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Abstract 

Oxygen Transport Kinetics in Solid Oxide Fuel Cell Cathode 

Yihong Li 

Solid oxide fuel cells (SOFCs) are energy conversion devices that produce electricity by 
electrochemically combining a fuel and an oxidant across an ionic conducting oxide electrolyte. 
As it is regarded as the most efficient and versatile power generation system, SOFCs have 
attracted more substantial interest in recent years. Oxygen reduction at the cathode is considered 
as the main rate limiting factor to the performance of the whole system. In this work, 
experimental study of oxygen transport in single phase and infiltrated cathode materials using 
electrical conductivity relaxation (ECR) technique are combined with physical modeling to 
benefit SOFCs cathode improvement.  
 

The conductivity relaxation technique involves measurement of time variation of the electrical 
conductivity of a sample after a stepwise change in the ambient oxygen partial pressure. Oxygen 
surface exchange (k) and bulk diffusion coefficients (D) can be obtained based on the correlation 
between a mean conductivity and the corresponding mean non-stoichiometry. Although the ECR 
technique has been widely used in various applications, reliability and accuracy of fitted results 
have been rarely discussed. Indeed, non-unique local fitting error minimums exist when fitting a 
single relaxation data set. Enhanced accuracy of D and k are obtained by fitting two sets of data 
and plotting the error intersection.  
 

Oxygen surface exchange and bulk diffusion coefficients of the widely used cathode material 
La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) were obtained by applying the improved fitting method. The 
results indicated that the oxygen surface exchange coefficient depends on the final oxygen partial 
pressure following the 

2

1/ 2
OP law. On the other hand, the oxygen bulk diffusion coefficient was 

considered to be influenced by the oxygen vacancy concentration and the ordering degree.  
 

Electrical conductivity relaxation was further developed to investigate infiltrated cathode 
materials in this work. Ce0.8Sm0.2O1.9 (SDC) and La0.6Sr0.4CoO3-δ (LSC) were chosen as the 
infiltrated materials. The oxygen exchange coefficient at the infiltrate/cathode backbone 
interface was deduced from the testing results. Both of the two infiltrated materials promoted the 
oxygen transport rate in LSCF. Under high oxygen partial pressure, the SDC spin coated LSCF 
sample showed a greater improvement than the LSC spin coated sample.  
 

In addition, a model was built up to understand SOFCs infiltrated cathode. Infiltrate/cathode 
backbone interface and the corresponding 3PB region distinguished infiltrated SOFCs cathode 
from single phase cathode. Simulation results are more plausible by including the experimentally 
obtained oxygen interface exchange coefficient. Over-potential effects and infiltrated material 
optimization were included in the discussion.  
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1 Introduction 

The high operating temperature of SOFC relative to other types of fuel cells makes them ideal 

for combined cycle FC/turbine applications1. On the other hand, compared to other kinds of fuel 

cells, the fuel flexibility of SOFCs offers the possibility for direct utilization of hydrocarbons and 

other renewable fuels2.  

 

It has been well accepted that oxygen reduction occurring at the cathode is the main rate factor 

limiting the performance of the whole SOFC system3, 4. Therefore, modeling and simulation 

techniques have been used to improve understanding of the reaction mechanisms and kinetics of 

cathode process in SOFC. There are two main understandings of the oxygen reduction process. 

Some researchers considered that the reduction reaction is a pure chemical reaction while others 

believed that it’s an electrochemical reaction.  

 

Although significant advances have been made in understanding of solid oxide fuel cell cathodes, 

the oxygen reduction mechanisms remain unknown. The simulation results of present models 

remain weak since accurate, experimentally obtained oxygen transport kinetic parameters were 

not used in the simulation. On the other hand, the accuracy of solid state electrochemistry 

analysis techniques limited the verification work.   

 

In the proposed research, electrical conductivity relaxation (ECR) will be applied to characterize 

cathode materials for common and advanced SOFC. To obtain more reliable kinetic parameters, 

the diffusion model and data fitting method of ECR was refined, and detailed discussion is 

provided. Further, the oxygen reduction mechanism for infiltrated SOFC cathode will be 

investigated, and the developed ECR diffusion model will be utilized to propose optimized 

cathode infiltrate materials. 
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2 Literature review 

2.1 Solid Oxide Fuel Cells 

 

Figure 2.1 Sketch of a single Solid Oxide Fuel Cell 

 

Solid oxide fuel cells (SOFCs) are energy conversion devices that produce electricity by 

electrochemically combining a fuel and an oxidant across an ionically conductive oxide 

electrolyte5. Figure 2.1 illustrates the basic operation mechanism of the solid oxide fuel cell. The 

cell is composed of two porous electrodes and an ionically conductive ceramic electrolyte. At 

present, the typical materials for SOFCs are oxide ion conducting yttria-stablized zirconia (YSZ) 

for the electrolyte, perovskites such as strontium-doped lanthanum manganese (LSM) for the 

cathode and nickel/YSZ for the anode6. A general reaction mechanism of SOFC is shown in 

Figure 2.1. Oxygen will be reduced to O2- at the porous cathode and then be transported through 

the electrolyte to the anode. The reduced O2- will react with H2 to form water. 

 

Compared to other fuel cells, the main attractive features of solid oxide fuel cell systems are high 

efficiency, flexible choices of fuels and low emissions7, 8.  
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However, the historic cell performance and stability have limited SOFCs commercial 

applications. Researchers worked on studying electrode mechanisms to understand how and why 

electrode performance changes with cell operation conditions. New electrode materials were 

explored based on the mechanism understandings. Much of the investigations focused on the 

cathode because oxygen reduction is generally considered to be more difficult to activate than 

hydrogen oxidation.    

  

2.2 SOFCs Cathode 

As mentioned above, oxygen reduction occurs at the SOFC cathode and the overall reaction can 

be written by Kröger-Vink notation as:  

' ..
2

1
( ) 2

2
x

O OO g e V O                                                                   (2.1) 

Materials which are used as SOFC cathodes must satisfy the following requirements9: 

 Adequate electronic and ionic conductivity. 

 High catalytic activity for oxygen reduction. 

 Chemical stability and relatively low interactions with the electrolyte. 

 High compatibility with other cell components. 

2.2.1 SOFC cathode materials 

During the early stage of SOFC development, platinum and some other noble metals were used 

as the cathode materials. However, platinum is expensive and its compatibility with the 

electrolyte is not so good. Recently, less expensive perovskites which also possess the required 

properties have attracted much interest.  
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Figure 2.2 Schematic representation of lattice structure of perovskite, ABO3 

 

Figure 2.2 reveals the lattice structure of ABO3 perovskite. In general, in the perovskite-type 

structure, B site element is closely bonded to six oxygen atoms with a strong covalent nature, 

while A site element coordinates to 12 oxygen ions with a strong ionic nature. Most of the 

perovskites can be considered as cathode materials except perovskites which have a low 

electronic conductivity such as (La, Sr)(Mn,Fe)O3, YCoO3 or (Y,Ca)FeO3
10.  

 

La1-xSrxMnO3±δ (LSM) is one of the most widely used and researched cathode perovskite 

materials in SOFC. Sr-doped lanthanum perovskites show both large oxygen-excess under 

oxidizing atmosphere and large oxygen deficient when in reducing gas atmospheres11. In the 

oxygen deficient region oxygen vacancies are the main defects while in oxygen excess metal 

vacancies are the main defects. Although demonstrating good electrode properties for the YSZ 

electrolyte12, the oxygen ion conductivity of LSM materials and its oxygen trace diffusion 

coefficient are undesirably low 13 . This poses practical limitations and restrictions to the 

application of LSM cathodes to SOFC operating at low temperature (<800°C). 

 



5 

 

The iron and cobalt-containing perovskite La1−xSrxCo1−yFeyO3±δ (LSCF) is another candidate 

material for SOFC cathodes. Compared with LSM based materials, LSCF has higher ionic and 

electronic conductivity. Hence, sometimes LSM will be treated as an electronic conductor (EC) 

while LSCF is always a mixed ionic and electronic conductor (MIEC)14.  Although the use of 

LSCF as SOFC cathode can effectively enhance the cell’s performance, LSCF cathodes must be 

selected carefully because they have a higher thermal expansion coefficient (TEC) than the YSZ 

electrolyte15. 

 

To lower the operating temperature of SOFCs, Strontium-doped samarium cobaltite with 

composition Sm0.5Sr0.5CoO3 (SSC) has been studied recently. Its conductivity is much higher 

than LSCF and LSM at low temperature (500-800°C) 16, 17. On the other hand, just as for LSCF, 

the TEC of SSC is too large for wholly adequate compatibility with the YSZ electrolyte. 

However, SSC is particularly compatible with GDC and LSGM18. 

  

As illustrated above, the TEC of LSM is close to YSZ but its ionic conductivity is very low. The 

electronic and ionic conductivities of LSCF and SSC are high but their TEC are much higher 

than YSZ. Therefore, many alternative materials have been studied with the aim of increasing 

ionic conductivity and obtaining a TEC close to that of YSZ. For example, Fe-substituted 

lanthanum strontium cuprite (La0.7Sr0.3Cu0.4Fe0.6O3-δ) was reported to present a high conductivity 

and good thermal expansion match to SDC19. Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) is another attractive 

cathode material for intermediate temperature SOFCs20. 
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2.2.2 SOFC cathode reaction mechanisms 

The cathode reaction mechanism is a fundamental issue for electrochemistry study. A thorough 

elucidation includes useful information on how to improve cell performance. Limited by the 

development of solid state ionic conductivity theories, researchers have matured SOFC cathode 

models over the past 20 years.   

 

Aqueous solutions are the traditional domain of electrochemical system studies. Therefore, 

generally accepted conclusions and common investigation methods of aqueous system are the 

basis for SOFC cathode studies. However, the solid state system is more complex compared with 

the aqueous system. First, three phase boundary (3PB), where gas molecular, cathode and 

electrolyte materials meet, exists stably in SOFCs. At the same time, at the cathode side 

gas/cathode and cathode/electrolyte two-phase boundaries (2PB) also exist. The parallel 2PB and 

3PB pathways provide competing routes for oxygen reduction. Second, in aqueous systems only 

ion diffusion occurs while for SOFC cathodes oxygen gas and ions will diffuse against the 

electrons. Finally, the double layer formed on the electrode is different. For aqueous system, 

usually the inactive ions in the solution will move to the electrode surface under the electrical 

field. However, on the surface of the SOFC cathode, adsorbed atomic oxygen or ions will form 

the double layer.  
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Figure 2.3 Different classifications of SOFCs cathode models 

 

SOFC cathode models can be classified by different levels. As shown in Figure 2.3, according to 

the dimension of the model, there are 1-D, 2-D and 3-D models. Further, according to the 

model’s setup method, some literature modeled SOFC cathodes in the viewpoint of theory while 

others utilized experimental data to set up their models. For example, some studies about three 

phase boundary had been done based on the SEM morphology results. Finally, according to 

different investigations, SOFC cathode models can be divided to micro-models and macro-

models. The former studies the detailed cathode reaction steps and the latter one mainly 

considered the entire effect of the factors such as porosity, gas flow rate, temperature etc. Since 

our proposed work will focus on investigating the micro-scale oxygen transportation kinetics, 

development of SOFC cathode micro-models will be reviewed. Thus far, the most debated issue 

for micro-models is whether the reduction reaction is controlled by a chemical process or an 

electrochemical process.   

2.2.2.1 Pure chemical process 

Adler is one of the early researchers who treated the SOFCs cathode reaction as a pure chemical 

process. In the model developed in 1996, as shown in Figure 2.4, Adler et al.21 specified that the 

SOFC cathode models 

Models’ Dimension: 1-D, 2-D and 3-D models 

Models’ setup method: Experimental-based models 
                                       Theoretical models 

Investigation focus: Micro-models 
                                 Macro-models 
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overall cathode reaction occurred via three separated interfacial reactions: (1) charge transfer of 

oxygen ion vacancies across the cathode material/electrolyte interface; (2) charge transfer of 

electrons across the current collector/cathode material interface; (3) chemical exchange of 

oxygen at the gas/cathode material interface. Due to the last specification, this model can only be 

valid for the mixed conductors with high rates of oxygen surface exchange, such as LSC.  

 

Figure 2.4 Cell geometry in Adler’s model 

The contributions to cathode kinetics were claimed as only the diffusion of oxygen and exchange 

of O2 at the mixed conductor/gas interface. To illustrate the chemical contribution, either one of 

the non-charge transfer steps would be considered as the rate limited step of the entire cathode 

reaction. Their models showed, when the surface exchange and solid state diffusion dominated, 

the total cell impedance would reduce to:  

1

1chem
chem

Z R
j t




                                              (2.2) 

When the gas phase diffusion was the limit, the total cell impedance was:  

                                                 
1

gas

gas gas

R
Z

j R C



                                                             (2.3) 
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Rchem and Rgas are characteristic resistances, tchem is a relaxation time of oxygen surface exchange 

and Cgas is the effective capacitance with gas phase diffusion polarization. Their results showed 

that the bulk properties of the cathode material would quantitatively affect the electrode kinetics. 

In order to verify this simulated result, Adler et al. compared the measured ac response of a 

symmetrical cell, which was composed of two La0.6Ca0.4Fe0.8Co0.2O3-δ electrodes and 

Ce0.9Sm0.1O2-x electrolyte, with the predicted results. As Figure 2.5 presents, the measured plots 

agreed well with the calculated results. 

 

Additionally, in this model work, Adler brought out the concept of a characteristic distance 

which indicated the extension of the reaction zone beyond the three-phase boundary. The 

chemical resistances corresponding to different characteristic distances were calculated based on 

the model. The greatest extension distance was expected to be few microns.  

 

 

Figure 2.5 Plot of measured (circles) and calculated(squares) complex  
impedance of a symmetrical cell in air at 700ºC 
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As in the early mixed conductor cathode modeling, Adler’s work offered valuable insight to the 

reaction mechanism. However, there also existed many arguable parts22. People doubted whether 

it’s reasonable to define all the reduction reactions occurring at the electrode/gas interface. 

Besides, if the oxygen would be reduced, why is the oxygen surface exchange defined as a non-

charge transfer reaction. Adler addressed these criticisms in a subsequent paper23, where he 

argued that the oxygen reduction should only occur at the electrode/gas interface since matter 

can not pass through a truly three phase boundary. Furthermore, the processes of “charge-

transfer” and “non-charge-transfer” had been defined. “Charge-transfer” represented any step 

that involves charged species and driven directly by gradients in electrical state and always 

occurred at a rate proportional to the current. On the other hand, “non-charge-transfer” processes 

involve neutral species or neutral combinations of species. Such processes are driven by 

gradients in chemical potential and occur at a rate independent of current.  

 

Symmetrical cells under three different conditions were discussed in this paper23. Finally, the 

author concluded that the oxygen reduction was limited by the oxygen diffusion. And the 

diffusion process was independent with the electrochemical factors since molecular oxygen is 

neutral. The model ignored the effects of electron and oxygen vacancy concentrations inside the 

mixed conductor. As the main participants, they would certainly affect the oxygen reduction 

reaction. Furthermore, since those particles are chargeable, electrochemical conditions may 

control their diffusion process.  Therefore, Adler’s model may be more suitable for the period 

when the fuel cell starts running.  
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Figure 2.6 Sketch of Svensson’s two step reactions cathode model 

 

Svensson et al. developed a physical model to show the possible oxygen transport pathways on 

SOFC cathodes24, 25. As shown in Figure 2.6, the first step of oxygen reduction is adsorption and 

desorption of neutral, monatomic oxygen at the gas/cathode and gas/electrolyte interfaces. Then 

the absorbed oxygen atom will combine with the vacancy to form lattice oxygen. The two step 

reactions can be written as: 

                      2 ( ) 2 2ads

des

k

adsk
O g ads O                                       (2.4) 

..

.2r

o

k x
ads okO

O V ads h O                                     (2.5) 

Svensson postulated that the interface between cathode and electrolyte contained intermediate 

oxygen species. Those species would either combine with the vacancies of the cathode material 

or combine with the vacancies of the electrolyte material. The reaction occurring at the 

gas/cathode interface was considered chemical in nature since no interfacial charge-transfer was 

involved, while the one occurring at the electrolyte surface was considered as an electrochemical 
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process. Therefore, different from Adler’s model, Svensson et al. introduced over-potential into 

their simulation to express the departure from equilibrium of the surface exchange reaction 

occurring at the electrolyte surface. According to Svensson’s numerical results, a limiting current 

was predicted at high over-potential due to depletion of oxygen at the cathode/electrolyte 

interface, and they found there was a correlation between the limiting current and 
2OP ( n

OPi 2  ) . 

When the exchange process was the limited rate step for the cathode reaction, the value of n was 

between 0.58 and 0.74. Smaller n values (0.26<n<0.56) were predicted for a slow adsorption 

process. However, the two oxygen pathways in Svesson’s model were considered in separate 

simulations.  

 

Figure 2.7 Cross-sectional schematic of the physical structure and chemical  
reactions occurring at porous SOFCs cathode 

 
By the approach of Svesson, the influence of surface and bulk transport pathways for SOFC 

cathode can be described, but it is not possible to quantitatively compare the contribution to the 

total current by each path. To solve this problem, Coffey et al.26 presented a continuum model 

which simultaneously considered both pathways, as illustrated in Figure 2.7. They considered 

that oxygen may transport through the triple-phase boundary (3PB) between the electrolyte, gas 
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and cathode or the two-phase boundary (2PB) between the cathode and electrolyte. B-V 

equations for the surface over-potentials were taken as the boundary conditions in this model’s 

simulation. Since the total voltage drop across the cathode-electrolyte interface is independent of 

the transport path chosen, the over-potential for the other path can be calculated by setting one 

path over-potential. However, although Coffey treated the reactions occurring at 3PB and 2PB 

interfaces as electrochemically motivated reactions, oxygen reduction occurring at the 

gas/cathode interface was considered as chemical reaction due to the fact that no net charge was 

gained or lost by the cathode.  

 

In 2006, researchers from NASA set up a SOFC model for system controls and stability design27. 

The cathode reaction process was considered associated with oxygen absorption, desorption, 

diffusion and electronation. The charge transfer pathways can be presented as below, 

,
2 ( ) 2 2ad desk k

adO g s O                                                    (2.6) 

,.. 2 lc lck k x
ad O OO V e O s                                                 (2.7) 

where s is the concentration of vacant surface sites.  

 

As we can see from the cathode mechanisms stated above, researchers considered the oxygen 

reduction as a pure chemical reaction because they thought there was no net charge transfer or 

charged intermediate at the interface. However, during the real oxygen reduction process charged 

intermediates are possibly formed. Furthermore, although there may be no net charge transfer at 
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the reaction interface many researchers hold that the reaction should be considered as an 

electrochemical process since its reactants and products are charged particles.  

2.2.2.2 Electrochemical process 

Considering oxygen reduction is a reaction involving charged particles, many researchers hold 

that the cathode reaction of SOFC is an electrochemical process. It is well-accepted that the 

surface over-potential influences the entire cathode reaction process. Besides, the researchers 

also argue that oxygen reduction is not completed in one step which means some intermediates 

exist during the reaction process. Absorbed, charged intermediates will be affected by the surface 

over-potential.  

 
Liu and Winnick investigated the reactions occurring on MIEC/gas interface. They considered 

oxygen reduction involving several intermediates28. Possible reaction pathways are shown below: 

 

Figure 2.8 Possible oxygen reduction processes by Liu et al. 
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Further, Liu et al. discussed the electrical state effects on the rate of interfacial reactions. Based 

on their analysis, the oxygen reduction rate depends critically on the electrical state of the 

MIEC/gas surface. Hence the reaction was considered as electrochemical.     

 

F. H. van Heuveln29 considered the existence of O-, O-
2 during the oxygen reduction process, and 

assumed the existence of three possible charge transfer pathways. La0.85Sr0.15MnO3 cathode was 

prepared by tape casting on a pre-sintered YSZ pellet. Electrochemical resistance and Tafel plots 

were measured to verify van Heuveln’s model. The experimental results indicated that diffusion 

of Oad
- species along the LSM surface to 3PB area will compete with charge-transfer at low over-

potential. The diffusion limitation disappears at high cathodic over-potentials. On the other side, 

the model’s simulation results also show that the diffusion process is influenced mainly by the 

current.  However, in van Heuveln’s model, the reduction occurring at the gas/cathode interface 

was ignored. The MIEC was treated similar to the metal electrode.  

      Model 1                  
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                              Model 2                            
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        Model 3                
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                              (2.10) 

Mitterdorfer30 also thought O-, O-
2 may exist during the reduction process. He developed a 

physical model to explain oxygen transport from the LSM cathode to the YSZ electrolyte.  The 

reactions can be described as follow: 

- -
2 2O (g)+e + s O (ad)                                        (2.11) 

- - -
2O (ad)+e 2O (ad)                                       (2.12) 

- - .. x
O OO (ad)+e +V O +ad                                           (2.13) 

In Mitterdorfer’s model, LSM had been considered as pure electronic conductivity. The oxygen 

ions were assumed as formed only at the 3PB area.  

 

Chan et al. developed a micro-model for an LSM electrode31. All possible polarizations which 

govern the complex interdependency among the transport phenomena, electrochemical reaction 

and microstructure of the electrode and their combined effect on the cathode over-potential under 

different operating conditions had been considered in this model. They claimed that when the 

applied oxygen partial pressure was lower than 0.1atm, a third arc can be seen in the low 

frequency band of impedance spectra which is due to gas phase diffusion.  
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Chan applied the reaction steps of van Heuveln’s model 1 to develop their model. The difference 

is that Chan et al. established a correlation between the microstructure and the performance of 

the cathode. According to the simulation results, it was found that larger particle size requires a 

thicker cathode for reduced cathode over-potential. Furthermore, the current density and oxygen 

partial pressure were found to not affect the optimal electrode thickness value. However, current 

density and oxygen partial pressure will affect the optimal particle size. 

 

Bilge Yildiz presented a two dimensional physical model that includes the effect of both surface 

and bulk pathways under different operating conditions and electrode configurations32. The 

possible surface and bulk pathways were shown below, and AC impedance spectra of LSM 

electrode were applied to verify Yildiz’s model: 

                                      Model 1                   
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                             (2.15) 

To prove that the intermediates are likely to exist during the oxygen reduction process, Liu et al. 

investigated the oxygen reduction process on a silver electrode surface using the first-principles 
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calculations based on the density functional theory and pseudo-potential method 33 . The 

calculation results suggest that the oxygen reaction on silver cathode can be described like this: 

2 2
2 2 2( )( ) ( ) 2O g e O e O (+2e) O                                         (2.16) 

Since in this work a metal electrode has been studied, the calculation results show that the 

oxygen reduction and the incorporation of the dissociated O ions in the oxide electrolyte prefer 

the 3PB region. For MIEC electrodes, due to the fact that oxygen vacancy may exist inside the 

material, the reduction process will not only occur near 3PB region. However, although this 

work offers some evidence for the intermediates, it’s not so convincing that they will appear in 

perovskite MIEC. Therefore researchers still examined new ways to verify the existence of the 

intermediates and to confirm the intermediates appearing during the reduction process. 

 

Since researchers considered the cathode reaction as an electrochemical process, surface over-

potential needs to be introduced into their simulations. To make a clear idea on this issue, first 

we need to know what the over-potential is and how it is generated. Over-potential refers to the 

potential difference between a half-reaction’s thermodynamically determined reduction potential 

and the potential at which the redox event is experimentally observed. For an aqueous system, 

the over-potential is formed at the electrode/electrolyte interface. For the SOFC cathode, the 

over-potential exists not only at the electrode/electrolyte interface but also at the gas/electrode 

interface and the TPB area. And there are three different parts for the over-potential: over-

potential caused by the material’s resistance, over-potential caused by the surface exchange 

process and over-potential caused by the oxygen ion diffusion.  
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Figure 2.9 Sketches of electron and ion transfer reactions at (a) metal/liquid electrolyte and (b) mixed 
conducting electrode (MCE)/solid electrolyte interfaces 

 
 

J. Fleig discussed MIEC surface over-potential which is caused by surface charge transfer34. 

Figure 2.9 depicts the over-potential difference between a liquid electrolyte system and the 

SOFC cathode.  

 

For a metal electrode in an aqueous electrochemical system, electron and ion transfer only occur 

at the electrode/electrolyte interface so the over-potential can only be formed at the 

electrode/electrolyte interface. However for mixed conducting electrode, electron and ion 

transfer also occur at the electrode/gas interface. Hence it’s necessary to introduce the term of 

surface over-potential change Δχ into the simulation. Fleig discussed the application of Δχ under 

electron transfer step control and ion transfer step control conditions. He also studied the 

relationship of MCE surface over-potential (Δχ) and electrode/electrolyte interface over-potential 

(η).   
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Figure 2.10 An equivalent circuit of the MIEC electrode and the sketch of the oxygen reduction process 
 
 
 

In later work, the equivalent circuit based on the understanding of the oxygen reduction 

pathways was presented, as Figure 2.10 shows 35 , 36 . La0.6Sr0.4Co0.8Fe0.2O3-δ, 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ and Sm0.5Sr0.5CoO3-δ thin films were applied to study the oxygen 

reduction. Thin films and patterned electrodes are usually used for investigating over-potential 

effects because it is possible to precisely control the geometry related to the triple phase 

boundary and bulk reaction pathways. Based on the ac and dc resistance measurements, Fleig 

claimed that the capacitance in Fig. 10 was a constant phase element (Q-1(iω)-n) with exponents 

close to one. And they found for the investigated materials, the oxygen exchange reaction on the 

MIEC surface limited the kinetics of the overall oxygen reduction reaction. On the other hand, 

according to the experimental results, Ba0.5Sr0.5Co0.8Fe0.2O3-δ exhibited the lowest surface-related 

polarization resistance compared to the other two materials. 
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Figure 2.11 Sketch of 2-D model 
(a) patterned electrode array (b) symmetric 2-D cross-sectional model domain 

 

Liu developed a 2-D model based on Fleig’s theory of MIEC surface over-potential37.  Figure 

2.11 depicts their model geometry. As Figure 2.11b shows, the dashed-line box is the two 

dimensional investigated region.   

 

The gas exposure surface reactions were assumed as below: 

' .
2 ads

1
O s O h

2
                                                          (2.17) 

' .. x .
ads O oO V O h s                                                 (2.18) 

The reaction rate had been discussed in their previous work38. The simulation results show that 

under low over-potential the ionic transportation will be the rate limiting step which means low 

over-potential (50mV) doesn’t affect oxygen reduction. Under high over-potential (750mV), the 
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sheet resistance will control the reaction rate which means that the surface exchange step will be 

the rate limiting step. 

2.2.2.3 Summary 

The literature reviewed in this part has shown that the oxygen reduction mechanism in the 

cathode of an SOFC is complex. Although different experimental methods have been utilized to 

verify model results, differences of opinion still exist among researchers. Several main debatable 

issues about SOFC cathode reaction mechanisms are summarized as below: 

(1) Reaction intermediates: Different sub-reactions were offered by researchers for the same 

overall oxygen reduction reaction. Adsorbed oxygen atoms, O- and O-
2 all possibly appear via 

one or more steps. The surface over-potential needs to be considered when there are chargeable 

intermediates during the reduction process. However, based on the presently investigated 

literature, it is still difficult to determine which intermediates actually exist in the reaction.  

(2) Reaction region: Generally, the 3PB region where cathode, electrolyte and gas connect 

together was supposed to be the main reaction region. However, due to the fact that the cathode 

material is a mixed ionic and electronic conductor, oxygen reduction also may occur at 

gas/cathode interface. Therefore, two charge transfer pathways will co-exist and may compete 

under different operation conditions. 

(3) Rate limited steps: The global oxygen reduction can be divided into several sub-reactions 

according to the understandings of oxygen reduction mechanism. Besides the reduction reactions, 

oxygen diffusion is the other step for the cathode reaction process. Rate limited step 

determination under different conditions is important for optimizing the cathode and improving 

the cell efficiency.   
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(4) Geometry factors: Cathode geometrical factors such as porosity, tortuosity and TPB length 

are important for SOFC cathode modeling. They will affect the gas diffusion process and the cell 

performance. Due to the fact that the shape and the distribution of the pores inside SOFCs 

cathode are random, it’s difficult to get an accurate simulation result compared to the real 

operating conditions. Some researchers applied a factor parameter to minimize the errors on 

ignoring the geometry effects. Most researchers used a computer to build up a random 

microstructure with some input parameters. An effective way is to get part of the microstructure 

information from the experimental method first, then use a computer program to simulate the 

entire cathode reaction process.  

 

2.2.3 SOFC cathode infiltration 

Based on the understanding of physics and chemistry governing SOFC cathode reactions, there 

are two principal approaches to improve the performance.  One strategy is to develop new 

cathode material with both high electronic and ionic conductivity. By increasing oxygen bulk 

ionic transport, the active region will be extended to the electrode surface and the oxygen 

reduction kinetics will be improved. However, considering the requirements for electrode 

compatibility and stability with other components, it is not a simple issue for developing new 

materials of SOFCs cathode. Another possible way is to combine the cathode electrode materials 

with a more ionically conducting material. Wet impregnation, which is carried out by infiltrating 

porous cathode with nitrates by capillary action and then decomposing the nitrate solutions by 

heat treatment, is a common way to implement composite SOFCs cathode. It has been reported 

that the impregnation of nanoscale particles such as Pd39, ceria40, 41, Ag42, 43, Co3O4
44

 and bismuth 

oxide45 can greatly reduce the polarization resistance of the cathode.  
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Besides the electro catalytic promoters, high ionic conductivity materials are also infiltrated to 

improve the cathode performance. Gorte46 et al. infiltrated LSM/LSC composite cathode on a 

porous YSZ matrix with aqueous nitrates solution. The LSM–YSZ composites were prepared 

with 30 wt % LSM and were co-sintered to 1323 K, after which 10 wt % of LSCo was added by 

wet impregnation using aqueous solutions of the nitrate salts. The maximum power density 

increased to above 400mW/cm2 and the non-ohmic losses decreased from greater than 0.6Ω·cm2 

to approximately 0.3Ω·cm2. Xiong47 et al. infiltrated samarium doped CeO2 (SDC) nano particles 

into (Pr0.7Ca0.3)0.9MnO3–δ (PCM) cathode. The cell with 2.6mg/cm2 SDC infiltrated in cathode 

showed the maximum power density of 580mW/ cm2 compared with 310mW/ cm2 of the cell 

without impregnation at 850°C. Xia et al.41 fabricated (La0.85Sr0.15)0.9MnO3−δ(LSM)-

Sm0.2Ce0.8O1.9(SDC) composite electrodes by wet impregnation. The impregnation resulted in a 

significant reduction of the interfacial resistance at 700°C from 5.43Ω·cm2 from pure LSM 

cathode to 0.233Ω·cm2 for an LSM-SDC50 composite cathode. Lee et al.48 studied dual-phased 

functional layer containing Sm2O3-doped CeO2 (SDC) and La0.6Sr0.4Co0.2Fe0.8O3―δ (LSCF) 

backbone infiltrated with either La0.6Sr0.4CoO3 (LSC) or La1.97 Sr0.03Zr2O7 (LSZ) cathodes. 

 

Although wet impregnation is a well-known technique in the preparation of heterogeneous 

catalysts, the wide application of wet impregnation technique in SOFCs is a recent phenomenon. 

And compared to the single phase cathode, the infiltrated composite cathode is a more complex 

system. Therefore, no confirmed reaction model for composite SOFCs cathode had been set up. 

It is well accepted that the infiltrated material can extend TPB (triple phase boundary) length and 

promoted oxygen reduction. However, rare work on investigating oxygen transport behavior, 



25 

 

which is also a key step of the electrode reaction process, can be found from references. If we 

assume oxygen reduction for the composite cathode mainly occurred at the infiltrated 

material/atmosphere (2PB) and infiltrated material/backbone/atmosphere (3PB) range, there will 

be two steps for oxygen ion transportation. First, oxygen ion will be transferred from the 

infiltrated material to the cathode backbone. Then it will diffuse inside the backbone material 

and further transferred to electrolyte. At the same time, O- surface diffusion may also exist. Since 

it can offer useful information on impregnation process optimization, study on how the 

impregnation technique will affect the two oxygen transport pathways is very important and 

necessary. In this proposed research work, a global evaluating method for composite SOFC 

cathodes will be developed.  

2.3 Electrical conductivity Relaxation (ECR) 

2.3.1 Theoretical background 

The conductivity relaxation technique involves measurement of time variant electrical 

conductivity of a sample after a stepwise change in the ambient oxygen partial pressure. To 

determine oxygen surface exchange (k) and bulk diffusion coefficients (D), a correlation between 

a mean conductivity and the corresponding mean non-stoichiometry had been established49.   

 

The possible defects in ABO3 perovskite include electrons ( 'e ), holes( h ), oxygen vacancies 

(
..

OV ), cation vacancies (
''

AV and
''''

BV  ) and acceptor background impurities(
'I ). Based on overall 

charge neutrality, we have: 

'' '''' ' ..2[ ] 4[ ] [ ] 2[ ]A B On V V I p V                                                (2.19) 
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where n, p and [j] are the concentration of electrons, holes and ionic defects of type j. By 

defining the effective concentration of acceptors as 

' '' '''' '[ ] 2[ ] 4[ ] [ ]A BA V V I                                                    (2.20) 

The oxygen non-stoichiometry, δ, is then given as: 
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                                                   (2.21) 

 where NA and Vm represent the Avogadro’s constant and the lattice molecular volume.  

When the material conduction type is in the regime of exclusively p type ( p el  ), equation 

2.21 takes the form: 
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And when it’s in the regime of exclusively n type ( n el  ),  
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V e




                                                              (2.23) 

Assuming that the mobility, µp and µn, are independent of the non-stoichiometry or oxygen 

partial pressure at a certain temperature, the following correlation can be established49: 

( ) (0) ( ) (0)

( ) (0) ( ) (0)

t t   
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 


   
                                                      (2.24) 

δ(0), δ(∞) and δ(t) separately stand for initial, final and time-related non-stoichiometry values. 

σ(0), σ(∞) and σ(t) are conductivities corresponding to δ(0), δ(∞) and δ(t) respectively.  

 

And since the non-stoichiometry can stand for oxygen concentration inside the material, similar 

relation between oxygen concentration and conductivity can be established: 
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where C(0), C(∞) and C(t) are conductivities corresponding to σ(0), σ(∞) and σ(t), respectively. 

Solid phase equilibrium will be restored when the surface exchange is equal to the diffusion flux 

which is presented by equation 2.26: 
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                                                       (2.26) 

Based on this boundary condition and Fick’s second law (
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determinable for a pellet sample50: 
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In equation 2.27: 

tann n
c

a ak
L b b

l D
                                                        (2.28) 

Here, a [cm] is the half thickness of the tested pellet sample in the diffusion solution. And L [-] is 

a unit-less parameter from which the characteristic thickness lc [cm] can be derived as shown in 

equation 2.28. bn is a parameter generated during the process solving Fick’s second law. Its value 

can be determined by Newton’s method using equation 2.28. The importance of the 

characteristic thickness has been described previously51 as a measure of the membrane thickness 

where the transition occurs between predominant control by bulk diffusion and surface exchange. 

If 0.1<L<10, the oxygen transport process is considered to proceed under mixed control49.  



28 

 

2.3.2 IEDP method 

Two experimental methods were used to characterize oxygen transportation for SOFC cathodes 

at present. Aside from ECR, the other method is known as Isotope Exchange Depth Profile 

(IEDP)52 method. Isotope 18O is used in the experiment and the diffusion profile within the 

sample was determined by Secondary Ion Mass Spectrometry53. IEDP and ECR are both set up 

based on Fick’s second law. For IEDP method, the sample usually will be first annealed in the 

labeled 16O2 atmosphere for a time that is approximately one order of magnitude greater than the 

tracer anneal time, to ensure the sample is in chemical equilibrium in the desired temperature and 

atmosphere. Then the sample will be quenched to room temperature and reheated with the 18O2 

gas. Then 18O penetration profile will be determined by SIMS. During this process, the rate of 

isotope exchange across gas/solid interface is assumed to be directly proportional to the 

difference in isotope concentration between the gas and the solid. This leads to the boundary 

condition: 

0 ( )x s g

C
D k C C

x 


  


                                           (2.29) 

Cg and Cs refer to the 18O fraction in the gas phase and at the sample surface respectively54,55, 56, 

57, 58.  

The solution of Fick’s second law can be obtained using this boundary condition: 
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Table 2.1 Two experimental methods for oxygen transport characterization  

Method 
2OP  Obtained parameter Advantages 

IEDP No Self diffusion coefficient  (D*) 
More direct and accurate for oxygen 
concentration detection 

ECR Yes Chemical diffusion coefficient (D) 
Economic;  Testing condition is close to the real 
fuel cell operation condition 

 

The two experimental methods were compared in Table 2.1.  It can be found out that although 

SIMS can detect oxygen concentration very accurately, ECR testing results are more meaningful 

for SOFC cathode investigation since the oxygen transport is driven by oxygen partial pressure 

gradient, which is close to SOFCs operation condition, rather than isotope concentration 

difference.  

2.3.3 Application and outlook 

Due to its advantages, the ECR technique had been widely used on oxygen transport 

characterization for SOFC cathode materials59, 60, 61, 62. Yasuda63 et al. investigated LaCrO3 with 

electrical conductivity relaxation method in CO/CO2 atmospheres. Oxygen diffusion coefficient 

was found increasing with decrease of oxygen partial pressure due to the corresponding change 

in the concentration of the moving species. Yasuda64 also utilized the ECR technique to study 

La1-xSrxMnO3-δ (x=0.05, 0.10, 0.15 and 0.20). A defect model considering the formation of 

association pairs between divalent manganese ions and oxygen vacancies was proposed to 

elucidate the non-stoichiometric behavior of LSM.  
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J. A. Kilner65 discussed the measurement of oxygen transport by using the relaxation technique. 

Several emphases regarding the testing process had been placed based on Kilner’s work. First, 

the oxygen partial pressure change should occur as quickly as possible. Besides, the oxygen 

partial change step should be small since the diffusion and surface reaction coefficients do not 

behave linearly with
2OP .  

 

Adler66 et al. investigated CO2 atmosphere effects on oxygen transport in La0.6Sr0.4Fe0.8Co0.2O3-δ 

material by ECR technique. The results showed that at 750°C, exposure to CO2 atmosphere 

decreased the surface exchange rate by a factor of 2. It may be because carbonate formation on 

the oxide surface hindered the surface exchange reaction.  

 

Besides utilization for oxygen transport behavior characterization, researchers also worked on 

improving the ECR technique itself. Otter derived equations which describe the transient 

response in conductivity relaxation experiments, taking into account the time correction for 

reactor flushing67. Wang et al. studied the effects of oxygen partial pressure step change together 

with the role of oxygen vacancy concentration on the relaxation kinetics68. However, data fitting 

method for ECR testing was ignored. Cox-Galhotra69 et al. addressed the low reliability of the 

fitting procedure that seeks to simultaneously determine oxygen surface exchange and bulk 

diffusion coefficients by analyzing single conductivity relaxation data set. The same 

phenomenon was detected at the beginning of our work. Galhotra studied sample grain size and 

surface roughness effects on the fitted kinetic parameters, but no concrete explanations were 

generated. Therefore, in this work, we will first improve the ECR data analysis method. 
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Moreover, a developed diffusion model for the ECR technique will be applied to characterize 

oxygen transport property in SOFC cathode materials of typical composition.  
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3 Experimental capabilities 

3.1 Electrical conductivity relaxation testing system 

 

Figure 3.1 Electrical conductivity relaxation testing system 

 

 

Figure 3.2 Schematic representation of the conductivity relaxation set-up 

1. Mass flow controller 2. Four-way valve 3. Furnace 4. Oxygen analyzer 
5. Nano-voltmeter and current source meter 6. Computer  7. Three way valve 
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The electrical conductivity relaxation system was built up in our lab, as shown in Figure 3.1. A 

Keithley 2400 was used to apply constant current and the corresponding voltage was measured 

by a Keithley 2182A. The oxygen partial pressure was monitored with an electrochemical 

oxygen Analyzer (Model 810 Oxygen Analyzer, Illinois Instrument Inc.). Gas flow rate and 

other operating point measurements were handled by a National Instruments data acquisition 

controlled with LabVIEW software. 

3.2 Manufacture equipment for ECR samples and SOFC cathodes 

 

Figure 3.3 Manual Presser  

LSCF powder is pressed to form a disk shape using a manual presser as shown in Figure 3.3. The 

pressed pellet is then sintered at 1350ºC for 2h in a high temperature furnace. 
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Figure 3.4 High temperature furnace 

 

3.3 Characterization analysis  

The morphology and composition of the ECR testing samples were analyzed using a JEOL JSM-

840A SEM equipped with a thermo electron EDS system. XRD pattern was gathered by a 

Panalytical X’Pert PRO diffractometer.  
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4 Research Objectives 

This research intends to accomplish the following objectives: 

(1) Improve data analysis method for electrical conductivity relaxation technique to obtain 

reliable oxygen surface exchange and bulk diffusion coefficients. Study the fitted kinetic 

parameters relationship with experimental initial and final oxygen partial pressure.    

(2) Investigate oxygen partial pressure effects on surface exchange and bulk diffusion 

coefficients obtained by electronic conductivity relaxation method for 

La0.6Sr0.4Co0.2Fe0.8O3-δ.   

(3) Develop the electronic conductivity relaxation method for infiltrated SOFC cathode. 

Measure the oxygen exchange coefficient at the interface of infiltrated material/LSCF.  

(4) Establish a micro model for infiltrated SOFC cathode. Investigate the infiltrated 

material’s specific role in oxygen reduction process and predict optimization of the 

infiltrated material based on the oxygen transport properties.  
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5 Data analysis method for relaxation experiments 

5.1 Introduction 

As a useful and convenient tool for SOFCs cathode kinetic study, electrical conductivity 

relaxation (ECR) technique attracted more interest recently. Researchers have investigated the 

effect of ECR testing conditions on the final fitted kinetic parameters. For instance, Otter derived 

equations which describe the transient response in conductivity relaxation experiments, taking 

into account the time needed for reactor flushing70. Wang et al. studied the effects of oxygen 

partial pressure step change together with the role of oxygen vacancy concentration on the 

relaxation kinetics71. Both instances show that careful control of the thermodynamic environment 

and proper mathematical treatment of the oxygen partial pressure step change will improve the 

quality of results. 

 

Although the ECR technique has been widely used in various applications, details of the data 

fitting process have been rarely discussed. Most reports simply mention that a non-linear least 

square method was applied to obtain the fitted results. In this chapter, we will first analyze the 

problems of reference-reported ECR data fitting method. Improved ways will be offered in 

section 5.3 and further evaluation of the improved method is illustrated in section 5.4.  

5.2 Problems existed in reference reported method 

5.2.1 Determination of initial conductivity relaxation (t0) 

2 2 2

2 2 2
1

2 exp( / )( ) (0)
1

( ) (0) ( )
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n n n

L b Dt at

b b L L

 
 






 

                                   (2.27) 

As shown in equation 2.27, the conductivity of the sample at the instant of first response to a step 

change in oxygen partial pressure must be known.  In practice, the exact starting moment of 
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conductivity relaxation is difficult to precisely detect due to the imperfect application of the 

2OP step change. Thus, equation 2.27 should be modified by introducing the actual starting 

response time (t0) as the third independent parameter, as shown in Equation 5.1. 
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 
 

                             (5.1)                 

There are two primary methods to deal with t0. The first method is to treat t0 as an empirical 

parameter, just as with D and k49. The second method is to determine the value of t0 using the 

physical reactor parameters (volume, gas flow rate) and an ideal flow model to calculate the 

reactor flush time67.  

,

STPr
f

v tot r

TV

T



                                                             (5.2) 

,v tot  represents the total gas flow rate. Vr and Tr are the reactor’s volume and temperature. And 

TSTP is the room temperature. The normalized oxygen partial pressure can be written as:  

( ) (0)
( ) 1 exp( )

( ) (0) f

P t P t
P t

P P 


   
 

                                              (5.3) 

t0 was fixed as 4τf in this study by considering that after a period of 4τf , more than 98% of the 

original gas will be replaced, according to an ideal mixing model. To further improve the quality 

of fitted data, the superior method was selected by comparing the output of these two methods.  
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(a) Three parameters (D, b1, t0)                                              (b) Two parameters (D, b1) 

Figure 5.1 Depiction of fit quality between two methods for determining the starting relaxation time: 

 a) treating t0 as an empirical parameter; and b) determining t0 from reactor parameters and an ideally 

stirred tank model 

 

A set of relaxation data was generated for fitting equation 5.1 using typical kinetic parameter 

values for MIEC and a time step of 2s. Parameter values were chosen as D=5×10-6cm2/s, k= 

1×10-4cm/s, a=0.05cm, b1=0.8603, and t0=14s. To fit Equation 5.1 directly, b1 was applied using 

the selected value of k. The generated data were then fitted using the two methods for treating t0 

using initial values for k and D that were equal to the values used for generating the relaxation 

data. Figure 5.1 depicts the resulting fitted curves that were obtained from MATLAB using the 

two different fitting schemes described. In the case in which t0 was considered as a fitted 

parameter, the fitted results of (D, b1, t0) are (8.02×10-6, 0.68, 11.94). In the case where the t0 

value is fixed as 14s, the fitted results of (D, b1) are (5.79×10-6, 0.80). Comparison of the 

resulting values for (D, b1, t0) to actual values showed that the method of treating t0 as a fitting 

parameter caused greater error in the final predictions for all parameters. This single example 
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here is illustrative of consistently superior results obtained in all tests by assignment of t0 using 

mixing theory.  

 

The superior result obtained from fixing t0 is explained in terms of two primary problems with 

treating t0 as a fitted parameter. First, all three of the fitted parameters (D, b1, t0) are in the 

exponential term, but t0 possesses the largest value and therefore dominates the term. Thus, fitted 

values of D and b1 are sensitive to minor fluctuation of the t0 value during the fitting process, and 

numerous simulations show that fitted D values may be obtained even with the same testing 

conditions. Second, the independent parameter method can not offer a physically convincing 

time zero for the ECR process, it only gives a best fit of the particular data set for a combination 

of (D, b1, t0).  Given these practical numerical problems, it is considered more reasonable to 

adopt an ideal physical model to fix t0 than to treat it as a fitting parameter. 

 

The effect of transient gas processes on the conductivity relaxation curve was ignored in this 

study, since the reactor flash time is usually very small compared to the total relaxation time 

(usually <0.3% of the total relaxation time). However, if the reactor flush time can’t be ignored 

the corrective diffusion model in den Otter’s68 work should be applied.  

 

5.2.2 Determination of D and k  

Song72 et al. revealed their data analysis process for fitting the mixed controlled relaxation data. 

The detailed steps are illustrated as below. First, extreme cases were utilized to obtain the initial 

values of oxygen transport kinetic parameters. Equation 5.1 has two limiting versions, one each 
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corresponding to surface exchange process dominant (b10) or bulk diffusion process dominant 

(b1π/2).  
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Then calculate L value with the k and D values obtained by fitting equation 5.4 and 5.5. 

tann n
c

a ak
L b b

l D
                                                (2.28) 

If L<1, the relaxation process is surface exchange dominated and k value is more precise than D. 

(k, t0), which was obtained by fitting equation 5.4, will be applied as initial values for fitting 

equation 5.1 (D can be presented by a, k and b1 using equation 2.28).  Similarly, if L>1, (D, t0) 

will be used as the initial fitting values. For both cases, b1 was chosen as L=1. 

 

However, the simultaneously fitted D and k values using Song’s method was found not reliable 

in this research. Besides, Cox-Galhotra69 et al. also addressed the low reliability of the fitting 

procedure that seeks to simultaneously determine D and k. Sample properties such as grain size 

and surface roughness that impacted results had been investigated. The authors suggested testing 

samples under a single process controlled region to reduce the number of adjustable parameters 

and obtain more reliable fitted results. The problem of analyzing a single relaxation data set is 

described in the following part. 

 

In the first analysis, fitting error in (D, b1) plane is explored. Generated relaxation data with 

parameter values of (D=5×10-6cm2/s, b1=0.8603, t0=0) were analyzed. To focus on analyzing the 
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fitting process, we ignore t0 by setting its value to 0 in the rest part of this chapter. As shown in 

the color maps of Figure 5.2, several local minima were located in the mixed control region 

where b1 varies from 0.3 to 1.4. Since the global minimum is smaller than all other minima, it is 

possible to distinguish the global minimum through the non-linear least square fitting process, 

but the algorithm requires an appropriate starting point. In other words, it is possible to fit exact 

parameter values by analyzing a single ideal relaxation data set, but only if a sufficiently accurate 

initial guess is made and the relaxation data are noise free.  

 

 

  

(a)                                                                       (b) 

Figure 5.2 Error color map for fitting single relaxation data 

 

Unfortunately, perfect relaxation data can not be obtained in practice due to random variations 

(noise) in the measured signals. To test the fitting quality for a noisy single data set, the 

MATLAB function “randn” is used to superimpose a +/-2% noise signal on the base data. As 

shown in the error map of Figure 5.3, extraction of the global minimum is difficult with noisy 

data because the values of local minimums are near each other. The result implies that the 
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accuracy of the fitted parameters determined from a single data set possesses ever increasing 

uncertainty as practical data are applied. 
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(a)                                                                       (b) 

Figure 5.3 Error color map for fitting single noisy relaxation data 

Error map for wide range of k and D;  

(b) Error map with adjusted scale showing error tolerance band of 5% 

 

To further verify the above conclusion, two different initial combinations of values were applied 

to fit the noisy relaxation data. In the first description the (D, b1) values of (5×10-6, 0.8603) are 

used to generate the fitted results of (7.04×10-6, 0.7394). Then (D, b1) initial values of (3×10-5, 

0.6000) were utilized. The corresponding fitted results are (1.06×10-5, 0.6048), and the fitting 

curves and original data points are shown in Figure 5.4. With the different (D, b1) values, both of 

the fitting curves qualitatively fitted the original data points well, but significant errors appeared 

in the fitted prediction for the global minimum. This further proves that the kinetic parameters 

obtained by analyzing a single relaxation data set are unreliable even though qualitatively good 

fitting curves can be generated.   
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Figure 5.4 Fitting curve for single relaxation data with different initials 

(a) D=5×10-6cm2/s, b1=0.8603 (b) D=3×10-5cm2/s, b1=0.6000 

 

According to the above analysis, there are two possible problems using the data fitting process 

reported by Song. First, the accuracy of initial values can not be evaluated in a case where a 

single control process is assumed, but a mixed control process actually exists. Second and 

perhaps more importantly, a global minimum of the error may not be obtained, depending on the 

initial guess of D and k used in the fitting process.  If the initial values used are not close enough 

to the real values, the calculated minimum may only be a local minimum and therefore 

erroneous.    

5.3 Improvement of data analysis method 

In order to improve the accuracy of parameters assigned through analysis of ECR test data and to 

compensate for signal noise, a method is proposed that utilizes two data sets in the fitting process.  

Relaxation data are generated for two samples with different assumed thicknesses, but operated 

under identical conditions. In other words, (D, k) values are considered constant for both 

generated relaxation data sets but the ‘a’ value is adjusted to impose a variation in the dominant 

oxygen transport control mechanism. Each data set is fitted for D and k (since b1 varies with a) 
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and the fitting errors are determined for each set.  The errors for each set are then compared 

using a weighted mean average error method to assign the optimized parameter intersection to all 

of the relaxation data.   

2 2
1 2

1 2

F F
f

T T
                                                               (5.6) 

F1 and F2 are the fitting error vectors separately for the two data sets. T1 and T2 represent the data 

length. 1 2

1 2

F F

T T
  is the weight average error function. And f is the quantified value by using 

norm command in MATLAB. A +/-2% noise signal was superimposed on all the generated 

relaxation data in the following analyses.   

 

Table 5.1 Parameter values assumed to generate conductivity relaxation data for cases of mixed control 

(L1=1) and bulk diffusion control (L2=10) 

              Parameters 

Data set 

D 

[cm2/s] 

k 

[cm/s] 

b1 

[ - ] 

a 

[cm] 

L 

[ - ] 

1 5×10-6 1×10-4 0.8603 0.05 1 

2 5×10-6 1×10-4 1.4289 0.50 10 

 

The limiting cases of single dominant control mechanisms are considered first.  In the first case, 

dominant bulk diffusion control is compared to mixed control using the parameter values listed 

in Table 5.1. Relaxation data were generated assuming mixed control (L1=1) using data set 1 

parameters and bulk diffusion dominance (L2=10) using data set 2 parameters.  A fitting error 

color map for data set 1 in the D, k plane is shown in Figure 5.5. As when fitting with (D, b1), 
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several close local error minima were observed in the fitting results when using the single data 

set.  By adjusting the scale of the figure, a 5% tolerance band can be determined around the 

values of k and D producing the global minimum error.  Figure 5.5(b) shows that a more accurate 

oxygen surface exchange coefficient can be obtained compared to the bulk diffusion coefficient. 

 

 

                      (a)                                                                                (b) 

Figure 5.5 Error color map for single relaxation data fitting 

(a) Error map for wide range of k and D;  

(b) Error map with adjusted scale showing error tolerance band of 5% 

 

To explain this phenomenon, kinetic parameters effects on the relaxation process will be 

discussed. Assuming L is either close to 0 or infinity, two limiting versions of equation 2.27 can 

be obtained. As shown in equation 5.4 and 5.5, those limitations are the diffusion equation 

solutions for single step control.  

              

Based on these two limitations, relaxation curves were generated either under oxygen surface 

exchange or bulk diffusion control (a=0.05cm), as shown in Figure 5.6. Possible k and D values 
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of real materials were chosen to generate the relaxation curves. Results showed that relaxation 

time varied more under diffusion control than surface exchange control. It indicated the 

uncertainty of D is higher than k for the mixed control relaxation data fitting.   

 

   

Figure 5.6 Kinetic parameters effects on electrical conductivity relaxation time 

 

Figure 5.7 shows the fitting error color maps in the D, k plane for simultaneous analysis of the 

two data sets obtained on samples with different thicknesses. Unlike the analysis result for the 

single relaxation data sets, the objective function (error) possesses a single minimum. Comparing 

the Figures 5.5b and 5.7b, the estimation error for oxygen surface exchange coefficient was 

decreased by 80% within a 5% variation of minimum error. The range of fitted oxygen bulk 

diffusion coefficient values was narrowed to between 4.7~5.7×10-6cm2/s. Therefore, reliable 

oxygen kinetic parameter values can be assigned accurately with a small tolerance by testing two 

different sample thicknesses at the same condition and simultaneously fitting results.  
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(a)                                                                            (b)   

 Figure 5.7 Error color map for ECR fitting (L1=1, L2=10) 

(a) Error map for wide range of k and D;  

(b) Error map with adjusted scale showing error tolerance band of 5% 

 

A similar analysis can be performed to test the accuracy of parameter predictions while assuming 

that relaxation processes are under surface exchange control (L2=0.1).  In this case, data are 

generated using the parameters shown in Table 5.2, first for the case of mixed control (L1=1) and 

then for the case of surface limited control (L2=0.1).  The fitted result is shown in Figure 5.8, and 

only one minimum is obtained in the fitting error map.  

 

The fitting results obtained in these two extreme cases suggest the best sample thicknesses to use 

in ECR testing. Since the uncertainty in the bulk diffusion coefficient increased when using thin 

samples, thicker samples will be considered in practice. However the sample thickness is limited 

by assumptions of the applied methods and practical limitations.  The Van der Pauw method73 is 

applicable for thin sheets, and has been used widely to measure sample conductivity in ECR 

testing. Therefore, it is not practical to test a very thick sample (L=10). Based on the present 

analysis, two sample thicknesses are used to verify accuracy in a real system. 
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Table 5.2 Parameters values of generated conductivity relaxation data (L1=1, L2=0.1) 

              Parameters 

Data set 

D 

[cm2/s] 

k 

[cm/s] 

b1 

[-] 

a 

[cm] 

L 

[-] 

1 5×10-6 1×10-4 0.8603 0.05 1 

2 5×10-6 1×10-4 0.3111 0.005 0.1 

 

 

(a)                                                                       (b) 

Figure 5.8 Error color map for fitting two relaxation data sets (L1=1, L2=0.1) 

(a) Error map for wide range of k and D;  

(b) Error map with adjusted scale showing error tolerance band of 5% 

 

Thicknesses a1=0.05cm (L1=1) and a2=0.15cm (L2=3) were chosen for generating ECR data sets. 

All the other parameters are listed in Table 5.3. The fitting error color map shown in Figure 5.9 

indicates that reliable D and k values can be obtained by testing the two practical sample 

thicknesses, one of which is thick enough to accentuate bulk diffusion limitations.   
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Table 5.3 Parameters values of generated conductivity relaxation data 

              Parameters 

Data set 

D 

(cm2/s) 

k 

(cm/s) 

b1 a 

(cm) 

L 

1 5×10-6 1×10-4 0.8603 0.05 1 

2 5×10-6 1×10-4 1.1925 0.15 3 

 

 

 

(a)                                                                                   (b) 

Figure 5.9 Error color map for fitting two noisy relaxation data sets (L1=1, L2=3) 

(a) Error map for wide range of k and D;  

(b) Error map with adjusted scale showing error tolerance band of 5% 

 

To check whether analyzing more relaxation data sets can improve the fitted results’ accuracy, 

three generated data sets were analyzed. The parameters used for generation of relaxation data 

are listed in table 5.4. Practical sample thicknesses were applied. The fitting error color map for 

these three relaxation data sets is presented in Figure 5.10. A significant improvement in fitting 
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quality was not detected by using the three relaxation data sets compared to using two data sets. 

Hence, more relaxation data sets involved in the fitting process will not be considered.        

 

Table 5.4 Parameters values of generated conductivity relaxation data 

              Parameters 

Data set 

D 

[cm2/s] 

k 

[cm/s] 

b1 

[-] 

a 

[cm] 

L 

[-] 

1 5×10-6 1×10-4 0.8603 0.05 1 

2 5×10-6 1×10-4 0.3111 0.005 0.6 

3 5×10-6 1×10-4 1.1925 0.15 3 

 

 

Figure 5.10 Error color map for fitting three relaxation data sets (L1=1, L2=0.6, L3=3) 

(a) Error map for wide range of k and D;  

(b) Error map with adjusted scale showing error tolerance band of 5% 
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5.4 Concluding Remarks: 

The process of analyzing electrical conductivity relaxation data was discussed in this chapter.  

The practice of fitting a single data set in existing methods has been shown to be deficient as it 

produces inaccurate values for the fitted parameters.  Further it was shown that when applying a 

noise signal comparable to that typical of experiments, qualitative fits to the data are acceptable 

while quantitative fits are widely variable.  These observations arising from simulations have 

practical implications for real experiments and data analysis, and indicate that improvements are 

required to enhance the predictive accuracy of the ECR data fitting techniques.   

 

Two primary alterations to conventional models are described here.  First, comparisons are made 

between two different methods to determine actual time zero (t0). The results showed that 

conventional methods of treating t0 as a fitting parameter introduce inaccuracy to the parameter 

evaluation. Adoption of a continuously ideally stirred tank reactor model to fix the actual time 

zero before fitting relaxation data improved the reliability of the fitted results.  Second, enhanced 

accuracy of D and k are obtained by fitting two sets of data and plotting the error intersection.  

The two data sets should be obtained for sample thicknesses of L=1 and L=3.  It was further 

shown that data fitting using three data sets did not substantially improve the quality of the fit.   

 

By adopting the suggested improvements to the ECR testing and data analysis process, more 

accurate predictions for k and D may be obtained than are currently available.  Values for k and 

D can be determined with approximately +/- 30% accuracy  in a 5% precision band, which 

compares favorably with conventional methods that typically produce greater than +/-100% + 

accuracy in a 5% precision band and often cannot identify globally accurate results.  The 
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improved accuracy of the enhanced method allows greater correlation of thermodynamic 

conditions with measured oxygen transport coefficients. 
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6 Chemical diffusion and oxygen surface exchange of  La0.6Sr0.4Co0.2Fe0.8O3-δ 
studied with electrical conductivity relaxation 

6.1 Introduction 

Perovskite-type oxides such as La1-xSrxCo1-yFeyO3-δ (LSCF) possess mixed ionic and electronic 

conductivity. They also display good mechanical and chemical stability compared to some other 

mixed conducting oxides. For these reasons, LSCF has attracted wide commercial interest for 

use as the SOFC cathode.    

 

In this chapter, oxygen transport behavior of La0.6Sr0.4Co0.2Fe0.8O3-δ has been investigated with 

oxygen partial pressure varying from 0.02atm to 0.20atm. The improved ECR data analysis 

method introduced in Chapter 5 was applied to obtain oxygen surface exchange and bulk 

diffusion coefficients. The result trend displayed is that both of the parameters decreased with 

decreasing oxygen partial pressure. With analysis of the oxygen transport process, the correlation 

among oxygen surface exchange coefficient, oxygen reduction reaction constants and oxygen 

partial pressure was revealed.  

6.2 LSCF pellet preparation and characterization 

The experimental samples used in this study were made with commercial La0.6Sr0.4Co0.2Fe0.8O3-δ 

powder (NexTech Materials, Ltd.). Using a 19mm (diameter) die, the powders were axially 

pressed at 80MPa and sintered at 1350ºC in air for 2h, resulting in a plane disk shape with a 

diameter of 15.4mm. Then, LSCF pellets were progressively polished on both sides using silicon 

carbide polishing papers followed by polycrystalline diamond suspension up to 1µm (PACE 

Technologies, Tucson, Arizona, USA). After polishing, LSCF sample thicknesses are 1.5mm and 
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2.7mm. All sintered samples were confirmed as in excess of 97% theoretical density using the 

Archimedes method (AD-1653 specific gravity measuring kit, A&D Company). 

Figure 6.1 shows the surface morphologies and chemical composition of the LSCF sample after 

sintering. Fine grain can be clearly seen from the morphology yet the grain size distribution is 

not even. Average grain size is around 3µm. Surface chemical composition results obtained from 

EDS indicate that the element stoichiometry is La0.64Sr0.38Co0.2Fe0.76O3-δ which compares 

favorably by the theoretical stoichiometry of La0.6Sr0.4Co0.2Fe0.8O3-δ. After polishing, grain 

boundaries were not detected by SEM but some internal pores were observed. XRD patterns of 

the LSCF sintered pellet and the commercial LSCF powder are given in Figure 6.2 and verify 

phase stability during sintering.  

                                    

(a)                                                                                          (b) 

 La Sr Co Fe 

at.% 32.3 19.4 10.4 37.9 

 

Figure 6.1 Surface morphologies and surface chemical composition of sintered LSCF pellet 

(a) Before polishing (b) After polishing 
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Figure 6.2 XRD patterns for commercial LSCF powder and sintered LSCF pellet 

6.3 LSCF defects and mixed conductivity 

Using Kröger-Vink notation, the intrinsic defect chemistry of La0.6Sr0.4Co0.2Fe0.8O3-δ can be 

described by the following defect equilibrium: 

''' ''' ..3La B Onull V V V                                                   (6.1) 

   ' .null e h                                                              (6.2) 

' .2 x
B B BB B B                                                          (6.3) 

B represents Co and Fe. Oxygen ion transport is generally considered to occur via the vacancy 

hopping mechanism. On the other hand, the electronic conductivity of LSCF is a result of 

different B site chemical status. The oxidation (δ>0), reduction status and acceptor incorporation 

of LSCF can be described as Equation 6.4-6.7.   

 ''' ''' .
2

3
6 3 6

2
x x
B O La B BO B O V V B                                    (6.4) 

.. '
2

1
2

2
x
O OO O V e                                           (6.5) 
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' .
22 1/ 2 2 2 3 2x x

B La O BSrO O B Sr O B                                        (6.6) 

' ..2 2 2 x
La O OSrO Sr O V                                      (6.7) 

Due to electro-neutrality and site conservation, the following equations can be derived 

''' ''' ' ' .. .3[ ] 3[ ] [ ] [ ] 2[ ] [ ]La B A B O BV V Sr B V B                                            (6.8) 

. '[ ] [ ] [ ] 1x
B B BB B B                                                  (6.9) 

..[ ] [ ] 3x
O OO V                                                         (6.10) 

 

Figure 6.3 Schematic representation of concentration of oxygen vacancy  
and electronic defects in LSCF as a function of oxygen partial pressure 

 

The Brouwer diagram for LSCF was obtained by further analyzing defect concentration variation 

with oxygen partial pressure, as shown in Figure 6.3. Concentrations of the main defects are 

plotted on a logarithmic scale against the logarithm of the oxygen partial pressure. It can be seen 

that there are five regions based on the dominant defect type. Region I represents the reduced 

status at low
2OP . The main defect chemistry can be described by Equation 6.5. Corresponding 

equilibrium constant is given by: 
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2

1/2 2 ..[ ]

[ ]
OO

r x
O

P n V
K

O
                                                   (6.11) 

Since the concentration of oxygen ions in the crystal is not significantly changed and the 

concentration of the electronic carrier equals twice that of the vacancy concentration, a relation 

between oxygen vacancy concentration and 
2OP can be deduced: 

2

.. 1/6[ ]
O OV P                                                         (6.12) 

Similarly, in region V, the main defects are the metal vacancies and the defect chemistry can be 

described as Equation 6.4. The equilibrium constant can be written as:  

2

3 ''' ''' . 6

3/2 6

[ ] [ ][ ][ ]

[ ]
La

x
O B B

o x
O B

O V V B
K

P B
                                                     (6.13) 

So the oxygen partial pressure dependence for electronic hole carrier is:  

2

3/16
Op P                                                             (6.14)   

 Besides, with doping strontium, LSCF is a p-type semiconductor in region III, IV and V.  

 

Mantzavinos74 et al. studied LSCF oxygen non-stoichiometry under different oxygen partial 

pressure, as shown in Figure 6.4. It can be roughly estimated that in our testing environment δ 

value is approximately between 0.02 and 0.03.  
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Figure 6.4 Oxygen non-stoichiometry as a function of  
oxygen partial pressure for La0.6Sr0.4Co0.2Fe0.8O3-δ

74  
 

LSCF conductivity variation with oxygen partial pressure has also been observed in our study 

and the results were shown in Figure 6.5. The results revealed that the conductivity value of 

LSCF decreases linearly with log
2OP . We could further deduce that LSCF is a p-type conductor 

(region III in Figure 6.3) within the oxygen partial pressure range in our study.  
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Figure 6.5 Conductivity of La0.6Sr0.4Co0.2Fe0.8O3±δ at 800°C as a function of oxygen partial pressure 
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6.4 Electrical conductivity relaxation testing results 

To examine relaxation behavior through a range of absolute oxygen partial pressures, ECR 

measurements were performed at different oxygen partial pressure levels including 0.20, 0.15, 

0.10, 0.05 and 0.02atm. The step change (|Δlog
2OP |) is smaller than 0.1 for all these conditions. 

And for each level, we observed both of the oxidation and reduction process for LSCF. In other 

words, the testing atmosphere was switched forward and backward between high and low 

oxygen partial pressure. 

           

(a) 0.20atm0.18atm                                           (b) 0.18atm0.20atm 

                                             

                     (c) 0.15atm0.14atm                                               (d) 0.14atm0.15atm      
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                 (e) 0.10atm0.09atm                                                      (f) 0.09atm0.10atm 

      

                  (g) 0.05atm0.04atm                                                     (h) 0.04atm0.05atm                      
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                      (i) 0.020atm0.018atm                                          (j) 0.018atm0.020atm                                            

Figure 6.6 Fitting error color maps for LSCF under different oxygen partial pressure 

  

Figure 6.6 presents the results for simultaneously fitting two relaxation profiles at the chosen (D, 

k) plane. In Figure 6.6, f values are revealed by the color bars within 101% of its minimum value. 

According to the fitting results, both of the oxygen surface exchange and bulk diffusion 

coefficients will decrease with the oxygen partial pressure decreasing.  

6.5 Discussion 

6.5.1 Oxygen distribution during relaxation process  

Oxygen enters or exits the perovskite lattice to achieve the saturated concentration during the 

relaxation process. The oxygen concentration equilibrium in a new environment is obtained 

through surface exchange and bulk diffusion. The relaxation process can be divided into three 

different types according to the main rate limiting step, namely bulk diffusion control, surface 

exchange control and mixed control. Oxygen distributions for these three relaxation types are 

indicated in Figure 6.7. For bulk diffusion control, the surface exchange process can be 

considered to reach the new equilibrium immediately after the oxygen partial pressure change. 
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Bulk oxygen gets saturated gradually due to the concentration difference. On the contrary, for 

surface exchange control type, the diffusion process can be ignored. Oxygen accumulates or 

depletes from the material gradually by surface exchange. At last, for mixed control relaxation, 

both of the surface and bulk oxygen concentration will achieve new equilibrium gradually. By 

calculation of the characteristic length lc with the fitted D and k values, the relaxation processes 

observed for LSCF all belong to the mixed control type. In the following part, we will discuss 

the surface and bulk transport process individually. 

 

(a) Bulk diffusion control            (b). Mixed control               (c). Surface exchange control 

Figure 6.7 Oxygen distributions with different rate-limited steps 

6.5.2 Oxygen partial pressure effects on relaxation process 

6.5.2.1 Oxygen surface exchange (k) 

The oxygen surface exchange process can be further divided into at least two sub-steps, oxygen 

adsorption and reduction. Therefore, both the oxygen partial pressure and activated surface 

adsorption site concentration can affect oxygen surface exchange rate. Generally, in an 

isothermal system, we can consider LSCF’s adsorption site concentration as a constant. We 

focus analysis on oxygen partial pressure effects on the surface exchange process. 

 

The overall oxygen surface exchange reaction is given by:  
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   1

2

..
2

1
2

2

k x
o ok

O e V O                                                       (6.15) 

k1 and k2 are forward and reverse reaction rate constants. If ..[ ]oV  and ( )C  separately stand for 

oxygen vacancy and lattice oxygen ion concentration when the new equilibrium has been 

achieved, the forward reaction rate should be equal to the reverse rate: 

2

1/ 2 ..
1 2[ ] ( )O ok P V k C 

                                                    (6.16) 

where
2OP is the final state oxygen partial pressure. Additionally, for non-equilibrium conditions, 

the net surface exchange rate should equal to the difference between the forward and reverse 

reaction rate, given by:  

2

1/ 2 .. '
1 2[ ] [ ( ) ]O o s sk P V k C k C C   

                           (6.17) 

.. '[ ]oV and sC  represent oxygen vacancy and oxygen ion concentration at non-equilibrium 

conditions. From Equation 6.17, it seems that surface exchange coefficient k depends on the 

final
2OP , oxygen vacancy and oxygen ion concentration. However, due to electro-neutrality and 

site conservation, equation 6.18 can be derived: 

.. ' ..[ ] [ ] ( )o o sV V C C   
                                       (6.18) 

The mathematical expression of k can be transformed as given below in Equation 6.18 utilizing 

the relationship shown in Equation 6.19: 
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Because k1 and k2 are constants at a given temperature, it can be deduced that the oxygen surface 

exchange coefficient only depends on final
2OP . Furthermore, it indicates that k is a function 

of
2

1/ 2
OP .  

 

Figure 6.8 Oxygen surface exchange coefficient for La0.6Sr0.4Co0.2Fe0.8O3-δ at 800ºC as a function 
of oxygen partial pressure obtained from conductivity relaxation  

 

The fitted surface exchange coefficients according to 
2

1/ 2
OP were plotted in Figure 6.8. Using these 

fitted k values, oxygen reduction reaction constants of La0.6Sr0.4Co0.2Fe0.8O3-δ at 800°C can be 

obtained by fitting Equation 6.19, as the solid line shown in Figure 6.8. The results revealed 
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k1=0.0003cm/atm1/2·s and k2=2×10-7cm/s. The most important application for the reaction rate 

constants is to estimate the net oxygen ionic flow rate and further to estimate exchange current 

for SOFCs cathode. Besides, the activation energy can be calculated using the deduced reaction 

rate constants under different temperature. By comparing the activation energies for the forward 

and backward reactions, we can conclude which reaction is easier to occur.  

6.5.2.2 Bulk diffusion coefficient (D) 

 

Figure 6.9 Oxygen bulk diffusion coefficient for La0.6Sr0.4Co0.2Fe0.8O3-δ at 800ºC as a function of 
oxygen partial pressure obtained from conductivity relaxation  

 

The oxygen bulk diffusion coefficient (D) for La0.6Sr0.4Co0.2Fe0.8O3-δ as a function of oxygen 

partial pressure is shown in Figure 6.9. The decreasing slope of observed bulk diffusion 

coefficient is smaller than the surface exchange coefficient. When oxygen partial pressure is 

below 0.15atm,  the bulk diffusion coefficient varies in a narrow band and it decreases again until 

2OP is lower than 0.02atm.  
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Based on random walk theory, J. A. Kilner75 deduced the relation between oxygen self diffusion 

coefficient and bulk vacancy concentration as below:  

..
*

..

[ ]

[ ] [ ]
O

Vx
o O

V
D D

O V



                                                           (6.20) 

Mizusaki76 had pointed out that oxygen vacancy diffusivity (DV) varies little in the perovskite 

oxides. On the other hand, the oxygen vacancy concentration can be given as an analytical 

function of δ. Mantzavinos74 and Dalslet77 studied the non-stoichiometry value variation under 

different oxygen partial pressures. Their experimental results revealed that δ was linearly 

dependent on the value of 
2OP with a slope of -0.016, approximately. Therefore, if oxygen 

vacancies are randomly distributed, oxygen bulk diffusion coefficient should slightly increase 

with 
2OP decreasing. A possible explanation for the results observed in our study is the oxygen 

vacancy ordering which depends both on oxygen partial pressure and temperature78, 79.  

6.6 Concluding remarks 

In this chapter, oxygen transportation behavior in La0.6Sr0.4Co0.2Fe0.8O3-δ has been investigated. 

First, we analyzed its defects chemistry and conductivity type under different oxygen partial 

pressure. The LSCF was theoretically considered as a p-type semiconductor under our 

experimental conditions and its conductivity decreases with decreasing
2OP . 

 

Besides, oxygen surface exchange and bulk diffusion coefficients of La0.6Sr0.4Co0.2Fe0.8O3-δ were 

obtained by applying the improved ECR data analyzing method. The relaxation data profile 

obtained from ECR testing revealed hysteresis with the reduction process requiring more 

equilibration time than the oxidation process for the same oxygen partial pressure changing step. 



67 

 

And both of the oxygen surface exchange and bulk diffusion coefficients will decrease with the 

decrease in oxygen partial pressure. 

 

Further, the relaxation process has been discussed. And the deduced conclusion implies that the 

oxygen surface exchange coefficient only depends on the final oxygen partial pressure following 

the 
2

1/ 2
OP law. Oxygen reduction reaction constants can be generated then and the results reveal 

that oxygen entering the LSCF lattice is a lower energy process than leaving at 800°C. On the 

other hand, oxygen bulk diffusion coefficient was considered to be influenced by the oxygen 

vacancy concentration and the ordering degree. The decreasing slope of the observed bulk 

diffusion coefficient is smaller than the surface exchange coefficient. 

 

 

 

 

 

 

 

 

 



68 

 

7 Oxygen transport behavior investigation for infiltrated SOFC cathode 

7.1 Introduction 

To improve the SOFC cathode performance, infiltration processes have been used to fabricate 

composite cathodes by introducing a thin film of catalyst onto a porous supporting structure. The 

infiltrated cathodes provide superior performance compared to single phase cathodes due to 

electrochemically active area extension. Infiltrated material and amount, sintering process and 

temperature are considered as the factors governing infiltrated cathode performance. However, 

due to lack of understanding for the infiltrated cathode mechanism, it’s difficult to distinguish 

the independent effects of each parameter and to optimize the manufacturing process effectively.  

 

In this chapter, we will develop the ECR technique to characterize oxygen transport behavior at 

the interface of infiltrate/cathode material. Two commonly used infiltrated materials 

Ce0.8Sm0.2O1.9 and La0.6Sr0.4CoO3-δ were investigated. La0.6Sr0.4Co0.2Fe0.8O3-δ was chosen as the 

cathode backbone for its wide application in commercial systems. Based on our previous study 

for LSCF, oxygen exchange coefficients at SDC/LSCF or LSC/LSCF interface are reported in 

this chapter. Results are used to compare performance improvement of the two infiltrated 

cathodes.  

7.2 Sample preparation and characterization 

7.2.1 Sample preparation 

A spin coating method was utilized to prepare the multilayer sample for infiltrated cathode 

investigation. The spin coating solution contains low concentrations of organic binders as 

(0.002g/mL), PEI (6.7×10-4g/mL) and ethyl cellulose (6.7×10-4g/mL). The solvent is ethanol. 
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The speed for spin coating was set as 1200rpm for 10s following 2500rpm for 40s. Detailed 

sample preparation processes are illustrated as below.  

 

First, La0.6Sr0.4Co0.2Fe0.8O3-δ powder ((NexTech Materials, Ltd.) was pressed axially at 250MPa 

using a 19mm (diameter) die. For SDC/LSCF multilayer sample, the LSCF pellet was sintered at 

1200ºC for 2h. Then samples are spin coated five times on each side and sintered at 1350ºC for 

2h. For the LSC/LSCF multilayer sample, considering LSC is unstable, LSCF pellet was first 

sintered at 1350ºC for 2h to make a dense substrate. A spin coated LSC layer was applied five 

times on each side of the pellet and the multi-layers were co-sintered at a lower temperature. We 

tried two temperatures 1200 ºC and 1100ºC for co-sintering. However, for the samples processed 

at 1200 ºC iron diffused from substrate to surface, as shown in Figure 7.1. Therefore, the 

LSC/LSCF multilayer sample was co-sintered at 1100 ºC. 
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         Element (at.%) 

Point 

C O Fe Co Sr La 

1 1.28 56.79 4.68 35.55 0.78 0.93 

2 1.51 60.53 4.09 32.61 0.53 0.73 

3 1.60 65.13 3.28 28.28 0.90 0.81 

4 3.48 63.81 9.86 7.10 7.94 7.81 

5 2.09 39.84 22.08 11.72 8.81 15.46 

 
Figure 7.1 Surface morphologies and surface chemical composition of LSC/LSCF pellet  

7.2.2 Surface and cross section morphologies 
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(a) Surface morphology of spin coated SDC 

 

(b) Cross section and line scanning results 

Figure 7.2 Surface and cross section morphologies of spin coated SDC sample  
 
Figure 7.2 presents the surface and cross section morphologies of the SDC/LSCF multilayer 

sample. From Figure 7.2(a), SDC spin coated layer is dense and its average grain size is about 

10µm. And the SDC film thickness is approximately 6µm.  
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(a) Surface morphology of spin coated LSC 

 

(b) Cross section and line scanning results 

Figure 7.3 Surface and cross section morphologies of spin coated LSC sample  
 
 

Images for LSC/LSCF multilayer sample are presented in Figure 7.3. No iron diffusion was 

detected by applying 1100ºC as the co-sinter temperature. However, formed LSC thin film is 

porous and it needs to be correlated to LSC’s intrinsic oxygen kinetic parameters.     
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7.3 Oxygen transport behavior in infiltrated materials 

7.3.1 Ce0.8Sm0.2O1.9 (SDC) 

Samaria-doped ceria (SDC) is considered as a promising electrolyte candidate for intermediate-

temperature SOFCs because of its excellent oxygen ion conductivity. It has also been used as an 

infiltration material to improve cathode performance80, 81.  Oxygen vacancy formation can be 

introduced either by intrinsic defects or extrinsic reaction via samaria doping. 

.. '
2

1
2

2
x
O OO V e O                                                       (7.1) 

2 ' ..
2 3 2 3CeO x

Ce O OSm O Sm V O                                               (7.2) 

Matsui 82  et al. investigated electronic and ionic conductivity variation with oxygen partial 

pressure for Ce0.8Sm0.2O1.9, as shown in Figure 7.4. The results revealed that at 800ºC ionic 

conductivity will dominate and approximately keep constant in the range of oxygen partial 

pressure from 1atm to 10-12atm. Therefore, no conductivity relaxation can be detected under our 

testing environment. Considering its high oxygen ion conductivity and the thickness of the SDC 

spin coated film in our study, oxygen diffusion process in SDC was ignored.  
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Figure 7.4 Total conductivity dependence on oxygen partial pressure of SDC 

7.3.2 La0.6Sr0.4CoO 3-δ (LSC) 

Strontium substituted lanthanum cobaltite is a perovskite-type oxide with higher electronic and 

oxide ion conductivity than LSCF. However, its high thermal expansion property and chemical 

instability when compared to the electrolyte material YSZ inhibit the direct use of LSC as 

SOFCs cathode. Application of LSC by the technique of infiltration can utilize the LSC’s 

advantages and at the same time avoid those problems.  

 

Commercial La0.6Sr0.4CoO3-δ (AGC Seimi Chemical Co., Ltd. Chigasaki-city, Kanagawa, Japan) 

was investigated. As when preparing LSCF pellets, the powders were axially pressed at 250MPa 

using a 19mm (diameter) die. The pellets then were sintered at 1200ºC in air for 2h following 

progressively polished on both sides using silicon carbide polishing papers followed by 

polycrystalline diamond suspension up to 1µm (PACE Technologies, Tucson, Arizona, USA). 

And the samples were verified over 95% of theoretical density.  
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(a)                                                                                    (b) 

 La Sr Co O 

at.% 9.70 8.93 21.1 60.27 

Figure 7.5 Surface morphologies and surface chemical composition of sintered LSC pellet 

(a) Before polishing (b) After polishing 

 

Figure 7.5 showed the surface image and chemical composition of the LSC sample used in this 

study. The average grain size is approximate to 3µm. Atomic ratio of lanthanum and strontium 

decreased a little compared to 6:4.  

 

Similar to the investigation of LSCF in Chapter 6, the electrical conductivity relaxation 

technique was utilized to characterize the oxygen transport behavior of LSC. However, it has 

been found that the conductivity relaxation response of LSC is quicker than LSCF. The total 

relaxation time was around 100s when applying same oxygen partial pressure step change. To 

shorten the flash time ratio, bigger oxygen partial step change was used for testing LSC material.  
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               (a) 0.20atm0.15atm                                           (b) 0.15atm0.20atm 

                                        

             (c) 0.15atm0.10atm                                           (d) 0.10atm0.15atm 
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              (e) 0.10atm0.05atm                                           (f) 0.05atm0.10atm 

    

              (g) 0.05atm0.02atm                                           (h) 0.02atm0.05atm 

Figure 7.6 Fitting error color maps for LSC under different oxygen partial pressure 

 

Figure 7.6 is the fitting error color maps generated on (D, k) plane. (D, k) region was fitted 

within the 101% of the minimum value for the fitting error. Observation of the general trend 

revealed that both of the oxygen surface exchange and bulk diffusion coefficients decreased with 

the oxygen partial pressure. Parameter variations depending on 
2OP were plotted in Figure 7.6. 

The results showed that under our testing conditions the oxygen surface exchange coefficient for 
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LSC still varies with the 
2

1/ 2
OP  law as illustrated in Chapter 6. On the other side, the bulk diffusion 

coefficient possessed a linear relationship with oxygen partial pressure. It indicated that the 

atmosphere change will result in a more obvious effect for oxygen transport in LSC than LSCF.  

 

 

(a) Oxygen surface exchange coefficient                            (b) Oxygen bulk diffusion coefficient 

Figure 7.7 Oxygen transport kinetic parameters for La0.6Sr0.4CoO3-δ at 800ºC as a function of  
oxygen partial pressure obtained from conductivity relaxation  

7.4 Oxygen transport behavior at infiltrated/backbone material interface  

7.4.1 Oxygen transport in the multilayer sample 

 

Figure 7.8 Sketch for the multilayer sample 

 

Figure 7.8 is the cross section sketch for the spin coated SDC/LSCF or LSC/LSCF sample. We 

assumed that during the relaxation, the oxygen concentration in the infiltrated material, in LSCF 

close to the interface of SDC/LSCF/SDC or LSC/LSCF/LSC and in the middle of the multilayer 

sample are C1, C2 and C3, respectively. And when the system obtains equilibrium under the new 
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oxygen partial pressure, the saturated concentration are 'C


and C separately for the infiltrated 

material and LSCF. Besides, net oxygen flux (J, [mol/cm2·s]) was assumed as a constant, and the 

diffusion process inside the infiltrated layer was ignored due to its thickness. Oxygen transport 

can then be described with three equations listed below. 

         '
1

surface

J
C C

k
                                                                      (7.3) 

2
int erface

J
C C

k                                                         (7.4) 

3 2

Ja
C C

D
                                                               (7.5) 

Equation 7.3 is the surface exchange occurring on the gas/infiltrated material interface. Equation 

7.4 represents the exchange occurring at the infiltrated material/LSCF interface and Equation 7.5 

shows the diffusion inside LSCF. Therefore, the total surface exchange coefficient (k) can be 

deduced by combining Equation 7.3 and 7.4.  

int

1 1 1

erface surfacek k k
                                                     (7.6)  

kinterface can be calculated from the experimentally obtained k and ksurface value. This parameter is 

pivotal for understanding the overall oxygen transport processes in the SOFC cathode and for 

further optimizing the infiltrated materials. The corresponding basic parameter values for 

substrate and spin coated materials are listed in Table 7.1. 

Table 7.1 Basic oxygen transport kinetic parameters for simulation multilayer sample 

2OP range(atm) 0.20~0.18 0.15~0.14 0.10~0.09 0.05~0.018 

DLSCF (cm2/s) 1.3×10-5 1.0×10-5 5.0×10-6 5.0×10-6 

kLSC (cm/s) 3.6×10-4 3.0×10-4 3.0×10-4 2.5×10-4 
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7.4.2 Oxygen transport at SDC/LSCF interface 

Figure 7.9 shows normalized conductivity relaxation for spin coated SDC sample at 800°C for 

both oxidation and reduction steps at different oxygen partial pressures together with the 

respective fitted curves. With the oxygen partial pressure decreasing, the relaxation time 

increased. The total surface exchange coefficients for the SDC/LSCF/SDC multilayer sample 

obtained from the fitted data are listed in Table 7.2. The results reveal that oxygen surface 

exchange was accelerated compared to the single phase LSCF sample.  Besides, it’s reported that 

GDC (Ce0.9Gd0.1O2-δ) which has similar structure to SDC, possesses low self-surface exchange 

rate as 1×10-18cm/s83 at 0.05atm. Therefore, oxygen surface exchange of SDC can be considered 

much lower than 1.0×10-4cm/s which is the total surface exchange coefficient of the 

SDC/LSCF/SDC sample obtained by ECR measurement. From the relation among oxygen 

exchange at infiltrated material surface (ksurface), interface exchange (kinterface) and total oxygen 

exchange coefficients (k), as shown in equation 7.5, it is obvious that k should be smaller than 

ksurface. It is revealed that the oxygen surface exchange rate of the SDC layer was accelerated 

compared to the bulk material.  
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                      (a) 0.20atm0.18atm                                                 (b) 0.18atm0.20atm 
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                      (c) 0.15atm0.14atm                                                 (d) 0.14atm0.15atm 
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                      (e) 0.10atm0.09atm                                                 (f) 0.09atm0.10atm 
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                        (i) 0.020atm0.018atm                                                (j) 0.018atm0.020atm  

Figure 7.9 Fitting results for SDC/LSCF/SDC multilayer sample 

 

Table 7.2 Total oxygen surface exchange coefficient of spin coated SDC sample 

2OP  (atm) 0.20 0.18 0.15 0.14 0.10 

k (cm/s) 2.3×10-4 2.0×10-4 2.0×10-4 1.8×10-4 2.5×10-4 

2OP  (atm) 0.09 0.05 0.04 0.02 0.018 

k (cm/s) 2.1×10-4 1.3×10-4 1.0×10-4 6.8×10-5 8.4×10-5 

 

7.4.3 Oxygen transport at LSC/LSCF interface 

Relaxation data in the form of normalized conductivity and corresponding fitting curves for spin 

coated LSC sample at 800°C under different oxygen partial pressures are shown in Figure 7.10.  

Total oxygen exchange coefficients are presented in Table 7.3. Considering the porous LSC 

layer, observed oxygen transport in spin coated LSC sample was faster than the spin coated SDC 

sample. To deduce oxygen exchange coefficient at LSC/LSCF interface, intrinsic oxygen surface 

exchange coefficient of LSC (kLSC) needs to be modified.  
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(c) 0.15atm0.14atm                                                 (d) 0.14atm0.15atm 
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(g) 0.05atm0.04atm                                                 (h) 0.04atm0.05atm 
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(i) 0.02atm0.018atm                                                 (j) 0.018atm0.02atm 

Figure 7.10 Fitting results for LSC/LSCF/LSC multilayer sample 

 

Table 7.3 Total oxygen surface exchange coefficient of spin coated LSC sample 

2OP  (atm) 0.20 0.18 0.15 0.14 0.10 

k (cm/s) 3.2×10-4 3.5×10-4 3.0×10-4 3.5×10-4 2.6×10-4 

2OP  (atm) 0.09 0.05 0.04 0.02 0.018 

k (cm/s) 2.2×10-4 1.9×10-4 3.3×10-4 1.9×10-4 2.2×10-4 
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Based on LSC sample’s testing results, for porous sample with an average particle size on the 

order of a few micrometers, the kinetics of oxygen transport is expected to be dictated 

exclusively by surface exchange. Relation among the average concentration at time t ( ( )C t , 

[mol/cm3]), equilibrium concentration ( ( )C  , [mol/cm3]) and oxygen surface exchange 

coefficient (kLSC, [cm/s]) is given by84: 

[ ( ) ( )] (1 ) ( )V LSC VS k C C t dt V dC t                                          (7.7) 

SV is the specific surface area which stands by the fraction of pore surface to the total volume, 

[cm-1]. VV is the volume fraction porosity, [-]. Integrate equation 7.7: 

( ) - ( )
exp[ ]

1( ) - (0) ( )V

V LSC

C C t t
VC C

S k


 


                                           (7.8) 

In terms of the normalized conductivity, equation 7.8 can be written as:  

( ) - (0) ( ) - (0)
1 exp[ ]

1( ) - (0) ( ) - (0) ( )V

V LSC

t C t C t
VC C

S k

 
 

   
 

                       (7.9) 

Combined with equation 5.4, the extrinsic surface exchange coefficient for the porous layer can 

be given by: 

1
V LSC

surf
V

cS k
k

V



                                                         (7.10) 

where c is the thickness of the LSC layer, [cm].  

 

Line interception was applied to estimate SV of porous LSC layer according to Virkar’s work84. 

Intersection counts PL are determined from the cross section image and its value is 0.35/µm. 

Specific surface area SV can be given by: 
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2V LS P                                                                (7.11) 

The porosity VV is given by: 

2

1

N

i
i

V

n r
V

A





                                                           (7.12) 

A is the detected area of the porous layer, [µm2]. n is the number of certain size pores and r is the 

diameter of those pores, [µm]. The porosity of the LSC layer calculated is 28.3%. 

 

Deduced results are listed in Table 7.4 and it shows the oxygen exchange rates at LSC/LSCF 

interface are close to the rates on LSC surface.  

Table 7.4 Oxygen interface exchange coefficient of spin coated LSC sample 

2OP  (atm) 0.20 0.18 0.15 0.14 0.10 

k (cm/s) 3.4×10-4 3.8×10-4 3.3×10-4 3.9×10-4 2.8×10-4 

2OP  (atm) 0.09 0.05 0.04 0.02 0.018 

k (cm/s) 2.3×10-4 2.0×10-4 3.7×10-4 2.0×10-4 2.4×10-4 
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7.4.4 Discussion 

 

Figure 7.11 Surface exchange coefficients of single phase LSCF and infiltrated cathodes 

 

Two composite cathode materials including LSC infiltrated LSCF and SDC infiltrated LSCF 

have been investigated in this chapter. Due to the difficulty of characterizing SDC by ECR 

testing, only the total surface exchange coefficient has been observed for SDC infiltrated LSCF. 

With the deduced oxygen exchange coefficient at LSC/LSCF interface, the total surface 

exchange coefficient of LSCF substrate with dense LSC film could be simulated. Corresponding 

results are summarized in Figure 7.11. The results offered a quantitative description of the 

promotion by infiltration and indicated that both of the infiltrated materials improved oxygen 

reduction rate compared to single phase LSCF material. Under high 
2OP , oxygen surface 

exchange of SDC infiltrated LSCF is faster than LSC infiltrated LSCF. The advantage of SDC 

infiltrated LSCF material disappeared when oxygen partial pressure was under 0.04atm.  

 

The experimental results can be summarized by two key points:  
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(1) Oxygen reduction will occur at the surface of the infiltrated material instead of cathode 

backbone. The reduced oxygen ion will then be transferred into LSCF at infiltrated 

material/LSCF interface. Oxygen ion interface exchange is similar to the diffusion process. It is 

suspected to be easier than reducing molecular oxygen to oxygen ions, which requires cleavage 

of a chemical bond. Therefore, the interface exchange coefficients for the spin coated samples 

are higher than oxygen surface exchange coefficient of LSCF.   

 

(2) The surface exchange process is considered controlled by oxygen partial pressure, and the 

electron and oxygen vacancy concentrations. Oxygen capture activity of SDC has been improved 

with spin coated LSCF. It may be because the electron activity was promoted through the 

substrate and the thin SDC layer. At high
2OP , the SDC infiltrated LSCF cathode was expected to 

show higher performance than the LSC infiltrated one. However, when the oxygen partial 

pressure decreased, total surface exchange coefficient of LSC/LSCF/LSC sample became bigger 

than SDC/LSCF/SDC. It may be caused by the different interface structure of the two infiltrated 

materials. The similar crystal structure of LSC and LSCF may result in easier oxygen vacancy 

exchange at their interface.  

7.5 Concluding remarks 

Electrical conductivity relaxation has been developed to investigate infiltrated cathode materials 

in this chapter. Widely used infiltrated materials Ce0.8Sm0.2O1.9 and La0.6Sr0.4CoO3-δ were chosen 

as the research objectives. Oxygen transport behavior of the infiltrated materials has been studied 

at first. Multilayer samples prepared by spin coating LSC or SDC on LSCF substrate were 

applied for ECR measurement. With the experimentally obtained oxygen kinetic parameters for 

infiltrated and cathode backbone materials, oxygen exchange coefficients on the 
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infiltrate/cathode backbone interface had been deduced. The results revealed that both the SDC 

infiltrated and LSC infiltrated cathode materials possess higher oxygen surface exchange rate 

compared to single phase LSCF material. Besides, oxygen surface exchange of SDC infiltrated 

LSCF is faster than LSC infiltrated LSCF under high oxygen partial pressure.  
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8 Fundamental understanding for infiltrated SOFC cathode 

8.1 Introduction 

Oxygen transport in SOFC cathodes has been investigated extensively. However, most of the 

present modeling work is based on single phase cathode material. Computational approaches on 

infiltrated cathode have been rarely reported. In this chapter, we will use a micro-model to 

analyze the oxygen reduction mechanism on an infiltrated cathode. Key to our model is 

treatment for the new interface formed between infiltrate/cathode backbone materials. Charge 

transfer across this new interface was assumed as the rate limiting step when using mixed ionic 

and electronic conductor for the cathode backbone. Simulation results were generated under low 

cathode over-potential at equilibrium state. This model is generally valid for an infiltrated 

material with high oxygen surface exchange activity. 

8.2 Physical model and basic reaction steps 

        

Figure 8.1 Sketch for infiltrated cathode model 

 

The infiltrated cathode model is depicted in Figure 8.1. A dense SOFC electrolyte material such 

as yttria stabilized zirconia (YSZ) contacts a mixed ionic and electronic conductor such as LSCF. 

,O i

xO
2O

,O b

xO,
x
O YSZO

2O
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High oxygen reduction activity materials such as SDC or LSC are infiltrated on top of the LSCF 

to form a non-continuous layer. To make a clear oxygen transport pathway only one infiltrated 

nano particle was shown in Figure 8.1. The cathode backbone/electrolyte interface is taken to be 

x=0. Two pathways are assumed to exist. The first one is through traditional oxygen reduction 

zone, three phase boundary (3PB) where gas, cathode and electrolyte meet. Charge transfer 

across cathode backbone/electrolyte interface will be considered as the second possible pathway. 

 

In the development of this infiltrated cathode model, we make several assumptions and 

limitations which are summarized below.  

(1) Infiltrated nano particles will cover most surfaces of the backbone cathode but will not form a 

continuous network and contact the electrolyte. 

(2)  The cathode backbone has high electronic conductivity and also exhibits sufficient bulk 

conductivity for oxygen ions.  

(3) Oxygen reduction occurring at the gas/infiltrated material surface is considered a chemical 

reaction due to the high oxygen reduction catalytic property of the infiltrated material. 

(4) The equilibrium state of the adsorbed surface coverage is expressed by the Langmuir 

isotherm, assuming that rate constants are independent of concentration and that adsorption 

occurs directly with no precursor states.  

(5) Since the cathode backbone material possesses high electronic conductivity, the potential is 

locally uniform through the thickness of the cathode. 

(6) The electrolyte is treated as ohmic and of unity ionic transference. 

(7) It is assumed that no drop in the oxygen partial pressure occurs along the cathode surface as a 

result of the oxygen reduction reaction.  
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With all the limitations and assumptions outlined above, the oxygen reduction reaction can be 

described using the following kinetic description. For the 2PB pathway, gaseous oxygen is 

assumed to undergo adsorption/desorption at the infiltrated material surface. The adsorbed 

oxygen will then be reduced to oxygen ions in the infiltrated material due to its high catalytic 

activity towards oxygen reduction. Once transferred into the cathode backbone, the oxygen ion 

will diffuse to the electrode/electrolyte interface. By reaction 8.4, the oxygen ion will enter YSZ 

with direct vacancy exchange.  

1

1
2 2,

k

ad
k

O s O


                                                (8.1) 

2

2

..
2, , ,2 2 4

k x
ad O I o I

k
O V O h s


  

                                (8.2) 

3

3

.. ..
, , , ,

kx x
O I O LSCF O I O LSCF

k
O V V O


                                 (8.3) 

4

4

.. ..
, , , ,

kx x
O LSCF O YSZ O YSZ O LSCF

k
O V O V


                              (8.4)     

At the 3PB region, since the infiltrated material is assumed not in contact with the electrolyte, 

oxygen will be adsorbed on the cathode backbone surface and then be reduced. However, 

considering the infiltration catalytic promotion and the effective traditional TPB area, oxygen 

flow at the 3PB will be ignored in this work. 

                               5

5
2 2, ,

k

ad LSCF
k

O s O


                                              (8.5) 

6

6

..
2, , , ,2 2 4

k x
ad LSCF O YSZ o YSZ

k
O V O h s


  

                                 (8.6) 

The vacancy exchange occurring at the electrode/electrolyte interface, as shown in Equation 8.4, 

is treated as an electrochemically activated process and its rate is presented by the Butler-Volmer 
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equation. On the other hand, oxygen adsorption and reduction reactions at the infiltrated material 

surface are considered under chemical control since they possess high oxygen reduction catalytic 

properties. Moreover, the oxygen ion exchange at infiltrated/ cathode backbone interface 

(Equation 8.3) is also considered as chemical force motivated for there no net charger transfer 

involved. The rates of oxygen transport are then given by: 

21 1 1(1 )Or k P k                                                   (8.7) 

2
2 2 , 2( ) (1 )V Ir k C k                                             (8.8) 

3 3 , 3 ,V LSCF V Ir k C k C                                                   (8.9) 

4 4 , 2 4 , 2exp( 2 ) exp[2(1 ) ]V YSZ PB V LSCF PBr k C f k C f                    (8.10) 

Γ is the surface oxygen adsorption site density, [mol/cm2]. θ is a unit-less parameter describing 

the degree of coverage of adsorbed oxygen. ,V YSZC , ,V IC  and ,V LSCFC indicate the oxygen vacancy 

concentration in the electrolyte, infiltrated and cathode backbone material, [mol/cm3]. η stands 

for the cathode over-potential, [mV]. In addition, α2PB is the symmetry factor for the oxygen 

vacancy exchange reaction.  

8.3 Flux formulations and boundary conditions 

By assuming the infiltrated material possesses high oxygen reduction activity, ,V IC can be treated 

as a constant. Correspondingly, the surface adsorption reaction for infiltrated material is assumed 

to retain a stable equilibrium state.  Therefore, there is only one variable in this model, which is 

the oxygen vacancy concentration inside LSCF. Using Fick’s diffusion laws and assuming 

steady-state flux, the vacancy transport can be described as:  

2
, ,

32

V LSCF V LSCFC C S
D r

t x V

  
 

  
                                               (8.11) 
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ΔS/ΔV is the volume-specific area of the cathode backbone, [cm-1].  

To solve this differential equation, two boundary conditions are defined. At x=0, the flux of 

oxygen vacancy is related to vacancy exchange at the electrolyte/cathode interface.  

,
4

V LSCFC
D r

x


 


                                                               (8.12) 

At the outer surface of the cathode, x=lc, net flux of oxygen vacancy should equal zero. In other 

words, beyond this point, oxygen bulk diffusion will become the rate limiting step instead of the 

oxygen interface exchange. 

, 0V LSCFdC

dx
                                                                   (8.13) 

8.4 Potential and current-potential relationship 

A three electrode system can be applied to characterize the infiltrated cathode system. Platinum 

paste current collectors contacting the outer surfaces of the cathode and the electrolyte function 

as working electrode (WE) and counter electrode (CE) separately. A Pt wire reference electrode 

is buried inside the electrolyte.  

 

The total open circuit potential yields Nernst equation: 

 2

2

ln
4

RE
O

OCV WE
O

PRT
E

F P
                                                              (8.14) 

The potential drop across cathode/electrolyte interface can be given by: 

22 PB

oc
PBE E                                                                      (8.15) 

Since reaction 8.4 is the electrochemical activated step subject to Butler-volmer treatment, the 

current across cathode/electrolyte then becomes: 
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,
4 4,0 2 2
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[exp( 2 ) exp[2(1 ) ]V LSCF
PB PB

V LSCF eq

C
i i f f

C
                      (8.16) 

4
, , ,

4

exp( 2 )V LSCF eq V YSZ

k
C C f

k
                                                    (8.17) 

If reaction 8.3 is the rate limited step, the adsorption and reduction reactions occurring on 

infiltrated material will achieve equilibrium. In other words, the net reaction rate of 8.1 and 2 

should equal to zero. Then the relationship between oxygen vacancy concentration inside the 

infiltrated material and oxygen partial pressure can be deduced: 

2

- -
1/ 21 2

,
1 2

( )V I
O

k k
C

k k P
                                                             (8.18) 

Furthermore the exchange current can be given by: 

2

- -
- - 1/ 21 2

3,0 3 , 3
1 2

( )V I
O

k k
r k C k

k k P
                                                  (8.19) 

8.5 Application of electrical conductivity relaxation results 

Oxygen ions exchanging at the infiltrate/cathode backbone material can be expressed by 

equation 8.3.  

3

3

.. ..
, , , ,

kx x
O I O LSCF O I O LSCF

k
O V V O


                                                       (8.3) 

Considering the theoretical basis of the diffusion model, oxygen interface exchange coefficient 

and the reaction constants have the following relation. 

int , , , 3 , 3 ,( )erface V LSCF V LSCF eq V LSCF V Ik C C k C k C  
                                  (8.20) 

By transforming, a further relation between kinterface and 3k  was obtained. 
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Therefore, the equilibrium exchange reaction rate r3,0 can be estimated with the experimentally 

measured oxygen interface exchange coefficient and oxygen vacancy equilibrium concentration.  

3,0 3 , , 3 , int , ,V LSCF eq V I erface V LSCF eqr k C k C k C  
                               (8.22) 

8.6 Simulation results and discussion 

Table 8.1 Parameter values applied for simulation 

Parameter Description Units Value 

D Bulk oxygen diffusivity of LSCF cm2/s 5×10-6 

  Surface adsorption site density  mol/cm2 1×10-9

  Degree of coverage of adsorbed 
oxygen  

 0.01 

2PB  Symmetry factor  0.5 

,V IC  Vacancy concentration in infiltrated 
material 

mol/cm3 5×10-4 

,V YSZC  Vacancy concentration in YSZ mol/cm3 0.006 

,V LSCFC  Vacancy concentration in LSCF mol/cm3 variation 

,O LSCFC  Oxygen ion concentration in LSCF mol/cm3 variation 

, ,V LSCF eqC  Equilibrium vacancy concentration 
in LSCF 

mol/cm3 1×10-4
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/S V   Volume specific surface area cm-1 6×105

T Temperature K 1073 

r1,0 Exchange current density for 
Reaction 8.1 

mol/cm2·s 1×10-7 

r2,0 Exchange current density for 
Reaction 8.2 

mol/cm2·s 1.5×10-7 

r3,0 Exchange current density for 
Reaction 8.3 

mol/cm2·s 1×10-8~5×10-8 

r4,0 Exchange current density for 
Reaction 8.4 

A/cm2

mol/cm2·s 

0.2 

1×10-6 

 

A finite control-volume analysis with time-discretization was applied to obtain the transient 

solution of the variables. The electrode distance is from the cathode/electrolyte interface (x=0m) 

to x=15µm and is divided into 40 flux nodes with equal spacing. The computational code is 

implemented with Visual C++ 6.0. And parameter values applied in the simulation are listed in 

Table 8.1. 

8.6.1 Infiltrated material effects  

Figure 8.2 shows the simulated oxygen vacancy variation with different equilibrium oxygen 

exchange rate at the infiltrate/cathode backbone interface under -0.2V over-potential. Based on 

ECR testing results for SDC and LSC infiltrated LSCF cathodes, r3,0 value was fixed varying 

from 1×10-8mol/cm2·s to 5×10-8mol/cm2·s. The active zone length for oxygen surface exchange 

was decreased with r3,0 value increasing. It is caused by the fact that oxygen diffusivity is a 

constant while the surface exchange rate of the cathode backbone has been improved. (lc=D/k) 

On the other hand, current density at the cathode/electrolyte 2PB interface can be considered as a 

result of the oxygen vacancy flux. And it is given by85: 
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                                                     (8.23) 

The slope of the oxygen vacancy concentration curve at the cathode/electrolyte interface 

(electrode distance=x=0m) is utilized to estimate 2PB current density. From Figure 8.2, the 

oxygen vacancy concentration at x=0 is higher with smaller r3,0 . Based on equation 8.16, the 

2PB current should increase with the oxygen vacancy concentration decreasing under the same 

over-potential. However, this trend is not obvious here and it’s due to the high equilibrium 

oxygen vacancy concentration of the cathode backbone (LSCF type material).  

 

 

Figure 8.2 Oxygen concentration distributions in the cathode (η=-0.2V) 
r3,0 (mol/cm2·s) value is: (a) 1×10-8 (b) 2×10-8 (c) 3×10-8 (d) 4×10-8 (e) 5×10-8 
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Figure 8.3 Oxygen interface exchange rate variation with the cathode thickness (η=-0.2V) 
r3,0 (mol/cm2·s) value is: (a) 1×10-8 (b) 2×10-8 (c) 3×10-8 (d) 4×10-8 (e) 5×10-8 

 

Figure 8.3 shows the corresponding simulation results for oxygen exchange rate at 

infiltrate/cathode backbone interface. The results also revealed that oxygen reaction active zone 

length decreased with increasing r3,0 value. This conclusion indicated thin functional interlayer 

could be considered for infiltrated cathode. It is well know that the thickness of the interlayer can 

affect its porosity and the porosity is lower with a thinner interlayer. Low porosity of the 

functional interlayer could increase TPB length and effective electrical conductivities. Therefore, 

besides promoting the surface exchange rate, the infiltrated cathode also supports optimization of 

the cathode structure.  Moreover, with the specific oxygen transport kinetic parameters selected, 

the advantage of the high r3,0 value infiltrated material disappeared after x=2µm. 
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8.6.2 Over-potential effects 

 

Figure 8.4 Oxygen vacancy concentration distributions in the cathode (r3,0=3×10-8mol/cm2·s) 

Over-potential: (a) -0.05V (b) -0.1V (c) -0.2V (d) -0.3V (e) -0.4V (f) 0.05V (g) 0.1V 

 

Figure 8.5 Logarithmic 2PB current density versus over-potential with r3,0=3×10-8mol/cm2·s 
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The oxygen vacancy concentration distribution along the cathode under different over-potentials 

with the same r3,0 value is presented in Figure 8.4. And Figure 8.5 shows over-potential effects 

on 2PB current density. Since mainly negative over-potential was built up at the cathode under 

SOFCs operation condition, no more anodic polarization beyond 0.1V has been simulated. When 

the over-potential is higher than 0.1V, 2PB current follows the Tafel equation. Exchange current 

density can be obtained by calculating the Tafel slope and its result is 0.14A/cm2.  

8.7 Concluding remarks 

In this chapter, a mathematical one-dimensional model was developed for an infiltrated SOFC 

cathode. Oxygen transport at the infiltrate/cathode backbone interface was the research focus and 

was considered as the main pathway. The oxygen interface exchange rate value was estimated 

from ECR measurement results in Chap 7.  

 

Simulation results indicated that no obvious variation of 2PB current density (current density at 

cathode/electrolyte interface) was detected with different oxygen exchange rate at 

infiltrate/cathode backbone material interface. However, the characteristic length of the cathode 

decreased with the increasing interface oxygen ion exchange rate. It benefits optimization of 

cathode structure.  
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9 Conclusions and Recommendations 

9.1 Introduction 

In last decades, tremendous efforts have been devoted to modeling the SOFC cathode reaction 

process. However, due to the fact that the reaction system and conditions are very complex, a lot 

of problems and debates still exist in this field so far. In this chapter, we will summarize some of 

the general conclusions emerging from this thesis and also highlight areas where future work is 

likely to make an impact. 

9.2 Conclusions  

The main objective of this research is to understand oxygen transport behavior in SOFCs cathode 

utilizing electrical conductivity relaxation (ECR) technique. We first carefully discuss the ECR 

data fitting process in Chapter 5. The results showed that the fitted results varied with initial 

values for analyzing single relaxation data set. An improved method of testing two sample 

thicknesses under the same conditions was developed to fix oxygen surface exchange and bulk 

diffusion coefficients simultaneously.   

 

With the improved data fitting method, we observed a widely used cathode material 

La0.6Sr0.4Co0.2Fe0.8O3-δ in Chapter 6. The relaxation process and oxygen contributions have been 

discussed under three control regions, including surface exchange, bulk diffusion and mixed 

control region.  Relationships among oxygen surface exchange coefficient, oxygen partial 

pressure and the reduction reaction constants were deduced based on the discussion. This is a key 

achievement for combining ECR measuring results with the cathode modeling.   
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Chapter 7 presents results for characterizing infiltrated cathode materials. Oxygen exchange 

coefficient at infiltrated/ cathode backbone interface was obtained by modifying the traditional 

ECR diffusion model. Two infiltrated materials were studied and the results showed that under 

high oxygen partial pressure Ce0.8Sm0.2O1.9 improve oxygen transport in LSCF cathode more 

than La0.6Sr0.4CoO3-δ.  

 

Finally, the infiltrated cathode mechanism was explored. We focused on the 2PB oxygen 

transport pathway to study the function of the infiltrated material. Given by the experimental 

results, oxygen transport at the interface of infiltrate/cathode backbone was considered as the rate 

limiting step. The exchange current value is proportional to
2

1/ 2
OP . The oxygen vacancy 

distribution at steady state with low over-potential was also simulated.  

9.3 Recommendations for future research 

9.3.1 ECR testing condition improvement 

9.3.1.1 Oxygen partial pressure broaden 

Oxygen partial pressure testing range for our present ECR testing system is from 0.002atm to 

0.20atm. Broadening of the
2OP testing range can not only improve understanding of the materials 

we observed but can also facilitate study of different material types.  

 

First, if we assume cathode over-potential satisfies Nernst equation:  

2

2

ln
4

s
O
I

O

PRT

F P
 

                                                               (9.1) 
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Where η is the cathode over-potential, 2
s

OP and 2
I

OP are the oxygen partial pressure for cathode 

surface and cathode/electrolyte interface. If we use air for the cathode side, 2
I

OP  should be 

2.64×10-3atm when the over-potential is 0.1V. Therefore, broadening the range of examined 

oxygen partial pressure could help us understand oxygen transport behavior more thoroughly.  

 

Second, there are two main perovskite materials widely used as SOFCs cathode. One is Ln1-

xSrxCo1-yFeyO3-δ with Ln=La, Sm, Ba, Nd, Gd, Dy. The other one is Ln1-xAxM1-yMnyO3-δ with 

Ln=La, Nd, Pr; A=Ca, Sr and M=transition metal. In contrast to the first type, the second type 

perovskite has been shown to be very poor oxygen ion conductivity but their electronic 

conductivity is sufficiently high as to make them an attractive cathode material. Electrical 

conductivity variation of La1-xSrxMnO3-δ with oxygen partial pressure can be found in reference, 

as shown in Figure 9.1. Conductivity relaxation occurred when oxygen partial pressure is smaller 

than 10-10atm.  
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Figure 9.1 Electrical conductivity of LSM as a function of  

oxygen partial pressure at different temperature64 

 

9.3.1.2 Sample dimension  

As illustrated in Chapter 5, enlarging the samples’ thickness difference can improve the accuracy 

for oxygen transport kinetic parameter estimation. However, for applying van der Pauw method, 

the sample’s thickness was limited by its diameter. To further narrow the fitted D and k range, 

bar shape sample could be considered in the future research. The corresponding diffusion 

solution is: 

2 2 2

2 2 2
1

4 exp[ / ]( ) (0)
1

( ) (0) ( )
n

n n n

L b Dt aC t C

C C b b L






 

                                              (9.2) 

bn’s are the roots of   

1 0( ) ( ) 0bJ b LJ b                                                               (9.3) 

and                                                              /L ka D                                                                (9.4) 
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a is the radius of the bar, [cm]. And as the solution for pellet shape sample, L [-] is a unitless 

parameter and bn is a parameter generated during the process solving Fick’s second law. J0 and 

J1 are the Bessel functions of zero and first order.  

9.3.2 Infiltrate/cathode backbone interface investigation 

9.3.2.1 Isotope exchange technique verification 

Oxygen transport behavior can also be investigated by using labeled gases and secondary ion 

mass spectroscopy (SIMS). By utilizing SIMS technique, we can obtain oxygen self-diffusivity 

(D*) and exchange coefficient (k*) instead of chemical diffusivity and surface exchange 

coefficient. To further prove the reliability of the results obtained from ECR testing, SIMS 

(ims5f, CAMECA Instruments Co.) was also applied in this study. The corresponding oxygen 

partial pressure is 0.1bar and the temperature is 873K and 1073K.  

The collected depth profile for 18O was shown in Figure 9.2. The relation between self-

diffusivity and chemical diffusion coefficient is given by: 

*D D                                                                    (9.5) 

Similar for the surface exchange coefficient: 

*k k                                                                     (9.6) 

Γ is the thermodynamic factor, [-]. Γ is equal to 148 at 800ºC and 
2OP =0.1atm66. Therefore, the 

isotope testing results can be transformed to chemical diffusivity and surface exchange 

coefficient and the corresponding values are D=5.2×10-5cm2/s, k=1.5×10-4cm/s and D=2.5×10-

5cm2/s, k=4.1×10-4cm/s. On the other hand, the ECR testing results revealed at 800°C for LSCF 
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D=5×10-6cm2/s and k=1×10-4cm/s. Considering the error range of isotope method, the parameter 

values obtained by utilizing the two techniques are approximately at the same magnitude. It’s 

further verified that our analyzing results from ECR testing are reliable. 

                    

 Figure 9.2 Depth profile of 18O in La0.6Sr0.4Co0.2Fe0.8O3-δ at 800°C 

 

 

 Figure 9.3 Self-surface exchange and bulk diffusivity of La0.6Sr0.4Co0.2Fe0.8O3-δ  
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9.3.2.2 Further investigation for infiltrate/cathode backbone interface 

In this study, oxygen transport behavior in an infiltrated cathode was characterized by utilizing 

the ECR technique. Characterization of micro-domains near the infiltrate/cathode backbone 

interface provides important information for analyzing the impact factors on oxygen diffusion.  

 

With capability of imaging at a significantly higher resolution than SEM, transmission electron 

microscopy (TEM) can be applied to identity the phase near the hetero-interface. A TEM sample 

could be prepared by wedge polishing or focused ion etching. As a TEM measurement technique, 

electro energy loss spectroscopy provides elemental identification down to atomic dimensions 

and additional capabilities of determining electronic structure as well as chemical bonding. 

Ricoult 86  studied the interface of LSM-YSZ composite cathode by high spatial resolution 

TEM/EELS. After single cell operation, strong enrichment of divalent manganese was detected 

at LSM/YSZ interface. It was considered as a positive contribution for oxygen incorporation in 

cathode.   

 

Besides the alteration of the defect chemistry, another main mechanism may contribute to effect 

on the oxygen ions transport at the hetero-interface. A favorable strain state at the interface can 

shift and/or change the symmetry of electron energy levels to provide for improved charge 

transfer and ion mobility. Yildiz87 et al. used density functional theory and the nudged elastic 

band method to compute oxygen vacancy migration paths and barriers in YZS as a function of 

lattice strain.  
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9.3.3 Infiltrated model development 

Oxygen transport in the infiltrated cathode is considered through the 2PB pathway and composed 

of four elementary steps. Although the infiltrated model in this study was simulated under fair 

assumptions and with experimentally obtained parameters, the following aspects are suggested 

for future study: 

(1) 3PB pathways: 

To focus on the infiltrate/cathode backbone interface, the 3PB pathway was neglected in this 

study. Considering the 3PB pathway including infiltrate/cathode backbone/atmosphere and 

cathode backbone/electrolyte/atmosphere phase boundaries can complete our infiltrated model. 

Pattern electrode is one choice to investigate oxygen transport at the 3PB region.   

(2) Surface and bulk over-potential of cathode backbone: 

Considering the 3PB transport pathway, when electrons are brought to surface to form oxygen 

ions, positive charges are induced in cathode backbone and a potential barrier exits at the 

interface.  Moreover, this potential barrier will be influenced by the cathode over-potential and 

the rate of oxygen ion diffusion will also be affected. 

(3) 3-D model:  

Cathode geometry and infiltrated material distribution had been ignored in our study too. After 

improved the model with the two items above, we can extend the model to three dimensions.  
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