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Abstract 

A PC-Based Fluid and Heat Transfer Analyzer for Two-Phase Flow in Pipes 

Gbolahan Afonja 

Modeling the simultaneous flow of gas and liquid or two-phase gas-liquid flow in pipes is a 

key aspect in petroleum production. These models can enhance our ability to estimate fluid 

properties, predict pressure loss, liquid holdup, and flow pattern, and to see the effects of 

introducing concepts such as heat transfer to the system. Modeling two-phase flow 

phenomenon also allows visualization of the interaction of one property or parameter to 

another. The understanding of heat transfer in two-phase gas-liquid flow is important for 

economic and optimized operations. 

This work focuses on the design of a PC-Based Software for modeling the effect of 

convective heat transfer on flow patterns in two-phase gas-liquid flow in pipes at all 

inclinations from -90° to +90° from horizontal, with the utilization of a temperature and 

pressure traverse along the length of the pipe. The implementation of this model in a 

computer program involves substantial calculations and correlations, some of which require 

iterative procedures. 
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Chapter 1 Introduction 

1.1 Overview 

The flow of gas and liquids in pipes and the effect of thermal energy on the system are of 

importance in the chemical and petroleum industry. Flow assurance issues such as, paraffin 

deposition, hydrate formation, and heavy oil flow, which are crucial in the transportation of 

oil and gas through pipes, are related to the hydraulic and thermal factors of two-phase flow, 

thus the knowledge of heat transfer is vital in avoiding gas hydrate and deposition of wax 

resulting in repair, replacement, abandonment, or extra horsepower requirements 

(Kaminsky, 1999). 

Some complexity exists in the modeling of gas-liquid flow because of the presence of gas 

and liquid phases. The interface between these two phases can occur in various geometrical 

distributions, and is mainly dependent on flow rates, physical properties of the fluids, and 

pipe inclination angles. This phenomenon is known as flow pattern. The thermal- and 

hydro-dynamics of the flow is heavily impacted from one flow pattern to another. For 

instance, some heat transfer parameters estimated using the stratified flow correlations might 

change by several orders of magnitude from those estimated by annular flow correlations 

(Chen, 2001). 

Over the years, various mechanistic and empirical studies have been undertaken to calculate, 

predict, or model key factors in the hydrodynamics of two-phase flow, such as fluid 

properties, flow patterns, pressure drop, and liquid holdup; and thermal aspects such as heat 

transfer coefficient, overall heat transfer coefficient, and Nusselt number. The mechanistic 

method makes use of physical models, such as a high-pressure multiphase test facility 

 1



(Manabe et al, 2003) to predict hydrodynamics and heat transfer. The empirical method 

utilizes mathematical predictive models. Some studies have combined both the mechanistic 

and the empirical methods to give rise to the unified models. 
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1.2 Problem Statement 

The purpose of this project is to develop a PC-Windows-Based Model for predicting two-

phase gas-liquid pipe-flow phenomena such as flow patterns, pressure gradients, and the 

effect of flow pattern on convective heat transfer. The pipe inclination angle will also be 

considered, as this has been found to significantly affect flow geometry. 

The system will calculate oil and gas property parameters from reservoir conditions, and use 

the results to estimate hydrodynamic factors, and heat transfer values. 
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Chapter 2 Literature Review 
 
 
The complexity involved in modeling two-phase gas-liquid flow and its heat transfer has led 

to the emergence of various research works that seek to provide an understanding of these 

systems. Most of these studies can be grouped under three categories: mechanistic, 

correlative (empirical), and unified. 

2.1 Mechanistic Approach   

The mechanistic models take into consideration the physical mechanisms involved in the 

flow and heat processes. Investigators, with the acknowledgment that enhanced 

understanding of multiphase flow and heat transfer in pipes required a collective 

experimental and theoretical approach, made use of sophisticated test facilities that used 

instrumentation (such as high-speed cameras, nuclear densitometers, ultrasonics, and laser 

Doppler anemometers) for the measurement of crucial variables. Taitel et al (1976) and 

Dukler et al (1975) started the mechanistic modeling.  Taitel et al (1976) identified four 

distinct flow patterns for upward two-phase flow. The flow patterns are bubble flow, slug 

flow, churn flow and annular flow. An improvement in mechanistic models is evident in the 

work to predict flow pattern for all inclination angles. Barnea (1986) pioneered a unified 

model that predicted flow geometry for a wide range of pipe inclination angles.  

The works of Barnea, Taitel, and Dukler led to the enhancement of models that have been 

presented by Petalas and Aziz (1998), Xiao et al (1990), Ansari et al (1994), Gomez et al 

(2000), and Kaya et al (1999). These models contain the determination of flow patterns and 

the computation of pressure drop and hold up.  
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In the area of heat transfer, the mechanistic approach is a relatively recent development 

when compared to its application in fluid flow. The mechanistic approach for the prediction 

of heat transfer as it pertains to flow patterns consists of a flow pattern prediction model 

and a set of individual mechanistic models for predicting hydrodynamics and heat transfer. 

Manabe et al (2003) developed a heat transfer model for vertical two-phase flow. In their 

study, a high pressure multiphase test facility was used for experimental study, South Pelto 

crude oil (35° API gravity) was used as the liquid phase and natural gas supplied by 

Oklahoma Natural Gas Company was used as the gas phase. Ghajar and Kim (2005) studied 

the non-boiling two-phase flow heat transfer correlations for different flow patterns based 

on the pipe inclination angles.  

2.2 Empirical Approach 

Data obtained from laboratory test facilities, such as physical properties of gas and liquid, 

volumetric flow rates of the phases, inlet and outlet pipe pressures, pipe diameter and 

inclination angle, were used in the empirical approach. Sometimes field data was also 

incorporated in the system. The methods in this study fall under the empirical approach. 

Here, liquid holdup and pressure gradient are predicted for each flow pattern.  

Beggs and Brill (1973) investigated gas-liquid flow to determine the effect of pipe inclination 

angle on liquid holdup and pressure loss in two-phase flow. They developed correlations for 

liquid holdup and friction factor which were used to predict pressure gradients for many 

flow conditions. In order to overcome some of the limitations of the Beggs and Brill 

method, and to utilize new instrumentation to calculate liquid holdup, the Mukherjee and 

Brill (1985) method was developed. Mukherjee and Brill’s test facility included an inverted 

U-shaped, 1.5-in nominal diameter steel pipe that could be raised or lowered at any angle 
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from 0o to ±90o from the horizontal. Approximately 1000 pressure drop measurements and 

over 1500 liquid holdup measurements were obtained for various gas and liquid flow rates. 

The method investigated by Duns and Ros (1963) was as a result of extensive laboratory 

study in which liquid holdup and pressure gradient were measured. They developed a flow-

pattern map that identified flow pattern regions – (I) bubble, plug and part of froth flow 

regimes, (II) remainder of froth flow and slug flow regimes, (III) mist flow regime - and a 

transition region. The correlation here is used for pressure loss and holdup with flow regime 

determination by either the Duns & Ros or the Taitel Dukler correlations. The Duns & Ros 

method was developed for vertical flow of gas and liquid mixtures in wells.  

The Orkiszewski (1967) correlation is used for pressure loss, holdup, and flow regime. The 

Orkiszewski correlation was developed for the prediction of two phase pressure drops in 

vertical pipe. Four flow regimes were considered, bubble, slug, annular-slug transition, and 

annular mist. The method can accurately predict, to within 10%, the two phase pressure 

drops in naturally flowing and gas lifted production wells over a wide range of well 

conditions. The precision of the method was verified when its predicted values were 

compared against 148 measured pressure drops. Unlike most other methods, liquid holdup is 

derived from observed physical phenomena, and is adjusted for angle of deviation 

(Schlumberger, 2003).  

Most literature on flow geometry and its effect on heat transfer are based on either a 

mechanistic approach or unified approach. Such can be found in the work of Wang et al 

(2004).  
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Chapter 3 Theory 
This chapter discusses the mechanics of two-phase gas liquid flows. Basic parameters (such 

as velocities, flow rates, volume fractions etc) and flow patterns are introduced.  

3.1 Two Phase Gas-Liquid Flow 

For two-phase flow, mixture expressions for velocities and flow rates must be defined. 

3.1.1 Velocities and Flow rates 

The superficial velocities of liquid and gas phases (VsL and VsG) are defined as the volumetric 

flow rate for the phase divided by the pipe cross sectional area (Chen, 2001). 

L
sL

QV
A

=   (3.1) 

G
sG

QV
A

=   (3.2) 

where QL and QG are volumetric flow rates of liquid and gas. 

The mixture velocity is the sum of the superficial gas and liquid velocities. 

m sL sV V V= + G

o

) g

  (3.3) 

Volumetric flow rates for liquid and gas are determined from: 

SCL LQ Q B=   (3.4) 

( SC SCG G L sQ Q Q R B= −   (3.5) 
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where  QLsc is oil production rate  

 QGsc is gas production rate. 

The no-slip input volume fraction for the liquid and gas phases (λL and λG) are calculated 

from: 

sLL
L

L G m

VQ
Q Q V

λ = =
+

  (3.6) 

G s
G

L G m

Q V
Q Q V

λ = =
+

G  

During the simultaneous flow of gas and liquid, the lower density and viscosity of the gas 

phase, which results in higher mobility, enables the gas phase move faster than the liquid 

phase.  

3.1.2 Flow Patterns 

Flow patterns describe the geometrical distribution of a multiphase fluid moving through a 

pipe. This geometric distribution depends on flow rate, fluid properties, and the pipe 

inclination angle. Various terms are used to explain these flow patterns, and the difference 

between each one is qualitative and usually relative.  

In vertical or moderately deviated pipes (Figure 3-1), the most common flow regimes for 

gas-liquid mixtures are bubble flow, dispersed bubble flow, plug flow, slug flow, froth flow, 

mist flow, churn flow and annular flow.  
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Figure 3-1 Flow Patterns in Vertical and inclined flow (Wang et al, 2004) 

 
 
In horizontal wells (Figure 3-2), there may be stratified or wavy stratified flow in addition to 

many of the regimes found in vertical or deviated wells. 
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Figure 3-2 Flow Patterns in horizontal and inclined flow (Wang et al, 2004) 

 
One of the important components of a model for 2-phase flow is a method to predict flow 

patterns. All flow-pattern predictions are based on data from low-pressure systems, with 

negligible mass transfer between the phases. Hence, these predictions may be inadequate for 

high temperature, high pressure wells (Brill and Mukherjee, 1999).  

Beggs and Brill (1973) suggested three basic flow patterns – segregated, intermittent, and 

distributed. 

In the segregated flow pattern, the gas and liquid phases are continuous, and flow patterns 

under segregated flow include stratified, wavy, and annular. 

Plug and slug flow patterns are found under intermittent flow, and at least one phase (gas or 

liquid) is discontinuous. 
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For distributed flow, we have bubble and mist, and the liquid phase is continuous, while the 

gas phase is discontinuous. 

3.1.3 Flow Pattern Maps 

Based on the superficial gas and liquid velocities, vsG and vsL, flow pattern maps can be 

developed. A flow pattern map is a two-dimensional graph that depicts flow regime 

transition boundaries. The most common parameters used for the axes are vsG and vsL, 

though dimensionless variables are sometimes utilized. Figure 3-3 shows an experimental 

flow pattern map in a horizontal setup while Figure 3-4 shows an mechanistic flow pattern 

map in a slightly downward pipe. 

 

Figure 3-3 Experimental Flow Pattern Map for air-water system in a horizontal pipe 
(Mandhane, 1974) 
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Figure 3-4 Mechanistic Flow Pattern Map for air-water system in a slightly 
downward pipe (Taitel et al, 1976) 

 

3.1.4 Pressure Gradient 

Pressure Gradient is a change in pressure as a function of distance. 

t f el

dp dp dp dp
dz dz dz dz

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠acc

 

Where (dp/dz)t = Total Pressure Gradient (psi/ft) 

 (dp/dz)f = Pressure Gradient due to friction (psi/ft) 
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 (dp/dz)el = Pressure Gradient due to elevation (psi/ft) 

(dp/dz)acc = Pressure Gradient due to acceleration (psi/ft) 

3.1.5 Holdup 

In two-phase flow in pipes, the holdup is the fraction of a particular fluid present in an 

interval of pipe. Each fluid moves at a different speed due to different gravitational forces, 

with the heavier liquid/oil phase moving slower, or being more held up, than the lighter gas 

phase. The holdup of a particular fluid is not the same as the proportion of the total flow 

rate due to that fluid, which is also known as its cut. To determine in-situ flow rates, it is 

necessary to measure the holdup and velocity of each fluid.  

The sum of the holdups of the fluids present is one. 

1L GH H+ =  

HL = Liquid holdup 

HG = Gas holdup 

 

3.1.6 Heat Transfer 

There are three types of heat transfer modes namely, convection, conduction, and radiation. 

In pipelines and wellbores, convective heat losses occur between flowing fluids and the pipe 

wall. In a typical convective heat transfer, a hot surface heats the surrounding fluid, which is 

then carried away by fluid movement. 
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Conductive heat losses occur through the pipe wall, any insulation and coating material, and 

to the environment. Conduction is primarily heat transfer through solids or stationery fluids. 

Thermal radiation transfer does not require a medium to pass through; thus, it is the only 

form of heat transfer present in a vacuum. Radiative heat transfer occurs when the emitted 

radiation (from the sun or environment) strikes the pipeline and is absorbed. 

 

Figure 3-5 Heat transfer setup for a pipe flow. 

 

The heat loss from the fluid in the pipe is equal to the heat absorbed by the environment. 

Hence, with TB1 as inlet temperature, TB2 as outlet temperature, v as velocity of the fluid, q as 

heat flux, ρ as density, dl as length of pipe segment, did as pipe inner diameter, and cp as 

specific heat: 

( )1 2B B p idT T vA c q d dρ π− = l  

Then, 
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idB

p

q dT
l vA c

πδ
δ ρ

= −  

if  ( )B Oq U T T= −

Then, 

( )4 B OB

id p

U T TT
l d v c

δ
δ ρ

−
= −  

With TB as bulk temperature of fluid, TO as surrounding temperature outside pipe, and l is 

pipe length. 

1
1 ln

2
id od id

p id o o

U d d d
h k d h d

=
+ +

d

 

where U = overall heat transfer 

 h = internal convective heat transfer 

 kp = pipe thermal conductivity 

 dod = pipe outer diameter 

 ho = outside/external convective heat transfer 

In this study, the following parameters were assumed: 

ko, oil thermal conductivity = 0.08 Btu/hr/ft/°F 
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kg, gas thermal conductivity = 0.02 Btu/hr/ft/°F 

cpO, oil heat capacity = 0.08 Btu/lb/°F 

cpG, gas heat capacity = 0.02 Btu/lb/°F 

Thermal conductivities of the pipes, kp, can be obtained from Table 3-1 shown below: 

Material Thermal Conductivity 
Btu/hr/ft/F 

Anhydrite 0.75 

Carbon Steel  28.9 

Concrete Weight Coat 0.81 - 1.15 

Corrosion Coat (Bitumen) 0.19 

Corrosion Coat (Epoxy) 0.17 

Corrosion Coat (Polyurathane) 0.12 

Line pipe 27 

Mild Steel tubing 26 

Neoprene Rubber 0.17 

Plastic coated pipe 20 

Plastic coated tubing 20 

Stainless Steel 8.67 

Stainless steel (13%) 18 

Stainless steel (15%) 15 

Table 3-1 Thermal Conductivities of materials 
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3.2 Heat Transfer in Two-Phase Flow  

As mentioned earlier, many separate studies have been carried out to predict flow patterns 

and pressure gradients of two-phase gas-liquid flow, and convective heat transfer for pipe 

flow in two-phase flow. Only few researchers have studied the direct effect of heat transfer 

correlations on flow geometry. Kim et al (1999) studied 20 heat transfer correlations by 

comparing experimental data collected from other studies. Suggestions were made for 

various flow patterns and inclination angles.  

A comprehensive mechanistic model was developed by Wang et al (2004) for heat transfer in 

gas-liquid pipe flow in which the two-phase heat transfer depended on the hydrodynamic 

behavior of the flow. The prediction of heat transfer correlations used in this study is based 

on those developed by Wang et al (2004).  

Reservoir pressure and temperature, gas specific gravity, oil gravity, gas-oil-ratio, and the 

water salinity are used to obtain values for gas, oil, and water properties. The equations and 

correlations used to calculate these values were obtained from technical papers that are well 

known in the Petroleum, Chemical, and Mechanical Engineering fields. These detailed 

equations used are shown in appendix B.  

3.2.1 Two-Phase Flow Correlations 

The aspect of fluid mechanics as it pertains to the project involved the determination of 

respective fluid velocities, volumetric flow rates, volume fractions, flow pattern, pressure 

gradient and liquid holdup. The direction of flow (uphill or downhill), the pipe inclination 

angle, the daily production rate, pipe parameters (such as length, ID, OD, roughness etc), 

were used to obtain results.The procedures that were used to predict liquid holdup, pressure 
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gradient, and flow pattern are based on the studies carried out by Beggs and Brill (1973), and 

Mukherjee and Brill (1985). 

3.2.1.1 Beggs and Brill Correlation 

 In multiphase flow, most of the correlations developed are applicable for vertical and 

horizontal flow only. The Beggs and Brill (1973) correlation, is one of the few published 

correlations capable of handling whole range of flow conditions that may be encountered in 

oil and gas operations, such as uphill, downhill, horizontal, inclined and vertical flow. It was 

developed using 1" and 1-1/2" sections of pipe that could be inclined at any angle from the 

horizontal. 

The first step is to determine the appropriate flow pattern (Segregated, Intermittent or 

Distributed) for the particular combination of gas and liquid rates. The liquid holdup, then 

in-situ density of the gas-liquid mixture is obtained based on the appropriate flow pattern. A 

two-phase friction factor is calculated based on the gas-liquid ratio and the Fanning friction 

factor. From this the pressure loss is calculated using gas-liquid mixture properties.  

Flow Pattern Map 

The Beggs and Brill (1973) correlation requires that a flow pattern be determined. The 

original flow pattern map has been modified to include a transition zone between the 

segregated and intermittent flow patterns.  

The mixture Froude number, NFr, and no-slip liquid holdup are used to correlate flow-

pattern transition boundaries. 
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2
m

Fr
vN
gD

=
 

The transition lines for the modified correlation are defined as follows: 

0.302
1 316 LL λ=  

2.4684
2 0.0009252 LL λ−=  

1.4516
3 0.1 LL λ−=  

6.738
4 0.5 LL λ−=  

SEGREGATED flow 

if 0.01Lλ < and  1FrN L<

or 0.01Lλ ≥ and  2FrN L<

 

INTERMITTENT flow 

if 0.01 0.4Lλ≤ < and  3 1FrL N L< ≤

or 0.4Lλ ≥ and  3 4FrL N L< ≤
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DISTRIBUTED flow 

if 0.4Lλ < and  1FrN L≥

or 0.4Lλ ≥ and  4FrN L>

TRANSITION flow 

if 0.01Lλ ≥ and   2 3FrL N L< <

Liquid Holdup 

After the flow geometry has been determined the liquid holdup can be calculated. Beggs and 

Brill (1973) divided the liquid holdup calculation into two parts. First the liquid holdup for 

horizontal flow, HL(0), is determined, and then this holdup is modified for inclined flow. 

HL(0) must be greater than or equal to λL and therefore when HL(0) is smaller than λL, 

HL(0) is assigned a value of λL. 

( )0
b
L

L c
Fr

aH
N
λ

=
 

The constants in the above equation are dependent on flow type and given in Table 3-2. 

Flow Pattern a b c 

Segregated 0.98 0.4846 0.0868 
Intermittent 0.845 0.5351 0.0173 
Distributed 1.065 0.5824 0.0609 

Table 3-2 Beggs and Brill empirical coefficients for HL 
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 Segregated 

( )
0.4846

0.0868

0.980 L
L

Fr

H
N
λ

=
 

Intermittent 

( )
0.5351

0.0173

0.8450 L
L

Fr

H
N

λ
=

 

Distributed 

( )
0.5824

0.0609

1.0650 L
L

Fr

H
N

λ
=

  

Transition 

( ) ( ) ( )0 0 0L L LTransition Segregated Intermittent
H AH BH= +

where: 

 

3

3 2

FrL NA
L L
−

=
−  

1B A= −  

Once the horizontal in situ liquid volume fraction is determined, the actual liquid volume 

fraction is obtained by multiplying horizontal holdup ( )( )0LH  by an inclination factor ( )Ψ .  
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( ) ( )0L LH Hθ = Ψ  

where inclination factor is defined as: 

( ) ( )311 sin 1.8 sin 1.8
3

C θ θ⎡ ⎤Ψ = + −⎢ ⎥⎣ ⎦  

and θ  = angle of inclination of pipe 

 C is a function of flow type, the direction of inclination of the pipe (uphill flow or downhill 

flow), the liquid velocity number (NLv), and the mixture Froude Number (NFr).  

( ) ( )1 ln f g h
L L LvC e Nλ λ= − FrN

 

The values for e, f, g, and h, for the different flow patterns can be obtained from Table 3-3 

below. 

  Flow Pattern e f g h 
Segregated 0.011 -3.378 3.539 -1.614 
Intermittent 2.96 0.305 -0.4473 0.0978 

U
p

h
ill

 

Distributed No correction: β = 0, Ψ = 1 
Downhill All Patterns 4.7 -0.3692 0.1244 -0.5056

Table 3-3 Beggs and Brill empirical coefficients for C 

 
Where 

41.938 L
Lv sL

L

N V
g
ρ
σ

=
 

C must always be greater than or equal to zero 
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Pressure Gradient 

The pressure gradient can be calculated after the empirical parameter, S, is obtained.  

If 1 < y < 1.2, then 

( )ln 2.2 1.2S y= −  

Otherwise, 

( ) ( )2 40.523 3.182ln 0.8725 ln 0.01853 ln
yS

y y
=
− + − + y  

where 

( )( )2
L

L

y
H
λ

θ
=

  

A ratio of the two-phase friction factor to the normalizing friction factor is then defined as 

follows: 

tp s

n

f
e

f
=

 

fn is obtained through the use of the Fanning friction factor. 

The no-slip Reynolds Number is also used, and it is defined as follows: 
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Re
n m id

n

v dN ρ
µ

=
 

where ( )1n L L G Lµ µ λ µ λ= + −  

The expression for pressure gradient is: 

( )
2

sin
2

1

n m
s

id

k

f v g
ddp

dL E

ρ ρ θ+
=

−  

where  

m sG n
k

R

v vE
p
ρ

=
 

3.2.1.2 Mukherjee and Brill Correlation 

The Mukherjee and Brill (1985) method attempts to overcome some of the limitations of the 

Beggs and Brill correlation, and to take advantage of new instrumentation to measure liquid 

holdup. The Mukherjee and Brill (1985) correlation is capable of handling whole range of 

flow situations that may be encountered in oil and gas operations, such as uphill, downhill, 

horizontal, inclined and vertical flow. It was developed using an inverted U-shaped, 1-1/2” 

nominal ID steel pipe that could be inclined at any angle from 0° to ±90° from horizontal. 

Similar to the Beggs and Brill (1973) method, the first step of the Mukherjee and Brill (1985) 

method is to determine the appropriate flow pattern (Annular Mist, Bubble, Slug or 

Stratified) for the particular combination of gas and liquid rates. The liquid holdup, then in-

situ density of the gas-liquid mixture is then obtained based on the appropriate flow pattern. 
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A two-phase friction factor is calculated based on the gas-liquid ratio and the Fanning 

friction factor. From this the pressure loss is calculated using gas-liquid mixture properties.  

Flow Pattern Maps 

Flow pattern prediction for the Mukherjee and Brill correlation makes use of dimensionless 

gas and liquid velocity numbers as the x- and y-axes coordinates on a log-log graph. 

The following dimensionless parameters were utilized: 

Liquid Velocity Number, 41.938 L
Lv sL

L

N v ρ
σ

=  

Gas Velocity Number, 41.938 L
Gv sL

L

N v ρ
σ

=  

Pipe Diameter Number, 120.872 L
d id

L

N d ρ
σ

=  

Liquid Viscosity Number, 4 3

10.15726L L
L L

N µ
ρ σ

=  

Equations were obtained from the transitional curves. For the bubble/slug transition, we 

have: 

10
B S

x
LvN =  

where 2log 0.940 0.074sin 0.855sin 3.695Gv Lx N Nθ θ= + + − +  
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For horizontal and all upflow and downflow angles, the following equation describes the 

transition for slug/annular mist: 

( )0.3291.401 2.694 0.52110 L Lv

S M

N N
GvN − +

=  

In downflow and horizontal flow, the bubble/slug transition is described by: 

10
B S

y
GvN =  

( ) ( )20.431 3.003 1.138 log sin 0.429 log sin 1.132sinL Lv Lvy N N Nθ θ θ= − − − +  

In downflow and horizontal flow, the stratified transition is described by: 

10
St

z
GvN =  

( )2 20.321 0.017 4.267sin 2.972 0.033 log 3.925sinGv L Lvz N N Nθ θ= − − − − −  

Liquid Holdup Prediction 

The liquid holdup is obtained after the flow pattern is determined. The equation below is 

used: 

( )( )2 2 5 6
1 2 3 4sin sin C C

L LvGvC C C C N N N

LH e
θ θ⎡ ⎤+ + +⎢ ⎥⎣ ⎦=  

Table 3-4 below shows the values for the coefficients used for the holdup calculation. 
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  Uphill 
Downhill 
Stratified 

Downhill 
Other 

C1 -0.380113 -1.33028 -0.516644 
C2 0.129875 4.808139 0.789805 
C3 -0.119788 4.171584 0.551627 
C4 2.343227 56.26227 15.51921 
C5 0.475686 0.079951 0.371771 
C6 0.288657 0.504887 0.393952 

Table 3-4 Mukherjee and Brill Empirical Coefficients for HL 

 

The flow chart shown below (Figure 3-6) shows the method of prediction of flow patterns 

by using flow pattern transition equations. 
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Figure 3-6 Flow chart for the prediction of Mukherjee and Brill Flow Pattern (Brill 
and Mukherjee, 1999). 
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Pressure Gradient for the Flow Patterns 

Bubble and Slug Flow  

2

sin
2

1

s m
s

id

k

f v g
ddp

dL E

ρ ρ θ+
=

−
 

where s m sG
k

v vE
p

ρ
=  

The friction factor, f, is obtained from: 

Re

1 2 18.71.74 2log
iddf N f
ε⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠

   

Annular Flow 

2

sin
2

1

n m
s

id

k

f v g
ddp

dL E

ρ ρ θ+
=

−
 

The friction factor is an empirical expression that depends on liquid holdup. A ratio of 

holdups, HR, is obtained, and interpolated from the table below to solve for the friction 

factor ratio, fR.  

L
R

L

HH
λ

=   

( )n Rf f f=  
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fR HR

1.00 0.01 

0.98 0.20 

1.20 0.30 

1.25 0.40 

1.30 0.50 

1.25 0.70 

1.00 1.00 

1.00 10.00 

Table 3-4 Mukherjee and Brill (1999) Annular Flow Friction Factor ratios. 

 
Stratified Flow 

According to the Mukherjee and Brill (1985) correlation, stratified flow occurs in highly 

deviated or horizontal wells. Figure 3-7 shows the control volume that defines all variables 

for the stratified flow pressure gradient determination. 
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Figure 3-7 Control Volume for Stratified Flow 

 

The equations below are required for pressure gradient calculation. 

( ) sinG wG G i i G G
dpA P W A g
dL

τ τ ρ= − + − θ   

( ) sinL wL L i i L L
dpA P W A g
dL

τ τ ρ= − + − θ   

An addition of equations G
dpA
dL

 and L
dpA
dL

 will yield: 

( ) ( )sin sinG L wG G i i G G wL L i i L L
dp dpA A P W A g P W A g
dL dL

τ τ ρ θ τ τ ρ θ⎡ ⎤+ = − + − + − + −⎣ ⎦  

Set i iWτ  to 0 

( ) ( ) ( )0 sin 0 sinG L wG G G G wL L L L
dpA A P A g P A g
dL

τ ρ θ τ ρ+ = − + − − + − θ  
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( ) ( sin sinwG G wL L G G L L
dpA P P A g A g
dL

)τ τ ρ θ ρ= − + − + θ  

( ) ( ) sinwL L wG G L L G G
dpA P P A A g
dL

τ τ ρ ρ= − + − + θ  

12cos 1 2 Lh
D

δ − ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

( )1 sin
2

L
L

AH
A

δ δ
π

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

 

L GP P P= +  

1
2GP δ
π

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

( )2 sin

2 2sin
2

hG idd d
π δ δ

δπ δ

− −⎡ ⎤⎣ ⎦=
− +

 

( )sin

2sin
2

hL idd d
δ δ

δδ

−
=

+
 

Mukherjee and Brill (1985) obtained the wall shear stresses from Govier and Aziz (1977).  

2

2
L L L

wL
f v

g
ρτ =  

2

2
G G G

wG
f v

g
ρτ =  

fL and fG are obtained from the friction factor equation, using the Reynolds number based 

on: 

ReL

L L hL

L

f dN ρ
µ

=  

ReG

G G hG

G

f dN ρ
µ

=  
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The liquid and gas velocities, vL and vG respectively, are obtained from: 

sL
L

L

vv
H

=  

1
sG

G
L

vv
H

=
−

 

The following steps were proposed by Mukherjee and Brill (1999) to obtain the pressure 

gradient for stratified flow: 

1. Use the value HL to solve iteratively for δ, using 0.001 as an initial value for δ. 

2. Use the value for δ obtained from step 1 to obtain hL/did. Calculate dhG and dhL. 

3. Use δ and P to obtain PG and PL. 

4. Obtain values for τwL and τwG. 

5. Calculate pressure gradient from: 

( ) ( ) sinwL L wG G L L G G
dpA P P A A g
dL

τ τ ρ ρ= − + − + θ  

 

3.2.2 Pressure Traverse 

The pressure traverse procedure for a two-phase gas-liquid flow is a process that calculates 

the pressure gradient along the pipe length. It uses the pressure gradient equation for a two 

phase flow (in this case Mukherjee and Brill (1985)), as well as multi-phase flow properties. 

The steps listed below are used for the procedure (modified from Vallejo-Arrieta (2002)): 

 

1. Choose pipe length (L), and the length increment (∆L) for the pipe is computed. 

2. Calculate the temperature of the fluids corresponding to the ∆L. 
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3. Obtain the pressure increment (∆p) corresponding to the length increment (∆L) 

using the Mukherjee and Brill (1985) pressure gradient equation and flow properties. 

4. Find the average temperature and pressure in the increment. 

5. Calculate the fluid properties at the average temperature and pressure from in step 4. 

6. Find pressure gradient (∆p/∆L) using fluid properties obtained at average 

temperature and pressure determined and the Mukherjee and Brill (1985) pressure 

gradient. 

7. Find the pressure increment corresponding to the selected length increment 

( )p p L L∆ ∆ ∆=  

8. Compare the estimated ∆p and calculated ∆p obtained in steps 3 and 7 for tolerance 

(± 10 psi). If the tolerance does is not appropriate, then use the calculated ∆p as the 

new pressure increment and go to step 4. Iterate steps 4 through 8 until the tolerance 

is met. 

9. Repeat the process from step 2, with 1i i ip p p∆+ = +  as pressure for the new ∆L. 

10. Repeat until the the addition of all the ∆L used is same as the pipe length. 

 

 

3.2.3 Heat Transfer 

This study relied on the research carried out by Wang et al (2004) to predict heat transfer 

based on flow pattern. Wang et al (2004) developed a unified multiphase heat transfer model 

for various gas-liquid flow patterns from 0° to ±90° from horizontal. The flow patterns 

modeled are: bubble, annular, stratified, and slug. I assumed annular flow from Wang et al 
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(2004) to be same as the annular mist flow pattern obtained in the Mukherjee and Brill 

correlation (1985).  

To effectively predict the heat transfer parameters, the flowing temperature of fluids in the 

pipe has to be determined. The following equation is used: 

( )2 1

L
A

o oT T T T e
⎛ ⎞−⎜ ⎟
⎝ ⎠= + −  

where T2 = Temperature at Location L, °F 

 T1 = Temperature at pipe entrance, °F 

 To = Surrounding temperature, °F 

 L = distance from pipe entrance, ft 

 A = Relaxation distance, ft 

and, ( ) 53 62 4
1

CC CC C
L id gA C w d APIρ γ=  

where w = total mass flow rate, lbm/sec 

 C1 = 0.0149 

 C2 = 0.5253 

 C3 = 2.9303 

 C4 = 0.2904 

 C5 = 0.2608 

 C2 = 4.4146 

 

Bubble Flow 

According to Wang et al (2004), the heat transfer modeling of bubble flow can be assumed 

to be a pseudo-single-phase flow. 
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The following equations were utilized: 

Mixture specific heat:   (3.1) ( )1pm L pG L pLc H c H= − + c

Mixture Reynolds number: Re m

m m id

L

v dN ρ
µ

=    (3.2) 

Mixture Prandtl number: Pr
pm L

L

c
N

k
µ

=    (3.3) 

For turbulent flow, the mixture Nusselt number is: 

( )

Re Pr

1
2 2 3

Pr

2

1.07 12.7 1
2

m

L
Nu

LW

f N N
N

f N

µ
µ

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠= ⎜

⎝ ⎠⎛ ⎞+ −⎜ ⎟
⎝ ⎠

⎟    (3.4) 

According to Shah and London (1978), the Nusselt number for bubbly laminar flow is a 

constant. 

3.657
mNuN =        (3.5) 

Convective two-phase heat transfer coefficient for bubble flow is: 

mNu L
m

id

N k
h

d
=        (3.6) 

The two-phase overall heat transfer coefficient for bubble flow is: 

 36



1
1 ln

2

m
id od id

m p id o o

U d d d
h k d h d

=
+ +

d

    (3.7) 

Annular/Stratified Flow 

In annular/stratified flow, the flow region is divided into two layers, the gas core and the 

liquid film. The temperatures for the regions are Tc for the gas core and Tf for the liquid 

film. Figure 3.8 below shows the control volume of temperatures in annular/stratified flow. 

 

Figure 3-8 Temperature control volume in annular/stratified flow 

 

 

Reynolds numbers for the gas core and the liquid film are NRec and NRef respectively.  

The Prandtl numbers are: 

Pr c

pG G

G

c
N

k
µ

=       (3.9) 
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Pr f

pL L

L

c
N

k
µ

=       (3.10) 

For turbulent flow, the Nusselt numbers are: 

( )

Re Pr

1
2 2 3

Pr

2

1.07 12.7 1
2

f f

f

f

L
Nu

LW

f N N
N

f N

µ
µ

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠= ⎜

⎝ ⎠⎛ ⎞+ −⎜ ⎟
⎝ ⎠

⎟

c c
N

  (3.11) 

0.8 0.3
Re Pr0.023

cNuN N=      (3.12) 

For laminar flow, the Nusselt numbers are: 

(7.541 3.6573.657 0.5
0.5fNuN )δ−

= + −   (3.13) 

3.657
cNuN =       (3.14) 

The film and core convective heat transfer coefficients are: 

fNu L
f

hL

N k
h

d
=       (3.15) 

cNu G
c

hG

N k
h

d
=       (3.16) 

The film and core overall heat transfer coefficients are: 
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1
1 ln

2

f
id od id

f p id o o

U d d d
h k d h d

=
+ +

d

   (3.17) 

1
1 ln

2

c
id od id

c p id o o

U d d d
h k d h d

=
+ +

d

)

    (3.18) 

The film and core heat fluxes are: 

(f f f oq U T T= −      (3.19) 

(c c c oq U T T= − )      (3.20) 

The two-phase overall heat transfer coefficient for annular/stratified flow is: 

2

f L c G
SA

f c
id o

q P q P
U

T T
d Tπ

+
=

+⎛ ⎞
−⎜ ⎟

⎝ ⎠

    (3.21) 

The two-phase convective heat transfer coefficient for annular/stratified flow is: 

1
1 ln

2

SA
id od id

SA p id o od

h d d d
U k d h d

=
− −

   (3.22) 

The temperature gradient is: 

( )
( )

4 SA SA OSA

id sL L pL sG G pG

U T TT
l d v c v c

δ
δ ρ ρ

−
= −

+
   (3.23) 
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Slug Flow 

The two-phase overall heat transfer coefficient for slug flow is: 

( )
( )

p S sL L pL sG G pG
S

id S O

A T v c v c
U

d l T T
ρ ρ

π

∆ +
=

−
   (3.24) 

The two-phase convective heat transfer coefficient for slug flow is: 

1
1 ln

2

S
id od id

S p id o o

h d d d
U k d h d

=
− −

d

    (3.25) 

The temperature gradient is: 

( )
( )

4 S S OS

id sL L pL sG G pG

U T TT
l d v c v c

δ
δ ρ ρ

−
= −

+
   (3.26) 
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Chapter 4 Methodology 

The aim of this study is to design a computer program called Fluid and Heat Transfer 

Analyzer (FHTA) that uses empirical formulas or correlations to obtain values for liquid and 

gas properties, predict two-phase flow pattern and pressure gradient, obtain values for 

hydrodynamic parameters, carry out a pressure and temperature traverse calculation, predict 

heat transfer parameters and compare the results based on flow pattern. 

Some basic information is required in order to develop such this program. This information 

bears upon the physical properties of reservoir fluids and rocks, and the ways in which these 

properties change with the change in pressure and pressure. 

The next stage in the development involves the hydrodynamic aspect. This aspect depends 

on the physical properties of the reservoir fluids and rocks, and also on other properties 

such as the daily production rate of liquid and gas, the upward or downward flow of the 

fluids, and the angle of orientation of the pipe. 

Results obtained from the second stage are used to predict properties such holdup, pressure 

gradient, temperature gradient, flow pattern, heat transfer coefficient, etc for different 

segments of the pipe, along its length. An iterative procedure is used to determine values for 

some of the parameters. Figure 4.1 shows the flow diagram for the program. Visual Basic 

programming language was used in the development of the program. 

The final stage of the process involved the use of a graph to display the interaction of the 

properties obtained from the iterative process. The use of 2D, XY-axis system will enable 

the visualization of plotting one property against another. 
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Figure 4-1 Flowchart showing the program setup 
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4.1 The Graphical User Interface 

The software program, Fluid and Heat Transfer Analyzer (FHTA), can be run on any 

windows based PC, and the results obtained can be exported to a spreadsheet.  

An example run is presented using the data given in the table below. 

Parameter Value 

Reservoir Pressure, psia  4000
Reservoir Temperature, 'F  180
Gas Specific Gravity  0.65
Oil API  30
Initial GOR, SCF/STB  750
Pipe Horizontal Distance  1500
Pipe Length, ft  3000
Pipe ID, in  3.958
Pipe OD, in  4.5
Liquid Surface Tension, dynes/cm  30
Gas Flowrate, SCF/D  5000000
Liquid Flowrate, STB/D  10000
Surface Temperature, ‘F  100

Table 4-1 Example data for simulation 

 

When the program is initialized, the “Gas Composition Option” window shows up (Figure 

4-2). If option yes is chosen for the availability of gas composition information, the “Input 

Gas Composition Data” window shows (Figure 4-3). Data containing the individual critical 

temperature and pressure for each constituent of the gas can be imported into the system by 

clicking on the import button. 
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Figure 4-2 Gas composition option 

 

 

Figure 4-3 Window to input gas composition data 
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If option “No” is chosen for the availability of gas composition information, the “Input 

Empirical Gas Gravity” window shows (Figure 4-4), and the gas specific gravity can be 

inputted. 

 

Figure 4-4 Gas specific gravity for empirical correlation 

 

The “Oil and Gas Properties” tab in the “Pressure, Volume, and Temperature” window 

(Figure 4-5) shows input values for the reservoir temperature, reservoir pressure, oil gravity 

in API, Gas-Oil ratio, and water salinity. Basic fluid properties are calculated, and the results 

are shown. 
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Figure 4-5 Oil and Gas Properties window 

 

In the “Fluid Dynamics” tab in the “Pressure, Volume, and Temperature” window (Figure 

4.6), values are inputted for the parameters in red. The location of the pipe (air or water), the 

direction of fluid flow (uphill or downhill), and the pipe material are selected.  

The hydrodynamics of the flow are calculated; flow pattern, liquid holdup, and pressure 

gradient are predicted based on the Beggs and Brill (1973) correlation and the Mukherjee and 

Brill (1985) correlation. 
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Figure 4-6 Fluid Dynamics window 

 

The “Iteration Results” tab in “Results” window (Figure 4-7) shows a table that consists of 

results for the pressure and temperature iterative procedure as functions of length 

increments, hydrodynamics - vsG, vsL, and holdup, pressure gradient, and fluid pattern (based 

on the Mukherjee and Brill correlation (1985)), and thermal properties – temperature 

gradient, two-phase convective heat transfer coefficient, and the overall heat transfer 

coefficient. 
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Figure 4-7 Window showing pressure and temperature iteration, hydrodynamics, and 

thermal properties based on pipe length 
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Graphs can be plotted to visualize the relationship between the parameters. Figure 4-8 

shows a plot of length (ft) against temperature gradient (°F/ft) for a 3000 ft long pipeline. 

 

Figure 4-8 Variation of temperature gradient (°F/ft) with pipe length (ft) 

 

 

The data from the “Iteration Results” tab in “Iteration Results” window, PVT calculations 

and hydrodynamic predictions can be exported into Microsoft Excel spreadsheet. The 

iteration data is loaded onto a sheet called “Iteration Results” (Figure 4-9), and the PVT and 

fluid dynamics is loaded to a sheet called “Key Values” (Figure 4-10). 
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Figure 4-9 Iteration results 
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Figure 4-10 Key values 
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4.2 Relationships between results obtained 

The results obtained from the software designed in this study were extracted and set up 

against variables and constants with the aim of understanding how they affect one another. 

Data used is given in Table 4.1. 

4.2.1 Angles, holdup and pressure gradient 

The liquid holdup and pressure gradient were plotted against a range of angles for the 

example run with data given in Table 4-1. It was found that the direction of flow (upflow or 

downflow) affects the flow pattern. For upflow, the flow pattern obtained was slug, and 

bubble flow was observed in downflow. It was also observed that pressure gradient (Figure 

4-11) increased as the angle of inclination moved from negative values to positive values, 

while liquid holdup remained almost constant (Figure 4-12). 

 

Figure 4-11 Variation of pressure gradient with pipe inclination angle 
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Figure 4-12 Variation of holdup with pipe angle 

 
 
The program designed in this project shows that values for holdup and pressure gradient 

obtained from the Beggs and Brill (1973) correlation were slightly lower than those obtained 

from the Mukherjee and Brill (1985) method. The pressure gradient in both cases increased 

with an increase in angle, while the holdup remained almost constant. This relationship can 

be seen in Figures 4-13 and 4-14. 
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Figure 4-13 Mukherjee & Brill and Beggs & Brill (Pressure Gradient) against pipe 
angle 

 
 

 

 Figure 4-14 Beggs & Brill and Mukherjee & Brill (Holdup) against pipe angle 
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Stratified flow was found to occur in large diameter pipes, at increased gas production rates, 

and in highly deviated inclinations. For a pipe ID of 3.958 in, gas flow rate of 7.5 

MMscf/Day, liquid production rate of 10000 STB/Day, stratified flow occurred at an angle 

range of -30° ≤θ ≤ -21°. As the pipe diameter and gas production rate are increased, the 

range of inclination increases, and the maximum range obtained is -75° ≤θ ≤ -10°.  

4.2.2 Heat Transfer and Flow Pattern 

Bubble flow is treated as a pseudo-single phase flow; hence the heat transfer parameters 

remain constant along the length of the pipe. This can be observed in Fig. 4-15 below. 
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Figure 4-15 Relationship between overall coefficient of heat transfer (U) and 

convective coefficient of heat transfer (h) for bubble flow 
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In slug flow, the slug region and the film region were considered as being homogenous for 

this study. The heat transfer parameters for the entire slug unit are based on the temperature 

of the entire pipe length, and the surrounding temperature outside the pipe. The temperature 

parameters obtained is an approximate average for the pipe segments. 

For a stratified flow, the heat transfer parameters are also based on the entire pipe length, 

and the constant values obtained for overall coefficient of heat transfer (U) and the 

convective coefficient of heat transfer (h) are approximate average values for the entire pipe 

segments. The same relationship will exist for annular/mist because the same procedure 

whereby the heat transfer of the gas and liquid phases were analyzed separately, and unified 

to obtain general equations. 

 

4.2.3 Comparison with  PipeSim 

In order to test the validity of the results from the developed program, runs were conducted 

with a commercially available software. Schlumberger owns and designs a commercial 

software known as PipeSim. This program is a production systems analysis software that 

provides steady-state, multiphase flow simulation for oil and gas production systems. 

The simulations and results obtained in the software designed in this study were compared 

to those in PipeSim. The comparison shows a high level of agreement. 

Table 4-2 below shows the input values used. 
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Parameter Value 

Pipe Inlet Pressure, psia  1700
Pipe Inlet Temperature, oF  180
Gas Specific Gravity  0.7
Oil oAPI  33
Initial GOR, SCF/STB  1000
Pipe Inclination Angle, degrees  1
Pipe Length, ft  15000
Pipe ID, in  6
Pipe OD, in  6.5
Liquid Surface Tension, dynes/cm  8.41
Gas Flowrate, SCF/D  1.00E+07
Liquid Flowrate, STB/D  10000

Table 4-2 Input values for comparison with PipeSim 
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Figure 4-16 Variation of pressure along pipe length for PipeSim and FHTA 
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Figure 4-17 Variation of temperature along pipe length for PipeSim and FHTA  

 
 
 

4.3 Sensitivity Runs 

Effect of Temperature 

The effect of inlet temperature on pressure (p), temperature gradient (dT/dL), and liquid 

holdup (HL) was investigated.  The ambient temperature was kept constant at 90oF, while the 

inlet temperature was varied from 100oF to 300oF, with increments of 50oF.  The pipe is set 

at both horizontal (pipeline) position (0o) and at vertical (wellbore) position (90o). The data 

used is shown below in Table 4-3.  
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Parameter Value 

Reservoir Pressure, psia  4000
Gas Specific Gravity  0.65
Oil API  30
Initial GOR, SCF/STB  750
Pipe Inclination Angle, degree 0, 90
Pipe Length, ft  10000
Pipe ID, in  3.958
Pipe OD, in  4.5
Liquid Surface Tension, dynes/cm  30
Gas Flowrate, SCF/D  5000000
Liquid Flowrate, STB/D 10000

 

Table 4-3 Input values for sensitivity runs. 
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Figure 4-18 Variation of pressure with pipe length for various reservoir temperatures 

 

As observed in Figure 4-18, lower inlet temperatures yield lower pressure values than higher 

temperatures along the length of the pipe. As the inlet temperature increases, the results for 

the final pressure values begin to converge. 
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Temperature Gradient vs Length for various Temperatures
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Figure 4-19 Variation of temperature gradient with pipe length for various reservoir 

temperatures 

 

Temperature gradient decreases gradually along the length of the pipe. At lower reservoir 

temperatures, the change in temperature is slight. As temperature increases, the values for 

temperature gradient increase. 
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Plot of Liquid Holdup vs Length for various Reservoir Temperatures
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Figure 4-20 Variation of liquid holdup with pipe length for various reservoir 

temperatures 

 

The plot above, (Figure 4-20) shows the relationship between liquid holdup, length, and 

temperature. It can be seen that there is no significant change in the values of holdup along 

the pipe length for the various temperature values. 

Effect of Gas-Oil Ratio 

Various GORs were used to calculate pressure values for both pipeline and wellbore flow. 

The GORs used are 750, 1000, 1500, 3000 and 5000, all in scf/bbl. The plot showing the 

variation of holdup with pipe length at various GORs for horizontal flow is shown in Figure 
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4-21, while the plot showing the relationship between holdup and pipe length at various 

GORs for horizontal flow is shown in Figure 4-22. 

2910

2920

2930

2940

2950

2960

2970

2980

2990

3000

3010

0 2000 4000 6000 8000 10000 12000

Pipe Length (ft)

Pr
es

su
re

 (p
si

a) 750 GOR
1000 GOR
1500 GOR
3000 GOR
5000 GOR

 

Figure 4-21 Variation of pressure with pipe length at various GORs for horizontal 

flow 
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Figure 4-22 Variation of pressure with pipe length at various GORs for vertical flow 

For pipeline flow, a decrease in pressure was observed as GOR increased. In the case of 

wellbore flow, lower GOR values yielded lower pressure values than higher GOR values. 

 

Liquid Holdup and Pressures for Vertical and Horizontal Flow 

This study examined the effect of liquid holdup on pressure loss based on pipe orientation 

from vertical or horizontal.  
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Figure 4-23 Pressure versus Liquid Holdup for Vertical and Horizontal flow 

In horizontal flow, holdup remains constant at all pressures. The holdup values in vertical 

flow starts by being constant, and later reduces as pressure reduces. This is shown in Figure 

4-23. 

 

Effect of Pipe Internal Diameter 

The software was used to study the effect of pressure loss along the length of the pipe for 

horizontal (Figure 4-24) and vertical flow (Figure 4-25) based on the internal diameter of the 

pipe. The following pipe internal diameters (ID) were used: 15.376”, 9.95”, and 5.46”. 
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Pressure vs Length for Horizontal flow Based on Pipe ID
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Figure 4-24 Variation of pressure with pipe length for horizontal Flow based on pipe 

ID 
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Figure 4-25 Variation of pressure with pipe length for vertical flow based on pipe ID 

 

 
In pipeline flow, there is little pressure change between the 15.376” and 9.95” pipes. The 

5.46” pipe shows more difference pressure. Generally, as pipe ID decreases, pressure in the 

pipes decrease. 

In wellbore flow, the values for pressure change at a faster rate along the length of the pipe. 

It is also observed that as pipe ID decreases, pressure along the length of the pipe increases. 
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Effect of pipe ID on heat transfer coefficient 

Using the software designed in this study, it was observed that a relationship exists between 

heat transfer coefficient and the internal diameter of the pipe. The same values of heat 

transfer coefficient were obtained for both horizontal and vertical flow. This is because the 

correlations in calculating heat transfer coefficient do not require pipe angle or orientation. 

This relationship is shown in Figure 4-26 below. 

 

Figure 4-26 Heat Transfer Coefficient for different pipe sizes 

 
 
It is observed from Figure 4-26 that a smaller pipe will yield a higher heat transfer 

coefficient. This is because there will be less heat loss in smaller pipes than in larger pipes. 
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Effect of pipe size on holdup for Vertical Flow 

For pipes with a horizontal orientation, the software shows that liquid holdup is constant 

regardless of pipe diameter. On the other hand, holdup values change with pipe diameter 

along the length of the pipe for wellbore flow. This relationship is shown in Figure 4-27 

below. 

 

Figure 4-27 Holdup versus Pipe Length Based on Pipe ID for Vertical Flow 

 
Values for liquid holdup start by being equal and constant for all pipe IDs. The values then 

begin to reduce and remain close for the various pipe sizes. At a certain point along the 

length of the pipe, holdup values become different for the different pipe IDs. An increase in 

pipe internal diameter leads to an increase in liquid holdup for vertical flow. 
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Chapter 5 Conclusions and Recommendations 

5.1    Conclusions 
 
Based on this study, the following conclusions are presented: 
 

1. A PC model that analyzes fluid flow and heat transfer was designed. 

2. The model provides an insight on the correlations for predicting flow patterns, 

pressure drops, liquid holdup, and the dependence of thermal transfer on these 

properties. 

3. The software model consists of a prediction model for 2-phase heat transfer that 

combines 2-phase flow pattern and hydrodynamic models and flow pattern –

dependent heat transfer correlations. 

4. The software program can be run on any windows based PC, and the results 

obtained can be exported to a spreadsheet  

5. Graphs can be plotted to compare the relationship between the variables. 

6. The model was compared with commercial software, Schlumberger’s PipeSim, and 

the results were in agreement. 

7. Parameters such as pipe size, pipe orientation (vertical or horizontal), and 

temperature affect other parameters. 

8. The model supports the various conclusions reached by other researchers in the area 

of fluid flow. 
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5.2    Recommendations  

1. Laboratory experiments should be carried out to determine more effective 

generalized values for fluid properties as they pertain to heat transfer. 

2. These generalized values will be utilized in future models that analyze fluid flow and 

heat transfer. 

3. The effect of flow rate on 2 phase hydrodynamics and thermodynamics can be 

studied. 
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Appendix 

A. Nomenclature 

A = Cross sectional area of pipe 

c = specific heat, Btu/lbm-°F 

C = Input volume fraction 

did = Pipe internal diameter 

dod = Pipe outer diameter 

f = Friction factor 

fwG = Gas/wall friction factor 

fwL = Liquid/wall friction factor 

g = Gravitational acceleration 

h = heat transfer coefficient, Btu/hr-ft2-°F 

hL = Liquid height 

H = Holdup 

L = length of pipe, ft 

NFr = Froude number 

NNu = Nusselt number 

NPr = Prandtl number 

NRe = Reynolds number 

p = Pressure 

Q = Volumetric flow rate 

S = Pipe perimeter 

T = temperature 
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vG = Actual gas velocity 

vL = Actual liquid velocity 

vsG = Superficial gas velocity 

vsL = Superficial liquid velocity 

vm = Volumetric flux of the mixture 

Greek Letters 

ε = Pipe roughness 

θ = Pipe inclination angle  

µ = Dynamic fluid viscosity 

ρ = Fluid density 

σ = Interfacial tension/surface tension 

τi = Interfacial friction shear stress 

τwG = Gas/wall friction shear stress 

τwL = Liquid/wall friction shear stress 

Subscripts 

B = bulk 

G = Gas phase 

i = Interfacial 

L = Liquid phase 

O = outside (surrounding) 

tp = two-phase 
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B. Basic Oil and Gas Properties 

The estimation of fluid physical properties can be determined by the use of correlations 

based on pressure-volume-temperature (PVT) parameters. These correlations are important 

in the application of 2-phase oil-gas flow. Most of these correlations are empirical in nature 

and are based on a limited quantity of representative samples of data (Mukherjee and Brill, 

1999). The restrictions are as a result of the fact that some of the PVT parameters are 

obtained from samples of reservoir fluids from particular geographic regions that and might 

not work correctly if applied to other locations where the fluid samples are different. The 

physical properties of reservoir fluids are pressure and temperature dependent. 

B.1 Gas Properties 

This section deals with the PVT properties of reservoir gas, such as pseudocritical 

temperature (Tc) and pressure (pc), gas deviation factor (z), gas formation volume factor (Bg), 

gas viscosity (µg), and gas isothermal compressibility (cg). 

B.1.1 Pseudocritical and Pseudoreduced Properties 

A set of empirical equations was developed by Standing (1981) to determine the 

pseudocritical temperature and pressure. 

Natural Gas Systems 

2168 325 12.5pc g gT γ γ= + −        (B.1) 

2677 15.0 37.5pc g gp γ γ= + −        (B.2) 

Gas Condensate Systems 
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2187 330 71.5pc g gT γ γ= + −        (B.3) 

2706 51.7 11.1pc g gp γ γ= + −        (B.4) 

Where γg is the Gas Gravity. 

If gas composition is available, the gas gravity and pseudocritical properties is determined 

from the composition rather than the empirical correlations. This is a more accurate 

approach. Natural gas consists of multiple gaseous components such as methane, carbon 

dioxide, propane etc, and each component is a certain percentage in the total mixture. The 

table below shows the properties of various components. 

 

 

 

 

 

 

 

 

 

 80



Constituent, i Symbol γgi Tci, °R pci, psia

Nitrogen N2 0.9672 227.3 493 

Carbon Dioxide CO2 1.5195 547.6 1071 

Hydrogen Sulfide H2S  1.1765 672.4 1306 

Methane CH4 0.5539 343.04 667.8 

Ethane C2H6 1.0382 549.76 707.8 

Propane C3H8 1.5225 665.68 616.3 

Isobutane C4H10 2.0068 734.65 529.1 

N-Butane n-C4H10  2.0068 765.32 550.7 

iso-Pentane C5H12 2.4911 828.77 490.4 

N-Pentane n-C5H12 2.4911 845.4 486.6 

N-Hexane n-C6H14 2.9753 913.4 436.9 

N-Heptane n-C7H16  3.4596 972.5 396.8 

N-Octane n-C8H18 3.9439 1023.89 360.6 

N-Nonane n-C9H20  4.4282 1070.35 332 

N-Decane n-C10H22 4.9125 1111.8 304 

Oxygen O2 1.1048 278.6 736.9 

Hydrogen H2 0.0696 59.9 188.1 
Helium He 0.138 9.5 33.2 

Water H2O  0.622 1165.3 3208 
 

Table B-1 Properties of various natural gas components 

 

The following equations are used to compute the physical properties of natural gas using gas 

composition: 

( )
1

n

g gi i
i

yγ γ
=

=∑         (B.5) 

( )
1

n

pc ci i
i

T T
=

= ∑ y         (B.6) 

 81



( )
1

n

pc ci i
i

p p y
=

= ∑         (B.7) 

where yi = mole fraction of the ith component 

and γgi = gravity of the ith component 

Tci = critical temperature of the ith component 

pci = critical pressure of the ith component 

 

The pseudoreduced properties (Tpr and ppr) are related to the pseudocritical properties by the 

following equations: 

460R
pr

pc

TT
T
+

=         (B.8) 

R
pr

pc

pp
p

=          (B.9) 

B.1.2 Gas Deviation Factor (z-factor) 

The gas deviation is obtained from the pseudoreduced properties. It is a measure of the 

deviation of natural gases from the behavior of ideal gases at reservoir conditions. A 

deviation of 1 for natural gas means that it behaves like an ideal gas. The Dranchuk, Purvis 

and Robinson correlation (1974) is used because of the ease of utilizing it in a computer 

program. It is an 11 constant empirical equation used to fit z-factor curves (Mukherjee and 

Brill, 1999) such as that of Standing and Katz (1942). 
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0.27 r

r r

pz
Tρ

=   (B.10) 

The pseudoreduced density, ρr, is found iteratively using the Newton-Raphson iteration. 

( ) ( ) ( )2
6 3 2 3 21 rF

r r r r r r rf A B C D E F e ρρ ρ ρ ρ ρ ρ ρ −
= + + + + + −G   (B.11) 

( ) ( ) ( )2
5 2 2 2 2' 6 3 2 3 3 rF

r r r r r r rf A B C D E F F e ρρ ρ ρ ρ ρ ρ ρ −⎡= + + + + + −⎣ ⎤⎦  (B.12) 

( )
( )1 'i i

r
r r

r

f
f

ρ
ρ ρ

ρ+ = −   (B.13) 

A = 0.06423 

B = 0.5353Tr – 0.6123 

C = 0.3151 Tr – 1.0467 – (0.5783/Tr) 

D = Tr

E = 0.0.6816/Tr

F = 0.6845 

G = 0.27(ρr) 

0.27 r
r

r

p
zT

ρ =  
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Range of validity: 

1.05 3.0rT≤ ≤  

0 3rp≤ ≤ 0  

B.1.3 Gas Formation Volume factor 

The gas formation volume factor, Bg, is the ratio of the gas volume at reservoir conditions 

and gas volume at standard conditions. It is used to convert surface measured volumes to 

reservoir conditions. Bg is expressed in SCF/cu.ft (or its inverse – cu.ft/SCF) or SCF/barrel. 

( )3 sc R
g

sc R

T pB SCF ft
p zT

=   (B.14) 

( )3 sc R
g

sc R

p zTB ft SCF
T p

=   (B.15) 

where Tsc = standard temperature in oR 

psc = standard pressure (atmospheric) in psia 

TR = reservoir temperature in oF 

pR = reservoir pressure in psia 

B.1.4 Gas Viscosity 

Gas viscosity, µg, is the ratio of the shear stress to the shear rate. The common unit used is 

centipoises.  

 84



( )'CB
g Ae ρµ =      (B.16) 

( ) ( )
( )

1.5

4

9.40 0.02 460

209 19 460 10
g R

g R

M T
A

M T

+ + +
=
⎡ ⎤+ + +⎣ ⎦

  (B.17) 

( )
9863.5 0.01

460 g
R

B M
T

= + +
+

  (B.18) 

2.4 0.2C = − B     (B.19) 

( )
'

460
R g

R

p M
zR T

ρ =
+

    (B.20) 

Molecular weight, 28.97g gM γ=   (B.21) 

B.1.5 Gas Isothermal Compressibility 

Gas isothermal compressibility, cg, is the change in volume per unit volume of gas for a unit 

change in pressure (1958).  Lee et al (1996) provided a correlative formula that has the same 

coefficients (A, B, C, D, E and F) as those in the work of Dranchuk et al (1974). 

r
g

c

cc
p

=          (B.22) 

1

1
r

r
r

r

c
zp

z
ρ

ρ

=
⎡ ⎤⎛ ⎞∂⎛ ⎞+⎢ ⎥⎜ ⎟⎜ ⎟ ∂⎝ ⎠⎝ ⎠⎣ ⎦

       (B.23) 

( ) ( )2
5 2 2 2 41 5 2 2 1 rF
r r r r r r

r r r

z A B C E F F e
T

ρρ ρ ρ ρ ρ ρ
ρ ρ

−∂ ⎡ ⎤= + + + + −⎢ ⎥⎣ ⎦∂
  (B.24) 

 85



B.2 Oil Properties 

This section deals with the estimation of oil PVT properties from empirical correlations. 

Properties used here include oil gravity (oAPI), oil viscosity, oil formation volume factor, 

bubblepoint pressure etc. 

B.2.1 Specific Property of Oil 

The gravity of crude is reported in oAPI, and it ranges from 8 oAPI to 58 oAPI. Lighter crude 

oils have higher oAPI values than heavier crudes. The relationship between API gravity and 

specific gravity of crude oil is shown in the equations: 

141.5
131.5o o API

γ =
+

         (B.25) 

141.5 131.5
o

API
γ

° = −         (B.26) 

B.2.2 Bubblepoint Pressure 

Bubblepoint is the point at which an infinitesimal quantity of gas is in equilibrium with a 

large quantity of fluid (Standing, 1981). It is the pressure at which the first gas comes out of 

solution in oil. Hence, when the pressure is above bubblepoint, the fluid is capable of 

holding additional gases or liquids at the existing pressure and temperature. 

( ) ( )
0.83

0.00091 0.012518.2 10 1.4RT APIs
b

g

Rp
γ

− °⎡⎣
⎡ ⎤⎛ ⎞
⎢= ×⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎤⎦ ⎥−     (B.27) 

Rs is the produced oil-gas ratio (SCF/STB) 
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TR is the reservoir temperature in oF. 

B.2.3 Oil Viscosity 

This is an indication of the resistance of oil to flow. 

Dead Oil 

10 1A
Odµ = −          (B.29) 

where         (B.30)   1.163
RA BT −=

10CB =         (B.31) 

(3.0324 0.02023C = − ° )API       (B.32) 

Range of validity:   16 58API< ° <

   70  295RT F< < °

Live Oil (above bubblepoint pressure) 

( )
R

O Obp A

bp

p

p
µ µ

⎡ ⎤
⎢=
⎢ ⎥
⎣ ⎦

⎥         (B.33) 

where ( )58.98 10 11.5131.1872.6 Rp

RA p e
−⎡− −⎣=

⎤
⎦       (B.34) 

Range of validity:  15.3 59.5API< ° <
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   0.511 1.351gγ< <  

   111 9485Rp psi< <  

 

Live Oil (below bubblepoint pressure) 

( )B
Ob OdAµ µ=         (B.35) 

where        (B.36) ( ) 0.51510.715 100sbA R −= +

       (B.37) ( ) 0.3385.44 150sbB R −= +

Range of validity:  16 58API< ° <

   20 2070 /sbR SCF bbl< <  

    70 295RT F< < °

   14.7 5265Rp psi< <  

At bubblepoint pressure 

Obp Obµ µ=  at sb siR R=        (B.38) 

The range of validity is the same as that below the bubblepoint pressure. 
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