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Abstract 

 

Aging effects of the cathode and determination of single electrode      

performance in a Solid Oxide Fuel Cell   

 

Xiaoke Chen    

 

Solid oxide fuel cells (SOFCs) are promising electrochemical energy conversion devices due 

to their advantages of high theoretical efficiency, fuel flexibility (including hydrogen and carbon 

monoxide), scalability, and low emission.  An important problem for commercially using the 

SOFCs is to improve the long term stability for the SOFCs.  To improve the lifetime of SOFCs 

and develop innovative electrode microstructures; we need to understand the individual process 

including the degradation processes to the cathode or the anode.  To identify the independent 

anode and cathode contributions to the total impedance, one conventional electrochemical tool 

for evaluation is the reference electrode.  Although reference electrode simulations predict that 

overpotential/current and impedance data assigned to one electrode will inevitably contain 

contributions from the other electrode, many current experimental reports persistently use 

reference electrodes.  We have developed several configurations of reference electrodes and cell 

designs, and have experimentally examined these systems using various gas flows and two 

temperatures, and have also compared experimental results to simulated predictions.  Cyclic 

Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) were used to collect data.  

The results for all of our reference electrode designs show agreement with simulation predictions. 

For the ring reference electrode on the anode-supported cell, the data support that the cathode 

impedance includes impedance from the anode in the 3-electrode measurement.  On the 

electrolyte-supported cell, using both the ring reference electrode and a micro-reference 

electrode close to the cathode, the apparent inductance loops in the 3-electrode measurement 

show up for both reference electrode configurations.  The inductive loops are artifacts which 

indicate the inability to accurately separate impedances for the cathode and anode.   

 

We developed a better protocol to identify the minimum number of processes contributing to 

the total impedance of a SOFC associate with cathode and anode without the use of reference 

electrodes. The protocol is based on deconvolution combined with equivalent circuit fitting of 

impedance data.  This protocol uses a spreadsheet program.  The impedance / deconvolution 

technique supplies information of characteristic relaxation time distributions.  This information, 

together with systematic changes in gas composition to the anode or cathode, is used to build the 

equivalent circuits.  We are able to identify the impedance components associated with each 

electrode.  The deconvolution and equivalent circuit analyses are applied successfully to three 

types of commercially button SOFCs including two anode-supported SOFCs and an electrolyte-

supported SOFC.  The results show the ability to assign the physical processes associated to 

cathode or anode in real electrode systems. 

 



 

In the Strontium-doped lanthanum manganite (LSM) cathode of SOFCs, one special 

phenomenon of degradation was noticed as a changing polarization resistance over tens of hours 

in a cell at open circuit voltage (Aging effect).  This aging effect was reversible during 

temperature cycles between 800ºC and 700ºC.  We explored this phenomenon via 

electrochemical techniques (EIS and CV), with the purpose of discovering the true physical 

source.  From the initial investigation, we proposed to relate two processes to the phenomenon 

we observed: (1) the wetting behavior of the LSM on the Yttria stabilized zirconia (YSZ) surface 

(2) the segregation of cations.  Another approach for separating the processes at different 

frequencies is deconvolution of impedance spectra combined with complex non-linear regression 

fitting of the impedance spectra.  We performed the extended tests with different cathode and 

electrolyte compositions under open circuit.  This protocol provides the trends in parameters for 

the equivalent circuit during thermal aging for the impedance data from the extended tests, 

especially, the frequency ranges associated with aging. Based on results from deconvolution, a 

hypothesis is proposed to address the aging effect.  
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                                                Chapter 1 General introduction 

 

1.1  Solid Oxide Fuel Cells (SOFC) 

Despite the facts that the fuel cell was discovered over 160 years ago, and the first SOFC was 

developed in 1937 by Baur and Preis [1], only now are fuel cells approaching commercial reality. 

The fuel cells offer high energy conversion efficiencies and significant environmental 

advantages. As one of the most promising energy conversion devices, the solid oxide fuel cell 

(SOFC) is a solid-state device which operates at high temperatures, directly and efficiently 

converting chemical energy to electrical energy with low pollution and fuel flexibility. Since 

SOFCs can hopefully utilize conventional hydrocarbon fuels, they can be the transition energy 

conversion device from fossil fuels to hydrogen. 

The three components of the SOFC are the cathode, at which O2 is reduced, the anode at which 

fuel is oxidized, and the electrolyte, which separates the cathode and anode. Although there are 

different geometric structures of SOFCs, for economic construction and controllable industry 

development, SOFC research is often performed on a small planar disk with radial dimensions 

on the order of 1-3 cm (button cells).There are two conventional commercial geometries for the 

button cell; one is the electrolyte-supported cell, with a thick electrolyte (hundreds of µm) with 

symmetrically deposited thin cathode on one side and identical sized thin anode on the other side.  

The other is the anode-supported button cell, with a thick and large anode (close to 1 mm) and a 

thin and identical sized electrolyte, and a small thin cathode on top of the thin electrolyte layer 

(Figure 1.1) 
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(a)                                                   (b)                                                       (c) 

Fig 1.1: (a) Cathode side of the button cell. Cross section of the (b) Electrolyte-supported cell. 

(c)Anode-supported cell. 

 

Solid oxide fuel cells use a solid ceramic inorganic oxide as the electrolyte, rather than a liquid 

electrolyte. The mobile species in the electrolyte is the oxygen ion (O
2-

).  The required operating 

temperature is typically between 750
○
C--1000

○
C in order to get sufficiently high ionic 

conductivity in the electrolyte. One major advantage of SOFCs over other types of fuel cells is 

fuel flexibility.  A number of fuels (including coal syngas) can be used, since CO is a fuel, not a 

poison for the SOFC anode. A summary of the electrode reactions is given below [2]: 

Anode:        (1.1) 

      (1.2)
 

        (1.3) 

Cathode:        (1.4) 

Overall:      (1.5) 

Another advantage is the elevated operating temperature of the SOFC which results in the 

production of high temperature heat as a by-product in addition to the electrical power.[3] The 
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integrated power system which generates electricity from the exhaust heat of the SOFC 

theoretically has the highest efficiency for converting fuel to electrical power. 

1.1.1 Electrolyte and Anode 

In SOFCs, a solid-state ceramic ionic conductor is employed as the cell electrolyte.  The 

requirement of a good SOFC electrolyte includes a high ionic conductivity (typically >0.1 S/cm) 

and negligible electronic conductivity, being chemically unreactive towards the other cell 

components and being stable in both oxidizing and reducing atmospheres.  A typical electrolyte 

is YSZ - a mixture of zirconia (zirconium oxide, ZrO2) doped with about 8 mole % yttria 

(yttrium oxide, Y2O3).  The YSZ has a thermal expansion coefficient comparable to the favorite 

cathode material- strontium-doped lanthanum manganite LSM.  Sm-doped ceria (SDC) or Gd-

doped ceria (GDC) are alternative electrolyte materials for intermediate temperature (IT)-SOFCs 

(operating temperature range 500-800°C).  SDC and GDC have higher ionic conductivity and 

surface oxygen exchange kinetics compared to YSZ, leading to enhanced cell performance in the 

intermediate temperature (IT) range (500 – 700ºC).  Another advantage of the SOFCs using SDC 

or GDC as the electrolyte is the prevention of non-conducting zirconate phase which is 

commonly observed in SOFC using YSZ as electrolyte [4].  However, these ceria-based 

electrolytes suffer from significant electronic conductivity when exposed to strongly reducing 

conditions on the fuel cell.  The electronic conductivity directly between the cathode and anode 

causes loss of power in the SOFC. 

A common active electrode material for the SOFC anode is nickel. As a gas diffusion electrode, 

the SOFC anode must have a porous structure.  Currently, a porous cermet (ceramic metal 

mixture) structure such as Ni-YSZ is widely used in SOFCs. The porous cermets can maintain 

the porosity by preventing sintering of nickel particles during operation, and give maximum 

contact between the nickel metal and the electrolyte. [5] 

1.1.2 Cathode 

The cathode, like the anode, must be electronically conducting and have a porous structure which 

must be maintained at the elevated operating temperatures.  Also, the cathode must be stable in 

an oxidizing environment. Many transition-metal oxides have good electrical conductivity, and 
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are relatively much lower in cost than Pt. Pt was the precious metal first used as the electrode 

material for SOFC. One of the first such materials studied: La1-xSrxCoO3 –δ(LSC) was reported by 

Button and Archer in 1966. [6] A number of perovskite crystal structures were also reported after 

that, including strontium-doped lanthanum manganite La1-xSrxMnO3-δ (LSM, x = 0.2 – 0.3), 

which had became the most widely used material for SOFC cathodes. LSM meets the 

requirements of the cathode and is also inexpensive.  

LSM is a perovskite ABO3-δ type compound.(Fig. 1.2(a)) For the general perovskite crystal 

structure ABO3-δ, a reducible transition metal such as Co or Fe (or a mixture) cation occupies the 

B-site and a mixture of rare and alkaline earths (such as La and Sr) cation fill up the A-site cavity. 

This composition has high electronic conduction because of a metallic or semiconducting band 

structure promoted at high temperature. The octahedral symmetry is also quite stable.  The 

structure tolerates missing oxide ions, and consequently oxide ion transport can be supported by 

a hopping mechanism (Fig. 1.2(b)), which lead to significant bulk ionic oxygen transport. 

 

                                              

Fig 1.2 (a) Atomic structure of mixed conducting perovskites ABO3-δ. A corner-sharing BO6 

octahedron surrounded by charge-compensating A-site cations. (b) Oxygen transport in mixed 

conducting perovskites ABO3-δ via the random hopping of oxygen ion vacancies on the oxygen 

sub-lattice. [7] 
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The general perovskite crystal structure ABO3-δ is often a mixed ionic and electronic conductor 

(MIEC) [8], so using a MIEC for the cathode has the advantage to extend the electrochemically 

active sites from only the triple phase boundary (cathode/electrolyte/gas interface TPB) (Fig 1.3) 

of the original pure electronic conductor cathode to the entire surface of the porous MIEC 

cathode. The increased electrochemically active sites consequently decrease cathode polarization 

resistance (Fig 1.4) [9-11].  One problem with LSM is that its ionic conductivity is orders-of-

magnitude lower than its electronic conductivity, so it is considered to be primarily an electronic 

conductor. 

                                        
Figure 1.3: The graph of the triple phase boundary (TPB) composed of the electronically 

conducting (electronic) phase, gas phase, and ionically conducting (ionic) phase in 

accomplishing oxygen reduction[7]. 

 

                                 
Figure 1.4.The graph of a mixed ionic and electronic conductor (MIEC) Cathode. This cathode 

contains both electrons and oxide ions, so extend the electrochemically active sites from just the 

triple phase boundary (TPB) to the entire surface of the porous cathode (dark shaded area) [7] 

  

Electrolyte 

                      Cathode (contains both the e
-
 and O

2-
) 

 

    TPB 
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Nowadays, it has been well recognized that multiple benefits can be derived by reducing the 

operating temperature of a SOFC to the intermediate temperature range of 500-800
o
C including 

reduced fabrication cost, prolonged life time, versatile cell materials, and elegant sealing [12.13]. 

However, lowering the operation temperature to 500-800°C results in the rapid increase in ohmic 

polarization (also called ohmic loss, due to the internal resistances of the electrolyte and 

imperfect electrodes) and cathodic polarization (cathodic loss, due to the resistances inside the 

cathode), which consequently leads to a rapid decrease in the performance of the fuel cells with 

decreasing temperature. LSM, due to its low ionic conductivity and relatively high activation 

energy for oxygen dissociation at temperatures below 800°C, is no longer the ideal cathode 

material for a lower temperature SOFC [14-16]. 

Several perovskite compounds with cobalt as the predominant B-site cation are mixed ionic and 

electronic conductors which have high electronic and ionic conductivity in addition to high 

catalytic activity for oxygen reduction at the desired low operating temperatures [17–19].  

Among the large variety of mixed conducting oxide materials, Lanthanum strontium cobalt 

ferrite (LSCF) has been the most widely studied cathode material for intermediate temperature 

SOFC, as it has high oxygen ionic and electronic conductivity in the cubic crystal structure [20, 

21].   

    1.2 Electrochemical characterization 

Development of solid oxide fuel cells is based on evaluating the cell performance with 

electrochemical characterization. Typical fuel cell performance indicators including: open circuit 

voltage, polarization curve (IV curve), power curve, and electrochemical impedance 

spectroscopy (EIS). 

Open-circuit voltage (OCV) is the difference of electrical potential between two terminals of a 

device when no external electric current flows between the terminals. For the hydrogen fuel cell:  

                (1.6) 

The OCV dependence on respect to temperature is, ΔS is the change of entropy:  

http://en.wikipedia.org/wiki/Potential_difference
http://en.wikipedia.org/wiki/Electric_current
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       (1.7)  

The OCV also depends on gases activities (αH2O, αH2 and αO2) as calculated from Nernst equation.  

ΔE = ΔE
0
 - (2.303*RT/nF)log( α

2
H20/( α

2
H2 *α O2))                                                (1.8) 

For fuel cell (3% water vapor in H2 fuel, air for the cathode, total pressure 1 atm) at 800°C, the 

theoretical OCV ∆E =1.103 V[22]. In practice, the actual ∆E is usually lower than theoretical 

value due to imperfect sealing, especially between the fuel on the anode side and air outside the 

SOFC. 

In a polarization curve (IV curve), the current density (A/cm
2
) is plotted on the horizontal axis 

with cell voltage on the vertical axis (Fig 1.5). The cell voltage decreases as the current density 

increases. In the power curve (IP curve), power (product of current and voltage) is the vertical 

axis and current density is the horizontal axis (Fig 1.5). The graph shows the peak power. In 

general, higher power is better.  Because various losses decrease with increasing temperature, the 

power increases dramatically with increasing temperature. 

 

 

 

 

 

Fig. 1.5.Polarization curve and Power curve for a single cell (Peak power density 0.8W/cm
2
) 

Electrochemical impedance is usually measured by applying an AC potential as an excitation 

signal to an electrochemical cell and measuring the AC current through the cell. An expression 

analogous to Ohm's Law is used to calculate the impedance of the system as: 
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                                                                (1.9)                               

The impedance is then represented as a complex number. 

                                                 (1.10) 

The expression for Z(ω) is composed of a real and an imaginary part. Impedance data are usually 

collected for a wide range of frequencies.  In a typical EIS plot (Nyquist plot), the real part is 

plotted on the X-axis and the negative imaginary part is plotted on the Y-axis for each frequency. 

The EIS data Plot for a cell is always a set of arcs. The series resistance can found by reading the 

real axis value at the high frequency intercept. The real axis value at the other (low frequency) 

intercept is the sum of the polarization resistance and the series resistance. The diameter of the 

semicircle is therefore equal to the polarization resistance (Fig 1.6). The Series resistance in a 

SOFC is predominantly the electrolyte resistance. When the potential of an electrode is forced 

away from its value at open-circuit, the resistance caused by electrochemical reactions occurring 

at the electrode surface is the polarization resistance. Electrochemical Impedance Spectroscopy 

(EIS) is generally used to assess the contribution of various mechanisms, such as activation and 

mass transfer, to the total cell losses with respect to the characteristic frequency. 

                             
Fig.1.6: A typical EIS data graph [23].  Each point corresponds to a measurement at a single 

frequency.  Frequencies decrease going from left to right along the arc. 
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1.3 Reference electrode for SOFC cells 

The reference electrode is a widely used electrochemistry tool. A reference electrode has a stable 

and well-known electrode potential. The high stability of the electrode potential is usually 

reached by employing a redox half-reaction with constant activities of each species of the half- 

reaction. [24] The most widely use for the reference electrode is as a half cell to build an 

electrochemical cell. This structure allows the potential of the other half cell to be determined on 

a thermodynamic scale. The accurate measurement of a single electrode's potential in isolation 

can be achieved.  

In a typical 3-electrode experiment, the reference electrode (RE) is placed between the working 

electrode and the counter electrode (CE). The potentiostat controls the voltage between the 

working electrode (WE) and reference electrode (RE) while the current passes between the WE 

and the counter electrode (CE).  Equivalently, a galvanostat controls the current between the WE 

and CE and monitors the voltage between the WE and RE. In principle, these configurations can 

isolate the performance of the WE from the CE and from the total performance of the cell in a 

typical 2-electrode experiment.   

An ideal reference electrode should also have not only a well-defined and stable potential 

(implying the existence of a single half-reaction at the RE with constant activities of all species 

in the half-reaction) but also small impedance (implying fast kinetics and high activities of all 

species in the half reaction).   

 

For some special SOFC configurations, for example, the microelectrodes (micro-patterned thin 

film electrodes fabricated by lithographic methods) on relatively thick electrolytes, isolation of 

one electrode’s performance can be accomplished without the necessity of a reference electrode 

[37-40]. Because of the small size of a microelectrode (typically 30–100 µm), the area ratio of a 

microelectrode and the normal size counter electrode is 10
3
–10

5
. So, the electrochemical 

resistance of a micro working electrode is also several orders of magnitude larger than a normal 

size counter electrode with similar area-specific resistances (ASR) (units of ohms cm
2
). 

Therefore, the extended counter electrode has negligible influence on the measured polarization 

and impedance data.  Even for the very high-performing microelectrodes with similar absolute 
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resistances of the counter electrode, a reference electrode is not needed. The measured 

performance of the working electrode is still nearly not affected by the counter electrodes. 

However, this configuration does not permit the testing of SOFC designs intended for power 

generation. 

 

In SOFC research, as in liquid state electrochemistry, a reference electrode is used to remove any 

contribution from the counter electrode to the evaluation of the working electrode. However, as 

the reference electrodes are built on a solid-state electrolyte, the solid state electrolyte has much 

lower ionic conductivity than the typical liquid solution electrolyte.  Because of the lower ionic 

conductivity, the electrolyte is made as thin as possible between the cathode and anode.  This 

thin layer structure leads to problems with the use of reference electrodes. 

 

1.4  Simulations of 3-electrode measurements 

Simulations in the literature have shown that for many electrode geometries with the reference 

electrode, the electrochemical measurement (polarization curve, power curve, and particularly 

impedance data) of the working electrode with respect to the reference electrode also includes 

contributions from the counter electrode [25-29]. The contribution from the counter electrode not 

only leads to an increased apparent resistance in the polarization curve but may also cause an 

additional arc in the Nyquist plot, which may misleadingly suggest an additional polarization 

mechanism of the working electrode [31]. More details for the above conclusions will be 

discussed in the following paragraphs. 

 

In virtually all button cell designs in the literature, the reference electrode is achieved using the 

same half-reaction as either the cathode (oxygen reduction) or the anode (fuel oxidation).  The 

reference electrodes are usually prepared by depositing Pt, Ag and LSM/YSZ on the electrolyte 

followed by sintering. The reference electrode is either directly adjacent to the WE on the surface 

of the electrolyte with the cathode plane (Fig 1.7a) or anode plane (Fig 1.7b), or is located on the 

rim of the electrolyte plane (Fig 1.7c). 
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(a)                                                                        (b) 

               
                                            (c ) 

Fig 1.7: The reference electrode is near to the WE on the surface of the electrolyte with the 

cathode plane (Fig 1.7a) or anode plane (Fig 1.7b), or is located on the rim of the electrolyte 

plane (Fig 1.7c) [41] 

 

The critical requirement for proper isolation of the WE performance is that the potential plane 

sensed by the RE should be located at a fixed position in the electrolyte between the WE and CE. 

Also, this potential plane should be independent of current density in polarization measurements 

and of frequency in impedance measurements.  This condition is achievable in several specially 

designed cells. The RisØ design (Fig 1.8) has pellet geometry with a large thick electrolyte 

between the Working electrode (WE) and Counter electrode (CE), and the point reference 

electrode is put very close to the WE through the thick electrolyte [41-46].  Point electrodes on 

thick electrolytes [47, 48] (Fig 1.9) and interdigitated WE/RE designs (stripes of the WE and RE  

in alternating order) [49,50](Fig 1.10) also successfully isolate the performance of the WE from 

the CE. However, the proper isolation of the WE performance from the CE is difficult to achieve 

in commercially relevant SOFC designs with very thin electrolytes between the cathode and 

anode [51-53].  Impedance data unambiguously assignable to a cathode or anode can be obtained 
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from symmetrical half-cells with the same electrode overlapped well on each side, but  valid data 

for symmetrical cells can only be collected at open circuit voltage (OCV) [54, 55].   Any DC 

current passing through a symmetrical cell alters the behavior of each electrode differently, since 

one electrode is functioning as a cathode and the other electrode is functioning as an anode. 

                           

Fig 1.8: The RisØ geometry design. [43] 

                       

Fig 1.9: Point electrode on thick electrolyte design [47] 

                       

Fig 1.10: The Inter- digitated WE/RE geometry design. [49] 

A number of simulations in the literature state the nature of the problem with the reference 

electrodes using thin electrolytes SOFC.[56-62] In the electrolyte-supported design, the anode 

and cathode are typically aligned across the electrolyte, and the reference electrode is placed 

many electrolyte thicknesses away from the edge of the WE electrode on the same side. Several 
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papers [57-59, 63] show that the potential distribution in the solid electrolyte changes with 

varying frequencies, causing distortions in the impedance measured using the 3-electrode method. 

If one electrode is displaced nearer to the reference electrode by even a fraction of the electrolyte 

thickness, then the simulations obtained for the primary (infinite frequency) and secondary (zero 

frequency) potential distributions in a thin planar cell demonstrate that the potential plane sensed 

by the reference electrode penetrates into the nearer electrode [Fig 1.11].  For example, if the 

reference electrode is on the same side as the WE and the CE electrode is closer to the RE, then a 

3-electrode measurement, either polarization or impedance, contains the performance of both the 

WE and the CE, causing significant errors in the measured polarization resistance and impedance 

of the WE.  More subtly, even when the cathode and anode are in perfect alignment, if the time 

constants (equivalently, the peak frequencies) and/or polarization resistances of the cathode and 

anode are different, the simulations again show that the 3-electrode measurement causes the 

cross-contamination of the electrodes impedance and fails to isolate the performance of the WE 

from the CE [Fig 1.11]. This situation results in the distortion present in the impedance of the 

electrodes and apparent inductance loops in the Nyquist plots at either the high frequency or low 

frequency limits [59, 60, 62][Fig 1.12].The reason for the artifacts is that the equipotential line 

sensed by the RE changes with frequency. 

 

 

 

 

 

 

 

 

 

 

Fig 1.11:  Equipotential line (red) probed by the reference electrode at zero (solid line) and 

infinity (dashed line) frequencies. Blue – anode; gold – electrolyte; red – cathode; green – ring 

reference electrode. The left border is the center of the cell. 
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Fig 1.12: The simulation Nyquist plot from Cimenti’s paper showing the Nyquist plot for 

cathode electrode E1 (Input Rp=0.1 ohms, Peak frequency 10
2
 Hz) (a) and anode electrode E2 

(Input Rp=0.1 ohms, Peak frequency 10
5
 Hz) (b). The markers indicate the peak frequency of 10

2
 

Hz for electrode E1 (circle) and peak frequency of 10
5
 Hz for electrode E2 (square).The high 

frequencies inductive loop for electrode E1 and at low frequencies inductive loop for E2 are 

artifacts. (Dashed line shows the actual input area-specific impedance and the solid line shows 

the apparent area-specific impedance by 3-electrode measurement). [62] 
 

The anode-supported configuration (See Fig 1.1(c)) requires that the RE to be located opposite 

the anode.  This configuration was simulated by McIntosh and coworkers [60].The simulations 

demonstrate the inefficacy of the RE when using the 3-electrode configuration to characterize 

anodes in anode-supported cells. The simulated 3-electrode impedance spectrum (WE = cathode, 

CE = anode) closely matches the simulated 2-electrode impedance spectrum (cathode vs anode), 

and the simulated 3-electrode impedance spectrum with the anode as the WE (CE = cathode)) 

yields an apparent polarization resistance nearly a hundred-fold smaller than the true value. The 
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potential line sensed by the RE is non-uniform with respect to the electrolyte volume (Fig 1.13) 

and at high frequencies extends to the anode/electrolyte interface, so the impedance assigned to 

the cathode contains contributions from the anode. The simulation is in agreement with 

experimental impedance data from an anode-supported cell.  Simulations by Cui et al. [64] also 

demonstrate that the measurement of overpotential (polarization losses at the electrodes) for a 

reference electrode on an anode-supported cell is “essentially meaningless”. 

 

                           

Fig 1.13: The distribution of electric potential near the edge of cathode; the reference electrode is 

located at bottom right of the electrolyte (xRE = 3telectrolyte). [65] 

 

 

More recently, Escobar et al. [65] simulated the impedances of anode-supported cells in which 

the anode and cathode had different polarization resistances but identical time constants.  The 

simulations indicated that a micro-reference electrode placed very close to the cathode (within a 

fraction of the electrolyte thickness) would yield relatively accurate polarization resistances for 

the cathode.  However, on an anode-supported cell with very thin electrolyte on the order of 10 

microns, such a reference electrode geometry would be impossible, or, at best, extremely 

difficult to achieve in experiments.  However, the authors suggest a correction method by using a 

reference electrode at a fixed distance (5 electrolyte thicknesses in the simulations), which yields 

data that could be converted to reasonably accurate polarization resistances through parametric 

equations derived from the simulations to calculate from apparent resistance.  The simulations 

did not check for the presence of inductive loop artifacts in the impedance spectra as the time 

constants (peak frequencies) of the cathode and anode are identical.  A hidden assumption in the 

simulation is that the radial width of the reference electrode must be smaller than the electrolyte 

thickness. However, such micro-reference electrodes will have large impedances, which can lead 
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to instrumental artifacts in impedance measurements due to the voltage divider effect when the 

reference electrode impedance approaches the analyzer input impedance. These artifacts and 

distortions show up in the Nyquist plot as a capacitive arc and an inductive loop. These 

distortions can be avoided by using a lower impedance reference electrode or employing an 

analyzer with higher input impedance. A correction procedure is also available [66-68]. 

 

In summary, there are multiple simulations in the literature that reveal the problem with 

reference electrodes in SOFC cells with thin electrolytes.  However, there is little experimental 

demonstration of the problem, and, judging by recent references [60, 64], many researchers 

continue to publish data on button cells based on one electrode with respect to a reference 

electrode. 

 

1.5 Aging effects of cells – lifetime of SOFCs in power generation 

 

 

While the SOFCs are operated at aggressively high operating temperatures, which offer more 

fuel flexibility and tolerance for fuel contaminants compared to other types of fuel cells, the high 

temperatures also cause cell material degradation and affect the cell lifetime. Long-term stability 

is an important requirement for the application of SOFC technology. The US Department of 

Energy’s (DOE) target requirements for SOFCs are 40,000 hours of service for stationary fuel 

cell applications and greater than 5,000 hours for transportation systems (fuel cell vehicles) at a 

factory cost of $400/kW for a 10 kW coal-based system without additional requirements. The 

Solid State Energy Conversion Alliance 2008 target for overall degradation per 1,000 hours is 

4.0%.[69]. Consequently, the lifetime effects including the phase stability, thermal expansion 

compatibility, element migration and aging effects must be addressed. [70]. 

 

For conventional SOFC cells, especially anode-supported SOFCs, the anode layer is the 

mechanical support for the electrolyte and cathode.  Structural integrity of the SOFC anode is 

needed for successful long-term operation.    The anode layer is inherently susceptible to 

mechanical failure when subjected to moderate stresses [71]. The stress may arise from thermal 

stress due to the coefficient of thermal expansion mismatch and external mechanical loading 

[72,73]. Also, the dimensional structure and microstructure of the anode could change upon 
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redox cycling of the cell (shutting off the cell and exposing the anode to air, then re-reducing the 

anode in hydrogen), which also generate internal stresses in the anode and other cell 

components.[74] Another possible cause of the anode degradation is the effect of contaminants 

(e.g., compounds containing P, S, and As) in the fuel gases. These contaminants are suspected to 

interact with the SOFC anode material and to induce degradation in electrochemical performance 

and structural properties during long-term operation [75,76]. 

 

The SOFC cathode is the place for reduction of oxygen to an ionic form which is then 

transported across the gas-impermeable electrolyte membrane. Electrochemical oxygen 

reduction process is sensitive to the changes in material composition and physical structure of the 

cathode, so the cathodes are particularly subject to degradation processes. Within the cathode, 

the fundamental processes of degradation include morphological evolution of LSM, cation 

migration and secondary phase evolution. [76]. Degradation can occur by the continual 

formation of lanthanum zirconate and strontium zirconate secondary phases at the cathode 

perovskite/YSZ electrolyte interface as a function of time or current density. [77,78]. Also, the 

impurity chromium from the interconnect in SOFC stacks is clearly linked to degradation.[79] 

 

In particular, one phenomenon of degradation was noticed as a temporally changing polarization 

resistance over tens of hours in an unpolarized cell in response to thermal perturbation. We 

explored this phenomenon via electrochemical techniques, with the purpose to discover the true 

physical source associated with it (Chapter 5). The full understanding of this degradation is 

needed in order to generate a unified picture of cathode degradation that is relevant to SOFC 

research and the application of SOFCs to large scale energy conversion. Because in practical 

operation the cells are often held at open circuit or lower overpotentials for long periods of time 

(off peak hour cycling), this degradation must also be accounted for commercial SOFC systems. 
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1.6 Polarization of the SOFC cells 

                                              
Fig 1.14: graph of the voltage drop of SOFC as a function of current density (a) low current 

range, (b) medium current range, and (c) high current range. 

 

 

As shown in Fig 1.14, several sources of voltage loss in SOFCs make the cell voltage deviate 

away from reversible cell voltage at ideal open air condition. The reversible cell voltage (Nernst 

potential) is given by Vrev=-ΔG/nF , where ΔG is the free energy of the global oxidation reaction 

in SOFC. The internal voltage losses (overpotentials) of SOFCs include ohmic losses and non-

ohmic losses. The ohmic losses (IR drops) shown in Fig 1.14 (b) range are caused by the series 

resistances of the electrolyte, anode, and cathode, and the two latter resistances are negligible in 

real SOFCs. Non-ohmic losses result from all the physical and chemical processes taking place 

on cathode and anode, and also called overpotential losses, shown in Fig 1.14 (a) (c) ranges. 

Different chemical and physical processes dominate the loss in different current ranges.  

 

Figure 1.14 shows how the cell polarization changes with the current density. In the low current 

range (Fig 1.14(a)), the current is affected by all the reactions at the electrodes that limit the 

electrochemical conversion in the SOFC, including Dissociative adsorption of oxygen and 

hydrogen, Electrochemical process on the anode surface and at three-phase boundary (TPB) and 

Charge-transfer at TPB.  The Charge-transfer reaction losses at TPB mostly dominate the power 

losses. These power losses are referred to as activation overpotential and change largely with 

temperature. In the medium current region (Fig 1.14(b)), the activation overpotential losses 

decays exponentially and the ohmic drop (IR) begins to dominate the polarization curve. The 

linear pure ohmic drop is caused by the low ionic conductivity of the electrolyte. In the high 

current region (Fig 1.14(c)),non-ohmic loss is due to the presence of concentration gradients in 
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the porous electrode structures. This area of overpotential is dominated by mass transport 

processes of reactants and products. Specifically, it includes the surface diffusion of adsorbed 

fuel species and water on the SOFC anode surface and surface diffusion of adsorbed oxygen 

species on the SOFC cathode surface, and gas-phase diffusion of hydrogen in the anode and gas-

phase diffusion of oxygen in the cathode. 
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Chapter 2: Deconvolution and complex nonlinear regression fitting 

of equivalent circuits-general information and equations 

 

As discussed in section 1.2.3 for most widely used commercial button cell designs (anode-

supported and electrolyte supported cells), several simulation papers show the inability of 

reference electrodes to isolate the performance (polarization curve or impedance) of a single 

electrode in these two types of button SOFCs. The simulations predict that the impedance 

measurements of the working electrode versus a reference electrode in a 3-electrode 

configuration are inevitably contaminated with impedance of the counter electrode.  In certain 

cases, inductive loop artifacts appear at the high or low frequency extremes in 3-electrode 

impedance measurements.  For the same reasons, polarization curves of a single electrode 

(potential or overpotential vs current) are inaccurate. An independent method to obtain the 

polarization/impedance of single electrode using 2-electrode impedance measurements is needed. 

In this chapter, the deconvolution method will be introduced, through deconvolution and fitting 

the impedance to the equivalent circuit, the components at different frequency range in 

impedance spectra can be assigned to the cathode and the anode. 

 

2.1 Current State of deconvolution field   

 

Ivers-Tiffee and co-workers first developed the deconvolution method (also known as the 

distribution of relaxation times) [1] for identifying key relaxation times (alternately, peak 

frequencies) in impedance spectra.  The information of key frequencies can be used to design 

relevant equivalent circuit models for the cell impedance.  Then, using the complex nonlinear 

regression, fitting of the equivalent circuit parameters to the impedance data yields polarization 

resistances associated with the cathode and the anode. This deconvolution approach uses the 

distribution of relaxation times to increase the frequency resolution of impedance spectra, so it 

allows the identification and separation of impedance features.  This approach has been applied 

to several types of commercially relevant cells [2-13]. 
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Bessler summarizes the concerns about using equivalent circuits to analyze the impedance of 

SOFCs [14]. It is difficult to unambiguously prove a connection between physical processes and 

impedance elements because of several reasons: Different physical processes may result in 

similar impedance features, and a single physical process can transform into multiple impedance 

elements.  Impedance of some physical processes may be masked by impedances overlapping 

from different processes.  Consequently, equivalent circuit models are ambiguous.  So it is 

difficult to prove a clear connection between physical processes and impedance elements. 

However, the minimum number of arc-forming elements that must exist in the equivalent circuit 

(representing the number of processes) could be indicated from the deconvolution spectrum. By 

changing the gas composition to the anode or cathode, certain peak frequencies in the impedance 

spectra and equivalent circuit elements can be strongly affected, so these processes can be 

assigned to the cathode or the anode.  The analysis also helps to identify which electrode and 

equivalent circuit elements contribute mainly to the total impedance, and thus provide guidance 

on how to improve the SOFC. Consequently, this deconvolution method is very promising to 

obtain the separated polarization / impedance behavior of each electrode. 

 

2.2 Principles of deconvolution 

 

Based on Schichlein et al. [15], the methodology of deconvolution is based on the following 

equations. Equation [2.1] shows a convolution equation that connects the distribution of 

relaxation times to the observed impedance spectrum, where  is the distribution of relaxation 

times, τ is the time constant, ω is the radial frequency (2πf), j is the square root of -1,  is the 

impedance data, R0 is the ohmic (frequency-independent) impedance, Zpol  is the polarization 

part, and Rpol is the polarization resistance of the impedance. 

 

(2.1) 

 

Figure 2.1 shows the interpretation of EIS data in terms of (a) equivalent circuit models and (b) 

distributions of relaxation times on a ln(τ) scale (also known as deconvolution spectra). Any 
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fundamental impedance can be transformed into the corresponding equivalent circuit model. 

Dynamic processes are represented in the distribution by the peaks at the corresponding 

relaxation time. This observation implies that the area under a peak equals the total polarization 

resistance of the respective dynamic process. 

 

 

Figure 2.1:  (a) On the left, the equivalent circuit consisting of two parallel resistance/ 

capacitance combinations (RC elements) in series.  On the right, the corresponding 

deconvolution spectrum showing two lines at the time constants of each RC element.  (b)  On the 

left, two processes, each with a distribution of RC elements with slightly different time constants.  

On the right, the corresponding deconvolution spectrum showing peaks with finite widths 

centered at the average time constants. 

 

To obtain from Zpol  in the form of a convolution product, it is sufficient to consider only 

the imaginary part of impedance Z” (out-of-phase impedance) because the real and imaginary 

parts of impedance data are from a linear and time- invariant system and are connected by the 

Kramers-Kronig transformations. Since the impedance is typically measured at equal intervals of 

log(f), the frequency variables could be converted in the integral as follows:  x = ln(ω/ω0), y = 

ln(|ωτ|). 

                         (2.2) 

                                              (2.3) 

With 
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                                         (2.4) 

Equation 2.3 has the form of a convolution integral.  After discrete Fourier transformation, the 

convolution integral is converted into an algebraic product in transformed space (Equation. 2.5). 

The strategy is to use the Fourier transform to convert Z” into its Fourier transform Zn and the 

Sech(y) function into its Fourier transform Sn,( Fig 2.2) and then divide each element of Zn by 

the corresponding Sn element to get the Fourier coefficient of gn..Then the gn coefficients are 

subjected to the inverse Fourier transform to get the desired relaxation time distribution {gk} (the 

coefficients at each frequency). Due to numerical error amplification (see Fig. 2.2), gn diverges 

over a range of frequencies resulting in meaningless results. Therefore, prior to the inverse 

transform, gn must be attenuated at the higher frequencies using a digital filter, with all the data 

points within a certain range set to zero. After filtering, inverse Fourier transformation gives the 

desired distribution {gk} (Fig 2.3). 

                                                                              (2.5) 

 

Fig 2.2: Filtering of the FFT g coefficients.  On the left, the magnitude of the Fourier transform 

of Z” data and the sech function with respect to frequency are shown.  On the right are shown the 

unfiltered FFT g coefficients (blue diamonds), the Hahn filter function (green line), and the 

product of the filter function and g coefficients.  The product is subjected to the inverse FFT 

operation to generate the deconvolution spectrum. 
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Fig 2.3: Distribution function the final gk after the inverse Fourier transform calculated from 

experimental impedance data of the anode supported cell. 

 

2.3 The procedures for deconvolution 

The general deconvolution steps are summarized as following:(a) processing the out-of-phase 

impedance Z” to remove inductance, (b) applying the Fast Fourier Transform (FFT) to the Z” vs 

frequency data set, (c) dividing each element of the Z” transform (zn) by the equivalent FFT 

element of the hyperbolic secant function(sn ) and obtaining the dividend (gn ), (d) filtering the 

dividend (gn) to remove high frequency noise, and (e) performing the inverse FFT to produce the 

deconvolution spectrum{gk}.  All calculations are performed in an Excel spreadsheet after 

importing the Z” data. 

 

The detailed procedures for applying the deconvolution to our data is as following:  The data for 

deconvolution are collected from 100 kHz to 0.1 Hz or 0.02 Hz with 10 even log frequency steps 

per decade.  The data is noise-free or low noise. The out-of-phase impedance Z” should be 

approaching zero at both the high and the low frequency limits.  At the high frequency limit, the 

data always show the inductance.  At the low frequency limit, for some tests, as Z” was not 

approaching zero at 0.1 Hz, the re-collected impedance data reached a lower limit of 0.02 Hz to 

obtain the adequate frequency limit.  Another problem is that sometimes an oscillation showed 

up on the OCV with time periods on the order of a few seconds, which makes the low frequency 

data noisy. The cause of the oscillations is usually liquid water in the anode or possibly the 

cathode exhaust line. Although such low frequency noise is small, it may be amplified after 
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deconvolution and form false peaks. So processing of the impedance data before deconvolution 

is needed. 

               There are three steps for data processing.  First, the effects of inductance are removed.  Second, 

the data are extrapolated from log f 5 up to log f 8.4 and from log f -1.7 to log f -4.35.  The 

purpose of extrapolation is to create a data file with 256 points needed for the Fast Fourier 

Transform (FFT), to ensure that the end points at the high and low frequency limits  are close to 

zero and to ensure that the collected impedance data is in the central range of the frequencies.  In 

the process of extrapolation, the data are also interpolated with extra data points at 0.05 log f 

units to improve frequency resolution in the deconvolution spectra.  Third, the data is smoothed 

to avoid large transients in the deconvolution spectrum.  

            The first step is to correct for the inductance (and parallel resistance) at the high frequency limit. 

An artifact due to inductive effects from the measurement of the wires always shows up. For the 

out-of-phase impedance Z” (Fig 2.4), the inductance L is removed according to Equation. 2.6: 

Z”corr(f) = Z”(f) + ωL                                        (2.6) 

Where ω = 2πf.  The value for L can be estimated by plotting -Z” vs log(f).  At the high 

frequency limit, this plot is generally linear (i.e., Z” is decaying exponentially towards zero as 

log f increases). The L value is adjusted so that Fig. 2.4 shows a smooth decay of the Z” points 

towards zero without going negative.  Later, after fitting the data to the equivalent circuit, the 

fitted value for L can be used to obtain the best corrected data. 

                         

Fig 2.4: The edit data shows the step of processing the out-of-phase impedance Z” to remove the 

inductance artifact. 
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The Fig 2.5(a) is a plot of log(|Z”|) vs log f, which will be used as an example for explaining 

corrections, smoothing and extrapolations.  The extrapolations are based on the observation that 

an RQ element will exhibit linear decay in this plot at frequencies away from the peak frequency.  

 

(a)                                                                    (b)                

Fig 2.5: (a) The log(|Z”|) vs log f plot.( b) The log(|Z”|) vs log f plot after fixing the deviant  data 

points. 

 

In principle, the convolution in Equation 2.1 requires an infinite integration range while the 

frequency ranges of measurement data is limited by the experimental conditions. Therefore, to 

reduce numerical errors from the limited frequency range, the Z” data must be extended by 

extrapolation over a sufficiently wide range of frequencies. The Z” data is extrapolated to a value 

close to zero at the upper and lower frequency limits, so that the integration error is negligible 

and FFT works well.  As noted above, the plot of log(Z”) vs log(f) usually exhibits linear 

behavior at both the high frequency and low frequency limits.  Theoretically, the first 3 or 4 data 

points at each end are fitted to a linear regression equation to obtain coefficients.  The 

coefficients are used to calculate Z” values beyond the measured frequency limits.  The new 

frequency limits are extended sufficiently for Z” to approach zero. 

 

However, Fig 2.5(a) also shows some problems for extrapolation, which are very common in our 

data analysis. For example, the change in slope above log f = 4 and the data at the 2 highest 

frequencies are increasing, instead of decreasing.  These deviations are thought to be caused by 

inaccurate impedance measurements by the Solartron Cell Test system.  Similarly, at the low 

frequency limit (below log f = -1), some data points show deviance from the line extrapolated 

from higher frequencies. 
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The deviant Z” data at the high frequency end (above log f = 4) can be replaced with a 

reasonable exponential decay.   The linear regression slope is then calculated and the linear 

regression intercept of log(Z”) vs log f linear decay from log f = 3.6 to 4.0.  These parameters are 

used to calculate extrapolate values of Z” to log f = 8.4.  

The deviant Z” data at the low frequency limit presents a greater problem.  Any wrong guesses 

here will result in a false peak in the deconvolution spectrum.  One method is to repeat the 

impedance acquisition, so that the data sets can be averaged to minimize the deviance.  Some of 

the points in Fig 2.5(a) are clearly way off (log f=-1.2, 1.6, and -1.7).  These can be replaced by 

the average of the data points on either side or deleted.  Fig 2.5(b) shows the result after fixing 

the deviant data points. In Fig. 2.5 (a), peaks in the frequency range log f -1.5 to -0.5 are suspect.  

Smoothing the data is required. Z” data were smoothed by averaging 3 adjacent points.  The 

ln(smoothed Z”) values from log f = -1.5 to -0.5  were included in a linear regression analysis to 

obtain the parameter for extrapolating the Z” data to log f = -4.35.  

  

Now, after extrapolation, log f greater than 4 and log f less than -1.5, Z” are calculated from the 

corresponding high and low frequency linear regression slopes and intercepts.  Then from log f = 

8.4 to log f = -4.35, data points (log f = x.x5) are interpolated using the average of the two 

adjacent data points, make the whole data set with a log f interval of 0.05.  The last step for data 

processing is smoothing Z”, which is done by averaging up to five adjacent points.  Fig. 2.6 

shows plots of processed Z” both in linear and log format.   Checking the validity of the 

extrapolated Z” data is done by matching the extrapolated slopes in Fig. 2.6(b) with slopes of the 

data.   
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(a)                                                                                              (b) 

Fig. 2.6 (a) plot of processed Z” vs log f. (b) Plot of processed log(|Z”|) vs log f. 

 

Now the Fast Fourier Transform (FFT) is applied to the processed Z”, dividing each element of 

the Z” transform (zn) by the equivalent FFT element of the hyperbolic secant function (sn ) to 

obtain the dividend (gn ).  Fig 2.2 shows amplitude of the FFT Z”data and sech function.  It is 

evident that points from about 25 to 235, the values of FFT Z” and sech function have huge 

differences and cause noise, so these points must be eliminated before performing the inverse 

FFT.  A Hahn filter is applied to control the numerical error amplification from FFT before 

inverse transfer. The Hahn filter is multiply with gn coefficients to eliminate the noise, where 

Hahn filter function is (0.5 + 0.5*cos(pi*n/27)), and n is the data point. Points 24 through 235 in 

the Hahn filter are set to zero. The product of the Hahn filter and the gn coefficients is subjected 

to the inverse FFT operation to generate the deconvolution spectrum. Fig 2.2 shows the plot of 

“filtered gn function”, which provides a check whether excessive noise is still present prior to 

performing the inverse FFT step.  This filtering process removes high frequency noise but at the 

same time causes unavoidable broadening of the deconvolution spectrum.  

After performing the inverse FFT for the filtered FFT gn coefficients, the final gk can be obtained. 

The final result is a plot of the amplitude gk vs log f.  The deconvolution spectrum is normalized 

for the sum of all gk values is 1 (Fig 2.3).  

 

The deconvolution spectrum can provide much useful information to construct an equivalent 

circuit, such as the peak number, peak frequency, and peak height and peak shape. The peak 

number suggests how many elements needed for the circuit and the peak shape suggests what 

kinds of arc-generating element to be used. Then we use ZView® to fit the elements of the 
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circuit with the impedance data. A spreadsheet “Impedance simulator” was created to simulate 

the impedance spectra using the information from deconvolution spectrum. The simulation 

parameters are adjusted to obtain reasonable values for the various elements. These values were 

inputted as the starting numbers for ZView® equivalent circuit fit. The impedance simulator can 

be used as a check for fit, not only for the simulated impedance with the collected data, but also 

the deconvoluted impedance from equivalent circuit fit with the deconvoluted collected data. 

2.4 Equivalent circuit elements 

Equivalent circuits for SOFCs are usually composed of a series of arc-generating elements. The 

arc-generating elements usually include the RQ element, the Gerischer impedance and the finite 

length Warburg impedance. The most common arc-generatoris RQ is a parallel combination of a 

charge transfer resistance and a constant phase element (CPE). R represents the resistance from 

charge transfer in the electrode. Q represents electrons transfer to and from the interface of the 

electrode and electrolyte, and is affected by rough surfaces. The RQ element can be used to 

model a variety of processes occurring on SOFCs.  The admittance Y of the CPE is dependent on 

two parameters, a magnitude |Q| and an exponent .When exponent , the CPE 

becomes the ideal capacitance. And with exponent , the impedance of this  element 

becomes a distributed impedance. The admittance of the RQ element is given by: 

         (2.7) 

The peak frequency of the  element can be matched to peaks in the deconvolution spectrum 

through Equation 2.8. 

                                                   (2.8) 

The parallel  combination generates a “depressed” arc in the Nyquist plot .  The Z” 

component of the  impedance vs log f is a symmetrical peak with the half-width scaling 

inversely with respect to the exponent (Fig. 2.7A).  Deconvolution of the impedance data for 

 yields a symmetrical peak whose half-width also increases as n decreases from 1 (Fig. 
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2.7B).  Because of the filtering process broadening, deconvolution of the data set for  is a 

narrow peak instead of the expected spike at the peak frequency of the impedances. 

 

Fig. 2.7:  Impedance and deconvolution spectra for  circuits.  The peak frequency is 100 Hz, 

and the exponents are shown in the legend.  (A) –Z” vs log f; (B) deconvolution spectrum g vs 

log f. 

Other arc-generating elements include the Gerischer impedance and the finite length Warburg 

impedance.  The Adler/Lane/Steele model for porous electrodes prepared using mixed 

ionic/electronic conductors shows that a Gerischer impedance is anticipated [83].  More 

generally, Boukamp and Bouwmeester [84] showed that the Gerischer impedance appears when 

a charge transfer step is coupled to a mass transfer step in an electrode.  In a Nyquist p lot, the 

Gerischer impedance exhibits a characteristic different from   with the shape of a straight 

line at the high frequency limit (slope close to 1) and an arc at the low frequency limit (Fig. 

2.8A).  The Gerischer impedance is defined by three parameters, the polarization resistance  

which represents the process of oxygen reaction with the LSM surface with a mass transfer step, 

a parameter  and exponent , shown in Equation 2.9: 

         (2.9) 

The exponent  is equal to 0.5 in the ideal Gerischer element, yielding the following expression 

for the peak frequency. 

                      (2.10) 
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A generalized Gerischer impedance (also known as a Cole-Davidson impedance) is the exponent 

 to deviate from ½.  The peak frequency is given by Equation 2.11: 

                                         (2.11) 

Deconvolution of a Gerischer-type arc produces an asymmetrical peak with a smaller peak at 

approximately 20 times the peak frequency on the high frequency side and an extended tail to 

higher frequencies (Fig. 2.8B)[16,17]. Because of the filtering process, the secondary peak is 

barely visible in the deconvolution spectrum. The deconvolution spectrum with an exponent  

lower than ½ becomes a distributed impedance. Boukamp and Bouwmeester refer to this case as 

a fractal Gerischer element [16]. 

 

Fig. 2.8: (A)Nyquist (B) deconvolution plots for the generalized Gerischer impedance.  Peak 

frequency = 10 Hz.  The exponents are shown in the legend. 

The finite length Warburg impedance is used to model mass transfer control of the reactant over 

a finite thickness (e.g. current limited by diffusion of the reactant gas across the thickness of the 

porous SOFC electrode). The finite length Warburg impedance is also defined by three 

parameters, the diffusion resistance  which represents the reactant gases mass transfer through 

the porous SOFC electrode, a parameter  which is affected by the diffusion coefficient and the 

finite distance over which diffusion occurs, and exponent : 

         (2.12) 
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                                    (2.13) 

The exponent  is equal ½ for the ideal element, but a generalized finite length Warburg (FLW) 

allows the exponent to deviate from ½.  The  parameter equals l
2
D, where l  the finite diffusion 

length and D is is the diffusion coefficient of the reactant.  The peak frequency is given by 

Equation (2.14) for : 

                                 (2.14) 

Similar to the Gerischer impedance, the Nyquist plot exhibits a straight line of slope 1 at the high 

frequency limit and an arc at the low frequency limit (Fig. 2.9A).  Deconvolution of the FLW 

impedance yields an asymmetrical peak with a distinct secondary small peak at approximately a 

10-fold higher frequency, which is more visible compared to Gerischer deconvolution spectrum 

(Fig. 2.9 B). 

 

Fig. 2.9:  Nyquist (A) and deconvolution spectra (B) of a finite length Warburg element 

(exponent  = ½) with a peak frequency of 10 Hz (  = 0.04044). 

The deconvolution spectra in Figures 2.7-2.9 demonstrate how the contribution of each arc-

forming element to the total impedance extends over four or more orders-of-magnitude changes 

in frequency.  Consequently, a complex nonlinear regression fitting procedure is applied to find 

the best values for the parameters in the equivalent circuit.  The commercial software ZView® 

(Scribner) provides all of the preceding elements in the design of an equivalent circuit, and yields 

least squares fits and uncertainties of all parameters.  The fitting function that is minimized is 

given in equation 2.15. 
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[              (2.15) 

  

Where the sum is carried out over all frequencies.  The error function is weighted by the 

amplitude of the simulated impedance. 

As a check on the choice of equivalent circuit elements, the calculated impedance of the 

equivalent circuit is compared to the original impedance. In addition, the calculated impedance 

of the equivalent circuit is subjected to deconvolution and the simulated deconvolution spectrum 

of the circuit is compared to the deconvolution spectrum of the original data. This check 

approach ensures the correct choice of a valid equivalent circuit [1]. 

The ZView program sometimes yields unrealistic parameters (e.g., the exponent n being greater 

than 1 for an RQ element) and sometimes the details of the deconvolution spectrum are not 

captured by the parameter values returned by ZView.  In such cases, certain parameters are fixed 

and ZView is used to find best fit values for the remaining parameters. 

2.5 Strategy   

 In the following chapters, the deconvolution is applied for analyzing the impedance data of 

anode-supported cells, electrolyte-supported cells and symmetrical cells, so that the main 

frequencies of processes in the impedance spectrum could be identified,  Construction of an 

equivalent circuit by using the information from deconvolution is followed by using ZView® to 

fit the elements of the circuit. Through identifying the changes in the fitted parameters of the 

equivalent circuit at changed operation conditions (Temperature, gas flow, DC voltage), 

equivalent circuit elements could be assigned with the cathode and anode. 
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                         Chapter 3: Analysis of SOFCs using reference electrodes  

 

3.1. Introduction 

As discussed in section 1.2.4, in a three-electrode system (Working Electrode - WE, Reference 

Electrode - RE and Counter Electrode - CE), a reference electrode is a widely used tool to 

remove any contribution of the electrochemical behavior of the counter electrode from the 

electrochemical behavior of the Working electrode. In SOFC research, finding a reliable method 

to separate the cathode performance from the anode for commercial SOFC cells is required since 

SOFC development depends on the ability to identify limitations of performance of the whole 

cell in terms of the cathode and anode contributions.  Reference electrodes have been frequently 

used to isolate the performance of one electrode in SOFCs. However, it is difficult to achieve 

accurate separation of the WE performance from the cell performance in commercially relevant 

SOFC designs with very thin electrolytes between the cathode and anode.  A number of 

simulations in the literature state the nature of the problem with the reference electrodes used on 

thin-electrolyte SOFC. For the SOFC Cells, either the cathode or the anode can be the WE.  In 

the following chapters, the cathode is the WE unless otherwise stated.  The dissertation adopts a 

3-electrode notation as WE/RE/CE (cathode/reference/anode) and 2-electrode notation as 

WE/CE (cathode/anode). 

Despite the fact that difficulties for using the reference electrode predicted in simulation and 

experienced in practice have been reported, numerous papers still use reference electrode on 3-

electrode polarization curves or impedance data [1-9].  The interpretation of 3-electrode 

polarization or impedance data yields misleading results for one electrode, which may contain 

the performance of the other electrode.  Some mitigation methods for the known problems have 

also been reported.  Van den Bossche et al. [10] describe a test for checking the isolation of 

anode overpotential.  The cathode overpotential-current plot is examined as a function of the fuel 

composition to the anode.  Since the cathode plot exhibited little change, the authors concluded 

that the anode and cathode overpotential-current plots were effectively separated.  This method is 

essentially the one that is discussed in this chapter.  Offer et al. [11] describe a method for 

correcting the working electrode polarization curves in 3-electrode system using the high 
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frequency intercept of the 3-electrode impedance plots only for experimentally simple cell 

geometries. However, many current papers report single electrode polarization curves and 

impedance data without mitigation methods or comment on the problems discussed above.  

 

3.2 Objectives 

 

In this chapter, the polarization plots and impedance data are examined for an anode-supported 

cell with a ring reference electrode, an electrolyte-supported cell with a ring reference electrode, 

and an electrolyte-supported cell with a micro-reference electrode close to the cathode.  Analysis 

of the impedance data for multiple configurations (cathode/anode, cathode/reference/anode, 

anode/cathode, anode/reference/cathode), three gas flow conditions (normal, low air, low fuel) 

and two temperatures (800ºC, 700ºC) are described. The assumption of using the changed gas 

flows to separate the cathode/anode spectra is that changing the reactant concentration to one 

electrode has a minimal effect on the impedance behavior of the other electrode. This assumption 

is supported by simulations performed by Dr. Ismail Celik and Dr. Raju Pakalapati in the 

Mechanical & Aerospace Department at WVU [private communication].  Through changing of 

gas flows and examining changes in the impedance associated with gas composition changes to 

the cathode or the anode, it is possible to identify the main ranges of frequencies in the 

impedance data associated with the cathode and/or the anode.   

 

Also, the method described by Van den Bossche is applied to impedance data.  The 3-electrode 

impedance (cathode/reference/anode) is measured using different fuel compositions.  If the 3-

electrode impedance is truly isolating the cathode impedance from the anode impedance, then 

changes in fuel composition should not affect the 3-electrode impedance measurement.  If, 

however, the 3-electrode impedance is affected, then the anode impedance is mixed in with the 

cathode impedance.  The analyses support the conclusion that proper placement of a reference 

electrode is technically nearly impossible and that 3-electrode measurements generated using a 

reference electrode could not provide true impedance data or polarization curves for the 

electrodes.  A more promising approach for analysis of single electrode performance is the 

deconvolution protocol including the deconvolution and equivalent circuit fitting applied to the 

three above button cells, which will be discussed in detail in the next chapter. 
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3.3 Experimental section 

Three geometries with reference electrodes were successfully build up for investigation, 

including an anode-supported cell with a ring reference electrode, an electrolyte-supported cell 

with a ring reference electrode, and an electrolyte-supported cell with a micro-reference 

electrode. 

 

Dr. Yun Chen started to create micro-reference electrodes on anode-supported cells using 

lithography method. He used an electron-beam evaporator to create an Al2O3 blocking pad on the 

electrolyte side of the anode-supported cells, and then he created an Ag sputtered micro-

reference electrode on the Al2O3 blocking pad. The sputtered Ag electrode was about ten micron 

from the cathode edge.  However, this geometry had a problem. The current connector to the Ag 

electrode always failed after sintering in high temperature (800
º
C) and the evaporated Al2O3  

blocking pad was suspected of not truly insulating the Ag electrode from the electrolyte. So, the 

second best approach was used. An Ag paste micro-reference electrode on an electrolyte-

supported cell was manufactured. The reason for using this geometry is that, compared to the 

anode-supported cell (order of 10 microns thick electrolyte), the electrolyte-supported cell has a 

thicker electrolyte (hundreds of microns). Based on Escobar et al.’s simulation the micro-

reference electrode can be located within tens of microns of the cathode for the electrolyte-

supported cell instead of 10 microns away from cathode of the anode-supported cell [12]. The 

former geometrical requirement for the micro-reference electrode is much easier to achieve. 

 

3.3.1. Preparation of LSM/YSZ cathode and LSM/YSZ ring for Ni/YSZ 

anode-supported cells 

Anode-supported cells were constructed from half-cells (diameter 27 mm) purchased from Fuel 

Cell Materials.  The half cell had a Ni/YSZ anode thickness of 0.9 mm and an YSZ electrolyte 

thickness of 10 microns.  A disk cathode electrode with a diameter of 0.5 inches (area 1.27 cm
2
) 

was screen-printed on the electrolyte using six layers of LSM/YSZ paste (1:1 by weight).  Four 

layers of pure LSM paste were screen-printed on top of the LSM/YSZ layers as the current 
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collector layer.  A ring electrode with an inner diameter of 0.625 inches and outer diameter of 

0.75 inches (area 0.87 cm
2
) was screen-printed with five layers of LSM/YSZ and three layers of 

pure LSM paste (Fig 3.1). The cathode and ring electrodes were sintered at 1100
º
C for 3 hours.  

Currents, power and impedances were normalized with respect to the area of the cathode. 

 

 

 

 

Fig 3.1: The LSM/YSZ ring reference electrode on Ni/YSZ anode-supported cell. 

 

3.3.2. Preparation of the Ag ring for the electrolyte-supported cell 

Electrolyte-supported cells were purchased from Fuel Cell Materials.  The cells consist of a 

Ni/YSZ anode (0.5 inch diameter, area 1.27 cm
2
), a proprietary (Hionic®) electrolyte (thickness 

0.15 mm, diameter 28 mm), and a LSM/YSZ cathode (diameter and position matching the 

anode).  Silver paste was painted in a ring around the cathode; inner and outer diameters were 15 

mm and 19 mm, respectively (area 1.0 cm
2
) (Fig 3.2). The silver ring was sintered at 800

º
C for 1 

hour before testing. 

                          

Fig 3.2: The silver ring reference electrode on the electrolyte-supported cell 
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3.3.3. Preparation of Ag dot micro reference electrode with glass paste 

blocking layer 

For the micro-reference electrode, glass paste was painted on the electrolyte layer near the 

cathode edge to form an insulating pad. To ensure the insulating ability of the glass paste, 

symmetrical cells with a silver electrode of one side on glass paste and the opposite side silver 

electrode directly on the electrolyte were tested using impedance measurements. The very high 

series resistances and polarization resistance (>10 kiloohms) showed that glass paste has good 

insulating ability.  After firing the glass paste at 850°C, silver paste was painted on the glass 

layer with a thin silver line connecting to a small pad of silver on the electrolyte near the cathode 

edge, which was again sintered to 800°C for 1 hour. Fig. 3.3 shows the micro-reference electrode.  

The critical dimensions are 145 microns width, 110 microns radial thickness, with an area of 

approximately 2x10
-4

 cm
2
, and separation from the cathode edge 18 microns. 

 

 

 

 

 

 

Fig. 3.3:  Micro-reference electrode on an electrolyte-supported cell.  The gold-coated cathode is 

on the right side.  The grey area is the glass paste layer, and the bright area is the silver reference 

electrode and contact pad.  Lengths and spacing of the micro-reference electrode are shown. 

 

3.3.4. Characterization and SOFC operation conditions 

The cell assembly is as follows.  The anode was connected to a gold or platinum mesh using 

nickel paste, and the cathode and ring electrode were connected to gold wires using gold paste.  
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The micro-reference electrode was connected to a silver wire using silver paste.  Gold paste 

covered the entire cathode and the entire ring.  The cell was mounted in a test stand as show in 

Fig 3.4. The temperature-controlled humidifiers are connected to the anode and cathode gas inlet 

pipeline. Through increasing the temperature of the humidifier, more water vapor can be added 

in the gas flows to the anode and cathode. To mitigate the problems of accumulation of 

condensed water in the anode gas outlet pipeline and the possible cathode degradation by the 

effect of cathode gas humidification [13], we set temperatures of both humidifiers for the anode 

and cathode to room temperature (25°C). The gas flow allowed control of gas composition to 

both the anode and the cathode.  The cell was sealed to the anode flange using glass paste and 

several high temperature mica washers were put between the cathode side electrolyte and flange 

and inside the flange and Al2O3 tube to ensure the sealing.  Two leads (current and voltage sense) 

were connected to short wires leading to the anode and cathode, respectively.  A single lead was 

connected to the ring electrode or micro-reference electrode.  The cell was slowly heated to 

850°C to soften the glass paste with air to the cathode and reference electrodes and nitrogen to 

the anode, and then cooled to 800°C.  The anode was reduced using first 20% hydrogen in 

nitrogen overnight, and then 100% hydrogen. 

Electrochemical measurements were performed using a Solartron Cell Test system. 

Measurements were performed in both a two-electrode configuration and a three-electrode 

configuration as noted previously.  Impedances of the reference electrodes were checked with a 

two-electrode configuration (reference/anode).  One channel of the Cell Test passed current 

between the WE and CE electrodes with the reference lead either connected to the CE (2-

electrode measurement) or to the RE (3-electrode measurement).  A second channel monitored 

the voltage between the RE and WE at the same time. 

At each flow condition and temperature, a series of measurements were performed: (a) open 

circuit voltages (OCVs) of all two electrode combinations (cathode/anode, cathode/reference, 

anode/reference), 1000 data points per second measuring for a second, and 10 data points per 

second measuring for 30 second; (b) polarization curves for cell voltages scanning from the OCV 

to 0.5 V or 0.3 V, data collected at 10 pts/s, scan from OCV to the terminal voltage for 30 s, and 

scan back to OCV for 30 s; (c) two-electrode and three-electrode impedance measurements at 

OCV with the voltage controlled at the OCV (10
5
 Hz to 0.1 or 0.02 Hz, 10 log linear steps per 
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decade), and (d) slow scan cyclic voltammograms over a potential range of OCV +/- 25 mV over 

100 s (effective frequency of 0.01 Hz).  The slow scan CVs provided a confirming measurement 

of the total resistance obtained from the low frequency intercept of the Nyquist plot. 

Gas flows to the cathode and anode were used: (1) 250 standard cubic centimeters per minute 

(sccm) hydrogen to anode, 400 sccm air to cathode, labeled as normal (N), (2) 250 sccm 

hydrogen to anode, 50 sccm air + 350 sccm nitrogen mixture gas to cathode, labeled as low air 

(LA) condition, (3) 50 sccm hydrogen + 200 sccm nitrogen to anode, 400 sccm air to cathode, 

labeled as low fuel (LF) condition.  Both gas streams were saturated with respect to water vapor 

at 20°C.  The reference electrodes were exposed to the same gas condition as the cathode. 

 

Fig 3.4:     Schematic drawing of the electrolyte-supported fuel cell mounted in the furnace 
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3.4 Results and discussion 

3.4.1 Simulation results 

To use the protocol of analyzing the 3-electrode impedance data, the assumption that changing 

the gas composition to one electrode does not affect the impedance of the other electrode should 

be replicated by computational simulation.  A computational simulation was developed by Dr. 

Raju Pakalapati and Dr. Ismail Celik (private communication), which was performed on the 

anode-supported cell.  The simulation did support this assumption.  The simulation incorporated 

the following three physical processes during cell operation: (a) the current generated throughout 

the electrode which depends on overpotential at both the cathode and anode following Butler–

Volmer equations; (b) gas diffusion through the porous electrode; and (c) oxide ion transfer 

through the electrolyte and into the electrolyte network in the porous electrodes.  The parameters 

in the simulation were modified to make sure that both the experimental polarization curve and 

the impedance data of the anode-supported cell at normal flow condition at 800ºC approximately 

matched (Fig. 3.5).  The impedances of the cathode and anode were calculated by 3 electrode 

measurement using a virtual reference electrode which is located at the midpoint of the 

electrolyte.   

 
(a)      (b) 

Figure 3.5: (a) Comparison of simulation polarization curve and (b) simulation impedance to the 

data from the anode-supported cell at 800ºC and normal flow.  The effects of inductance and 

series resistance have been removed from the cell impedance.  In (a), experimental polarization 

curve solid blue line, simulation results green triangles.  In (b), corrected impedance data blue 

diamonds, simulation impedance red squares. 
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The simulation was applied for each normal, low air and low fuel flow conditions. Bode plots 

(Fig. 3.6) show that in the normal flow condition, the higher frequency arc corresponds to the 

cathode and the lower frequency arc is related to the anode.  The height of the anode Z’ change is 

about three times the cathode Z’ change, which means that the total polarization resistance 

contains more contributions from the anode (about 75%).  Fig. 3.7 compares the cathode Bode 

impedances for normal, low air and low fuel flow conditions.  Compared to normal flow, at low 

air flow, the cathode polarization resistance increases and the peak frequency in the –Z” plot 

shifts to a lower frequency (from 40 to 32 Hz).  The impedance for low fuel flow totally overlaps 

with the impedance for normal flow. Consequently, low fuel flow for the anode has no effect on 

the cathode impedance. The different Bode plots going from normal flow to low fuel flow are 

shown in Fig. 3.8. For cathode, anode and whole cell, the difference Bode plots (dZ) are 

calculated by subtraction of the Z’ and –Z” values for normal flow from the corresponding 

values for low fuel flow.  The cathode dZ values are essentially zero, and the anode and cell dZ 

values are identical.  Changing flow from normal to low fuel condition, the change of the whole 

cell impedance is all from the change of the anode impedance.  The cathode impedance has no 

change.  Similarly, dZ plots for low air flow vs normal flow demonstrate that low air flow only 

changes the cathode impedance.  This simulation supports the possibility of separating the anode 

and cathode impedances by examining the impedance change for the cathode or anode electrode 

with gas composition changes. Consequently, a real 3-electrode measurement 

(cathode/reference/anode) should not exhibit any changes when the fuel flow to the anode (the 

counter electrode) is altered.  The method of checking whether the 3-electrode measurements 

successfully isolate the impedance of one electrode is based on such result. 

 
(a)      (b) 

Figure 3.6:  Bode plots of the simulated impedance Z’ (a) and –Z” (b).  The Z’ data are corrected 

for the ohmic resistance. The blue diamonds are cell data, red squares are the cathode data and 

green triangles are the anode data. 
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(a)      (b) 

Figure 3.7:  Overlay Bode plots of the simulated cathode impedance Z’ (A) and –Z” (B) for 

normal (N), low air (LA) and low fuel (LF) flow.  Normal condition solid black diamonds, low 

air condition blue diamonds and low fuel red squares.  

 

 
(a)      (b) 

Figure 3.8:  Difference Bode plots of the simulated cell, cathode and anode impedances dZ’ (a) 

and dZ” (b) going from normal flow to low fuel flow. The blue diamond is cell data, red square 

is cathode and green triangle is the anode. 

 

3.4.2. Reference electrodes  

In the anode-supported cell, various materials were tried for the formation of useful reference 

electrodes.  Platinum paste and gold paste electrodes exhibit high polarization resistances and 

tend to delaminate from the electrolyte over the test time of an operation cycle (several days).  

Silver paste electrodes yield lower polarization resistances but also have delamination problems.  

Often, a silver paste reference electrodes are observed exhibiting a short-circuit connection to the 

anode, which is suspected to arise from penetration of silver paste into the pinholes in the thin 

electrolyte. Compared to the metal electrodes, the LSM/YSZ composite electrodes have the 

advantages of providing a stable potential with good adhesion to the electrolyte and a much 

lower polarization resistances.  Two-electrode measurements with the reference electrode as the 
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working electrode indicate that the LSM/YSZ reference electrodes have a low polarization 

resistance no larger than 1 ohm cm
2
 at 800°C (normal air flow). 

On the electrolyte-supported cells, silver paste and LSM/YSZ composite electrodes work equally 

well.  For the micro-reference electrode, silver paste is the only option when glass paste is used 

to insulate the contact pad from the electrolyte, because at the sintering temperature of 

LSM/YSZ composite (>1000 °C), the glass paste becomes a liquid.  The Nyquist impedance plot 

for the micro-reference electrode and the anode (reference/anode) shows a single arc with a peak 

frequency of 1 kHz, a series resistance of 1 kiloohm (0.2 ohms cm
2
) and a polarization resistance 

of 3.5 kiloohm (0.2 ohms cm
2
).  Open circuit voltage measurements using the micro-reference 

electrode exhibit 60 Hz bursts with an amplitude of a few mV.  The 60 Hz bursts are probably 

related to electromagnetic noise picked up from the heating coils of the furnace. 

3.4.3. Open Circuit Voltages 

Open circuit performance is a key indicator of reference electrode quality. A reference electrode 

set on the cathode side should respond to the same half-reaction as the cathode: 

 O2 + 2VO
••
 +4e

-
 <―> 2OO

x
       (3.1) 

Equation 3.1 shows the oxygen reduction in the cathode with Kroger-Vink notation.  VO
••
 is the 

oxide ion vacancy in the electrolyte lattice, and the OO
x 
is the oxide ion occupying the oxide ion 

lattice site.  The dots represent a positive charge of +2 relative to the charge of the ion normally 

occupying the lattice site.  The x represents a zero charge relative to the charge of the ion 

normally occupying the lattice site. Based on the configuration, theoretically, the potential 

between the cathode and reference electrode at open circuit should be on the order of +/- 1 mV, 

since the activities of O2, VO
••
, and OO

x
 are expected to be very similar at the two electrodes as 

the two electrodes are in the same gas composition.  In the electrolyte-supported cell, the OCVs 

of the cathode with respect to both the ring reference electrode and the micro-reference electrode 

are, as expected, close to zero (Table 3.1).  In general, the observed cathode/anode OCVs of 

electrolyte-supported cells follow the voltage predicted by the Nernst equation, but are typically 

10 – 20 mV below the Nernst voltage (Table 3.1, 3.2).  Equation 3.2 shows the Nernst equation 

for a SOFC:  



50 
 

ΔEcell = ΔE
0
cell - (2.303*RT/nF)log( α

2
H20/( α

2
H2 *α O2))                                             (3.2)                        

Where E
0
cell = cell potential under standard conditions. R = gas constant, which is 8.31 (volt-

coulomb)/(mol-K), T= operation temperature, n = number of moles of electrons exchanged in the 

electrochemical reaction, F = Faraday's constant (96500 coul/mol), and α is the chemical activity 

for the relevant species.  At 800
ο
C standard condition (the pressures of the gases H2, O2 and H2O 

are 1atm), ΔE
0
cell= 1096 mV for SOFC at 800

ο
C. 

 

Table 3.1: Open circuit voltage magnitudes (mV) for electrolyte-supported cells with a ring 

reference electrode or a micro-reference electrode 

Temperature/Flow Ref Cat/an Cat/ref An/ref Nernst delta 

800N Ring 1086 0 1085 1096 -10 

800LA Ring 1034 1 1035 1049 -15 

800LF Ring 1003 0 1002 1022 -19 

700N Ring 1096 0 1096 1113 -17 

700LA Ring 1057 0 1054 1070 -13 

700LF Ring 1033 1 1032 1046 -14 

800N Micro 1085 0 1085 1096 -9 

800LA Micro 1037 2 1037 1049 -12 

800LF Micro 1015 1 1015 1022 -7 

700N Micro 1102 0 1102 1113 -11 

700LA Micro 1078 0 1079 1070 -8 

700LF Micro 1026 0 1028 1046 -20 

Delta is the cathode/anode voltage Eactual minus the Nernst voltage EN. 

On the anode-supported cell, the cathode/ ring voltage was in the range of 10 to 20 mV with the 

cathode positive with respect to the ring electrode (Table 3.2). The possible causes of this 

deviation from +/- 1 mV are discussed elsewhere [Pakalapati et al., submitted to ECS Trans.], 

but are generally assumed to arise from leakage of fuel across the electrolyte and possibly the 

seal around the anode so that the pressure of oxygen is different at the ring than at the cathode.  

In the anode- supported cell, cathode/anode voltages are also 25 – 35 mV below the predicted 

Nernst voltage (Table 3.2).  The possible reasons are pinhole leaks in the thin electrolyte as well 

as leaks in the seal around the anode so that the pressure of water is raised on the anode side (the 

water is produced when leaking oxygen reacts with hydrogen). 
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Table 3.2: Open circuit voltage magnitudes (mV) for an anode-supported cell with a ring 

reference electrode 

Temperature/Flow cat/an cat/ref an/ref Nernst delta 

800N 1070 12 1058 1096 -26 

800LA 1015 12 1003 1049 -34 

800LF 995 19 976 1022 -27 

700N 1089 13 1075 1113 -24 

700LA 1039 17 1022 1070 -31 

700LF 1015 16 999 1046 -31 

Delta is the cathode/an voltage minus the Nernst voltage. 

3.4.4. Polarization curves 

Polarization curves of the two-electrode measurements of WE vs RE are widely seen in the 

literature as an important indicator for the electrode performance with the implication that the 

polarization curve is assignable to one electrode.  Polarization curves for both the cathode and 

the anode with respect to the reference electrode and the cell polarization curve are less 

commonly seen.  However, it is more instructive for seeing how the reference electrode affects 

the measuring the polarization loss of one electrode. Figures 3.9 shows Polarization curves 

(voltage vs. current and overvoltage vs. current) for the anode-supported cell and the electrolyte-

supported cell with ring reference electrodes are shown 3.10 at 800ºC and gas at normal flow 

condition.  All the polarization curves are without correction for iR drop. The reason is based on 

simulation.  It is difficult to obtain the correct ohmic resistance in a 3-electrode configuration 

from impedance measurements.  The two figures show both the forward scan from OCV to 0.5 V 

or 0.3 V and the return scan back to OCV.  The exact overlap between the forward and reverse 

scans (absence of hysteresis) indicates that the currents are near their steady-state values.  In the 

anode-supported cell, the anode/reference voltage shows ohmic behavior with very little change 

in overvoltage with respect to a large change of current. Correspondingly, the cathode/reference 

voltage exhibits considerable change over same range of current and the cathode/reference 

overvoltage change is very close to the overvoltage change of the cathode/anode (the whole cell 

overvoltage) (Fig. 3.9b).  In contrast, in the electrolyte-supported cell, the anode/reference 

voltage changes dramatically with respect to current change (Fig 3.10a) and anode/reference 

overvoltage exhibits similar curvature to the cathode/reference overvoltage (Fig 3.10b). A 
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similar polarization curve is also obtained using the micro-reference electrode on the electrolyte-

supported cell (Fig 3.11).    

 
(a)                                                              (b) 

Figure 3.9: Polarization curves for the anode supported cell with ring reference electrode.  

Currents are normalized with respect to the cathode area.  Voltages are not corrected for iR drop. 

800N conditions.  (a) voltage (b) overvoltage. Cathode/anode polarization curve blue line, 

cathode/ring polarization curve red line and anode/ring/cathode polarization curve green line. 

 
(a)                                                               (b) 

Figure 3.10:  Polarization curves for the electrolyte-supported cell with ring reference electrode.  

Voltages are not corrected for iR drop. 800N conditions.  (a) voltage, (b) overvoltage. 

Cathode/anode polarization curve blue line, cathode/ring/anode polarization curve red line and 

anode/ring/cathode polarization curve green line. 

 
(a)                                                                      (b) 

Figure 3.11:  Polarization curves for the electrolyte-supported cell with micro-reference electrode.  

Voltages are not corrected for iR drop. 800N conditions.  (a) voltage, (b) overvoltage. 

Cathode/anode polarization curve blue line, cathode/ring/anode polarization curve red line and 

anode/ring/cathode polarization curve green line. 
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Based on the polarization curves, in the anode-supported cell, the cathode contributes mainly to 

total overvoltage change of the cell, while for the electrolyte-supported cell, the cathode and 

anode almost equally contribute to the total overvoltage change of the cell.  However, as 

discussed in the introduction, these assignments are likely to be faulty. Simulations predict that 

the potential plane sensed by the ring reference electrode will be close to the interface between 

the opposite overlapping electrode (bigger size) and the electrolyte, or even within the 

overlapping electrode (anode).  Consequently, in an anode-supported cell, polarization losses 

measured by ring reference with the cathode/reference connection include polarization losses of 

both the anode and the cathode.  The presence of distortion in the polarization overvoltages in 

the electrolyte-supported cells is less visible since the cathode and anode overvoltages are almost 

equally divided, but impedance data demonstrate that distortion is still probably present.   

3.4.5. Impedance data 

The impedance data of this section will demonstrate that a reference electrode does not isolate 

the performance of one electrode.  The approach for explaining the impedance data of anode-

supported cells is based on the observed difference for the impedance plots, which were obtained 

with changing gas compositions to the cathode or anode.   

 

Anode-supported button cell  

 

This analysis method is applied to the anode-supported button cell with LSM/YSZ ring reference 

electrode.  All data were collected at OCV.  Nyquist plots for the 2-electrode (cathode/anode) 

and 3-electrode (cathode/reference/anode) measurements are shown in Fig. 3.12(a) for 800ºC and 

normal flow.  It is obvious that the 3-electrode measurement has a smaller ohmic resistance and a 

smaller inductance than the 2-electrode measurement.  These differences are consistent with the 

simulation results. The simulation indicates that a ring electrode senses an electrostatic plane 

near the anode/electrolyte interface.  So compared to 2-electrode measurement, the 3-electrode 

measurement does not include the contact resistance for the anode and the inductance of the 

anode. In next chapter, the alternative deconvolution approach will be applied by fitting the 

impedance of an appropriate equivalent circuit to the original impedance data. This fitting 

procedure provides accurate values for the series resistances and inductances. Because series 



54 
 

resistances and inductances for 2-electrode and 3-electrode measurements are different, 

removing these two elements is necessary for comparisons.  Fig. 3.12(b) shows the overlay plots 

after removing ohmic resistance and the total inductance by calculation.  This plot shows that the 

3-electrode measurement is clearly missing a low frequency component, which is visible in 2-

electrode measurement.  Except for that component, the two Nyquist plots all match at higher 

frequencies.  So any physical process associated with this low frequency component is the only 

physical process separated by the reference electrode. 

 

 
(a)      (b) 

Figure 3.12:  Nyquist plots for the cathode/anode and cathode/ring/anode impedances obtained 

using the anode-supported cell in normal flow at 800ºC.  Frequency range 20 kHz to 0.1 Hz.  (a) 

Original data; (b) corrected for ohmic resistances and inductances. Cathode/anode two electrode 

measurement blue diamonds and cathode/ring/anode measurement red squares. 

 

 

The inability of the reference electrode for separating cathode and anode impedances in an 

anode-supported cell is more obvious by comparing the difference Bode plots ( dZ’ and dZ”) in 

different flow conditions. Figure 3.13 shows difference Bode plots for both low air vs normal 

flow and low fuel vs normal flow.  When reducing the oxygen pressure (low air) from normal for 

the 2-electrode (cathode/anode) measurement, dZ’ shows changes below 100 Hz and dZ” shows 

a peak frequency at 6 Hz (Fig. 3.13(a,b)).  The dZ’ and dZ” plots for the 3-electrode 

(cathode/ring/anode) measurements show similar changes but are not identical to the two-

electrode changes.  Theoretically, the dZ’ and dZ” changes for the two-electrode measurements 

are all from the cathode going to low air flow. So, if the 3-electrode measurement only includes 

the cathode behavior, the changes of 3-electrode measurement should totally overlap with the 

changes of the 2-electrode measurement.  The difference between the 2-electrode and 3-electrode 



55 
 

dZ’ and dZ” plots means that the reference electrode cannot isolate the cathode impedance from 

the anode impedance. The dZ plots for low fuel vs normal flow more clearly show this 

conclusion (Fig. 3.13(c, d)).  For low fuel flow condition, the 2-electrode impedances as 

expected dramatically increase in the frequency range below 10 Hz; the peak dZ” frequency 

appears at 0.5 Hz.  For the 3-electrode impedance, as proved in the simulation section (Fig. 3.8), 

changing the anode fuel composition should not affect the real 3-electrode impedance with the 

cathode as the working electrode.  The dZ plots should be zero over the entire frequency range.  

However, the experimental dZ ( dZ’ and dZ”) values for the 3-electrode measurement are not 

zero (Fig. 3.13(c, d)).  This result clearly demonstrates that the 3-electrode impedance contains 

the changes in the anode impedance.  The conclusion agrees with that of the simulations in the 

literature.  The reference electrode on the anode-supported cell fails to isolate the impedance of 

the cathode from the cell impedance. 

 
(a)      (b) 

 
(c)      (d) 

Figure 3.13:  Difference Bode plots for low air vs normal flow (a & b) and low fuel vs normal 

flow (c & d).  Anode-supported cell at 800ºC with 2-electrode (cathode/anode) and 3-electrode 

(cathode/ring/anode) measurements. All data are corrected for series resistance and inductance. 

Cathode/anode two electrode measurement blue diamond and cathode/ring/anode measurement 

red square. 

 



56 
 

However, by examining the complementary 3-electrode anode/reference/cathode data (connect 

the anode as the working electrode), a more subtle distortion is found.  The corresponding 

Nyquist plot for the normal flow conditions before and after correcting for the inductance and 

ohmic resistance shows the distortion (Fig 3.14).  Contrary to simulations, this distortion as a 

significant impedance arc is visible at the lowest frequencies. The existence of this arc agrees 

with the difference in the 2-electrode and 3-electrode Nyquist plots in Fig. 3.12b.  This arc can 

be assigned to a gas diffusion process between the anode current collector and the equipotential 

plane sensed by the reference electrode. As simulations suggest, the equipotential plane line 

sensed by the reference electrode is inside the anode near the anode/electrolyte interface.  The 

corrected “arc” exhibits negative values for some part of Z’.  This behavior is likely an artifact 

instead of real polarization resistance, the origin of which is related to the change in position of 

the equipotential line sensed by the reference electrode as a function of frequency.  So the 

anode/reference/cathode measurement data cannot be used for obtaining an accurate 

measurement of the gas diffusion impedance.  

 

                                      
Fig. 3.14: Nyquist plot for the 3-electrode anode/ring/cathode impedance for the anode-

supported cell at 800ºC and normal flow.  The corrected data is obtained from the original data 

by subtraction of the inductance and series resistance. The blue diamonds show the original data 

and the red squares show the corrected data.  

 

Electrolyte-supported Cell 

As discussed in section 1.2.4, for the 3-electrode impedance measurements, simulations predict 

that the inductance loops either at the high frequency end or the low frequency end of the 

Nyquist plot are artifacts. These artifacts are obvious when the time constants for the anode and 

cathode differ by orders-of-magnitude.  So if we observe such inductance loop artifacts for our 
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experimental impedance data for the electrolyte-supported cell, we can say that the impedance 

measurements for the 3-electrode configuration are distorted and are not accurate. 

 

For the electrolyte-supported cell with the ring reference electrode, Fig. 3.15 shows the 2-

electrode impedance data for all gas flows.  All 2-electrode Nyquist plots exhibit two well-

defined arcs at very different frequencies (Fig. 3.15(a)).  Through changing the flow from normal 

to low air flow, the corresponding high frequency arc increases and low frequency arc has no 

change (Fig. 3.15(b)). When changing from normal to low fuel flow, the low frequency arc 

increases and the high frequency arc has no change. So the high frequency arc is associated to 

cathode impedance and low frequency arc is assigned to the anode. This interpretation of the data 

corresponds to the simulations reported by Cimenti et al. [17, 18], in which the cathode and 

anode also have very different time constants.   

.   

 

(a)                                                                          (b) 

Fig. 3.15:  Cathode/anode Nyquist plot (a) and –Z” vs log f (b) for an electrolyte-supported cell 

at 800ºC and at normal (blue line with blue diamonds), low air (blue line with red squares) and 

low fuel gas flows (green line with green triangles). 

 

Fig. 3.16(a) contains the 2-electrode and the complementary 3-electrode impedance 

measurements for 800ºC and normal flow.  In order to better illustrate peak frequencies, Fig. 

3.16(b) shows the corresponding plots of –Z” vs log f.  The 2-electrode impedance contains two 

arcs with peak frequencies near 500 Hz (log f = 1.9) and 0.25 Hz (log f = -0.6).  The 3-electrode 

cathode/reference/anode measurement has a peak frequency of 250 Hz (log f = 2.4), close to the 

high frequency arc in the 2-electrode measurement.  In the Nyquist plot (Fig. 3.16(a)), this 

cathode/reference/anode impedance plot exhibits a loop structure at the low frequency end 
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(larger Z’ values).  The shape of the loop is characteristic of an inductance parallel to a resistance.  

Hence, this shape is often called an inductive loop in the literature.  As noted in section 1.2.4, 

this loop is an artifact.  The anode/reference/cathode measurement yields an arc at 0.25 Hz which 

identically matches in frequency the low frequency arc in the 2-electrode impedance 

measurement.  A large inductive loop appears at the high frequency end.  This pattern is repeated 

for the three gas flow conditions and the two temperatures. Since the high frequency arc is 

assigned to the cathode, the cathode/reference/anode measurement shows that generally the 

reference electrode can isolate the cathode impedance in the tested electrolyte-supported cell 

when the anode and cathode have largely different time constants. However, the inductive loops 

at the low frequency end show that this isolation is not perfect.  The inductive loop masks any 

possible low frequency component in the cathode impedance.  The anode/reference/cathode 

impedance likewise matches the low frequency arc in the 2-electrode impedance, but the high 

frequency inductive loop suggests that the anode/reference/cathode impedance measurement 

includes cathode impedance.  In both 3-electrode measurements, the series resistance at low 

frequencies is not the same as series resistance obtained at high frequencies because of the 

inductive loops.  This is the reason that the polarization curves cannot be accurately corrected 

with true iR drop  based on 3-electrode measurements.    

 

 

 
(a)       (b) 

Fig. 3.16:  (a) Overlay Nyquist plots for cathode/anode (blue line with blue diamonds), and 

cathode/reference/anode (red line with red squares) and anode/reference/cathode at 800ºC and 

normal flow (green line with green triangles).  The ring electrode is on the cathode side.  (b) 

Overlay plots of –Z” vs log f. 

 



59 
 

The above behavior observed in the electrolyte-supported cell with the ring reference electrode is 

very similar to the behavior predicted by simulations [18-20]. On an electrolyte-supported cell, 

simulations predict that if one electrode is displaced nearer to the reference electrode by even a 

fraction of the electrolyte thickness, the equipotential plane sensed by a reference electrode will 

be biased toward the electrode closer to the reference electrode [17-18]. When the cathode and 

anode have impedances with different peak frequencies (correspondingly time constants), the 

position of the equipotential plane sensed by the reference electrode changes with frequency.  In 

one simulation by Cimenti et al., at the highest frequencies where both electrodes show nearly 

ohmic behavior, the plane is closer to the working electrode.  As the frequency decreases, the 

equipotential plane moves towards the counter electrode, and even penetrates into the counter 

electrode, therefore including the performance of the counter electrode.  If the cathode and anode 

have different polarization resistances or time constants, the 3-electrode impedance exhibits 

artifacts that appear like inductance loops either at the high frequency end or the low frequency 

end of the Nyquist plot.  Even in a cell with the cathode and anode arcs with overlapping 

frequencies, the inductive loops might not be apparent, but the counter electrode impedance 

would still affect the 3-electrode measurement.  So, the presence of inductive loops clearly 

shows that impedance measurement for the working electrode is inaccurate and that the counter 

electrode impedance is present in the 3-electrode measurements. 

 

As noted in the previous chapter (section 1.2.4), simulations suggested that a micro-reference 

electrode located near the working electrode might provide better isolation of the working 

electrode performance from the counter electrode performance.  The micro-electrode must be 

within one electrolyte thickness of the working electrode and have a radial dimension less than 

one electrolyte thickness.  This requirement was achieved on the relatively thick electrolyte 

supported cell.  For the electrolyte-supported cell with the silver micro-reference electrode (Fig. 

3.17), the peak frequencies of the major arcs for the 3-electrode cathode/reference/anode and 

anode/reference/cathode measurements again identically match the high and low peak 

frequencies of the 2-electrode impedance (Fig. 3.17b). Also, similar inductive loops still show up 

in impedance spectra (Fig. 3.17a). A visible inductive loop shows up at the low frequency end 

with cathode/reference/anode measurement and the anode/reference/cathode impedance shows a 

small inductive loop at high frequencies.  In both cases, the frequency of the minima in –Z” in 3-
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electrode measurements coincides with the frequency of the peak in the 2-electrode Z” plot (Fig. 

3.17(b)).  Consequently, use of a micro-electrode with dimensions equal or smaller than the 

electrolyte thickness fails to isolate the impedance of one electrode.   

 

 
(a)       (b) 

Fig. 3.17:  (a) Overlay Nyquist plots for cathode/anode (blue line with blue diamonds) and 

cathode/reference/anode (red line with red squares) and anode/reference/cathode (green line with 
green triangles) at 800ºC and normal flow.  The microreference electrode is next to the cathode.  

(b) Overlay plots of –Z” vs log f. 

 

3.5 Conclusions 

In either of the common button cell configurations, anode-supported or electrolyte-supported, the 

inability of the reference electrode to isolate the performance (polarization curves and impedance) 

of one electrode was proved by both simulation and experiment.  In the anode-supported cell, the 

cathode/reference/anode measurement only separates the gas diffusion impedance on the anode 

side from all other impedances in the anode and cathode. The anode/reference/cathode 

measurement contains a distortion which is probably an inductive loop artifact.  The inductive 

loop leads to an incorrect value for the series resistance at lower frequencies.  In the electrolyte-

supported cell, the cathode and anode have widely separated peak frequencies in the impedance 

spectra.  This property leads to the presence of inductive loops in the 3-electrode measurements.  

The change in the equipotential plane sensed by the reference electrode with changing frequency 

causes inductive loops.  Neither a polarization resistance nor a series resistance for one electrode 

is readily obtained from the 3-electrode impedance measurement because of the distortion 

present as the inductive loops.   
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In general, for the common button SOFC with a thin electrolyte, a simple protocol is suggested 

when using a reference electrode to prove whether the working electrode impedance is truly 

accurate.  The protocol is changing the gas composition to the counter electrode.  The observed 

absence of change in the 3-electrode measurement validates the ability to use the reference 

electrode to isolate the working electrode impedance. For evaluating the impedance and 

polarization resistance associated with one electrode, a better strategy is developed and will be 

described in next chapter, which is the deconvolution analysis and equivalent circuit fitting as a 

function of gas flow. 
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           Chapter 4  Analysis of SOFCs with deconvolution methods 

 
 

4.1. Introduction 

In chapter 3, the experimental data have supported the simulation results that a reference 

electrode does not accurately isolate the performance (polarization curve or impedance) of a 

single electrode in two types of commercially important button SOFCs, an anode-supported 

design and an electrolyte supported design.  The results were obtained through analysis of both 

2-electrode (e.g. cathode vs anode, or cathode/anode) and 3-electrode (e.g. cathode as the 

working electrode, anode as the counter electrode, and a reference electrode, or 

cathode/reference/anode) impedances as a function of fuel and air compositions and at two 

temperatures.  The results are in agreement with several simulations in the literature for button 

cell designs [1-7].  The simulations predict that impedance measurements of the working 

electrode with a reference electrode in a 3-electrode configuration cannot totally separate the 

impedance of working electrode from the counter electrode.  Certain cases, when the cathode and 

anode each has widely separated peak frequencies for impedances, lead to inductive loop 

artifacts present at the high or low frequency extremes in 3-electrode impedance measurements.  

The polarization curves of a single electrode (overvoltage vs current) are also inaccurate because 

of the cross contamination of the cathode polarization by the anode polarization.  Only 

specialized cell designs are capable of accurately measuring the impedance of a cathode or anode. 

[8-17] 

Deconvolution analysis and equivalent circuit fitting as a function of gas flow is a better strategy 

for obtaining the separated cathode or anode performance. This analysis method will be 

described in this chapter.  As discussed in chapter 2, the deconvolution method was first 

developed by Ivers-Tiffee and co-workers [18]. The deconvolution plot is a plot of distribution 

of relaxation times. It is used to identify key relaxation times (peak frequencies) in impedance 

spectra.  As will be shown, the deconvolution plot brings out peak frequencies not readily visible 

in the original impedance spectrum.  The major peak information is used to design relevant 

equivalent circuit models for the cell impedance. Then the fit of the equivalent circuit parameters 
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to the impedance data using a nonlinear regression method (ZView® software) is examined as a 

function of gas flows.  Based on the assumption that gas flow changes to the cathode do not 

affect the anode impedance, the separate cathode and the anode polarization resistances can be 

identified.  Ivers-Tiffee and co-workers have already applied the deconvolution method to 

several types of commercially relevant cells (LSCF cathode, Ni anode) and to symmetrical cells 

[19-30]. Mogensen used another approach based on the derivative of the in-phase impedance 

with respect to the log frequency as a function of changing gas flows, which also provides the 

information of peak frequencies associated with the anode or cathode [31].  

4.2 Objectives 

In this chapter, an approach for generating deconvolution spectra combined with the appropriate 

equivalent circuit fitting is discussed.  All the deconvolution analysis can be completed on an 

Excel® spreadsheet and without any extra mathematics software.   Two button cells (one anode-

supported SOFC and the other electrolyte-supported SOFC) discussed in last chapter and another 

anode-supported design are analyzed with this method.  All three designs use LSM as the 

cathode material and nickel as the anode material. The results provide insight on the number of 

processes contributing to the total impedance of a SOFC.  Through systematic changes in gas 

composition to the anode or cathode, the approximate contributions of the cathode and anode to 

the total polarization resistance of the SOFC are identified.  A comparison is made between the 

apparent polarization resistances obtained using a reference electrode on an anode-supported 

design and the polarization resistances obtained from this method. 

4.3 Experimental 

The detailed experimental approach for preparing two kinds of button cells (one anode-supported 

SOFC and the other electrolyte-supported SOFC) is provided in section 3.2.  Briefly, an anode-

supported half-cell (Ni/YSZ as anode and YSZ as electrolyte) from MSRI was prepared by 

screen printing a homemade cathode composed of LSM/YSZ and a layer of pure LSM on top as 

current collector (Cell 1).  This cell was discussed in section 3.3 and had the LSM/YSZ ring 

reference electrode.  An electrolyte-supported cell was purchased from Fuel Cell Materials, and 

was composed of a proprietary electrolyte, a Ni/YSZ anode and an LSM/YSZ cathode (Cell 2).  

This cell was also discussed in section 3.3 and had the silver micro-reference electrode.  In both 
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cells, the effective electrode area was the cathode area (1.27 cm
2
).  Impedance data here shown 

on the graphs are without correction for the area.  A new kind of anode supported cell from 

MSRI was composed with a anode of 0.8 mm thick Ni/YSZ support and a 12 micron Ni anode 

active layer, a 10 micron YSZ electrolyte with a 5-15 micron SDC barrier layer between the 

cathode and the electrolyte and a cathode of 15 micron SDC/LSM active layer and a 50 micron 

LSM current collector layer (area 2.27 cm
2
) on top (Cell 3).  A pair of leads from the potentiostat 

to the cell works as current and voltage sense, one pair to the cathode and the other to the anode 

of the mounted cells. 

All the electrochemical measurements were obtained at OCV using a Solartron Cell Test system 

with the frequency range between 100 kHz and 0.1 or 0.02 Hz using 10 log linear steps in 

frequency per decade.  Significant inductance effects (~10
-7

 H) appear above 10 kHz because of 

the length of the leads, so the data for analyses were cut off to frequencies below 20 kHz.  

Multiple flow conditions were used for cell testing: (1) Normal flow (100% wet H2, 100% humid 

air), (2) Low Air (100% wet H2 to anode, 50%, 20% or 12.5% air with the balance nitrogen to 

cathode), and (3) Low Fuel (50% or 20% wet H2 with the balance nitrogen to anode, 100% 

humid air to cathode) and the testing temperatures were set at 800ºC, 750ºC or 700ºC. For Cell 3, 

four impedance scans were completed in sequence at each gas flow condition for error analysis 

and improving the signal-to-noise.  Polarization curves were also obtained. 

4.4 Results and Discussion 

4.4.1 Deconvolution and equivalent circuits 

The detailed process for deconvolution steps and building of equivalent circuits is discussed in 

chapter 2.  The deconvolution spectrum indicates the minimum number of arc-forming elements 

required in the equivalent circuit.  The equivalent circuit is composed of multiple elements in 

series and each element contributes to one of the arcs in the deconvolution spectrum.  By 

changing the gas composition to the anode or cathode, certain peak frequencies in the 

deconvolution plot will change and equivalent circuit elements strongly associated with that peak 

frequencies can be assigned to the cathode or the anode.  Through this analysis, the electrode and 

equivalent circuit element that dominates the total impedance can be identified, and thus these 

results provide guidance on how to improve the SOFC. 
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The arc-generating elements composed of equivalent circuits for SOFCs include the most 

common arc-generator (RQ), a parallel combination of a charge transfer resistance and a constant 

phase element (CPE), the Gerischer impedance and the finite length Warburg impedance.   

To find the best values for the parameters in the equivalent circuit requires a complex nonlinear 

regression fitting procedure.  The commercial software ZView® can provide least squares fits of 

all parameters, and yields all of the parameters for elements in the design of an equivalent circuit. 

Fitting the data by ZView has two restrictions.  Initial guesses for the parameters need to be 

reasonably close to the correct values, or else the software fails to converge to a solution.  A 

spreadsheet is first used to calculate the impedances of the equivalent circuit and the parameters 

are adjusted to get an approximate fit to both the impedances and the peak frequencies obtained 

from the deconvolution spectrum.  These parameters are then put to ZView as the initial guess.  

With this procedure, ZView rapidly converges to an optimum fit. However, in some cases, the 

parameters (particularly if the exponents of some of the RQ elements greater than 1) are fixed to 

avoid unrealistic results returned by the ZView fit.  As an added requirement, the calculated 

impedances of the best fit equivalent circuit are subjected to deconvolution analysis and the 

resulting deconvolution spectrum is compared to the deconvolution spectrum of the data. This 

second requirement helps to identify the need for additional elements and sometimes causes 

some of the equivalent circuit parameters be fixed. 

 

4.4.2 Cell 1: Anode-supported cell with LSM/YSZ cathode 

Fig. 4.1 shows the Nyquist plots and deconvolution spectra for Cell 1 at two temperatures and 

three flow conditions.  In this experiment, the lowest frequency reaches 0.1 Hz.  Each data set is 

the average of impedance collected with the cathode as the working electrode and one collected 

with the anode as the working electrode.  The two data sets agree very well, and to reduce 

stochastic noise, the Z’ and Z” data are merged in ZView (see section 4.4.4 for a discussion of 

sources of noise).  In Fig 4.1, at least 2 arcs are visible in the Nyquist plots, and the 

deconvolution spectra indicate the presence of three or more arcs. 
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The obvious feature for all of the deconvolution spectra of this cell is a long tail extending to the 

high frequency limit, which is particularly evident in the 700ºC deconvolution spectra (Fig. 

4.1(d)).  From the discussion in chapter 2, the single fractal Gerischer impedance is possible to 

fit the tail, so it is suggested to be used as an appropriate element in equivalent circuit. An 

equivalent circuit without a Gerischer impedance (RQ elements only) requires at least one RQ 

element with a very low exponent (n < 0.3), and leads to the parameters for all elements having 

large uncertainties in the ZView output.  Consequently, any discussion of trends in the equivalent 

circuit parameters with respect to gas flow or temperature is compromised.  Fitting the tail with 

the finite Warburg element also fails because the characteristic sharp small peak at higher 

frequencies from the main peak (Fig. 2.9(b)) is not present in the deconvolution spectra of the 

data.  The tail in the data deconvolution spectrum also decays more slowly than in the FLW 

deconvolution spectra. 

The Adler/Lane/Steele model predicts an ideal Gerischer impedance (exponent n = 0.5) for a 

mixed ionic/electronic conductor [32].  The key assumptions in that model include the following: 

(1) the electrode is treated as dilute solid solution with one independent parameter, the oxide ion 

vacancy concentration; (2) the porous electrode is treated as a superposition of two continuous 

phases, solid and gas; (3) the active or utilization layer thickness is larger than the particle sizes; 

(4) the total electrode thickness is much larger than the active layer thickness; and (5) the only 

contributions to polarization resistance are diffusion of oxygen species in the solid and exchange 

of O2 at the solid/gas interface.  This model is applied to mixed ionic-electronic conductor like 

LSC, so it does not apply to an electrode composed of only LSM because of the very small ionic 

conductivity of this material.  However, we argue that a composite LSM/YSZ electrode can 

resemble a pure mixed ionic-electronic conductor as the LSM contributes average electronic 

properties and YSZ contributes average ionic properties.  Consequently, the behavior of a 

LSM/YSZ cathode can be reasonably described by a Gerischer-type equivalent circuit element.   

As discussed in section 5.4.3, symmetrical cells with pure LSM electrodes do not exhibit the 

Gerischer impedance, since the pure LSM is not a mixed ionic-electronic conductor, which also 

support the conclusion here. Deviations from these assumptions for the original model (e.g., 

utilization layer lengths approaching the size of the particles at higher frequencies) may account 

for non-ideal (n < 0.5) exponents in the Gerischer impedance. [32, 33] 
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(a)                                                                (b)   

 
(c )                                            (d)   

Fig. 4.1: Cell 1: (a) cathode/anode Nyquist plots at 800ºC. (b) cathode/anode deconvolution 

spectra at 800ºC. (c) cathode/anode Nyquist plots at 700ºC. (d) cathode/anode deconvolution 

spectra at 700ºC.  Blue diamonds show normal flow, green triangles show low air flow and red 

squares show low fuel flow. 
 

Based on the preceding discussion, the equivalent circuit used to fit the impedance data is 

composed of a series inductance, a “single fractal” Gerischer element, and one or more RQ 

elements (LR(Ge)(RQ)n). At 800ºC, a “single fractal” Gerischer element is found to be sufficient 

to fit the impedance and deconvolution spectra for all three gas flow conditions; a “double 

fractal” Gerischer element did not provide a significantly improved fit to the data (see chapter 2 

for an explanation of “single fractal” and “double fractal”). 

Figure 4.2 illustrates the quality of the fit to the equivalent circuit for the data collected at 800ºC 

and normal flow.  All the data has been corrected for the inductance and series resistance 

obtained from the ZView fit.  The three peaks in the deconvolution spectrum correspond to the 

three elements (Ge, RQ2, RQ3). Not only do the Nyquist plots of the data and the simulated 

impedances from the equivalent circuit overlay very well, but also the plots of deconvolution 

spectra for the data and for the simulated impedances of the equivalent circuit overlay very well. 

Fig (4.2(d)) shows the residuals do not exceed 0.01 ohms.   



69 
 

 
(a)       (b) 

 
(c)       (d) 

 
(e) 
Fig 4.2.  Equivalent circuit fit to Cell 1 at 800ºC with normal flow.  (a) In-phase Z’ data and the 

contributions from each element in the equivalent circuit; (b) Out-of-phase –Z” data and the 

contributions from each element; (c) Nyquist plot overlaying the data and the simulated 

impedances from the equivalent circuit; (d) Residuals  (Z’(sim) – Z’(data)) and (Z”(sim) – 

Z”(data)); (e) Overlay plot of the deconvolution spectra for the data and for the simulated 

impedances of the equivalent circuit.  In these plots, the series resistance and inductance have 

been removed by calculation. 

Table 4.1 contains the fitted parameters for three flow conditions at 800ºC and for 2-electrode 

and 3-electrode measurements.  In the cathode/anode 2-electrode measurements, for low fuel, as 

shown in Fig. 4.1(b), the additional peak in the deconvolution spectrum appears near 10 Hz, so a 

third RQ element (RQ1) was added.  After aligning elements by maximum frequency from high 
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to low, this new element is labeled RQ1, and the other two lower frequency elements RQ2 and 

RQ3. Table 4.2 shows just the polarization resistances and peak frequencies for 2-electrode 

measurements for three flow conditions at 800ºC.  For the Gerischer element, the polarization 

resistance significantly increases and the frequency significantly decreases going from normal 

flow to low air.  From normal flow to low fuel, the opposite trend is observed.  These 

observations confirm that the Gerischer element is mainly associated with the cathode.  For RQ3, 

the polarization resistance significantly increases going from normal flow to low fuel.  From 

normal flow to low air, the polarization resistance exhibits no change, which suggests the 

assignment of RQ3 to the anode.  For normal flow, RQ3 could also be omitted to obtain a good 

fit to the Nyquist plot and deconvolution spectrum, but keeping this element and fixing the 

resistance to 0.003 ohms and the frequency maximum to 0.2 Hz improves the fit to the 

deconvolution spectrum.  RQ1 only appears in low fuel flow and therefore is assigned to the 

anode.  Based on changes in the polarization resistance and the frequency, RQ2 appears to have 

contributions from both the cathode and anode.  However, a larger increase in polarization 

resistance (0.28 ohms for normal flow to 0.32 ohms for low air, compared to 0.43 ohms for low 

fuel) and a larger decrease in frequency in low fuel flow (1.9 Hz for normal flow to 1.8 Hz for 

low air, compared to 0.8 Hz for low fuel) show the contributions arise mainly from the anode 

(see Table 4.2).   



71 
 

Table 4.1:  Fitted parameters for the LR(Ge)(RQ)n equivalent circuit to impedance data for Cell 1 

at 800ºC. 

Table 4.1:  Equivalent circuit parameters for the 2-electrode and 3-

electrode impedances. 

 

Flow   Normal  Low air  Low fuel  

Parameter  2-el 3el       2-el 3el             2-el 3el Units 

L            3.7 1.9        3.7 1.9              3.7 2.0 x10
-7

 H 

Rs          0.38 0.29      0.33 0.25              0.35 0.26 ohms 

Ge R      0.24 0.25      0.30 0.30              0.22 0.21 ohms 

Ge T               9.4 9.3      16.9 17.0              6.3 5.9 x10
-3

 s 

Ge P   0.30 0.30      0.30 0.30              0.32 0.32  

Ge fmax  45 45         25 25              63 68  Hz 

R1                                        0.06 0.06 ohms 

Q1                                         0.29 0.25  

N1*                               1 1  

RQ1 fmax                                         9 10  Hz  

R2          0.28 0.28      0.32 0.31             0.43 0.47 ohms 

Q2   0.40 0.37      0.35 0.33             0.58 0.51  

N2   0.89 0.91      0.90 0.91             0.88 0.90  

RQ2 fmax   1.9 2.0       1.8                          0.8       0.8 Hz 

R3   0.06 0.003      0.07              0.12 ohms 

Q3   15 26      14                           7  

N3*   1 1      1                           1  

RQ3 fmax   0.18 0.2      0.18               0.2 Hz 

Rp(total )               0.58    0.53          0.69             0.61                 0.83     0.74 ohms 

  

*Certain parameter values were fixed when using ZView to improve the fit to the deconvolution 

spectrum and to prevent unrealistic exponents (n>1).  The units of T and Q depend on the 

exponents and are not shown here. 
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Table 4.2:  Polarization resistances and the peak frequencies for 

the 2-electrode impedances of Cell 1 at 800ºC. 

 

Flow   Normal         Low air  Low fuel Units 

Ge R      0.24      0.30               0.22  ohms 

R1                                         0.06  ohms 

R2          0.28      0.32               0.43  ohms 

R3   0.06      0.07              0.12 ohms 

Ge fmax  45       25               63   Hz 

RQ1 fmax                                        9   Hz  

RQ2 fmax   1.9      1.8               0.8        Hz 

RQ3 fmax   0.18     0.18               0.2 Hz 

 

These assignments are in general agreement with assignments in the literature [34, 35].  The 

Gerischer element at 25-60 Hz is associated with the dissociative oxygen adsorption and 

transport to the triple phase boundaries in the cathode.  RQ1 has a similar assignment to 

dissociative adsorption of hydrogen and transport to the TPB in the anode.  RQ3 is assigned to 

the anode since the polarization resistance rises and the maximum frequency decreases going 

from normal to low fuel, and because the absence of change in these parameters going from 

normal to low air flow.  Evidence below demonstrates that this low frequency impedance is also 

present at 700ºC at roughly the same frequency.  The most likely assignment for an impedance 

element that is nearly independent of temperature is one based on gas diffusion.  RQ2 might be 

assigned to gas diffusion inside each electrode.  However, there is no confirmation of this 

assignment from the temperature dependence of RQ2 (see discussion of the other two cells). 

Because RQ2 element contains anode and cathode elements with overlapping maximum 

frequency, an unambiguous determination of the cathode and anode polarization resistances is 

not possible.  The addition of extra assumptions is needed to provide a means of estimating 

individual polarization resistances.  If the polarization resistance of the RQ2 element is divided 

equally between the cathode and anode, then the cathode polarization resistance is 0.38 ohms and 

the anode polarization resistance is 0.20 ohms.  It seems more likely that the anode contribution 

to RQ2 is greater than 50%.  If, for example, 80% of RQ2 polarization resistance is assigned to 

the anode, then the anode and cathode polarization resistances at 800ºC and normal flow are 

nearly equal (0.28 and 0.30 ohms, respectively).  These values are very different from the results 

of the 3-electrode measurements in chapter 3.  In those measurements, the impedance data 
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suggested that nearly all of the cell polarization resistance was due to the cathode.  The 

deconvolution and equivalent circuit fitting confirm the inability of the reference electrode to 

isolate the polarization resistance of the cathode and anode in the anode-supported cell. 

To avoid the need for extra assumptions, a wider range of gas flow conditions are recommended.  

By varying the H2/H2O ratio or replacing H2/H2O with CO/CO2 or D2/D2O, the peak frequency 

for the anode element can separated from the cathode element peak frequencies, and anode 

processes can be more readily identified. [31]  

Analysis of the data at 700ºC is a difficult challenge.  As shown in Fig. 4.1(b) and (d), the peak 

of the Gerischer element at 700ºC shifts to the lower frequency and now overlaps severely with 

the lower frequency RQ elements.  Using the ZView fitting leads to multiple sets of values of the 

equivalent circuit; all sets of values can fit both the impedances and the deconvolution spectra 

equally well.  Consequently, without well-defined temperature effects on the parameters changes 

associated with each element, further analysis is not possible.  Smaller temperature steps are 

proposed for future work to track each element’s changes for this type of cell. 

Since the deconvolution method successfully separates the cathode and anode impedance with 2-

electrode measurements, we can also apply the deconvolution method to 

cathode/reference/anode 3-electrode measurements as a check for the simulation results. After 

removing these two elements (ohmic resistance and the total inductance by calculation), Fig 

4.3(a) shows the overlay Nyquist plots for the cathode/anode and cathode/reference/anode 

impedances obtained at normal flow and 800ºC. This plot shows that the 3-electrode 

measurement is clearly missing a low frequency component. This low frequency component is 

more clearly visible in the deconvolution spectra. (Fig4.3 (b))  A peak is present at 0.2 Hz for the 

2-electrode measurement while, at the same frequency, the peak is almost absent in the 3-

electrode measurement.  This arc is likely associated with an anode process.  Table 4.1 includes 

the equivalent circuit parameters for the 3-electrode impedances. In the 3-electrode 

measurements, RQ3 is not needed to fit the impedance data under low air or low fuel flows.  

RQ3 is the source of the 0.2 Hz peak. Fig4.3 (c) and (d) shows deconvolution spectra for the 

cathode/anode and cathode/reference/anode impedances in low air and low fuel. It illustrates the 

change in the deconvolution spectra caused by the presence of 0.2 Hz peak in the 2-electrode 
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impedance data and its absence in the 3-electrode impedance data at low air and at low fuel 

flows. So RQ3 is the element that can be separated by the 3-electrode measurement.  

Based on the preceding analysis, the 3-electrode cathode/reference/anode measurement only 

separates the gas diffusion impedance (RQ3) from the total impedance on the anode-supported 

cell. In low fuel condition, except RQ3, other elements remain almost the same in the 3-electrode 

measurements as 2-electrode measurements (Table 4.1). In Table 4.1, going from normal flow to 

low fuel flow, the cathode/anode and the cathode/reference/anode total polarization resistances 

both increase.  Since the cathode polarization resistance should not be significantly affected by 

changes in fuel concentration, the 3-electrode cathode/reference/anode measurement must 

contain contributions from the anode impedance. This observation is evidence that the 3-

electrode cathode/reference/anode measurement contains contributions from the anode 

impedance.  These results are consistent with the simulation predictions for the anode supported 

cell.  

 
(a)                                                                                   (b) 

  
(c )                                                                                   (d) 
Fig. 4.3: Cell 1: (a) Nyquist plots for the cathode/anode and cathode/reference/anode impedances 

obtained in normal flow at 800ºC.  Frequency range 20 kHz to 0.1 Hz. corrected for ohmic 

resistance and inductance (b) Deconvolution spectra for the cathode/anode and 

cathode/reference/anode impedances in (a).  (c) Deconvolution spectra for the cathode/anode and 

cathode/reference/anode impedances in low air flow at 800ºC. (d) Deconvolution spectra for the 

R1      Ge R 

R2 
R3 
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cathode/anode and cathode/reference/anode impedances in low fuel flow at 800ºC. The 

deconvolution g values are multiplied by the total polarization resistance of each measurement. 

 

4.4.3. Cell 2:  Electrolyte-supported cell with LSM/YSZ cathode 

The impedance and deconvolution spectra for the LSM/YSZ electrolyte supported cell are shown 

in Fig. 4.4. The lowest frequency of Impedance data extends to 0.02 Hz.  Two well-separated 

arcs appear in the Nyquist plot.  It is clear that the higher frequency arc changes with low air 

flow and the lower frequency arc changes with low fuel flow.  The deconvolution spectra show 

at least 4 arcs.  Particularly in the low air condition, the 4 arcs are more obvious.  At 800ºC, the 

low frequency peak has a definite shoulder on the high frequency side.  To fit the highest 

frequency arc with a tail to higher frequencies, a fractal Gerischer impedance is appropriate for 

this element.  However, attempts to fit the low frequency peak with a fractal Gerischer element 

or a finite Warburg element did not yielded good matches in the deconvolution spectra.  So the 

other peaks can be fitted using three RQ elements.  The data for all conditions are fitted to the 

LR(Ge)(RQ)3 equivalent circuit. 
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(a)       (b) 

   
(c)                                                                               (d) 

Fig. 4.4:  Cell 2: (a) Nyquist plot and (b) deconvolution spectra for the electrolyte-supported cell 

at 800ºC; (c) Nyquist plot and (d) deconvolution spectra at 700ºC. Blue diamonds (A) show 

normal flow, red squares (B) show low air flow and green triangles (C) show low fuel flow. 

 

The equivalent circuit fit to the data collected at 800ºC and normal flow is shown in Figure 4.5.  

The fit quality is not as good as the fit to the anode-supported cell.  Fig 4.5(d) shows the larger 

residuals present for out-of-phase impedance (Z”) particularly at lower frequencies (smaller than 

0.05 ohms), and the deconvolution spectra for the data and the simulated impedances fit well 

except a discrepancy between 1 and 10 Hz (Fig 4.5(e)).  However, the overall fit is judged to be 

satisfactory.  The fit to the low frequency arc requires the presence of two RQ elements below 1 

Hz with close frequencies, which leads to larger uncertainties associated with the parameters for 

the two elements.  However, two RQ elements are needed as a single RQ element does not fit the 

low frequency arc well. 
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(a)       (b) 

 
(c)       (d) 

 
(e) 

Fig. 4.5.Equivalent circuit fit to Cell 2 at 800ºC with normal flow.  (a):  In-phase Z’ data and the 

contributions from each element in the equivalent circuit; (b) Out-of-phase –Z” data and the 

contributions from each element; (c) Nyquist plot overlaying the data and the simulated 

impedances from the equivalent circuit; (d) Residuals for Z’ and Z”; (e) Overlay plot of the 

deconvolution spectra for the data and for the simulated impedances of the equivalent circuit. 

 



78 
 

Table 4.3: Fitting parameters for Cell 2 at 800ºC as a function of gas flows. 

Flow  normal low 

air 

low 

fuel 

units 

Element Parameter     

L  1.4 1.4 1.4 x10
-7

 H 

Rs  0.47 0.48 0.48 ohms 

Ge R 0.33 0.55 0.38 ohms 

Ge T 3.6 11.2 4.1 x10
-4  

s 

Ge P 0.25 0.33 0.28  

Ge f 1340 350 1070 Hz 

RQ1 R 0.13 0.29 0.116 ohms 

RQ1 Q 0.094 0.070 0.086  

RQ1 n 0.59 0.77 0.67  

RQ1 f 280 25 150 Hz 

RQ2 R 0.23 0.20 0.19 ohms 

RQ2 Q 2.1 2.1 2.2  

RQ2 n 0.90 0.96 0.90  

RQ2 f 0.36 0.39 0.42 Hz 

RQ3 R 0.23 0.29 0.45 ohms 

RQ3 Q 4.9 4.0 2.3  

RQ3 n* 1 1 1  

RQ3 f 0.14 0.14 0.15 Hz 

 Rp 0.92 1.33 1.13 ohms 

*Certain parameter values were fixed when using ZView to improve the fit to the deconvolution 

spectrum and to prevent unrealistic exponents (n>1).  Units for Q depend on the exponent. 
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Table 4.4: Fitting polarization resistance and peak frequencies for Cell 2 at 800ºC as a function 

of gas flows. 

Flow  normal low 

air 

low 

fuel 

units 

Element Parameter     

Ge R 0.33 0.55 0.38 ohms 

RQ1 R 0.13 0.29 0.116 ohms 

RQ2 R 0.23 0.20 0.19 ohms 

RQ3 R 0.23 0.29 0.45 ohms 

Rp(total) Rp 0.92 1.33 1.13 ohms 

Ge f 1340 350 1070 Hz 

RQ1 f 280 25 150 Hz 

RQ2 f 0.36 0.39 0.42 Hz 

RQ3 f 0.14 0.14 0.15 Hz 

 

Table 4.3 contains the fitting parameters of equivalent circuit for the three gas flows at 800ºC. 

And Table 4.4 only includes the polarization resistances and peak frequencies for each element. 

The changes of the two parameters with gas flow change indicate the assignment of each element 

to the anode or the cathode. In Table 4.4, the polarization resistances increase and peak 

frequencies for the Gerischer element and RQ1 decrease dramatically in low air.  In the low fuel 

condition, similar trends also show up but are much smaller than in the low air condition. It is 

evident that the Gerischer element and RQ1 are strongly affected by low air, so they are 

associated with the cathode, with only minor possible contributions from the anode to both 

elements.  RQ3 shows increased polarization resistance in both low air and low fuel flows.  

Polarization resistances of RQ2 appear to actually decrease with no change in frequency in low 

air and low fuel flow. Since the uncertainties of the parameters for RQ2 and RQ3 are large 

because they have close peak frequencies, the two elements are treated together, and the sum of 

the polarization resistances of RQ2 and RQ3 increase much more dramatically from normal 

(0.46 ohms) to low fuel (0.64 ohms) than to low air condition (0.49 ohms), So the two low 

frequency elements (RQ2 and RQ3) are assigned to the anode, even though there is slight 

overlap with the cathode.  
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Application of the deconvolution protocol to 3-electrode impedance data of the electrolyte-

supported cell has a problem.  All the Nyquist plots for the 3-electrode measurements have 

visible inductive loop artifacts in either the high frequency end or the low frequency end.  These 

artifacts mean that the impedance data cannot be processed for deconvolution.  Consequently, it 

is also hard to get the accurate total resistance or series resistance from the 3-electrode 

impedances.  So it is not possible to assign cathode and anode polarization resistances by 

comparing the 2-electrode and 3-electrode measurements because of the inductive loop artifacts 

in the impedance spectra. 

For the data collected at 700ºC, the Nyquist plots show the two defined arcs, similar to the plots 

at 800ºC, and deconvolution spectra exhibit three or four peaks (Fig. 4.4(c) and (d)).  The data 

are fitted to an equivalent circuit is composed of a high frequency Gerischer element and either 

two (for low air, low fuel) or three (for normal flow) series RQ elements.  The fitting parameters 

are shown in Table 4.5, and the polarization resistances and frequencies are shown in Table 4.6 

and Table 4.7.  Trends in the parameters from normal to low air and from normal to low fuel at 

700 ºC are similar to those seen at 800ºC.  For the two high frequency elements (the Gerischer 

element and the RQ1 element), the polarization resistances increase and peak frequencies 

decrease strongly with respect to low air flow and weakly with respect to low fuel flow.  The two 

high frequency elements are again assigned to the cathode.  For the two low frequency elements 

(RQ2 and RQ3), the polarization resistances increase and peak frequencies decrease strongly 

with respect to low fuel flow and weakly with respect to low air flow. The two low frequency 

elements are still assigned to the anode. 

The deconvolution spectra and Table 4.6 and Table 4.7 show the trends with respect to 

temperature in the polarization resistances and peak frequencies. From 800ºC to 700ºC, the 

anode polarization resistance (the sum of Gerischer and the RQ1) and cathode polarization 

resistance (the sum of RQ2 and RQ3) increase dramatically. The peak frequencies of each 

element shift to lower frequencies with lower temperature.  For example, the peak frequency of 

the Gerischer element is 1300 Hz under normal flow at 800ºC compared to 200 Hz at 700ºC.   
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Table 4.5: Fitting polarization resistance and peak frequencies for Cell 2 at 700ºC as a function 

of gas flows.  

Flow 700N 700LA 700LF units 

L 2.8 4.4 4.2 x10
-7

 H 

Rs 0.95 1.1 0.96 ohms 

Ge R 1.5 3.2 1.6 ohms 

Ge T 2.8 11 3.4 x10
-3

 s 

Ge P 0.21 0.32 0.20   

Ge U 1 1 1   

fr 201 37 180 Hz 

R1 1.4 0.57 1.7 ohms 

Q1 7.3 4.8 6.6  x10
-3

 

n1 0.77 1 0.78   

f1 60 58 49 Hz 

R2 0.19   ohms 

Q2 3.5     

n2 0.92     

f2 0.25   Hz 

R3 1.5 1.8      2.1 ohms 

Q3 1.6 1.13      0.51   

n3 1 0.93    0.95   

f3 0.067 0.073      0.15 Hz 

Rp 

total 

4.6 5.9 5.4 ohms 

 

Table 4.6:  Assigned polarization resistances and activation energies for Cell 2 vs 

Temperature: 

  T (ºC) N LA LF Units 

cathode 800 0.46 0.79 0.50 ohms 

cathode 700 2.91 3.73 3.25 ohms 

Ea 

cathode 

 1.7 1.5 1.7 eV 

anode 800 0.46 0.49 0.45 ohms 

anode 700 1.70 1.83 2.13 ohms 

Ea anode  1.2 1.2 1.1 eV 

N = normal flow; LA = low air; LF = low fuel. The sum of polarization resistances of (Ge R +R1) 

is associated with the cathode. The sum of polarization resistances of (R2 +R3) is associated with 

the anode. 
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Table 4.7 Peak frequencies for Cell 2 vs 

temperature: 

Temperature    f(Ge R)  f(R1)   f(R2)   f(R3) 

Units                    Hz        Hz      Hz        Hz 

Normal flow 

800ºC      1340    280     0.36      0.14 

700ºC                 201      60       0.25     0.067 

Low air 

800ºC      350      25        0.39      0.14 

700ºC                37        58                     0.073 

Low fuel 

800ºC     1070    150       0.42      0.15 

700ºC                180      49                      0.15 

 

Table 4.6 shows the relative contributions of the cathode and anode to the total resistance at the 

two temperatures and the three gas flows.  For normal flow condition, at 800 ºC, the cathode and 

anode contribute equally at normal flow. With temperature decreasing to 700 ºC, the cathode 

resistance contributes larger than the anode. For low air condition, the cathode is larger 

component for both temperatures. For low fuel condition, at 800 ºC, anode resistance is larger 

than cathode, at the lower temperature (700 ºC), cathode still contributes more than the anode. 

By analysis of polarization resistances change with different temperature (800ºC and 700ºC), for 

the three gas flows, the cathode polarization resistances are 0.46 to 0.79 ohms at 800ºC and 2.91 

to3.73 ohms at 700ºC.  The approximate activation energy of 1.5 to 1.7 eV is obtained for the 

cathode. This value is consistent with some literature reports on LSM/YSZ electrodes of 1.5-1.6 

eV [36] and not with others (1.3 eV)[37]. 

The two low frequency RQ elements at 800ºC merge to one RQ element at 700ºC and these 

elements are assigned to the anode.  For all three gas flows, the anode polarization resistances at 

800ºC are 0.5 to 0.6 ohms and increase to 1.7 to 2.1 ohms at 700ºC.  From these values, 
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activation energies of 1.1 to 1.2 eV are obtained, in good agreement with a literature value of 1.1 

eV [38].  The large values of the activation energies indicate that the processes associated with 

low frequency element is not gas diffusion, since gas diffusion is not affected much by 

temperature and has a negligible activation energy. In the literature, the presence of a strongly 

temperature-dependent process at these low frequencies has not been reported for either the 

Ni/YSZ anode or the LSM/YSZ cathode.  Prior reports of anode processes state that the anode 

peak frequencies are above 1 kHz.[39]  Finally, the fact that the activation energies of the 

cathode and anode are essentially constant for three gas flows supports the assignment of the 

Gerischer element and RQ1 to the cathode and RQ2 +RQ3 to the anode. 

4.4.4. Cell 3:  MSRI Anode-supported Cell with LSM/SDC cathode 

Four sequential impedance measurements are applied for this cell at each temperature and flow 

conditions immediately after recording a polarization curve at 800 ºC. To investigate the effect of 

the flow change more systematically, more flow conditions were included: normal flow, 50% air, 

20% air, 50% fuel and 20% fuel.  A complete data set was not obtained at 750ºC because of a 

forced shutdown of the test stand. 

Through analysis of the residuals from the sequential impedance measurements, the assessment 

of sources of noise in the impedance data can be provided [40].  The four impedance sets are 

merged and simultaneously fit to the equivalent circuit to get the simulated values (see later for 

the equivalent circuit), then the residuals are calculated for each of the four data sets.  The plots 

(Fig.4.6) show all four residuals for data at 800ºC and normal flow.  Two sources of noise are 

shown in the figures.  Fig 4.6a shows visible drift at all frequencies, particularly from 1 to 100 

Hz.  The drift possibly arises from the effects of polarization measurement (from OCV to 0.3 V), 

which was taken right before the impedance measurements.  The drift is attributed to the known 

activation and recovery of the LSM/YSZ cathode [41, 42].  The second source, stochastic noise, 

appears below 1 Hz and is more visible for the Z” impedance (Fig. 4.6(b)).  To assess the 

stochastic noise, the residuals for each of the four data sets are calculated by using the best fit 

equivalent circuit for each set of corresponding data instead of fitting the merged data (Fig. 4.7).  

Below 1 Hz, the noise reaches the order of 10% for Z”, while above 1 Hz, stochastic noise is less 

than 1% for Z’ and Z”.  This low frequency noise is probably from fluctuations in the gas flow 

velocity, back pressure or humidity in either the fuel or air streams.  Because the stochastic noise 
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is mainly in the lower frequency range, the parameters for the equivalent circuit elements are 

obtained from the merged data set to reduce the stochastic noise.  For comparison, average 

values and standard deviations for each parameter are also calculated from the parameters 

obtained by fitting each data set individually to the equivalent circuit.  In general, the average 

value of each parameter is close to the value obtained by fitting the merged data set (see the very 

small standard deviations in Table 4.8). 

 
(a)       (b) 

Fig. 4.6: Cell 3 residuals for (a) Z’ and (b) Z” impedances for four sequential impedance 

measurements at 800ºC and normal flow.  The residuals are calculated using the simulated 

impedance of the equivalent circuit fit to the merged data set for all four data sets. 

 

 
(a)       (b) 

Fig. 4.7:  Cell 3 residuals for (a) Z’ and (b) Z” impedances for four sequential impedance 

measurements.  The residuals are calculated using the simulated impedance of the equivalent 

circuit fit to the corresponding data set. 

 

Fig. 4.8 shows the Nyquist plots for the five flow conditions at 800ºC.  Decreasing air 

concentration affects on the total polarization resistance stronger than decreasing hydrogen 

concentration.  There is significant structure in the Nyquist plots.  In the corresponding 

deconvolution plots, up to five peaks are visible (Fig. 4.9).  None of the peaks match the shape of 
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a Gerischer or finite Warburg element, so five series RQ elements were used in the equivalent 

circuit, in series with the inductance and series resistance (notation: LR(RQ)5).   

 
(a)       (b) 

Fig. 4.8: Cell 3 Nyquist plots at 800ºC for (a) normal (blue diamonds), 50% air (red squares), and 

20% air flows (green triangles), and (b) normal (blue diamonds), 50% hydrogen (red squares), 

and 20% hydrogen flows (green triangles).  The plots have been corrected for the inductances 

(~4x10
-7

 H). 

 

 
(a)       (b) 

Fig. 4.9: Cell 3 deconvolution plots at 800ºC for (a) normal (A: blue diamonds), 50% air (B: red 

squares), and 20% air flows (C: green triangles), and (b) normal (A: blue diamonds), 50% 

hydrogen (B: red squares), and 20% hydrogen flows (C: green triangles). 

 

For 800ºC and normal flow, Fig. 4.10(a) and (b) show the contributions of each element to the 

impedance.  Fig 4.10(c) and (d) show the excellent overlays of both the data and simulated 

impedances in a Nyquist plot and the deconvolution spectra.  In Table 4.8, fitted parameters are 

based onto the merged data and the standard deviations are based on separate fitting to each of 

the four data sets.  Each element has a frequency roughly a decade apart, which means the 

elements are well separated.   
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(a)       (b) 

 
(c)                                                                          (d) 

Fig. 4.10:  Equivalent circuit fit to Cell 3 at 800ºC with normal flow.  (a): In-phase Z’ data and 

the contributions from each element in the equivalent circuit; (b) Out-of-phase –Z” data and the 

contributions from each element; (c) Nyquist plot overlaying the data and the simulated 

impedances from the equivalent circuit; (d) overlay plot of the deconvolution spectra for the data 

and for the simulated impedances of the equivalent circuit. 

 

At 800 ºC, the effects of low air flows on each of the five RQ elements are shown in Table. 4.8 

and Table 4.10. In Table 4.10, RQ1, RQ2 and RQ3 significantly increases in the polarization 

resistance values going from normal air to 50% air to 20% air.  The peak frequencies of RQ1 and 

RQ2 also shift to lower values going from normal air flow to 20% air.  However, the peak 

frequency for Z” of RQ3 is relatively constant.  All three elements appear to be associated with 

the cathode.  Based on literature assignments, RQ1 is attributed to oxygen species transport near 

the electrode/electrolyte interface, and RQ2 is attributed to dissociative adsorption/desorption of 

O2 and transport of species across the TPB.  For lower frequency RQ4 and RQ5 elements, both 

polarization resistances and peak frequencies change slightly and without systematic increases in 

polarization resistances with decreasing air concentration, so these latter two elements are likely 

associated with the anode. 
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Table 4.8: Fitted parameters for Cell 3 at 800ºC and all five flow conditions. 

P 800N St. 
Dev. 

800A50 St. 
Dev. 

800A20 St. 
Dev. 

800LF50 St. 
Dev. 

800LF20 St. 
Dev. 

L 3.59 0.02 3.71 0.07 3.94 0.02 3.73 0.05 3.72 0.04 

Rs 0.169 0.004 0.152 0.006 0.132 0.003 0.161 0.002 0.169 0.005 

R1 0.048 0.018 0.20 0.05 0.34 0.009 0.045 0.007 0.18 0.09 

Q1 0.0051 0.0011 0.024 0.0070 0.060 0.0051 0.0042 0.0010 0.0091 0.0031 

n1 0.75 0.06 0.51 0.04 0.40 0.01 0.78 0.03 0.60 0.12 

R2 0.63 0.07 0.74 0.05 0.78 0.03 0.82 0.009 0.48 0.22 

Q2 0.037 0.006 0.050 0.0008 0.050 0.002 0.047 0.0008 0.024 0.013 

n2 0.50 0.03 0.54 0.02 0.60 0.008 0.46 0.003 0.60 0.09 

R3 0.09 0.02 0.16 0.004 0.33 0.01 0.15 0.009 0.32 0.08 

Q3 0.074 0.001 0.036 0.0009 0.024 0.0006 0.048 0.002 0.038 0.004 

n3 0.93 0.05 1*   1*   0.95 0.007 0.86 0.05 

R4 0.089 0.008 0.072 0.005 0.10 0.01 0.11 0.001 0.22 0.07 

Q4 0.64 0.070 0.72 0.050 0.41 0.040 0.73 0.013 0.65 0.11 

n4 1*   1*   1*   1*   0.91 0.08 

R5 0.060 0.01 0.042 0.003 0.039 0.007 0.084 0.001 0.13 0.03 

Q5 13 3 21 4 18 4 8.8 0.2 6 3 

n5 0.95 0.05 1*   1*   1*   0.98 0.08 

f1 10670 80 5500 1400 2600 100 10000 200 8000 2000 

f2 310 40 72 4 35.0 3 190 8 280 60 

f3 36.0 1 27.8 0.3 20.3 0.1 29.2 0.1 27.7 0.6 

f4 2.78 0.04 3.10 0.03 3.83 0.08 1.93 0.02 1.33 0.16 

f5 0.21 0.01 0.18 0.02 0.23 0.01 0.22 0.003 0.22 0.05 

P-Parameters. L values x10
-7

 H.*Fixed parameter.  All resistances are in ohms. Unit for 

frequency is Hz. Units for Q depend on the exponent. 800N is normal flow. 800A20 is 20% air 

flow. 800A50 is 50% air flow. 800LF50 is 50% hydrogen flow. 800LF20 is 20% hydrogen flow. 
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Table 4.9: Fitted parameters for Cell 3 at 750ºC and all four flow conditions. 

Parameter 750N St. Dev. 750LA50 St. Dev. 750LA20 St. Dev. 750LF50 St. Dev. 

L 3.84 0.02 3.81 0.02 3.95 0.04 3.79 0.03 

Rs 0.172 0.001 0.168 0.003 0.158 0.002 0.180 0.002 

R1 0.51 0.002 0.54 0.03 0.62 0.03 0.46 0.03 

Q1 0.0057 0.000081 0.0067 0.00061 0.0092 0.00051 0.0048 0.00030 

n1 0.59 0.002 0.57 0.01 0.54 0.006 0.61 0.008 

R2 0.74 0.009 0.77 0.03 0.75 0.01 0.88 0.09 

Q2 0.012 0.00011 0.015 0.00070 0.019 0.00040 0.012 0.0010 

n2 0.67 0.003 0.65 0.008 0.66 0.006 0.64 0.02 

R3 1.42 0.006 1.69 0.02 2.03 0.03 1.60 0.08 

Q3 0.026 0.00030 0.021 0.00021 0.017 0.00031 0.024 0.00021 

n3 0.79 0.003 0.82 0.005 0.85 0.004 0.80 0.02 

R4* 0.04   0.03   0.03   0.12   

Q4* 35   16   5   3.00   

n4* 0.95   1*   1*   1*   

R5*     0.03   0.05       

Q5*     100   31       

n5*     1*   1*       

f1 3160 50 2940 200 2370 180 3770 170 

f2 185 1* 144 9 103 6 190 16 

f3 10.3 0.1 9.2 0.1 8.2 0.07 9.4 0.2 

f4 0.11   0.33   1.1   0.44   

f5     0.053   0.11       

L values x10
-7

 H. *Fixed parameter.   All resistances are in ohms. Units for frequency are Hz. 

Units for Q depend on the exponent. 750N is normal flow. 750A20 is 20% air flow. 750A50 is 

50% air flow. 750LF50 is 50% hydrogen flow.  The test stand had to be shut down before 

collecting the data at 20% hydrogen flow. 
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Table 4.10: Polarization resistances and frequencies for Cell 3 at 800ºC and all five flow  

Conditions 

 

P N 
 

St. 
Dev. 

A50 St. 
Dev. 

A20 St. 
Dev. 

LF50 St. 
Dev. 

LF20 St. 
Dev. 

R1 0.048 0.018 0.20 0.05 0.34 0.009 0.045 0.007 0.18 0.09 

R2 0.63 0.07 0.74 0.05 0.78 0.03 0.82 0.009 0.48 0.22 

R3 0.09 0.02 0.157 0.004 0.33 0.01 0.15 0.009 0.32 0.08 

R4 0.089 0.008 0.072 0.005 0.10 0.012 0.11 0.001 0.22 0.07 

R5 0.06 0.01 0.042 0.003 0.039 0.007 0.084 0.001 0.13 0.03 

Rp(total) 0.92  1.2  1.6  1.2  1.3  

f1 10670 80 5500 1400 2600 100 10000 200 8000 2000 

f2 310 40 72 4 35.0 3 190 8 280 60 

f3 35.5 1.1 27.8 0.3 20.3 0.1 29.2 0.1 27.7 0.6 

f4 2.78 0.04 3.10 0.03 3.83 0.08 1.93 0.02 1.33 0.16 

f5 0.21 0.010 0.18 0.018 0.23 0.013 0.22 0.003 0.22 0.050 

P-Parameters. All resistances are in ohms. Units for frequencies are Hz. N is normal flow. A20 is 

20% air flow. A50 is 50% air flow. LF50 is 50% hydrogen flow. LF20 is 20% hydrogen flow. 

 

Table 4.11: Polarization resistances and frequencies for Cell 3 at 750ºC and all four flow 

conditions 

Parameter N St. Dev. LA50 St. Dev. LA20 St. Dev. LF50 St. Dev. 

R1 0.51 0.002 0.54 0.03 0.62 0.03 0.46 0.03 

R2 0.74 0.009 0.77 0.03 0.75 0.01 0.88 0.09 

R3 1.42 0.006 1.69 0.02 2.03 0.03 1.60 0.08 

R4 0.04   0.03   0.03   0.12   

R5     0.03   0.05       

Rp(total) 1.8  2.2  2.6  2.1  

f1 3160 50 2940 200 2370 180 3770 170 

f2 185 1* 144 9 103 6 190 16 

f3 10.3 0.1 9.2 0.1 8.2 0.07 9.4 0.2 

f4 0.11   0.33   1.1   0.44   

f5     0.053   0.11       

All resistances are in ohms. Units for frequencies are Hz. N is normal flow. A20 is 20% air flow. 

A50 is 50% air flow. LF50 is 50% hydrogen flow.  

 

Table 4.10 shows the corresponding low fuel flows effects at 800 ºC.  RQ1 and RQ2 do not 

systematically increase going from normal to low fuel.  These two elements are definitively 

assigned to the cathode, which agrees with the results from low air flow.  Polarization resistances 
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of RQ3 through RQ5 all consistently increase but peak frequencies change little for low fuel.  

These results confirm the assignments of RQ4 and RQ5 to the anode. Since the RQ3 changes 

both in low air and low fuel, the mid-frequency element RQ3 is associated with both anode and 

cathode processes.   

Table 4.9 includes all the fitted parameters for Cell 3 at 750ºC and all four flow conditions. And 

the corresponding polarization resistances and frequencies are shown in Table 4.11.  At 750 ºC, 

for RQ1 and RQ2, the polarization resistances increase and peak frequencies decrease going 

from normal air to 50% air to 20% air.  So RQ1 and RQ2 are again assigned to cathode.  Table 

4.11 shows that at 750ºC, RQ4 and RQ5 become a single RQ element in the data, and the 

polarization resistance is only 0.04 ohms, which increases in low fuel condition, so the RQ4 and 

RQ5 are assigned to anode.  The parameters for RQ4 and RQ5 were fixed in order to fit the 

deconvolution spectra; ZView did not provide a good fit to these small peaks.  In agreement with 

800 ºC, the RQ3 changes both in low air and low fuel, which implies that this element is 

associated with both anode and cathode processes.   

Table 4.12 summarizes effects of temperature on RQ elements for normal flow. The activation 

energy for the cathode (sum of the polarization resistances R1 and R2) is 1.2 eV. The activation 

energy for the anode (sum of the polarization resistances R4 and R5) does not increase strongly 

with temperature decrease, which confirms that RQ4 and RQ5 are associated with gas diffusion 

at the anode. The RQ3 data in Table 4.12 shows this element is strongly dependent on 

temperature, so large activation energies are associated with processes contributing to this 

element.  According to Mogensen, the process at this frequency is gas diffusion at either the 

cathode or anode. However, the gas diffusion is not dependent with temperature, so the 

assignment of RQ3 contradicts their assignment.  Because the assignment of RQ3 is ambiguous, 

the separation of the anode and cathode polarization resistances for RQ3 is not possible by using 

the current data unless extra assumptions are made.  If this element is divided equally between 

the cathode and anode at 800ºC and normal flow, then the total cathode polarization resistance is 

0.77 ohms, nearly 80% of the total polarization resistance of 0.92 ohms.  The cathode dominates 

the total polarization resistance in this cell. 
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Table 4.12: Effects of temperature on RQ elements for normal flow 

Element Temp. f peak R (ohms) n Process 

RQ1 800 10.6 kHz 0.05 0.75 Cathode.  Transport of O species between 

LSM & YSZ near TPB? 

 750 3.2 kHz 0.51 0.59  

RQ2 800 310 Hz 0.63 0.50 Cathode.  Dissociative adsorption of O2, 

transport to TPB. 

 750 185 Hz 0.74 0.67  

RQ3 800 36 Hz 0.09 0.93 Cathode& anode.  Not just diffusion because 

of temperature dependence.   

 750 10 Hz 1.42 0.79  

RQ4 800 3 Hz 0.09 1 Anode. Gas diffusion impedance. 

RQ5 800 0.2 Hz 0.06 0.95 Anode.  Gas diffusion impedance. 

 750 0.1 Hz 0.04 0.95  

 

4.5 Conclusion 

It is possible to separate most of the impedance data with respect to the contributions from the 

cathode and anode with the availability of high quality impedance data for a series of different 

gas compositions to the anode and cathode.  The process includes deconvolution spectra based 

on the impedance data to identify the number and type of elements needed in an equivalent 

circuit.  The parameters for the individual elements are obtained from complex nonlinear 

regression fitting, and the quality of simulated parameters for the equivalent circuit is checked by 

comparing the deconvolution spectrum of simulated data to the deconvolution spectrum of the 

data.  The response of each element (polarization resistance and frequency) to gas flows can 

provide clearly identification of the electrode associate to that element.  In some cases, a single 

element appears to be affected by both the cathode and the anode, indicating two or more 

processes at the electrodes have an overlapping frequency range.  The future work for further 

separation of the element would require a greater variety of gas flow conditions or temperature 

conditions. 
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The common material for all three button cells examined is LSM as the cathode electrode.   A 

common feature for all three button cells is one or more processes occurring at the high 

frequency range of the impedance spectra, which is general above 10 Hz.  These processes are 

consistent with literature reports, and are assigned to oxygen dissociative adsorption and 

transport of species to the TPB.  The gas diffusion processes at the anode are associated with 

very low frequency processes.  For the intermediate frequency element, it appears to be hard to 

separate the cathode and the anode contributions.  This element also exhibits large apparent 

activation energy, and consequently cannot be assigned to gas diffusion.  Despite the ambiguity, 

approximate contributions of the cathode and anode to the total polarization resistance can be 

estimated.  Thus, this analysis protocol is a valuable addition to the methods for analyzing real 

SOFCs under realistic operating conditions. 
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                                 Chapter 5:  Aging effect of LSM electrodes 

5.1. Introduction 

Lanthanum strontium manganite (LSM) and yttria-stabilized zirconia (YSZ) remain the most 

popular materials for composite cathodes in solid oxide fuel cells (SOFCs) [1].  In practice, two 

cathode layers are often employed, with the active layer containing a blend of YSZ and the 

cathode material analogous to the NiO/YSZ cermet used as the anode. This blend improves the 

thermal match of the cathode with the zirconia electrolyte, and results in improved porosity and 

resistance to sintering, while still showing the required electronic conductivity. The second 

cathode layer is the current collector layer, which contains pure LSM [2]. 

In the literature, there is discussion concerning the sharp decrease in polarization resistance of 

LSM cathodes during the initial application of current (the burn-in effect).  One widely observed 

phenomenon is the activation of LSM/YSZ composite cathodes and pure LSM electrodes by 

cathodic current flow.[3-16].  The activation process can be caused by even a brief pulse of 

cathodic current, and this significant reduction in the polarization resistance of both LSM 

electrodes and LSM/YSZ composite cathodes is relatively quick.  Following the electrochemical 

activation process, the polarization resistance slowly increases under open circuit.  However, the 

relaxation process evolves very slowly (i.e., ∼100 h or more) [9].  The proposed mechanisms on 

the origins of the electrochemical activation include redox reactions of the catalyst transition 

metal-manganese (changes in the bulk defect chemistry under polarization).  Bulk defects are 

voids in regions where there are a large number of atoms missing from the lattice.  Voids can 

occur when impurity atoms cluster together to form small regions of a different phase.  Other 

mechanisms include changes in cathode morphology and resulting improved interfacial contact 

between LSM and YSZ, or redistribution of impurities under current flow, or changes in 

perovskite surface chemistry [3].  In short, this phenomenon is the subject of much speculation. 

As discussed in section 1.3, the cathodes are particularly subject to degradation processes as the 

electrochemical oxygen reduction process is sensitive to the changes in material composition and 

physical structure developing in the cathode.  So, a full understanding of the cathode degradation 

mechanism, particularly one phenomenon of degradation, is very helpful for improving the cell 

long term stability.  This phenomenon is a temporally changing polarization resistance over tens 
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of hours in a SOFC cell at open circuit with respect to thermal perturbation (reversible aging 

effect).  

 

5.2. Objectives  

The reversible aging behavior was first noticed by Dr. Harry Abernathy (NETL) while operating 

a commercial electrolyte-supported button cell (NexTech Hionic™) at open circuit with no prior 

current activation. The cathode was a 50 µm LSM/LSM-GDC multi-layer. The anode was a 50 

µm Ni-GDC/Ni-YSZ multi-layer and the electrolyte was a 150 μm zirconia-based layer.  The 

cell was aged at 750
o
C and then 850

o
C for 72 h at open circuit with the anode exposed to wet 

hydrogen and the cathode to air.  Over the 72 hours operation at 750
o
C and 850

o
C, the 

polarization resistance almost doubled at 750
o
C, and it decreased by more than half with respect 

to the same time at 850ºC. (Fig 5.1)  A similar sample which was heated directly to 850
o
C 

showed a similar decrease in polarization resistance with time, while subsequent aging at 750
o
C 

led to an increase in polarization resistance.  When cycling the sample between the two 

temperatures, no matter which initial temperature was used, a growing resistance at 750
o
C and a 

shrinking resistance at 850
o
C were always observed. 

 

 
(a)                                                              (b) 

Fig. 5.1:NexTech Hionic
TM

 electrolyte-supported cell with LSM/GDC composite cathode. 

(a) Impedance plots during aging at 750
o
C for 1 h (blue diamonds), 5 h (green squares), 26 h (red 

triangles), and 53 h (orange circles). (b) Impedance plots during aging at 850
o
C for 1 h (blue 

diamonds), 5 h (green squares), 26 h (red triangles), and 76 h (orange circles) 

 

We used symmetrical cells (electrodes were prepared with the cathode material) cycling between 

700ºC and 800ºC at open circuit to investigate systematically the above phenomenon.  The 

symmetrical cells with cathode material electrodes were used instead of conventional SOFCs. 

The purpose is to separate the contribution from the anode and confirm that the aging effect is 

B

 A 
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from cathode.  The symmetrical cells can yield unambiguous impedance data at open circuit (DC 

current is zero).  In this chapter, measurements of polarization resistances are reported at various 

temperatures. We chose to cycle the cells between 700ºC and 800ºC because we found that in the 

symmetrical cells, the polarization resistance increases at 700ºC and decreases at 800ºC.  

 

The objective of this research is first to verify the reversible aging phenomenon in various 

cathode compositions at OCV on symmetrical cells by analyzing only the cathode performance.  

Then we aim to find an explanation for this aging phenomenon by linking the microstructure 

evolution of cathode material with aging phenomenon, and finally to develop reasonable 

mechanisms causing this aging behavior of LSM electrodes.  We hope that ultimately this study 

will be helpful for improving the LSM electrode long term stability. 

 

5.3 Experimental  

As our focus is mainly on the LSM electrodes, we used symmetrical cells (porous LSM 

electrodes supported on dense YSZ electrolyte pellets in a symmetric configuration on both 

sides).  Because LSCF cathodes are popular in many SOFCs designed to operate at lower 

temperatures than ones with LSM cathodes, LSCF electrodes were analyzed for comparison.  

The role of the electrolyte is explored by testing LSM and LSCF symmetrical cells also with 

GDC (gadolinium-doped ceria) electrolytes.  GDC is another popular electrolyte in modern 

SOFCs. 

 

5.3.1. Symmetrical cells with pure LSCF, LSM and LSM/YSZ composite 

electrodes and YSZ electrolytes aged at 700, 800 and 850
o
C in air 

This initial work was performed to verify the presence of the reversible aging phenomenon in 

various cathode compositions.  Three types of freshly-made symmetrical cells were tested in the 

tube furnace in open air. The types of electrodes included pure LSCF and pure LSM electrodes 

with electrode diameter of 0.5 inch, and LSM/YSZ composite electrodes with electrode diameter 

of 0.5 inch, all on YSZ electrolytes.  Pure LSCF and pure LSM cells were purchased from Fuel 

Cell Materials.  The LSM/YSZ composite cell was hand- printed with LSM/YSZ composite ink. 
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The electrode ink was prepared by mixing LSM with YSZ at 1:1 weight ratio.  The cell was 

sintered at 1200
o
C for 4 hours. 

Both electrodes of the three kinds of cells were coated with gold paste as current collectors, and 

then they were mounted in a furnace (as shown in Figure 5.2).  The cell was exposed to 

laboratory atmosphere.  Two wires (current and voltage sense) led from the potentiostat to a 

point next to each electrode, and a single wire led from that point to the gold paste current 

collector.  One electrode was connected to the working electrode and voltage sense leads, and the 

other electrode was connected to the counter electrode and voltage sense leads.  Cells were 

characterized by cyclic voltammograms (CVs) and electrochemical impedance spectroscopy 

(EIS) using the Cell Test system.  Both CVs and EIS measured at 4 hour intervals at 

temperatures of 700, 800, or 850ºC in air, holding at each temperature for 48 hours.  The CV 

(scan from 0 to 0.1 to -0.1 to 0 V) yielded the total resistance (ΔE/ΔI) (Fig 5.3(a)).  This 100s 

slow scan CV yielded a more accurate value of total resistance instead of using the low 

frequency intercept of the EIS data.  EIS data sometimes was inaccurate because of the noise that 

appeared in the low frequency area of the EIS plot.  The high frequency intercept of the EIS data 

yielded the series resistance. The polarization resistance is the total resistance minus the series 

resistance (Fig 5.3(b)). In most figures, the area-normalized polarization resistance (units ohm 

cm
2
) are reported.  The normalization used the geometric area of the electrode based on its radius.  

 

Fig 5.2: The setup of the symmetrical cell 
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(a)                                                                     (b) 

Fig 5.3: The LSM/YSZ Cell was characterized at the first 4 h at 850°C by cyclic voltammograms 

(CVs) and electrochemical impedance spectroscopy (EIS). (a) CV scan from -0.1 to 0.1 yielded 

the Rt=1.65 ohms cm
2
 (delta E/delta I). (b) EIS plot shows the high frequency intercept yielded 

the Rs=0.48 ohms cm
2
, the low frequency intercept yielded Rt =1.60 ohms cm

2
. The Rp is Rt 

(from CV) minus Rs equal to 1.17 ohms cm
2
. 

 

5.3.2. Cycling LSM/YSZ/LSM symmetrical cells between 700 and 800
o
C 

To find out how the trend of polarization resistance changes with cycling temperature, a set of  

LSM/YSZ/ LSM symmetrical cells was cycled between 700 and 800
o
C for five times with 

soaking at both temperatures for 48 hours. 

5.3.3 Extended thermal aging of the LSM/YSZ/LSM symmetrical cells at 

800
o
C or 700

o
C for 500 hour before cycling the cells between 700 and 800

o
C 

In order to show the effect of thermal history, four freshly-made LSM/YSZ commercial 

symmetrical cells (Fuel Cell Materials) were used for comparison.  One cell was first aged for 

500 hours at 700
o
C, and then cycled between 700

o
C and 800

o
C five times with soaking at both 

temperatures for 2 days.  Another cell was aged 500 hours at 700
o
C at open circuit without 

cycling, and saved for surface analysis.  A third cell was aged for 500 hours at 800
o
C at open 

circuit, and then cycled between 700
o
C and 800

o
C similar to the protocol for the first one.  A 

fourth cell was aged for 500 hours at 800ºC and saved for surface analysis.  During the 500 hours 

thermal aging, the cells were monitored by CVs and electrochemical impedance spectroscopy 

with measurements at six hour intervals, and during the thermal cycling, the cells were 

characterized as before. 
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5.3.4 Extended thermal aging of the LSM/YSZ/LSM, LSM/GDC/LSM and 

LSCF/GDC/LSCF symmetrical cells at 800
o
C for 50 hour before cycling the 

cells between 800 and 700
o
C. 

A series of aging experiments are conducted to analyze the aging effects using three kinds of 

freshly-made commercial symmetrical cells (Fuel Cell Materials) (LSM/YSZ/LSM, 

LSM/GDC/LSM and LSCF/GDC/LSCF).  The electrode diameters were 0.5 inch (cathode area 

1.27 cm
2
). For each kind of cell, two cells (cell A and cell B) are tested.  Both cell A and cell B 

were first aged at 800ºC for 50 h in air, and then cell A was cycled starting at 800ºC, then to 

700ºC, then to 800ºC, then to 700ºC, and then ending at 800 ºC before cooling (three cycles).  

The cells were kept at each temperature for two days.  Cell B was also cycled between 800
o
C 

and 700
o
C, starting at 800

o
C, and, after subjecting to two cycles, ending at 700

o
C before cooling.  

Again, the cells were kept at each temperature for two days.  During the cycling, the 

electrochemical impedance was collected every one hour for the first 8 hours at each temperature, 

and then every 6 six hours for the remaining time.  The same protocol was applied to each kind 

of cells.  The impedance data for these cells were analyzed using deconvolution and equivalent 

circuit fitting as described in chapter 2. 

 

5.4 Results and Discussion 

5.4.1. Impedance analysis with thermal aging   

For the symmetrical cells with pure LSM and LSM/YSZ composite electrodes holding at 700
o
C, 

800
o
C and 850

o
C in air (described in 5.3.1), the aging behavior is readily observable with both 

types of cells.  The aging phenomenon is more apparent with pure LSM cathodes.  Fig. 5.4 

illustrates the initial changes when a virgin pure LSM electrode symmetrical cell (Fuel Cell 

Materials) is set inside a tube furnace set to 700
o
C, then 800

o
C, and finally 850

o
C in air.  The 

polarization resistance rises relatively rapidly in the first few hours and then decays slowly at 

700
o
C.  The decay continues at the higher temperatures and appears to be more rapid at 800

o
C 

than at 850
o
C.  Fig 5.5 illustrates the same trend of polarization resistance change for LSM/YSZ 

composite electrodes as the pure LSM electrodes.  The sensitivity of the polarization resistance 

to thermal history has been observed previously [16].  In comparison, the LSCF/YSZ/LSCF cell 

was not observed to exhibit similar aging behavior as LSM cells.  Fig 5.6 shows the initial 
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changes of LSCF electrode symmetrical cell (Fuel Cell Materials) at 700
o
C, then 800

o
C, and 

finally 850
o
C in air.  The polarization resistance decreases in the first few hours and then 

increases at 700
o
C.  This irreversible increase in the polarization resistance continues at the 

higher temperature of 800ºC and appears to exhibit no recovery at 850
o
C. 

 
Fig 5.4: Initial polarization resistances of a pure LSM/YSZ/LSM symmetrical cell in air at 700

o
C (black 

diamonds –left axis), 800
o
C (red squares – right axis), and 850

o
C (blue triangles – right axis). 

 

 

 

 
Fig 5.5: Initial polarization resistances of an LSM/YSZ composite symmetrical cell in air at 700

o
C (dark 

blue diamonds –left axis), 800
o
C (green triangles – right axis), and 850

o
C (light blue squares – right axis). 

 

 
Fig 5.6: Initial polarization resistances of a pure LSCF/YSZ/LSCF symmetrical cell in air at 700

o
C 

(black diamonds –left axis), 800
o
C (red squares – right axis), and 850

o
C (blue triangles – right axis). 

 

After break-in, the polarization resistance of LSM/YSZ/LSM cell exhibits reversible changes at 

800
o
C or 700

o
C (Fig.5.7).  The polarization resistance consistently rises with respect to time at 
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700
o
C and decays at 800

o
C.  A Bode plot of –Z” vs. log(f) for the beginning and end of a single 

temperature (700
o
C) shows that the aging effects occur at the lowest frequencies (Fig 5.8).  The 

symmetrical cells constructed in-house show the similar behavior.  The steady inter-cycle 

decrease in the polarization resistance shown in Fig.5.7 indicates a continuing irreversible 

change occurring in the cell. 

 

 
(a )                                                             (b)                                  

Fig 5.7: Polarization resistances of the LSM/YSZ/LSM cell in Fig 5.4 at (a) 700
o
C and (b) 800

o
C during 

temperature cycles 1 (diamonds), 2 (squares), 3 (triangles), 4 (circles) and 5 (asterisks). 
 

 
(a)          (b) 

Fig 5.8 : A plot of –Z” vs log f for a pure LSM electrode soaking at 700 °C and 800°C (a):  –Z” 

vs log f plot at the beginning and end (48 hours) of soaking at 700°C. (b) –Z” vs log f plot at the 

beginning and end (48 hours) of soaking at 800°C.  It is obvious that the changes of Z” occurs at 

lower frequencies.  Data is collected at the beginning of soaking (blue triangles) and end of 

soaking (red squares). 
 

The extended thermal aging of four LSM/YSZ/LSM symmetrical cells at 800
o
C or 700

o
C for 500 

hours before cycling the cells between 700
o
C and 800

o
C (cells described in in 5.3.3) indicates 

that the cell thermal history decides the repeatability of the reversible change, as illustrate in Fig 

5.9 and Fig 5.10.  One freshly-made LSM-YSZ commercial symmetrical cell (Fuel Cell 

Materials) was aged for more than 500 hours at 800
o
C before being cycled between 700

o
C and 
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800
o
C (Fig. 5.9).  The results show that thermal aging at 800

o
C removes the inter-cycle decrease 

in the polarization resistance and the reversible change becomes very repeatable.  Since 

reproducible polarization resistances can be obtained over five temperature cycles, the results 

suggest that stable thermodynamic states are obtained after 48 hours at 700
o
C and at 800

o
C.  For 

the freshly-made LSM-YSZ commercial symmetrical cell (Fuel Cell Materials) aged for 500 

hours at 700
o
C before cycling between 700

o
C and 800

o
C (Fig. 5.10), in contrast, the thermal 

aging at 700
o
C did not remove the inter-cycle transient effects, and the reversible change pattern 

of Rp at 700
o
C and 800

o
C for the cell aged 500 h at 700

o
C is less reproducible similar to the 

virgin cell without thermal aging (Fig 5.7).     

                                         

 
(a)                                                           

 
(b)                            (c) 

Fig. 5.9:(a) Polarization resistance of an LSM/YSZ/LSM symmetrical cell during a 522 hour soak at 

800
o
C. (b) Polarization resistances of the cell at 700

o
C. (c) Polarization resistances of the cell at 800

o
C. 

In (b) and (c), the temperature cycles are indicated by 1 (diamonds), 2 (squares), 3 (triangles), 4 (circles) 

and 5 (asterisks). 
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(a) 

 
(b)       (c ) 

Fig 5.10(a) Polarization resistance of an LSM/YSZ/LSM symmetrical cell during a 516 hour soak at 

700
o
C. (b) Polarization resistances of the cell at 700

o
C after soaking at 700

o
C for 510 hour. (b) 

Polarization resistances of the cell at 800
o
C.In (a) and (b), the temperature cycles are indicated by 1 

(diamonds), 2 (circles), 3 (triangles), 4 (asterisks) and 5 (squares).  In (b), the cell was shut down after 

four cycles. 

 

5.4.2 Discussion of possible causing of aging effect 
 

For the tested symmetrical cells, there are initially irreversible changes in the polarization 

resistance.  With the LSM electrode, after the initial conditioning of the cell, the polarization 

resistance shows a reproducible rise in polarization resistance at 700
o
C, and a reproducible decay 

in polarization resistance at 800
o
C, while the LSCF electrode does not show this reversible 

behavior between 700
o
C and 800

o
C.  The possible mechanism for aging effect of the LSM 

electrode must explain the reversible changes in the polarization resistance behavior that occur 

between 700
o
C and 800

o
C and the overall irreversible decrease observed during the first few 

thermal cycles.  Both the reversible and irreversible processes occur on the time scale of hours 

and mainly affect low frequency behavior.  The formation of oxide ion vacancies accounts for 

the activation behavior of the electrode as the oxygen transport pathway is enlarged in a process 

with a time scale of minutes at most [10, 17–21]. However, the formation and consumption of 

oxide ion vacancies in the LSM lattice cannot explain the present observations with the time 
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scale of several hours.  Cation migration, a relatively slow process in LSM, can be a possible 

causing of the aging effect [24, 25]. 

 

Cation migration was reported to contribute mainly to microstructural changes, formation of 

secondary phases, and redistribution of cations within the perovskite lattice.  Jiang first reported 

the early evidence for cation redistribution (or possibly secondary phase formation) at the LSM 

air interface [5, 15].  The authors showed that the surface species/composition of the LSM 

electrodes significantly determine the activation process.  The initial polarization resistance of 

fresh La0.72Sr0.18MnO3 electrodes etched with HCl solution prior to initial polarization 

measurements is much less than the same composition LSM electrode without acid etching, and 

the change in polarization resistance with cathodic current activation is also less than that of an 

unetched LSM electrode.[10, 22]  The etchant solution in Jiang’s experiment contained 

significantly higher concentrations of La and Sr and lower concentrations of Mn than predicted 

by the molar composition of the as-prepared LSM.  This result indicates that on the surface of 

fresh LSM electrodes, passive species like SrO intend to enrich or segregate there, so the surface 

and the bulk compositions of LSM are different.  The proposed mechanism of activation process 

on LSM electrode is the removal of passive species (SrO) on the LSM surface together with the 

simultaneous formation of oxide ion vacancies by the manganese ion reduction. [22] 

 

Many papers also reported Sr-enrichment on the surface of LSM perovskites at high 

temperatures by using a variety of surface analytical techniques:  Auger electron spectroscopy 

(AES) revealed Sr-enrichment on the surface.[23]  Fisher et.al. found strontium surface 

segregation in La0.7Sr0.3MnO3 thin films over a wide range of temperatures and oxygen partial 

pressures by using total reflection x-ray fluorescence (TXRF).  They found that the strontium 

surface concentration increases with decreasing pO2 [24, 25].  Strontium enrichment at the 

surface was also observed by X-ray photoelectron spectroscopy (XPS).  This degree of 

enrichment changes with varying conditions of annealing (temperature, oxygen pressure) and 

polarization treatments of the samples.[3, 26, 27]  Various methods of soft x-ray spectroscopy 

measurements support Sr/La enrichment on the surface, enriched Sr formed passive species 

SrxMnyOz and/or SrO [28].  Kubicek et al., using time-of-flight secondary ion mass spectroscopy 

(ToF-SIMS) on an perovskite La0.6Sr0.4CoO3 (LSC) thin film, also detected similar enrichment of 
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the Sr:La ratio on the surface, which is in agreement with the chemical analysis of the LSC 

surface etched by an acid solution[29].  Some literature reports demonstrate that the thermal 

history of the sample leads to a change in the degree of strontium enrichment.  Fister et al.[24] 

and Chang et al.[25] both found that surface strontium enrichment decreases as the temperature 

of dense LSM films increases from 300
o
C up to 900

o
C. Also, they found that the variation in the 

amount of Sr segregation is greater on the sample that has been subject to 72 hours of applied 

cathodic potential [25]. 

 

Fig. 5.4 and Fig 5.9(a) show that, when the cell was first time subject to 700
o
C, there is a brief 

rise to a maximum and a significant decay to a minimum in the polarization resistance.  These 

initial changes indicate that thermal aging is a complex process, including at least two process 

occurring during the aging experiments.  Based on the above discussion, we propose that at least 

the two following processes maybe relative to the phenomenon we observed: (1) the initial 

changes in the wetting behavior of the LSM on the YSZ surface, along with (2) the segregation 

of cations toward and from the surfaces and/or interfaces of LSM with YSZ. 

At sintering temperatures (1100°C-1200°C), LSM was discovered to wet the surface of YSZ, and 

therefore form a dense layer of LSM that inhibits oxygen ion diffusion to the TPB. [31-32] When 

temperatures are brought to a level well below that of sintering, cracks begin to form in the LSM 

film formed by the wetting process (alternatively, reverse-wetting could take place).  This 

structure change would make the TPB length increase and the polarization resistance decrease.  

So the microstructural changes in the LSM material should be a cause for the observed 

irreversible changes in polarization resistance, particularly the decrease during the first 100 h of 

long term aging in Fig. 5.9(a). 

 

At the same time, cations (possibly strontium) segregate from the bulk of the LSM toward the 

free surfaces and interfaces.  The passive species could occupy the active sites and inhibit the 

surface dissociative adsorption and/or diffusion process for the O2 reduction reaction, and result 

in the increased polarization resistance.  The migration of strontium within the LSM phase is 

proposed as the cause of the reversible changes in polarization resistance between 700ºC and 

800ºC.  Based on the previous literature research, it is reasonable to propose that the strontium 

segregates at 700
o
C, while strontium migrates into the bulk at 800

o
C.  Such changes of strontium 



108 
 

are consistent with the appearance of the tested cell of a resistivity maximum after soaking at 

700
o
C, and a minimum resistivity after soaking at 800

o
C.  So the migration of strontium within 

LSM phase (leading to a secondary phase or otherwise) is proposed as the cause of the reversible 

changes in polarization resistance between 700
o
C and 800

o
C shown in Figs. 5.8(a)-(b), 5.9(b)-(c) 

and 5.10(b)-(c). 

All the above discussions are the initial results from analysis of the change of cell impedance 

with time.  Since the electrochemistry experiments alone have limited ability to confirm the 

cause for the reversible behavior, other surface analytic methods are required.  Post-mortem 

surface analyses of the samples are being planned.  These results are not available at the time of 

the writing of this dissertation. 

Another possible approach for separating the processes at different frequencies is deconvolution 

of impedance spectra combined with complex non-linear regression fitting of the impedance 

spectra as discussed in chapter 2.  This protocol can provide the trends in parameters for the 

equivalent circuit during thermal aging. We performed the extended tests with different cathode 

and electrolyte compositions under open circuit.  The next section includes such deconvolution 

analysis. 

5.4.3 Deconvolution analysis of LSM/YSZ/LSM symmetrical cells and 

(LSM/YSZ)/YSZ/(LSM/YSZ) composite symmetrical cells 

The process for deconvolution steps and building of equivalent circuits follows the discussions in 

Chapter 2.  The data used for fitting are obtained from experiments described in 5.3.4.  The 

deconvolution spectrum indicates the minimum number of arc-forming elements required in the 

equivalent circuit.  With this information, the equivalent circuit is composed of multiple 

elements in series and each element contributes to one of the arcs in the deconvolution spectrum.  

The (RQ) and Gerischer impedance elements are two common arc-generating elements we use 

for the aging effect.  During thermal aging, certain peak frequencies in the deconvolution plot are 

expected to change and equivalent circuit elements strongly associated with that peak 

frequencies will also change.  The analyses can provide the trends in parameters for the 

equivalent circuit with time.  The same kinds of cells A and B, tested at the same time and in the 

same condition but ending at different temperatures, can provide additional information. 
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LSM/YSZ Cell A and Cell B cycle at 800°C 

Fig. 5.11 shows the Nyquist plots and deconvolution spectra for cell A and cell B (LSM/YSZ 

symmetrical cells) with the first data set at 800°C.  The Nyquist plot shows the high quality of 

the impedance data points from 100 kHz to 0.02 Hz.  In Fig 5.11, at least 2 arcs are visible in the 

Nyquist plots, and the deconvolution spectra indicate the presence of three or more arcs.  For the 

deconvolution spectra of both cell A and cell B, there is no long tail extending to the high 

frequency limit, which is an obvious feature for Gerischer impedance, so only RQ elements are 

used to fit the impedance.  For cell A, using the R(RQ)3 model led to odd parameters and a 

visibly poor fit of deconvolution spectra for the data and for the simulated impedances of the 

equivalent circuit.  The R(RQ)4 model fits the data well.  However, there is a slight discrepancy 

below 1 Hz in the deconvolution spectra.  Adding another RQ element (R(RQ)5) yields a 

noticeably better fit. 

                       
(a)                        (b) 

      
 (c )         (d)    

Fig. 5.11: Impedance spectra and deconvolution spectra for cell A and cell B (LSM/YSZ). (a) 

Nyquist plots for Sample A first 46 hours; (b) Nyquist plots for Sample B first 46 hours;  (c) 

Deconvolution spectra for sample A  first 2.2 hours; (d) Deconvolution spectra for sample B at 

2.3 hour. 
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Figure 5.12 illustrates the quality of the fit to the (R(RQ)5) equivalent circuit for the first 2.2 

hour data collected at 800ºC (1
st
 cylce) for cell A.  All the data have been corrected for the 

inductance and series resistance obtained from the ZView fit.  The five peaks in the 

deconvolution spectrum correspond to the five elements (RQ1- RQ5).  The parameters for these 

elements are in Table 5.1.  Not only do the Nyquist plots of the data and the simulated 

impedances from the equivalent circuit overlay very well, but also the plots of deconvolution 

spectra for the data and for the simulated impedances of the equivalent circuit overlay very well.  

Fig 5.12(d) shows that the residuals do not exceed 0.04 ohm.   

 
(a )                                                                (b) 

 
(c )                                                                   (d) 

 
(e) 

Fig. 5.12: Equivalent circuit fit for the first 2.2 hour data collected at 800ºC (1
st
 cycle for cell A).  

(a) In-phase Z’ data and the contributions from each element in the equivalent circuit; (b) Out-of-

phase –Z” data and the contributions from each element; (c) Nyquist plot overlaying the data and 

the simulated impedances from the equivalent circuit; (d) Residuals  (Z’(sim) – Z’(data)) and 

(Z”(sim) – Z”(data)); (e) Overlay plot of the deconvolution spectra for the data and for the 

simulated impedances of the equivalent circuit. 
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Fig 5.13 shows the deconvolution plots of cell B. The overall pattern for cell B is very similar to 

the pattern for cell A.  The impedance is dominated by a high frequency peak around 56 (2.3 h) 

to 40 Hz (45.7 h), and by overlapping peaks at lower frequencies.  However, fitting the first data 

set for Cell B at 800ºC with R(RQ)5 proved to be difficult for all EIS data.  The 5RQ model 

worked well for data at the end (45.7 hour),( Fig 5.14)  but not for the data at the beginning (2.3 

hours).  The problem lies with the fit at low frequencies, below 10 Hz.(Fig 5.13)  Consequently, 

tracking changes for the lowest frequency elements (RQ4 and RQ5) is a problem for the data at 

beginning.  Figure 5.13 shows that, for cell B at 800ºC at 2.3 hour, there is a persistent 

discrepancy at low frequencies caused by a very small arc visible below 0.1 Hz, and this small 

arc was not fitted with this circuit.  Apart from the bump below 0.1 Hz, the overall fit is very 

good.  This small arc disappears with time.  Fig 5.14 shows that, at the end of 45.7 hours, the 

5RQ model fits much better.  
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(a )                                                                                       (b) 

 
(c )          (d) 

 
(e ) 
Fig. 5.13: Equivalent circuit fit for the 2.3 hour data collected at 800ºC (1

st
 time) for cell B.  (a) 

In-phase Z’ data and the contributions from each element in the equivalent circuit; (b) Out-of-

phase –Z” data and the contributions from each element; (c) Nyquist plot overlaying the data and 

the simulated impedances from the equivalent circuit; (d) Residuals  (Z’(sim) – Z’(data)) and 

(Z”(sim) – Z”(data)); (e) Overlay plot of the deconvolution spectra for the data and for the 

simulated impedances of the equivalent circuit. 
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(a )                                                                    (b) 

 

 
(c )         (d) 

 
(e ) 
Fig. 5.14: Equivalent circuit fit for the 45.7 hour data collected at 800ºC (1

st
 time) for cell B.  (a) 

In-phase Z’ data and the contributions from each element in the equivalent circuit; (b) Out-of-

phase –Z” data and the contributions from each element; (c) Nyquist plot overlaying the data and 

the simulated impedances from the equivalent circuit; (d) Residuals  (Z’(sim) – Z’(data)) and 

(Z”(sim) – Z”(data)); (e) Overlay plot of the deconvolution spectra for the data and for the 

simulated impedances of the equivalent circuit. 

Table 5.1 contains the fitted parameters for Cell A and B at 800ºC (1
st 

data set).  For cell B, 

because of the problem of 5RQ model fitting the data at the beginning of 800ºC, RQ values were 

fixed in order to force ZView to generate acceptable values for the other parameters and to 

obtain a very good match between the deconvolution spectra of the data and the simulation. The 

element RQ5 was fixed until 7.9 hour, when the low frequency deviation disappeared.  Cell A 

has no such problem. 
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Table 5.1: Fitted parameters for the R(RQ)5 equivalent circuit to impedance data for the Cell A at 

2.2 hour  and 45.6 hour & Cell B at 2.3 hour  and 45.7 hour 800ºC (1
st 

Cycle) 

 

Element Parameter Values at 
2.2 hours 

(Cell A) 

Values at 45.6 
hours (Cell A) 

Values at 2.3 
hours (Cell B) 

Values at 45.7 
hours (Cell B) 

Units 

series R R1 1.1 1.1 1.2 1.2 ohms 

inductance L 1.0E-11 1.0E-11 1.0E-11 1.0E-11 H 

RQ1 R2 0.068 0.054 0.052 0.061 ohms 

RQ2 R3 0.81                   0.38                       1.6                     1.1 ohms 

RQ3 R4 13 9.5 9.7 13 ohms 

RQ4 R5 6.1                     2.1                       2.5                     4.2 ohms 

RQ5 R6 0.57                  0.17                   0.20                   0.36 ohms 

Rp total  20 12 14 19 ohms 

R total  21 13 15 20 ohms 

       

RQ1 Q1 1.1E-04 4.4E-05 1.0E-04 8.4E-05  

RQ2 Q2 1.2E-03 1.7E-03 1.5E-03 2.7E-03  

RQ3 Q3 1.0E-03 1.1E-03 1.6E-03 1.2E-03  

RQ4 Q4 1.7E-02 4.5E-02 5.3E-02 2.3E-02  

RQ5 Q5 0.68 1.8 3.0 0.77  

       

RQ1 n1 0.96 1.0 1 1  

RQ2 n2 1 1 0.87 0.83  

RQ3 n3 0.76 0.76 0.73 0.75  

RQ4 n4 0.71 0.71 0.70 0.74  

RQ5 n5 0.96 1 1 1  

       

RQ1 f1 35000 35000 30000 31000 Hz 

RQ2 f2 165 245 162 175 Hz 

RQ3 f3 49 64 46 39 Hz 

RQ4 f4 3.7 4.3 2.8 3.7 Hz 

RQ5 f5 0.43 0.53 0.26 0.57 Hz 

 

After applying deconvolution of impedance spectra combined with complex non-linear 

regression fitting of the impedance spectra for all the data at 800ºC for Cells A and B, the trends 

in parameters for the equivalent circuit as a function of time can be provided. 

Figure 5.15 shows the first data set at 800 ºC of Cell A.  R1 was constant at 1.12 ohms.  R4 and 

R5 dominate the polarization resistance.  R4 (~40-60 Hz) caused the rise and then decay of the 
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Rp.  R5 (~4 Hz) simply decays with time.  R3 and R6 contribute a small amount to the decay and 

become smaller fractions of the polarization resistance.  Not surprisingly, there is an inverse 

correlation of frequency with the magnitude of each R value.  Exponents for all 5 elements stay 

roughly constant.  Comparing the results of cell A with cell B, R4 is dominant, but R3 and R5 

contribute significantly to Rp.  All three resistances contribute to the sharp rise in Rp over the 

first 8 hours.  R3 and R5 account for most of the decay from 15 to 43 h.  This behavior is 

noticeably different from the pattern in Cell A. 

 
(a )        (b) 

 
(c )          (d) 

Fig. 5.15: The parameters for the equivalent circuit as a function of time for the first data set of 

cell A and B at 800 ºC. (a) Cell A polarization resistances; (b) Cell B polarization resistances; (c) 

Cell A frequencies for five elements; (d) Cell B frequencies for five elements. 

 

The second set of data of cell A and the second set of data of cell B at 800ºC are shown in Fig 

5.16.  For cell A, two principle resistances R4 and R5 decay with time for both data sets and 

frequencies of the elements stay roughly constant.  For cell B, R3 exhibits anomalous behavior, 

dropping suddenly from 1.5 ohms to 0.5 ohms (15 to 27 hours).  R4 and R5 are affected by this 

drop, and also exhibit anomalous behavior.  All three resistances contribute to the decrease in Rp.  

The frequencies of cell B elements also stay roughly constant. The third set of data of cell A are 

shown in Fig 5.17, which  shows the similar trend as the second data set for cell A. 
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(a )                  (b) 

 
(c)        (d) 

Fig. 5.16: The parameters for the equivalent circuit as a function of time for the second data set 

of cell A and B at 800 ºC. (a) Cell A polarization resistances; (b) Cell B polarization resistances; 

(c) Cell A frequencies for five element; (d) Cell B frequencies for five elements. 

 

     

 
 

(a )                                                                     (b)      

Fig. 5.17: The parameters for the equivalent circuit as a function of time for the third data set of 

cell A at 800 ºC. (a) Cell A polarization resistances; (b) Cell A frequencies for five element. 

 

Fig 5.18 shows the overlay of corresponding polarization resistance of all the data sets for cell A 

and B at 800ºC vs. time.  All the polarization resistance values are normalized for the area and 

for one electrode.  For cell A, the total trend in polarization resistances is due to low frequency 

elements R4 and R5.  Both R4 and R5 show decreases relative to the previous value after aging 
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at 700ºC, but the majority of the change is found in R4.  All other elements values (R2, R3, & R6) 

contribute less than 0.3 ohm to the polarization resistance.  For cell B, all three R3, R4 and R5 

elements jointly account for the change of polarization resistance. 

 

(a)          (b ) 

Fig 5.18: The corresponding polarization resistance of cell A and B with time at 800ºC over two 

or three temperature cycles. (a) Cell A (b) Cell B.  The breaks correspond to 2 days soak at 

700ºC.   

 

Cell A and Cell B cycle at 700°C 

Figure 5.19 illustrates the quality of the fit to the (R(RQ)5) equivalent circuit for the first 1.0 

hour data collected at 700ºC (1
st
 time) for cell A.  The five peaks in the deconvolution spectrum 

correspond to the five elements.  Four elements (RQ1- RQ4) contribute significantly to the 

impedance.  Not only do the Nyquist plots of the data and the simulated impedances from the 

equivalent circuit overlay very well, but also the plots of deconvolution spectra for the data and 

for the simulated impedances of the equivalent circuit show excellent fits.  The 5RQ model also 

fits very well for all the data of cell A for 1
st
 time and 2

nd
 time at 700ºC.  For cell B, the (R(RQ)5) 

equivalent circuit fits to all the data sets at 700ºC are excellent, and the deconvolution spectra 

clearly show the need for 5 RQ elements (Fig 5.20) 

 



118 
 

 
 
(a )                                                                             (b ) 
 

 
( c)        (d )  

 
(e) 
Fig. 5.19: Equivalent circuit fit for the 1.0 hour data collected at 800ºC (1

st
 time) for cell A.  (a) 

In-phase Z’ data and the contributions from each element in the equivalent circuit; (b) Out-of-

phase –Z” data and the contributions from each element; (c) Nyquist plot overlaying the data and 

the simulated impedances from the equivalent circuit; (d) Residuals.(e) Overlay plot of the 

deconvolution spectra for the data and for the simulated impedances of the equivalent circuit. 
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(a)                                                                               (b) 
 

 
(c )                                                                               (d) 

 
(e )                                                                                
Fig. 5.20: Equivalent circuit fit for the 1.1 hour data collected at 800ºC (1

st
 time) for cell B.  (a) 

In-phase Z’ data and the contributions from each element in the equivalent circuit; (b) Out-of-

phase –Z” data and the contributions from each element; (c) Nyquist plot overlaying the data and 

the simulated impedances from the equivalent circuit; (d) Residuals.(e) Overlay plot of the 

deconvolution spectra for the data and for the simulated impedances of the equivalent circuit. 

 

 

The trends in parameters for the equivalent circuit as a function of time are shown in Figures 

5.21-5.23.  Data for the first cycle at 700ºC are shown in Fig. 5.21.  For the first data set of cell A, 

series resistance R1 increased from 1.13 ohms (at 800ºC) to 1.87 ohms (700ºC), consistent with a 

temperature-independent resistance of 0.77 ohms and a temperature-dependent resistance 

(assumed activation energy 1.0 eV) of 0.36 and 1.10 ohms.  Fig 5.21 shows that resistance values 
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for R4 continuously increased from 43 to 54 ohms and R5 increased from 19 to 32 ohms over 52 

hours.  Some noise is present in the fitted values for R5 and R6, but their sum is less noisy and 

shows a steady increase with time (23 to 39 ohms).  R3 has minimal change from 4.0 to 4.6 ohms 

over 52 hours.  Frequencies are nearly constant on a log scale.  Four elements (RQ2 thru RQ5) 

contribute significantly to the polarization resistance.  For Cell B (1
st
 data set), resistance values 

for R4 and R5 also show continuous increase over 52 hours, and they contribute to the main 

increase for total polarization resistance.  Some noise is visible in the fitted values for R5 and R6, 

and apparently ZView cannot readily separate R5 and R6, since their values move in opposite 

directions. 

 
(a )       (b) 

 
(c )                     (d) 
Fig. 5.21: The parameters for the equivalent circuit as a function of time for the first data set of 

cell A and B at 700 ºC. (a) Cell A polarization resistances (b) Cell  B polarization resistances (c ) 

Cell A frequency for five elements  (d) Cell B frequency for five elements. 

 

 

Fig 5.22 shows the fitting parameters of cell A and B for 2
nd

 data set at 700ºC.  For Cell A, most 

of the rise in polarization resistance is found in R4 and R5, while R3 and R6 are minor 

contributors.  Variations in R4 and R5 exhibit anti-correlation with each other.  All the 

frequencies of five elements stay approximately constant.  The polarization resistances and 

frequencies of Cell B show the same trend as cell A. 
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(a )        (b) 

 
(c )        (d) 

Fig. 5.22: The parameters for the equivalent circuit as a function of time for the second data set 

of cell A and B at 700 ºC; (a) Cell A polarization resistances; (b) Cell B polarization resistances; 

(c ) Cell A frequency for five elements; (d) Cell B frequency for five elements. 

 

Fig 5.23 displays the overlay of Rp, R4 and R5 for the two data sets at 700ºC for cell A.  For Cell 

B, Rp is overlaid with R4, R5 and R6, the three largest component resistances.  For cell A, R6 

was a minor component, but for cell B at 700ºC, it is one of the major contributors to Rp.  And, 

for cell B, R5 and R6 are coupled in ZView; a higher value in R6 results in a lower value of R5.  

All three resistances appear to contribute to the rise in Rp in cell B. 

 
(a)           (b) 

Fig 5.23: The corresponding polarization resistance of cell A and B vs. time at 700 ºC. (a) Cell A; 

(b) Cell B. 
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Table 5.2: Comparison end of 800ºC collection vs beginning of 700ºC collection for cell A: 

Parameters f(800) f(700) R(800) R(700) Ea(eV) 

R2 35k 25k 0.06 0.23 1.2 

R3 245 62 0.38 4.6 2.2 

R4 64 5.3 9.5 54 1.6 

R5 4.3 0.55 2.1 32 2.5 

R6 0.53 0.12 0.17 7 3.3 

Rp   12 98 1.9 

 

Table 5.3: Comparison end of 800ºC collection vs beginning of 700ºC collection for cell B: 

Parameters f(800) f(700) R(800) R(700) Ea(eV) 

R2 31k 23k 0.062 0.27 1.3 

R3 176 58 0.58 5.6 2.0 

R4 40 5.2 14 60 1.3 

R5 3.7 0.55 3.6 40 2.2 

R6 0.57 0.13 0.45 8 2.6 

Rp   19 114 1.6 

 

Table 5.2 and 5.3 compare the end of 800ºC collection with beginning of 700ºC collection with 

respect to frequency for cell A and cell B.  For both cell A and cell B, all 5 processes increase 

their respective resistances and lower their respective frequencies from 800ºC to 700ºC.  All 

exponents decrease somewhat.  The change of resistances at different temperatures leads to a 

wide range of apparent activation energies as shown in the Tables.  The activation energy for Rp 

is near 2 eV for both cells, which is typical of a pure LSM electrode.  The frequencies of cell B 

are about the same or slightly lower than for Cell A.  The resistances and the activation energies 

of cell B are about the same or slightly higher than Cell A.  However, generally the temperature 

dependent parameters appear to be consistent for the two cells.  

 

Summary of the preceding observation for LSM/YSZ/LSM symmetrical cells: 

Both 800ºC and 700ºC EIS data were a good fit to a 5RQ model.  Five RQ elements were 

required to fit the 700ºC data, and were helpful in obtaining a better fit to the 800ºC data.  Cell A 

and B showed similar trends.  Frequencies for Cell A and B are nearly constant at a given 

temperature.  From 800ºC to 700ºC, all elements appeared to decrease in frequency going and 

increase in the corresponding resistances.  Apparent activation energies could be calculated and 

their values ranged from 1.3 to 3.3 eV, and apparent activation energies for cell A and B are 

similar, with the overall activation energy being 1.6 (cell B) to 1.9 eV (cell A). 
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However, changes in the resistance values for the lower frequency elements are difficult to 

separate using ZView.  In general, by the deconvolution method, no single element was found to 

account for all of the changes in the polarization resistance with respect to time and temperature.  

For both cells A and B, the two largest elements (R4 & R5) consistently changed with respect to 

aging or temperature.  Polarization resistances for these two low frequency elements contribute 

to most of the total change in Rp. 

 

Deconvolution analysis of composite (LSM/YSZ)/YSZ/(LSM/YSZ) cells  

As compared with the pure LSM/YSZ/LSM cell, the composite (LSM/YSZ)/YSZ/(LSM/YSZ) 

symmetrical cells (The testing for such cells is descript in 5.3.1) are also analyzed with 

deconvolution.  Fig. 5.24 shows the Nyquist plots and deconvolution spectra for the composite 

cell at 800ºC. A long tail extends to the high frequency limit in deconvolution spectra. As 

discussed 4.4.2, an equivalent circuit including Gerischer impedance could fit deconvolution 

spectra with this feature. We used LR(Ge)RQ model to fit the data at 800ºC and  LR(Ge)(RQ)2 

model to fit the data at 700ºC, and these models appear to provide excellent fits in both 

impedance and deconvolution spectra (Fig 5.24). 

  

(a)                                                            (b) 

Fig 5.24: Equivalent circuit fit for the 2.0 hour data collected at 800ºC. (a) Nyquist plot 

overlaying the data and the simulated impedances from the equivalent circuit; (b) Overlay plot of 

the deconvolution spectra for the data and for the simulated impedances of the equivalent circuit 
 

 Fig 5.25 shows the contributions from each element for the out-of-phase impedance Z”. At 

800ºC, the Gerischer impedance contributes mostly. At 700ºC, the Gerischer impedance and one 

RQ element both contributes largely. 
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(a)                                                     (b) 

Fig. 5.25: Equivalent circuit fit for Out-of-phase –Z” data and the contributions from each 

element (a) At 800ºC (b) At 700ºC 

 

 

(a)                                                        (b) 

Fig. 5.26: The polarization resistances for the equivalent circuit as a function of time (a) At 

800ºC (b) At 700ºC 

 

Fig 5.26 summarizes trends of polarization resistance at 800ºC and 700ºC.  Similar to LSM 

electrode, the polarization resistances of LSM/YSZ composite electrode decrease at 800ºC and 

increase at 700ºC. At both 800ºC and 700ºC, Gerischer impedance accounts for mostly in total 

polarization resistance change. 

5.4.4 Deconvolution analysis of LSM/GDC/LSM symmetrical cells 

Fig 5.27 shows the Nyquist plot and Bode plot at 2 h (first cycle) for cell A and B at 800ºC.  The 

long tail in the Bode plot suggests that a Gerischer element should be in the equivalent circuit.  

However, there were abrupt changes in some of the polarization resistances using this equivalent 

circuit for cell A.  A Gerischer element also does not fit cell B data at 800ºC.  Since this 

symmetrical cell is composed by pure LSM on a GDC electrolyte, as we discussed 4.4.2, there is 

no reason to use a Gerischer impedance.  We choose to use LR(RQ)5 model to fit the data at 
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800ºC and LR(RQ)4 model to fit the data at 700ºC, and these models appear to provide excellent 

fits in impedance and deconvolution spectra for both cell A and B.  

 
(a)                                                                          (b) 
Fig. 5.27: (A) Nyquist plot and  (B) Bode plot –Z” vs log f at first 2 h for cell A and B at 800 ºC.   

 

Cell A and Cell B at 800 ºC 

Fig. 5.28 shows the quality of fitting for the LR(RQ)5 to cell A impedance at 2 h, 800ºC, first 

cycle.  The deconvolution spectrum shows one peak and several shoulders at higher frequencies.  

Cell B shows a similar deconvolution spectrum.  

Table 5.4 contains the fitted parameters for Cell A and B at first 2 h at 800ºC (1
st 

cycle).   Except 

for the lower inductance for cell B than for cell A, the other parameters for cell A and B are very 

close. 
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(a)                                                                 (b) 

 
(c )                                                                              (d) 

 
(e) 
Fig. 5.28: Equivalent circuit fit for the 2.0 hour data collected at 800ºC (1

st
 time) for cell A.  (a) 

In-phase Z’ data and the contributions from each element in the equivalent circuit; (b) Out-of-

phase –Z” data and the contributions from each element; (c) Nyquist plot overlaying the data and 

the simulated impedances from the equivalent circuit; (d) Residuals. (e) Overlay plot of the 

deconvolution spectra for the data and for the simulated impedances of the equivalent circuit 
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Table 5.4: Fitted parameters for the R(RQ)5 equivalent circuit to impedance data for the Cell A at 

2.0 hour and Cell B at 2.1 hour at 800ºC (1
st 

Cycle) 

 

Elements Parameter Cell A 
values 

Cell B 
values 

Units 

series R R1 0.63 0.78  ohms 

inductance L 1.0E-07 2.7E-08  H 

RQ1 R2 0.69 0.86 ohms 

RQ2 R3 1.8 1.8  ohms 

RQ3 R4 5.3 4.3  ohms 

RQ4 R5 1.3 1.8  ohms 

RQ5 R6 2.9 1.5  ohms 

Rp total   12 10  ohms 

R total   13 11  ohms 

RQ1 n1 0.78 0.79    

RQ2 n2 0.61 0.62    

RQ3 n3 0.66 0.61    

RQ4 n4 1 0.92    

RQ5 n5 1 1    

RQ1 Q1 2.7E-04 2.1E-04    

RQ2 Q2 3.8E-03 3.5E-03    

RQ3 Q3 9.4E-03 1.2E-02    

RQ4 Q4 2.6E-02 2.3E-02    

RQ5 Q5 0.041 0.084    

RQ1 f1 9700 9200 Hz 

RQ2 f2 573 584  Hz 

RQ3 f3 15 20 Hz 

RQ4 f4 4.5 5.1 Hz 

RQ5 f5 1.4 1.3  Hz 

 

Fig 5.29 summarizes trends of polarization resistance and frequencies at first cycle at 800ºC for 

Cell A and cell B.  For cell A, low frequency elements R4 and R6 account for most of the change.  

The initial rise appears to be due to the lowest frequency element R6.  For Cell B, most of the 

change in Rp is found in R3, R4, R5 and R6.  R3 (about 400 Hz) and R5 (5 Hz) show 

coordinated opposite movements.  R3 and R6 account for the initial rise in Rp, and R4 and R5 

account for most of the decay.  The frequencies do not exhibit much change with aging at 800 ºC. 
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(a)                                                                (b) 

 
(c )                                                                   (d)                                                             

 Fig. 5.29: The parameters for the equivalent circuit as a function of time for the first data set of 

cell A and B at 800 ºC. (a) Cell A polarization resistances (b) Cell B polarization resistances (c ) 

Cell A frequency for five elements  (d) Cell B frequency for five elements 

 

Fig 5.30 shows trends of polarization resistance and frequencies at second cycle at 800ºC for 

Cell A and Cell B. For Cell A, R4 and R6 again account for most of the change in Rp.  R5 

changes very little. For Cell B, there is a problem with large oscillations in the parameters for 

RQ2, RQ3 and RQ4, which indicates a large uncertainty in the fitted values obtained from 

ZView. 

Cell A at 700ºC 

Fig 5.31 compares the data at the beginning and end of the 2-day aging for Cell A at 700ºC (first 

cycle).  Similar to Cell A at 800ºC, changes are mainly at frequencies below 1 Hz.  The 

deconvolution spectra show an increase in the lowest frequency peak.  Similarly to data at 800ºC, 

the 700ºC data could be fit with a LR(RQ)4 model, with L fixed at 1x10
-7

H.  This model gives a 

good fit for deconvolution spectra with a slight discrepancy around 1-3 Hz (Fig 5.32(b)). Adding 

a 5
th

 RQ element does not remove this slight discrepancy.  We use this LR(RQ)4 model for 

700ºC data . 
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(a)                                                                           (b) 

 
(c )                                                                                       (d ) 
Fig. 5.30: The parameters for the equivalent circuit as a function of time for the second data set 

of cell A and B at 800 ºC. (a) Cell A polarization resistances (b) Cell B polarization resistances 

(c) Cell A frequency for five elements; (d) Cell B frequency for five elements. 
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(a)                                                                               (b) 

 
(c ) 

Fig 5.31: Comparison of data at the beginning and end of aging for Cell A at 700ºC (first 
cycle).(a) Nyquist plot; (b) Bold plot –Z” vs log f; (c) Deconvolution spectra. 

 

 
 

(a )                                                                   (b) 

Fig. 5.32: Equivalent circuit fit for the 2.0 hour data collected at 700ºC (1
st
 time) for cell A(A) 

Nyquist plot overlaying the data and the simulated impedances from the equivalent circuit;.(B) 

Overlay plot of the deconvolution spectra for the data and for the simulated impedances of the 

equivalent circuit. 
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Fig 5.33: The corresponding polarization resistance of cell A vs. time at 700ºC. 

Fit with a LR(RQ)4 model, Fig 5.33 shows for both cycles for cell A at 700ºC, Rp increases and 

slightly drop after 800ºC aging. All changes are associated with the low frequency elements R4 

and R5.  Cell B (data not shown) exhibits similar patterns in the element values. 

Summary of the preceding observation for LSM/GDC/LSM symmetrical cells: 

The LSM/GDC symmetrical cells showed a similar pattern of aging compared to the LSM/YSZ 

symmetrical cells.  The polarization resistance decreases at 800ºC and increases at 700ºC.  Most 

of the changes in Rp values are associated with low frequency elements. 

 

5.4.5 Deconvolution analysis of LSCF/GDC/LSCF symmetrical cells 

As discussed in 4.4.2, Adler/Lane/Steele model predicts an ideal Gerischer impedance (exponent 

n = 0.5) for a mixed ionic/electronic conductor.  The electrode material LSCF is the mixed ionic 

and electronic conductor, so the equivalent circuits include the Gerischer impedance.  The 

deconvolution spectra for 800ºC for cell A show three major peaks (Fig. 5.34), so a three 

elements circuit LR(Ge)(RQ)2 is used for fitting the 800ºC data.  The deconvolution spectra for 

700ºC show only one major peak (Fig 5.34), so a simple one element circuit LR(Ge) without the 

extra RQ element is good for fitting the 700ºC data. The two models also exhibit high quality in 

fits of the 800ºC and 700ºC data for cell B. 
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(a )                                                                 (b) 

  
(c)                                                                    (d) 

Fig. 5.34: Impedance spectra and deconvolution spectra for cell A (LSCF/GDC). (a) Nyquist 

plots for Sample A first 46 hours at 800ºC; (b) Deconvolution spectra for sample A first 46 hours 

at 800ºC; (c) Nyquist plots for sample A first 46 hours at 700ºC; (d) Deconvolution spectra 

sample A first 46 hours at 700ºC. 

 

Table 5.5 shows fitted parameters with the LR(Ge)(RQ)2  equivalent circuit to impedance data 

for the Cell A at 2.2 hour and at 45.7 hour at 800ºC (1
st 

Cycle) and Table 5.6 shows LR(Ge) 

equivalent circuit for the Cell A at 2.3 hour at 700ºC (1
st 

Cycle).  For 800 ºC, the inductance 

values are fixed to allow better fit of the high frequency peak (RQ2).   
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Table 5.5: Fitted parameters for the LR(Ge)(RQ)2  equivalent circuit to impedance data for the 

Cell A at 2.2 hour and at 45.7 hour at 800ºC (1
st 

Cycle)  

Elements Parameters 2.2 h at 800 ºC 45.7 h at 800 ºC Units 

series R R1 0.83 0.83 ohms 

inductance L 6.0E-09 6.0E-09 H 

Ge T 2.6E-02 7.8E-02   

Ge P 0.40 0.42     

Ge Rp 0.14 0.28 ohms 

Ge U 1   1     

Ge f1 13   4.1 Hz   

RQ2 R2 0.0096 0.0092 ohms 

RQ2 n2 1 1   

RQ2 Q2 4.2E-04   4.7E-04     

RQ2 f2 40000   37000 Hz   

RQ3 R3 0.080 0.11 ohms 

RQ3 n3 0.76 0.88   

RQ3 Q3 2.3   1.9     

RQ3 f3 1.5   0.93 Hz   

Table 5.6: LR(Ge) equivalent circuit for the Cell A at 2.3 hour at 700ºC (1
st 

Cycle) 

Elements Parameters 2.3 h at 700 ºC Units 

series R R1 1.0 ohms 

inductance L 1.0E-10 H 

Ge T 0.52   

Ge P 0.47     

Ge Rp 2.0 ohms 

Ge U 1     

Ge f1 0.56 Hz   

 

  
(a )                                                                              (b) 
Fig 5.35: The corresponding polarization resistance of cell A vs. time (a) At 800ºC; 

(b) At 700ºC. 
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Fig 5.35 shows the polarization resistance of cell A aging at 800ºC and 700ºC.  The Rp total 

resistances show an increase at 800ºC and decrease at 700ºC.  This aging pattern is totally 

different from the aging pattern of LSM electrodes, and agrees with our observation in 5.4.1.  

Both low frequency elements Ge and RQ2 contribute most of the total polarization change at 

800ºC.  The RQ2 element is associated with the initial increase and the remaining aging change 

is only associated with the Ge element.  This observation is evidence for possible two processes  

associated with the aging. Cell B (data not shown) exhibits similar patterns in the element values. 

Summary of the preceding observation for LSCF/GDC/LSCF symmetrical cells: 

The Gerischer impedance and the low frequency RQ2 element are associated with most of the 

change in the polarization resistance at 800 deg C.  These two elements show different aging 

patterns, with the Gerischer resistance increasing steadily and the RQ resistance decreasing 

steadily.  A single Gerischer element fits the impedance data at 700ºC.  LSCF electrodes shows 

an increase in Rp values at 800ºC and a decrease in Rp values at 700ºC.  This pattern is the 

opposite of the polarization resistance changes for the LSM electrodes.   

 

5.4.6 Discussion for the trends and hypotheses for the deconvolution results 

 

The aging patterns for LSM/YSZ/LSM, (LSM/YSZ)/YSZ/(LSM/YSZ) and LSM/GDC/LSM 

symmetrical cells are similar.  The polarization resistances show initial rise and then repeatable 

drop during cycling at 800ºC.  The polarization resistances also slightly rise each time after aging 

at 700ºC.  The polarization resistance repeatly rise during cycling at 700ºC.  After each time 

aging at 800ºC, the initial polarization resistances show a slight drop.  The LSCF/GDC/LSCF 

symmetrical cells exhibit opposite trends.  Polarization resistances of LSCF/GDC electrodes 

show an initial sharp rise and then a repeatable slow rise during cycling at 800ºC, with a slight 

drop in initial Rp after each time aging at 700ºC.  Rp for LSCF/GDC electrodes repeatly decrease 

slowly during cycling at 700ºC, with a slight rise in initial Rp after each time aging at 800ºC.   

For the LSM/YSZ/LSM, (LSM/YSZ)/YSZ/(LSM/YSZ) and LSM/GDC/LSM symmetrical cells, 

deconvolution spectra suggest that multiple processes occurr in LSM electrodes over the tested 

range of frequencies (4-5 orders of magnitude).  So, multiple equivalent circuit elements 

including RQ elements are needed to match the impedance and deconvolution spectra.  
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LSCF/GDC/LSCF symmetrical cells only need simple equivalent circuit elements including one 

Gerischer impedance element to match the impedance and deconvolution spectra.  A Gerischer-

type element works well for impedance of the (LSM/YSZ) composite electrode and LSCF 

electrodes, but does not work for the LSM/YSZ/LSM and LSM/GDC/LSM symmetrical cells.  

Comparing YSZ with GDC electrolytes, the major frequencies contributing to the LSM 

impedance are at higher frequencies for YSZ (40-60 Hz) and are at lower frequencies for GDC 

electrolyte (4-6 Hz). For all types of symmetrical cells, the deconvolution spectra show that 

frequencies  associated with aging occurs at low frequencies, with peak changes around 1-10 Hz, 

and almost no change above 100 Hz.  The changes in equivalent circuit element parameters such 

as the polarization resistance and peak frequency reflect the aging trend.  Deconvolution and 

equivalent circuit analyses of symmetrical cells also demonstrate the complexity of the 

impedance, and provide accurate values for series resistance and inductance.  However, the 

equivalent circuit parameters alone do not provide insights into the real processes in the 

electrodes.  A model is needed to confirm the mechanism of oxygen reduction with the aging 

phenomenon.  

The observed aging of these LSM and LSCF electrodes affects the lower frequencies in the 

impedance data while higher frequency data is essentially constant with time.  These 

observations suggest that there are two mechanisms for oxygen reduction.  The proposed 

hypotheses suggest that the lower frequencies are associated with oxygen reduction at or very 

near the triple Phase boundary(3PB) and higher frequencies are associated with oxygen reduction 

at the double phase boundary (2PB) of LSM (LSCF) and YSZ.  There are two pathways for 

oxygen reduction in electrode[33,34]:  

(1) Absorbed oxygen moves via surface diffusion on the LSM electrode, and then it is reduced at 

the Triple Phase Boundary (3PB, the junction of LSM, YSZ and gas phases) (Surface pathway).  

(2) Oxygen is adsorbed and reduced on the LSM surface.  Oxide ions diffuse through LSM bulk 

and they are transferred at the double phase boundary (2PB) at the LSM and YSZ interface.( 

Bulk pathway).  

The surface pathway via the TPB is generally believed to dominate in a real LSM electrode at 

open circuit condition [35, 36]. The bulk pathway via the 2PB has been demonstrated for very 
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thin LSM dots. [37] Our hypothesis proposes that both 3PB and 2PB mechanisms contribute to 

the impedance in pure LSM cathodes.  The 3PB mechanism exhibits aging and dominates the 

lower frequencies.  The 2PB mechanism is not associated with aging and contributes to the 

higher frequencies.  This hypothesis is in agreement with the mechanism that we proposed 

previously.  The aging effect is associated with the migration of segregated cations on the surface.  

The altered surface composition would affect the 3PB pathway (change in charge transfer 

kinetics) but not the 2PB pathway since the 2PB mechanism is controlled by mass transfer of 

oxygen species through the bulk. Fleig proposed using an equivalent circuit of Warburg 

impedance in parallel with the double layer capacitance for 2PB mechanism [37], and changes in 

surface composition would not affect the impedance. 

At this stage, the mechanisms associated with aging effect are not well understood. The future 

works includes testing the 2PB/3PB hypothesis. For confirming the hypothesis for aging effect, it 

required to confirm that the aging behavior directly correlates with changes of surface 

composition of LSM. The proposed surface analysis technical is transmission electron 

microscope (TEM). TEM analysis is able to identify surface structure and surface composition. 

If the TEM can detect surface composition and bulk composition ratio changes with respect to 

thermal aging, the hypothesis can be confirmed. The aged samples have been sent to Dr. Song’s 

lab (WVU MAE) for TEM analysis. A proper model for the simulation of aging effects may also 

help to address the hypothesis. 
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Chapter 6:  Conclusions 

 

The body of the dissertation is composed of three chapters, including the experimental 

approaches to investigate the ring reference electrode and micro-reference electrode to separate 

the anode performance from cathode for different geometries SOFC cells (Chapter 3), the 

deconvolution combined with non-linear regression fitting of equivalent circuit approach for the 

two-electrode impedance data to identify the contributions associated with anode and cathode on 

SOFC performance (Chapter 4), and aging effect of LSM electrode and deconvolution analysis 

for addressing the aging effect (Chapter 5). The first two chapters aim to separate the anode and 

cathode performances and assign the processes appearing in deconvolution plots to one electrode 

or both electrodes. The last chapter aims to not only investigate the trends of total polarization 

resistances and parameters for equivalent circuit with aging but also the mechanisms associated 

with aging behaviors.  In this chapter, the results, significances and contributions for all these 

researches are briefly summarized. Recommendations for future work are given based on the 

findings. 

 

6.1 Significances and Contributions 

Electrode polarization losses are a significant obstacle to commercialization of solid oxide fuel 

cells, particularly for SOFCs operating at intermediate temperatures (600-800°C). The long term 

degradation of cell performance is also a big issue for commercializing SOFCs. There are many 

studies aiming to clarify electrode polarization mechanisms and degradation mechanisms. 

However, the impedance data for a single electrode reported by different groups on similar 

systems often have considerable discrepancies, which makes people doubt that such impedance 

data does not really reflect the mechanisms in one electrode but depend on experimental artifacts 

by using the reference electrode. A number of studies using simulations had shown the problems 

of accurately obtain a single electrode impedance from three-electrode measurements. However, 

not many papers have validated the single electrode impedance data obtained using the reference 

electrode by experimental approaches. We used an experimental approach to test the cells with 

reference electrode at three flow conditions (normal, low air and low fuel conditions) and our 

experimental results confirmed the simulation results. The placement of the reference electrode 

is the reason for inaccurately obtaining one electrode performance for cells with conventional 
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geometries (thin electrolyte layer). Our experimental results showed that a ring reference 

electrode directly put far from the cathode cannot accurately separate single electrode 

performance and a micro-reference electrode delicately placed within one electrolyte distance 

away from the cathode also cannot accurately obtain single electrode performance. So a 

reference electrode cannot provide information about a single electrode for a conventional 

designed fuel cell. 

 

To identify the contribution associated with the cathode and anode, we need an independent 

method without using the reference electrode. We used deconvolution analysis with non-linear 

regression fitting of equivalent circuit approach for our two-electrode impedance data, which 

were obtained from the cells with a reference electrode. This method protocol we used was 

developed by Ivers-Tiffee and co-workers. They used the Fourier transformation technique for 

the experimental impedance spectra to obtain the distribution function of time constants in the 

time domain. This mathematical technique increases the resolution of frequency in impedance 

spectra, and so assists in identifying electrochemical processes in impedance spectra. These 

electrochemical processes are not visible or they overlap in the impedance spectra, but show up 

as obvious peaks in deconvolution plots. With the same deconvolution protocol, we investigated 

solid oxide fuel cells based on differences in impedance spectra with respect to a change of 

operating parameters (gas flow conditions and temperatures) and the result are presented as a 

distribution of relaxation times with respect to log(f).  We are able to use this method to separate 

the anode and cathode contributions and to identify various types of processes. Compared to 

Ivers-Tiffee et al. deconvolution analysis for SOFCs in wide range of gas compositions, the 

primary benefit for our deconvolution analysis is that the cells providing impedance data for 

deconvolution are the same cells tested with reference electrodes. Therefore, we are able to 

compare the assignment of polarization resistances from the two methods, the assignment from 

deconvolution analysis and the apparent assignments provided by using the reference electrode. 

Ivers-Tiffee et al. used cells with a pure LSCF cathode or LSM cathodes, while we analyzed 

cells with LSM/YSZ composite cathodes, which is a more common cathode composition.  And, 

we used different equivalent circuits from theirs for our cells, so our research broadens the 

picture of cell behavior for different compositions, which could also provide a benefit for other 

researchers. We presented all the deconvolution analyses with a widely used Excel® spreadsheet 
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without using any special mathematical software, which also improved the practicality of the 

deconvolution method. 

 

We systematically investigated the aging effect for cathodes by using the symmetrical cells with 

cathode material electrodes, tested them at open air conditions. The observed aging behavior is 

reversible at 700 ºC and 800 ºC. The deconvolution analyses were applied for the obtained 

impedance data, which provide information like changes of equivalent circuit parameters 

(polarization resistances, peak frequencies) with respect to aging.  We generated two hypotheses 

to explain the aging effect. They are: (1) the low frequency range impedance associated with 

3PB oxygen reduction mechanism is responding to aging; and (2) the high frequency range 

impedance associated with 2PB oxygen reduction mechanism is almostly constant with aging. 

We aimed to correlate the observed performance changes to real physical changes in the cathode 

microstructure or composition. At present, the most likely physical changes in the cathode are 

migration of segregated cations on the surface. This aging effect investigation has never been 

reported by others. Since there are already research about cathode degradation, our research may 

provide a unique aspect for investigating cathode degradation for cells without passing current. 

This research is also useful in connecting discrete observations made by multiple approaches like 

modeling, material microstructure and composition analysis to generate a unified picture of 

cathode degradation that is relevant to commercial SOFC systems.   

6.2 Future work and recommendations 

When applying the deconvolution method to commercially relevant cells, peaks in the middle 

frequencies from the cathode and anode are not clearly separated. Using wider range of gas flow 

conditions is possible to get these processes separated. As discussed in chapter 4, by varying the 

H2/H2O ratio or replacing H2/H2O with CO/CO2 or D2/D2O, the cell kinetics will change and 

peak frequency for the anode element will move to lower frequency and become separated from 

the cathode element peak frequencies in higher frequency ranges.  So, the overlapped processes 

associated with anode and cathode can be easily identified. 

In order to understand clearly the mechanisms associated with the aging effect, future work 

should seek the evidence of the aging behavior directly correlated with changes of surface 

composition of LSM. Although there are lots of surface analysis techniques, the proper surface 
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analysis techniques for our samples are total reflection x-ray fluorescence (TXRF) and 

transmission electron microscopy (TEM). Both analysis techniques are able to identify surface 

structure and surface composition. However, both techniques require sample preparation and can 

only be applied at room temperature. Since many changes may happen during sample 

preparation and sample cooling down, it is a challenge to detect surface composition and bulk 

composition ratio changes with respect to thermal aging. A proper model for simulation aging 

effect may also help to address the aging behavior. 
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