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Abstract 
 
 

Laser Induced Fluorescence Studies of Ion Acceleration  
in Single and Multiple Species Expanding Plasmas 

 
 

Ioana A. Biloiu 
 
 

Ion acceleration in single (Ar) and two positive ion species plasmas (Ar-Xe and 
He-Ar) has been investigated through laser induced fluorescence (LIF) measurements of 
the ion velocity distribution function (ivdf). The investigations focused on the expansion 
region of a helicon plasma source where, for certain operating conditions (pressure in the 
source less than 2 mTorr, rf driving frequency of 9.5 MHz, source axial magnetic field 
strength of 700 G, and expansion chamber magnetic field strength between 0 and 70 G), 
an electric double layer (EDL) was observed to form. In pure argon plasma, 4 cm 
upstream from the helicon source-expansion chamber junction, the Ar+ ivdf is bimodal - 
comprised of a slow, nearly stationary ion population (~2.3 km/s) and a fast, supersonic 
ion population (~6 km/s ≅ 1.8cAr+) created by the acceleration through the EDL. As the 
divergence of the field is increased, 19 cm deeper in the expansion region the fast ion 
group peak velocity determined by oblique incidence LIF is shifted toward higher speeds 
(~10.5 km/s ≅ 2.9cAr+), indicative of a second ion acceleration mechanism presence. In 
He-Ar plasma the Ar+ ivdf is also bimodal. As the helium fraction increases from 0 to 
30%, the axial flow speed of the fast ion group increases from 5.3 to 7.8 km/s. Both the 
fast and slow argon ion group population densities (proportional to LIF amplitude), 
decrease as the helium fraction increases. The slow population almost completely 
disappears at a helium fraction of ~ 30%. Similar effects were observed for Ar-Xe 
plasmas in which the lighter ion was argon. Although no Xe+ beam was observed, 
addition of argon led to an increase in the speed of the background ion population from 
1.3 km/s in pure xenon to 2.2 km/s for an 87.5% Ar/(Ar+Xe) ratio. In pulsed argon 
plasma, time resolved LIF measurements showed a time lag in the appearance of the fast 
ion population. The time lag was found to be a function of the pulse repetition frequency 
and duty cycle. Two-dimensional LIF provided additional insights into the origins of the 
accelerated ion population: the nearly isotropic slow population is a locally created 
background population whereas the distorted velocity distribution of the fast population 
is consistent with an origin upstream of the measurement location.  
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Chapter 1: Introduction 
 

A recently discovered phenomenon – spontaneous formation of a current-free 

electric double layer (EDL) at the open end of a low pressure helicon plasma source (in a 

region of divergent magnetic field), has garnered considerable interest in the plasma 

physics community.1,2 Since the EDL is oriented with the high potential side toward the 

helicon source, ions are accelerated and then ejected out of the helicon source into the 

expansion chamber. Observations of ion speeds larger than a few times the ion sound 

speed (argon and xenon ions exit speeds between 6 and 10 km/s)3,4 make this 

phenomenon of interest for ion thrusters and plasma processing applications. 

 The signature of EDL formation is the downstream presence of a bimodal, 

parallel, ion velocity distribution function (ivdf) comprised of a fast and a slow ion 

population. Present understanding is that these two populations have different origins: the 

slow ions are a background population created in the expansion region and the fast ions 

are accelerated by the EDL from the source into the diffusion chamber. Although 

measurements of energetic ions have been reported since 1990s, in the expansion region 

just downstream of an electron cyclotron resonance (ECR) plasma source,5 many 

fundamental aspects of ion acceleration in expanding magnetized plasma remain unclear. 

Uncertainty in the mechanism responsible for the ion acceleration is not surprising, given 

that at least three phenomena may operate simultaneously and separating their effects is 

problematic.6  

In simple geometric plasma expansion, Manheimer and Fernsler 7 demonstrated 

theoretically that ions are accelerated without the aid of an external magnetic field or 

additional acceleration electrodes. In their one-dimensional isentropic flow model, the 

Mach number M is related to the variation of the cross section S of the plasma flow tube 

    ( )
( )

2

2

2 1
2 1

d dS
S

γ+ −
=

−
MM

M M
,    (1.1) 

where γ is the specific heat ratio and by definition M is equal to the plasma flow speed 

normalized to the ion sound speed. For adiabatically steady flows (γ =1), the singularity 

at the sonic point (M =1) was removed by including collisionality in Eq. (1.1): 
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2

2
1

1
i

s

d dS
dz Sdz c

ν⎛ ⎞
= −⎜ ⎟− ⎝ ⎠

M M M
M

,    (1.2) 

where νi is the ionization rate and /s B ec k T M=  is the ion sound speed (kB, Te, and M 

are the Boltzmann constant, electron temperature, and ion mass, respectively). Thus, the 

singularity at the sonic point is resolved not by charge separation, as in the case of 

electrostatic sheaths, but rather by a zero in the numerator at the same spatial position as 

the zero in the denominator, i.e., at the sonic point. The ion acceleration results from axial 

potential gradient generated by the electron pressure due to expansion. According to the 

model, the ion acceleration increases as the gas pressure decreases and the ion exit speed 

can reach up to three times the ion sound speed. Note that Eq. (1.2) does not include the 

effects of ambipolar or other quasi-static electric fields which, as we shall show in this 

work, play a critical role in ion acceleration during plasma expansion. Recently, by using 

three different helicon source tube diameters, Corr et al.8 demonstrated experimentally 

that ions can be accelerated to supersonic speed by geometric expansion alone. They 

showed that ion acceleration occurs for an operating pressure below a threshold value and 

that the ion energy scales with the ratio of the tube cross-section area to the expansion 

chamber cross section area. 

For the case of magnetic expansion, Nakano et al.9 showed that the downstream 

ivdf structure is profoundly affected by the magnetic field configuration. For a mirror 

configuration, the parallel ivdf in the downstream diffusion region had a bimodal 

structure with a slow component formed by local ionization and a fast component drifting 

from upstream region. Part of the fast component parallel kinetic energy might arise from 

conversion of the upstream perpendicular kinetic energy to parallel flow energy through 

magnetic moment conservation. Changing the magnetic configuration to a double cusp 

eliminated the fast component. In the mirror configuration MNX helicon source, Cohen 

et al.10 showed that within the mirror regions the ions have a subthermal axial drift and 

outside the mirrors coils, a supersonic fast ion population appears at low pressure. Also in 

MNX, Sun et al.11 showed that, contrary to expectations for a Laval-nozzle magnetic 

configuration, the fast ion speed decreases as the nozzle magnetic field is increased. 

These observations reflect a strong correlation between the magnetic field profile, 

absolute magnetic field strength, and the downstream parallel ion velocity. 
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Given the fact that all three possible acceleration mechanisms: electric double 

layer, geometric expansion, and magnetic moment conservation, may coexist and interact 

in the expanding region of the helicon plasma source, understanding their individual 

impact on ion acceleration is an important first step towards developing a complete 

understanding of ion acceleration in such systems. Because an external axial magnetic 

field of up to few hundred Gauss is required for propagation of a helicon wave in a 

gaseous plasma, by their very definition, helicon sources are magnetized plasma systems. 

Thus, at the junction between any helicon source and a downstream expansion/diffusion 

chamber, a divergent axial magnetic field naturally arises. Experimental investigations 

have demonstrated that the gradient in the axial magnetic field strength is intimately 

related to the potential drop across the electric double layer formed at the end of the 

source.13 Contrary to the helicon EDL model proposed by Chen,12 which predicts a 

spatial location of the EDL in the expansion region where the plasma radius expands by 

28%, experimental investigations in the HELIX-LEIA system found that the EDL 

spontaneously forms near the source-diffusion chamber junction, just inside the source 

and where the magnetic field gradient is largest.13 Similar distances between location of 

the EDL and the peak value of the magnetic field gradient have been reported for other 

helicon source-expansion chamber experiments: ~ 5 cm for Chi-Kung,14 ~ 2 cm for 

MNX,15 5-10 cm for WOMBAT,16 and most recently 7-9 cm in the Njord device. Only in 

the Njord device was the EDL found to appear in the expansion chamber.17  

The magnetic field gradient is not the only aspect of the magnetic field structure 

that impacts the appearance of the EDL in an expanding helicon source. Charles [14] 

reported that EDL formation in the Chi-Kung helicon source is triggered by the magnetic 

field profile and strength in the source; below a threshold value of the magnetic field in 

the source the EDL doesn’t form. For the same helicon source, Keesee et al.18 reported 

that potential drop across the EDL increases with increasing magnetic field strength in 

the source: the fast ion parallel flow speed increased from 2.5 km/s to 5 km/s as the 

magnetic field in the Chi-Kung source increased from 50 G to 140 G. No change in the 

fast ion flow speed was observed when the magnetic field profile at the end of the source 

was varied. Recently, Charles and Boswell19 also demonstrated the existence of a 

threshold value of the magnetic field strength in the source of approximately 50 G in Chi-
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Kung. In contrast to the Chi-Kung observations, Biloiu et al. [6] reported a significant 

increase in the speed of the fast ion group as the divergence in the expansion region (the 

ratio of the magnetic field strengths in the source and the diffusion chamber) increased in 

the HELIX-LEIA system. In those experiments, a maximum ion speed of ~2.9cs was 

obtained for a magnetic field strength ratio of 43.  

Although the experimental results described so far clearly demonstrate that the 

expanding magnetic field gradient and magnetic field strength in the source play an 

important role in defining the characteristics of the EDL, other observations suggest that 

pure geometrical expansion effects are also important. For example, the EDL only 

appears below a threshold pressure of 1-2 mTorr and the EDL strength scales with the 

gas pressure, i.e., the potential drop across the EDL increases as the pressure decreases 

[16]. 

Although recent experimental, computational, and theoretical studies have 

managed to clarify many key aspects of the helicon EDL formation process, some 

questions remain.20,21 For example, through which external control parameters can the 

EDL strength, thickness, and shape be varied? What is the role of the magnetic field 

profile in EDL formation and strength? What is the time scale for EDL formation? And 

based on Bohm criterion at the EDL edge, can the speed of one ionic component be 

increased at the expense of the speed of other components by using a mixture of gases?  

 The two measurable parameters of interest in studies of EDL physics are the ion 

velocity (energy) distribution function before and after the ions pass through the EDL and 

the value of the plasma potential throughout the EDL region. One method for measuring 

the ivdf in plasma is laser induced fluorescence (LIF). Unlike the retarding field energy 

analyzer (RFEA) method, which requires corrections for the perturbation of the ivdf 

created by the sheath in the front of the RFEA,22 LIF is non-intrusive. Since its first 

application to plasma diagnosis three decades ago by Stern and Johnson,23 both the 

technology employed for LIF measurements and the methods used to analyze LIF data 

have improved,24,25,26 e.g., tomographic inversions are now routinely used to obtain two-

dimensional velocity space measurements at a single spatial location27,28 and LIF is 

applied to many types of plasma discharges and for a wide range of experimental 

conditions.29 The magnitudes and directions of ambient electric and even weak magnetic 
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fields in plasmas can also be determined from their effects on the energy levels of the 

specific quantum states (probed with LIF) of the target particle.30,31 Since the probing 

laser line width (typically ≈1 MHz in the case of diode lasers and ≈100 MHz in the case 

of dye lasers) is much smaller than the particle absorption linewidth (≈ 1 GHz for 

particles of M = 40 amu at room temperature and larger for higher temperatures), high 

resolution measurements of bulk velocity and temperature can be obtained. For a wide 

range of plasma conditions, Doppler broadening dominates over other line broadening 

mechanisms, e.g., Zeeman splitting, Stark broadening, and power broadening. Even in 

strongly magnetized discharges, for which Zeeman splitting cannot be ignored, choice of 

a particular polarization of the pumping laser often reduces the complexity of the 

measured absorption linewidth to a manageable level while also providing a direct 

measure of the ambient magnetic field strength. The spatial resolution of LIF 

measurements, determined by the intersection of the probing laser beam and the 

fluorescence collection optical path, is typically on the order of few mm3. The minimum 

time resolution of a LIF measurement is set by the lifetime of the upper quantum level of 

the pumped transition, usually on the order of a few nanoseconds. Therefore, all 

repetitive phenomena with a characteristic time larger than a few nanoseconds are 

amenable to be investigated by LIF. In practice, however, the time resolution is limited 

by the need to collect a sufficient number of LIF emission photons for reasonable signal 

to noise; the RC time constants of cables; the signal acquisition time requirements of the 

available electronics; and the particular plasma conditions. The main drawback of LIF is 

that the measured ivdf is that of the population of a certain excited state (for instance, for 

the 3 level LIF scheme 3d 2G9/2→4p 2F7/2 →4s 2D5/2 usually employed for Ar+ 

investigations, it is the metastable state 3d 2G9/2) and not the entire ion population. 

However, it has been shown that for this Ar+ state, in low pressure helicon plasma, the 

main population mechanism is excitation by electron impact from the ion ground state. 

Under these conditions, the population of the 3d 2G9/2 metastable level is proportional to  

ne
2Te

1/2 (where ne is the plasma density and Te is the electron temperature).32 Although not 

absolutely calibrated, this scaling law provides a qualitative correlation between the LIF 

signal and the total ion density. That the excited state ivdf basically is an accurate 

representation of the complete ivdf was demonstrated by Severn et al.33 They shown that 
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same Ar ivdf can be obtained by employing different LIF schemes which probe three 

different Ar+ excited levels (besides the LIF scheme discussed in this work for which a 

dye laser is necessary, the other two LIF schemes 3d 4F9/2→4p 4D0
7/2 →4s 4P5/2 and 3d 

4F7/2→4p 4D0
5/2 →4s 4P3/2 were probed with a diode laser). 

 Since the controlled acceleration of ions without the use of grids or externally 

imposed potentials has immediate applicability to the development of plasma thrusters 

and plasma processing sources, a complete understanding of the mechanism responsible 

for ion acceleration in a divergent magnetic field, expanding plasma source, is of 

importance for basic and applied plasma physics. The results presented in this 

dissertation are based on the investigation of ion behavior (acceleration and heating) in 

single (argon) and multi-component (argon + xenon and argon + helium) helicon 

plasmas. The experiments were carried out in HELIX (Hot hELIcon eXperiment) – LEIA 

(Large Experiment on Instabilities and Anisotropies) system. In this helicon plasma 

source – diffusion chamber system, for neutral pressures below 1.5 mTorr (when the ion 

mean free path length is comparable with the scale length of the magnetic field gradient), 

a localized, current-free double layer develops. Ion acceleration occurs at the end of the 

helicon source and appears to result from EDL formation and classic magnetic expansion. 

Laser Induced Fluorescence (LIF) provided ion velocity distribution function (ivdf) 

measurements at different spatial location, for different magnetic expansion 

configurations, under different operating conditions, and for pure argon and mixed gases 

(argon with lighter (He) or heavier (Xe) gas). From one dimensional (1D) LIF 

measurements, the parallel Ar+ and Xe+ flow speeds and temperatures upstream and 

downstream of the EDL were determined. 2D LIF was employed to obtain measurements 

of the parallel and perpendicular ivdf downstream the EDL. Time resolved LIF 

measurements were used to investigate the development phase of the EDL as well as its 

temporal stability. In conjunction with Langmuir probe (LP) and optical emission 

spectroscopy (OES) measurements and some theoretical models, these LIF measurements 

have been able to provide a clearer picture of the EDL formation in helicon plasma.  

 Besides these introductory remarks, this dissertation contains seven additional 

chapters. A discussion of the classic plasma sheath, the classic electric double layer, the 

generalized Bohm criterion for sheath and EDL existence, and a general model of EDLs 
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in multi-component plasmas is given in Chapter 2. A brief introduction into the physics 

of helicon plasma sources, a description of HELIX-LEIA system, and the typical plasma 

parameters is given in Chapter 3. Chapter 4 describes the diagnostic methods used, 

including: the Langmuir probe and the Druyvesteyn differentiation method of obtaining 

the electron energy distribution function; a model used to estimate the species ion density 

in a two component plasma from spectral emission lines of ions and neutrals; the 1D and 

2D laser induced fluorescence techniques for stationary and pulsed plasmas; and a 

description of a scanning probe used for LIF tomography. Experimentally obtained 

characteristics of two-ion component plasma and the effect of the second species on 

supersonic ion acceleration are described in detail in Chapter 5. In Chapter 6, 

experimental measurements of the temporal evolution of the bimodal ion velocity 

distribution function (ivdf) in pulsed argon plasma are presented. The two-dimensional 

(2D) argon ivdfs observed in the expansion region of the helicon plasma source, as well 

as a discussion of the interpretation of LIF data obtained at oblique laser injection, are 

presented in Chapter 7. A summary and conclusion of the insights into ion acceleration in 

expanding helicon plasmas gleaned from the measurements is given in Chapter 8.  
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Chapter 2: Plasma Sheaths and Double Layers 
 

2.1. Plasma – Wall Interaction 
 

 The plasma – wall interface plays a central role in much of plasma physics and 

remains one of the oldest open questions of fundamental plasma science.1 The term 

sheath was introduced to characterize the spatial region that separates the bulk neutral 

plasma from the bounding wall. According to Langmuir’s original definitions, “There 

will be therefore a layer of gas near the electrode where there are positive ions but no 

electrons, and in this region there will therefore be a positive ion space charge. The outer 

edge of this sheath of ions will have a potential of -1 and the positive ions pass through 

this outer edge with a velocity corresponding to 2 volts.“2 and “Except near the 

electrodes where there are sheaths containing very few electrons, the ionized gas 

contains ions and electrons in about equal numbers so that the resultant space charge is 

very small. We shall use the name plasma to describe this region containing balanced 

charges of ions and electrons”3 For an electropositive plasma, the interaction of plasma 

with a conducting wall, in its simplest form, can be characterized as follows: due to the 

high mobility of the electrons, the plasma develops an excess of positive charge and the 

plasma potential rises to a positive value with respect to the surrounding walls. The 

repulsion of electrons by the plasma-wall potential difference results in the formation of a 

positive space charge region (sheath), shielding the neutral plasma from the negative 

wall. The sheath edge location and the sheath width are a function of the electron 

temperature, the electron Debye length λD, and the characteristic length L of the plasma 

(the distance from the plasma center to the wall). The interchange of physical 

mechanisms dominating the bulk plasma and the sheath regions results in a mathematical 

singularity in the plasma equations at the sheath edge. In the asymptotic limit λD/L→0 

this singularity can be removed by requiring that the plasma equations fulfill the “Bohm 

criterion”,4 i.e., the ions enter the sheath region with a large velocity that exceeds the 

thermal ion motion. Consequently, the classic sheath model also includes ion acceleration 

by an electric field extending over a “presheath” region. The origins of the mathematical 

singularity; the extent of the presheath region; the effect of the type of plasma, dc or rf, 
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on the sheath; and the nature of the sheath, collision dominated or collisionless, are 

subjects that have garnered considerable interest and generated scientific disputes 

throughout the history of plasma physics.5,6,7 

 

2.2. The Bohm Criterion for Single Ion Species Plasma 
 

 In a low pressure electropositive gas discharge characterized by an electron 

temperature much higher than ion temperature, it is well established that quasineutrality 

is violated near the boundary walls that are in contact with the plasma. Considering a 

neutral, unmagnetized plasma with one type of singly-charged ions, the electron flux (Γe 

= ne〈ve〉/4) to a bounding wall is much higher than the ion flux (Γi = ni〈vi〉/4) due to the 

difference between electron and ion mobilities.  

 
Figure 2.1. Schematic of the planar sheaths that build-up between plasma and grounded, conducting walls.8 

 

Here ne,i and 〈ve,i〉 are the number density and mean speed for electrons and ions, 

respectively. Balance of the electron and ion losses and consequently bulk plasma 

quasineutrality is realized by self-adjustment of the plasma potential Vp; Vp becomes 
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positive with respect to the boundary surface (see Figure 2.1). The result is the 

establishment of an electric field, E, pointing towards the boundary wall and extending 

over a distance of few electron Debye lengths. Since the electric field reflects low energy 

electrons back towards the plasma, in the region adjacent to the bounding wall, the ion 

density exceeds the electron density and a positive space-charge develops. For the given 

discharge parameters, this space-charge region is a thin, collisionless, planar sheath.  

 To obtain quantitative descriptions of the potential drop across the sheath and the 

sheath width, we start from Poisson’s equation: 
2

2
0

( )i e
d e n n
dx ε
Φ
= − − ,     (2.1) 

where Φ is the space potential, e the elementary charge, and ε0 dielectric permittivity of 

vacuum. Assuming a Maxwellian distribution of electrons with an electron temperature 

Te and in Boltzmann equilibrium, the electron density in the sheath is 

exp( )e s
B e

en n
k T
Φ

= ,     (2.2) 

where ns and kB are the electron density in the bulk plasma (sheath edge) and 

Boltzmann’s constant respectively. Introducing the ion continuity and ion momentum 

equations  

0i i i

i

du u dn
dx n dx

+ =      (2.3) 

and 

i i
i B i
du dndMu e k T
dx dx dx

γΦ
= − −  ,    (2.4) 

where ui, ni, and Ti are the ion speed, density and temperature, M is the ion mass and γ is 

the adiabatic exponent, we arrive at the expression for the ion velocity at the sheath edge, 

i.e., the Bohm criterion 

( )2
s B e iMu k T Tγ≥ + .     (2.5.a) 

For a low temperature plasma (Te >> Ti), the Bohm criterion reduces to9 
1/ 2

B e
s B

k Tu u
M

⎛ ⎞≥ = ⎜ ⎟
⎝ ⎠

.     (2.5.b) 
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 Balancing the electron flux Γe = ns〈ve〉exp(eΦ/kBTe)/4 and ion flux Γi = 

ns(kBTe/M)1/2 at the wall, the potential drop across the sheath is 

ln
2 2
B ek T M
e mπ

⎛ ⎞Φ = ⎜ ⎟
⎝ ⎠

.     (2.6) 

The current density for space-charge limited ion current flowing between two planes with 

a potential difference Φ separated by a distance s is given by the Child-Langmuir law  
1/ 2 3/ 2

0
2

4 2
9

eJ
M s

ε Φ⎛ ⎞= ⎜ ⎟
⎝ ⎠

     (2.7) 

The current density at the sheath edge is  

s BJ en u= .      (2.8) 

Equating (2.7) and (2.8), the sheath thickness assuming space charge limited current is  
3/ 41/ 22 2

3 D
B e

es
k T

λ
⎛ ⎞Φ

= ⎜ ⎟
⎝ ⎠

,     (2.9) 

where 2
0 /D B e sk T e nλ ε= is the electron Debye length. 

 These equations for the sheath potential drop and sheath thickness are generally 

valid for the simple case of dc discharges. In the case of rf discharges, although the rf 

fields oscillate at the driving frequency, it has been established that the Bohm criterion is 

still relevant at the plasma edge - even though the position of the plasma edge varies in 

time. For the usual case of the driving frequency exceeding the ion plasma frequency but 

being smaller than electron plasma frequency ωpe>ω>ωpi, the motion of ions and 

electrons can be considered separately. Typically, the ions are described by their time 

averaged behavior and the full electron response to the oscillating rf field is considered. 

The resulting sheath solution periodically expands and contracts at the rf driving 

frequency.10 It has been shown that the ratio of sheath oscillation amplitude to the Debye 

length scales with the ratio of the oscillating rf current to the dc ion current through the 

sheath times the ratio of the ion plasma frequency to the rf driving frequency.11,12,13  

 For plasma immersed in an external magnetic field, the sheath structure depends 

on the magnetic field orientation relative to the wall. For a magnetic field perpendicular 

to the bounding wall, charged particle motion is not affected and the sheath structure is 

similar to the unmagnetized case. For a magnetic field parallel or oblique to the bounding 
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wall, depending on the relative magnitude of the electron Debye length compared to the 

electron gyroradius, a magnetic presheath may form. If the magnetic field is weak and the 

plasma density is large, so that the electron Debye length is smaller than the electron 

gyroradius, the electrons are still easily lost to the wall and an electrostatic Debye sheath 

forms. In contrast to the simple unmagnetized case, the presheath width is on the order of 

ion gyroradius and the electron energy distribution function is far from Maxwellian. 

Increasing the magnetic field strength, the electron gyroradius becomes smaller and the 

electron is trapped in the presheath by a sufficiently strong magnetic field. Therefore, 

electron movement to the wall is inhibited, the wall potential is reduced, and a less 

pronounced positive space charge region is created in front of the wall. Such a 

magnetized presheath or Chodura layer is discussed in detail in Ref. [14]. Particle motion 

in the magnetic presheath must be described by the full kinetic equations. Therefore, the 

expressions for the particle fluxes to the bounding wall as function of potential difference 

are more complicated for magnetized systems with magnetic fields parallel to the 

bounding walls. 

 For the physical phenomena of interest occurring in the HELIX-LEIA system in 

this work, the magnetic field is either normal to the imaginary separation surface between 

the helicon source and diffusion chamber or, in the case of the expanding plasma it is a 

very weak field. Thus, in this work, the simple sheath model, i.e., the unmagnetized 

sheath is assumed throughout. 

 

2.3. The Bohm Criterion for Two-Positive Ion Species Plasma 
 

 Many plasmas of practical interest contain more than one species of positive ions. 

Since the ions differ in mass and therefore in their mobilities, there is a need to 

understand the structure of the plasma-wall interaction for multiple ion plasmas. 

Following a recent analytical and computational model for a plasma that contains two 

positive ion species,15 we assume that ionization occurs only by direct electron impact 

and that the friction term in the ion momentum transfer equation can be described by a 

constant effective collision frequency. For simplicity, only the one-dimensional case is 

considered. Beginning with the plasma quasineutrality condition  
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ne  ≅ n1+n2,     (2.10) 

which defines the total electron density as a sum of the two singly charged ion densities 

n1 and n2, the particle balance equations for each ion species become: 

( ) ( )1 1 1 1 2 1e
d n v n Z n n Z
dx

= = +     (2.11.a) 

and 

( ) ( )2 2 2 1 2 2e
d n v n Z n n Z
dx

= = + ,   (2.11.b) 

where v1,2 and Z1,2 are the ion speed and ionization rate of gas species 1 and 2, 

respectively. From the ion flux equations n1v1/n2v2=Z1/Z2, momentum conservation for 

each ion species is: 

( )2 1
1 1 1 1 12

1

0d en dn v n v
dx M dx

ν Φ
+ + =    (2.12.a) 

and 

( )2 2
2 2 2 2 21

2

0d en dn v n v
dx M dx

ν Φ
+ + = ,   (2.12.b) 

where M1,2 are the ion masses, Φ is the sheath potential, ν12 is the effective collision 

frequency of ion 1 moving in a gas mixture containing a fraction f2 of species 2 and ν21 is 

the corresponding collision frequency for ion 2. In the sheath, the electrons obey a 

Boltzmann distribution 
/ /

1 2( )B e B ee k T e k T
e es s sn n e n n eΦ Φ= = + ,   (2.13) 

where the subscript s denotes the sheath edge.  

 Differentiating Eq. (2.13) with respect to x yields dΦ/dx in terms of dn1/dx and 

dn2/dx. After considerable algebraic manipulation, we obtain four first order differential 

equations for n1, n2, v1, and v2. The determinant of these equations vanishes where 
2 2
1 2

1 2 1 22 2
1 2

c cn n n n
v v

+ = + ,    (2.14) 

with 2
j B e jc k T M= , j = 1, 2 being the j-th ion sound speed (the Bohm speed). Eq. (2.14) 

is the generalized Bohm criterion for a collisionless sheath in a low temperature plasma 

with two positive ion species.16 Note that when either n1 or n2 is zero in Eq. (2.14), the 

expression reduces to the one species Bohm criterion. Furthermore, it follows from Eq. 
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(2.14) that either both ions obey their individual Bohm criteria (enter the sheath at their 

individual sound speeds) or that one species has a speed above its ion sound speed and 

the other has a speed below it. From the mathematics, there is no way to determine a 

priori which solution is valid.  

 

2.4. Sheath and Electric Double Layer Analogies and Differences 
 

 An electric double layer (EDL) is a term generally applied to a region in a plasma 

where two thin layers of opposite electric charge coexist in close proximity. The two 

sides of the double layer are generally referred as the upstream (high potential side) and 

downstream (low potential side) regions. The electrostatic potential difference between 

the two layers, separated by tens to hundreds Debye lengths, gives rise to a spatially 

localized electric field which accelerates ions (electrons) from the high potential (low) to 

the low potential (high) side. The acceleration of ions and electrons in opposite directions 

is one of the fundamental differences between an EDL and a sheath. In nature, it is the 

acceleration of charged particles that is often the most visible manifestation of an EDL. 

For example, strong, quasistable, magnetic-field aligned, EDLs having electric fields of ~ 

0.1V/m and spanning ~ 10 Debye lengths are found in the auroral zone.17 The EDLs are 

oriented with their high potential closest towards the Earth, so electrons are accelerated 

towards the Earth while ions are accelerated upwards toward ionosphere.18,19,20 In the lab, 

EDLs are created through a variety of methods, including: injection of ion or electron 

beams into a plasma;21,22 bringing in contact two plasmas of different electron 

temperatures and implicitly different potentials;23 plasma expansion into vacuum or in a 

diverging magnetic field.24,25,26 Depending on the specific plasma conditions, EDLs may 

differ in their shape, 2D or 3D structure, size, strength, magnetization, stability, and 

current-driven or current-free nature. The second characteristic that distinguishes a 

bounding wall sheath from an EDL is that an EDL can form anywhere in the plasma; 

unlike an electrostatic sheath which is fixed to the surface of an object immersed in the 

plasma or the plasma boundary.  
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Figure 2.2. Schematic of an electric double layer (EDL) formed between two plasmas (vertical dashed 
lines indicate the plasma boundaries) with different plasma potentials 
 

For the general case of an EDL formed between two adjacent plasmas at different 

potentials (see Figure 2.2), there is a population of trapped (or reflected) low energy 

electrons on the high potential side (right) of the EDL, a population of trapped (or 

reflected) low energy ions on the low potential side (left) of the EDL, a population of 

electrons having enough energy to overcome the EDL potential barrier and pass from the 

high potential side to low potential side (called free electrons), and a population of high 

energy ions which overcome the EDL potential barrier (called free ions) and pass from 

left to right, i.e., from the low potential side of the EDL to the high potential side of the 

EDL.27 The two additional populations, an energetic electron beam and an energetic ion 

beam on the high potential side and the low potential side, respectively, result from 

acceleration as the charged particles transit the EDL.28 As shown in Figure 2.3, all four 

particle populations are easily distinguished in phase space. At x→ -∞ for ions and x→ 

+∞ for electrons, the accelerated populations (hatched areas) coming from upstream and 

downstream, respectively, are completely distinct from the background populations. At 

the edges of the EDL there could be, in principle, a discontinuity in the phase space 

densities. In reality, however, any discontinuities are eliminated by fluctuations and 

diffusion.29  
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Figure 2.3. Potential distribution φ(x), ion and electron phase space distributions across an EDL with 
potential drop φ0 and internal electric field E. The hatched areas indicate accelerated populations. The 
reflection of ions and electrons within the separatrices (symmetrically placed broken and barred curves) are 
indicated by the arrows showing velocity reversal.  
 

The most important characteristic of an EDL is its strength, given by the ratio of the 

potential difference across the EDL to the plasma thermal potential eφDL/kBTe, with Te 

being the electron temperature on the low potential side.30 An EDL is considered as weak 

if this ratio is less than 10 and strong if this ratio exceeds 10. The weaker the EDL, the 

larger the fraction of background particles that will be able to surmount the potential 

barrier. 

Another important characteristic of an EDL is magnitude of the net current 

flowing through the EDL. The net current flowing through the EDL is given by the 

balance of passing populations (free electrons and ions) and accelerated populations (ions 

flowing downstream and electrons flowing upstream). Generally, to maintain the current 

through an EDL, an external power source is required to close the current loop; as is the 

case of EDLs produced in double plasma sources, triple plasma sources, and Q 

machines.31 However, under certain conditions it is possible that the net current through 

the EDL is zero. Such EDLs are called current-free double layers.  
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2.5. Theoretical Description of a Plasma EDL: the Sagdeev Potential 
 

 To exist in a plasma, an EDL must fulfill three simultaneous conditions:32 the 

potential drop must exceed the electron thermal energy; the electric field must be stronger 

in the EDL than outside; and the net charge must be zero. An analytical solution for the 

EDL potential structure requires solving the Poisson and Vlasov equations with the 

boundary conditions of a null electric field and zero net charge at the edges of the EDL. 

Since the mathematical representation is nonlinear, the analytic solution is difficult to 

obtain. A solution method that has been shown to be particularly suited for electric 

double layers (EDL) in various plasma conditions is the Sagdeev potential.33 For the 

simple one-dimensional (along the z-axis) two-ion species plasma case, Poisson’s 

equation for the electrostatic potential φ is 
2

0 2 ( )d z
dz
φε ρ− = ,     (2.15) 

where ρ is the total charge density of the plasma. When it is possible to obtain the charge 

density as a functional of a potential ρ(φ), one can introduce the Sagdeev potential V(φ) 

defined as 

( ) ( )V d
φ

φ ρ ψ ψ= ∫      (2.16) 

Appying ρ = dV/dφ, Poisson’s equation can be integrated once to obtain 
2

0 ( )
2

d V
dz

ε φ φ⎛ ⎞ + = Π⎜ ⎟
⎝ ⎠

     (2.17) 

where Π is a constant. Π can be interpreted to represent the energy of a fictitious particle 

located at a “position” φ, with a “velocity” dφ/dz, and at the “time” z. Note that the 

Sagdeev potential has the dimensions of energy density. Imposing the constraint that the 

net charge ρ(z) and the electric field E= - dφ/dz vanish at each side of the double layer, 

defining the potential across the double layer to be φDL, and employing Eqs. (2.16) and 

(2.17), the Sagdeev potential must satisfy the conditions 

V ′(0) = V ′(φDL) = 0 and V(0) = V(φDL) = Π,   (2.18) 
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where V ′ is the first derivative of V with respect to φ. Eq. (2.17) also requires that the 

energy density is positive, i.e., ε0E2/2 = Π - V(φ) ≥ 0. Thus, the Sagdeev potential must 

satisfy the inequality 

V(φ)  ≤  Π     (2.19) 

At the double layer edges, V(φ) can be expanded in a Taylor series and to second order in 

φ, the inequality of Eq. (2.19) becomes  

V″ (0)  ≤  0, and V″ (φDL) ≤ 0    (2.20) 

The necessary conditions for the formation of an electric double layer in a plasma are 

thus given by Eqs. (2.18) and (2.20).  

 The Sagdeev potential is obtained from the equations of motion of the plasma 

components. For electrons in Boltzmann equilibrium with the electrostatic field, the 

electron charge density, i. e. the derivative of the electron contribution to the Sagdeev 

potential Ve(φ), is 
/'

0( ) ( ) B ee k T
e e ez V en e φρ φ= = − ,    (2.21) 

where ne0 is the electron density at φ = 0. Integrating once, the electron contribution to the 

Sagdeev potential is 
/

0( ) B ee k T
e e e B eV n k T e φφ = Π − .    (2.22) 

Examination of Eq. (2.22) suggests that the electron contribution to the Sagdeev potential 

is directly related to the electron pressure.  

 The pressure arising from the ions is assumed to be ignorable, i.e., small but finite 

ion temperature. This approximation is appropriate for low temperature plasmas where 

the ion temperatures are much smaller than the electron temperature. To express the total 

ion density as a function of the electrostatic potential, ion velocities are eliminated 

through the continuity (njvj = nj0vj0) and energy conservation (Mjvj
2/2+eφ(z) = Mj0vj0

2/2) 

equations for each species. Here n, v, M denote the number density, fluid velocity, and 

ion mass. The subscript j (j = 1, 2) again refers to the different plasma species and the 

index 0 refers to the locations where the potential must vanish. The positive ion charge 

density is then given by 
1/ 2

'
0 2

0

2( ) ( ) 1j j j
j j j

ez V en
M v

φρ φ
−

⎛ ⎞
= = −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ .   (2.23) 
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Thus, the ion contribution to the Sagdeev potential is  
1/ 2

2
0 0 2

0

2( ) 1j i j j j
j j j

eV n M v
M v

φφ
⎛ ⎞

= Π − −⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ,   (2.24) 

 where Πi, and Πe from Eq. (2.22), are integration constants. The total Sagdeev potential 

for an electropositive plasma with two ion species is then 

( )
1/ 2

2
0 0 2

2( , ) 1 1 1j e B e j B e j
j j

V n k T e n k TΦ
⎡ ⎤⎛ ⎞Φ⎢ ⎥Φ = Π + − + − −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑M M
M

,  (2.25) 

where the dimensionless potential Φ=eφ/kBTe, the boundary condition V(0) = Π, and the 

definition of the ion Mach number Mj=vj0/(kBTe/Mj)1/2 have been used. 

 An example of the Sagdeev potential solution for a plasma double layer in the 

simple case of one ion species is shown in Figure 2.4 as a function of Mach number and 

the dimensionless potential defined above. From Figure 2.4 it is clear that the potential 

must be finely tuned such that the fictitious particle starting at rest at one maximum, rolls 

down the potential and comes to rest at the other maximum. 
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Figure 2.4. The Sagdeev potential for a single ion species plasma double layer. 

 

With the charge densities defined, the two necessary conditions V ′(0) = 0 and V″ (0) ≤ 0 

have a simple physical interpretation. Combining Eqs. (2.21) and (2.23), equivalent 

expressions for the necessary conditions are obtained:  
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V ′(0) =0     ⇔     0 0e j
j

n n=∑     (2.26) 

V″ (0) ≤ 0    ⇔    0
2

0

1 1j

j e j

n
n

≤∑ M
    (2.27) 

The first condition is a requirement for plasma neutrality at one edge of the EDL. The 

second condition is identical to the generalized Bohm criterion for formation of wall 

sheaths (Eq. (2.14)). The two conditions V(φDL) = Π and V ′(φDL) = 0 lead to a second 

order equation with a root at φDL = 0, but no positive roots. Since, V(φ) cannot have a root 

on the domain φ > 0, all the necessary conditions for the formation of a double layer are 

not satisfied. Although the non-satisfaction of the necessary conditions excludes any 

double layer behavior, soliton solutions are still allowed for particular initial conditions. 

Thus, a plasma with Boltzmann electrons and a single species of cold positive ions 

cannot sustain a double layer. For the general case of multiple cold positive ion species,34 

it has also been shown that double layers of arbitrary amplitude cannot exist in a plasma 

with one Boltzmann electron population, no matter how many cold ion species are 

present. Therefore, the formation of electric double layers in a plasma requires at least 

one finite temperature ion species. 

 Giving the difficulty of finding finite temperature ion and electron particle 

distribution functions that yield an EDL solution, it is often not possible to solve for the 

Sagdeev potential. For weak EDLs, the Sagdeev potential can be expanded in a power 

series and terms up to φ4 retained. In this limit, the EDL solution of Eq. (2.17) becomes 

( ) 1 tanhDL
zz
d

φ φ ⎡ ⎤⎛ ⎞= − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
,    (2.28) 

where d is the EDL thickness. As shown in Figure 2.5, such a potential is symmetric with 

respect of the middle of the EDL and the adjacent positive and negative space charges 

have equal widths. 



 
Chapter 2: Plasma Sheaths and Double Layers 

 23

 
Figure 2.5. One dimensional profiles of a weak electric double layer potential (full line), space charge 
density (dashed line), and electric field (dotted line) [28]. 
 

2.6. Electric Double Layers in Multi-Component Plasma 
 

 Historically, laboratory EDL experiments have been performed in ionized gases 

of a single ion species. The physics of EDL formation is sufficiently complicated that a 

single ion species is preferred for ease of comparing experimental results to theory. 

However, space plasmas are generally composed multiple ionized species. Therefore, 

EDLs in space must include many ion populations. The dependence of space EDLs on 

the abundances of minor ions is an open and interesting question. A related issue is how 

the initial ion abundances are reflected in the relative abundances of the accelerated ions. 

For an EDL in a partially ionized plasma, the accelerated particles will consist of only 

those particles in the plasma that were ionized. However, the relative abundances of the 

accelerated ions will be the same as the relative abundances of the source plasma only if 

all the ions in the plasma flow into the EDL with the same characteristic speed.  

To obtain the essential equations that describe a multi-ion component EDL, we 

begin with the simple case of a steady state one-dimensional EDL that supports a 

potential drop φDL. Some of the plasma particles are accelerated through the potential 

drop of the EDL, while others are reflected back into the bulk plasma. Inside the EDL, 

the positive and negative particles are accelerated in opposite directions by the electric 
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field generated by the opposite space charges. At the edges of the layer, z = 0 and z = d (d 

is the thickness of the layer), quasineutrality requires that the electric field vanishes. For 

trapped Maxwellian electrons and ions and monoenergetic beams of ions and electrons 

entering from high potential side and low potential sides of the EDL, respectively, the 

Sagdeev potential has the form 
1/ 2

( ) / 2
0 0

1/ 2
/ 2

0 0

2( )

2 ( )

DL B e

B j

e k T e
e e

e k T j j DL
j j

j j

mi eV n e v
e m

M i en e v
e M

φ φ

φ

φφ

φ φ

− −

−

⎛ ⎞− = + + +⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞−⎢ ⎥+ +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑

, (2.29) 

where ie and ij are the electron and ion beam currents, respectively. Since the electric field 

is zero at the layer boundaries, where V(0) = V(φDL), the generalized current condition for 

a strong, multi-component EDL is 
1/ 2

j
e j

j

M
i i

m
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∑ .    (2.30) 

For the particular case of an EDL consisting of only electrons and one singly charged 

positive ion species, Eq. (2.30) reduces to ie/ii=(M/m)1/2; commonly known as the 

Langmuir condition [27].  

Even without a complete solution of the EDL, key information about the physics 

of the multi-ion species EDL can still be obtained from the boundary conditions, 

specifically Eq. (2.27). Unlike the case of a single ion species plasma, where equality is 

satisfied by the ion species reaching its own sound speed, for multiple ion species the 

equality may be satisfied by ion speeds faster (supersonic) or slower (subsonic) than the 

corresponding ion sound speed. The two simplest solutions of Eq. (2.27) at the edge of 

the EDL are for all ions reaching the same speed, the system Bohm speed – csystem (equal 

to the abundance weighted average of the sound speeds of the constituents ions), or for 

each species attaining its individual Bohm speed at the edge of the EDL. This result is the 

same as was obtained for the two ion species sheath case described previously. 

As will be described in Chapter 5, laser induced fluorescence measurements of 

Ar+ ion velocity distribution functions on the low and high potential sides of a helicon 

plasma EDL have been performed in two gas mixtures, argon-helium and argon-xenon to 
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determine which solution best describes the ion speeds at the edge of a real, multi-ion 

species EDL. These gas mixtures are amenable to LIF diagnosis while also having large 

differences in the individual ion sound speeds. For an Ar-He mixture, argon is more 

easily ionized (15.76 eV ionization threshold for argon versus 24.59 eV for helium) and 

therefore the argon ions are expected to dominate the ion density. The Ar+ sound speed is 

more than three times smaller than the He+ sound speed (atomic mass of 40 amu for Ar 

versus 4 amu for helium). For the same reasons, Ar+ is non-dominant and plays the role 

of the lighter ion (131 amu and 12.13 eV ionization energy for xenon) in the Ar-Xe 

mixture. Defining η and (1-η) as the ratios of the argon ion and helium ion densities 

relative to the electron density for Ar-He mixture, the inequality of Eq. (2.27) leads to 

critical values of η and (1-η) that depend on the argon and helium ions Mach numbers 

2

2 2

1 1
1 1 1

Ar

Ar He

η
−

− ≥
−

M

M M

     (2.31.a) 

2

2 2

11

1 1
He

Ar He

η
−

≤
−

M

M M

     (2.31.b) 

Solving this coupled inequality system leads to the solution shown graphically in Figure 

2.6. Over the range of Ar+ and He+ Mach numbers from 0 to 2, there are an infinity of 

solutions that require one species enters the EDL at a supersonic speed while the other 

species enters at a subsonic speed (the light gray areas in Figure 2.6). The hatched areas 

in Figure 2.6 correspond to negative values of η in Eq. (2.31) and therefore have no 

physical meaning. The dark gray areas correspond to the values of η greater than 1 and 

are also not solutions of Eq. (2.31).The consequences of this approach on the formation 

of an EDL in multi-component plasma are the following: since electrons are purely 

Maxwellian species, electron density must follow the double layer potential, while the 

densities of ion species must be enhanced or depleted depending of their initial velocities. 
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Figure 2.6. Ar+ relative density η versus Ar+ and He+ Mach numbers (Eqs. 2.31 (a) and (b)). The light gray 
areas are the only solutions of inequalities (2.31) for which 0 ≤ η ≤ 1, i. e., one species entering the EDL is 
supersonic and the other is subsonic. The hatched and dark grey areas are non-physical solutions of Eqs. 
2.31 for which the relative fractional density is negative or bigger than 1, respectively. 
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Chapter 3: The Physics of Helicon Plasma Sources 

 

3.1. Introduction to Helicon Plasma Sources 
 

 In the 1960’s, helicon waves were first investigated in solid state plasmas1 and in 

gaseous plasmas.2 The basic theory of these waves was extensively studied in that period 

by Woods,3 Klozenberg et al.,4 and Davies et al.5 The generation of high plasma density 

in the helicon discharge was first investigated by Boswell.6 In the 1980’s, the interest in 

helicon plasma sources was renewed by the emergence of their use as gas laser media, 

plasma reactors for material processing, and plasma lenses for high energy particle 

beams. 

 Helicon discharges are sustained by electromagnetic waves propagating in 

magnetized plasma in the so-called helicon modes. The driving frequency in these 

discharges is typically in the radio-frequency range of 1 to 50 MHz (the industrially 

licensed radio-frequency of 13.56 MHz is commonly used for material processing 

discharges). It is interesting to note that, in contrast to other rf discharges (capacitive and 

inductively coupled), helicon discharges are considered to be wave heated even though 

they operate in the rf range. Because the phase velocity of electromagnetic waves in 

magnetized plasma can be much lower than the speed of light, the helicon wavelength is 

comparable to the discharge system size even at radio-frequencies much smaller than the 

standard rf frequency of 13.56 MHz.  

 The magnetic field in helicon discharges varies from 20 to 2000 G and magnetic 

field strengths of ~1000 G are often employed for fundamental plasma studies employing 

helicon sources. Excitation of the helicon wave is provided by an rf antenna that couples 

to the transverse mode structure of the wave across an insulating chamber wall. The 

electromagnetic wave mode propagates along the plasma column and the wave energy is 

transferred to electrons through collisional or collisionless damping mechanisms. 

Resonant coupling of the helicon mode to the antenna can lead to discontinuous changes 

in the plasma density for small changes in the source parameters. This phenomenon, 

known as a “mode jump”, restricts the operating regime for a given helicon source 

design. In a series of experiments, Boswell and co-workers7,8,9,10 investigated the 
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structure and propagation of helicon waves excited in the 7-10 MHz range. They showed 

that on-axis peak densities of ~1013 cm-3 (in argon) could be created in a 10-cm diameter 

tube with only 1 kW of rf power, a 1 kG of magnetic field strength, and for a variety of rf 

antenna configurations.  

 

3.2. Operational Principles of Helicon Plasma Sources 
 

 Helicon waves belong to the general class of plasma waves known as whistler 

waves which are right-hand circularly polarized electromagnetic waves in free space. 

Helicon waves differ from classical whistler waves in two main aspects: 1) they 

propagate at frequencies close to the low frequency limit of the electron cyclotron wave, 

so that electron inertia effects are small, and 2) they are modes of bounded systems, 

therefore their purely electromagnetic character cannot be maintained.  

 Since the helicons are propagating “whistler” wave modes in an axially 

magnetized, finite diameter plasma column, the electric and magnetic fields of the 

helicon modes have radial, axial, and, usually azimuthal variations. They propagate in 

high plasma densities at relatively low magnetic fields and their operating frequency, ω, 

relative to key plasma frequencies is characterized by: 
2,  LH ce pe ceω ω ω ω ωω ,    (3.1) 

where, ωLH is the lower hybrid frequency, 2
0/pe ne mω ε=  is the electron plasma 

frequency, /ce eeB mω =  is the electron cyclotron frequency, and n, e, ε0, m, and B are the 

plasma density, elementary charge, dielectric permittivity of the vacuum, electron mass, 

and the uniform background magnetic field strength, respectively. Including ion inertia 

effects, the lower hybrid frequency is given by 

2 2 2

1 1 1

LH pi ci ce ciω ω ω ω ω
= +

+
    (3.2) 

where 2 2
0/pi nZ e Mω ε=  and /ci ZeB Mω =  (with Ze and M the ion charge and mass, 

respectively) are the ion plasma and ion cyclotron frequencies. In high density plasmas, 

the first term is negligible and  
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LH ce ciω ω ω≅ .     (3.3) 

 In the recent years the physical processes responsible for efficient helicon source 

operation (high plasma densities given the rf input power) have been extensively studied 

over a wide variety of operating regimes. Collisional processes,11,12 Landau damping,13,14 

helicon wave penetration,15 antenna localized acceleration,16,17 mode conversion near the 

lower hybrid frequency,18 nonlinear trapping of fast electrons,19,20 and ion heating21 have 

all been considered.  

 Recent studies of helicon plasma sources have focused on both high efficiency 

operation and strong wave damping, neither of which is fully explained by either 

collisional or Landau damping processes. The possible role of a population of fast 

electrons, constituting a non-Maxwellian component of the electron distribution function, 

in ionizing the background gas in a helicon source is another important and related issue. 

 Through the helicon wave dispersion relation, plasma density and parallel wave 

number obey a fixed relationship for a given magnetic field strength22 
2

2 2
02

p
p

ce

nk k k e v
k c B

ωω μ
ω⊥ ||

||

⎛ ⎞= + ≈ ⋅ = ⎜ ⎟
⎝ ⎠

,   (3.4) 

where k is the wave number, μ0 the magnetic permeability in vacuum, and /pv kω ||=  is 

the helicon wave’s phase velocity along the tube. Generally k⊥ is fixed by the tube radius 

J1(k⊥a) = 0 (where J1 is the Bessel function of first kind). It follows then that for a gas 

which has a peak in the ionization cross-section at ~ 50 eV, such as argon, matching the 

wave phase speed to electrons with kinetic energies at the peak of the ionization cross 

section requires 

220B a
n
= , v p= fλ = 4.19×106 ms-1, and 32f

a
=   (3.5) 

with n in units of 1013 cm-3, the tube radius a is in cm, and the driving frequency f is in 

MHz. For the usual industrial frequency of 13.56 MHz, a tube of ~ 5 cm diameter will 

require a magnetic field of ~ 275 G to generate a plasma density of 5×1012 cm-3. When 

these design targets are met in practice, the density performance is generally consistent 

with this simple prediction. 
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 Even in the case of uniform magnetic fields, the mechanisms of plasma creation 

and loss in helicon discharges are not completely understood. The axial profile of plasma 

density downstream of the antenna is sensitive to many factors such as neutral pressure, 

antenna design, and magnetic field strength. In the particular case of small diameter 

tubes, the axial density scale length may be much shorter than the calculated damping 

distance and may be related to depletion of neutrals or formation of double layers.23 

 

3.3. WVU Helicon Plasma Source 
 

3.3.1. Helicon Source and the Diffusion Chamber 
 

 
Figure 3.1. HELIX (foreground) and LEIA (large aluminum chamber) system. HELIX is surrounded by a 
Faraday cage for rf shielding. The large electromagnets surrounding LEIA are roughly 3 m in diameter.24 
 

 The helicon plasma source used for investigations in the present work consists of 

two distinct parts: the HELIX (Hot hELIcon eXperiment) source where high density 

plasma is created, and a large expansion chamber, LEIA (Large Experiment on 

Instabilities and Anisotropies) into which the plasma flows from HELIX. The HELIX 
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helicon plasma source and the LEIA diffusion chamber are shown in Figures 3.1 and 3.2. 

HELIX consists of a 61 cm long, 10 cm diameter Pyrex tube mated coaxially with a 91 

cm long, 15 cm diameter stainless steel tube.  

 An rf amplifier able to deliver up to 2kW over a frequency range of 6-18 MHz is 

used to generate the helicon plasma. The source can operate in a continuous wave mode 

or pulsed mode. Switching between continuous wave mode and pulsed mode, as well as 

changing the pulse duty cycle, is accomplished with a pulse generator that amplitude 

modulates the rf signal before the amplification stage. The plasma produced in the source 

expands into a 4 m long, 2 m diameter aluminum diffusion chamber – LEIA. The LEIA 

expansion chamber is surrounded by seven electromagnets which provide an axial 

magnetic field of 0-140 G. 

 

 
Figure 3.2. The HELIX helicon plasma source. On the far left is the mating flange with one of the pumping 
stations. Ten electromagnets are used to axially confine the plasma. The antenna is tightly wrapped around 
the tube at about 37 cm from the closed end. 
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Figure 3.3. HELIX-LEIA schematic with diagnostic locations A, B, C, and D labeled. 

 

3.3.2. Vacuum System 

 

 The HELIX-LEIA system is pumped differentially and the gas inlet valve is near 

the rf antenna. The HELIX pumping station consists of a Pfeiffer TMU 520 

turbomolecular pump backed by a Pfeiffer MD 4T diaphragm roughing pump. LEIA is 

pumped by two Pfeiffer TMU 1600 turbomolecular pumps with Pfeiffer MD-8 

membrane backing pumps, both located at the end of LEIA opposite of HELIX. Each 

LEIA pump can be run at a rotation frequency of 400 Hz or 600 Hz, allowing for three 

pumping rates in the expansion chamber. There is a slight pressure gradient along the 

source axis, while in the expansion chamber the pressure is nearly constant and almost 

one order of magnitude smaller than the pressure in HELIX. The gas (or gas mixture) 

flow rate is controlled by two MKS 1179 mass flow calibrated valves with a PR-4000 

flow controller. The flow controller regulates the flow of argon up to 200 sccm with an 

accuracy of 1%, and the flow of helium or xenon up to 20 sccm with an accuracy of 

0.1%.  
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3.3.3. The Magnetic Field System 
 

 Ten water cooled solenoids (see Figure 3.2) create the axial magnetic field in 

HELIX. Two Xantrex XFR dc power supplies connected in parallel provide up to 400 A 

current for the electromagnets. The maximum attainable magnetic field is 1200 G. Seven 

9’ diameter water cooled electromagnets confine the plasma in the downstream chamber 

(Figure 3.4 (a)). Each electromagnet is made of 20 turns of water cooled, 0.36” × 0.41” 

hollow rectangular aluminum tubing. Current of up to 200 Amp is provided by an EMI dc 

power supply and the maximum achievable axial magnetic field in LEIA is 140 G. Under 

typical operating conditions, in the connection region between the helicon source and the 

expansion chamber, there is an axial magnetic field gradient of nearly 10 G/cm over a 

distance of 70 cm. Figure 3.4 (b) shows the on-axis magnetic field strength and its 

gradient in the HELIX-LEIA combined system as calculated with a two-dimensional 

numerical model that was validated with measurements along the system axis. The 

evolution of contour lines of constant magnetic flux (flux tubes) are shown in Figure 3.4 

(c) for a constant magnetic field strength in HELIX of BH = 600 G and for two magnetic 

field strengths in LEIA: 70 G (dash-dot line); and 14 G (solid line). 
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Figure 3.4. a) HELIX-LEIA system. b) Magnetic field profile and magnitude, and magnetic field gradient 
versus axial position over the entire length of HELIX-LEIA system. c) Contours of constant magnetic flux 
showing the increased divergence that results when the magnetic field in the expansion region decreases 
from 70 G (dash-dot line) to 14 G (solid line) for a constant source field of 600 G. 
 



 
Chapter 3: The Physics of Helicon Plasma Sources 

 37

3.3.4. Rf Generator, Matching Network, and Antenna 
 

 The rf power used for plasma generation in HELIX is supplied by a 50 MHz 

Wavetek model-80 function generator followed by a 30 dB ENI 2000 rf amplifier. The rf 

power is transmitted from the amplifier to the source through a high frequency coaxial 

cable and a π-type matching network to match the 50 Ω output impedance of the 

amplifier to the antenna/matching network system. The matching network consists of one 

large, tunable, Jennings high voltage vacuum capacitor with a range 20-2000 pF range 

(the “load” capacitor) and three smaller “tuning” Jennings high voltage capacitors (two 

with a range of 4-250 pF and one with a range of 5-500 pF). The three tuning capacitors 

are in parallel with each other and the combination is in series with the load capacitor.  

 A 19 cm long, half wave, m = +1, helical antenna couples the rf energy into the 

plasma (Figure 3.5). The antenna is tightly wrapped around the Pyrex tube at about 37 cm 

axial location from the closed end of HELIX. A detailed description of the matching 

network and the antenna can be found in the dissertations of Balkey25 and Sun.26 

 

 
Figure 3.5. Schematic of m = +1 helical antenna27 used in these experiments. 

 

3.3.5. Typical plasma parameters in HELIX-LEIA 
 

 The typical plasma (Ar, Xe, and He) parameters in HELIX and LEIA are shown 

in Table 3.1. For typical HELIX-LEIA operating conditions, the plasma is collisional in 

the source (HELIX) and collisionless in the expansion chamber (LEIA). 
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Table 3.1. Typical plasma parameters in HELIX and LEIA 

Parameter Helicon source Expansion chamber 

ne (1012 cm-3) 0.1 - 10 0.001 - 0.1 

B (G) 500 - 1200 5 - 70 

pn (mTorr) 1.5 - 10 0.15 - 1 

L (cm) 150 450 

Te (eV) 4 - 12 2 - 8 

Ti (eV) < 1 < 1 

λD (cm) 5×10-3 - 8×10-4 3×10-2 - 6.5×10-3 

re (cm) 4×10-3 - 2×10-2 5×10-2 - 1.5 

ri (cm) 

Ar: 2×10-1 - 6×10-1 

Xe: 4×10-1 - 1 

He: 8×10-2 - 2×10-1 

Ar: 4 - 60 

Xe: 8 - 105 

He: 1.5 - 18 

ωpe (1010 rad/s) 1.8 - 18 0.18 - 1.8 

ωce (109 rad/s) 
Ar: 5.2 - 34 

Xe: 1.25 - 8.2 

Ar: 52 - 340 

Xe: 12.5 - 82 

ωci (106 rad/s) 

Ar: 0.12 - 0.3 

Xe: 0.04 - 0.09 

He: 1.2 - 3 

Ar: 1.2×10-3 - 1.6×10-2 

Xe: 4×10-4 - 5×10-3 

He: 1.2×10-2 - 1.6×10-1 
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Chapter 4: Plasma Diagnostics 
 

 It is convenient to divide diagnostic techniques into three general categories: ex 

situ, in situ-intrusive, and in situ-non-intrusive. The common characteristic of ex situ 

techniques is that they sample an aliquot of the plasma reactor’s contents and transfer it 

elsewhere for examination. On the other hand, the division of in situ techniques into 

intrusive and non-intrusive is somewhat arbitrary. To some extent, any diagnostic 

technique perturbs the plasma. In some cases this perturbation may be so slight as to be 

negligible, while in others it may be quite considerable. One example of an in situ 

diagnostic which would generally be called intrusive is a Langmuir probe. In this case, a 

physical object is inserted into the plasma, thereby perturbing it. However, depending 

upon the information desired, this perturbation may or may not be negligible. 

 

4.1. Langmuir Probe  
 

 Electrostatic probes are undisputedly the oldest and most widely used diagnostic 

tools in plasma physics. The technical description and first theoretical explanation of the 

electrostatic probe was developed by Langmuir;1 hence it is widely known as the 

Langmuir probe. In its simplest form, a Langmuir probe is a conducting wire inserted in 

the plasma and the current versus applied voltage, V, characteristic, I-V, is measured with 

respect to a reference electrode. The plasma parameters which can easily be obtained 

using measured current-voltage characteristic and the relevant probe theory are the 

electron temperature Te, the electron density ne, the floating potential Vf, and plasma 

potential Vp (or space potential VS as shown in Figure 4.1). There are five regions of 

interest in the idealized Langmuir probe trace shown in Figure 4.1. For applied potentials 

more positive than the space potential (the potential of the plasma), Vp, all the available 

electrons in the vicinity of the probe are collected by the probe, i.e., electron saturation. 

The collected current in this regime can increase if the sheath expands with increasing 

applied potential. The space potential is identifiable by the “knee” in the I-V curve. At 

the far left of the curve, the probe is in ion saturation, Ii, sat, all electrons are repelled, and 

all available ions are collected. The floating potential Vf is the value of the applied 
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potential for which the collected ion and electron currents are equal. The exponential part 

of the curve (in a Maxwellian plasma) is called the transition region. In the transition 

region, the ion current is negligible and the electrons are partially repelled by the negative 

potential difference, V-Vp, between the plasma potential and the applied potential. 

 
Figure 4.1. An idealized Langmuir I–V curve. The red curve has been expanded 10 times to emphasize the 
ion current.2 
 

 In a magnetized rf plasma, collisions, the fluctuating plasma potential, and the 

magnetic field all affect a Langmuir probe I–V characteristic. Magnetic fields strong 

enough to make the electron Larmor radius smaller than the probe radius limit Ie,sat to 

only few tens of Ii,sat because in saturation the probe depletes the charge particles only on 

magnetic field lines that it intercepts. The larger ion gyroradius provides a larger effective 

ion collection area. Additional electrons can be collected only if they diffuse across the 

magnetic field. The “knee” in this case is indistinct and the I–V curve (Figure 4.2) is 

exponential only over a range of few kBTe above the floating potential. For the weak 

magnetic fields in LEIA (~10 G) the electrons are unmagnetized (rce ≅ 5 mm >rp = 0.5 

mm) and the magnetic field effects can be ignored. For HELIX, magnetic fields ~700 G, 

the electron cyclotron radius (rce~ 70 μm) is much smaller than the probe radius and 

magnetic effects must be included in the analysis. According to Lafambroise and 
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Rubinstein,3 even in strong magnetic fields the electron phase-space density or velocity 

distribution function can still be described by the usual Maxwell-Boltzmann distribution 

with an additional correction term for a hypothetical potential well arising from the 

presence of the magnetic field. Since the electron distribution is not distorted but only 

shifted in energy, measurements obtained by applying the unmagnetized probe theory to 

the data still provide an accurate assessment of changes in density, potential, and electron 

temperature in magnetized plasmas. 

 
Figure 4.2. I–V curve typical of a magnetized, rf plasma 2 

 

 For a simple, unmagnetized, collisionless, Maxwellian plasma comprised of one 

electron population and two positive ions species, the collected current for applied 

voltages around the floating potential is approximately4: 
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,  (4.1) 

where m and Mj, j = 1, 2 are electron and ion masses respectively, ne and nij are electron 

and ions densities, Ap is the probe area and AS the sheath area. At high plasma densities 

(greater than 1011 cm-3), the sheath around a negatively biased probe is so thin that the 
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surface area of the sheath is essentially the same as the surface area of the probe, AS = Ap. 

Equivalently, the ratio of probe radius to the Debye length (λD = (ε0kBTe/nee2)1/2) is larger 

than 1. Even with the added complication of more than one ion species, Eq. (4.1) can be 

used to determine the electron temperature Te and plasma potential Vp. Note that the 

electron temperature for any plasma is only defined if the electrons distribution is 

Maxwellian. In non-Maxwellian plasmas, the concept of a temperature is valid only for a 

specific portion of the distribution function. For a pure Maxwellian electron distribution 

function, the electron temperature is obtained from the slope of ln(Ie) versus the applied 

voltage, i.e., beginning with 

( ) /( )
2

p B ee V V k TB e
e p e p

k TI V V en A e
mπ

−− =    (4.2) 

and taking the natural logarithm, 

ln( ) .e
B e

eVI const
k T

= +      (4.3) 

Eq. (4.3) yields straight line with a slope Δ ln (Ie)/ΔV ∝ 1/Te on a semi-logarithmic plot. 

The electron temperature kBTe/e in electron volts is given by  
1ln( )e

B e
Ik T e

V

−Δ⎡ ⎤= ⎢ ⎥Δ⎣ ⎦
.     (4.4) 

Any deviation from linearity on the semi-logarithmic plot indicates a deviation of the 

electron energy distribution function from a pure Maxwellian. In such a case, the electron 

population cannot be described by a single electron temperature.  

 In contrast to a single ion species plasma, for a two ion species plasma the 

electron density cannot be uniquely determined from a measurement of electron 

temperature and the ion saturation current, 

1 2
,

1 2

0.61 i B e i B e
i sat e p

e e

n k T n k TI en A
n M n M

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
.   (4.5) 

The ion saturation current contains two unknowns, ni1 or ni2, which can be related to the 

electron density through the quasineutrality relation (ni1+ni2≅ne). A recent two-ion species 

fluid model of Bai and co-workers5 demonstrated that normalized ion densities are 

related to electron density through the ionization rate constant of each species: 
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where (1-η)/η is the partial pressure ratio (abundance ratio) of gas species 1 and 2, 

respectively; iz
jk  is the ionization rate constant of each species, 
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and iz
tk  is the total ionization rate constant  

( ) 1 21iz iz iz
tk k kη η= − + .     (4.7.b) 

In Eq. (4.7.a), iz
jσ  is the ionization cross section of each species and iz

jε  is the ionization 

threshold energy of each species. By substituting the normalized ion densities into Eq. 

(4.5), the electron density can be determined from measurements of the ion saturation 

current and the electron temperature. 

 The floating potential Vf is the potential to which an electrically isolated probe 

floats as a result of the difference in ion and electron mobilities. As noted previously, the 

plasma potential is the applied potential at which the current collection switches from 

partial repulsion of electrons to electron current saturation (the “knee” on Figure 4.1). An 

alternative approach to determining the plasma potential involves setting the applied 

potential equal to the floating potential, i. e. setting Eq. (4.1) equal to zero. 
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Although complicated, Bai’s method eliminates the issue of the unknown relative ion 

densities and can provide an accurate determination of the plasma potential: 
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.  (4.9) 

 For low temperature plasmas, Langmuir probes are typically fabricated from 

tungsten wires several millimeters in diameter. Because tungsten has a high melting 

point, the probe can be made small enough that perturbations are minimized. For high 
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temperature plasmas, graphite probes with length and radii from 1 to 10 mm are typically 

used because graphite can withstand higher power loads. In magnetized plasmas, ideally 

the probe diameter should be a few times larger than the ion Larmor radius. In this work, 

both cylindrical and disc (planar), rf compensated, Langmuir probes were used. The 

cylindrical probe (Figure 4.3) consists of a 0.5 mm diameter graphite rod that extends 3 

mm from an insulating alumina tube.  

 
Figure 4.3. Cylindrical Langmuir probe 

 

The planar probe (Figure 4.4) is fabricated from a tungsten sheet cut into a circle 

and spot welded to a tungsten rod. The diameter of the disc is 0.6 cm. One side of the 

probe surface is coated with alumina powder to prevent current collection by that side of 

the disc. The tungsten rod, 2.5 cm long, is shielded from the plasma with an alumina 

tube. The probe is mounted on a shaft that can reach the junction between HELIX and 

LEIA and can translate along the symmetry axis of the chamber (z axis).  

 
Figure 4.4. Planar Langmuir probe 6 

 

Both probes are rf compensated. The compensation is accomplished by a series of 

rf chokes covering the frequency range 6-18 MHz and a 10 nF shorting capacitor.7 

Although slightly more difficult to construct, the planar probe has the important 

advantage of being able to reach electron saturation in a high density, magnetized, 

helicon plasma (and therefore the planar Langmuir probe can directly measure the plasma 
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potential). In high density magnetized plasmas, the collecting area of a cylindrical 

Langmuir probe increases with increasing positive bias voltage because the growing 

circularly symmetric sheath intercepts an ever increasing number of magnetic field lines. 

The sheath of the planar probe grows in the direction of the field and therefore the 

collecting area of the probe changes only modestly with increasing bias voltage 

(assuming the probe is inserted into the plasma with the normal of the disk parallel to the 

magnetic field direction). 

 

4.1.1. Druyvesteyn Differentiation Method for Obtaining the Electron 

Energy Distribution Function (EEDF) 
 

 The classical Langmuir method for determination of the electron temperature, 

electron density and plasma potential assumes a Maxwellian electron energy distribution 

function (eedf), f(ε). However, in low pressure discharges the eedf is generally non-

Maxwellian and reported electron temperatures are actually an effective electron 

temperature Teff that corresponds to a mean electron energy 〈ε〉 determined from the eedf. 

Careful measurement of the transition region of the I-V characteristic can reveal details 

of the electron distribution if it is isotropic. Another method for determination of electron 

density ne, the effective electron temperature Teff, and plasma potential Vp directly from 

the eedf is the Druyvesteyn procedure.8 The Druyvesteyn technique consists of 

differentiating the probe characteristic to obtain the eedf and then determining ne and Teff 

from integrals of the eedf. The advantage of Druyvesteyn’s method is that it can be used 

for non-Maxwellian plasmas in which the electron density is not simply related to a 

single electron temperature and the ion saturation current. The disadvantage of 

Druyvesteyn’s method is that it employs the second derivative of the I-V curve for 

cylindrical Langmuir probes; a measurement that is strongly affected by noise. The 

signal-to-noise ratio can be improved by averaging many I-V measurements or by low-

pass filtering the I-V measurement.  

 Perhaps even more important for the measurements presented in this work is that 

the classical Langmuir technique is not generally applicable for multi-ion species 

plasmas; especially when only the ion portion of the I-V characteristic is used. Because 
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the velocity of the ions entering the sheath (the Bohm velocity) differs significantly from 

the single ion species case, use of the Langmuir analysis could lead to greatly 

exaggerated values for the electron density. Therefore, in this work, the Druyvesteyn 

method is used to calculate ne and Teff.  

 

4.1.2. Electron Energy Distribution Function from Planar Langmuir 

Probe Measurements 
 

For a planar probe aligned perpendicular to the plasma flow (the z axis in the 

HELIX-LEIA system), the electron flux entering the sheath depends only on the z 

velocity component, vz. The electron current collected by the probe is 

e e p zI en A v= ,    (4.10) 

where Ap is the probe area and 〈vz〉 is the average electron velocity in z direction. In terms 

of the one-dimensional electron velocity distribution function, f(vz), 

min

1 ( )z e z z z
v

v n v f v dv
∞

−= ∫    (4.11) 

where vmin= (-2eV/m)1/2 is the minimum velocity of an electron that can reach the probe 

for a bias voltage corresponding to the electron repelling region of the I-V characteristic. 

Taking the derivative of Eq. (4.10) and transforming from velocity to energy space in Eq. 

(4.11), 

2( ) e

p

dImf
e A dV

ε = .    (4.12) 

Thus f(ε) is the eedf and is obtained from the first derivative of the I-V characteristic for a 

planar Langmuir probe. The electron density is determined directly from the 

normalization condition  

1/ 2 1/ 2
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∞

− −= ∫     (4.13) 

and the effective electron temperature is related to the mean electron energy 〈ε〉 through 

1 1/ 2 1/ 2
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 A typical I-V characteristic obtained with the planar probe is shown in Figure 4.5. 

Also shown in Figure 4.5 is the first derivative of the I-V characteristic. Although the 

“knee” (the bend in the curve at the plasma potential) is less distinct than in the ideal I-V 

characteristic (Figure 4.1), the plasma potential Vp
 is easily identified in the first 

derivative. Thus, for a planar probe, it is sufficient to use the first derivative of the I-V 

characteristic to obtain the eedf and then ne and Teff are obtained from integration of the 

eedf. 

 
Figure 4.5. Typical planar probe I-V characteristic (solid line) and its first derivative (dash line) 

 

4.1.3 Electron Energy Distribution Function from Cylindrical 

Langmuir Probe Measurements 
 

 Druyvesteyn [8] also demonstrated that his analysis method can be used for any 

non-concave probe surface. In the case of a cylindrical probe, the collected current is 

min

2 3( / 2 )e p
v

I eA f mv eV v dvπ
∞

= −∫ .   (4.15) 

In terms of the electron energy ε + eV = mv2/2 
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Double differentiation of Eq. (4.16) with respect to the applied voltage V gives the 

Druyvesteyn formula, 
22
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For an isotropic distribution, the evdf is transformed into the eedf through  
2( ) 4 ( ( ))f d v f v dvε ε π ε= .    (4.18) 

and Eq. (4.17) becomes 
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Thus, for a cylindrical Langmuir probe, the eedf is obtained from the second derivative of 

the collected current. The maximum of the first derivative or the zero crossing of the 

second derivative of the probe current with respect to the applied voltage is used to 

determine the plasma potential (see Figure 4.6). Determining the plasma potential by 

differentiating the I-V characteristic is a more accurate process than visual inspection of a 

semilog plot of the electron current versus the probe bias voltage. 

 
Figure 4.6. a) First (dashed line) and b) second derivative (dash-dot line) of a typical cylindrical Langmuir 
probe I-V characteristic (solid line). The plasma potential is the value on the abscissa where dI/dV is a 
maximum, i.e., where d2I/dV2 is zero. 
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In practice it is easier to work with another function called electron energy 

probability function (eepf), F(ε). Mathematically, F(ε), is not a “true” probability 

function, i.e. ( ) 1F dε ε
∞

−∞

≠∫ . The eepf is defined as 

1/ 2( ) ( )F fε ε ε−= .     (4.20) 

Eepfs are particularly effective in distinguishing between different kinds of energy 

distribution functions. Different discharge processes generate different and unique eepfs. 

For example, on the logarithmic plot shown in Figure 4.7, a Maxwellian eepf would be a 

straight line.9 

 
Figure 4.7. Electron energy probability function (eepf) for a quasi-Maxwellian distribution (data obtained 
in HELIX for a 1.3 mTorr Ar discharge). The electron temperature is the inverse of the eepf slope.  

 

Substituting Eq. (4.19) in Eq. (4.20), the eepf can also be written in terms of the second 

derivative of the collected current. 
21/ 2

3 2

2(2 )( ) e

p

d ImF
e A dV

ε = .    (4.21) 

 Once the electron distribution function is known, the electron density is obtained 

by integrating the eedf over all possible energies 
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0

( )en f dε ε
∞

= ∫      (4.22) 

and the effective electron temperature is obtained from the weighted average of the 

electron energy 〈ε〉 

0

2 2 ( )
3 3eff

e

T f d
n

ε ε ε ε
∞

= = ∫ .    (4.23) 

 It is worth repeating that concept of electron temperature for any plasma is only 

valid if the eedf is Maxwellian. For non-Maxwellian plasmas, a given electron 

temperature is valid only for a particular region of the distribution function. As noted by 

Godyak [9], the Debye length and ion current density in the Bohm-like expression of the 

ion current are governed by the so called screening temperature Tscreening and not by Teff. 

The screening temperature is defined as 
1

1

0

2 ( )screening eff
e

T f d T
n

ε ε ε
−∞

−⎛ ⎞
= ≠⎜ ⎟

⎝ ⎠
∫ .   (4.24) 

 For low pressure rf discharges, non-Maxwellian electron energy distributions, 

such as bi-Maxwellian and Druyvesteyn, are commonly observed. A bi-Maxwellian 

distribution has distinct populations of cold (low energy) and hot (high energy) electrons 

and can be represented by 

/ /1/ 2 1/ 2
1/ 2 3/ 2 1/ 2 3/ 2

2 2( )
( ) ( )

B ec B ehk T k T
ec eh

B ec B eh

f n e n e
k T k T

ε εε ε ε
π π

− −= + , (4.25) 

where nec and neh are the densities of the cold and hot populations, respectively. The total 

density is the sum of the density components (ne = nec + neh). In this case, the screening 

temperature is given by 
1

screening ec eh

e ec eh

T n n
n T T

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

.    (4.26) 

 A Druyvesteyn distribution is usually used to approximate an eedf that is depleted 

at high energies. The Druyvesteyn energy distribution includes more electrons close to 

the average energy and fewer electrons at higher energies than does a Maxwellian 

distribution. If elastic collisions dominate the electron energy losses and the electron 
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mean free path λen is assumed to be constant, the general form of the Druyvesteyn 

distribution is 
2

0

3
1/ 2( ) N

m
m

Df A e
ε

ε ε
⎛ ⎞

− ⎜ ⎟Σ⎝ ⎠= ,    (4.27) 

where m and mN are the electron and neutral particle mass, respectively; Σ0 = eλenE is the 

energy gained by electrons over a mean free path λen along the electric field E; and A = 

constant. The normalization condition (4.22) gives 
2

0

3
1/ 2

0

N

m
m

en A e d
ε

ε ε
⎛ ⎞∞ − ⎜ ⎟Σ⎝ ⎠= ∫ .    (4.28) 

After a change of variables in Eq. (4.28) and the use of gamma function 

( 1

0

( ) tt e dtζζ
∞

− −Γ ≡ ∫ ), the Druyvesteyn distribution function becomes: 
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  (4.29) 

As can be seen from Eq. (4.29) and Figure 4.8, the Druyvesteyn distribution decreases 

with energy more rapidly than the Maxwellian distribution with the same average energy. 

 
Figure 4.8. Maxwell and Druyvesteyn electron energy distributions for the same average electron energy 
of 10 eV. 
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 For a Dryuvesteyn distribution, the average electron energy is 

( )
( )

1/ 2
1

en
0

5 / 43( )  
3/ 4e D

N

mn f d e E
m

ε ε ε ε λ
−∞

− Γ⎛ ⎞
= = ⎜ ⎟ Γ⎝ ⎠

∫ .  (4.30) 

 An important feature in Figure 4.8 is that both energy distributions are 

characterized by a high-energy tail. For an average electron energy of 10 eV, a significant 

number of electrons have energies above 25 eV. Thus, even for a modest value of the 

average energy there are enough electrons in the high-energy tail of the distribution to 

have a significant impact on the overall reaction rates in the plasma.  

 The full eedf can be recovered from the retarded electron component of the probe 

data (see Eq. 4.19). The challenge in using Eq. (4.19) to obtain electron energy 

distribution functions arises from performing two numerical differentiations of imperfect 

data without degrading the voltage resolution or amplifying the noise in the data. In this 

work, the probe data are digitally recorded and post-processed with finite difference and 

curve fitting algorithms to smooth and differentiate the signals. Oversampling and 

averaging over many realizations also helped to reduce noise levels in the measurements. 

Overly aggressive smoothing of the data was avoided so as to not wash out real features 

in the eedfs.  

 

4.2. Optical Emission Spectroscopy 
 

4.2.1. Collisional Processes in Plasma: The Corona Model  
 

 Creation of a quiescent helicon plasma requires specific choices for the magnetic 

field strength and profile, the rf frequency and power, and the gas flow into the chamber. 

As is true of all low temperature, quasi-neutral plasmas, a helicon plasma is a mixture of 

ions, electrons and neutrals that undergo collisions with each other. The collision 

frequency for a particular process is usually defined in terms of an average over all 

velocities ν, assuming a Maxwellian distribution 

collisionf n vσ= ,    (4.31) 
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where n is the particle density and σ the cross section for the collision process. All 

collisional processes can be divided into two classes: elastic and inelastic. Elastic 

collisions are those in which the internal energies of colliding particles do not change and 

the total kinetic energy is conserved. Inelastic collisions result in the transfer of energy 

from the kinetic energy of colliding partners into internal energy. The collisions in 

helicon plasmas can be further divided into two more categories: collisions directly 

related to ion production and charge exchange reactions between ions and neutrals. 

 

4.2.1.a. Electron Impact Excitation  

 

 In electron impact excitation, an electron collides with an atom or ion and loses 

some of its energy to excitation of one of the bound electrons of the atom or ion. In a 

Corona model of excited state populations in a plasma, only impact excitation collisions 

from ground states are considered because the ground state population density is an order 

of magnitude larger than the population density of any of the excited levels. Cascade 

emission from a higher energy excited state into a given state (radiative gain from upper 

levels) is also neglected because of the very small population densities of the upper 

levels. However, the radiative de-excitation out of those higher energy states is the 

dominate loss mechanism out of excited states. Thus, a Corona model assumes that the 

excited levels are populated by electron impact excitation from the ground state and 

depopulated by spontaneous, radiative de-excitation.  

 The excitation process is represented by the general reaction 

  i jA e A e− −+ → + .       

In this process, the free electron loses some of its kinetic energy to excitation of one of 

the bound electrons of the atom from the level i (including the ground state) to a higher 

level j. The number of excitation collisions per unit time per unit volume is 
i i j

e A e e AR n n v σ −
−= ,     (4.32) 

where ne is the electron density, i
An  is the i-th level neutral density, ve is the electron 

velocity, and i j
e Aσ −

−  is the cross section for electron excitation from level i to level j. The 
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average quantity in relation (4.32) is the electron impact rate coefficient. It can be easily 

calculated for a Maxwellian electron energy distribution function, 

( )
( )

/1/ 2
3/ 21/ 2

2
B ek T

B e

f e
k T

εε ε
π

−= .   (4.33) 

The electron impact rate coefficients are given by the integral 

( ) ( )1/ 2

0

2
i j

i j i j
e e A e Ak v f d

m
σ ε ε σ ε ε→

∞
− −
− −= = ∫ ,          (4.34.a) 

where m and ε are the electron mass and energy respectively. In a similar fashion, the rate 

coefficient for excitation of an ion from a lower level k to an upper level m is 

( ) ( )1/ 2

0

2
k m

k m k m
e e A e Ak v f d

m
σ ε ε σ ε ε→ + +

∞
− −
− −

= = ∫ .         (4.34.b) 

From the expressions above, it can be seen that the rates for electron impact excitation 

depend only on the electron temperature. To excite an atom or an ion from the ground 

state to a high energy level requires electrons with sufficient energy. Therefore, only 

electrons in the high-energy tail of the distribution function will be effective in excitation. 

However, low energy electrons do play an important role in further exciting electrons 

already in an excited energy level.  

 

4.2.1.b. The Role of Metastables 

 

 Energy levels with long radiative lifetime are called metastable levels. Such states 

exist in neutral atoms, ions, and molecules. Metastable particles (atom and ion) are 

created by electron collisions and diffuse throughout the discharge while interacting with 

the neutral species as well as charged species. They can be destroyed by further collisions 

with electrons or other metastables, or by impact with the walls. For example in a low 

pressure helicon-wave excited plasma, the metastable argon ion density Ar+* in the 3p43d 

manifold can become a significant fraction (~24%) of the ground state argon ion 

density.10 Furthermore, the cross sections for interactions with the metastable states are 

two to three orders of magnitude greater than those of the ground state. Thus, in low 

temperature plasmas it is important to include metastable states in any model of excited 
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state populations due to the combination of their large cross sections and relatively low 

threshold energies.  

 

4.2.1.c. Electron Impact Ionization  

 

 Perhaps the most important collisional process in plasma is ionization. Ionization 

occurs directly from the highly populated ground state as well as from excited states. 

Less collisional energy is required for ionization from an excited state as those levels are 

much closer to the continuum. Ionization for a neutral atom A from an energy level k 

(including the ground state) to the continuum can be represented by the following 

reaction: 

2kA e A e− + −+ → + .      

The ionization rate coefficients for this process can be calculated by integration of 

ionization cross section σi(ε) over the electron energy distribution function. Because the 

electron distribution is a function of electron temperature, the ionization rate coefficient 

kiz is also a function of the electron temperature. When the ionization rate coefficient is 

known, the rate of direct ionization by electron impact is given by 

( ) 0
iz iz

e eR k T n n= ,    (4.35) 

where ne is the electron density and n0 is the neutral atom density. Since the ionization 

potential is usually much greater than the mean electron energy 

( ( )
0

3 2ef d Tε ε ε ε
∞

= =∫ ), the ionization rate coefficient is very sensitive to the tail of 

the electron energy distribution function. 

 

4.2.1.d. Heavy Particle Impact Ionization  

 

 An electron with slightly more kinetic energy than the ionization potential of a 

target species is quite effective at ionizing the target species. However, the same is not 

true for collisions of heavy particles, ions and neutrals, with a target species in the ground 

state. In a collision, a heavy particle is often unable to transfer sufficient energy for 

ionization to an electron inside an atom because the process is far from resonance. This 
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situation changes significantly if incident heavy particle is in an excited state. When total 

electron excitation energy of the incident heavy particle is close to the ionization 

potential of the target species, the resonant energy transfer occurs and effective excitation 

or ionization ensues. Examples of collisional excitation processes include: 

0 0i jA A A A+ ++ → +   0 0i jA A A A+ ++ → + ,    

where j > i. Inelastic collisions that result in the ionization of the neutral atom are 

described by 

0 0i kA A A A e+ −+ → + +  0 0i kA A A A e+ + + −+ → + + .   

However, because the smaller rate coefficients and smaller population densities of the 

excited species with respect to the neutral and ion ground state populations, these 

processes can be neglected in a Corona model. 

 

4.2.2. Determination of Relative Ion Fractions from Optical Emission 

Spectroscopy (OES)  
 

Optical emission spectroscopy (OES) is perhaps the most widely used optical 

method for sensing atoms and small molecules in plasmas. With OES it is possible to 

determine the electron temperature, ion density, and spatial distributions of excited 

species. In plasma, gas-phase species are promoted to excited electronic states by 

collisions with energetic electrons and relaxation is accompanied by emission of a 

photon. In OES, the emitted radiation is spectrally dispersed and detected. In its simplest 

configuration, OES requires only a means of collecting the emitted light (e.g. an optical 

fiber), a dispersing element (a grating), and detector (a charge-coupled device – CCD). 

OES can be employed quantitatively and qualitatively for plasma species identification of 

absolute or relative species densities. Identification requires knowledge of the emission 

lines of a given plasma species. Although quantitative OES is possible, it must be used 

cautiously because signal intensity is not always directly related to concentration of the 

emitting states.  

 In low pressure, weakly ionized plasmas, the number of atoms (or ions) in an 

excited state can be calculated with the Corona Model described previously. In a Corona 
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model, the species are excited solely by electron impact from ground or metastable states 

and are lost solely by radiative decay. In corona equilibrium, the electron excitation rate 

and decay rates are equal. For our low pressure plasma, quenching of excited state by the 

neutral gas can also be ignored for most excited species. Measurement of the relative 

intensities of the emission lines provides a qualitative indicator of species concentration. 

In calculating emission intensities of atomic and ionic lines with a Corona model, proper 

treatment of excitation from metastable states is critical. If the metastable density is 

known, the modeled intensity spectrum can include contributions from metastable and 

ground state excitation since most metastable excitation cross sections are known. 

Perhaps the biggest challenge in incorporating excitation and ionization from metastable 

states is that the electron energies required are much smaller than for excitation and 

ionization out of the ground state. Thus, the low energy electrons play an important role 

and the model must assume that the electron energy distribution function is characterized 

by the same electron temperature at high and low electron energies. 

 If the only excitation paths to an upper level j are electron impact excitation from 

the ground and metastable states and the de-excitation path is radiative decay, the rate 

equation for the upper level j is 

0 0
j j

e j e m m j
j

dn n
n n k n n k

dt τ→ →= + − ,   (4.36) 

where ne, n0, nm and nj are the electron, neutral atom in the ground state, metastable state, 

and j level densities; τj is the radiative lifetime of j level; and k0,m→ j are the excitation rate 

coefficients for electron impact excitation from ground and metastable levels respectively 

to level j. The rate coefficients are given by Eq. (4.34 a) where the electron energy 

distribution function f(ε) is obtained from Langmuir probe measurements. The cross 

sections to be used when computing optical emission intensities for a plasma are the 

optically measured values11, with no correction for optical cascade effects. 

 Assuming steady state in Eq. (4.36), the observed emission intensity Ijk of species 

A at wavelength λjk corresponding to a quantum transition from upper level j to a lower 

level k is given by 

0 0
0 0

( ) 1
4

m m j
jk jk jk e j

jk j

n khcI S b n n k
n k

λ
πλ

→
→

→

⎛ ⎞
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⎝ ⎠
,   (4.37) 
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where S(λjk) is the detection system sensitivity (lenses, optical fibers, spectrometer, CCD 

camera) at λjk, /jk jk jl
l j

b A A
<

= ∑ is the branching ratio for the transition j→k, n0 is the 

number density in ground state, and nm is the number density in metastable state, m. If the 

relative intensities of two neutral atom lines of the same species are used, then the 

intensity ratio is a function only of the electron temperature. The situation for the relative 

intensity of ionic lines is much more complicated. Excitation to an excited ion state 

occurs by a one-step process (simultaneous excitation and ionization from the ground 

state of the neutral atom) or a two-step process (ionization of the neutral atom and then 

subsequent excitation). Since for a typical low temperature plasma, only few electrons 

have enough energy for the one-step process, the largest contribution to an excited ion 

state population is from excitation of ground state ions. Letting the upper level of the ion 

be denoted by i, and including both excitation pathways, 

0 0 0 0
i i

e i e i
i

dn nn n k n n k
dt τ

+ +
+ +

→ →= + − ,   (4.38) 

where n0
+ is the number density of ion species in ground state and k0→ i and 0 ik +

→  are the 

excitation rate coefficients for electron impact from neutral and ion ground state, 

respectively. For the particular case of an Ar-Xe plasma, the lowest lying ion metastable 

levels are at relatively low energies (13.48 eV for Ar+ and 11.26 eV for Xe+). Thus, the 

contribution to the excited ionic state population from metastable levels 0e m in n k+ +
→  has to 

be included in Eq. (4.38). One-step transitions to an excited ion state from the neutral 

ground state, the first term on the right-hand-side of Eq. (4.38), can be safely neglected12 

for both Ar and Xe and the ion species emission line intensity is 

0 0
0 0

( ) 1
4

m m i
if if if e i

if i

n khcI S b n n k
n k

λ
πλ

+ +
+ + + →

→ + +
→

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
   (4.39) 

With an electron energy distribution function obtained from Langmuir probe 

measurements, the excitation rate coefficients calculated from the excitation cross-

sections available in the literature, and OES measurements of line intensities, the relative 

ion densities of each species in a plasma mixture (Ar and Xe for this study) can be 

estimated. 
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4.2.3. The OES Detection System  
 

 The optical emission spectroscopy (OES) investigations reported in this thesis 

were performed with a 1.33 m Czerny-Turner double pass scanning monochromator 

(McPherson 209). The dispersive element is a 120 × 140 mm grating having 1200 

lines/mm blazed at 750 nm. The linear dispersion of this system is 0.62 nm/mm and the 

maximum resolution is 0.15 nm. Scanning over the range 400-900 nm is accomplished 

with a computer controlled stepper drive. The detector is an air cooled SBIG ST-7XEAI 

dual autofocusing CCD camera (Santa Barbara Instruments Group) with a 765 × 510 

pixel array at 9 μm/pixel that provides a spectral window of 3.5 nm. The quantum 

efficiency of the camera is enhanced by the addition of a microlens array over the pixels. 

The quantum efficiency is 0.85 at 650 nm, ~ 0.45 toward the blue (400 nm) and ~ 0.05 

toward the near-infrared (1000 nm). The acquisition time of the camera ranges from 10-2 

to several hundred seconds. Connection of the camera with a PC for data acquisition is 

through a high speed USB interface that allows transfer speeds of 1 frame/sec. A typical 

measurement of an Ar neutral line is shown in Figure 4.9. 

 
Figure 4.9. Typical Ar neutral line after background removal and spectral sensitivity correction. The fit to 
the experimental data is based on a pseudo Voight profile function.13  
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 The light emitted by the helicon plasma source is focused by a series of 2.54 cm 

diameter lenses into a 200 μm core multimode optical fiber and sent to the entrance slit of 

the spectrometer. The collection optics is aligned radially with the discharge and light is 

collected through radial ports at different axial locations along HELIX. For LEIA plasma 

investigations, collection optics mounted on a scanning probe (described later) was used. 

For all measurements, the width of the entrance slit was set to 80 μm and the integration 

time was chosen so that none of the intensities were saturated. Wavelength calibration 

was performed with the help of an argon pen lamp and Ar neutral lines tables available 

from the NIST website.14 

 
Figure 4.10. a) Spectral irradiance of the tungsten Oriel lamp; b) The measured response spectrum. 

 

 In this work, the integrated individual line intensities after background removal 

and spectral sensitivity correction were used (see Figure 4.9). Calibration of relative 

spectral response of the entire optical path was performed by using the tabulated spectral 

irradiance and the experimentally measured spectrum of a tungsten ribbon lamp 

(OrielTM). Figure 4.10 shows the spectral irradiance of the tungsten ribbon lamp and the 

measured spectral intensity for the entire spectrometer achievable wavelength range of 

400-1000 nm. 
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4.3. Laser Induced Fluorescence (LIF)  
 

 LIF is one of the most sensitive diagnostic methods available for the detection of 

atomic and ionic species. It is relatively easy to implement, phenomenological 

straightforward, well understood, and largely non-invasive; all characteristics that make 

LIF ideal for many applications. Some of the particular strengths of laser induced 

fluorescence are its high spatial and temporal resolution, and the ability to perform 

quantitative measurements. In practice, LIF is typically used to directly measure the 

ground (or metastable) state populations of active target species. To obtain the particle 

(atom, ion, or molecule) velocity distribution function (vdf) in steady state plasma, weak 

LIF emission is discriminated against background light either by external modulation of 

the laser beam or by using pulsed lasers and, in both cases, subsequent phase 

synchronous detection. The end results are precise particle velocity (~50 m/s) and 

temperature (~0.1 eV) measurements with high spatial resolution (few mm3). 

 

4.3.1. Continuous Wave LIF 
 

 A velocity resolved, three-level LIF measurement consists of illumination of a 

distribution of particles (ions, atoms, radicals, molecules) with a laser whose bandwidth 

is much narrower than the particle’s Doppler broadened absorption linewidth. If the 

incident photon has an appropriate frequency in the particle’s rest frame, then a particular 

quantum level is optically pumped and the population of an upper quantum level 

increases. The upper level then decays spontaneously to a third level by emitting a 

photon. The intensity of the fluorescence radiation as a function of laser frequency is a 

direct measurement of the initial state particle velocity distribution (vdf), although 

processes such as Zeeman splitting may have to be included in the analysis of the data to 

determine the velocity distribution. In a typical LIF measurement, the particle ensemble 

velocity distribution function is obtained by scanning the laser frequency over the range 

of interest and recording the fluorescence spectrum. The measured vdf contains only one-

dimensional velocity information since the measurement is the projection of the 3D vdf 

on the laser propagation direction kL. For example, when the laser is injected along the x 
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axis (see Figure 4.11), the measured f(vx) is an average over the distributions along the 

two directions orthogonal to kL. 

( ) ( , , )x x y z y zf v f v v v dv dv= ∫ ∫ .   (4.40) 

Determination of the average particle velocity and temperature from the LIF 

measurement is straightforward: vx is found from the peak in the measured f(vx) versus 

laser wavelength, and the temperature is obtained from the full width at half-maximum 

(FWHM) of the fluorescence line, assuming that Doppler broadening dominates over 

other line-broadening mechanisms 
2
1/ 2( / 8ln 2)( )B x p xk T m v= Δ ,    (4.41) 

where mp is the particle mass, (Δvx)1/2 the FWHM of the velocity distribution and kB is 

Boltzmann’s constant. 

 
Figure 4.11. LIF injection parallel to x axis for obtaining f(vx) 

 

 High-velocity-resolution LIF of the ion velocity distribution function (ivdf) in 

plasma can be achieved a tunable, continuous wave (CW) ring dye laser. For Ar+, the 

measured LIF spectrum can be directly transformed into an excellent approximation of 

the ivdf. This is possible because the Ar+ LIF spectrum is dominated by Doppler 

broadening. For our conditions, the Doppler broadening is much larger than the natural 

linewidth and Stark broadening.15 The effects of Zeeman broadening can be neglected in 

LEIA (low magnetic field) but do result in broadening and splitting of the line shape in 

HELIX (high magnetic field) for both Ar+ and Xe+.  

 By suitable choice of laser polarization and laser injection relative to the magnetic 

field, it is possible to measure either parallel (to the magnetic field) or perpendicular ivdfs 
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while minimizing the effects of Zeeman splitting of the absorption line. For perpendicular 

injection, the laser is polarized parallel to the field and only the π Zeeman split lines are 

excited, corresponding to ΔMJ = 0 for Ar+ and ΔMF = 0 for Xe+). In the case of parallel 

injection, the laser light is converted into either right or left circularly polarized to excite 

the σ+ or σ- Zeeman split lines, corresponding to ΔMJ = ± 1 for Ar+ and ΔMF = ±1 for 

Xe+ transitions.  

 

4.3.1.a. The LIF Diagnostic 

 

 The LIF experimental setup shown in Figure 4.12 consists of a 100 MHz 

linewidth, continuous wave Ar ion-pumped dye laser (Coherent 899 ring dye laser 

employing rhodamine 6G dye and pumped with a 6 W argon-ion laser) to excite 

transitions in both Ar+ (3d 2G9/2 → 4p 2F0
7/2 at 611.661 nm) and Xe+ (5d 4D7/2 → 6p 4P5/2 

at 605.278 nm). The laser system includes a high resolution wavemeter Burleigh WA-

1500 for coarse tuning and wavelength monitoring. After passing through a beam splitter 

(BS), the laser beam is modulated with an optical chopper (CH) at few kHz and then 

coupled into a multimode, non-polarization preserving, fiber optic cable. The 10% of the 

laser beam extracted before the optical chopper is passed through an iodine cell for a 

consistent zero velocity reference. Spontaneous emission from the iodine cell absorption 

lines is recorded with a photodiode (PHD) for each scan of the dye laser wavelength. The 

perpendicular injection optics includes a linear polarizer that allows selection of the laser 

polarization parallel to the magnetic field. The collection optics (CO) for parallel 

injection of laser light includes: a 2.54 cm collimating lens, followed a Galilean telescope 

for beam waist reduction, and a linear polarizer-quarter wave plate combination for 

conversion of the unpolarized laser light exiting the fiber into circularly polarized light to 

pump only σ+ transition cluster. The much smaller internal Zeeman splitting of the σ 

lines is ignorable during analysis of the parallel LIF data for magnetic field strengths less 

than 1000 G. The fluorescence radiation from the plasma is collected at 90° with respect 

to the laser beam and focused into a 200 μm-diameter fused silica optical fiber. The 

intersection of 5 mm diameter injected laser beam and the 0.8 mm diameter collection 

focal spot yields a measurement volume of ≈ 4 mm3. 
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Figure 4.12. The LIF diagnostic: HPS –helicon plasma source, IN – injection optics, AN – antenna, CO – 
collection optics, BD – beam dump, EM – electromagnets, PMT – photomultiplier tube, OF – optical fiber, 
OC – optical coupler, CH – chopper, PHD – photo diode, BS – beam splitter 
 

Light exiting the collection fiber passes through 1-nm band pass interference filter 

centered at 461 nm for Ar+ (530 nm for Xe+). Following the filter is a photomultiplier 

detector (PMT) with an integrated 30 kHz bandwidth pre-amplifier. The PMT signal is 

composed of fluorescence radiation, electron impact induced radiation and electronic 

noise. A Stanford Research SR 830 lock-in amplifier, referenced to the modulation signal 

of the chopper, is used to isolate the LIF signal from background emission at the 

fluorescence wavelength.  

 

4.3.1.b. Ar+ LIF 

 

 For Ar+ LIF, the classic Ar+ LIF scheme was used (see Figure 4.13). The Ar+ 3d 

2G9/2 metastable state (τ = 6.1 s lifetime16) is optically pumped by 611.661 nm (vacuum 

wavelength) laser light to the 4p 2F0
7/2 state (τ=8.5 ns lifetime17), which then decays to 4s 
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2D5/2 state by emission at 461.086 nm. Since the first state is metastable, the homogenous 

line width (Δω0/2π ≈ ħ/τ) of the absorption process is dominated by the natural linewidth 

of the 4p 2F0
7/2 level. The resultant 1.9×10-2 GHz linewidth is infinitely small compared to 

typical Doppler broadened linewidths for Ar+; approximately 1 GHz for argon ions at 

room temperature. The ion drift velocity in the laser propagation direction is determined 

from the shift of the LIF peak relative to the iodine signal after correcting for the Zeeman 

shift of the σ+ absorption line as the laser is swept over 20 GHz.  

 
Figure 4.13. The three-level Ar+ LIF scheme 

 

For Ar+, the multiplet splitting caused by coupling of the electron-spin angular 

momentum S with the orbital angular momentum L (with a total electronic angular 

momentum J = L+S) produces the fine structure shown in Figure 4.13. The interaction 

between the magnetic moment of the electronic states and an external magnetic field 

leads to Zeeman splitting of spectral lines. The Zeeman components and splitting of Ar+ 

absorption line at 611.661 nm are shown in Figure 4.14. The values of the splitting 

correspond to a magnetic field strength of 1 kG in HELIX.18 The separation between the 

Zeeman components is proportional to the magnitude of the magnetic field and the Landé 

factor×magnetic orbital quantum number product: Δω = (1/ħ)μBBΔ(gM), where μB=9.274 

x 10-24 J T-1. Zeeman splitting can yield a shift and, if unresolved, broadening of a 

spectral line. For our argon ion LIF pump line (3d 2G9/2 →4p 2F0
7/2), Zeeman splitting of 

the ΔMJ = ± 1 transitions leads to σ± clusters (each of them consisting of eight lines) 
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symmetrically shifted from the original wavelength. The ΔMJ = 0 transitions lead to an 

unshifted π cluster of lines.  

 
Figure 4.14. Schematic of the π and σ± transitions for λ0=611.661 nm Ar+ line  

 

Shown in Figures 4.15 (a) and (b) are two LIF measurements obtained in HELIX 

for a parallel laser injection (only the σ± clusters are pumped). Since the magnetic field 

strength is large enough in Figure 4.15 (b), the separation between the two clusters is 

clearly visible. The observed Zeeman splitting versus magnetic field strength shown in 

Figure 4.15 (c) has a slope of 1.52 GHz/kGauss, very close to the predicted theoretical 

value of 1.48 GHz/kGauss.19 Because the magnetic field strength at the measurement 

location (point P in Figure 3.4 a) is less than 180 Gauss, the Zeeman splitting of the  σ± 

(ΔMJ = ±1) and the π (ΔMJ =0) transitions result in a broadening of only ≈ 0.21 GHz, 

much smaller than the Doppler broadening and is therefore ignorable for calculations of 

ion temperature and flow velocity in LEIA. Stark broadening, power broadening, 

instrumental broadening, and the natural linewidth of the absorption line are also 

ignorable with respect to Doppler broadening, so the ion temperature is obtained from the 

FWHM of the distribution according to Eq. (4.41). Including the uncertainties introduced 
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by ignoring Zeeman splitting, we estimate the experimental uncertainty in the ion 

temperature determination to be less than 0.05 eV. 

 
Figure 4.15. Evidence of Zeeman splitting in argon ion LIF measurements in HELIX for unpolarized laser 
injection along the magnetic field axis: a) LIF signal for an axial magnetic field of 0.4 kG; b) LIF signal for 
an axial magnetic field of 0.9 kG; c) the dependence of σ cluster splitting on the magnetic field strength. 
 

4.3.1.c. Xe+ LIF 

 

The same dye laser was used for Xe+ LIF measurements. The Xe+ LIF scheme is 

shown in Figure 4.16 (a). The laser wavelength was tuned to 605.278 nm to pump Xe+ 

from the metastable state 5d 4D7/2 to the excited state 6p 4P5/2. Ions from 6p 4P5/2 state 

(τ=7.8 ns lifetime20) decay to 6s 4P5/2 state, emitting a 529.369 nm photon. The transition 

between the fine structure levels in Xe+ is further split into a number of components lying 

extremely close together. Because this hyperfine splitting is significant, the absorption 

spectrum line shape in Xe+ LIF is a convolution of the hyperfine splitting H(ν) and 

Doppler broadening function D(ν), 

( ) ( ) ( )I H Dν ν ν= ⊗ .     (4.42) 
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Figure 4.16. Xe+ fine and hyperfine structure: a) Xe+ LIF fine structure; b) Nuclear-spin structure of 
605.278 nm line for two xenon isotopes. 
 

The hyperfine structure of Xe+ is a nuclear effect and includes the effects of mass 

(isotope effect) and nuclear spin (caused by the coupling between the nuclear spin I and 

the total electronic angular momentum J).  

 

4.3.1.c.1. Isotopic Splitting of Xe+ 

 

 Xenon has a rich spectrum of isotopes, five of them having natural abundances of 

10 % or more. Each of these isotopes causes a shift of the energy levels, isotopic 

splitting, involved in a transition of a few tens of MHz. Figure 4.17 depicts the naturally-

occurring xenon isotopic abundances and shifts for the 5d 4D7/2 → 6p 4P5/2 transition 

relative to same transition in 132Xe+. 
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Figure 4.17. Xe+ isotopic abundance 21 and shifts relative to 132Xe+of the 5d 4D7/2 → 6p 4P5/2 transition.22,23  
 

4.3.1.c.2. Nuclear-Spin Splitting of Xe+ 

 

 Of the nine isotopes of xenon, seven have an even atomic mass. Thus, they have a 

nuclear spin of I = 0 and do not contribute to the nuclear-spin splitting. The remaining 

two isotopes have odd atomic masses and non-zero nuclear spin quantum numbers I. 

While the lighter isotope, 129Xe+, has I = 1/2, 131Xe+ has I = 3/2. These non-zero nuclear 

spins cause nuclear spin splitting of the energy levels. This nuclear-spin splitting is 

considerably larger than the isotopic splitting and is responsible for most of the 

characteristic shape of the 5d 4D7/2 → 6p 4P5/2 line. 

 For Ar+, L-S coupling was used to determine the total angular momentum J. For 

Xe+, J and I must be combined to give the total angular momentum F = J + I. The 

corresponding total angular quantum number F and the component MF of the total 

angular momentum have values of 24 

F = J+I, J+I-1,……., ⎥J-I⎟, 

MF = F, F-1, ……, -F 
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For 129Xe+, each level splits up into a hyperfine doublet (see Figure 4.16 b). For 131Xe+, 

the levels split up into four hyperfine levels (see Figure 4.16 b). The energy due to 

nuclear-spin splitting is given by 25 

2nss
AE X BY= + ,     (4.43) 

where A is the nuclear magnetic dipole interaction constant, B is the nuclear electric 

quadrupole constant, and the terms X and Y include the nuclear-spin orbit interaction. 

   ( 1) ( 1) ( 1)X F F I I J J= + − + − +     (4.44) 

   (3 / 4)( 1) ( 1) ( 1)
2 (2 1) (2 1)

X X I I J JY
I I J J

+ − + +
=

− −
 .   (4.45) 

This model uses Broström’s nuclear-spin structure constants for Xe+ 5d 4D7/2 and 6p 4P5/2 

energy levels.26 The selection rules for nuclear-spin splitting are ΔF = [0, ±1], where ΔF 

is defined as the difference between the lower (F’) and upper (F’’) state total angular 

quantum number. The transition F’=0 → F’’=0 is forbidden. Using the above selection 

rules, the number of nuclear-spin split transitions can be determined. Figure 4.16 b) 

shows that the Xe+ transition 5d 4D7/2 → 6p 4P5/2 at 605.278 nm has three components for 
129Xe+ and nine components for 131Xe+. The relative intensities of each nuclear-spin split 

component for J → J-1 transition are given by 27 

[ ][ ]( )( 1) ( 1) ( )( 1) ( 1)
( 1)

F J F J I I F J F J I I
i F F

F
+ + + − + + + − − +

→ − ∝   (4.46) 

[ ][ ](2 1) ( )( 1) ( 1) ( )( 1) ( 1)
( )

( 1)
F F J F J I I F J F J I I

i F F
F F

+ + + + − + − − + − +
→ ∝ −

+
 (4.47) 

[ ][ ]( )( 1) ( 1) ( )( 1) ( 1)
( 1 )

F J F J I I F J F J I I
i F F

F
− − + − + − − − − +

− → ∝   (4.48) 

Resolving all the isotope splitting and determining the assignments for the nuclear-spin 

split lines from a single measured spectrum is impractical. For this reason, the hyperfine 

splitting H(ν) in Eq. (4.42) is modeled as a sum of nineteen individual hyperfine splitting 

functions hi(ν), each of them with a magnitude proportional to the relative line intensity 

of each spin-split component ii [25].  

    hi(ν) = ii δ(νi-ν0), 
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where νi is the center of i-th component hyperfine line, ν0  is the line frequency for 
132Xe+, and δ is Dirac delta function.  

 
Figure 4.18. Xe+ 5d 4D7/2 → 6p 4P5/2 hyperfine line splitting. The transition label on vertical line is F’ → 
F”. 
 

The relative intensities of the isotopes without nuclear-spin splitting are given by their 

isotopic abundance.28 The line intensities of 129Xe+ and 131Xe+ assumed to be proportional 

to the product of their isotopic abundances and the relative intensities of the nuclear-spin 

split components evaluated from Eq. (4.46 – 4.48). The resultant hyperfine splitting of 

Xe+ 5d 4D7/2 → 6p 4P5/2 line is shown in Figure 4.18.  

 In the case of weak to moderate external magnetic field strengths, the hyperfine 

structure is further split in 2F+1 sublevels. By analogy with the fine structure, Zeeman 

splitting for the F’=3 → F’’=2 transition for 129Xe+ (see Figure 4.19) and 131Xe+ yields 

four π-lines for which ΔMF = 0 and ten σ-lines for which ΔMF = ± 1.  
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Figure 4.19. 129Xe+ 5d 4D7/2(F’=3) → 6p 4P5/2(F’’=2) Zeeman line splitting 

 

The first order energy contribution is given by: 

( )Z F F B N NE M g g Bμ μ= − ,    (4.49) 

where μB and μN are the Bohr magneton and the nuclear magneton, respectively. The 

Landé g-factors are given by: 

( 1) ( 1) ( 1)
2 ( 1)F J

F F J J I Ig g
F F

+ + + − +
=

+
 

( 1) ( 1) ( 1)1
2 ( 1)J

J J L L S Sg
J J

+ − + + +
= +

+
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( 1) ( 1) ( 1)
2 ( 1)N I

F F J J I Ig g
F F

+ − + + +
=

+
 

The second term in Eq. (4.49) can be neglected since gIμN is mp/me ≈ 1800 times smaller 

than gJμB. Eq. (4.49) indicates that every hyperfine level will be split into a number of 

equidistant sublevels, each of which will have an energy splitting proportional to the 

magnetic field strength: 

' ' '' ''( )Z F F F F BE M g M g BμΔ = − .   (4.50) 

Based on Eq. (4.50), the calculated Zeeman shifts for a magnetic field strength of 1kG are 

shown in Figure 4.20. The hyperfine transition used was F’=3 → F’’=2 for the 129Xe+ and 
131Xe+ isotopes.  

Complete analysis of a Xe+ LIF measurement requires accounting for Doppler 

broadening as well as the hyperfine, isotopic, and possibly Zeeman structures of the 5d 
4D7/2 → 6p 4P5/2. 
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Figure 4.20. 129Xe+ (a) and 131Xe+ (b) Zeeman shifts for F’=3 → F’’=2 hyperfine transition. λ0=605.278 nm 
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4.3.2. Time Resolved LIF 
 

To investigate transient phenomena with short characteristic time scales, high time 

resolution LIF methods must be employed. Since the lower temporal bound of an LIF 

measurement is set by the lifetime of the upper optically pumped level (usually few 

nanoseconds), time resolutions as high as few ns could theoretically be achieved. In 

practice, however, the time resolution is limited by needing to collect a sufficient number 

of LIF photons for a reasonable signal to noise; the RC time constants of electrical 

components of the LIF system; signal acquisition speed of the available electronics; and 

the particular plasma conditions. Time resolved LIF measurements with 0.2 - 20 μs 

resolution have been performed by employing a two-channel box car 

integrator/averager29 or a multichannel scaler as a discriminator.30,31 In previous work we 

demonstrated LIF time resolutions of 1 ms using a standard lock-in amplifier and a fast 

digital oscilloscope, for both a ring dye laser and a low power tunable diode laser.32,33 

The 1 ms resolution limit arose from the requirement that the mechanical chopping 

frequency be a few times faster than the lock-in integration time (for reasonable signal-

to-noise levels). An improvement in the LIF time resolution of a factor of ~ 30 was made 

possible by replacing the mechanical chopper with a high-speed acousto-optic modulator 

and by digital signal processing of the raw data. The experiments were performed in a 

pulsed plasma source. The 5 Hz pulsed operation was accomplished by amplitude 

modulation of the 9.5 MHz driving frequency. A schematic of the argon ion LIF system 

used for parallel ivdf measurements in pulsed helicon plasma is shown in Figure 4.21. 

The laser beam is modulated with an acousto-optic modulator (AOM) at 100 kHz and 

then coupled into a multimode, non-polarization preserving, fiber optic cable as described 

previously. A high-frequency lock-in amplifier provided the reference modulation signal 

to the AOM driver. The high-speed real and imaginary portions of the lock-in amplifier 

output were recorded with a digital oscilloscope synchronized to the rf modulation of the 

plasma source. The lock-in signals were averaged over few hundred plasma pulses and 

sampled at the digitization rate of the oscilloscope. 
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Figure 4.21. Experimental set-up for time resolved Ar+ LIF diagnostic: PHPS – pulsed helicon plasma 
source, AOM – acousto-optic modulator 
 

The time resolution of the averaged signal is limited by the integration time setting of the 

lock-in amplifier and the digitization rate of the oscilloscope. For a reasonable signal to 

noise ratio, the minimum necessary “on/off” cycles within the lock-in integration time for 

a mechanical chopper (4 kHz chopping frequency) was 3-4. Since the AOM was driven 

directly by the lock-in amplifier at up to 100 KHz, requiring three “on/off” cycles limited 

the integration time no less than 30 μsec. However, the LIF signals were recorded at a 

digitization rate of 10 kHz to obtain a data record long enough to cover the entire plasma 

pulse, thus limiting the time resolution to 100 μsec. A significant challenge presented by 

this technique is that the transmitted laser power is significantly lower with the AOM 

than with the mechanical chopper. The transmitted intensity in the first diffraction order 

is a sensitive function (see Figure 4.22 a) of Bragg angle alignment 34 

( ) ( )22
1 0 B BI I sin π δ θ π δ θ⎡ ⎤∝ ⎣ ⎦ ,    (4.51) 



 
Chapter 4: Plasma Diagnostics 

 78

where I1 and I0 are the intensity of the first order beam and the intensity of the zeroth 

order beam when the acoustic energy in the AOM medium is zero, respectively, θB=λf/2v 

(λ is the laser wavelength in vacuum, f is the acoustic frequency, v is acoustic velocity in 

the AOM medium) is the Bragg angle, and δ the angular misalignment with respect to θB. 

For our AOM (Isomet 1205C-2 crystal with a Isomet 222A1 driver), I1 is ~35% of I0 35. 

Since during the AOM “on” interval, only ~10% of the light remains in the m = 0 order, 

we chose to inject light from the m = 0 beam that was modulated between 100% (during 

the “off” interval) and 10% (during the “on” interval). Losses in the injected light path, 

particularly in coupling into the fiber, reduce the injected light to 20-30% of the laser 

output. Saturation can complicate the line shape analysis of the transitions since it occurs 

when the laser light is intense enough to pump most of the ions out of the initial LIF 

state, thus the remaining ions in the initial level are unable to absorb all the incident laser 

light and LIF signal saturates. However, for these levels of injected power (~ 40 mW), 

the LIF was in a linear regime (see Figure 4.22 b), i.e. the measurements showed no sign 

of saturation.  

 
Figure 4.22. a) The relative intensity of the AOM transmitted light in the 1st diffraction order versus Bragg 
angle misalignment; b) LIF signal amplitude versus injected laser power density. 
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4.3.3. LIF at Oblique Incidence 
 

 Determination of a vdf measurement becomes complicated when, due to the 

geometry of the experiment, the laser has to be injected at an oblique angle relative to 

that magnetic field axis. In three dimensions, for a laser injection path kL at an angle α 

relative to the z axis and an angle β relative to the x axis (see Figure 4.23 a), the measured 

vdf can be expressed as 

( , , )

( , , ) [( sin cos )sin cos ]x y z y z x x y zband

f v

f v v v v v v v dv dv dv
αβ

αβ

α β

δ α α β β

=

+ + −∫ ∫ ∫
, (4.52) 

where vαβ is the velocity along kL, δ() is the Dirac delta function, and the range (band) of 

integration is given by the Doppler resonance condition 

0( sin cos )sin cos / 2 / 2y z x Lv v vα α β β λ ω π λ ω π+ + − Δ < Δ , (4.53) 

where λ, ΔωL/2π and Δω0/2π are the wavelength of the transition in the rest frame, the 

detuning of the laser frequency from the Doppler shifted line center, and the homogenous 

linewidth of the absorption line, respectively.  

 
Figure 4.23. LIF injection geometries: a) in a vertical plane (α, x) at different angles β with respect to the x 
axis for LIF tomography; b) in a horizontal plane (y, z) for obtaining vy and vz. 
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Eq. (4.53) is nothing else than the requirement that the optical pumping LIF process, 

excitation of the particle and the subsequent fluorescent emission, takes place only if the 

detuning from the Doppler shifted line center is less than the homogenous line width of 

the absorption line. Since f(vαβ,α,β) is a convolution of f(vx), f(vy) and f(vz), determination 

of average particle velocities and temperatures in each xyz direction is more difficult. 

Optical tomography is the only technique that can provide two- or three-dimensional 

ivdfs. However, under the cylindrical symmetry usually encountered in many laboratory 

plasmas, the problem simplifies. For laser injection oblique to an axis in two dimensions, 

for example, when kL lies in the (y, z) plane at an angle α with respect to the z axis as 

shown in Figure 4.23 b), Eq. (4.52) reduces to 

linewidth
( , ) ( , ) ( sin cos )y z y z y zf v f v v v v v dv dvα αα δ α α= + −∫∫ . (4.54) 

The problem of finding the velocity distributions along the axial (z) and radial (r) 

directions is solvable by injecting the laser along another direction (preferably along x or 

y to directly measure f(vx)or f(vy) ), and then with cylindrical symmetry, i.e., f(vx) = f(vy) = 

f(vr), f(vα,α) can be deconvolved to find f(vz). Because a Gaussian Doppler broadened 

particle velocity component distribution will remain Gaussian for any injection angle,36 

the radial and axial temperatures can also be determined if f(vα,α) and f(vr) are measured. 

For the specific case of a cylindrical plasma column with an axial magnetic field, an 

expression for the component, parallel and perpendicular, ion temperatures can be 

derived by introducing a general anisotropic bi-Maxwellian distribution 37 
3/ 2 2 2

1/ 2

1( , ) exp
2 2

r z
r z

B r z B r z

m m v vf v v n
k T T k T Tπ

⎡ ⎤⎛ ⎞ ⎛ ⎞
== − +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
.  (4.55) 

Ion temperatures along the r and z axes are obtained from the weighted averages of the 

radial and axial kinetic energies 

2 3

0

1 ( , )
2

B r
r r r z r z

k T v v f v v dv dv
m n n

π ∞ ∞

−∞

= = ∫ ∫    (4.56) 

and 
2 2

0

1 2 ( , )B z
z z r r z r z

k T v v v f v v dv dv
m n n

π ∞ ∞

−∞

= = ∫ ∫ ,   (4.57) 

with the normalization condition  
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2

0 0 0

( , ) 2 ( , )r z r r z r z r r zn f v v v dv dv d f v v v dv dv
π

ϕ π
∞ ∞ ∞ ∞

−∞ −∞

= =∫ ∫ ∫ ∫ ∫ .  (4.58) 

In this formulation, the total ion temperature is then 

( 2 ) / 3z rT T T= +      (4.59) 

To relate these temperature components to the “temperature” of the distribution along the 

α direction (see Figure 4.23), we note that by choosing the measurement location to be 

close to the z axis, the azimuthal velocity component is almost zero and the LIF measured 

velocity distribution along α is effectively only a projection of the vz and / 2y rv v=  

velocity components along the laser direction: 

cos ( / 2)sinz rv v vα α α− = + .   (4.60) 

Then, 

2 2

02

2 3 2

0 0

2cos ( , )
1

sin ( , ) 2 2 sin cos ( , )

z r r z r z
B

r r z r z z r r z r z

v v f v v dv dv
k T v

m n n
v f v v dv dv v v f v v dv dv

α
α

α
π

α α α

∞ ∞

−∞
∞ ∞ ∞ ∞

−∞ −∞

⎡ ⎤
⎢ ⎥+
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥

+⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫ ∫ ∫

. (4.61) 

Since in the third double integral, ( )2exp 2z z B z zv mv k T dv
∞

−∞
−∫ , vanishes, the “α” ion 

temperature in terms of the axial and radial temperatures is: 
2 2cos sinz rT T Tα α α= + .    (4.62) 

Thus, two LIF measurements (along the α and r directions) are enough to determine the 

axial and radial ion temperatures. Note that for α = 0 or π/2, Tα reduces to parallel (axial) 

or perpendicular (radial) temperature. 

 

4.3.4. LIF Tomography 
 

 If a full 2D or 3D velocity distribution is needed, the complete vdf can be found 

via a more sophisticated LIF technique developed by McWilliams and co-workers - 

optical tomography.38,39 For laser injection at an angle β with respect to the x axis (see 
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Figure 4.23 a), the 1D projection of the velocity distribution along the laser propagation 

direction (kL) is 

linewidth
( , ) ( , ) ( sin cos )x x xf v f v v v v v dv dvβ α α β αβ δ β β= + −∫∫ . (4.63) 

Since the integrand vanishes for frequencies outside of the absorption linewidth, the 

limits of the integral in Eq. (4.63) can be set to ± ¶ without effect. A collection of such 

1D projections taken at different injection angles β in the plane (α, x) is equivalent to the 

continuous 2D Radon transform, the mathematical basis for medical tomography. With a 

collection of such 1D ivdfs, the complete reconstruction of the 2D ivdf is obtained by 

inverting the 2D Radon transform with a filtered back-projection algorithm.40 To 

eliminate blurring in the final reconstructed ivdf tomograph, each projection is convolved 

with a filter function ϕ(v) 

( , ) ( , ) ( )v f v v v dvβ β ββ β ϕ
+∞

−∞

Φ = −∫ .    (4.64) 

The choice of filter function is a trade-off between the Nyquist limit (the highest velocity 

space Fourier harmonic at which the smearing of the reconstructed ivdf is negligible) and 

noise in the final reconstructed ivdf. From the Fourier slice theorem, it is known that 1D 

Fourier transform of the projection function Φ(vβ, β) with respect to vβ is equal to the 

central slice at angle β of the two-dimensional Fourier transform of f(vα, vx). Thus, the 2D 

inverse Fourier transform provides a two-dimensional velocity space slice [the (vα, vx) 

plane] of the 3D ivdf 

2
0

1( , ) ( , ) exp[ ( sin cos )]
4x xf v v v jv v v v dv d

π

α β β α β ββ β β β
π

+∞

−∞

= +∫ ∫F , (4.65) 

where ( , )vβ βF  is the Fourier transform of the filter function convolved projection Φ, 

vβ is the conjugate variable to vβ, and j= 1− . Note that according to Eq. (4.65), the 

angular range of the measurements need only span π radians to obtain the full 2D ivdf, 

i.e., projections in opposite direction give same information. Since a key measurement in 

this work is plasma flow, this feature allows the choice of tomographic probe orientations 

that do not block the plasma flow, yet still provide full tomographic data. 
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Actual measurements consist of only a finite number of laser injection angles (I) 

with a uniform sampling Δβ so that IΔβ = π. Thus, Eq. (4.65) must be approximated with 

a discrete series41 

1

1

1 1 1( , ) ( sin cos )
2

I

x i x i
i

i if v v v v v
I I Iα α π π−

=

⎧ ⎫⎡ ⎤− −⎛ ⎞≈ Φ +⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭
∑F F .  (4.66) 

The full 3D vdf could be obtained with a three-dimensional Radon transform42 if a 

second plane of projections were available [(y,z) for the geometry of Figure 4.23 a)]. 

However, given the difficulty of representing and interpreting four-dimensional 

structures, the 3D method is of less interest for vdf analysis. 

 

4.4. Scanning Internal Probe for LIF Tomography 
 

 The need to develop a theoretical framework for LIF investigations at oblique (to 

the z-axis) incidence arose from the desire to characterize the ion beam resulting from 

acceleration by the electric double layer (EDL) at multiple spatial locations in the LEIA 

chamber. The LIF measurements in LEIA are obtained with internal scanning probe 

capable of spatially resolved measurements throughout a horizontal (y,z) cross-section of 

the expansion region between HELIX and LEIA (see Figure 4.24).  

 
Figure 4.24. Horizontal cross-section of the HELIX-LEIA helicon source-diffusion chamber system and an 
expanded view of the injection geometry corresponding to Figure 4.23 b) 
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The probe consists of a 183 cm long shaft terminated in a diagnostics complement 

comprised of LIF injection and collection optics, a rf compensated cylindrical Langmuir 

probe, and a 3D magnetic sense coil array (see Figure 4.25). The other end of the probe 

shaft passes through a custom bearing and then through a feedthrough flange mounted on 

a welded bellows coupled to the LEIA chamber. Motions along the y-axis (40 cm range) 

and z-axis (100 cm range) are accomplished with two computer-driven VELMEXTM 

stepping motor assemblies that control the insertion depth of the probe and the tilt angle 

between the probe and the chamber axis. A third VELMEXTM stepping motor spins the 

probe shaft (and implicitly the laser injection direction) around its axis to switch between 

parallel and perpendicular (with respect to the magnetic field) LIF measurements and for 

optical tomography. In this way, the LIF investigated plasma volume (the intersection 

between the laser beam and the collection optics field of view) remains the same for all 

injection angles. For complete diagnosis of the expanding plasma, the probe is designed 

to simultaneously measure the electron temperature, the electron density, the plasma 

potential, the magnetic fluctuation spectrum in three dimensions, and the one-

dimensional ion velocity distribution (ivdf) function. Through a fiber-fiber vacuum 

feedthrough the incident laser light is coupled into an internal 200 μm fused silica fiber 

that runs along the inside of the probe shaft. The injection fiber is terminated with a 6 mm 

collimating lens to create a weakly divergent beam that reflects from a plane mirror and 

passes 5 cm in front of the collection optics (see Figure 4.25). Between the focusing lens 

and the collection fiber, a series of light baffles (shown in Figure 4.25 b) prevent off-axis 

rays from passing through the lenses and into the collection fiber. Because the plasma 

emits strongly at the fluorescence wavelength, reduction of background light is critical 

for improving the measurement signal-to-noise ratio. The collected fluorescence radiation 

is collimated inside the probe, passes through a standard fused silica window, a Dell 

Optics 1-nm band pass interference filter (centered around 461 nm for Ar+ LIF) and into 

the PMT. The parallel ivdf can be measured either “actively”, by injecting the laser from 

the probe head or “passively”, by injecting the laser parallel along the axis of the system 

from the HELIX end (injection P2 in Figure 4.24) and only using the probe collection 

optics. By measuring the parallel ivdf with both laser injection options, the corrections 

for oblique laser LIF are easily checked.  
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Figure 4.25. Scanning probe head diagnostic complement: (a) 1 – LIF injection optics; 2 – LIF collection 
optics; 3 – rf compensated Langmuir probe; 4 – 3D magnetic sense coil array. (b) 1– injection mirror; 2 – 
collimating injection optic; 3 – injection fiber; 4 – collection lens; 5 – light baffles; 6 – collection fiber. 

 

Due to the losses at each optical interface and in the fibers, only about 40% of the laser 

power is effectively injected into the plasma. The injected laser power density of ~10 

mW/mm2 ensures that the laser optical pumping is in a linear regime, i.e., the LIF signal 

is proportional to the laser intensity and LIF saturation effects are avoided.43,44  
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Chapter 5: Electron and Ion Energy Distribution Functions in Two-Ion 

Species, Helicon Plasmas 
 

5.1. Effects of Gas Composition on Plasma Density and Electron 

Temperature in an Ar-Xe Helicon Plasma 
 

For mixed gas plasmas with a single, thermal, electron population, the classic 

Langmuir method of determining the electron temperature, Eq. (4.4), is still appropriate. 

However, it is impossible to use the standard Langmuir probe analysis to accurately 

determine the plasma density from the ion saturation region of the probe characteristic 

since the relative ion densities and their Bohm speeds at the plasma-sheath interface are 

unknown. As shown in the previous chapter, another approach is to first determine the 

electron energy distribution function (eedf) and then from the eedf calculate the electron 

temperature and plasma density. The experimental electron energy probability functions 

(eepf) presented in this work were obtained from Langmuir probe measurements as 

described in Chapter 4. Typical Langmuir I-V probe data acquisition consisted of 

averaging 10-20 I-V traces (depending on the observed fluctuation levels), applying a 

smoothing function with OriginTM software, and then taking numerical derivatives (single 

derivative for planar probe and double derivative for cylindrical probe measurements) to 

obtain the electron energy distribution function (eedf) for planar probe measurements and 

the electron energy probability function (eepf) for cylindrical probe measurements. 

 

5.1.1. Electron Energy Distribution Function (EEDF) in the Plasma 

Source (HELIX) 
 

To investigate the effects of the gas composition on plasma parameters, electron 

energy probability functions (eepf) were obtained at the middle of HELIX, ~ 20 cm 

downstream from the antenna, for different Ar/Xe ratios and roughly constant total 

pressure. The other source parameters were: a gas flow rate of 10 sccm (standard cubic 

centimeter per minute), which yielded a fill pressure of 1.3 mTorr for Ar and 1.5 mTorr 

for Xe; a HELIX magnetic field strength of 700 G, a LEIA magnetic field strength of 10 
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G, an input power of 750 W, and a rf driving frequency 9.5 MHz. Ideally, control of the 

relative gas composition is accomplished through measurement and control of partial gas 

pressures. However, the only adjustable gas parameter for these experiments was the 

mass flow rate of each species. Therefore, Ar/Xe ratio was varied by adjusting Ar and Xe 

individual mass flow rates while holding the total flow rate constant at 10 sccm. The 

estimated error in gas composition determination due to the slight difference in actual Ar 

and Xe gas pressures (0.2 mTorr at 10 sccm) is less than 7%. Figure 5.1 shows the 

electron temperature and electron density from experimentally obtained eepfs as a 

function of gas composition in mixed Ar-Xe helicon plasma. Numerical integrations of 

the eepfs give an effective electron temperature of 6.5 eV and an electron density of 

1.07×1011 cm-3 for pure Ar plasma. For pure Xe plasma, an effective electron temperature 

of 3.8 eV and an electron density of 1.25×1011 cm-3 were obtained. The increase in 

plasma density with increasing xenon fraction is roughly linear. Even though xenon and 

argon are both noble gasses, xenon has a significantly lower excitation threshold energy 

(8.31 eV versus 11.54 eV for argon), a lower ionization threshold energy (12.13 eV 

versus 15.76 eV for argon), and a larger peak ionization cross-section (5.2×10-16cm2 

versus 2.8×10-16cm2 for argon). These differences are responsible for the dramatic 

changes in plasma properties that occur with increasing xenon fraction. 

 
Figure 5.1. a) Effective electron temperature and b) electron density obtained from experimentally 
obtained eepfs at r = 0 in HELIX, 20 cm downstream from the antenna, as a function of Ar/Xe 
composition. The dashed lines are exponential and linear fits to the experimental data. Source parameters: 
Prf = 750 W, BH = 700 G, BL = 10 G, f = 9.5 MHz, and F = 10 sccm  
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Addition of xenon to argon dramatically lowers the effective electron 

temperature. The decrease in effective electron temperature is exponential with 

increasing xenon fraction and most of the drop in electron temperature (~ 2 eV) occurs as 

the xenon fraction increases from 0 to 20%. The effective electron temperature values 

obtained from eepf integration are in very good agreement with the corresponding 

electron temperature values obtained from the slopes of the eepfs: 6.5 eV and 3.6 eV for 

pure argon and xenon plasmas, respectively. 

 

5.1.2. Electron Energy Distribution Function (EEDF) in the Expansion 

Chamber (LEIA) 
 

For the same operating conditions as for the mixed gas experiments described 

previously, planar Langmuir probe investigations were carried out on the axis of the 

expansion chamber axis, 20 cm downstream of the HELIX-LEIA junction. The eedfs for 

different Ar/Xe ratios were computed by using Eq. (4.12). Similar as plasmas occurred in 

the helicon source, addition of xenon to an argon plasma dramatically changes the plasma 

properties.  

 
Figure 5.2. A family of eedfs in Ar-Xe helicon plasma measured on the expansion chamber axis, 20 cm 
downstream the HELIX-LEIA junction. Plasma parameters were: Prf = 750 W, f = 9.5 MHz, F = 10 sccm, 
BH = 700 G, and BL = 10 G.  
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Shown in Figure 5.2 is a family of eedfs obtained for different xenon fractions. 

With increasing xenon fraction, the density increases (note that the eedf amplitudes span 

three orders of magnitude) and there is an increase in the low electron energy population 

with a simultaneous reduction in the high energy tail of the distribution. The significant 

change in the eedf is more easily seen in the two eedfs shown in Figure 5.3. In the pure 

argon plasma, the eedf is a single Maxwellian (straight line on the semi logarithmic plot). 

However, for the pure xenon plasma, the eedf is better fit with a Druyvesteyn distribution 

(convex curve). Consistent with the differences in excitation energies and ionization 

potentials, the breakpoint in the high energy eedf tail (the energy at which the eedf 

amplitude equals the noise level) decrease by ~15 eV for pure xenon plasma compared to 

pure argon. The transition from a single Maxwellian distribution to a Druyvesteyn 

distribution with increasing of the xenon percentage is not gradual. Once the xenon 

fraction reaches 10%, the eedf is Druyvesteyn-like than Maxwellian-like.  

 
Figure 5.3. The bounding cases for the family of eedfs shown in Figure 5.2: a) eedf for pure argon b) and 
pure xenon.  

 

 The calculated effective electron temperature and electron density versus xenon 

fraction is shown in Figure 5.4. There is a systematic difference between the effective 

electron temperatures and electron densities calculated from integration of the eedf and 

the corresponding values calculated from the slope of the I-V characteristic on a semi 
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logarithmic plot (Eq. (4.4) for electron temperature) and from the electron saturation 

region of the characteristic (from Eq. (4.2) for electron density). The effective electron 

temperature is roughly 1 eV hotter than the corresponding values calculated from the I-V 

characteristic and the effective electron density is about 1.8 times smaller than the 

corresponding values calculated from the electron saturation current. These discrepancies 

are not surprising given the strongly non-Maxwellian nature of the measured eedfs. 

Differences as large as one order of magnitude in electron density have also been 

reported previously for eedf and ion saturation current methods.1 As pointed out by Sudit 

and Woods [1], the credible values are those determined from the eedf since they reflect 

the whole electron population. Although the term “electron temperature” has no physical 

meaning for distributions other than Maxwellian, we use it here for the Druyvesteyn 

distribution in the sense of average electron energy.  

 The trend in overall effective “electron temperature” dependence on xenon 

fraction is similar to what was observed in the source, i. e. an exponential decrease with 

increasing xenon fraction, from ~ 7.2 eV in pure argon to 4.7 eV in pure xenon. Although 

almost two orders of magnitude lower, the electron density again increases linearly with 

increasing of xenon concentration, from 2×109 cm-3 in pure argon to 5×109 cm-3 in pure 

xenon.  

 
Figure 5.4. Electron temperature a) and electron density b) on the axis of LEIA, 20 cm downstream of the 
HELIX-LEIA junction versus xenon fraction; the filled symbols are effective values calculated from eedfs; 
the open symbols are electron temperatures determined from the slope of the I-V trace and electron 
densities determined from the electron saturation current. The dashed lines are exponential and linear fits 
for electron temperature and electron density, respectively. 
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5.2. Neutral and Ion densities in Ar-Xe Plasma from OES Observations 
 

 Combined optical emission spectroscopy (OES) and Langmuir probe 

measurements were used to quantitatively determine the neutral and ion densities in a 

helicon plasma that contains a mixture of argon and xenon. As discussed in detail in the 

previous chapter (section 4.2), for low density plasmas for which a steady-state Corona 

model is appropriate, electron impact excitation from only the atom or ion ground level 

can be assumed. A Corona model is appropriate for LEIA plasmas, but for the relatively 

high plasma densities attained in HELIX (≥ 1011 cm-3), secondary processes such as 

excitation from metastable levels cannot be neglected. Therefore, to accurately model the 

emission line relative intensities, the Corona model has to be extended to include 

excitation from metastable levels as well as the ground state.  

 An energy level diagram for both argon and xenon neutrals is shown in Figure 

5.5. Argon and xenon atoms may be excited by electron collisions from their ground 

states to the Paschen 2p levels. These excited levels decay on a short timescale (~ 20 ns) 

to one of four levels (in Paschen notation, the short lived 1s2 and 1s4, and the metastable 

1s3 and 1s5 states) and emit photons in the near-infrared region. Alternatively, electron 

impact excitation can occur from the ground states to levels above the 2p manifold. These 

levels also decay on a short time scale, accompanied by emission of a vacuum ultraviolet 

(VUV) photon when decaying to the ground state, or longer wavelength photons when 

decaying to the 2p or higher-lying levels. Decays to levels above the 2p levels are 

followed by a cascade that increases the intensity of emission from the 2p levels. Thus, 

when trying to model the intensity of spectral lines originating from the 2p levels, the 

cascade pathways must be included. Fortunately, cascade effects are automatically 

included if measured optical cross-sections are used in the rate coefficients calculations 

instead of the theoretical cross-section values.2 In addition to the excitation from the 

ground state, electron impact excitation from the metastable levels 1s3 and 1s5 can 

populate the argon and xenon Paschen 2p levels for higher plasma densities. The peak 

cross-section values for direct excitation from the metastable levels to the 2p levels are 

much larger than those for excitation from the ground state (15 to 700 times larger). 

Therefore, this mechanism must also be included in the particle balance equations. The 
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other two low-lying 1s Paschen states, 1s2 and 1s4, have short radiative lifetimes and 

decay to the ground state. Therefore their population is much lower than the 1s3 and 1s5 

metastable states and consequently their contribution to the 2p levels population through 

electron impact excitation is negligible.  

 
Figure 5.5. Partial energy level diagrams for argon and xenon neutrals and the transitions used for OES 
investigations; the ionization levels are shown by horizontal dashed lines; 1s3 and 1s5 are metastable states; 
1s2, 1s4, and 2px are radiative states.  
 

 Independent of the details of the Corona model used, a major concern when 

performing any sort of OES analysis is the optical thickness of the plasma at a particular 

wavelength. As a rule of thumb in choosing the spectral lines for study, transitions to the 

ground level (resonance lines) or to low lying metastable levels should be avoided 

because the radiated photons are likely to be reabsorbed by the plasma. For our 

investigations we chose the 811.75 nm (4p 2[5/2]3 → 4s 2[3/2]2 or in Paschen notation 2p9 

→ 1s5) and 823.39 nm (6p 2[3/2]2 → 6s 2[3/2]2 or in Paschen notation 2p6 → 1s5) lines 

for neutral argon and xenon, respectively. Both lines originate from 2p manifolds (see 

Figure 5.5) and terminate on relatively high energy, 1s5 metastable levels (8.31 eV for 

xenon and 11.54 eV for argon above the ground level). Therefore, the plasma is optically 

thin at these wavelengths for our plasma conditions. The close proximity in wavelength 
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of both lines also minimizes the range over which the optical sensitivity of the detection 

systems needs to be calibrated. 

 Emission intensities of the spectral lines of neutral argon at 811.75 nm and neutral 

xenon at 823.39 nm as a function of the xenon fraction, normalized to the measured 

emission intensities for the corresponding pure gas plasma, are shown in Figure 5.6 (a). 

The emitted light was collected radially at z = 126 cm (distance from the end of the 

HELIX source opposite the expansion chamber). The system parameters were magnetic 

field strengths of 700 G and 10 G in HELIX and LEIA, respectively and rf power of 750 

W at a frequency of 9.5 MHz. The gas composition was varied by varying the individual 

argon and xenon mass flow rates for a constant total mass flow of 10 sccm. For pure 

argon, a mass flow of 10 sccm corresponds to neutral pressures of 1.3 mTorr in HELIX 

and 0.14 mTorr in LEIA. For pure xenon, the corresponding pressures were slightly 

larger; 1.5 mTorr in HELIX and 0.16 mTorr in LEIA. 

 
Figure 5.6. a) Observed emission line intensities from argon and xenon neutral lines in HELIX at z = 126 
cm versus xenon fraction; the emission intensities values are normalized to the corresponding pure gases 
values. The argon emission line intensity was indistinguishable from the background for xenon fractions 
larger than 80%; b) Neutral species densities in the plasma as computed from the argon and xenon line 
intensities ratios: open symbols – Corona model without metastable contribution; full symbols – Corona 
model with metastable contribution. 
 

As expected, the neutral argon emission intensity decreases and the neutral xenon 

emission intensity increases with increasing xenon fraction. For the general case that 

includes excitation from metastable states in the model, the ratio of the argon and xenon 

neutral line intensities given by Eq. (4.37) is 
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where 0,*
Arn and 0,*

Xen are the neutral argon and xenon number densities in the ground “0” 

and metastable “*” states, respectively, and 811
0,*Ark and 823

0,*Xek  are the argon and xenon 

electron impact excitation rate coefficients from the ground and metastable states, 

respectively. The limit of only excitation from the ground states is obtained from Eq. 

(5.1) by setting the metastable densities *
Arn and *

Xen  equal to zero.  

 The rate coefficients for electron impact excitation of neutral argon and xenon 

from the ground and from metastable states, as well as for excitation of argon and xenon 

ion state (the 434 nm and 529 nm emission lines for Ar+ and Xe+ that will be discussed 

later) are given in Table 5.1 as a function of electron temperature. 

 
Table 5.1. Electron impact excitation rate coefficients for excitation of neutral argon and xenon from 
ground and metastable states ( 811

0,*Ark , 823
0,*Xek ) and for Ar+ and Xe+ excitation from ground states ( 434

Ark + , 
529
Xek + ) 

Te  
(eV) 

811
0Ark  

(10-12 cm3 s-1) 

811
*Ark  

(10-9 cm3 s-1) 

823
0Xek  

(10-12 cm3 s-1) 

823
*Xek  

(10-9 cm3 s-1) 

434
Ark +  

(10-12 cm3 s-1) 

529
Xek +  

(10-12 cm3 s-1) 

3.8 2.35 3.21 8.38 1.39 1.29 1.82 

3.9 2.69 3.59 9.25 1.53 1.43 1.99 

4.1 3.39 4.32 11.34 1.87 1.73 2.39 

4.3 4.49 5.53 14.52 2.38 2.17 2.99 

4.5 8.20 8.81 24.43 3.98 3.52 4.82 

4.7 8.62 9.26 25.78 4.19 3.70 5.07 

5.0 13.90 13.78 39.37 6.38 5.51 7.51 

6.5 85.10 64.33 196.50 32.11 25.73 34.6 

 

They were calculated using Eqs. (4.34), the experimentally determined eedfs for different 

gas compositions, and the optical cross-sections available in the literature.3,4,5,6 For the 

neutral xenon transitions, the cross-section values were corrected for pressure effects 
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resulting from radiation trapping of cascading resonance levels as described in Refs. 

[6,7].  

 To calculate the absolute densities of the neutral species, Eq. (5.1) is combined 

with the gas kinetic equation 

( )0 0
Ar Xe B gasp n n k T≅ + ,    (5.2) 

where p is the total neutral pressure, kB is the Boltzmann constant and Tgas is the gas 

temperature (assumed to be uniform throughout the plasma column and equal to the room 

temperature). The calculated neutral species densities are shown in Figure 5.6 (b). The 

branching ratios needed for these calculations (see Table 5.2) were calculated based on 

available transition probabilities and radiative level lifetimes. For the Corona model 

including metastable contributions to the line intensities, constant ratios of metastable 

population to the ground state population of 10-3 and 3×10-3 for argon and xenon, 

respectively, were assumed.8  

 
Table 5.2. Wavelengths, transition probabilities, upper level lifetimes, and branching ratios of the 

investigated neutral and ionic argon and xenon emission lines 

species λ (nm) Aji (107 s-1) τ (ns) bji Ref(s). 
Ar 811.7 3.22 31 1.000 8 

Xe 823.4 2.14 32.7 0.699 8 

Ar+ 434.9 11.7 6.9 0.808 9 
Xe+ 529.3 10.1 7.8 0.787 10,11 

 

 Since the measured light intensity is line-of-sight integrated, the calculated neutral 

densities correspond to radially uniform plasma, thereby excluding any profile effects 

that might occur on the axis of the helicon source.12 For the Corona model without 

metastable contributions, the calculated argon and xenon neutral densities show a 

departure from the expected linear dependence (open symbols in Figure 5.6 (b)) on mass 

flow rate composition. When metastable contributions are neglected, the calculated argon 

and xenon neutral densities are equal for a xenon fraction of ~60% = Xe/(Ar+Xe). 

However, when the metastable excitation terms are included in the model, the calculated 

neutral densities exhibit a linear dependence on xenon fraction and the calculated 

densities are equal for a xenon fraction of ~50% as expected. 
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 In a similar manner, the relative ion densities can also be determined through OES 

of ion emission lines. In this work, we examined the argon ion 4p 4D7/2 → 4s 4P5/2 

transition with emission at λ = 434.93 nm. For the xenon ion, we examined the 6p [2]5/2 

→ 6s [2]5/2 transition with emission at λ = 529.37 nm. In the process of populating 

excited ionic levels by electron impact, two mechanisms may contribute: excitation from 

the ion ground state and direct excitation from the atom ground state. Since the second 

mechanism implies simultaneous ionization and excitation, it requires highly energetic 

electrons. For instance, for excitation of the 4p 4D7/2 argon ion level from the ion ground 

state level, 19.5 eV energy electrons are needed. Excitation from the argon atom ground 

state requires 15.8 eV + 19.5 eV = 35.3 eV. Since for our argon plasma the electron 

temperature is low (~ 7 eV), there are few electrons with the 35 eV or larger energy in the 

tail of the distribution required for the simultaneous ionization and excitation of the atom 

in the ground state: 

Ar0 + e-(E ≥ 35 eV) → Ar+*.      

Thus, the primary pathway for population of excited ionic levels is the two-step process, 

i.e., ionization of the neutral ground state and then excitation of the ion ground state:  

Ar0 + e-(E ≥ 15.8 eV) → Ar+   and     

Ar+ + e-(E ≥ 19.5 eV) → Ar+*.     

 A similar analysis is appropriate for the xenon. The 6p[2]5/2 excited Xe+ level is 

populated by either the one-step process  

Xe0 + e-(E ≥ 26 eV) → Xe+*      

which has a 26 eV energy threshold, or by the two-step process 

Xe0 + e-(E ≥ 12.2 eV) → Xe+   then     

Xe+ + e-(E ≥ 13.9 eV) → Xe+*.     

The latter process is considerably more likely given the low electron temperature (~ 4 

eV) of the plasma. Three-step processes involving intermediate neutral or ion metastable 

states are also neglected. 

 Based on Eqs. (4.37) and (4.39), the relative ion to neutral emission line 

intensities for argon and xenon are given by 
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where Arn+ and Xen+ are the ground state argon ion and xenon ion number densities, 

434
Ark + and 529

Xek +  are the Ar+ and Xe+ electron impact excitation rate coefficients from the ion 

ground state, and all the remaining quantities are the same meaning as in Eq. (5.1). 

 The ion/neutral emission line intensity ratios for argon and xenon are shown in 

Figure 5.7 (a) as a function of xenon fraction. Surprisingly, with increasing xenon 

fraction the ratio of argon ion line intensity to argon neutral line intensity increases, while 

the ratio of the xenon ion line to xenon neutral line intensity ratio decreases. These 

behaviors can be explained by the fact that the atomic emission lines reflect changes in 

the gas mixture composition while the ion line intensities are dominated by changes in 

the ionization processes.  

 
Figure 5.7. a) Ion to atomic emission line intensity ratio versus xenon fraction of the total mass flow rate; 
b) the inferred Ar+ and Xe+ densities based on a Corona model without metastable contribution (open 
symbols) and with metastable contributions (filled symbols) 
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The calculated, from the measurements, Ar+ and Xe+ densities as a function of 

xenon fraction are shown in Figure 5.7 (b). To calculate the ion densities, Eq. (5.3) and 

the previously calculated neutral densities were used. Within experimental errors, the ion 

density of both species is roughly constant with increasing xenon fraction, up to a xenon 

fraction of 40%. Above a xenon fraction of 40%, both ion densities exhibit a linear 

increase with increasing xenon fraction. Inclusion of metastable contributions to the 

atomic line emission increases the calculated ion densities by a factor of 2 for both ion 

species (full symbols versus open symbols in Figure 5.7 (b)). Within experimental 

uncertainties estimated to be ~15%, the calculated Xe+ and Ar+ densities differ by a 

constant ratio of ~3.5 independent of the xenon fraction.  

 An increase in the Xe+ density with increasing xenon mass flow fraction is 

expected. However, the increase in Ar+ density with increasing xenon mass flow fraction 

from 40% to 80% is unexpected and highly improbable. To check the validity of the ion 

density calculation, the total ion density from the sum of the OES calculated ion densities 

and the electron densities measured by Langmuir probe are shown in Figure 5.8 as a 

function of xenon mass flow fraction. The electron density increases linearly with xenon 

fraction over the whole (10% to 80%) xenon range. This result is consistent with the 

trends in the calculated ion densities versus xenon fraction for xenon fractions greater 

than 40%. More significantly, the plasma quasineutrality condition,  

Ar Xe en n n+ ++ ≅      (5.4) 

is not satisfied by the OES and Langmuir probe measurements. The electron density is 9 

to 11 times smaller than the total ion density calculated with the Corona model including 

metastable contributions and is 4 to 7 times smaller when the Corona model without 

metastable contribution is employed. With the caveats that the optical measurements 

were performed ~ 50 cm downstream of the location where Langmuir probe 

measurements were obtained, that uncertainties associated with the optical emission 

cross-sections of the ionic lines are large (~35% for ionic lines compared to ~10% for 

neutral lines) [3], and that many simplifying assumptions used in the emission line 

model, the values of the absolute ion densities provided by OES are reasonable. As noted 

by Boffard and co-workers,13 the “corona model is an extreme simplification of the 

plasma dynamics. It is well known that corona model fails for highly excited states which 
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have decreased radiative transition rates and increased electron induced collisional 

mixing.” Thus, given the uncertainties in the cross-section values and the probe 

measurements, the qualitative agreement between the OES and Langmuir probe 

measurements versus xenon fraction engenders confidence in the trends determined by 

analysis of the OES measurements. 

 
Figure 5.8. OES derived total ion densities based on a Corona model with no metastable contribution (open 
circles) and Corona model including metastable contribution (full circles), and Langmuir probe measured 
electron density (star symbols). 
 

5.3. Ion Velocity Distribution Function in Single Ion Species Plasma 
 

 Previous studies have shown that in helicon discharges for operating gas pressures 

below a threshold value (~ 2 mTorr for Ar), a current free electric double layer (EDL) 

spontaneously appears near the source-diffusion chamber junction.14 For the HELIX-

LEIA helicon source-diffusion chamber system, the EDL forms at the axial location 

where the magnetic field gradient is the largest, i.e., ~ 4 cm inside the source (see Figure 

3.4).15 The signature of EDL formation is a downstream bimodal parallel ion velocity 

distribution function (ivdf) comprised of a slow and a fast ion population. These two ion 

populations supposedly have different origins: the slow ions are a background population 

created locally and the fast ions are created upstream in the source and accelerated by the 
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EDL potential drop. Studies of EDL formation in other helicon sources have shown that 

the magnetic field profile and the magnetic field strength play an essential role in EDL 

formation and EDL strength.16,17 In the HELIX-LEIA system the magnetic field profile is 

fixed (fixed solenoids positions), but the strength of the magnetic fields in HELIX and 

LEIA can be varied independently. When the magnetic field strength was varied in the 

source, there was no effect on the speed of ions detected by laser induced fluorescence 

(LIF) downstream in the diffusion chamber. However, when the magnetic field in the 

source was kept constant and the magnetic field in the diffusion chamber decreased 

below a certain value of ~70 G, the downstream ivdf changed from unimodal to bimodal. 

Further decrease of the LEIA magnetic field resulted in an increase in the speed of the 

fast ion component.  

To explore and separate the effects of the magnetic field and electric double layer 

on ion acceleration, LIF measurements of the argon ion velocity distribution function 

were performed downstream of the EDL, in the divergent magnetic field region, at z = 

146 cm and z = 169 cm, i.e., -4 cm and +19 cm from the HELIX-LEIA junction. To allow 

EDL formation, the argon pressure in HELIX was maintained at 1.5 mTorr. The 

corresponding LEIA pressure was 0.18 mTorr. The discharge was run at a constant input 

rf power of 800 W at a driving rf frequency of 9.5 MHz. The magnetic field in the source 

was held constant at 600 G.  

Typical ivdfs at z = 146 cm and well downstream of the EDL at z = 169 cm are 

shown in Figure 5.9. The positive and negative frequency shifts of the fast ion 

distribution relative to iodine reference line, equivalently the positive and negative ion 

flow speeds shown at the top of the graphs in Figure 5.9 arise from the injection laser 

direction for each measurement. To obtain the parallel ivdf at first location, the laser was 

injected from the end of HELIX along the axis of the system (point P2 in Figure 4.24) and 

the fluorescence light was collected radially. Since the bulk ion velocity is in the same 

direction as the laser propagation, i.e., from HELIX toward LEIA, the faster the ion 

velocity the larger the Doppler shift increase in the absorption frequency. 
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Figure 5.9. a) Argon ion parallel ivdf showing slow and fast ion populations in the source at z = 146 cm; b) 
the ivdf in the expansion region at z = 169 cm. Plasma parameters were: source gas pressure 1.5 mTorr, 
expansion chamber pressure 0.18 mTorr, input rf power 800W, rf frequency 9.5 MHz, source magnetic 
field 600 G and expansion chamber magnetic field 35 G. In both graphs, the thick black lines are LIF 
signals; the red and blue curves are deconvolved fast and slow ion population ivdfs, respectively; the purple 
line is the iodine reference spectrum.  
 

At the second location (z = 169 cm), LIF measurements were performed with the 

scanning probe and the laser was injected towards the source from LEIA, to avoid 

blocking plasma flow. Therefore an ion moving towards LEIA will have its absorption 

frequency Doppler shifted to a lower frequency. Since the ivdfs at both locations have a 

bimodal structure, this is an indicative of an EDL upstream of z = 146 cm. Note that it 

would be incorrect to conclude that there was no increase in the bulk ion speed from z = 

146 cm to z = 169 cm. The speeds shown in Figure 5.10 (b) are based on raw data and 

must be corrected for the injection angle of the interrogating laser beam (see Figure 4.23 

(b) ). As will be shown in the next chapter, the parallel flow speed value is roughly given 

by the LIF measured value divided by the cosine of the laser injection angle. Thus, a LIF 

determined fast group flow velocity of -5.9 km/s is equivalent to a downstream velocity 

of +9.6 km/s along the axis of the LEIA chamber. Another important observation is that 

the ratio of the fast to the slow ion population (proportional to the ratio of the integrated 

LIF intensities) at these two locations decreases substantially from its value of ~ 6 at z = 
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146 cm to ~0.5 at z = 169 cm. This dramatic decrease in fast population LIF signal is 

consistent with metastable state quenching over the 23 cm path.18,19  

 
Figure 5.10. Bimodal argon ivdfs obtained in LEIA at z = 169 cm for a constant magnetic field strength in 
HELIX of 600 G and magnetic fields in LEIA of: a) B=50 G; b) B=30 G; c) B=10 G. All other parameters 
are as in Figure 5.9. The distributions are normalized to the peak values of the slow ion populations. The 
raw LIF signals are shown by thick black lines; the fast and slow ion distributions by red and blue lines; the 
iodine reference spectrum by purple line; the centers of the slow ion distributions are indicated with dashed 
vertical line and the center of the fast ion distributions by an oblique dotted line. 
  

 Shown in Figure 5.10 are three parallel ivdf measurements corresponding to 

different magnetic field strengths in LEIA at z = 169 cm. Similar to MNX observations,20 

in which an increase in the speed of the fast ion component as a the strength of a nozzle-

type magnetic field was decreased was reported, a decrease of the magnetic field strength 

in LEIA has no effect on the flow velocity of the slow population but clearly increases 

the flow velocity of the fast population. Since the magnetic field strength in HELIX and 

all other parameters were held constant (and the ivdfs at z = 146 cm show little to no 

change as the magnetic field in LEIA is varied – so the EDL is effectively unchanged), 

the additional acceleration of the ions downstream of z = 146 cm must be due to the 
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increase of the magnetic field divergence in the expansion region. After deconvolution 

and corrections for laser injection angle, the slow and fast ion populations parallel flow 

speeds versus LEIA magnetic field are shown in Figure 5.11. Except for two data points 

at very low magnetic field, the slow ions are practically at rest. The fast ion parallel speed 

increases sharply as the magnetic field decreases and saturates at ~ 10.5 km/s for LEIA 

magnetic fields below 30-40 G. At the lowest magnetic field strength of 7 G, the fast ion 

speed is supersonic vz  ≅ 2.9 cAr+. 

 
Figure 5.11. Corrected argon ion parallel flow speeds of the a) slow ion population and b) fast ion 
population as a function of LEIA magnetic field. 
 

To better quantify the effect of the magnetic field divergence on the accelerated 

and background ion populations, the upstream/downstream magnetic field ratio, R = 

BH/BL (the ratio of the magnetic field strength in HELIX to the magnetic field strength in 

LEIA), is introduced. For these experiments the LEIA magnetic field ranged from 7-70 

G, equivalent to a R range of 9 to 86. Note that at the measurement location (point P1 in 

Figure 4.24), the ratio of the local magnetic field strength to the helicon source magnetic 

field strength only varies from 3.2 to 3.6. However, since the overall field geometry in 

the diverging region is determined by the BH and BL values in HELIX and LEIA, BH and 

BL are used in the definition of R.  

Additional evidence in support of the conclusion that the slow ion population is 

created locally (in LEIA) and the fast ion population by passage through the EDL is 
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provided by the slow and fast ion population LIF amplitudes. In LIF measurements, a 

qualitative predictor of the LIF signal amplitude (when the LIF signal is due to absorption 

out of metastable ion states created directly from the ion ground state) is the square of the 

electron density times the square root of the electron temperature. As expected and shown 

in Figure 5.12 (a), the slow ion population LIF intensity tracks the quantity ne
2Te

1/2 (with 

electron temperature and density determined from Langmuir probe measurements) 

whereas the LIF intensity of the fast group does not. 

 
Figure 5.12. a) Dependence of the slow and fast ion populations LIF amplitudes and the quantity ne

2Te
1/2 on 

the HELIX-LEIA magnetic field ratio; b) Dependence of the parallel kinetic energy at the location z = 146 
cm (open symbols) and z = 169 cm (full symbols) versus HELIX-LEIA magnetic field ratio. 

 

 These results suggest that in addition to triggering the EDL formation [17], the 

divergent magnetic field provides additional ion acceleration. LIF measurements 

performed just upstream of the EDL (z = 146 cm) indicate only a modest change in the 

fast ion axial flow speed and parallel kinetic energy with increasing HELIX/LEIA 

magnetic field ratio (Figure 5.12.b); a slight increase from 7.4 eV to 8.1 eV as the BH/BL 

ratio increases from 9 to 86. Thus, the substantially higher ion beam kinetic energy (~15 

eV increase) observed in the expansion region, 19 cm downstream the HELIX-LEIA 

junction, cannot be due to an increase in the potential drop across the EDL. The location 

of the maximum magnetic field gradient also changes by only a few mm as the ratio is 

varied over the experimental range. As the ions travel from HELIX into LEIA, they 
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experience the potential drop of the EDL (φDL>0) and the mirror force (-μ“B). 

Conservation of energy  

+H H DL L LK K e K Kφ⊥ ⊥+ = +& &     (5.5.a) 

and magnetic moment 

H L

H L

K K
B B

⊥ ⊥=      (5.5.b) 

gives 

+ + ( 1)/L H DL HK K e K R Rφ ⊥= −& & ,    (5.5.c) 

where HK & and HK ⊥ are the parallel and perpendicular ion kinetic energies in HELIX 

(upstream of the EDL) and LK & is the parallel ion kinetic energy in LEIA (downstream of 

the EDL). Thus, only a fraction of the upstream perpendicular energy is converted into 

downstream parallel energy. Using the LIF measured velocity components, the 

perpendicular kinetic energy in HELIX needed to explain the 10-15 eV change in parallel 

kinetic energy in LEIA is 14-21 eV, far too large a quantity to be provided solely by the 

perpendicular ion temperature. One source of additional energy could be the conversion 

of azimuthal flow kinetic energy21 into parallel flow energy. The Lorentz force arising 

from azimuthal ion velocity and a radial magnetic field component in the diverging 

region is along the z direction. However, previous measurements found only modest (~ 

0.8 eV) azimuthal flow energy. Another possible ion acceleration mechanism involves 

the balancing of upstream and downstream plasma pressure. Supersonic ion speeds (≤ 

3cAr+) are predicted22 based on ion acceleration by the electron pressure gradient resulting 

from plasma expansion. Recent investigations of plasma expansion in the absence of a 

magnetic field demonstrated ion acceleration to supersonic speeds as the cross-sectional 

area expansion ratio was increased using different size plasma source chambers.23 In 

these experiments, the chamber diameters are fixed, but conservation of magnetic flux 

defines the plasma cross section in LEIA and the field expansion is physically equivalent 

to a change in plasma cross sectional area. The effective area expansion ratio is 

AL/AH=BH/BL=R. Thus, simple geometric expansion leading to both isentropic expansion 

and a decrease in electron pressure in the expansion chamber is the most likely 

explanation for the observed additional ion acceleration.  
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5.4. Ion Velocity Distribution Functions in Two-Ion Species Plasma 
 

Experiments have demonstrated that formation of a current free EDL in the 

divergent magnetic field at the end of helicon plasma source and subsequent ion 

acceleration to supersonic speeds occurs in a wide variety of working gases. Beside 

argon,24,25 ion acceleration in hydrogen26 and xenon27 helicon plasma has been 

demonstrated. Ion beam velocities as high as 11 km/s for Ar+, 4.5 km/s for H2
+, and 6 

km/s for Xe+ were measured with a retarding field energy analyzer (RFEA) in the Chi-

Kung device. Also in Chi-Kung, very recent investigations in molecular gases found high 

ion exhaust speeds of 17 km/s for N2, 25 km/s for NH3 and 27 km/s for CH4.28 Two 

distinct ion populations, one highly supersonic, have been also measured downstream of 

a small diameter compact helicon plasma source based on permanents magnets.29 In that 

experiment, the divergent magnetic configuration was found to be the crucial factor in ion 

beam formation: supersonic ion beams were observed only for a magnetic nozzle 

configuration. The magnetic nozzle requirement is consistent with the results presented in 

this work that suggest electrostatics is not the only driver for ion acceleration. Based on 

ion beam analysis in noble gas plasmas, Shamrai and co-workers [29] found that: a) the 

minimum gas pressure at which a stable discharge can be sustained and the most efficient 

ion acceleration occurs is lower in heavier gases (which for noble gases corresponds to 

lower ionization potentials); and b) for identical discharge conditions, the ion beam 

velocity decreases with atomic mass number and ranges from 58 km/s in He to 24 km/s in 

Ar to 13 km/s in Xe. This second observation implies a dependence of ion acceleration on 

the characteristic Bohm speed (proportional to the inverse of the square root of the ion 

mass). However, it is difficult to conclusively demonstrate the role of the Bohm speed in 

defining the final ion speed in different single ion species plasma experiments because of 

the impossibility of matching the operating conditions (gas pressure, flow rate, input 

power etc) and electron temperature for different working gases. An alternative approach 

is to investigate ion acceleration in mixed gas plasmas with a single electron temperature. 

Under such conditions, ion acceleration controlled by the Bohm velocity will be easier to 

confirm. 
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5.4.1. Argon IVDF in Ar-Xe Mixture 
 

5.4.1.a. Effect of Ar/Xe Ratio on the Argon IVDF  

 
As shown in section 5.3 and consistent with previous observations [25], an 

electric double layer (EDL) with the high potential side oriented toward HELIX and the 

low potential side oriented toward LEIA forms below a threshold pressure in the HELIX-

LEIA system for argon plasma. The EDL potential drop and the magnetic field expansion 

produce ion acceleration that results in a bimodal ivdf downstream of the EDL. Laser 

induced fluorescence (LIF) measurements of the parallel argon ion velocity distribution 

function revealed that EDL is located just upstream of the HELIX-LEIA junction, where 

the magnetic field gradient is a maximum (see Figure 3.4 (b)). In the following 

experiments, the parallel ivdf of argon and xenon ions is investigated as a function of gas 

mixing ratio to demonstrate EDL formation (if any) in Ar-Xe mixed plasma. 

LIF measurements of the parallel ivdfs were performed on the axis of the source 

at z = 126 cm (location A in Figure 3.3). Discharges in pure Ar, Xe or their mixtures were 

obtained for constant external parameters: 700 G magnetic field strength in HELIX, 10 G 

magnetic field strength in LEIA and 750 W of input rf power. Since the rf energy 

coupling to the plasma varied from one gas composition to the other, matching network 

tuning for minimum reflected power was performed for each discharge condition. During 

operation, the reflected rf power was monitored in real time and maintained below 20 W, 

i.e., less than 3% of the forward rf power. The variable parameter in these investigations 

was the gas composition, which was varied by modifying the individual argon and xenon 

mass flow rates while maintaining a constant 10 sccm total mass flow rate. For this mass 

flow rate, the neutral pressure in the source was 1.3 mTorr for pure argon and slightly 

higher, 1.5 mTorr, for pure xenon. Because the plasma density decreases with increasing 

radial distance from the source axis, the ion plasma frequency term in the full lower 

hybrid frequency calculation becomes significant and the lower hybrid frequency at the 

plasma edge is smaller than on axis.30 As shown in previous HELIX experiments, optimal 

rf coupling is achieved when the rf frequency is close to the on-axis lower hybrid 

frequency. The calculated on-axis lower hybrid frequencies for argon and xenon are ≈ 7.5 
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MHz and ≈ 4 MHz, respectively. In these experiments, the source was run at the slightly 

higher rf frequency of 9.5 MHz. For this operating rf frequency the plasma is quiescent 

and stable over prolonged periods and for a wide range of Ar/Xe mixture ratios.  

 To accurately determine the bulk ion velocity, the ion density, and the ion 

temperature from the LIF measured ivdf, the LIF system must be calibrated in absolute 

laser frequency and signal amplitude. Although the resolution of the Burleigh 1800 

wavemeter used in this work is sufficient to tune the dye laser to the appropriate 

wavelength, the wavemeter refresh rate is too slow for the laser scanning rates typically 

used for LIF measurements, ~ 0.5 GHz/s. Therefore, as described in Chapter 4, an iodine 

absorption spectrum was recorded for each scan of the laser. To identify the appropriate 

iodine lines to be used as a zero velocity reference for the LIF measurements, the Salami 

reference iodine spectrum31 was compared to experimentally obtained iodine spectra in 

the range of interest for each LIF scheme. As can be seen in Figure 5.13, for the Ar+ 

611.6616 nm (16348.91 cm-1) absorption line, the closest iodine line with a sufficient 

intensity is the 16348.94 cm-1 line. The absolute velocity corresponding to the Ar+ line is 

given by 

0 totalV λ ν≅ Δ ,     (5.6) 

where the velocity V is in m/s if the rest frame wavelength λ0 is in nm and the frequency 

shift Δνtotal is in GHz. For zero absolute velocity in the lab frame, the frequency 

difference between the iodine line and the Ar+ absorption line is 1.08 GHz. 
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Figure 5.13. The iodine spectrum obtained from two partially overlapping 20 GHz width laser scans (solid 
line) and the iodine spectrum according to Ref. [31] (dotted line) in the spectral range of interest for Ar+ 
LIF. The arrow indicates the rest frame value of 611.6616 nm (vacuum wavelength) Ar+ line. 
  

A similar identification and analysis of iodine lines was performed for the Xe+ 

LIF scheme. The most intense iodine line in the relevant wavelength range is at 16521.45 

cm-1 (see Figure 5.14). With an accurate value for the rest frame Xe+ transition 

wavelength, the absolute shift in the LIF measured absorption line can also be 

determined. Available tables32,33 based on early measurements by Humphrey34 provide a 

value for the Xe+ wave number of 16521.22 cm-1. Based on interferometric 

measurements, in a later paper,35 Humphrey reported an improved value of 16521.285 

cm-1. Hansen and Persson36 also reported a wave number of 16521.22 cm-1. The most 

recent wave number values are by Sadeghi,37 who reported a wave number value of 

16521.299 cm-1 based on Lamb dip spectroscopy and by Cedolin et al.38,39 who reported a 

value of 16521.23 cm-1 based on direct and reflected laser LIF. Converted into frequency, 

the variation between maximum and minimum reported wave number values (~ 0.08 cm-

1) spans 2.4 GHz. In terms of ion speed, this uncertainty corresponds to a speed 

uncertainty of ~1.5 km/s. Therefore, measurements of perpendicular Xe+ ivdf on the 
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LEIA axis were used to obtain an absolute zero velocity reference wave number of 

16521.332 cm-1. The frequency difference between the reference iodine line and the rest 

frame Xe+ 605.2781 nm absorption line is then 3.91 GHz.  

 
Figure 5.14. The iodine spectrum obtained from three 15 GHz partially overlapping laser scans (solid line) 
and the iodine spectrum according to Ref. [31] (dotted line) in the spectral range of interest for Xe+ LIF. 
The arrow indicates the rest frame position of 605.2781 nm (vacuum wavelength) Xe+ line. 

 

The parallel ivdf of Ar+ in HELIX is shown in Figure 5.15. The bulk ion velocity 

is calculated according to Eq. (5.6) for the total frequency difference between the LIF 

signal peak and the iodine reference line (1.46 GHz in this case) plus the 1.08 GHz 

between the iodine line and the rest frame 611.66 nm line position minus 1.03 GHz for 

the Zeeman shift at this magnetic field strength (this is a σ+ Zeeman line). The Ar+ 

parallel ivdf is well fit with a single Gaussian function. From the full width at half 

maximum (Eq. 4.41), the parallel argon ion temperature is 0.16 eV. 
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Figure 5.15. LIF profile of the Ar+ 611.66 nm line in HELIX at z = 126 cm; black line is the raw LIF 
signal, the red line is a Gaussian fit, and the purple line is the iodine reference spectrum. 

 

Due to the isotopic composition of natural xenon and the presence of a non-zero 

nuclear spin in odd isotopes 129 and 131 (I=1/2 and 3/2 respectively), the absorption 

spectrum of Xe+ spreads over approximately 8 GHz and interpretation is much more 

difficult than for argon (see Figure 5.16). In calculating the peak position (associated with 
132Xe isotope due to its highest abundance of 27%) relative to the rest frame frequency, 

the zero velocity frequency difference of 3.91 GHz between the Xe+ line and the iodine 

line must be subtracted from the measured frequency difference of 2.28 GHz. The 

Zeeman shift of 1.26 GHz (1.8 GHz/kGauss×0.7 kGauss) is then subtracted to obtain the 

total frequency shift of the Xe+ absorption line. The LIF measured Xe+ line shape is 

clearly non-Gaussian. As discussed in the previous chapter, the xenon hyperfine splitting 

can be modeled as a sum of nineteen individual hyperfine lines. Therefore, the Xe+ ivdf 

must be deconvolved with nineteen Gaussian profiles (blue lines in Figure 5.16), centered 

at each of the nineteen component hyperfine line centers. As shown in Figure 5.16, the 

sum of the nineteen Gaussian profiles is in excellent agreement with the LIF 



 

Chapter 5: Electron and Ion Energy Distribution Functions in Two-Ion 
Species, Helicon Plasmas 

 
 

114

measurement. It is worth noting that in contrast to the argon measurements, the parallel 

Xe+ ion temperature cannot be uniquely determined.  

 
Figure 5.16. LIF profile of the Xe+ 605.28 nm line in HELIX at z = 126 cm; black line is the raw LIF 
signal, the blue lines are Gaussian fits to the 19 components, the red line is the envelope of the fits, and the 
purple line is the iodine reference spectrum. 
 

 The relationship between the total LIF intensity and ion density is complex. 

Therefore, for absolute measurement of the ion density from a LIF measurement a 

complete calibration with a second method, such as Rayleigh scattering, is necessary.40 

Under the assumption that the main population channel of the metastable ion level 

interrogated via LIF is electron impact excitation from the ion ground state,  

0m pm e i m
p m

n A n n vσ
<

≅∑ ,     (5.7) 

where nm and ni are the metastable density (proportional to the LIF signal) and the ion 

ground state density, respectively, and ne is the electron density; 〈σv〉0m is the rate 

coefficient for electron impact excitation from the ion ground state to the m excited state, 

and pm
p m

A
<
∑  is the sum of the spontaneous transition probabilities from the metastable 
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state to all lower states, the LIF signal has been found to be roughly proportional to a 

composite parameter given by the square of the electron density times the square root of 

the electron temperature41  

    1/ 2 2 1/ 2
LIF e i e e eI n n T n T≅∼ .    (5.8) 

This proportionality also assumes that cascading effects from upper states do not 

contribute significantly to the interrogated metastable state population. Although it is not 

an absolute calibration, Eq. (5.8) provides a qualitative correlation between the LIF signal 

(the metastable ion population) and the ground state ion population (assumed to be equal 

to the electron density). The validity of this proportionality was demonstrated 

experimentally for Ar+ LIF in pure Ar plasma by Sun et al.42  

To determine if Eq. (5.8) holds for a mixed argon and xenon plasma, each ion 

density was calculated based on the two-ion species fluid model described in Chapter 4. 

For electron temperatures and electron densities from Langmuir probe measurements and 

the computed ionization rate coefficients (Eq. 4.6), the calculated Xe+ and Ar+ absolute 

densities versus xenon fraction are shown in Figure 5.17.  

 
Figure 5.17. Computed ion densities in HELIX at z = 126 cm as a function of xenon fraction. 
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Instead of the linear dependence on xenon fraction found for neutral species, an 

exponential decrease for Ar+ density and a logarithmic increase for the Xe+ density were 

obtained. Roughly equal ion densities of 5.5×1010 cm-3 are obtained for xenon fraction of 

only ~ 10%. This extreme sensitivity to the xenon fraction results from the 3.7 eV 

difference in ionization potential between argon and xenon and the twofold larger 

ionization cross-section for xenon. The combination of these differences causes the 

electron temperature to decreases rapidly with the xenon ratio (see Figure 5.1(a)). In 

other words, addition of xenon effectively “clamps” the electron energy distribution 

function and impedes ionization of argon. Similar dependencies of Ar+ and Xe+ densities 

versus xenon fraction were observed in capacitively coupled plasmas.43 In those 

experiments, the xenon fraction at which equal argon and xenon ion densities were 

measured was ~ 15% (Fig. 5 in Ref. [43]), in excellent agreement with the value 

calculated here. 

The measured Ar+ and Xe+ LIF intensities are compared with the product of 

electron density, computed ion density, and square root of the measured electron 

temperature in Figure 5.18. The measured argon LIF signal, and by implication the Ar+ 

metastable population, decreases with increasing xenon fraction until the signal 

disappears completely for xenon concentration greater than 25%. This is consistent with 

the calculated 76% decrease in the Ar+ density and 2 eV decrease in electron temperature. 

In other words, the Ar+ ground state population is too small and there are not enough high 

energy electrons to populate the 3d 2G9/2 ion metastable level located 19.11 eV above the 

argon ion ground level. Conversely, the Xe+ LIF signal shows a gradual increase with 

xenon fraction. The jumps in Xe+ LIF signal at 50% and 90% xenon fraction are due to 

the changes in rf matching conditions. With the caveats about the assumptions used in the 

model and being aware that the Langmuir probe data were obtained on different run days 

than the LIF data, the qualitative agreement between the LIF signals and neniTe
1/2 

suggests that the LIF intensity does provide a rough indication of the species ion density 

(times the electron density and the square root of the electron temperature) in a mixed 

argon-xenon plasma. 
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Figure 5.18. a) Ar+ LIF intensity (solid triangles) and nenAr+Te

1/2 product (open triangles) and b) Xe+ LIF 
intensity (solid squares) and nenXe+Te

1/2 product (open squares) versus xenon fraction in HELIX at z = 126 
cm. Plasma parameters were: Prf=750W, f=9.5 MHz, BH=700 G, BL=10 G, and F=10 sccm. 
  

 As discussed in Chapter 2, ion species enter an EDL either with their individual 

Bohm speeds ( , ,/Ar Xe B e Ar Xec k T Mγ+ + = , where γ = 1 for isothermal expansion) or the 

system Bohm speed 
1/ 2

2 2Xe Ar
system Xe Ar

e e

n nc c c
n n

+ +
+ +

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

.    (5.9) 

Since the electron temperature varies with xenon fraction (see Figure 5.1(a)), the 

individual and system ion sound speeds also vary. Figure 5.19 shows the computed Bohm 

speeds at z = 126 cm in HELIX, upstream of the EDL, based on Langmuir probe 

measurements. The argon and xenon individual ion sound speeds are largest in the pure 

argon plasma and decrease slightly with increasing xenon fraction. The system ion sound 

speed follows the trend in electron temperature and decreases sharply with the xenon 

fraction; from the argon ion sound speed (cAr+ = 4000 m/s) in pure argon plasma to the 

xenon ion sound speed (cXe+ = 1700 m/s) in pure xenon plasma. The largest change in 

system ion sound speed occurs as the xenon fraction changes from 0 to 25%.  
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Figure 5.19. Individual ion sound speeds and the system sound speed as function of xenon fraction in 
HELIX at z = 126 cm. 

 

 Experimentally determined parallel ion flow velocities for argon and xenon ions 

at the same spatial location in HELIX (z = 126 cm) versus xenon fraction are shown in 

Figure 5.20. The measured speeds are much lower than the individual ion sound speeds 

and are independent of xenon fraction. Since the ratio of the argon to xenon speed is 

approximately constant at 1.7 and consistent with / 1.8Xe ArM M ≅ , these measurements 

suggest the presence of a slight axial potential gradient that accelerates argon and xenon 

ions to speeds in a manner inversely proportional to the square root of their masses (as 

would be expected for an axial electric field). 
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Figure 5.20. Parallel ion flow speeds in HELIX at z = 126 cm versus xenon fraction. 

  

Further downstream, at z = 146 cm in HELIX (4 cm upstream of the HELIX-

LEIA junction), bimodal argon ivdfs are observed in Ar/Xe plasmas. The argon ivdfs are 

similar to those found in pure argon plasma (see Figure 5.9), with the fast group having a 

parallel velocity of 6.7 km/s at 0% xenon fraction. The increase in parallel argon ion 

velocity between z = 126 cm and z = 146 cm is equivalent to an increase in parallel 

kinetic energy from 0.7 to 9.4 eV. This gain in parallel kinetic energy cannot be fully 

explained by conversion of upstream perpendicular energy into downstream parallel 

kinetic energy due to magnetic moment conservation (at z = 146 cm the magnetic field 

lines are no longer parallel but are slightly divergent). As previously mentioned, another 

possibility could be the conversion of azimuthal flow kinetic energy into parallel flow 

energy. However, magnetic moment conservation and the available flow kinetic energy 

could only provide, at most, a 2 eV change in energy [21]. Therefore, a localized electric 

field between these two locations is implied. Unfortunately, the geometry of HELIX does 

not permit probe measurements at this location. Since the electron temperature is unlikely 

to vary much over 20 cm, a rough estimate of the individual and system ion speeds (see 

Figure 5.21) based on the electron temperature measurements at z = 126 cm shows that at 
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z = 146 cm, the fast ion group is supersonic (~1.7cAr+); consistent with an EDL between z 

= 126 cm and z = 146 cm and subsequent ion acceleration. 

 
Figure 5.21. At z = 146 cm in HELIX, the Ar+ LIF amplitude a) and parallel flow speed b) as function of 
small changes in the xenon fraction. Rf power was 750 W, BH = 700 G, BL = 10 G, pH = 1.3 mTorr, and pL = 
0.14 mTorr. The Ar+ and system sound speeds were calculated based on the measured electron temperature 
and electron density at z = 126 cm.  

 

 At z = 146 cm, the fast Ar+ LIF amplitude decreases dramatically (more than a 

factor of ten) with increasing xenon fraction; disappearing entirely for xenon fractions 

greater than 4% (see Figure 5.21(a)). Since at z = 126 cm the Ar+ LIF signal is detectable 

up to xenon fractions of ~20% and for xenon fractions of 0 to 4% the total pressure and 

the electron temperature are relatively constant, the change in Ar+ density with increasing 

xenon fraction appears to be highly nonuniform along the HELIX axis (as shown in 

Figure 5.18, the LIF signal at z = 126 is essentially constant for xenon fractions of 0-4%). 

Previous experiments have shown that in pure argon plasmas, a decrease in Ar+ density 

often corresponds to an increase in the potential difference across the EDL [42]. 

Therefore, these measurements may be indicative of modest changes in the strength of 

the EDL as the xenon fraction increases from 0 to 4%. 

The LIF collection optics mounted at z = 146 cm are capable of scanning a few 

centimeters along the HELIX axis. The argon ion beam velocities at z = 147 cm and z = 

148 cm, shown with the measurements at z = 146 cm in Figure 5.22, are slightly larger 

(~2-5%) and exhibit the same dependence on xenon fraction as the z = 146 cm 

measurements, i.e. an increase of ~ 1 km/s over a 4% change in xenon fraction. This 
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slight increase in the parallel flow velocity is consistent with the parallel acceleration 

expected for magnetic field divergence effects. 

 
Figure 5.22. Fast Ar+ population parallel velocity as function of xenon fraction at three locations close to 
HELIX-LEIA junction. The Ar+ and the system Bohm speeds were calculated based on the measured 
electron temperature and electron density at z = 126 cm.  

 

 As a function of xenon fraction, the Ar+ and Xe+ ivdfs deep in the helicon source 

are unimodal. Their axial velocities are subsonic and the ratio of their speeds is inversely 

proportional to square root of their relative masses. Towards the end of HELIX, the Ar+ 

ivdf has a bimodal structure, with a fast population presumably accelerated by an 

upstream EDL and a slow moving background ion population. The parallel velocity of 

the fast Ar+ population is supersonic relative to the argon and total system sound speeds 

for xenon fractions less than 4%. Increasing the xenon fraction substantially reduces the 

Ar+ density and slightly increases the fast group axial velocity.  

 

5.4.1.b. Effect of Ar/Xe Ratio on Argon IVDF in the Expansion Region  

 

 HELIX-LEIA is a freely expanding plasma system having a physical expansion 

ratio (the diffusion chamber cross-sectional area divided by the plasma source tube cross-

sectional area) of ~1.8. Since the gas inlet port is at the end of HELIX opposite LEIA and 
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the vacuum pumping port at the end of LEIA, the neutral pressures in HELIX are ten 

times larger than in LEIA. As noted previously, by increasing the xenon fraction for a 

constant total mass flow rate, the total neutral pressure in HELIX increases from 1.3 

mTorr at 0% xenon to 1.5 mTorr at 100% xenon. The corresponding change in LEIA 

pressure is from 0.14 mTorr to 0.16 mTorr for pure argon and pure xenon, respectively. 

Ar+ LIF measurements as a function of xenon fraction were obtained in LEIA with the 

scanning probe at z = 169 cm (point P1 in Figure 4.24). For these measurements, the 

operating parameters were the same as for the HELIX investigations: rf power of 750 W, 

HELIX magnetic field strength of 700 G, and LEIA magnetic field strength of 10 G. The 

bimodal character of the argon ivdf observed in HELIX just upstream of the HELIX-

LEIA junction is also observed in LEIA. In Figure 5.23, similar to what was observed in 

HELIX, the LIF intensity of the fast Ar+ population decreases with xenon fraction and 

disappears completely for xenon fractions greater than 3% (in HELIX the signal 

disappeared for xenon fractions greater than 4%). Since the LIF detection system in LEIA 

is different than in HELIX, direct comparison of LIF signal amplitudes is inappropriate. 

However, the relative values do provide some insight into the dependence of the fast and 

slow ion populations on the xenon fraction. At the end of HELIX, the fast ion population 

LIF signal is much larger than the slow ion population LIF signal (see Figure 5.21 (a)); 

75% of the total population for pure argon and 81% of the total population for a 3% 

xenon fraction. In LEIA the fast ion population is a small fraction of the total ion 

population: 15% for pure argon and only 4% for a 3% xenon fraction. The parallel flow 

speed of the fast population in LEIA is larger (~10.8 km/s) than the parallel flow speed at 

the end of HELIX (~8 km/s). Conversely, the parallel flow speed of the slow population 

(1.4 km/s) is smaller than the corresponding HELIX value of 2.5 km/s. The parallel flow 

speeds of the fast and slow ion populations in LEIA are unaffected by the small change in 

xenon fraction. These observations are consistent with different origins of the two ion 

populations observed in LEIA: the slow ions are a background ion population created 

locally and the fast ions are an ion population created upstream in the source and 

subsequently accelerated into the LEIA chamber. Under these assumptions, the decrease 

in the fraction of the fast ion population at z = 169 cm is entirely consistent with 

metastable quenching of the fast ion population. Since LIF only detects ions in the 3d 
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2G9/2 metastable state, only a small fraction of the fast ion population is detectable by 

LIF. Taking the upper limit of the quenching cross-section for collisions of the 3d 2G9/2 

state with ground state neutral argon to be 1×10-14 cm2,44 the resultant mean free path 

(mfp) is ~17 cm, one and a half times the distance between the likely EDL location and 

observation point in LEIA. Thus, only ~20% of the fast ions in the 3d 2G9/2 metastable 

state accelerated by the EDL at the end of HELIX will survive and be detected in LEIA. 

The effect of metastable quenching on LIF measurements of ion beams was recently 

demonstrated in a series of combined RFEA and LIF experiments in LEIA [18].  

 
Figure 5.23. a) Ar+ LIF amplitude and b) parallel flow speed as function of xenon fraction at z = 169 cm in 
LEIA. Operating conditions: BH = 700 G, BL = 10 G, pH = 1.3 mTorr, pL = 0.14 mTorr, and Prf = 750 W. The 
argon ion Bohm speed was calculated based on the measured electron temperature at z = 169 cm. 
 

The decrease in LIF signal with increasing xenon fraction results from fewer 

argon ions in the 3d 2G9/2 metastable state being generated in the source (recall that an 

increasing xenon fraction depletes the eedf of higher energy electron (see Figure 5.2) and 

thereby reduces the rate of argon ion metastable creation). Although the cross-sections 

for Ar+*- Xe quenching collisions are unknown, they are probably negligible for such 

small xenon fractions. 

In addition to the plasma density and electron temperature downstream of 

HELIX-LEIA junction (Figure 5.4), the plasma potential plays an important role in ion 

acceleration. The measured floating potential in LEIA (~20 cm downstream HELIX-

LEIA junction) and the corresponding plasma potential measured and calculated 

according to Eq. (4.9) are shown in Figure 5.24. The negative floating potential increases 
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dramatically, becomes more positive, with the addition of a few percent of xenon and 

saturates at a value of ~ -7 V for xenon fractions greater than 40%. However, the large 

ionization cross section of xenon causes a sharp decrease in the electron temperature and 

therefore the plasma potential is roughly constant at ~ 22 V for xenon fractions of 0-10%. 

For larger xenon fractions, the plasma potential decreases linearly to ~17 V.  

 
Figure 5.24. a) Measured floating potential and b) measured and calculated plasma potential 20 cm 
downstream of the HELIX-LEIA junction versus xenon fraction.  
 

 A parallel ion flow speed of 10.8 km/s in LEIA corresponds to a parallel kinetic 

energy of ~24 eV. Given the ~13 eV (8 km/s) kinetic energy measured at the end of 

HELIX, these measurements suggest that the ions gain an additional ~11 eV as they 

travel through the divergent magnetic field region from z = 146 cm (HELIX) to z = 169 

cm (LEIA). Consistent with this interpretation is the observation that for small changes in 

the xenon fraction (0 to 4%) the plasma potential in LEIA is roughly constant, i.e., there 

is no change in the total potential drop across the EDL (unfortunately, measurement of 

the plasma potential just upstream the EDL is not possible in the HELIX-LEIA system 

but based on Ar+ LIF measurements in HELIX and the energy balance equation the 

estimated upstream plasma potential is ~ 43-46 V for these conditions). Note also that the 

magnetic field ratio was held constant in these experiments. Thus, it appears that a small 

addition of xenon to argon plasma in the range of pressure where the EDL is present does 

not alter the parallel speed of the supersonic (~2.6 cAr+) fast ion group and that the total 
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energy gain arises from a combination of acceleration in the EDL (12-14 eV ≅ 2 kBTe) 

and adiabatic expansion in the divergent magnetic field (~11-13 eV).  

 

5.4.2. Xenon IVDF in Ar-Xe mixture 
 

 Particle-in-cell (PIC) simulations of multiple-ion plasma sheaths suggest that the 

ratio of the individual ion collisional mean free paths is the most important parameter for 

determining the relative ion acceleration in the sheath.45 In a two-ion species plasma, 

under the assumption of equal ion fluxes at the sheath edge, the PIC simulations showed 

that ion species with the larger collision mean free path enters the sheath with a velocity 

larger than its own Bohm velocity. In the limit that one ion flux is much less than the 

other, the dominant ion has its own Bohm velocity at the sheath edge. The total 

momentum transfer cross section for Ar-Ar+ collisions at energies under 10 eV (σ ≈ 1.56 

× 10-14 cm2 46) results in an argon ion mean free path of λAr=2.6/p (with the mean free 

path in cm and the neutral pressure p in mTorr). Similarly, for a total momentum transfer 

cross section for Xe-Xe+ collisions of σ ≈ 2.34 × 10-14 cm2,47 the xenon ion mean free 

path is λXe=1.7/p. Although in Ar-Xe plasma, ion-neutral collisions between species may 

occur, the minimum and maximum mean free path values are given by the pure xenon 

and pure argon limits. Under the condition of constant flow rate, the pressure in the 

HELIX-LEIA system for pure xenon is ~15% more than for pure argon. Thus, the ion 

mean free path in pure xenon plasma is approximately two times smaller than the argon 

ion mean free path in pure argon plasma.  

To examine the effect of light ion mass doping, LIF measurements of the xenon 

ivdf were obtained as a function of argon fraction in HELIX at z = 126 cm and z = 146 

cm. The plasma conditions were the same as for the xenon fraction experiments, i.e., the 

rf power was 750 W, rf driving frequency was 9.5 MHz, and the magnetic field strengths 

in the source and expansion chamber were 700 G and 10 G, respectively, except the total 

mass flow rate was maintained at 8 sccm; a mass flow rate for which a quiescent plasma 

could be maintained. The total neutral pressure in HELIX decreased from 1.3 mTorr for 

0% Ar to 1.1 mTorr at 87% Ar. For argon fractions less than 80%, ion density was 

dominated by the xenon ion (see Figure 5.17). 
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Figure 5.25. a) Xe+ LIF amplitude and b) Xe+ parallel flow speed at z = 126 cm and z = 146 cm in HELIX 
versus argon fraction. Operating conditions were: Prf = 750 W, f = 9.5 MHz, BH = 700 G, BL = 10 G, pH 
(100% Xe) = 1.3 mTorr, F = 8 sccm. The Xe+ and system Bohm speeds were calculated based on electron 
temperature and electron density measurements at z = 126 cm. 
 

Since the Xe+ 5d 4D7/2 metastable state formation is dominated by electron 

collisions with the Xe+ in the ground state, the LIF signal is proportional to the electron 

density, the xenon neutral density, and the Xe+ density. As can be seen in Figure 5.25 (a), 

at both z = 126 cm and z = 146 cm, the LIF intensity, and implicitly the metastable Xe+ 

density, decreases almost linearly with increasing argon fraction. For an argon fraction of 

87%, the Xe+ LIF signal is still detectable but has decreased by more than 90% with 

respect to the pure xenon case. Also shown in Figure 5.25 (b) are the parallel Xe+ flow 

speeds and the Xe+ and system sound speeds. Deep in the source, at z = 126 cm, the Xe+ 

parallel flow is subsonic and insensitive to increasing argon fraction. In contrast to the 

Ar+ ivdf, which at z = 146 cm exhibited a bimodal structure as a result of EDL formation, 

the Xe+ ivdf is unimodal. Because xenon is more than three times heavier than argon, 

acceleration through an EDL identical to that found in the pure argon plasmas would 

yield a relative Xe+ drift velocity of 

( ) ( )
1/ 2 1/ 2/ / 40 /131 1/ 3Xe Ar Ar Xev v M M+ + + += = ≅ .   (5.10) 

Given the high velocity resolutions achievable with LIF (~50m/s) dual xenon and argon 

LIF may provide a method of accurately measuring weak electric fields in plasma. The 

above relationship was confirmed with the z = 126 cm LIF measurements (see Figure 
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5.26 (b)). The flow speed difference shown in Figure 5.26 (a) is consistent with a slight 

potential gradient of ~5 mV/cm along the axis of the system (assuming zero parallel flow 

speed at the downstream edge of the rf antenna).  

 
Figure 5.26. a) Xe+ and Ar+ axial flow speeds in Ar-Xe plasma at z = 126 cm from LIF data as a function 
of xenon fraction (only Ar/Xe mixture range where both ivdfs are detected is shown). b) the ratio of 
experimentally determined parallel flow speeds and the square root of mass ratio, confirming Eq. (5.10) 
 

 At the end of HELIX (z = 146 cm) for a drift velocity of 8 km/s for Ar+, Eq. 

(5.10) would predict a 4.6 km/s drift velocity for Xe+. In spite of lower gas pressure 

operation, no Xe+ beam has been observed. At z = 146 cm the peak velocity of the 

unimodal ivdf gradually increases with increasing argon percentage in the mixture, 

approaching the system sound speed for an argon fraction of ~60%. For an argon fraction 

of 87%, the Xe+ parallel flow speed reaches 2.2 km/s. For an argon-xenon mixture, 

addition of a light mass gas (Ar) to a heavier gas (Xe) appears to increase the heavy ion 

axial flow velocity. As will be shown in the next section, a similar effect is observed in 

argon-helium mixture: addition of a light mass gas (He) to a heavier gas (Ar) shifts the 

heavy ion parallel speed to higher values.  

In the absence of any xenon ion beam observations, it is not possible to draw any 

conclusions regarding the effects of argon fraction on EDL formation, if any, in xenon 

plasmas. For smaller helicon sources, other groups have reported that neutral pressure is a 

key factor in EDL formation in heavy weight gases [27,29]. Bimodal RFEA-determined 
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ivdfs with one component accelerated to supersonic speeds have been reported for xenon 

pressures of 0.07 mTorr by Charles [27] and 0.09 mTorr by Shamrai [29]. Those 

pressures are one order of magnitude lower than the pressure used in these experiments. 

Attempts to lower the operating pressure led to unstable plasma conditions and unreliable 

LIF measurements. 

In the absence of an EDL, it is typically assumed that as electrons stream out 

along the magnetic field lines in an open magnetic geometry such as HELIX-LEIA, an 

ambipolar electric field builds up and the ions are dragged out by the ambipolar field.48 

The ionization of neutrals along the axis of the system, radial transport, ion-electron 

recombination, and neutral drag (due to ion-neutral collisions) can all modify the ion flow 

along the magnetic field lines. Radial transport effects are particularly important for 

HELIX-LEIA because for the first 60 cm of the source downstream of the rf antenna, the 

source walls are electrically non-conductive and for the next 90 cm the source has 

grounded walls. An estimate of the ambipolar electric field was obtained in the source 

through LIF data obtained at z = 126 cm. To calculate the magnitude of the axial electric 

field in HELIX, two sets of Xe+ LIF data were obtained at z = 126 cm and z = 146 cm 

(locations A and B in Figure 3.3). Most of the operating parameters were the same as for 

previous experiments, i.e., 9.5 MHz driving frequency, 700 G and 10 G magnetic field 

strengths in HELIX and LEIA, respectively. Instead of varying the mass flow rate, which 

introduces significant changes in the ion mean free path, the pressure was held constant at 

1.3 mTorr for pure xenon and the input rf power was varied from 350 to 750 W. As 

shown in Figure 5.27 (a), the Xe+ parallel flow speeds at both locations were subsonic 

and were not affected by changes in the rf power level. The measurements clearly show 

an increase in xenon ion flow speed as the ions enter in the weakening magnetic field 

region at the end of the source. Based on ~750 m/s and ~1400 m/s parallel flow speeds at 

z = 126 cm and z = 146 cm, respectively, and the 20 cm axial separation of the 

observation points, the calculated axial potential gradient is ~50 mV/cm, ten times larger 

than the field value obtained at z = 126 cm from the combined Ar+ and Xe+ LIF 

measurements.  
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Figure 5.27. a) Xe+ parallel flow speed in HELIX and b) the estimated Xe+ density from the LIF signal 
amplitude versus input rf power. Operating conditions: f = 9.5 MHz, BH = 700 G, BL = 10 G, pH = 1.3 
mTorr. 

 

The square root of the Xe+ LIF signal amplitude as a function of rf power is 

shown in Figure 5.27 (b). Since the electron temperature is roughly constant for the 

different input rf powers, the square root of LIF signal amplitude is a qualitative indicator 

of the trend Xe+ density. Due to the inherent divergence of the injected laser beam and 

different LIF collection optics used at those two locations (larger lens diameter at z = 126 

cm), the LIF signal amplitude is smaller at z = 146 cm. Therefore, to have a clear picture 

of the ion density evolution with input rf power, the LIF signals at both locations were 

normalized to their maximum values (corresponding to highest power level). With 

increasing rf power, a significant jump in ion density at 550 W is observed at both 

locations. This density jump corresponds to a discharge mode change from electrostatic 

(E mode) to inductive (H mode).49,50 A second density jump that might be associated with 

an inductive to helicon (W mode) mode transition is also observed around 750 W. The 

similarity in the ion density trends at both two axial locations and the fact that more than 

100 cm downstream from the antenna the LIF signal still “feels” the changes in rf 

coupling modes provides further support for the use of the LIF signal as a qualitative 

indicator of ion density. Note that these datasets were acquired independently, i.e., after 

the power scan was performed at z = 126 cm, a second power scan was performed at z = 
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146 cm. Thus, the matching network settings had to be completely readjusted to 

minimize the reflected power for both experiments.  

 

5.4.3. Argon IVDF in Ar-He mixture  
 

 To further investigate the influence of a light mass ion on a heavier ion species 

velocity distribution, a series of experiments were performed in an argon-helium mixture 

plasma. The discharge was ignited in pure argon plasma at a total mass flow rate of 10 

sccm. Helium and argon flow rates were then adjusted in a controlled manner so that the 

total mass flow rate was kept constant and the helium fraction was increased up to 80%. 

The same source parameters for the Ar-Xe plasma experiments were used: rf power of 

750 W, the rf driving frequency of 9.5 MHz, HELIX magnetic field strength of 700 G, 

and LEIA magnetic field strength of 10 G. As shown in Figure 5.28 (a), by increasing the 

helium fraction, the pressure in HELIX drops significantly from 1.3 mTorr in pure argon 

down to 0.2 mTorr for a helium fraction of 80%. Further increase of the helium fraction 

was not possible since the discharge could not be maintained at 750 W of input rf power 

and such low pressure. As an effect of the decreasing pressure and higher helium 

ionization potential, Langmuir probe measurements taken 20 cm downstream from the 

antenna show a two fold increase in the electron temperature with increasing helium 

fraction; from ~ 7 eV for pure argon up to ~14 eV for a helium fraction of 80%. Over the 

same helium fraction range, the electron density drops by more than three orders of 

magnitude, from 1.14×1011 cm-3 to 6.5×107 cm-3. Computed ion densities using Eq. (4.6), 

the measured electron density, and the calculated ionization rate coefficients for each ion 

species suggest that argon ions far outnumber helium ions in these mixed gas plasmas. As 

can be seen in the inset on Figure 5.28 (b), the argon ions dominate the plasma density 

even for a 80/20 He/Ar mixing ratio. The much larger argon ion density results from the 

large differences in the helium and argon ionization potentials (24.58 eV for helium 

versus 15.76 eV for argon) and the ionization cross-sections (peak value of 3.5×10-17 cm2 

for helium versus 2.8×10-16 cm2 for argon). 
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Figure 5.28. a) Total neutral pressure (open symbol) and the electron temperature (filled symbol) in 
HELIX plasmas a function of helium fraction; b) electron density inferred from Langmuir probe 
measurements versus helium fraction in HELIX; in the inset, the normalized partial ion densities. Operating 
conditions: Prf = 750 W, f = 9.5 MHz, BH = 700 G, BL = 10 G. 

 

LIF measurements of the Ar+ ivdf at the end of HELIX (at z = 146 cm) for 

different argon-helium compositions are presented in Figure 5.29. Up to helium fractions 

of 30%, a bimodal Ar+ ivdf comprised of fast and slow populations is observed. For 

helium fractions greater than 30%, the Ar+ LIF signal is buried in the noise and the ivdf 

could not be measured. The overall decrease of LIF signal (proportional to metastable 

Ar+ density) and the shift toward higher speeds for the fast ion population with increasing 

helium fraction are immediately obvious in the measured ivdfs. 
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Figure 5.29. Effect of increasing helium fraction on the Ar+ parallel ivdf in HELIX. Measurements were 
obtained on axis at z = 146 cm. 

 

These measurements directly contradict previous LIF observations in an electron 

cyclotron Ar-He plasma by Sadeghi et al. [44]. For a constant helium flow rate in those 

experiments, an increase in argon flow rate led not only to an overall decrease of the 

argon LIF signal but also to a decrease in the slow/fast LIF signal ratio as well. Another 

difference is the direction of the velocity shift: in that report, increasing the argon fraction 

shifted the distribution toward higher speeds. Our measurements show that reduction in 

the argon fraction (increase in helium fraction) leads to an increase in the parallel ion 

flow speed. Although the experiments differ in implementation (in our experiment the 

total gas flow is held constant whereas in the Sadeghi et al. work the flow of one gas was 

held constant while the flow rate for the second gas was varied) the total pressure ranges 

(0.2 - 1.3 mTorr in our experiment versus 0.4 - 1 mTorr for Sadeghi’s experiment) and 

gas composition (0 - 80% helium in our work versus 33-87% in Sadeghi’s work) are 

similar. These quite different results for similar plasma parameters prompted a more 

complete analysis of the effects of increasing helium fraction on the Ar+ ivdf.  
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Figure 5.30. a) Dependence of the metastable Ar+ population obtained from integration of the ivdfs and 
normalized to the pure Ar case (open symbols) and ratio of slow/fast LIF Ar+ signals (filled symbols) 
versus helium fraction; b) parallel velocity of the fast ion population. The dashed red line is theoretical 
dependence ~ [α+β/(1-γx)]. Measurements obtained at z = 146 cm in HELIX. 
 

 As shown in Figure 5.30 (a), our experimental measurements show that the total 

Ar+ metastable population (obtained by integration of the LIF signal) increases with 

increasing argon fraction, i.e., an increase in the helium fraction yields a decrease in the 

overall Ar+ LIF signal. In spite of a ~23% decrease in the total neutral pressure (from 1.3 

mTorr at 0% helium fraction to 1 mTorr at 30% helium fraction), for helium fractions of 

0% to 30%, the electron temperature is roughly constant at ~ 7eV (see Figure 5.28 (a)). 

Thus, the calculated Ar+ density suggests little variation in Ar+ density over the same 

helium fraction range: a slight decrease from 1.1×1011 cm-3 in pure argon to 9.4×1010 cm-

3 at a helium fraction of 25%, i.e., 15% decrease in Ar+ density. In spite of the relative 

constancy of the electron temperature (which implies a constant excitation rate 

coefficient for the stepwise production channel of the Ar+ 3d 2G9/2 metastable state) and 

the predicted slight decrease in Ar+ density (which implies a ~15% decrease in the Ar+ 3d 

2G9/2 metastable state production rate), the Ar+ LIF signal for a helium fraction of 27% is 

less than half (~ 43%) of the Ar+ LIF signal for a helium fraction of 0% He (see Figure 

5.30 (a)).  

Because neutral helium has a number of high-energy metastable levels, e.g., 2s 
3S1 at 19.82 eV and 2s 1S0 at 20.61 eV, other channels may contribute to populating the 
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Ar+ 3d 2G9/2 state. The first such mechanism considered is Penning ionization from Ar 

ground state, 

He*(2s 3S1, 2s 1S0) + Ar (3p6 1S0) → He (1s2 1S0) + Ar+(3p5 2P0
3/2). 

Although generally efficient, for our conditions this mechanism is unlikely to contribute 

significantly to the Ar+ ground state population due to the small high-energy electron 

population; for helium fractions up to 30% the eedf is clamped by argon which impedes 

helium excitation to higher energy levels. Furthermore, elastic collisions with helium 

cool the eedf and reduce the population of helium metastable levels, thereby decreasing 

the efficiency of Penning ionization mechanism. A second mechanism that might 

increase the Ar+ metastable population is the energy transfer process 

He*(2s 3S1, 2s 1S0) + Ar+(3p5 2P0
3/2) → He (1s2 1S0) + Ar+(3p43d 2G9/2). 

In spite of energy deficits for these reactions of only 0.7 and 1.5 eV (the Ar+ metastable 

level is 19.11 eV above ion ground level), the same depleted high-energy tail of the eedf 

also makes this mechanism unlikely to play any role in Ar+ metastable population. The 

decrease of the Ar+ LIF signal could also be explained by a larger quenching cross-

section of the Ar+ metastable state due to collisions with ground state helium. Based on 

the calculated Ar+ and helium relative populations and the discrepancy between the 

predicted Ar+ population and LIF signal intensity, the Ar+-He quenching cross-section 

would have to be a factor of ~ 6 larger than the tabulated value for the Ar+-Ar quenching 

cross-section, ~7×10-14 cm2. 

 Another possibility involves charge-exchange collisions that create slow ions at 

the expense of hot ions. At zero or low helium fraction a deconvolution of the ivdf with 

two Gaussian distributions is straightforward and provides the flow speeds of the fast and 

slow ion groups (5.3 and 2.2 km/s for the example shown in Figure 5.31 (a)). As the 

helium fraction increases, the fast group ivdf shifts toward higher speeds and a long tail 

towards slower speeds replaces the easily-defined slow ion group distribution. We note 

that similar Gaussian with long tail LIF profiles were reported in LIF ivdf observations of 

ions accelerated in an electrostatic presheath.51 Therefore, the tail of the fast ion ivdf is 

most probably a symptom of a drifting distribution slowed down by elastic scattering 

and/or charge exchange collisions with the background gas. Assuming an Ar-Ar+ charge-

exchange cross section σCX = 4.7×10-15 cm2 for the measured ion energies gives a mfp of 
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~ 5 cm for pure argon plasma. For decreasing argon fraction, the mfp increases. It then 

follows that the longer tails (as can be seen in Figure 5.31 (b)) are the result of the EDL 

location moving a couple of centimeters deeper in the source (as a result of the longer 

mfps). Fitting the distribution with only one Gaussian distribution corresponding to the 

fast component, integrating and then subtracting from the integral of the whole 

distribution, the ratio of the slow to fast ion populations can be calculated. To within 

errors of ~ 10%, the slow/fast ion population ratio is insensitive to the variations of the 

gas composition (see the scatter graph in Figure 5.30 (a)). Except the first and the last 

measurement values at helium fractions of 0% and 30%, the slow ion population density 

is roughly 60% of the fast ion population density (dashed horizontal line). This 

observation is consistent with an increasingly efficient, non-velocity dependent 

quenching mechanism. In other words, as the helium fraction increases, the slow and fast 

Ar+ metastable populations decrease at the same rate. 

 
Figure 5.31. Examples of Ar+ bimodal parallel ivdfs: a) for a 0% helium fraction the distribution is 
deconvolved into fast (red line) and slow (blue line) Gaussian distributions; b) for a 30% helium fraction 
the distribution exhibits a long tail characteristic of charge-exchange collisions.  
 

 Perhaps the most interesting result of these investigations is the shift toward 

higher energies of the fast Ar+ component ivdf as the helium fraction increases. As shown 

in Figures 5.30 (b) and 5.31, increasing the helium fraction from 0 to 30% increases the 

parallel Ar+ flow speed from 5.3 to 7.8 km/s. In terms of kinetic energy, the fast Ar+ 

energy increases from 5.8 eV to 12.6 eV. As already discussed, charge-exchange and 
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Penning processes affect the Ar+ metastable population or slow down the entire Ar+ 

distribution, but do not increase the EDL strength.  

One possible explanation involves the decrease in the total pressure as the helium 

fraction increases. Sun et al. [42] found an empirical relationship for the parallel flow 

speed in pure argon plasmas, 

/v B A p= +& ,     (5.11) 

where A, B are free parameters and p is the neutral pressure. From a simple model based 

on the momentum balance equation, they found that the EDL strength, i.e., the potential 

drop across the layer, increases with decreasing the neutral pressure. Since up to helium 

fractions of 30% the dominant ion is Ar+ (see Figure 5.28 (b)), Eq. (5.11) should hold for 

Ar-He plasmas. That this model provides an accurate prediction for the Ar+ flow speed is 

demonstrated in Figure 5.30 (b), where the experimentally determined flow velocities and 

the equivalent expression 

/(1 )v xα β γ= + −& ,    (5.12) 

where α, β, γ are free parameters and x is the helium fraction are shown on the same plot. 

One significant difference between these mixed gas experiments and the pure argon 

plasma results was that in pure argon plasma, the EDL strength dependence on pressure 

was equivalent to a dependence on the electron temperature. In these mixed Ar-He 

plasmas (up to helium fractions of 30%), the electron temperature does not vary, yet the 

ion parallel kinetic energy still doubles. 
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Chapter 6: Temporal Evolution of the Parallel IVDF in Pulsed Argon 

Plasma 
 

6.1. Time-Resolved Laser Induced Fluorescence 

 

In Chapter 4.3.2, the principles of time-resolved laser induced fluorescence were 

reviewed. The experiments presented here concern the application of time-resolved LIF 

to pulsed helicon plasma. The experimental configuration for time resolved LIF is shown 

in Figure 4.21. The 5 Hz pulsed operation of the helicon source plasma was accomplished 

by amplitude modulation of the 9.5 MHz driving frequency. 750 W of rf power was 

matched through an m = +1 helical antenna to the helicon source filled with flowing 

argon at 20 sccm and at an operating pressure of 2.5 mTorr. The magnetic field strength 

on the axis was 700 G. For these operating conditions, but in steady-state mode, typical 

plasma parameters, as measured with an rf compensated Langmuir probe,1 are an electron 

temperature of ≈ 7 eV and an electron density of ≈ 1.2×1012 cm-3. The time-resolved LIF 

measurements were obtained at z = 146 cm in HELIX, i.e. 4 cm upstream of the HELIX-

LEIA junction. As shown in Figure 6.1 (a), for integration times of the lock-in amplifier 

between 0.1 and 1 ms, the LIF signal increases nearly linearly with the logarithm of the 

chopping frequency. There is a threshold value of the integration time, ~100 μsec (see 

Figure 6.1 (b)), below which the detected LIF signal drops abruptly. For this detection 

scheme, the minimum integration time at which LIF signal could be detected was 30 

μsec. For an integration time of 30 μsec, the LIF signal is about 60% of the value 

obtained with a 1 ms integration time. There is a trade-off between the chopping 

frequency and the transmitted laser power: higher chopping frequency can be achieved 

with the acousto-optic modulator (AOM), but the transmitted laser power is significantly 

lower than when the mechanical chopper is employed. For integration times shorter than 

30 μsec, the lock-in amplifier was unable to discriminate between the induced 

fluorescence emission and the plasma spontaneous emission. A 30 μsec integration time 

does not necessarily yield a temporal resolution of 30 μsec. Another factor limiting the 

temporal resolution is the digitization rate of the oscilloscope. LIF signal recording, 
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averaging, and digitization was accomplished with a Tektronix TDS 460A oscilloscope at 

a digitization rate of 10 kHz, thereby limiting the time resolution of the method to 100 

μsec.  

 
Figure 6.1. a) Ar+ LIF signal amplitude versus chopping frequency for three different integration times and 
b) versus integration time for a 100 kHz chopping frequency. 
 

For a reliable ivdf reconstruction, typically 25 equally spaced laser wavelengths centered 

on the wavelength corresponding to the peak LIF signal were used. Adequate signal-to-

noise levels were obtained when the measurements at each wavelength were averaged 

over 300 plasma pulses. For our low temperature plasma, a wavelength span of 0.012 nm 

is sufficient to measure the entire ivdf for argon ions with a 0.4 eV temperature.  

 Increased fluorescence as the laser wavelength is tuned through the absorption 

line is evident in Figure 6.2 (a). Although noisy, LIF signal appears throughout the pulse 

except at the very beginning. During the first approximately 26 ms of the pulse, the LIF 

signal oscillates with a characteristic frequency of about 1 kHz (see Figure 6.2 (b)). The 

oscillations are observed at all laser wavelengths, are unaffected by the rf amplitude 

modulation frequency, and vanish at long integration times. They cannot be electronic 

noise pickup because they vanish if plasma light entering the collection optics is blocked. 

It is expected that any naturally occurring fluctuations in the plasma with frequencies on 

the order of 1 kHz would be rejected by the lock-in detection scheme, i.e., on the 100 

kHz modulation timescale of the AOM the background light signal fluctuations at 1 kHz 
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would be essentially constant and therefore result in a net null signal. However, if the 

oscillations result from a large and decaying initial oscillation (as in a damped oscillator), 

the change in oscillation amplitude as a function of time could result in a finite signal 

even with the lock-in detection scheme. 

 
Figure 6.2. a) Raw LIF signal during the 100 ms discharge pulse (only 3 of 25 wavelengths are plotted); b) 
Oscillations in the LIF signal amplitude observed on the first 26 ms of the pulse (as inset) and 
corresponding power spectrum showing 1 kHz oscillation frequency; c) LIF signal after low pass filtering; 
d) Argon ivdf at t = 50 ms into the pulse. 

 

Such an interpretation is consistent with the vanishing of the 1 kHz signal later in 

the discharge pulse, i.e., when the oscillation amplitude becomes more constant in time. 

To eliminate the 1 kHz oscillation, the raw data were digitally low pass filtered. The 

processed signals are shown in Figure 6.2 (c). A typical ivdf (at t = 50 ms into the 

discharge pulse) is shown in Figure 6.2 (d). The experimental values are well fit by a 

single Maxwellian distribution, indicating that no EDL upstream of observation point is 

present for these plasma operating conditions.  
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Figure 6.3. a) Contour plot of the evolution of the argon ion vdf during the 100 ms pulse with 100 μs time 
resolution; b) Evolution of the LIF signal amplitude (black line) and ion flow velocity (blue line) during the 
pulse 

 

The time evolution of the argon ivdf in the absence of EDL is shown in Figure 6.3 

(a) with 100 μsec time resolution. These high time resolution measurements revealed 

features of the argon ivdf that were not observed in 1 ms time resolution measurements:2 

the signal amplitude and ion temperature increase slowly during the pulse and require 

approximately 45 ms to reach their steady state values (see Figure 6.3 (b) ); the ion flow 

speed reaches its final value of ~ 1.9 km/s much more quickly (after approximately 25 

ms); and an average ion flow of over 1.5 km/s appears within the first few hundred μsec 

into the discharge. Because the LIF signal is roughly proportional to the ion density, the 

45 ms timescale to achieve steady state LIF amplitude and ion temperature likely reflects 

the time necessary for the discharge to completely break down and reach a steady state 

ion density as well as to heat the ions from room temperature to 0.4 eV. The more rapid 

ion acceleration suggests that the time scale needed to create the electric fields 

responsible for ion acceleration (discussed in Ref. [3]) is shorter and distinct from the 

overall discharge evolution.  

The time-resolved LIF technique described here has achieved high quality 

measurements at 100 μs with only minor modifications to a standard LIF diagnostic. 

Similar quality data at a time resolution of 30 μs is possible with slightly improved light 

collection and a faster oscilloscope. At lower time resolution, the large oscillations in 

optical emission from the plasma had gone undetected. We note that the oscillation 
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amplitude vanishes at approximately the same time that the ion acceleration ceases. The 

similarity in time scales suggests that the two phenomena are related and further 

investigation is warranted.  

 

6.2. Temporal Evolution of Bimodal Argon IVDF in Expanding Helicon 

Plasma 
 

 Spontaneously appearing ion beams in the diverging magnetic field region 

downstream of low pressure helicon sources (believed to result from the formation of a 

current-free EDL) might provide an alternative to classical chemical propulsion for 

spacecraft.4,5 In a thruster application the ejected plasma flux and the ion exit velocity are 

the critical parameters. As shown in the previous chapter, promising levels of ion 

production (~1013 cm-3 plasma density) by helicon sources and supersonic ion exit speeds 

(between 8 and 15 km/s),6 suggest the possibility of a helicon source EDL thruster.7,8 

Pulsing the helicon discharge might solve some important thruster issues such as plasma 

detachment, turbulent cross-field diffusion, and antenna heating. Therefore, for thruster 

applications, an understanding of the temporal evolution of the ion velocity distribution 

function (ivdf) downstream of an expanding helicon source is needed to choose the 

optimal operational parameters (duty cycle, pulse length, input power, driving frequency, 

etc.) to obtain the desired specific impulse along the expansion direction while 

minimizing the ion energy in the perpendicular direction. Two diagnostic techniques have 

the capability of investigating the temporal behavior of the ivdf in pulsed plasmas: a) a 

time resolved retarding field energy analyzer (RFEA)9 and b) time resolved laser induced 

fluorescence (LIF).10,11 Each method has its own advantages and disadvantages. The 

RFEA method is perturbative and requires conversion of energy-space measurements into 

ivdf measurements – a process very sensitive to the effects of the sheath created in the 

front of the grounded RFEA probe.12 LIF directly measures the ivdf without perturbation. 

However, the RFEA method provides information on the entire ion population while the 

LIF measured ivdf only reflects the behavior of the population of a particular excited ion 

state (for the 3 level LIF scheme 3d 2G9/2→4p 2F7/2 →4s 2D5/2 usually employed for argon 

ion investigation, it is the metastable state 3d 2G9/2). However, as we have shown for the 
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continuous wave LIF, with an adequate model the LIF signal intensity for this particular 

scheme is a qualitative measure of the behavior of the entire ion population. 

 These experiments were performed on the HELIX-LEIA system. The rf power 

necessary to drive the helicon plasma source was pulsed by square wave amplitude 

modulation (5 Hz at a 50% duty cycle) of the 9.5 MHz driving frequency. For Ar+ LIF, 

we used the classic three-level LIF scheme described previously. To determine the 

parallel ivdf, laser light was injected along the axis of the source and the fluorescence 

signal detected by an integrated collection optics-photomultiplier tube mounted on the 

previously described scanning probe. Temporal resolution of 1 ms was achieved by 

modulation of the laser beam with an acousto-optic modulator at 10 kHz. The in-phase 

and out-of-phase lock-in amplifier signals were recorded with a digital oscilloscope 

synchronized to the rf modulation signal. Very good signal-to-noise (S/N) was obtained 

when the LIF signals were averaged over 400 plasma pulses. Because the plasma 

conditions were chosen to result in EDL formation, the detected ivdf was bimodal. To 

obtain a reliable reconstruction of the ivdf, the plasma was interrogated at 71 equally 

spaced laser wavelengths. After subtraction of the time-dependent background, the S/N 

ratio was better than 10:1.  

 The evolution of the parallel argon ivdf at z = 169 cm (19 cm downstream helicon 

source-diffusion chamber junction) is shown in Figure 6.4. Since previous investigations 

showed oscillations of the LIF signal with a characteristic frequency of 1 kHz 13 when the 

lower hybrid frequency in the source was comparable to the rf frequency, the source was 

operated at magnetic fields of 600 G in the source and 35 G in the diffusion chamber. 

Consistent with the continuous wave operation observations, the ivdf exhibits a bimodal 

structure: a fast population with flow speeds of ~ 7.1 km/s and a slow population with 

speeds of ~ 0.4 km/s. For similar steady-state plasma parameters, probe measurements 

indicated a potential drop of ~18 V, corresponding to an EDL strength of ~3kBTe/e – 

sufficient to accelerate the fast ions to the measured speeds. The slow ion group LIF 

intensity is higher at the beginning of the pulse and persists for a few ms after the rf pulse 

terminates. The LIF signal for the fast ion population disappears at the end of the rf pulse, 

most likely an effect of rapid quenching of the 3d 2G9/2 metastable state as these ions 

travel from HELIX into LEIA. The most significant feature in the measurements is the 



Chapter 6: Temporal Evolution of the Parallel IVDF in Pulsed Argon 
Plasma 

 145

~28 ms time lag in the appearance of the fast ion population.14 This observation does not 

necessarily contradict previous RFEA measurements in another helicon source that 

indicated the presence of a small, but finite, population of fast ion population from the 

very beginning of the rf pulse [9]. RFEA measurements are essentially current 

measurements and are therefore particularly sensitive to fast ions. Secondly, this effect 

could be specific to our experiment given the differences between HELIX-LEIA and Chi-

Kung helicon machines. 

 
Figure 6.4. With 1 ms time resolution, the LIF-determined argon ion velocity distribution function during a 
100 ms plasma pulse: a) surface plot showing fast (~ 7.1 km/s) and a slow (~ 0.4 km/s) ion populations; b) 
contour plot showing the time lag (~ 28 ms) in the appearance of the fast ion population. 
 

 To determine if the observed time lag for fast ion creation in the LIF data reflects 

the time necessary for the population of the 3d 2G9/2 level to become large enough for a 

measurable LIF signal, ivdfs were measured for different duty cycles and pulse 

frequencies. The evolution of the parallel argon ivdf for the same 5 Hz pulsed discharge 

but for 80% duty cycle is shown in Figure 6.5. The LIF-determined argon ivdf during a 

160 ms “plasma on” pulse shows that the slow and fast ion population parallel velocities 

do not vary with “plasma on” time: ~0.4 km/s and ~7 km/s for the parallel flow speed of 

the slow and fast ion populations. However, increasing the “plasma on” time (160 ms 

versus the 100 ms in Figure 6.4) decreased to ~ 7 ms the time delay in the appearance of 

the fast ion population. Long lived neutral and ionic metastable states can survive during 

“plasma off” time, making the plasma ignition and apparently ion beam formation faster 

for shorter time off intervals. However, since the LIF signal for the background ions 
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appears at the onset of the discharge regardless of the length of the “plasma off” time, the 

time lag in the ion beam LIF signal is not a result time needed to create a population of 

appropriate ion metastable states. 

 
Figure 6.5. The evolution of argon ivdf during a 160 ms plasma pulse: a) surface plot showing fast (~ 7 
km/s) and a slow (~ 0.4 km/s) ion populations; b) contour plot showing the time lag (~ 7 ms) in the 
appearance of the fast ion population. 
 

 Another time-resolved study of the ivdf was performed by fixing the duty cycle at 

50% but increasing the rf power modulation frequency to 10 Hz. Figure 6.6 shows the 

evolution of argon ivdf 19 cm downstream the HELIX-LEIA junction during the 50 ms 

“plasma on” time for this case. Compared to the results shown in Figure 6.4, the increase 

in pulsing frequency did not affect the parallel velocities of the slow and fast argon ions. 

However, the longer “plasma off” time resulted in an increase in the time lag in the 

appearance fast ion population to 19 ms. The different behavior of the LIF intensity 

distribution during the pulse emphasize the different origins of the ions: the fast ion group 

appears later and disappears when the “plasma on” pulse terminates, whereas the slow 

ion group appears simultaneously with the plasma formation but extends into the 

afterglow. The variations in the LIF intensity of the background ion population during the 

pulses suggest that longer “plasma off” times lead to a complete extinguishing of the 

discharge between pulses followed by a new breakdown (high LIF intensities at the 

beginning of plasma pulse). 
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Figure 6.6. The evolution of the argon ivdf during a 50 ms plasma pulse: a) surface plot showing fast (~ 
7.1 km/s) and a slow (~ 0.3 km/s) ion populations; b) contour plot showing the time lag (~ 19 ms) in the 
appearance of the fast ion population. 
 

The major implication of these time-resolved LIF measurements is that the time 

delay for the appearance of the fast argon ion population downstream of the HELIX-

LEIA junction depends strongly on the pulse repetition frequency and the pulse duty 

cycle, being shorter for shorter off time period. This observation can be useful in 

designing thrusters. For example, to optimize the overall energetic budget, electron flood 

gun operation for space charge neutralization can be limited to the “plasma on” time.  
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Chapter 7: Oblique and Tomographic LIF Measurements of the EDL in 

Argon Plasma 
 

The development of techniques for analysis of LIF data obtained by laser 

injection at oblique angles relative to the direction of flow or to the magnetic field in 

magnetized plasmas is limited.1 Historically, researchers have gone to considerable effort 

to ensure that the laser light is injected either perfectly parallel or perfectly perpendicular 

to the ambient magnetic field,2,3 even when optical access is severely limited.4 We 

describe analysis of LIF data obtained during oblique injection of the probe laser relative 

to the background magnetic field of a linear system. The analysis method is applied to 

one-and two- dimensional velocity space studies of a bimodal argon ion velocity 

distribution function (ivdf) obtained in the expansion region of a helicon plasma source. 

Previous investigations have shown that for source pressures less than 2 mTorr, an ion 

accelerating electric field, most likely an EDL, spontaneously forms at the end of an 

expanding helicon source plasma.5 For our helicon source - diffusion chamber (HELIX-

LEIA) system and at a LEIA magnetic field of approximately 70 G, the double layer 

appears a few centimeters inside the source where the axial magnetic field gradient is a 

maximum.6 The EDL alters the downstream ion velocity distribution from unimodal to 

bimodal; consisting of a supersonic ion population superimposed on a nearly stationary 

background ion population. For these argon plasma experiments, we used the same Ar+ 

LIF scheme, i.e., optically pumping the argon ion 3d 2G9/2 metastable state to the 4p 2F0
7/2 

state by 611.66 nm (vacuum wavelength) laser light and then detecting the 461.09 nm 

fluorescence photons that result from the decay of the 4p 2F0
7/2 state to the 4s 2D5/2 state.  

 

7.1. LIF Measurements at Oblique Incidence 
 

One-dimensional argon ivdfs obtained 19 cm (z = 169 cm) downstream from the 

HELIX-LEIA junction for different laser injection orientations, β, in the (α,x) vertical 

plane (see Figure 4.23 (a) for the injection geometry) are shown in Figure 7.1. Iodine 

reference spectra, which indicate negligible drift of the laser, are shown along the top of 

each graph as well. At a first glance, the ivdfs obtained for laser injection parallel and 
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anti-parallel to the radial (or x axis) direction, i.e., β = 0° and 180° (see Figures 7.1 (a) 

and (b)) indicate a single, nearly stationary, ion velocity distribution. The frequency shifts 

of the ivdfs obtained for β = 0° and 180° give flow velocities of -80 m/s and +110 m/s, 

respectively. Both flow values are smaller than the uncertainty in the velocity 

determination. The ivdfs obtained for the other injection angles reveal a bimodal structure 

comprised of a slow ion population and a fast ion population whose drift velocity 

increases with the injection angle; reaching a maximum of ~ -6.6 km/s for β = 90° 

(Figure 7.1 (g)). Note that the laser light was injected towards the plasma source, so the 

negative ion flow velocity values are consistent with ion flow from HELIX into LEIA. 

The ion speeds shown in Figures 7.1 (a)-(g) are uncorrected for the projection of the laser 

along the z axis, α = 52°. The correction for projection along the z axis was confirmed by 

injecting the laser along the z axis from far end of HELIX (injection point P2 in Figure 

4.24) and measuring the drift velocity of the fast ion distribution (as shown in Figure 7.2). 

The “passive” measurement (detailed in Chapter 4.4.) of the parallel speed of the fast ion 

population agree to within 5% of the oblique measurement after correction for projection 

angle. In Figure 7.2 (b), the positive frequency shift of the fast peak in the ivdf is again 

consistent with ion flow from the source into LEIA. 
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Figure 7.1. a-g) 1D argon ivdfs measured in the vertical plane (α, x) versus injection angle, β. The fast 
(red) and slow (blue) ion population ivdfs are obtained from a fit to the measurement. Iodine spectra 
obtained during each scan are shown across the top of each plot. h) Values of the function Ψ for the best fit 
values of vz and vr (symbols) and sinβm (line) 
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Figure 7.2. a) 1D LIF obtained in the “active” probe mode (the laser is injected and collected with the 
probe); b) 1D LIF obtained in the “passive” probe mode (the laser is injected from the end of HELIX and 
fluorescent emission collected with the probe) 

 

For the geometry of Figure 4.23 (a), laser injection at angles α and β with respect to the z 

and x axes, respectively, the maximum in the ivdf will occur at a velocity of 

( )cos sin sin cosz y xv v v vαβ α α β β= − + − ,   (7.1) 

where the minus signs in the right-hand-side of the equation result from the assumption 

that the laser injection is opposite to the ion flow direction for all three coordinate 

directions. For a measurement location near the z axis, the azimuthal flow can be 

neglected and assuming cylindrical symmetry  

/ 2x y rv v v= = .     (7.2) 

Substituting into Eq. (7.1) and defining / zv vαβζ = , / 2r zv vρ = , and sinψ β= ,  

( ) ( )2 2 2 2 2cos sin 2 cos sin 0α ρ α ρ ψ ζ α ρ α ψ ζ ρ⎡ ⎤+ + + + + − =⎣ ⎦ .  (7.3) 

The solutions of Eq. (7.3) are given by 

2 2 2

1,2 2 2

(cos sin ) (cos sin )
(cos sin )

ζ α ρ α ρ ρ α ρ α ζ
ψ

ρ α ρ α
− + ± + + −

=
+ +

 .  (7.4) 

For α = 90° and α = 0°, the solutions to Eq. (7.3) are always real. For any vr at any 

angleα, the condition for a positive discriminant (the quantity under the square root) in 

Eq. (7.4) constrains the minimum value of vz. Since 0° ≤ β ≤ 180°, ψ ≥ 0 in Eq. (7.4) 
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requires a choice of ± sign that depends on the relative directions of the axial flow 

velocity and the laser injection direction. With measurements of the ivdf at a couple of 

angles βm, the axial (vz) and radial (vr) velocity components can be found by solving  

sin 0mψ β− =       (7.5) 

for ζ and ρ. 

As shown above, the axial (vz) and radial (vr) velocities for the independent 

components of a bimodal distribution can be found in the general case of v z≠ vr ≠ 0 by 

requiring ψ(vr, vz) = sinβm, for the measured ivdf and a known injection angle, βm. Shown 

in Figure 7.1 (h) are the predicted values for ψ(vr, vz) for the fast ion population. A slight 

departure from the ideal sinusoidal dependence evident near β = 0° and β = 180° is most 

likely due to imprecise determination of individual values (slow and fast) of vαβ at these 

injection angles due to overlap of the two distributions. We also find a small angular shift 

(~1°) between ψ and sinβm caused by a slight imperfection in the angular alignment of 

the probe. We estimate the total uncertainty in the velocity components (including the 

uncertainties in fits to the ivdfs and in the absolute iodine spectral lines) to be 150 m/s. 

The best fit axial and radial velocity components for the fast ion group population are vz = 

10.8 km/s and vr = 80 m/s, respectively. For the slow ion population, the best fit values 

for vz and vr are both smaller than the flow velocity uncertainty. Although the slow ion 

population is well fit with a single Gaussian distribution in Figure 7.1 (c)-(g), the fast 

population has a long tail towards slower speeds. Since the projection of a Gaussian ivdf 

along a measurement direction remains a Gaussian function, as demonstrated by the 

Gaussian-like slow population distribution measurement, the long tail of straggling fast 

ions is not simply a projection artifact. Assuming that the slow ions are a background 

population created locally and the fast ions are created in the source and then accelerated 

by the EDL into the diffusion chamber, the long tail of the fast ion population is 

consistent with the slowing down of fast ions by elastic scattering and/or charge 

exchange collisions with the background gas. We note that similar asymmetrically 

distorted ivdfs, i.e. only half of the vdf is well-fit by a Gaussian function, were reported 

by Claire et al. for LIF observations of argon ions accelerated in an electrostatic 

presheath.7 To within experimental error, the integrated LIF signals corresponding to 
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Figures 7.1 (a) and (b) are equal to the sum of the integrated intensity peaks in Figure 7.1 

(c)-(g). Therefore, it is reasonable to conclude that the ivdfs shown in Figures 7.1 (a) and 

(b) are two independent distributions that simply overlap in radial velocity space.  

For the simpler case of a unimodal distribution, the bulk radial velocity is 

determined directly by injecting the laser along x or y direction. Then, with additional 

laser injection in a plane containing the direction of flow, (y,z) for instance, vz can be 

found by inverting the velocity projection equation 

cos sinz yv v vα α α= − − .    (7.6) 

For vz >> vr ≅ 0 (typically observed in our experiment for both the low and fast ion 

populations) and except for the case of α ≅ 90°, when the injection angle coincides with 

the y direction, the axial velocity becomes 

/ coszv vα α≅ − .     (7.7) 

For the data shown in Figure 7.1 (g), the approximate analysis of Eq. (7.7) yields vz ≅ 

10.7 km/s; a difference of less than 1% from the value obtained with the more complete 

analysis. Since the fast population is not well fit by a simple Gaussian function, the 

parallel (axial) and perpendicular (radial) ion temperatures are not easily obtained from 

fits to the measurements. Best fit curves to the ivdfs, as shown in Figure 7.1 (c)-(g), are 

based on the LogNormal function provided in the OriginLab® fitting functions database. 

Although a FWHM for such distribution can be defined, it is not directly related to the 

thermodynamic temperature of the population. Taking the Gaussian-like left half of the 

distribution and mirroring it around the average speed of the fast population gives an α 

direction temperature of the fast ion group of ~0.5 eV. From deconvolution of the 0° and 

180° ivdfs, the radial temperature is ~0.24 eV. Then, by Eq. (4.59), the axial temperature 

is ~0.11 eV and therefore the fast ion population is thermally anisotropic. From 

Maxwellian distribution fits to the slow ion population, the slow ion axial ion temperature 

is ~0.22 eV and the radial ion temperature is ~0.18 eV. Since the difference is within the 

experimental uncertainty, the slow population ion temperatures are consistent with an 

isotropic slow ion population. 
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7.2. Experimental Difficulties Associated with LIF Tomography 
 

LIF tomography requires multiple 1D ivdfs measurements obtained at different 

laser injection angles. Because the velocity resolution in a reconstructed 2D ivdf is 

inversely proportional to the number of laser injection directions δV/V = π/2I 8 (with δV 

the minimum resolvable feature size and V the velocity range), too few laser injection 

directions yield an unreliable reconstruction (see Figure 7.3 (a)). However, too many 

laser injection directions require an unreasonably long measurement time. Yielding ~10% 

resolution, 18 injection angles are sufficient for our experimental conditions. For a laser 

scan rate of 0.3-0.5 GHz/s for a 20 GHz range and averaging over 2-5 scans to improve 

the signal-to-noise of each 1D measurement, the total time to collect 18 1D ivdfs ranges 

from 30 to 90 min. During this interval, the plasma conditions and laser stability must be 

maintained. As shown in Figure 7.3 (b), an uncorrected laser frequency drift of less than 

0.3 GHz during only four of the 1D ivdfs can compromise the entire reconstruction 

process and introduce “ghost” features. Notwithstanding the technical difficulties, LIF 

tomography does reveal subtle ivdf features that cannot be identified in 1D ivdf 

measurements.  

 
Figure 7.3. Examples of poor tomographic inversions: a) an insufficient number of laser injections leading 
to “corners” in the final reconstructed vdf; b) laser drift during 1D collection resulting in ghost features and 
a distorted 2D ivdf. 
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7.3. 2D Ion Velocity Distribution Functions 
 

Shown in Figure 7.4 is a complete 2D ivdf obtained from the full set of 1D ivdfs 

presented in Figure 7.1. The probe was rotated in 5° increments, i.e., 36 injection 

directions, over π radians. For each injection direction, the 1D ivdf was obtained from an 

average of four individual measurements. Although fairly smooth, the background of the 

2D ivdf image shows some evidence of artifacts resulting from the filtered back 

projection process (the small hills and valleys in the surface plot of Figure 7.4). The 

artifact amplitudes are less than 10% of the height of the primary peak.  

 

 
Figure 7.4. 2D bimodal ivdf obtained 19 cm downstream the HELIX-LEIA junction showing the fast and 
slow ion populations. The LIF signal is normalized to the slow group LIF intensity. The negative value for 
the fast group axial velocity arises from ion flow out of the source towards the direction from which the 
laser is injected. 
 

To improve the accuracy of the reconstruction, each 1D ivdf measurement was 

adjusted for laser drift before processing with the back-projection algorithm. Consistent 

with the 1D measurements, the tomographic images indicate a bimodal distribution 

consisting of a nearly stationary background ion population and a fast ion population9 
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(velocities along the α direction of ~-110 m/s and ~-6.6 km/s, respectively). After 

corrections with Eq. (7.7), the axial velocities are determined to be ~180 m/s for the bulk 

population and ~10.7 km/s for the fast population. From the integrated velocity space 

volumes, we estimate the relative fast to bulk population ratio to be 1:3. As noted 

previously, the fast ion population is a clear signature of an EDL upstream of the 

measurement location.  

Subtle features of the ivdf are more easily identified in the magnified tomographic 

images of the slow and fast populations shown in Figure 7.5. Each plot in Figure 7.5 is a 

300 point × 300 point section of the original 800 point × 800 point image. To the limit of 

the reconstruction process, the slow group ivdf is isotropic with a ratio of the full widths 

at half maximum (FWHMs) in the radial and α directions (Δvr/Δvα)FWHM of 0.93. Based 

on Eq. (4.59), the radial and axial ion temperatures are 0.13 eV and 0.18 eV, respectively.  

Consistent with the previous 1D measurement analysis, the fast population ivdf is 

decidedly not isotropic. The ivdf has a triangular shape with “tails” aligned along 

directions roughly midway between the radial and α directions. The shapes of the slow 

and fast 2D ivdfs are consistent with different origin locations for the two ion 

populations: the slow group is a locally created background population whereas the fast 

population is created in the source, undergoes acceleration through the potential drop of 

the EDL, and has its ivdf broadened by collisions experienced during the transit to the 

measurement location. The symmetrical stretching towards lower absolute speeds, 

indicated by the dashed white lines in Figure 7.5 is inconsistent with upstream 

perpendicular heating followed by an adiabatic upwelling; the mechanism responsible for 

the “ion conics” observed in auroral EDLs and in laboratory experiments.10,11,12 Not only 

is the α direction not equivalent to the magnetic field direction, but the orientation of the 

conic shape of the 2D ivdf is opposite to what would be expected for a conversion of the 

upstream perpendicular energy into downstream parallel energy based on magnetic 

moment conservation in the expansion region. In typical ion conic formation, ions with 

large perpendicular energy in regions of stronger magnetic field strengths appear as ions 

with larger parallel energy in regions of weaker magnetic field strength. Therefore, the tip 

of the cone should point toward smaller absolute speeds. However, in these 

measurements, the ions with the largest radial velocities also have the slowest velocities 



Chapter 7: Oblique and Tomographic LIF measurements of the EDL in 
Argon Plasma 

 158

along the α direction. This stretching towards lower speeds along the α direction could 

indicate increased collisional drag for the higher speed ions, increased pitch-angle 

scattering, or the action of some other ion acceleration mechanism.13 

 

 
Figure 7.5. Expanded views of sections of tomographic image shown in Figure 7.4 for the (a) slow ivdf 
and the (b) fast ivdf. The color bar in both plots is the normalized LIF signal intensity. The top and side 
graphs are horizontal and vertical slices (along yellow lines) through the 2D ivdf at the center of the ion 
distribution. 
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The bulk radial velocities obtained from the tomographic analysis are 

approximately -450 m/s and +150 m/s for the slow and fast populations, respectively. 

This small but statistically significant difference could indicate a slight misalignment of 

the axes of the HELIX and LEIA systems or a bend in the probe shaft relative to the 

chamber axis that was not detected in the 1D ivdf measurements.  

An important difference between these measurements and 2D LIF tomographs of 

an ion beam obtained in an electrostatic presheath [8], is that in these measurements, only 

a faint tail of ions is seen extending from the beam velocity to slower speeds. In the 

presheath measurements, a continuous population of ions extending from the highest 

velocity of ~ 6 km/s all the way down to zero velocity was observed (see Figures 2d and 

2e, in Ref. [8]). Since LIF detects ions in the 3d 2G9/2 metastable state, only a small 

fraction of the fast ion population travelling from HELIX into LEIA is detectable by LIF. 

Given a quenching cross-section for collisions of the 3d 2G9/2 state with ground state 

neutral argon of 1×10-14 cm2,14 the quenching mean free path (mfp) is 17 cm; less than 

half of the charge-exchange mfp of 36 cm assuming σCX = 4.7×10-15 cm2 for the 

measured ion energies.15 Thus, an ion in the metastable state will be depopulated by 

quenching long before significant velocity changes result from charge exchange-

collisions. That metastable quenching dominates over charge-exchange losses is 

demonstrated by the two tomographic images of an ion beam shown in Figure 7.6. Both 

were obtained under identical plasma conditions and at two axial locations separated by 9 

cm. There is no significant change in the axial velocity of the fast population (Vza ≅ Vzb ≅ 

10.3 km/s) but there is a factor of 1.5 decrease in LIF intensity.  

Thus, the principle difference between these measurements and those reported in 

Ref. [8] is that in this case, metastable quenching prevents the slower ions from being 

detected by LIF after traveling from the upstream acceleration region. In conclusion, 1D 

LIF investigations at oblique incidendece relative to the ion flow direction can provide a 

comphrensive picture of the ivdf in an argon plasma. Even in the case of a bimodal 

distribution, the radial and axial velocities and temperatures for both populations of ions 

can be determined. 
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Figure 7.6. Tomographic images of the fast ion population 19 cm a) and 28 cm b) downstream from 
HELIX-LEIA junction for identical plasma operating conditions. To emphasize the difference in LIF 
amplitudes, the same color bar is used for both graphs. 

 

The LIF measurements are consistent with a locally generated, nearly-stationary, 

background ion population and fast population created at an EDL upstream of the 

measurement location. Tomographic LIF measurements, also at oblique incidence, 

demostrate the significant anistropy of the fast ion population, confirm that metastable 

quenching is the dominant mechanism for reducing the LIF signal amplitude of the fast 

ion population in expanding helicon plasmas, and may provide evidence of pitch-angle 

scattering for the most energetic ions. 
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Chapter 8: Summary and Conclusions 
 
 

Electron energy distribution functions and ion velocity distribution functions in 

the HELIX-LEIA system presented in this work confirm the existence of an electric 

double layer in the magnetic field divergent region of a freely expanding single- and 

multi-component helicon plasma.  

Langmuir probe measurements in mixed Ar-Xe plasma revealed that eedfs exhibit 

a transition from a Maxwellian type electron distribution in pure argon plasma to a 

Druyvesteyn type electron distribution for xenon fractions of a few percent. Another 

striking change of the eedf shape is the depletion of the high energy tail of the 

distribution with increasing xenon fraction. The maximum electron energies in the tail 

decrease by ~ 15 eV for pure xenon compared to pure argon. Both in the helicon source 

and in the expansion region, due to lower ionization potential and larger ionization cross-

sections, increasing xenon fraction leads to an exponential decrease of the electron 

temperature. Although the term “electron temperature” has no physical meaning for 

distributions other than Maxwellian, in the sense of mean electron energy, in HELIX the 

effective electron temperature decreases from 6.5 eV in pure argon to 3.8 eV in pure 

xenon. Similar variation is observed in LEIA, the electron temperature decreases from 

7.2 eV to 4.7 eV. Electron densities calculated from eedfs integrations show a linear 

increase with increasing xenon fraction: in HELIX the density increases from 1.07×1011 

cm-3 up to 1.25×1011 cm-3 whereas in LEIA the density increases from 2×109 cm-3 up to 

5×109 cm-3. Due to the limited number of ports, probe diagnosis is limited in HELIX. 

Future experiments could benefit from an axially scanning Langmuir probe.1 Although 

challenging to construct because of the small dimensions necessary to avoid perturbing 

the plasma, such a tool would allow determination of the location of the EDL with high 

precision2 and might even provide direct evidence of the expected high energetic electron 

population streaming through the EDL into HELIX.  

Optical emission spectroscopy investigation of argon and xenon neutrals enabled 

estimation of neutral gas relative densities and correlation with individual gas flow rates. 

From the Ar 811.75 nm and Xe 823.39 nm emission line intensities, the computed 

excitation rate coefficients from experimentally determined eedfs and excitation cross-
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sections available in literature, and a Corona model, the Ar and Xe neutral densities were 

determined as a function of Xe fraction. Similarly, from the Ar+ 434.93 nm and Xe+ 

529.37 nm emission lines and the computed ionization rate coefficients, an OES analysis 

of ionic/neutral emission lines intensity ratios enabled the calculation of partial Ar+ and 

Xe+ densities. Although the sum of computed densities did not match the electron density 

value determined from probe measurements, the analysis provided a qualitative 

indication of species ionization as a function of xenon fraction. For future research, it 

would be useful to have a vertically elongated window mounted in the vicinity of z = 

140-150 cm for OES investigations. Through Abel inversion,3 the ion and neutral radial 

density profiles could then be determined and related to possible EDL spatial structures.4 

For pure argon plasma, laser induced fluorescence revealed bimodal ion velocity 

distribution functions in the magnetic expansion region of the HELIX-LEIA device. The 

ivdfs were comprised of a slow moving ion group and a fast, highly supersonic (~2.9cAr+) 

ion group. By decreasing the magnetic field in the diffusion chamber and holding 

constant the magnetic field in the source, i.e., by increasing the divergence of the 

magnetic field in the expansion region, the ratio of the heights of the fast and slow ion 

distributions increased exponentially from ~0.4 to ~1.7. The parallel speed of the fast 

component of the velocity distribution also increased, reaching a maximum of ~ 10.8 

km/s while the speed of the slower component was essentially unchanged. Similar 

bimodal ivdfs, but with the fast ion group flowing at much lower speed (~6 km/s) were 

detected by LIF close to the HELIX- LEIA junction, just 4 cm inside the source. These 

observations confirmed the different origin of the two ion groups: the slow ion group is a 

population created locally and the fast ion group is created in the source and then 

accelerated through the EDL. Because the ivdf just before magnetic expansion region is 

insensitive to variations in the magnetic field divergence and because the difference in 

parallel kinetic energy is too large (~15 eV) to be explained by conversion of the 

upstream radial and/or azimuthal kinetic energy, an acceleration mechanism or 

mechanisms in addition to the EDL must be present in these plasmas. To study the 

acceleration mechanisms individually, an interesting experiment would be to modify the 

cross-sectional area of the helicon source close to the HELIX-LEIA junction by inserting 

conductive cylinders of different opening diameters. Such an experiment would be 
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similar to the aperture experiments of Sun et al.5 and would help elucidate the effect of 

the physical expansion ratio on the parallel flow speed.6  

Ion velocity distribution functions in two positive ion species plasmas were 

studied for two binary gas mixtures: Ar-Xe and Ar-He. Due to the lack of a LIF scheme 

for He+, only Ar+ and Xe+ ivdfs were investigated. For Ar+ we used the classical 3d 2G9/2 

→ 4p 2F0
7/2 → 4s 2D5/2 three level LIF scheme for which the transition wavelengths, level 

energies, and Zeeman splitting corrections are known with high precision. However, the 

5d 4D7/2 →6p 4P5/2 →6s 4P5/2 LIF scheme used for Xe+ was not so well understood.  

First, significant differences in the precise rest frame Xe+ line wavelength exist in 

the literature. A wave number difference of ~0.08 cm-1 found between two reports that 

use this LIF scheme translates into a substantial error of ~ 1.5 km/s when converted to 

ion velocity.7,8 From our measured on-axis perpendicular LIF signal deep in LEIA, and 

assuming zero radial velocity, we determined the wave number of the Xe+ transition to be 

16521.332 cm-1. Second, because of isotopic spitting and non-zero nuclear spin of odd 

isotopes 129 and 131, the Xe+ fluorescence line has a very complicated structure.  

In the case of Ar-Xe plasma, we found that in the source both the Ar+ and Xe+ 

ivdfs are unimodal. Their parallel speeds (~1.7 km/s for Ar+ and ~1 km/s for Xe+) are 

subsonic and unaffected by the change in the gas composition. The fact that their speed 

ratio scales inversely proportional with ion mass ratio indicates a slight axial potential 

gradient. Close to the HELIX-LEIA junction, at z = 146 cm and for a very narrow range 

of gas composition (0 - 4% xenon fraction), the argon ivdf shows a bimodal structure, 

indicative of an EDL upstream of the measurement location. The fast ion component has 

a parallel speed that increases linearly with the xenon fraction from ~6.7 km/s in pure 

argon to ~8 km/s for a 4% xenon fraction. These values are well above the argon ion or 

system sound speeds (~ 4 km/s). The slow ion component has a parallel speed of ~2.5 

km/s and is not affected by the small change in the gas composition. The LIF amplitudes 

of both ion groups decrease sharply with increasing xenon fraction. Above a xenon 

fraction of 4%, the lock-in amplification could no longer discriminate the LIF signal from 

the noise. The simultaneous sharp drop in the measured electron temperature suggests a 

weak production rate of the 3d 2G9/2 metastable state rather than very efficient 

destruction. Additional ivdfs taken 1 and 2 cm downstream of the z = 146 cm location 
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show a slight increase in the speed of the fast group, an indicative of a second 

acceleration mechanism. Deep in LEIA, the bimodal character of the Ar+ ivdf is 

maintained. For the narrow 0 to 3% xenon fraction range for which the Ar+ ivdf is 

detectable, both slow and fast ion population speeds are not affected by the change in the 

gas composition. As was found in pure argon, the parallel flow speed of the fast ion 

component (~10.5 km/s ≅ 2.6cAr+) is larger at z = 169 cm than at z = 146 cm. The ~ 8-13 

eV difference in parallel kinetic energy cannot be explained solely by radial or azimuthal 

kinetic energy conversion based on magnetic moment conservation. Therefore, the 

additional ion acceleration has to result from other mechanism(s) such as magnetic and/or 

geometric expansion. Although EDL presence is confirmed by the bimodal nature of the 

Ar+ ivdf at z = 146 cm, the Xe+ ivdf is unimodal. Since the Ar+ and Xe+ LIF 

measurements do not encompass a common gas mixture range, it is possible that at 

moderate pressures the EDL does not form for xenon fractions above a threshold value. 

Previous experiments have found that in pure xenon plasma, EDL formation requires a 

much lower pressure (~0.07 mTorr) than in argon (~1.5 mTorr).9 

Because the investigated 5d 4D7/2 Xe+ metastable state is a relatively low energy 

state (11.83 eV), the Xe+ LIF signal is detectable down to a xenon fraction of 13%. Over 

a xenon fraction range of 0 to 13%, the parallel flow speed increased slightly from ~1.3 

km/s in pure xenon to ~2.2 km/s for a xenon fraction of 13%. 2.2 km/s is slightly larger 

than the xenon ion sound speed, but smaller than the system sound speed. If an EDL 

forms at the end of the plasma source in a mixed gas plasma, the kinetic energy of both 

species should reflect the energy gain of passing through the EDL. Although uniquely 

capable of identifying the behavior of each ion species in the EDL (a RFEA is unable to 

distinguish between the two ion species), the lack of a fast ion component in the Xe+ ivdf 

at z = 146 cm for xenon fractions for which fast ions were observed in the Ar+ ivdf 

prevented us from confirming the EDL strength implied by Ar+ ivdf measurements. 

Improved rf coupling is needed to transfer more power to the plasma; increasing the 

overall ion densities and thereby the ion metastable state densities as well. Only then will 

it be possible to perform simultaneous LIF measurements on both ion species over a 

range of gas compositions. Through such experiments, the sensitivity of EDL formation 

and strength to gas composition could be determined. 
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As a result of the large differences in the ionization potentials and the ionization 

cross-section peak values of argon and helium, changing the gas composition in Ar-He 

plasma produces large variations in both electron temperature and plasma density. Probe 

measurements found a two fold increase in the electron temperature with increasing 

helium fraction, from ~ 7 eV for pure argon plasma up to ~14 eV for a helium fraction of 

80%. Over the same helium fraction range, the electron density drops by more than three 

orders of magnitude, from 1.14×1011 cm-3 down to 6.5×107 cm-3. Computed ion densities 

based on measured electron density and calculated ionization rate coefficients for each 

ion species suggest that even at a helium fraction of 80%, argon ions significantly 

outnumber helium ions.  

As observed in Ar-Xe plasma, the LIF measured Ar+ ivdf in Ar-He plasma at the 

end of the helicon source exhibits a bimodal structure with fast and slow ion populations. 

However, in Ar-He plasma, the LIF signal is detectable up to helium fractions of 30%. 

With increasing helium fraction, the parallel flow speed of the fast Ar+ population 

increased from ~5.2 km/s at 0% helium fraction to ~7.8 km/s at a helium fraction of 30%. 

As the helium fraction increased, the slow argon ion population changed from a single 

Gaussian to a wide distribution extending all the way from the speed of the fast 

population to 0 m/s – a shape characteristic of a distribution of particles slowing down 

due to charge-exchange collisions. The larger Ar+ flow speeds observed with increasing 

helium fraction might result from the same additional acceleration mechanism postulated 

to be at work in pure Ar and Ar-Xe plasmas. An effective He+ LIF scheme would allow 

comparison of the Ar+ and He+ parallel flow speeds and provide critically needed 

additional information about the ion acceleration mechanisms. Although unfruitful until 

now,10 WVU helicon group research into the infrared 1012 nm He+ line might yet yield a 

breakthrough in He+ LIF development. 

Time resolved laser induced fluorescence measurements with 1 ms resolution 

provided important insight into the temporal evolution of the argon ion velocity 

distribution function in the expansion region of a pulsed helicon plasma. 19 cm 

downstream of the helicon source in pulsed discharges, the ivdf has a bimodal structure; 

indicative of an EDL upstream of the measurement location. The slow population forms 

as soon as the rf pulse is applied and persists for few ms after the rf pulse terminates. The 
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fast population LIF signature appears few ms after the rf pulse begins. Varying the pulse 

duration by either modifying the pulse repetition frequency or the duty cycle did not 

affect the parallel velocities of the slow and fast ion populations. The time delay in the 

appearance of the fast ion population depends on the pulse repetition frequency and the rf 

duty cycle. For higher pulse repetition frequencies and/or longer duty cycles, the fast ion 

population appears more quickly. Simultaneous RFEA measurements would be very 

useful in identifying the origin of this time lag. If the same time lag appears in RFEA 

measurements, the RFEA measurements would confirm that the EDL forms later in the 

pulse.  

Although laborious, the method described for determining perpendicular and 

parallel ivdfs from LIF measurements at oblique laser incidence (with respect to the 

magnetic field direction) can be useful for many plasma experiments where optical access 

is limited. This method eliminates the need to ensure that the laser light is injected either 

perfectly parallel or perfectly perpendicular to the ambient magnetic field. For simple 

plasma geometries and/or for LIF investigation locations for which the perpendicular 

component can be neglected, the parallel component is simply a projection of the 1D ivdf 

along the laser propagation direction.11  

Tomographic LIF measurements, also at oblique incidence, enabled detection of 

subtle features otherwise impossible to detect in 1D ivdfs, e.g., the anistropy of the fast 

ion population,12 confirmation that metastable quenching is the dominant mechanism for 

reducing the LIF signal amplitude of the fast ion population in expanding helicon 

plasmas, and evidence of pitch-angle scattering for the most energetic ions. The shapes of 

the slow and fast 2D ivdfs were consistent with different origin locations for the two ion 

populations: the slow population is a locally created background population whereas the 

fast population is created in the source, undergoes acceleration through the potential drop 

of the EDL, and has its ivdf broadened by collisions experienced during transit to the 

measurement location. The symmetrical stretching towards lower absolute speeds of the 

2D ivdf proved is inconsistent with upstream perpendicular heating followed by an 

adiabatic upwelling; the mechanism responsible for the “ion conics” observed in auroral 

EDLs and in laboratory experiments.  
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In summary, this study identified some characteristics of ion acceleration 

mechanisms in single and multicomponent ion plasma in the expansion region of the 

helicon plasma. Further experimental investigations and theoretical approaches are 

needed to distinguish between the different possible ion acceleration mechanisms in the 

diverging magnetic field region. Among other works dedicated to this phenomenon, I 

hope this dissertation will be a starting point for such investigations.  
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