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ABSTRACT 

 
Towards Large Eddy Simulation of Gas-Liquid Dispersed  

Two-Phase Turbulent Flows 
 

Gusheng Hu 
 

This study presents a detailed investigation of all essential components of computational 
and modeling issues necessary for a successful large-eddy simulation (LES) of dispersed two-
phase turbulent flows. In particular, a two-layer concept is proposed to enable the LES 
capability in two-phase flows involving dispersed bubbles that are relatively large compared to 
the mesh size. The work comprises three major parts.  

Part I focuses on the development and verification of a transient, three-dimensional, 
finite-volume-method (FVM) based accurate Navier-Stokes solver, named DREAM II (second 
generation of the DREAM code). Several high-order schemes are implemented for both the 
spatial and temporal discretization. Solution of the coupled partial differential equations is 
attacked with a fractional step (projection) method. The developed solver is verified against 
various benchmarks including Taylor’s vortex, free-shear layer, backward-facing step flow and 
square cavity. A second-order overall accuracy is achieved in both space and time. 

Part II concerns the modeling and LES of single-phase turbulent flows. A review of the 
LES theory and subgrid-scale (SGS) models is presented. Three SGS models, namely, 
Smagorinsky model, dynamic model and implicit model, are implemented and investigated. 
Then turbulent channel flow, plane mixing layer, and flow past a square cylinder are simulated, 
and comparisons of the first-, second-order statistics, and characteristic flow structures are 
made with direct numerical simulation (DNS) and/or benchmark experiments. The test results 
show superior quality of the present LES. 

Part III delves into the theory, modeling and simulation of dispersed two-phase flow 
systems. A conceptual review of the characteristics and description of such system is made, 
considering both Eulerian-Eulerian (E-E) and Eulerian-Lagrangian (E-L) approaches, but with 
an emphasis on the latter. Various hydrodynamic forces acting on particles or bubbles are 
summarized and interpreted. Formulations regarding interphase coupling is discussed in depth. 
Typical computational treatments of modeled two-way couplings in an E-L DNS/LES are 
reviewed. Issues related to the interpolation are addressed. A general Lagrangian particle-
tracking (LPT) program, named PART, is developed and verified using analytical solutions. 

A critical issue in the E-L approach is that, the particle size is conventionally required to 
be much smaller than the characteristic flow length scale and the computational grid size. This 
presents a considerable restriction on the E-L’s applicability to practical engineering flows 
such as bubble column reactors. A two-layer concept, aimed at decoupling the geometric 
feature of the particles from that of the grid, is proposed. In this approach, the carrier phase and 
the dispersed phase are viewed as two independent computational layers, and the reverse 
coupling takes place at those discrete particle locations through modeled momentum exchange 
forces with the help of a predefined influence sphere. The proposed realization of the backward 
coupling, given the name PSI-Ball (particle-source-in ball), can be regarded as a generalization 
of the PSI-Cell method, and it ensures a “fair” redistribution of the interphase coupling force to 
its neighboring Eulerian grid nodes. A significant advantage is also that, the Eulerian grid can 
be constructed to a desired fineness (e.g., in the wall layer) without concern for the particle 
size. Finally, this idea is proven to work well in an application of two-way coupled E-L LES to 
a locally aerated turbulent bubble column, with surprisingly good success. 
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ijR  Spectrum tensor (Fourier transform of Rij) 
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S Coefficient polynomial of a interpolation scheme 
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u, ui, or u, v, w Flow velocity field 
u(x) 1D flow field 
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ˆiu  Intermediate velocity field in the projection method 
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u’, u’i, or u’, v’, w’ Fluctuating flow velocity in RANS; subgrid scale flow 
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F Fourier transform operator 
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Chapter 1 Introduction 
 
 
1.1. Governing Equations of Fluid Flow 
 “A mathematical model for the behavior of a physical system, and in particular the 
system of fluid flows, can only be defined after consideration of the level of the 
approximation required in order to achieve an acceptable accuracy on a defined set of 
dependent and independent variables.” (Hirsch 1988) 
 
 Various levels of description of our physical world (a physical understanding to 
the real world) have been proposed and defined, ranging from subatomic, atomic or 
molecular, microscopic or macroscopic, up to the astronomical scale. At a certain 
approximation level a mathematic model can be derived aiming at describing the physical 
system at this level with a reasonable accuracy. Figure 1-1 shows a block diagram of this 
top-down hierarchy. The classical fluid mechanics is based on the continuum hypothesis, 
which is valid on a macroscopic scale and assumes individual fluid particles to be large 
compared with the distance between molecules.  
 

Real world Physics Levels of
approximation

Mathematical
models

 
Figure 1-1 Mathematical models with respect to levels of approximation 

 
The law of fluid dynamics is well established, whereby the key observation is that 

during the motion of a fluid certain number of properties, such as mass, generalized 
momentum and energy, are conserved. These conservation properties are then used to 
deduce a set of integral-differential equations (mathematical model) describing a 
dynamical system of fluid flow (real world problem). This well-known set of equations 
governing the fluid dynamics is commonly referred to as the Navier-Stokes (N-S) 
equations. In what follows the N-S equations will be briefly outlined. A detailed 
derivation of the N-S equations is however, abridged here, as they can be found in a great 
deal of classical texts. (Batchelor 1967; Daily and Harleman 1973; Schlichting 1979; 
White 1991; Munson et al. 1994; Bird et al. 2002; Fox et al. 2003) 
 

Consider a given quantity of matter, called control mass (CM) or system. Let φ be 
a generic conserved intensive property that is not dependent on the amount of matter 
(mass or volume). Examples of φ are density (mass per unit volume), specific volume 
(volume per unit mass), velocity (momentum per unit mass), pressure and temperature. 
The corresponding extensive property Φ, whose value varies directly with mass, can be 
expressed as 
 

CM

dρφ
Ω

Φ = Ω∫ , (1.1) 
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where ΩCM stands for the volume occupied by the CM, ρ is the density. A control volume 
(CV) is a certain spatial region that can be either fixed or moving. By Reynolds transport 
theorem, which links the control mass frame (or the Lagrangian frame) with the control 
volume frame (or the Eulerian or laboratory frame), the following integral-differential 
equations are obtained describing a conserved property: 

 ( )CSCV CS

d d d d
dt dt

ρφ ρφΦ
= Ω + − ⋅∫ ∫ u u n S , (1.2) 

where CS (control surface) is the surface enclosing CV, n is the unit vector perpendicular 
to CS and directed outwards, u is the fluid velocity and uCS is the velocity with which the 
CS moves. If the CV is fixed, a situation to be considered here, uCS equals zero and the 
first derivative on the right hand side becomes a local (partial) derivative. Thus, 

 
CV CS

d d d
dt t

ρφ ρφΦ ∂
= Ω + ⋅

∂ ∫ ∫ u n S . (1.3) 

 
 If φ is taken to be unity (φ = 1), flow velocity (φ = u), and total energy per unit 
mass (φ = e) respectively, the integral form of the mass conservation (continuity), 
momentum conservation and energy conservation equation is obtained, respectively: 

 0
CV CS

d d
t

ρ ρ∂
Ω + ⋅ =

∂ ∫ ∫ u n S , (1.4) 

 lCV CS
l

d d
t

ρ ρ∂
Ω + ⋅ =

∂ ∑∫ ∫u uu n fS , (1.5) 

 
CV CS

e d e d S
t φρ ρ∂

Ω + ⋅ =
∂ ∫ ∫ u n S . (1.6) 

In the above equations, ll∑ f represents all possible forces acting on a CV, which may 
include surface forces (pressure, shear stresses, surface tension etc.) and body forces 
(gravity, Coriolis forces etc.); Sφ represents all the source or sink terms that contribute to 
the energy transfer with respect to a CV. Examples are the work done to the CV and heat 
flux through the CV surfaces. With Gauss’ divergence theorem the surface integral can 
be transformed into volume integral. Further allowing the control volume to be infinitely 
small, at the limit, the differential coordinate-free form of the conservation equations is 
obtained. In particular, assuming the fluid to be viscous leads to the well-known set of 
Navier-Stokes equations (White 1991): 

 ( )div 0
t
ρ ρ∂

+ =
∂

u , (1.7) 

 ( ) ( )div div
t

ρ ρ ρ∂
+ = +

∂
u uu σ b , (1.8) 

 ( ) ( )div divh Dph k T S
t Dt φ

ρ ρ∂
+ = ∇ + + Ψ +

∂
u , (1.9) 

where σ is the total stress tensor due to the surface forces, b is the body force per unit 
volume including gravitational force, h is the fluid enthalpy, T is the temperature, p is the 
pressure, Ψ is the viscous dissipation function representing the degradation of mechanical 
energy per unit volume into the thermal energy. The second term on the left in the above 
equation describes the convection effect, and is known as the convective or advective 
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term. The first term on the right of Eq. (1.8) and (1.9) represents the diffusion effect and 
is called the diffusion or conduction term. By assuming Newtonian fluid and using 
Stokes’ hypothesis, the momentum conservation equation (Eq. (1.8)) can be closed with 
the following relation for the total stress tensor σ : 

 ( ) 2div 2 ,
3

p λ μ λ μ= − + + =⎡ ⎤⎣ ⎦σ I u S , (1.10) 

where μ is the dynamics viscosity, λ is the second viscosity coefficient, I is the unitary 
(or identity) tensor, and S is the rate of strain (deformation) tensor: 

 ( )1
2

T⎡ ⎤= ∇ + ∇⎣ ⎦S u u . (1.11) 

Very often, the viscous shear stress tensor 2μS is denoted by a single symbol τ. 
 

In a Cartesian coordinate system, which is considered throughout this study, the 
Navier-Stokes equations (Eq. (1.7) through (1.9)) can be written as: 

 ( ) 0i
i

u
t x
ρ ρ∂ ∂

+ =
∂ ∂

, (1.12) 

 ( ) ( ) ij
i j i i

j i j

pu u u b
t x x x

τ
ρ ρ ρ

∂∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂
, (1.13) 

 ( ) ( ) T i
j ij

j j j j

uDp Th u h k S
t x Dt x x x φρ ρ τ

⎛ ⎞ ∂∂ ∂ ∂ ∂
+ = + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

, (1.14) 

with  

 22 ,
3

j
ij ij ij

j

u
S

x
τ μ λ δ λ μ

⎛ ⎞∂
= − =⎜ ⎟⎜ ⎟∂⎝ ⎠

, (1.15) 

 1
2

ji
ij

j i

uuS
x x

⎡ ⎤∂∂
= +⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

. (1.16) 

Note that τij is the viscous stress tensor excluding pressure; Sij is the rate of stain tensor 
on Cartesian coordinates; superscript T denotes the transpose of a stress tensor; i is used 
as free index and j as dummy index, both may be valued at from one to three representing 
three directions in a Cartesian coordinate system. 
 

If the flow is compressible and the assumption of local thermodynamic 
equilibrium applies, the governing equations must be supplemented by the thermal 
equations of state, i.e.,  

 
( , ) ( , )
( , ) ( , )
p T h h p T
p T k k p T

ρ ρ
μ μ

= =
= =

 (1.17) 

 
In this study only isothermal systems is considered, in which temperature is 

constant and the energy equation drops. An isothermal systems can be formally defined if 
in the system there are no externally imposed temperature gradients and no appreciable 
temperature change resulting from expansion, contraction, or viscous dissipation (Bird et 
al. 2002). Following this, it can be further assumed a constant viscosity and conductivity 
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of the fluid. Only the density, in addition to the primary flow field variables (velocity and 
pressure), is allowed to change with both space and time. Variable density requirement 
could be important in the modeling of a gas-liquid two-phase flow system. 

 
For an incompressible flow which satisfies 

 0∇ ⋅ =u , (1.18) 
the substantial (or material, particle) derivative of the fluid density is zero, i.e.,  

 0D
Dt

ρ
= . (1.19) 

This can be shown by rewriting the continuity equation (1.12) in an equivalent non-
conservative form as  

 0D
Dt

ρ ρ+ ∇ ⋅ =u . (1.20) 

It should be stressed that a variable density flow, in which ρ is a function of time and 
space, can still be incompressible as long as the material derivative of density is equal to 
zero or negligibly small. Further, with the incompressibility condition plus the constant 
viscosity assumption the shear stress term in the momentum equation (1.13) can be 
simplified to 

 ( )2ij i
ij

j j j j

uS
x x x x
τ

μ μ
⎛ ⎞∂ ∂∂ ∂

= = ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
, (1.21) 

since 

 0j j

j i i j

u u
x x x x

μ μ
⎛ ⎞∂ ∂⎛ ⎞∂ ∂

= =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
. (1.22) 

This gives the following momentum equation for an incompressible flow expressed on 
the Cartesian coordinates: 

 ( ) ( ) ( )2i j i ij i
j i j

pu u u S b
t x x x

ρ ρ μ ρ∂ ∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂
 (1.23) 

or 

 ( ) ( ) i
i j i i

j i j j

upu u u b
t x x x x

ρ ρ μ ρ
⎛ ⎞∂∂ ∂ ∂ ∂

+ = − + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
. (1.24) 

Eq. (1.12) and (1.24) serves as the most fundamental equations throughout the entire 
study. 
 
 
1.2. Two-Phase Flow Systems 
A large number of flows encountered in nature and industrial application are a mixture of 
phases. A physical phase is defined as a state of the matter, i.e., solid, liquid gas or vapor. 
Dust storm, air pollution and smog, bubbly ship wake, ocean-atmosphere interactions, 
paint sprays, spray drying, coal or liquid fuel combustion, fluidized beds, bubble column 
reactors, cyclone separators are just a few examples of a multiphase flow system. Unlike 
the single-phase flow where the governing equations for the motion and thermal 
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properties (N-S equations) are well accepted, a proper and efficient formulation of a 
multiphase flow system is still subject to debate (Crowe et al. 1996); many multiphase 
systems of physical and technological importance exhibit highly complex nature and are 
not yet well understood. It is for these reasons that the multiphase flow research is still 
considered to be primitive, and represents a challenging and potentially very fruitful area. 
 

Within the broad science of multiphase flow, a subset is named two-phase flow 
where only two phases are present in the system. Depending on the combination of the 
physical phases, a two-phase system can be generally classified into three categories, 
namely, gas-liquid flows, gas-solid flows and liquid-solid flows. Within each class of 
flow there can be different regimes characterized by distinct flow patterns. These are 
summarized in Table 1-1.  

 
Table 1-1 Classification of two-phase systems and flow regimes 

Category Regime Description or examples 
Bubbly flow Discrete gaseous bubbles in a liquid 
Droplet flow Discrete fluid droplets in a gas 
Slug flow Very large bubbles in a liquid 

Gas-liquid flows 

Stratified/free-
surface flow 

Immiscible fluids separated by clearly 
defined interface 

Particle-laden flow Discrete solid particles in gas 
Pneumatic transport Pattern varies depending on factors such as 

the solid loading 

Gas-solid flows 

Fluidized bed Rising gas suspends densely-distributed solid 
particles 

Slurry flow Transport of particles in a liquid 
Hydrotransport Densely-distributed solid particles in a liquid 

Liquid-solid flows 

Sedimentation Characterized by a sludge layer at the 
bottom, a clear interphase at the top and a 
settling zone in the middle 

 
 

A special group of the two-phase flow that covers several flow regimes, namely, 
the bubbly flow, droplet flow and particle-laden flow as described in Table 1-1, is known 
as the dispersed two-phase flow. In a dispersed two-phase system a secondary discrete 
phase, present in form of “small” particles/bubbles/droplets, is dispersed in the primary 
continuous phase (liquid or gas). An important characteristic of such system is that the 
dispersed phase has a negligibly low volume fraction (not mass fraction!). Dispersed two-
phase flows can be found in a broad range of engineering and scientific disciplines 
including biological, chemical, mechanical, meteorological, petrochemical, nuclear, 
aerospace, civil and environmental applications, ranging from droplet sprays in high-
speed combusting flow, pollutant dispersion, to bubbly pipe flows of nuclear reactors. 
The dispersed two-phase flows will be the primary interest of the current study. 
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1.3. Objective, Scope and Organization of Thesis 
In a broader sense, this dissertation is aimed at simulating dispersed two-phase flows 
using proper numerical techniques. Specifically, it presents a fundamental study of all 
essential components of computational and modeling issues for a successful large-eddy 
simulation (LES) of dispersed two-phase turbulent flows. Resent research activities have 
shown an intense trend of using LES to predict turbulent two-phase flows. It is generally 
believed that two-phase LES would show considerable promise when proper closure 
models become well established. The present work strives to advance the two-phase LES 
research by (i) formalizing various two-way coupling formulations and models, which are 
of fundamental importance and practical interest, and (ii) resolving the scale restrictions 
imposed to the particle size in a conventional two-phase simulation.  
 

Overall, the study is heavily approach-oriented rather than results-oriented. It is 
focused more on the right way, not just on the seemingly right results. A very large 
portion of this study is devoted to a careful development and interpretation of the theories 
and methodologies. The work is organized into the following three major parts.  
 

Part I focuses on the development, verification and validation of a transient, three-
dimensional, finite-volume-method (FVM) based accurate Navier-Stokes solver capable 
of tackling both laminar and turbulent flow problems. Chapter 2 supplies details of the 
implemented spatial and temporal discretizations. Schemes considered for the convective 
transport are Patankar’s generalized formula (Patankar 1980), which incorporates the 1st 
order upwind, hybrid, power-law, and 2nd order central differencing (CD), the 3rd order 
QUICK (quadratic upwind interpolation for convective kinematics) and 4th order CD; and 
schemes considered for the time integration are the 2nd order Adams-Bashforth. Solution 
of the coupled partial differential equations is attacked with a fractional step method 
proposed by (Kim and Moin 1985). In Chapter 3, the developed solver is verified in a 
systematic manner against a variety of benchmark laminar flows, including Couette-
Poiseuille flows, the developing channel flow, Taylor's vortex, free-shear layer, 
backward-facing step flow and the square cavity. It is shown that a second-order overall 
accuracy is achieved in both space and time. 
 

Part II concerns the modeling and large-eddy simulation (LES) of single-phase 
turbulent flows. In Chapter 4, a review of the LES theory, methodology and subgrid-
scale (SGS) models is presented. Resolution requirements in a LES are addressed. Three 
SGS models, namely, Smagorinsky model, dynamic model and implicit model, all with 
implicit filtering, are implemented and investigated. Large-eddy simulations are then 
carried out in Chapter 5 for three building-block turbulent flows, namely, turbulent 
channel flow, plane mixing layer, and flow past a square cylinder. Extensive comparisons 
of the first-, second-order statistics, and characteristic flow structures are made with 
direct numerical simulation (DNS) and/or benchmark experiments. The test results show 
superior quality of the present LES. 
 

Part III delves into the theory, modeling and simulation of dispersed two-phase 
flow systems. In Chapter 7 a conceptual review of the characteristics and description of 
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such systems is made, considering both Eulerian-Eulerian (E-E) and Eulerian-Lagrangian 
(E-L) approaches, but with an emphasis on the latter. Hydrodynamic forces acting on 
particles or bubbles are addressed in depth. Formulations regarding interphase coupling is 
reviewed. Typical computational treatments of modeled two-way coupling in E-L 
DNS/LES are summarized and evaluated. Issues related to interpolation are discussed. In 
Chapter 5 a general Lagrangian particle-tracking (LPT) program is developed and it is 
verified using analytical solutions and by considering the motion of a single rigid particle 
subject to various imposed flow fields, such as the oscillating flow, rotating flow and 
swirling flow. Chapter 5 is intentionally arranged before Chapter 6 because it can serve 
as a proper introduction to the topic of Lagrangian particle dynamics. 
 

A critical issue in the E-L approach is that, the particle size is required to be much 
smaller than the characteristic flow length scale and the computational grid size. This 
presents a considerable restriction of the E-L's applicability to practical engineering flows 
such as bubble column reactors. A two-layer concept, aimed at decoupling the particle's 
dynamic feature from the geometric feature, is proposed at end of Chapter 7. In this 
approach, the carrier phase and the dispersed phase are viewed as two independent 
computational layers, and the reverse coupling takes place at those discrete particle 
locations through modeled momentum exchange forces with the help of a predefined 
influence circle. A significant advantage is that the Eulerian grid can be constructed to a 
desired fineness (e.g., in the wall layer) without concerning with the particle size. Finally, 
in Chapter 8, this idea is proven to work well in an application of two-way coupled E-L 
LES to a locally aerated turbulent bubble column, with surprisingly good success. 
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Part I Numerical Solution of Navier-
Stokes Equations 
 
 
 
 
 

Chapter 2 Numerical Methods 
 
 
Here sought is an efficient numerical solution procedure to solve the unsteady, three-
dimensional (3D) Navier-Stokes (N-S) equations,  

 ( ) 0i
i

u
t x
ρ ρ∂ ∂

+ =
∂ ∂

, (2.1) 

 ( ) ( ) i
i j i i

j i j j

upu u u b
t x x x x

ρ ρ μ ρ
⎛ ⎞∂∂ ∂ ∂ ∂

+ = − + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
. (2.2) 

In that, the four primary flow field variables, i.e., three velocity components and the 
pressure, are functions of both space and time, and they need to be coped with in coupled 
manner. Density is kept as an optional variable. A discretization for a fully compressible 
flow, which incorporates a stress term due to the second viscosity (2nd term on the RHS 
of Eq. (1.10)), and possibly requires a coupling of the energy equation (1.14) and thermal 
dynamic properties, is avoided in this study. Discretization of these partial differential 
equations (PDE) follows the standard finite volume method (FVM). Some introductory 
material concerning FVM can be found for example, in (Patankar 1980; Hoffmann and 
Chiang 1993; Versteeg and Malalasekera 1995; Ferziger and Peric 1996; Wendt et al. 
1996; Chung 2002). For the sake of simplicity and solution efficiency, the computational 
grid is restricted to be orthogonal, i.e., they are aligned with Cartesian coordinate system.  
 

The text will start with a brief discussion on the computational grid or cell used in 
the present FVM. Discussed is a staggered grid arrangement used to accommodate the 
three velocity components and the pressure field. Next, a detailed derivation is presented 
for the discretization of a generalized transport equation. The generalized scheme of 
(Patankar 1980) is incorporated in this step. The transport equation under consideration 
can be regarded as a generalization of equation (2.2), so that the derived discretization 
can be equally applied to the three momentum equations. The five schemes contained in 
Patankar’s formulation are assessed in the following section. The standard discretization 
is then further generalized by introducing implicitness factors. As an important addition, 
the order of the method is improved by higher order schemes. In particular, the spatial 
accuracy can be improved by the 3rd order QUICK (quadratic upwind interpolation for 
convective kinematics) or the 4th order central differencing (CD), and a higher order 
temporal accuracy can be achieved with the 2nd order Adams-Bashforth scheme. It is then 
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followed by a description of a procedure for solving the coupled Navier-Stokes equations 
known as the fractional step (or projection) method, due to (Kim and Moin 1985). This 
procedure employs the idea of operator splitting, which essentially decouples the pressure 
from the solution of the velocity field. The discretization of the pressure equation, which 
arises from the fractional step procedure, is explicated in the subsequent section. The 
Poisson-type pressure equation is solved using the standard 2nd order central differencing, 
with an optional accuracy improvement using the 4th order deferred correction.  
 
 
2.1. Orthogonal and Staggered Grid 
In finite volume approach the solution domain is subdivided into a finite number of small 
control volumes (CVs), or computational cells, which have no overlap and together fill 
up the whole solution domain. In this study only the orthogonal grid is considered. In 
Figure 2-1 a typical two-dimensional CV (shaded area) is shown along with the notation 
to be used in the later sections. A capital letter indicates a CV node while a lower case 
letter represents the face of a CV. These letters suggest the relative orientation of a CV 
node or face with respect to the CV under consideration (shaded area with node “P” 
inside). For example, “W” denotes the node located west of the shaded CV, and “w” is 
the west face of it. A three-dimensional CV is also depicted in Figure 2-2 with additional 
bottom face (denoted by “b”) and top face (denoted by “t”) oriented in the z-direction. 
 
 The solution of the Navier-Stokes equation typically involves four unknowns, i.e., 
three velocity components and a pressure. The conservation properties can be readily 
achieved if the four variables are solved on a staggered grid arrangement (Patankar 
1980). That is, the pressure is solved on a main grid points, the x-direction velocity u is 
staggered in the x-direction with respect to the main grid, y-direction velocity v staggered 
in the y-direction, and w staggered in the z-direction. In Figure 2-1, the solid dots 
represent the main grid, the horizontal arrows indicate grid points of the u-velocity, and 
vertical arrows that of the v-velocity. It is noted that the staggered quantities (u, v and w 
velocities) are located at the face of the main grid. The N-S solver developed in the 
present study uses such a staggered grid system. 

 
Usually, there are two approaches to arrange the node and face locations. Either 

control volumes are first constructed and then the nodes are placed in the center of the 
corresponding control volumes, or, the cell nodes are defined first and then let cell faces 
lie midway between nodes. The advantage of the first approach is that the nodal value 
represents the mean of a control volume more accurately than it does in the second 
approach; and the advantage of the second approach is that the derivatives evaluated at 
cell faces, especially when central differencing is used, are more accurate than in the first 
approach. In this study, the second approach is adopted. 
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Figure 2-1 A typical 2D computational cell used in finite volume discretization 
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Figure 2-2 A typical 3D computational cell used in finite volume discretization 
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2.2. Discretization of a General Scalar Transport 
Equation 
2.2.1. Working Equation 
Consider a general three-dimensional scalar transport equation expressed in the integral 
form as 

 
CV CS CS CV

d d d S d
t φρφ ρφ φ∂

Ω + ⋅ = Γ∇ ⋅ + Ω
∂ ∫ ∫ ∫ ∫u n nS S , (2.3) 

and in the differential conservative form as 

 ( ) ( )j
j j j

u S
t x x x φ

φρφ ρ φ
⎛ ⎞∂ ∂ ∂ ∂

+ = Γ +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
, (2.4) 

with the velocity field satisfying the continuity equation, 

 ( ) 0j
j

u
t x
ρ ρ∂ ∂

+ =
∂ ∂

. (2.5) 

Here Γ represents a generic diffusion coefficient; Sφ includes all source terms as a 
function of φ ; j is the dummy index that runs from one to three (for a three-dimensional 
problem). The expression juρ φ  is usually called convection flux and jxφΓ ∂ ∂  called 
diffusion flux. By using continuity relation (2.5), equation (2.4) can be written in an 
equivalent but non-conservative form as 

 j
j j j

u S
t x x x φ
φ φ φρ ρ

⎛ ⎞∂ ∂ ∂ ∂
+ = Γ +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

. (2.6) 

On the one hand, it is desired to isolate the temporal derivative of φ from the density, as 
in Eq. (2.6), so that the influence of a fluctuating density field on an accurate evaluation 
of the temporal variation can be minimized. On the other hand, the conservative form of 
the convection term, as in Eq. (2.4), is preferred due to its capability of being combined 
with the diffusion term. Thus, (Patankar 1980) has suggested a slightly modified version 
of Eq. (2.4) and (2.6), in which the spatial derivative is kept in conservative form while 
the time derivative term on the left hand side (LHS) is split into two, the resulting / tρ∂ ∂  
substituted by the spatial derivative from continuity equation. This yields a proper 
working (or starting) equation for discretization. 

 ( )j j
j j j

u u S
t x x x φ
φ φρ ρ φ φ ρ

⎛ ⎞∂ ∂ ∂ ∂
+ − Γ − =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

. (2.7) 

Note that in the above equation the convective and diffusive fluxes have been grouped 
into one parenthesis. By introducing a mnemonic symbol Ji to denote the total 
(convection plus diffusion) flux of the scalar in all three directions, i.e., 

 ,i i
i

J u
x
φρ φ ∂

≡ − Γ
∂

 (2.8) 

Eq. (2.7) can be rewritten in a more compact way: 

 ( )i
j

j j

J u S
t x x φ
φρ φ ρ∂∂ ∂

+ − =
∂ ∂ ∂

 (2.9) 
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2.2.2. First Step in FVM 
The essence of the discretization in FVM is to apply the integral conservation equations 
(2.3) (or equivalently, the integrated form of Eq. (2.4), (2.7) or (2.9)) to each control 
volume in the solution domain, and to use certain approximation practice to yield a set of 
algebraic (discretized) equations for all CVs, so that they can be solved with the help of 
digital computer. Notice that summing up all the integral conservation equations on each 
CV yields a global conservation equation that has the same form as Eq. (2.3) and governs 
the entire solution domain (since surface integrals over all inner cell faces cancel out). A 
good discretization scheme should be able to preserve this global conservation property. 
 

The goal of this section is to discretize Eq. (2.7) or (2.9) with a generalized 
scheme (Patankar 1980) in a fully implicit fashion. Five frequently used (especially in 
RANS calculations) schemes, i.e., the 1st order upwind, the 2nd order central differencing 
scheme, the hybrid scheme, the power law scheme and the exponential scheme are 
compactly expressed via a so-called “A” function. Higher order schemes are presented in 
the subsequent sections. In conformity with the formulae derived in (Patankar 1980) 
similar notations shall be used in the following presentation, but with slight modification 
and generalization suitable for a true three-dimensional situation. A similar derivation 
based on the same literature can also be found in (Celik and Badeau 2003). 
 

Without loss of generality, let x, y, z denote three axes in Cartesian coordinates 
corresponding to x1, x2 and x3, and further let u, v, w denote three velocity components 
aligned with positive x, y and z, respectively. Thus,  

 

1

2

3

,

,

.

x

y

z

J J u
x

J J v
y

J J w
z

φρ φ

φρ φ

φρ φ

∂
= = − Γ

∂
∂

= = − Γ
∂
∂

= = − Γ
∂

 (2.10) 

Note that this orientation shall always be adopted in this study.  
 

Performing integration on both sides of Eq. (2.9) over a Cartesian computational 
cell (see Figure 2-1 and Figure 2-2) yields 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ,

e w n s

t b

x x y ye w n sCV A A A A

z z jt bA A CV CV
j

dV J dA J dA J dA J dA
t

J dA J dA u dV S dV
x φ

φρ

φ ρ

∂
+ − + −

∂
∂

+ − − =
∂

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
 (2.11) 

where those A’s appearing in the integral indicate a corresponding plane surface area of 
the control volume, on which the surface integral is calculated. Those surface integrals 
are the integrated total fluxes over the control volume faces; physically, they can be 
interpreted as certain amount of extensive property that is carried into or out of the 
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control volume within unit time. Let Jw, Je, Js, Jn, Jb, Jt denote such integrated total 
fluxes, i.e.,  

 

( ) ( )

( ) ( )
( ) ( )

, ,

, ,

, .

w e

s n

b t

w x e xw eA A

s y n ys nA A

b z t zb tA A

J J dA J J dA

J J dA J J dA

J J dA J J dA

≡ ≡

≡ ≡

≡ ≡

∫ ∫
∫ ∫
∫ ∫

 (2.12) 

Rewriting Eq. (2.11) with the above notation gives 

 ( )e w n s t b jCV CV CV
j

dV J J J J J J u dV S dV
t x φ
φρ φ ρ∂ ∂

+ − + − + − − =
∂ ∂∫ ∫ ∫ . (2.13) 

 
 
2.2.3. Approximation under Assumptions 
Note that up to this point all the equations presented above are exact; no approximation 
has been made yet. To achieve a discretized algebraic equation that gives reasonably 
accurate approximation to Eq. (2.13), certain assumptions are necessary. This will be 
worked term by term for Eq. (2.13) following major assumptions suggested by (Patankar 
1980). First, Pφ  and Pρ  is assumed to prevail over the whole control volume. Thus, the 
unsteady term on the left hand side (LHS) of Eq. (2.13) can be approximated by 

 P
PCV

dV V
t t

φφρ ρ ∂∂
= Δ

∂ ∂∫ , (2.14) 

and the last term on the LHS by 

 ( ) ( )j P jCV CV
j j

u dV u dV
x x

φ ρ φ ρ∂ ∂
=

∂ ∂∫ ∫ . (2.15) 

Second, the source term in general can be linearized as 
 C P PS S Sφ φ= + , (2.16) 
and similarly it is assumed to be constant within the control volume. This gives  
 ( )C P PCV

S dV S S Vφ φ= + Δ∫ . (2.17) 

Third, uniform distribution is assumed for quantities evaluated at cell faces, such as juρ . 
This implies that, e.g., if ρu is taken at point w (cf. Figure 2-1 and Figure 2-2) it then 
prevails over the whole west face. This leads to a further simplification for the expression 
on the right hand side (RHS) of (2.15). Before doing this, the following set of symbols 
should be defined to represent the mass flow rate through the faces of the control volume: 

 

( ) ( )

( ) ( )

( ) ( )

, ,

, ,

, .

w e

s n

b t

w eA A

s nA A

b tA A

F u dA F u dA

F v dA F v dA

F w dA F w dA

ρ ρ

ρ ρ

ρ ρ

≡ ≡

≡ ≡

≡ ≡

∫ ∫
∫ ∫
∫ ∫

 (2.18) 

Hence, with the assumption made, one may set 
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( ) ( )
( ) ( )
( ) ( )

, ,

, ,

, ,

w w e ew e

s s n ns n

b b e tb t

F u A F u A

F v A F v A

F w A F w A

ρ ρ

ρ ρ

ρ ρ

= =

= =

= =

 (2.19) 

where 

 
,
,
.

w e P P

s n P P

b t P P

A A y z
A A z x
A A x y

= = Δ Δ
= = Δ Δ
= = Δ Δ

 (2.20) 

Using the symbols introduced in Eq. (2.18) and (2.19), the RHS of (2.15) becomes: 

 ( ) ( )P j P e w n s t bCV
j

u dV F F F F F F
x

φ ρ φ∂
= − + − + −

∂∫ . (2.21) 

In the same manner, the integral total flux may be simplified to 

 

( ) ( )
( ) ( )
( ) ( )

, ,

, ,

, .

w w x e e xw e

s s y n n ys n

b b z t t zb t

J A J J A J

J A J J A J

J A J J A J

= =

= =

= =

 (2.22) 

Notice that the integral total fluxes and the mass flow rates are related, i.e., 

 

, ,

, ,

, .

w w w e e e
w e

s s s n n n
s n

b b b t t t
b t

J F A J F A
x x

J F A J F A
y y

J F A J F A
z z

φ φφ φ

φ φφ φ

φ φφ φ

∂ ∂⎛ ⎞ ⎛ ⎞= − Γ = − Γ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂
= − Γ = − Γ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂⎛ ⎞ ⎛ ⎞= − Γ = − Γ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (2.23) 

Now, substituting Eq. (2.14), (2.17) and (2.21) into Eq. (2.13) yields: 

 
( )

( )

P
P e w n s t b P e w n s t b

C P P

V J J J J J J F F F F F F
t

S S V

φρ φ

φ

∂
Δ + − + − + − − − + − + −

∂
= + Δ

 (2.24) 

 
 
2.2.4. Patankar’s Formulae 
In the end, one would like to set up algebraic equations for each control volume cast in 
the following form: 
 P P nb nba a bφ φ= +∑ . (2.25) 
Here a’s are the coefficients of the corresponding nodal variables, “nb” denotes 
neighboring nodes, b usually is a constant, can also be a function of φ evaluated at an old 
time level. 
 

If Eq. (2.24) is recast into the following,  
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( ) ( ) ( ) ( )

( ) ( ) ( ) ,

P
P rhs w w P e e P s s P n n P

b b P t t P C P P

V f J F J F J F J F
t

J F J F S S V

φρ φ φ φ φ

φ φ φ

∂
Δ = = − − − + − − −

∂
+ − − − + + Δ

 (2.26) 

one is then in a position to use the generalized scheme supplied by (Patankar 1980). This 
gives 

 
( ) ( )

( ) ( )
( ) ( )

, ,

, ,

, .

w w P W W P e e P E P E

s s P S S P n n P N P N

b b P B B P t t P T P T

J F a J F a

J F a J F a

J F a J F a

φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ φ φ

− = − − = −

− = − − = −

− = − − = −

 (2.27) 

where the coefficients a’s are determined from the following relations: 

 
( ) ( )

( ) ( )
( ) ( )

( Pe ) max ,0 , ( Pe ) max ,0 ,

( Pe ) max ,0 , ( Pe ) max ,0 ,

( Pe ) max ,0 , ( Pe ) max ,0 .

W w w w E e e e

S s s s N n n n

B b b b T t t t

a D F a D F

a D F a D F

a D F a D F

= + = + −

= + = + −

= + = + −

A A

A A

A A

 (2.28) 

In the above equations, those D’s represent diffusive conductance and have the same unit 
as the mass flow rate (those F’s). They are defined as  

 

, ,

, ,

, ,

w w e e
w e

w e

s s n n
s n

s n

b b t t
b t

b t

A AD D
x x
A AD D
y y
A AD D
z z

Γ Γ
= =

Δ Δ

Γ Γ
= =

Δ Δ
Γ Γ

= =
Δ Δ

 (2.29) 

F’s are provided in Eq. (2.19), and Pe is the grid Peclet number defined by 

 
Pe , Pe ,
Pe , Pe ,
Pe , Pe .

w w w e e e

s s s n n n

b b b t t t

F D F D
F D F D
F D F D

= =
= =
= =

 (2.30) 

Finally, “A” (not symbol A!) denotes a function whose selection will determine a certain 
discretization scheme. The expressions of the A-function have been summarized in 
(Patankar 1980), and repeated in following Table 2-1 merely for convenience in a future 
use. 
 

Table 2-1  The “A” function A(|Pe|) for different schemes (Patankar 1980) 

Scheme Formula for ( Pe )A  
1st order upwind 1 
Central differencing 1 0.5 Pe−  
Hybrid (Spalding 1972) ( )max 0,1 0.5 Pe−  
Power-law ( )( )5

max 0, 1 0.1 Pe−  

Exponential ( )Pe exp Pe 1⎡ ⎤−⎣ ⎦  
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2.2.5. Final Discretized Equations 
What remains now is the discretization for the unsteady term in Eq. (2.26). This is usually 
done with the 1st order backward (or implicit) Euler scheme that gives 

 ( )
o

o oP P P
P P P P PV V a

t t
φ φ φρ ρ φ φ∂ −

Δ = Δ = −
∂ Δ

, (2.31) 

where o
Pφ  denotes the nodal value evaluated at an old time level, and 

 o P
P

Va
t

ρ Δ
=

Δ
. (2.32) 

 
By using small time steps, the influence of the 1st order time integration on the 

overall accuracy of the scheme is negligible (Ferziger and Peric 1996). A higher order 
scheme for time integration, namely, the 2nd order Adams-Bashforth scheme, is presented 
in Section 2.5. 

 
With all the manipulations made above, one finally arrives at a fully implicit 

discretization formula summarized as follows: 
 P P W W E E S S N N B B T Ta a a a a a a bφ φ φ φ φ φ φ= + + + + + + , (2.33) 
where 

 
,

,

,

o
P C P P

C W E S N B T

o o
P P C

a a a S V
a a a a a a a

b a S Vφ

= + + Δ

= + + + + +

= + Δ

 (2.34) 

all the neighboring node coefficients (aw etc.) are provided in Eq. (2.28) to (2.30), and 
o

Pa  is given in Eq. (2.32).  
 
 
2.2.6. Solution of Linear Systems 
Let N denote the total number of control volumes, then, there are N algebraic equations 
(usually linear or linearized) in form of Eq. (2.33), and they together need to be solved 
simultaneously. The resulting system of equations can be written in matrix form, with the 
coefficient (or system) matrix having a sparse tri-diagonal block structure.  

 
The solution of the linear equation systems can be accomplished by employing 

classical iterative matrix solution methods, e.g., the Alternating Direction Implicit (ADI, 
a line-by-line method), the strongly implicit procedure (SIP, an incomplete LU 
decomposition method), the conjugate gradient (CG), the conjugate gradient square 
(CGS), the bi-conjugate gradient stabilized (CGSTAB), and the incomplete conjugate 
gradient (ICCG) method. For further details of these methods the readers are referred to 
the original papers (Peaceman and Rachfod 1955; Stone 1968; Sonneveld 1989; Golub 
and van Loan 1990; Van den Vorst and Sonneveld 1990; Van den Vorst 1992). 
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2.3. Assessment of Five Schemes 
A discretization should be a reasonable approximation to its parent equation, i.e., the 
continuum partial differential equation. One of the principle characteristics of a 
discretization scheme is how accurate the numerical solution associated with it can 
provide. The measure of the accuracy is termed as order of accuracy or order of the 
method/scheme or simply accuracy. The difference between the discretization equation 
and its continuum parent equation, called discretization error, is due to neglecting the 
truncated terms in Taylor series expansion of the discretized equation (e.g. Eq. (2.33)) 
about node P. The truncated terms usually contain factors Δxn; the power n of Δx governs 
the rate at which the error tends to zero as the grid spacing approaches infinitely small, 
thus the name order of the scheme or order of accuracy. By default, this order of accuracy 
should be understood as a local quantity (i.e., confined in CVs) instead of a global one 
that covers the entire computation domain and is very difficult to estimate (Mitchell and 
Griffiths 1980). 
 
 One can always show by means of Taylor series expansion that the upwind is 1st 
order accurate, central differencing is 2nd order. Although hybrid scheme and power-law 
scheme is also 1st order in terms of Taylor series truncation error, they proved in practice 
to be much more accurate than the 1st order upwind. The exponential scheme is exact for 
a one-dimensional problem, but its extension to multi-dimensional problem is not 
justified. 
 
 A further study (Hirsch 1988) on the truncation error terms of a certain 
discretization shows that the error terms with even-order derivatives are responsible for 
artificially diffusive (or dissipative) results (error in magnitude), and that the error terms 
with odd-derivatives are associated with the error on the phase of the solution (error in 
phase). Therefore, the former error is called the diffusion or dissipation error and the 
latter is called the dispersion or phase error. Numerical dispersion may corrupt large 
regions of solution with unphysical oscillations, and may lead to divergence of the 
numerical method. Therefore, the 1st order upwind, which contains a leading error term 
with a 2nd order derivative, usually produces fairly dissipative results. On the other hand, 
it is mainly due to the 3rd order derivative contained in the truncation error term that the 
2nd order central differencing sometimes generates oscillatory solutions.  
 

Other than the order of accuracy, three mathematical concepts are crucial in 
assessing a numerical discretization scheme. They are the consistency, convergence, and 
stability. A method is said to be consistent if the resulting system of algebraic equations 
from certain discretization procedure is equivalent to the original differential equation as 
the grid spacing tends to zero. A method is said to be convergent if the numerical solution 
approaches exact solution as the grid size goes to zero. A method is said to be stable if 
there is no exponential growth of round-off error as the computation proceed in time. 
Usually, the convergence property, albeit difficult to establish theoretically, can still be 
determined with the help of Lax’s equivalence theorem (Isaacson and Keller 1967; 
Richtmyer and Morton 1967; Mitchell and Griffiths 1980). The theorem states that given 
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a properly posed linear initial value problem and a consistent discretization method the 
stability is the necessary and sufficient condition for convergence. In other words, if a 
method is consistent and stable, it is also convergent. 
 
 In a computational fluid dynamics (CFD) simulation that uses a finite volume 
scheme it has been commonly accepted that the conservativeness, boundedness and 
transportiveness can serve as alternatives for the more mathematically rigorous concepts 
of consistency, convergence and stability (Versteeg and Malalasekera 1995). The three 
“engineering-sensed” properties are designed into all finite volume schemes and have 
been widely shown to lead to successful CFD simulations. A scheme is said to be 
conservative if a local conservation of a fluid property φ is guaranteed for each control 
volume, thus satisfying a global conservation on the entire solution domain. For the 
property to be locally conservative, consistent expressions for fluxes through the cell 
faces between two adjacent control volumes have to be ensured. The boundedness 
property tells the solution is bounded in the absence of sources. (Scarborough 1958) has 
shown that a sufficient condition for a convergent iterative method can be expressed as 

 
1 for all equations
1 for at least one equations

nb

P

a
a

≤⎧
⎨<⎩

∑ . (2.35) 

A matrix is diagonally dominant if the above criterion is satisfied. In fact, the diagonal 
dominance is a desirable feature for satisfying the boundedness. As it is well known that 
all flow processes involve both convective and diffusive effects. The transportiveness 
property is thus used to take into account the relative strength of diffusion to convection. 
 
 Having defined the three important properties for a numerical scheme, the five 
schemes derived in the proceeding section is briefly assessed here. A good thing is that 
all the five schemes presented in this section preserves conservation, because they all use 
consistent expression to evaluate convective and diffusive fluxes at the CV faces. Among 
the five schemes, the 1st order upwind always produces bounded solutions (robust), it also 
accounts for the direction of the flow (thus has transportiveness property), but its solution 
is highly diffusive. Although the central differencing is most accurate for multi-
dimensional calculation among the five schemes, it may produce unphysical solution with 
spurious oscillation when Pe > 2, often leading to a divergent solution; also it does not 
recognize the direction of the flow (no transportiveness). The hybrid scheme and power-
law are highly stable and also possess the transportiveness property. Reasonably accurate 
solutions are obtained for steady, quasi-one-dimensional flows (with one main flow 
direction). However, it is possible that the two schemes exhibit high artificial diffusivity, 
especially when the grid is not aligned with the main flow direction, e.g., the recirculation 
flow, leading to a seriously degraded solution (Leonard and Drummond 1995). Although 
the exponential scheme satisfies the same properties as the hybrid and power-law, but the 
evaluation of the exponential function is expensive, plus its extension to a 2D or 3D 
calculation is not justifiable.  
 

From the above discussion it can be concluded that the hybrid and power law are 
preferred when the flow is steady and has one main convective direction. For simulating 
unsteady, complex flows the central differencing should be used and its grid Peclet 
number should be monitored. Since hybrid and power law are highly robust, it is also 
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possible to use them at a certain percentage merely for the purpose of stabilizing and 
work on a more accurate explicit discretization, which does not involve a matrix solution. 
This point will become clear when the discussion develops in the following sections. 
 
 
2.4. Implicitness Factors 
In the previous section a fairly general discretization equation have been developed based 
on a fully implicit approach, meaning that all the unknowns are located at a new time 
level and should be solved simultaneously. Also recall that for the time integration the 1st 
order backward Euler has been used, which involves two time levels. A method that 
involves only two time levels is usually called a two-level method.  For a two-level 
method, the time discretization of the equation, 

 P
P rhsV f

t
φρ ∂

Δ =
∂

, (2.36) 

where frhs contains all the spatial discretized terms, and can be evaluated with an arbitrary 
implicitness in regard with the weight taken from the current and previous time levels. 
 
 Introduce an implicitness factor, α, whose value is between zero and one. Then, α 
portion of the RHS of Eq. (2.36) will be evaluated at the new time level while (1- α,) 
portion of the RHS at the old time level (denoted by superscript “o”), i.e., 

 ( )1 oP
P rhs rhsV f f

t
φρ α α∂

Δ = + −
∂

. (2.37) 

A value of α = 1 corresponds to a fully implicit scheme in which the coefficients derived 
in the previous section can apply, and α = 0 and 0.5 correspond to a fully explicit scheme 
and Crank-Nicolson (C-N) scheme, respectively. In case with the fully explicit scheme, 
the time integration becomes the 1st order forward (or explicit) Euler method. Also, the 
C-N can be viewed as an equal blending of the first order explicit and implicit Euler 
schemes. Only as such, a 2nd order temporal accuracy can be achieved for the diffusion 
terms. 
 

Very often, it is also desirable to have the option of making the implicitness of the 
convection terms and the diffusion terms separately. For this purpose, one should split frhs 
into the following three parts: 
 rhs conv diff othersf f f f= + + . (2.38) 
By further letting αconv and αdiff stand for the implicitness factor of the convection and 
diffusion terms, respectively, a scheme involving two independent implicitness factors 
can then be formulated as 

 ( ) ( )1 1o oP
P conv conv diff diff conv conv diff diff othersV f f f f f

t
φρ α α α α∂

Δ = + + − + − +
∂

. (2.39) 

It is important to recognize that fothers, for the case of a general scalar transport equation, 
contains the linearized source of the original equation (2.17), and should be treated in a 
usually way (Cf. previous section). With this modification, the new discretization 
equation for one CV can be reformulated by directly using the results obtained in the 
preceding section. This gives 
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( ) ( )1 1

P P W W E E S S N N B B T T

o o
conv conv diff diff

a a a a a a a

f f b

φ φ φ φ φ φ φ

α α

= + + + + +

+ − + − +
, (2.40) 

where 

 
,

,

,

o
P C P P

C W E S N B T

o o
P P C

a a a S V
a a a a a a a

b a S Vφ

= + + Δ

= + + + + +

= + Δ

 (2.41) 

and 

 

( )
( )
( )
( )
( )
( )

( Pe ) max ,0 ,

( Pe ) max ,0 ,

( Pe ) max ,0 ,

( Pe ) max ,0 ,

( Pe ) max ,0 ,

( Pe ) max ,0 ,

W diff w w conv w

E diff e e conv e

S diff s s conv s

N diff n n conv n

B diff b b conv b

T diff t t conv t

a D F

a D F

a D F

a D F

a D F

a D F

α α

α α

α α

α α

α α

α α

= +

= + −

= +

= + −

= +

= + −

A

A

A

A

A

A

 (2.42) 

with D’s and Pe’s given in Eq. (2.29) and (2.30) respectively. The expression for o
convf  

and o
difff  can also be deduced from Eq. (2.23) and (2.24), i.e., 

 ( )
( )

( )
1

o
w w e e s s n n b b t to

conv conv
P e w n s t b

F F F F F F
f

F F F F F F

φ φ φ φ φ φ
α

φ

− + − + −⎡ ⎤
= − ⎢ ⎥

+ − + − + −⎢ ⎥⎣ ⎦
, (2.43) 

 
and  

 ( )1

o

e w no
diff diff

t bs

A A A
x x y

f
A A A

y z z

δφ δφ δφ
δ δ δ

α
δφ δφ δφ
δ δ δ

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞Γ − Γ + Γ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥= − ⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥− Γ + Γ − Γ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

. (2.44) 

In Eq. (2.44) the operator δ is used to denote certain discretized approximation to the 
continuum partial derivative. Those terms evaluated at the new time level may be called 
implicit discretization and those at the old time level(s) explicit discretization. It should 
be remarked that (i) the second term in the square bracket of Eq. (2.43) usually is zero for 
the incompressible flow, and (ii) those values or derivatives evaluated at cell faces (Eq. 
(2.43) and (2.44)) should be approximated using the same discretization scheme as being 
used for the implicit part in general; however, it is also possible to calculate these 
quantities by employing a higher order scheme, which is dealt with in Section 2.6. 
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2.5. Time Integration with 2nd Order Adams-
Bashforth 
As already been explained in the previous sections, the backward Euler is a 1st order two-
level scheme for time discretization. To simulate unsteady flows, as is the case with 
unsteady RANS (Reynolds-averaged Navier-Stokes), large-eddy simulation (LES) and 
direct numerical simulation (DNS), a more accurate time discretization is desired if time 
step is not kept very small (Choi and Moin 1994; Manson et al. 1996; Manson and Wallis 
1997; Smith and Celik 1999). The accuracy of the time advancement can be improved by 
either incorporating more time levels, called Adams-methods, or inserting more 
evaluation data points within one time step, called Runge-Kutta (RK) methods. 
Description of these two families of methods can be found in many textbooks (Conte and 
de Boor 1980; Ferziger 1981; Burden and Faires 1989; Press et al. 1992; Chapra and 
Canale 1998). Adams methods and RK methods are originally devised in the solution of 
ordinary differential equations (ODE), but their idea is also applicable to the time-
dependent solution of partial differential equations (PDE). In Adams method two variants 
exist, namely, the explicit Adams-Bashforth (AB) method and implicit Adams-Moulton 
(AM) method. In what follows the concept of those families of methods are briefly 
described; popular formulae in each category are summarized. For simulations performed 
in the later chapters the 2nd order AB method shall be used whenever possible; the reason 
will become clear when the discussion develops in this section. 

 
Without loss of generality, an unsteady partial differential equation of the form 

 ( , )
t

f tφ φ∂
=

∂
, (2.45) 

where φ is a function of time and space, is first simplified to an ordinary differential 
equation 

 ( , )
dt
d f tφ φ= , (2.46) 

with the assumption that φ is a function of t only; however, the formulae derived later in 
this section should be justifiable for the application in an unsteady problem like Eq. 
(2.45). 
 
 
2.5.1. Adams Methods 
The basic idea of Adams methods is to fit a polynomial to the time derivative using a 
number of points at different time levels. Let superscript n denote the time level. By 
using Maclaurin series of φ about φn and letting Δt denote a constant time step size, 
variable φ at time level n+1 can be expressed as 

 ( ) ( )2 31 1 1( ) ...
2 6

n n n n n
n t tt tttt t t t tφ φ φ φ φ φ+ = + Δ = + Δ + Δ + Δ + , (2.47) 

where subscript t denote partial derivative with respect to time (not top face here!), and 
by Eq. (2.46) 
 ( , )n n

t nf tφ φ= . (2.48) 
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The higher order derivatives are then approximated by backward differences using Eq. 
(2.48): 

 

1 1
1

1 1 2
1 2

( , ) ( , ) ,

( , ) 2 ( , ) ( , )

n n n n
n t t n n
tt

n n n n n
n tt tt n n n
ttt

f t f t
t t

f t f t f t
t t

φ φ φ φφ

φ φ φ φ φφ

− −
−

− − −
− −

− −
= =

Δ Δ
− − +

= =
Δ Δ

 (2.49) 

and so on. Substituting Eq. (2.48) and (2.49) into (2.47) and truncating the higher order 
terms accordingly, the 1st (forward Euler), 2nd and 3rd order Adams-Bashforth formula are 
obtained, respectively: 
 1 ( , )n n n

nt f tφ φ φ+ ⎡ ⎤= + Δ ⎣ ⎦ , (2.50) 

 1 1
13 ( , ) ( , )

2
n n n n

n n
t f t f tφ φ φ φ+ −

−
Δ ⎡ ⎤= + −⎣ ⎦ , (2.51) 

 1 1 2
1 223 ( , ) 16 ( , ) 5 ( , )

12
n n n n n

n n n
t f t f t f tφ φ φ φ φ+ − −

− −
Δ ⎡ ⎤= + − +⎣ ⎦ . (2.52) 

Note that Adams-Bashforth method is explicit in nature. Its implicit counterpart is called 
Adams-Moulton method, in which the approximation of derivatives involves points at 
time step n+1. Its 1st order (backward Euler), 2nd (also called trapezoid rule) and 3rd order 
formulae are given as 
 1 1

1( , )n n n
nt f tφ φ φ+ +

+⎡ ⎤= + Δ ⎣ ⎦ , (2.53) 

 1 1
1( , ) ( , )

2
n n n n

n n
t f t f tφ φ φ φ+ +

+
Δ ⎡ ⎤= + +⎣ ⎦ , (2.54) 

 1 1 1
1 15 ( , ) 8 ( , ) ( , )

12
n n n n n

n n n
t f t f t f tφ φ φ φ φ+ + −

+ −
Δ ⎡ ⎤= + + −⎣ ⎦ . (2.55) 

It is also a common practice that two families of methods are combined to produce some 
mixed methods. For example, one may use 2nd order Adams-Bashforth method as a 
predictor, and apply 3rd order Adams-Moulton method as a corrector.  
 
 
2.5.2. Runge-Kutta Methods 
Different from Adams methods, the Runge-Kutta methods do not need data points from 
less than time level tn; instead, they use several intermediate points between tn, and tn+1, 
and special slope averaging schemes to determine φn+1, which can be written in the 
general form of 
 1n n

l l
l

t kφ φ α+ = + Δ ∑ . (2.56) 

Here k’s are the slopes evaluated at intermediate points and α’s are the relative weight of 
the corresponding slope; the summation of all α’s is unity.  
 

A 2nd order RK method will be of the form 
 ( )1

1 1 2 2
n n t k kφ φ α α+ = + Δ + , (2.57) 

where 1 ( , )nk f t φ=  and 
 2 1 2 1( , )n

nk f t t t kβ φ β= + Δ + Δ . (2.58) 
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To define the scheme it is necessary to determine the constants α1, α2 and β1, β2. Taylor 
series expansion of k2 about tn and φn gives 

 
( ) ( )

( ) ( )

2
2 1 2 1

, ,

2
1 1 2 1

( , ) ( )

( )

n n
n n

n
n

t t

n n
t

f fk f t t t k O t
t

k t f t k f O t
φ φ

φ

φ β β
φ

β β

∂ ∂
= + Δ + Δ + Δ

∂ ∂

= + Δ + Δ + Δ

, (2.59) 

where nfφ  denotes partial derivative of f with respect to φ evaluated at (tn, φn), and 

similarly for n
tf . Substitute Eq. (2.59) into (2.57) yields 

 
( ) ( )( )

( ) ( ) ( )

1 3
1 1 2 1 1 2 1

2 3
1 2 1 2 1 2 2 1

( )

( )

n n n n
t t

n n n
t t

t k k t f t k f O t

t k t f k f O t

φ φ α α β β

φ α α α β α β

+ ⎡ ⎤= + Δ + + Δ + Δ + Δ⎣ ⎦

= + Δ + + Δ + + Δ
. (2.60) 

At the same time, expanding φn+1 about tn using Taylor series (see Eq. (2.47)) and 
recognizing the following relation due to train rule 

 1
( , )

tt
Df t f f d f fk

Dt t dt t
φ φφ

φ φ
∂ ∂ ∂ ∂

= = + = +
∂ ∂ ∂ ∂

 (2.61) 

gives 

 ( )2
1 3

1( ) ( )
2

n n n
n t

t f ft t t k O t
t

φ φ φ φ
φ

+ Δ ⎛ ⎞∂ ∂
= + Δ = + Δ + + + Δ⎜ ⎟∂ ∂⎝ ⎠

. (2.62) 

A term-by-term comparison of Eq. (2.60) and (2.62) gives 

 

1 2

2 1

2 2

1,
1 ,
2
1 .
2

α α

α β

α β

+ =

=

=

 (2.63) 

The system consists of four equations with four unknowns. If any one of the parameters 
is specified, the system can be determined. For example, letting β1= 1 leads to one of the 
popular version of 2nd order RK method, i.e., 

 

( )

1

2 1 1

1
1 2

( , ),

( , ),

,
2

n
n

n
n

n n

k f t

k f t t k
t k k

φ

φ

φ φ

+

+

=

= + Δ
Δ

= + +

 (2.64) 

or prescribing α1 =1 gives an alternative 2nd order RK, i.e., 

 

1

2 1 1
2

1
2

( , ),

( , ),
2

.

n
n

n
n

n n

k f t
tk f t k

t k

φ

φ

φ φ

+

+

=
Δ

= +

= + Δ

 (2.65) 

 
Following similar procedure, any order of RK method can be derived. A 3rd order 

RK formula is given by 
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 (2.66) 

and a 4th order RK is given by 
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 (2.67) 

 
 
2.5.3. Adams Methods vs. Runge-Kutta Methods  
In general, a method is called stable if it produces bounded solution. An unstable method 
is due to the fact that any errors (e.g. numerical errors, round-off errors etc.) introduced 
into the computation are amplified as computation progresses. It is known that for the 
forward Euler method, stability condition requires: 

 ( , )1 1f tt φ
φ

∂
+ Δ <

∂
. (2.68) 

For a real valued function f, as in the present case, Eq. (2.68) reduces to  

 ( , ) 2f tt φ
φ

∂
Δ <

∂
. (2.69) 

Therefore, for explicit Euler the time step Δt cannot be too large and its size should be 
monitored by Eq. (2.69). On the other hand, the backward Euler method is 
unconditionally stable, meaning that they produced bounded solution as long as the 
underlying exact solution is also bounded, i.e., 0f φ∂ ∂ < . Performing some 
mathematical analysis (Conte and de Boor 1980; Burden and Faires 1989) one can show 
that the Adams family of methods offers relatively good stability properties. However, in 
practice all multi-step methods will exhibit some instability for some range of step sizes; 
and it can be further shown that the AM implicit methods have regions of stability that 
are more than ten times larger than those for the AB methods of the same order (Conte 
and de Boor 1980). Also, it is well agreed that the Runge-Kutta method is more stable 
than the Adams method of the same order (Ferziger and Peric 1996). 
 

The Adams methods mainly offer two advantages. Above all, they are easy to 
construct and implement. It is the case especially for the explicit Adams-Bashforth 
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methods since the implicit coefficients in a discretized equation would not be changed, 
and only minimal modification for the explicit flux is necessary. Second, the Adams 
methods require only one evaluation per time step. This advantage becomes important 
when intensive computation is heavily involved, e.g., calculation for an unsteady three-
dimensional flow; the time gain makes it a worthwhile choice.  

 
But, as it can be seen from Eq. (2.50) to (2.52) that 1st, 2nd and 3rd order AB 

schemes require data points from two, three and four time levels, respectively. This 
makes a higher order Adams scheme expensive because, for example, the 3rd order one 
will need doubled data storage as compared to the 1st order Euler. For this reason, for the 
solution of partial differential equation only the low order methods are considered. 
Another drawback is that the Adams methods are not self-starting, meaning that at the 
beginning of time advancement other methods have to be used, and they will start to kick 
in once the required number of time levels is available. But this shall not be a big 
problem in practical use because one usually starts with a stable scheme, say, the 1st order 
implicit Euler, and with a small (even a big) time step to achieve some preliminary flow 
field, which serves as the new initial condition for a more accurate run, e.g., the 2nd order 
Adams-Bashforth method. 

 
 On the other hand, the RK methods can start right from the initial stage (self-
starting), and a RK method is more stable and slightly accurate than an Adams method of 
the same order (Ferziger and Peric 1996). But at the same time, the advantage of the 
Adams methods also becomes the disadvantages in RK. In particular, at each time step, 
for a RK scheme of order n, the derivatives need to be evaluated n times, making the 
scheme cumbersome and potentially expensive.  
 
 Clearly, a perfect scheme would be to use two-level RK in the initial stage, and 
then switching to a combined Adams method, say, the 2nd order AB as predictor and 3rd 
order AM as corrector. For the research code developed in the present study the 2nd order 
AB is preferred because it features simplicity, efficiency and a desired order of accuracy. 
Also note that all methods will produce good solutions so long as time step is small 
(Ferziger and Peric 1996).  
 
 
2.6. Higher Order Schemes with 3rd order QUICK 
and 4th order CD 
At the end of Section 2.4 it is mentioned that the explicit discretization could be either 
consistent with the implicit discretization, or use a more accurate discretization scheme. 
Note that the implicit discretization is directly linked to the resulting matrix structure. For 
example, the formula derived in Section 2.2 will yield a band-structured matrix that can 
be solved with some efficient routines such as ADI, SIP and CGSTAB. However, when 
one increases the order of the method for the implicit part, a larger computational 
molecular (or coefficients structure) will result in the discretized equation, and the 
produced system of equations would then be very expensive to solve. On the other hand, 
the relatively low-order implicit discretizations with a maximum order being two are 
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fairly robust and they find wide applicability especially in the RANS (Reynolds-averaged 
Navier-Stokes) simulations. Further, the robustness of the implicit part can be useful in 
stabilizing a high-order explicit scheme by way of adjusting the implicitness factors (cf. 
Section 2.4). Given these, in the current study high-order spatial discretization schemes 
are implemented preferably for explicit part only. Also, it is well known that the 2nd order 
central differencing is usually good enough for the diffusion terms, a high-order scheme 
therefore refers to the convection terms only. This default terminology shall be frequently 
used in this text. The methods to be considered herein are the 3rd order QUICK (quadratic 
upwind interpolation for convective kinematics) due to (Leonard 1979), and the 4th order 
central differencing (CD).  
 
 Remark that the central distinction among all schemes is that how the cell face 
values are evaluated. The 1st order upwind takes only a first upstream node and nothing 
from downstream, while the 2nd order central takes one node on either side. Following 
this line of thinking, a natural improvement will be to take two upwind nodes and one 
downstream node, i.e., the QUICK scheme. In this way not only one more node is 
involved but also the direction of the flow is considered (transportiveness). The scheme 
can be best understood by considering a one-dimensional cell displayed in Figure 2-3. 
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WW EE

uw ue
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Δxw Δxe

φWW

φW φP

φE

 
Figure 2-3 Quadratic interpolation used in QUICK scheme 

 
Here the same notation as those in Section 2.2 is used. In addition, “WW” denotes 

a further node west of node “W”, and “EE” denote a further node east of node “E”. When 
uw > 0, one takes two upstream nodes “WW”, “W” and one downstream node “P” to fit a 
quadratic polynomial which is used to evaluate the face value φw; when uw < 0, one then 
picks nodes “W”, “P” and “E” for the quadratic interpolation of φw. It works similarly for 
φe and face values in other directions. On uniform grid this practice gives, for example for 
the west and east face, 

 
( )

( )

1 6 3 0,
8
1 3 6 0,
8

WW W P w

w

W P E w

u

u

φ φ φ
φ

φ φ φ

⎧ − + + >⎪⎪= ⎨
⎪ + − <
⎪⎩

 (2.70) 
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and  
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8
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e

P E EE e
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φ φ φ
φ

φ φ φ

⎧ − + + >⎪⎪= ⎨
⎪ + − <
⎪⎩

 (2.71) 

An extension of the formula to other directions is straightforward and abridged here. A 
formula base on non-uniform Cartesian grids can also be found in (Ferziger and Peric 
1996). In an explicit discretization it should be understood that those nodal values used in 
the interpolation come from an old time level.  
 
 The 4th order central differencing, on the contrary, does not take into account the 
flow direction. It simply uses two nodes on both upstream side and downstream side for a 
cubic polynomial interpolation. This gives the following formulae on a uniform grid: 

 ( )1 9 9
16w WW W P Eφ φ φ φ φ= − + + − , (2.72) 

and 

 ( )1 9 9
16e W P E EEφ φ φ φ φ= − + + − . (2.73) 

For non-uniform grid, the complete expression is cumbersome and Lagrangian 
polynomial may be used for that purpose. 
 
 
2.7. Fractional Step (Projection) Method 
The fractional step (projection) method presented here follows closely the one proposed 
by (Kim and Moin 1985). A brief review of this method can also be found in the text of 
(Ferziger and Peric 1996). In essence, the method originates from the idea of operator 
splitting, i.e., splitting the solution procedure of Navier-Stokes equations into two steps: a 
prediction step followed by a projection step. Unlike the traditional SIMPLE (semi-
implicit method for pressure-linked equations) class of N-S solution procedure (Patankar 
1980), the fractional step approach uncouples the solution of velocity field from the 
solution of pressure, and does not ask for inner iterations within one time step. The 
continuity of the velocity field is ensured by the projection step. 
 

Suppose the discretized equation has the following form 

 
1( ) ( )n n

p
t

ρ ρ+ −
= + − ∇

Δ
u u conv diff , (2.74) 

where u is the velocity field, p denotes pressure or a pressure-like variable (pseudo-
pressure), conv and diff represent the convection and diffusion terms in the N-S 
equations, respectively, the superscripts indicate the time level. For a variable density 
flow, one wishes to uncouple density from the solution of velocity. One way is to assume 
the density change within the time step is negligible, and let ρn+1 = ρn; once the velocity 
field is advanced to a new time level, density could be updated accordingly. Thus, one 
writes, 
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1n n

n p
t

ρ
+ −

= + − ∇
Δ

u u conv diff . (2.75) 

For an incompressible flow with constant density, as is in the present study, Eq. (2.74) 
and (2.75) are equivalent. 
 

In the prediction step, pressure term is ignored, only a tentative velocity field, û , 
is solved: 

 
ˆ n

n

t
ρ −

= +
Δ

u u conv diff . (2.76) 

The action of the pressure is taken into account in the projection step, i.e., 

 
1 ˆn

n p
t

ρ
+ −

= −∇
Δ

u u . (2.77) 

Eq. (2.77) can be rewritten as 

 1 ˆn
n

t p
ρ

+ Δ
= − ∇u u . (2.78) 

 
Note that the velocity field û  obtained after the prediction step generally does not 

preserve continuity. The very role of the pressure appearing in the projection step (2.77) 
is to correct û  in such a way that continuity of the final velocity field at the new time 
level is satisfied. That is, the tentative velocity field û  is projected onto a divergence-free 
field un+1. 

 
To find the pressure (or pseudo-pressure) that will turn û  into a divergence-free 

field un+1, one takes divergence of both sides of Eq. (2.77). This yields, for the case of an 
incompressible flow, 

 ( ) ( )2
ˆ1 1ˆ

n
i

i

u
p

t t x
δ ρ

ρ
δ

∇ = ∇ ⋅ ≅
Δ Δ

u , (2.79) 

and the case of a variable density flow, 

 ( ) ( )2
ˆ1 1ˆ

n
i

i

u
p

t t t x t
δ ρρ ρρ

δ

⎡ ⎤∂ ∂⎡ ⎤∇ = ∇ ⋅ + ≅ +⎢ ⎥⎢ ⎥Δ ∂ Δ ∂⎣ ⎦ ⎢ ⎥⎣ ⎦
u , (2.80) 

where δ here is the discrete representation of the gradient operator. Equations (2.79) and 
(2.80) are of Poisson type, and they are usually solved with either Neumann or periodic 
boundary conditions. It has been known that, if pressure boundary conditions are either 
periodic or homogeneous Neumann, the differencing equation system of the Poisson 
equation will be singular, and it will give either no solution, or multiple solutions. To 
ensure a unique solution, the sum of the RHS of the discrete equations over all cells 
should be zero, or have a numerical error less than 10-6 (Su et al. 2001).  
 
 To summarize the procedure, one first seeks a predicted velocity field, û , via Eq. 
(2.76), then solve the pressure field with Eq. (2.79) or (2.80), and finally correct û  by Eq. 
(2.78). These steps are also depicted in a flow chart (Figure 2-4). 
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 A variant of the projection method, known as projection-correction method 
(Hirsch 1990) exists, in which pressure term is not removed in the prediction step. In this 
case, a pressure correction field, instead of pressure or pseudo-pressure, is solved. Once 
the pressure correction is available, not only velocity but also pressure is then updated.  
 
 

Initialization of flow field

Time marching

Calculating predicted u-velocity component

Calculating predicted v-velocity component

Calculating predicted w-velocity component

Start

Data input

Grid generation

Calculating pseudo-pressure field

Solution output

Projecting predicted u-, v-, w-velocity onto a
divergence-free field

New time step?

Stop

No

Yes

 
Figure 2-4 Flow chart of fractional step (projection) method for the solution of Navier-Stokes 

equations. 
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2.8. Discretization of Pressure Equation and 4th 
Order Deferred Correction  
In this section a brief presentation of the discretization for the pressure equation (2.80) is 
made. Similar assumptions and simplifications as addressed in Section 2.2 should apply 
here as well.  
 
 As usual, Eq. (2.80) is first integrated over a Cartesian control volume to yield an 
integral form. The resulting first derivatives on the LHS are assumed to be constant over 
the cell face and can be discretized with the 2nd order central differencing. This gives: 
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(2.81) 

where Ax, Ay and Az denote the areas of the cell faces aligned in x, y and z directions 
respectively. With proper assumptions, the integral form of the RHS of Eq. (2.80)turns 
into terms expressed at cell faces, i.e., 
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 Rearranging terms and defining the following coefficients 
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one arrives at the discretized equation for the pressure 
 P P W W E E S S N N B B T Ta p a p a p a p a p a p a p b= + + + + + + , (2.84) 
where b is given as the negative of the RHS of Eq. (2.82) evaluated using the 
approximate velocity field û , v̂  and ŵ . 
 
 The order of the above CD discretization is 2nd order if the grid is uniform. 
However, there will be accuracy loss if it is applied to a non-uniform grid. To remedy this 
deficiency one may employ the so-called deferred correction method (Khosla and Rubin 
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1974). In that, one keeps a lower order implicit discretization, and adjusts it into a higher 
order scheme by explicitly eliminating the lower-order fluxes and then adding the explicit 
higher-order fluxes evaluated from the previous iteration or time step. For example, at the 
west cell face, one can write 
 ( )oL H L

w w w wF F F F= + − , (2.85) 

where L
wF  stands for the flux approximation by some lower order scheme and H

wF  is the 
higher order approximation. Due to the elliptic nature of the Poison equation, one should 
use the 4th order central differencing to approximate the explicit flux H

wF . The formula 
presented in Section 2.6 for uniform grid is also applicable to this case. A key benefit of 
this method is the accuracy gain, while retaining the banded matrix structure represented 
by Eq. (2.84). One has to bear in mind that a higher order approximation does not 
necessarily guarantee a more accurate solution on any single grid; high accuracy is 
achieved only when the grid is sufficiently fine to capture the essential details of the 
solution (Ferziger and Peric 1996). 
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Chapter 3 Verification of Flow Solver 
 
 
In this chapter the aim is to verify a self-developed finite-volume-method based Navier-
Stokes solver that solves transient, both two-dimensional (2D) and three-dimensional 
(3D) flow problems. The implementation of the solver follows the numerical methods 
presented in the preceding chapter. The solver will be tested on various benchmark 
laminar flow problems. Obtained numerical solutions will be compared with analytical, 
experimental or other widely accepted calculations. The laminar flow cases considered 
herein are Couette-type flows, injection and suction flow, laminar channel flow, Taylor’s 
vortex, shear-layer, flow past a backward-facing step and lid-driven square cavity. In all 
situations the flow is assumed to be steady state, 2D or quasi-2D and with constant 
properties, i.e., constant density and viscosity. Note that although the flow problems can 
be simplified to a quasi 1D or 2D ones, the developed solver itself is 3D. That is, all the 
three dimensions enter the calculation but with the solution exhibiting proper 1D or 2D 
behaviors. Pressure has to be solved in the numerical procedure to enforce continuity. In 
the case of an imposed pressure gradient (e.g. the Poiseuille flow) it is also possible to 
add this constant gradient into the momentum source and solve a pressure-like variable to 
adjust continuity. It is agreed in this chapter that the streamwise direction always refers to 
the x-direction, and the cross-stream direction corresponds to the y-direction. Also note 
that u-velocity is always aligned with the x-direction and v-velocity with the y-direction. 
 
 
3.1. Couette Flow Between a Fixed and a Moving 
Plate 
A schematic sketch of the flow configuration is shown in Figure 3-1. The upper plate is 
moving at a constant velocity while the lower plate is fixed. By assuming zero pressure 
gradients and no flow in the y-direction the Navier-Stokes equations can be simplified to 
a quasi one-dimensional problem: 

 2

2

0,

0 .

u
x
d u
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μ

∂
=

∂

=
 (3.1) 

The analytical solution is a linear profile given by 

 1
2
U y hu

h
−⎛ ⎞= +⎜ ⎟

⎝ ⎠
, (3.2) 

where U is the upper plate velocity, h is the half-channel height (White 1991). Note that 
the origin used herein is located at the bottom wall whereas it is placed in the middle in 
White’s book, and this coordinate arrangement should be adopted as default in the 
following sections without further mention. 
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Figure 3-1 Couette flow between a fixed and a moving plate 

 
 Numerically a full set of Navier-Stokes equations should be solved. With properly 
posed boundary conditions the numerical solution should exhibit the quasi-1D behavior. 
Thus, periodic boundary condition is applied in the streamwise direction; in the vertical 
direction no-slip wall condition is applied at the lower bound while slip wall with a 
constant plate velocity U is imposed at the upper bound. Calculation as well as the 
boundary conditions in the z-direction is neglected. In a fractional step method (see 
Section 2.7) the pressure or pseudo-pressure variable is uncoupled from the momentum 
equation, and solved via a Poisson type equation with Neumann boundary conditions. 
The resulting pressure or pseudo-pressure is used to correct a predicted velocity field, 
thus enhancing continuity.  
 
 The computational domain is sized as 1.0m × 0.2m in x- and y- direction, 
respectively. A uniform grid of 50 cells in x and 20 cells in y direction is used within the 
computational domain. This corresponds to a grid spacing of 0.02m in x and 0.01m in y 
direction. A constant velocity of 1 m/s is used for the moving upper plate and the 
Reynolds number based on the channel height and upper plate velocity is 100.  
 

The Crank-Nicolson (C-N) is used for time discretization, corresponding to a fifty 
percent of implicit discretization and fifty percent explicit discretization. The power-law 
is used for implicit spatial discretization and the 2nd order central differencing is used for 
explicit spatial discretization. The pressure-related Poisson equation is solved using the 
4th order deferred correction. Note that the 4th order deferred correction is always used for 
solving Poisson equation unless otherwise mentioned.  

 
The computation is started with a stationary flow field. A time step of 0.1s is used 

for time advancement. The time iteration is stopped when no appreciable change is 
observed in the flow field, i.e., the steady state is reached. A normalized global mass 
residual (normalized by mass flow rate at the inlet) of order 10-8 is achieved.  

 
The obtained u-velocity contour is displayed in Figure 3-2(a), showing a linear 

increase in magnitude along the vertical direction and a uniform distribution in the 
streamwise direction. A vertical line is then extracted at an x-station close to the outlet 
and compared with the analytical solution given by Eq. (3.2). This is shown in Figure 
3-3(a) with vertical position normalized by the channel height and velocity normalized by 
the upper plate velocity. The two curves well coincide. The exact error, which is defined 
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as the difference between the exact and calculated values, i.e., uexa – ucalc, is shown in 
Figure 3-3(b) and it is of order 10-7.  

 
Due to the nature of 2D calculation the contour plots for v- velocity and pressure 

are also displayed in Figure 3-2(b) and Figure 3-2(c) respectively. It is seen that in a 2D 
calculation these quantities may not be strictly zero or zero gradients; some noise may 
exist owing to the limitations in the iterative convergence as well as approximations in 
the boundary condition implementation. Overall, the results from the present computation 
with fairly coarse grid conform well to the analytical solution. 
 
 
3.2. Couette-Poiseuille Flow Between a Fixed and a 
Moving Plate 
A little different from the Couette flow in the preceding section is that a constant pressure 
gradient is imposed in the streamwise direction. This gives 

 2

2

0,

.

u
x
d u dp
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μ

∂
=

∂

=
 (3.3) 

The analytical solution (White 1991), given by  

 
2 2

Po 1 , Po
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u y y h dp h
U h h dx Uμ
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, (3.4) 

is a superposition of Couette wall-driven flow (the first term on the RHS) and Poiseuille 
pressure-driven flow (the second term). Note that in Eq. (3.4) Po can be regarded as a 
dimensionless pressure gradient (with opposite sign of the actual pressure gradient). 
 
 The computation is performed using the same geometry, grid and scheme. The 
Reynolds number based on the channel height and upper plate velocity is again 100. The 
constant pressure gradient is imposed as a constant source onto the RHS of the 
momentum equation. A pressure-like variable still needs to be solved to take care of the 
global continuity, but with the expectation of a nearly uniform distribution.  
 
 The results are first illustrated with Po = 1. The contour plots of u-velocity, v- 
velocity and pressure are shown in Figure 3-4(a) through (c). Notice that the increase of 
the streamwise velocity along the vertical direction is no longer linear, resulting from the 
influence of constant pressure gradient. Also, as expected, the vertical velocities are near 
zero everywhere; the pressure-like variable varies insignificantly with an order of 
magnitude 10-6. 
 
 Next, the dependency of the u-velocity on the dimensionless pressure gradient Po 
is reproduced. For this purpose a series of computations is performed at different Po, and 
the u-velocity profiles are then collected and combined into a single Figure (Figure 3-6). 
In all cases the calculated profile is in complete compliance with the exact solution. It is 
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worthwhile to mention that (i) at Po = 0, the flow turns to exactly the same Couette flow 
addressed in the preceding section, (ii) at Po = -1/4 the shear stress /u yμ∂ ∂ at the lower 
wall is zero, indicating a critical number below which a flow separation will occur, and 
(iii) when Po < -1/4 the flow is separated due to a strong positive pressure gradient, 
resulting in the so-called backflow; this phenomenon is shown in Figure 3-7 for the flow 
calculated at Po = -1/2. 
 
 To determine the order of accuracy of the current power-law scheme, three 
calculations are performed with three different mesh sizes at the same Reynolds number 
and Po value (equal unity). Since the numerical solution for u-velocity is constant along 
horizontal line and does not depend on the grid resolution in that direction, a systematic 
refinement of the grid is only necessary in y-direction. With a refinement factor of two, 
the three grids have 20, 40 and 80 internal cells in the vertical direction, respectively. The 
data of relevance to error analysis from three different runs are listed in Table 3-1, in 
which h denotes the grid size, href refers to the finest grid (here 80), εmax is the maximum 
exact absolute error, and umax is the maximum u-velocity. Thus, the three non-
dimensional grid sizes normalized by href are 1, 2 and 4, ordered from the finest to 
coarsest. Similarly, the exact absolute errors normalized by the maximum u-velocity 
gives a non-dimensional measure for the absolute error. Note that here the maximum 
error has been used as the error norm, and this norm is regarded as the one of the most 
stringent criteria. Other error measures also exist such as the RMS error, where average is 
taken on the square root of the summation of squares of the exact error at all computed 
grid nodes. 
 

Table 3-1 Order of method analysis for the calculations of Couette-Poiseuille flow between a fixed 
and a moving plate; schemes considered: semi-implicit power-law, implicit 2nd order CD. 

grid in y h/href εmax umax εmax/umax ln(h/href) ln(εmax/umax) slope 
C-N, power-law       

80 1 1.5998E-04 1.5625 1.0239E-04 0.0000 -9.1867  
40 2 6.2575E-04 1.5625 4.0048E-04 0.6931 -7.8228  
20 4 2.5098E-03 1.5650 1.6037E-03 1.3863 -6.4354 1.9847 

Implicit, 2nd CD       
80 1 1.5651E-04 1.5625 1.0017E-04 0.0000 -9.2087  
40 2 6.0284E-04 1.5625 3.8582E-04 0.6931 -7.8601  
20 4 2.5006E-03 1.5650 1.5978E-03 1.3863 -6.4391 1.9978 

 
  According to Richardson’s theory (Richardson 1910; Richardson and Gaunt 
1927), the absolute error is proportional to the grid size, i.e. 
 nChε = , (3.5) 
where C is a constant and n represents the order of a method. Eq. (3.5) has been accepted 
sort of as a defacto standard for verifying the order of a numerical scheme. In literature 
one usually use the logarithmic form of Eq. (3.5) to produce a linear relationship between 
the error and grid size, i.e., 
 ln ln lnC n hε = + . (3.6) 
The advantage of Eq. (3.6) is that one can easily tell the order of a method by just 
examining the slope of the straight line from the graph. Thus, the natural logarithmic 
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values of the normalized grid size and absolute error are also listed in Table 3-1; the two 
columns are then used to produce a line plot showed in Figure 3-8(a). The observed order 
of method follows from a simple calculation of the slope, which gives a value slightly 
less than 2. Although this result the power-law provides is encouraging, one should be 
cautious that the actual order of the power-law and the hybrid scheme behaves differently 
in different flow systems and different grids, depending on how much the higher order 
part (2nd order CD) is being used.  
 

For comparison, similar computations are performed with full implicitness and 
the 2nd order central differencing scheme. A similar set of data is presented in the lower 
rows of Table 3-1, along with a linear fit in log-log scale shown in Figure 3-8(b). It is 
evident that the 2nd order central differencing is indeed 2nd order accurate. 
 

A side note is that the Richardson’s idea has led to tremendous research work in 
the area of the discretization error estimation, in which the so-called Richardson’s 
extrapolation becomes the most popular and possibly significant tool. More information 
of that relevance can be found for example in (Hu 2002) and is not quite pertinent to the 
present study. 
 
 
3.3. Poiseuille Flow Between Fixed Parallel Plates 
If the upper wall is held fixed the flow described in Section 3.2 reduces to pure 
Poiseuille, i.e., pressure-driven, flow between two fixed parallel plates. Since this type of 
flow is described by the same equation (3.3), the analytical solution can be either solved 
fresh from Eq. (3.3) with a modified boundary condition, or directly deduced from Eq. 
(3.4); this yields 
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max max1 ,
2

y h dp hu u u
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⎡ ⎤−⎛ ⎞ ⎛ ⎞= − = −⎢ ⎥⎜ ⎟ ⎜ ⎟
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One may further deduce an average velocity from a preserved volume flow rate; this 
gives 
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∫
  (3.8) 

  
Again, the same geometry, grid and scheme is used here. Similar to the approach 

presented in the last section a constant pressure gradient is imposed in the momentum 
equation and a pressure-like variable is solved in a subsequent step to ensure continuity. 
The Reynolds number used is 50, based on the half-channel height and the maximum 
velocity (equal to unity), or 66.67, based on the channel height and the average velocity. 
This corresponds to a constant pressure gradient equal to –0.4 N/m3. The results are 
collected when a steady state is reached. 
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The calculated u-velocity profile in vertical direction is displayed along with the 
exact solution in Figure 3-9(a), with their difference displayed in Figure 3-9(b). A 
contour plot of the u-velocity is also shown in Figure 3-10. The parabolic profile reminds 
us of the fully developed laminar pipe flow or channel flow. Indeed, the pure Poiseuille 
flow between parallel plates can be viewed as a simplified two-dimensional channel flow 
in which the pressure gradient is already known (imposed) and does not need to be 
calculated. For comparison, computation of a developing laminar channel flow is carried 
out in the next section (Section 3.4), where the pressure gradient is part of the unknowns. 
It will be good to see that the fully developed profile looks similar.  
 

An interesting observation from Figure 3-9(b) is that for the fifty percent power-
law scheme the numerical error is asymmetrically distributed in the vertical direction 
while the u-velocity itself exhibits a perfect symmetric parabola. This arouses our interest 
in a further investigation with a different scheme, say, the 2nd order central differencing 
with full implicitness. The error curve with the latter scheme is shown in Figure 3-11. It 
can be seen that the numerical error tends to be distributed more symmetrically as 
compared with the fifty percent power-law. Further, in spite of the 2nd order scheme, the 
order of magnitude of the absolute error is still about the same as the fifty percent power-
law. This behavior is expected because the 2nd order scheme is 2nd order only in the 
context of the solution of a single equation without interference of the unsteady term. In 
other words, a 2nd order accuracy may not be achieved when (i) a lower order scheme is 
used for the time discretization or the time step is large, (ii) coupled equations are solved 
sequentially, as in the fractional step method, and non-linearity of linearized terms is not 
strictly satisfied without performing time-consuming inner-iterations, (iii) pressure is not 
solved to a high accuracy, and (iv) there is accuracy loss in the implementation of 
periodic boundary condition. Aside from the discretization error, the limited accuracy 
may also due to the machine round-off error and insufficiently accurate grid information.  
 
 
3.4. Developing Channel Flow 
For the pressure-driven flow considered in the previous section the pressure gradient is 
given and does not require a stand-alone solution. Although a pressure-like variable was 
still solved, it is only to fine-tune the flow field to satisfy continuity. In this section a 
developing laminar channel is considered with the inlet fed by the uniform profile. The 
flow-driving pressure gradient plays an important role in this case and must be correctly 
solved.  
 
 Here a computational domain of 8m × 0.2m is selected in the streamwise and 
vertical direction, respectively. The Reynolds number is 50, based on the half-channel 
height and the centerline velocity (equal unity) of a fully developed channel. Note that 
the Reynolds number chosen is same as the one considered in the previous section; the 
computational domain has the same height as well. But the domain length is largely 
extended to allow for a full development of the wall boundary layer. A scale analysis 
using boundary layer theory (Schlichting 1979) shows an estimate of laminar boundary 
layer thickness in dependence of the Reynolds number ReL: 
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or equivalently, 
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where δ is the velocity boundary layer thickness, L is a proper length scale in streamwise 
direction, and ReL and Reδ is the Reynolds number defined by using the characteristic 
length L and δ respectively. This relation implies that for, say, a Reδ of 50 with a 
boundary layer thickness of δ = h, a length of about 50h is required for the boundary 
layer to be fully developed to h thick. Thus, with an 8m long it should be sufficient to get 
a fully developed flow of the 0.2m high channel with Reδ = 50.  
 

For the computation a mesh of 80 × 20 cells is used in x- and y- directions, 
respectively. As for the numerical scheme Crank-Nicolson, the implicit power-law and 
explicit central differencing are considered. A uniform inlet and an outlet condition is 
prescribed at the west and east boundaries, respectively. The flow field is initialized with 
the average u-velocity obtained from the flow rate at inlet. A large time step of 0.1 
second is first used to establish some preliminary flow field; after that a smaller time step 
of 0.01s is taken to achieve more accurate results. To measure the duration of simulation, 
the term, flow-through time or step-to-outlet time, is often used, representing the time 
required for a fluid particle to travel from the inlet to outlet in the main flow direction. 
For the developing channel a rule-of-thumb estimation is to divide the domain length 
(8m) by the inlet average velocity, giving a time of around 12 seconds. Typically a 
simulation is required to last for at least several flow-through times to ensure fully steady 
state solution. 

 
 Figure 3-12 shows the u-velocity variation along the horizontal centerline of the 
channel at steady state. It is seen that after a developing region where the velocity 
continuously increases the streamwise centerline velocity is stabilized at around 1 m/s. 
The fully developed region can be roughly marked at from around x = 1.6 m. In Figure 
3-13 u-velocity profiles at various x-station in the developing region are demonstrated. 
One notices that while the shape of the profiles tends to be parabolic the areas enclosed 
by the corresponding curves remain the same, thus continuity-preserving. A complete 
picture for the developing (or entrance) region can be gained in the contour plots of 
Figure 3-14, where two wall boundary layers are seen to gradually build up and merge at 
the center of the channel (Figure 3-14(a)). As previously mentioned, the v-velocity is not 
zero in the developing region, while it is the case when the flow is fully developed. This 
point is illustrated in Figure 3-14(b). 
 
 In the fully developed region the u-velocity profile is extracted at an x-station 
near the outlet and compared with the exact solution provided in the previous section (Eq. 
(3.7)). The results are shown in Figure 3-15(a) and (b) indicating a satisfactory 
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agreement. An interesting phenomenon is that the exact error curve shows a similar 
parabola to the original u-velocity profile, but certainly with much less magnitude! 
 
 The pressure field is displayed in Figure 3-16(a) along with a horizontal centerline 
plot given in Figure 3-16(b). It is seen that the solved pressure gives a negative gradient, 
as desired, and it decreases linearly with the x-station with a constant slope in the fully 
developed region (x > 1.6m). If one takes the pressure values at the first and last node on 
the center x-line (0.9920 N/m2 and –1.5084 N/m2), divide their difference by the distance 
between the two nodes (7.95m - 1.65m = 6.3m), an approximated pressure gradient equal 
to -0.397 N/m3 can be obtained. Compared to the analytical value of –0.4 N/m3 the solved 
pressure gradient gives about only 0.8% relative error.  
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(c) 

Figure 3-2 Contour plots of Couette flow between a fixed and a moving plate. (a) u-velocity, (b) v-
velocity, (c) pressure. 
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(b) 

Figure 3-3 u-velocity profiles (a) and its exact error (b) of Couette flow between a fixed and a moving 
plate. 
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(c) 

Figure 3-4 Contour plots of Couette-Poiseuille flow between a fixed and a moving plate, Po=1. (a) u-
velocity, (b) v-velocity, (c) pressure-like variable. 
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(b) 

Figure 3-5 u-velocity profiles (a) and its exact error (b) of Couette-Poiseuille flow between a fixed and 
a moving plate with Po=1. 
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Figure 3-6 u-velocity profiles of Couette-Poiseuille flow between a fixed and a moving plate at 

different Po. Square symbols: present calculation; circle symbols: exact solution. 
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Figure 3-7 Flow separation with backflow of Couette-Poiseuille flow between a fixed and a moving 

plate, at Po = -0.5. 
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(b) 

Figure 3-8 Maximum error as a function of mesh refinement for the Couette-Poiseuille flow between 
a fixed and a moving plate, (a) semi-implicit power-law, (b) implicit 2nd order CD. 
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(b) 

Figure 3-9 u-velocity profiles (a) and its exact error (b) of Poiseuille flow between fixed parallel 
plates. 
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Figure 3-10 u-velocity contour of Poiseuille flow between fixed parallel plates. 
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Figure 3-11 Exact error of the u-velocity of Poiseuille flow between fixed parallel plates, u-velocity 

calculated with 2nd order central differencing. 
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Figure 3-12 u-velocity variation along the horizontal centerline of a developing channel flow. 
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Figure 3-13 u-velocity profiles at different x-station of a developing channel flow. 
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(b) 

Figure 3-14 Entrance (developing) region of a developing channel flow, (a) u-velocity contour, (b) v-
velocity contour. 
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Figure 3-15 u-velocity profiles (a) and its exact error (b) in the fully developed region of a developing 
channel flow. 
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Figure 3-16 (a) Pressure contour of a developing channel flow, (b) pressure variation along 
horizontal centerline. 
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3.5. Poiseuille Flow Between Plates with Bottom 
Injection and Top Suction 
This is the last Poiseuille flow to be considered. The main flow is generated by a constant 
pressure gradient between two fixed parallel plates. Also let the upper and lower wall to 
be porous such that a vertical stream in and out of the wall is possible. Suppose the 
vertical steam is injected from the lower wall and fully drawn into the upper plate. If the 
vertical crossflow, denoted by vwall, is assumed to be uniform, the flow field can then be 
described as 

 
2

2wall
du dp d uv
dy dx dy

ρ μ= − + . (3.12) 

This second order linear inhomogeneous ordinary differential equation (ODE) can be 
readily solved with the no-slip boundary condition for u at the upper and lower walls. The 
analytical solution, for example in (White 1991), is given in the following form: 

 
( )

( )
Re /Re

max

2 2
Re sinh Re

wallwall y h

wall wall

u y e e
u h

−⎛ ⎞−
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
, (3.13) 

where umax is same as the one in Eq. (3.7), and the wall Reynolds number is defined as 

 Re wall
wall

v h
ν

= . (3.14) 

As the wall Reynolds number approaches zero, the Poiseuille solution of the flow 
between two parallel plates (Eq. (3.7)) is reclaimed. This can be seen by a power series 
expansion for the last term in the parentheses, which cancels out the first order and 
constant terms and leaves the leading 2nd order parabola exposed.  
 

It should be noted that the analytical solution is derived based on the assumption 
of a uniform crossflow. In the numerical implementation, on the contrary, this 
simplification is not necessary. Both u- and v-velocity need to be solved; the injection 
and suction velocity appear as the boundary conditions to the v-component at lower and 
upper plate, respectively. On the other hand, similar to the approach described in Section 
3.3, a constant pressure gradient is imposed as a source in the momentum equation with 
the pressure Poisson equation still being solved for a pressure-like variable to conserve 
the mass. 
 
 The same geometry and grid as the one in Section 3.1 through 3.3 shall be used 
here. Like before, Crank-Nicolson and power-law scheme is first used for the simulation. 
The time step used is 0.01 second. The calculated and exact u-velocity profiles at steady 
state are shown in Figure 3-17(a) for a wall Reynolds number of five. The corresponding 
exact error is depicted in Figure 3-17(b). 
 

Unlike previous calculations where the numerical solution obtained by half-
implicitness and power-law gives close agreement to the exact one, the results computed 
using this scheme for the current case indicate a relatively high numerical diffusion, 
which can be seen in Figure 3-17 through a undershot of the numerical solution near the 
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maximum velocity. There is reason to believe that for flows with complicated flow 
structures, such as the existence of re-circulation zones, the power-law or hybrid scheme 
may give rather diffusive results. The reader is referred to (Leonard and Drummond 
1995) for further discussions. This example also presents a needed warning when one is 
about to employ a diffusive scheme to simulate a turbulent flow because turbulence may 
be “killed” or damped by the numerical dissipation.  

 
Thus, to improve the accuracy, one should turn to a higher order scheme, such as 

the 2nd order CD, 3rd order QUICK or the 4th order CD. As already mentioned in Section 
2.6, a higher order scheme should be understood as the one applied to the convection 
terms only; for the diffusion terms the 2nd order CD with Crank-Nicolson is always used 
in this study.  

 
The flow is then computed with different high-order schemes (the 2nd order 

explicit CD, 2nd order implicit CD, semi-implicit 2nd order CD, 3rd order QUICK, and the 
4th order explicit CD), while keeping the same wall Reynolds number. In Figure 3-18(a) 
through (e) the u-velocity profiles calculated from the four schemes are displayed. Their 
corresponding exact errors are shown in Figure 3-19(a) through (e). A noticeable 
improvement with the four schemes is that around the peak velocity they all produce an 
overshot instead of the underestimation shown with the power-law scheme (Figure 3-17). 
That may indicate that a higher order scheme would rather make the signal too strong 
than too weak. From Figure 3-18(a) through (c) it is seen that the explicit and implicit 
version of the 2nd order CD doesn’t make much difference. Among the five schemes the 
3rd order QUICK and the 4th order CD prevail over the other two 2nd order methods; they 
generally predict the peak value more accurately (Figure 3-18(d) and (e)) and have more 
points whose errors are agglomerated around zero (see Figure 3-19(d) and (e)). 
 

To see if one scheme is quantitatively superior over the other an error analysis is 
performed to determine the apparent order of the schemes. Under consideration are four 
schemes: Crank-Nicolson and power-law, Crank-Nicolson and 2nd order CD, explicit 
QUICK, and explicit 4th order CD. Again, the maximum exact absolute errors, maximum 
u-velocity and other post-processed data are listed in Table 3-2 for respective schemes 
calculated at three different grids. For each scheme a log-log plot is then produced based 
on the normalized grid size and the normalized maximum error. A linear fit of the three 
points in each graph is followed, giving the desired order of a scheme. For the four 
different schemes in question, the observed orders are 2.0094, 2.0405, 2.0451 and 2.0469 
respectively.  
 

Table 3-2 Order of method analysis for the calculations of Couette-Poiseuille Flow with bottom 
injection and top suction; schemes considered: semi-implicit power-law, semi-implicit 2nd order CD, 

explicit QUICK, explicit 4th order CD. 

grid in y h/href εmax umax εmax/umax ln(h/href) ln(εmax/umax) slope 
C-N, power-law       

80 1 3.1052E-03 0.5305 5.8537E-03 0.0000 -5.1407  
40 2 1.2391E-02 0.5260 2.3558E-02 0.6931 -3.7483  
20 4 4.9187E-02 0.5184 9.4891E-02 1.3863 -2.3550 2.0094 
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C-N, 2nd CD       
80 1 1.5907E-03 0.5362 2.9666E-03 0.0000 -5.8204  
40 2 6.5160E-03 0.5371 1.2132E-02 0.6931 -4.4119  
20 4 2.7226E-02 0.5423 5.0208E-02 1.3863 -2.9916 2.0405 

Explicit, QUICK       
80 1 1.5914E-03 0.5359 2.9697E-03 0.0000 -5.8193  
40 2 6.5156E-03 0.5360 1.2157E-02 0.6931 -4.4099  
20 4 2.7223E-02 0.5382 5.0582E-02 1.3863 -2.9842 2.0451 

Explicit, 4th CD       
80 1 1.5914E-03 0.5359 2.9699E-03 0.0000 -5.8192  
40 2 6.5155E-03 0.5358 1.2160E-02 0.6931 -4.4096  
20 4 2.7223E-02 0.5369 5.0709E-02 1.3863 -2.9817 2.0469 

 
 For this flow configuration, all the four schemes perform well. They all exhibit an 
order of at least two. Although the order of the power-law scheme is slightly lower than 
the other three, it is already very encouraging to achieve a 2nd order accuracy with a 
theoretically only 1st order scheme (see Section 2.3). The 2nd order CD is doing what it 
supposed to be dong. Although the 3rd order QUICK is theoretically more accurate than 
2nd order CD, but they converge asymptotically in a second order manner and the 
differences between them are rarely large (Ferziger and Peric 1996); this point is exactlly 
reflected in the current results. Discrepancy occurs with the theoretically 4th order CD as 
the observed order does not meet its commensurate demand. Even though the exact cause 
is not quite clear yet, one can postulate that the accuracy loss may be related to several 
factors discussed at the end of Section 3.3; among which the inheritance of the splitting 
method may be an important one to restrict a further increase in accuracy. One also 
notices that although all the calculated orders are at about the same level, they are still 
sorted in an order it should be; in other words, the 3rd order QUICK is slightly more 
accurate than 2nd order CD, and the 4th order CD is slightly more accurate than the 
QUICK etc.  
 
 As already mentioned in Section 3.2, the maximum error is one of the most 
stringent error criteria. A slightly looser one is the RMS (root mean square) error. A 
similar error calculation based on the RMS measure is provided in Table 3-3 and the 
corresponding linear fit is shown in Figure 3-21. It is noticed that with this less strict 
criteria the order of the method, positioned at 2.2347, increases about 10%, compared to 
the 2.0469 from the maximum error measure. 
 
Table 3-3 Order of method analysis based on the RMS error for the calculations of Couette-Poiseuille 

Flow with bottom injection and top suction, 4th order CD is used 

grid in y h/href εrms umax εmax/umax ln(h/href) ln(εmax/umax) slope 
80 1 3.3476E-04 0.5359 6.2472E-04 0.0000 -7.3782  
40 2 1.5325E-03 0.5358 2.8602E-03 0.6931 -5.8569  
20 4 7.4298E-03 0.5369 1.3840E-02 1.3863 -4.2802 2.2347 
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Finally, the behavior of the injection-suction flow at different wall Reynolds 
numbers should be examined. To this end the 3rd order QUICK is picked. The results at 
Rewall = 10, 5, 3, 1 and 0 are plotted in Figure 3-22. In all situations it is seen that the 
quality of the numerical solution is satisfying; the location and magnitude of u-velocity at 
those turning points are all accurately captured. In particular, when Rewall = 0 the profile 
reproduces to a Poiseuille parabola that has been encountered many times in the previous 
sections.  
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Figure 3-17 u-velocity profiles (a) and its exact error (b) of Poiseuille flow between plates with 
bottom injection and top suction; power-law scheme is used. 
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(b) 

Figure 3-18 Comparison of u-velocity profiles calculated from different higher order schemes for 
Poiseuille flow between plates with bottom injection and top suction, (a) 2nd order explicit central 

differencing (CD), (b) 2nd order implicit CD. 
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Figure 3-18 Comparison of u-velocity profiles calculated from different higher order schemes for 
Poiseuille flow between plates with bottom injection and top suction, (c) 2nd order semi-implicit CD, 

(d) 3rd order QUICK. 
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Figure 3-18 Comparison of u-velocity profiles calculated from different higher order schemes for 
Poiseuille flow between plates with bottom injection and top suction, (e) 4th order explicit CD. 



 59

Exact error

y
/2

h

-0.02 -0.01 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2nd order explicit CD

 
(a) 

Exact error

y
/2

h

-0.02 -0.01 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2nd order implicit CD

 
(b) 

Figure 3-19 Comparison of exact error of u-velocities calculated with different higher order schemes 
for Poiseuille flow between plates with bottom injection and top suction, (a) 2nd order explicit CD, (b) 

2nd order implicit CD. 
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Figure 3-19 Comparison of exact error of u-velocities calculated with different higher order schemes 
for Poiseuille flow between plates with bottom injection and top suction, (c) 2nd order semi-implicit 

CD, (d) 3rd order QUICK. 
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Figure 3-19 Comparison of exact error of u-velocities calculated with different higher order schemes 
for Poiseuille flow between plates with bottom injection and top suction, (e) 4th order explicit CD. 
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Figure 3-20 Maximum error as a function of mesh refinement for the Couette-Poiseuille flow 
between plates with bottom injection and top suction, (a) semi-implicit power-law. 
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Figure 3-20 Maximum error as a function of mesh refinement for the Couette-Poiseuille flow 
between plates with bottom injection and top suction, (b) semi-implicit 2nd order CD, (c) explicit and 

QUICK, (d) explicit 4th order CD. 
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Figure 3-21 RMS error as a function of mesh refinement for the Couette-Poiseuille flow between 

plates with bottom injection and top suction, 4th order CD is used 
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Figure 3-22 u-velocity profiles of Poiseuille flow between plates with bottom injection and top suction 

at different wall Reynolds number. Square symbols: present calculation; circle symbols: exact 
solution. 
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3.6. Taylor’s Vortex 
Taylor’s vortex is one of the very few benchmarking test cases that not only offers a full 
analytical solution to the two-dimensional Navier-Stokes equations but also includes 
unsteady, convective and diffusive effects. The analytical solution was originally 
obtained by (Taylor 1923a) which describes a system of counter-rotating decaying, and 
incompressible vortices in a infinitely large domain. The vortices can be formulated in 
terms of a steam function as 

 ( ) ( ) ( )2( , , ) sin sin exp 2Cx y t x y tψ π π π ν
π

= − , (3.15) 

where C is a constant coefficient related to the amplitude of velocity components, i.e., the 
maximum velocity. By the definition of stream function the velocity field can be obtained 
as 

 
( ) ( ) ( )

( ) ( ) ( )

2

2

sin cos exp 2 ,

cos sin exp 2 .

u C x y t
y

v C x y t
x

ψ π π π ν

ψ π π π ν

∂
= = −

∂
∂

= − = − −
∂

 (3.16) 

It can be readily shown that this velocity field satisfies continuity. The pressure, p, can be 
found from the two-dimensional momentum equations:  

 ( ) ( ) ( )
2

2cos 2 cos 2 exp 4
4

Cp x y tπ π π ν= + −⎡ ⎤⎣ ⎦ . (3.17) 

Other configurations of Taylor’s vortices also exist, given one example as 
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 (3.18) 

 
It is worthwhile to mention that the Taylor’s vortices described above is closely 

related to a classical experiment (Taylor 1923b) conducted by the same scientist, in 
which he used two concentric rotating cylinders to predict the onset of instability of the 
azimuthal Couette flow, and he further showed that when the inner-cylinder reaches a 
critical rotating speed a cellular pattern is formed and the fluid travels in helical paths 
around the cylinder in layers of vortices, called Taylor vortex flow. 
 

Very often the analytical solution is used to study only a single vortex; that is why 
it is called Taylor’s vortex instead of Taylor’s vortices. For example, Eq. (3.15) through 
(3.17) can define a vortex centered at (0.5, 0.5) with a radius of unity. In the verification 
practice of a Navier-Stokes solver the Taylor’s vortex has been widely used (e.g., (Kim 
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and Moin 1985; Smith 1996; Arunajatesan and Shipman 2004)) to test both the space 
accuracy and temporal accuracy of the solver. In the present study Eq. (3.15) through 
(3.17) shall be used to confirm the results and the order of the method. 

 
The computational domain considered here is a square with the side length, L, 

equal to 1.0 m. The origin is placed at lower left corner of the square. The exact solution 
is used to specify the initial condition at t = 0, as well as to impose the Dirichlet boundary 
conditions for u- and v-velocities. Note that the boundary conditions applied are time-
dependent and vary along the x- or y-position. Pressure boundary condition is still 
Neumann, because when velocity is specified at boundary, pressure should not be 
prescribed at boundary, and vise versa (Ferziger and Peric 1996). The Reynolds number 
is based on the side length and the maximum velocity.  
 

Simulation is first carried out on 41×41 grid using Crank-Nicolson and power-law 
scheme at a Reynolds number of 100, which corresponds to a maximum velocity and 
kinematic viscosity equal to 0.1 m/s and 1×10-3 m2/s, respectively. The time step used is 
0.1s. At time t = 50s, at whose point the vortex has decayed to about 37.27% of its initial 
strength, results are collected and presented in Figure 3-23 through Figure 3-26. 
 
 Figure 3-23 shows streamlines of a Taylor’s vortex with the background being the 
magnitude of the velocity. It is noticed that the vortex has a counter-clockwise flow 
direction, and a nice symmetry of the velocity magnitude is present. Three contour plots 
are also presented in Figure 3-24 for the u-, v- velocity and pressure. The maximum u-
velocity and v-velocity is 0.03692 m/s and 0.03691 m/s respectively, which matches the 
approximate 37% (e-1) decay of the vortex. In Figure 3-24(c) it is observed that the 
pressure grows radially toward the outside, a low-pressure region is concentrated around 
the center, and four high-pressure regions are distributed at four corners. Quantitative 
comparisons between exact and numerical solution at this instant are presented in Figure 
3-25 and Figure 3-26, where the two plots are created at center x-station and center y-
station respectively. One can see the exact error for both u- and v-velocity exhibits an 
interesting vertical or horizontal “S” shape. Attention should be paid to the relatively 
large numerical error in both the horizontal and vertical directions. The deficiency of the 
essentially 1st order power-law scheme is exposed in this unsteady flow calculation. 
 
 Next, the explicit QUICK is used to see if it would improve the results. As 
expected, a drastic improvement in the accuracy is clearly seen from Figure 3-27 and 
Figure 3-28; the exact error is reduced by nearly an order of magnitude! The excellent 
agreement encourages us to record line profiles at more time instants to explore its full 
performance. The results are plotted in Figure 3-29(a) and (b) at t = 0, 20, 50, 100 and 
200 seconds. 
 

The dependency of the flow on the Reynolds number should be checked as well. 
To this end the Reynolds number is increased to 1000. This can be done by, for example, 
changing the maximum velocity to 1.0 m/s. Due to stability constraints at high Reynolds 
number the time step is reduced to 0.005s correspondingly, and it takes ten thousand time 
iterations to reach t = 50s. The u-velocity profile and its error at the center of the x-axis, 
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the v-velocity profile and its error at the center of the y-axis are plotted in Figure 3-30(a), 
(b) and Figure 3-31(a), (b), respectively. In general, the magnitude of the numerical error 
not only depends on the scheme, but also the nature of the flow. Comparing Figure 
3-30(b) with Figure 3-27(b), and Figure 3-31(b) with Figure 3-28(b), it is seen that with a 
ten times increase of Re, the numerical error is also increased by a factor of ten. Yet, this 
error produced by the explicit QUICK, even at such high Re value, is still smaller than 
the one given by semi-implicit power-law (see Figure 3-25(b) and Figure 3-26(b)). 
 
 This unsteady, fully 2D flow problem in fact presents an excellent test case since 
it has an exact solution, and it involves convective, viscous and unsteady effects. Here, 
the semi-implicit power-law scheme and explicit QUICK will be considered for error 
analysis. Three grids with a successive double refinement are 10×10, 20×20 and 40×40. 
The RMS (root mean square) value of the exact absolute errors will be used to estimate 
the order of the method. The Reynolds number under consideration is again 100. 
 
 To examine the spatial accuracy the time step size is taken to be constant. On the 
one hand, the time step should be kept reasonably small to eliminate as much as possible 
the influence of temporal discretization on the spatial error (Roache 1972; Gresho and 
Lee 1981; Smith and Celik 1999). On the other hand, because the numerical accuracy for 
convection-diffusion problem is strongly Courant number dependent (Manson et al. 
1996; Manson and Wallis 1997), in order to compare the results from three different grids 
it is necessary to keep the Courant number constant. The Courant number is defined by 

 max,0Co
u t

h
Δ

= , (3.19) 

where h is a representative grid size; in the case of a uniform grid in both x- and y-
direction, h = Δx = Δy. umax,0 is the maximum velocity at initial stage, i.e., equal to C. In 
practice it suffices if a constant time step is used, since the order of method analysis will 
yield an even better order estimate if the Co is kept constant (smaller Δx requires smaller 
Δt, and thus more accurate results). Also, different choices of grid size h is available, for 
example, 
 2 2h t x= Δ + Δ , (3.20) 
or, 
 h t x= Δ Δ . (3.21) 
In all cases, the dominant spatial error will prevail as long as the time step is relatively 
small. For simplicity, let h = Δx = Δy and keep in mind that the time step should be 
negligibly small. Here Δt is taken to be 0.001s. 
 

For each scheme, the RMS errors of both u- and v-velocity are recorded after 100 
time steps for three different grids. The obtained errors are post-processed, and the results 
are summarized in Table 3-4 and Table 3-5, and shown in Figure 3-32 and Figure 3-33. 
From these calculations one notices that the schemes being used are truly 2nd order 
accurate in space. The difference of the order of method in the u- and v-velocity is due to 
the unequal weight of influence of the temporal error, despite the small time step. A hand 
calculation shows that the power-law scheme is switched to central differencing in many 
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local regions, which explains why it shows 2nd order accurate. The advantage of QUICK 
over the power-law is again clearly seen. 
 

Table 3-4 Order of method analysis for the calculated u-velocity of a Taylor’s vortex, Δt = 0.001s. 

grid h/href εrms umax εrms/umax ln(h/href) ln(εrms/umax) slope 
Implicit power-law      

40 1 1.6490E-06 0.0997 1.6546E-05 0.0000 -11.0093  
20 2 8.6303E-06 0.0992 8.7010E-05 0.6931 -9.3495  
10 4 5.9692E-05 0.0976 6.1169E-04 1.3863 -7.3993 2.6041 

        
QUICK       

40 1 8.9624E-07 0.0997 8.9916E-06 0.0000 -11.6192  
20 2 6.8616E-06 0.0993 6.9122E-05 0.6931 -9.5796  
10 4 5.0376E-05 0.0978 5.1508E-04 1.3863 -7.5712 2.9200 

 
Table 3-5 Order of method analysis for the calculated v-velocity of a Taylor’s vortex, Δt = 0.001s. 

grid h/href εrms umax εrms/umax ln(h/href) ln(εrms/umax) slope 
Implicit power-law      

40 1 1.6489E-06 0.0997 1.6546E-05 0.0000 -11.0094  
20 2 8.6307E-06 0.0992 8.7014E-05 0.6931 -9.3494  
10 4 5.9693E-05 0.0976 6.1170E-04 1.3863 -7.3993 2.6042 

        
QUICK       

40 1 8.9654E-07 0.0997 8.9946E-06 0.0000 -11.6189  
20 2 6.8620E-06 0.0993 6.9125E-05 0.6931 -9.5796  
10 4 5.0377E-05 0.0978 5.1508E-04 1.3863 -7.5712 2.9198 
 
Temporal accuracy alone is difficult to determine in general, because the time 

discretization is hardly isolated from the spatial discretization. This is because the time 
step size cannot be arbitrarily small due to stability constraints. However, if one would 
still like to examine the time accuracy alone, very small grid spacing compared to the 
time step size has to be used. To avoid expensive computation, a simple alternative is to 
look at the overall accuracy in which both the spatial and temporal errors are evaluated as 
a whole. Again, three grids, namely, 10×10, 20×20 and 40×40, are considered. Further it 
is necessary in this approach to keep Courant number the same, giving three time steps as 
0.08s, 0.04s and 0.02s, respectively. The QUICK is employed along with the 2nd order 
Adams-Bashforth. The results for u- and v-velocity errors are presented in Table 3-6, 
Table 3-7 and Figure 3-34. The obtained slopes verify the scheme being used is indeed at 
least 2nd order accurate in both space and time.  

 
Table 3-6 Effective overall order of the QUICK scheme for the calculated u-velocity of a Taylor’s 

vortex. 

dt grid h/href εrms umax εrms/umax ln(h/href) ln(εrms/umax) slope 
0.02 40 1 1.3270E-06 0.0969 1.3690E-05 0.0000 -11.1988  
0.04 20 2 6.5774E-06 0.0969 6.7858E-05 0.6931 -9.5981  
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0.08 10 4 4.2474E-05 0.0962 4.4160E-04 1.3863 -7.7251 2.5058 
 

Table 3-7 Effective overall order of the QUICK scheme for the calculated v-velocity of a Taylor’s 
vortex. 

dt grid h/href εrms umax εrms/umax ln(h/href) ln(εrms/umax) slope 
0.02 40 1 3.2099E-06 0.0969 3.3116E-05 0.0000 -10.3155  
0.04 20 2 1.3751E-05 0.0969 1.4186E-04 0.6931 -8.8606  
0.08 10 4 6.5683E-05 0.0962 6.8290E-04 1.3863 -7.2892 2.1830 

 
As a further check, the above calculations are repeated for the vortex located in 

the y-z plane. In this case, the u-velocity is replaced by the w-velocity and the x-
coordinate replaced by the z-coordinate. Exactly same results are obtained, including the 
order of the schemes.  
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Figure 3-23 Streamline plot of Taylor’s vortex at t = 50s for Re = 100; background contour plot is the 

magnitude of velocity. 

x

y

0.25 0.5 0.75 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

uvel
0.0324
0.0278
0.0232
0.0185
0.0139
0.0093
0.0047
0.0001

-0.0046
-0.0092
-0.0138
-0.0184
-0.0230
-0.0277
-0.0323

 
(a) 

Figure 3-24 Contour plots of Taylor’s vortex at t = 50s for Re = 100, (a) u-velocity. 
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(c) 

Figure 3-24 Contour plots of Taylor’s vortex at t = 50s for Re = 100, (b) v-velocity, (c) pressure. 
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(b) 

Figure 3-25 u-velocity profile (a) and its exact error (b) of a Taylor’s vortex at t = 50s for Re = 100, x 
= 0.5 m. 
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(b) 

Figure 3-26 v-velocity profile (a) and its exact error (b) of a Taylor’s vortex at t = 50s for Re = 100, y 
= 0.5 m. 
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(b) 

Figure 3-27 u-velocity profile (a) and its exact error (b) of a Taylor’s vortex at t = 50s for Re = 100, x 
= 0.5 m; explicit QUICK scheme. 
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(b) 

Figure 3-28 v-velocity profile (a) and its exact error (b) of a Taylor’s vortex at t = 50s for Re = 100, y 
= 0.5 m; explicit QUICK scheme. 
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(b) 

Figure 3-29 Velocity profiles at different time of a Taylor’s vortex with Re=100. (a) u-velocity, (b) v-
velocity. Square symbol: present calculation; circle symbol: exact solution 
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(b) 

Figure 3-30 u-velocity profile (a) and its exact error (b) of a Taylor’s vortex at t = 50s for Re = 1000, x 
= 0.5 m; explicit QUICK scheme. 
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(a) 

Figure 3-31 v-velocity profile (a) and its exact error (b) of a Taylor’s vortex at t = 50s for Re = 1000, y 
= 0.5 m; explicit QUICK scheme. 
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(b) 

Figure 3-32 RMS error of u-velocity as a function of mesh refinement for Taylor’s vortex flow, Δt = 
0.001s. (a) Implicit power-law, (b) QUICK. 
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(b) 

Figure 3-33 RMS error of v-velocity as a function of mesh refinement for Taylor’s vortex flow, Δt = 
0.001s. (a) Implicit power-law, (b) QUICK. 
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(b) 

Figure 3-34 Effective overall error of the QUICK scheme for Taylor’s vortex problem. (a) error of u-
velocity, (b) error of v-velocity. 
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3.7. Free Shear Layer 
The free shear layer is another classical flow case, where two parallel uniform streams U1 
(upper) and U2 (lower) meet at an inlet and the interface between the two gradually forms 
a S-shaped velocity profile as they develop downstream. A schematic sketch of the flow 
configuration is shown in Figure 3-35. 
 

U1

U2

x

y
U1

U2  
Figure 3-35 Schematic of a free shear flow 

 
The steady two-dimensional incompressible laminar flow with negligible 

gravitational effects can be described by the simplified 2D Navier-Stokes equations 
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 (3.22) 

Although the mathematical problem is well posed, no one was able to obtain an analytical 
solution to these equations not only for the free shear flow but also for flows past any 
shaped body! Yes, researchers are poor when confronting with exact solutions; but, we 
are not destitute. While admitting obtaining analytical solutions is a formidable practice, 
one can at least try to acquire some type of approximate solution.  
 
 First recall the boundary layer equations simplified from Eq. (3.22) by certain 
assumptions (see (Schlichting 1979)): 
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Further recall the so-called Blasius (1883-1970) solution for the flow past a flat-plate, in 
which the boundary layer partial differential equations are turned into a third order ODE 
by (i) arguing that dimensionless velocity profiles are similar, and (ii) applying a clever 
coordinate transformation and changes of variables to collapse x and y into a single 
variable, called similarity variable η, and u and v into a single stream function ψ, whose 
respective definition is given by 
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2
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xU f

η
ν

ψ ν η

⎛ ⎞= ⎜ ⎟
⎝ ⎠

=

 (3.24) 

In the above definition, the velocity scale U is taken from the free stream velocity and ( )’ 
stands for d/dη, and f is the function that satisfies f’ = u / U and appears in the ODE to be 
solved. The third order ODE can be written as 
 0f ff′′′ ′′+ =  (3.25) 
with the boundary conditions 

 
(0) (0) 1,
( ) 1 .

f f
f

′ = =
′ ∞ =

 (3.26) 

 
 This basic idea was then adopted by (Lock 1951) who by analogy introduced a 
Blasius-type similarity variables for each stream of the shear layer, i.e., 
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Following a similar procedure as the Blasius’, the governing equations (Eq. (3.22)) are 
then turned into two third-order ODEs for the two streams, coupled by their interface 
condition, i.e., 
 0, 1, 2j j jf f f j′′′ ′′+ = = , (3.28) 
with the boundary and interface conditions: 
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In the numerical computation, if the upper and lower layer has the same density 

and viscosity, or no mixing of the two layers occurs, one may directly attack the 
governing equation (3.22) without simplification. Here the velocity ratio U2/U1 is chosen 
to be 0.5, with the upper velocity being unity. Further let the kinematic viscosity equal to 
1.0E-3 m2/s such that the Reynolds number based on the maximum inlet velocity and the 
maximum momentum thickness at outlet is approximately 100. The computation domain 
should be long enough to grant the flow sufficient space to develop, and should be high 
enough to have the u-velocity to reach the theoretical velocities at plus and minus infinity 
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(1 m/s and 0.5 m/s). Thus, a rectangular domain sized at 1m × 0.4m is chosen. 50 and 40 
equally spaced internal nodes are placed in the streamwise and transverse direction, 
resulting a grid spacing of 0.02m and 0.01m, respectively.  
 
 At the inlet, a Dirichlet boundary condition is specified with the given inlet 
velocity profile, i.e., the upper stream enters at 1 m/s and the lower stream at 0.5 m/s. At 
the outlet a Neumann boundary condition is employed. At the south and north boundaries 
a Neumann condition is again applied to both u- and v-component. Note that in order to 
compare with the similarity solutions one should not use the slip-wall condition. The 
reasons are: (i) With a finite domain one usually cannot ensure the u-velocity has reached 
the theoretical velocities at those boundaries, and moreover, the y-location of the edge 
velocities (99% of the free stream velocity) varies itself along x-station. (ii) In the 
similarity solution presented above the vertical velocity at south or north is not assumed 
to be zero; in fact one can simply show that they are non-zero by just examining the v-
velocity expression from the stream function. Thus, if the slip-wall condition was used 
for the u-component, the Neumann boundary condition for the v-velocity cannot be 
justified. 
 

The semi-implicit power-law is first applied with a relatively large time step 
(0.1s) to obtain some primary flow field. The scheme is then switched to the explicit 
QUICK accompanied with small a time step (0.01s) to reach a steady state flow. The 
global normalized mass residual is stabilized at around an order of 10-6. The calculated u- 
and v-velocity contour are shown in Figure 3-36(a) and (b), from which a developing 
shear layer is clearly seen, and in particular, the calculated v-velocity is not zero at the 
south and north boundaries.  

 
To get a comparison with Lock’s similarity solution (Lock 1951), three x-stations, 

namely, x / (domain length) = 0.4, 0.6 and 0.8, are selected such a way that they are in the 
developed similarity region, on the one hand, and away from the outlet (to eliminate the 
outlet influence), on the other hand. The collected three u-velocity profiles are shown in 
Figure 3-37. It is evident from Figure 3-37 that the shear layer thickness is getting thicker 
as the flow develops downstream. The non-dimensional similarity variable η is then 
calculated and plotted versus the normalized u-velocity (u / U1,), along with the data 
extracted from Lock’s study (Figure 3-38). It is clearly seen from Figure 3-38 that the 
three velocity profiles calculated from the present study do very nicely exhibit close 
similitude, as they can be hardly differentiated from each other. Moreover, the agreement 
with Lock’s solution is close with an acceptable error due to the fact that the similarity 
solution is obtained based on boundary conditions that are not exactly the same as the one 
being implemented into the 2D calculation. In this sense, it is unsafe to use the similarity 
solution as an exact solution for the error analysis. Nevertheless, it does offer important 
insight into the flow physics and a well-suited justification to the obtained numerical 
solutions. 
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(b) 

Figure 3-36 Contour plot of free shear layer, (a) u-velocity, (b) v-velocity. 
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Figure 3-37 u-velocity profiles at three different x-stations of a free shear layer, U2/U1 = 0.5. 
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Figure 3-38 Comparison of normalized u-velocity profiles with similarity solution (Lock 1951) for a 

free shear layer, U2/U1 = 0.5. 
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3.8. Backward-facing Step Flow 
Up to the last section, flow problems being considered have available analytical solution. 
Starting from this section, judgment on the computation would have to be made based on 
either the experimental data or numerical solution obtained from an independent study. 
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Figure 3-39 Schematic of flow past a backward-facing step (1:2 expansion ratio) 

 
In this section considered is a steady, incompressible flow over a backward-facing 

step in a wall-bounded channel. Figure 3-39 shows a schematic of the flow configuration, 
where h is the step height. The narrower channel is called the inlet channel or upstream 
channel; the other part of the channel is called the expanded channel or downstream 
channel. This type of flow has been widely investigated by numerous authors both 
experimentally and numerically (Goldstein et al. 1970; Denham and Patrick 1974; 
Etheridge and Kemp 1978; Armaly et al. 1983; Kim and Moin 1985; Zhu 1994; Hwang 
and Peng 1995; Le et al. 1997). Many of those studies used a channel with a relatively 
large width (size in the spanwise direction), and an expansion ratio (h / H) of 1:2. The 
Reynolds number used for this flow is usually defined as 

 Re hUD
ν

= , (3.30) 

where U represents an average velocity in the inlet channel which is equal to two third of 
the maximum velocity, Dh is the hydraulic diameter of the inlet channel. For a channel 
with relatively large width and an expansion ratio of two, Dh is equal to twice as the step 
height, since 

 ( )
( )

44 4 2
2 2h

W H hA WhD h
P W H W

−
= = ≅ =

+
. (3.31) 

Alternative definitions of Reynolds numbers such the one based on the centerline velocity 
and step height can be easily based from the above relation. 
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As observed in many experiments, a direct consequence of the channel expansion 

is a large re-circulating flow attached to the backward-facing step, called the primary 
recirculation zone (zone I in Figure 3-39). The primary recirculation zone usually is 
measured by its reattachment length xr, before which the flow in the near-wall region 
goes in a reverse direction (see Figure 3-39), thus the phenomena of boundary layer 
separation. 

 
In a representative work presented by (Armaly et al. 1983) which also used a 1:2 

expansion channel, it is pointed out that the flow exhibits two-dimensionality only at 
Reynolds numbers Re < 400 and Re > 6000; in between these Reynolds numbers the flow 
was found to be strongly three-dimensional, and at the same time maintained its 
symmetry to the center x-y plane. (Armaly et al. 1983) further identified three flow 
regimes based on the relation between the measured reattachment length and the 
Reynolds number, i.e., laminar when Re < 1200, transitional when 1200 < Re < 6600, 
and turbulent when Re > 6600.  

 
They also, as the first research group, reported two additional recirculation zones 

(zone II and III in Figure 3-39), one at the upper wall downstream of the expansion and 
the other, being very thin, at the lower wall a little distanced downstream from the 
primary recirculation zone. The secondary recirculation zone (zone II) is also called 
secondary bubble; its formation is due to the adverse pressure gradient created by the 
sudden expansion, and exists in the late part of the laminar range and throughout the 
transition phase. The third recirculation zone, zone III, occurs only in the early part of the 
transition region where reattachment length experiences a sharp drop in its magnitude 
(Armaly et al. 1983). The size of both the primary and secondary recirculation zone 
increases in the laminar flow regime with Reynolds number, and starts to decrease in the 
transitional region. In the turbulent regime the secondary and tertiary zone disappear 
while the primary recirculation zone is fixed at a constant size. To clarify the above 
explanation, a figure (Figure 3-40) from the original paper is included herein. 
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Figure 3-40 Location of detachment and reattachment in a backward facing step flow. (From 

(Armaly et al. 1983) with permission) 

 
 In general, the characteristic of the backward-facing step flow, in particular the 
reattachment length, is determined by the Reynolds number, channel expansion ratio, 
dimensionality (2D or 3D), inlet condition, and channel boundaries (i.e., close channel or 
open channel). In this section, focus is placed on the two-dimensional wall-bounded 
laminar flow with Reynolds number < 400. Attempt will also be given to the prediction 
of 2D laminar flow but with higher Reynolds numbers 400 < Re < 1000, to see how the 
2D computation performs. As has been done in many other computations, the standard 
step geometry was simplified by excluding the upstream channel, and accordingly a 
proper velocity profile, typically a parabolic profile is specified at the inlet of the 
downstream channel (see Figure 3-39). A study for the high Reynolds number turbulent 
flow will be presented in a later chapter. 
 

Simulations are first performed for Reynolds numbers within 400, a range in 
which the flow can be considered two-dimensional. The flows with Reynolds number 
valued at 100, 150, 200, 250, 300, 350 and 400 is configured by adjusting the inlet 
velocity while keeping the kinematic viscosity constant (1E-6 m2/s). The domain size 
used is 2.5 meter in length and 0.2m in height, excluding the inlet channel. The step 
height is 0.1m, which gives a channel expansion ratio of the 1:2. A 75 × 60 grid is used 
which yields a grid resolution of 0.033m and 0.0033m in longitudinal and transverse 
direction, respectively. A relatively fine grid in the y-direction is necessary to capture the 
recirculation zone triggered by the wall boundary layer separation. At the inlet an 
assumed parabolic profile is prescribed, as the same was used by (Kim and Moin 1985). 
An outlet boundary condition is used at the outlet. Wall boundary conditions are applied 
at the south and north walls, as well as at the downstream side of the step. 
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At each Reynolds number, the simulation starts with a relatively large time step, 
typically 0.1s, using fifty percent implicit power-law and fifty percent explicit QUICK. 
The established flow field is then further advanced using a smaller time step size (0.01s 
when Re < 300, 0.005s when 300 ≤ Re < 300) and the explicit QUICK to reach a final 
steady-state flow.  

 
The steady-state u-velocity contour plots at each Reynolds number along with 

flow streamlines are shown in Figure 3-41(a) through (g). The steady-state v-velocity 
contours at those Reynolds numbers are also shown in Figure 3-42(a) through (g). It is 
clearly seen that the size of the recirculation zone gradually increases with the rise of the 
Reynolds number. This phenomenon is accompanied by a progressively elongated flow 
core region originating from an increased inlet velocity. As reported in the experiments, it 
is confirmed here that no secondary and tertiary recirculation zone is present in this 
Reynolds number range. However, with the increasing Reynolds number, a basin-like (or 
opposite bell-shaped) region is slowly formed at about 7 step-heights away from the inlet 
on the upper wall, where the deceleration of the u-velocity in that region is gradually 
intensified and spreads around the bell base center. This decelerated cone of the flow acts 
like an obstacle that forces other part of the flow to bypass it (Figure 3-41(g)), and 
prepares the flow a formation of the secondary recirculation zone at a further increase of 
Reynolds number. The streamwise velocity profiles at various x-stations are also shown 
in Figure 3-43 for Reynolds numbers 100, 200, 300 and 400. 
 
 When Reynolds number goes beyond 400, as reported in (Armaly et al. 1983), the 
flow becomes three dimensional in nature. Nevertheless, attempt is also made to explore 
possible outcomes at high Re’s with this inexpensive quasi two-dimensional calculation. 
Before doing so, notice from Figure 3-41(g) that the decelerating core of the stream has 
almost reached the domain end. In order to eliminate the possible influence of the 
outflow boundary, extend the domain length is extended to 4.0m, and correspondingly, 
the grid nodes in the x-direction are increased to 120. Calculations are then carried out for 
Re = 500, 600, 800 and 1000. The obtained u- and v-velocity contours are shown in 
Figure 3-44(a) through (d) and Figure 3-45(a) through (d) respectively. The velocity 
profiles are displayed in Figure 3-46. It is observed that while the primary recirculation 
zone keeps increasing, a secondary recirculation zone (separation bubble) is formed from 
about Re = 500 at the upper wall. The size of the separation bubble grows with the 
increase of Re in the Re range considered herein. This result, in particular, the triggering 
Reynolds number and the growing trend of the bubble size, agrees with the experimental 
observation reported in (Armaly et al. 1983). Verification of the tertiary recirculation 
zone which occurs only in the transitional region is avoided in this study. 
 

The reattachment lengths, as the most critical characteristic in the backward-
facing step flow, are also measured at all Reynolds numbers being considered here. This 
is done by plotting the u-velocity variation along x-axis at the first node near the lower 
wall. Excluding the origin point (x = 0), the first intersection of the curve with zero gives 
the desired reattachment length. Interpolation practice is usually necessary to determine 
the approximate location at which the u-curve crosses zero. The reattachment lengths 
calculated from the current flow simulation are included in Table 3-8, and are also further 
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graphed in Figure 3-47 in comparison with the data given in (Armaly et al. 1983) and 
(Kim and Moin 1985). The dependence of the reattachment length on Reynolds numbers 
is in good agreement with both experimental data and Kim and Moin’s simulation up to 
about Re = 400. From Re = 500 the computed results start to deviate from the 
experimental values. Similar behavior of the solution is reported by (Kim and Moin 
1985). A mesh-refinement study as well as variation of the location of downstream 
boundary at Re = 600 gives similar prediction. In fact, the downstream boundary used in 
(Kim and Moin 1985) is 30 step-heights while the current simulation has 40h. This tells 
that the difference between the experimental and computational results is not a result of 
numerical errors. Instead, this discrepancy confirms, from the numerical computation 
point of view, the possible deficiency of simulating an essentially 3D flow with a 2D 
calculation starting from Re = 400, just as (Armaly et al. 1983) have pointed out. 
 

 Table 3-8 Calculated reattachment length and length of secondary bubble as a function of 
Reynolds numbers 

Re xr xr / h xsb xsb / h 
100 0.3261 3.261   
150 0.4379 4.379   
200 0.5376 5.376   
250 0.6230 6.230   
300 0.7135 7.135   
350 0.7791 7.791   
400 0.8448 8.448   
500 0.9475 9.475 0.6384 6.384 
600 1.0015 10.015 0.8713 8.713 
800 1.1338 11.338 1.1776 11.776 

1000 1.3179 13.179 1.3546 13.546 
 

 The length of the secondary bubble is measured in a similar way as to the primary 
recirculation zone except that two intersections (not one) of the u-velocity curve (at the 
first nodes from the upper wall) with zero needs to be recorded; the distance between the 
two zero locations gives the bubble length. The obtained values are also listed in Table 
3-8. (Kim and Moin 1985) reported their calculated lengths at Re = 600 and 800, which is 
7.8 and 11.5 step-heights respectively; the current study gives 8.7h and 11.8h at these two 
Reynolds numbers. At Re =1000, (Armaly et al. 1983) reported a length of 10.4h while 
the present study yields 13.5h. Again, the somewhat large discrepancy is very possibly 
due to the three-dimensionality at that Reynolds number. 
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(d) 

Figure 3-41 u-velocity contours and streamlines of backward-facing step flow at various Reynolds 
numbers (Re ≤ 400). 
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(g) 

Figure 3-41 u-velocity contours and streamlines of backward-facing step flow at various Reynolds 
numbers (Re ≤ 400). 
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(d) 

Figure 3-42 v-velocity contours of backward-facing step flow at various Reynolds numbers (Re ≤ 
400). 
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(g) 

Figure 3-42 v-velocity contours of backward-facing step flow at various Reynolds numbers (Re ≤ 
400). 
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(d) 

Figure 3-43 u-velocity profiles at various x-stations of a backward-facing step flow with different 
Reynolds number (Re ≤ 400). Both x- and y-locations are in step-height unit. (a) Re = 100, (b) Re = 

200, (c) Re = 300, (d) Re = 400. 
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(d) 

Figure 3-44 u-velocity contours and streamlines of backward-facing step flow at various Reynolds 
numbers (400 < Re ≤ 1000). 
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(d) 

Figure 3-45 v-velocity contours of backward-facing step flow at various Reynolds numbers (400 < Re 
≤ 1000). 
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(d) 

Figure 3-46 u-velocity profiles at various x-stations of a backward-facing step flow with different 
Reynolds number (400 < Re ≤ 1000). Both x- and y-locations are in step-height unit. (a) Re = 500, (b) 

Re = 600, (c) Re = 800, (d) Re = 1000. 
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Figure 3-47 Comparison of reattachment length of a backward-facing step flow as a function of 

Reynolds number. Circle: experimental data from (Armaly et al. 1983); dash-dotted line: 
computation of (Kim and Moin 1985); square with solid line: present computation; dashed line: 

computation of (Armaly et al. 1983). 
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3.9. Square Cavity Flow 
In a lid-driven cavity flow the fluid contained inside a square cavity is set into motion by 
the upper wall (or plate) that is sliding at constant speed, owing to the action of shear 
stresses. Figure 3-48 shows a schematic of the flow. The Reynolds number defined for 
this flow is based on the plate velocity, U, and the side length of the cavity, L. Inside 
cavity several standing vortices may exist whose occurrence and characteristics are 
functions of Reynolds numbers.  
 

U

L

L

I

IIa
IIb

IIc

III

 
Figure 3-48 Schematic of a lid-driven cavity with possible vortices. 

 
This phenomenon has been well explored through numerous investigations both 

experimentally and computationally (Nallasamy and Krishna Prasad 1977; Benjamin and 
Denny 1979; Goda 1979; Ghia et al. 1982; Schreiber and Keller 1983; Kim et al. 1987; 
Perng and Street 1989). For a two-dimensional problem, i.e., very thin in spanwise 
direction and the effect in that direction on the flow field is neglected, the moving lid 
creates a strong vortex, called the primary vortex (numbered I in Figure 3-48), and two 
secondary corner eddies (IIa and IIb). As the Reynolds number is raised to between 1000 
and 2000, a third secondary eddy (IIc) is formed in the upper left corner, rotating in the 
counter direction of other secondary eddies. A further increase of Reynolds number (from 
about Re = 5000) may lead to the formation of a tertiary tiny eddy in the lower right 
corner (III). If the problem takes into account the effect from the third dimension, the 
transition to turbulence occurs in the range of 6000 ≤ Re ≤ 8000, and the flow becomes 
fully turbulent when Re > 10000 (Zang et al. 1993; Jordan and Ragab 1994). Also, for a 
3D problem but at moderate Reynolds numbers (before transition), Taylor-Goertler type 
vortices, which consist of counter-rotating vortices near the bottom wall, are observed in 
both experiment (Koseff et al. 1983) and numerical simulation (Kim et al. 1987). 
 

This simple but excellent test case has served over and over again as a model 
problem to test and evaluate numerical techniques. An accurate scheme should be able to 
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capture all these eddies described above. Herein quasi two-dimensional calculations with 
Reynolds numbers ranging between 100 and 5000 are considered. The widely referenced 
solution of (Ghia et al. 1982) will be used for comparison. 

 
Consider a square computational domain with the side length L = 0.1m. The 

velocity of the sliding upper wall is kept at a constant value, 1 m/s. Computations are 
carried out at Re = 1, 100, 400, 1000, 3200 and 5000, where various Reynolds numbers 
are obtained by changing the kinematic viscosity. Non-uniform grid is used with an 
expansion ratio of 1.2 for Re ≤ 1000 and 1.1 for Re > 1000. The grid size will be reported 
when the results are addressed. Zero-slip wall boundary conditions are applied at the left, 
right and bottom wall. The upper boundary is set equal to the sliding wall velocity. The 
explicit QUICK is utilized for all simulations. One example, however, shall be shown 
that the semi-implicit power-law scheme, which produces diffusive results due to the 
absence of the 2nd order CD part in the center region, is inefficient for the cavity 
calculation at moderate and higher Reynolds numbers (Re ≥ 400). In all cases, simulation 
is started with a relatively large time step, typically 0.01s or 0.001s, followed by an even 
smaller one. At steady state, the overall mass residuals are kept below 10-10.  

 
From a numerical point of view, Re = 400 is a critical number above which a 

higher order scheme shows significant superiority over a lower-order schemes. This point 
is illustrated in Figure 3-49(a) where three u-velocity profiles from various grids and 
schemes are shown at the middle of the cavity. From the 21 × 21’s and 31 × 31’s curves 
calculated with the QUICK, a trend toward a grid independent solution is clearly seen, 
implying that the 31 × 31’s results is closer to an extrapolated “exact” solution and thus 
more accurate. This point is verified by comparing the same 31 × 31 profile with other 
two independent calculations shown in Figure 3-49(b), in which excellent agreement is 
obtained. It should be stressed that the present results, as well as the one from (Kim and 
Moin 1985) are obtained on a 31 × 31 grid, and this is four times less than the one used 
by (Ghia et al. 1982). On the other hand, as already pointed out in the previous paragraph, 
the semi-implicit power-law produces rather diffusive solution, as depicted in Figure 
3-49(a), and the results with this scheme will get even worse with higher Reynolds 
numbers. Therefore, in the following only the results calculated from the QUICK are 
presented. 

 
First, two velocity profiles, namely, the u-velocity at x = 0.5L and the v-velocity 

at y = 0.5L, are compared at several Reynolds numbers with (Ghia et al. 1982)’s 129 × 
129 fine grid solution. Figure 3-50(a) through (e) summarize u-velocity profiles at Re = 
100, 400, 1000, 3200, and 5000, while Figure 3-51(a) through (e) summarize the v-
velocity profiles. It can be seen from those figures that the present results calculated from 
a coarse, non-uniform grid generally agree well with Ghia’s benchmark solution. Good 
agreement is still retained even at higher Reynolds numbers (Re = 3200 and 5000) with 
acceptable minor discrepancies occurring at some locations. In most cases, the peak 
values of both u- and v-profiles are calculated accurately. One sees, with increased 
Reynolds numbers, the magnitude of the maximum u-velocity increases only slightly, 
while its location gets much closer to the bottom wall, and the near-wall slope gets much 
sharpened. When the Reynolds number exceeds 3200, the u-velocity does not experience 
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a further appreciable increase in its magnitude (see Figure 3-50(d) and (e)). Similar 
phenomena are observed with the v-velocity profile, as shown in Figure 3-51(d) and (e). 
The increase of the maximum v-velocity starts to slow down when Reynolds number 
reaches 3200. 

 
 Next, the flow structures at representative Reynolds numbers, namely, at Re = 1, 
100, 400, 1000, 3200, and 5000, are examined. For that the velocity vectors are plotted 
along with streamlines indicating flow direction and presence of eddies of various sizes. 
Those figures are grouped in Figure 3-52(a) through (f). In all figures the primary vortex 
can be clearly observed with its center located differently. At Re = 1, the flow is almost 
symmetric with respect to the center y-line, and two little secondary corner eddies are 
present even at this low Re (Figure 3-52(a)). As the Reynolds number increases, the 
center of the primary vortex first moves toward the upper downstream corner before it 
returns toward the center at higher Reynolds numbers. At Re = 3200, a third secondary 
eddy is formed (Figure 3-52(e)) at the upper left corner. (Kim and Moin 1985) obtained 
the third secondary eddy at Re = 2000, so it may be concluded that the formation of this 
upper left corner eddy occurs between Re = 1000 and 2000.  At Re = 5000, besides the 
presence of the upper left corner eddy, a tertiary tiny corner eddy is also visible which 
rotates in a counter direction to its adjacent secondary lower right corner eddy (Figure 
3-52(f)). All the observations obtained in the present study conform well with those 
reported in (Ghia et al. 1982) and (Kim and Moin 1985). As a last check, the extrapolated 
center location of the primary eddy is also listed in Table 3-9, in comparison with those 
given in (Ghia et al. 1982). 
 

Table 3-9 Center locations of the primary vortex of cavity flow at various Reynolds number 

Re = 100 400 1000 3200 5000 

Present (0.619, 0.742) 
21x21 

(0.560, 0.607)
31x31 

(0.532, 0.564)
41x41 

(0.518, 0.540) 
61x61 

(0.502, 0.514)
61x61 

Ghia 82 (0.617, 0.734) 
129x129 

(0.555, 0.606)
257x257 

(0.531, x) 
257x257 

(x, 0.547) 
257x257 

(0.512, 0.535)
257x257 
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(b) 

Figure 3-49 u-velocity profile of a cavity flow at x = 0.5L for Re=400. (a) Comparison of results using 
different scheme and grids, (b) comparison with the computation from (Ghia et al. 1982) and (Kim 

and Moin 1985). 
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(b) 

Figure 3-50 u-velocity profiles of a cavity flow at x = 0.5L for various Reynolds numbers. (a) Re = 
100, (b) Re = 400. Solid line: present results; circles: results from (Ghia et al. 1982) with 129×129 grid 

nodes. 
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(d) 

Figure 3-50 u-velocity profiles of a cavity flow at x = 0.5L for various Reynolds numbers. (c) Re = 
1000, (d) Re = 3200, (d) Re = 5000. Solid line: present results; circles: results from (Ghia et al. 1982) 

with 129×129 grid nodes. 
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(e) 

Figure 3-50 u-velocity profiles of a cavity flow at x = 0.5L for various Reynolds numbers. (e) Re = 
5000. Solid line: present results; circles: results from (Ghia et al. 1982) with 129×129 grid nodes. 
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(b) 

Figure 3-51 v-velocity profiles of a cavity flow at y = 0.5L for various Reynolds numbers. (a) Re = 
100, (b) Re = 400. Solid line: present results; circles: results from (Ghia et al. 1982) with 129×129 grid 

nodes. 
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(d) 

Figure 3-51 v-velocity profiles of a cavity flow at y = 0.5L for various Reynolds numbers. (c) Re = 
1000, (d) Re = 3200. Solid line: present results; circles: results from (Ghia et al. 1982) with 129×129 

grid nodes. 
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(e) 

Figure 3-51 v-velocity profiles of a cavity flow at y = 0.5L for various Reynolds numbers. (e) Re = 
5000. Solid line: present results; circles: results from (Ghia et al. 1982) with 129×129 grid nodes.  
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(b) 

Figure 3-52 Velocity vectors and streamlines of cavity flow at various Reynolds number. (a) Re = 1, 
21×21, (b) Re = 100, 21× 21. 
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(d) 

Figure 3-52 Velocity vectors and streamlines of cavity flow at various Reynolds number. (c) Re = 400, 
31×31, (d) Re = 1000, 41×41. 
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(f) 

Figure 3-52 Velocity vectors and streamlines of cavity flow at various Reynolds number. (e) Re = 
3200, 61×61, (f) Re = 5000, 61×61. 
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Part II Modeling and Simulation of 
Turbulent Flows 
 
 
 
 
 

Chapter 4 Modeling Strategies for 
Turbulent Flows 
 
 
4.1. Scales in Turbulent Flows and Direct Numerical 
Simulation 
In a turbulent flow, where the flow is highly unsteady, three-dimensional, contains a great 
deal of vorticity and coherent structures, exhibits enhanced mixing accompanied with 
increased dissipation of kinetic energy, there exists a wide range of length and time 
scales. As for example pointed out by (Tennekes and Lumley 1972), the smallest scales 
in a turbulent flow, called the Kolmogorov scales, are determined by the kinetic viscosity, 
ν, and the dissipation rate, ε, i.e., 

 

3 1/ 4

1/ 4

1/ 2

( / ) ,
( ) ,

( / ) ,

uη

η

η ν ε

εν

τ ν ε

∼
∼

∼

 (4.1) 

where η, uη, τη denote the Kolmogorov length, velocity (fluctuation) and time scale, 
respectively. The inviscid estimate relates the dissipation rate ε to the scales of largest 
eddies, l0 and u0 being their characteristic size (an integral length scale) and velocity 
fluctuations, by 
 3

0 0/u lε ∼ . (4.2) 
Note that l0 is comparable to the flow geometry, characterized by length scale L; and u0 is 
of the order of the flow’s RMS (root mean square) velocity fluctuation, u’ = (2k/3)1/2 (k 
being the turbulent kinetic energy defined in Eq. (4.35)), and thus comparable to the 
mean flow velocity scale. With the help of Eq. (4.2) one deduces the ratios of the largest 
and smallest scales: 
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where τ0 = l0 / u0, representing the lifetime (or turnover time) of large eddies, and Re = 
u0l0 / ν . One sees from Eq. (4.3) that relative to largest scales, the Kolmogorov length 
scale decreases as Re-3/4, and the Kolmogorov time scale as Re-1/2.  
 

The direct numerical simulation (DNS) attempts to tackle the turbulent flow 
problem by solving the Navier-Stokes equations directly. Therefore, it must resolve all 
the turbulent scales down to the Kolmogorov scales. A direct implication of (4.3) is that 
the number of grid in each direction, L / η, or l0 / η, is proportional to Re3/4; consider the 
total number of grids in three directions, and also note that the time step is related to the 
grid size as well; the overall cost of simulation typically scales as Re3. Although the 
Reynolds number defined here is based on the fluctuation velocity of the largest eddies, 
there is proportionality between this Re and the macroscopic Reynolds number engineers 
usually use to describe a flow. Thus, the computational cost also scales with cube of a 
typical engineering Reynolds number.  
 
 A precise picture of the resolution requirement can be gained by examining the 
Fourier series representation of the turbulent velocity field u(x,t). For this purpose 
consider the homogeneous isotropic turbulence in a cubic domain of side L, and suppose 
that the flow has a periodicity with period L in all three dimensions. As such, the Fourier 
series expansion of u(x,t) may be written out as: 

 , ,1 2 3

1 2 3

3 2 1

, ,( , ) n n ni
n n n

n n n

t e
∞ ∞ ∞

⋅

=−∞ =−∞ =−∞

= ∑ ∑ ∑ xu x c κ , (4.4) 

where the wave number vector κn1,n2,n3 and the Fourier coefficient vector cn1,n2,n3 are 
given by 

 ( )
1 2 3, , 1 2 3

2, , ,n n n n n n
L0 0 0 0
πκ κ κ κ= =κ , (4.5) 
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L L L
i

n n n n n n t t e d
L

− ⋅= ∫ ∫ ∫
xc u x xκκ . (4.6) 

Notice that the formula for obtaining cn1,n2,n3 (4.6) is essentially a “Fourier transform” 
operation (except for the multiplication factor and the integration limits, see, e.g., 
(Lighthill 1970; Bracewell 1978; Folland 1992) concerning Fourier transform) that 
transforms u(x,t) from the physical space into a wave number space.  
 

Now let N be the number of grid nodes in each direction of the computational 
box, thus N3 being the total number of nodes. For convenience, let N be an even integer. 
The objective here is to determine a reasonable N for a DNS. Of practical interest, cn1,n2,n3 
is expressed in the form of discrete Fourier transform (DFT, see, e.g., (Press et al. 1992)) 
based on the N3 samples; as such, with N3 numbers of input, no more than N3 independent 
cn’s will be produced in the wave number domain. Thus, Eq. (4.4) can be re-expressed in 
terms of the discrete inverse Fourier transform that consists of N3 wave numbers (Fourier 
modes or Fourier coefficients): 

 , ,1 2 3

1 2 3

3 2 1

/ 2 / 2 / 2

, ,

1 1 1
2 2 2

( , ) n n n
N N N

i
n n n

N N Nn n n

t e ⋅

= − = − = −
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It is seen that representing u(x,t) in the physical space on an N3 grid is equivalent to a 
spectral representation with N3 wave numbers. Therefore, saying a higher resolution in 
the physical space is the same as saying more Fourier coefficients with higher wave 
numbers. 
  

Similar to the understanding of Nyquist critical frequency (=1/2Δt, Δt being the 
sampling interval), a term used in the sampling theory (in the area of signal processing), 
the maximum wave number that can be represented, in each direction, is: 

 max
1
2

NN
L h0

π πκ κ= = = , (4.8) 

where h is the uniform grid spacing. This important relation reveals that the cost of 
computation, characterized by either N or h, is determined by the maximum resolved 
wave number, κmax. (Pope 2000) has demonstrated with model dissipation spectra that the 
dissipation effect becomes negligibly small beyond κη = 1.5 ≈ π / 2. This sets up the 
following resolution criteria for a satisfactory DNS: 

 max 2
k πη ≥ , (4.9) 

or equivalently, 

 2h
η

≤ . (4.10) 

 
As a result, a DNS of, say, a channel flow at Re = 106 requires about 15E12 grid 

nodes, and would take around hundred years on a computer running at several gigaflops, 
flops being the number of floating-point operations within one second. For this reason the 
DNS is still restricted to low to moderate Reynolds numbers. The current highest Re of 
DNS channels being simulated is at around Reτ = 600 (Moser et al. 1999; Abe et al. 
2001), based on the friction velocity, uτ, and the half channel height, δ, or Rec = 13,000 
based on the center line velocity. To circumvent this great challenge, different approaches 
to the Navier-Stokes equations have been proposed, such as RANS (Reynolds-averaged 
Navier-Stokes) and LES (large-eddy simulation), but all at an additional expense of the 
so-called “turbulence modeling.” 
 
 
4.2. Reynolds Averaged Navier-Stokes and Its 
Closure Models 
In the Reynolds-averaged Navier-Stokes (RANS) approach a time averaging, also called 
Reynolds averaging due to (Reynolds 1895), is performed to the Navier-Stokes (N-S) 
equations. A time-averaged quantity, indicated by an overbar, is defined as 

 1( , ) ( , )
t T

t
t t dt

T
φ φ

+
= ∫x x , (4.11) 

where T is a time interval much longer than all the time scales of the turbulent flow but 
much less than the time scale relative to the mean flow (e.g. period in an oscillating flow 
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or wave). The averaging operation defined above permits one to decompose a time-
varying quantity, say φ, into its mean part and a fluctuation part, denoted by φ’, i.e., 
 ( , ) ( , ) ( , )t t tφ φ φ′= +x x x . (4.12) 
When the time (Reynolds) averaging is applied to the incompressible N-S equations, (Eq. 
(1.18) and (1.24)), one obtains the well-known RANS equations expressed on the 
Cartesian coordinates: 

 0 , 0,i i

i i

u u
x x

′∂ ∂
= =

∂ ∂
 (4.13) 

 ( ) ( ) ( )i
i j i j i i

j i j j j

upu u u u u b
t x x x x x

ρ ρ μ ρ ρ
⎛ ⎞∂∂ ∂ ∂ ∂ ∂ ′ ′+ = − + + − +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

, (4.14) 

or equivalently (by using Eq. (1.23)) 

 ( ) ( ) ( ) ( )2i j i ij j i i
j i j j

pu u u S u u b
t x x x x

ρ ρ μ ρ ρ∂ ∂ ∂ ∂ ∂ ′ ′+ = − + + − +
∂ ∂ ∂ ∂ ∂

, (4.15) 

with ijS  being the mean strain rate tensor given by 
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ji
ij

j i

uuS
x x

⎛ ⎞∂∂
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. (4.16) 

An important quantity that signifies the magnitude of ijS  is the characteristic mean strain 

rate, S , which is defined as 
 ( )1/ 21

2 ij ijS S S= . (4.17) 

The extra term in Eq. (4.14) or (4.15), j iu uρ ′ ′− , is known as the Reynolds stresses, which 
represents the crucial difference between the RANS and the Navier-Stokes equations, and 
needs to be modeled. In the derivation of Eq. (4.14) one has assumed negligible density 
fluctuations, i.e., 
 ρ ρ ρ ρ′= + ≅ , (4.18) 
and used the following facts (or rules) that are associated with the averaging operation: 
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∂ ∂ ∂ ∂′= = = =
∂ ∂ ∂ ∂

′ ′ ′ ′+ = + = = = = +

 (4.19) 

where f and g are two arbitrary variables.  
 

The kinetic energy equation of the mean flow and the equation of turbulent 
kinetic energy can be formed from the RANS equations (4.15) and the N-S equations 
(1.23). Albeit both energy equations are not relevant to the numerical procedure, they are 
of fundamental importance in understanding the mechanical energy transfer between the 
mean motion and the fluctuating part, thus providing critical insight into the modeling 
strategies. Let K denote the kinetic energy of the mean flow, it is defined as 
 1 1

2 2 i iK u u= ⋅ =u u . (4.20) 
The K-equation is obtained by multiplying Eq. (4.15) by iu . For brevity, the body force is 
neglected here. The resulting equation reads 
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 ( )j ij i ij ij
j j

DK K Ku u S
Dt t x x

∂ ∂ ∂
≡ + = −

∂ ∂ ∂
T T , (4.21) 

with the stress tensor 

 2ij ij ij i j
p S u uδ ν
ρ

′ ′= − + −T . (4.22) 

The first term on the RHS of Eq. (4.21) includes the diffusive transport (or molecular 
transport, see (Bird et al. 2002)) of the mean-flow kinetic energy, in contrast to the 
convective transport on the LHS. As is seen from Eq. (4.22) this transport mechanism is 
attributed to the normal stress, the viscous stress, and the Reynolds stress. The second 
term on the RHS of (4.21) is called deformation work, which can be expanded into: 
 ij ij mS ε− = − −T P , (4.23) 
where 
 22m ij ijS S Sε ν ν= = , (4.24) 

 i j iju u S′ ′= −P . (4.25) 
Note that the deformation work performed by the normal stresses is zero for an 
incompressible flow, since 

 0i
ij ij ii

i

up S pS p
x

δ ∂
= = =

∂
. (4.26) 

The minus sign in Eq. (4.23) is to emphasize its dissipation nature, i.e., they usually act as 
sink. (-εm) performs deformation work against the mean strain rate. Because it is always 
negative, this term is called viscous dissipation of the mean flow field. The deformation 
work done by the Reynolds stresses is represented by (-P) term; and it is negative, i.e., 

dissipative in most flows (Tennekes and Lumley 1972), saying that i ju u′ ′ tends to have the 

opposite sign of ijS . An important observation is that the (-P) term serves as an interface 
for exchanging kinetic energy between the mean flow and turbulence. As a result, the 
turbulent kinetic energy (TKE) benefits from this work, since P becomes a source in the 
TKE transport equation. It is for this reason that this term is called turbulence energy 
production. It can be further shown from the scale analysis (Tennekes and Lumley 1972) 
that the viscous dissipation is negligible; this leaves (-P) as the dominant sink.  
 
 The turbulent kinetic energy (TKE) is defined as 
 1 1

2 2 i ik u u′ ′ ′ ′= ⋅ =u u , (4.27) 
The k-equation can be obtained by multiplying the N-S equations (1.23) by ui, taking the 
Reynolds averaging and subtracting the K-equation (4.21). The result is 

 j
j

j j

Dk k ku
Dt t x x

ε
∂∂ ∂

≡ + = − + −
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T
P  (4.28) 

where 

 1 1 2
2j j i i j i iju p u u u u sν

ρ
′ ′ ′ ′ ′ ′= + −T , (4.29) 
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 i j iju u S′ ′= −P , (4.30) 

 2 ij ijs sε ν= . (4.31) 
The quantity sij is the fluctuating rate of strain, defined by 

 1
2

ji
ij

j i

uus
x x

⎛ ⎞′∂′∂
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. (4.32) 

Thus, the three terms on the RHS of Eq. (4.28) represent the diffusive transport of TKE, 
the production of TKE and the viscous dissipation of TKE, respectively. The major task of 
the transport terms is to redistribute energy; they are not significant in creating and 
removing energy. Notice that the expression of P, Eq. (4.30), is identical to (4.25); this 
confirms the assertion made in the proceeding paragraph that the major dissipation 
energy lost to the mean flow, P, is transformed into a source in the k-equation. Also see 
that the dissipation term, (-ε), is always negative, signifying a drain of energy. Unlike εm 
in the K-equation, (-ε) is significant in its parent equation, since it is responsible for 
energy cascade (in which energy is transferred to smaller and smaller scales) and 
maintaining the dynamics of turbulence. A direct implication from Eq. (4.28) is that in a 
statistically steady, homogeneous, pure shear-driven turbulent flow, 
 ε=P , (4.33) 
which (by scale analysis) leads to a further conclusion of local isotropy of small-scale 
structure (see (Tennekes and Lumley 1972)). This result is useful in building up certain 
turbulence models in the RANS approach as well as in the LES approach. 
 

The main advantage in transforming N-S to RANS is that a detailed resolution for 
small turbulent scales is obviated; computationally it simply means a coarser grid and a 
larger time step can be used. It is the very term, j iu uρ ′ ′− , that attributes to the very 
different behaviors of the mean flow field governed by Eq. (4.14) and the instantaneous 
field described by Eq. (1.24). Various models have been developed to close the RANS 
equations. They can be classified into four major categories: (i) algebraic models, (ii) 
one-equation models, (iii) two-equation models and (iv) second moment models. Because 
there is a very close connection between the statistical models in RANS and the subgrid 
scale models in LES (to be presented Section 4.8), and also to appreciate the difference 
between the two, in the following a concise summary is presented for the four typical 
classes of RANS models. The conceptual shortcomings of the RANS approach will be 
also commented in the next section, along with an introduction to LES. 
 
 
4.2.1. Boussinesq Hypothesis 
The first three classes of models (i, ii and iii) can be further grouped into the turbulent 
viscosity (or eddy viscosity) models, since they are all based on the turbulent viscosity 
hypothesis (Boussinesq 1877) which is formulated as 

 2
3

ji
i j t ij

j i

uuu u k
x x

ν δ
⎛ ⎞∂∂′ ′− = + −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

, (4.34) 

where k is the turbulent kinetic energy (TKE) defined as 
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 ( ) ( ) ( )2 2 2 2 2 2
1 2 3 1 2 3

1 1 1 ' '
2 2 2

k u u u u u u′ ′ ′ ′ ′ ′= + + = + + = ⋅u u , (4.35) 

and νt is the so-called turbulent (or eddy) viscosity. Note that νt is not a physical property 
but rather a proportionality parameter that is dependent on the local turbulent 
characteristics and behaves quite differently from flow to flow. The inclusion of the 
second term in Eq. (4.34) assures that the sum of the normal Reynolds stresses matches 
the definition of k given in (4.35). This k-term can be further absorbed into the pressure 
term in the RANS equations (4.14); as a result, a modified pressure will replace the static 
pressure in (4.14), 
 2

3newp p kρ= + . (4.36) 
In short, all the eddy viscosity models are aimed at a proper specification of the eddy 
viscosity, νt, or equivalently, a turbulent velocity scale, u*, and a turbulent length scale, 
l*, satisfying 
 t u lν ∗ ∗= . (4.37) 
 
 
4.2.2. Mixing Length Models 
A representative algebraic model is the mixing length model, which originates from 
Prandtl‘s idea (Prandtl 1925) and later generalized by (Smagorinsky 1963) as  
 ( )1/ 22 2 2t m m ij ijl S l S Sν = = , (4.38) 
and (Baldwin and Lomax 1978) as 
 ( )1/ 22 2 2t m m ij ijl lν = Ω = Ω Ω , (4.39) 

where S  and ijS  are the characteristic mean strain rate and mean strain rate tensor, 

respectively; Ω  and ijΩ  are the characteristic mean rotation rate and mean rotation rate 
tensor, respectively; lm is the mixing length which is specified based on the flow type and 
local flow property (such as near-wall region). In this model l* = lm.  
 
 
4.2.3. Turbulent Kinetic Energy (One-equation) Model 
The one-equation model (usually referred to as the turbulent kinetic energy model), 
originally proposed by (Kolmogorov 1942; Prandtl 1945), attempts to express the u* in 
terms of the turbulent kinetic energy, k, i.e., 
 1/ 2

1u C k∗ = ; (4.40) 
hence, 
 1/ 2

1t mu l C k lν ∗ ∗= = . (4.41) 
where C1 is a constant, which value (≅ 0.55) can be derived from the wall-region 
behavior (Pope 2000); and k is obtained from the TKE equation (Eq. (4.28)), which is 
repeated in a short-hand form as follows: 

 Dk
Dt

ε+ ∇ ⋅ = −T P , (4.42) 



 120

Note that the /Dk Dt  and P are in closed form, i.e., they can be deduced from the 
“known” mean flow field, while the ∇ ⋅T  and ε are unknown, and need to be further 
modeled. Using Eq. (4.2) yields a modeled expression for ε : 
 3/ 2

2 / mC k lε = , (4.43) 
where C2 is a model constant and C2 = C1

3 ( attained by setting P = ε  and considering 
log-law). It is important to note that the model assumption (4.43) is based on the local 
equilibrium, i.e., the production and dissipation of TKE balance each other (Celik 2005). 
The quantity T  is typically unburdened with a gradient-diffusion hypothesis, i.e., 

 t

k

kν
σ

= − ∇T , (4.44) 

where σk is known as the turbulent Prandtl-Schmidt number and generally taken to be 
one. Physically, Eq. (4.44) asserts that, due to velocity and pressure fluctuations, there is 
a flux formed from k gradient that diffuses the k field. Mathematically, the resulting 
equations ensure a smooth solution under the action of the Laplacian operator 
( 2∇ ⋅∇ = ∇ = Δ ). So, the final modeled evolution equation for k reads: 

 t

k

Dk k
Dt

ν ε
σ

⎛ ⎞
= ∇ ⋅ ∇ + −⎜ ⎟

⎝ ⎠
P , (4.45) 

with νt and ε are provided by Eq. (4.41) and (4.43), respectively, and an empirical 
specification of lm (flow-dependent) is also needed. 
 
 
4.2.4. k-ε (Two-equation) Model 
To overcome the lack of a length scale in the one-equation models, the two-equation 
models were developed. This class of models are typified by the widely used k-ε model, 
which is formalized mainly by (Jones and Launder 1972; Launder and Spalding 1972). In 
this model two transport equations are solved for k and ε. By dimensional analysis, the 
eddy viscosity can be accordingly formulated as 
 2 /t C kμν ε= , (4.46) 
where Cμ is a model constant. Referring to the discussions in the one-equation model, one 
can show that Cμ = C1

4 and thus takes a standard value of 0.09. Note that the relation 
(4.46) also implies that 

 
3/ 2

1/ 2 , ku k l
ε

∗ ∗∼ ∼ . (4.47) 

The k-equation is same as the one used in the TKE equation model; although the ε-
equation can also be rigorously derived from the RANS equations, similar to the k-
equation, it is not a useful starting point due to its high complexity. Therefore, the ε-
equation has been developed on a semi-empirical basis to mimic its energy-dissipating 
role; it is 
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1 2
tD C C

Dt k kε ε
ε

νε ε εε
σ

⎛ ⎞
= ∇ ⋅ ∇ + −⎜ ⎟

⎝ ⎠

P . (4.48) 
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A well explained physical justification of the ε-equation could be found, for example, in 
(Pope 2000). It is important to stress that in the derivation of the ε-equation two major 
assumptions have been made: (i) local isotropy, i.e., u’, v’ and w’ are locally equal, (ii) 
local equilibrium, i.e., the production P and dissipation ε are approximately equal locally 
(see (Celik 2005) for more detail). Equations (4.46), (4.45) and (4.48) form a “standard” 
k-ε model. The standard values of those model constants optimized by (Launder and 
Sharma 1974) are: 
 1 20.09, 1.0, 1.3, 1.44, 1.92kC C Cμ ε ε εσ σ= = = = = . (4.49) 
Variants of the standard k-ε model and other two-equation models similar to the form of 
k-ε exist, such as the RNG (renormalization group) k-ε  model due to (Yakhot and Orszag 
1986), the Realizable k-ε model due to (Shih et al. 1995) and the k-ω model due to 
(Kolmogorov 1942; Saffman 1970).  
 
 
4.2.5. Second Moment Models 
Different from the above three classes of RANS models, the second moment models 
attacks the Reynolds stresses directly without relying on the eddy viscosity concept (Eq. 
(4.34)). Two related models in this class are the Reynolds stress model (RSM) developed 
by (Daly and Harlow 1970; Launder et al. 1975; Lumley 1978; Speziale 1987; Speziale et 
al. 1991), and the algebraic stress model (ASM). In the Reynolds stress model, the exact 
transport equations for the Reynolds stresses are derived, which amount to six equations 
for six unknown Reynolds stresses. They can be written in compact tensor notation as 
(Pope 2000): 
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and 
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In the above notations, p’ is the fluctuating pressure or modified pressure, P ij is the 
production tensor, εij is the dissipation tensor, Rij is the pressure rate of strain tensor 
responsible for the pressure-strain redistribution, and Tijk is the Reynolds stress flux 
representing the turbulent diffusion effect due to the velocity/pressure fluctuations. 
Further, a seventh transport equation for the dissipation ε, similar to Eq. (4.48), is usually 
added into the equation set to provide a length or time scale of turbulence. Therefore, 
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there will be a total of eleven primary variables in this model, i.e., , , , andi jp u u ε′ ′u . Also 

notice that P ij is in closed form, while εij, Rij and Tkij are not expressed in terms of the 
primary variables, and thus must be modeled. An obvious consequence of this model is 
the increased complexity and computational cost. Based on the Reynolds stress model, 
the algebraic stress model is developed, in which the transport terms (LHS of Eq. (4.50)) 
as well as the derivatives of the Reynolds stresses on the RHS of (4.50) is approximated 
with algebraic expression, such that the six PDE’s for the Reynolds stresses are turned 
into six coupled algebraic equations. Although the reduced set of equations is much 
easier to solve, due to the inherent approximation nature, it is less accurate and general 
than the RSM. 
 
 The readers are referred to some standard and recently published texts, e.g., 
(Launder and Spalding 1972; Rodi 1980; Wilcox 1993; Pope 2000; Durbin and 
Pettersson Reif 2001; Marden and Bakker 2002; Celik 2005), for a greater detail 
concerning the RANS turbulence modeling. 
 
 
4.3. Large Eddy Simulation 
Much of the pioneering work of large-eddy simulation (LES) is performed by 
(Smagorinsky 1963; Lilly 1967; Deardorff 1974; Schumann 1975; Moin and Kim 1982). 
Reviews at different stages of development of LES are provided by (Rogallo and Moin 
1984; Galperin and Orszag 1993; Lesieur and Metais 1996; Piomelli 1999; Meneveau 
and Katz 2000). Detailed expositions on LES are presented in the texts written by (Pope 
2000; Sagaut 2002; Celik 2005).  
 

The idea of large-eddy simulation (LES) arises from the observation that in a 
turbulent flow the turbulent kinetic energy (TKE) and anisotropy are contained 
predominately in the larger scales of motion, while the smaller scales are only responsible 
for fine wiggles of velocity fluctuations. Thus, it is possible to characterize the flow 
mainly with larger scales, while the smaller scales motion is “anticipated” by some 
means. A loose phenomenological definition between small and large scales is provided 
by (Frisch 1995), in which eddies of scale larger than some critical length scale l is said 
to be large, and those below that is said to be small. Henceforth, the two loose terms will 
be used without an explicit explaining. 
 

The “segregation” of large scales from small scales can be achieved by way of 
space averaging, formally known as the filtering. The small scales that are removed after 
the filtering operation are called the subgrid scales, or SGS in short. In the LES approach 
a filtering operation is applied to the Navier-Stokes (N-S) equations to yield a set of 
filtered N-S equations with the primary variables being the filtered (smooth) quantities, 
representing the motion of large scales (or large eddies).  Similar to the situation in 
RANS, where Reynolds stresses come out as extra burden after Reynolds averaging, 
filtered N-S equations also carry extra stress terms, called SGS stresses, which are related 
to small scales motion and must be modeled as well (SGS model). Different from RANS, 
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LES has to be three-dimensional and transient (i.e., provide instantaneous information 
concerning turbulent flows) because the ultimate goal of LES is to predict turbulence 
itself rather than providing some statistical properties.  
 

LES is a technique intermediate between DNS and RANS. In comparison with 
DNS, where a full resolution of scales is required and nearly all of the computational 
effort is expended on the smallest, dissipative motions (Pope 2000), LES resolves only 
large scales and take into account the influence of small scales via SGS models. The 
computational cost of LES is generally several orders of magnitude less than DNS, hence 
making it accessible for simulating high Reynolds number flows. Since LES also 
provides similar turbulence characteristics as DNS does, it is sometimes viewed as a 
relaxed version of DNS. 
 

As for the RANS approach, although it is computationally cheaper than LES, 
RANS suffers from a principal shortcoming, the fact that a RANS model must represent a 
wide spectrum of scales, since a Reynolds-averaged quantity only tells a statistical mean. 
Further, due to the fact that small scales tend to depend only on viscosity and may be 
somewhat universal, whereas the large ones are very strongly affected by the boundary 
conditions, it does not seem possible to model the effect of large scales of turbulence in 
the same way in flows that are very different (Piomelli 1999). These are the primary 
reasons why all the RANS models, including the most widely used k-ε type models, 
cannot find its universal applicability. In practice, a careful selection of a particular 
model from a vast model collection in existence, and a further fine-tuning of model 
constants are usually necessary before performing a RANS simulation.  
 

There is a large body of discussions in the literature which addresses the 
advantage of LES over RANS with respect to their performance in the turbulence 
prediction. For example, (Rodi 1997) pointed out using the example of flow past bluff 
bodies that statistical turbulence models have difficulties with the complex phenomena, 
such as separation and reattachment, unsteady vortex shedding, bimodal behavior, high 
turbulence, large-scale turbulent structures as well as curved shear layers. He further 
stated that the LES approach is conceptually more suitable for such flow situations. (Su et 
al. 2001) mentioned in their indoor airflow study that most of the developed RANS 
turbulence models, such as the mixing length theory, one-equation models, two-equation 
models, and second moment models may perform reasonably well in one case, but poorly 
in another.  
 

Nevertheless, there are also situations where saying LES is the right approach is 
less convincing. One example given by (Pope 2004) is the turbulent combustion at high 
Reynolds number and Damkohler number, in which the essential rate-controlling 
processes of molecular mixing and chemical reaction occur at the smallest scales. But 
overall, the LES approach is receiving wide recognition and strong support; the use of 
LES in engineering applications will keep increasing, along with the exponential increase 
in computing power and advances in numerical algorithm. It is also anticipated that 
RANS will still survive LES for some time to come (Celik 2005), since by far the RANS 
is still the most economical way for industrial applications, and the statistical models are 
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trying to catch up with new modeling concept, such as the non-linear eddy viscosity 
approach and multi-equation, multi-scale second moment closure. 
 
 From this section on and throughout the rest of this study, attention will be 
focused on the LES approach. LES will be the primary tool to simulate single-phase 
turbulent flows (Part II) as well as two-phase turbulent flows (Part III). In the following 
sections, the LES concept and its modeling methodology will be briefly presented, of 
course biased towards the author’s own understanding. 
 
 
4.4. Filtering 
As mentioned above, in LES a scale is split into a resolved part, which is obtained via a 
spatial filtering operation, and an unresolved part, called the subgrid scale, i.e., 
 ( , ) ( , ) ( , )t t tφ φ φ′= +x x x , (4.53) 
where the overbar indicates a filtered (resolved) quantity and prime denotes a subgrid 
(unresolved) scale. Note that the same notations have been used here as in RANS (cf. Eq. 
(4.12)) for the decomposed parts. But the meaning of decomposition in LES and RANS is 
conceptually different. It is agreed that in the LES context the overbar always denotes a 
filtered quantity. Under circumstances where a mean quantity needs to be distinguished 
from a filtered one, the angle bracket 〈 〉 will be reserved for the mean quantity with 
declaration (since symbol 〈 〉 will also be used to denote the volume averaging in Part III 
of this work).  
 

A spatial filtering that operates on a space-time variable (or function) φ(x,t) to 
yield a filtered quantity ( , )tφ x  (Leonard 1974) is defined by 
 

3
( , ) ( ) ( , )t G t dφ φ= −∫R
x ξ x ξ ξ , (4.54) 

where R3 represents a three-dimensional space, dξ is a shorthand for dξ1dξ2dξ3, and G is 
called filter function, filter kernel or filter. Mathematically, Eq. (4.54) is known as the 
convolution integral (see, e.g., (Kreyszig 1993)); hence one may also write: 
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( , ) ( * )( , ) ( ) ( , )

( * )( , ) ( , ) ( ) ,

t G t G t d

G t t G d

φ φ φ

φ φ

= = −

= = −

∫
∫

R

R

x x x ξ ξ ξ

x x ξ ξ ξ
 (4.55) 

where * is the standard notation for a convolution operation of two functions. The 
convolution given by (4.55) can be viewed twofold in terms of φ: the G*φ implies 
moving weighted averages of φ with respect to the weight function G(x-ξ) that moves 
along x; φ*G can be interpreted as a continuous superposition of translates of φ by 
distances ξ multiplied by a corresponding coefficient G(ξ). The word “filtering” used in 
LES takes from the former understanding. By definition, linearity is automatically 
satisfied, i.e., for variable φ, ϕ and constant c, one has 
 c cφ ϕ φ ϕ+ = + . (4.56) 
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 Note that the filter function given in Eq. (4.54) and (4.55) is a function of ξ only, 
and independent of x. Such a filter is known as the homogeneous or uniform filter. The 
filtering operation that uses a homogeneous filter commutes with partial derivative with 
respect to both space and time, i.e., 

 ,
i ix x t t

φ φ φ φ∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂
, (4.57) 

since 
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 (4.58) 

and similar to the time derivative, provided that ( ) iG xφ∂ ∂ exists and is continuous 
(Leibniz’s rule, see, e.g., (Parzynski and Zipse 1982)). In LES a filter function should be 
selected such that the normalization (or conservation) property is satisfied, i.e., 
 

3
( ) 1G d =∫R
ξ ξ . (4.59) 

The purpose of this constrain is to ensure a rapid decay of the filter function at infinity in 
the physical space. If a filter function is independent of the orientation of the reference 
frame in physical space, i.e., G(ξ) depends only on |ξ|, it is called an isotropic filter.  
 
 Further insight can be gained by analyzing the filtering operation in the wave 
number space via Fourier transform. One of the Fourier transform pair (forward and 
inverse transform) in three-dimensional space is defined by 
 [ ] 3

ˆ( , ) ( , ) ( , ) it t t e dφ φ φ − ⋅= = ∫ κ x

R
x x xκ F , (4.60) 

 [ ]1
3

1 ˆ( , ) ( , ) ( , )
(2 )

it t t e dφ φ φ
π

∞− ⋅

−∞
= = ∫ κ xx κ κ κF , (4.61) 

where ^ denotes the Fourier transfer function, κ denotes the wave number vector. Thus, 
The following holds for the Fourier transform of the convolution (see some standard 
texts, e.g., (Lighthill 1970; Bracewell 1978; Folland 1992):  

 [ ]ˆ ˆ ˆ*G Gφ φ φ= =F . (4.62) 
By Eq. (4.59) 
 

3 3
ˆ ( ) ( ) ( ) 1iG G e d G d− ⋅= = =∫ ∫0 ξ

R R
0 ξ ξ ξ ξ . (4.63) 

 
For illustration, three commonly used one-dimensional filter functions are listed 

in Table 4-1 along with their Fourier transfer functions. They are the box (top-hat) filter, 
the Gaussian filter and the sharp spectral (or Fourier cut-off) filter. Here G1, in contrast to 
its three-dimensional counterpart, G, denotes a one-dimensional filter in the x-direction. 
The graphs of these filters in both physical and wave number space are depicted in Figure 
4-1(a) and (b). Note that since G1 considered here are real and even, so also are their 
transfer functions. See (Pope 2000) for other filters and their properties. 
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The symbol, Δ, which shows up in the definition of a filter function is called filter 
width. For a constant Δ all the filters are homogeneous and isotropic (equivalent to 
symmetric in one-dimension). By inspecting their transfer functions and their plots shown 
in Figure 4-1(b), one sees that, due to Eq. (4.62), the three filters will lend more weight to 
low frequency parts of a signal, while they annihilate or make less significant the high 
frequency components. Therefore, they are all low-pass (in frequency) filters. Interpreted 
in physical space it simply means that large length scales will be taken and small-scale 
fluctuations will be more or less ignored, thus high-pass in length. Here, the filter width Δ 
serves as a “controller” who distinguishes between large and small scales. Figure 4-2 
shows an example in which a random signal is smoothed to a different degree as a result 
of the filtering operation by a same filter with different Δ. 
 

With the box filter, ( )xφ  is simply the local average of φ(ξ) in the interval x - 
0.5Δ ≤ ξ ≤ x + 0.5Δ. The Gaussian filter is the Gaussian distribution with mean zero and 
variance equal to Δ2/12, a value chosen by (Leonard 1974) to match the second moments 
( 2 ( )G dξ ξ ξ

∞

−∞∫ ) of the Gaussian and the box filter. The sharp spectral filter (or Fourier 

cut-off) has a cut-off wave number, κc = π / Δ, above which all the Fourier modes will be 
removed, and below which no frequency information will be lost. The spectral filter is 
usually employed when the N-S equation is solved in the wave number space. 
 

Table 4-1 Commonly used one-dimensional filter functions and their Fourier transfer functions 

Name Filter function Fourier transfer function 

Box (top-hat) 
1 1
2 2

1

1
( )

0 elsewhere

x x
G x

ξ
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⎧ − Δ ≤ ≤ + Δ⎪− = Δ⎨
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Sharp spectral 
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(a) 

 
(b) 

Figure 4-1 (a) One-dimensional filter functions, G(ξ), (b) Filter transfer functions, ˆ ( )G κ  
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Figure 4-2 A random signal and its filtered signals 

 
Generally, uniform and isotropic three-dimensional filters can be formulated 

based on their one-dimensional counterparts. For example, the box filter becomes a 
volume average over the spherical ball of radius Δ/2. On a rectangular grid, an easy way 
of constructing a high dimensional filter would be simply forming the product of one-
dimensional kernels (Pope 2000; Sagaut 2002), i.e.,  

 
3

1

( ) ( )i i
i

G G ξ
=

= ∏ξ , (4.64) 

where Gi does not have to be of the same type, and can have different filter width Δi in 
each direction. Note that filters defined from Eq. (4.64) are generally anisotropic, even 
when Δi’s are the same, as G(ξ) is dependent of the orientation of the reference frame. 
For such an anisotropic filter, a characteristic filter width Δ can be defined (Deardorff 
1970; Scotti et al. 1997) as 
 1/3

1 2 3( )Δ = Δ Δ Δ , (4.65) 
which is useful in the LES modeling addressed later in this chapter. 
 
 There is an important distinction between the filtering in LES and the Reynolds 
averaging. Recall the properties associated with a Reynolds averaging (see Eq. (4.19)). In 
particular, the following is true in RANS: 
 , 0,φ φ φ φϕ φϕ′= = = . (4.66) 
Yet, despite the same notation being used, the above relation does not hold for the case of 
filtering operation in general, i.e., 

 
( )

* * * ,

* 1 * 0, .

G G G

G G

φ φ φ φ

φ φ φϕ φϕ

= ≠ =

′ = − ≠ ≠
 (4.67) 

It is shown by (Sagaut 2002) that a filter which yields properties given by Eq. (4.66) is 
either trivial (G is identity function) or not possible. Moreover, only the spectral filter 
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satisfies the first condition in Eq. (4.66), since 2ˆ ˆG G= , and none of the filters will fulfill 
the second and third relation in Eq. (4.66) (Germano 1992; Froelich and Rodi 2002). 
However, it is still possible for some filters that satisfy the conditions (4.66) 
approximately. For example, the box filter satisfies Eq. (4.66) to the order of O(Δ2) (Celik 
2005). 
 

So far, only the homogeneous filter G(ξ) has been considered that is independent 
of x. A filtering operation with an inhomogeneous filter, which takes both ξ and x as its 
variable, can be written as 
 

3
( , ) ( , ) ( , )t G t dφ φ= −∫R
x ξ x x ξ ξ . (4.68) 

In this, the filter function G will take different shape depending on the location x. A 
sample application of an inhomogeneous filter is in the wall-bounded flows, where non-
uniform grid is applied in the wall-normal direction and the filter width in that direction 
is taken to be proportional to the grid spacing. With an inhomogeneous filter the linearity 
(4.56) of the filtering and the normalization condition (4.59) are also satisfied. 
Unfortunately, the property of commutation with spatial differentiation gets lost (Ghosal 
and Moin 1995; Vasilyev et al. 1998; Pope 2000), since 
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 (4.69) 

A remedy is proposed by (Ghosal and Moin 1995) who introduced a class of filters which 
do not commute exactly, but commute at the second order with spatial differentiation. 
Such filters are given a name by (Sagaut 2002) as second order commuting filter. One 
example of such filter is the inhomogeneous box filter with variable filter width. With an 
anisotropy, inhomogeneous and three-dimensional filter, the characteristic filter width Δ 
can be similarly defined as Eq. (4.65), which varies with location. 
 

Occasionally, e.g., in LES of channel flow with non-uniform grid in the wall-
normal direction, this difficulty may be avoided by not filtering the inhomogeneous 
direction; the filtering is performed only in the plane parallel to the wall (Pope 2000). In 
fact, this practice is also supported by (Murray et al. 1996) who have shown that, for y+ > 
10 in a channel flow, filtering in the homogeneous plane is equivalent to three-
dimensional filtering. 
 
 It should also be mentioned that in the case of compressible flow, Favre-filtering 
is commonly used, which includes the density in the filtering operation. A Favre-filtered 
quantity can be written as 
 

3
( , ) ( ) ( , ) ( , )t G t t dφ ρ φ= −∫R
x x ξ x x ξ . (4.70) 

Since in this study only incompressible flow is considered, no further details will be 
addressed for Favre-filtering. Interested reader is referred to (Favre 1983). 
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4.5. Filtered Navier-Stokes Equations  
When the filtering operation is applied to the N-S equations (1.18) and (1.24) (expressed 
on Cartesian coordinates) with a homogeneous filter, using the filter’s commutation 
property, as addressed in the preceding section, one obtains the following filtered Navier-
Stokes equations, 

 0 , 0,i i

i i

u u
x x

′∂ ∂
= =

∂ ∂
 (4.71) 
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 (4.72) 

where iu  is the filtered velocity field, u’i is the subgrid scale (SGS) velocity. Similar to 
the argument used in RANS (see Eq. (4.18) and its assumptions), a negligible subgrid 
density fluctuation is also assumed here, i.e., 
 ρ ρ ρ ρ′= + ≅ . (4.73) 
By defining the residual stress (also called subgrid scale stress) tensor 
 ( )R

ij i j i ju u u uτ ρ= −  (4.74) 

one may rewrite Eq. (4.72) as 

 ( ) ( )
R
iji

i j i i
j i j j j

upu u u b
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τ
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. (4.75) 

Thus, the effect of the small scales will appear through the residual stresses, R
ijτ , which 

must be modeled, and the model of which is called the SGS model. A review of the SGS 
models will be given in Section 4.8. Introducing the residual kinetic energy 
 1

2
R
iik τΔ =  (4.76) 

allows for a decomposition of the residual stress into an isotropic part and a deviatoric (or 
anisotropic) part, i.e., 
 2

3
R r
ij ij ijkτ τ δΔ= + . (4.77) 

The isotropic residual stress (second term in (4.77)) can be absorbed into the pressure 
term, so that Eq. (4.75) can be restated as 
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, (4.78) 

with the understanding that the filtered pressure is a modified one, albeit the same symbol 
is used, and the deviatoric residual stress r

ijτ  is defined by Eq. (4.77). By considering the 
relation (1.16), Eq. (4.78) may also be written alternatively as 

 ( ) ( ) ( )2
r
ij

i j i ij i
j i j j

pu u u S b
t x x x x

τ
ρ ρ μ ρ

∂∂ ∂ ∂ ∂
+ = − + − +
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, (4.79) 

where ijS  is the filtered strain rate tensor given by 
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, (4.80) 

with its magnitude being quantified by the so-called characteristic filtered strain rate: 
 1/ 2(2 )ij ijS S S= . (4.81) 

Note that and both ijS  and S  are two prominent quantities in the SGS modeling. 
 
Galilean invariance 
 

A quantity is said to be Galilean invariant if it does not change with respect to a 
frame moving at a constant velocity (see, e.g., (Pope 2000)). The moving inertial frame, 
denoted by x*, is related to the fixed inertial frame through 
 * *,t t t= − =x x V , (4.82) 
where V is a constant velocity vector. By taking derivative of the first relation of (4.82) 
with respect to time, t, one obtains the relation of the two velocity fields: 
 * * *( , ) ( , )t x t= −u x u V . (4.83) 
By recognizing the chain of dependences as 
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or 
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one arrives at the following partial derivative passages of the velocity field from one 
system to the other: 

 
* *

*
i i

j i

u u
x u

∂ ∂
=

∂ ∂ *
1

ji

j j

xu
x x

=

∂∂
∂ ∂

1

i

j

u
x

=

∂
=

∂
, (4.86) 

 
* * *

*
i i i i

i i

u u u u
t u t u

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ *
1

ji

j

xu
x t

=

∂∂
∂ ∂

3 3

1 1
j

i i
j

j j jV

u uV
t x= =

=

∂ ∂
= +

∂ ∂∑ ∑ . (4.87) 

Note that in the above notation, dummy index summations do not apply. Using Eq. (4.86)
, (4.87) and (4.83) the passage of the material derivative of a fluid can be deduced: 

 
* * *

*
* * *
i i i

j
j

Du u u Duu
Dt t x Dt

∂ ∂
= + =
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. (4.88) 

Therefore, it is seen that the velocity gradient and fluid acceleration are Galilean 
invariant, whereas the velocity and its partial time derivative are not. It can be further 
shown that the scalar φ(x,t), pressure p(x,t), strain rate tensor Sij, and vorticity ω are all 
Galilean invariant.  
 

Based on the above discussion one can show that the Navier-Stokes equations are 
Galilean invariant; this tells that the behavior of fluid flows is the same in all inertial 
frames. This important physical property must be carried over if the filtered N-S 
equations could be used as the governing equations for the LES approach. This is shown, 
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e.g., by (Sagaut 2002). Further observe that the residual stresses, i.e., Eq. (4.74), are 
Galilean invariant as well, since 

 
* * * *

* * * *

( )( ) ( ) ( )

.

i j i j i i j j i i j j

i j i j

u u u u u V u V u V u V
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= −
 (4.89) 

Hence, a valid SGS model must be able to reflect this principle. Other invariance 
principles that a governing equation or turbulence model must follow include the time 
invariance (invariance under time reversal), rotation invariance and reflection invariance. 
See (Pope 2000) for a further description. 
 
Decomposition of residual stresses 
 
 A better understanding of the residual stresses can be gained by looking into its 
decomposition. By noticing 
 ( )( )i j i i j j i j i j j i i ju u u u u u u u u u u u u u′ ′ ′ ′ ′ ′= + + = + + + , (4.90) 
one has 

 ( ) ( )1

.

R
ij i j i j i j i j i j j i i j

ij ij ij

u u u u u u u u u u u u u u

L C R
ρ τ ′ ′ ′ ′= − = − + + +

= + +
 (4.91) 

This is the Leonard decomposition, due to (Leonard 1974); the symbols Lij, Cij, Rij denote 
the Leonard stresses, the cross stresses and the SGS Reynolds stresses, respectively.  
However, in this decomposition, Lij and Cij are not Galilean invariant (Speziale 1985). 
Therefore, (Germano 1986) proposed a Galilean-invariant version of the decomposition 
by a further operation on the i ju u  term, i.e., 

 ( )( )i j i i j j i j i j j i i ju u u u u u u u u u u u u u′ ′ ′ ′ ′ ′= + + = + + + . (4.92) 
Distributing terms in (4.92) into the Leonard’s decomposition (4.91) yields a new set of 
definitions for Lij, Cij, and Rij: 

 ( ) ( ) ( )1

.

R
ij i j i j i j j i i j j i i j i j

ij ij ij

u u u u u u u u u u u u u u u u

L C R
ρ τ ′ ′ ′ ′ ′ ′ ′ ′= − + + − − + −

= + +
 (4.93) 

The physical interpretation of the three components in both versions is similar. They (Lij, 
Cij, Rij) represent, in order, the interactions between the large scales (Lij), large and small 
scales (Cij) and subgrid scales (Rij). Among the three stress components, only the Leonard 
stress is a resolved stress, i.e., it is known in terms of ( , )tu x . Note that if properties 
(4.66) are satisfied, Lij and Cij are identically zero; thus, both decompositions reduce to a 
single term of the same form of the Reynolds stresses in the RANS. More significance of 
the decomposed terms are discussed at length in (Pope 2000; Sagaut 2002).  
 

As already mentioned in Section 4.4, the box filter approximately satisfies the 
property (4.66) to the order of O(Δ2). This will simplifies the residual stress to:  
 R

ij i ju uτ ρ ′ ′≅ , (4.94) 
hence leading to a one-to-one correspondence of the filtered Navier-Stokes with the 
RANS equations. 
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It should be stressed that the filtered equations (4.71) and (4.72) are derived based 

on a homogeneous filter. If an inhomogeneous filter is used, commutation error will 
occur; As a result, extra terms will be brought up in the filtered N-S equations. However, 
the commutation error can be reduced if a 2nd order or a higher order commuting filters is 
employed. Unless a negligible commutation error is assumed, the closure of the filtered 
N-S will be more involved and more complicated. See (Sagaut 2002) for more details in 
this regard. 
 
 
4.6. Energy Spectra 
Investigation of energy spectra of a turbulent flow plays an important role in both DNS 
and LES. In this section a brief introduction to energy spectrum is presented. First recall 
the frequency spectrum, which refers to the Fourier transform of a time-dependent signal, 
say u(t). A typical Fourier-transform pair (also see Eq. (4.60) and (4.61)) is defined as 

 ˆ( ) ( ) i tu u t e dtωω
∞ −

−∞
= ∫ , (4.95) 

 1 ˆ( ) ( )
2

i tu t u e dωω ω
π

∞

−∞
= ∫ . (4.96) 

By plotting the modulus of û  vs. ω, one gets the picture in the frequency domain. The 
dominant frequencies of the sampled signal can then be identified by locating those 
frequencies at which ˆ| |u  is relatively large. If u(t) represents the flow velocity, then û - ω 
plot may lend access to some inherit periodicity of the flow. From Parseval formula, it is 
also known that the energy conserves during the transform between the time domain and 
frequency domain: 

 2 21 ˆ( ) ( )
2

u t dt u dω ω
π

∞ ∞

−∞ −∞
=∫ ∫ . (4.97) 

 
In the context of analyzing a turbulent flow the energy spectrum is useful. 

Roughly speaking, an energy spectrum is created by replacing u(t) in Eq. (4.95) with 
some correlation functions. This is described below. 
 

Consider a stationary homogeneous fluctuating velocity field u’(x,t). Note that in 
this section prime is used to denote turbulent fluctuation instead of a subgrid scale! A 
two-point spatial correlation function (also known as auto-covariance) of the fluctuation 
at a fixed time is defined as 
 ( ) ( , ) ( , )R r u x t u x r t′ ′= + , (4.98) 
where 〈 〉 denotes a mean quantity or expectation, e.g., the time mean. As usual, the 
Fourier transform pair of the correlation function can be written out: 

 ˆ ( ) ( ) i rR R r e drκκ
∞ −

−∞
= ∫ , (4.99) 

 1 ˆ( ) ( )
2

i rR r R e dκκ κ
π

∞

−∞
= ∫ . (4.100) 
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where κ denotes the wave number. Because R(r) is a real and even function, so is its 
Fourier transform. Since 

 
0

1 1ˆ ˆ(0) ( ) ( )
2

R u u R d R dκ κ κ κ
π π

∞ ∞

−∞
′ ′= = =∫ ∫ , (4.101) 

the one-dimensional energy (density) spectrum function can be defined as 

 1 1ˆ( ) ( ) ( ) i rE R R r e drκκ κ
π π

∞ −

−∞
= = ∫ , (4.102) 

so that the area enclosed by the E(κ) curve and the positive x-axis gives the variance 〈u’ 
u’〉 (one half of the “1D” turbulent kinetic energy), i.e.,  
 

0
( )u u E dκ κ

∞
′ ′ = ∫ . (4.103) 

Note that in the above the correlation function R(r) is defined along one spatial 
dimension. If R is calculated along the time line but at a fixed point, i.e., 
 ( ) ( , ) ( , )R s u x t u x t s′ ′= + ; (4.104) 
it is named auto-correlation. In this situation Eq. (4.99) to (4.103) will still apply, and the 
κ-domain should be interpreted as the frequency domain. Also, κ is usually replaced by 
the symbol ω. If the fluctuating field u’(x,t) is not homogeneous, the notation R(r) should 
be changed to R(r,x), indicating the correlation function is location dependent. Further, if 
u’(x,t) is not stationary, R(r,x,t) should be used for it to be dependent on time as well. 
 

If a filtered velocity field ( , )u x t is considered, the auto-covariance of the filtered 
fluctuation can be defined as 
 ( ) ( , ) ( , )R r u x t u x r t′ ′= + . (4.105) 

One can show (Pope 2000) that  

 ( ) ( ) ( ) ( )R r G G R r d dξ ζ ζ ξ ξ ζ
∞ ∞

−∞ −∞
= + −∫ ∫ , (4.106) 

and further the energy spectrum of the filtered fluctuations,  
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1( ) ( )

ˆ ( ) ( ) ,

i rE R r e dr

G E

κκ
π

κ κ

∞ −

−∞
=

=

∫
 (4.107) 

where 2ˆ| |G  serves as attenuation factor. Thus, while E(κ) gives the characterization of 
the actual turbulence fluctuation, ( )E κ  offers smoothened turbulence fluctuations with 
respect to the filtered field ( , )u x t ; the both are related by Eq. (4.107). Figure 4-3 shows 
a semi-log plot of the attenuation factor for the box filter, Gaussian filter and the sharp 
spectral filter. The fact that the box filter is very ineffective at annihilating high wave 
number modes implies that, in a filtered field with the box filter, a substantial amount of 
undesired turbulent kinetic energy may still persist. 
 

When the derivative of the fluctuating field is of interest, the auto-covariance of 
the nth derivative of the fluctuating field can be defined as 

 ( ) ( ) ( , ) ( , )
n n

n
n n

d u d uR r x t x r t
dx dx

′ ′
= + . (4.108) 
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The energy spectra of R(r) and R(n)(r) are related by 
 ( ) 2( ) ( )n nE Eκ κ κ= , (4.109) 
the derivation of which can be found in (Pope 2000). 
 

 
Figure 4-3 Attenuation factor of one-dimensional filters. 

 
The one-dimensional energy spectrum can be further generalized to a three-

dimensional spectrum. For simplicity, consider a stationary, homogeneous and three-
dimensional fluctuating field, u’(x,t). The correlation tensor is defined as, 

 ( ) ( , ) ( , )ij i jR u t u t′ ′= +r x x r . (4.110) 

Fourier transform of Rij gives a (velocity) spectrum tensor ˆ
ijR . The Fourier transform-pair 

formed by Rij and ˆ
ijR  can be written: 

 ˆ ( ) ( ) i
ij ijR R e d

∞
− ⋅

−∞

= ∫ ∫ ∫ κ rκ r r , (4.111) 

 3

1 ˆ( ) ( )
(2 )

i
ij ijR R e d

π

∞
⋅

−∞

= ∫ ∫ ∫ κ rr κ κ . (4.112) 

Similar to (4.101), 

 ˆ(0) ( )ij i j ijR u u R d
∞

−∞

′ ′= = ∫ ∫ ∫ κ κ , (4.113) 

and in particular, 

 1
2

1 1 ˆ(0) ( )
2 2ii i i iiR u u k R d

∞

−∞

′ ′= = = ∫ ∫ ∫ κ κ , (4.114) 

where scalar k is the turbulent kinetic energy. However, this fairly general spectral 
representation (Eq. (4.111)) with directional distinction (note the wave number κ is a 
vector) gives too much information that is of practical interest. The directional 
information can be stripped off by integrating over spherical shells S(κ) in the wave 
number space, which is centered at the origin, and radius of which is κ = |κ|, i.e., 
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 1
2

ˆ( ) ( ) ( )iiE R dκ κ= ∫∫ κ S , (4.115) 

In this way, a energy spectrum E(κ) is defined that is a function of the scalar wave 
number magnitude κ and whose value represents the total energy at that wave number 
magnitude. Since this E(κ) incorporates influences from all three dimensions, it is called 
a three-dimensional spectrum by (Tennekes and Lumley 1972). (Pope 2000) terms it as 
the energy spectrum function. The factor ½ is there because 

 1 1
2 20 0

1ˆ ˆ( ) ( ) ( ) ( )
2ii ii i jE d R d d R d u u kκ κ κ κ

∞
∞ ∞

−∞

′ ′⎡ ⎤= = = =⎣ ⎦∫ ∫ ∫∫ ∫ ∫ ∫κ κ κS . (4.116) 

Eq. (4.115) can also be alternatively expressed with the help of the sifting property of a 
Dirac delta function as: 

 ( )1
2

ˆ( ) ( )iiE R dκ δ κ
∞

−∞

= −∫ ∫ ∫ κ κ κ . (4.117) 

 
Figure 4-4 illustrates three representative sample energy spectra in a log-log plot, 

namely, the one-dimensional energy spectrum (Eq. (4.102)), the one-dimensional 
spectrum of filtered fluctuation (Eq. (4.107)) and the three-dimensional spectrum (Eq. 
(4.117)). Four qualitative observations can be made:  

i. In the inertial sub-range, i.e., between the energy containing range (low wave 
number region) and the dissipation range (high wave number region), all three 
spectra exhibits power-law behavior with a power of –5/3, which conforms 
Kolmogorov’s similarity hypothesis.  

ii. In the dissipation (high wave number) range, the energy spectra decay more 
rapidly than a power of κ. This is consistent with the fact that a turbulent flow 
field is infinitely differentiable (Pope 2000). 

iii. In the energy containing (low wave number) range, the three-dimensional 
spectrum tends to zero, while the one-dimensional spectrum attains maximum at 
origin. This inconsistency is due to aliasing, a problem that occurs when a 1D 
spectrum is obtained in a 3D turbulent field, since as such E(κ) at wave number κ 
contains contributions from wave numbers greater than κ. 

iv. The spectrum of the filtered fluctuations demonstrates that the actual TKE gets 
lost in a filtered velocity field. By forming the ratio of the two areas beneath the 
1D spectrum curve, and the 1D filtered spectrum curve respectively, one is able to 
tell the percentage of the total TKE being resolved by the filtered field. For 
example, from the figure, approximately 92% of actual TKE is resolved in 1D, or 
correspondingly 80% in 3D. 

The readers are referred to some turbulence texts (Tennekes and Lumley 1972; Hinze 
1975; Frisch 1995; Mathieu and Scott 2000; Pope 2000) for further information 
concerning the spectrum. 
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Figure 4-4 Sample energy spectra. Solid line: three-dimensional spectrum; dashed line: one-

dimensional spectrum; dotted line: filtered one-dimensional spectrum 

 
 
4.7. Grid Resolution Requirement in LES 
As aforementioned (Section 4.1), a DNS, aiming at resolving all turbulence scales, solves 
the N-S equations directly without Reynolds averaging or filtering; hence it demands a 
highly challenging resolution in both space and time. A natural question that follows up 
with LES will certainly be how many grid nodes, or put in other way, what grid spacing 
is needed, in order to resolve the filtered velocity field ( )u x  governed by Eq. (4.71) and 
(4.75) adequately? The answer depends on (i) the choice of filter, (ii) the information to 
be extracted from ( )u x , and (iii) the numerical method being used (Pope 2000). In what 
follows arguments provided by (Pope 2000) is addressed, blended with the author’s own 
understanding. 
 

Recall that the Fourier series representation of a turbulent velocity field has been 
used to deduce the resolution requirement in a DNS (see the end of Section 4.1). Again, it 
can be used for the same problem in LES. To facilitate understanding, consider a one-
dimensional statistically homogeneous and periodic velocity field u(x) defined on the 
interval 0 ≤ x < L with period of L. Without loss of generosity, further assume the mean 
velocity field is zero, so that u(x) actually represents the velocity fluctuation field, i.e., 
u(x) = u’(x); if the mean field is not zero, one can always consider a new quantity by 
subtracting the mean field from the u(x).  
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Let NDNS and NLES denote the number of uniformly distributed grid nodes that 
should be used in a DNS and LES, respectively. The corresponding grid spacing is then 
hDNS and hLES, respectively. Note that NDNS > NLES; and with NDNS the turbulence scales 
are sufficiently resolved, i.e., hDNS / η ≤ 2 (see. Eq. (4.10)). The goal here is to find the 
NLES or hLES that can properly resolves ( )u x , which is obtained through a filtering 
process with a specified filter width Δ. An obvious resolution constraint that can be 
drawn right away is 
 LESh ≤ Δ  (4.118) 
 

As discussed in Section 4.1, the number of grid nodes corresponds exactly to the 
number of Fourier modes in a finite Fourier series representation. Similar to Eq. (4.7), the 
Fourier series for both u(x) and ( )u x  can be written out in form of the discrete inverse 
Fourier transform: 
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with the understanding that cn and nc  are the 1D discrete Fourier transforms (DFT) of u 
and u , respectively, divided by period L, i.e., 
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Notice that the Fourier series for both u and u  involve NDNS modes, which sets an upper 
limit of the number of Fourier modes that can be reached. Since NDNS Fourier modes is 
sufficient to capture all the scales in the turbulent field u(x), the same number of modes is 
certainly more than enough to represent the filtered field u(x). By property (4.62) the 
following relation holds: 
 ˆ ( )n n nc G cκ= . (4.123) 

Eq. (4.123) becomes obvious if loosely think of cn and nc  as û  and û , respectively. The 
relation (4.8) should also hold here, i.e., the maximum resolved wave number is 
determined by NDNS or hDNS: 

 max
1
2

DNS
DNS

DNS

NN
L h0

π πκ κ= = = . (4.124) 

With the above preparation, it then comes to the question: how well the filtered field 
u (x) can be still represented by its Fourier series (Eq. (4.120)) if the number of Fourier 
modes is reduced from NDNS to some number NLES? The answer is not unique. 
 
Resolution with sharp spectral filter 
 
 First consider the sharp spectral filter defined in Table 4-1. By Eq. (4.123), 
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⎧ <⎪= ⎨ ≥⎪⎩
, (4.125) 

with the wave number κn given in Eq. (4.120) and the cut-off wave number κc being 

 c
πκ =
Δ

. (4.126) 

If one chooses the most economical resolution, i.e., h = Δ (cf. Eq. (4.118)), the inequality 
condition |κn| < κc reads 

 2 2 , orn c
LES

n n
L N
π π πκ κ= = < =

Δ Δ
, (4.127) 

 1
2 LESn N<  (4.128) 

(This also explains why one would like κc to be defined as π / Δ). Thus, Eq. (4.125) can 
be rewritten as 
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, (4.129) 

and Eq. (4.120) becomes 
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Therefore, without loss of information, the sharp spectral filter allows u (x) to be exactly 
represented with only NLES Fourier modes, or equivalently, NLES grid nodes in the 
physical space. More grid points provide no further information. To summarize, with the 
grid resolution 
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=
 (4.131) 

the filtered field using a sharp spectral filter is resolved exactly. 
 
Resolution with Gaussian filter 
 
 Next, consider the Gaussian filter (see Table 4-1 for its definition) with a 
specified filter width Δ. The reference wave number κc originally defined in the spectral 
filter (Eq. (4.126)) will be also useful here. Suppose for a large-eddy simulation NLES (< 
NDNS) grid nodes are used, which corresponds to a grid spacing, hLES = L / NLES, then the 
highest wave number that can be resolved in a Fourier series representation (cf. Eq. 
(4.124)) is  

 r
LES

k
h
π

= . (4.132) 

To measure the resolution, form the ratio of filter width Δ to hLES, in the physical space, 
or equivalently, the ratio of κr to κc in the wave number space, since 

 r

LES ch
κ
κ

Δ
= . (4.133) 
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The higher this ratio, the higher (or equal) the resolution, and consequently the quality of 
a LES will be. For the case of sharp spectral filter, the lowest possible resolution, i.e., Δ / 
hLES = 1, already yields exact representation of filtered field.  
 

Look at Eq. (4.122) again. If the filtered field is obtained with a Gaussian filter, 
there exists no demarcating mode, after which the coefficients are identically zero. Thus, 
if NDNS modes are truncated to only NLES terms, loss of information cannot be avoided; 
the point is how much the information will be lost. This is usually measured with the help 
of an energy spectrum (see Section 4.6 for a brief summary of energy spectrum).  
 

As an example, consider the filtered velocity derivative, /du dx , an important 
term in the filtered N-S equation. One would like to know the accuracy of the truncated 
Fourier series (up to NLES modes), as compared to the original one. A quantitative 
measure is to form a ratio of the integrals of the energy spectra (variance), which gives an 
idea of the amount of fluctuating “energy” being resolved, relative to the actual variance 
produced by a filtered field. 
 

Suppose a turbulent (fluctuating) velocity field u(x) possesses a one-dimensional 
Kolmogorov spectrum given by 
 2/3 5/3

1( )E Cκ ε κ −= . (4.134) 
where C1 ≈ 0.49. By Eq. (4.107) and (4.109) the spectrum of the filtered velocity 
derivative, /du dx , is: 
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This spectrum is plotted in Figure 4-5 with an assumed ε and κc. If the Fourier series 
representation of u(x) goes up to wave number kr, the fraction of ( )2/du dx  is 
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, (4.136) 

where Γ denotes the incomplete gamma function (the formula is provided in (Pope 
2000)). Therefore, at the resolution of Δ / hLES = κr / κc = 2 and 1, there is a neglect of 2% 
and 28% of the total variance, respectively (Figure 4-5). Now, if the velocity is solved in 
the spectral space (as with the spectral method), i.e., the first NLES Fourier coefficients are 
known, the best one can get is that those known coefficients are exact; thus, with the 
resolution of 2 and 1 respectively, 98% and 72% of the total fluctuating “energy” of the 
filtered derivative field is resolved. If the velocity is known in the physical space, 
additional aliasing error will be introduced while obtaining coefficients through DFT. In 
fact, (Pope 2000) has demonstrated that with Δ / hLES = 1, the aliased spectrum is a poor 
approximation to (4.135). 
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Figure 4-5 Energy spectrum of filtered velocity derivative 

 
One may wish the grid resolution, Δ / hLES, to be as high as possible to yield an 

accurate solution of the filtered field. The resulting computational cost increases roughly 
in a proportion of (Δ / hLES)4, considering three spatial dimension and one temporal 
dimension. But one should realize that a filtered field is mainly dependent on the filter 
width, not the grid itself (Pope 2004); As long as the grid resolution is sufficient (with 
respect to the resolved kinetic energy of the filtered fluctuations), say equal to 4, a further 
refinement of the grid does not necessarily improve the solution. Therefore, once Δ is 
fixed, one may say: “there is no such thing as a grid-independent LES.” In fact, test 
calculations have been performed by (Vreman et al. 1997; Chow and Moin 2003) to 
study the effect of Δ ~ hLES ratio. Their general conclusions are: for a scheme with 2nd 
order spatial accuracy Δ / hLES ≥ 4 is needed, and for a scheme with sixth order accuracy 
Δ / hLES ≥ 2. 
 

In this study, turbulent flow field is solved in the physical space. The numerical 
schemes to be employed are generally 2nd order in both space and time. From the above 
example it is seen that if the Gaussian filter is used, Δ / hLES = 2 seems to be an optimal 
grid resolution for a satisfactory and economical LES at some compromise of accuracy, 
while Δ / hLES = 1 is deemed to be a poor resolution. For economical reasons, Δ / hLES = 1 
may sometimes also be adopted, but caution must be taken when interpreting the results. 
The same conclusions should also apply to the box filter, since it is less effective in 
attenuating energy (see Figure 4-3).  
 

To emphasis, the above discussion is to address the proper grid resolution for the 
solution of a filtered field. It should not be confused with another technical term, the 
resolved kinetic energy (by a filtered field), which is defined as 



 142

 2

0 0
( ) ( ) ( )rk E d G E dκ κ κ κ κ

∞ ∞
= =∫ ∫ . (4.137) 

The second equality is due to Eq. (4.107). Thus, the ratio 
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gives the percentage of the resolved kinetic energy with respect to the actual TKE. With, 
e.g., the model spectrum (Kolmogorov spectrum), 
 2/3 5/3( ) , 1.5E C Cκ ε κ −= = , (4.139) 
one can show that around 80% of the TKE is resolved (see (Pope 2000) for detail), or 
equivalently, around 20% TKE is carried by the residual motion.  
 
 
4.8. Subgrid Scale Modeling  
This section is not intended to give a comprehensive review of all the subgrid scale 
(SGS) models in existence. Such a work has already been done, e.g., by (Sagaut 2002). 
Rather, it picks several representative SGS models, and tries to provide a fundamental 
understanding of these models. 
 

For clarity, the governing equations (Eq. (4.71) and (4.78) or (4.79)) used for 
large-eddy simulation (LES) is rewritten below: 
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where r
ijτ  is the deviatoric (or anisotropic) residual stress, a term resulting from the 

filtering operation and given by (cf. Eq. (4.77), (4.74) and (4.76)) 
 2

3
r R
ij ij ijkτ τ δΔ= − , (4.142) 

 ( )R
ij i j i ju u u uτ ρ= − , (4.143) 

and the filtered strain rate tensor ijS  and its magnitude (characteristic filtered strain rate) 

S  (see also Eq. (4.80), (4.81)) are given by 
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⎛ ⎞∂∂
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, (4.144) 

 1/ 2(2 )ij ijS S S= . (4.145) 
A subgrid scale (SGS) model is aimed at providing a closure of the filtered N-S equations 
by constructing a modeled expression for r

ijτ . 
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4.8.1. Kinetic Energy Equations 
Similar to the study of kinetic energy transfer mechanism of TKE (see Section 4.2), 
fundamental insight can be gained into the mechanical energy transfer between the 
resolved (filtered) scales and the residual (or SGS) scales. Again, the phenomena can be 
best viewed by forming the kinetic energy equation of the filtered velocity field and the 
residual scales (or subgrid scales), similar to the kinetic energy equation of the mean flow 
and the TKE equation presented in Section 4.2. 
 

The kinetic energy of the filtered velocity, Kf, is defined as 
 1 1

2 2f i iK u u= ⋅ =u u . (4.146) 
Its transport equation is obtained by multiplying Eq. (4.141) by iu . The result (see, e.g., 
(Piomelli et al. 1991; Germano 1992; Pope 2000)) is 

 f f f j
j f

j j

DK K K
u

Dt t x x
ε Δ

∂ ∂ ∂
≡ + = − −

∂ ∂ ∂

T
P , (4.147) 

where  

 2 r
j i ij i ij j

pu S u uν τ
ρ

= − −T , (4.148) 

 22f ij ijS S Sε ν ν= = , (4.149) 

 1 r
ij ijSτ

ρΔ = −P . (4.150) 

The three terms on the RHS of Eq. (4.147) represent, respectively, the diffusive transport, 
the viscous dissipation of the filtered velocity field, and the SGS dissipation or 
production. The energy transfer between the resolved and the subgrid scales occurs 
through the (-PΔ) term. If (-PΔ) is negative, the subgrid scales remove energy from the 
resolved ones (forward scatter); if it is positive, they release energy to the resolved scales 
(backscatter). However, in the mean, energy is transferred from large scales to subgrid 
scales (see discussion in Section 4.2), i.e., 〈-PΔ〉 is negative, where 〈〉 denotes a mean 
quantity in contrast to a filtered. It is for this reason that PΔ is called the (rate of) 
production of residual kinetic energy or SGS production. It can be shown (Pope 2000) 
that the εf term is relatively small for a high Reynolds number flow with the filter width 
much larger than the Kolmogorov scale, so that 〈-PΔ〉 becomes the dominant sink. 
 

The residual kinetic energy, kΔ, is defined as 
 ( )1 1 1

2 2 2 i i i ik u u u uΔ = ⋅ − ⋅ = −u u u u . (4.151) 

The conservation equation for kΔ is obtained by multiplying the N-S equation (1.24) by 
ui, filtering, and subtracting the ef equation (4.147) (see, e.g., (Lilly 1967; Meneveau and 
O'Neil 1994)). It reads 

 j
j

j j

Dk k ku
Dt t x x

ε
Δ

Δ Δ Δ
Δ Δ

∂∂ ∂
≡ + = − + −

∂ ∂ ∂

T
P  (4.152) 

where 



 144

 1 r
ij ijSτ

ρΔ = −P , (4.153) 

 ( )2 ij ij ij ijS S S Sε νΔ = − , (4.154) 

The expression for the transport term jT Δ  is relatively complex and of less interest, thus it 

is abridged here. One sees that the SGS production, PΔ, given by Eq. (4.153) has the 
same form as Eq. (4.150), meaning that the kinetic energy lost or added to the filtered 
field becomes the source or sink, respectively, in the residual kinetic energy equation. εΔ 
represents the dissipation of residual kinetic energy or SGS dissipation; as opposed to 
other terms in Eq. (4.152), εΔ is dominated by the unresolved small scales. If a filter 
satisfies condition (4.66) (for example, the box filter satisfies this condition to the order 
of O(Δ2), see Section 4.4), there is one-to-one correspondence between the filtered N-S 
equation and the RANS; as such, jT Δ  will be simplified to Eq. (4.29), and the SGS 
dissipation will have the same form as the TKE dissipation (Eq. (4.31)), i.e., 

 12 ,
2

ji
ij ij ij

j i

uus s s
x x

ε νΔ

⎛ ⎞′∂′∂
= = +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

, (4.155) 

while only the interpretation of the overbar needs to be adjusted from a mean quantity to 
a filtered quantity, and similar for the quantities with prime. An important result from Eq. 
(4.152), due to (Lilly 1967), also pointed out by (Pope 2000), is that, in the mean, 
production and dissipation approximately balance each other if the Reynolds number is 
high and the filter width Δ is in the inertial subrange, i.e., 
 ε εΔ Δ≈ ≈P . (4.156) 
 
 
4.8.2. Smagorinsky Model 
Recall the Boussinesq eddy viscosity concept (see Section 4.2 and Eq. (4.34). The 
standard Smagorinsky model due to (Smagorinsky 1963; Lilly 1967) is based on the 
conceptually same hypothesis, i.e., the deviatoric residual stress, r

ijτ , is expressed in terms 

of the filtered (or resolved) strain rate tensor ijS  through the relation 

 2r
ij t ijSτ ρν= − , (4.157) 

where νt is an artificial parameter, called the eddy (turbulent) viscosity. Analogous to the 
mixing length model (Eq. (4.38)), νt is constructed from 
 ( )22

t S Sl S C Sν = = Δ , (4.158) 

where S  is defined in Eq. (4.145) and lS is the Smagorinsky length scale proportional to 
the characteristic filter width Δ (see Eq. (4.65)); CS is called Smagorinsky constant, 
whose value is usually between 0.05 and 0.25, depending on the characteristics of the 
flow. Thus, the final model expression for r

ijτ  reads 

 ( )22r
ij S ijC S Sτ ρ= − Δ . (4.159) 
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 The expression for the eddy viscosity νt, given by Eq. (4.158), can be formally 
derived from the production equals dissipation (in the mean) relation (4.156). Writing the 
production PΔ (Eq. (4.153)) with the hypothesis (4.157) gives 

 21 2r
ij ij t ij ij tS S S Sτ ν ν

ρΔ = − = =P ; (4.160) 

Estimating the dissipation ε with Eq. (4.2) and further using the characteristic filtered 
strain rate S  in place of the velocity scale yields: 

 
3 3

3 20 0

0
S

S

u u S l
l l

ε ∼ ∼ ∼ , (4.161) 

where lS is the Smagorinsky length scale. By equating Eq. (4.160) and (4.161) the desired 
relation (4.158) is obtained. The assumption that lS scales linearly with the filter width 
can also be loosely confirmed by considering the mean balance equation (4.156) and the 
Kolmogorov spectrum good in the inertial subrange; this yields a proportionality constant 
Cs ≈ 0.17 with a sharp spectrum filter (for details see analysis provided by (Lilly 1967; 
Pope 2000)).  
 

Notably, even in the isotropic turbulence, analysis provided by (Voke 1996; 
Meneveau and Lund 1997; Pope 2000) show that, as Δ → η, CS must vary with Δ in order 
to reproduce the correct SGS dissipation rate in the viscous (dissipation) range. From Eq. 
(4.160) one also sees that the SGS production offered by Smagorinsky model is always 
positive, thus there is no backscatter in this model and the kinetic energy is transferred 
everywhere from the filtered motion to the residual motion. The optimal value of CS will 
be dependent on the regime and type of flow, Reynolds number, and discretization 
scheme; therefore in practical use a calibration is usually needed. In the near-wall region, 
the specification of lS = CS Δ with constant CS is not justifiable, since it incorrectly leads 
to a non-zero residual viscosity and shear stress at the wall. A common remedy is use of a 
damping function which ensures the value of CS vanishes at the wall. The van Driest 
damping, for example, is defined by 
 ( )/1 y A

S Sl C e
+ +

= Δ − ,  (4.162) 

with A+ = 25 or 26.  
 
 
4.8.3. Dynamic Smagorinsky Model 
Motivated by alleviating the drawbacks of the standard Smagorinsky model, the dynamic 
Smagorinsky model or the dynamic eddy-viscosity model or simply the dynamic model, 
was proposed by (Germano et al. 1991), followed by an important modification made by 
(Lilly 1992) and valuable extension provided by (Ghosal et al. 1995) and (Meneveau et 
al. 1996). The dynamic model uses the Smagorinsky model as a basis model; with a 
proposed procedure the Smagorinsky constant CS is determined locally in a dynamic 
fashion. Note that, strictly speaking, a dynamic model (or procedure) does not have to use 
Smagorinsky as its basis model, but in practice one usually treats it as a default. 
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The basic idea here is to make use of the “known” field ( , )tu x ; by performing a 
second filtering operation on this “known” field one may extract information useful for 
determining CS. For this purpose two filters of the same type with different filter widths 
are introduced, namely, a grid filter and a test filter. The grid filter has a filter width Δ , 
which is proportional to the grid spacing, e.g., Δ  = h or Δ  = 2h; the test filter has a filter 
width Δ , which is larger than Δ  and typically taken to be twice of Δ . Let φ  and φ  
denote a filtered quantity obtained using a grid filter and a test filter, respectively. Also, 
let φ  denote a double-filtered quantity obtained using first the grid filter and then the test 

filter. If φ  is equivalently obtained through a single filtering operation with a filter of the 
same type, the associated filter width is called effective double-filter width, denoted by 
Δ . It can be shown (e.g., (Germano et al. 1991; Germano 1992; Pope 2000)) that, for the 
sharp spectral filters, 
 Δ = Δ , (4.163) 
and for the Gaussian filters, 
 2 2 1/ 2( ) 5Δ = Δ + Δ = Δ . (4.164) 
Note that in Eq. (4.164) 2Δ = Δ  has been assumed. In what follows a brief derivation is 
presented for the dynamically determined model coefficient, CS. 
 

A single-filtering operation (with a grid filter) on the N-S equations produces a 
residual stress given by Eq. (4.143) or (4.74). Similarly, when performing a double 
filtering (with a grid filter and a test filter) on the N-S equations, one obtains a new 
residual stress given by 

 ( )R
ij i j i jT u u u uρ= − . (4.165) 

Filtering Eq. (4.143) with the test filter and taking difference between the resulting 
equation and Eq. (4.165) yield so-called Germano identity (Germano et al. 1991): 
 ( )R R

ij ij ij i j i jT u u u uτ ρ= − = −L . (4.166) 

Its deviatoric part is formed correspondingly as 
 1dev

3
r r

ij ij kk ij ij ijTδ τ≡ − = −L L L , (4.167) 

where r
ijτ  is defined in Eq. (4.142) and r

ijT  defined in a similar manner. The symbol L is 

used for this identity since when Δ = Δ  it is identical to the Leonard stress defined in Eq. 
(4.93). The significance of the Germano identity is that it can be explicitly computed 
using the known resolved field ( , )tu x . Physically, it can be loosely interpreted as a 
resolved turbulent stress (Germano et al. 1991) contributed by scales intermediate 
between the grid filter width and the test filter width. 
 
 Next, write down the Smagorinsky model (Eq. (4.159)) for the residual stresses at 
both the grid level and test level: 
 1 2

3 2r R R
ij ij kk ij S ijC S Sτ τ τ δ ρ= − = − Δ ,  (4.168) 

 1 2
3 2r R

ij ij kk ij S ijT T T C S Sδ ρ= − = − Δ . (4.169) 
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Notice that the Smagorinsky model formulated above is slightly different from the one 
given in Eq. (4.159). Here instead of CS

2, CS is used, so that local backscatter can be 
realized via negative CS. ijS  and S  in the above equations are the double-filtered strain 
rate tensor and its magnitude, respectively; they are defined similarly to the definition of 

ijS  and S  (Eq. (4.144) and (4.145)). Further assume CS to be a local constant at both 
filter levels. Filtering Eq. (4.168) with the test filter, subtracting the resulting equation 
from Eq. (4.169) and using the Germano identity (4.167) gives 
 dev r r

ij ij ij S ijT C Mτ= − =L , (4.170) 
with the tensor Mij defined by 

 ( )2 22ij ij ijM S S S Sρ= Δ − Δ . (4.171) 

Mathematically viewed, Eq. (4.170) is ill-posed since a single constant CS can not be 
determined from five independent stress relations. Thus, a way is proposed by (Lilly 
1992), who adopts the least square approach to minimize the error. This yields: 

 ij ij
S

kl kl

M
C

M M
=

L
. (4.172) 

Therefore, Eq. (4.168), (4.172), (4.166) and (4.171) provide a complete description of 
this model, in which the model constant CS is obtained in a self-contained manner with no 
empirical specification. 
 

Through the dynamic specification of CS value (Eq. (4.172)), the dynamic model 
makes a backscattering process possible. However, as pointed out by many researchers, 
the resulting CS field is found to be highly variable and may contain a significant portion 
of negative values, which makes a LES unstable. To circumvent this difficulty, the usual 
practice is to perform an additional averaging for both the numerator and the denominator 
of Eq. (4.172) over directions of statistically homogeneity (see, e.g., (Germano et al. 
1991; Piomelli 1993)). This is further given formal ground by (Ghosal et al. 1995), who 
showed that this averaging procedure minimizes the total error in the homogeneous 
plane.  
 

A problem still exists in the inhomogeneous flows, such as flows with complex 
geometries, since no plane can be used for the averaging procedure. However, the 
inhomogeneous flows are of high interest for practical applications. To this end, two 
approaches are prominent. (Ghosal et al. 1995)’s localized dynamic model transforms 
determining a proper local average value of CS into a variational problem, which can be 
solved to determine a non-negative CS field (thus no backscatter). (Meneveau et al. 1996) 
proposed a Lagrangian dynamic model, in which a weighted average is accumulated over 
flow pathlines rather than over homogeneous directions. Superior results were obtained in 
their sample LES calculations. 

  
 A further development of the dynamic model is the so-called mixed models. A 
representative model in this category is the one proposed by (Zang et al. 1993), which is 
partially based on an early work, known as the scale similarity model (Bardina et al. 
1980). Recall the Germano decomposition presented in Section 4.5 (Eq. (4.93)): 
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 1 R
ij ij ij ijL C Rρ τ = + + , (4.173) 

where 
 ij i j i jL u u u u= − . (4.174) 

In the scale similarity model R
ijτ  is modeled directly with the resolved Leonard stress:  

 ( )R
ij ij i j i jL u u u uτ ρ ρ= − = − − . (4.175) 

The supporting argument for the model expression (4.175) is that the smallest resolved 
scale motions and the largest subgrid scale motions are similar in structure. Yet, this 
model hardly dissipates any energy and cannot serve as a “stand alone” SGS model 
(Ferziger and Peric 1996). As a logical improvement, Zang’s mixed model combines the 
scale similarity and the dynamic model, i.e., it uses the dynamic model to express the 
unresolved stress components (Cij and Rij) in Germano’s decomposition of residual stress, 
and computes the resolved stress Lij explicitly using Eq. (4.174). The combined model 
reads 
 ( )1 2

3 2r
ij ij kk ij S ijL L C S Sτ ρ δ ρ= − − Δ . (4.176) 

In a turbulent mixing layer simulation (Vreman et al. 1997), this model was found to be 
the most successful among six models being evaluated. 
 
 
4.8.4. One-equation SGS Model 
SGS models are very much related to the RANS modeling, as many SGS models can find 
their counterpart in the RANS models. For example, the Smagorinsky model is an analog 
to the mixing length model, and out of the one-equation RANS model the one-equation 
SGS model is created. The development and application of the one-equation SGS model 
is pioneered by the meteorological community, with the representative work performed 
by (Deardorff 1974; Deardorff 1980). 
 
 Recall that the one-equation RANS model lacks a turbulence length scale and thus 
involves a flow-dependent specification of lm (see Section 4.2). For this reason the two-
equation RANS model, e.g., the k-ε model, was developed, to make itself complete. 
However, in the SGS modeling a similar two-equation model usually is not necessary, 
since the turbulence length scale is already available in terms of the characteristic filter 
width Δ. 
 
 A typical one-equation SGS model is created from the residual (or SGS) kinetic 
energy equation (4.152). Modeling of unclosed terms proceeds in a similar fashion as the 
one-equation RANS model. The production term PΔ is closed through the eddy-viscosity 
assumption (Eq. (4.157)). The SGS dissipation term is taken to be isotropic and is 
modeled according to Eq. (4.2) as 

 
3/ 2kCεε Δ

Δ =
Δ

. (4.177) 
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The transport term (first term on the RHS of (4.152)) is typically assumed to be 
comparable with a diffusion process with its diffusivity dependent on the residual kinetic 
energy, i.e.,  

 t

k

kν
σ

Δ
Δ= − ∇T , (4.178) 

 1/ 2
t C kνν Δ= Δ , (4.179) 

where σk is the turbulent Prandtl-Schmidt number whose value is commonly taken to be 
one. Thus, the complete one-equation model reads: 

 
3/ 2

t
j t

j j k j

k k k ku S C
t x x x ε

ν ν
σ

Δ Δ Δ Δ
⎛ ⎞∂ ∂ ∂∂

+ = − + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ Δ⎝ ⎠
, (4.180) 

with νt provided by Eq. (4.179). The constants associated with νt and the εΔ term are 
chosen to be  
 0.1, 0.7C Cν ε≈ ≈ , (4.181) 
based on an analysis for high-Reynolds-number homogeneous turbulence with the sharp 
spectral filter (Pope 2000). The model constants provided by (Yoshizawa and Horiuti 
1985) and cross-references by (Menon et al. 1996) are 
 0.05, 1.0C Cν ε≈ ≈ . (4.182) 
 
 The above one-equation model may also be combined with the dynamic 
procedure presented in the previous subsection (dynamic Smagorinsky model) to allow a 
variable model constant, Cν and Cε. This is called dynamic one-equation model. Variants 
of dynamic one-equation model exist, depending on a specific dynamic procedure. See 
(Ghosal et al. 1995; Menon et al. 1996; Sohankar et al. 1999). 
 

Unlike the algebraic eddy viscosity models (e.g. the Smagorinsky model and the 
dynamic model), which only utilize the local flow information to close the residual stress, 
the one-equation model takes into account the time history and non-local effects through 
a transport equation. Also, it assumes no local balance between the SGS production and 
dissipation. It could be expected that this model performs better than the algebraic eddy 
viscosity model, especially in regions where local balance is violated (Menon et al. 
1996). In spite of this, general experience shows that, in LES, with two exceptions, the 
additional computational cost is not justified by an assured increase in accuracy (Pope 
2000). The two exceptions mentioned by (Pope 2000) are (i) the application to 
meteorological flow, where one-equation models have proved to be advantageous, and 
(ii) the application to the reacting flow, where the important processes of mixing and 
reaction occur at the subgrid scale level. 

 
In the literature extensive comparison study of various SGS models can be found. 

To enumerate some, they are (Fureby et al. 1997; Vreman et al. 1997; Sohankar and 
Davidson 2000; Su et al. 2001). However, as commented by (Pope 2000), no general 
conclusion can be drawn, since a model performance is in general a function of many 
known and unknown factors, such as the Reynolds number, local flow characteristics, 
filter type and width, and influence of numerical methods. 
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4.8.5. Implicit Turbulence Modeling 
In the implicit turbulence modeling (ITM), also referred to as the implicit SGS modeling, 
monotone integrated LES (MILES), or “no model,” no SGS models are explicitly 
defined. A big assumption with the ITM is that the residual stresses are represented by 
the spatial truncation errors of the numerical scheme being used; as a consequence, the 
“SGS model” is intrinsically embedded in the numerical solution. To see this, one may 
write the modified equation corresponding to the LES momentum equations (4.141): 

 ( ) ( ) ( ) ( )2 r h
i j i ij ij ij i

j i j j

pu u u S b
t x x x x

ρ ρ μ τ τ ρ∂ ∂ ∂ ∂ ∂
+ = − + − + +

∂ ∂ ∂ ∂ ∂
, (4.183) 

where h
ijτ  appears as an additional numerical stress, and it includes spatial truncation 

errors with the leading error term giving the order of the method, i.e., 
 h p

ij hτ ∼ , (4.184) 
where h is the representative grid size. Note that, the modified equation is typically 
derived from the Taylor series expansion of the discretized equation, and hence it can be 
viewed as a partial differential equation satisfied by the numerical solution. Now ITM 
says: let us ignore the residual stress r

ijτ  completely, a term difficult to model in general, 

and let h
ijτ  play the role in place of r

ijτ . The implication of this statement is twofold: 
firstly, 
 0r

ijτ = ; (4.185) 
and secondly, the numerical scheme used should be designed in such a way that its 
corresponding truncation error is capable of mimicking the function played by the 
residual stress, mainly being the kinetic energy withdrawal from the resolved motion. As 
such, the energy removal mechanism can be expresses as 

 1 h
ij ij numSτ ε

ρΔ = − =P  (4.186) 

(cf. Eq. (4.150) and (4.153)), where εnum represents the numerical dissipation rate. Thus, 
effectively, the ITM solves the N-S equation directly, without pre-filtering and explicit 
modeling of the residual stresses; yet, the solved velocity is still interpreted as a filtered 
field, due to the action of numerical dissipation. 
 

A key distinction should be made between the SGS models presented in the 
previous sections and the ITM approach. With the formers, where a SGS model is 
explicitly built on a physical basis, the filtered N-S equation is solved accurately, so that 
the numerical error is negligibly small ( h r

ij ijτ τ ). This requires (i) a scheme typically of 
at least second order in both space and time, and (ii) a sufficiently small grid size, h, for a 
specified filter width Δ (see discussions in Section 4.7). On the other hand, the ITM, 
while completely avoiding an explicit SGS modeling, produces a numerical solution on a 
relative coarse grid, and with the numerical dissipation being an essential part of the LES. 
Thus, the resolved field is fundamentally linked to the grid size h and the numerical 
method being employed. Due to the conceptually very different properties (Pope 2004) 
called one “physical LES,” and the other “numerical LES.” 
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With that being said, one realizes that the central task in the ITM is not the 

modeling of SGS stresses itself, but rather, the design of a suitable numerical scheme. 
Looking into the literature, work in this regard is predominantly based on so-called non-
oscillatory numerical schemes. An oscillatory scheme is a one that produces spurious (or 
unphysical) oscillations when applied across a discontinuity (e.g., shockwave); a well-
known example is the central differencing. On the other hand, a non-oscillatory scheme is 
designed to prevent or abate unphysical oscillations. Most of these non-oscillatory 
schemes used in ITM are in essence based on flux limiting technique and/or higher-order 
upwind differencing, because these schemes usually carry a leading higher-order 
diffusion error term, which works for the removal of kinetic energy, while still retaining a 
higher order of accuracy. 
 

(Boris et al. 1992; Oran and Boris 1993) were the first who proposed so-called 
monotone-integrated LES (MILES). The concept is further developed and formalized by 
(Fureby and Grinstein 1999, 2002; Grinstein and Fureby 2002). In MILES the 
discretization is carried out using flux-limiting method (see e.g. (Hirsch 1988) for greater 
details regarding this class of method), for which the numerical flux is decomposed as the 
weighted sum of a higher-order flux H

fF  that works well in smooth regions, and a lower-

order flux L
fF  that effectively damps the spurious oscillations in sharp-gradient regions: 

 ( )(1 )H H L
f f f fF F F F= − − Γ − , (4.187) 

where f denotes the cell face and Γ is the flux limiter. There are generally two types of 
limiters, namely slope limiters, represented by (van Leer 1974) and flux limiters, 
represented by (Boris and Book 1973). A nice summary of explicit as well as implicit 
limiters is provided in (Yee 1987; Chung 2002). To achieve desirable physical properties 
in the associated implicit SGS model, such as frame-invariance, symmetry, non-negative 
dissipation of SGS kinetic energy, some guidelines (or constraints) were suggested in 
choosing flux limiters. They can be mainly summarized as monotonicity, contraction, 
positivity, total variation diminishing (TVD), monotonicity preservation, and local 
monotonicity preservation. In fact, these properties are all related to the nonlinear 
stability analysis (for nonlinear conservation law). To be self-contained, a brief review is 
presented for the definitions of these technical terms.  
 
 For simplicity consider the one-dimensional situation. Let φ(xi,tn) and ϕ(xi,tn) be 
numerical solutions to the same scalar conservation equation with two different initial 
conditions. The monotonicity, first proposed by (Harten et al. 1976), is defined as 
follows: if φ(xi,0) ≤ ϕ(xi,0) for all xi, then φ(xi,tn) ≤ ϕ(xi,tn) for all xi and tn; similar 
arguments also holds for φ(xi,0) ≥ ϕ(xi,0). If the scheme is an explicit forward-time 
method, i.e., 

 1
1( , ,..., )

i k
n n n n n
i i k i k i k j j

j i k

H aφ φ φ φ φ
+

+
− − + +

= −

= = ∑ , (4.188) 

where H represents a discretization with a (2k + 1) elements stencil. It can be shown that 
the monotonicity condition in this case is simply: 
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 0 for alln
j

H i k j i k
φ

∂
≥ − ≤ ≤ +

∂
; (4.189) 

this is equivalently to saying that the coefficients  aj’s of the linear combination of n
jφ  

must be all positive. A scheme that satisfies the monotonicity condition is called 
monotone scheme or monotone method. It has been proved that a monotone scheme in 
conservation form is at most first order (see e.g., (Sod 1985)). The contraction property 
requires 
 1 1

1 1

n n n nφ ϕ φ ϕ+ +− ≤ − , (4.190) 

where || ⋅ || denotes the l1 norm defined by 
 

1

n n
j

j

φ φ= ∑ . (4.191) 

It tells that any two solutions with different initial conditions always go closer and closer. 
Next, consider a scheme that is split in the form of  
 ( ) ( )1

1 1
n n n n n n
i i i i i iC Dφ φ φ φ φ φ+

+ −= + − − − . (4.192) 
The positivity condition, first suggested by (Harten 1983), is satisfied if 
 0, 0, 1C D C D≥ ≥ + ≤ . (4.193) 
The total variation (TV) is defined as 
 1TV( )n n n

j j
j

φ φ φ+= −∑ . (4.194) 

A numerical scheme is said to be TV-stable if its TV is bounded. It can be shown (see e.g. 
(LeVeque 1992)) that for numerical schemes in conservation form with consistent 
numerical flux TV-stability is a sufficient condition for convergence (convergence means 
the numerical solution tends to exact solution as grid size approaches zero). The total 
variation diminishing (TVD) is then defined as 
 1TV( ) TV( )n nφ φ+ ≤ , (4.195) 
due to (Harten 1983, 1984). TVD is a special instance of TV-stability, and it is a useful 
condition, since schemes satisfying TVD can effectively damp spurious oscillations. 
However, it should be stressed that in theory TVD may still allow large spurious 
oscillations, although it is rarely the case in practice. Also, as pointed out by (Laney 
1998), few outside of the mathematics community recognize that TVD refers to stability 
condition, although it is widely used. Under circumstances the TVD condition and 
positivity condition have “if and only if” relation. The condition of Monotonicity 
preservation, first suggested by (Godunov 1959), says if φ(xi,0) is a monotone increasing 
(or decreasing) function, then φ(xi,tn) is also monotone increasing (or decreasing) for all t, 
i.e., 

 
0 0

0 0

if  for all ,  then  for all  and ;

if  for all ,  then  for all  and .

n n
i i i i

n n
i i i i

i n i

i n i

φ φ φ φ

φ φ φ φ

≤ ≤

≥ ≥
 (4.196) 

However, this property does not address a non-monotone solution. A little relaxed 
version of Eq. (4.196) is the local monotonicity preservation. One common definition 
given in is: 
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A stronger local constraint is 
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For example, the quasi-second-order-upwind (QSOU) scheme (Amsden et al. 1989) is 
strong locally monotonicity preserving.  
 

It has been known that the following relations hold between the above conditions: 
monotonicity implies contraction; the contraction condition implies TVD; the positivity 
also implies TVD; TVD implies monotonicity preservation. Although local monotonicity 
preservation is related to monotonicity preservation condition, as well as to the TVD 
condition, no implication can be drawn from one to the other. This hierarchy is shown in 
Figure 4-6. From bottom to top the conditions become stronger, an upper condition 
implies a lower condition, directed by an arrow. Some reference texts (Sod 1985; Laney 
1998; Chung 2002) are suggested for an in-depth understanding of those definitions and 
their related properties. 
 

TVD

Positivity

Monotonicity

Contraction

Monotonicity preserving
 

Figure 4-6 A summary of nonlinear stability conditions for scalar conservation laws 

 
 As already mentioned in the previous discussion, a monotone method, whose 
accuracy is only limited to first order, will generally produce too diffusive results and 
hence rarely used in practice; the same for a scheme that satisfies the contraction 
condition. Since schemes with locally monotonicity preserving constraint has inherently 
less-diffusive nature. Experience from (Grinstein and Fureby 2002) shows that a TVD 
methods, together with locally monotonicity preserving schemes, such as FCT (flux-
corrected transport, (Boris and Book 1973)) and PPM (piecewise parabolic method 
(Colella and Woodward 1984)), works well for MILES.  
 
 (Fureby and Grinstein 1999; Grinstein and Fureby 2002) also analyzed the 
leading error term with their proposed flux-limiter based scheme. They showed that one 
of the leading error terms appears as a general subgrid-viscosity model with a tensorial 
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diffusivity, while the other leading term mimics the Leonard tensor. Effectively, this 
becomes an implicit mixed model! 
 
 Recently, an even more courageous move is made by (Margolin and Rider 2002; 
Margolin et al. 2002). In contrast to the flux-limiter based discretization schemes, as 
those with the MILES, the scheme they were using is more directly based on upwinding. 
It is for this reason that they introduced a new name, “implicit turbulence modeling” 
(ITM), to make this implicit SGS model category more general, and to allow more 
diverse discretization method to be used in this approach. Also, the leading truncation 
error in their scheme is analyzed for an example of the one-dimensional Burger’s 
equation, and these error terms are further justified with physical rationales. In fact, as 
pointed out by (Grinstein and Guirguis 1992) the numerical dissipations produced by 
those upwind-based schemes, such as QUICK, PPM, TVD and FCT, can all in certain 
cases be very close to that introduced by a physical model.  
 
 In the current study the third order upwind-based QUICK scheme will be used 
without any explicit models as part of the toolkit to simulate turbulent flows. It is 
important to note that in the framework of finite volume method, discretization (cf. 
Section 2.2) is essentially focused on approximating cell face fluxes. While doing so, the 
conservation property at each computational cell must be always followed. This very 
fundamental principle also serves in the flux-limiting based schemes. 
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Chapter 5 Large Eddy Simulation of 
Building-Block Turbulent Flows 
 
 
In this chapter focus is placed on the large eddy simulation (LES) of turbulent flows. The 
subgrid scale (SGS) models implemented in this study are the Smagorinsky model, 
dynamic Smagorinsky model and “no model” (implicit turbulence modeling, ITM). Three 
classical building-block flows, namely, the turbulent channel flow, flow past a square 
cylinder and plane mixing layer, are simulated and validated. It is important to note that 
making the turbulent flow right is a vital step towards the two-phase flow simulation 
(Part III). The obtained results establish confidence in the fidelity of the developed 
simulation code and the SGS model. 
 
 
5.1. Turbulent Channel Flow 
5.1.1. Introduction 
Investigation of turbulent channel flow has been carried out in great extent and depth in 
the literature, using both experimental and numerical techniques. Standard results, such 
as the mean velocity profiles and Reynolds shear stresses in the near wall region, have 
been well established. Earlier experimental contribution are mainly made by (Clark 1968; 
Hussain and Reynolds 1975; Kreplin and Eckelmann 1979). Numerical approaches 
include RANS (Wilcox 1993), LES (Deardorff 1970; Schumann 1975; Moin and Kim 
1982) and DNS (Kim et al. 1987; Mansour et al. 1988; Moser et al. 1999; Abe et al. 
2001). Experimental and DNS databases exist in abundance; they are commonly used for 
the verification of a numerical simulation that involves turbulence modeling, such as the 
RANS and LES.  
 

Three Reynolds numbers, based on different velocity and length scales, are often 
used to characterize the turbulent channel flow. They can be written down as: 

 (2 )Re , Re , Reave c
c

U U uτ
τ

δ δ δ
ν ν ν

= = = , (5.1) 

where δ is the channel half-width, Uave is the average streamwise velocity (or bulk 
velocity), Uc is the streamwise center-line velocity and uτ is the friction velocity. As a 
reminder, uτ is defined as 

 wuτ
τ
ρ

= , (5.2) 

where τw is the wall shear stress given by 

 
0

w
y

d u
dy

τ μ
=

= . (5.3) 
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In Eq. (5.3) as well as in the following appearance it is agreed that y represents the wall-
normal direction. Further, a length scale in the a turbulent channel is commonly 
normalized by either the half channel width (δ-units), or the wall units (denoted by a plus 
sign), which is defined, e.g. for the y-position, as  

 yuy τ

ν
+ = . (5.4) 

Limited by the computational capacity, the current highest Reτ  of a DNS, is 590 (Moser 
et al. 1999) and 640 (Abe et al. 2001). Their corresponding Re and Rec are summarized in 
Table 5-1. The present channel simulation will be validated with (Abe et al. 2001)’s 
(referred to as AKM henceforth) DNS data. 
 

Table 5-1 Reynolds numbers of available DNS channel calculations 

 Reτ Re Rec 
(Moser et al. 1999) 590 21870 12485 
(Abe et al. 2001) 640 24326 13984 

 
 
5.1.2. Computational Details 
Consider a computational domain of 2π × 2 × π, in δ units, in streamwise, vertical and 
spanwise directions, respectively (Figure 5-1). This selection of domain lengths is guided 
by the comments made by (Moin and Kim 1982). In that, it is pointed out that the two-
point correlation of velocity fluctuation in the streamwise direction and away from the 
wall becomes negligibly small after 3.2δ, according to a previous measurement. 
Similarly, the two-point correlation in the spanwise direction becomes weak after 1.6δ. 
Thus, if a periodic boundary condition is applied in these two directions, the 
computational domain should be at least twice as large as these dimensions.  
 
 

x
z

y

2πδ
πδ

2δ

 
Figure 5-1 Geometry of the channel flow 

 
The factors in the selection of grid resolution are twofold. First, the grid size 

should be small enough to accommodate important scales of motion in the flow. Second, 
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the total number of computational nodes should be within the doable range in accordance 
with the available computational resource. In the wall-normal direction sufficient grid 
nodes should be placed within y+ < 5 in order to properly resolve the viscous sublayer. 
From previous experiences, accommodating two computational cells in this layer can 
already yield satisfactory results. Due to the very fine resolution used in the near wall 
region, a non-uniform grid distribution in this direction is inevitable. Near the wall the 
important large-scale structures are the “streaks” (Kline et al. 1967), these structures are 
relatively finely spaced in the spanwise direction, with a mean spanwise distance of 100 
and the most probable spanwise spacing of about 80, in wall units. Their mean spacing 
characterizes the length scale of eddies in the viscous sublayer; thus, a calculation with 
inadequate resolution in the spanwise direction may result in an overprediction of the 
viscous sublayer thickness. Moreover, in the experimental studies of (Kline et al. 1967; 
Clark and Markland 1970), they occasionally observed U-shaped vortices in the inner 
region (y/δ < 0.1); (Clark and Markland 1970) reported that the average streamwise 
spacing of these structures is 440 wall units. Based on the above guidelines, a 64 × 64 × 
64 grid system is adopted in this study. The grid nodes are uniformly distributed in the x- 
and z-directions, while in the y-direction a non-uniform grid with a constant expansion 
ratio equal to 1.12 is employed. The expansion ratio is selected in such a way that two 
computational cells are located within y+ < 5. A finer resolution calculation with 64 × 96 
× 112 computational cells and a smaller expansion ratio of 1.08 is also carried out in this 
study to examine the mesh size influence. Table 5-2 summarizes the domain length 
(denoted by L, in δ-units), number of grid nodes (denoted by N), and the grid spacing 
(denoted by h, in wall units) used in the present simulations. 
 

Table 5-2 Spatial resolution of the channel flow simulation, Reτ = 640 

Case Lx (δ) Ly (δ) Lz (δ) Nx Ny Nz hx
+ hy1

 + hz
 + 

1 6.4 2 3.2 64 64 64 64 2.18 32 
2 6.4 2 3.2 64 92 112 64 1.01 18.3 

 
 In the present simulation, periodic boundary conditions are applied in the 
streamwise and spanwise directions. At two channel walls no-slip conditions are 
specified to ensure a wall-resolving solution. Note that other boundary conditions in the 
spanwise direction are possible, such as the slip-wall condition that mimics a laboratory 
setting. 
 
 Three modeling approaches are considered herein: the standard Smagorinsky 
model, dynamic eddy-viscosity model and implicit turbulence modeling (ITM). In the 
ITM approach the third order QUICK scheme is employed without any explicit SGS 
formulation; it is assumed that the dissipation of SGS kinetic energy is implicitly 
performed by the third-order upwind scheme. For the Smagorinsky model, Gaussian filter 
(see Table 4-1) is used in planes parallel to the walls in which the flow is statistically 
homogeneous. For the reasons addressed in Section 4.7, the filter width of the Gaussian 
filter is taken to be twice as the grid spacing, i.e., 
 2 , 2x x z zh hΔ = Δ = . (5.5) 
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Owing to the variation of turbulence length scale in the wall-normal direction, a 
piecewise continuous “top-hat” filter with a variable filter width is used. The filter width 
can be expressed as 
 1 1

1 1 1 12 2( )    for ( ) ( )y j j j j j jy y y y y y y y+ − + −Δ = − − < < − . (5.6) 
An important consequence of this definition is that the filtering operation and the partial 
differentiation commutes in open interval defined in Eq. (5.6), and in particular at the 
computational grid points yj (Moin and Kim 1982). The characteristic filter width Δ is 
then defined as 
 ( )1/3

x y zΔ = Δ Δ Δ , (5.7) 
which is used as a local variable in the Smagorinsky model expression (Eq. (4.158)). The 
Smagorinsky constant used by (Deardorff 1970) is 0.1 with Δi = hi, hi being the grid size. 
(Moin and Kim 1982) used 0.065 for this constant since their Δ is 41/3 larger than 
Deardorff’s one. In the current study, the defined Δ is approximately twice as large as the 
Deardorff’s one, therefore, Cs is taken to be 0.05. It should be noted that in the 
Smagorinsky model no explicit filtering operation is performed; the filtering effect is 
implicitly reflected through the model expression (4.158), which is linked to the grid size 
through the characteristic filter width, Δ. As usual, a damping function (Eq. (4.162)) is 
applied to ensure a proper behavior of residual stresses at the wall region. 
 
 The dynamic model is employed in conjunction with a box filter that applies 
filtering operation in all three directions at both the grid level and the test level. There are 
three reasons for the use of a box filter instead of a Gaussian filter. First, it is easy to 
implement in the computational code. Second, a non-uniform Gaussian filter will have 
difficulty in commuting with differentiation in the wall-normal direction along which the 
grid distribution is non-uniform. Third, it has been shown that in the physical space the 
Gaussian and top-hat filter are indeed very similar (Vreman et al. 1994; Vreman et al. 
1997); their sample computation further verifies that the results obtained from a dynamic 
model do not change much if a Gaussian filter is used in place of the box filter. Given a 
dynamic model that uses box filters, the definition of their filter widths at the two levels 
can be given as follows: at the grid filter level, one shall still use Eq. (5.5), (5.6) and (5.7)
; at the test filter level, the filter width is then defined as twice (in the x- and z-direction) 
or approximately twice (in the y-direction) as the grid filter width, i.e., 
 2 4 , 2 4x x x z z zh hΔ = Δ = Δ = Δ = , (5.8) 
 1 1

2 2 1 12 2( ) 2    for ( ) ( )y y j j j j j jy y y y y y y y+ − + −Δ ≅ Δ = − − < < − . (5.9) 

Recall that in the dynamic model the effective double-filter width Δ  is needed, in order 
to evaluate Mij (see Eq. (4.171)). As already mentioned in Section 4.8.3, the consecutive 
application of two spectral or Gaussian filters can be replaced by an effective filter of the 
same type, whose filter width can be determined exactly (see Eq. (4.163), (4.164)). 
Unfortunately, two consecutive filtering using the box filters does not yield an effective 
top-hat filter, and the resulting filter width is difficult to be expressed analytically. 
However, estimation can be made which minimizes the error. In (Vreman et al. 1997) it is 
shown that if 
 5Δ = Δ , (5.10) 
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the error norm becomes minimal. Eq. (5.10) is used here for the dynamic procedure. 
 
 In LES where an explicit model is employed the filtered N-S equations should be 
solved as accurately as possible. This requires (i) a sufficiently large Δ / h ratio, and (ii) 
the dissipation caused by the numerical scheme is small. Condition (i) can be met by 
proper definition of the filter width. In regard with condition (ii) a high-order accurate 
scheme shall be used for the convective terms, typically the 2nd or 4th order CD (central 
differencing), or QUICK. In the present study, the baseline discretization methods are 
summarized as follows: the diffusion and convection terms are discretized using the 2nd 
order CD; time integration is advanced using the semi-implicit (Crank-Nicolson) scheme 
for the diffusion terms, and the 2nd order explicit Adams-Bashforth for the convective 
terms, respectively; and the pressure Poisson equation is solved using the 4th order 
deferred correction (see Section 2.8). Also, other spatial discretization for the convective 
terms will also be considered. It is henceforth agreed that, terms such as “2nd order CD,” 
“4th order CD” and “QUICK” always refer to a discretization method applied to the 
convective terms, while other discretization details follows the baseline setup. 
 

At this point it is worthwhile to mention that, to prevent numerical diffusion, the 
nonlinear convection terms in the momentum equation is sometimes recast into the skew-
symmetric form (Gresho 1991), which is a linear combination of half of the standard 
divergence form, ( )∇ ⋅ uu , and half of the advective form, ∇ ⋅u u . When the skew-
symmetric form is discretized it is relatively easier than the other forms to conserve 
kinetic energy. When a central scheme is applied to the skew-symmetric form, it is called 
a kinetic-energy-conserving scheme, meaning that the total kinetic energy is conserved 
apart from the viscous and compressibility effects. Although this class of scheme 
prevents “blow up” of kinetic energy, it does loose momentum conservation property and 
exhibits possible instabilities, such as spurious wiggles (Vreman et al. 1997). Hence, the 
divergence form of the momentum equations (see Section 1.1) is used here along with the 
central differencing to achieve certain energy-conserving property. 
 

A constant time step of 6.4E-4, non-dimensionalized by δ / uτ,, is used in the 
simulation. The CFL (Courant-Friedrichs-Lewy) number, defined by 

 CFL max
x y z

u v wt t t
h h h

⎛ ⎞
= Δ + Δ + Δ⎜ ⎟⎜ ⎟

⎝ ⎠
, (5.11) 

is monitored throughout the computations, and it never exceeds 0.1. The simulation is 
considered complete when the numerical solution reaches statistically steady state. The 
equilibrium state can be identified by total mean shear stress and turbulent kinetic energy 
of the velocity field. 
 
 
5.1.3. Results 
The results of the Smagorinsky model and dynamic model are very similar. The ITM 
with QUICK yields fairly diffusive turbulence quantities. Therefore, in what follows, 
only the results obtained from the standard Smagorinsky model will be presented. For 
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simplicity, in this section, let φ denote a generic filtered quantity (without the overbar), 
〈φ〉 the corresponding mean (long-time averaged) quantity, and φ’ the resolved total 
fluctuation defined by φ’ = φ - 〈 φ 〉. Therefore, 〈u〉, for example, denotes the mean 
streamwise velocity, and u’ the instantaneous fluctuation about 〈u〉. 
 
 Figure 5-2 shows the mean streamwise velocity profile over an entire channel 
cross-section. The presented mean quantity is normalized by the centerline velocity Uc, 
and averaged over the spanwise direction to yield a smooth curve. The profile shown in 
Figure 5-2 is typical in a turbulent channel flow, as it has sharp gradient near the wall 
while it is relative flat in the center region. When the mean velocity profile is expressed 
in the wall units, i.e., in terms of y+ (Eq. (5.4)) and u+ (= u / uτ), and the y+ is plotted in 
the logarithmic scale (Figure 5-3), one obtains a close-up view of the near-wall region. It 
is seen that the linear variation in the viscous sublayer (y+ < 5) as well as the classical 
log-law profile in the outer layer (y+ > 30) is accurately recovered. As a reminder, the 
log-law, due to(von Karman 1930), can be expressed as 

 1 lnu y B
κ

+ += + , (5.12) 

with a typical value of κ = 0.41 (von Karman constant) and B = 5.2. For comparison, also 
included in Figure 5-3 is the data from a DNS (Abe et al. 2001), which employed 512 × 
256 × 256 grid nodes, 128 times as many as that in the LES computation. The resolved 
turbulence intensity, represented by the root mean square (RMS) of the velocity 
fluctuations, is depicted in Figure 5-4. The RMS values are normalized by the wall 
friction velocity uτ . The overall agreement of results from the LES and DNS is good. It is 
common that in LES of a turbulent channel flow the urms is overpredicted while the vrms 
and wrms are underpredicted, the reason being the insufficient grid resolution in all three 
directions. In fact, the uncertainty in the predicted turbulence levels is the tradeoff a LES 
usually has to take at the convenience of largely reduced computational grid nodes. 
 
 The detailed flow structures can be examined by looking at contour plots of 
instantaneous velocity, pressure and vorticity field. In the following presentation attempt 
is made to recover some important flow features discussed in (Moin and Kim 1982). Note 
that the velocity components used herein are normalized by Uc, and pressure by ρUc. It is 
well recognized that a distinct feature of the flow pattern is the existence of highly 
elongated regions of high-speed fluid (“streaks”), in the vicinity of the wall. This is 
evident in the u’ contour plot in the (x, z)-plane cut through a viscous sublayer y+ = 5.77 
(Figure 5-5). Consistent with the findings of (Kline et al. 1967) and (Moin and Kim 
1982), these high- and low-speed structures alternate in the spanwise direction, and there 
are several localized regions (“pockets”) of very high-speed fluid inside the pockets, 
identifiable by the large concentrations. When the (x, z)-plane moves away from the wall 
(Figure 5-6, at y = 0.59δ), the streaky pattern disappears, confirming that it is a unique 
characteristic of the wall-layer turbulence. In all the contour plots shown here, positive 
values are marked by solid lines and negative values by dashed lines. Figure 5-7 shows 
the pressure contours, again at y+ = 5.77. In contrast to u’, the pressure patterns are not 
stretched in the streamwise direction. It is also seen that the regions of high-pressure 
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fluctuations (with large gradient) are generally located in the vicinity of the pockets of the 
streaks, an important observation reported in (Falco 1978) and (Moin and Kim 1982).  
 
 Next, locate a high-speed streak at about z = 0.83δ in the lower left corner of 
Figure 5-5. Then make a vertical (x, y)-plane cut through the center of this streak. The 
resultant contour plot of u’ and vertical velocity is shown in Figure 5-8 and Figure 5-9, 
respectively. It is seen that, in near the lower wall, the high-speed streak (u’ > 0) between 
x = 0 and 2.5δ has a negative vertical velocity (v’ < 0), implying a sweep event. On the 
other hand, an ejection (v’ > 0) event can be observed between x = 2.5δ and 3.2δ for a 
low-speed region (u’ < 0). A further distinct feature captured in Figure 5-8 is that the 
above-identified high-speed structure is inclined at an oblique angle with respect to the 
wall. As pointed out by (Moin and Kim 1982), this is an evidence of the action of mean 
shear on the fluid elements that moves from the outer layer towards the wall. The mean 
angle of inclination of these structures reported by (Rajagopalan and Antonia 1979) is 
13°. 
 
 A close look should also be taken at the (y, z)-plane. Figure 5-10 and Figure 5-11 
show the contour plots of u’ and v, respectively, in the lower half (y, z)-plane sliced at x 
= 3δ. The flow patterns are then magnified in Figure 5-12 through Figure 5-14 for the 
near-wall region with the vertical extent up to y+ = 50. Note that the contour lines in these 
enlarged views are highly stretched in the vertical direction. From Figure 5-10 and Figure 
5-11 one sees, throughout a large portion of half- channel displayed, there is a negative 
correlation between u’ and v, including both in the wall layer and in the channel center 
region. In Figure 5-12 the alternating array of the high- and low-speed structure along the 
spanwise direction is clearly discernible. The mean spacing between two adjacent high-
speed streaks is about 0.24δ, or 150 in wall units. Compared to the experimental value of 
100 wall units, this distance is still a little large. Similar overprediction is also reported by 
(Moin and Kim 1982), whose simulation yields about 250 wall units. Figure 5-13 
displays the alternating feature of positive and negative regions of the vertical velocity, 
identifying the fluid portion moving away or towards the wall. An important message it 
conveys is that, due to the strong slip, shear layers will be formed in the respective region 
interfaces, and these shear layers may further undergo Helmholtz-type instabilities in the 
(y, z)-plane. As a consequence, the streamwise vortices can be formed. This is evident 
through the contour plot of the streamwise vorticity and the streamlines plot on the same 
(y, z)-plane (Figure 5-15). Conforming to Figure 5-13 and Figure 5-12, the most intense 
streamwise vortices, ωx, are concentrated near the wall, and they are separated by a 
distance on the order of the mean streak-spacing. From Figure 5-15 it is further seen that 
the eddy size in the wall region is significantly smaller than that in the region away from 
the wall. Figure 5-13 and Figure 5-14 together demonstrate that, the high-speed streams 
moving towards the wall produce a splatting effect, forcing the fluid elements at the 
impinging location to leave with opposite velocities in the spanwise direction. Such flow 
pattern is very similar to that of a jet impingement on a plate.  
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Figure 5-2 Mean streamwise velocity profile in a turbulent channel flow. 
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Figure 5-3 Mean-velocity logarithmic profile in a turbulent channel flow. 
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Figure 5-4 Resolved turbulence intensity in a turbulent channel flow. 
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Figure 5-5 Contours of u' in the (x, z)-plane at y+ = 5.77. 

x / δ

z
/δ

1 2 3 4 5 6

0.5

1

1.5

2

2.5

3 u'
0.1987
0.1648
0.1310
0.0971
0.0633
0.0294

-0.0045
-0.0383
-0.0722
-0.1060
-0.1399
-0.1737
-0.2076

 
Figure 5-6 Contours of u' in the (x, z)-plane at y = 0.59δ. 
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Figure 5-7 Contours of pressure in the (x, z)-plane at y+ = 5.77. 
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Figure 5-8 Contours of u' in the (x, y)-plane at z = 0.83δ. 
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Figure 5-9 Contours of v in the (x, y)-plane at z = 0.83δ. 
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Figure 5-10 Contours of u' in the lower half (y, z)-plane at x = 3δ. 
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Figure 5-11 Contours of v in the lower half (y, z)-plane at x = 3δ. 
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Figure 5-12 Contours of u' in the (y, z)-plane at x = 3δ, y+ < 50. 



 167

z / δ

y+

0.5 1 1.5 2 2.5 3

10

20

30

40

50 vvel
0.0550
0.0421
0.0292
0.0162
0.0033

-0.0096
-0.0225
-0.0354
-0.0483
-0.0613
-0.0742
-0.0871
-0.1000

 
Figure 5-13 Contours of v in the (y, z)-plane at x = 3δ, y+ < 50. 
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Figure 5-14 Contours of w in the (y, z)-plane at x = 3δ, y+ < 50. 

x / δ

y
/δ

1 2 3

0.1

0.2

0.3

0.4

0.5

 
Figure 5-15 Contours of streamwise vorticity and streamlines in the (y, z)-plane at x = 3δ. 
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5.2. Plane Mixing Layer 
5.2.1. Introduction 
A plane mixing layer is a turbulent flow that forms between two parallel fluid streams of 
different velocities. It is a particular (but canonical) case of a broader flow class named 
free shear flows. As the name “free” implies, this type of flows are remote from walls. 
Other examples of free shear flows are jets and wakes. In this section sought is an 
understanding some fundamental features and LES of the plane mixing layer. 
 

Since (Brown and Roshko 1974)’s landmark discovery of large, coherent and 
apparently two-dimensional structures in turbulent mixing layers, there has been 
considerable research aimed at exploring the mechanism for their formation, the role of 
the coherent vortical structures, and their eventually breakdown into random turbulent 
motion (see a review provided by (Ho and Huerre 1984)). These coherent structures have 
been said to engulf fluid into the mixing layer, and they are related to the spanwise 
vortices, called “rollers,” which form as a result of Kelvin-Helmholtz instability in a 
laminar shear layer.  
 

Before and in the early stage of the transition to turbulence, the rollers may 
undergo the “pairing” process (Winant and Browand 1974), whereby neighboring rollers 
rotate about each other and amalgamate (see Figure 5-16). Pairings generally lead to an 
increase in vortex size and a decrease in number of vortices, and they are responsible for 
the shear layer growth. Also possible is the so-called “tearing” (Moore and Saffman 
1975), in which one small vortex located between two larger ones is torn apart and its 
vorticity is redistributed to its larger neighbors (Figure 5-17). It should be noted that the 
two-dimensional array of rollers, along with the possible pairing and tearing process, is 
commonly viewed as a kind of two-dimensional turbulence, a stage before the fully 
turbulent mixing layer. In fact, it is probably known by far as the only exception of the 
more universally defined three-dimensional turbulence. 
 

 
Figure 5-16 Illustration of vortex “pairing” in a plane mixing layer. 

 

 
Figure 5-17 Illustration of vortex “tearing” in a plane mixing layer. 
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During the late stage of the transition to a fully turbulent mixing layer, several 
secondary instability mechanisms can operate, giving rise to the streamwise vortices, 
called “rib-vortices” (Figure 5-18). These rib-vortices are mainly located in the “braid” 
region (the region between rollers), counter-rotating, and extend from the bottom of one 
roller to the top of the next. One possible cause is described by (Corcos and Lin 1984; 
Lin and Corcos 1984): the vorticity in the braid region is strained by the neighboring 
vortices and undergoes an instability that stretches it into longitudinal vortices. Also, a 
single two-dimensional vortex is itself unstable to three-dimensional disturbances. 
Suppose the vortex develops a slight kink. The self-induced velocity created by the kink 
can result in a stretching of the vortex in the streamwise direction, forming a so-called 
hairpin vortex or vortex tube. The lengthening of a single kink can further induce kinking 
of the neighboring vortices, producing a kind of chain reaction. The existence of the 
streamwise vortical structures have been evident from a number of experiments 
(Pierrehumbert and Widnall 1982; Jimenez 1983; Bernal and Roshko 1986; Lasheras et 
al. 1986; Lasheras and Choi 1988), as well as from DNS calculations (Rogers and Moser 
1992, 1994).  
 

 
Figure 5-18 Illustration of "rib-vortices" in a plane mixing layer (provided by (Lopez and Bulbeck 

1993)). 

 
Besides the occurrence of the rib-vortices, the three-dimensional instability may 

also lead to a different type of pairing, known as the local pairing or helical pairing. The 
concept of the local pairing is primarily based on the experiments of (Chandrsuda et al. 
1978) and the analytical work of (Pierrehumbert and Widnall 1982). In contrast to 
(Winant and Browand 1974)’s classical pairing, local pairings are fairly localized in 
space, usually occur in the spanwise direction, and they do not necessarily evolve into a 
single merged vortex. In addition to the above cited references, the local pairing has also 
been observed and reported in other transitional mixing layers, for example in the 
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experiments of (Nygaard and Glezer 1991; Nygaard and Glezer 1994) and the DNS 
calculations of (Comte et al. 1992; Moser and Rogers 1993; Collis et al. 1994; Rogers 
and Moser 1994). On the other hand, it is fully possible that the local pairing does not 
exist, such as in (Brown and Roshko 1974) and (Hussain and Zaman 1985)’s 
experiments, as well as in one of (Rogers and Moser 1994)‘s simulations. 
 
 Quite often, an ordinary mixing layer is perturbed in form of forcing functions 
either initially, for a temporal evolving mixing layer, or continuously at the inlet 
boundary for a spatially developing one. A forced mixing layer could exhibit very 
different behavior as compared to an unforced one. Studying the forced mixing layer is 
itself an extensive topic because the forcing can be implemented in a variety of ways, 
according to its dimensionality, direction, frequency, strength, phase variation, 
uniformity, and randomness. The primary purpose of adding disturbance is to excite 
instabilities that occur naturally in the mixing layer, so that the processes, such as the 
roller formation and pairing, will occur in a controlled manner. A prominent result in this 
regard is that the subharmonic disturbances, i.e., the subharmonic modes of the 
fundamental frequency of instabilities in the mixing layer, can help trigger and sustain the 
classical pairing process, and subsequently expedite the transition to turbulence (Kelly 
1967; Ho and Huang 1982; Pierrehumbert and Widnall 1982). In a further experimental 
study of (Ho et al. 1991), it is found that the subharmonic modes can also cause phase 
decorrelation (or phase jitter) which leads to a more random merging location of the a 
vortex pair. In the numerical simulation of (Sandham and Reynolds 1989), they noted 
that by “jittering” the inlet forcing, i.e., randomly varying the phases of the exciting 
modes, very realistic results were obtained. (Wilson and Demuren 1996) performed a 
simulation excited with a broad spectrum of modes, aiming at emulating a realistic 
experimental condition; they observed that the vortex pairing in this kind of forcing 
occurs over a region but not at a fixed location, as is the case with the subharmonic 
forcing. Using the three-dimensional direct numerical simulation, (Collis et al. 1994) 
examined the influence of a spanwise nonuniform forcing on the vortical structure. In 
(Lazaro and Lasheras 1992b; Rightley and Lasheras 2000)’s experiments they studied 
developing mixing layers and pointed out that a single-wave periodic perturbation 
operating at the fundamental frequency of instability with very small amplitudes lead to a 
rapid growth of the Kelvin-Helmholtz billows, and greatly enhance the coherence of the 
large-scale structures. Given above reviews it is seen that the seemingly simple plane 
mixing-layer indeed contains a wealth of complex physical information.  
 

For clarity, some basic quantities often used to characterize a mixing layer should 
be summarized here. Let Uh denote the fast-speed stream, and Ul the low-speed stream. 
Their difference is denoted by ΔU, i.e., 
 h lU U UΔ = − . (5.13) 
The average convective velocity Uc is then 

 ( )1
2c h lU U U= + . (5.14) 

The normalized velocity difference, R, can be defined as (Ho and Huerre 1984) 
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2 c

UR
U

Δ
= . (5.15) 

It measures the relative magnitude of the total shear, ΔU. When R = 0, it reduces to a 
wake; when R = 1, only one stream is present. 
 

From the linear stability analysis, it is known that the mixing layer has three 
inherent instability frequencies. The most unstable one is known as the fundamental 
frequency, denoted by f0; Its corresponding wavelength is 

 0
0

cU
f

λ = . (5.16) 

Thus, the streamwise station (x-direction) can be normalized as 

 
0 0

* ,    or   *x xx x R
λ λ

= = , (5.17) 

which gives the approximate location of the x*th Kelvin-Helmholtz billow. The y-
coordinate can be non-dimensionalized by the mixing a length thickness, for example, δω. 
 

The mixing layer width, δ, can be defined in many ways. The frequently used 
ones are the level thickness, momentum thickness, and vorticity thickness. At each x-
station, one can define a non-dimensional longitudinal velocity profile normalized with 
the free stream velocities, i.e., 

 ( )( ) l

h l

u y Uy
U U

β −
=

−
. (5.18) 

Clearly, 0 < β < 1, and a large and small β indicates a cross-stream location close to the 
high-speed stream edge and the low-speed edge, respectively. The level thickness is then 
defined as 
 ( 0.9) ( 0.1)L y yδ β β= = − = ; (5.19) 
The momentum thickness is defined as 

 [ ]( ) 1 ( )y y dyθδ β β
∞

−∞
= −∫ ; (5.20) 

The definition for the vorticity thickness (or shear thickness) is given by 

 
0/ y

U
U yωδ

=

Δ
=

∂ ∂
, (5.21) 

where U is the mean velocity profile.  
 

The Reynolds numbers used in a mixing layer can be defined accordingly based 
on the initial or inlet mixing layer thickness (δL0, δθ0, δω0 etc.), i.e., 

 0 0 0Re ,Re , Rec l c cU U Uθ ω
δ θ ω

δ δ δ
ν ν ν

= = = . (5.22) 

In general, the two parameters, R and the Reynolds number, provide an overall 
characterization of a mixing layer. 
 

The rate of change of the mixing layer thickness can be quantified through the 
spreading rate (or growth rate) defined by 
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    or   cUd dr r
dx U dx
δ δ

= =
Δ

. (5.23) 

Note that the second definition uses R/2 as its normalization factor, and it is more general 
since it eliminates the effect of different velocity ratios (Abramovich 1963; Sabin 1965; 
Brown and Roshko 1974). The spreading rate tells how fast a mixing layer grows. 
 

In certain development stage of a mixing layer, the flow, albeit turbulent, may 
undergo self-similarity, i.e., the mean velocity profiles taken at different streamwise 
locations collapse into an identical one if they are properly scaled. The scaled cross-
stream coordinate ξ can be defined as 

 refy y
ξ

δ
−

= , (5.24) 

with [ ]1
2 ( 0.9) ( 0.1)refy y f y f= = + = ; and the scaled mean u-velocity is given by 

 ( ) cu U
f

U
ξ

−
=

Δ
. (5.25) 

The similarity region is typically seen in the far field, followed by an exponential growth 
of the layer thickness. It can be shown (e.g., see (Pope 2000)) that a direct implication of 
the self-similarity is the presence of the linear spreading rate. In the near field 
(developing region) of a forced mixing layer, the evolution of the layer thickness can 
undergo two stages as well: an initial non-linear growth and a linear spreading. However, 
such a two-region growth is distinct from the one in an unforced mixing layer, and, the 
linear spreading region in a forced mixing layer usually does not imply a self-similar flow 
(Lazaro 1989; Lazaro and Lasheras 1992b; Rightley and Lasheras 2000).  
 
 In the present study LES of a spatially developing mixing layer will be performed, 
and the obtained flow solution will be compared with the experimental measurements 
made by (Rightley 1995). Note that the Rightley’s original thesis was later published in 
(Rightley and Lasheras 2000). For brevity this experiment will occasionally be referred to 
as R&L. The primary reason of choosing this benchmark is that the original work not 
only details the flow field measurements, but also provides a reliable study of a bubbly 
two-phase flow. Thus, once the carrier-phase flow field is verified, it may be utilized for 
the two-phase flow simulation in Part III. Other related mixing-layer studies published by 
Professor Lasheras’s group include (Lasheras et al. 1986; Lasheras and Choi 1988; 
Lazaro and Lasheras 1992a, b). The evolution of the forced mixing layer towards an 
asymptotic, self-similar state is often significantly delayed (Ho and Huang 1982). 
 
 
5.2.2. Computational Details 
In the original experiment (Rightley 1995; Rightley and Lasheras 2000), the study was 
focused on the developing region of a forced, turbulent mixing layer. The low-speed 
stream, placed in the upper layer, is separated with the high-speed stream in the lower 
layer with a splitter plate (Figure 5-19). This arrangement (fast stream below slow 
stream) is due to practical considerations in the experiment. The flow is forced in the inlet 
region of the lower layer using a sinusoidal function operating at a frequency (2.1 Hz) 
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near the fundamental frequency and with very small amplitude. With the help of forcing, 
the Kelvin-Helmholtz instability is triggered at a location very close to the plate tip, and 
the flow evolves rapidly into a pattern composed of an array of large, coherent spanwise 
vortices. The mixing layer thickness undergoes an initial non-linear development, 
followed by a linear spreading. As aforementioned, the linear spreading region seen in 
the near field of a forced mixing layer should not be taken as an indication of the self-
similar state. Since the study is confined in the developing region, processes associated 
with the secondary instability, such as the rib-vortices and local pairing, are not to be 
expected, and the flow is essentially two-dimensional in the mean. 
 

Ul

Uh

δ

x

y

 
Figure 5-19 Schematic of a plane mixing layer 

 
 
 The computational domain starts from the trailing edge of the splitter plate, and it 
is sized as 0.4m × 0.2m × 0.04m in the x-, y- and z-directions, respectively. Since the 
flow is statistically two-dimensional, a relatively small dimension is used in the spanwise 
direction. The grid contains Nx = 128, Ny = 64 and Nz = 10 nodes. The grid points are 
distributed evenly in the x- and z-directions, yielding a uniform cell size of Δx = 3.125 
mm and Δz = 4.0 mm, respectively. In the vertical direction, to resolve the mixing region 
with sufficient accuracy, the cells are concentrated around the center and expanded with a 
constant ratio of 1.08 towards the lower and upper bound. This yields a smallest cell size 
of about 0.37 mm.  
 

Two uniform streams with Ul = 0.28 m/s and Uh = 0.06 m/s are imposed at the 
inlet of the lower and upper layers, respectively. Other inlet profiles, such as the one 
displayed at the plate tip in Figure 5-19, is also possible. Numerical experimentations 
show that two uniform streams help trigger an early instability, as compared to other inlet 
profiles, and the Kelvin-Helmholtz vortical structures as well as the turbulence statistics 
in a forced mixing layer is relatively insensitive to the inlet condition. As a result, the 
choice of two constant inlet velocities reduces the streamwise extent of the computational 
domain and saves unnecessary computational cells that would have been used to 
accompany the generation of instability. At the east outlet the standard outlet boundary 
condition is used. In the vertical direction two slip-walls are imposed, which moves at Ul 
in the lower layer and Uh in the upper layer. As usual, the periodic boundary condition is 
applied in the spanwise direction.  
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To emulate the forcing effect in the experiment, a two-dimensional sinusoid 

perturbation is superimposed to the high-speed stream at the lower layer’s inlet. The 
perturbation function can be expressed as 

 
sin(2 ) ,

sin(2 ).
perturb

perturb

u A ft

v B ft

π ϕ

π ϕ

= +

= +
 (5.26) 

where the frequency f = 2.1 Hz, and ϕ is a random phase that mimics noises existing 
under the experimental condition. Following (Sandham and Reynolds 1989; Druzhinin 
and Elghobashi 2001), ϕ  is obtained at each time step as  

 ( ) ( )
12

t t t q πϕ ϕ+ Δ = + , (5.27) 

q being a random number between –1 and 1 with uniform distribution. The artificial 
phase jittering (Eq. (5.27)) plays an important role in reproducing a realistic mixing layer. 
On the other hand, a strictly periodic forcing gave erratic, anomalous results (Sandham 
and Reynolds 1989; White 1991). In the experimental study of Rightley and Lasheras, it 
is reported that the small perturbation amounts to about 0.5% of the lower layer’s volume 
flux. Therefore, in the present simulation, set the forcing amplitude to be A = B = 0.0015 
m/s. 
 

Fluid properties are taken from those of water: 1.0E3 kg/m3 for the density and 
1.0E-3 N⋅s/m2 for the dynamic viscosity. The Reynolds number, defined with the 
longitudinal coordinate x as Re = ΔUx / ν, varies from 2.2E4 at x = 0.1m upwards. 
According to the experiment, the Reynolds number at the first measuring station is about 
2100 based on the level thickness, and is 430 based on the momentum thickness. 
 
 Large-eddy simulation is carried out using the ITM approach and the dynamic 
SGS model. In both cases, QUICK scheme is used for discretization of the convective 
terms. For the case with the dynamic model, the box filter is applied for both the grid 
filtering and test filtering. The relevant definition of the filter width follows that 
discussed in Section 5.1. Note that the Smagorinsky model is found to (Vreman et al. 
1997) be too dissipative during transition, thus is avoided here. 
 
 The flow is initialized with the inlet velocity profile in the absence of forcing. The 
integration is performed with time step Δt = 0.001s. After the initial flow field is 
“washed” out of the computational domain sufficient number of times by the mean 
advection, it can be regarded as nearly stationary. The mean and RMS quantities are then 
calculated from the stationary flow field. 
 
 
5.2.3. Results 
Figure 5-20 (a) shows contours of the mean streamwise velocity, 〈u〉. In that, the growth 
of the mixing layer, as well as the tendency of growing into the low-speed stream is 
clearly seen. This familiar structure also reminds us of a laminar shear layer (cf. Figure 
3-36(a)). In the outlet region from x = 0.36m the growth rate of the shear thickness is 
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hindered, owing to the influence of numerical implementation of the outlet condition. 
Thus, analysis including this region may give some error. Figure 5-20(b) provides a 
zoomed view of the first half domain. In that three regions can be identified: an initial 
induction region (marked by I) where the Kelvin-Helmholtz instability occurs, and a high 
and a low growth region (II and III, respectively). A slowed-down growth rate is signified 
by an inflection point discernible between region II and III. Similar process is also 
observed in the R&L’s experiment shown in Figure 5-21 with about the same extent. It 
should be noted that a comparison between Figure 5-20(b) and Figure 5-21 can be only 
qualitative, since the latter picture is obtained in the presence of a dispersed phase 
(bubbles), and, the experiment has a different inlet condition (with splitter plate), which 
may let the layer undergo a different distance for respective regions. 
 
 In the R&L’s experiment, measurements are taken at five stations, i.e., x/λ = 0.31, 
0.63, 1.25, 1.88 and 2.50, where λ = 0.08m is the most unstable wavelength, or billow-to-
billow distance. In the present simulation, due to the not completely identical inlet and 
boundary conditions, instability and initial development may occur at a different location. 
Therefore, a shift of x-coordinate is necessary to allow for a direct comparison with the 
profiles taken from the measurements. Here, the x-axis is displaced such a distance that 
the level thickness at the first measuring station (x/λ = 0.31) matches the computed value. 
This yields a shift of x-coordinate for about 0.1m in the present data set.  
 
 Based on the shifted coordinates, the mean and RMS profiles in the vertical 
direction are generated at those five x-stations (Figure 5-22 through Figure 5-27), where 
results in Figure 5-22 through Figure 5-24 are obtained from the dynamic model, and 
those in Figure 5-25 through Figure 5-27 are from ITM (LES without a SGS model). The 
measured profiles for the streamwise component are displayed in Figure 5-28(a) and (b). 
The following can be seen from the comparison: (i) the results with the dynamic model 
and ITM are similar in terms of mean and RMS quantities. (ii) The overall trend of the 
shear thickness development presented in the 〈u〉-profiles is well captured. (iii) The 
overall increasing tendency of the RMS values from the x/λ = 1.25 station is well 
predicted. (iv) There is underprediction of RMS values at the first two stations, and 
overprediction of RMS far downstream. The underprediction can be due to high 
turbulence level present in the inlet region (close to the tip of the splitter plate) in the 
actual experiment. The possible causes of the overprediction will be addressed in the next 
paragraph. (v) A shift of the peak RMS values towards the low-speed stream is well 
predicted. 
 
 For a better comparison, the results with the dynamic model, “no model” and 
experiment are put together for the stations x/λ = 0.63 (Figure 5-29 through Figure 5-31) 
and x/λ = 2.50 (Figure 5-32 through Figure 5-34). From these plots, it is seen that the 
overall agreement with the experiment is satisfactory. The RMS quantities from the 
dynamic model yield closer agreement with the measurements. Notably, the numerical 
solutions generally overpredict the RMS values in the mixing core region with respect to 
the experiments, while give underestimation in the regions away from the center (see 
Figure 5-31, Figure 5-33 and Figure 5-34). The differences could be attributed to several 
factors. First, the mixing layer experiment was conducted in an open channel; the 
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computational domain to the interest of the simulation is away from the walls and free 
surface. This suggests that the boundary conditions needed by a numerical simulation, 
especially in the vertical direction, could be difficult to specify, since flow variables at 
those boundaries are in general time- and location-dependent. An accurate solution will 
thus demand a full knowledge of temporal-spatial evolution of flow variables at those 
boundaries. In practice, one commonly uses either a slip-wall (used in the present 
simulation) or a stress-free condition (∂ui / ∂y =0) to serve as an approximate vertical 
boundary condition. Due to the fact that possible influence of the wall turbulence and 
turbulence at free surface on the fluctuation intensity in the mixing core region is not well 
known, it is speculated that the channel wall and free surface may have to be resolved to 
yield a better emulation of the actual experiment. A second cause could be related to the 
forcing. In the experiment, the forcing effect is realized via a loudspeaker that is placed 
far upstream of the inlet and drives a small cylindrical plug of water into and out of the 
lower stream. A macroscopic quantity, the volume flux in the lower stream, is reported to 
oscillate according to a sinusoid function. Nevertheless, how the forcing actually 
propagates through the long entrance region, and what form the perturbation actually 
takes at the inlet of the computational domain, remain open questions. From the 
numerical point of view, the overestimation may also point to two plausible causes: the 
turbulent energy dissipation supplied by the SGS model or the numerical scheme could 
be insufficient; the resolution in the third dimension (only ten computational cells) could 
be underweighted, since the effect of the third dimension on the fluctuating field could be 
significant. In summary, the deviations of the RMS values between the simulation and 
experiment are possibly due to insufficient characterization of the boundary conditions, 
and aspects of in the numerical methods. 
 

Figure 5-35 gives a comparison of the predicted urms along the center x-line 
obtained from the dynamic model and the ITM, respectively. The x-axis has been shifted 
following the aforementioned principle. Overall, the two curves are in good accord with 
each other. However, in the far field, the fluctuation level with the ITM is higher than 
that of the dynamic model. Considering the generally overpredicted urms with reference to 
the experiment, this picture implies that, for this particular flow case, the energy 
dissipation mechanism operated by the dynamic model is superior over ITM. This 
conclusion also conforms to (Vreman et al. 1997)’s finding. 
 
 An integral quantity, namely, the level thickness (cf. Eq. (5.19)) is calculated at 
selected locations. Its variation along the streamwise direction is depicted in Figure 5-36. 
R&L fitted a straight line based on the measured thicknesses in the linear spreading 
region; and it is given by 
 0.134 9.1L xδ = + , (5.28) 
where x and δL are in mm. For a comparison, this line is also shown on the same figure. It 
is seen that the two curves are in excellent agreement in terms of both the magnitude and 
slope. The close agreement of the slope simply tells the growth rate of the mixing layer is 
correctly predicted. 
 

Next, the instantaneous flow structure is examined. Figure 5-37(a) depicts 
instantaneous contours of the spanwise vortices. The vector field and streamlines at the 
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same instant are shown in Figure 5-37(b). The large, coherent vortical structures are 
clearly seen in these pictures. In Figure 5-37(b) the mean convective velocity (0.17 m/s) 
has been subtracted from the streamwise velocity component. In doing so, the 
recirculating eddy structures become visible to an observer who travels along with the 
flow at a speed equal the mean streamwise velocity. In the region of interest, i.e., between 
0.1m and 0.35m, the average billow-to-billow distance is around 0.08m. 

 
The R&L’s experimental study also provided phase-averaged velocity vector 

fields (Figure 5-38 (a) and (b)). These fields record the time evolution of velocity vectors 
along a vertical line at a designated x-station. The recording is started when the phase 
angle of the forcing function is zero, and lasts for two full periods. After recording, a 
phase averaging is performed over the instantaneous data, with one period broken evenly 
into ten phase bins. Finally, the mean velocity is subtracted from the streamwise velocity 
component to yield the two temporal velocity fields. The phase angle on the abscissa is 
related to elapsed time according to 
 2 ftθ π= , (5.29) 
where f = 2.1 Hz. In essence, the vector history generated in this way may also be viewed 
as a prediction of possible spatial structure extending from the recording x-location up to 
a distance advected by the mean velocity for two periods, i.e., two wavelengths. 
Therefore, in the present simulation, two instantaneous vector fields are also created 
conditioned on the zero phase angle of the forcing function. The domain of Figure 
5-39(a) extends from x/λ =1.25 to 3.25, and that of Figure 5-39(b) from x/λ = 1.88 to 
3.88. Again, the constant mean streamwise velocity has been subtracted. By comparing 
the experiments and simulation, very similar topological flow structure can be found. At 
the x/λ = 1.88 station, for example, it is seen (i) two Kelvin-Helmholtz billows with their 
cores located at about θ = 120° and 480°,  (ii) the free stagnation point at about 350°, and 
(iii) perturbations in the vertical velocity that extend into the lower free stream. Note that 
this spatial-temporal link can be justified by Taylor’s hypothesis that essentially 
approximates spatial correlations by temporal ones. Yet, the accuracy of the hypothesis 
will depend both upon the properties of the flow and the statistics being measured. In free 
shear flows, many experiments have shown that Taylor’s hypothesis fails (Pope 2000). 
Therefore, caution must be taken when interpreting this surprisingly good agreement. 
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Figure 5-20 Contours of mean streamwise velocity of a mixing layer: (a) entire domain, (b) zoomed 
view of near field. 

 
Figure 5-21 Mean flow visualization from Rightley & Lasheras (2000). 
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Figure 5-22 Mean streamwise velocity profiles in a mixing layer. Dynamic model is used. 
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Figure 5-23 RMS streamwise velocity profiles in a mixing layer. Dynamic model is used. 
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Figure 5-24 RMS vertical velocity profiles in a mixing layer. Dynamic model is used. 
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Figure 5-25 Mean streamwise velocity profiles in a mixing layer. No SGS model is used. 
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Figure 5-26 RMS streamwise velocity profiles in a mixing layer. No SGS model is used. 
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Figure 5-27 RMS vertical velocity profiles in a mixing layer. No SGS model is used. 
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Figure 5-28 Streamwise (a) mean and (b) RMS velocity profiles from Rightley & Lasheras (2000).  

Solid line, x/λ = 0.31; dash, x/λ = 0.63; dash-dot, x/λ = 1.25; long-dash, x/λ = 1.88; dash-dot-dot, x/λ = 
2.50. 
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Figure 5-29 Comparison of mean streamwise velocity profiles at x/λ = 0.63. 
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Figure 5-30 Comparison of urms profiles at x/λ = 0.63. 
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Figure 5-31 Comparison of vrms profiles at x/λ = 0.63. 
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Figure 5-32 Comparison of mean streamwise velocity profiles at x/λ = 2.5. 
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Figure 5-33 Comparison of urms profiles at x/λ = 2.5. 
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Figure 5-34 Comparison of vrms profiles at x/λ = 2.5. 
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Figure 5-35 Comparison of urms along centerline computed with dynamic model and without SGS 

model. 
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Figure 5-36 Comparison of level thickness between prediction and measurements.  
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Figure 5-37 A snapshot of (a) spanwise vorticity contours, and (b) streamlines and velocity vectors, 
mean convective velocity is subtracted from the streamwise velocity component. 
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(a) 

 
(b) 

Figure 5-38 Phase-averaged velocity field at (a) x/λ = 1.25 and (b) x/λ = 1.88 from Rightley & 
Lasheras (2000). Mean velocity is subtracted from the streamwise velocity component. 
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(b) 

Figure 5-39 Instantaneous velocity vector field (a) between x/λ = 1.25 and x/λ = 3.88, (b) between x/λ 
= 1.88 and x/λ = 3.88. Instant is taken at zero phase angle of the forcing function. Mean convective 

velocity is subtracted from the streamwise velocity component. 
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5.3. Flow Past a Square Cylinder 
5.3.1. Introduction 
Studying flow past bluff bodies, such as circular or square cylinders, is of important 
technical relevance to many industrial applications, e.g., the vehicle aerodynamics. At 
high Reynolds number the flow phenomena, even with very simple body geometry like a 
square cylinder, is rather complex in general. It often involves separation and 
reattachment, multiple separations with partial reattachment, recirculation, unsteady 
vortex shedding, curved shear layers, bimodal flow behavior, transition from laminar to 
turbulent flow, high turbulence level and three-dimensional large-scale structures (Rodi 
1997). In this section LES is to be conducted and verified for the case of flow past a 
square cylinder. Note that many complicated flow situations can be essentially regarded 
as a synthesis of wall boundary layers and shear layers, among others. Therefore, the 
three selected turbulent flow cases, i.e., the turbulent channel flow, the plane mixing layer 
and the flow past a square cylinder are representative, and well suited for benchmarking 
purpose. 
 
 A classical LDV (Laser-Doppler velocimetry) measurement for the flow past a 
square cylinder was performed by (Lyn et al. 1995). A LES workshop, aimed at 
exploring the LES capability in reproducing this experiment’s results, was held in 1995 in 
Germany. Results from the workshop are published in (Rodi et al. 1995; Rodi et al. 1997; 
Rodi 1998). Using the same flow configuration a second workshop was further 
organized, and the results are available at (Voke 1997). A comparison between RANS 
and LES calculation has also been made in (Rodi 1997); and a comparison among 
different SGS models in the framework of LES has been done by (Sohankar et al. 2000). 
Regarding RANS, the general conclusions are that the RANS calculations severely 
underpredict turbulence fluctuations. This is easily understood since in RANS the entire 
length-scale spectrum of the turbulence is modeled, while in this complex flow large-
scale eddy structures dominate the turbulent transport and unsteady processes like vortex 
shedding and bistable behavior prevail. As pointed out by (Rodi 1998), the LES approach 
for simulating complex flows is conceptually more suitable. 
  
 
5.3.2. Computational Details 
The geometry used for the simulation is shown in Figure 5-40. To avoid ambiguity, it has 
been assumed that the origin of the coordinates is at the center of the cylinder. All the 
lengths are scaled with the side length of the square cylinder, D. The calculation domain 
extends 4.5D upstream, 14.5D downstream of the cylinder, 6.5D on either side of the 
cylinder, and 4D in the spanwise direction. The Reynolds number, based on the uniform 
inlet flow velocity and the side length of the square cylinder, is 22000. This flow 
configuration, both the geometry and the Reynolds number, is identical to the one used in 
the 1995’s workshop. 
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Figure 5-40 Schematic of flow past a square cylinder 
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Figure 5-41 Grid distribution on the x-y plane for flow past a square cylinder 

 



 192

A grid system with 160 × 112 × 16 nodes in the streamwise, vertical and spanwise 
direction is used. In the spanwise direction, the grid distribution is uniform, with a grid 
spacing of hz = 0.25D. On the x-y plane, the grid distribution (Figure 5-41) is made as 
follows: in the regions near the cylinder surface, i.e., from the surface to 2D away from 
the surface, the computational cells are stretched with a constant expansion ratio of 1.1. 
The purpose of doing so is to better resolve the wall boundary layer and to properly 
capture the boundary layer separation phenomena. In this study, the nearest grid point 
away from the cylinder surface is located at about 0.0113D. Outside of the stretching 
region, a uniform distribution is applied. The symbolic notations for the number of nodes 
(denoted by N with a subscript) and the grid spacing (denoted by h with a subscript) in 
their corresponding uniform regions are shown in (Figure 5-41). In the x-direction, the 
cell size at upstream of the left stretching region is hu = 0.25D, and the cell size at 
downstream of the right stretching region is hd = 0.123D. In the y-direction the uniform 
cell size at sideways of the lower and upper stretching region is hs = 0.225D. Also, the 
number of cells distributed over one side of the cylinder surface is 24, corresponding to 
hb = 0.0417D. These details of the grid information are summarized in Table 5-3. 
 

Table 5-3 Summary of grid information for flow past a square cylinder 

x-direction (Nx = 160) y-direction (Ny = 112) z-direction 
Nu Nd Nb Ns Nb Nz 
10 102 24 20 24 16 
hu hd hb hs hb hz 

0.25 0.123 0.0417 0.225 0.0417 0.25 
 
 It should be noted that although the non-uniform grid is used in the vicinity of 
cylinder surface, the nearest node away from the surface is still not close enough in order 
to deliver a full wall-resolving solution. This can be seen by making an estimate of the 
required distance at which y+ = 5. Note that the drag coefficient CD measured by (Lyn et 
al. 1995)’s is around 2.1. As a first approximation let the pressure distribution around the 
cylinder be uniform, so that only the friction drag contributes to the total drag force. 
Hence, by definition of CD and further noticing that the frontal area and the side-surface 
area are equal for the case of a square cylinder, one has 

 1 1 12 2 2
0 0 02 2 4

2 w wD
D

AFC
U A U A U

τ τ
ρ ρ ρ

= ≈ = , (5.30) 

where U0 is the uniform inlet velocity, A is the front area, FD is the total drag force, and 
τw is the averaged shear stress at the upper and lower cylinder surface. With Eq. (5.30) y+ 
can be expressed as 

 01 1 Re
2 2

w

D D
u U Dy C C

D D

τ

ρτ
δδ δ δ

ν ν ν
+ = = = = , (5.31) 

where δ is the distance from the cylinder surface to the nearest grid point. Thus, given Re 
= 22000 and CD = 2.1, at y+ = 5 one obtains δ = 3.1E-4D. This implies that for a wall-
resolving solution at high Re a rather demanding resolution near the wall is required, 
which, from computational point of view, is prohibitive. Even in a relatively recent 
calculation performed by (Sohankar et al. 2000) the δ only reaches 0.008D. Nevertheless, 
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the no-slip condition has been used in most of the previous LES’s. It may appear to be 
appropriate to use a suitable near-wall model similar to the well-known wall functions 
employed in RANS calculations. However, almost all the wall models proposed in the 
literature assume a phase coincidence between the instantaneous tangential velocity 
inside the first cell and the instantaneous wall shear stress; and they were all basically 
developed for attached flows, the validity of their application to a separated flow, e.g., the 
flow under consideration here, remains to be an open question (Rodi et al. 1997; Rodi 
1998). Developing a well-suited wall model for separated flow is beyond the scope of 
this study and will be left as a future work. 
 
 As to the boundary conditions, a uniform flow velocity is prescribed at the inlet. 
At the outlet an outlet boundary condition is used which ensures global mass 
conservation. The symmetry boundary conditions are applied in the normal direction at 
the upper and lower surfaces of the domain. In the spanwise direction the periodic 
boundary condition is applied. Also, the no-slip conditions are employed on the four 
cylinder surfaces. It is kept aware that the wall layer on the cylinder surfaces is not 
adequately resolved with the current grid resolution, albeit a stretched mesh is used. 
However, as a commonly accepted practice, an enforcement of the wall-condition is 
always better than doing nothing! 
 

Two type SGS models, namely the ITM (implicit turbulence model) and the 
dynamic eddy-viscosity model, are used. The standard Smagorinsky model is avoided 
here because it requires the specification of a wall-damping function, which is not known 
a priori. For the ITM approach, the 3rd order QUICK scheme is employed, which 
supposedly provides the methods-embedded damping effect of the TKE. In the 
calculation with the dynamic SGS model, the box filter is used for both grid filtering and 
the test filtering. The definition of the filter widths, as well as their justification, has 
already been given in the proceeding section. A fourth order central differencing is 
applied to the convection terms, combined with a switching to QUICK (due to numerical 
stability) once the grid Peclet number exceeds 2. 

 
 The time marching calculation is started with the fluid at rest. A constant time 
step of 2.2E-3, non-dimensionalized by D/U0, is used. The calculation is considered 
complete when a fully developed state is reached, in which the turbulence quantities do 
not change in the mean. Results are then obtained by analyzing the flow data in the fully 
developed state.  
 
 To be consistent, let 〈φ〉 denote a long-time averaged quantity, and φ’ the resolved 
total fluctuation, i.e., 
 'φ φ φ= + . (5.32) 
When a flow involves periodic vortex shedding, such as the case under consideration, it is 
appropriate (Hussain and Reynolds 1970; Rodi 1997; Bosch and Rodi 1998; Liou et al. 
2002) to further decompose the total fluctuation, φ’, into a periodic component, φ~ and a 
component of stochastic turbulent fluctuation, φ”. Thus, 
 ~ "φ φ φ φ= + + . (5.33) 
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Combining the first two quantities on the RHS of Eq. (5.33) yields the ensemble- (or 
phase-) averaged quantity, 〈φ〉, i.e., 
 "eφ φ φ= + . (5.34) 
The phase averaging is often employed in an unsteady RANS calculation as well as in 
experimental measurements. In summary, Eq. (5.32), (5.33) and (5.34) represent three 
ways of decomposing an instantaneous signal. 
 
 
5.3.3. Results 
Figure 5-42 shows the variation of the mean (long-time averaged) streamwise velocity 
along the centerline of the square cylinder. Presented are the current results obtained 
using the dynamic model and ITM, in a comparison with the experimental data of (Lyn et 
al. 1995) and the data from two representative LES performed in the Rottach-Egern 
workshop (Rodi et al. 1995). The results reported from the Rottach-Egern workshop 
(Figure 5-43) generally exhibit a great variance in both near-wall and downstream 
regions. In contrast to Lyn’s data, most of the LES results from that workshop, as well as 
the present result using ITM produce a fast recovery of the upstream velocity in the 
downstream region. In this regard, the present simulation with the dynamic model 
appears to give a closer agreement with the measurements. An inspection of the near-
cylinder region tells that the dynamic model and ITM yield similar predictions, and, with 
respect to the experimental data, they both underpredict the mean recirculation length to 
some extent, a commonly observed result in a non-wall-resolving LES.  
 
 Figure 5-44, Figure 5-45 and Figure 5-46 show the RMS values of total 
fluctuations (periodic plus turbulent) of the streamwise and vertical velocity components, 
and the kinetic energy, respectively, along the centerline of the square cylinder. The 
overall agreement between the simulation and the experiment is good. Both the peak 
values and their locations are correctly predicted. In Figure 5-44 it is seen that there is an 
overprediction of urms with the ITM approach around the peak location as well as further 
downstream. This may reveal a possible problem associated with the ITM that the energy 
dissipation supplied by the numerical methods only can be not sufficient. Between about 
4D and 10D from the sidewall, the dynamic model also overpredicts the measured urms 
and vrms. The results could be improved by limiting the backscatter mechanism in the 
dynamic model. For a comparison with other LES, also included are the results from the 
Rottach-Egern workshop (Figure 5-47). Except TAMU2, which yields excessive 
fluctuations, all other LES results underpredict the kinetic energy to a different level. It is 
important to note that there is a connection between the fluctuation level and the 
separation length (Rodi 1998): excessive fluctuations generally cause an underprediction 
of the separation length, and vice versa.  
 

Figure 5-48 and Figure 5-49 show the distribution of the mean u-velocity and its 
RMS fluctuations along the y-direction at the cylinder center (x = 0). The vertical extent 
displayed starts from a near wall location at y = 0.5D up to y = 2.5D. It is seen, both 
dynamic model and ITM yield a profile that is in fairly good accord with the measured 
data. In particular, the magnitude and location (y ≈ 0.75D) of the near-wall peak are 
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accurately captured by both curves. Very close to the wall (y < 0.6D) both calculations 
indicate that there might exist a secondary peak which is much less in magnitude than the 
primary one, and possibly related to a profile commonly seen in a turbulent channel flow. 
Since the wall-layer is not sufficiently resolved in the present calculation, it is difficult to 
judge which trend is more plausible. In this problem, the near-wall resolution can be of 
critical significance, because the characteristics of the boundary layer separation and its 
evolution on the sides of the cylinder is responsible for the overall behavior of this 
vortex-shedding flow. 

 
The global pattern of the 〈u〉, urms, vrms and total fluctuating kinetic energy are 

depicted in the contour plots (Figure 5-50 through Figure 5-53) in the center (x, y)-plane. 
It is seen that the flow pattern is symmetric in the mean with respect to the cylinder 
centerline. In Figure 5-50 a large mean recirculation zone (contoured by dashed lines) 
right behind the cylinder, and two small boundary layer separation zones on both sides of 
the cylinder are clearly visible. Figure 5-51 indicates that the highest u-fluctuations occur 
near the sidewalls, due to the boundary layer separation. However, the largest k-region is 
found in the near wake of the square cylinder, owing to the evolution of the vertical 
fluctuating component.  
 
 Figure 5-54 presents streamlines of phase-averaged flow field at three phases 
(phase 1, 9 and 17). The left column is from (Lyn et al. 1995)’s experiment, and the right 
column is the current LES simulation. In Lyn’s experiment a total of 20 phases are 
defined within a vortex-shedding period. The starting phase is determined from a 
pressure signal measured by a pressure sensor placed at the midpoint of a sidewall. 
Ensemble (or phase) averaging is undertaken in the measurements, so that the streamlines 
are created from the phase-averaged field, i.e., 〈u〉 + u~. In the simulation, the phase 
averaged plots are obtained by post-processing the instantaneous flow field solved by 
LES. Notice that, the shedding motion is qualitatively well reproduced by the present 
simulation. 
 

Figure 5-55 through Figure 5-58 show a typical snapshot of the instantaneous 
velocity components and the spanwise vorticity. The illustrated flow pattern clearly 
shows the existence of large coherent vortical structures, as well as fine turbulence in the 
near wake of the cylinder. 

 
Figure 5-59, Figure 5-60 and Figure 5-61 show the time history of the velocity 

components and pressure sampled at three selected locations along a vertical line in the 
near wake of the cylinder. The three points are at (1D, 0D), (1D, 0.5D) and (1D, 3D). The 
sampled signals are subtracted by their corresponding mean values to yield the total 
fluctuation. From these plots it is evident that the signals contain a periodic component 
superimposed by stochastic turbulent fluctuations. 

 
The sampled signals for u’ and v’ at the three locations are then transformed into 

the frequency domain to yield the corresponding power spectra (Figure 5-62 and Figure 
5-63). The power spectra offer a view of the frequency content of a signal. The Strouhal 
number, defined by 
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0

St fD
U

= , (5.35) 

is used in place of frequency in the spectra plots. The three v’-spectra in Figure 5-63 give 
unanimously a dominant Strouhal number of 0.1387. In the u’-spectra (Figure 5-62) the 
dominant St at the first two locations is 0.1248, and again equal to 0.1387 at the (1D, 3D) 
station. Overall, these predicted St’s are close to the experimental value of 0.132 reported 
by (Lyn et al. 1995). If the average is calculated from the predicted St’s, it then yields 
0.132, thus recovering the experimental one. As mentioned by (Rodi 1998), the Strouhal 
number appears to be not very sensitive to the parameters as well as SGS models of the 
simulation. Also notable in Figure 5-62 is a secondary frequency peak that exists at (1D, 
0D) and (1D, 0.5D) stations (in the recirculation zone). To the author’s knowledge, this 
secondary frequency is generally not reported in the literature, and it could be an 
important indication of a secondary vortex shedding occurring near the rear edge of the 
cylinder. The secondary Strouhal number found in the current study is 0.0832. 
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Figure 5-42 Mean streamwise velocity along centerline of square cylinder. 

 
Figure 5-43 Results from Rottach-Egern workshop: mean streamwise velocity along centerline of 

square cylinder. (Reprinted from (Rodi 1997) with permission) 
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Figure 5-44 Total urms fluctuations (periodic + turbulent) along centerline of square cylinder. 
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Figure 5-45 Total vrms fluctuations (periodic + turbulent) along centerline of square cylinder. 
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Figure 5-46 Total kinetic energy of fluctuations (turbulent + periodic) along centerline of square 

cylinder. 

 
Figure 5-47 Results from Rottach-Egern workshop: total kinetic energy of fluctuations along 

centerline of square cylinder. (Reprinted from (Rodi 1997) with permission) 
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Figure 5-48 Mean streamwise velocity profile along y-direction at cylinder center (x = 0). 
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Figure 5-49 Total urms fluctuations (periodic + turbulent) along y-direction at cylinder center (x = 0). 
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Figure 5-50 Contours of mean streamwise velocity in the center (x, y)-plane 
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Figure 5-51 urms contours in the center (x, y) -plane. 
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Figure 5-52 vrms contours in the center (x, y)-plane. 
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Figure 5-53 Contours of total kinetic energy of fluctuations in the center (x, y) plane. 
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Figure 5-54 Phase-averaged streamlines of flow past a square cylinder at three phases (phase 1, 9 and 

17). Left column is from experiment of Lyn et al. (1995), right column is present simulation. 
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Figure 5-55 Instantaneous streamwise velocity in the center (x, y) plane. 
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Figure 5-56 Instantaneous vertical velocity in the center (x, y) plane. 
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Figure 5-57 Instantaneous spanwise velocity in the center (x, y) plane. 
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Figure 5-58 Instantaneous spanwise vorticity in the center (x, y) plane. 
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Figure 5-59 Time history of fluctuating signals sampled at (1D, 0D). 

 
Figure 5-60 Time history of fluctuating signals sampled at (1D, 0.5D). 
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Figure 5-61 Time history of fluctuating signals sampled at (1D, 3D). 
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Figure 5-62 Power spectra of u'-signals sampled at, in order, (1D, 0D), (1D, 0.5D) and (1D, 3D). 

 
Figure 5-63 Power spectra of v'-signals sampled at, in order, (1D, 0D), (1D, 0.5D) and (1D, 3D). 
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Part III Modeling and Simulation of 
Gas-Liquid Dispersed Two-Phase 
Flows 
 
 
 
 
 

Chapter 6 Verification of Lagrangian 
Tracking with a Single Rigid Particle 
in Imposed Flow Fields 
 
 
In this chapter the dynamics of a rigid spherical particle is studied. A particle is said to be 
rigid when its shape is not subject to deformation. The equation of motion of such a 
particle can usually be described by a linear ordinary differential equation (ODE), which 
is analytically solvable. This unique opportunity shall be used here to (i) gain some 
fundamental insight into the dynamics of a single spherical particle, and (ii) to verify the 
current Lagrangian particle tracking (LPT) implementation crucial for the two-phase flow 
simulation. Some general references used for the presentation in this chapter are (Clift et 
al. 1978; Rudinger 1980; Munson et al. 1994; Crowe et al. 1998; Fan and Zhu 1998). 
 
 
6.1. Steady-state Drag and Momentum Relaxation 
Time 
Let vector u denote flow velocity and v denote particle velocity. Recall in fluid 
mechanics, if the particle velocity is different from the conveying fluid velocity, their 
velocity difference (also called slip-velocity) defined by 
 rel = −v v u  (6.1) 
leads to viscous stress and unbalanced pressure distribution on the particle surface, which 
yield a force known as the drag force acting in the direction of upstream velocity. The 
part of drag due to viscous stresses is called friction drag, and that due to uneven pressure 
distribution around the body is called pressure drag, or form drag. Since obtaining 
detailed information of the stresses and pressure distribution around the body is difficult 
in general, the drag force, FD, is conventionally quantified as a whole by an empirical 
drag coefficient, CD, through the equation 
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 1
2D D fr rel relC Aρ= −F v v , (6.2) 

where ρ is the fluid density, Afr is the frontal area of the particle exposed to the direction 
of the incoming flow. For a spherical particle 

 21
4fr pA dπ= . (6.3) 

 
The drag force is measured under two general flow conditions: (i) there is no 

acceleration of the relative velocity between the particle and conveying fluid, i.e., the 
particle reaches a steady state. And (ii) the pressure field is uniformly distributed in the 
absence of particle; this excludes the influence of an existing pressure gradient on the 
pressure drag. The drag force measured in this setting is often referred to as the steady-
state drag or quasi-steady drag in the case of turbulent flow. 
 

In general, the steady state drag force is a function of the particle shape, the 
orientation with respect to the flow as well as of the particle Reynolds number. In the 
current study only spherical particle is considered. The particle Reynolds number for a 
spherical particle is defined as 

 Re p rel
p

dρ
μ

=
v

, (6.4) 

where dp is the particle diameter, ρ and μ are properties of the continuous phase. The 
frontal area and the volume of a spherical particle are  

 

2

3

1 ,
4

1 .
6

fr p

p p

A d

V d

π

π

=

=
 (6.5) 

 
At very low particle Reynolds numbers, i.e., Re < 1, the flow is called creeping 

flow or Stokes flow, in which the inertial terms in the N-S equations can be neglected. In 
this flow regime, the reduced N-S equations were solved analytically by Stokes (Stokes 
1851) who transformed the equation into spherical coordinates and further introduced a 
stream function for axisymmetric flow to turn the PDE into a 4th order ODE. The solved 
velocities can be written as 

 

3

3

3 1sin 1 ,
4 4

3 1cos 1 ,
2 2r

a av U
r r

a av U
r r

θ θ

θ

⎡ ⎤⎛ ⎞= − − −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞= − − +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 (6.6) 

where a is the particle radius, U is the free stream velocity. The pressure drag, FD,p, and 
friction drag, FD,τ, can be readily deduced from the obtained velocity field: 

 ,

,

,

2 ,
D p p

D p

F d U

F d Uτ

π μ

π μ

=

=
 (6.7) 

with the total drag force being the summation of the both: 
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 , , 3D D D p pF F F d Uτ π μ= + = . (6.8) 
Eq. (6.8) may be rewritten in an equivalent vector form: 
 ( )3D pdπμ= −F u v , (6.9) 
which can be used to obtain the expression for drag coefficient, CD, defined in Eq. (6.2): 

 24 24
ReD

p rel p

C
d

μ
ρ

= =
v

. (6.10) 

This CD expression is often referred to as the Stokes drag coefficient as it is derived under 
the Stokes flow condition. It is seen that the Stokes drag varies linearly with the slip 
velocity (therefore it is also called linear drag), and the Stokes drag coefficient is 
proportional to the reciprocal of the particle Reynolds number. For small particles, say 
less than 100 micron, the particle Reynolds number usually is quite small, and the Stokes 
linear drag can be assumed to apply. 
 

When the flow is beyond the Stokes regime, correlations based on experimental 
data are usually employed to determine CD. It is a common practice to express CD as the 
product of the Stokes drag coefficient (Eq. (6.10)) and a correction factor, f, known as the 
drag factor or the Stokes correction: 

 24 (Re )
ReD p

p

C f= , (6.11) 

where f is a function of Rep. Expressions for f can be found in most texts on fluid 
mechanics or particle dynamics (for instance, (Clift et al. 1978; Schlichting 1979)). Some 
popular correlations are listed in Table 6-1. If f = 1, the Stokes drag coefficient is 
retained. 
 

Table 6-1 Commonly used drag correction factor f . 

(Shiller and 
Naumann 1933) 

0.6871 0.15Re Re 800
0.44(Re / 24) Re 800

p p

p p

f
⎧ + ≤⎪= ⎨ >⎪⎩

 (6.12)

(Clift et al. 1978; 
Loth 2000) 0.6305

0.427

1 0.1875Re Re 1
1 0.1935Re 1 Re 285
1 0.015Re 0.2283Re 285 Re 2000
0.44(Re / 24) Re 2000

p p

p p

p p p

p

f

+ ≤⎧
⎪ + < ≤⎪= ⎨ + + < ≤⎪
⎪ >⎩

 (6.13)

(Schuh et al. 1989) 0.687

0.282

1 0.15Re 0 Re 200
0.914Re 0.0135Re 200 Re 2500
0.4008(Re / 24) Re 2500

p p

p p p

p p

f
⎧ + < ≤
⎪= + < ≤⎨
⎪ >⎩

 (6.14)

(Morsi and 
Alexander 1972) 

32
1 2Re Rep p

CCf C= + +   (6.15)

where C1, C2, C3 are functions of Rep. 
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If the drag force is the only force that applies on a particle, the equation of motion 
for the particle can be written as 

 ( )1
2p p D fr

dV C A
dt

ρ ρ= − − −
v v u v u , (6.16) 

where ρp, Vp stand for particle density and volume respectively. Using the general 
expression of CD (Eq. (6.11)) and the geometric properties of a sphere (Eq. (6.5)), the 
above equation can be rewritten as 

 ( )
(Re )p

p

fd
dt τ

= − −
v v u , (6.17) 

where  

 
2

18
p p

p

dρ
τ

μ
= . (6.18) 

is called the momentum (velocity) relaxation time, or response time of the particle. It is 
related to the time required for a particle to respond to a change in velocity. For Stokes 
flow where f = 1, Eq. (6.17) is simplified to 

 ( )
p

d
dt τ

−
= −

v uv . (6.19) 

For a constant u, Eq. (6.19) is readily integrated with the result 
 ( )0 exp( / )pt τ− = − −v u v u , (6.20) 
where v0 is the particle velocity at t = 0. From the above relation it is seen that if v0 = 0, 
τv reflects the time required for a particle released from its initial condition to achieve 
63%, i.e., (e-1)/e, of the initial velocity difference (slip velocity).  
 

In the following sections studied are some classical examples characterizing 
dynamics of a single spherical particle in an imposed flow field. In most of the cases a 
small particle with small Rep is assumed so that the Stokes drag can apply. Symbols up, vp 
and wp shall be used to denote the three components of the particle velocity, whereas u, v, 
w are still reserved for the fluid velocities. Similarly, xp, yp and zp represents the particle 
position in Cartesian coordinates. 
 
 
6.2. Gravitational Settling 
Consider a particle falling into a quiescent fluid (Figure 6-1(a)). At sufficiently large time 
gravity is balanced by drag force. The particle motion is described by 

 1
2

p
p p p p d fr p p

du
V gV C A u u

dt
ρ ρ ρ= − , (6.21) 

and  

 p
p

dx
u

dt
=  (6.22) 

where g = -9.81 m/s2. Note that the drag force always acts in the opposite direction of the 
particle velocity, thus the minus sign in front of it. Applying Stokes drag coefficient 
yields 
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 p p

p

du u
g

dt τ
= − + , (6.23) 

where τp is defined in Eq. (6.18). One may wish to recast Eq. (6.23) into a 
mathematically more legible form, 

 p
p

du
Pu Q

dt
+ =  (6.24) 

with 

 1 and
p

P Q g
τ

= = . (6.25) 

The general solution of this first order nonhomogeneous ODE is a combination of the 
general solution of its corresponding complementary equation (the ODE without the 
gravity term) and a particular solution, i.e., 

 ( ) exp( )p
Qu t C Pt
P

= − + , (6.26) 

where the integration constant C is determined from the initial particle velocity up = up,0. 
The final solution is 

 
( )

,0

,0

( ) exp( / )

exp( / ) .

p p p

p p v p

G Qu t u t
P P

u g t g

τ

τ τ τ

⎛ ⎞= − − +⎜ ⎟
⎝ ⎠

= − − +
 (6.27) 

The terminal velocity of the particle, which is defined as t goes to infinity, is thus 
 ,p pu gτ∞ = . (6.28) 
Given the initial particle position, xp = xp,0, the exact trajectory can be readily obtained by 
integrating Eq. (6.27) from zero to time t: 
 ,0 ,0( ) ( ) 1 exp( / )p p p p p p px t u g t g t xτ τ τ τ⎡ ⎤= − − − + +⎣ ⎦ . (6.29) 
 

x

up

x

up

 
 (a) (b) 

Figure 6-1 (a) Gravitational settling, (b) buoyant settling. 
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 To compute the trajectory numerically, the classical Runge-Kutta (RK) methods 
can be used. A detailed discussion and related formulae on the RK methods have been 
presented in Section 2.5. Here the 2nd order (Eq. (2.65)) and 4th order RK (Eq. (2.67)) 
formulae will be applied. 
 

It should be noted that the program for particle tracking is not specifically written 
for this simple problem formulated in 1D space. In fact, it is capable of tracking the 
transient motion of particle(s) in a truly 3D space, and can be used in conjunction with 
the main N-S solver. Therefore, the numerical computations presented throughout this 
chapter for a single particle can be regarded as a rigorous verification procedure for this 
general Lagrangian tracking program, rather than testing the capability of the RK 
methods. 
 
 As a sample computation consider a 50 μm water drop (density = 1E3 kg/m3) 
falling in quiescent air. The dynamic viscosity of the air is set to 1.0E-5 N⋅s/m2. The 
momentum relaxation time of the drop is thus, by Eq. (6.18), 0.0139s, and its theoretical 
terminal velocity is –0.136 m/s, according to Eq. (6.28). The particle Reynolds number 
based on the theoretical terminal velocity is then 0.681, which verifies the validity of the 
Stokes regime assumption (Rep < 1). Figure 6-2(a) and (b) show the velocity and position 
history in the first 60 seconds for a drop starting from an initial velocity of 0 m/s. The 
scheme used is the 2nd order Runge-Kutta (RK2) with a time step of 1E-3 s. At the end of 
60s the computed drop velocity reaches 98.7% of the terminal velocity.   

 
More accurate results can be achieved by employing the 4th order RK method 

(RK4). This is shown through a comparison of the exact error of the drop velocity 
computed using the RK2 and RK4 schemes with the same time step (1E-3s). As it is seen 
in Figure 6-3(a) and (b), the 4th order RK reduces the maximum absolute error by at least 
two orders of magnitude. 
 
 An error analysis to verify the order of the method is also performed. The exact 
absolute error at t = 60s with three different time steps, i.e., 0.0005s, 0.001s and 0.002s, 
are collected for the RK2 scheme, and the post-processed data for the order of the method 
is listed in Table 6-2, as well as in Figure 6-4. It is clearly seen that the implemented RK2 
is truly a 2nd order scheme.  
 

Table 6-2 Order of method analysis of RK2 for the calculation of gravitational settling. 

Step size h/href ε (t=50s) ln(h/href) ln(ε) slope 
0.0005 1 1.7732E-06 0.0000 -13.2427  
0.001 2 7.1526E-06 0.6931 -11.8480  
0.002 4 3.0383E-05 1.3863 -10.4016 2.0494 

 
 

It should be noted that although the RK4 scheme provides more accurate results 
than RK2, its accuracy is limited by the order of interpolation method with respect to the 
continuous flow velocity field, and thus, it does not necessarily yield a desired 4th order if 
a similar order of method analysis is performed. On the other hand, as long as the time 
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step is kept relatively small, the results given by RK2 are satisfactory. And, the number 
of evaluations at each time step required by RK4 is twice as much as by RK2. For a 
single particle one hardly “feels” the difference, but when thousands of particles are to be 
tracked for a long time, the difference in simulation time between the two is significant. 
Given above, RK2 is chosen to be the default method for the particle tracking. 
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(b) 

Figure 6-2 Gravitational settling of water drop in quiescent air: (a) velocity evolution, (b) position 
evolution. 
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Figure 6-3 Comparison of exact error of the calculated water drop velocity with two different Runge-
Kutta schemes; (a) 2nd order RK, (b) 4th order RK. 
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Figure 6-4 Order of method of RK2 for the calculation of gravitational settling. 
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6.3. Buoyant Settling 
Consider a single rising bubble in quiescent fluid where the driving force, buoyancy, is 
balanced by the drag force (Figure 6-1(b)). The equation of motion by including buoyant 
and drag force is 

 1
2

p
p p p D fr p p

du
V gV C A u u

dt
ρ ρ ρ= − − . (6.30) 

With Stokes drag Eq. (6.30) becomes 

 p p

p p

du u
g

dt
ρ

τ ρ
= − − , (6.31) 

or equivalently, 

 p
p

du
Pu Q

dt
+ =  (6.32) 

with 

 1

p p

P and Q gρ
τ ρ

= = − . (6.33) 

The analytical solution for up is obtained as 

 ,0( ) exp( / )p p p v p
p p

u t u g t gρ ρτ τ τ
ρ ρ

⎛ ⎞
= + − −⎜ ⎟⎜ ⎟

⎝ ⎠
. (6.34) 

The particle terminal velocity and the trajectory are then 

 ,p p
p

u gρ τ
ρ∞ = −  (6.35) 

and 

 ,0 ,0( ) ( ) 1 exp( / )p p p p p p p
p p

x t u g t g t xρ ρτ τ τ τ
ρ ρ

⎡ ⎤= + − − − +⎣ ⎦ . (6.36) 

 
 To verify numerical solution consider a 1mm air bubble with density equal to 
1.0E-3. The dynamic viscosity of the primary phase, water, is 1.0E-3 N⋅s/m2. This yields 
a bubble relaxation time of 5.556E-5s. The particle Reynolds number at the terminal 
velocity is 0.545, which is well within the Stokes regime. Simulation is carried out with 
RK2 and a time step of 1.E-5s for 50 time steps. The results for the velocity and position 
variation is shown in Figure 6-5(a) and (b). The agreement with the exact solution is 
again very good. The calculated velocity at t = 5.0E-4s is 0.54493 m/s, which matches the 
theoretical terminal velocity of 0.545 m/s, or the terminal particle Reynolds number of 
0.545. 
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(b) 

Figure 6-5 Buoyant settling of air bubble rising in quiescent water: (a) velocity evolution, (b) position 
evolution. 

 
 
6.4. Particle Injected across a Uniform Flow 
Consider a particle that is injected at some angle into a uniform flow U which is 
orientated in the x-direction (Figure 6-6). The resulting motion then is no longer one-
dimensional as in the previous cases. 
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U
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Figure 6-6 Particle injected across a uniform flow. 

 
 The system of equations describing the two-dimensional motion of the particle in 
the absence of gravity can be formulated as 

 

,

,

p p

p

p p

p

du U u
dt

dv v
dt

τ

τ

−
=

= −
 (6.37) 

where only the Stokes drag is assumed. The two uncoupled ODEs can be readily solved 
with the following results 

 
( ),0

,0

( ) exp( / ) ,

( ) exp( / ) .
p p p

p p p

u t U u U t

v t v t

τ

τ

− = − −

= −
 (6.38) 

It is easily seen the uniform flow velocity U also becomes the terminal velocity of the 
particle. The corresponding trajectory in parametric form is then 

 
( ),0 ,0

,0 ,0

( ) 1 exp( / ) ,

( ) 1 exp( / ) .

p p p p p

p p p p p

x t u U t Ut x

y t v t y

τ τ

τ τ

⎡ ⎤= − − − + +⎣ ⎦
⎡ ⎤= − − +⎣ ⎦

 (6.39) 

 
 Different from the two examples in the previous sections, this problem allows for 
an evaluation of the tracking technique for a particle moving in a two-dimensional space. 
For test, consider a 1mm water drop that is injected across a water cross flow which 
operates at a constant speed of 1 m/s. The density and dynamic viscosity used here for 
water are 1.0E3 kg/m3 and 1.0E-3 N⋅s/m2. The momentum relaxation time of this water 
drop is 5.556E-2 s. Initially, the water drop is injected with a velocity magnitude of 5 m/s 
perpendicular to the cross flow direction which is aligned in x-direction. Simulation is 
performed using the RK2 for a period of 0.5 seconds.  
 

Figure 6-7(a) and (b) show the calculated u- and v- velocity history of the water 
drop along with the exact solution given by Eq. (6.38). Figure 6-8(a) and (b) show the 
calculated x- and y-location of the water drop along with the analytical locations given by 
(6.39). Figure 6-9 gives a two-dimensional view on the evolution of the particle position. 
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It is seen that at t = 0.5s the water drop almost reaches its terminal velocity equal to the 
constant cross flow velocity 1 m/s. Afterwards, the water drop will simply follow the 
main stream, acting like a fluid particle. 
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(b) 

Figure 6-7 Water drop injected across a uniform flow. (a) u-velocity, and  (b) v-velocity evolution of 
the water drop. 
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Figure 6-8 Parametric trajectory of a water drop injected across a uniform flow. 
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Figure 6-9 Two-dimensional view of the trajectory of a water drop injected across a uniform flow. 

Circles represent locations passed by the drop. 

 
 
6.5. Particle in an Oscillating Flow 
Consider a particle released in a flow that oscillates according to 
 ( )0sinu U tω ϕ= + . (6.40) 
Such problems arise in a study of particle behavior in an acoustic field. The analysis 
outlined here essentially follows the treatment of (Rudinger 1980). 
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The equation of motion is written as 

 
( )0sinp p

p

du U t u
dt

ω ϕ
τ
+ −

= , (6.41) 

where again Stokes drag is applied and τv is defined in Eq. (6.18). Finding a particular 
solution directly is not an easy task in this case; instead, one assumes a possible solution 
form as 
 ( )( ) ( ) exp /p pu t C t t τ= − . (6.42) 
Substituting Eq. (6.42) into (6.41), after some algebraic manipulation, the expression for 
C(t) can be obtained: 

 
( )

( )
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( )
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2
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sin cos sinexp /
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cos sin cos1
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C t const

t
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ω ϕ ωτ ϕωτ
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. (6.43) 

With prescribed initial conditions the integration constant can be determined, and the 
final solution for up is thus found as 
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where 
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Comparing Eq. (6.44) with (6.40) it is seen the particle oscillates at the same frequency as 
the conveying fluid, but with reduced amplitude and different phase angle. Superimposed 
on this oscillating part of the particle velocity there is also a drift velocity that decays with 
the relaxation time τp.  
 

Integrating Eq. (6.44) yields a particle trajectory that looks more complicated. 
However, an asymptotic if only the particle motion at sufficiently large t is interested: 
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where x  is the mean position, given by 
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The first term in Eq. (6.47) represents a drift due to the initial injection velocity of the 
particle; the second term is an additional displacement caused by the oscillations with 
both positive and negative sign possible. For the case 0tan( ) pϕ ωτ= , the second part of 
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the mean drift disappears. It follows from calculus that the maximum mean displacement 
is obtained when 

 0
1tan tan m

p

ϕ ϕ
ωτ

= = − , (6.48) 

 which corresponds to 
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Therefore, particles which are released at the same injection point but at random instants 

will spread over a band of width ( )
1/ 22

2 / 1 pU ωτ⎡ ⎤+⎢ ⎥⎣ ⎦
 with its center located at the 

distance up,0τp from the injection point. Rudinger (1980) pointed out that this behavior 
exhibits exemplary features of particle dispersion in a turbulent flow, but the assumption 
that the turbulent fluctuations can be represented by a simple sinusoidal oscillation is 
oversimplified. For a more detailed discussion for this example the reader is referred to 
(Rudinger 1980). 
 
 With this problem it is possible to verify the numerical accuracy of the tracking 
routines for a single particle in an unsteady flow environment. Again, considerer here is a 
1mm water drop with its density equal to 1.0E3 kg/m3. Further, let the carrier phase be air 
(dynamic viscosity equal 1.0E-3 N⋅s/m2) which oscillates according to Eq. (6.40) with U 
= 1 m/s, ω = π/2, ϕ 0 = 0. The relaxation time for the water drop is 5.556 seconds. The 
time step size used for the simulation is 0.1s. The trajectory of the water drop is 
calculated with an initial injection velocity of 1 m/s for a total of 250 time steps, 
corresponding an evolution time of 25 seconds. 
 
 The velocity evolution of the water drop is shown in Figure 6-10 in comparison 
with the exact solution (Eq. (6.44)). The position evolution is plotted in Figure 6-11 along 
with the analytical solution (Eq. (6.46)) which is valid at sufficiently large time. It is seen 
that the particle velocity variation in an unsteady flow is accurately captured. As time 
goes along, the spatial oscillation of the water drop starts to engage in the exact 
oscillatory trajectory for large t. This observation is further evidenced in Figure 6-12 
where the calculation is performed for a longer time (50 seconds).  



 224

 

time (s)

u p
(m

/s
)

0 5 10 15 20 25
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Calculated
Exact

 
Figure 6-10 Velocity evolution of a water-drop in an oscillating air flow. 
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Figure 6-11 Position evolution of a water-drop in an oscillating air flow. Dashed line is the analytical 

location at sufficiently large time. 
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Figure 6-12 Position evolution of a water-drop in an oscillating air flow. Dashed line is the analytical 

location at sufficiently large time. Total time of evolution is 50s. 

 
 
6.6. Particle in a Rotating Flow 
This section considers the particle motion in a flow field which rotates at constant angular 
velocity, ω, in counter-clockwise direction. Figure 6-13 shows the schematic for this 
problem with the corresponding notations. The angle of rotation here is θ = ωt. The 
velocity components of the flow can be expressed as 

 ( ) ( ), .y xu R y v R x
R R

ω ω ω ω= − = − = =  (6.50) 
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Figure 6-13 Particle in a rotating flow. 
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The particle equation of motion with Stokes drag is then given by 
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Using the fact that 
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where dot(s) represents the derivative(s) with respect to time, and 
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two coupled second order linear ODEs can be obtained (Lapple and Shepherd 1940): 
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where the symbol A is a shorthand of  
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representing the ratio of the centrifugal force to Stokes drag. Analytical solution of Eq. 
(6.54) was originally provided by (Kriebel 1961), and re-addressed in (Rudinger 1980). 
In that, a Laplace transformation was first employed to formulate and solve the two 
unknowns in a transformed space; the desired solution is then obtained by the inverse 
transformation. The final solution reads 

 

( )

( )

( )

( )

1 22 1 12
0 2

3

2 12 1
2

3

1 1 2 1 2 1
2

32
0

2 2
2

3

1 2 2
( ) cos cosh sinh

2 2 2

1 2 2
sin cosh ,

2 2

1 4 sin cosh sin sinh
2 2 2 2 2 2

( )
1 4

2

P
p

P
p

C AB ACC C Cx R e
A A C A

C AB ACC C
A C A

C C C C C CAB
C A A A A

y R e
C C AB

C

θ

θ

θ θ θθ

θ θ

θ θ θ θ

θ

−

−

⎧ + +⎡ ⎤⎪= +⎨ ⎢ ⎥
⎪ ⎣ ⎦⎩

⎫+ −⎡ ⎤⎪+ ⎬⎢ ⎥
⎪⎣ ⎦⎭

⎡ ⎤
+ + +⎢ ⎥

⎣ ⎦=
⎡ ⎤

+ − +⎢
⎣ ⎦

2 1

,
cos sinh

2 2
C C

A A
θ θ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪

⎥⎪ ⎪
⎩ ⎭

 (6.56) 

where 
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The initial conditions at t = 0, or θ = 0, are given as 
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Similar to the example in Section 6.4, this problem also requires a tracking of 

particle in a two-dimensional space. However, the flow field considered here is no longer 
constant, and this gives rise to the need of accurate interpolation of the flow field onto 
where the particle is located at every calculation instant. Any inaccurate interpolation 
practice may lead to inaccurately evaluated drag forces, and consequently, pollutes the 
results.  
 
 For verification, consider a particle with a diameter of 10 micron and a density of 
3.0E-3 kg/m3. The rotating fluid is air with a dynamic viscosity of 1.81E-5 N⋅s/m2. Thus, 
the particle relaxation time is 9.208E-4 seconds. This configuration for the material 
property of the two phases is the same as the one used by (Kriebel 1961). Further assume 
the air rotate at a speed of 7200 rpm (rotations per minute), or equivalently, 753.98 rad/s. 
At t = 0, a single particle is released at (R0, 0) with an initial velocity equal to the local 
flow velocity. The particle is then followed for 150 time steps with a step size of 1.0E-4s, 
which corresponds to 1.8 rotations of the air- flow. The calculated and exact x- and y-
position are plotted in Figure 6-14, showing a good agreement between the computation 
and theory. A two-dimensional view of the particle trajectory is also shown in Figure 
6-15, where one sees the particle is driven outward due to the centrifugal field, and its 
trajectory forms a nice outward directed spiral.  
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(b) 

Figure 6-14 x- and y-position evolution of a particle in a rotating air.  (a) x-location, (b) y-location 
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Figure 6-15 Two-dimensional view of the trajectory of a particle in a rotating air. Circles represent 

locations passed by the particle. 

 
 
6.7. Bubble in a Swirling Flow 
In this section an isolated bubble in a swirling flow (Figure 6-16) is considered. Single-
phase swirling flows are widely used in industrial devices such as cyclonic separators, 
combustion chambers or Francis turbines. In a swirling flow system, the flow field can be 
thought of as solid-body rotation with a constant angular velocity ω superposed to a 
uniform axial velocity. The velocity components can be written in Cartesian coordinate 
system as 
 0, ,u y v x w wω ω= − = = , (6.59) 
where w0 denotes a constant axial (or bulk) velocity. Notice that the first two components 
in Eq. (6.59) are the same as in the example of rotating flow field (6.50). In cylindrical 
coordinates Eq. (6.59) becomes 
 00, ,u v r w wω= = = , (6.60) 
with u, v and w denoting radial, azimuthal, and axial velocity, respectively. The existence 
of such a flow field characterized by the solid body rotation and constant axial velocity 
can be justified for up to a height z/2R ≅ 10 when the Rossby number 

 0Ro w
Rω

=  (6.61) 

is larger than 0.6 and the Reynolds number is sufficiently large (Weske and Sturov 1974). 
This assertion is also confirmed by the experiment of (Magaud et al. 2003), who 
generated nearly uniform axial velocity profile in the vicinity of the pipe axis. 
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Figure 6-16 Bubble in a swirling flow. 

 
The dynamics of a single bubble in a fluid flow is complex in general. Even for an 

isolated bubble, i.e., without a reverse effect on the flow field, the forces that the 
conveying fluid act on the bubble still remains a big subject to be studied (Michaelides 
1997, 2003). Through extensive investigation in the past, both experimentally and 
numerically, some empirical and semi-empirical forces were made known to the 
researchers. Some of these forces that are significant to the bubble are the buoyancy force 
(FG), drag force (FD), lift force (FL), added-mass force (FA), and the force due to fluid 
stresses present in the flow field (FS). The reader is referred to the next chapter (Section 
7.5) for a detailed discussion regarding these forces. For the problem of this section the 
bubble equation formulated in Cartesian coordinates simply follows the one used in 
(Magaud et al. 2003): 
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 (6.62) 

where a is the bubble diameter, CA is the added mass coefficient equal to ½, CL is the lift 
coefficient and its value is approximately ½ (Auton 1981), γρ = ρp/ρ is the density ratio 
between two phases, ω is the curl of the flow vector field (vorticity), i.e., ω = ∇ × u. Note 
that the bold written vorticity vector field ω should not be confused with the angular 
velocity ω, which is a scalar. 
 
 In a swirling flow, the last two terms of the RHS of Eq. (6.62) can be explicitly 
expressed if they are formulated in cylindrical coordinates, since by Eq. (6.59),  
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and 
 ( )0,0,2ω=ω . (6.64) 
Also, if the position of the bubble at time t is (r(t), θ(t), z(t)), then in polar coordinates,  
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With the above preparation Eq. (6.62) is ready for a coordinates transformation. Using 
the following non-dimensional variables,  

 * * * *, , ,r z ar z t t a
R R R

ω= = = =  (6.66) 

and 

 

* * *

* * *

, , ,

, , .p p
p p p p

u wu v v w
R R

u w
u v v w

R R

ω ω

ω ω

= = =

= = =
, (6.67) 

Eq. (6.62) in cylindrical coordinates reads (Magaud et al. 2003): 
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where 
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since for bubble and water, γ = O(10-3); also 
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is the non-dimensional slip velocity, and 
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is the pseudo-Froude number representing the ratio of inertia to gravity.  
 
 If the drag force is linear, i.e., CD can be expressed as 
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for some proportionality constant k (k = 24 yields Stokes drag coefficient), Eq. (6.68) can 
be reduced to 
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where 
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is related to some rotation frequency (Magaud et al. 2003). The set of the three simplified 
equations (6.73) are then solved by (Magaud et al. 2003), who first tackled the second 
ODE. For the initial conditions of  
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where  
 2 8fΔ = −  (6.79) 
and 
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is the critical angular velocity (at which 2 2f = , or 169.7 rpm) that characterize two 
solution regimes, a non-oscillating regime and an oscillating regime. In particular, the 
non-dimensional terminal vertical velocity of the bubble is  
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which corresponds the dimensional terminal velocity of 
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 The above analysis mainly summarized from (Magaud et al. 2003) presents an 
excellent test case for the verification of a Lagrangian particle tracking (LPT) program, as 
(i) the particle motion is three-dimensional, and (ii) not only the drag and buoyancy force, 
but also other type of hydrodynamic forces are included in the particle equation of 
motion. Forces, such as the fluid stress and lift forces, are generally difficult to evaluate 
due to heavily involved interpolation practice from the Eulerian fluid grid to the discrete 
particle location. Overall, verifying the LPT routine with this benchmark is challenging. 
 
 The air bubble being considered for the verification has a diameter of 1 mm and 
density of 1.0 kg/m3. The continuous phase is water whose dynamic viscosity is 1E-3 
N⋅s/m2. The momentum relaxation time for this air bubble based on Stokes drag is 
5.556E-5 seconds. However, the actual relaxation time of the bubble differs from the 
Stokes relaxation time. An estimate for the actual response time can be deduced from the 
drag term in the governing equation (6.62), which yields approximately 2.778E-2 
seconds.  
 

Consider a cylindrical domain with base radius R = 0.03 m and height of 1.2 m. 
The reader is referred to the original paper (Magaud et al. 2003) for a justification of this 
choice of radius. Since the simulation is carried out on Cartesian coordinates, for 
simplicity, the cylindrical domain is replaced with a 0.06m × 0.06m × 1.2m cuboid. A 10 
× 10 × 10 non-staggered grid is used to store the imposed exact flow velocities. Thus, the 
interpolation of flow variables, such as derivatives and vorticity, will be merely based on 
the known nodal values. No exact flow properties are imposed at where the bubble is 
located. The air bubble is initially located at (0.8R, 0) and injected into the flow field at t 
= 0 with its velocity equal to the local flow velocity. The 2nd order Runge-Kutta is used 
for all simulations. Also, the bulk velocity w0 is assumed to be 1 m/s. Simulation is 
carried out for four various angular velocities, i.e., 104, 209, 313 and 522 rpm. The time 
steps used for each rpm are 0.01s, 0.005s, 0.0033s and 0.002s, respectively; and the 
corresponding consumed time iterations are 100, 200, 300 and 500. 

 
Figure 6-17 (a) through (d) show the decay of the absolute r-coordinate for the 

aforementioned four different runs. The calculated bubble positions agree well with the 
exact solution at both low and high rpm’s. As predicted by the theory, the critical angular 
velocity is at around 170 rpm, below which a monotonic convergence of the bubble 
location toward center is expected, and above which the bubble approaches the center in 
an oscillatory manner. This is confirmed in these plots as well. It is also seen that the 
higher the rpm is, the more numbers of circulation the bubble undergoes, and the slower 
it converges oscillatory to the center. A top view of the bubble trajectory is shown in 
Figure 6-18(a) through (d), and a 3D view is provided in Figure 6-19(a) through (d), for 
the four runs respectively.  
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(d) 

Figure 6-17 Decay of absolute r-coordinate of a bubble in a swirling flow. The angular velocity of the 
swirling flow is (a) 104 rpm, (b) 209 rpm, (c) 313 rpm, (d) 522 rpm. 
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(b) 

Figure 6-18 Top view of bubble trajectory in a swirling flow. The angular velocity of the swirling 
flow is (a) 104 rpm, (b) 209 rpm. Circle: calculated, line: exact. 
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(d) 

Figure 6-18 Top view of bubble trajectory in a swirling flow. The angular velocity of the swirling 
flow is (c) 313 rpm (d) 522 rpm. Circle: calculated, line: exact. 

 
 



 237

0

5

10

15

20

z
/R

-0.2
0

0.2
0.4

0.6
0.8

x / R-0.4
0

0.4
y / R

X Y

Z
RPM = 104

 
(a) 
 

0

5

10

15

20

z
/R

-0.2
0

0.2
0.4

0.6
0.8

x / R-0.4
0

0.4
y / R

X Y

Z

RPM = 209

 
(b) 

Figure 6-19 3D view of bubble trajectory in a swirling flow. The angular velocity of the swirling flow 
is (a) 104 rpm, (b) 209 rpm. Circle: calculated, line: exact. 
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(d) 

Figure 6-19 3D view of bubble trajectory in a swirling flow. The angular velocity of the swirling flow 
is (c) 313 rpm, (d) 522 rpm. Circle: calculated, line: exact. 
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Chapter 7 Formulations of Turbulent 
Gas-Liquid Dispersed Two-Phase 
Flows and Modeling Strategies 
 
 
In general, a two-phase flow system can be classified according to the configurations of 
the interfaces of phases into the dispersed system, stratified system and the system that 
lies between the two. It is well known that in the different regimes of two-phase systems, 
the flow exhibits very different physical behaviors (Soo 1989). For instance, the gradient 
of concentration of smoke will lead to diffusion of smoke particles; yet in a stratified air-
water system at room condition, the diffusion effect of air through the interface will not 
occur. Also, in a dispersed system a common speed of sound exists, while in a pure 
stratified system, sound waves propagate through each phase at their own characteristic 
speeds. The scope of the current study is restricted to the dispersed two-phase flow 
systems. 
 
 The definition of turbulence in a multiphase flow is more complicated than in a 
single-phase flow. For example, a cloud of particles can set a fluid into a laminar-like 
motion; yet, the momentum flux associated with the displaced fluid may act like a 
Reynolds stress in the carrier phase, due to the fluctuating velocity of the particles. The 
present study adopts the convention stated in (Crowe et al. 1996), by which a two-phase 
flow is regarded as turbulent if the carrier phase exhibits random velocity fluctuations.  
 
 
7.1. Parameters and Criteria for Dispersed Two-
phase Flow  
In this section a brief review is presented of the preliminaries and some characterizing 
parameters of a dispersed two-phase flow system. A phase is defined as a state of the 
matter, i.e., solid, liquid, gas or vapor. A dispersed two-phase flow consists of a primary 
phase, or carrier phase, which is always continuous, and a secondary phase, or dispersed 
phase, which is dispersed in the primary phase. The dispersed phase is usually materially 
disconnected, and can be of the form of bubbles, drops, droplets (small drops) and solid 
particles. In this text, for the sake of simplicity, these different forms of corpuscles shall 
be referred to as a single word, “particle,” and this convention shall be always adopted 
unless otherwise mentioned. To distinguish the meaning of the “particle” in a multiphase 
flow study from the connotation used in other scientific disciplines, such as quantum and 
nuclear physics, a definition provided by (Clift et al. 1978) is cited herein: “a particle is a 
self-contained body with maximum dimension between 0.5 μm and 10 cm, separated 
from the surrounding medium by a recognizable interface.” A particle is said to be heavy 
if the density ratio γρ defined by 
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ρ

ρ
γ

ρ
= , (7.1) 

is greater than 1, and said to be light or buoyant if γρ is less than 1. Here, ρp and ρ are the 
density of the dispersed phase and the carrier phase, respectively. 
 

The continuous carrier phase is generally treated as a viscous Newtonian fluid 
governed by the Navier-Stokes equations. Although the dispersed phase (particles, drops, 
bubbles) are separated by the surrounding fluid, the flow field inside each individual 
particle, if exists, is still governed by the N-S equations, whose boundary conditions are 
defined at the interface between the two phases. Thus, it is possible to treat both phases as 
a whole with an additional interphase transferring term added to the N-S equations (see 
Section 7.2). However, this demands a detailed description at the phase interfaces. Of 
practical interest, simplifications are pursued mainly in two directions: one is to perform 
a volume averaging on the entire flow field to yield a set of equations expressed in terms 
of the so-called mesoscale quantities (see Section 7.3); and the other is to treat individual 
particle as a point source (see Section 7.4.4). 
 
 
7.1.1. Five Parameters 
For a characterization of dispersed two-phase flow systems, five non-dimensional 
parameters are of primary importance. They are the particle Reynolds number, the Stokes 
number, the Froude number, the length scale ratio and the particle drift parameter 
(velocity ratio). The definitions of these parameters are given by 
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where vrel is the relative velocity between the continuous phase and the dispersed phase, 
i.e., vrel = v - u; dp is the characteristic dimension of the dispersed phase, such as the 
particle diameter; τp is the momentum response (or relaxation) time of the particle. For a 
spherical solid particle or droplet, the drag-induced response time is (see Eq. (6.18)) 
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A more general τp-expression which also takes into account buoyant particles can be 
written as (Hinze 1972, 1975; Loth 2000) 
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where CA is the added-mass coefficient, and f is the drag factor (or Stokes correction) 
defined in Eq. (6.11); Further, τ and l is a characteristic time scale and length scale of the 
continuous phase, respectively; v∞ is the particle terminal velocity, and u’ represents the 
RMS velocity scale of the carrier phase. 
 

Next, the physical significance is addressed for the five parameters. The particle 
Reynolds number, Rep, is based on the magnitude of the velocity difference between the 
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two phases, and it determines whether the flow around the particle can be assumed to be 
in the Stokes regime.  

 
The Stokes number, St, gives the ratio of the particle response time to some time 

scale of the continuous phase, typically the eddy turnover time. It measures the kinetic 
influence of the carrier phase on the dispersed phase. If St << 1, i.e., τp << τ, the particle 
will have ample time to reach its terminal velocity before the ambient continuous flow 
field is subject to an appreciable change; in other words, it responds quickly to the 
surrounding flow field, and thus the local velocity of the two phases will be nearly equal 
or at a kinetic equilibrium most of the time. In this capacity, the particle will act nearly as 
a passive tracer of the primary fluid. In contrast, if St >> 1, the particle then will appear 
to be little affected by the velocity changes of the carrier phase, and its trajectory in a 
turbulent flow will be primarily controlled by the mean convection and gravity, not the 
fluctuations of an eddy. Example for the former is air bubbles in water, and for the latter 
is relatively large solid particles in a gas. When the Stokes number is intermediate, a 
heavy particle (γρ > 1) tends to centrifuge out of eddy cores, while a buoyant particle (γρ 
< 1) is apt to be attracted by the low-pressure eddy cores (Crowe et al. 1988; Tang et al. 
1992; Crowe et al. 1998; Loth 2000).  
 

The Froude number, Fr, is based on the relative velocity as well, and it relates the 
inertia (or convection) to gravitation. Other velocity and length scales can be chosen for 
the definition of the Froude number. In a bubbly flow, this form of Froude number is also 
found to be the ratio of the vortical entrapment velocity to the bubble terminal rise 
velocity, thus providing the likelihood of bubble entrapment by the vortex (Rightley 
1995).  

 
The length scale ratio, γl, provides a particle size relative to the surrounding flow 

scales. If l is taken to be the smallest turbulence scale, i.e., the Kolmogorov length scale, 
and if γl < 1, the system is said to be highly dispersed (Soo 1989), and the particle may be 
regarded as a point source whose motion is controlled by the carrier phase (Elghobashi 
1994). If l is the mean free path of the molecules of the carrier phase, a criterion can then 
be established of whether continuum assumption of the primary phase around the particle 
is justified. This gives (Loth 2000) 

 1pd aρ
μ

, (7.5) 

where a is the speed of sound of the carrier phase, and the following approximation has 
been used for expressing the mean free path (White 1991): 
 0.67alν ≈ . (7.6) 
If l represents the integral length scale of turbulence, then γl determines whether the 
turbulence will be enhanced or suppressed through the action of particles. (Gore and 
Crowe 1989) found that for gas-solid flows the critical value is γl ≈ 0.1, above which 
turbulence intensity is increased and below which it is suppressed. 
 
 The particle drift parameter, γv, due to (Stock 1996), gives the ratio of particle 
terminal velocity to the turbulent fluctuation. It reflects a particle’s capability of drifting 
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away from a characteristic turbulent eddy. When γv << 1, the particle will behave as a 
passive tracer and tend to be trapped within the eddy; and a large value of γ will provide 
the particle with more drifting capability. Previous studies (Stock 1996; Loth 2000) have 
shown that γv, via the so-called crossing trajectory effect, is the main controlling 
parameter for the mean particle diffusion. This point will become clearer as the particle 
diffusion and dispersion are addressed later in this section. It will be further mentioned in 
Section 7.4 that this parameter can also help justify the assumption of an approximate 
point-mass particle with respect to its carrying flow. 
 

For the definition of St, Fr and γl, it is also possible to use different time and 
length scales of the carrier fluid. Let η, Λ and L denote the Kolmogorov length scale, 
turbulent integral length scale and the macroscopic length scale, respectively. When a 
parameter comes with a subscript η, Λ or L, it simply means the corresponding definition 
is based on the Kolmogorov scales, turbulent integral scales and the macroscopic scales, 
respectively. For example, Stη refers to the Stokes number based on the Kolmogorov time 
scale, while StΛ, based on the eddy turnover time, is the one discussed in the above 
paragraph.  

 
Further notice that the three parameters St, Fr and γv are interrelated. Consider a 

heavy particle, whose response time is given as τp = v∞/g (see Eq. (6.28)). When written 
down based on the Λ–scale, the three definitions read: 
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it is seen 
 St FrvγΛ Λ= . (7.8) 
 
 
7.1.2. Number Density and Volume Fraction 
Another two parameters important to the definition of dispersed phase flows are the 
number density and the volume fraction. The number density of the dispersed phase at a 
local point is defined as 
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where δV is a local control volume that contains the mixture of both phases, δN is the 
number of particles included inside δV, δV0 is a limiting volume that is small enough but 
still contains enough particles to yield a stationary average. Similarly, the volume fraction 
of the dispersed phase is defined by  
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where δVd is the volume of the dispersed phase in δV. An alternative but equivalent 
definition for the volume fraction is also given in Section 7.3. Note that the number 
density and the volume fraction defined above are a local quantity in general, and they 
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may vary considerably throughout the flow. If let δV0 be a macroscopic volume, such as 
the flow domain under consideration, the two quantities then become the global number 
density and the global volume fraction, respectively. 
 
 
7.1.3. Dilute System 
A dispersed two-phase flow system can be dilute or dense. A system is said to be dilute if 
the particle-particle interactions are not significant; as such, the particle motion is 
controlled predominantly by the forces of the carrier phase. The negligible particle-
particle interactions refer to two separate mechanisms (Loth 2000): the particle-particle 
collision is not significant, and the particle-particle fluid dynamic interaction, which 
occurs indirectly through the surrounding carrier phase, is not significant.  

 
The first criterion can be met if the average particle-particle collision time, τpp, is 

much longer than the particle response time (τp) or the particle-eddy interaction time 
(τpe), i.e. (Loth 2000), 

 1, 1p pe

pp pp

τ τ
τ τ

. (7.11) 

The collision frequency (number of collisions per unit time per particle), fpp, can be 
approximated by the product of the number density, the average inter-particle relative 
velocity (vpp), and the area swept out by a single particle (Crowe et al. 1998): 
 2

pp p p ppf n d vπ= . (7.12) 
For a preliminary estimation, np can be replaced by the global number density and vpp 
replaced by an upper bound velocity, the quiescent terminal velocity v∞. Thus, the inverse 
of the collision frequency gives the collision time scale (τpp = 1/ fpp), and Eq. (7.11) can 
be equivalently re-expressed as: 

 2 21 1,p p p p
p pe

n d v n d vπ π
τ τ∞ ∞<< << . (7.13) 

With the substitution of the relaxation time for a spherical particle (Eq. (7.3)), the first 
inequality in Eq. (7.13) becomes  
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Further, the time scale of the particle-eddy interaction can be approximated as (Csanady 
1963): 
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where 
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are the turbulent integral time scale, i.e., the eddy turnover time or eddy lifetime, and the 
particle traversal time scale (time for a particle to traverse an eddy), respectively. By 
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substituting Eq. (7.15) and (7.16) into Eq. (7.13) and applying the definition of the drift 
parameter, one obtains a second working inequality out of Eq. (7.13): 
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In short, Eq. (7.14) and (7.17) can be used together for an estimation of the first dilute 
condition. 
 

The second criterion is related to the mean inter-particle spacing, Lpp, and further 
the particle volume fraction, αp, since 
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Studies (Sirignano 1993; Yuan and Prosperetti 1994; Chen and Wu 1999) have shown 
that if particle spacing exceeds five diameters they have only secondary effects with 
respect to drag unless they are moving directly in-line with each other. This yields the 
second criterion for a dilute system: 
 1pα  (7.19) 
or more specifically 
 0.42%pα < . (7.20) 
In summary, with the conditions of (7.14) and (7.20) being satisfied, the effect of 
particle-particle collision, as well as the indirect particle-particle interaction through the 
carrier phase can be neglected; as such, the dispersed two-phase flow system can be 
considered as a dilute system. The second criterion is typically more physically restrictive 
than the first one; sometimes, the small volume fraction 0.42% is relaxed with a slightly 
larger value, say 1% or even 2%. On the other hand, if the particle-particle interactions 
are significant, the system is then said to be dense. In this study, when a system is said to 
be dilute, it always refers to the “globally dilute”, which does not rule out the possibility 
of a high local volume fraction of the dispersed phase. 
 
 
7.1.4. Phase Coupling 
Phase coupling is an important concept in the analysis of multiphase flows. One-way 
coupling refers to the situation when the flow of one phase affects the other but not vice 
versa. When the interphase transfers of mass, momentum and energy occur between the 
two phases, the flow system has a two-way coupling. Further, if the particle-particle 
interaction in the dispersed phase has to be taken into account, it is then a four-way 
coupling problem. The present study is primarily interested in a dilute isothermal system, 
therefore, the particle-particle interaction is neglected, and the mass and energy transfer 
between the two phases are neglected. 
 
 It is known that the continuous phase’s (momentum) influence on the dispersed 
phase can be characterized with the Stokes number. The reverse effect of the two-way 
coupling, i.e., the influence of the dispersed phase on the carrier phase, can be estimated 
via a momentum-coupling parameter Π (Loth 2000). Depending on the dominant force 
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that drives the particle relative velocity, Π can be defined correspondingly. If gravity is 
the primary force balancing the velocity non-equilibrium (vrel), Π then can be formulated 
as 

 
3

2 2

1
Fr

p p

rel

gl

l

α ρ α γ

ρ

Δ −
Π = =

v
, (7.21) 

where Δρ is the density difference between the two phases; the numerator of the second 
term represents the particle’s net restitution force on the fluid, due to gravity, and it is 
normalized by the momentum of the carrier phase. If l here represents a macroscopic 
length scale, then when Π << 1, the particle coupling on the mean flow can be neglected. 
One further sees, given a fixed γ and Fr, when the system is dilute (αp << 1), the two-way 
effect can also be not significant. Again, different length scales can be chosen to allow 
for Π assessing the two-way coupling significance at different levels in a turbulent flow, 
e.g., the mean flow level, integral scale level and Kolmogorov scale level. Nevertheless, 
one should not completely rule out the possibility of significant reverse coupling even 
when Π << 1. An example is to introduce discrete bubbles located far apart into a still 
water (i.e., bubble columns), and the resulting motion of the liquid is due to the presence 
of bubbles. Thus, in this case, there is always two-way coupling present and it cannot be 
neglected. 
 
 
7.1.5. Turbulent Dispersion and Diffusion 
Particles in a turbulent flow are subject to dispersion due to the underlying turbulence. 
The dispersion phenomena can be observed, for example, by dropping a spoon of coffee 
powder into a cup of stirred water. In general, turbulent dispersion for two-phase flows 
can be separated into two different aspects, i.e., structure dispersion and mean diffusion 
(Loth 2000). The structure dispersion refers to evolution structure of instantaneous 
particle concentration generated by local instantaneous features of the flow. The mean 
diffusion characterizes the time-averaged particle concentration, which may appear to 
spread uniformly with respect to time in a turbulent flow. Note that the instantaneous 
particle concentration can differ substantially from the mean particle concentration 
profile, but both are also closely related since the particle dispersion structure can 
consequently influence the mean diffusion profile. Figure 7-1, reprinted from the original 
paper (Loth 2000) with permission, provides a graphical illustration of the difference 
between the two phenomena using the example of particles injected into a turbulent 
boundary layer. 
 
 The dispersion of particles is controlled by the local velocity fluctuations due to 
turbulence and by the ordered motion of large-scale turbulent structures. In order to 
describe the structure dispersion, detailed knowledge of the local flow field, primarily the 
spatio-temporal turbulent eddy features, needs to be known. In addition, particle-particle 
interaction may also change the local particle distribution where local particle 
concentration is high.  
 

For the mean diffusion, whose concentration profiles can be assumed to vary 
smoothly over space on macroscopic length scales (and not the turbulent eddies), the 
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turbulence particle diffusion coefficient, Dpt, can be introduced. Its non-dimensional 
version is the particle diffusion ratio (Loth 2000), γD, defined by: 

 pt
D

t

D
D

γ = , (7.22) 

where Dt is the scalar (mass) turbulent diffusion coefficient. In the example of mixing 
layer, γD can be taken as the ratio of the particle spreading rate and the spreading rate of 
the layer. Analogous to the Prandtl-Schmidt number for the momentum diffusion, the 
particle Prandtl-Schmidt number, σp, can be introduced as well: 

 t
p

ptD
νσ = . (7.23) 

 

 
Figure 7-1 Difference between particle diffusion and dispersion in a turbulent boundary layer. 

(Reprinted from (Loth 2000) with permission) 

 
In general, the significance of turbulent dispersion and diffusion of particles is a 

function of several non-dimensional parameters, such as the St, Rep, γv and γρ. The Stokes 
number, however, is commonly used alone to give a rule-of-thumb estimate. If Stη << 1, 
then the turbulent dispersion and diffusion is similar to that of a scalar; if StΛ  >> 1, then 
the turbulent dispersion is negligible. 
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For heavy particles (Loth 2000) summarizes four features associated with the 
mean diffusion. The first feature is the Stokes number dependency. It has been found that 
particles with small St values will yield a particle diffusion ratio of order one (γD ≈ 1), 
however, very larger particles diffuse at much slower rate than that of a scalar field (γD 
<< 1), owing to the slow response to the turbulent dispersion. The second feature is the 
so-called crossing-trajectory effect (Csanady 1963) which is caused by the local velocity 
non-equilibrium (due to particle gravity) between the heavy particle and its surrounding 
fluid. Under this effect a particle tends not to participate in the higher frequency 
oscillations in a turbulent eddy, and continuously changes its eddy-particle neighborhood, 
leading to a reduced eddy residence time. Later studies (Reeks 1977; Wells and Stock 
1983; Stock 1996) have shown that given value of γ and CA, the crossing-trajectory effect 
is controlled by any two of the three parameters (only two are independent): the eddy 
Stokes number, the eddy Froude number and the drift parameter, since 
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where γv is given in Eq. (7.2), and 
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An important finding is that as γv increases under constant Stokes number, the mean 
diffusion will be reduced by the traversal motion of the particles. The third and fourth 
features are the inertial-limit behavior and the continuity effect. See (Loth 2000) for 
further details. 
 
 
7.1.6. Turbulence Modulation 
In a particle-laden turbulent flow field, the level of turbulence affects the effective 
viscosity of the fluid, the particle dispersion, and the particle-fluid transfer coefficients, 
e.g., the drag coefficient. Particles, in turn, can modify the turbulence level of the 
conveying fluid through its own fluctuating motion and the fluid-dynamic interaction 
with the surrounding. The result is either an increased or attenuated turbulence level, 
depending on whether the particles have participated in enhancing the turbulent 
fluctuations or enhancing the dissipation rate. This phenomenon is commonly called 
turbulence modulation, an important subcategory of the two-way coupling. 
 

Although a thorough understanding of this subject is still an ongoing effort, some 
preliminary results with respect to solid particles have been made available through 
experimental and numerical investigations (Gore and Crowe 1989; Hetsroni 1989; 
Squires and Eaton 1990; Gore and Crowe 1991; Tsuji 1991; Elghobashi and Truesdell 
1993; Elghobashi 1994; Sundaram and Collins 1999; Crowe 2000), and they are 
summarized here. (i) Particle size effect. “Small” particles will attenuate turbulence and 
“large” ones will generate turbulence. The reason for the generation may be well 
attributed to the wake formation and the streamline distortion by large particles. The 
demarcation between small and large particles is suggested at a size of about 1/10 of the 
integral length scale of turbulence. (ii) Volume fraction (αp) or mass loading effect. 
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When αp < 10-6, the presence of particles would have no effect on turbulence. When 10-6 
< αp < 10-3, the particles can augment the turbulence if St > 1, or attenuate turbulence if 
St < 1. When αp > 10-3, the turbulence can be modulated through particle-particle 
collisions. Fundamental information regarding bubbles in homogeneous turbulence or in 
free shear layer comes at present from experiments such as (Lance and Bataille 1991; 
Roig et al. 1998; Rightley and Lasheras 2000), and direct numerical simulations such as 
(Maxey et al. 1994; Reutsch and Meiburg 1994). 
 

At this point, it is necessary to define a scope of the current study. Considered are 
dispersed two-phase flow systems with an emphasis placed on the gas-liquid flows. In 
particular, bubbly flows are of the interest where interactions between gas bubble and its 
carrying liquid are of crucial importance. The study is further confined to dilute systems, 
where particle-particle interactions can be neglected (so, no four-way coupling). A major 
aim is to capture the particle dispersion structure using the large-eddy simulation (LES) 
approach. The two-way coupling is achieved through an interphase transfer term in the 
momentum equation, with the possible turbulence modulation indirectly generated by this 
term. Nevertheless, an explicit modeling for the turbulence modulation effect will not be 
considered in this study. Also note that formulations presented in Section 7.2 and 7.3 are 
fairly general, and they should be useful for a general dispersed system. 
 
 
7.2. General Formulations of Two-phase Flow 
System 
Consider a flow system that contains two distinct phases (materials). By making the same 
assumptions used in deriving the Navier-Stokes equations for a Newtonian fluid, each 
phase can be considered as a continuum and governed by the N-S equations of the same 
form. Again, incompressibility and isothermal system are assumed for the system under 
consideration. Thus, the conservation of mass and momentum equation can be written in 
conservative form for the primary continuous phase as 
 0∇ ⋅ =u , (7.26) 
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and for the secondary dispersed phase as 
 0∇ ⋅ =v , (7.28) 
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Here the velocity vector u and the subscript c are reserved for the primary phase, while v 
and subscript d for the secondary one. Although a single phase and a two-phase flow 
system possess the same governing equations, the analysis of a two-phase flow problem 
is highly complicated by the complex boundary geometries defined by the interface 
between the two phases. As such, the boundary conditions consist of the flow boundaries 
and the jump conditions for mass and momentum transfer across the interface. The jump 
conditions at the interface of zero thickness can be expressed as 



 249
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 [ ] [ ] ( )( ) ( )c d c dρ ρ σκ− ⋅ − − ⋅ = − ⋅ +u u w n v v w n T T n n , (7.31) 
where w denotes interface velocity, n is the unit vector normal to the interface surface 
pointing from the primary phase to the secondary phase, σ is the surface tension 
coefficient whose unit is N⋅m-1, κ is the local curvature with the unit of m-1 (strictly 
speaking, κ is the curvature in two-dimensional case, and twice the mean curvature in 
three dimension), and T is the total stress tensor given by 
 ( )T

c c cp μ= − + ∇ + ∇T I u u , (7.32) 

 ( )T
d d dp μ= − + ∇ + ∇T I u u , (7.33) 

where I is the unitary tensor. Note that in the above interface expressions (Eq. (7.30) and 
(7.31)) the two phases have been treated as miscible fluids, i.e., one fluid is allowed to 
penetrate into the other through the interface. In order for the formulation of the flow 
field of two miscible fluids to be complete, an additional mass diffusion equation and 
eventually the energy equation need to be added. If the two fluids are immiscible, i.e., the 
flow moves along (not through) the interface, at the interface,  
 ,= =u w v w , (7.34) 
and the jump conditions simplifies to 
 ( ) 0c d σκ− ⋅ + =T T n n . (7.35) 
This suggests that the total stress difference across the interface is balanced by the surface 
tension. For further details of conservation equations see (Aris 1962; Soo 1989). 
 

In this formulation, the flow field of either phase must be solved on a highly 
complex domain defined by the phase boundaries. If the domain of the dispersed phase is 
disjoint, their solutions are then coupled through the interfaces, meaning a highly coupled 
equations system. Also, a direct solution to the set of equations asks for a full knowledge 
of the flow field of both phases at all scales as well as the specific geometry of the 
interface. This is equivalent to saying (i) the smallest turbulence scales in both phases 
need to be resolved, and (ii) the interface geometry needs to be tracked. Therefore, a full 
numerical solution is not feasible in the practice. 
 

In fact, when the two phases are immiscible, by recognizing that the N-S 
equations govern the fluid motion in the domain of either phase, one can combine Eq. 
(7.26) through (7.29) into a single set of equations for the entire flow domain. In this way 
one must (i) allow for discontinuous material properties in the formulation, and (ii) add a 
singular term, the surface tension term, into the momentum equations, so that the correct 
phase boundaries are implicitly ensured. The equations read 
 0∇ ⋅ =u , (7.36) 
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Here, the velocity vector u and the pressure p are understood as field variable for the 
entire flow domain, the density ρ and the viscosity μ are allowed being discontinuous. 
One also sees the presence of the surface tension at the interface F is achieved with the 
help of the sifting property of the three-dimensional Dirac delta function, δ. Further, the 



 250

following equations are needed to ensure a constant density and viscosity within each 
phase: 

 0, 0D D
Dt Dt

ρ μ
= = . (7.38) 

An essential task in this formulation is that the interface between the two phases must be 
tracked in order to obtain proper local values of ρ, μ, and surface tension. Note that this 
formation is not limited to a two-phase system; it is indeed good for any number of non-
interpenetrating phases (Tryggvason et al. 1997). 
 

Theoretically, the two formulations with immiscible fluids, Eq. (7.36) through 
(7.38) plus Eq. (7.34), (7.35) being the one, and Eq. (7.36) through (7.38) being the other, 
are equivalent, since they maintain the identical details at the phase boundaries. From 
computational point of view, however, they can be very much different. In the first 
formulation the flow field must be solved with complex interface boundaries, while in the 
second approach the flow field can be solved on the entire domain, which can be a 
regular one, and the interface can be tracked in an explicit fashion. Thus, the latter 
formalism grants researchers an efficient way to perform a direct numerical simulation of 
a two-phase flow system. Work in this relevance has been pioneered by the research 
group led by Tryggvason (Bunner and Tryggvason 1997; Tryggvason et al. 1997; 
Esmaeeli and Tryggvason 1998, 1999). In their direct numerical simulations, they 
devised and successfully employed a so-called front-tracking method which tracks the 
interface explicitly by using a second-layer moving grid. See (Unverdi and Tryggvason 
1992; Tryggvason et al. 1998a; Tryggvason et al. 1998b; Tryggvason et al. 1998c) for 
details of this method. 
 
 
7.3. Volume-averaged Conservation Equations 
For a general multiphase system consisting of interacting phases dispersed randomly in 
space and time, detailed solutions, which maintain full knowledge of the interface 
between the phases, are neither feasible nor needed in many applications. A realistic 
approach is to express the essential physical and dynamic quantities of such a system in 
terms of averages. A variety of phasic averaging methods for a multiphase system have 
been proposed including time averaging (Ishii 1975), ensemble averaging (Drew 1983b, 
a), and volume averaging (Soo 1967; Whitaker 1969; Slattery 1972; Delhaye et al. 1981; 
Soo 1989; Whitaker 1999). In some sense, the space average and the time average are 
two special cases of the ensemble average (Drew 1983a). For a dispersed multiphase 
system, the volume averaging seems to be most appropriate, because the dynamic and 
thermodynamic properties of a mixture are cumulative with volume fractions, but they 
are not with the fraction residence time arising from the time averaging (Soo 1989). 
Further, if high-frequency components in a multiphase system are significant but only the 
time-mean quantities are of interest, the time averaging can be carried out on top of the 
volume averaging. In this section a brief account is provided of the volume-averaged 
governing equations for a dispersed system. 
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 The length scale over which the volume averaging is performed is given a name 
mesoscale and denoted by Lmeso (see, e.g., (Rightley 1995)). The mesoscale is 
intermediate between the microscopic continuum scale and the macroscopic flow scale, 
and it should meet certain restrictions. First, the mesoscale volume should be large 
enough to contain sufficient number of dispersed phase elements to yield a locally 
stationary average; thus, the mesoscale must be larger than the characteristic length of the 
dispersed phase, e.g., the particle diameter, and the mean interparticle distance. Second, 
the mesoscale must be sufficiently small compared to the typical flow length scales, L, 
such as the eddy sizes, so that important flow structure can be retained. Third, in the 
interest of the current study, in which primarily dilute dispersed systems are considered, 
the particle size should be much smaller than the mean interparticle spacing, dp/a1/3 (see 
Eq. (7.18)). Summarized from the above discussion, one obtains the following relation: 

 1/3
p

p meso

d
d L L

α
, (7.39) 

where dp represents the length scale of the dispersed phase, α is the global volume 
fraction of the dispersed phase, and dp / α1/3 gives the order of the mean interparticle 
spacing. This scale relation is illustrated in Figure 7-2. 
 

Characteristic particle
diameter dp

Mean interparticle distance dp/α1/3

Mesoscale
Lmeso

Flow length scale L  
Figure 7-2 Illustration of mesoscale 

 
  Now, consider a mesoscale averaging volume, V. Let φk denote a generic field 
variable of phase k per unit volume. The extensive volume average, or simply volume 
average, of φk is defined as 

 1
k kV

dV
V

φ φ= ∫ , (7.40) 
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where 〈 〉 denotes the volume averaging operator, and this notation shall be adopted 
throughout Part III of this study. Further let Vk denote the volume of phase k inside V, and 
define the intrinsic phasic average of φk as 

 1i
k kV

k

dV
V

φ φ= ∫ , (7.41) 

where the superscript i indicates an intrinsic averaging. The local volume fraction of 
phase k, αk, whose original definition is given in Eq. (7.10), can also be alternatively 
expressed through the phase indication function χk: 

 1( , )k k kV
t dV

V
α χ χ= = ∫x , (7.42) 

where 

 
1 phase

( , )
0 otherwise.k

k
tχ

∈⎧
= ⎨

⎩

x
x  (7.43) 

It is not difficult to see that 
 i

k k kφ α φ= . (7.44) 
Note that the volume averaging can only be applied to quantities per unit volume or area, 
which include density, momentum per unit volume and gradients of stresses and fluxes. 
Thus, using Eq. (7.41) for the definition of, say, an intrinsic volume-averaged velocity of 
phase k, is not appropriate. Instead, define 〈uk〉i as 

 
i

i k k k k
k i

kk

ρ ρ
ρρ

≡ =
u u

u , (7.45) 

and similarly for 〈uk uk〉i, 

 
i

i k k k k k k
k k i

kk

ρ ρ
ρρ

≡ =
u u u u

u u . (7.46) 

 
Note that the volume averaging generally does not commute with spatial and time 

derivatives. The standard theorems for the volume averages with respect to time and 
spatial derivatives are summarized for example in (Gray and Lee 1977; Howes and 
Whitaker 1985; Soo 1989) as: 

 1
k

k kS
dS

t t V
φφ φ

∂∂
= − ⋅

∂ ∂ ∫ w n , (7.47) 

 1
k

k kS
dS

V
φ φ φ∇ = ∇ + ∫ n , (7.48) 

 1
k

k kS
dS

V
φ φ φ∇ ⋅ = ∇ ⋅ + ⋅∫ n , (7.49) 

where w is the interface velocity, nk is the unit normal vector pointing outwards from 
phase k, w⋅nk is the speed of displacement of interface, Sk is the total interface area of 
phase k within the volume V. Performing the volume averaging on the conservation 
equations of phase k, and also applying the rules of (7.47) through (7.49) yields the 
volume-averaged equations for phase k: 
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 k
k k kt

ρ
ρ

∂
+ ∇ ⋅ = Γ

∂
u , (7.50) 

 k k k k k k k k kt
ρ ρ ρ∂

+ ∇ ⋅ = ∇ ⋅ + + +
∂

u u u T g I J , (7.51) 

where the total stress tensor Tk is a shorthand of  
 ( )T

k k kp μ= − + ∇ + ∇T I u u , (7.52) 

and Γk, Ik and Jk are three integral terms arising from the volume averaging which are 
responsible for the interphase mass and momentum transfer: 

 1 ( )
k

k k k kS
dS

V
ρΓ = − − ⋅∫ u w n , (7.53) 

 1
k

k k kS
dS

V
= ⋅∫ T nI , (7.54) 

 1 ( )
k

k k k k kS
dS

V
ρ= − − ⋅∫ u u w nJ . (7.55) 

To be specific, Γk gives the rate of total mass generation of phase k per unit volume, Ik 
and Jk together account for the transfer of pressure, viscous stresses, and inertial forces 
across the interface. By Eq. (7.44), Eqs (7.50) and (7.51) can be equivalently expressed 
with the intrinsic phasic quantities as 

 
i

ik k
k k k kt

α ρ
α ρ

∂
+ ∇ ⋅ = Γ

∂
u , (7.56) 

 i i i i
k k k k k k k k k k k k kt

α ρ α ρ α α ρ∂
+ ∇ ⋅ = ∇ ⋅ + + +

∂
u u u T g I J . (7.57) 

By definitions (7.45) and (7.46), the following volume- averaged conservation equation 
for a dispersed multiphase system is finally reached: 

 
i

i ik k
k k k kt

α ρ
α ρ

∂
+ ∇ ⋅ = Γ

∂
u , (7.58) 

 i i i i i i
k k k k k k k k k k k k kt

α ρ α ρ α α ρ∂
+ ∇ ⋅ = ∇ ⋅ + + +

∂
u u u T g I J . (7.59) 

 
In this formulation one notes that the primary variables are expressed on some 

enlarged scales (mesoscales), and the phases appear as two interpenetrating continua with 
interactions represented via the volume fraction, αk, and the interphase transfer integrals. 
The major trade-off from the volume averaging is twofold: first, the averaged equations 
contain averages of products, which are additional unknowns. Second, complex 
interphase coupling integrals are created; these integral terms are expressed with non-
averaged local quantities, and take over almost the entire burden of explaining the 
interphase “activities” within the mesoscale volume. Therefore, solution of these 
equations calls for a closure model which can express additional unknowns in terms of 
the primary intrinsic averaged quantities, i.e., 〈u〉I, 〈p〉i and αk.  
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 In turbulent flow problems, in order to eliminate high frequency fluctuations, a 
further averaging, namely the time averaging can be performed on top of the volume 
averaging (Lahey and Drew 1988; Soo 1989). With the time averaging one is able to 
express averages of products in terms of products of averages, and to define quantities for 
each phase analogous to Reynolds stresses, so that a RANS type closure model can be 
utilized. A conceptual difference between the two is that the volume averaging is a phasic 
averaging while the time averaging is a turbulence averaging, a tool used to facilitate 
turbulence analysis. 
 

Further simplification of Eqs (7.58) and (7.59) can be made for the case of a 
highly dispersed system with the dispersed phase being spheres. In particular, if the 
system is composed of two phases, the simplified time-volume averaged equations for the 
carrier phase, denoted by c, can be written down as (Soo 1989).  

 ( ) ( )c c c c c ct
α ρ α ρ∂

+ ∇ ⋅ = Γ
∂

u , (7.60) 

 ( ) ( ) ( )c c c c c c c c c c c c c ct
α ρ α ρ α α ρ∂

+ ∇ ⋅ = ∇ ⋅ + + + Γ
∂

u u u T g uI . (7.61) 

Here, for simplicity, the averaging operator has been dropped with the understanding that 
the quantities are expressed on mesoscales. If the two phases are immiscible and 
incompressible, then the mass transfer Γc vanishes and the density can be treated as a 
constant. This gives 

 ( ) 0c
c ct

α α∂
+ ∇ ⋅ =

∂
u , (7.62) 

 ( ) ( )c c c c c c c c
D
Dt

ρ α α α ρ= ∇ ⋅ + +u T g I , (7.63) 

with 

 1
c

c c cS
dS

V
= ⋅∫ T nI , (7.64) 

where V is the mesoscale volume. 
 
 
7.4. Eulerian and Lagrangian Description of 
Dispersed Phase 
In the previous two sections two descriptions have been presented for a general dispersed 
two-phase flow system. One is fine (Section 7.2), aimed at capturing every detail in a 
mixed system, and the other is coarse (Section 7.3), in which quantities are expressed on 
mesoscales. To emphasize, a true direct numerical simulation (DNS) of two-phase flow 
system solves the Navier-Stokes equations for either phase directly without resorting to 
any empirical closure assumptions; and it resolves not only the smallest turbulence scales 
in either phase, but also tracks the interface between the two. Technically, it needs to 
solve the standard “single-phase” N-S equations on a domain occupied by the fluid, with 
the effect of the secondary phase, e.g., particles, being formally taken into account 
through the fluid boundary conditions on the surface of particles. According to the 
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current computer resources, the true DNS is still not feasible, or at most limited to a small 
number of particles.  
 
 A variety of other approaches have been proposed for the simulation of 
multiphase flows. Some good reviews can be found in (Faeth 1987; Elghobashi 1994; 
Crowe et al. 1996; Shirolkar et al. 1996; Loth 2000; Lakehal 2002). These simulation 
approaches, including the DNS, fall mainly into two classes: the Eulerian-Eulerian (E-E) 
approach and the Eulerian-Lagrangian (E-L) approach. The E-E approach considers both 
phases as a continuum and solves them on a fixed Eulerian reference frame; the E-L 
approach solves the continuous fluid on the Eulerian frame, but treats the dispersed phase 
as discrete particles or particle clouds, whose position and possibly shape are tracked in 
the Lagrangian reference frame. Note that all the conservation equations for a field 
quantity seen in this study are expressed on the Eulerian frame, such as Eqs (7.36) to 
(7.37) and Eqs (7.58) to (7.59). The equations of motion for a single particle used in 
Chapter 6 are set up on the Lagrangian frame. 
 

The E-E and E-L approaches have in common in that the continuous phase is 
always described on the Eulerian frame. However, the level of the description for the 
continuous phase can vary, depending on the simulation techniques being used. DNS 
captures the smallest turbulence scales in the continuous fluid. LES (large-eddy 
simulation) ignores those smallest Kolmogorov scales, but retains relatively larger eddies 
important to the transport mechanism of turbulent energy. RANS (Reynolds-averaged 
Navier-Stokes) only concerns the time-averaged quantities, and most of the turbulent 
eddy structures get lost. Other simulation methods also exist. (Loth 2000) grouped them 
into two categories: the resolved-eddy description and the unresolved-eddy description. 
Thus, The DNS and LES belong to the former while the RANS falls in the latter class. 
 

The Eulerian treatment for the dispersed phase(s) can be further subdivided into 
the mixed-fluid (or one-fluid) approach and the two-fluid approach. They will be 
addressed in the following two subsections. 
 
 
7.4.1. Mixed-fluid Eulerian Approach 
As pointed out by (Landau and Lifschitz 1971), the Navier-Stokes equation system can 
be applied to a two-phase flow if (i) the dispersed phase is small in size (compared to the 
geometry of the primary flow field), and (ii) it does not significantly change the overall 
fluid density. By doing so, one has implicitly agreed that the two phases forms a mixed-
fluid, which contains interpenetrating continuum components (phases). Different from the 
single-phase N-S equation, the density here becomes the mixture density (or effective 
density), ρm, and similarly, the fluid viscosity must be replaced by some effective 
viscosity, μm, where subscript m denotes the mixture. When the momentum of the 
dispersed phases cannot be neglected, such as the case of heavy particles settling in a gas 
flow, an inertia slip term must be added to the equation set. In general, one may write a 
single set of conservation equations for the mixture (not necessarily limited to only two 
phases) as: 
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ρ ρ∂
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∂
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where 
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ρ α ρ μ α μ= =∑ ∑ , (7.67) 
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and the mixture velocity is given by 

 k k kk
m

m

α ρ
ρ

= ∑ u
u . (7.69) 

Note that Eq. (7.69) only presents a formal definition of the mixture velocity and it does 
not participate in the actual solution procedure. In particular, if the primary and the 
dispersed phases are in local kinetic equilibrium, that is, the relative velocities between 
the phases are small in comparison to variations of the overall flow field, the slip term in 
Eq. (7.66) drops and the mixture becomes the locally homogeneous flow (Faeth 1987), 
which distinguishes only the local volume fractions of each phase in a mixed volume. It 
is seen, in this mixed-fluid formulation the two-way coupling effects are accounted for 
through the void fraction and possibly the interphase slip term. The system of equations 
contains five primary unknowns um, p, and ρm, and it can be closed with additional 
transport equations for respective αk, i.e., 

 ( ) ( ) m
m k m m k kt α

μρ α ρ α α
σ

⎛ ⎞∂
+ ∇ ⋅ = ∇ ⋅ ∇⎜ ⎟∂ ⎝ ⎠

u , (7.70) 

where σα is the Prandtl-Schmidt number for the αk transport. The RHS term in Eq. (7.70) 
represents dispersion effects in the phase k due to random fluctuations; if the carrier 
phase can be characterized as laminar, this term then equals zero.  
 
 
7.4.2. Two-fluid Eulerian Approach 
The often referred two-fluid approach is based on the volume-averaged equations, or the 
time and volume-averaged equations in the presence of turbulence (see Section 7.3). In 
this approach the two phases are assumed to be interpenetrating continua as well, but 
each has its own kinetic attributes. It follows that the volume-averaged conservation 
equations are solved for each phase, with the coupling between the phases to be achieved 
through the interphase exchange terms (see Eq. (7.58) and (7.59)). The turbulence closure 
models are usually derived from those used in single-phase RANS, typically the k-ε 
model and its variants. In addition, approximation to the interphase integral will also be 
needed to close the equation set. See (Drew 1983b; Ishii 1987; Drew and Lahey 1993; 
Zhang and Prosperetti 1994) for more details of this method. An extension of the two-
fluid formalism to a more general multiphase system with more than two phases is 
straightforward, in which n (instead of two) sets of equations need to be solved for n 
(instead of two) phases simultaneously. In such a case, it is given a more general name, 
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the separated-fluid approach (Loth 2000). Similar to the mixed-fluid approach, this 
separated-fluid approach is inherently two-way coupled. Also note that since this 
approach solves the time and volume-averaged equations, the description for the 
continuous phase is essentially a RANS type.  
 

It is important to note that the smallest resolvable length scale in the volume-
averaged two-fluid approach is the size of the averaging volume, which is generally much 
larger than the smallest length scale of turbulence. Hence, one cannot expect that volume-
averaged equations will lead to detailed description of turbulence of the carrier phase. 
Now one might wonder if there is a two-fluid DNS or a two-fluid LES. As a true DNS 
not only resolves all the flow scales, but also keeps track of the phase interface. It is 
obvious to see that the latter must be a Lagrangian practice and cannot be achieved in a 
Eulerian frame. Therefore, an E-E two-fluid DNS does not appear to be the right 
terminology.  

 
Before answering if a two-fluid LES is possible, some conceptual differences 

between the filtering and volume averaging must be clarified. For LES of single-phase 
flow a predefined filter is usually used to filter the N-S equations. If the filter used is a 
box filter, the filtered equations are then equivalent to the single-phase volume-averaged 
N-S. However, in the context of multiphase flows, filtering and volume averaging is 
conceptually different. The filtering is aimed at filtering out the high frequency portion of 
spectrum associated with small turbulence length scales, and it does not necessarily meet 
the criteria set by Eq. (7.39). On the other hand, the mesoscale used in the volume 
averaging must be large enough to yield an asymptotic statistical average, but also not too 
large to violate the condition (7.39). Further, the filter width in LES can be designed as a 
variable, for example, proportional to non-uniform grid spacing according to the local 
turbulence feature, while the mesoscale is typically understood as a “constant.” Unlike 
the filter, whose size and shape is clearly defined in the physical or spectral spaces, the 
literature on the development of the averaged equations for two-phase flows (Soo 1967; 
Marble 1970; Bear 1972; Drew 1983b; Sirignano 1999) has not been specific about the 
volume size or shape, over which the volume averaging occurs. But it is possible that an 
overlap portion exist between the two length scales, i.e., filter width and the mesoscale. 

  
Now, if a two-fluid LES is possible, one will gain the advantage of capturing 

detailed turbulence, while still avoiding a resolution of the phase interfaces. Notably, 
(Alajbegovic 2001) proposed a LES formalism applied to multiphase flows, which 
essentially treats the filtering as a generalization of the volume averaging. However, the 
author did not address the fundamental difference of the scales involved in the respective 
filtering and volume-averaging operation, which may eventually lead to a failure of the 
theory. Another useful attempt is made by (Pandya and Mashayek 2002) which deserves 
further attention. In view of the present author, the two-fluid LES in the framework of E-
E approach is theoretically feasible; however, its formalism must be subject to further 
elaboration and a rigorous development. Such work (Lakehal et al. 2002; Sirignano 2005) 
has started emerging in the literature, with the aim of unifying the volume averaging and 
filtering. 
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7.4.3. Resolved-volume Lagrangian Approach 
The Lagrangian reference frame is the natural frame for treating particles. The basic idea 
of this approach is to consider the dispersed phase as discrete objects and keep track of 
their motion as they move through the flow field. The discrete particles can have their 
own shape, whose boundary geometry forms the interface with the carrying fluid, or they 
can be approximated with a point-volume under certain assumptions. Note that the point-
volume is also referred to as the point-mass when dealing with heavy particles. However, 
the point-volume is a more general term since an air bubble, for example, is usually 
“massless” with respect to the liquid, but not “volume-less.” Based on the two types of 
representation of the discrete particles, the Lagrangian formulation for the dispersed 
phase can be subdivided into the resolved-volume approach and the point-volume 
approach (Loth 2000). 
 
 The resolved-volume approach tracks information of the particle’s geometric 
shape and its pertinent motion. The shape of the particle can be rigid or deformable. The 
flow field inside a particle, e.g., airflow in a bubble, can be taken into account or 
neglected. Thus, there will be four possible configurations with different level of physical 
complexity. If the particle is non-deformable and without internal flow field, e.g., a solid 
particle, only the standard N-S equations on the domain occupied by the carrier fluid 
need to be solved, and the rigid body will be advanced according to the calculated fluid 
stress around the particle surface. If the non-deformable particle has an internal flow 
field, then the N-S equations will also be solved inside each individual particle, but with 
the interphase treatment conforming to the rigid shape condition (i.e., the carrier fluid 
velocity at the particle surface is zero, and for the flow field inside the particle, the 
normal component is zero at the interface but the tangential component is shear-free). 
The motion of the rigid particle can be tracked in a similar manner by considering the 
integrated shear forces applied on the particle surface. When the particle is deformable, 
the formulations including the standard jump conditions presented in Section 7.2 apply, 
and the particle surface will be deformed and advected according to the resultant shear 
stress difference across the interface. The front-tracking method mentioned there belongs 
to this category.  
 

It is clear that herein the two-way coupling has been considered in the greatest 
detail, since describing the phase interaction at the interface is an integral part in the 
entire formulation. One of the primary goals of using this approach is to sufficiently 
resolve the spatial and temporal scales associated with the particles’ local external and 
internal flow field, so that the dynamics of the particle as well as their interaction with the 
continuous flow field can be accurately captured. Therefore, the resolved-volume 
Lagrangian simulation is usually accompanied with the DNS level of description for the 
Eulerian carrier flow field.  
 
 Despite the fact that this method can offer a full and detailed description of the 
multiphase system, it is challenged by two major technical difficulties: first, the 
continuous flow field will have to be solved on a highly complex domain due to the 
presence of the particle geometry; this will require a more sophisticated gridding 
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technique with moving-grid capability. Second, the resolution requirement, especially for 
resolving the details in the interfaces region, is overly demanding. Given such, the 
resolved-volume approach is currently only limited to simple flow configuration with one 
or a few particles, and generally not applicable yet to engineering two-phase problems. 
However, limited knowledge gained from the direct volume-resolving simulations, 
similar to the relation between the single-phase DNS and LES, can be very useful in 
developing and validating the point-volume formulations, which are addressed next. 
 
 
7.4.4. Point-volume Lagrangian Approach 
The point-volume approach neglects the particle’s geometric information and assumes 
the particle’s entire volume is represented by a single point. As such, the details of the 
hydrodynamic stresses around, as well as the mass transfer across the particle surface get 
lost. Instead, they are “distilled” into particle-averaged point quantities. By this 
simplification, a detailed resolution of the flow around the particle surface is no longer 
necessary. The dynamics of the particle is then controlled by point forces, which include 
body forces and those resulting from the particle surface stresses, among others. The 
equation of motion of a single point-volume particle, following Newton’s second law, is 
then, 

 d
dt

=
y v , (7.71) 

 
( )p

p

d m
dt

=
v

F . (7.72) 

where y and v denote the position and velocity, respectively, of a Lagrangian particle 
(note that they are not Eulerian fields here), mp is the particle mass, Fp represents the total 
point forces acting on the particle, which is generally a function of the particle’s position, 
properties and the local feature of the carrier fluid. Detailed formulations of Fp will be 
addressed in Section 7.5. If the particle’s mass is constant, i.e., no mass transfer takes 
place across the interface, Eq. (7.72) becomes 

 p p
dm
dt

=
v F . (7.73) 

It should be stressed that this equation set is not an exact representation of the motion of 
an actual particle, but rather, they are approximate equations with the involved quantities 
being understood as either surface-averaged (e.g., forces resulting from particle surface 
stresses), or volume-averaged (e.g., particle mass). 
 

With the point-volume treatment, the task of simulating the dispersed phase 
simplifies to tracking the temporal evolution of each particle’s position (trajectory) and 
velocity by solving two coupled ordinary differential equations (ODE), i.e., (7.71), and 
(7.72) or (7.73). This can be easily done using some explicit numerical integration, such 
as the Runge-Kutta class of methods. The computational expense mainly depends on the 
number of particles to be tracked. For n particles, which correspond to n independent 
trajectories, 2n ODEs will need to be solved; but keep in mind that these 2n ODEs are 
only pairwise coupled.  
 



 260

To be computationally more economical, one may let a single particle represent, 
instead of itself, a group (cluster) of particles that share a same or prescribed set of 
physical attributes, such as location, velocity, diameter, density etc. Such a representation 
is known as parcel of particles, discrete element, or simply trajectory (Crowe et al. 1998; 
Loth 2000). The representing particle is also called computational particle. Suppose there 
are n computational particles (or parcels) in the simulation, each representing m particles 
possessing the same properties. Thus, the statistical sample size is n × m physical 
particles; however, only n trajectories need to be computed since all the members in a 
parcel move in the same manner. If the members of a parcel have varying attributes, one 
may employ the so-called random sampled approach, which randomly selects a 
representative member in the parcel during each time-integration. Refer to (Loth 2000) 
for more details of the parcel method. Also, the parcel size is not arbitrary. It should be 
large enough to yield a statistically sufficient sample size, but also not too large to impair 
the statistical reliability. The total number of computational particles is limited by the 
computer resources. A point-volume E-L simulation typical involves 10,000 – 100,000 
computational particles. The discussion presented by (Graham and Moyeed 2002) can be 
useful in determining the parcel size. 
 
 Unlike the resolved-volume approach and those E-E approaches, where the two-
way coupling is a built-in feature, in the point-volume E-L approach one needs to 
distinguish if the formulation is one-way or two-way coupled. Equations (7.71) through 
(7.73) reflect the influence of the carrier fluid on the particle kinetics. The reverse effects 
from particle to the continuous phase, if any, can be taken into account in the carrier 
phase’s formulation.  
 
 When using the point-volume approach to simulate the dispersed phase, the 
choice of the simulation method for the continuous phase is flexible: RANS, LES and 
DNS are all possible candidate. In the case of a one-way problem, simulation of the 
continuous phase will use the standard single-phase governing equations associated with 
each method, e.g., time-averaged N-S for RANS and filtered N-S for LES; the turbulence 
models for RANS and LES addressed in Chapter 4 can fully apply. Simply put, the 
continuous field will do its normal job as if it doesn’t “see” the presence of particles. If 
two-way coupling is of significance, a reverse-coupling (from particle to continuous 
fluid) model must be introduced. Section 7.6 will provide a detailed discussion on the 
two-way coupling issue in the framework of the point-volume E-L LES simulation. 
 

From the above discussions it is seen that the point-volume approach features 
simplicity in its formalism (two ODEs), ability of accommodating a sufficiently large 
body of particles (with the parcel concept), and flexibility in the choice of its Eulerian 
partner. Thus, provided that the particle equation of motion with the modeled point forces 
is a good approximation in describing the particle dynamics, this Lagrangian approach 
has opened its unique access to various real-world engineering problems. But, before one 
starts using this method to simulate complex two-phase flows and relying on the results it 
provides, it is extremely important to know under what assumptions and restrictions this 
very point-volume approach can lead to a successful application. This is explained next. 
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 A rigorous condition for the validity of the point-volume assumption is provided 
by (Loth 2000). It consists of two parts. First, the particle diameter is sufficiently small 
that the fully resolved continuous fluid characteristics (e.g., velocity and pressure) 
around the particle can be considered to vary linearly. In the one-dimensional situation, 
this is equivalent to saying that the change of a continuous function at a distance of 
particle size, dp, is a linear function of dp; clearly, this is true only when dp is sufficiently 
small. A direct implication of this assumption is that the length scales with which the 
smallest flow structure of the continuous phase is associated must be larger than the 
particle diameter, since otherwise a function can vary linearly across the flow structure, 
which is not possible in general. In a turbulent flow, it requires the particle diameter is 
small compared to the Kolmogorov length scale, η. This gives 

 1pd
η

< . (7.74) 

A similar temporal criterion can also be formed where the particle time scale, dp/v∞ or 
dp

2/ν, is smaller than the Kolmogorov time scale, τη, i.e., 

 
2/ /

1   or   1p pd v d

η η

ν
τ τ

∞ < < , (7.75) 

where v∞ is the particle terminal velocity and ν is the fluid viscosity. Second, the 
instantaneous turbulence velocity field of the continuous phase is known in the immediate 
vicinity of the particle. This simply sets a resolution requirement for the continuous flow, 
i.e., the turbulent eddies must be sufficiently resolved down to the Kolmogorov scales. It 
is necessary because the point force (RHS of Eq. (7.72)) will need as an input the local 
instantaneous characteristics of the continuous field, upon which the accuracy of the 
evaluated Fp depends. In summary, in order for the point-volume treatment to be 
applicable in a turbulent flow, the requirements set by Eq. (7.74) and (7.75) for the 
dispersed phase must be met, and the turbulent fluctuations of the continuous phase must 
be captured down to the Kolmogorov scales. Under these conditions, the point-volume 
approach will be theoretically exact. 
 

Physically, these restrictions ensures that a particle can be “immersed” into the 
smallest turbulent eddies, so that the particle motion is primarily controlled by its 
surrounding continuous fluid, while the continuous flow is not disturbed by the presence 
of the particles. From this point of view, it leads to a one-way problem, which precludes 
the approach’s applicability to a two-way coupled flow. Further, Eq. (7.74) and (7.75) set 
extremely restrictive physical conditions on the particle size, especially for bubbles in 
turbulent flow where diameters tend to be larger. Moreover, the continuous flow’s 
resolution requirement essentially calls for a DNS approach; problems may arise when 
tracking particles using a field supplied by LES or RANS. Therefore, as pointed out by 
(Loth 2000), these ideal criteria are too restrictive and generally will not be met by most 
engineering two-phase flow problems. 

 
To relax the original restrictions, (Loth 2000) further proposed an alternative set 

of assumptions, which provides looser restrictions on the particle size and the flow field 
resolution. In that, one assumes that the point-volume treatment is appropriate in an 
“approximate” sense if the instantaneous variations of the continuous-fluid velocity, u’, 
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in the immediate vicinity of the particle, if not fully, are resolved to within some small 
fraction of the particle relative velocity quantified by v∞. Thus, the criterion becomes 

 1v
v
u

γ ∞=
′

. (7.76) 

In addition, (Loth 2000) relates the particle size restriction to the spatial and temporal 
grid resolution from the numerical computation, i.e., 

 
/

1, 1p pd d v
h t

∞< <
Δ

, (7.77) 

where h is the characteristic grid size and Δt is the time step. This argument is based on 
the assumption that the resolution of the particle wake should be smaller than that of the 
continuous-fluid, so that the resolved fluid properties may be interpolated to the particle 
location. Given particle type and size (i.e., v∞ and dp is fixed), the criteria of Eq. (7.76) 
and (7.77) ask for a resolution of the continuous-fluid field down to the scales where the 
turbulent fluctuations are much less than v∞; but at the same time the mesh size can not be 
arbitrarily fine, since it is bounded below by the particle diameter. If LES is used for the 
continuous phase simulation, it simply tells that the filter width and its related mesh size 
should be controlled in such a way that the smallest resolved eddies fluctuate at an order 
much less than v∞ besides ensuring h > dp. On the other hand, if the fluctuation level of 
the continuous-fluid field is already known, the maximum grid size h can be determined 
in an eddy-resolving simulation; thus, it sets constraints on the particle, whose size must 
be smaller than h, and whose terminal velocity must be sufficiently large. In this 
situation, heavy and small particles can easily pass the test while the buoyant particles, 
such as bubbles, will have difficulties to survive, since large rising velocity is always 
accompanied with large bubble size. Given above discussion, it seems that LES, as a 
resolved-eddy approach, may qualify for representing the continuous-fluid field; 
However, this LES must be carefully designed, in terms of its resolution and its dispersed 
“partner,” in order to truly satisfy the a little relaxed criteria (7.76) and (7.77). It should 
be noted that further elaborations on these criteria will be given in Section 7.6, which 
finally leads to the two-layer concept proposed by the present author. For the time being, 
they are good enough. 
 

One may further notice that Eq. (7.76) and (7.77) still cannot be met if the 
continuous-phase field is represented by RANS quantities, or quantities from a low-
resolution LES. In such cases, missing is the detailed information of instantaneous 
velocity field of the continuous phase, which is crucial to the particle dispersion. 
Therefore, an empirical model must be employed to account for the spatiotemporal 
variations of the velocity field. Typically, these models are based on stochastic, 
probabilistic or deterministic diffusion methods. See (Crowe et al. 1996) for a detailed 
review on the diffusion models under the RANS approach. The turbulence dispersion 
associated with LES will be addressed in Section 7.6. 

 
 In general, to answer when the resolved-volume approach is appropriate is a 
subtle issue. Nevertheless, to judge when this approach is not appropriate is relatively 
easier. It is known that at large Rep, when StΛ or γl approach unity, particle can have 
strong interaction with the carrier turbulence by shedding wake (Hetsroni 1989). In such 
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case, wake turbulence may dominate the dynamics of the particles. Additional 
complication arises when the particle is deformable. For example, large deformable 
bubbles subjected to eddy fluctuations develop fundamentally different wakes as opposed 
to non-deformable ones (Kojima et al. 1975; Chahine et al. 1993; Loth et al. 1997). To 
fully describe such conditions, one may have to resort to the resolved-volume approach. 
 
 
7.5. Hydrodynamic Forces for a Single Particle 
The problem considered here is that of a rigid spherical particle. A fluid particle, such as 
bubbles and droplets, may be subjected to deformation. To judge if a fluid particle can be 
assumed to be deformable, three additional non-dimensional groups can be introduced. 
They are the Weber number (We), the Eötvös number (Eo, also called Bond number), 
and the Morton number (Mo): 

 
2 2 4

2 3We , Eo , Mop pU d gd gρ ρ ρμ
σ σ ρ σ

Δ Δ
= = = , (7.78) 

where Δρ = |ρ - ρp|. The Weber number represents the ratio of inertia forces to surface 
tension; the Eötvös number gives the ratio between the buoyancy forces and surface 
tension forces; the Morton number contains only fluid properties, and it ranges between 
10-4 for gas bubbles in liquid metals and 108 for gas bubbles in viscous oils. For air 
bubbles in pure water (σ = 0.0728 N/m) the value of Mo is 2.48E-11 N/m. Also, the 
Morton number can be written in terms of We and Eo as 

 
2

4

EoWeMo
Re

= . (7.79) 

For a fluid particle to remain essentially spherical, one needs  
 We 1, (7.80) 
which indicates the surface tension forces outweigh those tending to deform them. A 
more robust characterization of deforming fluid particles is to employ the Rep-Eo-Mo 
chart (Clift et al. 1978; Fan and Tsuchiya 1990), which is included in this manuscript 
(Figure 7-3) merely for convenience in late uses. From that, (Loth 2000) developed an 
approximate criteria for significant deformation of low-density fluid particles (i.e., 
droplets / bubbles) under terminal velocity conditions: 

 
7 8.15

2.83

Mo 1.2 10 Eo for Eo 5
Mo 0.21Eo for Eo 5.

−< × <
< ≥

 (7.81) 

In a gas-liquid dispersed system, for example, it is necessary to check the above criteria 
before the sphericity is assumed for the gas bubbles. In an air-water system bubbles 
smaller than 1 mm in diameter typically can be assumed to be spherical and behave like a 
rigid particle.  
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Figure 7-3 Shape regimes for bubbles and drops rising or falling freely in quiesent liquids. (From 
(Clift et al. 1978) with permission, chapter numbers annotated on the figure refer to those of the 

original textbook, not of the present thesis) 

 
In the point-volume approach, the motion of a single particle is governed by (also 

see Eq. (7.72)): 

 p p
dm
dt

=
v F . (7.82) 

The expression for Fp, which represents all significant forces imposed on the particle, 
must be determined. It is to reiterate that Fp includes surface-averaged representations 
resulting from fluid stresses on the particle surface, as well as volume-averaged body 
forces. The goal is to find simple analytical expressions that are suitable for repetitive 
calculation in a Lagrangian simulation, and to reproduce particle behaviors that can 
match laboratory measurements or volume-resolved DNS with reasonable fidelity. It is 
certainly not a good idea to start deriving the expressions from the scratch; but rather, a 
thorough review is made based upon a great deal of past studies. This is presented below 
as well as in the following sections. 
 



 265

In the effort of deriving such hydrodynamic forces, focus has been placed on a 
single small, rigid sphere immersed in an unsteady, non-uniform flow field under the 
Stokesian flow condition, i.e., particle Reynolds number much less than unity. The sphere 
can be a solid particle, a bubble or a drop. A single article of (Maxey and Riley 1983), 
which have assembled many of the previous research findings (Poisson 1831; Boussinesq 
1885; Basset 1888b, a; Oseen 1910, 1913; Faxen 1922; Corrsin and Lumley 1956; Auton 
1981), seems to be the dominant source for most of the recent publications in regard with 
the expression of Fp. (e.g., (Auton 1987; Auton et al. 1988; Elghobashi and Truesdell 
1992; Katz and Meneveau 1996; Michaelides 1997; Loth 2000; Armenio and Fiorotto 
2001; Michaelides 2003)). In general, Fp can be considered a synthesis of several forces 
due to gravity (FG), fluid stresses (FS), steady-state drag (FD), lift (FL, including Saffman 
lift and Magnus lift), added mass (FA), history effect (FH), and wall interaction (FW), i.e., 
 p l G S D L A H W

l
= = + + + + + +∑F F F F F F F F F . (7.83) 

Note that the linear addition of different forces given in Eq. (7.83) is not always valid, 
since different forces can act in a coupled manner. Yet, the non-linear interaction among 
these forces, albeit less understood, are typically small enough to be neglected in most 
situations (Loth 2000). 
 

In the view of (Maxey and Riley 1983), these hydrodynamic forces acting on a 
particle can also be grouped into three contributions, i.e., 
 (0) (1)

p p p pm= + +F F F g , (7.84) 
arising from an undisturbed flow, a disturbed flow and gravity, respectively. Note that an 
undisturbed flow is the original background flow field in the absence of particles, and a 
disturbed flow is the flow field perturbed by the presence of particles. The first 
contribution, Fp

(0), arising from the undisturbed flow, would apply on a fluid element that 
coincides with the particle position. The pressure force and the viscous stresses existing 
in a undisturbed fluid belong to Fp

(0). The second contribution, Fp
(1), arises from the 

disturbed flow field. For a rigid particle moving in the fluid, the perturbation of the 
surrounding unsteady, non-uniform flow results in the drag, lift, added mass and history 
forces. The third contribution is made by the particle gravity. 
 

In what follows, these forces are addressed in a greater detail. Note that dp, Vp, 
and ρp are used denote particle diameter, volume and density, respectively.  
 
 
7.5.1. Forces due to Gravity 
The particle gravity force and hydrostatic pressure, i.e., the buoyancy, are chosen to be 
included in the FG term: 
 ( )G p pVρ ρ= −F g , (7.85) 
where g is the gravitational acceleration. Note that the buoyancy is part of Fp

(0), the other 
part of Fp

(0) is known as fluid stress force which will be addressed in a later section. 
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7.5.2. Steady-state Drag Force 
The basics of steady-state or quasi-steady (in the case of turbulent flow) drag force FD 
has been reviewed in Section 6.1. It is defined as  

 1
2D D fr rel relC Aρ= −F v v , (7.86) 

where 
 rel = −v v u  (7.87) 
is the relative velocity between the two phases. Note that the drag expression given by 
Eq. (7.86) is not limited to the Stokes flow or low-Rep flow, because the drag coefficient 
CD here represents an empirical fit that can reproduce the particle drag behavior from a 
laboratory measurement. Commonly, CD is expressed as the product of the Stokes drag 
coefficient and the drag factor, f, i.e., 

 24 (Re )
ReD p

p

C f= . (7.88) 

The expression for the drag factor is provided in Table 6-1. But some further aspects are 
addressed here.  
 

First, the drag force given by Eq. (7.86) is derived in a uniform flow. A so-called 
Faxen term (2nd term in parenthesis of Eq. (7.89)), due to (Faxen 1922), can be 
introduced to account for the non-uniformity of flow around the sphere. This yields 
(Maxey and Riley 1983) 

 ( )1 2 2
24

1
2D D fr rel rel pC A dρ= − − ∇F v v u . (7.89) 

 
Second, the expression for f can be extended to account for other factors, such as 

particle non-sphericity and compressibility of the flow. A crude approximation is to write 
f as the linear product of various correction ratios (Loth 2000): 
 Re ...l Sphere Mach

l

f f f f f= =∏ , (7.90) 

where fRe is the standard drag factor, same as the one in Eq. (7.88). To this end, see (Clift 
et al. 1978; Loth 2000) for more details. The present study will only consider the case 
where f = fRe.  
 

Third, basically, the drag factor f given in Table 6-1 is measured for a solid 
particle. For a fluid particle, e.g., droplets or air bubble, complications may arise due to 
internal recirculation and deformability; thus proper modifications for f values are 
necessary. Table 7-1 summarizes five sets of drag factor for the case of spherical bubble 
in clean (lightly contaminated) water, contaminated water (tap water), and grossly 
contaminated water, as well as ellipsoidal bubble and spherical-cap bubble in 
contaminated water. All these correlations are expressed in dependency of the particle 
Reynolds number. The bubble diameter used in Eq. (7.94) represents a nominal (or 
effective) diameter. Due to surface-active impurities (surfactants) in the tap water, the 
bubble surface is immobilized; as a result small bubbles (whose diameter less than 1 mm) 
in tap water behave very much like a solid sphere, and their drag factor is thus 
comparable to that of a rigid sphere (cf. Eq. (6.12)). For bubbles with diameter above 3 



 267

mm freely rising in tap water, experimental evidence (Fan and Tsuchiya 1990) shows that 
use of the drag factor given by Eq. (7.92) yields greatly overpredicted bubble terminal 
velocity.  To remedy this, additional correlations have been proposed and used in the 
literature. Two examples are provided in Table 7-2. Further correlations can be found in 
(Sokolichin et al. 2004). 
 

Table 7-1 Drag correction factor f for air bubble in clean or contaminated water. 

Spherical bubble in clean water 
(Loth et al. 1997; Loth 2000) 0.525

1 0.1875Re Re 0.1
1 0.0565Re 0.1 Re 500

p p

p p

f
+ ≤⎧

= ⎨ + < ≤⎩
  (7.91) 

Spherical bubble in tap water 
(Shiller and Naumann 1933) 

0.6871 0.15Re Re 800
0.44(Re / 24) Re 800

p p

p p

f
⎧ + ≤⎪= ⎨ >⎪⎩

 (7.92)

Spherical bubble in grossly 
contaminated water 
(Clift et al. 1978; Loth 2000) 

0.6305

1 0.1875Re Re 1
1 0.1935Re 1 Re 78
1 0.03875Re 78 Re 300

p p

p p

p p

f
⎧ + ≤
⎪= + < ≤⎨
⎪ + < ≤⎩

 (7.93)

Ellipsoidal bubble in tap water 
(Loth et al. 1997) 

1/ 2Re
8.85 13.24 1 0.203Re

24 1.1
p p

p

d
f

⎡ ⎤⎛ ⎞
= + − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
(7.94)

for 1.1 mm ≤ dp < 4.5 mm and Rep ≤ 200 
Bubble with spherical-cap shape 
in tap water (Clift et al. 1978) 

Re
Re 150,Eo 40

9
p

pf = > >  (7.95)

 
Table 7-2 Drag coefficient for air bubble in tap water 

(Tomiyama et al. 
1995) ( )0.68724 8 Eomax 1 0.15Re ,

Re 3 Eo 4DC ⎡ ⎤= +⎢ ⎥+⎣ ⎦
 (7.96)

(Boisson and Malin 
1996) 0.643

0.385 2.6

2.6

24 / Re Re 0.49
20.68 / Re 0.49 Re 100
6.3 / Re Re 100, We 8,Re 2065.1/We
We / 3 Re 100, We 8,Re>2065.1/We
8/3 Re 100, We 8

DC

<⎧
⎪ < <⎪⎪= > ≤ ≤⎨
⎪ > ≤⎪

> >⎪⎩
 (7.97) 

 
 
7.5.3. Lift Force 
The quasi-steady lift force can be subdivided into Saffman lift force and Magnus lift 
force. The Saffman lift force is caused by velocity gradient (shear-induced), and the 
Magnus lift force is due to the solid body rotation (spin-induced). Both the local velocity 
gradient of the continuous fluid and the rotation of particle can result in an uneven 
pressure distribution around the particle in the disturbed flow field, thus generating a lift 
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in the direction perpendicular to the relative velocity between the fluid and the particle, 
and to rotation of fluid or particle. 
 
 The Magnus force derived by (Rubinow and Keller 1961) under the condition of 
Rep ≤ 1 is  

 ( ) ( )13
28Mag p pdπ ρ= − × −L u v ω ω , (7.98) 

where ωp is the particle angular velocity, ω is the vorticity of the flow, i.e., 
 = ∇×ω u ; (7.99) 
thus 0.5ω gives the rate of rotation of the fluid, and (ωp - 0.5ω) is the relative rotation of 
the particle with respect to the flow rotation. Similar to the general definition of the drag 
force, the Magnus force at finite particle Reynolds number can also be cast into the 
following form with an empirical lift coefficient, CL,Mag, due to rotation (Crowe et al. 
1998): 

 ,
1
2

rel
Mag L Mag fr rel rel

rel

C Aρ= − ×
ωF v v
ω

, (7.100) 

where vrel is defined in Eq. (7.87), and ωrel = ωp - 0.5ω. Equation (7.100) and (7.98) are 
linked through the following relation 

 ,

Ro
L Mag

Mag Mag

C
=F L , (7.101) 

where Ro is the rotation parameter or Rossby number given by 

 Ro p rel

rel

d
=

ω
v

. (7.102) 

Thus, if CL,Mag = Ro, Eq. (7.98) is recovered. For particles rotating in a uniform flow at 
higher Rep and higher Ro, the Magnus lift coefficient has been measured, for example, by 
(Maccoll 1928; Davies 1949; Barkla and Auchterlonie 1971; Tsuji et al. 1985; Tanaka et 
al. 1990; Tri et al. 1990; Sridhar and Katz 1995), and summarized in (Loth 2000). 
According to the measurements a simple approximate expression for CL,Mag is suggested 
by (Tanaka et al. 1990) and cross-referenced by (Crowe et al. 1998; Loth 2000) as 
 ( ), min Ro / 4,0.5L MagC = , (7.103) 
with the applicable range of 500 < Rep < 100,000 and 0.1 < Ro < 20. In a torque-free 
environment, the Magnus lift force can be generally neglected, since the particle spin 
tends to approach the fluid rotation after some time exceeding τp (Loth 2000). 
 
 The original Saffman force, due to (Saffman 1965, 1968), can be generally 
expressed as 

 21.61 rel
Saff p rel

rel

dρ ν ×
= −

×
v ωL ω v
v ω

. (7.104) 

It was derived under a condition more restrictive than that of a creeping flow, i.e.,  
 Re Re 1,p ω , (7.105) 
where Reω is the shear Reynolds number defined as 



 269

 
2

Re
d

ω ν
=
ω

. (7.106) 

Under the condition of  
 Re Re 1,pω < <  (7.107) 
the Saffman force given by Eq. (7.104) can be corrected according to McLaughlin‘s 
theory (McLaughlin 1991; Cherukat et al. 1994): 

 ( )
( )

1.7
Re

1.7
Re

0.28
0.28 0.16McL saff

γ

γ

−
=

− +
L L , (7.108) 

where 

 Re Re

Re
, 0.3

Re p

ωγ γ= > . (7.109) 

At high particle Reynolds numbers, (Auton 1981; Auton et al. 1988) derived an 
expression for the shear-induced lift force in an inviscid flow: 
 ,Auton L Auton p relC Vρ= − ×L v ω , (7.110) 
where CL,Auton = ½. A similar derivation for the inviscid condition is performed by (Drew 
and Lahey 1987; Drew and Lahey 1990). For different type of flows the measured lift 
coefficients are found to deviate from the inviscid one (Wang et al. 1987; Moraga 1998; 
Tomiyama 1998; Tomiyama et al. 2002). For example, in a fully developed upward 
bubbly flow in a pipe, CL,Auton is found to be around 0.1 (Wang 1986; Wang et al. 1987). 
The correlation developed in (Tomiyama et al. 2002) provides a useful resource for 
numerical simulation. 
 

Similar to Eq. (7.100), the general Saffman lift force can also be written based on 
the hydrodynamic pressure and projected area as 

 2
,

1
2

rel
Saff L Saff fr rel

rel

C Aρ ×
= −

×
v ωF v
v ω

, (7.111) 

(Sridhar and Katz 1995) produced from their experimental investigation a well-known fit 
for the lift coefficient: 
 0.25

, 0.5RoL SaffC = , (7.112) 
where the fluid rotation number is defined as 

 Ro p

rel

d
=

ω
v

. (7.113) 

This approximation is consistent with (Naciri 1992)’s results, and also later confirmed by 
(Felton and Loth 2001)’s study. Notably, (Sridhar and Katz 1995) finds that, if 
20<Rep<80 and 0.02<Ro<0.2, CL,Saff only depends on Ro, and it is independent of Rep. 
This conclusion is consistent with Auton’s inviscid lift expression, as well as with 
(Barkla and Auchterlonie 1971) and (Tsuji et al. 1985)’s data. On the other hand, studies 
of (Naciri 1992) and (Felton and Loth 2001) indicate a decreasing lift coefficient with 
increasing Rep. This discrepancy may stem from different flow regimes (laminar or 
turbulent), and will remain an open question (Felton and Loth 2001). Also note that in 
most experimental studies, the measured shear-induced lift force tends to be larger than 
that predicted by the original Saffman lift as well as Auton’s inviscid lift for values of Ro 



 270

below 0.2. Often times, Eq. (7.104) and (7.110) can serve as a conservative lower bound 
of an actual lift force. 
 
 
7.5.4. Fluid-stress Force 
The fluid stress force, FS, is a force arising from the undisturbed flow. In particular, it 
refers to the pressure and the viscous stresses that originally act in the undisturbed flow, 
and would apply on the particle as if on a fluid element in place of the particle. Since the 
buoyancy force has already been included in the FG term (see Section 7.5.1), FS should 
exclude the contribution from the hydrostatic pressure. That is, only the dynamic pressure 
would make part of FS. 
 

The expression of FS can be derived as follows. Let σ(0) denote the surface 
stresses comprising the dynamic pressure, pdyn, and viscous stresses in the undisturbed 
flow, i.e., 
 ( )(0) T

dynp μ= − + ∇ + ∇σ I u u . (7.114) 
The net fluid force acting on a rigid sphere can be determined from the integral of 
σ(0) over the particle surface S: 
 (0)

S S
d= ⋅∫F σ n S , (7.115) 

where n is unit outward normal. Eq. (7.115) can be converted to the volume integral 
using Gauss’s divergence theorem: 
 (0)

p
S V

dV= ∇ ⋅∫F σ , (7.116) 

where Vp is the volume occupied by the particle. If the particle dimension is less than all 
the characteristic length scales of the underlying flow, the integrand in Eq. (7.116) can be 
considered constant over the particle volume, i.e., 
 (0)

S pV= ∇ ⋅F σ . (7.117) 
 By noticing  

 ( ) (0)TD p
Dt

ρ μ= −∇ + ∇ ⋅ ∇ + ∇ + = ∇ ⋅
u u u g σ , (7.118) 

one obtains the working expression of the fluid-stress force as (Maxey and Riley 1983) 

 S f
Dm
Dt

=
uF . (7.119) 

Thus, the fluid-stress force is in fact related to the fluid acceleration. The seemingly 
simple form of this force, Eq. (7.119), implicitly represents the action of the pressure 
gradient and the viscous stresses inside the flow.  
 

Here, it is necessary to make a distinction. Notice that some other forces, such as 
the drag and lift, are in principle also generated by the viscous stresses. However, the 
surface stresses associated with the fluid-stress force are fundamentally different from 
those related to the drag and lift forces: the former is present in an undisturbed flow while 
the latter is created in a disturbed flow setting.  
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Further recall that the drag force is usually measured in a uniform pressure field in 
the absence of the particles. Therefore, the significance of the fluid-stress force can be 
appreciated when there exists in the flow large local pressure gradient, which causes 
additional acceleration or deceleration of the particle. In fact, the role of the pressure 
gradient in contributing to the net fluid force acting on the particle was originally 
emphasized by (Corrsin and Lumley 1956), who, however, missed the contribution of the 
viscous stresses. (Maxey and Riley 1983) made the addition with the argument that, for a 
particle that is small compared to the flow scales, the effects of the undisturbed fluid 
stresses both from pressure and viscosity are well comparable.  
 

It should be stressed that, in deriving equation (7.119), a critical restriction has 
been imposed: the particle dimension must be smaller than any of the characteristic flow 
length scales. In a turbulent flow, it simply means 
 pd η . (7.120) 
Therefore, caution must be taken when applying Eq. (7.119) to a Eulerian-Lagrangian 
calculation where condition (7.120) is violated. 
 
 
7.5.5. Added-mass Force 
Note that the drag and lift force are usually measured at steady state where there is no 
relative acceleration between the fluid and the immersed object. Thus, they can be 
grouped into steady-state forces. When a particle accelerates through a uniform fluid, 
there is a corresponding acceleration of the surrounding fluid at the expense of work done 
by the particle. By Newton’s third law, the acceleration of the fluid will in turn generate a 
transient force that acts on the particle in the opposite direction of the particle 
acceleration. This force is a type of unsteady forces and known as the added-mass force, 
or virtual mass force, it is given by 

 ( )A A f
dC m
dt

= − −F v u , (7.121) 

where mf is the mass of the fluid which has the same volume as the sphere, i.e., mf = ρVp; 
CA is the added-mass coefficient and equals ½ for a rigid sphere in inviscid Stokes flow. 
The derivative d/dt used here denotes the time derivative following the moving sphere. 
When d/dt is applied to the continuous flow field, at low Reynolds number, 

 d D
dt Dt

≈
u u , (7.122) 

where D/Dt denotes the material derivative following a fluid element (Auton et al. 1988; 
Maxey et al. 1996). Thus Eq. (7.121) can also be written as 

 A A f
d DC m
dt Dt

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

v uF . (7.123) 

An equivalent understanding of the origin of this force can be gained by looking at a 
uniform inviscid flow past a sphere fixed in space. An acceleration of the fluid will result 
in a change of the kinetic energy in the flow field, which creates a transient force (Eq. 
(7.121)) exerting on the sphere. Similar to the Faxen correction in the drag expression 
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(see Eq. (7.89)), a similar Faxen term can also be added to the added-mass force to take 
account of the spatial variation in the flow. This gives (Maxey and Riley 1983) 

 ( )1 2 2
40A A f p

dC m d
dt

= − − − ∇F v u u . (7.124) 

 
The reason of calling it added-mass force is that the effective mass subjected to 

acceleration by the particle momentum equation is (mp + CAmf), instead of mp. This is 
readily seen by moving the particle acceleration part of Eq. (7.121) to the LHS of Eq. 
(7.82). This yields  

 ( ) '
p A f p

dm C m
dt

+ =
v F , (7.125) 

where F’p is modified from the original Fp accordingly. It should be noted that, for heavy 
particles where mp >> mf, the added mass effect can be neglected, while for light particles 
(mp << mf), such as air bubbles, the influence of added mass is significant and must be 
included. 
 

The added-mass force can be derived from the inviscid flow theory; In fact, it was 
first deduced by (Poisson 1831), who solved the potential flow equation around a sphere 
and determined the correct added-mass coefficient (equal to 1/2) about 20 years before 
the publication of what we now call “the Navier-Stokes equations.” A detailed derivation 
can also be found in a recent book by (Crowe et al. 1998). (Green 1833) extended the 
results to flow around an ellipsoid, and obtained the same value for the added-mass 
coefficient. Even for moderately ellipsoidal air bubbles in water with diameters up to 3.5 
mm, this coefficient is still approximately valid based on (Bataille et al. 1991). Strictly 
speaking, CA = ½ is derived under the creeping flow condition. At finite particle 
Reynolds numbers, an empirical relation was suggested by (Odar and Hamilton 1964; 
Odar 1966) 

 2

0.0661.05
0.12AC

Ac
= −

+
 (7.126) 

where Ac is the proposed acceleration number defined by 

 
2

rel

p

Ac
dd
dt

=
v

v
. (7.127) 

But, there is no unified agreement on this correction, as discussed in (Sridhar and Katz 
1995; Michaelides 1997). For example, (Tsuji et al. 1991) confirmed the accuracy of Eq. 
(7.126) with an extensive experimental study. On the other hand, the results of (Chang 
1992) indicates that CA is independent of both Reynolds number and acceleration 
number, provided the particle is nearly spherical.  
 
 
7.5.6. History Force 
Another unsteady force due to the acceleration of the relative velocity is the history force 
or sometimes the Basset force. While the added-mass force relates to the force required to 
accelerate the surrounding fluid, the history force describes the force due to the temporal 
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delay in boundary layer development as the relative velocity changes with time. The 
analytical expression of the history force was first seen in (Boussinesq 1885), and also 
independently derived by (Basset 1888b, a). The name “Basset force” is sort of ironic, as 
pointed out by (Michaelides 2003), since Boussinesq’s work has precedence. 
 

To understand the origin of the history force one may consider an infinite flat 
plate below a viscous fluid subject to a step velocity change from zero to U0 (Stokes’ first 
problem, see, e.g., (White 1991)). The one-dimensional velocity field is 
 0erfc( )u U η= , (7.128) 
where erfc is the complementary error function, η is the similarity variable defined by 

 
2

y
t

η
ν

= , (7.129) 

y is the direction perpendicular to the plate, and t is the time. The shear stress at the plate 
(y = 0) given by this velocity profile is then 

 0U
t

ρμτ
π

= . (7.130) 

Thus, a viscous shear force is generated by the sudden acceleration of the plate. Note that 
this force does not arise from a steady-state boundary layer, such as the laminar flow past 
a flat plate. Also, it reaches its maximum right after the step change, and as time goes to 
infinity, it approaches zero. Now, a general temporal variation in plate velocity can be 
assumed to consist of a series of such step changes. The shear stress at the plate is then an 
accumulative effect of Eq. (7.130), which leads to the following expression (Crowe et al. 
1998) 

 
0

du
t dt dt

t t
ρμτ
π

′ ′=
′−∫ . (7.131) 

If the same principle is applied to the unsteady Stokes flow over a sphere, one obtains the 
expression for the history force as 

 ( )2

0

3
2

d
t dt

H pd dt
t t

πρμ ′ −
′= −

′−∫
v u

F . (7.132) 

In Maxey’s formulation (Maxey and Riley 1983), a Faxen-type term is also added: 

 
( )1 2 2

242

0

3
2

d
t pdt

H p

d
d dt

t t
πρμ ′ − − ∇

′= −
′−∫

v u u
F . (7.133) 

 
By Eq. (7.132) or (7.133) the “historical” nature of this term is evident; the value 

of FH is a function of the acceleration history up to the present time, and it decays as t−1/2. 
Note that the history force, in contrast to the steady-state drag mentioned in Section 7.5.2, 
is essentially an unsteady drag force associated with the unsteady motion of the particle 
in a viscous medium. Also, a different but equivalent notion of this history integral 
suggests that it arises due to the temporal diffusion of vorticity around the particle surface 
with the decay rate proportional to t−1/2 (Clift et al. 1978).  
 

To make it clear, it is to reiterate that the unsteadiness of the relative velocity 
produces two main effects: a pure inertial (added-mass) effect and a viscous (history) 
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effect. In the Stokes regime, the linearity of the Stokes equation makes it possible to 
identify unambiguously the added-mass and history force as two separate forces. At finite 
particle Reynolds numbers, however, the distinction between the two is unclear, because 
various mechanisms can act in a coupled manner (Magnaudet and Eames 2000); as such, 
this decomposition of the unsteady forces can only be viewed in an empirical fashion. 
 

Examples showing significance of the history force are particle falling under 
gravity through still fluid from an initial state of rest, and particle suspended in a fluid 
oscillating uniformly at high frequency (Maxey and Riley 1983). In both cases, the 
history force is important owing to the strong unsteadiness of the relative velocities. For 
the latter example, (Maxey and Riley 1983) pointed out that the fluid oscillation limit the 
diffusion of vorticity around the sphere and confine it to a thin Stokes layer. Thus, 
effectively, the history force gives an augmented (total) drag force. Additional studies 
(Rizk and Elghobashi 1985; Thomas 1992; Armenio and Fiorotto 2001) also show that 
the unsteady history force can be many times larger than the quasi-steady drag. 
 

One must realize that although the history term can be important in some 
situations, the evaluation of this term is often difficult. A novel way of computing this 
force has been proposed by (Michaelides 1992; Vojir and Michaelides 1994), which 
utilizes the Laplace transformation. On the other hand, the neglect of this term brings 
significant computational conveniences in the point-volume Lagrangian approach, as 
long as a sound justification exists.  

 
In general, the history force becomes important when there are strong fluid 

accelerations at particle convective time scales on the order of dp/vrel (Loth 2000). In a 
turbulent flow, the acceleration can be characterized by the turbulent energy fluctuations 
u’ at the dp-wavelength. If  
 ' relu v , (7.134) 
the unsteadiness is comparably small with respect to the particle relative velocity, and the 
history force can therefore be assumed to be negligible. In the case of dp/Λ << 1, the 
criterion given in (7.134) typically holds. In the laminar flow, the history effects is 
likewise insignificant if dp/L << 1, where L is the characteristic length scale related to the 
flow geometry, e.g., the pipe diameter. It is important to note that, theoretically, the 
history force in the form of Eq. (7.132) or (7.133) is only valid at the creeping flow 
regime, i.e., Rep << 1. At Reynolds number greater than one, the actual history force is 
expected to be smaller than the result from Eq. (7.132) or (7.133). This point is discussed 
by (Mei et al. 1991), who used a resolved-volume approach and showed that the 
integration kernel behaves as t-1/2 only for short times and decays at a much faster rate (as 
t-2) at larger times and Reynolds numbers. For these reasons, the history force of a 
microscopic air bubbles is typically neglected. This is also experimentally confirmed by 
the study of (Sridhar and Katz 1995), in which Eq. (7.132) was used as an upper limit of 
the actual history force for a 707μm microbubble, and it was found that this force is 6% 
less than the buoyancy force. 
 

Other criteria have also been proposed for different flow regimes. According to 
(Hjelmfelt and Mockros 1966, 1967), the history term is insignificant if ν/ωdp

2 > 36 for 
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solid particles with γρ ~ 10-3 suspended in an oscillating flow. This is further 
approximately confirmed by (Vojir and Michaelides 1994), who showed negligible 
history effect if γρ > 0.002 and ωτp < 0.5. For very buoyant particles of Stokes number 
near unity and high Froude numbers (e.g., relatively large bubbles in high convective 
flows), this term can be important (Mei and Klausner 1992; Loth 2000). But as long as 
time-averaged or integral quantities are of interest, it is again possible to neglect this term 
(Vojir and Michaelides 1994; Loth 1997; Armenio and Fiorotto 2001).  
 
 
7.5.7. Wall Effect 
Particle-wall interaction can be important for boundary layer flows and wall-bounded 
flows. It is well observed that in such flow configurations high concentrations of solid 
particles (Basset 1888b; Young and Hanratty 1991; Kaftori et al. 1995; Young and 
Leeming 1997) as well as gas bubbles (Zun et al. 1992; Liu and Bankoff 1993; 
Nakoryakov et al. 1996; Marie et al. 1997; Riviere et al. 1999; Felton and Loth 2001) can 
be produced very near the wall, i.e., on the order of particle diameter. The wall-peaking 
phenomenon is generally due to the modified continuous-fluid resistance in the proximity 
of the wall. However, its exact cause is not quite clear yet. 
 
 The effect of wall is commonly taken into account by either modifying the drag 
and lift coefficient in their respective force expressions, or introducing an additional wall 
force. For Stokesian flow (Clift et al. 1978) obtained an analytical correction for the drag 
factor under the assumption that the particle diameter is much smaller than the distance 
from the wall. As such, the drag factor should be considered a vector, which can be 
decomposed into components tangential and normal to the wall, respectively: 

 1 9 1 91 , 1
32 16

p p

tang norm

d d
f f

f y f y
⎛ ⎞ ⎛ ⎞

= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (7.135) 

where f is the standard drag factor defined in Eq. (7.88), ftang and fnorm are drag factor 
corrections in wall-parallel and wall-normal directions, respectively, y represents the 
normal distance away from the wall. Thus, the drag coefficient, CD, can be modified as 
 , ,,D tang tang D D norm norm DC f C C f C= = . (7.136) 
  
 While Clift’s approximation assumes dp << y, (Young and Hanratty 1991) 
proposed another drag factor correction for the situation when the particle position from 
the wall becomes on the order of the particle diameter. Their expression is based on a 
resolved-volume simulation under the Stokesian flow condition, and it reads 
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p

d yf f
y d

−
⎛ ⎞⎛ ⎞

= + = + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
. (7.137) 

Similarly, CD should be changed according to Eq. (7.136). 
 
 Instead of modifying the drag force, (Soo 1989) formulated a hydrodynamic wall 
interaction model in terms of a separate wall force, FW. The derivation is for solid 
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spherical particles and it is based on the potential flow theory. Again, the wall force is 
decomposed into a tangential component and a normal component: 
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 (7.138) 

 
 For bubbles, (Tsao and Koch 1997) conducted an experiment on relatively large 
bubbles (with radii of 0.5 - 0.7 mm) rising along an oblique wall at high Rep (in the range 
of 45 - 200). Their results indicate that the drag coefficient in the bubble sliding direction 
is consistent with that of the contaminated formula given in Eq. (7.93) or (7.92), 
suggesting ftang ≈1. This is attributed to the thin lubrication film formed between the 
bubble and the wall, which appears to counterbalance the enhanced drag force due to the 
wall proximity (Loth 2000). 
 
  With regard to the wall correction for the shear lift force, limited information is 
available in the open literature. For small solid particles (Wang et al. 1997) formulated an 
“optimum” lift force, which compiles many previous results (mainly of (Saffman 1965, 
1968; Cox and Hsu 1977; Vasseur and Cox 1977; McLaughlin 1991, 1993)). The 
application of the resulting formula (or formula collection) appears not to be very 
straightforward. Although no direct measurements of the wall influence on the lift force 
can be found, one do notice that there exist the lift reversal effect (where lift decrease and 
change its sign as the particle moves towards the wall), and the wall-peaking phenomena, 
which may be attributed to the modified lift force. 
 
 
7.5.8. Assemblies of Forces 
The forces described in the previous sections have different level of significance when 
applied to different particle types. Even for the same type of particle, different flavors 
exist in selecting significant forces and their respective expressions. In this subsection the 
classical assemblies of those forces are summarized. It is to stress that the superposition 
of different forces should be understood as a modeling approach with the assumption that 
the nonlinear interaction between different types of forces is insignificant. 
 

In the very early stage of the work, (Boussinesq 1885) and (Basset 1888a) 
independently derived the equation of motion for a sphere moving in a stagnant fluid or a 
fluid of uniform velocity at the creeping flow condition. Their equation includes the 
steady-state drag, the added-mass force and the history integral: 

 ( ) ( )2

0

1 3
2 2

d
t dt

p D fr rel rel A f p
d dm C A C m d dt
dt dt t t

ρ πρμ ′ −
′= − − − −

′−∫
v uv v v v u . (7.139) 

Substituting the Stokesian CD expression (Eq. (7.88)) and geometric information of a 
sphere, Eq. (7.139) becomes 
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The well-known and widely used Basset-Boussinesq-Oseen (BBO) equation for 

solid particles or droplets is an extension of Eq. (7.140), in which the gravity and fluid-
stress force are added: 
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 (7.141) 

where τ is the viscous stress tensor of undisturbed flow. Note that here the buoyancy 
force is implicitly represented in the -∇p term, as p includes both dynamic and static 
pressure. 
 
 It is beneficial to know that the equation proposed by (Corrsin and Lumley 1956) 
is very similar to the BBO equation. However, in their formulation they only considered 
the pressure stress, and did not include the viscous fluid-stress effect. Their equation 
reads: 
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where 

 dyn
D p p
Dt

ρ ρ= −∇ + ∇ ⋅ + = −∇ + ∇ ⋅
u τ g τ . (7.143) 

It is noticed that in the above formulation the static pressure (buoyancy) is excluded from 
the pressure stress term, and combined with the particle gravity. 
 

The BBO equation (7.141) and Eq. (7.142) underwent a landmark revision made 
by (Maxey and Riley 1983). They rigorously derived the equation of motion for small 
particles valid in the limits of dp << η, dp

2/ν << τη, Rep << 1. The viscous fluid-stress 
force missing in Eq. (7.142) is corrected, and the steady-state drag, added-mass and 
history term in Eq. (7.141) are complemented with additional Faxen corrections:  
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 (7.144) 

Again, in (Maxey and Riley 1983)’s expression, the buoyancy force is represented in the 
gravity term. Notice that the Faxen corrections associated with the added-mass, the 
history and drag force are on the order of dp

5, dp
4 and dp

3, respectively. Although the 
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correction to the drag term is O(dp
3), it is O(dp

2/8) compared to the rest of the drag term. 
Therefore, in practical use, these corrections are often neglected. Thus one writes 
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It is not difficult to see that Eq. (7.145) and the BBO equation are identical. 
 
 For light particles, such as air bubbles, the most significant forces are buoyancy, 
drag, lift, and added-mass forces. It is always a good idea to also include the fluid-stress 
force and history force. Although gravity force is negligibly small in this case, it will not 
hurt to put it together with the buoyancy. Note that the added-mass must be included for 
light particles because otherwise the drag is balanced only by buoyancy, and as a result, 
the calculated particle relaxation time will not be accurate. Given these, the equation of 
motion for light particles can be expressed as follows, where the lift force is adopted from 
the Auton’s shear-induced analytical lift, i.e., Eq. (7.110): 
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One may further split the added-mass term and combine the resulting two terms into the 
particle acceleration term on the LHS and the fluid stress term on the RHS, respectively. 
If the history force is neglected, the following equation is obtained 
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Dividing both sides by (mp + CAmf) and assuming a spherical bubble yields the reduced 
form of the bubble equation of motion: 
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where γρ = ρp / ρ is the density ratio. For an air bubble in liquid γρ is negligibly small. 
Further taking CA to be 0.5 for a sphere one arrives at a simpler expression: 

 32 3 2
2 D rel rel L rel

p

d D C C
dt Dt d

= − + − − ×
v ug v v v ω . (7.149) 

Eq. (7.149) is used, for example, in the study of (Magaud et al. 2003). 
 

(Sridhar and Katz 1995) also summarized the forces for microscopic bubbles but 
with the lift force taking the form of Eq. (7.111): 
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In this situation the reduced form of bubble equation gives 
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or equivalently, 
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Note that Eq. (7.152) is the same as (7.149) except for the lift force expression. Also, CL 
= 0.5 if the fluid is inviscid. 
 
 In the framework of the point-volume approach, the particle equations of motion 
presented above can serve as reasonably accurate model. Their respective applicability 
mainly depends on the type of particle and flow configurations. It should be emphasized 
that most of the force terms in those equations are derived at low Rep limit, and the 
particle length and time scales must be smaller than the characteristic scales of the flow. 
In a turbulent flow, the latter condition asks dp < η and dp

2/ν << τη. When this restriction 
is not satisfied, these equations can however still serve as an approximate model, but 
caution must be taken when interpreting the simulation results. 
 
 
7.5.9. Bubble Terminal Rise Velocity and Relaxation Time 
A straightforward application of the bubble equation is the computation of the terminal 
rise velocity of the bubble, v∞. For steady motion of a bubble in a quiescent fluid, all the 
unsteady forces as well as the lift force will be canceled out, only the buoyancy and 
steady-state drag force remains, which must be in balance, i.e., 

 230 2
2 D

p

g C v
d ∞= − , (7.153) 

where g is the gravitational constant. By assuming Stokes drag coefficient the following 
estimate for the terminal rise velocity is obtained: 
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pgd

v
ν∞ = . (7.154) 

Notice that this result is identical to Eq. (6.35) derived in the buoyant settling section 
(Section 6.3). For a handy reference, which can be useful in this study, the terminal 
velocity and the terminal Reynolds number of an air bubble in water are plotted with 
respect to bubble diameter in Figure 7-4 (a) and (b). For representative bubble diameters, 
the corresponding terminal values are also listed in Table 7-3. Note that the calculated 
values are based on ν = 1.E-6 m2/s for water and ρp = 1.2 kg/m3 for air bubble.  
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 (a) (b) 

Figure 7-4 Bubble terminal rise velocities and terminal Reynolds numbers 

 
Table 7-3 Bubble terminal rise velocities, terminal Reynolds numbers and relaxation time 

Particle  
diameter 

Terminal rise  
velocity (m/s) 

Terminal Reynolds 
number Relaxation time (s) 

1 μm 5.450E-7 5.450E-7 2.784E-8 
10 μm 5.450E-5 5.450E-4 2.784E-6 
100 μm 5.450E-3 5.450E-1 2.784E-4 
500 μm 1.363E-1 6.813 E-1 6.961E-3 
1 mm 5.450E-1 5.450E2 2.784E-2 
2 mm 2.180 4.360E3 1.114E-1 

 
 

Another application is the calculation of effective bubble relaxation time. The 
relaxation time defined by 
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(also see Eq. (6.18) or (7.3)) is derived only based on the particle response to the drag 
force. Therefore, this definition is usually used for solid particles or droplets in a γρ >> 1 
flow, where the drag is the dominant force. For bubbles in liquid, the buoyancy and 
added-mass force are important. As such, an estimate of the effective bubble relaxation 
time can be obtained from the following simplified bubble equation: 

 ( ) ( ) 3p
p A f p f p p

dv
m C m m m g d v

dt
π μ+ = − − − , (7.156) 

where the Stokes drag is again assumed. Thus, it is easily seen  
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In fact, Eq. (7.157) is a generalization of Eq. (7.155), and this point has already been 
mentioned in Eq. (7.4). For convenience, the bubble relaxation times calculated from Eq. 
(7.3) are also included Table 7-3. 
 
 
7.6. Two-way Coupling 
This section concerns two-way coupling formulations for a two-phase flow system. The 
two-way coupling involves the forward coupling from fluid to particles, and the 
backward coupling from particles to fluid. It may take different modeling formalism, 
depending on the simulation approach, i.e., Eulerian-Eulerian (E-E) or Eulerian-
Lagrangian (E-L), and the level of description of the continuous phase, i.e., DNS, LES or 
RANS. 
 

For a “true” direct numerical simulation (DNS) of two-phase flow, where the 
phase interfaces are resolved and tracked, the two-way interaction is automatically taken 
care of in its solution; no two-way model needs to be introduced. Often times, DNS is 
used for the solution of the continuous carrier phase only, while the discrete phase is 
computed relying on some simplified approach, typically the point-volume approach. In 
order not to cause confusion, such a single-phase DNS can be referred to as quasi DNS (a 
term invented by the present author) in the context of multiphase simulation. In a quasi 
DNS the two-way coupling effect needs to be addressed. 
 
 
7.6.1. A Simplified Two-way Model from Two-fluid Approach 
Under the class of Eulerian-Eulerian (E-E) method the mixed fluid approach and the two-
fluid approach have been discussed in previous sections (cf. Section 7.4.1 and 7.4.2). 
Two-way coupling in the mixed-fluid approach is achieved via void fraction and possibly 
a slip term in the mixture momentum equation (see Eq. (7.66)). In the two-fluid approach 
volume-averaged mass and momentum equations are obtained for each phase. Phases are 
coupled not only through the void fraction, but also the interaction integrals as a result of 
the volume averaging operation in the respective mass and momentum equations (see Eq. 
(7.60) and (7.61)).  
 

In this subsection the aim is to understand the analysis of a simplified two-way 
coupling model discussed in (Rightley 1995; Rightley and Lasheras 2000). Though the 
model is derived from a two-fluid formulation for buoyant particles (air bubbles) in a 
dilute system, it does provide useful insight that would benefit later discussions on the 
two-way model in the E-L approach (to be presented in Section 7.6.3). In what follows, 
effort is made to recap their analysis, but with some proper rearrangements, modifications 
and supplements. 
 
 Here, one starts with the volume-averaged equations of two immiscible fluids 
given by Eq. (7.62) through (7.64). In the dilute limit, the void fraction of the continuous 
phase approach unity, the equation set for the continuous phase thus can be simplified as 
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 0∇ ⋅ =u , (7.158) 

 
D

Dt
ρ ρ= ∇ ⋅ + +

u
T g I , (7.159) 

where 
 ( )Tp μ= − + ∇ + ∇T I u u , (7.160) 

 1
S

dS
V

= ⋅∫ T nI . (7.161) 

Note that the operator 〈 〉 denotes a volume-averaged quantity, and I is the interphase 
exchange term. For a dilute system, the influence of the dispersed phase on the 
continuous phase can be assumed relatively weak. Thus, the ambient carrier phase flow 
field in the region near an individual particle is governed by 

 D
Dt

ρ ρ= ∇ ⋅ +
u T g , (7.162) 

or expressed on the mesoscale as 

 
D

Dt
ρ ρ= ∇ ⋅ +

u
T g . (7.163) 

This is known as the weak two-way coupling, meaning the coupling is important only at 
those locations where the particles reside. 
 

Recall that (Section 7.5) the forces acting on an individual mircoparticle (dp << η) 
can be decomposed into forces due to the undisturbed flow Fp

(0), forces due to the 
disturbed flow Fp

(1), and the particle gravity: 

 (0) (1)
p p p p p

dm m
dt

= = + +
v F F F g . (7.164) 

Further recall that the buoyancy force and the fluid stress force are in Fp
(0), while the 

other forces except the gravity belong to Fp
(1). Taking the bubble equation (7.146) as an 

example, its RHS forces may be decomposed as follows: 

 (0)
p f f

Dm m
Dt

= − +
uF g , (7.165) 
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 (7.166) 

Some general remarks should be made at this point: (i) Since the derivation of these 
forces is based on the microscale, so the decomposed ones; (ii) The forces resulting from 
the disturbed flow are due to the relative motion between the particle and the carrier fluid. 
(iii) As explained in Section 7.5, Fp

(0) is in fact the fluid stresses that would act upon the 
spherical inclusion of a fluid element in place of the particle. Therefore, Fp

(0) simplify 
refers to the T term in Eq. (7.162), or 〈T〉 in Eq. (7.163) on the mesoscale, suggesting that 
this force has already been included in the standard momentum equation of the carrier 
phase. A direction implication is then that, in the weak two-way coupling limit, the 
balance equation of the carrier phase at the location of a particle must include an 
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additional term which counterbalances the forces arising from the disturbed flow, i.e., the 
Fp

(1). As a result, the momentum equation for the carrier phase under the influence of an 
individual particle can be written on the microscale as 

 ( )(1) ( )n n
p

D
Dt

ρ ρ δ= ∇ ⋅ + − −
u T g F y x y , (7.167) 

where δ is the three-dimensional Dirac delta function that isolates -Fp
(1) at the particle 

location yn. Note that the delta function has the unit of reciprocal volume (reciprocal 
length cubed), so that the resultant unit of the coupling term is N/m3. The consistent 
mesoscale-averaged form of the momentum transfer integral comes from averaging over 
all the particles in the mesoscale volume V, 
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δ
=

= −∑∫ F y x y xI , (7.168) 

where yn is the location of the nth particle, yn ∈ V; N is the number of particles within V, 
and F(yn) is the reacting force exerted by the nth particle on the fluid, i.e., 
 (1)( ) ( )n n

p= −F y F y . (7.169) 
Eq. (7.168) can be further reduced using the properties of the delta function: 
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 (7.170) 

This yields the following instantaneous volume-averaged momentum equation for the 
carrier phase valid in the entire domain and including the influence of all particles in the 
domain: 

 ( , )
D

t
Dt

ρ ρ= ∇ ⋅ + +
u

T g xI , (7.171) 

with 
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V V= =

= = −∑ ∑
x x

x F y F yI . (7.172) 

It is important to note that arriving at Eq. (7.172) is based on a series of assumptions by 
taking advantage of the unique configuration of a dilute, dispersed system of micro-
particles. 
 
 For the case of massless particles, such as air bubbles, the particle inertial is 
negligible and Eq. (7.164) becomes 
 (0) (1) (1) (0)0 orp p p p= + = −F F F F . (7.173) 
By substituting Eq. (7.173) into (7.172) and noticing that  
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one arrives at a simplified two-way coupling model for a dilute bubbly flow: 

 d

D D
Dt Dt

ρ ρ α ρ ⎛ ⎞= ∇ ⋅ + + −⎜ ⎟
⎝ ⎠

u uT g g , (7.175) 

where αd is the void fraction of the dispersed phase, and ρ is the density of the 
continuous phase (ρ and ρc are used interchangeably in this text). 
 

As noted by (Rightley 1995; Rightley and Lasheras 2000), this result (Eq (7.175)) 
for a dilute bubbly flow is similar to that given by (Maxey et al. 1994), and it also 
resembles, with the exception of the fluid stress term Du/Dt, that derived by (Reutsch and 
Meiburg 1994), in which only the buoyancy coupling is considered. Notably, by omitting 
the fluid stress term in the coupling expression, it reminds us of a buoyancy-driven fluid 
of variable density under the Boussinesq approximation. The Boussinesq approximation 
(Turner 1973) assumes that density variations are small enough so that the density 
appears as a constant in all terms except the buoyancy term. However, the density (or 
temperature) field in a buoyancy-driven flow is determined by a scalar transport equation, 
whereas for the two-phase bubbly flow the mixture density ρm is a function of the void 
fraction, as 
 ( )1m c c d d c c d cρ α ρ α ρ α ρ α ρ= + ≅ = − . (7.176) 
 
 
7.6.2. Forward Coupling in E-L Approach 
Next, consider the two-way coupling in the framework of Eulerian-Lagrangian (E-L) 
approach where the discrete phase is calculated using the point-volume assumption. In 
that, the forward effect of fluid on particle and the effect in the reverse direction must be 
addressed separately. The forward coupling is considered in this present section, while 
the backward coupling will be addressed in the next subsection. Again, the dispersed 
system considered here (and in this study) is dilute, meaning that the particle 
concentrations are dilute enough for the particle-particle interaction to be neglected, but, 
if the turbulence modulation of the carrier phase is of interest, also large enough for 
cumulative effects of particles to influence the carrier flow. Also note that, if only the 
forward coupling is considered without the account of the backward influence, the 
problem then reduces to a one-way coupling problem. 
 

With respect to the forward coupling from the carrier phase on the dispersed 
phase, it is simply realized through the equation of motion of the point mass (Eq. (7.71) 
and (7.72)). The models for the forces, Fp, have been reviewed in Section 7.5. In general, 
the RHS of Eq. (7.72) is a function of particle position, velocity and local properties of 
the continuous phase, such as fluid velocity, stress and vorticity. If the continuous phase 
is computed using single-phase DNS (or quasi DNS), the fluid properties made available 
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by the DNS solution are instantaneous and can be directly used in the evaluation of RHS 
of Eq. (7.72). This has been the standard approach in the study of many one-way coupled 
problems. Some representative one-way coupled DNS have been performed for isotropic, 
homogeneous turbulence (Squires and Eaton 1991b, a; Elghobashi and Truesdell 1992; 
Wang and Maxey 1993), turbulent channel flows (McLaughlin 1989; Pdeinotti et al. 
1993), and plane mixing layer (Crowe et al. 1977; Crowe et al. 1985). 
 

However, if LES or RANS is used for the primary phase calculation, the solved 
continuous field, available to the particle calculation, is either filtered or time-averaged. 
As such, in order to accurately describe the particle dispersion or diffusion induced by the 
background turbulent flow, a model may have to be introduced, which accounts for the 
subgrid scale fluctuations (in LES), or the instantaneous fluctuations (in RANS). Three 
common approaches are: (i) adding a modeled fluctuation, u’, to the continuous velocity 
field, u, before using it in Eq. (7.72), i.e., 
 * '= +u u u , (7.177) 
where u* is to be used for particle integration; (ii) adding a modeled fluctuation directly 
to the computed particle velocity or particle trajectory, i.e., 
 ' or '= + = +v v v y y y ; (7.178) 
(iii) adding a modeled force, Fp,fluc, to the RHS of Eq. (7.72), representing particle’s 
random motion due to unresolved flow fluctuations:  

 ,p p p fluc
dm
dt

= +
v F F . (7.179) 

Note that Eq. (7.179) is similar in form to the Langevin equation.  
 

Obtaining those unknown fluctuations usually falls into the general category of 
stochastic modeling. See (Crowe et al. 1996; Crowe et al. 1998) for a general review. 
Three models in category (i) are worth mentioning. First, the eddy lifetime model selects 
u’ from a Gaussian distribution with a variance proportional to the turbulence energy, and 
assumes the fluid velocity u* encountered by a particle is constant during the eddy lift 
time. The model is originally proposed by (Yuu et al. 1978) and later improved by 
(Gosman and Ioannides 1981) and many others working along this line. Second, a 
random flow generation (RFG) technique developed by (Smirnov et al. 2002) based on 
the idea of (Kraichnan 1970) may be used to produce a random velocity fluctuation field 
which satisfies continuity. A principle drawback in RFG is that the generated random 
field cannot reflect local turbulence features, such as TKE, which is crucial in properly 
driving the particle’s local randomness. Third, (Wang and Squires 1996a) modeled their 
SGS fluctuations by solving a transport equation for the SGS kinetic energy. Examples in 
category (ii) are (Dukowicz 1980; Smith et al. 1981), and an example in category (iii) is 
(Fukagata et al. 1997).  
 

Any additional modeling will introduce extra inaccuracy and uncertainty. It is the 
author’s belief that an empirical model should be employed when it has to be and should 
be avoided whenever the situation allows. In a RANS, modeling the particle fluctuating 
velocity is a must, because the mean flow field provided by the RANS is generally too 
“numb” to reproduce the physical behavior of particle’s random motion. However, when 
LES is used for the continuous phase calculation, the effect of SGS fluctuations on the 
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particle random motion could be insignificant (Armenio et al. 1999). They found from a 
systematic investigation for particles with and without inertia that, in a statistical sense, 
the particle dynamics is mainly governed by large-scale, energy-carrying fluid motion, 
and is not very sensitive to small-scale velocity field. Further, when the filter width is 
small, the particle dispersion statistics obtained with the filtered field from DNS data and 
with the DNS field are very close, with the maximum difference being less than 8%. In a 
wall-resolving LES, using the filtered velocity field to advance the particles in time yields 
satisfactory results. In particular, when the dynamic model is employed, the modeling 
errors do not affect the particle statistics as mush as the filtering itself. Nevertheless, 
inaccuracy can occur when a significant percentage of energy is removed from the 
velocity field, for example, due to insufficient resolution of the LES in the wall layer. 
(Armenio et al. 1999)’s general conclusion is that a “careful” (in terms of grid resolution 
and SGS model) LES can provide fairly accurate particle statistics. The findings of 
(Armenio et al. 1999) are also partially supported by some earlier studies of (Yeh and Lei 
1991; Elghobashi and Truesdell 1992; Wang and Squires 1996b; Yang and Lei 1998) 
with a focus on finite-inertia particles. For example, (Elghobashi and Truesdell 1992)’s 
DNS results suggest that the inertia makes the particle less sensitive to the small-scale 
fluctuating velocity field. (Wang and Squires 1996b) shows negligible effect of SGS 
fluctuations on the dispersion and deposition in a particle-laden turbulent channel. (Yang 
and Lei 1998) investigated particle’s settling velocity in homogeneous isotropic 
turbulence, they conclude that the large, energy-carrying scales are the controlling 
parameter of the settling velocity. Based on the above considerations, the present study 
chooses not to introduce a SGS fluctuation model for the particle trajectory calculation. 
However, when the particle dynamics in the wall region is of importance, special 
treatment would be necessary; this can be achieved, for example, through the modeled 
wall force detailed in Section 7.5.7. 
 
 
7.6.3. Backward Coupling in E-L Approach: Force Coupling 
In general, the influence of the presence of the particles on the fluid motion has not yet 
been fully understood. For example, in a DNS study of bubble columns (Esmaeeli and 
Tryggvason 1998, 1999) it is found that the velocity fluctuation of the carrier phase may 
increase with the number of bubbles, and eventually produce a wavelength smaller than 
the bubble diameter. There also exist extensive discussions on the role of the solid 
particles in modulating the carrier phase turbulence. It appears that the addition of 
particles may either increase or decrease the turbulent kinetic energy of the continuous 
phase. Although some observations suggest “large” particles enhance turbulence, 
whereas “small” particles suppress turbulence (Gore and Crowe 1989; Hetsroni 1989), 
the particle size may not be the only cause (Pan and Banerjee 1996). 
 

As mentioned earlier, the ideal approach to account for the reverse coupling 
would be the volume-resolving DNS, which resolves fully the disturbance flow generated 
by each particle, such as the wall boundary layer and the wake around the particle 
surface. However, such an approach is rarely feasible in most practical applications 
where the particle dimensions are below the resolution scale of the unladen turbulent 
flow calculation, or, the number of particles to be tracked is large. The approximate 
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point-volume Lagrangian approach has found its wide acceptance in calculating the 
particulate phase. Based on the information gained from the point-volume Lagrangian 
tracking, simplified representations must also be introduced to approximate the reverse 
influences. This becomes the central task in this subsection. In particular, the 
investigation of the reverse coupling in a large-eddy simulation for the continuous phase 
is one of the core parts of the entire study.  

 
An important feature to be reproduced by a reverse coupling model is the 

cumulative effects of particles on the carrier phase flow, and further on the motion of 
individual particles. When the volumetric fraction of the particle phase is negligible, and 
the length (dp) and time (dp

2/ν) scales associated with the particle are smaller than or 
comparable to the Kolmogorov scales, one can represent the feedback mechanism of 
small particles on the flow by a set of point forces acting on the flow, each being the 
reaction force against the force of fluid on the particle. These point forces together form 
an interphase momentum exchange term in the Navier-Stokes equations of the carrier 
phase, 
 0∇ ⋅ =u , (7.180) 

 ( )D p
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ρ μ ρ= −∇ + ∇ ⋅ ∇ + +
u u g I , (7.181) 

where the force coupling term I can be expressed as 
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Fn being the resultant point force exerted by the nth particle on the fluid at the particle 
location yn, i.e., Fn ≡ F(yn), N the total number of particles in the domain, and δ the three-
dimensional Dirac delta function, satisfying 
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( ) 1

R
dδ =∫ x x . (7.183) 

Notice that the continuity equation is same as that of a single phase, as the direct effect of 
the particles presence on the continuity can be neglected in a dilute system. This form of 
coupling has already been seen in Eq. (7.167) in Section 7.6.1, and it has a sound 
theoretical support, so long as the required assumptions are met. In fact, this formalism 
has served as a fundamental assumption and starting point in deriving most coupling 
models in the two-fluid E-E approach, as well as in the E-L category. Work in the latter 
regard includes the classical non-volume-resolving DNS (Squires and Eaton 1990; 
Elghobashi and Truesdell 1993; Reutsch and Meiburg 1994; Maxey et al. 1997; Boivin et 
al. 1998; Sundaram and Collins 1999), some explorative LES (Wang and Squires 1996b; 
Boivin et al. 2000; Fukagata 2000; Yamamoto et al. 2001; Milelli 2002; Apte et al. 
2003b), and RANS or “laminar" two-phase flow simulations (Becker et al. 1994; Celik 
and Wang 1994; Hoomans et al. 1995; Delnoij et al. 1997a; Delnoij et al. 1997b; Kuo et 
al. 1997; Sokolichin et al. 1997). This present section primarily concerns the point-force 
based coupling used in (quasi) DNS, i.e., the N-S equations for the carrier phase is solved 
in its original form. The backward coupling is LES will be addressed in Section 7.8 and 
7.9. 
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In the interest of computation, the exact point-force coupling represented by Eq. 
(7.182) is neither possible, nor desirable. Variants based on Eq. (7.182) exist. An obvious 
choice is to integrate the coupling term over a computational cell of volume ΔV. This 
yields the following integral form of the coupling force: 
 v n

V
n V

dV
Δ

∈Δ

≡ = ∑∫F FI , (7.184) 

where Fv is used to denote the resultant force acting on a Eulerian grid node, or vertex v. 
Thus, it suggests that all the discrete forces enclosed by a computational cell will produce 
a cumulative forcing effect on the hosting cell (Figure 7-5). This is the so-called Particle-
Source-In Cell (PSI-Cell), or simply Particle-In-Cell (PIC) method, due to (Migdal and 
Agosta 1967), (Crowe et al. 1977), and (Crowe 1982). Notably, the original PSI-Cell 
implementation of (Crowe et al. 1977) is a little different from the current one in that the 
coupling source is calculated by tracking the momentum budge of particles into and out 
of the cell.  
 
 Instead of letting a point force be associated with just one cell, one may also 
assume that the influence of a point force is distributed over its surrounding Eulerian grid 
nodes according to a properly defined weighting (Figure 7-6). The weights used in the 
distribution operation can be based on cell volumes (or areas in 2D case) as in (Squires 
and Eaton 1990; Boivin et al. 1998), or on the distances between the particle and the 
surrounding nodes as employed by (Elghobashi and Truesdell 1993). For illustration, 
consider a two-dimensional grid. With reference to Figure 7-7, φ is a quantity given at the 
particle location, the four volume- (or area-) weighted Eulerian quantities, φ1 to φ4, can be 
calculated from 

 31 2 4
1 2 3 4, , , ,AA A A

A A A A
φ φ φ φ φ φ φ φ= = = =  (7.185) 
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The schematic of the distance-based weighting is depicted in Figure 7-8. The formula for 
the inverse-distance-weighted distribution (Shepard 1968) is given by 
 , 1, 4i iw iφ φ= =  (7.187) 
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where d1 to d4 are distances between the particle and the corresponding Eulerian grid 
nodes, p is an positive real number called the power parameter, and typically p = 2. Note 
that the distribution process can be interpreted more generally as a reverse interpolation. 
It is recommended (Sundaram and Collins 1996) that the reverse interpolation should use 
the same scheme as the forward one. This methodology was then adopted, for example, 
in the turbulence modulation study of (Sundaram and Collins 1999), where a third-order 
Lagrangian polynomial was used for both forward and backward interpolations. 
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Nevertheless, a problem it faces is that using a higher order interpolation in the reverse 
direction causes unphysical “spreading” of the assumed point force. These points will be 
discussed in more detail in Section 7.7. 
 

Now, look at a Eulerian grid node v. The resultant coupling force acting on the 
node, denoted by Fv, is an accumulation of a portion of each point force, whose location 
is near v. Mathematically, this can be written as 
 

'
proj( )v n

n V∈Δ

= ∑F F . (7.189) 

where proj denotes a projection operation that takes part of Fn and gives it to Fv, V’ is the 
region confined by the dotted lines in Figure 7-6. Thus, Fv can be contributed by a 
particle not only from inside the computational cell ΔV, but also from a nearby one.  
 

It is seen, the first method (7.184) requires a summation operation within each 
cell, while the second method (7.189) involves force distribution and then summation. 
(Boivin et al. 1998) evaluated the two approaches with a statistically stationary flow, and 
found that the second method is much superior over the first one, in terms of recovered 
initial kinetic energy and accuracy in the high-wave number spectrum. Also, with regard 
to the second method, (Boivin 1996) compared the two distribution scheme explained 
above (i.e., the volume-weighted and the distance-weighted), and found that both yield 
similar results.  
 

Another method to deal with the numerical representation of the point force is 
proposed by (Maxey et al. 1997), in which the δ-distribution of the point force (cf. Eq. 
(7.182)) is modified into a numerically resolvable envelope function, g, centered at the 
particle location, yn. With that,  
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A suggested envelope function is the three-dimensional normal distribution 
 2 3/ 2 2 2(| |) (2 ) exp(| | / 2 )g πσ σ−=x x , (7.191) 
satisfying 
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R
g d =∫ x x . (7.192) 

thus, the dominant influence region of the point force is controlled by adjusting the 
dispersion parameter, σ , relative to the grid spacing. The formulation given by Eq. 
(7.190) can be thought of as a generalization of (7.182), as the g-function can be the delta 
function, Eq. (7.191) or some other well defined envelops. 
 
 Recall that in Section 7.4.4 the parcel concept has been reviewed, in which a 
computational particle is allowed to represent a group of particles, usually of the same 
type and properties. With this method a large statistical sample size can be achieved on 
limited computational resources. For simplicity, assume a constant parcel size, and each 
parcel contains same number of particles. As such, the backward coupling incorporating 
the parcel representation can be simply extended from Eq. (7.182) as 
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where Np is the total number of computational particles, np the constant parcel size. Thus, 
the total number of actual particles considered is Np × np. Often, it is convenient to 
express np in terms of volume fraction, α, for bubbly flows, or mass loading, φ (= αρd / 
ρc), for flows involving heavy particles. These yield, respectively, 
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 Next, we ask the question: what point forces should be accounted for in the Fn 
term. As mentioned earlier, Fn is a resultant force in reaction to the hydrodynamic forces 
that the nth particle takes from the fluid. This suggests that Fn should stem from some of 
those forces addressed in Section 7.5. To this end, different blending and flavors can be 
found in the literature, depending on the particle type and the flow problems being 
studied. For solid particles with density large compared to the fluid density, typically 
included in the Fn is the drag force, as in (Squires and Eaton 1990; Boivin et al. 1998; 
Sundaram and Collins 1999). For example, (Sundaram and Collins 1999) used the 
following expression for Fn: 
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−
≡ − =
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where vn is the instantaneous velocity of the nth particle, u(yn) is the fluid velocity 
evaluated at the particle location yn, τp the particle response time defined in Eq. (7.3). 
Note that Fn is always the opposite of that applied to particle by the fluid, therefore, Fn = 
- Fn

D. In the study of (Elghobashi and Truesdell 1993), more interaction forces are 
included: 
 ( )n n n n n

D S A H≡ − + + +F F F F F . (7.197) 
(Reutsch and Meiburg 1994) investigated the buoyancy coupling effect of bubbles on a 
free shear layer, and his buoyancy-coupling term is expressed as 
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where αd is the local void fraction of the dispersed phase. 
 

At this point, one may wish to recall the derivation presented in Section 7.6.1, 
which utilized (Maxey and Riley 1983)’s decomposition of forces into Fp

(0) (forces 
arising from the undisturbed flow), Fp

(1) (forces arising from the disturbed flow), and 
gravity. An important piece of information it conveyed is that only the forces due to the 
disturbed flow, i.e., the Fp

(1), will constitute the interphase momentum transfer. Albeit 
derived in the two-fluid setting, the concluded principle is equally applicable to the two-
way coupled E-L approach. In light of this, the coupling forces for a dilute bubbly flow 
may be written down as 
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D L A≡ − + +F F F F  (7.199) 

with only the history effect being neglected. 
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Figure 7-5 Schematic of Particle-Source-In Cell (PSI-Cell) method. 
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Figure 7-6 Schematic of PSI-Cell method with force distribution. 
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Figure 7-7 Schematic of area- or volume-weighted distribution of a quantity defined at the particle 

location. 
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Figure 7-8 Schematic of inverse-distance-weighted distribution of a quantity defined at the particle 

location. 

 
 
7.6.4. Backward Coupling in E-L Approach: Velocity Coupling 
Notice that the backward-coupling formalism presented above rests on the point force 
assumption. The expression of the point force is interpreted as a reaction force to the 
force acting on the particle. This coupling mechanism is often termed force coupling, and 
is by far the most widely used method to account for the particle influence on the carrier 
phase. On the other hand, by noticing that the particle presence is essentially to generate 
the locally disturbed flow, (Pan and Banerjee 1996) proposed an alternative approach 
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which uses a velocity coupling instead of the force coupling. In this approach, the 
Stokesian flow around the particle is assumed so that a local disturbance velocity field, 
u , can be analytically obtained:  

 
2

23 1
8 24

p
p rel

d
d

⎛ ⎞
= ⋅ + ∇⎜ ⎟⎜ ⎟

⎝ ⎠
u v O , (7.200) 

In the above equation, O is the Oseen tensor defined as 

 3

1 1 ( )( )ij i j j jx y x y
r r

δ= + − −O , (7.201) 

where r is the distance between x and the particle location y. Eq. (7.200) satisfies the 
following Stokes equations: 

 
2

2 2( ) ( ) 0,
4

pd
p μ δ δ−∇ + ∇ + − + ∇ − =u F x y F x y  (7.202) 

 0∇ ⋅ =u , (7.203) 
where p  is the disturbed pressure field, and F the point force acting on the fluid by the 
particle. Similar to u , an analytical expression also exists for p  (Kim and Karrila 1991). 
The backward coupling effect is again based on the point force assumption. The point 
forces here are represented by the monopole and degenerated quadrupole, i.e., the last 
two terms on the LHS of Eq. (7.202). Hence, instead of putting the point forces in the 
coupling term, one may rephrase them using the disturbed flow field. This yields the 
following coupled equation for the case with a single particle: 

 ( ) ( )2D p p
Dt

ρ μ ρ μ= −∇ + ∇ ⋅ ∇ + − −∇ + ∇
u u g u . (7.204) 

When N particles are present in the domain, the modified fluid momentum equation 
becomes 

 ( ) 2

1
( ) ( )

N
n n n n

n

D p p
Dt

ρ μ ρ μ
=

⎡ ⎤= −∇ + ∇ ⋅ ∇ + − −∇ − + ∇ −⎣ ⎦∑u u g x y u x y , (7.205) 

where the superscript n denotes the particle index.  
 

One sees that the above velocity coupling implementation is essentially another 
way of formulating the point-force coupling. Physically, this equivalence implies that a 
disturbance in the background velocity field u, due to the existence of particle, can be 
generated by either imposing a point-force or imposing a stress tensor (Pan and Banerjee 
1996). Numerically, however, these two approaches can be different. The velocity 
coupling approach can be advantageous when the carrier phase turbulence is mainly 
affected through disturbing the local velocity field, and the total kinetic energy the 
particles extract from the continuous phase is relatively small; for example, when the 
particle is slightly heavier than the fluid. One downside is that special treatment is 
necessary in the near-wall region, in order for u  to satisfy the wall boundary condition. A 
way was proposed in the original paper, but at cost of increased computational effort. 
Also, the linear summation of the disturbance fields from all particles does not answer the 
question if there is any interaction between the disturbance fields.  
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7.6.5. Backward Coupling in E-L Approach: PHYSALIS 
PHYSALIS is a clever method aimed at a carrying out volume-resolving direct numerical 
simulation of dispersed two-phase flows in an efficient manner. This approach is devised 
and developed by Prosperetti, Takagi and their collaborators (Prosperetti and Oguz 2001; 
Huang and Takagi 2003; Takagi et al. 2003; Zhang and Prosperetti 2003, 2005a, b). In 
some sense it can be grouped into the velocity coupling model. But, rather than being 
called a coupling model, it may be more appropriately recognized as a numerical method. 
The basic idea originates from the fact that, due to the no-slip condition, in the reference 
frame of each particle, the fluid velocity in the immediate neighborhood of the particle is 
very small, so that the Stokes equations can be used as an excellent approximation to the 
full N-S problem. The key of the method is to utilize the analytical solution of the Stokes 
equations to “bridge” the no-slip condition from the particle surface to the adjacent grid 
nodes within a predefined “cage” around each particle. In this manner the Eulerian grid 
for the carrier phase can be constructed as if the particles were not present; as a result, the 
geometric complexity arising from the phase interfaces is avoided, yielding a big gain in 
the computational efficiency. Some key elements of this method are briefly described in 
the following. More details can be found in the aforementioned publications. 
 
 The Stokes equation around each particle can be written as 
 2 0p μ−∇ + ∇ =u , (7.206) 
where u  and p  are the local velocity and pressure field respectively, expressed in the 
particle frame. The general solution of the Stokes equation near a spherical boundary is 
well-established, and can be written in the form 
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where a is the sphere radius, pn, φn, χn are regular solid spherical harmonics of order n, 
while p-n-1, φ-n-1, χ-n-1 are singular harmonics. Thus, e.g.,  

 cos sin cos
n

m
n nm n

rp P m P m P
a

ϕ ϕ θ⎛ ⎞ ⎡ ⎤= +⎜ ⎟ ⎣ ⎦⎝ ⎠
, (7.209) 

where Pnm and nmP are dimensionless coefficients, m
nP  is an associated Legendre function, 

and r, θ, and ϕ are spherical coordinates centered at the particle center. See, e.g., (Zhang 
and Prosperetti 2005a) for more details of the expressions.  
 
 Eulerian grid is constructed covering the entire computational domain irrespective 
of the presence of the particles. Cages are subsequently defined for those grid nodes that 
enclose respective particles. With the help of the Stokes solution, velocity field are then 
imposed as boundary condition at those grid nodes falling inside the cages, while the N-S 
equations are solved on the entire domain as a whole. By using an iterative procedure, the 
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calculated velocity field in the cage region will satisfy both the N-S and Stokes flows. 
The particle velocity and position are updated in the Lagrangian reference frame with the 
hydrodynamic forces obtained from the known Stokes flow field. 
 
 There are certain limitations of this method. First, it relies on the availability of an 
exact Stokes solution for a particular body shape. If the particle shape is not spherical, the 
Stokes solution given above is not valid, and the mapping to the cage grids will no longer 
be an easy task. This also implies that a sphere particle under consideration must be non-
deformable. Second, the cage grid nodes should be well inside the boundary layer for the 
Stokes approximation to be applicable. Hence, the Eulerian grid, albeit ignoring the 
presence of the particles, must be constructed smaller than the particle size. Thus, if a 
dispersed system on the order of meters contains, say, microparticles, the required grid 
resolution will be prohibitive. Moreover, if the system is poly-dispersed, an adaptive grid 
becomes necessary in order to efficiently resolve particles with various sizes.  
 

Overall, as compared to other regular DNS studies, PHYSALIS offers an exciting 
perspective in accurately and efficiently simulating dispersed two-phase systems. On the 
other hand, the volume resolving nature of this method may present a significant hurdle 
in its application to the practical engineering problems. 
 
 
7.7. Interpolation 
In the point-volume Lagrangian simulation for the dispersed phase, the particles are 
dispersed in the fluid field, and in general, their positions do not coincide with the grid 
points, on which the Eulerian fluid field is computed and updated. In order to integrate 
the particle equation of motion, fluid quantities computed on the Eulerian mesh, such as 
the velocity and vorticity, must be interpolated to the particle position (forward 
interpolation). When two-way coupling is implemented, such as the one formulated in 
Eq. (7.182), a reverse interpolation will also be needed. That is, the coupling force 
defined at each particle position is interpolated (or projected) back to the fluid grid nodes.  
 
 
7.7.1. Forward Interpolation 
Often times, one formulates an interpolation scheme of arbitrary order using the 
Lagrangian polynomial or the Hermite polynomial. The Hermitian interpolation is 
advantageous when the solution is represented in the spectral space, for example, from a 
spectral or pseudo-spectral method. Other schemes can also be used, such as the 
Chebyshev polynomial. For an interpolation scheme that uses weighted sum, such as the 
Lagrangian polynomial, one may write the interpolation function, for example for the 
fluid velocity at the particle location yn, in the following general form: 
 ( ) ( , ) ( )n n v v

v
S= ∑u y y x u x , (7.210) 

where xv represents a fluid grid point or vertex, the basis function (or coefficient 
polynomial, weighting function), S(yn,xv), is constrained to satisfy 
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 ( , ) 1n v

v
S =∑ y x , (7.211) 

and the summation goes through all the fluid vertices in the entire domain; however, the 
effectively participating nodes are only those with S ≠ 0, usually located in the 
neighborhood of the particle position yn. The number of involved vertices determines the 
order of accuracy. In a structured grid system (where one can use i, j, k index to locate a 
vertex), the N-th order Lagrangian polynomial with (N + 1) participating points can be 
written down as 
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where yn = (xp, yp, zp), xv = (x, y, z), and the basis functions are given by 
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The Lagrangian polynomial is exact at grid nodes; when N = 1, it becomes a trilinear 
interpolation. One sees that Eq. (7.212) is an expensive operation if the order is high. For 
instance, a third order polynomial (N = 3) involves 43 = 64 grid points and requires of the 
order of 3 × 43 operations. Additionally, 3 × 42 operations are required to evaluate each 
basis function.  
 

Evaluation of accuracy of different forward interpolation schemes has been well 
documented by several researchers (Yeung and Pope 1988; Balachandar and Maxey 
1989; Yeung and Pope 1989; Kontomaris et al. 1992; Boivin 1996; Wang and Squires 
1996a; Fukagata et al. 1998). It is generally agreed that third-order accuracy is required at 
minimum to accurately track the particle trajectory, whereas the first-order linear 
interpolation can be inadequate, despite its computational simplicity and economy. Some 
more details are provided in the following review. 
 
 A way of testing the accuracy of an interpolation scheme is to distribute a large 
number of particles in the simulation domain, and compute fluid statistics based on the 
interpolated values at those particle locations. The fluid statistics collected in this manner 
should converge to those calculated using the fluid velocities directly available at the 
particle positions. By quantifying the difference of the two, one is able to evaluate the 
accuracy of the interpolation scheme. This approach was used, for example, by 
(Balachandar and Maxey 1989; Wang and Squires 1996a; Fukagata et al. 1998). 
 

(Yeung and Pope 1988) studied the accuracy of interpolation schemes based on 
Taylor series and on cubic splines. The respective errors in computed trajectories are 
quantified for simple, frozen velocity fields. The third-order Taylor series with 13 points 
(TS13), and the piecewise cubic Lagrangian polynomial yield superior results. 

 
(Balachandar and Maxey 1989) compared various interpolation schemes in a 

spectral simulation of homogeneous turbulence. They found that the fluid statistics were 
retained with a good accuracy when the sixth order Lagrangian interpolation, the Hermite 
interpolation, or the TS13 scheme proposed by (Yeung and Pope 1988) were used. They 
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also pointed out that the linear interpolation generated large errors as compared to 
statistics of the original field. 

 
(Wang and Squires 1996a) used LES field of fully developed turbulent channel 

for testing the accuracy of interpolation schemes. The schemes they tested were the linear 
interpolation, the fourth-order and the sixth-order Lagrangian polynomials. They 
demonstrated that, with respect to mean quantities, all the schemes yield accurate 
predictions. However, when comparing the second moment statistics (i.e., RMS values), 
or the Lagrangian statistics of the flow field, large errors (about 8%) were found with the 
linear interpolation; the errors associated with the fourth-order and the sixth-order 
Lagrangian interpolations are rather small (within 1%), consistent with previous findings. 
 
 (Fukagata et al. 1998) extended the study to particles with large inertia. They 
tested three different interpolation schemes, nearest grid point, linear and sixth order 
Lagrangian. Their results showed that both mean and RMS quantities are not largely 
influenced by the differences in interpolation scheme. It can be due to the fact that heavy 
particles are insensitive to small-scale turbulence. 
 
 It seems that the optimal interpolation method is the third-order piecewise cubic 
polynomial, a combination of accuracy and cost. E-L simulations using this order of 
interpolation are, for example, (Deutsch and Simonin 1991; Boivin 1996; Sundaram and 
Collins 1996; Boivin et al. 1998; Sundaram and Collins 1999; Boivin et al. 2000), among 
others. It should be noted that, a large body of point-volume Lagrangian simulation 
published in the literature has used the inexpensive linear, bi-linear, or tri-linear 
interpolation method due to their significant computational efficiency. It is conjectured 
by the author that, compared to the modeling error in LES, the accuracy loss due to the 
first order linear interpolation could be a minor issue. In the later bubble column LES it 
will be shown that with the tri-linear interpolation high-quality results can be attained. 
 
 With respect to the linear interpolation it is worthwhile to mention that the 
particle velocity may experience a jump when it crosses from one computational cell to 
the other in an unstructured mesh setting (Smirnov et al. 2005b). However, such a jump 
phenomena is neither observed in the present study where the grid is orthogonal, nor 
reported by other researchers that use unstructured grids. Therefore, a further study is 
necessary in order to clarify this jump issue. 
 
 
7.7.2. Reverse Interpolation 
The need for a reverse interpolation arises when the coupling term (e.g., Eq. (7.182)) in 
the carrier phase momentum equation is to be evaluated at the Eulerian fluid grid nodes 
based on the coupling force, which is defined at the particle location. The reverse 
interpolation of the coupling force F(xv) onto an arbitrary fluid grid node xv can be 
generally expressed as 
 *( ) ( , ) ( )v n v n

n
S= ∑F x y x F y , (7.214) 



 298

where S* is the coefficient function of the reverse interpolation, the summation goes 
through all the particles in the domain; only an effectively participating particle has a 
non-zero S*. Notice that one particle may participate in the F(xv) evaluation at several 
grid nodes. Thus, a different view of Eq. (7.214) is to see the backward interpolation as a 
“spreading” process, in which each F(yn), associated with a single particle, is 
redistributed over the several neighboring fluid nodes. Further, if S* is equal to S, the 
weight used in the forward interpolation and backward redistribution between each yn-xv 
pair will be the same. In this case, the summation of the redistributed forces contributed 
by a single particle recovers the original point force, since  
 * *( , ) ( ) ( ) ( , ) ( )n v n n n v n

v v
S S= =∑ ∑y x F y F y y x F y , (7.215) 

the last equality is due to Eq. (7.211). However, it should be noted that S* = S is not the 
only way to conserve the force magnitude; for example, any statistical distribution can 
used to redistribute F(yn). 
 

Commonly used redistribution approaches are volume-weighted (Squires and 
Eaton 1990; Boivin 1996; Delnoij et al. 1997a; Delnoij et al. 1997b; Boivin et al. 1998), 
and distance-weighted (Elghobashi and Truesdell 1993). (Boivin 1996) also reported that 
both approaches yield similar results. Note that the volume-weighted or distance-
weighted redistribution corresponds to first-order reverse interpolation. 
 

A remarkable result was obtained by (Sundaram and Collins 1996) who showed 
that in order to conserve the global kinetic energy (kinetic energy of flow field plus that 
of particles), the interpolation schemes used in the forward and backward coupling must 
be consistent, that is, S = S*. However, this gives rise to an important dilemma: in 
general, one tends to use a high-order forward interpolation to improve the accuracy of 
the particle tracking. If the reverse interpolation is required to be on the same high order, 
the backward coupling contributed by a single particle will then spread its influence over 
a larger volume. On the other hand, the primary point force assumption requires that the 
local disturbance flow generated by a particle scales with the particle diameter, a length 
scale must be smaller than the resolved flow scales, typically represented by the smallest 
grid spacing. In this respect, the influence of a point force should be limited within the 
cell in which the corresponding particle resides. Therefore, a conceptual contradiction 
results. 
 

(Sundaram and Collins 1996) also tested the effect of the “spreading” on the 
reverse coupling, and found it to be negligible. The third-order interpolation scheme 
suggested by the authors was applied in a later study of the same authors (Sundaram and 
Collins 1999) with success. In spite of that, hesitance still exists in accepting this 
methodology, mainly due to the open question addressed above. The author’s intuition is 
that one should separate the physical aspect from the mathematical aspect. Deciding the 
influence region of a point force is a physical problem, since it depends on the flow 
feature, i.e., the smallest scales of turbulence. In fact, the spreading-effect test made by 
(Sundaram and Collins 1996) also suggests from another point of view that it is possible 
for the point force to have a larger influence region. Finally, one should not forget that 
although the overall kinetic energy is biased if the forward and reverse interpolation 
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schemes are not symmetric, the momentum is still properly conserved independent of the 
interpolation method. 
 
 
7.8. Formulation of Two-way Coupled LES  
With the above preparation, it finally gets down to a point, where the issue of two-phase 
LES with two-way coupling can be addressed. Recall that the objective of a single-phase 
LES is to resolve details of energy-containing large scales. For a two-phase system, it is 
still possible to use single-phase LES under the one-way coupling assumption to predict 
particle dispersion, since the particle dispersion pattern is mainly controlled by the large-
scale motions (cf. discussions in Section 7.6.2). Yet, difficulties arise when LES needs to 
operate in a two-way coupled regime. The main obstacle here lies in the fact that the 
subgrid scales at which closure modeling is required are subject to possible interactions 
between the dispersed phase and turbulence. Consequently, the SGS models originally 
developed for a single phase LES may not be valid in a two-phase system; modifications 
or reconstruction of SGS models may be necessary. Thus, the benefits gained from only 
resolving the large scales would get lost by the approximations of the closure models 
(Elghobashi 1994).  
 

At the same time, one also realizes two additional facts. First, the computational 
expense of a DNS is prohibitive. Even in the single-phase flow study, DNS is only used 
for the research purposes; application of DNS to high Reynolds number flows with 
complex geometry will be, at present and probably in a long while, still not possible. 
Second, in the two-fluid or mixed-fluid method, the mesoscale-averaging may sacrifice 
important turbulence scales, possibly including those at the energy containing levels. In 
spite of their wide use in practical engineering applications, it is not possible to ask this 
approach to recover sufficient details of turbulence. Between DNS and two-fluids stands 
the LES, which appears to be the optimal compromise between the cost and profit. It is 
generally believed that LES would show considerable promise, when better and fully 
verified closure models become available.  
 

A side mark is that the mesoscale averaging in the two-fluid method should not be 
confused with the filtering used in LES. In the case when a box filter is used, both yield 
the same type of operation, namely, the volume averaging. However, the two operations 
are fundamentally different. The mesoscale is defined in a statistical sense, i.e., it should 
be large enough to yield an asymptotic statistical average, while the filter length in a 
filtering operation is defined according to the resolution need of the turbulence scales. It 
is possible that the two length scales overlap. 
 

Resent research activities have shown an intense interest in using LES to predict 
turbulent two-phase flows. (Hewitt 1999; Loth 2000; Lakehal 2002; Simonin and Squires 
2002; Sundaresan et al. 2003; Sirignano 2005) made some general comments about the 
formalism, difficulties and perspectives of the two-phase flow LES. In the theoretical 
aspect, (Yeh and Lei 1991; Yang and Lei 1998; Armenio et al. 1999) investigated the 
effect of LES field on the particle dispersion statistics. (Boivin et al. 2000; Miller and 
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Bellan 2000; Okong'o and Bellan 2000, 2004; Leboissetier et al. 2005) performed a 
priori and a posteriori SGS analysis for gas-liquid flows and transitional droplet-laden 
mixing layers. (Fukagata 2000; Lei et al. 2002; Milelli et al. 2002; Pandya and Mashayek 
2002) proposed SGS models for LES of turbulent flows laden with particles or bubbles. 
In the application-related aspect, (Wang and Squires 1996a, b; Simonin et al. 1997; 
Tanaka et al. 1997; Fukagata et al. 1998; Fukagata 2000; Yamamoto et al. 2001) used 
LES to study the particle-laden turbulent channel flows. (Climent and Magnaudet 1998; 
Lakehal et al. 2002; Milelli 2002; Milelli et al. 2002) reported recent advances in the 
application of LES to turbulent bubbly mixing layers. (Yang et al. 2002a) and (Smirnov 
et al. 2005a) simulated bubbly jets and bubbly ship wakes, respectively. (Menon and 
Pannala 1998; Pannala and Menon 1998; Sankaran and Menon 2002; Apte et al. 2003a; 
Apte et al. 2003b) tackled problems using LES in the area of particle-laden combustions, 
such as the spray combustion. 
 

With respect to the possible influence of the dispersed phase on the SGS closure 
models, there are three options: (i) discard SGS models developed in a single-phase LES 
completely, and build new SGS models from the ground up, (ii) accept those single-phase 
SGS models and do modifications on them, or (iii) neglect the influence of the dispersed 
phase on the SGS when condition allows. Probably no one would really like the first idea. 
Option (ii) was chosen in the study of (Fukagata 2000) and (Milelli 2002), where a 
Smagorinsky-type model is used to serve as the base model, and a particle-induced eddy 
viscosity, μp, is incorporated into the expression of the effective viscosity of the carrier 
phase, μt. Nevertheless, the semi-empirical expressions of μp, such as that presented in 
(Zahrai et al. 1995; Tran 1997), are generally derived under a series of assumptions and 
approximations. An accurate assessment of the proposed two-phase SGS models may 
only be achieved by employing a volume-resolving DNS, which seems at present not 
quite possible.  
 

In the present study, it is assumed that the backward coupling will not affect the 
well-established single-phase SGS models. This line of thinking follows the two-way 
coupling formalism presented in Section 7.6, where the N-S equations for the carrier-
phase are solved in their original form, and the point force assumption is made to account 
for the modulation effect of particles on the flow. Simulation based on that is typically a 
non-volume-resolving DNS coupled with point-volume Lagrangian tracking. As (Boivin 
et al. 2000) pointed out, this framework, namely, DNS with point force assumption, has 
in fact already involved a “subgrid” approximation: the local fluid flow perturbations 
induced by the particle presence are not fully resolved, and, the effects of the subgrid 
part of the disturbance on the resolved field are assumed to be negligible with respect to 
the influence of the molecular viscosity of the fluid. 

 
 It is necessary to recap some important assumptions that are commonly used in an 
E-L DNS with the point-volume treatment for the dispersed phase:  

1. The dispersed two-phase system under consideration is dilute, loaded with small 
particles/bubbles/droplets whose length scales (dp) and time scales (dp

2/ν or dp/v∞) 
are smaller than, or on the order of the characteristic length and time scales of the 
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flow, respectively. In a turbulent flow simulation, the characteristic flow scales 
refer to the Kolmogorov length scales or the smallest resolved scales. 

2. Because of the dilute assumption, the governing Navier-Stokes equations for the 
carrier phase retain their original form (except for an additional interphase 
transfer term). 

3. The particle-particle collision is neglected due to the dilute condition. 
4. The effect of the particles on the carrier flow can be represented through point 

forces in the governing N-S equations. 
   
 Note that condition (1) also implies (2) through (4). With the above assumptions, 
Eqs (7.180) through (7.182) consolidates their significance in serving as the governing 
equations for the point-volume E-L DNS. The logical extension to the filtered equations 
for a point-volume E-L LES is simply achieved by performing the filtering operation 
defined in Eq. (4.54) on the original equations. This yields: 
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where the fluid gravity is combined into the pressure term, overbar denotes a filtered 
quantity associated with a filter G(x), R

ijτ  is the residual stress representing the SGS effect 

on the resolved scales, and needs to be modeled, I represents a “filtered” version of the 
coupling point-force I that is defined in Eq. (7.182). Also, due to the dilute condition, the 
subgrid scales generated by the local disturbance flow in the presence of the particles can 
be assumed to be negligible, with respect to their influence on the resolved field. Such an 
assumption justifies the use of SGS models developed from a single-phase LES setting. 
 

The most critical part here is the coupling force I and its filtered counterpart I . 
According to (Maxey et al. 1997) and (Boivin et al. 2000), a generalization of I and 
I can be written in the form 
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where g is an envelope function controlling the shape of the point force F (cf. Section 
7.6.3), H(x) is a three-dimensional low-pass filter with a characteristic filter width of the 
order of mesh size. Other notations are same as those defined in Section 7.6.3. In the 
work of (Squires and Eaton 1990; Elghobashi and Truesdell 1993; Boivin et al. 2000) 
among others, H is used to redistribute (or interpolate back) the point force over the 
computational nodes surrounding the particle. Since H is an assumed function, it is not 
necessarily the same as the filter G. Selection of the g and H function is largely a matter 
of empirism. Typically, a Gaussian envelope function is chosen for the function g. For a 
bubbly flow, the interaction force F can be, for example, that given by Eq. (7.199). 
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Traditional ways of the numerical implementation of the coupling force term have been 
discussed in Subsection 7.6.3.  
 
 
7.9. Two-layer Concept 
7.9.1. Particle Size vs. Grid Size 
It is important to note that the assumptions used in deducing the governing equations for 
a two-way coupled LES (Eq. (7.216) and (7.217)) sets a considerable restriction on the 
size of the particles. Conventionally, in DNS, since the Kolmogorov scales are fully 
resolved, the particle size must be smaller than the Kolmogorov length scales. In LES the 
grid size represents the resolved length scales, thus the particle size must be much smaller 
than the computational cell size. This fact simply implies, for example, a wall-resolving 
DNS or LES for high-Re turbulent channel flow would very possibly have difficulties in 
accommodating even very small micro-particles, since in the wall layer very fine grid 
must be allocated (Figure 7-9). Moreover, regardless of the resolved flow scales, the 
particle size is also commonly required to be smaller than the grid size in an E-L 
simulation, mainly due to the computational needs and convenience (cf. Section 7.6.3). 
 
 

 
Figure 7-9 Schematic of a micro particle vs. grid distribution in a wall-resolving LES or DNS. 

 
 To help explain the potential problems with this particle size restriction, first 
consider a laminar flow with immersed particles. Suppose the particle size, dp, is smaller 
than the grid size, h, which is sufficiently small to resolve the characteristic length scale 
of the laminar flow, say, l (Figure 7-10a). Next, it is fully admissible if one wants to 
refine the original grid to achieve a better accuracy of the flow solution. Note that 
refining the grid does not affect the dp < l condition at all, because l is determined by the 
flow nature not the grid. Now, at certain refinement factor, say ten times, the grid size h 
eventually becomes smaller than the particle size, i.e., dp > h (Figure 7-10b). Then one 
would like to ask: do we really need to keep the particle size smaller than the grid size for 
such laminar flow case? The answer is apparently NOT, because in this scenario dp < l is 
not violated, and the flow length scales are not necessarily represented by the grid size! In 
other words, the particle dimension should have in theory no direct relation with the 
computational grid size just because the grid is allowed to be arbitrarily fine.  
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Figure 7-10 Schematic of particle size with respect to grid size. Eulerian grid is (a) coarse, (b) fine. 

 
Now, let us return to the situation displayed in Figure 7-9, where the particle size 

is larger than the near wall grid spacing in a wall-resolving DNS or LES of a turbulent 
channel flow.  

 
In the case with DNS, suppose the near-wall grid is excessively fine, i.e., it over-

resolves the Kolmogorov scales. As such, although dp > h, the dp < l (l here represents the 
Kolmogorov length scale) condition is still met, and there should be no reason not to 
justify such a two-way coupled point-volume E-L simulation. But, since the particle 
overlaps several cells (not reside in a single one), and each of the overlapped cells (not 
only the one that encloses the center of the particle) should have the “equal right” to take 
a portion of the feeding back force, the conventional PSI-Cell based implementations for 
the reverse coupling (cf. Section 7.6.3) may become inappropriate and will need some 
modification to overcome this size conflict.  

 
In the case with LES, one commonly asks the particle size, dp, to be smaller than 

the smallest resolved scales, l, in order to justify the point-volume assumption. Note that, 
in LES l is on the order of the grid spacing h; thus dp < l also implies dp < h. However, 
this common practice needs to be elaborated. Suppose Figure 7-10a represents a typical 
LES grid containing particles. According to dp < h, this grid qualifies for a point-volume 
LES. Now, if the grid is refined to Figure 7-10b, one finds dp > h. Does that then mean 
the point-volume assumption is alright with a coarse resolution LES, but not OK with a 
fine resolution LES? Apparently, this presents a paradox. Further, consider the particle 
influence on the SGS model. In the situation of dilute flow with dp < h, one may well 
argue that the small particles (relative to the grid size) have only minor effect on the SGS 
motion, so that a single-phase SGS model can be employed. However, if the same flow is 
solved on a fine grid as in Figure 7-10b, neglecting the particle influence on those locally 
overlapping SGS seems to be questionable. Thus, a second paradox arises: a coarse grid 
LES may use a single-phase SGS model, while a fine grid LES may not.  

 
Given above discussion, the following viewpoints can be agreed. (i) In a laminar 

flow simulation or DNS of a turbulent flow, the applicability of the point-volume 
assumption depends on whether the particle size dp is smaller than the characteristic flow 
size l, i.e., dp < l (or dp << l in strict sense), and it is independent of the relation between 
dp and the grid size h. In other words, as long as the point-volume approach can be 
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applied, the geometric feature of the particle should be decoupled from that of the grid. 
Hence, in the implementation of the reverse force coupling this size decoupling principle 
should also be reflected. (ii) In a point-volume LES, the conventional requirement of dp < 
l, where l is the smallest resolved scales, lacks certain rigor. Further, whether or not a 
single-phase SGS model can be applied to a two-phase LES should be judged by possibly 
the diluteness condition, irrespective of how small the computational grid is. Thus, it is 
important to find a way that can justify the use of the point-volume assumption in a LES 
setting. 
 
 
7.9.2. Point Volume or PHYSALIS? 
One of the primary goals of this study is to boost the viability of the point-volume two-
way coupled LES of dispersed two-phase turbulent flows. It is the author’s belief that, in 
the interest of practical engineering and industrial applications, LES will represent the 
most promising approach in tackling two-phase turbulent flow problems with a highest 
quality-price ratio. Sticking with the point-volume approach is due to the consideration of 
its capability to be extended to real-world flow problems, which typically involves a 
considerably large number of particles of various sizes. 
 

A competitor to the point-volume LES is the so-called PHYSALIS, which has 
been reviewed in Section 7.6.5. In short, PHYSALIS is a clever volume-resolving DNS 
which is capable of handling many non-deformable particles, e.g., 1024 particles in the 
study of (Zhang and Prosperetti 2005b). Although this approach significantly eases the 
grid construction (by completely ignoring the presence of the spherical bodies), it does 
not ease the resolution of the computational grid, since the mesh size is required to be on 
the order of the particle size. Because of this, PHYSALIS would have difficulty when 
applied to, for example, a large-scale system containing even a small number of small 
particles. For practical engineering and industrial applications, the point-volume LES will 
still have its solid role. 
 
 
7.9.3. An Assumption: Point Volume and Relatively Dilute 
Now, coming back to the topic of point-volume LES. As elaborated in Section 7.9.1, to 
answer when the point-volume assumption can be valid in LES is a very difficult task. At 
this point, an engineering shortcut would like to be made: instead of letting the point-
volume assumption be built upon other primary assumptions, such as the dilute condition 
etc, a reformulated starting assumption is proposed. 
 
Assumption: The point-volume treatment of relatively small particles is an applicable 
approach for the Lagrangian simulation of relatively dilute dispersed systems.  
 

This assumption can be further interpreted with the following four aspects. (i) A 
system with relatively large void fraction and relatively large particles is fully permitted, 
so long as such E-L simulation is capable of delivering satisfactory results. For example, 
one should not rule out the possibility of simulating a dispersed two-phase system in a 1 
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m3 box containing 10 mm particles with a 5% volume fraction for the dispersed phase. 
Although the particle size is not required to be smaller than the characteristic turbulence 
length scales, it should not be larger than a limit, above which the two-phase flow under 
consideration does not qualify for a dispersed system. Questions, such as what is the 
upper limit of the particle size and the system diluteness, are left for future studies. (ii) 
Since the dispersed system is not strictly dilute, but relatively dilute, whether or not to 
neglect the effect arising from the particle-particle interaction can be kept as an option, 
depending on a particular flow being considered. (iii) The point-volume treatment of the 
particles also implies that the filtered equations (7.216) through (7.219), without being 
volume-averaged, can still serve as the governing equations for the continuous phase in 
an E-L LES. (iv) The Lagrangian particle tracking is carried out by treating the finite-
sized particles as point volumes. Although particles can be relatively large, such point-
volume tracking approach is still viable in an engineering sense, because the RHS forces 
of the particle equation of motion are regarded as an engineering model that involves 
adjustable model parameters and capable of reproducing the particle motion captured in a 
laboratory measurement. Even when the point-volume assumption is not quite justified in 
a physical sense, such as the situation of relatively large particles in a thin wall boundary 
layer, one may formulate a proper model force, e.g., the wall force, to approximate the 
real hydrodynamic forces acting on the particles. In essence, the notion of a point-volume 
model is not very much different from that of the turbulence modeling. Although most of 
the hydrodynamic forces addressed in Section 7.5 are derived under a rigorous point-
volume assumption, in the sense of modeling however, they may still serve as a good 
approximation for relatively large particles. 
 
 
7.9.4. An Assertion: Geometric Decoupling 
Next, from the discussion provided in the Section 7.9.1, and the conclusions made there 
to the particle size condition in a point-volume E-L laminar or DNS simulation, it is seen 
that an extension of the uncorrelation between the particle size and mesh size to the LES 
seems plausible. This yields the following proposed assertion. 
 
Assertion: The geometric feature of the particle should be decoupled from that of the 
computational grid. 
 

As such, the particle size is no longer limited by an upper bound, the cell size, and 
the particles can now reside not only inside a computational cell, but also over multiple 
cells. The Eulerian computational grid can then be constructed to a desired fineness (e.g., 
in the wall layer) without concern for the particle size. This fact is particularly useful in 
the simulation practice as most of the time the characteristic flow length scales are not 
known a priori. 
 
 
7.9.5. An Approach: PSI-Ball (Particle-Source-in Ball) 
With respect to the reverse force coupling, the PSI-Cell (particle-source-in cell) based 
implementations have been discussed in detail in Section 7.6.3. With the PSI-Cell, a 
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particle is required to be much smaller than the computational cell in which it resides, so 
that the distribution of the particle-to-fluid point force occurs only to either the associated 
cell center, or the cell corner nodes (see Figure 7-5 and Figure 7-6).  
 

In the case when the particle size is relatively large with respect to the 
computational cell, such as the one displayed in Figure 7-10b (whose situation is fully 
allowed due to the assumption and assertion made in the previous two subsections), the 
PSI-Cell implementation for the reverse coupling yields an “unfair” distribution of the 
point force, because not all the Eulerian grid nodes that overlap the particle can obtain a 
share. As a result, the influence region due to the presence of a particle is only confined 
to a single cell that encloses this particle, and whether the particle in question is large or 
small will, except through the magnitude of the coupling force, have no other influence 
on the flow solution. Yet, the past experience has taught us that, the particle size can play 
a determinant role in both the local and global dynamics of a dispersed two-phase system, 
and this size factor must be properly taken care of in a simulation approach. Provided a 
volume-resolving approach is not the concern, such as in the current study, a way needs 
to be found to remedy the deficiency of the PSI-Cell method. Hence, an approach, named 
PSI-Ball (particle-source-in ball) is proposed. 
 
Approach (PSI-Ball): The reverse coupling (dispersed phase on the carrier phase) is 
achieved by redistributing the interphase point force via a distribution function onto those 
Eulerian grid nodes falling inside a predefined local influence sphere (or cage) centered 
at the particle center.  
 
 The name PSI-Ball derives from PSI-Cell. However, PSI-Ball can be considered 
as a generalization and extension of those PSI-Cell based methods. For example, when 
the influence sphere is chosen to be the computational cells, it then becomes the PSI-Cell 
approach. When the defined sphere (or ball) contains multiple computational cells, the 
interphase exchange source will take effect in all those nodes that fall within the ball. 
Figure 7-11 shows this idea schematically in a 2D layout. 
 

It should be pointed out that the PSI-Ball is physically justifiable. In a nonuniform 
grid, for example, with the PSI-Cell, small cells tend to have lower probability to “host” a 
particle and consequently have less chance to receive a share of the interphase force than 
a large cell does. On the other hand, such unfairness does not exist with the PSI-Ball 
method. Also, in a region of relatively large local volume fraction multiple balls centered 
at each particle location may overlap and produce an accumulative effect of the backward 
coupling. Thus, the PSI-Ball approach can properly reflect the local agglomeration of the 
particles. 
 
 One may ask: does the redistribution of the coupling point force contradict the 
point-volume assumption? The answer is yes and no. Strictly speaking, the point-volume 
assumption is not valid for a relatively large particle. However, in the present context, the 
point-volume should be understood as a modeling approach rather than the assumption 
itself. One has seen that, the point-volume treatment can be used to greatly facilitate the 
Lagrangian tracking technique. On the other hand, when the backward force coupling is 
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concerned, the location of the point forces does not coincide with the Eulerian grid nodes 
in general, and a mapping from the particle location to the designated nodes becomes a 
must. The force redistribution in the backward coupling further conforms to the physical 
intuition: the local disturbances generated by a particle should occur in its immediate 
neighborhood, but not at a single point. It becomes further necessary in a LES approach 
because of the filtering operation imposed to the original N-S equations. Given above, the 
force redistribution in the LES has a numerical, physical and mathematical need, and it 
should not be confused with the point-volume assumption mainly applied as a model in 
the forward coupling. 
 
 

Particle

 Computational cell

Eulerian grid
node

Influence circle (ball)

 
Figure 7-11 Schematic of force redistribution using a predefined influence circle or ball (PSI-Ball). 

 
As to the selection of the influence ball diameter, D, several necessary conditions 

apply. Obviously, D is larger or equal to the particle diameter, dp. Second, D should be 
larger than or equal to the maximum grid spacing, hmax, because otherwise the ball can 
fall completely inside a cell and as such no coupling force can be transferred to the cell 
nodes. Third, D should not be too large because the particle disturbance is local effect. 
Based on these, in the present study, D is taken as: 
 ( )maxmax 2 ,2pD d h= . (7.220) 
Effectively, Eq. (7.220) implies the following: when the particle is small as compared to 
the grid size, it takes the nearest neighbors (four nodes in Figure 7-11 or eight nodes in a 
corresponding 3D arrangement) for the coupling. When the particle is relatively large, the 
particle force will then be distributed to those nodes that fall within a sphere of 2dp in 
diameter.  
 

A distribution function or envelope function (cf. Section 7.8), g, can be chosen to 
control the distribution weight lent to a nearby node or a faraway node. A typical choice 
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of g is the Gaussian function with zero mean. The variance should be selected according 
to the ball size. For example, 
 2Dσ = . (7.221) 
 
 
7.9.6. Two-layer View 
The two-layer view of a dispersed two-phase system is simply a convenient way to 
summarize and visualize the key contents presented in the previous subsections. In this 
concept, the carrier phase and the dispersed phase are viewed as two independent layers, 
whose interaction occurs at those discrete particle locations through modeled momentum 
exchange forces (Figure 7-12). Layer here means a computational entity or system, and it 
can be 1D, 2D or 3D. In this study, the fluid layer is calculated in the Eulerian reference 
frame and the particle layer in the Lagrangian reference frame. As the picture suggests, 
the two layers are decoupled in terms of their geometry. Particles in the particle layer can 
be relatively large and their sizes are independent of the Eulerian grid size. The volume 
fraction of the particle layer can be relatively large so long as the dispersed condition is 
not violated. The particle-to-fluid interaction (backward coupling) is achieved with the 
proposed PSI-Ball method. In essence, the two-layer concept is a combination of the 
three A’s, namely, an assumption, an assertion and an approach (PSI-Ball). With this 
concept, one expects a largely expanded class of two-phase flow problems that can be 
tackled using a point-volume E-L LES.  
 

It should be stressed that one of the goal of this study is to break the size hurdle 
set for the particles as well as the computational cells. Also note that, before a well-
established two-phase SGS model becomes available, single-phase SGS models will be 
the primary choice, in the present study, for the LES closure. 
 
 

Primary (Eulerian) layer
for the carrier phase

Secondary (Lagrangian) layer
for the dispersed phase

Interphase exchange

Influence circle with predefined
radius and distribution function  

Figure 7-12 Schematic of two-layer concept. 
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Chapter 8 Large Eddy Simulation of 
Bubble Column 
 
 
Gas-liquid turbulent bubbly flow in a flat bubble column is studied by means of large-
eddy simulation (LES), combined with Lagrangian particle tracking under the condition 
of two-way coupling. The incompressible spatially filtered Navier-Stokes equations are 
solved to compute the turbulent, bubble-driven liquid velocity field, while the motion of 
the dispersed phase is tracked in the Lagrangian reference frame with each individual 
bubbles being treated as a point source. The influence of the dispersed phase on the liquid 
phase is assumed to occur through the momentum-exchange terms. Here, the two-layer 
concept is adopted. Key elements of this new method to model dispersed two-phase flows 
have been described in Section 7.9. In short, it permits the existence of relatively large 
bubbles/particles, and the reverse coupling is implemented by way of PSI-Ball. With 
respect to the SGS closure, the classical Smagorinsky model is used. Bubble coalescence 
and break-up are neglected. Other theoretical aspects of the Eulerian-Lagrangian (E-L) 
LES of dispersed two-phase flows, such as hydrodynamic forces, two-way coupling, and 
interpolation, have been presented in detail in the preceding chapter. 
 

Considered in this study is a locally aerated flat bubble column based on the 
experimental study of (Becker et al. 1994) and later (Sokolichin and Eigenberger 1999). 
The bubble-dispersion characteristics are examined in detail, the results are in very good 
agreement with the experimental data. The LES results also reveal that the bubble 
dispersion pattern and the vortical structure of the liquid phase differ significantly from 
that obtained from a 2D simulation reported by (Delnoij et al. 1997b). Influence of the 
grid resolution is also addressed. 
 
 
8.1. Introduction 
A flat bubble column is a liquid-containing apparatus with a rectangular cross-section and 
very small dimension in depth (see, for example, Figure 8-1). Gas spargers are mounted 
at the bottom of the column, from which air bubbles are continuously released. The 
initially stationary liquid is set into motion as a result of the driving effect of the buoyant 
bubbles. Owing to the small column depth, the flow developed can be regarded as two-
dimensional if only large-scale structures (whose size is greater than the column depth) 
are of interest. According to the bubble injection configurations, the bubble columns can 
be typically classified into partially (or locally) aerated and fully (or uniformly) aerated 
bubble columns. With the partially aerated ones, if the aeration is located at the center of 
the bottom, it is then called center-aerated (or symmetrically aerated) bubble column. 
 

The flat bubble column has gained special interest in the gas-liquid dispersed two-
phase flow research because of its simple construction and complex flow phenomena 
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associated with it. Knowledge gained from the study of laboratory bubble columns has 
served as the foundation, upon which related industrial applications, such as the bubble 
column reactors, are developed. The bubble column reactors have been widely employed 
in biological, chemical, petrochemical and other process-related industries. 

 
In the multiphase CFD community the flat bubble columns have been widely used 

as a standard test to validate and evaluate two-phase flow models and simulation codes. 
First, reliable experimental data are available in the literature for various bubble column 
configurations. Second, most of the known hydrodynamic forces acting on an individual 
gas bubbles (cf. Section 7.5), including gravity, buoyancy, drag, lift, fluid stress and 
added mass forces, will play a role in the simulation. Neglecting any of these forces may 
lead to erroneous behavior of predicted bubble dispersion. Third, it is an excellent case to 
test a two-way coupling model. While in some other two-phase flow problems, such as 
the particulate channel flows, one-way coupling (i.e., without considering the reverse 
effect of particles on the flow) can be an acceptable alternative, the simulation of bubble 
columns however, must incorporate the two-way effect because otherwise the initially 
still fluid will not move. Moreover, it provides a crucial benchmark of evaluating E-E 
(Eulerian-Eulerian) models and E-L (Eulerian-Lagrangian) models. 

 
In general, several factors can affect the fluid dynamics of a bubble column. The 

most prominent ones are location and uniformity of the bubble injection, gas flow rate, 
column aspect ratio (column height to width). Depending on a specific configuration, 
both the liquid phase and the dispersed phase will exhibit significantly different behaviors 
in terms of the flow regimes, vortical structures, characteristic time and length scales, and 
the bubble dispersion pattern. For example, (Chen et al. 1989) conducted an experiment 
on uniformly aerated bubble columns, and a cooling tower pattern is observed when the 
aspect ratio is small, whereas large aspect ratio produces staggered rows of vortices. 
(Becker et al. 1994) investigated a locally aerated bubble column and reported that at 
different gas flow rates the flow can be quasi-steady or oscillatory.  

 
With respect to the fluid-dynamic modeling there are several scenarios that need 

to be considered with care. First, which approach is more suitable, the E-E or the E-L? 
Second, which governing equations should be used? Third, must a turbulence model be 
included, or will a laminar flow assumption suffice? The answers are presented in the 
following. 

 
To question (i). A majority of the simulation work in the literature has adopted the 

E-E approach, for example, (Grienberger and Hofmann 1992; Ranade 1992; Sokolichin 
and Eigenberger 1994; Borchers et al. 1999; Sokolichin and Eigenberger 1999). Studies 
using the E-L approach are (Delnoij et al. 1997a; Delnoij et al. 1997b; Sommerfeld et al. 
1997). In principle, both formulations should lead to close results, provided that similar 
terms are accounted for in both cases and the numerical discretization is sufficiently fine 
(Sokolichin et al. 1997). This suggests that the numerical diffusion inherited from the E-E 
approach can be critical, as there is the possibility of generating scheme-dependent false-
dispersion of the particle (here bubble). On the other hand, although the E-L approach 
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completely avoids the issue of numerical diffusion, the computational expense limits the 
number of particles that can be tracked, henceforth the quality of the statistical sample.  

 
To question (ii). In principle, the governing equations for the liquid phase should 

be chosen according to the specific model formulation. With the E-E model, the volume-
averaged equation or the equation for a mixed fluid is typically formulated. With the E-L 
model, the volume-averaged equation or the Reynolds-averaged equation is often used 
for the liquid phase.  

 
To question (iii). If the turbulence effect needs to be considered, the dominant 

turbulence models being applied are of RANS type, typically the k-ε model developed 
from a single-phase turbulent flow, i.e. (also see Eq. (4.46) in Section 4.2), 

 
2

eff l
kCμμ ρ
ε

= . (8.1) 

In situations where the k-ε model produces excessive dampings (corresponding to 
overpredicted effective viscosity), an empirical effective viscosity is often specified. For 
example, (Becker et al. 1994) increased the liquid viscosity by a constant factor of 100. In 
another work of (Yang et al. 2002b), albeit on a different bubbly flow case (bubble-laden 
mixing layer), the same magnifying factor was used. It is then further possible to simply 
neglect the turbulent viscosity and let the effective viscosity be approximated by the 
liquid viscosity, i.e., 
 eff lμ μ≅ , (8.2) 
where μl represents the liquid viscosity. Models using Eq. (8.2) is sometimes called the 
laminar model, and it was used for example in the study of (Sokolichin et al. 1997) and 
(Delnoij et al. 1997b). Overall, it appears that there is no unified answer to the question 
whether a turbulence model or a laminar model is more suitable, and the choice is judged 
on a case-by-case basis by the researchers. However, as the text develops, it will be seen 
that the flow field in the flat bubble columns under consideration does manifest itself 
with turbulence features, and the absence of a turbulence model lacks a theoretical 
justification.  

 
It is interesting to note that the above survey is mainly taken from the multiphase 

research literature. In the turbulence community, direct numerical simulation (DNS) with 
two-way coupled Lagrangian particle tracking has served as a powerful tool in studying 
the particle dispersion and turbulence modulation effect. See (Squires and Eaton 1990, 
1991b; Elghobashi and Truesdell 1992, 1993; Wang and Maxey 1993; Pan and Banerjee 
1996; Maxey et al. 1997; Boivin et al. 1998; Sundaram and Collins 1999; Druzhinin and 
Elghobashi 2001; Ferrante and Elghobashi 2003). In this approach the original Navier-
Stokes equations are solved directly. To reduce the computational cost, development of 
LES for particle-laden (or bubble-laden) turbulent flows have been made in recent years. 
See (Wang and Squires 1996b; Boivin et al. 2000; Fukagata 2000; Yamamoto et al. 2001; 
Milelli 2002; Apte et al. 2003b). Different from DNS, the LES solves the filtered N-S 
equations, and thus a subgrid-scale (SGS) model is required to close the resulting subgrid 
stresses. Although SGS models for single-phase phase flows have been well established, 
development of reliable SGS closures in the two-phase regime still presents the major 
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challenge in applying LES to this category. Although several two-phase SGS models was 
attempted (Fukagata 2000; Milelli 2002), no generalization has been widely accepted. 
Before such a one becomes available, most of the up-to-date two-phase LES simulations 
still adopt the single-phase SGS models. This is very similar to the RANS-based two-
phase approaches where RANS turbulence models are directly applied. Two common 
points of the aforementioned DNS and LES two-phase research are that (i) the reverse 
coupling is formulated via an interphase force in the momentum equations, and (ii) the 
particle dimension is required to be much smaller than the smallest resolved length scales 
of turbulence, so that the point-mass of the particle can be assumed, and the equation of 
motion for a point mass can be used. Notably, the point (ii) sets a stringent restriction on 
the application of LES to a wide range of two-phase flow problems, such as many bubbly 
flows where bubble sizes are relatively large (e.g., on the order of millimeter). Also refer 
to Section 7.6 and 7.9 for more details. 

 
In this study an engineering approach is sought to advance the LES capability in 

simulating dispersed two-phase flows with relatively large bubbles, such as the case in 
bubble columns. In Section 7.9 a two-layer concept has been proposed with the reverse 
coupling being implemented with the help of an influence circle (or ball, PSI-Ball). This 
approach attempts to break the size hurdle set for the particle as well as the computational 
cell. In the following sections, a classical bubble column is selected as an example to 
illustrate the vitality of such a LES calculation. 
 
 
8.2. Experimental Setup and Flow Feature 
Considered is a locally aerated flat bubble column according to the experiment conducted 
by (Becker et al. 1994). The experimental setup is depicted in Figure 8-1. The column has 
a dimension of 2m × 0.5m × 0.08m in height, width and depth, respectively. The liquid 
level used in the experiment is 1.5m. The gas distributors, flush-mounted on the bottom 
of the column, are made up of 40 mm plastic discs with a mean pore size of 40 μm. In the 
experiment the gas was fed from the leftmost disk (shaded circle in Figure 8-1) located 
0.15m from the left wall.  
 

With a given geometry, the two-phase flow pattern is mainly dependent of the gas 
flow rate, Q. It is found that at Q below about 3.6 l/min, the flow exhibits strong transient 
characteristics. The gas flow rate used in the experiment is 1.6 l/min, which corresponds 
to a superficial gas velocity of 0.66 mm/s. At this gas throughput it is experimentally 
observed that, several staggered liquid recirculation zones are formed, which change their 
location, shape and size in time. The action of these unsteady, large structures leads to a 
swinging and meandering shape of the rising bubble clouds (Figure 8-2b). An interesting 
phenomena is that the direction of the lower part of the bubble swarm is relatively stable 
and it is always directed towards the near sidewall.  

 
Time histories were recorded for the vertical velocity component at two selected 

locations (point A and B in Figure 8-2b). Point A (in bubbly flow zone) is located at 0.9m 
above the distributor and 0.035m from the left wall, while point B (in bubble-free zone) 
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is 1.05 away from the bottom and 0.05 from the right wall. The two time series are shown 
in Figure 8-2a. Note that this figure is reproduced by (Sokolichin and Eigenberger 1999) 
based on the original work of (Becker et al. 1994). The turbulent nature of the flow field 
is thus evident: large-scale low-frequency structure is superimposed by small-scale high-
frequency random fluctuations. From this figure one further sees a periodic change of the 
vertical velocity. The dominant period calculated from point A is about 41s, which agrees 
with the visual observations of the oscillatory movement of the rising bubble swarm.  
 

2 m

Liquid level
1.5 m

 0.5 m

 0.08 m

Gas distributors  
Figure 8-1 Sketch of flat bubble column used by (Becker et al. 1994). 

 
    (a)      (b) 

Figure 8-2 (a) LDA-measurements of vertical velocity at two selected locations A and B in a locally 
aerated bubble column.  (b) A typical instantaneous snapshot of rising bubble swarm.  (Reprinted 

from (Sokolichin and Eigenberger 1999) with permission). 
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8.3. Two-dimensional Test Simulation 
(Delnoij et al. 1997b) performed a two-dimensional simulation of this particular bubble 
column using the Eulerian-Lagrangian (E-L) approach on a 50 × 100 uniform grid. The 
volume-averaged equations were used in their study, with the phase coupling being 
modeled through a force term in the momentum equations:  

 ( ) ( ) 0l l l l lt
α ρ α ρ∂

+ ∇ ⋅ =
∂

u , (8.3) 

 ( ) ( ) ( )l l l l l l l l lP
t

α ρ α ρ α α μ α ρ∂
+ ∇ ⋅ = − ∇ + ∇ ⋅ ∇ + +

∂
u uu u g I , (8.4) 

where  
 ( ), , ,cell D n L n A n

n
V F F F= + +∑I  (8.5) 

and the subscript l denotes the liquid phase. The liquid void fraction αl is calculated from 

 ,1 b nn
l

cell

V
V

α = − ∑ . (8.6) 

where Vb,n is the volume of the nth bubble, and Vcell is the volume of the computational 
cell. Due to the two-dimensional nature of their implementation, a virtual third dimension 
was introduced for the calculation of Vcell. This third dimension can be derived from the 
relation between the two-dimensional and three-dimensional global void fraction in the 
respective 2D and 3D space. A laminar viscosity (that of the liquid) was assumed in their 
calculation without a turbulence model. For the Lagrangian particle trajectory tracking, 
the following hydrodynamic forces are considered: 
 p G S D L A= + + + +F F F F F F . (8.7) 
This choice and significance of these forces for light particles, such as air bubbles under 
consideration, have been addressed in detail in Section 7.5. The bilinear interpolation was 
employed for both the forward and backward interpolation. Also, an elastic, irrotational 
collision model was exercised to account for the bubble-bubble interaction. 
 
 The work of (Delnoij et al. 1997b) is the closest found in the literature that has a 
direct relevance to both the two-way coupled E-L approach and the (Becker et al. 1994)’s 
flat bubble column case. A similar two-dimensional E-L simulation is then carried out in 
the present study based on the same formalism, numerical methods and computational 
grid as described in the preceding paragraph. Same as in the original calculation the 
bubble size issue is simply neglected as long as the computational cell size is larger (but 
not much larger) than the particle size. The only unmatched implementation is a collision 
model, which is applied in the original work, but neglected in the current study for the 
sake of simplicity. The goal of repeating such a 2D calculation is to verify the current E-
L implementation with two-way coupling. Some key computational parameters are listed 
in Table 8-1. Note that these parameters are same as those used in the Delnoij et al.’s 
simulation.  
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Table 8-1 Parameters used in the 2D simulation of a locally aerated bubble column. 

Column height 1.50 (m) Gas flow rate 1.6 (l / min) 
Column width 0.50 (m) Bubble diameter 2.0 (mm) 
Orifice width 0.04 (m) Number of x-cells 50 
Liquid (water) density 1.0 × 10-3 (kg / m3) Number of y-cells 100 
Liquid viscosity 1.0 × 10-3 (N⋅s / m2) Time step 5.0 × 10-3 (s) 
Gas (air) density 1.2 (kg / m3)   
 
 

However, it is important to keep in mind that the results presented by (Delnoij et 
al. 1997b) should be interpreted with caution. (Sokolichin and Eigenberger 1999) studied 
the same bubble column using an E-E approach and with a systematic grid refinement. In 
the case of 50 × 100 grid nodes without using any turbulence model, they obtained very 
similar results to those of (Delnoij et al. 1997b). On the other hand, laminar simulation on 
other coarser or finer grids produced largely varying flow structures (more vorticities 
were resolved with the refined grid) and it did not lead to a convergent solution. In fact, 
this is typical of a laminar calculation for a turbulent flow. They concluded that under the 
condition of laminar model, the results of simulation is strongly grid-dependent; a good 
agreement with the experiments should be regarded as a pure coincidence, which could 
be partially attributed to the diffusive nature of the 1st order upwind scheme.  

 
One more comment should be made here. The solution of volume-averaged 

equations gives only volume-averaged velocity field, but not the instantaneous ones. Use 
of the volume-averaged quantities in computing the particle trajectories should be thus 
regarded as a model. As already mentioned in Section 7.6.2, the non-instantaneous field, 
with the exception of filtered field calculated from a LES, cannot address the turbulent 
random motion of the particle. Therefore, in a turbulent flow simulation with a RANS or 
laminar model, a random force or a random velocity is typically incorporated into the 
calculation of the particle trajectory. 

 
Given above discussions, it should be emphasized that conducting such a 2D E-L 

simulation according to (Delnoij et al. 1997b) is merely for the verification purpose. No 
intention will be given to a physical interpretation of the results. In particular, a side-by-
side comparison is conducted with the simulation of (Delnoij et al. 1997b), (Sokolichin 
and Eigenberger 1999) as well as the experimental data. This is presented as follows. 

 
For brevity, (Becker et al. 1994) shall be referred to as Becker, (Delnoij et al. 

1997b) as Delnoij, and (Sokolichin and Eigenberger 1999) simply as S&E. 
 
Figure 8-3 presents a comparison of instantaneous bubble dispersion patterns at a 

10s interval among S&E's experimental observations, current 2D E-L simulation, 
Delnoij’s 2D E-L simulation, and S&E’s 2D E-E simulation. It is noted that the bubble 
swarms in the three 2D simulations have in common in that (i) they have similar forms of 
undulation, (ii) they all exhibit a quasi-periodic motion with about the same period, (iii) 
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the oscillatory motion of the bubble dispersion pattern does not synchronize with the one 
observed in the experiment, (iv) the lateral bubble spreading is underpredicted as 
compared to the experiment. An interesting experimental observation is that the lower 
part of the bubble swarm is firmly pushed towards the left wall, irrespective of the 
relatively large oscillation of its upper part. This feature is captured in the present 2D 
simulation, whereas from the 2D results of Delnoij and S&E the lower part of the bubble 
swarm also oscillates.  

 
 Figure 8-4 depicts the liquid velocity fields at the same five instants as that in 
Figure 8-3. Compared with each other are the present and Delnoij’s 2D E-L simulations, 
as well as the 3D E-E results of S&E. The three independent calculations generally show 
more or less different predictions in terms of the number, size and arrangement of gross 
recirculation zones. The present 2D results are compared more favorably with the S&E’s 
ones, since both show the existence of either two large eddies or three. On the other hand, 
Delnoij’s calculation only shows two gross recirculation zones most of the time (except 
the one in the third plot). 
 
 The long-time averaged mean flow field is an important indicator of the reliability 
of the predicted results. The is shown in Figure 8-5, along with Becker’s (b) and S&E’s 
(d) measurements, as well as Becker’s 2D E-E simulation (c). The mean field of this flow 
case was reported in Delnoij’s publication. From these plots, to be identified are one 
primary gross recirculation zone, three secondary mid-sized recirculation zones (two in 
the upper and lower part respectively, and one in the middle near the left wall), and one 
small tertiary recirculation zone in the left upper corner. Results from all the simulations 
and experiments are all in qualitatively good agreement. The shape and position of the 
secondary near-wall eddy given by the current 2D simulation is, however, somewhat 
different from that of other results. Also note that the seemingly good agreement of the 
Becker’s 2D result could be questionable, as discussed in S&E’s work. 
 

Figure 8-6 shows the time histories of the vertical velocity recorded at a selected 
point A in the mid-depth plane (900 mm from the bottom, 35mm from the left wall). 
Showed are, in order, the current 2D E-L simulation, Becker’s experiment, Becker’s 2D 
E-E simulation, S&E’s experiment, and S&E’s 3D E-E calculation. A Fourier transform 
of the sampled signal reveals a periodicity of 40.96s in the present prediction, which is 
rather close to the observed 41s in Becker’s and S&E’s measurements. In the Delnoij’s 
2D E-L study an approximate period of 30s is reported (signal not shown here). Notably, 
none of the numerical calculations (2D E-L, 2D E-E, 3D E-E) is able to capture the 
turbulent random fluctuations, as is evident in the experimental data. The calculated 
signals are considerably smoothened out, and this is normally to be expected in a volume-
averaging-based two-phase calculation. 
 
 Overall, the present 2D E-L simulation, as a testing step towards a full 3D LES, 
delivers results similar to other 2D and 3D calculations. 
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Figure 8-3 Instantaneous bubble dispersion in a locally aerated bubble column. From top to bottom: 
(a) Experiment (binary and inverted photograph) of (Sokolichin and Eigenberger 1999), (b) present 

2D E-L simulation, (c) 2D E-L simulation of (Delnoij et al. 1997b), (d) 2D E-E simulation of 
(Sokolichin and Eigenberger 1999). Gas flow rate = 1.6 l/min. Δt = 10s. (Figures on 1st, 3rd and 4th 

rows reprinted with permission). 
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Figure 8-4 Instantaneous liquid vector field in a locally aerated bubble column. From top to bottom: 
(a) present 2D E-L simulation, (b) 2D E-L simulation of (Delnoij et al. 1997b), (c) 3D E-E simulation 

of (Sokolichin and Eigenberger 1999). Gas flow rate = 1.6 l/min. Δt = 10s. (Figures on 2nd and 3rd 
rows reprinted with permission).  
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(a)   (b)   (c)   (d) 

Figure 8-5 Long-time averaged liquid velocity field (a) present 2D E-L simulation (0 – 300s), (b) 
(Becker et al. 1994)’s experiment, (c) (Becker et al. 1994)’s 2D E-E simulation, (d) (Sokolichin and 

Eigenberger 1999)’s experiment. (Figures (b), (c) and (d) reprinted with permission). 
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Figure 8-6 Time history of liquid vertical velocity sampled at point A (900 mm from bottom, 35 mm 
from left wall). From top to bottom: (a) present 2D simulation, (b) (Becker et al. 1994)’s experiment, 

(c) (Becker et al. 1994)’s 2D simulation, (d) (Sokolichin and Eigenberger 1999)’s experiment, (e) 
(Sokolichin and Eigenberger 1999)’s 3D simulation. (Last four figures reprinted with permission). 
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8.4. Large-eddy Simulation and Results 
The study of (Sokolichin and Eigenberger 1999) has demonstrated that, the solution of a 
2D calculation without a turbulence model, i.e., only relying on the laminar assumption, 
is grid dependent and scheme dependent, irrespective of whether it is an E-L or E-E 
approach. The unsteady forms of undulation and periodicity predicted by such 2D 
simulations may be subject to serious error based upon comparison with the experimental 
measurements. They further pointed out that even when there exist a good agreement, 
e.g., the mean velocity field predicted by (Becker et al. 1994), it should be regarded as 
pure coincidence, in which the diffusive upwind scheme may play a role in dissipating 
turbulent energy.  
 
 Two-dimensional simulation using a turbulence model, typically the k-ε model, 
has been performed in the past (Becker et al. 1994; Sokolichin et al. 1997; Sommerfeld et 
al. 1997; Sokolichin and Eigenberger 1999). But it is generally found that, the turbulent 
kinetic energy calculated in a 2D domain produces too excessive effective viscosity. For 
example, an μeff increase of up to a factor of 20,000 has been reported by (Becker et al. 
1994). The failure lies in a complete neglect of the turbulence damping mechanism made 
by the front and back wall of the column. Moreover, since a 2D simulation with 
turbulence model rests on the assumption that the flow is statistically 2D, the use of a 
turbulence model usually leads to a steady-state solution (Sommerfeld et al. 1997; 
Sokolichin and Eigenberger 1999). The dynamic feature of the virtually 3D turbulent 
flow is simply lost. 
 
 A consequent effort is certainly a 3D simulation and with a turbulence model. 
Such an attempt has been made by (Sokolichin and Eigenberger 1999), who use an E-E 
formulation and pick the standard k-ε to serve as the turbulence model. Close agreement 
with the experiments, with regard to the bubble dispersion pattern and the mean liquid 
velocity field, is obtained this time. The success is however, neither because of the E-E 
formulation, nor the turbulence model. The three-dimensionality helps the TKE to (have 
to) deliver strong damped values due to the existence of the front and back walls. Now, if 
only the mean quantity is concerned, then so far so good. However, when turbulence 
quantities are of primary interest, RANS-type E-E simulation can hardly survive, where 
the TKE or turbulence intensities are commonly underestimated to different degrees. This 
is evident by comparing a real-world signal (Figure 8-6d) with the calculated one (Figure 
8-6e).  
 
 The hope, if not DNS, must then be LES. In the previous chapters homework has 
been done regarding LES. Also a two-layer concept has been proposed that allows for an 
E-L LES with relatively large particles/bubbles, such as in the present bubble column 
case. Now, we would like to put all these together to carry out a quality E-L based LES 
for the same bubble column.  
 

The geometry, physical properties and some key computational parameters are 
summarized in Table 8-2. The 2nd order central differencing is applied to both convection 
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and diffusion terms. Temporal integration is carried out using the 2nd order Adams-
Bashforth. The standard Smagorinsky SGS model is used with the Smagorinsky constant 
CS set to 0.032. It has been tested that larger values of CS may lead to excessive dampings 
of the liquid field, and eventually a steady-state solution. (So, this is the nice thing of the 
Smagorinsky model, where one can always adjust or fine-tune the results with only one 
constant, but not a bunch of them, as is the case with the RANS models!). It should be 
noted that this choice of CS is below the range (0.05 ~ 0.25) which is commonly reported 
in the single-phase LES literature. A very possible cause of the low CS operating in the 
two-way coupled two-phase regime can be due to the interphase momentum exchange, 
which, besides the SGS model, may also partially dissipate TKE of the continuous phase. 
Considering possible insufficient wall-layer resolution (normal to the left and right 
walls), the van Driest wall-damping function is applied, as usual. Also, the two-layer 
concept with the PSI-Ball is implemented in this calculation. The influence sphere is set 
according to Eq. (7.220); the associated Gaussian distribution function has a variance of 
twice the sphere diameter. The calculation starts with the liquid at standstill and proceeds 
with a time step of 5.0E-3 for exactly 300 seconds (5 minutes). The instantaneous and 
post-processed results are presented as follows. Again, the shorthand S&E is used in 
place of (Sokolichin and Eigenberger 1999), and Becker in place of (Becker et al. 1994). 
 

Table 8-2 Parameters used in 3D E-L large-eddy simulation of a locally aerated bubble column. 

Column height 1.50 (m) Gas flow rate 1.6 (l / min) 
Column width 0.50 (m) Bubble diameter 1.6 (mm) 
Column depth 0.08 (m) Number of x-cells 64 
Orifice width 0.04 (m) Number of y-cells 96 
Liquid (water) density 1.0 × 10-3 (kg / m3) Number of z-cells 8 
Liquid viscosity 1.0 × 10-3 (N⋅s / m2) Time step 5.0 × 10-3 (s) 
Gas (air) density 1.2 (kg / m3) y-grid expansion ratio 1.12 
 
 

Figure 8-7 shows bubble dispersion pattern at nine consecutive instants with a 
time interval of five seconds. The time between the first and last plot is 40 seconds and 
the shape of undulation between the two is similar, so the nine snapshots offer a complete 
picture of the oscillatory development of the bubble plume within one period. Comparing 
the simulated results (first row) with the experimental observations on row two and row 
four (post-processed binary and inverted photographs), a surprisingly good agreement is 
seen. Importantly, the lower part of the bubble plume is directed firmly towards the left 
wall, conforming to the experimental photographs. However, thinking of the lower part 
not participating in the swing motion can be wrong; it's safe to say it oscillates with very 
small amplitude, which is hardly appreciable. Note that the results from the S&E’s 3D E-
E simulation (third row) are also good. 

 
Figure 8-8 presents a comparison of the continuous velocity vector field predicted 

by the current E-L simulation (middle row) and S&E’s E-E simulation (bottom row). The 
nine selected instants are same as those reported in Figure 8-7. It is seen that the primary 
gross recirculation zone and secondary smaller eddies from both simulations are similar 
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in shape, size, position, orientation and their staggered arrangement. Also note, while the 
vector field calculated by the E-E approach is more organized, the instantaneous vortical 
structures captured by the E-L LES exhibit more random nature and more resemble a true 
turbulent flow field. 

 
 Figure 8-9 shows the time history of the vertical velocity at a selected point “A” 
(900 mm from the bottom, 35 mm from the left wall). There are two purposes of doing 
so. First, one can gain some preliminary picture of the turbulent fluctuations; and second, 
one may do an estimation of the natural period of the oscillating liquid field. It is evident 
that the signal produced by the present LES (a) resembles the measured (b) and (c) very 
well. A total of about seven periods within a 300s recording time are accurately captured. 
The peak magnitudes of the oscillation in the present LES tends to be smaller than S&E’s 
measurements but larger than Becker’s ones. Also, the present LES signal (a) yields a 
mean amplitude of -0.0276 m/s, while that reported by Becker et al. (c) is –0.038 m/s. It 
is interesting to note that, although S&E’s E-E simulation (e) produces correct overall 
oscillatory behavior, the turbulent random fluctuations get lost due to the nature of their 
approach. This damped-out signal will be consequently linked to an underpredicted TKE 
level.  
 
 Note that, by only looking at the time series the signal can be regarded as quasi-
periodic, i.e., not strictly periodic. By transferring the signal from the time domain into 
the frequency domain (e.g., using FFT), a dominant frequency surfaces. This is shown in 
Figure 8-11(a), which gives a period equal to 40.96s. Becker et al reported a measured 
period of 41s. 
 
 A similar time history comparison (Figure 8-10) is also made for a different point 
“B” located 1.05m from the bottom, 50mm from the right wall in the bubble-free zones. 
Similar comments as those in the preceding paragraph also apply here. The mean velocity 
calculated from signal (a) is –0.118 m/s. The power spectrum of (a), given in Figure 
8-11(b), shows a dominant frequency of 40.96s, which is same as that at point A. 
 

The mean velocity vector field in the mid-depth plane is depicted in Figure 
8-12(a), in a comparison with both experiments and S&E’s computation. It is noted that 
the gross recirculation zone is very well reproduced in the present LES (a). The shape, 
size and location of the upper-left-corner eddy are compared favorably with Becker’s (b) 
and S&E’s (c) experimental measurements. With respect to the experiments, the S&E’s 
E-E simulation (d) underpredicts this left corner mean eddy to some degree. Also note 
that the strong clockwise mean recirculation in the lower part of the column explains why 
the bubble swarm in this lower region is pushed fest towards the left wall and thus is 
relatively insensitive to the overall oscillation. 
 

A quantitative comparison of the mean vertical velocity at several vertical stations 
on the same mid-depth plane is presented in Figure 8-13. The overall agreement with the 
measurements is very good. At station y / H = 0.58 and 0.7, the measurements (dash-dot 
lines) may present some uncertainty near the left wall, as a typical sharp gradient in the 
near-wall region is not observed. 



 324

 
Figure 8-14 show the turbulence intensity (urms and vrms) as well as TKE obtained 

from the present LES. One sees that there is an increasing trend of the turbulence level 
from the bottom to the mid-height, reaching its maximum at about y / H = 0.58, and then 
followed by a decreasing trend until turbulence is significantly suppressed in the near 
surface region. The locations of the peak TKE with an increasing liquid height undergo a 
slight shift towards the left wall up to y / H = 0.58, then move back again towards the 
center. The largest TKE (valued at 0.036 m2/s2) turns out to be at about y / H = 0.58 from 
the bottom and 0.07 m away from the left wall. This finding appears to be consistent with 
the bubble swarm motion shown in Figure 8-7, because at this height the curvature of the 
rising bubble cluster is subject to most frequent changes, and the oscillating amplitude is 
the largest. Contrary to this result, S&E’s 2D E-E simulation reported a maximum TKE 
at the mid-height of about 0.011 m2/s2 located in the center region (Figure 8-15). This 
value is about three times smaller than the present prediction. 
 

It is also necessary to take a look at the volume fraction of the dispersed phase. 
Since bubbles enter from the bottom and leave from the free surface at a constant or quasi 
constant rate, the global void fraction of the gas phase can be regarded as approximately 
constant. At time t = 300s, for example, the global void fraction obtained from the present 
simulation is about 0.24%. Such a value is representative and suggests the system under 
consideration well qualifies for a dilute dispersed system (cf. Eqs. (7.19) and (7.20)). 
However, a small global volume fraction does not necessarily guarantee a small volume 
fraction locally. This is shown in Figure 8-16, where the nine instantaneous local volume 
fraction contours are computed from the same instants as in Figure 8-7. The comparison 
between the present (upper row) and S&E’s (lower row) results evinces a qualitatively 
similar distribution of the volume fraction from two independent simulations. From the 
upper row of Figure 8-16 it is seen that, a local void fraction as large as 1% to 2% is 
present near the injection region and along the center of the bubble swarm. This range is 
further confirmed in the contour plot of the mean (long-time averaged) local volume 
fraction (Figure 8-17). In strict sense, with the relatively high volume fraction at the 
center of the bubble plume, the particle-particle interaction may not be negligible and the 
two-phase flow may not be considered dilute locally. However, with the two-layer notion 
introduced in Section 7.9, the restrictive dilute condition (Eq. (7.19)) may be relaxed so 
that a relatively dilute flow, such as the current one with local void fraction of 1% or 2%, 
is also admissible. In fact, this is one of the reasons that the bubble column is chosen for 
the validation study of the proposed idea. The excellent agreement with the experiments 
presented in this subsection conveys an important piece of information; that is, under the 
condition of relatively large particle size and relatively large volume fraction, the point 
volume approach can still serve as a viable model to accurately capture the dynamics of 
the both phases. 
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Figure 8-7 Instantaneous bubble dispersion in a locally aerated bubble column. From top to bottom: 

(a) present LES, (b) experiment of (Sokolichin and Eigenberger 1999), (c) E-E 3D simulation of 
(Sokolichin and Eigenberger 1999), (d) experiment of (Becker et al. 1994). Gas flow rate = 1.6 l/min. 

Δt = 5s. (Figures on last three rows reprinted with permission). 
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Figure 8-8 Instantaneous liquid vector field in a locally aerated bubble column. From top to bottom: 
(a) instantaneous bubble dispersion (from present LES), (b) present LES (grid index skip in both x- 
and y-directions is 2), (c) E-E 3D simulation of (Sokolichin and Eigenberger 1999). Gas flow rate = 

1.6 l/min. Δt = 5s. (Figure on 3rd rows reprinted with permission).  
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Figure 8-9 Time history of liquid vertical velocity sampled at point A (900 mm from bottom, 35 mm 

from left wall). From top to bottom: (a) present LES, (b) (Sokolichin and Eigenberger 1999)’s 
experiment, (c) (Becker et al. 1994)’s experiment (0 – 581s), (d) (Sokolichin and Eigenberger 1999)’s 

3D simulation. (Last three figures reprinted with permission). 
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Figure 8-10 Time history of liquid vertical velocity sampled at point B (1.05m from bottom, 50 mm 

from right wall). From top to bottom: (a) present LES, (b) (Sokolichin and Eigenberger 1999)’s 
experiment,  (c) (Sokolichin and Eigenberger 1999)’s 3D simulation. (Second and third figures 

reprinted with permission). 
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Figure 8-11 Power spectra of u-velocity fluctuations at Point A (upper) and B (lower). 
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 (a)   (b)   (c)   (d) 

Figure 8-12 Long-time averaged liquid velocity field (a) present LES (0 – 300s, grid index skip in 
both x- and y- directions is 2), (b) (Becker et al. 1994)’s experiment, (c) (Sokolichin and Eigenberger 
1999)’s experiment, (d) (Sokolichin and Eigenberger 1999)’s 3D simulation. (Figures (b), (c), and (d) 

reprinted with permission) 
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= 2.0 m/s

   
   (a)     (b) 
Figure 8-13 Long-time averaged vertical velocity profiles at different heights of the mid-depth plane. 
Eight comparison stations are, from bottom to top, y / H = 0.065, 0.2, 0.32, 0.45, 0.58, 0.7, 0.83, and 
0.96. Solid lines are present LES (left) or (Sokolichin and Eigenberger 1999)’s 3D E-E simulation 
(right), dash-dot or dashed lines (Sokolichin and Eigenberger 1999)’s experiment. (Right figure 

reprinted with permission) 
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Figure 8-14 Turbulence intensities at different heights in the mid-depth plane, from top to bottom: 

(a) urms, (b) vrms, (c) turbulent kinetic energy. 



 333

 

 
Figure 8-15 TKE profile at y / H = 0.5 calculated from (Sokolichin and Eigenberger 1999)’s 2D E-E 

simulation with k-ε model. (Figure reprinted with permission). 
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Figure 8-16 Instantaneous volume fraction of dispersed phase (bubble). Upper row: present LES; 

lower row: E-E 3D simulation of (Sokolichin and Eigenberger 1999). 
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Figure 8-17 Mean volume fraction of dispersed phase (bubble). 

 
 
8.5. Grid Sensitivity Study 
First, let the LES presented in the previous section be referred to as the baseline case. A 
grid sensitivity study is then performed where the baseline grid is refined by a factor of 
30% in all three directions. The two different grids under consideration are summarized 
in Table 8-3. All the computational parameters, except for the number of grid nodes, are 
kept the same, so that the difference between the two calculations will be only due to the 
spatial resolution. Plots of the same kinds are generated for the refined grid computation, 
and they are compared side-by-side with the baseline case in Figure 8-18 through Figure 
8-23. 
  

A comparison of the coarser and finer-grid solution in Figure 8-18 through Figure 
8-22 suggest that both calculations deliver very similar results, with respect to the bubble 
dispersion pattern and mean quantities. The period and mean vertical velocity at Point A 
and B calculated from the two grids (see Table 8-4) are also close. 
 
 In such a study it is also expected that with refined grid resolution, more TKE will 
be resolved. This is shown in the plot of Figure 8-23, where line profiles of the turbulence 
intensities and TKE are compared at two vertical stations. It is clearly seen, with the 
refined grid size, more turbulent fluctuations are resolved. 
 
 Based on these facts the present E-L LES can be well considered reliable. 
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Table 8-3 Grid information in coarser and finer-grid computation. 

Coarser grid Finer grid 
Number of x-cells 64 Number of x-cells 80 
Number of y-cells 96 Number of y-cells 120 
Number of z-cells 8 Number of z-cells 10 
Time step 5.0 × 10-3 (s) Time step 5.0 × 10-3 (s) 
y-grid expansion ratio 1.12 y-grid expansion ratio 1.12 

 
 

Table 8-4 Comparison of period and mean vertical velocity at point A and B. 

 Coarser grid Finer grid 
 Period (s) Mean vertical 

velocity (m/s) 
Period (s) Mean vertical 

velocity (m/s) 
Point A 40.96 -0.0276 40.96 -0.0257 
Point B 40.96 -0.118 40.96 -0.119 

 
 

        

        
Figure 8-18 Comparison of instantaneous bubble dispersion calculated with two different grids. 

Upper row: 96x64x8; lower row: 120x80x10. 
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Figure 8-19 Comparison of time history of vertical velocity at Point A calculated with two different 

grids. Upper row: 96x64x8; lower row: 120x80x10.  
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Figure 8-20 Comparison of time history of vertical velocity at Point B calculated with two different 

grids. Upper row: 96x64x8; lower row: 120x80x10. 
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   (a)     (b) 
Figure 8-21 Comparison of long-time (0 – 300s) averaged liquid velocity field in the mid-depth plane 
calculated with two different grids: (a) 96x64x8, (b) 120x80x10. Grid index skip is 2 in both x- and y-

directions. 
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(b) 

Figure 8-22 Comparison of turbulent kinetic energy profiles at different height in the mid-depth 
plane calculated with two different grids: (a) 96x64x8, (b) 120x80x10. 
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Figure 8-23 Comparison of turbulence intensity and turbulent kinetic energy profiles at two different 

height in the mid-depth plane calculated with two different grids. From top to bottom: (a) urms, (b) 
vrms, (c) TKE. 
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Chapter 9  Conclusions and Future 
Work 
 
 
9.1. Summary 
In this study a transient, three-dimensional, finite-volume-method based Navier-Stokes 
(N-S) solver has been developed, which solves viscous, incompressible flow problems on 
an orthogonal and staggered grid. Discretization schemes have been derived in detail for 
both the momentum equations and the pressure Poisson equation. A fractional step 
method proposed by (Kim and Moin 1985) has been adopted for the solution of the 
coupled partial differential equations. The developed flow solver has been verified on a 
variety of benchmark flows including Taylor's vortex, free-shear layer, backward-facing 
step flow and square cavity, and it has been shown to be second-order overall accurate in 
both space and time. 
 
 Modeling strategies for and issues related to the large-eddy simulation (LES) of 
single-phase turbulent flows have been reviewed and summarized. Three subgrid scale 
(SGS) models, namely, Smagorinsky model, dynamic model and implicit model, have 
been implemented and investigated. Validation of the turbulent flow simulation has been 
carried out for three building-block turbulent flows: turbulent channel flow, developing 
plane mixing layer and flow past a square cylinder. The test results showed a superior 
quality of the present LES. 
  

An extensive review has been performed for the characterization and description 
of a dispersed two-phase flow system. Summarized are the governing equations suitable 
for a DNS (direct numerical simulation), LES and RANS-type simulation based on the 
volume averaging. Both Eulerian and Lagrangian description of the dispersed phase has 
been addressed, with the emphasis on the latter. Various types of hydrodynamic forces 
acting on particles or bubbles, including drag, lift, fluid-stress, added mass, history and 
wall force, have been recapitulated. The assumptions and applicability of the Eulerian-
Lagrangian (E-L) based large-eddy simulation for a dispersed two-phase system have 
been elaborated. Various two-way coupling models as well as their numerical realization 
in the E-L LES have been reviewed. The importance of an accurate and efficient 
interpolation scheme is stressed.  

 
The issue of the scale restrictions with respect to the particle/bubble sizes, 

characteristic flow length scales and computational grid size has been raised and carefully 
studied. A two-layer concept has been proposed, aimed at decoupling the geometric 
feature of the particle from that of the computational grid. In this approach, the primary 
carrier phase and the secondary dispersed phase are viewed as two independent, but 
interacting computational layers. The concept comprises three major elements (three 
A’s): an assumption, an assertion and an approach.  They are:  
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• Assumption: The point-volume treatment of relatively small particles is an 
applicable approach for the Lagrangian simulation of relatively dilute dispersed 
systems. 

• Assertion: The geometric feature of the particle should be decoupled from that of 
the computational grid. 

• Approach (PSI-Ball): The reverse coupling (dispersed phase on the carrier phase) 
is achieved by redistributing the interphase point force via a distribution function 
onto those Eulerian grid nodes falling inside a predefined local influence sphere 
(or cage) centered at the particle center.  
 
Finally, the proposed two-layer approach is applied to the large-eddy simulation 

of a partially aerated bubble column where bubbles are relatively large in size. Excellent 
agreement with the experiments has been obtained for both the bubble dispersion pattern 
and the statistics of the continuous carrier flow field. 
 
 
9.2. Achievements and Conclusions 
Three major accomplishments have been made in this study. 
 

1. A framework of the two-way coupled Eulerian-Lagrangian LES covering a broad 
range of fundamental aspects, including governing equations, interphase coupling, 
particle force formulations, and interpolation has been formalized based upon 
previous research findings published in the open literature. 

2. The commonly recognized size restriction on the particle or the computational 
cells has been challenged with a proposed two-layer concept. In this approach, the 
carrier phase and the dispersed phase are viewed as two standalone computational 
layers; the reverse coupling, i.e., from the particle to the carrier fluid, takes place 
at those discrete particle locations through modeled momentum exchange forces 
with the help of a predefined influence sphere (or circle in 2D). A significant 
advantage is that the Eulerian grid can be constructed to a desired fineness (e.g., 
in the wall layer) without concern for the particle size. Or equivalently, relatively 
large bubbles can be computed as long as the criteria of the dispersed flow regime 
(low volume fraction of the dispersed phase) can be still met. This convenience 
opens up the opportunity of applying E-L LES to a wider range of practical 
engineering flows such as bubble column reactors and bubbly channel flows. 

3. In the literature the study of bubble columns has served as the foundation upon 
which industrial bubble column reactors are developed, because the flow pattern 
generated by the bubble motion, despite the simple geometry of the column, has 
been shown to be highly complex and to depend on many factors. The present 
study has successfully simulated a partially aerated bubble column using the E-L 
LES approach and the proposed two-layer concept. A high fidelity of the results 
has been attained. Second order statistics have been reported.  
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9.3. Future Work 
The following recommendations can be made for further investigations: 
 

1. The proposed two-layer concept should be further evaluated on different types of 
dispersed flow systems, such as the bubbly mixing layer, bubbly channel flow and 
bubbly ship wakes. 

2. Reliable two-phase SGS models are to be developed and rigorously verified.  
3. The present study mainly investigated the force coupling between the two phases, 

where the wake effect of the particle/bubble is neglected. Another form of the 
two-way coupling, known as the velocity coupling, which may potentially take 
into account the influence of the particle wake, can be investigated. 

4. Although it has been found in the literature that with LES a particle dispersion 
model can have minor influence on the particle dispersion patterns, the particle 
dispersion due to random turbulent fluctuation may still play a role in some not-
well-resolving LES. Instead of fully relying on the filtered velocity in computing 
the particle trajectories, it can still be a good idea to develop a reliable particle 
dispersion model to supplement certain deficiency of the filtered velocity field. 

5. There has been a vast discussion on the importance of the interpolation schemes 
in the literature. In the practical interest, the efficient tri-linear interpolation is still 
preferred over other expensive high-order interpolation. The present study has 
shown that even with the first-order tri-linear interpolation, fruitful results can be 
obtained in the bubble column simulation. It is certainly desirable to investigate 
the applicability and accuracy of the first-order interpolation as compared to 
higher order schemes, if only the mean or at most the second-order statistics of 
the carrier phase is of interest.  

6. The applicable particle force in the near-wall region remains to be a big mystery. 
Although some investigations have been made in the literature, most available 
expressions are based on empirical correlations. A fundamental understanding on 
the mechanism of the wall-force is still lacking. Further research is needed in this 
seemingly small, but indeed very important area. 

7. Despite the increasing power of the computational resources, a parallel algorithm 
and implementation for the E-L LES of the dispersed two-phase flows will still be 
a must to meet the challenges of industrial flow problems. On a single processor, 
based on the current computing capability, the number of computational particles 
or parcels is generally limited to an order of about 105. A substantial removal of 
this bottleneck can be only achieved, in the author’s opinion, with the help of 
massively parallelized implementation of the simulation program. However, 
difficulties still exist. For example, in the domain decomposition approach, the 
communication overhead and load imbalance hinders a linear speedup of the 
parallel program. 

 
It is clear that, research in this area towards a well establishment still has a long 

way to go, and it calls for continuing and collaborative efforts among researchers, 
scientists and engineers. But, it is the author’s belief that a good start has been made here. 
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Appendix A About the Navier-Stokes 
Solver “DREAM II”  
 
 
“DREAM II” is a transient, three-dimensional, finite-volume-method (FVM) Navier-
Stokes solver used in this study. The solver is developed by the present author under the 
supervision of Dr. Ismail Celik, and it is a full reimplementation of the original DREAM 
code (written by Dr. Celik) with significant accuracy improvements, LES capability and 
many other new developments. Some key features include: 
 

• Projection method according to (Kim and Moin 1985). 
• Implicitness factor adjusting for both convection and diffusion terms. 
• Third order QUICK (Quadratic Upwind Interpolation for Convective Kinematics) 
• Fourth order central differencing. 
• Fourth order deferred correction for pressure solution. 
• 2nd order Adam-Bashforth for time integration. 
• LES with Implicit turbulence model. 
• LES with Smagorinsky SGS (subgrid scale) model. 
• LES with Dynamic SGS model. 
• Efficient boundary condition setting. 
• Capable of handing non-uniform grid. 
• Reliable restart file. 

 
 
Description of Program Files 
 
Note that each file typically contains a collection of subroutines or other program units, 
which together performs a designated task. Also see Figure 2-4 for program flow chat. 
 
DreamII.for: 
 
 
 
calc_pres.for: 
 
 
calc_uvel.for: 
 
calc_vvel.for: 
 
calc_wvel.for: 
 

Main program, controls overall program flow, calls major solver 
subroutines, such as CALC_UVEL, CALC_VVEL, CALC_WVEL 
and CALC_PRES etc. 
 
Calculates pressure or pseudo-pressure by solving the pressure 
Poisson equation. 
 
Calculates u-velocity component. 
 
Calculates v-velocity component. 
 
Calculates w-velocity component. 
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config.for: 
 
 
dream_cblock.for: 
 
dream_param.for: 
 
dump.for: 
 
grid.for: 
 
interp.for: 
 
 
open_files.for: 
 
projection.for: 
 
properties.for: 
 
psolv_cblock.for: 
 
psolv_param.for: 
 
psolvers.for: 
 
 
 
 
restart.for: 
 
set_bcons.for: 
 
 
update_bcon.for: 
 
utilities.for: 

Takes input of flow and grid parameters, initializes field variables, 
performs other flow-related configurations. 
 
Defines global variables. 
 
Defines global program constants. 
 
Outputs results data. 
 
Generates orthogonal, staggered grid. 
 
Collection of interpolation subroutines used by spatial 
discretization schemes. 
 
Opens input, output and restart files. 
 
Projects predicted velocity field onto a divergence-free field. 
 
Sets fluid properties and turbulence properties. 
 
Defines shared variables used by matrix solvers. 
 
Defines constants used by matrix solvers. 
 
Collection of matrix solvers: SIP (Stone Implicit), CGSTAB (bi-
Conjugate Gradient Stabilized), ICCG (Incomplete Cholesky 
preconditioned Conjugate Gradient), ADI (Alternating Direction 
Iteration) etc. 
 
Output or read restart file. 
 
Contains four subroutines for setting implicit and explicit boundary 
conditions of various types. 
 
Updates boundary conditions. 
 
Collection of utility subroutines. 
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Appendix B About the Lagrangian 
Particle Tracking Program “PART” 
 
 
“PART” is a Lagrangian particle tracking program developed by the present author. The 
program can be used in a combination with the N-S solver, DREAM II, to track particles 
velocity and trajectory in a three-dimensional space. The particles are advanced in time 
using the 2nd or 4th order Runge-Kutta method. Efficient particle population control is 
achieved by way of linked list. 
 
 
Description of Program Files 
 
part_cblock.for: 
 
part_param.for: 
 
part_start.for: 
 
part_typdef.for: 
 
particles.for: 

Defines shared variables used by particle tracking routines. 
 
Defines constants used by particle tracking routines. 
 
Opens files and performs initialization tasks 
 
Defines a derived type and its components for particle. 
 
Collection of particle tracking subroutines. 

 
 
Description of Major Subroutines in particles.for File 
 
Part_Initring: 
 
Part_Config: 
 
 
Part_Iface_mesh: 
 
Part_Iface_uvw: 
 
Part_Inject: 
 
Part_Move: 
 
Part_Move_onepart: 
 
Part_Append: 
 

Sets up and initializes particle ring. 
 
Configures particle properties and sets parameters used in the 
particle tracking routines. 
 
Takes grid information from the carrier flow solver. 
 
Takes velocity field from the carrier flow solver. 
 
Injects particles. 
 
Moves particles. 
 
Moves a single particle using RK2 or RK4. 
 
Appends a particle to the particle ring. 
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Part_Delete: 
 
Part_Dump: 
 
Part_Write_restart: 
 
Part_Read_restart: 
 
Part_Get_icell: 
 
Part_Interp_uc: 
 
Part_Interp_ucder: 
 
Part_Get_force: 
 
Part_Calc_vof: 
 
Part_Calc_fcoup: 

Deletes a particle from the particle ring. 
 
Outputs particle results data. 
 
Writes particle restart file. 
 
Reads particle restart file. 
 
Locates the grid cell in which a particle resides. 
 
Interpolates continuous fluid velocity onto the particle location. 
 
Interpolates fluid velocity gradients onto the particle location. 
 
Computes hydrodynamic forces acting on a particle. 
 
Calculates particle volume fraction. 
 
Calculate interphase coupling force. 
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