.4: Distribution of failures across components
with 7 releases

Margaret L. Hamill Chapter 8. Analysis of Trend Across Releases 60

H60: At component level, the number of failures in release n + 1 is
unrelated to the number of failures that occurred in release n.

Since later releases are based on fewer components and have significantly less failures

reported, we only test H60 for releases R1 and R2, and then for R2 and R3. We use the

Shapiro-Wilk W test for normality, which is recommended for small to medium sized samples

[21]. According to the test, the hypothesis of normality cannot be rejected for R1 and R2,

but it is clearly rejected for R3. Hence for consistency, we do not use the Pearson correlation

coefficient. Instead, we use the Spearman rank correlation coefficient rs, which does not

require normality.

Figure 8.5 shows a scatter plot representing the relationship between the number of

failures in release R1 and number of failures in release R2 for all eleven components, with

each dot representing a component. The calculated correlation rs = 0.42, which is less than

the critical value of 0.52 for N = 11 and α = 0.05, leads us to conclude that H6 cannot

be rejected. To test for the statistical significance of the calculate correlation, we sampled

five random samples, each with six components. For each of the five random samples,

0.14 ≤ rs ≤ 0.71 which is always less than the critical value of 0.83 for N = 6 and α = 0.05.

Therefore, once again we found we can not reject the null hypothesis H60. This result

basically means that at the component level the number of failures recorded in the second

release was unrelated to the number of failures in the first release.

Figure 8.6 shows the scatter plot between the number of failures reported in release

R2 and the number of failures reported in release R3 for the nine components that had

at least three releases. The calculated value of rs = 0.22 for all nine components, and

−0.60 ≤ rs ≤ 0.20 for five random samples of six components did not allow us to reject

the null hypothesis, and thus we conclude that at component level the number of failures in

release three was unrelated to the number of failures in release two; that is, any relationship

suggested by the graph most likely is due to chance. Further, even when considering the

relationship between the number of failures in release three, based on the cumulative number

of failures in the two previous releases (one and two) the computed value of rs is not large

enough to reject the null hypothesis for all nine components or any of the five random

samples, each with six randomly selected components.

The lack of a statistically significant correlation between the number of failures identified

in subsequent releases at the component level may be explained by the iterative development

process followed by the mission. Components tend to have unique schedules with respect

Margaret L. Hamill Chapter 8. Analysis of Trend Across Releases 61

Figure 8.5: The number of failures in release
R1 versus the number of failures in release
R2 (rs = 0.42)

Figure 8.6: The number of failures in release
R2 versus the number of failures in release
R3 (rs = 0.22)

Margaret L. Hamill Chapter 8. Analysis of Trend Across Releases 62

to added functionality across releases leading to no clear association between the number

failures. Further exploration in this direction was not possible due to a lack of detailed data

about how and when functionality was added or removed in each release.

These results differ with respect to observations Biyani and Santahanam made in [11],

which stated “it is clear that historical defect1 information is valuable in terms of arriving

at any prediction algorithms” and found that to predict defect volume by module for a new

release it is sufficient to consider defect history from only the immediately previous release.

Additionally, evidence that faulty files in early releases tend to remain faulty in later release

was shown in [54] and [58]. Specifically, in [54] the authors identified the ‘high fault’ files

(i.e., the top 20% of files when ordered by decreasing number of faults) for each of the 13

releases and found that between 22% and 63% of files identified as high fault files in release

n were also identified as high fault files in release n + 1. In [58] the conclusion of fault

persistence across releases was based on the fact that files with a higher than average fault

density in the first release tend to have higher than average fault densities in later releases.

The conflicting results may be due to the fact that different levels of granularity were

used. Specifically, we used the component level, file level was used in [54], and module level

was used in [1], [26], [11]). However, we suspect that due of the small number of failures

associated with the individual releases of each component similar analysis at the file level

would lead to even fewer failures per file and thus would also fail to show a relationship.

However, based on the available data we were not able to link the non–conformance SCRs to

the files and therefore we could not explore whether the trends observed at the component

level would hold true at the file level.

It should be noted that although no relationship was found at the component level, future

work focused on exploring similar trends on different system would help in building empirical

knowledge and clarifying this research question.

In the following sections we explore the trends related to the distributions of fault types,

on–orbit failures, and severity of failures across multiple releases.

1Based on the statements given in [11] it appears that in that paper ’defects’ refer to both faults and
failures.

Margaret L. Hamill Chapter 8. Analysis of Trend Across Releases 63

Figure 8.7: Major fault types per release

8.2 Common Fault Types within and across Releases

In this section we present the analysis of the fault types across and within releases.

Specifically, we considered the three most common fault types (i.e., requirements faults,

coding faults, and data problems) and combined the others in to the others category to

answer the following research question:

RQ3–B: Does the contribution of dominating fault types change as the software
matures across releases? Specifically, do dominating faults types change from
one release to the next?

The distribution of the fault types across releases for all failures associated with the

eleven components considered in this chapter is shown in Figure 8.7. Based on the figure

it is obvious that the three major fault types persisted across releases. Requirements faults,

coding faults, and data problems together contributed to 82%–86% of failures across all

releases.

We further explored fault types using the box plots shown in Figures 8.8 through 8.10.

We choose to use box plots because they show both the central tendency and dispersion of

random variables, which is important in this context having in mind the variability of fault

types across releases at component level. In each graph, for each release, the box contains

the 25th to 75th percentile, and the horizontal line within the box represents the median.

The whiskers (i.e., the vertical lines that reach outside the box) represent the range. The

maximum values, show a bell shaped curve similar to the ones shown in Figures 8.1 through

8.4 in chapter 8.1. In the majority of cases in Figures 8.8 - 8.10, the maximum value shown by

Margaret L. Hamill Chapter 8. Analysis of Trend Across Releases 64

Figure 8.8: Box plot showing the number of
SCRs due to requirement faults per release

Figure 8.9: Box plot showing the number of
SCRs due to coding faults per release

Figure 8.10: Box plot showing the number of
SCRs due to data problem faults per release

the whiskers belongs to component 20, especially in releases R3 and later. We also observed

that for each fault type the number of failures varied most in releases R3 and/or R4, which

is likely due to the the large number of SCRs reported by component 20 in R3 and R4 (see

Figure 8.4). Notice that the 25th to 75th percentile boxes for each release of the common

types varied considerably less. Another perhaps more interesting observation is the fact

that the median for each fault type is stable across all releases, which means that although

some components tend to experience larger variations in the distribution of fault types across

releases, there is a clear central tendency.

For releases R1 through R5 we formally verified the stability in the medians for each com-

mon fault type using the Kruskal-Wallis test, which tests the null hypothesis that different

samples (i.e., in our case each release) were drawn from distributions with the same median.

Kruskal-Wallis test is based on ranks of the combined sample values of the k samples. The

Margaret L. Hamill Chapter 8. Analysis of Trend Across Releases 65

Coding Faults Requirement Faults Data Problems

H 1.23 4.71 1.30
p-value 0.87 0.32 0.86

Table 8.1: Kruskal-Wallis H statistics and corresponding P-value for major fault types

statistic H used by the Kruskal-Wallis test is calculated by

H =
12

n(n+ 1)

k
∑

i=1

T 2
i

ni

− 3(n+ 1) (8.2)

where k is the number of samples, ni is the number of observations in i-th sample, n =
∑

ni

is the total number of observations in all samples combined, and Ti is the sum of ranks in

ith sample.

It can be shown that H is distributed approximately as chi–square distribution with k−1

degrees of freedom. The null hypothesis may be rejected if the probability of χ2 = H is less

than α = 0.05. Note that samples can have a different number of observations ni. In our

case, for each attribute we consider n1 = 11 components for R1, n2 = 11 components for

R2, n3 = 9 components for R3, n4 = 5 components for R4, and n5 = 4 components for R5.

Therefore, n = 40 for the 5 groups (i.e., the five releases). Table 8.1 shows the calculated

H values and the probability of occurrence of equal or greater value of H under the null

hypothesis for each of the three common types of faults. Since for each fault type (i.e.,

requirements faults, coding faults, and data problems) the p− value is larger then α = 0.05

we cannot reject the null hypotheses that releases are drawn from the distributions with the

same median number of failures due to corresponding fault type. Thus, we conclude that

for each the major faults types the medians were drawn from similar distributions in each

release.

8.3 On-orbit failures per release

The study of post–release failures (i.e., on-orbit failures in our case) is of utmost impor-

tance for every system, and especially for safety-critical systems. Hence, we explored the

following research question:

RQ3–C: Are certain releases more likely to exhibit on–orbit failures? Further, is
there a relationship between the number of failures reported during development
and testing and the number of failures reported on–orbit?

Margaret L. Hamill Chapter 8. Analysis of Trend Across Releases 66

The distribution of pre-release (i.e., development and testing) failures and post–release

(i.e., on-orbit) failures across releases for all eleven components cumulatively is shown in

Figure 8.11. Additionally, we explored the number of post-release failures reported per

release for each component individually. Based on Figure 8.11 and the per release per

component analysis we made the

• On-orbit failures accounted for a very small percentage of total failures per

release. As shown in Figure 8.11, across different releases between 0 - 8%2 of failures

per release occurred on-orbit.

• The software is improving and stabilizing in the field. The percentage of on-

orbit failures consistently decreased after release R2 for all but one component (i.e.

component 18). It should be noted that due to the ongoing iterative development on-

orbit failures against later releases have occurred after the date our data sample was

taken. Nevertheless, the occurrence of on-orbit failures decreases as components and

the project mature through releases.

The facts that (1) on–orbit failures accounted for a very small portion of failures per each

release and cumulatively for all releases, and (2) the percentage of on-orbit failures decreased

as the software matured through releases suggests that the verification and validation proce-

dures in place have been very successful at removing faults. Other studies report on similar

values. For example, 4% of faults were detected post–release for each of the two releases

studied in [26], while for each of thirteen releases studied in [54] between 0% and 9% of the

faults were reported post–release.

Since on-orbit failures tend to be more expensive to fix and are more likely to be associated

with a higher severity it would be helpful to know which components are more likely to

experience on-orbit failures. Intuitively, it could be argued that components that exhibit

more failures during development and testing (i.e., pre-release) are well-tested and therefore

unlikely to fail in the field. On the other hand, it could also be argued that some components

may be failure prone due to fundamental reasons and therefore will continue to fail post–

release. Further, since results from the related work were inconsistent with respect to the

conflicting theories (pertaining to which modules are likely to be failure prone post–release)

we explored the relationship between the number of pre-release failures (i.e., failures identified

2Note that the percentage of on-orbit failures is for the eleven components considered in this chapter and
therefore differs from the percentage reported in chapter 6 for all 21 components.

Margaret L. Hamill Chapter 8. Analysis of Trend Across Releases 67

Figure 8.11: On-orbit failures per release

Margaret L. Hamill Chapter 8. Analysis of Trend Across Releases 68

Figure 8.12: Scatter plot showing the rela-
tionship pre- and post-release failures, cu-
mulatively over all releases, (rs = 0.80)

during development and testing) and the number of post–release (i.e., on-orbit) failures first

cumulatively for all releases and then within individual releases.

The scattered plot of the pre–release failures versus post–release failures, cumulatively

over all releases for the eleven components considered in this chapter, which is shown in

Figure 8.12, indicates a positive correlation. Therefore, we formulated and formally tested

the following null hypothesis:

H70: The number of post–release (i.e., on–orbit) failures is unre-
lated to the number of failures that occurred pre–release (i.e., during
development and testing), cumulatively for all releases, at component
level.

Since the distributions of the number of pre-release and post–release failures fail the

Shapiro–Wilke W test for normality, we again used the Spearman rank correlation coefficient

given with equation (8.1) to test the null hypothesis H70. When considering the relationship

between the cumulative number of SCRs entered against each component during development

and testing with the cumulative number of SCRs entered on orbit the computed value of the

Spearman rank correlation coefficient rs = 0.80 indicates very strong correlation. To test

the significance of the correlation, we randomly select six out of the eleven components five

times and calculate rs using the equation (8.1) for N = 6. The computed values for these

five random samples are 0.93 < rs < 0.99, which are statistically significant at α = 0.05 level

since the critical value for N = 6 is rs = 0.83. Based on the observation in the data from all

Margaret L. Hamill Chapter 8. Analysis of Trend Across Releases 69

Figure 8.13: Scatter plot showing the rela-
tionship pre- and post-release failures for re-
lease R1, (rs = 0.53).

Figure 8.14: Scatter plot showing the rela-
tionship pre- and post-release failures for re-
lease R2, (rs = 0.51).

eleven components and the significance of the association in the random samples, we reject

the null hypothesis H70 in favor of the alternative hypothesis that

H7A: At the component level, cumulatively over all releases, the
number of post–release failures is positively correlated with the num-
ber of pre-release failures.

From a software engineering perspective this means that cumulatively over all releases, com-

ponents which had more non-conformance SCRs during development and testing also tend

to have more on-orbit failures.

Further, we explored the relationship between pre-release and post–release failures within

individual releases. The analysis was restricted to releases one to four (R1 – R4), since no

on-orbit failures were reported in our data set for releases five through seven (R5 – R7).

The corresponding scatter plots are shown in Figures 8.13 through 8.16, where each dot

represents a component. Note that for R1, component 8 and component 21 were excluded

as release R1 was never loaded on orbit for either of these components. The values of the

Spearman correlation coefficient rs which were computed using the equation (8.1) are given

in Table 8.2 with the corresponding sample sizes N , that is, the number of components that

have valid pre- and post–release data for the release.

These results showed moderate to strong positive correlation, which means that at the

component level within individual releases a high incidence of pre-release failures implied a

high incidence of post–release failures. In other words, for releases one through four, the

Margaret L. Hamill Chapter 8. Analysis of Trend Across Releases 70

Figure 8.15: Scatter plot showing the rela-
tionship pre- and post-release failures for re-
lease R3, (rs = 0.47).

Figure 8.16: Scatter plot showing the rela-
tionship pre- and post-release failures for re-
lease R4, (rs = 0.96).

Release R1 R2 R3 R4

N 9 11 9 6
rs 0.53 0.51 0.47 0.96

Table 8.2: Spearman correlation coefficient between pre-release and post–release failures, at
component level, for releases one to four

Margaret L. Hamill Chapter 8. Analysis of Trend Across Releases 71

components of the NASA mission that had a high number of non-conformance SCRs during

development and testing tended to experience more on-orbit failures.

The relationship between pre–release and post–release faults has been explored before

(e.g. [1], [11], [26], [54]). However, the results were conflicting. Thus, Fenton in [26] and

Ostrand and Weyuker in [54] found that modules that were fault prone pre-release were

among the least fault prone modules post–release. On the other hand, studies conducted

by Biyani and Santhanam in [11] and Anderrson and Runeson in [1] (which is a replication

of [26]) led to the opposite result: modules that were fault prone pre-release were also fault

prone post–release. Further the Pearson correlation coefficient value used to measure the

extent of correlation in [1] also showed moderate correlation, that is, 0.56 ≤ r ≤ 0.72 for

each of the three projects. Our results for the cumulative number of failures over all releases,

as well for the individual releases one through four, support the observations made in [11]

and [1], but due to a small number of on–orbit failures (i.e., less than 8 in any release of

any component) we refrain from drawing strong conclusions. Future work with respect to

the relationship between pre- and post- release failures should consider mutliple levels of

abstraction to help answer this research question.

8.4 Exploring safety–critical failures within and across

releases

Finally, we quantify the severity of failures across releases, first cumulatively for all eleven

components considered in this chapter, and then for each individual component to answer

the following research question:

RQ3–D: Does the severity level of failures change as the software matures both
within and across releases? Specifically, are safety–critical failures more likely to
occur in earlier or later releases?

The per release data showed that almost every release of each component had been asso-

ciated with both critical and non-critical failures. However, we did observe some interesting

trends:

• A very small percentage of failures within each release are safety–critical.

As shown in Figure 8.17, depending on the release, from 0% – 12% of failures reported

against each release were safety–critical.

Margaret L. Hamill Chapter 8. Analysis of Trend Across Releases 72

Figure 8.17: Severity levels per release

• The percentage of safety–critical failures tends to decrease as components

mature. The majority of components showed a consistent decrease in the number of

critical failures per release. A few components, which showed an increase of safety-

critical failures in the initial releases, eventually showed a decrease in later releases.

We suspect this may be a result of the functionality added.

The phenomenon of the increasing number of safety–critical failures for the initial releases

of some components may be due to problems with integration of components as some unex-

pected combinations of rare events between different components may take time to surface.

73

Chapter 9

Investigation of fixes

Up to this point the research questions were focused on characterizing failures and the

faults that caused them. In this chapter we present the results of our analysis of the changes

made to address the non-conformance SCRs. As stated earlier, when changes are made to

address an SCR, Change Notices (CNs) is created to track the changes per component. It

should be noted that almost all cases, changes were made to correct the fault(s) that caused

the failure (observed or potential), but in some much more rare cases changes were made to

implement a workaround that prevents the reactivation of faults, which may or may not be

fixed at a later date.

As stated earlier, one of the main goals of the analysis of fixes was to consider all changes

to fix all faults associated with an individual failure, as our earlier work [37] clearly showed

failures can often be associated with multiple faults. The existing relationship between SCRs

and CNs made this possible (i.e., an SCR can have zero, one, or multiple CNs associated

with it). Considering both types of change documents, that is, SCRs and CNs, allowed

us complete the link from the fault(s) that caused individual failures to changes made to

prevent the failures from (re)occurring, which to the best of our knowledge has never before

been done. Specifically, we explored the fourth set of research questions:

RQ4: What are the common characteristics of fixes? And, how do features of fault and

failures relate to features of fixes?

A. Which components are affected most often by fixes? Further, are any groups of

components commonly fixed together?

B. Which types of software artifacts were fixed most often?

Margaret L. Hamill Chapter 9. Investigation of Fixes 74

C. Is there any relation between the type of fault that causes a failure and the types

of artifacts that need to be fixed?

D. Is there any relation between the verification activity that revealed the fault(s)

and the types of artifacts fixed?

E. In terms of the artifacts fixed, do safety–critical failures differ from non-critical

failures?

F. Is the effort spent implementing fixes uniform per SCR? per component? If not,

what are the common characteristics of fixes that required the most effort?

The original data set analyzed with respect to fault and failure features consisted of

2,558 SCRs, 2,051 of which had at least one associated CN. However, some of the SCRs

were still ‘open’ at the time of the data dump, that is, they had not been fully addressed

and/or verified. To avoid any bias that might be introduced by considering SCRs that may

require additional changes we focused the fix analysis to SCRs and CNs that had officially

been closed, that is, the fixes had been implemented and verified. Thus, the analysis in this

section is based 1, 257 closed SCRs and the 2, 620 associated CNs1.

The number of closed SCRs and associated CNs are given in Table 9.1 for each of the

21 components. Table 9.1 only contains 2,496 CNs because 124 of the CNs associated with

closed SCRs were associated with simulation components or other components which were

outside the scope of the 21 components analyzed. The most interesting trend is that almost

every component was fixed more times than it suspectedly failed. This is clearly a direct

result of the fact that we consider multiple CNs per individual SCR, however, it serves to

shows how much information may be missing for studies that assumed each failure was traced

to a single localized fault. Additionally, the evidence that failures were caused by multiple

faults generalizes our earlier results in [37], which showed a similar trend on a small subset

of the failures considered here, that is, failures cause by coding faults that could be mapped

to changed in source code files.

Based on the data available in the CNs we explored types of artifacts fixed, the compo-

nents fixed and the effort required to implement the fixes to answer the fourth set of research

questions (i.e., RQ4). First we explored features of fixes individually and then with respect

to how they relate to fault and failures features explored earlier.

1It should be noted that the observations made throughout the previous chapters remain consistent on
this subset on closed SCRs.

Margaret L. Hamill Chapter 9. Investigation of Fixes 75

of closed # of

component non-conf SCRs CNs

1 179 252
2 8 14
3 4 3
4 4 6
5 4 6
6 15 18
7 33 43
8 44 86
9 1 9
10 8 10
11 24 36
12 11 17
13 35 72
14 28 53
15 23 44
16 44 70
17 112 158
18 104 169
19 102 197
20 412 1157
21 62 76

Total 1,257 2,496

Table 9.1: Number closed SCRs and associated CNs per components

Margaret L. Hamill Chapter 9. Investigation of Fixes 76

9.1 Components Fixed

We began by exploring the components affected by changes made to correct faults and

prevent the failures reported through SCRs from re-occurring. Hence, we explored the

following research question:

RQ4–A: Which components are affected most often by fixes? Further, are any
groups of components commonly fixed together?

As stated earlier, the fact that each SCR can be linked to more than one CNs allowed us

explore multiple fixes per failure (i.e., non-conformance SCR). For the 1,257 closed SCRs:

• 82% led to changes only in the same component the SCR was written against.

• 15% led to changes in the same component the SCR was written against, as well as at

least one other component.

• 3% led to changes in others component(s) then the component the SCR was written

against.

As expected, the majority of SCRs led to changes (i.e., CNs) only within the component

the non-conformance SCR was filed against; however, 15% of SCRs resulted in changes to a

different component. According to the project personnel, the spread of fixes can be attributed

to several factors, such as, the interdependence of components and the fact that in some cases

there is more than one way to implement a fix. The cases where the failed component was

not fixed at all may be explained by the fact that sometimes a component simply served as a

catalyst for a failure to surface even when all associated fault(s) were contained outside that

component, especially if data is shared between components. In addition, for some cases for

the quickest and easiest way to fix a problem was through a different component. It should

be noted that the small percent of SCRs that did not result in any change to the ‘failed’

component (i.e., 3%) indicates that the SCR the non-conformance was reported against was

indeed contributing to the non-conformance and thus supports the quality of the data in

terms of representing the fault, failure and fix relationships.

Table 9.2 presents the mean number of CNs associated with each SCR broken down per

component2. It also provides the standard deviation and coefficient of variation3. It can

2Statistical moments are not given for component 9 because as shown in Table 9.1 only one closed SCRs
associated with component 9 had fix data.

3The coefficient of variation is defined as a ratio of the standard deviation and the mean and thus can be
used to compare the variation for different components, even if the means are drastically different from one

Margaret L. Hamill Chapter 9. Investigation of Fixes 77

Figure 9.1: Box plot showing the number of fixes linked to individual failures per component

be seen that the means range from 1.00 to 2.77 CNs per SCR for the 21 components, and

the largest means tend to have the higher coefficients of variation. For some components,

individuals SCRs required a much larger number of the CNs, which can be seen in the box

plot shown in Figure 9.1. For each component, the box shown in the graph contains the

25th to 75th percentile of the numbers of CNs filed per SCR, and the median number of CNs

represented by the horizontal line within the box. The whiskers (i.e., the vertical lines that

reach outside the box) represent the range and show the outliers. The box plot shows both

the central tendency and dispersion in the number of CNs filed per SCR for each component.

The fact that components have similar medians (typically around 1 to 2 CNs per component)

shows there is a clear central tendency. In addition, since all boxes are relatively small, but

several have whiskers that are much longer (see components 13, 16, and 20) we conclude

that there is fairly small dispersion in terms of 75th − 25th percentile, but are reminded that

some SCRs associated with several components are outliers that resulted in considerably

more CNs (e.g., up to 41 CNs created to address one SCR filed against the component 20).

9.1.1 Failed-fixed Component Relationship

Considering that some non-conformance SCRs were associated with multiple components

we decided to explore the relationship between the component the non-conformance was

reported against (i.e., the failed component) and the components that were fixed. Thus,

another

Margaret L. Hamill Chapter 9. Investigation of Fixes 78

Mean # of Standard Coefficient

component CNs per SCR deviation of variation

1 1.63 1.39 0.86
2 1.50 0.76 0.50
3 1.00 0.00 0.00
4 1.50 0.58 0.38
5 2.00 1.41 0.71
6 1.27 0.80 0.63
7 1.24 0.56 0.45
8 1.64 0.92 0.56
9 NA NA NA
10 1.63 1.19 0.73
11 1.42 0.58 0.41
12 1.55 0.69 0.44
13 2.49 3.35 1.35
14 1.96 1.55 0.79
15 2.35 1.80 0.77
16 2.20 3.05 1.39
17 1.46 0.90 0.62
18 1.83 1.59 0.87
19 2.15 2.33 1.08
20 2.77 3.32 1.20
21 1.53 1.34 0.87

Table 9.2: Mean, standard deviation, and coefficient of variation for number of fixes linked
to individual failures per component

Margaret L. Hamill Chapter 9. Investigation of Fixes 79

we defined the failed component - fixed component relationship. It should be noted, as

mentioned earlier, close to 97% of the non-conformance SCRs led to at least some changes

within the same component the SCR was written against, which suggests that the component

the non-conformance was written against contained at least one fault associated with that

non-conformance.

Figure 9.2 shows a 3-dimensional plot representing for each failed component the number

of times each of the other 21 components were fixed (i.e., the cumulative number of CNs

associated with the cumulative number of SCRs written against the failed component).

Exploring the failed component - fixed component(s) relationship, led us to study how the

software architecture relates to the spread of fixes across components. Therefore, we have

re-arranged the order of components shown on the axes in Figure 9.2 specifically to reflect

the software architecture. Thus, the first component listed on both the Failed component

and Fixed components axes in Figure 9.2 is component 20, which is the single top level

component in the 3-level hierarchical architecture. Component 20 is then directly connected

to components 1, 17, 21, 19, 14, and 18 at level two, resulting in six groups of components

shown in Figure 9.2, annotated as A through F. The components that connect each group

to the top level component appear first in each of the groups A through F. The remaining

components span the second and third levels in the architecture.

The main observations based on Figure 9.2 were:

• Fixes typically occurred in the failed component. As shown by the large values

on the diagonal the majority of CNs were tied to the same component against which

the originating SCR was written, which indicates that the failed component was at

the very least contributing some fault(s) to a potential failure. In total, 74% of CNs

were tied to the changes implemented in the same component against which the SCRs

was reported4. The remaining 25% of changes were implemented in a component other

than the one the SCR was written against. Thus, showing that one in every four faults

lies outside the component reportedly failing.

• A significant percentage of fixes were associated with the single top level

component, that is, component 20. 34% of the total number of CNs were imple-

mented as either a result of an SCR filed against component 20 or to make a change

4Note that because each SCR can have multiple CNs, although 82% of SCRs required changes only within
the failed component, only 74% of CNs were implemented within the failed components.

Margaret L. Hamill Chapter 9. Investigation of Fixes 80

Figure 9.2: The cumulative number of fixes in each components based on the cumulative
number of failures associated with the failed component

Margaret L. Hamill Chapter 9. Investigation of Fixes 81

to component 20 as a result of an SCR filed against another component. We also

noticed that the failed components that often led to fixes in component 20 tended to

be components at the second level of the hierarchy which connect each architectural

group (i.e., A through F) to the single top level component (i.e., component 20). This

observation suggests that the spread of fixes is related to the software architecture.

What is perhaps most interesting about exploring the failed - fixed component(s) rela-

tionship is the set of SCRs that required fixes outside the component against which the SCR

was filed. One would suspect finding and fixing faults outside this component would be more

difficult, as it is less intuitive. Therefore, we specifically analyze such SCRs. When further

exploring the spread of fixes that occurred outside the failed component we chose to include

open SCRs for which some fixes had been implemented because the change notices that are

yet to filed could only increase the spread of fixes. At the component level, it is very unlikely

that all changes made to a component would be complete reverted upon verifying the fix.

Thus, including open SCRs is still likely to be an understatement with respect to the spread

of fixes across components, as additional change notices can only increase the spread of fixes.

Figure 9.3 is similar to Figure 9.2 but included data for both opened and closed SCRs5,

while the fixes that were implemented in failed components (i.e., data points that lie on the

diagonal in Figure 9.2) were removed so that patterns off the diagonal that reflect changes

outside the failed component could be explored. Note that the scale on the z-axis which

shows the cumulative number of CNs has changed. The following interesting observations

with respect to the effect of the software architecture on the distribution of fixes were made

based on Figure 9.3):

• Changes to components in group F were the most frequent and typically

localized within group F. In other words, SCRs filed against components from

Group F rarely led to fixes outside the group. Further, we noticed that either of

component 8 or component 16 failures are likely to result in fixes in the other. The

most prominent exception from the changes being localized within group F is the large

number of failures of component 18 that affected component 20, which can be explained

by the fact that component 18 is the component at the second level which connects

5Once again, we note that we repeated the analysis for the claims made thus far and confirmed that
the major trends did not change. Further, it remains true that about 18% of open and closed SCRs led to
changes outside the components against which the SCR was written, which is the same percentage of closed
SCRs.

Margaret L. Hamill Chapter 9. Investigation of Fixes 82

Figure 9.3: The cumulative number of fixes that led to changes outside the failed component

Margaret L. Hamill Chapter 9. Investigation of Fixes 83

group F to component 20.

• Fixes typically remained within the architectural group. 74% of fixes that

occurred outside the failed component remained within the architectural groups. How-

ever, failures in some components required fixes to other groups. For example, a failure

in component 2 may require fixes in almost any other component. In fact, only com-

ponent 19 has never been fixed as a result of a failure in component 2. Additionally,

failures in component 6 (which belongs to group A) were likely to cause changes in

group B. According to project personnel this can be explained by the fact that func-

tional groups are interconnected to perform overall integrated mission operations.

• Components with similar functionally showed similar change patterns. Com-

ponents 4, 5, 6 and 12 which are similar in terms of their functionality showed very

similar change patterns across all failures, as was also the case for components 14 and

15.

These result suggest that software architecture has an impact on the distribution of fixes

among different groups of components. According to project personnel this information is

useful for conceptualizing integrated independent analysis tests. Further benefit may come

from identifying non-typical behaviors, such as for example the fact that the number of

changes in group F also high, or that failures linked to component 2 may lead to changes in

almost any other component. These observations can be useful in increasing the efficiency

of fixing future faults by helping the developers and verification and validation personnel to

identify components that typically change together.

9.2 Types of Software Artifacts Fixed

Faults contained within any of the software artifacts used throughout the development

life cycle can potentially cause a failure. Since analysis techniques can be specific to certain

artifacts (e.g., testing of code versus manual analysis of code or requirements) we explored

the distribution of faults across artifacts to answer the following research question:

RQ4–B: Which types of software artifacts were fixed most often?

Quantifying these trends could help managers allocate resources accordingly. Each CN

identified the software artifact that was fixed in the ‘affected product’ field. This is a free-

Margaret L. Hamill Chapter 9. Investigation of Fixes 84

text field and thus, the level of detail describing each artifact varied greatly; in some cases

specific file names or documents names were given, while in other cases there were only high

level descriptions. Based on domain expertise of project personnel, we grouped the artifacts

into the following categories:

• requirements documents (e.g., detailed requirement specifications)

• design documents (e.g., high-level design overviews)

• code files (e.g., Ada files)

• supporting files (e.g., pre-defined look up tables)

• tools (e.g., testing, simulation and configuration tools)

• notes (Notes are written for the onboard crew to help prevent known failures, for exam-

ple, by instructing the crew to avoid or alter certain command sequences. Therefore,

a note can be considered to be a work-around)

• waivers (Waivers on the other hand are written to acknowledge that a requirement

cannot be met and that the mission is currently willing to accept the limitation.)

74% of the non-conformance SCRs identified only one type of artifact (although in some

cases multiple instances of a single type of artifact were changed, such as two different

requirement documents), 20% identified two types of artifacts, and slightly less than 6%

identified three or more types of artifacts affected by fixes. Hence, in addition to exploring

which single type of artifacts were fixed most often, we also explored which types of affected

artifacts were often fixed together.

The venn diagram in Figure 9.4 shows the common types of artifacts and groups of

artifacts fixed by changes6. We made the following observations with respect to the types of

artifacts fixed:

• The vast majority of SCRs resulted in changes to requirements, code, or

the combination of both. Specifically, 39% of the SCRs resulted in changes to the

requirements only (no other types of artifacts were affected), 33% resulted in changes

6The groupings shown in Figure 9.4 account for over 94% of the SCRs that identified artifacts changed.
The reminding 6% of the SCRs cannot be shown in Figure 9.4 because of the extremely small percentages
spread across less common groupings.

Margaret L. Hamill Chapter 9. Investigation of Fixes 85

Figure 9.4: Types of artifacts fixed

Margaret L. Hamill Chapter 9. Investigation of Fixes 86

to code and no other artifacts, and 14% required changes in both the requirements and

the code.

• The supporting files were almost always changed in conjunction with other

artifacts. Thus, while only around 0.6% of SCRs led to changes only in supporting

files, 5% resulted in changes in code and supporting files and 3% resulted in changes

in requirements, code, and supporting files.

• The percentage of SCRs that led to changes in design artifacts was rather

small. Almost half of the SCRs that do not appear in Figure 9.4 (i.e., around 3%

overall) required changes in at least some design artifact(s). The small percentage of

SCRs linked to changes in design documents may to some extent be due to the fact

that the mission did not maintain detailed design documents and according to project

personnel when code changes impacted only a few lines, the design documents would

not be updated.

• Workarounds were sometimes used to prevent failures from reoccurring.

The analysis of the artifacts fixed showed that less than 2% of SCRs identified notes

and/or waivers as fixed artifacts. At first this seemed surprising for a large safety-

critical system that required sustained engineering; however, project personnel pointed

out an additional change document, which was stored solely for the purpose of tracking

workarounds. Initial analysis of this documented showed that were around were more

commonly used (i.e., 26% of the SCRs for which fixes where analyzed were associated

with these additional documents).

9.3 Types of Artifact Fixed per Fault Type

We suspect that the fault type responsible for causing a (potential or actual) failure may

be correlated with the type of artifacts affected by the fixes. For example, a requirement

fault is likely to lead to change in requirements. However, the association is not trivial since

for example a requirement fault should also lead to changes in the source code if it was

discovered after the code was implemented. Hence, we explored research question:

RQ4–C: Is there any relation between the type of fault that causes a failure and
the types of artifacts that need to be fixed?

Margaret L. Hamill Chapter 9. Investigation of Fixes 87

Figure 9.5: Frequency counts for types of artifacts fixed per major fault type

To explore the association between the types of artifacts affected by fixes and the fault

types that caused individual failures, we tested the following null hypothesis:

H80: The artifacts fixed are unrelated to fault type.

By calculating χ2 = 609.21, and then C = 0.57, Cmax = 0.91, and C∗ = 0.63 we reject

H80 in favor of the alternative hypothesis that the type of affected artifacts are correlated

with fault types. The correlation is strong and statistically significant at 0.05 significance

level. The correlation between fault types and types of affected artifacts is twice that of any

other correlation between fault and failure attributes measured in Chapter 7.

The 3-dimensional plot in Figure 9.5 shows the frequency counts of the common types or

group of types of affected artifacts for each major fault type. Table 9.3 shows the correspond-

ing data presenting the actual numbers (and percentages in brackets) of non-conformance

SCRs for each fault type that led to changes in the common grouping of artifacts.

With respect to major fault types we made the following observations:

• The majority of coding faults were fixed by changing the code only. 66% of

the failures that were caused by coding faults (i.e., 22% of the total non-conformance

SCRs) resulted in a change only in the code and no other type of artifact. This is

the highest percentage among all combinations of fault type and affected artifacts.

Margaret L. Hamill Chapter 9. Investigation of Fixes 88

Fault Type
Types of
Artifacts Requirements Design Coding Integration Other Total
Fixed

Requirements 251(19.97) 4(0.32) 27(2.15) 199(15.83) 9(0.72) 490(38.98%)
Requirements 9(0.72) 1(0.08) 4(0.32) 2(0.16) 0(0.00) 16(1.27%)
Design & Code
Requirements 86(6.84) 10(0.80) 52(4.14) 23(1.83) 7(0.56) 178(14.16%)

& Code
Requirements, 16(1.27) 4(0.32) 9(0.72) 9(0.72) 1(0.08) 39(3.10%)

Code &
Supporting

Files
Code 41(3.26) 33(2.63) 281(22.35) 26(2.07) 29(2.31) 410(32.62%)

Code & 6(0.48) 8(0.64) 29(2.31) 14(1.11) 1(0.08 58(4.61%)
Supporting

Files
Other 20(1.59) 9(0.72) 22(1.75) 6(0.48) 9(0.72) 66(5.25%)

Total 429(34.13%) 69(5.49%) 424(33.73%) 279(22.20%) 56(4.46%) 1,257(100%)

Table 9.3: Frequency counts for types of artifacts fixed per major fault type

An additional 27% of the failures caused by coding faults (i.e., 7% of the total non-

conformance SCRs) resulted in changes to the code, as well at least one other type of

artifact. Surprisingly, we notice from Figure 9.5 that in some cases a coding fault may

be fixed by fixing requirements only, that is, 6% of failures caused by coding faults (i.e.,

2% of total non-conformance SCRs) resulted in changes to requirements only. This can

be explained by the nature of the software developed by NASA. NASA missions do

things for the first time and hence experience discovery of requirements throughout

development, testing and even operation. Accordingly to the project personnel in

these few cases the code may be implemented and/or updated on the fly and then the

SCR was written to update the requirements to match the code. Similar observation

related to discovery of requirements later in the life cycle was made for other NASA

missions [45].

• The majority of requirements faults were fixed by changing requirements

only. Table 9.3 and Figure 9.5 show that 59% of failures caused by requirement

faults (i.e., 20% of the total non-conformance SCRs) resulted in changes in requirement

artifacts and no other type of artifact. This suggests that a large portion of requirement

Margaret L. Hamill Chapter 9. Investigation of Fixes 89

faults are caught before the code for that faulty requirement was implemented. On

the other hand 20% of failures caused by requirement faults (i.e., close to 7% of the

total non-conformance SCRs) led to changes in requirements as well as code, and

additional 4% (i.e., just over 1% of the total non-conformance SCRs) led to changes

in requirements, code, and supporting files. For these 8% of the SCRs it appears the

requirement faults, which can be incorrect or missing requirements, were detected later

in the life cycle. Interestingly we also notice that some requirements faults were fixed

by changing the code only (i.e., 10% of failures caused by requirement faults, that is,

about 3% of the total non-conformance SCRs). This may indicate situations in which

the requirement was unclear but the code was the only artifact affected due to lower

level implementation details not included in requirements documents.

• Integration faults often led to changes in requirement documents. 72% of fail-

ures associated with integration faults (i.e., close to 16% of the total non-conformance

SCRs) resulted in changes to requirements documents only. This can be explained

by the fact that this NASA mission relies directly on program, instrument, and com-

mand lists which are implemented through requirements documents and directly affect

software executions as they define commands and/or values to be used in certain con-

ditions. Clearly, an emphasis should be put on defining, reviewing, and testing these

commands and values which potentially would led to less integration faults. In general,

more analysis and/or inspection conducted on all current integration requirements may

be beneficial.

• Design faults typically led to changes in code, often in combination with

other artifacts. 48% of the failures caused by design faults (i.e, below 3% of the total

non-conformance SCRs) led to changes in only code and an additional 33% (i.e, 2% of

the total non-conformance SCRs) led to changes in code as well as at least one other

type of artifact (e.g. code and supporting files, or requirements, design, and code).

According to project personnel, this can be explained by the fact that this NASA

mission did not use very detailed design, and so design decisions were often directly

implemented at the coding level.

• Uncommon fault types most often led to changes in code only. Fault types

that were rare (e.g., i/o problems, simulation problems, fabrication/ manufacturing

Margaret L. Hamill Chapter 9. Investigation of Fixes 90

faults each accounted for less than 1% of non-conformance SCRs) were grouped into

the other fault type category. Figure 9.5 shows that these fault types typically require

changes to the code only.

Based on the analysis of the association between fault types and affected artifacts con-

ducted, we emphasize several points which may benefit the NASA mission and potentially

contribute towards more cost efficient improvement of software quality.

• Compiling a checklist of common coding faults and incorporating it in the

development and verification and validation process may significantly de-

crease the number of coding faults, and thus the overall number of non-

conformance SCRs. As noted earlier, 66% of the failures that were caused by coding

faults (i.e., 22% of the total non-conformance SCRs) resulted in changes only in the

code and no other type of artifact. This suggests that a large portion of coding faults

are due to coding errors and may be avoided by compiling a checklist with common

coding errors. Similar effort in Lucent Technologies decreased the number of coding

faults by 34.5%, reduced the average testing effort by 18.3%, and shortened the devel-

opment interval by 8.3%. The total saving due to reduced product rework and testing

was seven million US dollars [68].

• Some faults may have been detected earlier. Based on the results presented in

Figure 9.5 and Table 9.3, we were able to identify several groups of SCRs that may have

been revealed earlier. These include 20% of failures caused by requirement faults (i.e.,

7% of the total non-conformance SCRs) which led to changes in both requirements

and code, and an additional 4% (i.e., just over 1% of the total non-conformance SCRs)

which led to changes in combination of requirements, code, and supporting files, and

18% of the failures which were linked solely to changes in the code (i.e., close to 6%

of the total non-conformance SCRs) but were actually caused by requirement faults or

design faults. Theoretically, these requirements faults have a potential to be detected

earlier (i.e., as early as the requirements phase) before they have been implemented

thus would not have required fixes to other artifacts. Further exploration of such

SCRs by domain experts may lead to earlier detection of faults. However, it should be

noted in case of NASA missions earlier detection of requirement faults is not always

feasible as some requirements will always remain to be discovered under the unknown

circumstances that come with exploring the unknown for the first time.

Margaret L. Hamill Chapter 9. Investigation of Fixes 91

9.4 Types of Artifacts Fixed per Verification Activity

Once again we were specifically interested in characterizing the high priority failure class

of post-release failures. In this section we investigate how fixes differ in terms of artifacts

fixed for pre-release and post-release (i.e., on-orbit) failures to answer the following research

question:

RQ4–D: Is there any relation between the verification activity that revealed the
fault(s) and the types of artifacts fixed?

Formally, we tested the following hypothesis:

H90: The types of artifacts fixed are unrelated to pre/post-release
detection.

By calculating χ2 = 26.96, C = 0.15 we see that Cmax = 0.81 and C∗ = 0.18, we reject

H20 in favor of the alternative hypothesis that the affected artifacts are correlated with the

pre/post release detection. Although the measured correlation is weak, it is statistically

significant at significance level of 0.05. Table 9.4 shows the percentage of failures discovered

pre- and post–release for the common groups of affected artifacts. It should be noted that, as

in case of any good quality, operational software, the sample size of post-release failures (i.e.,

on-orbit failures) is significantly smaller (i.e., 42 SCRs) than the sample size of potential

failures prevented by fault detection and removal activities (i.e., 1,215 SCRs).

Table 9.4 shows that the majority of post-release failures (i.e., 50%) resulted in changes

to source code only, which was not surprising considering the fact that 53% of post–release

failures were caused by coding faults (see chapter 7.2. Thus, as expected the fact that the

majority of coding faults were fixed by changes to just code is true for post-release failures

as well as pre-release failures. Thus, we emphasize the potential of focusing on detect coding

faults earlier in the life cycle by implementing and/or updating coding checklists used during

development process and verification and validation activities.

9.5 Types of Artifacts Fixed for Safety–critical Failures

In this section we focus on the high priority safety-critical failure class. Specifically, we

investigated whether different types of artifacts were fixed for safety-critical failures than for

non-critical failures and explored the following research question:

Margaret L. Hamill Chapter 9. Investigation of Fixes 92

Artifacts Fixed % of % of On-

Development orbit SCRs

& Testing SCRs

Code only 32.03 50.00
Requirements only 39.92 11.90
Requirements and 14.24 11.90
code
Code and 4.20 16.67
supporting files
Requirements, code, 3.13 2.38
and supporting files
Requirements, design, 1.32 0.00
and code
Other 5.19 7.14

Table 9.4: Artifact fixed pre- and post-release

Margaret L. Hamill Chapter 9. Investigation of Fixes 93

RQ4–E: In terms of the artifacts fixed, do safety–critical failures differ from non-
critical failures?

To answer this question we formulated and tested the following null hypothesis:

100: The artifacts fixes are unrelated to the severity of the (potential)
failure.

By calculating χ2 = 295.69, C = 0.43, Cmax = 0.87, and C∗ = 0.50 we reject H110

in favor of the alternative hypothesis that the type of software artifacts fixed are correlated

with the severity level of failures. The measured correlation is moderate and statistically

significant at 0.05 level.

Further observations about the association of software artifacts fixed and the severity

level of (potential or actual) failures can be made based on the frequency counts of the

common groups of affected artifacts for critical, non-critical, and unclassified failures shown

in the 3-dimensional plot in Figure 9.6. The main observations were as follows:

• The relative contribution of failures that led to fixing multiple types of

artifacts was more significant within the class of safety-critical failures than

within the class of non-critical failures. Over 67% of safety–critical failures led

to changes in multiple types of artifacts, while only 29% of non-critical failures led to

changes in multiple types of artifacts. This observation may be explained by several

reasons such as (1) a larger percentage of on-orbit safety-critical failures occur when

all software artifacts (including the code) exist and thus need to be changed to fix the

problem, (2) safety–critical failures sometimes may be more complex than non-critical

failures, and (3) safety–critical failures may sometimes be better documented than

non-critical failures.

• The relative contribution of failures that required changes in supporting

files was more significant within the class of safety-critical failures than

within the class of non-critical failures. Specifically, 24% of safety-critical failure

resulted in changes to the code and supporting files group compared to only 3% of

non-critical failures. Additionally, 18% of safety-critical failures resulted in changes to

the requirements, code, and supporting files group compared to only 2% of non-critical

failures.

Margaret L. Hamill Chapter 9. Investigation of Fixes 94

Figure 9.6: Frequency counts for types of artifacts fixed per severity level

• Safety-critical failures rarely led to changes in requirement artifacts only.

Although rare, safety–critical failures may lead to changes in requirements only. Specif-

ically, 4% of safety-critical failures led to changes only in requirements, which can be

explained by the instrument program command lists used by the mission. Theses lists

define commands and values to be used under certain conditions and thus are read

directly during operation. When discussing the types of affected artifact with project

personnel these instrument program command lists were considered to be requirements,

however we note that in this cause a change to this requirements document can di-

rectly affect the software’s execution behaviors under pre-defined conditions. It should

be noted that, as in case of on-orbit failures, the sample size of safety-critical failures

is significantly smaller (i.e., 127 SCRs) than the sample size for non-critical failures

(i.e., 711). Therefore, the above observations are supposed to be taken with caution

and should further be confirmed on additional safety–critical failures from this or other

missions.

9.6 Fix Effort

A significant amount of effort in any major software development project is spent on

verification and validation methods. Further, it has been estimated that changes due to

Margaret L. Hamill Chapter 9. Investigation of Fixes 95

maintenance and rework account for between 60 and 80 percent of total development costs

[35]. Thus it is obvious that projects could benefit significantly from decreasing the effort

spent on verification activities, maintenance and/or fixing faults.

In the NASA mission CNs have an effort field for the analyst to record the time spent

implementing the changes described within that CN. As defined in section 2 the fix effort

represents the total effort in hours spent implementing fixes for all the change notices as-

sociated with an individual SCR. Of the 1,257 closed SCRs , 92% (i.e., 1,153) recorded the

effort spent implementing changes; cumulatively these 1,153 SCRs took 17,500 hours to fix7.

Quantifying the effort spent implementing fixes per component, as well as per individual

failure, could be useful in helping to predict future fix effort and identify where the most

room for improvement is. Thus, we explored how the effort spent implementing fixes was

distributed across features. First we explored the distribution of effort per component and

then per SCR to answer the following research question:

RQ4–F: Is the effort spent implementing fixes uniform per SCR? per component?
If not, what are the common characteristics of fixes that required the most effort?

Thus, be began by exploring the relationship between the size of each component (given

KSLOC), the number of SCRs written against the component, and the number of cumulative

hours spent fixing faults in that component as shown in Figure 9.7. Each dot in the Figure

9.7 represents a component. Earlier we found that larger components tend to have more

SCRs filed against them [37] and consequently we now see more cumulative effort was spent

fixing these components. The pairwise relationships between between the number of SCRs

and the fix effort, the size (KSLOC) and fix effort, and the size (KSLOC) and number of

SCRs, are shown in Figure 9.8. As expected, the largest component (i.e., component 20)

had the most SCRs and accounted for more of the total fix effort than any other component.

Figure 9.9 provides a histogram of the fix effort per individual failure on a logarithmic

scale. The median effort spent per SCR was 3 hours, and values ranged from 0 to 1,193

hours (1% SCRs reported 0 hours). By sorting the SCRs based on the number hours spent

implementing fixes we found evidence of the Pareto principle, that is, 20% of that SCRs

account for 83% of the total amount of fix effort, which indicates of a skewed distribution.

Thus, although fixing the faults associated with most of the SCRs required little effort (in

7In total, these 1,153 SCR took 2,140 hours to report based on the SCR effort field discussed in Section
6.4.

Margaret L. Hamill Chapter 9. Investigation of Fixes 96

 0 200 400 600 800

2
3

4
5

6
7

8
9

 0
100

200
300

400
500

KSLOC

of

 S
C

R
s

lo
g(

F
ix

 e
ffo

rt
 h

ou
rs

)

Figure 9.7: Relationships between component size (in KSLOC), the cumulative number of
SCRs filed against the component, and the cumulative effort spent fixing the component

Margaret L. Hamill Chapter 9. Investigation of Fixes 97

0 100 200 300 400

3
4

5
6

7
8

9

SCRs

lo
g(

F
ix

 e
ffo

rt
 h

ou
rs

)

0 100 200 300 400 500 600 700

3
4

5
6

7
8

9

KSLOC

lo
g(

F
ix

 e
ffo

rt
 h

ou
rs

)

0 100 200 300 400 500 600 700

0
10

0
20

0
30

0
40

0

KSLOC

of

 S
C

R
s

Figure 9.8: 2 dimensional projections for the 3 dimensional plot shown in Figure 9.7

Margaret L. Hamill Chapter 9. Investigation of Fixes 98

Figure 9.9: Fix effort per individual failure histogram

the range of several hours), some rare SCRs required a much more significant amount of

effort (hundreds or even thousands of hours).

9.6.1 High Fix effort

As expected, fix effort was not uniformly distributed across components or SCRs. Fur-

ther, we explored fix effort with respect to the fault types that caused the failures and the

artifacts fixed, as well as, the fix effort associated with high-priority failure classes (i.e., post-

release failures, and safety–critical failures) and the fix effort with respect to the spread of

fixes (i.e, the number of components fixed and the number of types of artifacts fixed).

Fix effort with respect to fault type and types of artifacts fixed

Based on the result presented in Section 9.3 we know that there is a statistically significant

association between fault type and types of artifacts fixed. Here we investigate how fix effort

is distributed across these categories.

Table 9.5 shows the distribution of the effort spent for the major fault types and major

groups of fixed artifact types8; Table 9.6 shows the number of instances in each category.

More interestingly, Figure 9.10 and Table 9.7 show the effort per fault type and fixed artifact

type normalized by the number of instances in each category, that is, the total hours spent

8Table 9.3 shows very similar information but for SCRs with CNs rather than just those with recorded
effort values

Margaret L. Hamill Chapter 9. Investigation of Fixes 99

Fault Type
Types of
Artifacts Requirements Design Coding Integration Other
Fixed

Requirements 868.7 10.1 182.3 1,734.7 58.5
Requirements 360.2 280.0 10.4 31.0 0.0
Design & Code
Requirements 1,540.5 136.2 2,250.9 386.1 132.6

& Code
Requirements, 1,332.1 87.0 232.9 776.1 17.0

Code &
Supporting

Files
Code 1,274.6 284.0 2,150.6 71.4 105.2

Code & 320.1 41.6 921.0 420.9 32.0
Supporting

Files
Other 170 22.2 387.9 810.9 45.5

Table 9.5: Total effort spent per fault type and fixed artifact group

Figure 9.10: Cumulative effort (in hours) spent per fault type and fixed artifact group

per category divided by the number of SCRs in that category which represents the mean

effort spent per category.

Our main observations include:

• Requirement faults caught early typically required less effort to fix. As

expected, it can be seen that requirements faults which were corrected by only fixing

Margaret L. Hamill Chapter 9. Investigation of Fixes 100

Fault Type
Types of
Artifacts Requirements Design Coding Integration Other
Fixed

Requirements 249 4 27 199 9
Requirements 8 2 1 2 0
Design & Code
Requirements 87 9 56 23 8

& Code
Requirements, 16 4 8 9 1

Code &
Supporting

Files
Code 32 25 216 19 22

Code & 6 8 30 14 1
Supporting

Files
Other 19 9 20 6 4

Table 9.6: Total number of SCRs per fault type and fixed artifact group

Fault Type
Types of
Artifacts Requirements Design Coding Integration Other
Fixed

Requirements 3.5 2.5 6.9 8.7 6.5
Requirements 45.0 140.0 10.4 15.5 0.0
Design & Code
Requirements 17.7 15.1 40.2 16.8 16.6

& Code
Requirements, 83.3 21.8 29.1 86.2 17.0

Code &
Supporting

Files
Code 39.8 11.4 10.0 3.8 4.8

Code & 53.4 5.2 30.7 30.1 32.0
Supporting

Files
Other 9.3 2.5 19.4 135.2 11.4

Table 9.7: Mean effort per failure spent for each fault type and fixed artifact group

Margaret L. Hamill Chapter 9. Investigation of Fixes 101

requirements on average required considerably less effort per SCR than requirements

faults that led to fixes in multiple types of artifacts. For example, 3.5 hrs/SCR for

fixes in requirements early versus 17.7 hrs/SCR or more for requirements faults that

led to changes in requirements and code.

• Coding faults that led to changes only in code or only requirements required

a relatively low effort to fix compared to other coding faults, that is, on average

less than 10 hours and 7 hours respectively, while other ranged between 20 and 40hrs9.

• Some categories required more effort to fix than others. For example, it can be

seen that SCRs due to requirements faults and also SCRs due to integration faults that

led to changes in requirements, code and supporting files required a relatively high effort

to fix (i.e., over 80 hours per SCR). However, it should be noted that these observations

are each based on few SCRs, but were expected based on the skewed distribution that

has large value observations with small, but non-negligible probability.

9.6.2 Fix effort for high-priority failures

Fixing high-priority post-release (i.e, on-orbit) and/or safety-critical failures is very im-

portant despite the fact that each occurs rarely. To the best of our knowledge whether or

not such high priority fixes require more effort to fix has never been explored. Thus, we

investigated how the fix effort differs for SCRs reported pre-release (i.e., during development

and testing) versus those reported post-release (i.e., on-orbit), as well as for safety-critical

versus non-critical SCRs.

Table 9.8 and Table 9.9 show the distribution of fix effort for safety-critical/non-critical

failures and pre/post release failures, respectively. Since mean and standard deviation can

be sensitive to outliers (i.e., do not represent skewed distributions well) we also considered

the median and the Semi Interquartile Range (SIQR) (a measure of dispersion around the

median)10.

9Coding faults that led to changes in design, requirements & code showed a normalized effort 10.4 hrs
per SCR, but only only one SCR fell into this category. On the other hand, 216 SCRs linked to coding faults
led to changes only in code and 27 SCRs linked to coding fault led to changes only in requirements

10The semi-interquartile range is a measure of spread or dispersion. It is computed as one half the
difference between the 75th percentile (often called (Q3)) and the 25th percentile (Q1). The formula for semi-
interquartile range is therefore: (Q3-Q1)/2. Since half the scores in a distribution lie between Q3 and Q1,
the semi-interquartile range is 1/2 the distance needed to cover 1/2 the scores. In a symmetric distribution,
an interval stretching from one semi-interquartile range below the median to one semi-interquartile above

Margaret L. Hamill Chapter 9. Investigation of Fixes 102

of SCRs Total Meaneffort Standard Median Effort SIQR

Verification Effort per SCR Deviation per SCR

Activity

Pre-release 1,116 15,609.9 14.0 43.9 3 4.5
Post-release 37 1,881.9 50.9 195.6 7 12.5

Table 9.8: Effort spent fixing faults for pre- and post-release failures

of SCRs Total Mean effort Standard Median Effort SIQR

Severity Effort per SCR Deviation per SCR

Safety- 122 5,549.4 45.5 120.5 10.5 22.0
critical

Non- 650 9,463.1 14.6 49.8 4.0 5.0
critical

Unclassified 381 2,479.1 6.5 13.0 2.0 1.5

Table 9.9: Effort spent fixing faults for safety critical, non-critical and unclassified failures.

Based on 9.8 and Table 9.9 we made the following observations:

• Post-release failures tend to require more effort to fix than pre-release

failures. From data given in Table 9.8 it can be seen that post-release failures required

on average three times the effort per SCR to fix than pre-release failures. The larger

median and larger SIQR support the observation that post-release failures require more

effort to fix, with significantly higher variability. We suspect the extras time spent

fixing post-release failures is actually a result of the fact that more artifacts existed

and analysts may documented high priority failures more carefully.

• Safety-critical failure tend to require more effort to fix than non-critical

failures. From the data given in Table 6 it can be seen that fixing safety–critical

failures on average required three times the effort of fixing non–critical failures. Even

the median effort per safety-critical SCR was significantly larger and more variable

than the median effort to fix non-critical failure. However, we note that this may

be due a result of analysts who document safety-critical failures more carefully than

non-critical failures because of the importance in preventing them from (re)occuring.

the median will contain 1/2 of the scores. This will not be true for a skewed distribution, however. The
semi-interquartile range is little affected by extreme scores, so it is a good measure of spread for skewed
distributions. However, it is more subject to sampling fluctuation in normal distributions than is the standard
deviation and therefore not often used for data that are approximately normally distributed [21]

Margaret L. Hamill Chapter 9. Investigation of Fixes 103

of types # of SCRs Total Mean effort Median Effort

artifacts fixed Effort per SCR per SCR

1 830 6,924.3 8.3 2
2 259 6,329.5 24.4 6
3 61 3,427.3 56.2 36.5
4 3 810.8 270.3 10.5

Table 9.10: Fix effort per number of different types of artifacts fixed.

9.6.3 Fix Effort with respect to the spread of the fix

Although, there was no data available detailing the size of the fixes in terms of lines

of code added or removed we believe one way to measure the difficulty of fixes may be

based on the spread of fixes across components and artifacts fixed. Intuitively, fixes that

involve several different types of artifacts and/or multiple components seem more complex

and thus, may require more effort. Thus, we quantify fix effort as a function of the number

of different types of artifacts fixes and the number of components fixed in Tables 9.10 and

9.11, respectively.

We made the following observations:

• Fixing multiple types of artifacts required more effort. As expected, Table 9.10

shows that as the number of types of artifacts increases from 1 to 4 the mean effort

per SCR increases significantly; 8.3 hours per SCR when one type of artifact was fixed

and almost 56.2 hours per SCR when three types of artifacts were fixed. Similarly, the

median effort per SCR also increased with the number of types of artifacts fixed. Note

that there were only three SCRs that led to fixing four different types of artifacts and

therefore those are not included in the discussion, but are provided in Table 9.10 for

completeness.

• Fixing multiple components required more effort. Over 16% of SCRs led to

fixes in multiple components. From Table 9.11 it can be seen that both the mean effort

per SCR and median effort per SCR increase as the number of affected components

increases from 1 to 4. Once again, it should be noted that the number of SCRs which

led to fixes in four or five components was very small.

Margaret L. Hamill Chapter 9. Investigation of Fixes 104

of # of SCRs Total Mean effort Median Effort

components fixed Effort per SCR per SCR

1 968 10,730.9 11.1 2.0
2 155 5,035.3 32.5 10.3
3 23 1,406.6 61.2 17.0
4 5 304.0 60.8 53.1
5 2 15.0 7.5 7.5

Table 9.11: Fix effort per number of components fixed.

Margaret L. Hamill Chapter 9. Investigation of Fixes 105

Figure 9.11: Mean fix effort per failed and fixed components

9.6.4 Fix Effort with respect to the Failed-fixed Component Re-

lationship

We investigated how effort was distributed across fixed components in relation to the

failed component, as defined in section 9.1.1. The cumulative effort spent fixing each com-

ponent is shown in Figure 9.11 with respect to the failed component. Note that the compo-

nents have once again been arranged according to the hierarchical software architecture and

that each group (i.e., A though F) represents a group of components that are interconnected

to one another and connect to the single top level component (i.e., component 20) through

the first component listed in the group. For example, in Group A component 1 connects

components 6 and 12 to the top level component (i.e., component 20)).

We made the following observations:

Margaret L. Hamill Chapter 9. Investigation of Fixes 106

• Most effort was spent fixing the components the SCR was written against.

As expected the largest cumulative effort values fall on the diagonal. About 12% of

the effort spent fixing components was spent fixing components other than the one the

SCR was written against (i.e., the total effort off the diagonal in Figure 9.11).

• A significant portion of the effort was spent on the single top level com-

ponent. As expected, we see that the largest component, which also has the most

non-conformance SCRs filed against it, also had the most effort spent fixing it. Over

38% of the overal effort spent on fixing all 21 components was spent on fixing compo-

nent 20 for SCRs written against component 20.

• More effort was spent on components that connect architectural groups to

the top level component. It can be seen that components 1, 17, 18, 19, 14, 18 tend

to stand out among the rest in terms of effort spent. Additionally, fixing components

13, 15 and 16 required a considerable portion of effort.

As mentioned earlier (see section9.1, the majority of SCR lead to changes only within

the failed component, but some lead to changes in other components as well, and very few

lead only to changes in other components. Thus, we also explored how fix effort per SCR

differed in regard to the following groups:

• Group 1 (82%) consists of SCRs that led to fixes only in the failed component (i.e.,

the component against which the SCR was filed)

• Group 2 (15%) consists of SCRs that led to fixes in the failed component, as well as

at least one other component.

• Group 3 (3%) consists of SCRs that did not lead to changes in component the SCR

was written against but did require changes in other components.

Table 9.12 shows the number of SCRs, the cumulative fix effort, and the mean and median

effort per SCR for each group.

As one would expect, both the mean and median effort were higher in the case when

the failed component and at least one more component were fixed than when only the failed

component was fixed. Surprisingly, however, when the suspected failed component was not

fixed at all (i.e., group 3) both the mean and median effort were the smallest. Note that

group 3 has the smallest sample size.

Margaret L. Hamill Chapter 9. Investigation of Fixes 107

Fix # of SCRs Total Mean effort Median Effort

Group Effort per SCR per SCR

Group 1 932 10,615.9 11.4 2.2
Group 2 181 6,717.9 37.1 11.0
Group 3 40 158.0 4.0 2.0

Table 9.12: Fix effort relative to the on spread of fixes across components.

108

Chapter 10

Prediction

Data mining is an emerging field within software engineering that has recently received

quite a bit of attention. Data mining is used to extract patterns from data and involves

learning from such patterns to make predictions for future data. Up to this point the

analysis and observations were based on the assessment of individual features, pair-wise

association between two features, and rarely the interaction of three features (e.g., effort per

fault types for each group of fixed artifacts). In this chapter, we explore the possibility of

using features based on the information contained in an SCR to predict features of associated

fixes. Specifically, we explore the following research questions:

RQ5: Can traditional machine learning algorithms be used to predict features of fixes

based on fault and failure features entered in a non-conformance SCR?

A. Can we predict the types of artifacts that will need to be fixed?

B. Can we predict the components that will need to be fixed?

C. Can we predict the amount of effort required to implement the fix?

D. Can high priority failures classes be characterized by common features?

It is important to note, that we are not predicting typical fault or failure proneness as

most studies do (e.g., see [5] and references therein). Rather than predicting modules or

components that are fault prone, we focus on predicting characteristics of the fix after a

failure has occurred or fault was detected. The ability to predict the components to be fixed

and/or the artifacts to be fixed could help developers locate faults and implement fixes faster,

as well as help determine if fixes are complete (e.g., all necessary artifacts were fixed, and all

Margaret L. Hamill Chapter 10. Prediction 109

necessary components were fixed). The ability to predict the effort required to implement

fixes would allow managers to schedule resources more efficiently and effectively as well as

help managers identify areas for improvement. For example, it may be possible to guide

development activities and/or verification activities towards methods focused on preventing

faults that required a significant amount of effort to fix.

This chapter proceeds by discussing the input features and response variables, and then

provides some background information for major data mining schemes and discusses the

applicability of each to our data and research questions. Finally, we present the results of

the data mining.

10.1 Features

The features describing and characterizing faults and failures (discussed in chapters 6

through 9) account for the majority of the input variables used. Based on the observation

made in Section 9.1.1 that fixes tend to remain within architectural groups we included

two additional input features representing the component’s location within the software

architecture. Specifically, we used the following features as input variables:

• Fault Type - the type of fault that caused the failure.

• Verification Activity - the verification activity taking place when the fault was

detected or failure was exposed.

• Severity - the impact of the failure.

• Failed Component - the component the non-conformance was reported against.

• Release - the software release of the failed component.

• Investigation Effort - the hours spent to report the non-conformance.

• Architectural Group - the architectural group to which to failed component belongs.

• Architectural Tier - the level within the three tier hierarchical architecture to which

the failed component belongs.

Margaret L. Hamill Chapter 10. Prediction 110

It should be noted that almost all of the input features are categorical, with the exception of

severity (which is ordinal) and investigation effort (which is numeric). Additionally, we point

out that the architectural metrics are specific to the hierarchical structure and groupings of

components within the mission and thus may not be applicable to other architectures.

The following features characterizing fixes were explored as response variables:

• Fixed Artifacts - the types of artifacts affected by the fixes implemented to address

the non-conformance SCR.

• Fixed Architectural Group - the architectural groups affected by fixes implemented

to address the non-conformance SCR.

• Fix Effort - the total effort to implement the fixes described in all CNs associated

with an individual SCR. Although, fix effort is numeric attribute measured in hours

we choose to discretize the values in an attempt to predict whether high, medium or

low effort would be required rather than trying to predict the exact number of hours.

Predicting the exact number of hours needed is likely to be less accurate, especially

when considering the fact that almost all the input features were categorical. The

numerical values were discretized into three classes: high, medium, and low based a

typical logarithmic transformation. To be exact, the values were transformed by taking

the log of each value and then dividing the range of the logs by three (i.e., to map to

the three class values), which is a standard transformation for converting numerical

effort data into categorical data used in effort prediction [14]. Thus, effort values less

than 1.44 hours were consider low effort, those between 1.45 hours and 41.44 hours

were considered as medium effort and those with higher values were considered high

effort. This resulted in 339 low effort instances, 661 medium effort instances and 93

high effort instances.

10.2 Background on Data Mining

Typically data mining methods follow one of four different learning styles:

• Classification learning - takes a set of classified examples and attempts to learn a

way to classify unseen examples based on the association between input features and

the classification values. For example, classification learning could be used to predict

Margaret L. Hamill Chapter 10. Prediction 111

whether a module is fault (or failure) prone based on the static code features which

have been associated with fault (or failure) prone modules based on the pre-classified

examples.

• Numeric Prediction - is a variant of classification learning where the output is

numeric. It attempts to predict a value of a given continuous valued variable using a

mathematical model based on the input features.

• Association learning - searches for relationships between attributes without consid-

ering a specified classification. For example, an online shopping site might gather data

on customer purchasing habits using association rule learning.

• Clustering - is like classification but the class value for each instance is unknown.

Thus, the algorithm will try to group similar items together based on a defined distance

measure for each attribute. For example, clustering could be used to group modules

based on common static code features without knowing whether the modules are fault

(or failure) prone.

The fact that the vast majority of features in our study are categorical limited the meth-

ods applicable. Clustering methods were not applicable because it was not possible to define

meaningful distance metrics (which are needed to determine the similarity (or difference)

between the categorical values) for the vast majority of input variables. Additionally, nu-

merical prediction techniques were not used, because the likelihood of accurately predicting

numeric values based on mainly categorical input features is very low. Thus, we explored

classification and association rule learning, which are described next. For more informa-

tion, on the tools and data mining methods the reader is referred to [66], which is the main

reference used throughout this chapter.

10.2.1 Background on Classification Rule Learning

Classification is a type of supervised learning that can be used on numerical or categorical

data. The fact that it is supervised implies that output (or class) variable is known for each

instance in the training data. Ideally, the learner identifies patterns in input values of

the training data that can be used to predict the class output value on test data. Two

commonly used types of classification algorithms are decision tree learners and probabilistic

Margaret L. Hamill Chapter 10. Prediction 112

learners; both are state-of-the-art and tend to be computationally fast, thus we explored

the applicability of each. Decision tree learners produce human readable output in the form

of classification rules. These rules describe trends in the input data in relation to the class

output variable. Basically, the nodes of the tree are input features and the path (or branch)

followed from each node depends on the value of that feature. The leaf nodes identify the

class values. Rules are built for each path from root to leaf. To avoid over-fitting, branches

(and rules) can be pruned.

J48 is a decision trees algorithm implemented in WEKA [76] and is commonly used for

many classification problems. J48 builds decision trees from the training data using the

concept of information entropy. It uses the fact that each input feature of the data can be

used to split the data into smaller subsets. J48 examines the normalized information gain

(i.e., the difference in entropy) to choose which input feature to split on. Then the algorithm

recurs on the smaller subsets and the splitting procedure stops if all instances in a subset

belong to the same class or the minimum support value is reached, which results in the

creation of a leaf defining the class value. It may happen that none of the features give any

information gain. In that case J48 creates a decision node higher up in the tree using the

expected value of the class. J48 can handle both continuous and discrete (i.e,. categorical)

features and provides an option for pruning trees after creation. For further information, we

refer the reader to the original publications [59].

Probabilistic learners calculate the posterior probability of each class value given the

input values. One of the most commonly used probabilistic learner is NaiveBayes, which

uses Bayes Formula to calculate posterior probabilities and then assigns an input instance

the class value with the highest probability. It should be noted the Nave Bayes assumes

independence among input features, which is not the case for our input features. However,

despite the unrealistic assumptions Nave Bayes has been shown to work quite well in practice

(e.g. [27]). Thus, we decided to include the Nave Bayes classifier in the experiments [36].

To evaluate the prediction abilities of the J48 and NaiveBayes learners we ran typical 10

by 10 cross validation experiments. For the 10 by 10 cross validation the data was divided

into 10 partitions and the learner was trained on all but one partition and then tested

for accuracy on the remaining partition. This process was repeated 10 times; each time a

different partition was used to evaluate the learner. We use the ZeroR learner (which always

predicts for the majority class) as a baseline to evaluate the performance of both J48 and

NB in the 10 by 10 cross validation experiments. Clearly, to be useful J48 and NB should do

Margaret L. Hamill Chapter 10. Prediction 113

Predicted Value

P’ N’
Actual P TP FN
Value N FP TN

Table 10.1: Actual versus predicted outcomes

a better job predicting class values then the learner that always predicts the majority class.

To compare the performance of the two learners, in other words to determine which

learner performed better (e.g., J48 or NaiveBayes) receiver operator curves (ROC curves)

are commonly used. ROC curves plot the false positive rate (FPR) on the horizontal axis

and the true positive rate (TPR) on the vertical access. In a binary class problem the FPR

is the ratio of false positives to the total number of negatives instances and true positive rate

is ratio of the true positives to the total number of positive instances. Table 10.1 shows the

how true positives (TP), false positives (FP), false negatives (FN) and true negatives (TN)

are defined based on the actual classification (rows) and predicted classification (columns).

Thus, FPR = FP/(FP + TN) and TPR = TP/(TP + FN).

Although, ROC are very powerful for measuring accuracy for binary class problems their

usefulness for multi-class problems is not as straightforward. In [49] and [38] it was shown

that three dimensional ROC curves could be useful for comparing tri-class problems by

calculating the volume under the curves, but applying this idea to larger class problems

increases the complexity quickly. To avoid this, it is possible to build two dimensional ROC

curves for each value of each class explored. However, this method can also become quite

tedious and difficult to evaluate as the number of class values increases beyond three or four

values. Thus, as suggested in [8], we also use Cohen’s kappa statistic to evaluate learner

performance on multi-class problems. The authors showed that there is a close relationship

between kappa and ROC Curves and suggested that kappa expresses important properties

of a point in the ROC curve rather than describing the curve in full. The kappa statistic,

K, is calculated as follows:

K = (P0−Pc)
(1−Pc)

where P0 is the total agreement probability (i.e., the accuracy) and Pc is the agreement

probability due to chance, that is,

Pc =
∑

I

(i=1) P (xi.)− P (x.i)

where i is the number of class values and P (xi.) and P (x.i), are the column and row

Margaret L. Hamill Chapter 10. Prediction 114

marginal probabilities, respectively. Kappa ranges from -1 to 1, with values less than 0 rep-

resenting no agreement between the actual and expected, and values closer to 1 representing

close agreement. Thus, learners with Kappa values close to 1 show better performance. Clas-

sification learning can be used to explore research questions RQ5–A, RQ5–B, and RQ5–C,

which explore the possibility to predict the artifacts fixed, components fixed and fix effort,

respectively.

10.2.2 Background on Association Rule Learning

Association rule learning is used to identify interesting relationships between features

in a data set. Unlike classification learning association rule learning is not concerned with

predicting a class or output variable, rather the purpose is to identify features from different

attributes that tend to occur together. Thus, although association rule learning could not

be used to help us explore research questions RQ5–A through RQ5–C, which focus on pre-

dicting a class value, we used them to look for associations amongst features that our earlier

assessment may have missed. In other words, we explored research question RQ5–D, which

was aimed at characterizing failures that required more effort to fix faults.

We used the well-known Apriori algorithm to mine association rules [76]. The Apriori

algorithm works by generating rules based on statistics of item co-occurrence. Co-occurrence

refers to instances where two or more items appear in the same context, and is referred to

as 1st-order association. It should be noted that association learning based on higher-order

associations is not consider in this dissertation and may lead to more interesting results. For

more information on the Aprior algorithm used the reader is referred to [4].

10.3 Prediction Results

In this section we present the results for both classification and association rule learning

based on experiments ran in WEKA.

10.3.1 Classification Rule Learning Results

We conducted classification learning for each response variable (i.e., artifacts fixed, ar-

chitectural groups fixed and fix effort). Using classification learners we addressed research

questions RQ5A through RQ5C, as follows:

Margaret L. Hamill Chapter 10. Prediction 115

ZeroR J48 NaiveBayes

Fixed Artifact Group 25.50% 0 69.64% 0.57 67.91% 0.42
Fixed Architectural Group 42.32% 0 86.73% 0.84 85.68% 0.83
Fix Effort 57.33% 0 73.20% 0.47 66.87% 0.39

Table 10.2: Accuracy and Kappa values for the fixed artifact group, the fixed architectural
group, and the fix effort

Fixed Artifact Group ZeroR J48 NaiveBayes
Requirements 1 0.85 0.88
Requirement, Design, & Code 0 0 0
Requirements & Code 0 0.65 0.34
Requirements, Code, & Supporting Files 0 0.40 0.53
Code 0 0.76 .76
Code & Supporting Files 0 0.22 0.42
Other 0 0.09 0.10
Weighted Average 0.42 0.70 0.68

Table 10.3: Probability of detection for each fixed artifact group

• RQ5–A: Can we predict the types of artifacts that will need to be fixed?

• RQ5–B: Can we predict the components that will need to be fixed?

• RQ5–C: Can we predict the amount of effort required to implement the fix?

In each case, we used the values defined in chapter 9 for class values of response variables.

Table 10.2 shows the accuracy and kappa statistic for each learner (i.e, ZeroR (the baseline),

J48, NB) for the three response variables (i.e., types of artifacts fixed, architectural group

fixed, and fix effort). It should be noted, that each prediction model considered only one

class variable at a time, the others were removed from the data set. The associated recall

values (i.e., probability of detection, PD) are provided for each value of each class for the

three learners in Tables 10.3, 10.4, and 10.5. ROC curves are not provided for the artifacts

fixed and architectural group fixed because of the larger number of class values, but are

shown in Figure 10.1 for high, medium and low effort.

Based on Tables 10.2 through 10.5 we made the following observations:

• The group of artifacts to be fixed can be predicted. As shown in Table 10.2,

both J48 and NB outperformed ZeroR in terms of accuracy on 10 by 10 cross vali-

dation. Thus, since ZeroR always predicts for the majority class without considering

the input features, suggests that the input features used (i.e., fault type, verification

activity, architectural group, architectural tier, severity, and fix effort) were useful in

Margaret L. Hamill Chapter 10. Prediction 116

Fixed Architectural Group ZeroR J48 NaiveBayes
A- 1 0.966 0.969
A-B- 0 0 0
A-B-C- 0 0 0
A-B-other 0 0 0
A-C- 0 0 0
A-C-F-other 0 0 0
A-C-other 0 0 0
A-D-other 0 0 0
A-E- 0 0 0
A-E-G- 0 0 0
A-E-other 0 0 0
A-G- 0 0 0
A-G-other 0 0 0
A-other 0 0.154 0.096
B- 0 0.946 0.966
B-C- 0 0 0
B-other 0 0.906 0.625
C- 0 0.966 0.971
C-D- 0 0 0
C-F-other 0 0 0
C-other 0 0 0
D- 0 0.958 0.958
D-other 0 1 0.5
E- 0 0.959 0.959
E-other 0 0.176 0.176
F- 0 1 0.976
F-other 0 0.143 0
G- 0 0.985 0.99
G-other 0 0 0
other 0 0 0
Weighted Average 0.255 0.867 0.857

Table 10.4: Probability of detection for each fixed architectural group

Fixed Artifact Group ZeroR J48 NaiveBayes
High 0 0.33 0.36
Medium 1 0.88 0.71
Low 0 0.59 0.68
Weighted Average 0.57 0.73 0.67

Table 10.5: Probability of detection for fix effort

Margaret L. Hamill Chapter 10. Prediction 117

Figure 10.1: ROC Curves for (a) high fix effort, (b) medium fix effort and (c) low fix effort

Margaret L. Hamill Chapter 10. Prediction 118

helping to predict the set of artifacts to be fixed. As suggested by the high recall (PD)

values for requirements, code, and code & requirements in Table 10.3 we suspected

the association identified earlier in section 9.3 between fault type and artifacts fixed

is heavily influential on the results. Thus, we re-ran the 10 by 10 cross validation

experiments for J48 and NB with fault type as the only input feature, which resulted

in accuracy of 82% with K = 0.74 for J48 and an accuracy of 80% and K = 0.72 for

NB, which suggests that to predict the artifacts fixed just the fault type should be

used and the additional input features create noise.

• The architectural group fixed can be predicted. Similarly to the case of artifact

fixed, both J48 and NB outperformed ZeroR. Once again as suggested by the high

recall (PD) values for single architectural groups (i.e, A, B, C, D, E, and F) we believe

the success was based on a relationship identified earlier, that is, the relationship

in section 9.1.1 between the failed and fixed components. However, re-running J48

and NB with only the failed component as an input feature resulted in slightly lower

accuracy values and kappa values, that is, 84% and K = 0.81 for J48 and 84% and

K = 0.82 for NB. This suggests that the failed component is a very good indication of

the fixed architectural group, but we note that considering additional input features

led to slightly better results. Thus, if the information characterizing the fault type,

verification activity, severity, and report effort are readily available each should be used

in the prediction model. However, if such information is difficult to obtain the effort

spent to do so is likely to outweigh the gain of including such data.

• The relative level of fix effort can be predicted. Once again, J48 and NB both

outperformed ZeroR. However, in this case we could not predict effort with similar

accuracy based only one input feature. Thus, it appears the data mining techniques

are most applicable here, which is why we included Figure 10.1, using a ROC curve

to compare J48 and NB, which shows that when predicting for the high effort SCRs

(which would be most useful in terms of allocating resources and planning purposes)

NB should be used as it consistently outperformed J48.

In addition to the manual feature selection (i.e., using only the fault type to predict

the fixed artifacts, and using the architectural group of the failed component to predict

the architectural groups fixed) we explored various feature subset algorithms available in the

WEKA. However, the performance of each learner decreased significantly, which is likely due

Margaret L. Hamill Chapter 10. Prediction 119

to the relatively small number of features. The only exception was with respect to predicting

the artifacts to be fixed. Using the CFS best first feature subset selection algorithm we found

that using fault type, investigation effort and severity as the only input features resulted in

an accuracy on of 71% and K = 0.59 with very little change in the recall (PD) for each class

value. We suspect that fact the severity contributes to better predictions is a result of the

fact that high severity failures could be very likely to be better documented, thus a greater

number of different types of artifacts were fixed. Thus, we conclude that if machine learning

techniques are to be employed all available features should be used.

10.4 Association Rule Learning Results

We implemented the Aprior associate learner in WEKA to explore research question:

RQ5–D: Can high priority failures classes be characterized by common features?

We ran the Apriori association learner on the high priority failures class subsets and their

counterparts, that is, safety-critical failures, non-critical failures, and unclassified failures;

and pre- and post-release (i.e., on-orbit) failures. Additionally, in order to help characterize

failures associated with high fix effort and/or failures that lead to fixes spread across com-

ponent we also ran the learner on the following pre-defined subsets of SCRs: high fix effort

SCRs, medium fix effort SCRs and low fix effort SCRs; and failures that led to fixes outsides

the failed component and those that did not require fixes outside the failed component.

In each case the learner discovered rules with high support values. However, through

detailed examination of the rules it became apparent that we had already discovered the

most informative relationships through the pairwise correlation conducted in chapter 9. For

example, the correlation between fault type and the types of artifacts fixed led to multiple

rules with fault type on one side of the rule and the type of artifact fixed on the other.

Although, the rules often included an additional feature or two the support values did not

improve. Thus, it was clear the the underlying associations were the driving force for the

rules learned. We tried removing strongly correlated attributes (e.g., we would remove

either the architectural group fixed or the architectural group input feature) to see if more

interesting rules would be learned. However, as expected the support values dropped quickly.

In addition, similarly to [63], we mined the rules learned to consider only those that contained

features of interest (e.g., high fix effort) on the right side of the rules. However, once again

Margaret L. Hamill Chapter 10. Prediction 120

the support values were extremely low. Thus, we conclude that although the association

rule learning did not add new observations it did serve to verify the statistical hypothesis

tested in chapter 9.

10.5 Discussion

The classification rules learning showed promising results in terms of predicting the

type(s) of artifacts fixed, the architectural group(s) fixed and the fix effort. In fact, the

accuracy and recall values for our prediction models were comparative to what others have

deemed successful in the past for fault and failure proneness predictions (for examples see

[5] and references there in).

The comparison of our results with other works that made predictions for fixes is more

difficult because the evaluation criteria used differed across studies. The work presented in

[16] and [17] predicted the files to be changed and the developer best suited to make the

changes using a ranking scheme and reported accuracy values in [16] and recall (PD) values

in [17] to evaluate the model. Our accuracy values were comparable or better than those

in [16] for all but one of the systems explored. Further, the weighted average recall values

for each of our class prediction variables (i.e., types of artifacts fixed, architectural group

fixed and fix effort) were far better than those reported across all predictions in [17] and

comparable when only the first N (i.e, 5,10,100) retrieval items were considered. We suspect

the difference in results is due to the fact that we consider all change requests that represent

failures while [16] and [17] consider all types of changes requests, including those made for

enhancements etc.

In [24], an order response model was used to predict the effort category (1 of 4) for each

fault correction effort. Based on Kendall’s Tau and concordanant/discordant measures the

authors claimed that the results were ‘very favorable’ and the model could be reasonably

applied to other systems. The work in [72], which also predicted the fix effort used the

magnitude of relative error (MRE) to evaluate the results. Although the MRE was on

average 7−23% for the original study it was considerably worse when the model was applied

to an additional study (i.e., 40− 159%). Text similarity was used in [65] to help predict fix

effort and the average absolute residual (AAR) was used to evaluate the model. The authors

note that the original results were poor, but applying thresholds to the nearest neighbors

approach led to better prediction. However, using their ideal threshold the only actually

Margaret L. Hamill Chapter 10. Prediction 121

made predictions for 13% of the original data set.

Even though the comparison with related studies suggested our models did well it should

be noted that with respect to the types of artifacts fixed and the architectural groups fixed

similar results can be obtained using the input feature with the highest correlation value,

that is, fault type and failed component, respectively. With respect to the fix effort, we

believe that project managers could easily benefit from using simple data mining techniques

to predict SCRs the will required a high fix effort allowing him or her to adjust resources

and/or schedule as needed.

We believe these results could be very complementary to the recent research focused on

defining hierarchical aerospace ontologies of concepts and nomenclature to identify problem

type and/or equipment type tags [47]. Combining the two features consider in both work

could significantly improve prediction capabilities.

In [63] association rules were shown to be more effect for prediction the isolation effort,

however as noted in the paper the association learning was not straight forward as association

rule learning does not predict a specific class variable. Thus the authors have to review all

rules generated and select those that predicted for effort. We also tried this approach but

our rules did not generate reliable effort predictions

The association rule learning showed less interesting results as although multiple features

appeared in the rules it was clear that the pair-wise correlations discovered earlier was heavily

influential. Thus, it appears that association rule learning may not be useful to the developers

and project managers at this point.

122

Chapter 11

Threats to validity

The validity of each of the conclusions reached is influenced by the design and imple-

mentation of the study. Thus, in this section we discuss the threats to the validity of our

conclusions. First, in section 11.1 we discuss internal validity and construct validity per fea-

ture analyzed to document how internal factors influenced the study and ensure we explored

(and tested) what we set out to. Additionally in section 11.2, we discuss the conclusion

(or statistical) validity which considers the methods used to evaluate what was tested and

determine if the conclusions are justified. Finally, in section 11.3 we discuss the external

validity which considers the generality of the results.

11.1 Internal and Construct Validity

In order to characterize faults, failures and fixes in a way that would be meaningful

to the mission as well as the larger software engineering community, we had to (1) choose

appropriate features to analyze and (2) define the categories of values for each features. The

study began with a detailed analysis of data fields in the change tracking database. Fields

from SCRs and CNs were identified based on the usefulness of the information contained in

the field and the quality of the data. Based on the fact that SCRs and CNs were filled out

by analysts who worked on different parts of the mission at different locations using various

methods, the recorded data varied in terms of quality and detail. Thus, we continually

interacted with project personnel who had the domain expertise to asses the quality of

recorded values and clarify any uncertainty around the meaning.

The analysis was conducted at the component level since change requests were filed at

Margaret L. Hamill Chapter 11. Threats to Validity 123

that level. Although it is possible that some characteristics that may exist at finer levels of

granularity (e.g. file level) were masked at the component we do not believe this invalidates

our results as we clearly identify the level of granularity used. On the other hand, we note

that the observations with respect to the architectural properties and spread of fixes may

not have been observed at a lower level.

The assessment was based on seven data fields from the non-conformance SCRs and

associated CNs (i.e., ‘source’, ‘discovered by’, ‘severity’, ‘SCR effort’, ‘affected products’,

‘CN component’ and ‘CN effort’). Based on rigorous exploration of each of these fields,

including detailed discussion with the project personnel, we mapped these fields directly to

seven features describing faults, failures and fixes, that is, fault type, verification activity,

severity, investigation effort, artifacts fixed, components fixed and fix effort, respectively.

Obviously the interpretation of the data values used in each field could influence the results

based on the groupings of feature values. Therefore, we took the time to ensure that we

thoroughly understood the data and we were not misinterpreting any values (which was not

a simple task since some formal definitions of field values were missing) and had project

personnel review groupings. The lack of formal definition of data fields and values was likely

due to the fact the change tracking system was designed many years ago and it was not

designed to facilitate such detailed analysis. The characteristics of each field differed, from

pre-defined mandatory values to free-text fields that were optional. Thus, we discuss each

data field and the associated values.

Fault types were based on the ‘source’ field and the values were selected from a predefined

list. The meanings of values were self-explanatory. Thus, we were able to easily combine the

13 values into 5 major fault types for statistical testing.

The categories of the verification activity (i.e., analysis, testing, inspections and audits,

on-orbit and others) based on the free-text ‘discovered by’ field were more difficult to assign

because there were over 100 unique values, which contained numerous abbreviations. Thus,

we identified the unique values and common acronyms and discussed each with project team

members to determine the major activities. It should be noted that the ‘analysis’ category

(which was the verification activity identified for 49% of SCRs) included only those SCRs

that were specifically tagged ‘analysis’ in the ‘discovered by’ field. Although, ‘analysis’

was one of the field values that lacked a formal definition, by manually exploring multiple

analysis SCRs and reviewing NASA Standards and Guidebooks we found analysis to include

various activities which involve analyzing different software artifacts (e.g., informal review or

Margaret L. Hamill Chapter 11. Threats to Validity 124

walkthroughs), which differ from more formal inspections (or audits) that required specified

steps to be taken, and roles to be assigned to individual reviewers [52]. It should be noted

that SCRs created based on non-conformance observed during testing may have also been

revealed through some type of analysis (e.g. code analysis) if the resources were available

to perform such analysis. Similarly to other studies (e.g., [1], [26], [43], and [45]), we could

not measure the amount of relative effort spent on each activity based on the available data,

thus we do not make claims that one activity performs better than another.

We handled the severity attribute with special care since it often constitutes a major

threat to validity based on the fact that severity can often by artificially inflated to call

attention to the problem reported. In fact, based on suggestions from project personnel we

explored the severity levels assigned to changes notices (CNs) in addition to the severities

assigned to the SCRs. This allowed us to verify and update previously classified severity

values. Despite the fact that the documents were typically filed out by two different ana-

lysts we observed very few differences between severity levels originally associated with the

SCRs and severity levels assigned to CNs. In the cases when they differed, based on the

recommendation made by the project analysts, we used the value associated with the change

notices, which was considered to be more accurate. Considering this additional severity field

in CNs allowed us to classify 78 previously unclassified SCRs.

The analysis of the component(s) fixed was based on the component field in the CNs.

Although this field is not based on a pre-defined list, the values were easily associated

with components. The fact that in some cases multiple CNs were linked to a single SCR

encouraged us to explore the relationship between the failed component (i.e., the component

against which the non-conformance was written) and the components that were fixed, which

we defined as the failed - fixed component(s) relationship. It should be noted that in a small

number of cases (i.e., only about 3% of SCRs) the ‘failed’ component was never actually

fixed, indicating that the component suspected to fail may not have been the actual cause

of the non-conformance to a requirement reported in the SCR, but rather just a catalysts

for the problem to surface. Based on the fact that there is often more than one way to

implement a fix and sometimes the quickest and easiest way to fix a problem is through a

different component we did not exclude these SCRs from the analysis as we expect this trend

may continue.

With respect to the artifact fixed, classifying values into categories was more difficult,

because similarly to the verification activity, the ‘affected product’ field was free text, with

Margaret L. Hamill Chapter 11. Threats to Validity 125

varying levels of detail from one SCR to the next. For example, in some cases a specific

requirement document or filename was given, but in other cases only a broad high-level

reference (e.g. ‘code’) was provided. The affected product fields contained over 100 unique

entries. Once again by manual exploration of the values and through detailed discussions

with the project personnel, we defined six categories representing the types of artifacts

fixed (i.e., requirements documents, design documents, code files, supporting files, tools, and

notes/waivers) and mapped each unique value to one of the categories.

Lastly, with respect to the effort data (i.e., investigation effort and fix effort) we consider

effort with respect to fault types, verification activity, severity, artifacts fixed and compo-

nent(s) fixed, which showed that distribution of effort per feature value differed compared

to then the distribution of the number of failures across each value.

In any case, we discussed the perceived meaning of values with multiple software engineers

to ensure that we were not misclassifying or misinterpreting fault types or activities. Further,

the software review board for the NASA mission, which is responsible for determining which

SCRs need to be addressed and for appointing an analyst(s) to handle individual SCRs,

follows a well defined process with procedures in place for tracking and maintaining SCRs.

Since considering features of fixes in relation to fault and failure features is a unique part

of our approach it is important to emphasize that the mission has a software review board

in place to help ensure SCRs are documented correctly and that the proposed solution for

an SCR is appropriate, which means the changes suggested will indeed address the problem

reported. Thus, the data values and our method for linking from failures and faults to fixes

are sound based on the explicit information contained within the change documents and the

well-defined relationship between them.

To limit the threats to the internal validity we called upon the domain expertise of

project personal who helped mitigate the threats discussed. We discussed our perceived

meaning of values with multiple software engineers to ensure that we were not misclassifying

or misinterpreting, or overlooking any pertinent data. Their input and feedback on our in-

terpretation of the results was incorporated throughout the course of our work. For example,

based on the fact that less than 2% of artifacts fixed contained references to notes and/or

waivers, we originally believed workarounds were very rare. However, based on suggestions

from the project personnel we explored additional type of change document, which showed

workarounds were used more commonly. Our experience shows that independent researchers

who may be lacking product specific domain knowledge can manage to work with real, large-

Margaret L. Hamill Chapter 11. Threats to Validity 126

scale case studies by working closely with the project personnel to ensure the data quality

and verify and validate the interpretation of the results.

11.2 Conclusion Validity

The methods used to measure the extent of correlation between features were carefully

chosen. In each case, we chose an appropriate statistical test based on the measurement scales

of the features and the validity of the underling assumptions of the tests. Additionally, all

formal statistical tests are based on random samples. The groupings for attribute values

(e.g., fault types, activities, severities, and affected artifacts) used in the statistical tests

were carefully chosen not only to support the internal validity (i.e, to accurately represent

the data), but also to allow future related studies to compare their findings to our results

in a meaningful and practically useful way. Although for each pair of features explored (i.e.,

verification activity and fault type, severity and fault type, verification activity and severity,

artifacts fixed and verification activity, and artifacts fixed and severity) we found statistically

significant associations, it should be noted that this does not necessarily imply a cause–effect

relationship.

The methods used to build prediction models were chosen based on the questions we

wanted to answer (i.e., RQ5 in Chapter 10), as well as the data values. Thus, we chose

learners that worked on nominal features and were applicable for making predictions for

multi-valued classes. We recognized that additional learners, parameter refinement and

other techniques may improve the prediction results and reserve this for future work.

It should be noted that by the nature of some of the features we study some of the

samples are very small (e.g., post-release or safety -critical failures). Specifically, only 3% of

the non-conformance SCRs were reported on-orbit and about 10% were safety-critical. In

other words, comparisons of pre- and post-release, and safety-critical and non-critical failures

were made on vastly different size samples; however, these are intrinsic characteristic of any

high-quality software. Similarly, with respect to the analysis within individual releases and

across multiple releases (i.e., chapter 8) the fact that the number of components explored

per release was small (i.e., eleven components per release for earlier releases and three or

four components for later releases) presents a threat to validity. For clarity, throughout the

text we noted the percentage within each class, as well as within the entire sample to avoid

misrepresenting the data.

Margaret L. Hamill Chapter 11. Threats to Validity 127

Additionally, it should be noted that some SCRs were still ’open’ during time of this

analysis and as with any data set not all ’closed’ instances contained entries for all data

fields studied. To eliminate the threat to validity due to missing data, lack of data or

incomplete data (i.e. SCRs that are yet to be fully fixed)in some section we consider subsets

of SCRs. However, whenever subsets were used we checked to ensure that the major trends

reported in the entire population still held true, and they did.

Some patterns in the data may be due to the processes used by the mission, the uniqueness

of the mission and constraints placed upon the project that cannot be accounted for in our

research. For example, our exploration of the relationship between the type of artifacts fixed

and fault/failure features led to the discovery of interesting sets of non-conformance SCRs,

such as SCRs that had the potential to be avoided or more efficiently detected by compiling

a list of common coding faults or SCRs that theoretically could have been reported earlier.

However, assuming that all requirement faults could have been discovered in the requirements

phase is somewhat unrealistic in case of NASA systems which are often developed to do

something for the first time which mean requirements inevitably will be discovered later in

the life cycle, during testing and/or in-field operation. Thus, in the next section we discuss

the generality of the results with respect to other studies.

11.3 External Validity

In many cases, the use of inconsistent (or not sufficiently precise) terminology associated

with software reliability and quality assurance introduces problems and makes meaningful

cross-study comparisons difficult. For this reason, we provided the definitions of the funda-

mental terms used throughout our work and spent the time to carefully interpret the results

of others.

In what follows we work through the most interesting results from each chapter to com-

pare and contrast related results.

In chapter 6 we explored the distribution of fault types, verifiation activities and severity

levels across failures. One of the most interesting results was that our work as well as other

studies (e.g., [7], [13], [23], [19], [22], [45], [43], [68]) clearly showed that some fault types

are more common than others. However, the earlier studies (i.e., [7], [13], [23]) found that

early life cycle faults (i.e., requirements and design faults) were more common, where as our

study was in agreement with the results of more recent studies (i.e., [19], [22], [45], [43],

Margaret L. Hamill Chapter 11. Threats to Validity 128

[68]) which showed later life cycle faults (i.e., coding and implementation faults) are at least

as common if not more common than early life cycle faults. We suspect the difference is

likely due to process improvements over the years with respect to defining requirements and

detailing design, as well as the increased size and complexity of systems. Further, we found

that the percent of post-release failures as well as the percent of safety-critical failures was

similar to that of others e.g., [26], [1], [43].

The analysis conducted in chapter 7 explored the pairwise associations between fault

type, verification activity and severity. Similarly to [43] we found that the common fault

types persisted from pre to post-release. Additionally, we found that coding faults were the

most common causes of operational failures and safety-critical failures. To the best of our

knowledge no other works consider such a relation, which is also true with respect to the

verification activities associated with each fault types and with different severity levels.

In Chapter 8 we explored how trends change across and within releases. Once again

our results agreed with some studies, and disagreed with others. Specifically, similarly to

[11], [1] we found evidence suggesting that there was a positive correlation between pre– and

post–release faults, while others [26], [54] suggested the opposite result, that is, modules with

the most pre–release faults are not the most likely place for post–release faults. Our results

with respect to fault (or failure) persistence across releases differed from the results in [11],

[54] and [58] which found that faulty files persisted across releases. We believe the reason for

inconsistent results may be due to the various levels the studies were conducted at (e.g., file

level, module level, and component level) and the systems studied as well as the development

processes followed. However, the studies did not contain enough detailed information for us

to explain such differences with certainty. Once again it is obvious additional research is

needed.

Although, the related studies discussed in Chapter 3 did not specifically focus on char-

acterizing fixes as we did in Chapter 9, many of the works showed support for some of the

observations we made. In particular, with respect to the fact that some failures map to mul-

tiple faults, [45], [43], [1], [26] and [24] each made statements suggesting they too observed

instances where individual failures were linked to multiple faults. Further, similarly to our

results [24] showed that when related faults were spread across components more effort was

required to implement fixes. To the best of our knowledge, no other work has related the

spread of fixes to the architecture.

The observations made with respect to predictions in chapter 10 are unique in that no

Margaret L. Hamill Chapter 11. Threats to Validity 129

other study considered types of artifacts fixed or the architectural groups fixed, and input

features used across studies varied. However, [16], [17], [47], [62], [24], [72], [65], [63], and

[48] all showed some promising results with respect to predicting features of fixes; from the

files fixed to the developers best suited to implement the fix. The variability of types of

features studied and modeling techniques used make cross study comparison quite difficult.

Further, the most meaningful way to compare learners for multi-class problems is still an

open research question. Clearly, more studies conducted on different systems using data and

methods that facilitate comparisons are necessary in order for the community to learn from

empirical fault and failure data, so that theories can be tested to determine if and when

observed phenomena hold true and then refined accordingly.

130

Chapter 12

Conclusion

In this dissertation we analyzed features of faults, failures and fixes, including fault types,

verification activities, severity levels, investigation effort, artifacts fixed, components fixed

and the effort required to implement fixes for a large industrial case study. The analysis

included data from 21 large-scale software components developed at multiple locations on

different release schedules. We used descriptive statistics, statistical inference through formal

hypothesis testing, and data mining techniques to analyze the data.

To the best of our knowledge, establishing the complete link from the faults that cause

a failure (potential or observed) to the fixes implemented to prevent the failures from

(re)occurring, which was not a simple task, is a unique characteristic of our work. First

of all, locating and gaining access to empirical fault and failure data can be quite difficult, as

many organizations are reluctant to make fault and failure data available for research. Addi-

tionally, collecting and analyzing the data is very time consuming, and often requires domain

expertise. Even more, associating failures with the fault(s) that caused them, as well as the

fixes made to prevent them from (re)occurring is not straightforward as the information is

stored in different types of change document and multiple changes were associated with in-

dividual failures. In our work, the domain knowledge of the NASA personnel was invaluable

in the process of data extraction and ensuring the quality of the data, thus minimizing the

threats to validity of our analysis.

Although some specific aspect of our work were considered in related studies, overall we

analyzed a much more comprehensive set of fault, failure and fix features and we explored

novel research questions. For example, we explored which types of faults cause high priority

failures, the distribution of feature values across releases, and the possibility of predicting

Margaret L. Hamill Chapter 12. Conclusion 131

characteristics of fixes based on information available before the fix is implemented. Addi-

tionally, we considered research questions that have been explored in the past, but have in-

consistent results across different studies (e.g., the relationship between pre and post-release

failures). Some of the most interesting empirical results include:

• Contrary to popular belief, later-life cycle faults are major sources of software fail-

ures. This observation is based not only on the NASA mission presented here but

also the comparison to recent related studies. Further, we found that for the NASA

mission coding faults account for the majority high priority failures (i.e., coding faults

accounted for 50% of safety-critical failures and 52% post-release failures). Thus, these

observations indicate the importance of conducting later life-cycle verification activi-

ties.

• Failures may be caused by multiple faults requiring fixes across multiple components

and artifacts. Related studies relied on assumptions or used heuristics to handle mul-

tiple related faults, or simply limited the analysis to the first fix. Our results clearly

show change tracking system must be designed to track multiple fixes associated with a

single failure and that the practitioners and researchers have to take the spread of soft-

ware fixes into account. For the NASA mission, the spread of fixes across components

was significantly affected by the software architecture.

• Traditional data mining techniques used on fault and failure features were successful

in predicting the effort required to implement fixes. Although predictions with respect

to the artifacts fixed and architectural groups fixed could each be explained in terms

of a single feature, fix effort could not. Despite the fact that effort prediction with

respect to project schedule and development effort has been researched extensively,

effort prediction specifically focussed on fixing faults has received little attention. Fu-

ture research should further explore effort prediction focused on fixing faults as the

quantification of fix effort showed that fixing faults associated with 20% of the failures

accounted for 83% of the cumulative effort spent fixing all faults.

• Improvements in change tracking systems can help facilitate advancing the empirical

knowledge from which best practices can be drawn. In our work the ability to track

multiple fixes associated with a single failure led to interesting observations (e.g. with

respect the spread of fixes across components and artifacts). Additionally, based on

Margaret L. Hamill Chapter 12. Conclusion 132

our exploration of change tracking system used by the mission as well as data used in

related work we suggest using pre-defined data fields whenever possible as they make

data extraction less complicated and improve data quality and the accuracy of the

analysis. We also suggest tracking the life-cycle phase the fault was introduced in (in

addition to the phase the fault was detected in, which is more commonly tracked) as

it would make it possible to determine which faults could have been revealed earlier

and the impact of finding them later.

We used a systematic approach and formal statistical analysis to quantify observed trends,

which is not yet a common practice in software quality assurance. Additionally, throughout

our work whenever possible we compared our results with recent related studies in order to

explore the external validity of the study to help build empirical knowledge across the field.

Using a well-defined terminology and taxonomy consistently across work related for software

quality assurance would allow for much easier comparison of the results and greatly advance

the empirical knowledge.

Finally, we note that we believe significant value was added by conducting this work in

collaboration with the NASA personnel. It is important that researchers and practitioners

work together to use empirical data to investigate theories, determine if and when specific

phenomena hold true, and update the theories accordingly so that software engineering and

quality assurance fields can follow other well established scientific disciplines. In the following

section we discuss some ideas for future work.

12.1 Future Work

The novel contributions of this work are based on the link established between faults,

failures and fixes, which is why the analysis was focused on defining and characterizing the

relationships between faults, failures and fixes. Future work should explore how the metrics

used in this work (i.e., fault, failure and fix features) compare to and/or can be combined

with other metrics (e.g., static code metrics, classification ontologies, etc.), as well as explore

whether the use of additional methods can improve the predictions.

As we discussed in Chapter 3, various metrics have been explored to predict fault and

failure proneness. However, the successfulness of prediction models differ from study to study.

Thus, although the fault and failure features we explored showed potential for predicting

Margaret L. Hamill Chapter 12. Conclusion 133

characteristics of fixes we believe the predictions may be improved with the use of additional

features and that the true measure of success should be based on the analysis of similar

features for other systems. In particular, more features specific to change requests may

improve prediction results. For example, the features we consider may be complementary

to the recent research in [47], which also uses features extracted from change requests. In

particular, the work in [47] focuses on defining hierarchical aerospace ontologies of concepts

and nomenclature to identify problem type and/or equipment type tags in the title and

description fields of change requests to help identify similar change requests. Analysts’ names

and organizations may also be helpful. Additionally, it would be interesting to consider how

fault and failures features can be combined with additional types of metrics (e.g., static code

metrics, design metrics, etc.) to explore whether additional metrics of the failed component

could improve prediction results with respect to locating fixes.

Further analysis conducted by domain experts could also provide practical benefit to

the project. For example, further classification of coding faults based on common types of

coding faults (e.g., logic faults, omission faults, typos, etc.) could be useful for updating

coding standards and checklists used by the developers. Additionally, with respect to the

verification activity quantifying the effort spent on each activity and further exploring the

SCRs discovered by the common ’analysis’ activity could each help characterize the most

effective ways to find faults. A further study of safety-critical, on-orbit SCRs based on manual

exploration may help identifying some trends and preventing such SCRs in the future.

A major area for future work is defining a standardized taxonomy that is representative

of the relationships between faults, failures and fixes (e.g., a single failure caused by multiple

faults). Such a taxonomy would promote comparison across multiple case studies and enrich

the empirical software engineering knowledge based on accurate representation of the fault,

failure and fix relationships.

In Chapter 10 we discussed some traditional machine learning techniques, that is, classifi-

cation learning, association learning, numerical prediction and clustering, and applied those

that were applicable. We believe exploring additional techniques could improve prediction

results. In particular, methods based on multi-variate correlation may reveal additional in-

teresting trends. For example, Bayesian Belief Networks (BBN) could be used to model

dependencies among fault and failure features (and possibly other change request features)

to determine the probability that a certain component would need to be fixed. Implication

networks, which are made up of directed graphs in which the nodes represent individual

Margaret L. Hamill Chapter 12. Conclusion 134

variables or hypotheses and the arcs signify the existence of a direct implication (influence)

between two adjacent nodes, may be useful to help analysts’ as he or she implements the fix

as the value taken on by one node is then dependent on the values taken on by all variables

that influence it. Each value indicates the degree of belief that an unobserved variable is

’true’. Thus, as a component (or artifact) is fixed the implication network could be used

to determine what other components will be fixed. Another benefit of using implication

networks is that the values are updated every time new information is obtained (e.g., some

evidence is observed), which means the network would be constantly updating as new change

requests are entered and fixed. Additionally, considering higher-order associations (i.e., be-

yond 1st order association) through techniques such as sequence mining and multi-relational

association rules mining may improve the usability of the association rules learned. Using

the approach suggested in [64] it may be possible to incorporate the implication networks

and association rules to form an associated network structure.

We believe the natural progression of the research work presented in this dissertation

would be to explore addition information (i.e. features) as well as additional methods (i.e.,

additional data mining techniques) at various levels of abstraction (e.g., sub-component,

module level, file level, etc.) on additional case studies.

135

References

[1] C. Andersson and P. Runeson,“A Replicated Quantitative Analysis of Fault Distri-
butions in Complex Software Systems”, IEEE Transactions on Software Engineering,
Vol.33, No.5, May 2007, pp. 273-286.

[2] W. Abdelmoez, M. Shereshevsky, R. Gunnalan, H. Ammar, B. Yu, S. Bogazzi, M.
Korkmaz, and A. Mili. “Quantifying Software Architectures: An Analysis of Change
Propagation Probabilities”, The 3rd ACS/IEEE International Conference on Computer
Systems and Applications, Jan. 2005, pp. 124-131.

[3] W. Abdelmoez, M. Shereshevsky, R. Gunnalan, H. Ammar, B. Yu, S. Bogazzi, M.
Korkmaz, and A. Mili. ”Quantifying Software Architectures: An Analysis of Change
Propagation Probabilities”, 3rd ACS/IEEE International Conference on Computer Sys-
tems and Applications, Jan. 2005, pp. 124-131.

[4] R. Agrawal, R. Srikant, ”Fast Algorithms for Mining Association Rules in Large
Databases”, 20th International Conference on Very Large Data Bases, 1994, pp. 478-499.

[5] E. Arishold, L.Briand, E. Johannssen. “A systematic and comprehensive investigation
of methods to build and evaluate fault prediction models”. The Journal of Systems and
Software, Vol. 83, August 2009, pp. 2-17.

[6] V. R. Basili, L.C. Briand, and W. L. Melo. ”A validation of object oriented design
metrics as quality indicators”, IEEE Transactions on Software Engineering, 22(10),
1996, pp.751-761.

[7] V. R. Basili and B. T. Perricone, “Software Errors and Complexity: An Empirical
Investigation”, Communicationd of ACM, Vol. 27, No. 1, 1984, pp. 41-52.

[8] A. Ben-David, ”About the relationship between ROC Curves and Cohen’s kappa”, En-
gineering Applications of Artificial Intelligence Vol. 21 No. 6, September 2008, pp .874-
882.

[9] R. Bell, T. J. Ostrand and E.J. Weyuker, “Looking for Bugs in All the Right Places”,
Proc. 2006 International Symposium on Software Testing and Analysis, 2006 pp. 61-72.

[10] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy. “Putting it All Together:
Using Socio-Technical Networks to Predict Failures” 17th International Symposium on
Software Reliability Engineering, Bengaluru-Mysuru, India, Nov. 2009.

REFERENCES 136

[11] S. H. Biyani and P. Santhanam, “Exploring Defect Data from Development and Cus-
tomer Usage on Software Modules over Multiple Releases”, Proc. 9th IEEE International
Sympium on Software Reliability Engineering, 1998, pp. 316320.

[12] Norman W. H. Blaikie, Analyzing Quantitative Data, SAGE Publication Ltd, 2003.

[13] B. W. Boehm, R. K. McClean and D. B. Urfrig, “Some Experience with Automated
Aids to the Design of Large Scale Reliable Software”, IEEE Transactions on Software
Engineering, Vol.1, No.1, 1975, pp. 125-133.

[14] B. Boehm, C. Abts, A. Brown, S.Chulani, B.Clark, E. Horowitx, R. Madachy, D. Reifer,
D. Steece, “Software Cost Estimation with Cocomo II”, Prentice Hall, Aug. 2000.

[15] D. Card, “Learning from Our Mistakes with Defect Casual Analysis”, IEEE Software,
Jan./Feb. 1998, pp. 56-63.

[16] G. Canfora and L. Cerulo, “How Software Repositories can Help in Resolving a New
Change Request”, In Workshop on Empirical Studies in Reverse Engineering, September
2005.

[17] G. Canfora and L. Cerulo, “Supporting Change Request Assignment In Open Source
Developement”, Proc. 2006 ACM symposium on Applied computing, Dijon, France, Apr.
2006, pp. 17671772.

[18] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design. IEEE
Transaction on Software Engineering, 20(6):476-493, 1994.

[19] J. Christmansson and R. Chillarege, “Generation of an Error Set that Emulates Software
Faults based on Field Data”, Proc. 26th International Symposium on Fault–Tolerant
Computing, 1996, pp. 304-313.

[20] W. G. Cochran, Some methods for strengthening the common tests, Biometrics, 10,
1954, pp. 417-51.

[21] Conover WJ, Practical Nonparametric Statistics (3rd edition). Wiley 1999.

[22] J. A. Duraes and H. S. Madeira, “Emulation of Software Faults: A Field Data Study
and a Practical Approach”, IEEE Transactions on Software Engineering, Vol.32, No.11,
2006, pp. 849-867.

[23] A. Endres, “An Analysis of Errors and Their Causes in System Programs”, IEEE Trans-
actions on Software Engineering, Vol.1, No.2, 1975, pp. 140-149.

[24] W.Evanco , ”Prediction Models for Software Fault Correction Effort”, Fifth European
Conference on Software Maintenance and Reengineering, March 2001, Libson, Portugal,
pp. 114-120.

[25] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, . “From Data Mining to Knowledge
Discovery in Databases”, AI Magazine, Vol. 17, 1996, pp. 37–54.

REFERENCES 137

[26] N. Fenton and N.Ohlsson, “Quantitative Analysis of Faults and Failures in a Complex
Software System”, IEEE Transactions of Software Engineering, Vol.26, No.8, 2000,
pp. 797-814.

[27] A. Garg and D. Roth, ”Understanding Probabilistic Classifiers”, Proceedings of the
12th European Conference on Machine Learning, pp. 179-191, September 2001.

[28] R. L. Glass, Software Runaways. Lessons Learned from Massive Software Project Fail-
ures, Prentice Hall, 1998.

[29] K. Goševa-Popstojanova, M. Hamill, and R. Perugupalli, “Large Empirical Case Study
of Architecture-Based Software Reliability”, Proc. 16th IEEE Intl Symp. Software Re-
liability Eng., pp. 43-52, Nov. 2005.

[30] K. Goševa-Popstojanova, M. Hamill, and X. Wang, “Adequacy, Accuracy, Scalabil-
ity, and Uncertainty of Architecture-Based Software Reliability: Lessons Learned from
Large Empirical Case Studies”, Proc. 17th IEEE Intl Symp. Software Reliability Eng.,
pp. 505-514, Nov. 2006.

[31] K. Goševa-Popstojanova and M. Hamill, “Report on Effects of Failure Clustering on
Software Reliability”, Technical Report submitted to NASA OSAM SARP, March 2007.

[32] K. Goševa-Popstojanova and M. Hamill, “Lessons Leanred from an Emprical Study of
a Safety–Critical NASA Mission”, Technical Report submitted to NASA OSAM SARP,
May 2007.

[33] K. Goševa-Popstojanova and M.Hamill, “10 Things to Know about Faults and Failures
for a Safety–critical NASA Mission”, submitted to the NASA Mission Personnel.

[34] T. L. Graves, A. F. Karr, J. S. Marron and H. Siy, “Predicting Fault Incidence Using
Software Change History”, IEEE Transaction on Software Engineering, Vol.26, No.7,
2000, pp. 653-661.

[35] M.L. Griss, “Software Reuse: From Library to Factory,” IBM Systems Journal, Vol. 32,
pp.548-565, 1993.

[36] M. Hall and G. Holmes, ”Benchmarking Attribute Selection Techniques for Discrete
Class Data Mining,” IEEE Transactions on Knowledge and Data Engineering, Vol. 15
No. 6, Nov./Dec. 2003, pp. 1437-1447.

[37] M. Hamill and K. Goševa-Popstojanova, “Common Trends in Fault and Failure Data”,
IEEE Transactions on Software Engineering, July/August 2009.

[38] P.S. Heckerling, ”Parametric three-way receiver operating characteristic surface analysis
using Mathermatica”, Medical Decision Making, 2001, Vol. 21 No.5, pp. 409-417.

[39] IEEE Std 610.12−1990 IEEE Standard Glossary of Software Engineering Terminology.

[40] D. Jackson, M. Thomas and L. Millett, Software for Dependable Systems: Sufficient
Evidence?, National Academies Press, 2007.

REFERENCES 138

[41] Y. Jiang, B. Cukic, T. Menzies, N. Bartlow. ”Comparing Design and Code Metrics for
Software Quality Prediction”. PROMISE ’08 May 12-13 2008. Leipzig, Germany.

[42] M. Jorgensen. “A review of studies of expert estimation of software development effort”.
Journal of System and Software, Vol.70 no.1-2 pp. 37-64, 2004.

[43] M. Leszak, D. Perry and D. Stoll, “Classification and Evaluation of Defect in a Project
Retrospective”, Journal of Systems and Software, Vol.61, Apr. 2002, pp. 173-187.

[44] www.kde.org

[45] R. R. Lutz and I. C. Mikulski, “Empirical Analysis of Safety Critical Anomalies dur-
ing Operation”, IEEE Transactions of Software Engineering, Vol.30, No.3, Mar. 2004,
pp. 172-180.

[46] R. R. Lutz and I. C. Mikulski, “Ongoing Requirements Discovery in High-Integrity
Systems”, IEEE Software, Vol.21, No.2, Mar. 2004, pp. 19-25.

[47] J. Malin, “Automated Tool and Method for System Safety
Analysis”, OSMA SARP Funder Research Project, available at
http://sarpresults.ivv.nasa.gov/ViewResearch/129.jsp

[48] A. Mockus, D. Weiss, P. Zhang, “Understanding and predicting effort in software
projects”, International Conference of Software Engineering, 2002, pp. 274-284.

[49] D. Mossman, ”Three-way ROCs”, Medical Decision Making, Vol. 19 No.1, 1999, pp. 78-
89.

[50] www.mozilla.com/firefox/

[51] NASA Certification Processes for Safety-Critical and Mission-Critical Aerospace Soft-
ware, available online at ’http://www.hq.nasa.gov/office/codeq/doctree/871913.htm’.

[52] NASA Software Safety Guidebook, available online at
’http://www.hq.nasa.gov/office/codeq/doctree/871913.htm’.

[53] N. Ohlsson and H. Alberg.“Predicting fault-prone software modules in telephone
switches”. IEEE Transactions on Software Engineering, Vol. 22, No. 12, 1996, pp 886-
894.

[54] T. J. Ostrand and E. J.Weyuker, “The Distribution of Faults in a Large Industrial Soft-
ware System”, Proc. ACM International Symposium on Software Testing and Analysis
(ISSTA 2002), 2002, Rome, Italy, pp. 55-64.

[55] T.J. Ostrand, E. J. Weyuker and R.Bell, “Where the Bugs Are”, Proc. 2004 ACM
SIGSOFT International Symposium on Software Testing and Analysis, 2004, pp. 86-96.

[56] T.J. Ostrand, J. Weyuker and R.Bell, “Predicting the Location and Number of Faults
in Large Software Systems”, IEEE Transactions of Software Engineering, Vol.31, No.4,
Apr. 2005, pp. 340-355.

REFERENCES 139

[57] M. Panda and M. Patra, ”A comparative study of data mining algorithms for network
instrusion detection”, Proceedings of the 1st International Conference on Emerging
Trends in Engineering and Technology, pp. 504-507, July 2008.

[58] M. Pighin and A. Marzona, “An Empirical Analysis of Fault Persistence Through Soft-
ware Releases”, Proc. International Symposium on Empirical Software Engineering (IS-
ESE’03), 2003, pp. 206-211.

[59] R. Quinlan, ”C4.5: Programs for Machine Learning”, Morgan Kaufmann Publishers,
San Mateo, CA.

[60] S. Seigel, Non Parameteric Statistics for the Behavoiral Sciences, McGraw-Hill, 1956.

[61] M. Shereshevsky, H. Ammari, N. Gradetsky, A. Mili, H.H. Ammar, H.H., “Informa-
tion theoretic metrics for software architectures, Computer Software and Applications
Conference”, COMPSAC 2001, pp. 151-157.

[62] Sherriff, M., Lake, J. M., and Williams, L. “Prioritization of Regression Tests using
Singular Value Decomposition with Empirical Change Records.” The 18th IEEE In-
ternational Symposium on Software Reliability Engineering, Trollhattan, Sweden, Nov.
2007, pp. 81-90.

[63] Q. Song, M. Shepperd, M. Cartwright, and C. Mair, ”Software Defect Association
Mining and Defect Correction Effort Prediction”, IEEE Transaction on Software Engi-
neering, February 2006, Vol. 32. No. 2, pp. 69-82.

[64] P. Tse and J. Liu, “Mining Assoicated Implication Networks: Computational Intermar-
ket Analysis”, Second IEEE International Conference on Data Mining, Maebashi City,
Japan, Dec. 2002, pp. 689-692.

[65] C. Weib, R. Premraj, T. Zimmerman, and A. Zellar,“How Long will it Take to Fix This
Bug”, Fourth International Workshop on Mining Software Repositories, 2007.

[66] I.H. Witten and E. Frank, “Data Mining: Practicel Machine Learning Tools and Tech-
niques, Second Edition, Morgan Kuafmann Publishing 2005.

[67] J. Xu, D. Ho, L.F. Capretz, “An Empirical Validation of Object-Oriented Design Metrics
for Fault Prediction”, Journal of Computer Science Vol. 4 No.7, 2008, pp. 571-577.

[68] W. D. Yu, “A Software Fault Prevention Approach in Coding and Root Cause Analysis”,
Bell Labs Technical Journal, Vol.3, No.2, Apr-Jun 1998, pp. 3–21.

[69] Zage W, Zage D., “Evaluating design metrics on large-scale software”, IEEE Software,
Vol. 10 No. 4, 1993, pp. 75-81.

[70] Zage W, Zage D. Identifying desing connectivity in metrics analyses of software systems.
Proceedings of the Eight Annual Software Tecnology Conference, Salt Lake City, UT,
April 1996.

REFERENCES 140

[71] Zage W, Zage D, Bhargava M, Gaumer D. Design and code metrics through DIANA
based tool. Ada: Moving Towards 2000 (Lecture Notes in Computer Science vol. 603).
Springer-Verlag, 1992, pp. 60-71.

[72] H. Zeng and D.Rine, ”Estimation of Software Defects Fix Effort Using Neural Net-
works”, Proceedings of the 28th International Computer Software and Applications
Conference, 2004

[73] M. Zhoa, C. Wohlin, N. Ohlsson, and M. Xie. ”A comparison between software design
and code metrics for the prediction of software fault content”. Information and Software
Technology, 40(14):801-809, 1998.

[74] T. Zimmermann and N. Nagappan, “Predictiing Subsytem Failures using Dependency
Graph Complexities”, 18th IEEE International Symposium on Software Reliability En-
gineering, Trollhattan, Sweden, Nov. 2007, pp. 227-236.

[75] T. Zimmermann and N. Nagappan, “Predicting defects using network analysis on de-
pendency graphs” 30th International Conference on Software Engineering, Leipzig, Ger-
many, May 2008, pp. 531–540

[76] WEKA:http://www.cs.waikato.ac.nz/ml/weka

	Empirical analysis of software reliability
	Recommended Citation

	Identifying Common Patterns and Unusual Dependencies in Faults, Failures and Fixes for Large-scale Safety-critical Software

	Text4: Dissertation
	Text3: Margaret L. Hamill
	Text2: Identifying Common Patterns and Unusual Dependencies in Faults, Failures and Fixes for Large-scale Safety-critical Software
	Text1: Abstract
		2010-05-14T13:06:50-0400
	John H. Hagen

