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ABSTRACT 

PARAMETRIC STUDY OF A SINGLE PDC CUTTER WITH A NUMERICAL MODEL 

Ozge Sunal  

Single cutter models constitute a cornerstone to understand the cutting process while drilling. 

There are various experimental and numerical studies on simulating cutting behavior of a single 

cutter in order to optimize drilling performance. In this study, the numerical model developed to 

analyze single PDC cutter performance was verified with the experimental data. Numerous runs 

with different model properties and rock post failure properties were conducted for the purpose 

of creating a model that works accurately in different conditions. The data used in this study for 

model verification was obtained from an experimental study reported in the literature. The study 

focuses on a single cutter-rock model to understand how axial and rotational loads change under 

different cutting conditions. The model is composed of a single cutter interacting with the rock 

specimen and was developed using FLAC
3D

, an explicit finite difference program. Back analysis 

was performed with the reported laboratory experiments and various formation parameters in the 

model were varied to match the experimental results.  
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Polycrystalline diamond compact (PDC) bit drilling optimization has been of great 

interest for drilling engineers. It has been studied by many researchers since its primitive origins 

in the early 1970s due to the need to reduce drilling cost by overcoming the challenges of PDC 

bit applications.  Rate of penetration (ROP) is a major issue while a well is being drilled. ROP 

usually decreases with depth. Low ROP (for example, 3 to 5 feet per hour) is mainly a result of 

the high compressive strength of the formations due to overburden loads encountered at greater 

depths. Fixed cutter bits with PDC cutters are preferable in various environments since the 

difficulty in recognizing the failure of tricone bit's bearings especially at greater depths lead to 

lost cones, more frequent trips, higher costs and lower overall rates of penetration. Additionally, 

PDC bits typically drill several times faster than roller cone bits, particularly in softer 

formations. However, PDC bits have their own set of problems in hard formations, such as bit 

whirl which PDC bit produces a non-cylindrical hole due to unbalanced condition and stick slip 

which its rotation stops momentarily and slips free at high speed. PDC bits also have some 

shortcomings when drilling under extreme environments, such as pressures exceeding 20000 psi 

and temperatures greater than 250 
o
F.  

Design and optimization of PDC bits require an understanding of the cutting process. 

Single cutter studies are very helpful to understand the cutting process of PDC bits under 

simulated downhole conditions and provide input for PDC bit development and mathematical 

models 
(1)

. 
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The objective of this study is to verify the effectiveness of a single cutter finite difference 

numerical model which predicts the effects of formation characteristics and drilling parameters 

on the rate of penetration (ROP) of the drilling operation including: formation properties, pore 

pressures, confining pressure, cutting angle and drilling parameters such as weight on bit and 

rotary speed. This study focuses on the verification process of the model based on the 

experimental single cutter results. Axial and tangential forces were matched for various runs 

under different conditions. Thrust and speed of revolution are the two key factors for the rate of 

penetration of a drill bit in a given medium. 

The model has been developed by a group of researchers at West Virginia University in 

which the author of this thesis is also a part. A three-dimensional explicit finite-difference 

program, FLAC
3D 

has been used for this study. The basis for this program is the well-established 

numerical formulation used by two-dimensional program, FLAC. FLAC
3D 

extends the analysis 

capability of FLAC into three dimensions. The explicit, Lagrangian calculation scheme and the 

mixed-discretization zoning technique used in FLAC
3D

 ensure that plastic collapse and flow are 

modeled very accurately. 
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1.2 Objective 

The goal of this study has been to test, fine tune and verify a finite-difference model of a 

single rotary cutter, and to calibrate it with published laboratory data for different confining 

pressures. A cutter-rock numerical model was developed at West Virginia University to 

investigate the influence of: pressure, formation and mud properties, bit design and drilling 

parameters on the cutting process and drilling rate of penetration (ROP). In this study, the model 

was calibrated with laboratory experiments 
(2)

 for a single PDC cutter conducted under different 

confining pressure conditions. The axial and tangential cutting forces measured on the cutter for 

a given depth of cut in the experiments are compared to the cutting forces calculated in the 

model and the results of the experiments and the model were matched. Numerous runs were 

conducted to understand how cutting forces change based on various formation parameters and 

to obtain the closest match to the experimental results. Ultimately, a fair agreement was observed 

between experimentally observed cutter forces, and those predicted by a finite difference model. 
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CHAPTER 2 

LITERATURE REVIEW 

There are various studies regarding cutting behavior of PDC bits. Single cutter and full 

scale laboratory tests with multiple cutters are the two most widely used techniques. Numerical 

modeling methods have also been applied to investigate cutter forces and cutting character 

during drilling.  

Single cutter testing rather than full-scale bit testing provides a better way of predicting 

PDC bit performance since full scale testing concerns all the cutters on a bit, each of which is 

subjected to different cutting and cleaning conditions making the interpretation of the net result 

difficult. Great majority of single cutter experiments were conducted during 1980s 
(1, 5)

. Through 

the end of the decade, full scale tests have gained great importance.  

Researchers have focused on better understanding of cutter/formation interaction, cutter 

performance, bit dynamics and bottomhole dynamics. These studies are helpful to understand 

how this interaction affects bit performance so new designs for a PDC bit can be developed. One 

of the earliest research studies were conducted by Sandia National Laboratories in the late 1970s 

and early 1980s that played a leading role in the PDC drill bit development for rock drilling 
(3)

.  

Swenson et al. 
(4)

 described a constitutive model for rock in which fracturing occurs due to 

both tensile and shear stresses. Their model was incorporated into the finite element code 

(HONDO) and the analytical results were compared with both material model verification tests 

and single cutter tests 
(5)

.  

Zeuch and Finger 
(6) 

conducted both experimental and numerical studies on rock breakage 

mechanisms with a PDC cutter. They focused on the stress field in the rock around the cutter, 
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chip generation and damage patterns in the rock. They used sharp and worn PDC cutters in their 

experiments conducted at atmospheric pressure where there is no confining pressure effect. They 

concluded that there is a notable similarity in chip generation among very different kinds of 

rocks and for different cutter geometries. In addition, they observed that the theory of chip 

generation in which fractures are nucleated in the rock in advance of the cutter tip is consistent 

with the experimental evidence. 

One of the greatest challenges for any PDC bit application is "hard rock" drilling in which 

bit performance is limited due to impact damage, heat damage and the abrasive wear of PDC 

cutters. Unknown mechanisms of hard rock drilling under high pressure/high temperature 

environment generally encountered in deep drilling are the major reasons of slow rate of 

penetration. Since drillers can spend as much as 80% of their budget drilling hard rock footage 

that represents only 20% of a well's total footage, bit selection becomes critical since poor bit 

choices can be costly. Clayton et. al. 
(7)

 proposed a new highly abrasion-resistant PDC cutter 

which expanded PDC bit application to hard rock drilling. They developed a new model 

considering cutter wear, in other words, diamond failure as a result of mechanical loading and/or 

thermal degradation. 

Some researchers used full scale bits instead of single cutter while studying rock failure 

mechanisms in the process of bit penetration. One of the earliest studies was conducted by Wang 

and Lehnhoff in 1976 
(8)

. They developed a general mathematical rock failure model using the 

finite element techniques. The model simulates the bit penetration process from the bit-rock 

interaction to chip formation. It gives quantitative information on stress, displacement and 

material failure due to penetration of the bit. The analytical results obtained from their model are 

very consistent with the experimental observations made by other scientists.  
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Huang and Iversen 
(9)

 used laboratory and field tests to show that polycrystalline diamond 

compact with side rake angle can provide a better mechanical cleaning action and therefore 

improve the bit performance in soft and plastic formations such as salt and shale. 

Cherkovnik 
(10)

 proposed that the type of chip generated can be controlled by the 

orientation of the cutter face which basically depends on side rake, back rake and depth of cut. 

He stated that the efficiency of drilling with a PDC bit is related to the angle between the cutter 

and the surface of the formation being drilled.  

Cheatham and Daniels 
(11) 

examined causes of difficulty in drilling shales which 

represents a major part of the footage drilled for oil and gas wells. They investigated some of the 

factors influencing shale drilling using single and double cutter experiments. They used 

STRATAPAX drill blanks which is composed of a man-made diamond layer bonded to a 

cemented tungsten carbide substrate and two types of shales; namely Mancos and Pierre shales. 

They analyzed the effects of rake angle and pressure on cutting performance using translational 

motion in their experiments.  They determined that plasticity occurs in shales under elevated 

mud pressures. They also determined that tool shape has no appreciable effect on force per unit 

area, and zero or small negative rake provides the most efficient tool.  

Glowka and Stone 
(12, 13) 

performed both analytical and numerical studies on PDC cutter 

response under simulated downhole conditions where thermal and mechanical loading take 

place. They stated that PDC cutter wear rate strongly depends on the frictional temperature that 

develops at the cutter-rock interface and even a minor wear
 
in the cutter geometry can have a 

significant effect on cutter and bit performances. Glowka 
(14)

 further
 

studied cutter/rock 

interaction experimentally and developed a mathematical model based on laboratory results to 

determine the penetrating and drag forces acting on a cutter located on the bit face. The model 
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was generalized and used to develop algorithms for a computer code which predicts wear and 

performance of PDC bits 
(15)

. He used three rock types, Berea sandstone, Tennessee marble, and 

Sierra white granite since they cover a wide range in rock properties, such as strength, 

composition and ductility. Their experience showed that PDC cutters do not cause much rock 

breakage outside the projected area of the cutter profile. 

A recent study was conducted on modeling rock failure using FLAC
3D

. Han et.al 
(16)

 

developed a FLAC
3D

 model to improve the fundamental understanding of the physical 

mechanisms of percussion drilling with a hammer bit. They proposed three different failure 

mechanisms to explain rock damage and failure during bit-rock interactions under compressive 

bit load and rock failure due to excessive tensile and shear forces. Rock is more likely to 

experience tensile failure than compressive failure during percussion drilling because of its low 

tensile strength.  However, if the mud pressure is high enough during bit retreat, rock rarely 

becomes tensional. Thus, they concluded that the efficiency of percussion drilling decreases with 

mud pressure or deep borehole. Their model can describe when, where and how rock fails and 

calculates rates of penetration and shows the history with dynamic time simulated.  

 Kaitkay 
(17) 

modeled rock cutting with and without an external hydrostatic pressure using 

the distinct element method. He also conducted experiments on a Carthage marble specimen 

using a PDC bit under atmospheric and external hydrostatic pressure. The model was developed 

with PFC
2D 

(Particle Flow Code) to simulate the rock cutting experiments. He observed that 

cutting forces as well as chip length increase dramatically with the application of external 

pressure. In addition, external pressure was found to transform the cutting mechanism from 

brittle to ductile-brittle mode. 
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Zijsling 
(1)

 conducted single cutter experiments to study the cutting process of PDCs in 

rock under simulated downhole conditions. The tests were carried out with soft Pierre shale 

(samples) from an outcrop in Colorado, and medium-hard Mancos shale from an outcrop in Utah 

using a cutting angle of -20
o
 at various simulated wellbore pressure levels. The cutting forces 

were measured during the tests. The results indicate that the cutting process in shales responds 

differently to downhole pressures unlike permeable formations. Cutting forces in Mancos shale 

were controlled by total bottomhole pressure while in Pierre shale both the total bottomhole 

pressure and the pore pressure control the cutting forces due to the different dilatancy 

characteristic of shales. He tried different cutter designs and concluded that cutter design is very 

effective in cleaning the bit mechanically and preventing or minimizing the balling-up of 

cuttings.  

Smith 
(2)

 investigated slow drilling problem in shales by conducting single cutter 

experiments on Catoosa shale and Pierre shale to reveal the different possible causes of the 

problem. Shales are fine grained sedimentary rocks which are composed of clay minerals. Great 

majority of drilling operations’ problems are related to shales due to their vulnerability to 

swelling, shrinking, hydration, strength reduction and failure. The strategy of his study was to 

define the indications of the actual problem in the field and to compare them with the indications 

that resulted from different causes in controlled laboratory tests. He used Catoosa shale as the 

primary medium for the direct shear and single cutter tests. Catoosa shale is a type of marine 

formation of Pennsylvanian age 
(18)

. The data obtained in the experiments with Catoosa shale 

was used to accomplish the objectives of this research.  

 In the experiments, he measured the normal and tangential forces acting on the cutter to 

reach a given depth of cut. Total depth of cut and cutter width were set before the test started and 
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depth of cut per revolution, total axial cutter travel, confining pressure, rotary speed, and load 

limits were controlled during the test. The measured normal and tangential forces were used to 

calculate the ‘specific energy’ which is the consumed energy during the cutting process. 

The tests allowed evaluation of the effects of rock mineralogy, rock strength, wellbore 

pressure, drilling fluid, cutter back rake angle, cutter surface, chip breakers and cutter standoff on 

the cutter forces and cutting character on slow drilling. He concluded that global bit balling is the 

major cause of the problem. Tests were conducted with a single cutter apparatus which is a 

powerful research tool for providing input for PDC bit development (Figures 2.1 and 2.2). 

 

Figure 2.1 Single cutter test apparatus 
(1)

. 
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Figure 2.2 Schematic of single cutter test apparatus 
(2)

. 

 

Smith 
(2) 

used four different confining pressures in his tests with Catoosa shale; 300, 

1000, 3000 and 6000 psi with a cutting depth of 0.075 inch at 273 rpm. The cutters for the tests 

were trimmed to a width of 70 percent of their original diameter, which is around 0.37 inch. The 

cutter used in the test apparatus is shown in Figure 2.3. The core sample has a diameter of 3.5 

inch and it is mounted in a core holder (Figure 2.4). Other test parameters are given in Appendix 

A together with the model properties.  

                              

Figure 2.3 Cutter used to cut the rock sample 
(2)

. Figure 2.4 Rock sample in the core 

holder 
(2)

. 
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CHAPTER 3 

THEORY 

3.1 Introduction  

The process of drilling a hole in the ground is achieved by drilling bits.  Selection of the 

bit and the bit operating conditions that suit the existing drilling conditions best is one of the 

most important duties of a drilling engineer. Rotary drilling operations require the use of rotary 

drilling bits. A specific type of bit is required for different situations encountered during drilling. 

In this chapter, only basic rotary drilling bit types will be discussed. 

 

3.2 Rotary Drilling Bits 

The drill bit is located at the bottom end of the drill string, and is responsible for actually 

making contact with the subsurface layers, and drilling through them. The drill bit breaks up and 

dislodges rock, sediment, and anything else that may be encountered while drilling. There are 

dozens of different drill bit types, each designed for different subsurface drilling conditions. 

Different rock layers experienced during drilling may require the use of different drill bits to 

achieve maximum drilling efficiency. It can be a long process to change bits since the whole drill 

string must be removed; but using the correct drill bit saves a great deal of time during drilling. 

Drill bits are chosen given the underground formations expected to be encountered, the type of 

drilling used, whether or not directional drilling is needed, the expected temperatures, and 

whether or not cores (for logging purposes) are required. There are two main types of drill bits, 

each suited for particular conditions 
(19)

. 
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3.2.1 Types of Drilling Bits 

Rotary drilling bits are classified in categories according to their design. Drag bits and 

rolling cutter bits are the two main types. Drag bits are composed of fixed cutter blades that are 

made from either steel or diamond or polycrystalline diamond. Rolling cutter bits comprise a 

body member and inwardly facing rolling cones on which cutting inserts are arranged in 

circumferential rows 
(20)

. 

Drag bits are the best for very strong surfaces and non-brittle formations that have a 

plastic mode of failure while rolling cutter bits are used in a large variety of formations ranging 

from soft to hard. 

                  

3.2.1.1 Drag Bits 

All drag bits have fixed cutter blades on the body of the bit and the cutters rotate with the 

drill string as a unit. This type of bit includes bits with steel cutters, diamond bits and 

polycrystalline diamond (PDC) bits.  

Drag bits with steel cutters, also called fishtail bits were the early type of rotary bits, 

dating back to drilling before 1900 and mostly used until 1950’s. They are occasionally used 

today for soft, shallow drilling prior to setting surface casing.  An advantage of drag bits over 

rolling cutter bits is that they do not have any rolling parts, which require strong, clean bearing 

surfaces.  

Diamond bits are preferred to other bit types while drilling non-brittle formations that 

show a high tendency to deform plastically under the bottomhole stress conditions 
(19)

. Diamond 

bits do not have cones; nor do they have teeth. Many diamonds are set in a tungsten carbide 

matrix on the face or crown of the bit 
(19)

. The size, shape, quality and quantity of diamonds are 
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of critical importance regarding the performance in different type of formations. Since diamonds 

are so hard, diamond bits are sometimes used to efficiently drill rock formations that are quite 

hard. They are also used to drill softer formations, such as shales and chalks effectively. The 

matrix diamond bit cuts rock by grinding.  

A new family of drag bits called polycrystalline diamond compact bits was introduced to 

the industry in the mid-1970. Polycrystalline diamond drill blanks composed of a layer of 

synthetic diamond bounded to a cemented tungsten carbide stud or blade at high pressure and 

high temperature are sintered as bit cutter elements
 (19)

. The design of the crown and the bit shape 

are unique features of PDC bits.  

PDC bits now hold the record for single-run footage in a well. PDC bits typically drill 

several times faster than roller cone bits, particularly in softer formations, and PDC bit life has 

increased dramatically over the past 20 years. This type of bit is designed to cut the rock by 

shearing. 

 

3.2.1.2 Rolling Cutter Bits 

Rolling cutter bits are also known as roller cone bits. It is composed of a body member on 

which there are inwardly facing rolling cutter cones that are rotatably mounted on the body. Each 

rolling cutter cone has circumferential rows around its peripheral surface and plenty of cutting 

inserts on the rows at least one of which intermeshes with a row on an adjacent cone 
(20)

. Roller 

cone bits may have two, three or four cones. The most common bit type used in rotary drilling 

operations is the three-cone rolling cutter bit 
(19)

 due to its ability to accommodate various 

formation characteristics with a large variety of tooth design and bearing types.  
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The cones rotate about their axis as the bit rotates with the drill string. Rolling cutter bit 

has two types of cutter; tungsten carbide insert cutters and milled tooth cutters. The tungsten 

carbide insert bits are manufactured by sintering tungsten carbide cylinders into the machined 

holes in the cone. The milled tooth cutters are manufactured by milling teeth out of steel rolling 

cones. Long steel teeth which are widely spaced are used to drill soft formations while relatively 

shorter teeth are needed to drill harder rocks to avoid tooth breakage. The life of the milled tooth 

bits is limited compared to bits with the cutting elements made of sintered tungsten carbide 

inserts. 

Dual cone and three-cone rolling bits were invented and patented by Howard R. Hughes, 

Sr., who allowed rotary drilling for oil in previously inaccessible places 
(21)

. Milled tooth cutter 

bit was the first type of rolling cutter bit used in the industry. Then, tungsten carbide inserts were 

introduced in the early 1950’s and defined as a revolution in rolling cutter drill bits since they 

significantly improved drill bit life 
(20)

. However, this type of bit requires a careful layout of 

cutting elements since carbide inserts are relatively smaller than milled teeth. 

 

3.2.2 Cutting Mechanisms of Drilling Bits 

The basic mechanisms of rock removal need to be understood well by the drilling 

engineer for a proper bit operation. These mechanisms are classified as a) wedging, b) scraping 

and grinding, c) erosion by fluid jet action, d) percussion or crushing, and e) torsion or twisting 

(19)
. All of these mechanisms are interrelated to each other to certain extent. In general, during the 

drilling process, more than one cutting mechanism is present. However, for each type of bit, 

there is one dominant mechanism of rock removal. In this section, the drag bits and the rolling 

cutter bits, the two basic rotary drilling bit types, will be discussed. 
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3.2.2.1 Cutting Mechanisms of Drag Bits 

The primary cutting mechanisms of drag bits is wedging. This mechanism causes drag 

bits dull so quickly and drill slowly.  The tooth is subjected to a vertical force from drill collar 

weight applied to the bit, and to a horizontal force from the torque applied to turn the bit. The 

resultant of the vertical and horizontal forces on the tooth establishes the plane of thrust of the 

tooth or wedge.  

The bottom cutting angle is a very important factor for the cutting efficiency during 

drilling. The wedge is prevented from dragging the hole bottom due to the angle existing 

between the cutter and the rock, however, the bit jumps and vibrations occur as a result of the 

bottom cutting angle and that leads to fast wearing of the bit. It is suggested that for optimum bit 

performance, small bottom cutting angles should be used since the wedging mechanism can be 

improved by a slight rake angle. 

The primary cutting mechanism of diamond drag bits is grinding. The design of diamond 

bits leads to a small penetration of the bit into the formation
 (19)

. 

 

3.2.2.2 Cutting Mechanisms of Rolling Cutter Bits 

Some types of rolling cutter bits apply all of the basic mechanisms of rock removal. 

These bit types are designed for soft formations and have a great cone offset angle. The other 

types of rolling cutter bits that are designed to drill hard and brittle formation apply percussion or 

crushing as predominant cutting mechanisms. Percussion drilling is of great economic interest 

while drilling hard rocks which cause low penetration rate and high drilling cost. There are 

various experimental tests conducted with a single tooth interacting with a rock sample to 

understand the failure mechanism below the bit tooth 
(19)

. 
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3.3 Factors Affecting Rate of Penetration 

Rate of penetration or penetration rate refers to the speed at which the drill bit can break 

the rock under it and thus deepen the wellbore. This speed is usually reported in units of feet per 

hour or meters per hour. 

The most important parameters that affect penetration rate are: 

a) Bit type, b) formation characteristics, c) drilling fluid properties, d) bit operating 

conditions (weight on bit and rotary speed), e) bit tooth wear, and f) bit hydraulics 
(19)

. 

Numerous studies have been conducted to understand the effect of these parameters on 

drilling rate. In this study; effect of formation characteristic, confining (fluid) pressure and bit 

operating conditions on penetration rate for PDC cutters have been considered and the related 

data were used in the model verification process. 

 

3.3.1 Bit Type 

Selected bit type has a great effect on the rate of penetration. The penetration rates for 

different types of bits may greatly vary for a specific condition as well as for a selected bit in 

different bit designs and/or drilling environments. For example, initial penetration rate is often 

the highest for rolling cutter bits when the bit has long teeth and a large cone offset angle. 

However, that type of design of rolling cutter bit is only appropriate for soft formations due to a 

rapid tooth wear and therefore a decrease in penetration rate in hard formations 
(19)

.  

Bit penetration depends on the number of blades and the bottom cutting angle for drag 

bits. The diamond and PDC bits are designed to achieve a certain rate of penetration per 

revolution depending on the selection of the size and number of diamonds or PDC blanks. The 
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depth of cut (also penetration rate) is limited by the length of the cutters projecting from the face 

of the bit 
(19)

. 

 

3.3.2 Formation Characteristics 

The most significant formation properties that influence the penetration rate are the 

elastic limit and ultimate strength of the rock. The strength of the formation can be characterized 

by the shear strength predicted by the Mohr failure criteria 
(19)

. To determine the shear strength, 

uniaxial test needs to be conducted. The angle of internal friction is essential to decide the shear 

strength and it can vary greatly, less than 10 for some very soft rocks and more than 50 for hard 

rocks.  

An important rock property is the permeability that affects the rate of penetration. 

Permeability lets the drilling fluid filtrate move into the rock ahead of the bit which results in a 

pressure equalization. Also, the nature of the fluids existing in the rock pore spaces affects this 

mechanism due to different filtrate volumes required to equalize the pressure in a rock with gas 

than in a rock with liquid
 (19)

. 

Penetration rate is also affected by the mineral composition of the rock since hard 

abrasive rocks may cause rapid dulling of the bit teeth and rocks containing sticky clay minerals 

may cause bit balling
 (19)

. 

 

3.3.3 Bit Weight and Rotary Speed 

Weight on bit and the rotational speed of the drill string are the two major operating 

factors affecting rate of penetration and bit life. The drilling engineer is expected to select the 

most appropriate bit weight and rotary speed which minimize the cost per foot considering the 
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effects of selected bit operating conditions, the possible hole problems, the fluid circulating rates 

and the equipment limitations.  

The optimum bit weight/ rotary speed to achieve minimum drilling costs can be 

calculated with the published methods that use the mathematical models to define the effect of 

bit weight and rotary speed on penetration rate and bit wear
 (19)

. 
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CHAPTER 4 

MODELING APPROACH 

4.1 Introduction 

This study presents a parametric model developed based on the geometry of the PDC 

single cutter using FLAC
3D

, a commercial finite difference software. This chapter presents the 

numerical modeling methodology for this study and the properties of the model. The parameters, 

such as dimensions of cutter and core, depth of cut, confining pressure, material properties 

(cohesion, tensile strength, and friction and dilation angles) were assigned as variables in the 

model algorithm and can be changed easily to study the cutting forces obtained for numerous 

different cases. The values of parameters were obtained from the published data and 

experimental work 
(2)

. 

  

4.2 FLAC Capabilities 

FLAC
3D

 is a three-dimensional explicit finite-difference program for engineering 

mechanics computation produced by Itasca Consulting Group 
(22)

. The program simulates the 

behavior of three-dimensional structures built of soil, rock or other materials that undergo plastic 

flow when their yield limits are reached. Materials are represented by three dimensional 

polyhedral elements whose size and shape can be adjusted depending on the shape of the object 

to be modeled. The behavior of each element is determined by a prescribed linear or non-linear 

stress/strain law in response to applied forces or boundary restraints. The material can flow and 

fail. The grid can deform and move with the yielding material in large-strain mode. FLAC
3D

 

models plastic collapse, failure and flow accurately using explicit, Lagrangian, calculation 

scheme and the mixed-discretization zoning technique. Large three-dimensional calculations can 



 

 

20 

 

be made without needing excessive memory since no matrices are formed. The shortcomings of 

the explicit formulation such as small time steps and the question of required damping are 

overcome by automatic inertia scaling and automatic damping that does not have effect in the 

mode of failure 
(22)

. FLAC
3D

 is an efficient tool to solve three-dimensional problems in 

geotechnical engineering. 

 FLAC
3D

, like finite-element solutions, translates a set of differential equations into 

matrix equations that relate the forces and displacements at the element nodes. The difference of 

FLAC
3D 

and finite
 
element methods is that in FLAC

3D
 the equations are derived by the finite-

difference method which leads a number of fundamental variations from the finite-element 

method. Those differences for FLAC
3D

 can be listed as: 

● “Mixed discretization” technique is used for accurate modeling of plastic flow. 

● Physically unstable processes can be modeled without numerical distress.  

● Nonlinearity in stress/strain laws can be followed in almost the same computer time as linear 

laws. 

● Various constitutive models and user-defined failure criteria can be handled. 

FLAC
3D

 has some additional features 
(22)

:  

● Deformable porous element grid and a viscous fluid flowing within the pore space can be fully 

coupled. 

● Thermal analysis option simulates transient heat flux of thermally induced stresses. The 

thermal model can be coupled to the mechanical stress and pore pressure calculations. 

● A powerful built-in programming language (FISH) is embedded within FLAC
3D

 that enables 

the user to define new variables and functions. 
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4.3 Numerical Set Up 

4.3.1 Model Generation 

The model developed to simulate the cutting behavior of a single PDC cutter is composed 

of a rock specimen and a PDC cutter on top of it as shown in Figures 4.1a and 4.1b. 

 

Figure 4.1 a) Single cutter interacting rock specimen. 

 

Figure 4.1 b) Single cutter interacting rock specimen, side view. 

4.3.1.1 Dimensions 

The model consists of a cutter with a diameter of 9 mm and a thickness of 7.5 mm and a 

shale core with a diameter of 12.5 cm. The core length was taken as five times the maximum 
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depth of cut (9.525 mm) used in the runs. The rock sample in the model was slightly larger in 

diameter and smaller in length compared to the core sample used in experiments. A shorter core 

was used to reduce the number of elements and decrease the calculation time considerably. The 

model runs were conducted for one revolution, where only 1.905 mm depth of cut was achieved. 

Therefore, the core length of 9.525 mm was used in the model to save run time since only 1/5 of 

the core in length was cut in the model. The same cutter offset was used in the model as in the 

experiments, and the difference in diameter does not affect the results as long as the cutter was 

placed at the same radial distance as in the laboratory tests.   

 

4.3.1.2 Mesh Density  

The core sample was represented with a cylinder whose mesh size is varied (Figure 4.1). 

The cutter is located above the middle part of the core; therefore smaller mesh size was assigned 

to that part where cutting process takes place. The use of varying mesh density allows the model 

run more efficiently with a proper representation of cutting-rock interaction. With a reduced 

number of elements in different parts of the model, the stress distribution in the rock was 

checked to verify that discontinuity does not exist across the material. Figure 4.2 below shows 

the horizontal stress distribution across the material. As seen in Figure 4.2, there is no 

discontinuity in stress on the boundaries of different mesh sizes. Higher stress is observed along 

the cut area and the cutter tip where the cutting process takes place. 
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Figure 4.2 Horizontal stress distribution across the formation and the cutter. 

 

4.3.2 Contact Definition 

Since the model is composed of two different bodies, it is necessary to define the contact 

between the cutter and the rock. FLAC
3D 

provides interfaces that are characterized by Coulomb 

sliding and/or tensile and shear bonding. The model has a continuously changing contact 

interface between the cutter and the rock as the bit penetrates and fails the rock matrix. 

Therefore, the interface was created on the cutter surface in this model and is shown in blue color 

in Figure 4.3 below. Interface properties used in this study are tabulated in Table 4.1. 
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Figure 4.3 The interface attached to cutter grids. 

 

Table 4.1 Cutter-Rock Interface Properties. 

Interface 

Normal Stiffness, kn 

(Pa/m) 

Shear Stiffness, ks 

(Pa/m) 

Friction Angle 

(degrees) 

PDC-Catoosa Shale            1e16     1e16    34, 36, 40 

 

Interfaces have the properties of friction and dilation angles, cohesion, normal and shear 

stiffnesses, and tensile and shear bond strength. When a grid surface on the core comes into 

contact with an interface element, the contact is detected at the interface node, and is 

characterized by normal and shear stiffnesses. Normal and shear stiffness values were calculated 

according to the shear and bulk moduli of the two materials, and the lowest stiffness, consistent 

with small interface deformation, was found to be 1x10
16

 Pa (Equation 4.1).  

A good rule-of-thumb is to use normal stiffness, kn and shear stiffness, ks values that are 

ten times the equivalent stiffness of the stiffest neighboring zone. When higher stiffnesses were 

specified, the response and solution convergence were observed to be slow. 
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 where K and G are the bulk and shear moduli, respectively; and ∆zmin is the smallest width of an 

adjoining zone in the normal direction. 

 

4.3.3 Rigid-Body Constraint 

A rigid body is composed of nodes, elements and/or surfaces and its motion is managed 

by the motion of the nodes. The relative positions of the nodes remain constant throughout the 

simulation if the model is in small strain analysis mode where the reference position is the 

configuration for which stiffness matrices have been formed and do not change. During a large-

strain analysis, the reference position is set equal to the current position during each large-strain 

update which lets the elements deform.  

 

4.3.4 Boundary Conditions 

The boundaries conditions in a numerical model such as force, stress and/or displacement 

are defined at the boundary of the numerical grid. In a model, mechanical, fluid-flow and thermal 

boundary conditions can be applied. In this study, mechanical boundary condition was applied. 

Mechanical conditions that can be applied at boundaries are of two main types: prescribed 

displacement or prescribed stress. For this model, axial and rotational displacements were 

applied to the nodes at the bottom of rock. Also, confining stress was applied to the top surface 

of the rock in the normal direction to simulate the pressure due to the drilling mud. The core was 

fixed in the horizontal x and y directions along its central vertical axis, the back plane of the 

cutter was fixed in all directions. The core was moved vertically up towards the cutter until a 
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certain penetration was obtained. Then, the core bottom was fixed in the vertical z direction in 

the model. 

 

4.3.4.1 Confining Pressure 

The confining pressure was applied to the top of the core in the model similar to the 

procedure followed in the experiments 
(2)

. The model runs were performed with 300, 1000 and 

3000 psi confining pressures. 

 

4.3.4.2 Velocity  

A velocity in the vertical axial direction was applied at grid points located at the bottom 

of the core, and a tangential velocity was applied at every grid point located on the perimeter of 

the core at the bottom. Axial velocity was applied as a mechanical boundary conditions to the 

external boundary of the model grid. An algorithm was developed to assign the correct tangential 

velocity vector due to the change in x and y coordinates of each grid point during the rotation of 

the core. The angle tangent to the perimeter was calculated at every step as the core rotates and 

the tangential velocity vector was assigned at every grid point in a direction tangent to the 

perimeter.  To save run time, the tangential velocity vector was updated every 10 steps since the 

change in the velocity vectors in between 10 steps was negligible. The majority of runs were 

performed with a velocity of 4e-7 meter/timestep. In FLAC
3D

, calculation time is represented 

with timesteps automatically determined by the program, and real time option is present only if a 

dynamic analysis is performed. In this study, dynamic analysis was not used. Instead, static, 

mechanical calculations were performed for the uniform slow motion. 
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4.3.5 Mechanical Damping  

The equations of motion need to be damped either automatically by the program or by the 

user commands to provide static or quasi-static (non-inertial) solutions. In FLAC
3D

, automatic 

damping is activated when the velocity component changes sign, i.e. when the velocity goes to 

zero at any time during the run, oscillations are damped automatically by the program. In 

situations where there is significant uniform motion (velocity is nonzero), oscillatory motion is 

dissipated by the user command. FLAC
3D

 has various damping algorithms for different static and 

dynamic analyses. The default damping algorithm for static analysis in FLAC
3D

 is local 

nonviscous damping where only accelerating motion is damped. An alternative damping 

algorithm is provided in FLAC
3D

 for situations in which the steady-state solution includes a 

significant uniform motion like in the case of the model in this study. This damping is called 

combined damping and is more efficient than local damping used for static analysis at removing 

kinetic energy for this special case. Combined damping is invoked with the SET mechanical 

damp combined command.  

 

4.3.6 Porosity and Pore Pressure 

The rock samples used in the experiments were obtained from outcrops and had zero pore 

pressures at the beginning of the experiment. Consistent with the actual core samples, no pore 

pressure was assigned in the model. The outcrop samples in the experiments were porous and 

saturated. In the model, porosity and saturation values were not assigned since those properties 

can only be assigned to the zones when a fluid-flow analysis is performed. In this study, fluid 

flow was not considered due to very low permeability of the shale formation. Also, the runs 

conducted with the fluid model did not converge to a solution under the given experimental 
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conditions. Therefore, changes in pore pressure due to the fluid saturation during the cutting 

process were neglected in this study. In the laboratory tests, the cutting experiments took very 

short time (few seconds) at a rotation speed of 273 rpm (revolution per minute). For the duration 

of the experiment, stress change in the pores was assumed to be negligible and it is not 

considered in the model.  

 

4.3.7 Choice of Model  

FLAC
3D

 has twelve built-in constitutive models each of which is developed to represent a 

specific type of material behavior. “Null” model represents the parts that are removed or 

excavated from the model. The elastic, isotropic model is used for homogeneous, isotropic, 

continuous materials that do not yield. The elastic, orthotropic model represents material that has 

elastic symmetry in three perpendicular planes. The elastic, transversely isotropic model is 

preferred when the elastic materials exhibit anisotropy. The Drucker-Prager plasticity model is 

not generally used to model geologic materials. The Mohr-Coulomb plasticity model is the 

conventional model. It is used for materials to represent shear failure. Yield stress only depends 

on the major and minor principal stresses not the intermediate principal stress. The ubiquitous-

joint model, an anisotropic plasticity model, is used to represent a material that has strength 

anisotropy due to plane of weakness. The strain-hardening/softening Mohr-Coulomb model 

represents nonlinear material softening and hardening behavior. The bilinear strain-softening 

ubiquitous-joint model allows material softening and hardening behavior based on the variations 

of ubiquitous-joint model. The double-yield model, which is an extension of the strain-softening 

model, is used to represent the material that has a considerable irreversible compaction. The 

modified Cam-clay model is used when the influence of volume change on bulk property and 
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resistance to shear are taken into consideration. The Hoek-Brown model is an empirical relation 

that incorporates a plasticity flow rule that changes as a function of the confining stress level 
(22)

. 

In this study, rock was modeled with strain-hardening/softening Mohr-Coulomb 

plasticity in the region where the cutting process took place and the cutter was modeled with a 

linear elastic model to prevent its failure.  

 

4.3.7.1 Material Failure Model for Rock 

The maximum strength of an intact rock can be approximated by a linear Mohr envelope 

whose shape is determined by its tensile and compressive strengths as well as the slope as shown 

Figure 4.4. When the Mohr circle corresponding to state of the stress in the rock touches the 

envelope, failure of the rock occurs. 
(8)

. 

 

Figure 4.4 Idealized failure envelopes for rock 
(8)

. 

The terms shown in Figure 4.4 are defined below: 

µ :  The slope of the Mohr envelope, 

t
σ :  Tensile strength, 

c
σ :  Compressive strength, 
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0τ :  Shear strength, 

σ :  Principal stress, 

τ :  Shear Stress, 

maxθ :  Arctan (slope of maximum strength failure envelope), 

r
θ :    Arctan (slope of residual strength failure envelope). 

 

4.3.7.1.1 Mohr-Coulomb Theory  

The Mohr-Coulomb model is a conventional model that represents shear failure in soils 

and rocks. According to Mohr-Coulomb failure criterion, failure of a rock occurs when the 

resolved shear stress on any plane in the rock attains a critical value. This relation is expressed 

as: 

( )φστ tan+±= c          (4.2) 

where τ is the shear strength, σ is the normal stress, c is the intercept of the failure envelope with 

the τ axis, and φ is the slope of the failure envelope. 

The relation given in Equation 4.2 forms a pair of straight lines in the σ: τ plane (Figure 

4.5). The failure occurs if Mohr’s circle of effective stress of the rock reaches these lines. In 

order for sliding to occur on any plane, it is assumed that the shear stress has to overcome a 

frictional resistance φσ tan , which is dependent on the effective normal stress σ acting on the 

plane and on a friction angle φ , together with the component c, which is independent of the 

normal stress. 

 Figure 4.5 defines Mohr-Coulomb failure in terms of principle stresses 
(23)

.
 
The limiting 

relationship between the major and minor principal effective stresses σI and σIII is given in 

Equation 4.3. 
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φ

φ

φσ

φσ

sin1

sin1

cot

cot

−

+
=

+

+

c

c

III

I                 (4.3) 

 

          τ   τ 

        

σ               σ 

 

 

(a) (b) 

            τ  

 

σ 

 

 

(c) 

Figure 4.5 Mohr-Coulomb failure. Intermediate principle stress (a) equal to minor principle 

stress, (b) truly intermediate, and (c) equal to major principle stress 
(23)

. 

 

In Figure 4.5a, the stress conditions shown with σII = σIII correspond to triaxial 

compression where the cell pressure provides the minor (and equal intermediate) principle stress. 

If Expression 4.3 is rewritten in terms of triaxial stress variables p: q, where  

3

2
IIIIp

σσ +
=          (4.4) 

 

IIII
q σσ −=              (4.5)  

σI σI 

σI 

σII σII 

σIII 

σII 

σIII σIII 
● ● ● ● ● 

● ● 
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The relationship becomes: 

φ

φ

φ sin3

sin6

cot −
=

+ cp

q
         (4.6) 

In Figure 4.5c, the stress conditions shown with σII = σI correspond to triaxial extension 

where the cell pressure provides the major (and equal intermediate) principle stress. The relation 

for triaxial stress variable p is given in Equation 4.7 

     
3

2
IIIIp

σσ +
=             (4.7) 

and Equation 4.3 can be rewritten as in Equation 4.8: 

           
φ

φ

φ sin3

sin6

cot +

−
=

+ cp

q
                (4.8) 

The expressions 4.6 and 4.8 can be plotted as in Figure 4.6 and the negative sign has been 

assigned to values of q in triaxial extension for the convenience 
(23)

.  

 

 

 

 

 

 

 

Figure 4.6 Mohr-Coulomb failure criterion 
(23)

. 
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4.3.7.2 Shear Hardening/Softening Mohr Coulomb Model 

In FLAC
3D

, the strain-softening behavior is controlled by the variation in friction angle, 

cohesion and dilation angle as a function of plastic shear strain and the variation of tensile 

strength as a function of plastic tensile strain 
(22)

. The strain-softening model assumes both a 

brittle softening (due to reduction in cohesion) and a gradual softening (due to a reduction in 

friction angle). 

When the plastic yield begins, a gradual process of material hardening or softening is 

initiated. The deformation becomes more and more inelastic at failure resulting from micro-

cracking in rock and concrete or particle sliding for soil. In addition, degradation of strength and 

the initiation of shear bands start in the material.  

In FLAC
3D

, shear hardening and softening are simulated by defining Mohr-Coulomb 

model properties such as cohesion, friction and dilation angles as a function of plastic strain and 

tensile strength as a function of tensile strain. Hardening and softening parameters are generally 

back-calculated from laboratory triaxial test results and must be calibrated for each specific 

analysis 
(22)

. It should be noted that knowledge of material properties after failure is very limited.  

 

4.3.8 Material Properties 

Material properties of the PDC cutter and the formation properties used in this study are 

given in Tables 4.2 and 4.3, respectively. The properties used in the model were obtained from 

the literature 
(2, 18, 24)

, and from the default values given in the software 
(22)

, also from the direct 

shear tests conducted with Catoosa shale 
(2)

.  
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Table 4.2 Material properties of PDC cutter. 

 

 

 

 

 
Table 4.3 Ranges of material properties for shale used in the model. 

 

 

4.3.8.1 Direct Shear Test Results 

 

In this study, direct shear tests conducted by Smith 
(2)

 were evaluated and the material 

properties were calculated from the results of the tests. He conducted tests with Catoosa shale 

with four different fluids; air, water, oil, water based mud. Shear stress and normal stress 

measurements were given below for three different stages of failure {A) fracture initiation, B) 

peak failure, and C) residual failure}. Friction angle and cohesion were calculated from shear 

stress versus normal stress plot. Intercept of the plot is equal to the cohesion and arc tangent of 

slope equals to the friction angle value. Average cohesion and friction angle used in the initial 

model runs were calculated from the peak failure stress plot in Figure 4.9 and tabulated in Table 

4.6.  

 

 

Material Density, kg/m3 Bulk Modulus, GPa Shear Modulus, GPa 

PDC 3830 345 416 

Material 
Density,  

kg/m3 

Bulk 

Modulus, 

GPa 

Shear 

Modulus, 

GPa 

Cohesion, 

MPa 

Internal 

Friction  

Angle, 

degrees 

Dilation 

Angle, 

degrees 

Tensile 

Strength, 

MPa 

Catoosa 

Shale 
2700 8.8 4.3 8-36 14-30 0-15 0-14.4 
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A) Fracture Initiation:  

 

The shear stress and normal stress measurements are listed in Table 4.4 for air, water and 

oil as confining fluids when the initial fracture started in the material 
(2)

. 

Table 4.4 Shear and normal stress measurements under different fluids 
(2)

. 

 

 
Shear Stress, 

psi 
Normal Stress, 

psi 

Air 1998 992 

Water 815 1087 

806 941 
Oil 

194 96 

 

Based on the available data, friction angle and cohesion were calculated for the 

experiment conducted with oil as the drilling fluid. Figure 4.7 shows the plot of data used for 

calculations of friction angle and cohesion (Table 4.5). 

 
 

Figure 4.7 Shear stress versus normal stress plot for Catoosa shale with oil (fracture initiation)
(2)

.
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Table 4.5 Average friction angle and cohesion

 (2)
.
  
 

 

Cohesion 
Fluid 

Friction 
Angle, 

degrees Psi MPa 

Oil 36 124.47 0.9 

 

 

where  

Cohesion = intercept 

Friction angle =arc tan (slope) 

 

B) Peak Failure Stress (at failure): 

The shear stress and normal stress measurements for Catoosa shale with four different 

confining fluids are listed in Table 4.6 and plotted in Figure 4.8 for peak stress ratios. 

 

Table 4.6 Shear and normal stress measurements under different fluids 
(2)

. 

 

Fluid 
Shear Stress, 

psi 
Normal Stress, 

 psi 

1998 992 

1101 853 Air 

3146 8072 

1658 2284 
Water 

1791 1530 

1514 1617 

1029 626 Oil 

3113 7804 

1582 381 Water 
Based 
Mud 805 1186 
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Figure 4.8 Shear stress versus normal stress plot for Catoosa shale (at failure)
 (2)

.
  
 

 

 

The calculated friction angle and cohesion values for the experiments conducted with air 

and oil drilling fluids along with their average values are listed in Table 4.7  

 
Table 4.7 Average friction angle and cohesion 

(2)
.
  
 

 

Cohesion 
Fluid 

Friction 
Angle, 

degrees Psi MPa 

Air 12.7 1337.7 9.2 

Oil 15.6 950.83 6.6 

Average 14 1144 8 

 

 

C) Residual Stress (during failure): 

 

The results from the experiments conducted with Catoosa shale using four different 

confining fluids are listed in Table 4.8 and the shear stress versus normal stress values are plotted 

in Figure 4.9. The calculated friction angle and cohesion for the tests with air and oil along with 

their average values are given in Table 4.9. 
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Table 4.8 Shear and normal stress measurements under different fluids 
(2)

.
  
 

 

 
Shear Stress, 

psi 
Normal Stress, 

psi 

275 692 

202 369 Air 

1771 7678 

345 638 
Water 

368 660 

366 800 

351 595 Oil 

2117 7921 

463 665 Water 
Based 
Mud 324 555 

 

 

  
 

Figure 4.9 Shear stress versus normal stress plot (during failure)
 (2)

.
  
 

 

 

Table 4.9 Average friction angle and cohesion 
(2)

.
  
 

 

Cohesion  
Fluid 

Friction 
Angle, 

degrees Psi MPa 

Air 12.1 124.7 0.86 

Oil 13.7 189.02 1.3 

Average 13 156.9 1.1 
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4.3.9 Post Failure Properties 

The behavior of deformation in the rock was simulated with a strain-softening model. 

The strain-hardening/softening behavior is controlled by the variations in friction angle, cohesion 

and dilation angle as a function of plastic shear strain as well as the variation of tensile strength 

as a function of plastic tensile strain in the model. The rock mass behaves as a strain-softening 

material with a total loss of cohesion and a drop in friction angle. Softening behavior of the rock 

is illustrated below in Figure 4.10 for the cohesion strength of the rock as a function of plastic 

shear strain for three different behaviors. A higher amount of drop is observed in the first plot 

represented by square blocks in blue. When the relationship is approaching to a linear drop 

represented by triangle blocks in green, a less rapid loss of cohesion is observed in the material. 
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Figure 4.10 Example of different softening behavior of the rock (drop in cohesion). 

 

Another illustration of post failure behavior of the material is given in 4.11 for three 

different plastic shear strain values. Failure may occur when the material reaches a certain plastic 
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strain. In Figure 4.11, plots represent the shear failures that occur at different amount of plastic 

strain values (10%, 20% and 30%). 
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   Figure 4.11 Example of softening behaviors of the rock (drop in cohesion) for different plastic 

shear strain values. 

 

4.3.10 Step and Analysis Procedure 

A basic concept in FLAC
3D

 is the division of the problem history into “steps”. The step 

sequence provides a convenient way to capture changes in the loading and boundary conditions 

of the model, changes in the way parts of the model interact with each other, the removal or 

addition of parts, and any other changes that may occur in the model during the course of the 

analysis. 

FLAC
3D

 can also perform automatic time stepping by using the “solve” command for 

mechanical static calculations. When the unbalanced force ratio reaches 1 × 10
-5

, the steady-state 

solution is detected. However, if the model is not equilibrium and the unbalanced force never 

approaches zero, then the model should be executed by timesteps.  The number of calculation 

steps to execute is controlled by the user and there is no limitation 
(25)

. In this study, the model 
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was run by using the “step” command since the unbalanced force never approached zero and the 

model was not in equilibrium.  

 

4.3.11 Element Removal 

When the shear and/or tensile failure criteria are met for a zone, all the stress components 

are set to zero and that zone is removed from the model. In this study, the elements are removed 

when plastic shear strain for a zone reaches 0.4 (40%), and the plastic tensile strain reaches 0.2 

(20%).  

 

4.3.12 Tangent Force Calculation  

In the model, average axial and tangential forces on the cutter were calculated for a given 

depth of cut. During the initial runs of the model, the forces required to rotate the core were 

observed to deviate from tangent to the core perimeter based on the force vector plot as well as 

force plot. Vibration in the core during the cutting process was attributed for this behavior. In 

addition, the force applied on the bottom of the core was expected to be equal to the reaction 

forces developed on the cutter. A new algorithm was developed to calculate the resultant forces 

in the tangent direction to the core; however this routine increased the execution time.  

After making the necessary modifications to the algorithm in the model, it was proved 

that the model runs accurately according to Newton’s third law of motion which states that 

“every action has an equal and opposite reaction”. In the model, the vertical forces applied on the 

bottom of the core were equal but in the opposite direction to the reaction forces developed on 

the cutter in vertical direction. Similarly, the tangential force that rotates the core was equal and 

in the opposite direction to the reaction force on the cutter in horizontal x-axis (Figure 4.12).  
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Figure 4.12 Horizontal x-forces on the cutter and core tangential force. 
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CHAPTER 5 

SENSIVITY RUNS &  

RESULTS AND DISCUSSIONS 

 

5.1 Introduction 

Initial runs were conducted to debug the model runs and eliminate all computational 

errors. The next step was to calibrate the model with the experiments conducted with different 

confining pressures. In this study, the normal and tangential forces in the model required to 

achieve 1.905 mm depth of cut were calculated by an algorithm during the model runs. The rock 

cutting model after one revolution of cutter is represented in Figure 5.1. The forces calculated at 

each step were then exported to an excel sheet to calculate the average forces. The results were 

then compared with the experimental test results. Various runs were conducted with different 

material and post failure properties of the rock until the model calculated forces were in a fair 

match with the experimental results. In addition, the effects of varying several of the parameters 

on the resulting forces were investigated. It should be noted that it is very difficult to obtain the 

material properties for a specific rock without physical tests conducted in the laboratory. In 

addition, it is even harder to predict post failure properties of a formation to analyze the strain-

softening rock behavior, which is an important factor for the required cutting forces. The inputs 

of experimental data along with the input data used in the model are given in Appendix A.  

In this study, numerous runs were conducted during the debugging and the calibration 

process for the model, and the best results are reported in the thesis. 
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Figure 5.1 Catoosa Shale with a depth of cut of 1.905 mm (0.075 in) after one full revolution. 

 

5.2 Effect of Pressure  

The experiments were conducted with Catoosa Shale under different confining pressures 

using a cutting depth of 0.075 inch (1.905 mm) to study the effect of confining pressure on the 

axial and tangential cutting forces. 10 degrees of back rake angle was used in all tests. The cutter 

was set at 0.03143 m away from the center of the core. Table 5.1 below shows the range of 

pressures used in the laboratory tests and the corresponding forces recorded in metric units.  

Table 5.1 Average axial and tangential forces measured in laboratory tests conducted 

with different confining pressures 
(2)

. 

 EXPERIMENT 1 EXPERIMENT 2 EXPERIMENT 3 

Confining  
Pressure, Pa 

2.07E+06 6.89E+06 2.07E+07 

Average  
Axial Force, N 

938 1232 2046 

Average  
Tangential 
Force, N 

801 1147 2139 

Force Ratio, 
FT/FA 

0.85 0.93 1.05 
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5.2.1 Runs Conducted at 2.07 MPa Confining Pressure 

The first experiment examined in this study was conducted at 2.07 MPa (300 psi) 

confining pressure. The runs were performed using Catoosa shale under 2.07 MPa confining 

pressure as reported in the experimental study 
(2)

. Some of the material properties for Catoosa 

shale were obtained from available data in the literature and other properties not available in the 

literature were predicted using commonly accepted range of values or default values of the 

software for shales were used. Friction angle and cohesion were estimated from the direct shear 

test conducted for Catoosa shale 
(2)

. The average friction angle calculated from the direct shear 

tests conducted with different fluids was 14
 
degrees and the average cohesion was 8 MPa. The 

graphs and calculations for direct shear test were given in Chapter 4.  However, dilation angle 

and tensile strength were predicted according to the available values for shale in the literature.  

The first run was performed with the parameters tabulated in Table 5.2 and the results 

from model calculations for axial and tangential forces are given in Table 5.3. The interface 

friction angle between the Catoosa Shale and the PDC cutter was calculated as 40 degrees from 

experimental results 
(2)

 using Equation 5.1 
(25)

.  

θψ −







=

−

x

y

F

F
1

tan                      (5.1) 

where ψ  is interfacial friction angle on cutting face, yF is the axial force component, 
x

F is the 

tangential force component, θ  is cutter back rake angle. 

 Detournay 
(25)

 proposed that ψ  can be determined from the measurements of axial and 

tangential components of the cutting force F (Figure 5.2) according to the cutting experiments 

carried out. In addition, he states that interface friction angle changes under different confining 

stress conditions.  
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Figure 5.2 Sketch of a cutter-rock interaction under down-hole conditions 
(25)

. 

 

 

The terms shown in Figure 5.2 are defined below: 

 

  pm = mud pressure (bottom-hole) (Pa) 

  po = virgin pore pressure (Pa) 

  pb = pore pressure in the failed zone (Pa) 

  v = linear velocity of cutter (m/s) 

  d = depth of cut (m) 

  θ = back rake angle of cutter (degree) 

 

Table 5.2 Material properties used for the initial run. 

 

Material 
Density,  

kg/m3 

Bulk 

Modulus, 

GPa 

Shear 

Modulus, 

GPa 

Cohesion, 

MPa 

Internal Friction  

Angle, degrees 

Dilation 

Angle, 

degrees 

Tensile 

Strength, 

MPa 

PDC 3830 345 416 - - - - 

Catoosa 

Shale 
2700 8.8 4.3 8 14 10 14.4 
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The calculated axial and tangential forces are much less than the experimental results 

(Table 5.3). Deviations from experimental results were calculated using Equation 5.2 and very 

high values were obtained. Therefore, to decrease the deviations in the model calculated forces 

from the experimental results, more runs were performed by varied parameters. Only, one 

parameter was changed at a time to investigate the effect of each parameter on the cutting forces 

and results were again compared with experimental results to determine the net deviation. During 

this process, the effect of each parameter on the forces was investigated and adjustments were 

made for the next runs. Various runs were performed until a close match with the experimental 

results was obtained.  

100
Pr

% x
alValueExperiment

alValueExperimentueedictedValModel
Deviation

−
=     (5.2) 

  Table 5.3 Axial and tangential force results for initial run. 

 

Average 
Axial 

Force, FA  
N 

Average  
Tangential 
Force, FT 

N 

 
 

Deviation 
from 

Experimental 
Axial Force 

(%) 

Deviation from 
Experimental 

Tangential 
Force 
(%) 

Run 1 58 61 1.05 -93.8 -92.4 

 

5.2.1.1 Effect of Friction Angle 

Internal friction angle (ϕ) for most rocks falls within the range from 15
o
 to 45

o (27)
. 

Average friction angle calculated from the shear tests conducted with different fluids is 14 

degrees. In the model, three runs were conducted to determine the effect of friction angle on the 

resultant axial and tangential forces. 

The input value for the variation of dilation angle and cohesion as a function of plastic 

shear strain are shown in Table 5.4 for Runs 1, 2 and 3. Friction angle and plastic shear strain 

A

T

F
F
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relationships used in the model are given in Table 5.5 and plotted in Figure 5.3. Table 5.6 shows 

the variation in tensile strength as a function of plastic tensile strain employed in Runs 1, 2 & 3. 

 

         Table 5.4 Dilation angle and cohesion as a function of plastic shear strain (Runs 1, 2 & 3). 

Plastic 
Shear 
Strain  

(%) 

Cohesion 
(MPa) 

Dilation 
Angle 

(degrees) 

0 8 10 

2 5.56 8 

7 3.1 6 

20 0 5 

100 0 5 

 

Table 5.5 Friction angles as a function of plastic shear strain (Runs 1, 2 & 3). 

Friction Angle 
(degrees) 

Plastic 
Shear 
Strain  

(%) Run 1 Run 2 Run 3 

0 14 20 20 

2 13 18 18 

7 11 14 16 

20 10 10 16 

100 10 10 16 

 

Table 5.6 Tensile strength as a function of plastic tensile strain (Runs 1, 2 & 3). 

Plastic Tensile 
Strain  

(%) 

Tensile 
Strength  

(Mpa) 

0 14.4 

2 8 

7 3 

10 0 

100 0 
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Figure 5.3 Variation of friction angle as a function of shear strain (Runs 1, 2 & 3). 

 

The experimental data consisted of average axial and tangential forces. The axial and 

tangential force results of the model were based on the arithmetic average of axial and tangential 

forces calculated for every time step during the model runs.  

 The comparison of the experimental and model predicted forces is listed in Table 5.7 

together with the percent deviation of model predicted values from experimental results as well 

as the percent difference between two model results conducted with different parameters. The 

percent differences were calculated with Equation 5.3. 

   100% x
ueInitialval

ueInitialvalFinalvalue
Difference

−
=                              (5.3) 

Table 5.7 Effect of friction angle on axial and tangential forces on the cutter for Catoosa Shale. 

 

Average 
Axial 

Force, 
FA  N 

Average  
Tangential 
Force, FT 

N 

 
 

Difference 
in Axial 
Force 
(%) 

Difference 
in 

Tangential 
Force 
(%) 

Deviation 
from 

Experimental 
Axial Force 

(%) 

Deviation from 
Experimental 

Tangential 
Force 
(%) 

Run 1 58 61 1.05 - - -93.82 -92.38 

Run 2 59 62 1.05 2 2 -93.71 -92.26 

Run 3 60 66 1.1 3 8 -93.61 -91.76 

A

T

F
F
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With a six degree increase in friction angle for the Catoosa shale, a 2% increase was 

observed for the calculated axial and tangential forces. Additional increase of 1% and 6% were 

achieved for axial and tangential forces respectively by increasing the residual friction angle by 

six degrees (Run 3). This observation is consistent with formation characteristics where higher 

friction angles require higher forces to fail.  

 

5.2.1.2 Effect of Plastic Shear Strain at Failure Point 

Shales behave as consolidated materials and can exhibit a ductile response under different 

loading conditions. Some runs were performed by assigning a more ductile behavior to the shale. 

The plastic shear strain value at the failure point was 20% for the friction angle sensitivity runs. 

The run for plastic shear strain effect was conducted with the new value of 30% shear strain, and 

all others parameters were kept the same as in Run 3. The functional relations for cohesion, 

dilation and friction angles are given in Table 5.8 for Run 3. 

 

Table 5.8 Cohesion, dilation and friction angles as a function of plastic shear strain (Run 4). 

 

 

 

 

 

 

 

Plastic 
Shear 
Strain  

(%) 

Cohesion 
(MPa) 

Dilation 
Angle 

(degrees) 

Friction 
Angle 

(degrees) 

0 8 10 20 

2 5.56 8 19 

7 3.1 6 17 

30 0 5 16 

100 0 5 16 
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The tensile strength as a function of plastic tensile strain used in the previous runs was 

employed for this case (Table 5.6). The results for Runs 3 and 4 conducted with 20% and 30% 

shear strain failure are given in Table 5.9. 

 

Table 5.9 Effect of plastic shear strain at failure point on axial and tangential forces on the cutter 

for Catoosa Shale. 

 

Average 
Axial 

Force, 
FA  N 

Average  
Tangential 
Force, FT 

N 

 
 Difference 

in Axial 
Force 
(%) 

Difference 
in 

Tangential 
Force 
(%) 

Deviation 
from 

Experimental 
Axial Force 

(%) 

Deviation 
from 

Experimental 
Tangential 

Force 
(%) 

Run 3 60 66 1.1 - - -93.61 -91.76 

Run 4 85 99 1.16 42 50 -90.94 -87.64 

 

The increase in the value of shear strain by 50% increased the model predicted values 

around 50% (Table 5.9); however, the results continued to deviate considerably from the 

measured laboratory values.  

 

5.2.1.3 Effect of Cohesion 

To study the effect of cohesion on the predicted forces, the cohesion value used in the 

earlier runs was increased. The upper range for shale cohesion given in the literature is around 38 

MPa. The average cohesion calculated from the direct shear test results (8 MPa) was used in Run 

4. Two new runs were performed with different cohesion relationships while friction angle, 

dilation angle and tensile strength values were kept the same as in Run 4. Cohesion as a function 

of plastic shear strain for Runs 4, 5 and 6 are shown in Table 5.10 and plotted in Figure 5.4. 

 

A

T

F
F
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Table 5.10 Variation in cohesion as a function of plastic shear strain (Runs 4, 5 & 6). 

Cohesion (MPa) Plastic 
Shear 
Strain 

(%) 
Run 4 Run 5 Run 6 

0 8 10 15 

2 5.56 7.56 12.56 

7 3.1 5.1 8.1 

30 0 0 0 

100 0 0 0 
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Figure 5.4 Variation in cohesion as a function of shear strain (Runs 4, 5 & 6). 

 

Table 5.11 lists the results for axial and tangential force calculations. As a result of 20% 

increase in cohesion, the axial and tangential forces increased around 30% and, forces on the 

cutter were increased by 115% with an increase of 88% in cohesion. The calculated force 

changes were in proportion to the changes in cohesion. In addition, the ratio between tangential 

force and axial force,
A

T

F
F

 in each run did not change considerably.   
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Table 5.11 Effect of cohesion on axial and tangential forces on the cutter for Catoosa Shale. 

 

Average 
Axial 

Force, FA  
N 

Average  
Tangential 
Force, FT 

N 

 
 

Difference 
in Axial 
Force 
(%) 

Difference 
in 

Tangential 
Force 
(%) 

Deviation from 
Experimental 
Axial Force 

(%) 

Deviation 
from 

Experimental 
Tangential 

Force 
(%) 

Run 4 85 99 1.16 - - -90.94 -87.64 

Run 5 116 128 1.10 36 29 -87.64 -84.01 

Run 6 186 207 1.11 119 109 -80.18 -74.15 

 

5.2.1.4 Effect of Tangential Velocity  

Two runs (Run 7 and Run 8) were performed with rotational velocities of 4x10
-7

 and 

8x10
-7

 m/step and other properties were kept same as in Run 5 conducted with 2e-7 m/step 

rotational speed.  

The axial and tangential forces calculated for Runs 7 and 8 are listed together with results 

for Run 5 in Table 5.12. With an increase in tangential velocity, an additional increase in forces 

was observed. However, the force increase was attributed to the increase in the oscillations due 

to higher rotational velocity used in the model.  

Runs presented in the following sections were conducted with a velocity of 4e-7 m/step 

until a close match was reached for the desired force values. Use of a higher velocity reduced the 

model run times. The velocity value of 8e-7 was not used due to larger % difference between 

axial and tangential forces resulted from higher increase in tangential force. When the velocity 

was increased to 4e-7 m/step from 2e-7 m/step, both the axial and tangential force deviations 

were decreased by 3%. However, when a velocity of 8e-7 m/step was used, the tangential force 

deviation was decreased by 10% while the axial force deviation was decreased by 7%. It was 

observed that when the velocity was increased over 4e-7 m/step, its effect was more pronounced 

in tangential force. Since the same or close amount of deviation of both model calculated forces 
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from experimental results was more favorable to match both forces at the same time, the velocity 

of 4e-7 m/step was used in the model runs. 

 

 Table 5.12 Effect of tangential velocity on axial and tangential forces on the cutter for Catoosa 

Shale. 

 

Average 
Axial 

Force, FA  
N 

Average  
Tangential 
Force, FT 

N 

 
 Difference 

in Axial 
Force 
(%) 

Difference 
in 

Tangential 
Force 
(%) 

Deviation 
from 

Experimental 
Axial Force 

(%) 

Deviation 
from 

Experimental 
Tangential 

Force 
(%) 

Run 5 116 128 1.10 - - -87.64 -84.01 

Run 7 129 154 1.19 11 20 -86.26 -80.77 

Run 8  148 200 1.35 28 56 -84.23 -75.02 

 

5.2.1.5 Effect of Plastic Shear Strain and Post Failure Properties Relationship  

A run was conducted with new plastic shear and tensile strain relationships using the 

material properties of Run 7 with a linear relationship between the variation of cohesion, friction 

angle, dilation angle, tensile strength and plastic strains as shown in Tables 5.13 and 5.14, 

respectively.  

 

Table 5.13 Variation in friction angle, dilation angle and cohesion as a function of plastic shear 

strain (Run 9). 

 

Plastic 

Shear 

Strain  

(%) 

Friction 

Angle 

(degrees) 

Dilation 

Angle 

(degrees) 

Cohesion 

(MPa) 

0 20 10 10 

30 16 5 0 

100 16 5 0 
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Table 5.14 Tensile strength as a function of plastic tensile strain (Run 9). 

Plastic 
Tensile 
Strain  

(%) 

Tensile 
Strength 

(MPa) 

0 14.4 

10 0 

100 0 

 

In this run, the calculated forces increased by an average of 33% compared to the 

previous run (Run 7) as shown in Table 5.15. 

 

Table 5.15 Effect of linear decrease in properties on axial and tangential forces on the cutter for 

Catoosa Shale. 

 

Average 
Axial 

Force, 
FA  N 

Average  
Tangential 
Force, FT 

N 

 
 

Differen
ce 

in Axial 
Force 
(%) 

Difference 
in 

Tangential 
Force 
(%) 

Deviation 
from 

Experimental 
Axial Force 

(%) 

Deviation from 
Experimental 

Tangential 
Force 
(%) 

Run 7 129 154 1.19 - - -86.26 -80.77 

Run 9 169 208 1.23 31 35 -81.99 -74.02 

 

To improve predictions and increase the calculated axial and tangential forces, the 

ductility of shale was increased by using 40% shear strain for the failure point. Variations of 

properties used in Run 10 are tabulated in Table 5.16. Tensile strength values used in this run are 

listed in Table 5.14 under Run 9. 
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Table 5.16 Friction angle, dilation angle and cohesion as a function of plastic shear strain 

 (Run 10). 

 

 

As a result of the increase in shale ductility, the predicted axial and tangential forces 

increased by 37% and 47%, respectively (Table 5.17). 

 

Table 5.17 Effect of plastic shear strain at failure point on axial and tangential forces on the 

cutter for Catoosa Shale. 

 

Average 
Axial 

Force, FA  
N 

Average  
Tangential 
Force, FT 

N 

 
 Difference 

in Axial 
Force 
(%) 

Difference 
in 

Tangential 
Force 
(%) 

Deviation 
from 

Experimental 
Axial Force 

(%) 

Deviation 
from 

Experimental 
Tangential 

Force 
(%) 

Run 
9 

169 208 1.23 - - -86.26 -80.77 

Run 
10 

232 305 1.32 37 47 -81.99 -74.02 

 

The initial cohesion property was increased by two fold (20 MPa) and an additional run 

was conducted (Run 11). The variations in friction and dilation angles and tensile strength for 

this run were kept the same as in Run 10. Results yield 84% and 75% increase in axial and 

tangential forces, respectively (Table 5.18). 

 

 

 

Plastic 
Shear 
Strain  

(%) 

Friction 
Angle 

(degrees) 

Dilation 
Angle 

(degrees) 

Cohesion 
(MPa) 

0 20 10 10 

40 16 5 0 

100 16 5 0 
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Table 5.18 Effect of cohesion on axial and tangential forces on the cutter for Catoosa Shale. 

 

Average 
Axial 

Force, FA  
N 

Average  
Tangential 
Force, FT 

N 

 
 Difference 

in Axial 
Force 
(%) 

Difference 
in 

Tangential 
Force 
(%) 

Deviation 
from 

Experimental 
Axial Force 

(%) 

Deviation from 
Experimental 

Tangential 
Force 
(%) 

Run 
10 

232 305 1.32 - - -75.28 -61.91 

Run 
11 

428 535 1.25 84 75 -54.40 -33.18 

 

The results indicate the importance of cohesion on the model calculated forces. The 

highest value for cohesion reported in the literature for shales is 38.4 MPa and it is higher than 

the value used in the calculations. Both the cohesive strength and ductile behavior of the shale 

are very effective in increasing the modeled forces. 

 

5.2.1.6 Effect of Tensile Strength  

Once the predicted forces increased with cohesion control, another run was conducted 

with a lower initial value for tensile strength to investigate its effect on the cutting forces. Shale 

tensile strength was decreased by 50% to 7.2 MPa since the value of 14.4 MPa used in the 

previous run is close to the upper limit of tensile strength in shales (Run 12). Other properties 

were the same as in Run 11. As a result of reduction in tensile strength, the calculated values for 

axial and tangential forces were reduced by 13% (Table 5.19). 
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Table 5.19 Effect of tensile strength on axial and tangential forces on the cutter for Catoosa 

Shale. 

 

Average 
Axial 

Force, FA  
N 

Average  
Tangential 
Force, FT 

N 

 
 

Difference 
in Axial 
Force 
(%) 

Difference 
in 

Tangential 
Force 
(%) 

Deviation 
from 

Experimental 
Axial Force 

(%) 

Deviation 
from 

Experimental 
Tangential 

Force 
(%) 

Run 
11 

428 535 1.25 - - -54.40 -33.18 

Run 
12 

372 467 1.26 -13 -13 -60.37 -41.67 

 

5.2.1.7 Effect of Dilation Angle 

To understand the effect of dilation angle on calculated forces, a run was conducted with 

the same formation properties as Run 11 and the dilation angle was increased by 50% to 15 

degrees from 10 degrees.  

The net effect of dilation angle increase to 15 degrees was to lower the model calculated 

forces (Table 5.20). This reduction was more significant for the tangential force. 

 

Table 5.20 Effect of dilation angle on axial and tangential forces on the cutter for Catoosa Shale. 

 

Average 
Axial 

Force, FA  
N 

Average  
Tangential 
Force, FT 

N 

 
 Difference 

in Axial 
Force 
(%) 

Difference 
in 

Tangential 
Force 
(%) 

Deviation 
from 

Experimental 
Axial Force 

(%) 

Deviation from 
Experimental 

Tangential 
Force 
(%) 

Run 
11 

428 535 1.25 - - -54.40 -33.18 

Run 
13 

382 427 1.12 -11 -20 -59.30 -46.67 

 

Since a change in cohesion results in the large changes in both axial and tangential forces, 

cohesion was increased from 20 MPa (Run 11) to 30 MPa (Run 13) to increase the accuracy of 

the model calculations. This modification in cohesion is inline with the properties of shales used 
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in the literature. As a result of the increase in cohesion, the predicted axial and tangential forces 

increased by 31% and 25%, respectively (Table 5.21). 

 

Table 5.21 Effect of cohesion on axial and tangential forces on the cutter for Catoosa Shale. 

 

Average 
Axial 

Force, FA  
N 

Average  
Tangential 
Force, FT 

N 

 
 Difference 

in Axial 
Force 
(%) 

Difference 
in 

Tangential 
Force 
(%) 

Deviation 
from 

Experimental 
Axial Force 

(%) 

Deviation from 
Experimental 

Tangential 
Force 
(%) 

Run 
11 

428 535 1.25 - - -54.40 -33.18 

Run 
14 

562 671 1.19 31 25 -40.12 -16.20 

 

The dilation angle given in the literature for most rocks is between 0-15
 
degrees. Dilation 

angle has a reverse effect when its value was increased to 15 degrees. In order to improve the 

model predictions with dilation angle, new runs were conducted with the lower dilation angle 

values of five
 
and zero degrees (Table 5.22).  

 

Table 5.22 Dilation angle as a function of plastic shear strain (Runs 15 & 16). 

Dilation Angle 
(degrees) 

Plastic 
Shear 
Strain  

(%) Run 15 Run 16 

0 5 0 

40 3 0 

100 3 0 

 

Net effect of dilation angle change was to increase tangential force more than the axial 

force and to create a difference in the magnitude of calculated forces (Table 5.23). 
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Table 5.23 Effect of dilation angle on axial and tangential forces on the cutter for Catoosa Shale. 

 

Average 
Axial 

Force, FA  
N 

Average  
Tangential 
Force, FT 

N 

 
 Difference 

in Axial 
Force 
(%) 

Difference 
in 

Tangential 
Force 
(%) 

Deviation 
from 

Experimental 
Axial Force 

(%) 

Deviation from 
Experimental 

Tangential 
Force 
(%) 

Run 
14 

562 671 1.19 - - -40.12 -16.20 

Run 
15 

656 846 1.29 17 26 -30.11 5.66 

Run 
16 

623 857 1.38 11 28 -33.62 7.03 

 

5.2.1.8 Effect of Plastic Tensile Strain at Failure Point 

A new run (Run 17) was conducted with increased failure point value for plastic tensile 

strain. To improve the results for the model calculations and reduce the deviation in forces, 

dilation angle value was increased to 10 degrees. The new value of plastic tensile strain at the 

failure point was twice (20%) the value used in Run 14. The results for axial and tangential 

forces were increased by 18% and 16%, respectively (Table 5.24).  To increase the calculated 

forces further, a follow up run (Run 18) was conducted with a higher friction angle (Table 5.25). 

Under the conditions of increased plastic tensile strain value for rock failure and friction angle, a 

much better result was obtained. The increase in friction angle increased the value of axial force 

with a closer match to the experimental result; however, a higher deviation from the reported lab 

value was observed for the tangential force (Table 5.26).  
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Table 5.24 Effect of tensile strain at failure point on axial and tangential forces on the cutter for 

Catoosa Shale. 

 

Average 
Axial 

Force, FA  
N 

Average  
Tangential 
Force, FT 

N 

 
 

Difference 
in Axial 
Force 
(%) 

Difference 
in 

Tangential 
Force 
(%) 

Deviation 
from 

Experimental 
Axial Force 

(%) 

Deviation 
from 

Experimental 
Tangential 

Force 
(%) 

Run 
14 

562 671 1.19 - - -40.12 -16.20 

Run 
17 

664 781 1.18 18 16 -29.25 -2.46 

 

Table 5.25 Friction angle relationships as a function of plastic shear strain (Runs 17 & 18). 

Friction Angle 
(degrees) 

Plastic 
Shear 
Strain  

(%) Run 17 Run 18 

0 20 25 

40 16 23 

100 16 23 

 

 Table 5.26 Effect of friction angle on axial and tangential forces on the cutter for Catoosa Shale. 

 

Average 
Axial 

Force, FA  
N 

Average  
Tangential 
Force, FT 

N 

 
 Difference 

in Axial 
Force 
(%) 

Difference 
in 

Tangential 
Force 
(%) 

Deviation from 
Experimental 
Axial Force 

(%) 

Deviation 
from 

Experimental 
Tangential 

Force 
(%) 

Run 
17 

664 781 1.18 - - -29.25 -2.46 

Run 
18 

882 1120 1.27 33 43 -6.03 39.88 

 

5.2.1.9 Effect of Residual Dilation Angle  

 A new run was conducted with different residual dilation angle values while keeping the 

other parameters the same as in Run 18. The variation in dilation angle as a function of plastic 

shear strain is given in Table 5.27 and plotted in Figure 5.5. 
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Table 5.27 Dilation angle relationship as a function of plastic shear strain (Runs 18 & 19). 

Dilation Angle 
(degrees) 

Plastic 
Shear 
Strain  

(%) Run 18 Run 19 

0 10 10 

40 5 3 

100 5 3 
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Figure 5.5 Variation in dilation angle as a function of shear strain (Runs 18 & 19). 

 

When the residual dilation angle was decreased to three degrees (Run 19), a decrease was 

observed in the calculated force values compared to the run conducted with five degrees of 

residual dilation angle value (Run 18). This result was consistent with other dilation angle 

sensitivity runs. 
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Table 5.28 Effect of residual dilation angle on axial and tangential forces on the cutter for 

Catoosa Shale. 

 

Average 
Axial 

Force, 
FA  N 

Average  
Tangential 
Force, FT 

N 

 

Difference 
in Axial 
Force 
(%) 

Difference 
in 

Tangential 
Force 
(%) 

Deviation 
from 

Experimental 
Axial Force 

(%) 

Deviation 
from 

Experimental 
Tangential 

Force 
(%) 

Run 
18 

882 1120 1.27 - - -6.03 39.88 

Run 
19 

847 1070 1.26 -4 -4 -9.76 33.64 

 

Additional runs were conducted with four different dilation angles given in Table 5.29 

and all other parameters were kept the same as in Run 17. The results indicated an improved 

match between calculated and experimental axial and tangential forces. The dilation angle 

appeared to be one of the important parameters to control the forces generated during the cutting 

process and a better match was obtained with five degrees of dilation angle where the absolute 

value of deviation was the same for both axial and tangential forces (Table 5.30).  

 

Table 5.29 Dilation angle as a function of plastic shear strain (Runs 20, 21, 22 & 23). 

Dilation Angle 
(degrees) 

Plastic 
Shear 
Strain  

(%) Run 20 Run 21 Run 22 Run 23 

0 3 5 6 10 

40 0 0 0 0 

100 0 0 0 0 
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Table 5.30 Effect of dilation angle on axial and tangential forces on the cutter for Catoosa Shale. 

 

Average 
Axial 

Force, 
FA  N 

Average  
Tangential 
Force, FT 

N 

 
 Difference 

in Axial 
Force 
(%) 

Difference 
in 

Tangential 
Force 
(%) 

Deviation 
from 

Experimental 
Axial Force 

(%) 

Deviation 
from 

Experimental 
Tangential 

Force 
(%) 

Run 
17 

664 781 1.17 - - -29.25 -2.46 

Run 
20 

702 907 1.29 6 16 -25.21 13.28 

Run 
21 

769 941 1.22 16 20 -18.07 17.53 

Run 
22 

736 939 1.28 11 20 -21.58 17.28 

Run 
23 

738 884 1.20 11 13 21.37 10.41 

 

The results of dilation angle sensitivity runs indicated that between zero and five degrees, 

the forces increase proportionally with the increase in dilation angle. However, between six and 

15 degrees, dilation angle has a reverse effect on forces causing them to decrease as the angle 

increases. 

 

5.2.1.10 Effect of Residual Friction Angle 

Runs were conducted with different friction angle residual values while keeping the 

cohesion value at 30 Mpa, friction angle at 20 degrees and using a dilation angle of five degrees. 

Friction angle variation as a function of plastic shear strain for all three runs are shown in Table 

5.31 and plotted in Figure 5.6. 
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Table 5.31 Friction angle relationship as a function of plastic shear strain (Runs 21, 24 & 25). 

Friction Angle 
(degrees) 

Plastic 
Shear 
Strain  

(%) Run 24 Run 21 Run 25 

0 20 20 20 

40 8 16 18 

100 8 16 18 
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Figure 5.6 Variation in friction angle as a function of shear strain (Runs 21, 24 & 25). 

  

When residual friction angle was decreased to eight degrees, a decrease in both calculated 

forces was observed whereas when the residual friction angle was increased to 18 degrees, only 

tangential force was increased (Table 5.32). As a result of changes made in residual friction 

angle, the results were not improved.  

 

 

 

 



 

 

66 

 

Table 5.32 Effect of residual friction angle on axial and tangential forces on the cutter for 

Catoosa Shale. 

 

Average 
Axial 

Force, FA  
N 

 
Average  

Tangential 
Force, FT 

N 

 
 Difference 

in Axial 
Force 
(%) 

Difference 
in 

Tangential 
Force 
(%) 

Deviation from 
Experimental 
Axial Force 

(%) 

Deviation from 
Experimental 

Tangential 
Force 
(%) 

Run 
21 

769 941 1.22 - - -18.07 17.53 

Run 
24 

671 842 1.25 -13 -11 -28.51 5.16 

Run 
25 

761 986 1.30 -1 +5 -18.92 23.15 

 

5.2.1.11 Effect of Residual Cohesion  

Cohesion value was assigned as zero at the point where the rock completely failed in the 

previous runs and for Run 25; residual cohesion was assigned as 5 MPa. Cohesion and plastic 

shear strain relationship used in Run 25 is given in Table 5.33. Other parameters are the same as 

in Run 20. 

Table 5.33 Residual cohesion relationship as a function of plastic shear strain (Runs 21 & 26). 

Cohesion 
(MPa) 

Plastic 
Shear 
Strain  

(%) Run 21 Run 26 

0 30 30 

40 0 5 

100 0 5 

 

In Run 26, the change in axial force is negligible whereas the error for tangential force 

was increased by approximately 10% (Table 5.34). 
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Table 5.34 Effect of residual cohesion on axial and tangential forces on the cutter for Catoosa 

Shale. 

 

Averag
e Axial 
Force, 
FA  N 

Average  
Tangential 
Force, FT 

N 

 
 Difference 

in Axial 
Force 
(%) 

Difference 
in 

Tangential 
Force 
(%) 

Deviation 
from 

Experimental 
Axial Force 

(%) 

Deviation 
from 

Experimental 
Tangential 

Force 
(%) 

Run 
21 

769 941 1.22 - - -18.07 17.53 

Run 
26 

767 1020 1.33 -0.3 +8.4 -18.28 27.39 

 

Run 27 was conducted by increasing the plastic tensile strain at the point of failure to 

30% (Table 5.35) while keeping the shear strain at 40% and the material properties the same as 

in Run 21. Increasing the tensile strain at the point of failure was expected to increase the forces, 

and provide a better match with the experimental results. However, its impact on the results was 

minimal; it decreased the axial force by 3% and increased the tangential force by 2% (Table 

5.36).  

Table 5.35 Tensile strength as a function of plastic tensile strain (Run 27). 

Plastic 
Tensile Strain  

(%) 

Tensile 
Strength 

(MPa) 

0 14.4 

30 0 

100 0 
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Table 5.36 Effect of tensile strain at failure point on axial and tangential forces on the cutter for 

Catoosa Shale. 

 

Average 
Axial 

Force, FA  
N 

Average  
Tangential 
Force, FT 

N 

 
 

Difference 
in Axial 
Force 
(%) 

Difference 
in 

Tangential 
Force 
(%) 

Deviation from 
Experimental 
Axial Force 

(%) 

Deviation from 
Experimental 

Tangential 
Force 
(%) 

Run 
21 

769 941 1.22 - - -18.07 17.53 

Run 
27 

747 957 1.28 -3 +2 -20.41 19.52 

  

Based on the runs conducted with the model, the effects of each parameter are summarized in 

Table 5.37. The changes in friction angle, cohesion and shear strain value at the point of shale 

failure have more pronounced effect on calculated forces. 

 

Table 5.37 Effect of property changes on axial and tangential forces. 

Model 
Parameters 

Change in 
Property  

Change in  
Axial Force 

Change in  
Tangential Force 

Friction Angle ↑ ↑ ↑ 
Residual Friction 

Angle 
↑ ↑ ↑ 

Cohesion ↑ ↑ ↑ 
Residual Cohesion  ↑ ↓ ↑ 

Dilation Angle 
↑  

↑  

↑ 

↓ 

↑ 

↓ 

Residual Dilation 
Angle 

↑  

↑  

↑ 

↓ 

↑ 

↓ 

Tensile Strength ↑ ↑ ↑ 

Velocity ↑ ↑ ↑ 

Tensile Strain 
↑ 

↑ 

↑ 

↔ 

↑ 

↔ 

Shear Strain ↑ ↑ ↑ 

     ↑↓: Major effect           ↔: No or negligible effect          ↑↓    :  Minor effect 
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5.2.1.12 Additional Runs Conducted with 2.07 MPa Confining Pressure 

Additional runs were designed with the model to improve the calculated forces and 

reduce the deviations from the experimental results (Table 5.38). 

 

Table 5.38 Material properties and the results for additional runs conducted with 2.07 MPa 

confining pressure. 
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28 20 16 30 0 5 0 40 2.00E-07 14.4 0 20 678 853 -27.76 6.53 

29 20 16 35 0 5 0 40 2.00E-07 14.4 0 20 761 977 -18.92 22.02 

30 20 16 35 0 15 13 40 2.00E-07 14.4 0 20 549 603 -41.51 -24.69 

31 25 20 30 0 10 3 40 2.00E-07 14.4 0 20 820 983 -12.63 22.77 

32 25 20 30 0 10 0 40 2.00E-07 14.4 0 20 764 932 -18.60 16.40 

33 30 20 30 0 10 0 40 2.00E-07 14.4 0 20 906 1140 -3.47 42.38 

34 30 24 30 0 10 0 40 2.00E-07 14.4 0 20 945 1200 0.68 49.87 

35 30 24 30 0 15 0 40 2.00E-07 14.4 0 20 923 1130 -1.66 41.13 

36 30 24 30 0 15 5 40 2.00E-07 14.4 0 20 861 1020 -8.27 27.39 

37 20 16 38 0 15 13 40 4.00E-07 14.4 0 20 640 764 -31.81 -4.58 

38 25 16 35 0 15 13 40 4.00E-07 14.4 0 20 662 762 -29.47 -4.83 

39 25 18 35 0 15 13 40 4.00E-07 14.4 0 20 706 727 -24.78 -9.20 

40 25 19 35 0 15 13 40 4.00E-07 14.4 0 20 765 844 -18.49 5.41 

41 25 20 35 0 15 13 40 4.00E-07 14.4 0 20 772 883 -17.75 10.28 

 

Initially, the velocity parameter was decreased to 2x10
-7

 m/step due to higher increase 

observed in tangential force compared to the axial force with the velocity of 4x10
-7

 m/step used 

in the previous runs.  Therefore, a velocity value of 2x10
-7

 m/step was used to eliminate 

discrepancy in results. Approximately 10% of decrease was observed in both forces (Run 28). 

When cohesion was increased to 35 MPa in order to decrease the deviation from experimental 

axial force, an average error of 20% was observed (Run 29). To better match the results between 

the experimental data and the model predicted forces; other parameters such as dilation angle and 
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friction angle were adjusted. When the 15 degrees dilation angle was used (Run 30), forces 

decreased and this increased the deviation from experimental forces. Therefore, the dilation 

angle was decreased to 10 degree and friction angle was increased to 25 degrees (Run 31). An 

increase in forces was achieved; however, the tangential force was 22% higher than the target 

value. When the residual dilation angle was decreased to zero degree, a 16% deviation was 

observed for tangential force while the deviation for axial force was 18% (Run 32).  

 Additional runs were conducted to decrease the deviation between calculated and 

measured forces. Friction angle was increased to 30 degrees resulting in an exact match for the 

axial force. However, a very high increase was observed in the tangential force (Runs 33 and 

34). To decrease tangential load, the dilation angle was increased to 15 degree (Run 35). When 

the residual dilation angle was zero, the changes in results were not significant; however, when a 

five degrees was used for the residual dilation angle, tangential force deviation was decreased to 

27% (Runs 35 and 36). With a friction angle of 30 degrees, the tangential force deviation seemed 

to be high. Therefore friction angle was reduced to 20 degrees and the forces were controlled 

with cohesion, its value was increased to its possible highest value, 38 MPa (Run 37). Velocity 

was assigned as 4x10
-7

 m/step to save run time since no significant decrease in the deviations of 

both forces was observed in the results obtained with 2x10
-7

 m/step velocity. Dilation angle was 

increased to prevent an excessive increase in forces since lower dilation angle (between zero and 

five degrees) was known to increase tangential force more than axial force. As a result, a 

considerable amount of decrease was observed in both forces in this run (Run 37). Tangential 

force error was around 5% but, axial force was deviated by 31% from the experimental result. 

Thus, friction angle and cohesion were changed in Run 38 since they are the two effective 

controls in favor of axial force. In Run 38, the deviation for axial force was reduced to 29%. 
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Since tangential force was very close to the experimental value, only axial force was to be 

adjusted. To achieve that, the residual friction angle was increased resulting in a moderate 

increase in forces (Runs 39, 40 and 41). When 19 degree was used for the friction angle, the 

deviation of 18% for axial and 5% for tangential force was achieved.  

 

5.2.2 Runs Conducted at 6.89 MPa Confining Pressure 

The results from the runs conducted with 300 psi confining pressure indicated that the 

smallest overall deviations in force calculations were obtained with parameters used in Run 40. 

The same properties were used initially for simulating Experiment 2 
(2)

 under 1000 psi confining 

pressure. All the runs conducted are listed in Table 5.39 below.  

 

Table 5.39 Runs conducted with 6.89 MPa confining pressure. 
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42 25 19 35 0 15 13 40 4E-07 14.4 0 20 36 814 923 -33.94 -19.57 

43 25 19 35 0 15 13 40 4E-07 14.4 0 20 40 781 896 -36.62 -21.93 

44 25 20 35 0 15 13 40 4E-07 14.4 0 20 36 876 1020 -28.91 -11.12 

45 25 20 35 0 15 13 40 4E-07 14.4 0 20 40 772 885 -37.3 -22.9 

46 25 19 35 0 5 0 40 4E-07 14.4 0 20 36 1010 1330 -18.03 15.89 

47 25 19 35 0 5 0 40 4E-07 14.4 0 20 40 962 1290 -21.93 12.40 

48 25 19 35 0 5 0 40 4E-07 14.4 0 20 20 917 1340 -25.58 16.76 

 

The interface friction angle between Catoosa Shale and PDC cutter was calculated as 36 

degrees for 1000 psi confining pressure using Equation 5.1. As a result of Run 42, the average 

forces predicted by the model were less than the experiments. Therefore, a 40 degree interface 
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friction angle was used in the next run (Run 43) to investigate its effect on forces. Approximately 

3% increase was observed in both axial and tangential forces. Since the deviation from 

experimental result was over 30% for the axial force, the residual friction angle was increased 

(Runs 44 and 45). The calculated results for forces were improved by around 10%. To decrease 

the deviation from the experimental results, another run (Run 46) was conducted with the same 

parameters as in Run 42, except for the dilation angle. The dilation angle was decreased to five 

degrees resulting in increases for both axial and tangential forces. Other runs were conducted 

with the same parameters but with 20 degrees and 40 degrees interface friction angles (Runs 47 

and 48). A good match with experimental results was obtained in Run 47.  

 

5.2.3 Runs Conducted at 20.7 MPa Confining Pressure 

In this section, runs conducted with 3000 psi confining pressure are presented. The 

interface friction angle between the Catoosa Shale and PDC cutter was calculated as 34 degrees 

for 3000 psi confining pressure using Equation 5.1. All the runs conducted are listed in Table 

5.40. 

 

 

 

 

 

 

 

 



 

 

73 

 

Table 5.40 Runs conducted with 3000 psi confining pressure. 
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49 25 19 35 0 5 0 40 4E-07 14.4 0 20 40 1190 1560 -41.84 -27.09 

50 25 19 35 0 5 0 40 4E-07 14.4 0 20 34 1340 1660 -34.5 -22.4 

51 25 20 35 0 5 0 40 4E-07 14.4 0 20 34 1340 1680 -34.5 -21.5 

52 30 24 35 0 15 13 40 4E-07 14.4 0 20 34 1200 1460 -41.35 -31.76 

53 30 24 35 0 15 13 45 4E-07 14.4 0 25 34 1190 1550 -41.84 -27.56 

54 30 24 35 0 5 0 40 4E-07 14.4 0 20 34 1440 2130 -29.63 -0.45 

55 30 25 35 0 5 0 40 4E-07 14.4 0 20 34 1480 2120 -27.67 -0.92 

56 30 27 35 0 5 0 40 4E-07 14.4 0 20 34 1560 2250 -23.76 5.16 

57 30 28 35 0 5 0 40 4E-07 14.4 0 20 34 1480 2260 -27.67 5.63 

58 30 28 35 0 5 0 40 4E-07 14.4 0 20 40 1530 2360 -25.23 10.30 

59 30 24 35 0 5 0 45 4E-07 14.4 0 25 34 1670 2230 -18.38 4.23 

60 30 27 35 0 5 0 45 4E-07 14.4 0 25 34 1650 2370 -19.36 10.77 

61 30 24 36 0 5 0 40 4E-07 14.4 0 20 34 1600 2190 -21.81 2.34 

62 30 25 36 0 5 0 40 4E-07 14.4 0 20 34 1460 2090 -28.65 -2.32 

 

The initial run (Run 49) at 20.7 Mpa (3000 psi) was conducted with the shale properties 

used in Run 47 conducted at 6.89 MPa (1000 psi) confining pressure since Run 47 had a good 

match with Experiment 2 
(2)

. However, when the confining pressure was 3000 psi, the model 

predicted forces did not match with the forces measured in the experiment. The calculated 

deviation was around 42% for the axial force. Next, Run 50 was conducted with the calculated 

interface friction angle value of 34 degrees for 3000 psi and model calculated forces were 

improved by 5%. When the residual friction angle was increased to 20 degrees, no significant 

improvement was observed in the calculated forces (Run 51). To improve the results of force 

calculations in the model, a run (Run 52) was conducted with higher friction and dilation angles. 

The deviations from experimental results were 40% and 30% for axial and tangential loads, 
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respectively. To increase forces, shale ductility was increased (Run 53) and the deviation for the 

tangential force was improved by 4%. In Run 54, the dilation angle was decreased to five 

degrees and the tangential force was closely matched, but the axial force value was still lower 

than the experimental measurement. More runs were conducted to increase the axial force and to 

have a better match. Previously, the friction angle was observed as a good control for the axial 

force.  Only the residual value of the friction angle was increased since the friction angle 

assigned in the model was already high (Runs 55, 56 and 57). When the residual friction angle 

was 25 degrees, the axial force was increased by 2% and when it was 27 degrees both forces 

were increased by 4%. However, when it was increased to 28 degrees, a drop in the axial force 

was observed. The best result was obtained when the friction angle dropped from 30 to 27 

degrees yielding 23% and 5% error for axial and tangential forces, respectively. Interface friction 

angle was increased to 40 degrees similar to runs with 300 psi to determine its impact on the 

results (Run 58). No significant change was observed in the results. In the next run, the ductility 

of the shale was increased and the plastic shear and tensile strain for the failure point were 

increased to 45% and 25%, respectively (Run 59) and other parameters were kept same as in Run 

54. In Run 59, the calculated deviations were 18% and 4% for axial and tangential loads. Since 

increasing ductility resulted in an improvement, another run (Run 60) was conducted with same 

shear and tensile strain values using the same parameters as in Run 56. The calculated forces 

increased by 5%, but the results were poorer than the results of Run 59. Run 61 was conducted 

by increasing the cohesion to 36 MPa and decreasing the plastic shear and tensile strain at the 

failure point to 40% and 20%, respectively, while keeping the other parameters the same as in 

Run 59. Tangential force deviation was around 2% and axial force deviation was 21%. Run 62 
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was conducted with 25 degrees of residual friction angle, however, no improvement was 

observed in the results.   

 

5.2.4 Runs with the Same Set of Properties for Different Confining Pressures 

In the previous sections, the best matches with experimental results were obtained for 

different confining pressures. The best result for 300 psi was obtained using a friction angle of 

25 degrees, a cohesion of 35 MPa and a dilation angle of 15 degrees (Run 40). The model results 

yielded a higher deviation from experimental results when the same material properties were 

used with 1000 psi confining pressure. However, when the dilation angle was decreased to five 

degrees, a better match was obtained with 18% and 15% errors for axial and tangential forces, 

respectively (Run 46). At 3000 psi pressure, when the friction angle and its residual value were 

increased to 30 and 27 degrees, respectively, 23% and 5% errors were obtained for axial and 

tangential forces, respectively (Run 56). When cohesion was increased to 36 degrees, 21% error 

was calculated for axial force while 2% error was obtained for tangential force (Run 61).  

Rocks behave differently under pressure.  Although they may be brittle under low stress 

conditions, they can show ductility under high confining stress. Ductility in rock may occur with 

sufficient high confining pressure. As a result, model runs were conducted with the same set of 

properties for all three confining pressures and the ductility of the rock was decreased as the 

pressure reduced from 3000 psi to 300 psi. The goal was to use the same set of properties to 

simulate the experiments conducted at three different pressures with Catoosa shale. The runs 

conducted for this purpose are tabulated in Table 5.41.  

Initial properties were selected from the run that yielded the best match with the 

experimental results for 3000 psi confining pressure. Since the interface friction angle was 34 
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degrees in Run 63, next run (Run 64) was conducted with an angle of 40 degrees. The change in 

interface friction angle resulted in 2% decrease in results of forces. When shear strain at the 

failure point was increased to 45%, the deviation for axial and tangential forces were 23% and 

8%, respectively.  

Runs were conducted with same properties for 1000 psi confining pressure with both 36 

and 40 degrees interface friction angles. The least errors in the results for axial and tangential 

forces were observed when the shale failed completely at 30% shear strain. The same formation 

properties were used for the next run with 40 degrees interface friction angle. An average of 22% 

deviation from experimental results was obtained for axial and tangential forces. 

Additionally, four runs were conducted with 300 psi confining pressure where shale had 

20%, 22%, 23% and 25% plastic shear strain values at the point of failure. The least deviation in 

the calculated forces was obtained with 22% shear strain.  The results of the model deviated by 

25% and 22% from the experimental results for axial and tangential forces, respectively, at the 

end of one revolution of the cutter. The results from force calculations with the model at three 

confining pressures are tabulated in Table 5.41 and the results from the model were compared 

with the experimental results as shown in Table 5.42 and plotted in Figure 5.7. 



 

 

77 

 

Table 5.41 Runs conducted with 300 psi, 1000 psi and 3000 psi confining pressure. 
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63 30 24 36 0 5 0 40 4.00E-07 14.4 0 20 34 3000 1600 2190 -21.80 2.34 1520 2200 -25.71 2.80 1490 2190 -27.17 2.34

64 30 24 36 0 5 0 40 4.00E-07 14.4 0 20 40 3000 1620 2170 -20.82 1.40 1520 2170 -25.71 1.40 1450 2120 -29.13 -0.93

65 30 24 36 0 5 0 45 4.00E-07 14.4 0 20 34 3000 1540 2300 -24.73 7.48 1470 2370 -28.15 10.75 1420 2350 -30.60 9.81

66 30 24 36 0 5 0 45 4.00E-07 14.4 0 20 40 3000 1720 2320 -15.93 8.41 1640 2370 -19.84 10.75 1570 2310 -23.26 7.94

67 30 24 36 0 5 0 33 4.00E-07 14.4 0 20 36 1000 1040 1460 -15.60 27.22 996 1490 -19.17 29.83 958 1470 -22.25 28.09

68 30 24 36 0 5 0 32 4.00E-07 14.4 0 20 40 1000 988 1430 -19.82 24.60 962 1450 -21.93 26.35 946 1450 -23.22 26.35

69 30 24 36 0 5 0 30 4.00E-07 14.4 0 20 36 1000 1030 1380 -16.41 20.25 919 1340 -25.42 16.76 883 1330 -28.34 15.89

70 30 24 36 0 5 0 30 4.00E-07 14.4 0 20 40 1000 951 1330 -22.82 15.89 915 1360 -25.74 18.50 901 1360 -26.88 18.50

71 30 24 36 0 5 0 25 4.00E-07 14.4 0 20 40 300 856 1110 -8.80 38.63 978 1240 4.20 54.87 932 1220 -0.70 52.37

72 30 24 36 0 5 0 23 4.00E-07 14.4 0 20 40 300 663 898 -29.36 12.15 712 1050 -24.14 31.14 774 1110 -17.53 38.63

73 30 24 36 0 5 0 22 4.00E-07 14.4 0 20 40 300 640 865 -31.81 8.03 643 869 -31.49 8.53 701 983 -25.31 22.77

R
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S

Parameters
RESULTS

Quarter cut Half Cut Full Cut (1 revolution)
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Table 5.42 Comparison of model results with experimental results at the end of one revolution. 

 

 

Figure 5.7 Comparison of axial and tangential forces from experimental results and model 

predictions. 

 

 

 

 

Confining Pressure 

300 PSI 1000 PSI 3000 PSI RESULTS 

Axial 
Force, N 

Tangential 
Force, N 

Axial 
Force, N 

Tangential 
Force, N 

Axial 
Force, N 

Tangential 
Force, N 

Experiment 938 800 1232 1148 2046 2140 

Model 701 983 901 1360 1570 2310 
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CHAPTER 6 
 

CONCLUSIONS AND RECOMMENDATIONS 

 
CONCLUSIONS 

 
A parametric study was conducted to determine the formation material and post-failure 

properties that control the cutting forces of a single PDC cutter required for the cutting process in 

shales. Runs were conducted with the finite difference FLAC
3D 

model, jointly developed by 

Petroleum and Natural Gas Engineering and Mining Engineering at WVU. 

In this study, the effects of the formation properties and operational parameters on cutting 

forces were investigated and the model was calibrated with the results from experiments 

conducted with Catoosa Shale under three different confining pressures. A good agreement was 

obtained between numerical and experimental test results. The model can be used with different 

confining pressures by obtaining the ductility value for the rock by interpolation to the new 

confining pressure.  

In this study, the effect of cohesion, friction angle, dilation angle and tensile strength 

properties of Catoosa shale on the cutting forces were investigated. The results indicated that 

friction angle and cohesion are the two most important parameters that control cutting forces. 

Tensile strength has a limited effect on the results of forces. Dilation angle increases the forces 

when its value is between zero and five degrees, yet shows a reverse effect between six to ten 

degrees.  

When the ductility of the rock increased, the forces increased considerably. Higher 

rotational velocities of the core resulted in increased forces due to mechanical oscillations in the 

model. 



 

 

80 

 

The change in the magnitude of the axial and tangential forces with the change in a 

formation parameter depends on several factors including other material properties and pressure. 

The same amount of change in a parameter may not result in the same rate of change in forces 

when the other parameters are different. Therefore the exact outcome of a parameter change is 

difficult to predict. 

Average axial and tangential cutting forces calculated by the numerical model were close 

to the forces measured in the experiments with deviations ranging between 0.93% and 29.1% 

depending on the confining pressures. The deviations are attributed to the shortcomings of the 

model which are explained below: 

� The most noticeable difference was the confining pressure treatment in the model since 

this pressure was not maintained for the lower level of grids when the elements were removed. 

The limitations of the model to apply confining pressure only to the surface grids may cause a 

lower axial force during the cutting process.   

� In this study, the rock failure was modeled with strain-softening Mohr-Coulomb model. 

Only one plastic failure model was used for shale and other plasticity models were not 

considered in this study. 

� Chip sticking and balling effects of cuttings are not considered due to the model feature 

to remove elements from the core as they fail. However, in the experiment, there was no mud 

circulation and the chips were not removed as the drilling continued which may affect the 

resultant forces.  

� Uniform properties were assigned to the core in the model, however the core used in the 

experiment may contain non-homogeneous properties. 
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RECOMMENDATIONS 

Based on the results of this research, following recommendations can be made. 

• In this study, rock behavior was represented by a strain softening Mohr-Coulomb plasticity 

model and the cutter was modeled with an elastic model. Mohr-Coulomb is the most 

common model for the rocks; however, FLAC
3D

 has other plasticity models such as 

Drucker-Prager, Cam-clay, Hoek-Brown, double yield, and bilinear strain-

hardening/softening ubiquitous-joint plasticity model to represent plastic failure of rock. 

Those models may be investigated to determine their accuracy in predicting rock failures.  

• The model accurately simulates the rock properties (elastic modulus, Poisson’s Ratio, 

cohesion, friction angle, dilation angle) and failure processes at different pressures, but it 

does not take into account the effects of temperature. At high temperatures, the rock may 

behave differently.  

• Mud pressures exerted on the core in the laboratory tests were simulated in the model 

without    specifying the type of fluid. The mechanical model should be coupled with a 

fluid model to determine the effect of fluid-rock interaction.  

•  In this study, the model evaluated local failure using static mechanical analysis. Dynamic 

analysis augmented with non-local gradient models can also be studied. However, those 

models are still phenomenological and require the calibration of a length scale parameter, 

and the solution of an additional partial differential equation beyond the standard balance 

laws of linear and angular momentum. Also, dynamic analysis is often very complicated 

and requires a considerable amount of insight to interpret correctly. 
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APPENDIX A 

  

 
In this section, parameters for cutter back rake angle, cutter offset, depth of cut, rotational 

speed, confining pressures and fluid specifications used in the model are listed with the 

experimental data in Table A.1. Properties of the cutter (PDC) and the core (Catoosa shale) used 

in the model are compared with the reported experimental data in Table A.2 and Table A.3, 

respectively. All parameters used in the model are in metric units. 

 

Table A.1 Comparison of test parameters used in the experiments and the model. 

 

 
Table A.2 PDC cutter properties used in the experiments and the model. 

 

Cutter (PDC) 
Properties 

Diameter, 
m 

Thickness, 
m 

Density, 
kg/m3 

Bulk 
Modulus, 

Pa 

Shear 
Modulus, 

Pa 

Experiment 0.009398 0.0075 not given not given not given 

Model 0.009398 0.0075 3830 3.45E+11 4.16E+11 

 

 

 

 

 

 

 

Test 
Parameters 

Back 
Rake 

Angle, 
degrees 

Cutter 
Offset, 

m 

Depth of Cut, 
m/revolution 

Rotary 
Speed 

Confining 
Pressure Range, 

Pa 

Fluid 
Type 

Experiment 10 -0.03143 1.905E-03 
273 
rpm 

2.07E+06 - 
2.07E+07 

water 

Model 10 -0.03143 1.905E-03 
4e-7  

m/time 
step 

2.07E+06 - 
2.07E+07 

no fluid 
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Table A.3 Core properties used in the experiments and the model. 

 

Core 
Properties 

Formation 
 

Diameter, 
m 

 
Length, 

m 

 
Density, 
kg/m3 

 
Porosity,  

% 

Unconfined 
Compressive 
Strength, Pa 

Bulk 
Modulus, 

Pa 

Shear 
Modulus, 

Pa 

Friction 
Angle, 

degrees 

Cohesion, 
Pa 

Dilation 
Angle, 

degrees 

Tensile 
Strength, 

Pa 

Experiment 
Catoosa 

Shale 
0.0889 unknown 2390 12 not given not given not given 14 8 not given not given 

Model 
Catoosa 

Shale 
0.12572 0.01 2390 

not  
assigned 

3.50E+07 8.81E+09 4.30E+09 30 36 5 1.44E+07 
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APPENDIX B 

 

 

In this section, the axial and tangential cutting forces calculated in the model were plotted 

for different confining pressures. In Figures B.1 and B.2, the results for the runs conducted with 

2.07 Mpa (300 psi) confining pressure were plotted. In Figures B.3 and B.4, the results for axial 

and tangential forces were plotted for the runs with 6.89 MPa (1000 psi) confining pressure. In 

Figures B.5 and B.6, the results for the runs with 20.7 MPa (3000 psi) confining pressure were 

plotted. The results showed that as the confining pressure increases, both the axial and tangential 

forces increase. As seen in the figures, higher peak values were observed on the plots as the 

pressure increased from 300 to 3000 psi. 

 

 

 
Figure B.1 Axial force versus time step for the model run conducted under 300 psi confining 

pressure. 

 

 

2.07 MPa (300 psi) Confining  

Pressure 
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Figure B.2 Tangential force versus time step for the model run conducted under 300 psi 

confining pressure. 

 

 

 

 

 

 

 

2.07 MPa (300 psi) Confining  

Pressure 
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Figure B.3 Axial force versus time step for the model run conducted under 1000 psi confining 

pressure. 

 

 

 
Figure B.4 Tangential force versus time step for the model run conducted under 1000 psi 

confining pressure. 

 

6.89 MPa (1000 psi) Confining 

Pressure 

6.89 MPa (1000 psi) Confining  

Pressure 
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Figure B.5 Axial force versus time step for the model run conducted under 3000 psi confining 

pressure. 

 

 
Figure B.6 Tangential force versus time step for the model run conducted under 3000 psi 

confining pressure. 

 

20.7 MPa (3000 psi) Confining  

Pressure 

20.7 MPa (3000 psi) Confining  

Pressure 
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