
Graduate Theses, Dissertations, and Problem Reports 

2008 

Reinforcement learning-based control design for load frequency Reinforcement learning-based control design for load frequency 

control control 

Sara Eftekharnejad 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Eftekharnejad, Sara, "Reinforcement learning-based control design for load frequency control" (2008). 
Graduate Theses, Dissertations, and Problem Reports. 4368. 
https://researchrepository.wvu.edu/etd/4368 

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F4368&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/4368?utm_source=researchrepository.wvu.edu%2Fetd%2F4368&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


 

Reinforcement Learning-Based Control Design for 

Load Frequency Control  
 
 

by 
 

Sara Eftekharnejad 
 
 

Thesis submitted to the  

College of Engineering and Mineral Resources 

at West Virginia University 

in partial fulfillment of the requirements 

for the degree of 

 

Master of Science 
in  

Electrical Engineering 

 
 

Professor Muhammad Choudhry, Ph.D. 

Professor Powsiri Klinkhachorn, Ph.D.  

Professor Ali Feliachi, Ph.D., Chair 

 

Lane Department of Computer Science and Electrical Engineering 

 

Morgantown, West Virginia  

2008 

 

Keywords: automatic generation control, load frequency control, NERC, control 

performance standards, reinforcement learning 

 

 

Copyright 2008 Sara Eftekharnejad 

 



 

ABSTRACT 

Reinforcement Learning-Based Control Design for Load 
Frequency Control  

 

by 

Sara Eftekharnejad 

Master of Science in Electrical Engineering 

West Virginia University  

Professor Ali Feliachi, Ph.D., Chair 

Energy balance in electric power systems is continuously disrupted by constant 
demand changes due to customers’ switching in and out, or loss of generating units. Load 
frequency control (LFC) is very essential for interconnected power systems in order to 
maintain the energy balance which is assessed through the Area Control Error, a signal 
that is made up of deviations from their nominal values of the system frequency and 
power area interchanges. Each balancing authority is responsible for its own energy 
balance in accordance with North American Electric Reliability Corporation (NERC) 
standards. 

This thesis presents a novel approach to the LFC problem. An adaptive intelligent 
controller, or agent, changes the gains of a proportional-integral (PI) controller based on 
the operating conditions. The intelligence and decision making is provided by means of a 
reinforcement learning (RL) algorithms. This approach keeps the simple design of the PI 
controllers and in the mean time makes them more adaptive and applicable to different 
disturbances. Moreover, the developed controller can be applied to different systems with 
various parameters with almost no change in the controller design due to their ability to 
learn proper settings through interaction with the environment. 

Each control authority should comply with NERC control performance standards 
CPS1 and CPS2. In order to comply with these standards and decrease the control cost, 
tight control should be prevented. The second approach in this thesis is to design a 
reinforcement learning based controller that tunes the gains of the PI controller in a way 
to achieve this goal. Simulations are performed in MATLAB / Simulink to demonstrate 
performance of all the proposed controllers. 
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Chapter 1 

Introduction 

    In recent years the structure of electric power systems has changed due to deregulation 

and increased number of customers. This change has faced the Generation (Genco), 

Transmission (Transco), and Distribution (Disco) companies with more complex 

problems regarding control task and compliance with standards. With these complexities, 

more sophisticated devices are needed to replace the traditional hydraulic and mechanical 

components. Electronic devices driven with computers are finding more applications in 

today’s power systems. Therefore numerous research investigating the performance of 

computer applications in power systems have been carried out previously.  

In power systems the active power has to be generated at the same time that it is 

consumed. Any mismatch between the demanded and generated power leads to a power 

imbalance. This power imbalance causes the system frequency and the tie-line power to 

deviate from their nominal and scheduled values. The basic role of load frequency control 

(LFC) is to maintain the megawatt output of a generator in balance with the demand and 

therefore control the interconnection frequency [2]. This goal is achieved by automatic 

control of the steam valves or water gates of speed governors to adjust the amount of the 

steam or water flowing through the turbines. As a result of this control, the mechanical 

power and thus the generated electrical power is adjusted.  

LFC has been the topic of numerous research in the past decades and numerous 

control techniques have been proposed in literature. However, proportional integral (PI) 

controllers are more widely used in industry. The gains of these controllers are tuned 

once a month [4] by trial and error and are not accurate enough to consider all operating 

conditions. Therefore many studies have been conducted to design adaptive controllers 

that can be applied to many systems with a wide range of operating conditions. As it will 

be discussed later in this thesis, most of these methods are based on the detailed model of 

the system and thus are complex in design. Furthermore, some of these controllers are 

centralized and need to have access to the information from the entire power system 
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which makes them less useful in power system applications. This is one of the main 

drawbacks of the adaptive controllers when they are applied to power systems, as in 

many cases all the system information are not measurable and available to the designer. 

Hence, a control method that is not based on the system model and is adaptive, to be 

applied to different operating conditions, is desirable.  

In order to make controllers more adaptive new control techniques are used in control 

design. Each method is suitable for a specific problem, depending on the nature of the 

control problem. Artificial neural network (ANN), Genetic algorithm (GA) and fuzzy 

logic are among the most widely used methods in the literature. However, due to the fact 

that in a load frequency control problem each control area can have random load changes, 

many of these methods may not be useful as they require substantial amount of training 

based on predicted scenarios and specific system parameters. Also in some cases defining 

the method’s required parameters, such as membership functions in the case of fuzzy 

logic, is a formidable task. Therefore, a learning method that can learn the proper setting 

of the controller without need for a considerable knowledge of system parameters is more 

applicable for the LFC problem. This method can be applied to conventional controllers 

such as PI controllers to make them more adaptive and in the mean time decrease the 

human interference for tuning their gains.  

The primary objective of the LFC is to balance the generation and demand in a way to 

respond to the needs of customers. This balancing task should be in compliance with the 

standards defined by North American Electric Reliability Council (NERC) in order to be 

acceptable. Any unit violating these standards will be penalized by NERC and has to 

change its settings to comply with these criteria. In February 1977, NERC adopted new 

compliance performance standards CPS1 and CPS2 to replace the old standards A1 and 

A2 [23]. These criteria assess characteristics of a control area’s “area control error” 

(ACE). In order to comply with NERC both CPS1 and CPS2 should be satisfied, 

however; the statistical data from NERC illustrate that some control areas can be highly 

compliant with CPS1 while violating CPS2. In order to avoid the penalties which are the 

results of violating the standards, new control techniques based on these standards should 

be designed.  
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Although the standards should be satisfied, too tight control of the ACE signals will be 

costly and can increase unit maneuvering. An ideal control technique should be able to 

keep the area’s performance within the NERC’s standards and in the mean time decrease 

the fuel cost and the rapid movements of the unit equipments. If each area is controlled 

with this approach in a decentralized manner, they could both balance the generation and 

demand locally and keep the interconnection power flows within the limits.  

The objective of this research is to propose a new control technique that can be applied 

to solve the LFC problem in conjunction with the widely used PI controllers in industry. 

The new technique is capable of learning the proper gain settings of the PI controllers and 

in the mean time reduces the control costs of the overall system. This controller is based 

on reinforcement learning (RL) methods and is flexible enough to define different control 

objectives. The proposed strategy is model free and thus applicable to a wide range of 

systems with various parameters.  

This thesis is organized as follows. A literature survey and the problems associated 

with some previously designed controllers are discussed in Chapter 2. An introduction to 

reinforcement learning and the method used in this research along with the fundamentals 

of load frequency control is presented in Chapter 3. Next, in Chapter 4, a new design 

strategy for PI controller based on reinforcement learning methods is introduced. In 

Chapter 5 this technique is followed by a new approach in which NERC standards are 

taken into account while, at the same time control effort is being minimized. Finally, 

conclusions are given in Chapter 6.  
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Chapter 2 

Literature Survey 

2.1. Introduction 

Multi agent (MA) control is an emerging field in power systems and has been reported 

in many applications and some promising results were obtained in several areas including 

operation, markets, diagnosis and protection. The focus of this research will be on the 

application of reinforcement learning agents in load frequency control problem. Since 

this field is almost new to power system applications, other applications of reinforcement 

learning in power systems should be explored first.  

With the increasing complexities of power systems, there is more need for intelligent 

and learning controllers that can adapt themselves to different operating conditions and 

learn the proper control actions in case of unpredicted situations. Therefore, making the 

conventional controllers more intelligent has been investigated in many research studies. 

Different methods are used in order to achieve this goal. Reinforcement learning (RL) is 

one of these methods that has recently gained a considerable attention in many fields 

requiring control. Power systems are also not apart from these areas and RL methods are 

applied for different problems such as voltage control and automatic generation control. 

In this chapter a literature survey is presented as follows: first, the concepts of 

reinforcement learning agents and their applications in power system are surveyed. Then, 

selected published work in the area of load frequency control, along with their advantages 

and drawbacks, are discussed. Finally, the contribution of this thesis in solving LFC 

problem is discussed.  

2.2. Proportional-Integral (PI) Parameter Tuning and Optimization 

 Proportional-Integral (PI) controllers have widely been used in industry for the 

purpose of load frequency control. Numerous research studies have therefore 

concentrated on different techniques to tune the parameters of these controllers. In case of 
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the load frequency control problem, the objective is to improve the transient performance. 

These controllers in fact adjust the control signal with the aid of a proportional (KP) and 

integral gain (KI). In general, the equation for the output in the time domain is [5]: 

∫+= dtteKteKtu IP )()()(                                                                                       (2.1) 

Depending on the signals selected for control, i.e. frequency, area control error (ACE) 

or tie line power, different performance indices are considered for optimization purposes.  

Optimization techniques and heuristic search methods have been applied in tuning the 

gains of the PI controllers used for LFC problems. Most of these methods need several 

simulations of the system in order to optimize the gains and reach the best performance 

index defined by the control designer. The choice of this index is important on the 

optimization results and thus on the behavior of the controller.  

Abdel majid et al.’s paper [8] deals with GA for optimizing the parameters of 

automatic generation control (AGC) systems. The controller considered in this study is of 

an integral type. Two performance indices have been widely used in the literature to find 

the optimum values of the classical AGC systems. Likewise, authors in this paper have 

also used these indices in association with genetic algorithm problems. The first 

performance index is the integral of the square error (ISE) and is defined in (2.2). This 

criterion penalizes the errors with respect to their weighting factors. The square of the 

error is derived in order to treat the positive and negative errors equally.  

∫
∞

=
0

2
1 )( dtteS                                                                                                   (2.2) 

The second performance index is defined as the integral of time multiplied by the 

absolute value of the error (ITAE) and is formulated in (2.3). This standard includes time 

factor to penalize the settling time. 

∫
∞

=
02 )( dttetS                                                                                                   (2.3) 

Area control error (ACE) is one of the signals usually used for automatic generation 

control problems. This signal is a combination of area frequency and net tie-line power 

interchange. The ACE for each balancing authority or control area is defined as follows: 

 iiitiei fBPACE ∆+∆=                                                                                       (2.4) 

where, Bi is the frequency bias factor of each area.  
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The integral controller will change the generation set point by affecting the ACE 

signal with an integral gain: 

∫−=∆= dtACEKIPu iicii                                                                                 (2.5) 

Genetic algorithm or other heuristic search methods can be applied to this problem to 

find each area’s optimum values of the integral gains (KIi) in order to minimize the 

defined performance indices. The similar approach is pursued in [9] and [25] in order to 

find the optimal gain settings of controllers for a two area hydro power system using GA.  

2.3. Intelligent Controllers 

Intelligent learning methods are applied to different control techniques in order to 

make the controllers more sophisticated with less need for human interaction. One of the 

major capabilities of the intelligent controllers is their ability to make decisions on taking 

proper actions, when there is a change in the system that requires an action from the 

controller. Agents are a group of these controllers that learn and take actions according to 

the operating conditions, taking advantage of different learning methods. Various 

applications of agents in power systems are reported in literature. Heo and Lee [27] have 

proposed a multi-agent based intelligent heuristic optimal control system for reference 

governor and optimal feedforward and feedback controls. Particle swarm optimization 

(PSO) is used as tool by the agents in order to generate optimal setpoints by realizing the 

reference generator. In the paper it is suggested that with the agent’s intelligent and 

autonomous properties the complexity of large scale systems can be reduced due to a 

reduction in the coupling between subsystems.    

2.3.1. Intelligent Load Frequency Controllers  

Classical load frequency controllers are based on fixed-gain PI controllers. Like the 

methods discussed before, in many other studies the gains of the PI or PID controllers are 

fixed after they are optimized for a specific operating condition. These controllers may no 

longer perform satisfactory when the operating conditions of the system deviate from the 

nominal values. Also, the optimal controllers are functions of all the states of the system 

and in practice they may not be available. Additionally the control is dependent on the 
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load demand which requires accurate prediction of this variable [14]. Therefore, along 

with various areas in power systems, intelligent controllers have also been applied for 

load frequency control purposes in order to make the LFC scheme more applicable to real 

systems and compensate for the drawbacks of the conventional controllers. 

Fuzzy logic is one of the methods that has been widely applied to this problem. Based 

on the type of the defined membership functions, the controller will adapt itself to the 

new operating conditions.  

Fuzzy rule based load frequency control is addressed in Rerkpreedapong et al.’s paper 

[6]. Each area is controlled by an integral type controller. The control gain is adjusted in 

accordance to compliance with North American Electric Reliability Council (NERC) 

standards, CPS1 and CPS2. In fact the fuzzy gain will prevent wear and tear of 

generating units’ equipment by preventing tight control. Input and output membership 

functions are defined so as to give the highest priority to the CPS1 compliance factor.   In 

order to make the test system more realistic, regulation and load following services are 

considered in this paper.  

In [7] the same authors have proposed two robust load frequency control designs. The 

first method is based on H∞ design techniques using Linear Matrix Inequalities (LMI). 

The interface terms associated with the interconnections are treated as disturbances in this 

formulation, and thus the objective is to minimize the effect of this disturbance on the 

response of each area with a proper set of gains. Although the performance of the 

controller is very satisfactory, it has a complex structure and size of the controller is equal 

to the size of the system which makes its application in power systems unrealistic. The 

second approach, which is simpler in structure, is a PI controller formulated as an H∞ 

problem tuned with genetic algorithm (GA). The proposed method called GALMI shows 

the same robust performance of the LMI based controller but with a simpler structure. 

One important drawback of both of the discussed methods is that they are based on the 

system model and in order to design the controllers the nonlinearities, such as generation 

rate constraints (GRC) are neglected. 

Chang and Fu have also applied fuzzy logic to gain scheduling of area load frequency 

control [10].  In this paper a modified expression for area control error is used to 
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guarantee zero steady state time error and inadvertent interchange. This new area control 

error (ACEN) is the sum of conventional ACE and the integral of the conventional ACE: 

dtACEACEACEN iiii ∫+= α                                                                          (2.6) 

Generation rate constraint and governor dead-band are included in the system model 

in order to illustrate applicability of gain scheduling to nonlinear systems. The simulation 

results illustrate the acceptable performance of the controller when there is a small step 

change in each area. However, there is not much difference between a fixed PI controller 

and the proposed controller in order to justify the cost associated with applying this 

method to power systems.  

One major drawback of the fuzzy gain scheduling approach is that the selection of 

fuzzy if-then rules requires a substantial amount of heuristic observations to achieve a 

proper strategy. To overcome this problem associated with fuzzy logic; in [11-12] authors 

have applied GA techniques in order to automatically design the membership functions of 

fuzzy controllers. Juang et al. [13] have proposed a new GA approach that reduces the 

fuzzy rule number and achieves a better performance. It should be noted that although the 

performance of the fuzzy system is improved, the complexity and other problems caused 

by GA is added to the design method.  

Artificial neural networks (ANN) or simply neural networks (NN) have been 

identified as powerful tools for pattern recognition, functional mapping and 

generalization. Controllers based on neural networks have shown satisfactory 

performance in literature. The adaptive nature of ANN and their applicability to non-

linear systems makes them more attractive for power system applications. Load 

frequency controllers are among the most widely used applications of NN in power 

systems.  

Britch et al. [15] investigated the use of neural networks to identify the characteristics 

of the system and perform the control action that reduces ACE to zero. To train the 

network a supervised technique is employed that used different examples from the actual 

system to find the weights of the NN. The fact that a large number of inputs are fed into 

the network, makes the training process more complex and in some cases less accurate. 
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Also in the proposed method, the load for the present time step should be forecasted 

which itself requires a considerable amount of calculations.  

Chatuverdi et al. [16] have proposed a new NN, named generalized neural network 

(GNN), which can compensate some of the drawbacks of the conventional networks. The 

NN controller regulates the output power and system frequency by controlling the speed 

of the generator with the help of water or steam flow control. The performance of the 

conventional neural network and the GNN are very close in response to a step load 

change. Also, the controller utilizes the rate of change of frequency in order to estimate 

the load perturbations, which again makes the controller more complex.  

The major drawback of neural networks, which comes to mind once its operation is 

explained, is that it requires a considerable amount of training in order to expect a good 

performance from the network. The results are also very dependent on the selection of the 

training data. Therefore, in some cases if the system faces unpredictable conditions, 

which are not considered in the training phase, the NN might not be able to output a 

proper action.  

In order to deal with the problem of offline training, Kuljaca et al. in [17] have 

designed a neural network control scheme that does not require training and is capable of 

online learning of the network parameters.  The weight updating is based on lyapunov 

stability theorem. Therefore, the controller is designed based on the linear system model 

and there is no guarantee of stability if nonlinearities are included.  

2.3.2. Reinforcement Learning Based Control 

Most of the methods previously discussed are based on the system model and the 

controller needs some information from the system in order to decide on the control 

action. Therefore, designing a controller that can learn the appropriate control action 

without a need to acquire information from the system is an appealing approach in power 

systems, as in many cases it is not an easy task to perform measurement and gain an 

access to states of the system. Reinforcement learning (RL) has been utilized recently in 

different control applications, including power systems, in order to deal with this 

problem. Depending on the task performed different variations of RL methods are 

applied to the problems. Some of these methods are model based and some are non-
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model based and can directly estimate the system parameters. As this topic is almost a 

new research in power systems, the number of publications in this area is limited.  In this 

thesis RL techniques are applied to load frequency problems, but first the application of 

this method in different control tasks is investigated.  

 

Figure 2.1: Online and Offline modes of control. 
 

Former applications in power system control were applied off-line while the control 

interacts with the simulation model of the system before being applied to the real system. 

The learning capability of reinforcement learning methods makes them more applicable 

to online control applications, while the controller deals with the real system instead of a 

simulation model and therefore the decisions made by the agent will directly impact the 
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system. Figure 2.1 illustrates the main differences between the online and offline 

methods. 

Q-learning is one of the RL methods finding applications in online control problems. 

This method is used in [18] for PID adaptive tuning while there is no prior information of 

the system available and also the system parameters are uncertain. Steady state error and 

overshoot are selected as the variables to define the states of the system. The actions are 

defined as a discrete increase or decrease in the PID gains. The proposed method can be 

applied for both offline and online applications. However, its online application makes it 

more attractive than the conventional, offline-tuned, controllers. 

Off-line and on-line applications of RL are investigated by Ernst et al. in [19], [20], 

and [21]. The off-line mode concerns the design by means of RL algorithm for a dynamic 

brake controller. The objective of the dynamic brake controller is to damp large 

electromechanical oscillations to avoid loss of synchronism between generators. For the 

on-line mode, Flexible AC Transmission Systems (FACTS) devices with thyristor 

controlled series capacitor (TCSC) are considered to damp the power system oscillations. 

Reinforcement learning is used to determine the reactance reference of the TCSC. The 

reward function is defined based on the steady state error of the electrical power 

transmitted through the line. The model-based methods are used in order to design the 

controllers. 

  Imthias et al. [22] have applied RL methods to the automatic generation control 

(AGC) problem to adjust the generation set-points of each control area while they are 

subject to step load changes. The controller is designed offline, meaning that the agent 

learns through interaction with model of the system with different training samples. The 

actions taken by the agent is to increase or decrease the generation set-points.  A two area 

system is simulated in this paper and an independent AGC controller controls each area 

in a decentralized manner. In this study the agents only decide on two actions and the 

method of setting the set-points is more appropriate for a linear model of the system. 

Therefore, when there are more limits on the system, this control method may not 

perform satisfactory. Although the authors in [23] have tested this method when 

generation rate constraint (GRC) and governor deadband are included in the system 

model, still it does not guarantee an acceptable performance when the disturbance on the 
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system is not a step change or is more than what simulated in the paper. Also, the offline 

training feature of this design is one of the drawbacks of the controller. 
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Chapter 3 

Background Information 

3.1. Reinforcement Learning 

Reinforcement learning (RL) has attracted an increasing interest in the field of 

machine learning in the last decade. The ability of RL methods to provide systems with 

the intelligence of learning without a previous knowledge makes them even more 

attractive in current control applications.  

In this thesis, the optimization problem is formulated as a Markov Decision problem 

(MDP). Different methods are studied to solve these optimization problems while RL 

techniques are one category of these methods. In the rest of this chapter, the basic 

features of a MDP problem are presented first. Then different methods that solve these 

problems are briefly introduced.  

3.1.1 Markov Decision Problem (MDP) 

An optimization task is said to be a markov decision problem if it consists of the 

following components [3]: 

• A set of states S, 

• A set of actions A, 

• Transition probabilities
a

ssP ′→ , 

• Transition Rewards
a

ssR ′→ . 

The definitions of the states and actions will be discussed in the following sections. The 

state transition probabilities specify the probability of each possible next state s′  as a 

function of state and agent’s action: 

{ }aassssPP ttt

a

ss ==′== +′→ ,1                                                          (3.1) 
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The transition reward determines the expected value of the next reward as a function of 

state and action: 

{ }ssaassrER tttt

a

ss
′==== ++′→ 11 ,,                                                 (3.2) 

 The model is said to be Markov if the state transition probabilities are independent of the 

previous states or actions. The MDP problems have some major components such as state 

and action value functions that will be discussed in definition of RL problems.  

3.1.2 Reinforcement Learning Problem 

Having the system parameters, dynamic programming (DP) methods can be used to 

find optimal solutions to MDP problems. However, obtaining the transition probabilities 

and transition rewards is often a difficult task and requires considerable amount of 

complex mathematics and it is sometimes impossible to find these parameters. Therefore, 

methods that can solve the problems without a need for the system model are required. 

Reinforcement Learning (RL) algorithms can satisfy this requirement and have shown 

satisfactory performance for optimization of unknown environments. It can be said that 

most of the RL algorithms are derivations of dynamic programming methods that do not 

require constructing the model of the system.  

Reinforcement learning (RL) is learning to take actions by observing the current state 

of the system in order to maximize a long-term reward (Sutton 1998). This definition is a 

general expression for a series of methods trying to find the actions that result in the best 

reward. The agent will discover which action should be taken by interacting with its 

environment and trying different actions which may lead to the highest reward. In other 

words, the idea is to reward good actions and penalize bad actions and learn from trial 

and error. The term “reward”, which is perhaps the most important element in an RL 

problem, will be explained later in this chapter. Figure 3.1 is a block diagram 

representation of the reinforcement learning problem. The agent interacts with the 

environment and takes an action at from a set of actions A, at time t. These actions will 

affect the system and will take it to a new state st+1 from the set of states S. The agent is 

then rewarded for this action, gaining the reward rt+1. This agent-environment interaction 

is repeated until the desired goal is achieved. 
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Figure 3.1: Block diagram representation of an agent-environment interaction. 

 

In this text what is meant by the state is the system parameters that affect the reward 

function and are required for the agent to learn the value of taking a specific action in a 

specific situation. Conceptually each RL problem has the following important 

components: 

• State: Series of information from the system that determines the degree of closeness to 

the objective. In other words, the state of a RL problem determines the current situation 

of the system based on the observations from the states of the system.  

• Action: Decision made by controller that will affect the environment or system under 

control. This action varies depending on the application of the agent. In a control 

problem, for example it can be to set the gains of a controller or a change in setpoints. 

• Policy: The set of actions an agent will take in specific states of the system are called 

the Policy of that agent. Policy is a mapping from the states to actions and is denoted 

by ),( asπ .The role of the RL methods is to find the policy resulting in the maximum long 

term reward. 

• Reward:  The goal of an agent is to maximize its long term reward. Reward is in fact a 

scalar signal that determines how good (in getting closer to achieving its objective) is a 

taken immediate action. The reward function plays an important role in determining the 

performance of an agent because the agent decides on the action based on the received 

reward signal. The reward function is an external signal, assigned to the agent based on 
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its functionality. The better the definition of the reward function is, the better the 

performance of the agent would be. Also, the reward may be delayed as only several 

sequential actions may lead to the desired state. RL allows delayed rewards in its update 

process. 

• Return: The sum of the expected rewards in the future is defined as return of the 

system. It is given by: 

∑
∞

=

++=
0

1)(
k

ktrtR    (3.3) 

In general, the role of the agent is to maximize its return in the long run. From its 

definition it is understood that the future effect of an action is included in the definition of 

the return. However in many applications, a discount factor 0≤γ≤1 is introduced and the 

return is modified so that the agent will maximize a discounted return defined by:  

∑
∞

=

++=
0

1)(
k

kt

k

d rtR γ   (3.4) 

The discount factor is included in the equation to determine the current value of future 

rewards [1]. Also, it can be thought of a way to bound the return in the long term. If the 

objective is to just maximize the immediate reward achieved by taking action at then γ=0. 

When γ=1 then the equation will be the classical definition of returns. In general, this 

definition means that a reward obtained k time steps in the future is discounted by a 

factor of γk-1 of what it would be if it were received immediately. 

• State Value Function: Different reinforcement learning algorithms are based on 

estimating the value functions. The value of each state s is called the state-value function 

and determines the value of being in a specific state in terms of the future expected 

rewards. This term is defined as the expected return when starting at state st using 

policy ),( asπ  and is given by [1]: 
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Where prob(s,a) is the probability of taking action a in state s under policy π and
a

ssP ′→  

and 
a

ssR ′→  are the probabilities of meeting next state s′ and the expected value of next 

reward, respectively. 

• Action Value Function: The action value function of each state s and action a, is 

defined as the expected return, or expected discounted reward, when starting at state st , 

taking action at ,  using policy ),( asπ . This term shows the value of a taken action in a 

specific state. It is known as a Q-function and it is given by: 









=== ∑
∞

=

++ tt

k

kt

k
ssaarEasQ ,),(

0
1γπ

π
   (3.6) 

The reinforcement learning task is to find the optimal policy that maximizes the value 

function, V*, for all states in the state space, i.e. 

 )(max)(* sVsV π

π
=                                                                                (3.7) 

The optimal policy will also maximize the optimal action value function for all states and 

actions. 

),(max),(*
asQasQ

π

π
=    (3.8) 

One of the properties of the value functions is that they satisfy a number of recursive 

equations. With these equations the optimality conditions for these functions are found 

and represented by the Bellman optimality equations [1]. 
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Figure 3.2: Classification of reinforcement learning methods. 
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Bellman’s equation can also be written for the Q-function; 

{ }
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Different RL methods are suggested for solving the mentioned optimization problem. 

One can classify the methods that solve MDP problems in three major groups: Dynamic 

Programming (DP), Monte Carlo (MC) and Temporal Difference (TD) methods. As 

discussed before, DP methods require a complete model of the system and are 
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mathematically complex. Monte Carlo methods do not require a system model and are 

simple. However, these methods are not appropriate for an incremental computation. TD 

methods are model free and suitable for incremental computations. Due to the 

characteristics of this group of RL algorithms, there are found to be more applicable to 

power systems.  Figure 3.2 illustrates this classification. Next, a brief overview of these 

methods is given along with a method that is used in this thesis. More comprehensive 

analysis of RL methods can be found in [1]. 

Dynamic Programming (DP) - DP methods are collections of algorithms that are 

guaranteed to find optimal policies for the MDP problems. Although, theoretically 

important, these methods require great computational expenses because they need a 

perfect model of the environment to be able to solve a problem. Therefore DP methods 

are not a good choice to be applied to complex systems. However, the rest of RL methods 

are in fact variations of dynamic programming with less computation and without 

assuming a perfect model of the system.  

In all the RL algorithms it is tried to find the optimal policies by calculating or 

somehow estimating the value functions. As explained before, once the optimal value 

functions, V* and Q*, are found the optimal policies are derived. DP methods use 

Bellman’s optimality equations to update the approximations of the value functions.  

Before, describing the way policies are found, first the computation of state-value 

function under policy π, Vπ, is considered. From (3.5), the state value functions for each 

state are defined as the functions of the transitions probabilities and immediate rewards. 

Therefore, if the dynamics of the environment are completely known, then (3.5) is a set 

of n linear equation with n unknowns, where n is the number of the available states. 

Iterative methods can be applied to this problem to find the solution to these equations. 

One variation of these methods is called iterative policy evaluation. It starts with arbitrary 

value assumptions for the values of each state and continues by updating these values, in 

each iteration, from equation (3.11). 

( )∑ ∑
′

′→′→+
′+=

a s

k

a

ss

a

ssk sVRPasprobsV )(),()(1 γ                                    (3.11) 

It is proven that the sequence { }kV converges to Vπ when ∞→k . Different variations of 

this method are proposed to increase the speed of convergence.  
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Once the value functions for each policy are calculated, better policies are searched by 

comparing the value of each action in each state and selecting the greedy action that 

results in maximum action value function, Qπ(s,a). This will improve the current policy 

and create a new policy π/. It is proven that )()( sVsV ππ ≥
′ , therefore, the new policy 

will be closer to the optimal than the previous one. This process of improving the policy 

by creating new policies based on selection of greedy actions is called policy 

improvement. Once the policy is improved it can be improved even further until the 

optimal policy is achieved. This repeating process of evaluation and improvement is 

called policy iteration, which is one of the dynamic programming methods. Other DP 

methods such as value iteration and asynchronous dynamic programming try to decrease 

the amount of calculations and value evaluations in order to reduce the time of 

convergence. However, all these methods utilize two processes: value evaluation and 

policy iteration. As it will be discussed later, all other RL methods are based on these two 

principle theories.  

Monte Carlo (MC) - Monte carlo methods are based on experience and they do not 

need a complete knowledge of the environment. These methods solve RL problems by 

averaging sample returns. MC methods are only defined for episodic tasks, meaning that 

experience is divided into episodes. It should be noted that value function estimates and 

policies are only changed upon completion of an episode. 

Based on the averaging technique, different MC algorithms are developed. In every-

visit MC method, Vπ(s) is estimated as the average of the returns following all the visits 

to state s in a set of episodes. The most widely studied MC method is the first-visit 

method in which just the returns following the first visit to s are averaged. For the policy 

evaluation purpose, the action value functions should also be estimated when there is no 

model of the system available. The same approach is used in order to average the returns 

followed by the visit to a state when the action was selected.  

Policy improvement is done by selecting the greedy actions with respect to the current 

estimate of value function, i.e. selecting the actions that maximize the action value 

function in each state.  Again, the value evaluation, policy improvement loop is repeated 

until the optimal policy is achieved. However, in order to guarantee the convergence of 
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this problem, all the state-action pairs should be visited so that an accurate approximation 

of the action-value function is achieved.  

Temporal Difference (TD) Learning – These methods combine the two features of MC 

and DP and are one of the most applicable methods to control problems. They learn from 

experience in order to estimate the value functions and the update procedure depends on 

the previous values of the functions. Unlike MC methods that have to wait until the end 

of each episodic task, the TD methods can update the value functions after each time 

step. This is an advantage over the MC methods mainly because sometimes waiting until 

the end of an episode can be a long time which will considerably slow down the process 

of learning. 

One of the simples TD methods known as TD(0) takes advantage of the following 

equation for the value function estimation: 

[ ])()()()( 11 ttttt sVsVrsVsV −++← ++ γα                                                (3.12) 

Where α is a constant step-size parameter and γ is the discount factor. From (3.12) it is 

observed that TD methods involve looking ahead a sample successor state to update the 

value of the original state. It is proven that for any policy π the TD algorithm described 

above will finally converge to Vπ if the constant step size parameter (α) is sufficiently 

small [1].  

Now that the method for estimating the value functions are described these estimate 

should be applied for control, i.e. to approximate the optimal policies. The same approach 

of policy improvement is followed, but we should make sure that all the state action pairs 

are visited during the experience. There are two approaches to meet this criterion: on-

policy and off-policy methods. On-policy methods improve the policy used to make 

decisions. In fact, these methods estimate the value of each policy while using it for 

searching for the optimal policy. In off-policy methods however the policy that is used to 

generate the behavior is separate from the policy which is evaluated.  

Sarsa is one of the on-policy TD methods for control purposes. In this method the 

current action value functions Qπ(s,a) should be essentially estimated for the current 

behavior policy π. The same theories of TD(0) can be used in this case as well: 

[ ]),(),(),(),( 111 ttttttttt asQasQrasQasQ −++← +++ γα                    (3.13) 
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Like all on-policy methods the Qπ is continuously estimated for the behavior policy π and 

simultaneously the policy is changed towards the greediness.  

Q-learning is an off-policy TD control algorithm which in its simplest from it is 

defined by the following update equation: 

[ ]),(),(max),(),( 11 ttt
a

ttttt asQasQrasQasQ −++← ++ γα               (3.14) 

In this method the learned action value function directly approximates Q* independent of 

the policy being followed. The convergence is guaranteed if all state action pairs are 

visited and their corresponding action value function Q(s,a) is updated. Figure 3.3 shows 

the procedural form of the Q-learning algorithm. In order to select an action the ε-greedy 

policy is used. This approach selects the action with the currently highest action-value 

(the greedy action) as experienced through interaction with the environment with the 

probability of (1-ε) and a random action with probability ε. With this policy the agent has 

the chance of trying non-greedy actions to explore the state-action space. The algorithm 

will repeat the procedure until the optimal policy is achieved or a certain number of states 

are visited.  

 

Initialize Q(s,a) for all states and actions 

Repeat for each run of the algorithm 

       Initialize s 

       Repeat for each step 

       Take action a based on the policy determined by Q. (e.g. ε-greedy policy) 

        Observe st+1 and r  

       [ ]),(),(max),(),( 11 ttt
a

ttttt asQasQrasQasQ −++← ++ γα  

       1+← tss  

 until the desired goal is achieved or the terminal state is reached 

Figure 3.3: Q-learning 
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3.2. Load Frequency Control (LFC) 

The objective of load frequency control or LFC is to maintain the frequency in the 

scheduled value by balancing the generation and demand and to control the tie-line 

interchange schedules. Figure 3.4 represents the block diagram of the LFC loop and its 

basic operation [24]. A change in frequency and the real tie-line power are sensed 

through a change in the rotor angle, ∆δ. The frequency deviation ∆f and tie-line power 

deviation ∆Ptie are amplified and transformed into a real power command signal ∆PV 

which is sent to the prime mover which changes the torque by adjusting the amount of 

steam flowing through the valve. The prime mover then changes the generator output by 

an amount of ∆Pg changing the values of ∆f and ∆Ptie accordingly.  

Figure 3.4: Block diagram representation of load frequency control loop [24]. 

 

From Figure 3.4 it is observed that the LFC will adjust the governor setpoint in order 

to compensate for the power imbalance. Figure 3.5 shows the schematic diagram of a 

conventional governor which consists of the following major parts. The speed governor 

which is essentially constructed of centrifugal flyballs driven by turbine shaft. Upward 

and downward movements are produced proportional to the speed change. The flyball 

movements are transformed to the turbine valve by linkage mechanism through hydraulic 

amplifiers. The hydraulic amplifier is needed to transform the movements of the governor 

into mechanical forces that control the steam valve. Finally, the speed changer schedules 

the load at nominal frequency with the aid of a servomotor which is operated manually or 

automatically. 
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 Figure 3.5: Speed governor system [25]. 
 

Various types of LFC yield different performances depending on the objective 

function chosen for the control design. In this thesis the objective is to regulate the area 

control error or (ACE) signal which is a combination of area frequency deviation and net 

power interchange error and is depicted in equation (2.3). The performance of the 

controller is assessed by the control performance standards. Two different approaches are 

used in order to reach this goal. In the first approach it is tried to regulate this signal and 

bring its variations as close as possible to zero when load changes are applied to each 

control area. In the second approach the controller is modified to reduce the unit 

maneuvering and wear and tear during operation.  

In order to analysis the behavior of a system and design a control for that the 

mathematical model of the system is required. Consequently, the first step is to derive a 

model of the system. Proper approximations are made and the components of the system 

are represented in the form of transfer functions.  

Figure 3.6 illustrates the equivalent model of the control area i of the power system 

studied in this thesis. This model is inspired from [4]. The model is a general 

representation of a control area with more than one speed governor and generating unit. 

In order to find the equivalent transfer function of the ith area’s generator, all the 

generators in that area are lumped and they are represented by a single transfer function 

whose output is the area frequency deviation. Each control area is connected to the other 
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areas though tie lines. As it will be discussed later in this text, a conventional PI 

controller is used in each area to regulate the ACE signal.  

 

 

 

 

 

 

 

Figure 3.6: Dynamic model of control area i for the LFC problem [4]. 

 
PT:   turbine power                                   PC:   governor load setpoint 

f:     area frequency                                 ∆:   deviation from nominal values 

Tij:   tie-line synchronizing coefficient between area i and j 

TT:   turbine time constant                       α:    ramp rate factor 

PV:   governor valve                                 TP:    area aggregate inertia 

TH:   governor time constant                    B:   frequency bias 

Ptie:  net tie line power                             PD:   power demand 

            N:    number of control areas                   η:     interface 

            D:    damping coefficient                         R:    Droop characteristics 
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Chapter 4 

Decentralized Reinforcement 

Learning-Based Load Frequency 

Control  

4.1. Introduction  

Most of the methods used previously for load frequency controls are model based and 

are designed for a specific operating condition. Although these controllers may 

demonstrate a satisfactory performance in normal situations, they might not be able to 

control the system while there is a sudden change in system parameters and operating 

conditions which is not considered in the controller design. Adaptive controllers surveyed 

in chapter 2 can serve as good alternatives in this case in order to adapt their parameters 

depending on the type of disturbance imposed to the system. However, these controllers 

are complex in their design and are still designed for specific system parameters. 

Including nonlinearities and limits in the model is also a hard task that should be 

accounted for in a new type of design.  

This chapter will start by describing the power system model used for the simulation 

purposes during the entire thesis. Thereafter, the issues of fixed load frequency 

controllers are discussed and compared with the adaptive controllers. The two area power 

system is simulated for the two types of controllers when both areas are subject to load 

changes. Then a new adaptive controller is proposed that will learn the proper gains of 

the controllers without any knowledge of the system. Reinforcement learning is the main 

tool used in the design of this controller. Simulation results compare the performance of 

the proposed controller with the conventional adaptive controllers.  In the end, the 

advantages and disadvantages of using these types of controllers in power systems are 

discussed.  
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4.2. Adaptive Versus Fixed Controllers 

Before discussing the advantages of the adaptive controllers designed for LFC 

problems, over the controllers with fixed parameters the power system model described 

in the previous part is simulated with both types of the controllers. For simplicity the two-

area power system model is selected for simulation. The type of disturbance applied to 

each area is a constant and random load change in addition to sudden step changes in the 

loads of each area. The parameters of the system are presented in Table 4.1. These 

parameters are inspired from [4]. 

 

TABLE 4.1 
TWO AREA SYSTEM PARAMETERS 

 
Parameters Genco 

MVA base(1000MW) 1 2 3 4 5 

Rate (MW) 1000 800 1000 1000 800 

D(pu/Hz) 0.015 0.014 0.015 0.015 0.014 

Tp (pu.sec) 0.1667 0.12 0.2 0.1667 0.12 

TT (sec) 0.4 0.36 0.42 0.4 0.36 

TH (sec) 0.08 0.06 0.07 0.08 0.06 

R (Hz/pu) 3 3 3.3 3 3 

B (Hz/pu) 0.3483 0.3473 0.318 0.3483 0.3473 

α 0.4 0.4 0.2 0.4 0.4 

 

The fixed controller in this case is a conventional proportional integral (PI) controller 

which is widely used in industry. The gains of this controller are tuned by optimization 

techniques introduced in Chapter 2 [7] and are presented in Table 4.2. Each area is 

equipped with a PI controller and therefore different areas are controlled in a 

decentralized manner. 

TABLE 4.2 
PI CONTROLLER PARAMETERS 

Area 1 Area 2 

Proportional Gain -3.27×10-4 -7×10-4 

Integral Gain -0.333 -0.343 
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Different kinds of adaptive controllers are surveyed in Chapter 2. H∞ controllers are 

one of these various controllers that have demonstrated a good performance when applied 

to different control tasks. The parameters of the designed H∞ controller are presented in 

[7].  The simulation results of area control error (ACE) and governor mechanical power 

deviation are presented in Figure 4.1 and 4.2., respectively.  

By comparing the results it is clearly seen that the H∞ controller outperforms the fixed 

PI controller when there is a sudden change in the operating conditions. The PI controller 

only performs satisfactory when the load changes are close to the scenarios that their 

design was based upon.  

Next it is assumed that system parameters are changed by 20% and the same scenario 

is simulated to observe the behavior of these model-based controllers when model 

deviates from the original one. The simulation results are shown in Figure 4.3 and 4.4. 

The results for the adaptive controller illustrate that the controller is highly dependent on 

the system model. Although the H∞ controller was acting properly in the previous 

scenario, after a change in system parameters it couldn’t control the system.  

Therefore a need for a more sophisticated adaptive controller is justified. This 

controller should be able to learn the necessary changes in the control settings according 

to the changes in the system parameters. With these characteristics, the above mentioned 

controller can be applied to any system without a need for pre-adjustments. In the next 

section the basic features of this controller are described and the load frequency problem 

is solved with the new proposed controller and compared to the previous adaptive 

controller. 
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Figure 4.1: Area control error (ACE) for a two-area system: (a) fixed PI controller, (b) H∞ 

controller. 



Chapter 4: Decentralized Reinforcement Learning-Based Load Frequency Control  

 30 

0 100 200 300 400 500 600 700
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

time(sec)

PL
1

PL
2

∆Pm
1

∆Pm
2

 
Figure 4.2: Generated governor mechanical power for H∞ controller. 
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Figure 4.3: Area control error (ACE) signal for a two area system with H∞ controller when 

system parameters are changed by 20%. 
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Figure 4.4: Area control error (ACE) signal for a two area system with fixed PI controller when 

system parameters are changed by 20%. 

 



Chapter 4: Decentralized Reinforcement Learning-Based Load Frequency Control  

 32 

4.3. Reinforcement Learning-Based PI Controller 

Ability to learn from experience can compensate for many problems associated with 

the model based controllers. Conventional PI controllers have shown good performance 

in many normal conditions and their design is considerably simpler than most of the 

adaptive controllers. Therefore if the learning capability is combined with the simple 

design of PID controllers the performance of these controllers could be enhanced in many 

cases. Also, once designed, the controllers can be applied to various systems with 

different system parameters.  

Reinforcement learning methods are therefore used in this thesis in order to design the 

controller with the mentioned characteristics. From the desired features of these 

controllers, non-model based methods become more attractive in solving such problems 

than the methods based on the system model. Q-learning is one of these methods that 

have widely been used for power system applications. As explained in Chapter 3 in this 

method the agent does not require any prior knowledge of the system in order to make a 

decision on the action that should be taken. However, the experience gained by 

interacting with the environment will gradually improve the performance of the 

controller. Next, the LFC problem is formulated as an RL problem. 

The controller proposed in this thesis is the conventional PI/PID controller and its 

gains are tuned by means of reinforcement learning algorithms. The proportional, integral 

and derivative gains are changed each time a disturbance is applied to the system. 

Consequently, these controllers will adjust themselves to the new operating conditions. 

The main advantage of the new PID controllers is their simple design and ability to learn 

the proper gains without any prior knowledge of the system and its parameters. Also in 

contrast to many adaptive controllers applied to LFC problem there is no need to estimate 

the load changes on the system. However, in order for the agent to make decisions some 

of the system variables such as frequency should be measured and fed back into the agent 

as the inputs. Figure 4.5 presents the basic structure of the RL based controller. 

Before applying reinforcement learning for the control problem, the elements of the 

RL problem should be defined. Among these elements, states, actions and reward are of 

more importance and in fact define the task and objective of the learning process. These 

elements are defined next. 
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Figure 4.5: Block diagram of proposed reinforcement learning based PI controller. 

 

Sate: State in this case should be a signal that determines the performance of the 

controller. In load frequency problem the ultimate goal of the controller is to regulate the 

ACE signal and maintain its variations within a limit acceptable by the standards. 

Therefore, the ACE signals can be a good representer of the controller’s behavior. Based 

on what was explained, the state is defined as the discrete levels of the ACE signal within 

an interval [ACEmin, ACEmax] considered for AGC. The |ACE| in this interval is quantized 

into finite levels and each level is considered as a state of the system.  A controller that 

reaches ACEmax , where |ACE| > ACEmax, assumes to not act properly and starts learning 

better control settings. Also, if 0<=|ACE|< ACEmin then there is no need for control 

action by the agent. The reason the signals are discretized is that the RL problem 

considered in this thesis is assumed to be a Markov Decision Process (MDP) and as 

explained in Chapter 3 they require a discrete and finite state space. The average value of 

the ACE signal can also be considered as the state signal. However, the simulation results 

show that the instantaneous value of the ACE signal could be a better choice rather than 

its average value. Also, it should be noted that based on the system considered for control 

and its parameters one can change the state levels in order to find the optimal 

performance. However, with an accurate enough definition of states and with an 
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acceptable number of state levels a satisfactory performance can be achieved from the RL 

agent.  

Action: When RL techniques are applied to a control problem the action of the RL 

agent should directly affect the controller. In the case of this problem the action would be 

to increase or decrease the proportional or integral gains of the controller, if the controller 

used is of a PI type. It should be noted that in some cases the agent might choose not to 

change any of the gains which is also considered as an action. Therefore the agent will 

have at least three actions to choose for each gain which leads to a total of 6 actions for a 

PI controller.  

Similar to states, the agent should be able to choose between a finite set of actions. As 

the changes in the gains of the controllers could be continuous, these changes should 

somehow transform to discrete variations. In order to achieve this, the increment between 

the changes of the gains is defined so that the agent should exactly know how much 

increase or decrease in the gains is applied. Depending on the system this increment can 

be changed and adjusted and a good selection of this parameter can effectively improve 

speed of the learning process.  

In order to further improve the performance of the controller, one may define actions 

in a way that two sets of increase or decrease of the gains are defined. One is to change 

the gains a relatively large amount and the other would be to change it less. Although this 

would make the decision process more complex for the agent, mostly because the number 

of actions will increase, this will make the controller more applicable to various system 

parameters.  

Reward: As explained in Chapter 3, reward function plays an important role in the 

learning process. Thus this function should be carefully defined. Area control error can 

be used as a variable to define this function because its variations determine if the 

controller is learning in a correct direction or another action should be taken to get closer 

to the objective. The perfect ACE signal is the one that has been driven to zero, therefore 

if a taken action drives this signal closer to zero, it should expect more reward than an 

action who has increased the fluctuations of this signal. From this definition one can 

understand that a linear function of the ACE signal can be a good candidate for the 
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reward function. Later in this chapter the effect of different reward functions on the 

controller performance will be investigated. 

Power system is divided to several control areas and each area should have its own 

control structure in order to deal with the load changes of the local areas without 

affecting other areas. Therefore the proposed controller is applied to each control area, in 

a decentralized manner. Each area is equipped with an RL agent which decides on the 

proper controller gains for that area. The measurements are done locally and the only 

information available to each area from the rest of the system is the tie-line power. These 

measurements include the frequency and tie-line power which are needed to calculate the 

ACE signals in each sample time. Figure 4.6 presents the basic structure of multi agent 

control for multi area load frequency control.  

It should be noted that each control area can consist of several generating units and in 

order to model the system all these units are lumped together and an equivalent model is 

derived. Also, what is meant by frequency of each area is actually the equivalent 

frequency of that control area.  
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Figure 4.6: Multi-agent LFC controller structure. 
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4.4. Case Studies 

4.4.1. Effect of the Reward Function 

In order to show the importance of the reward function, two different functions are 

defined in this section and their performance is compared through the simulation results. 

The first reward function is defined as a linear function of the ACE signal as follows: 

( ) ( )tACEtr ×−= 1001                                                                                                  4.1 

In this function the instantaneous value of ACE is multiplied by 100 in order to 

increase the effect of small differences, especially if the simulation is in the per-unit 

scale, while a small difference can in fact be a huge number in a real scale. The second 

reward function is defined as bellow which is close to the reward function defined in 

[23]: 

( )




>

≤−
=

)(0

)(1

min

min

2 tACEACEif

tACEACEif
tr                                                                         4.2 

In this definition, when the ACE variation in more than the lower bound the action 

will receive a penalty (or a negative reward) of -1, independent of the value of the ACE. 

Next, the two area system shown in Figure 4.7 is simulated while nonlinearities such as 

generation rate constraint (GRC) and governor dead-band are also considered in the 

system model.  

The simulation results compare the variations of the ACE signals when a series of 

disturbances are applied to the loads in both areas. These results are presented in Figure 

4.8. It is observed that the first reward function serves better in determining the behavior 

of the RL agent. The reason for this superior performance is that in this definition there is 

a difference between actions that result in different ACE variations.  For example, the 

action that leads to some ACE oscillations receives less reward than an action that further 

increases the ACE deviation. 

By observing these results, it is confirmed that the definition of the reward function 

can affect the performance of the RL agent. An improper reward function not only will 

not improve the performance of the controller, but also its performance can be even 

worse than the conventional controllers. Figures 4.9 and 4.10 summarize the variation of 

the proportional and integral gains for both control areas, in both cases. 
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Figure 4.7: Block diagram of two-area power system model with PI controllers for each area. 
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Figure 4.8: ACE signal variations using the first reward function (solid line) and the second 

reward function (dashed line). 
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Figure 4.9: Proportional and integral gain variations using the first reward function: first area 

(solid line) and second area (dotted line) 
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Figure 4.10: Proportional and integral gain variations while using the second reward function: 

first area (solid line) and second area (dotted line) 
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4.4.2. Three Area Power System 

Intelligent controllers were originally designed to be applied to large systems were the 

dimensions and complexities make the application of many classic controllers unrealistic 

and costly. The case studies studied before in this text and many other research papers 

where implemented on a two area system. However, in order to show the applicability of 

the designed controller to large systems a three area power system is simulated. Each area 

has three generation companies (Genco) providing the generated power and one 

distribution company (Disco). All parameters of the Gencos are presented in Table 4.3 

[4]. The tie-line synchronizing coefficients between areas are radMWT /20012 = , 

radMWT /12023 = , radMWT /25023 = . Each area is equipped with a decentralized 

RL based PI controller and the areas are connected to each other through the tie-lines. 

Figure 4.11 shows the structure of the mentioned three area system.  

 

TABLE 4.3 
THREE AREA SYSTEM PARAMETERS 

 
Parameters Genco 

MVA 

base(1000MW) 
1 2 3 4 5 6 7 8 9 

Rate (MW) 1000 800 1000 110 900 1200 850 1000 1020 

D(pu/Hz) 0.015 0.014 0.015 0.016 0.0140 0.0140 0.0150 0.0160 0.0150 

Tp (pu.sec) 0.1667 0.1200 0.200 0.2017 0.1500 0.1960 0.1247 0.1667 0.1870 

TT (sec) 0.4 0.36 0.42 0.44 0.32 0.40 0.30 0.40 0.41 

TH (sec) 0.08 0.06 0.07 0.06 0.06 0.08 0.07 0.07 0.08 

R (Hz/pu) 3 3 3.3 2.7273 2.6667 2.50 2.8235 3.00 2.9412 

B (Hz/pu) 0.3483 0.3473 0.318 0.3827 0.3890 0.4140 0.3692 0.3493 0.3550 

α 0.4 0.4 0.2 0.6 0 0.4 0 0.5 0.5 

Ramp rate 

(MW/min) 
8 8 4 12 0 8 0 10 10 
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Figure 4.11: A three-area power system. 
 

Two different scenarios are simulated for this system to illustrate the effectiveness of 

the proposed control technique. The first scenario is when random load changes are 

applied to all the areas as shown in Figure 4.12(a). The area control errors (ACE) and 

governor load setpoint (∆PC) are presented in Figure 4.12 (b) and (c) respectively. Figure 

4.13 illustrates variations of the control gains for three control areas. As it is seen, the 

controller will keep the variations of the ACE in an acceptable range and these constant, 

random variations do not lead to system instability.  

For the second scenario a large disturbance which is a step increase in demand is 

applied to each area: ∆PD1= 120 MW, ∆PD2= 100 MW, ∆PD3= 80 MW. Figure 4.14 (a) 

and 4.14(b) show the performance of the controllers when they are subjected to large 

disturbances. From the results it is observed that the controllers are able to smoothly 

increase the governor setpoints to the new value in order to match the generation of each 

area with their demands. These types of large disturbances rarely occur, mostly because a 

party that causes a large imbalance between the actual and forecast load is penalized in 

power market [4].  
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Figure 4.12: (a) Loads, (b) ACE and (c) governor setpoint variations of the three areas for 

scenario 1.  
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Figure 4.13: (a) ACE ,(b) governor setpoint variations and (c)generated mechanical power of the 

three areas for scenario 2. 
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Figure 4.14: Variations of PI controller gains of the three areas for scenario 2.
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Chapter 5 

Load frequency control based on 

NERC standards 

5.1  Introduction  

The North American Electric Reliability Council (NERC) has released new control 

performance standards CPS1 and CPS2 in 1977 to determine the effectiveness of 

automatic generation control (AGC) [26]. Each area is required to report its compliance 

with these standards to NERC at the end of each month. These new standards replaced 

the old control performance criteria (CPC). CPS1 and CPS2 are based on statistical 

theories and are mathematically more powerful. Violating these standards may cause 

serious problems in power systems operation and the units responsible for these 

violations will be penalized by NERC. The following chapter will discuss a proposed 

strategy in order to comply with NERC’s standards and reduce additional control effort 

and wear and tear on the system equipment. These standards are explained in detail 

before describing the controller structure.  

5.1.1 CPS1  

CPS1 is the first control performance standard which deals with the behavior of the 

control areas in the long term. This standard is defined on a 12 month period as: the 

average over 12 month of the “one minute averages” of a control area’s ACE divided by 

“ten times its frequency bias factor” multiplied by the “one minute average of the 

interconnection frequency error”. This value should be less than the square of a given 

constant ε1, the target frequency bound. This definition is better expressed by the 

following equation: 
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where 

Bi         frequency bias of the ith control area in MW/0.1Hz 

ε1         targeted frequency bound for CPS1 

∆F       interconnection frequency error 

(.)1       one-minute average 

In order to simplify the above definition and have an expression for CPS1, two terms 

i.e. a compliance factor (CF) and a 1-minute average compliance factor (CF1) are defined 

[4]: 

[ ]112 CFAVGCF month−=                                                                                               (5.2) 
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                                                                                     (5.3) 

From these definitions the CPS1 is defined 

( ) %10021 ×−= CFCPS                                                                                            (5.4) 

According to NERC, CPS1, obtained from equation (5.4) should not be less than 100% at 

any time in order to comply with standards.  

5.1.2 CPS2 

The second performance standard CPS2 is defined for 10 minute intervals and requires 

that the 10-minute average of the area control error for each area be less than or equal to a 

constant L10 given by equation (5.6). 

10min10 )( LACEAVG iute ≤−                                                                                           (5.5) 

( )( )
si BBL 101065.1 1010 −−= ε                                                                                 (5.6) 

In the above equations Bs is the summation of the frequency bias settings for all control 

areas in the studied power system. In order for a control area to comply with NERC’s 

standards, the level of its compliance should be more than 90%.  The compliance 

percentage is calculated form the following equation 

%10012 ×












−
−=

periodsUnavaiableperiodsTotal

Violations
CPS month                                       (5.7) 

The term Violationsmonth indicates the number of times the 10-minute average of ACE is 

greater than L10 in one month.  
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5.2  LFC Control Design Based on NERC’s Standards 

5.2.1 Application of RL in control design 

The controllers designed previously presented acceptable performance when applied 

to load frequency control. Driving the ACE as close as possible to zero was the main 

objective for these controllers. However, often these controllers result in tight control 

which is sometimes unnecessary and will only increase the costs of control due to 

unnecessary fuel consumption. Therefore a controller that maintains the system in 

compliance with the standards and in the mean time prevents tight control is of a great 

interest in today’s power systems. In addition, the mentioned control will also reduce the 

wear and tear of the system equipment by decreasing the control effort and excessive 

excursions.  

The desired control technique should have the ability to adjust the parameters of the 

controller according to the level of compliance with the standards, which in this case are 

CPS1 and CPS2. Intelligent techniques are therefore more capable of providing these 

requirements for the controllers with these characteristics. Different learning methods can 

be applied to solve this problem. Fuzzy logic is one of these methods that has been 

applied to this problem in [4] and has shown satisfactory performance when applied to a 

three area power system. However, as discussed before fuzzy logic may not be as 

powerful as a method that has the ability to learn with experience and adjust the control 

parameters according to the new operating conditions.  

The nature of the load frequency control requires a trade off between the cost and the 

performance and consequently the terms rewards and penalties are among the first terms 

that come to mind.  From what explained one may conclude that reinforcement learning 

can be more applicable to this problem due to the way these methods reward or penalize 

the actions.  

5.2.2 RL-based load frequency control considering CPS1 and CPS2 

Reinforcement learning can be applied to change a variety of control parameters 

depending on the type of the controller. In the problem in hand the RL techniques are 

applied to tune the proportional and integral gains of a PI controller by constantly 

observing the level of the compliance with NERC’s standards. The RL agent decides 
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whether it is required to change the gains and how much these changes should be. By 

preventing the unnecessary gain changes the governor setpoint or raise/lower signal ∆Pc 

will be modified with less frequency especially when the control area is in high 

compliance with the standards. This will considerably reduce the wear and tear on the 

mechanical equipment. Figure 5.1 illustrates the structure of the RL-based load frequency 

control based on NERC standards.  

 
 

Figure 5.1: Reinforcement learning based load frequency control considering NERC’s standards. 

 

In the above RL-based design the RL agent uses the information gained from the 

environment, which in the case reflect the level of compliance with CPS1 and CPS2, and 

by observing the states and rewards gained adjust the gains by changing the tuning 

parameters, αI and αP. These parameters in fact change the proportional and integral gains 

in accordance to the level of compliance. The PI controller will then act on the ACE 

signal and change the governor setpoint.  

 The most important factor in design of the above mentioned controller is to define the 

reward function in a way that it penalizes the action that reduces the compliance with the 

standards and rewards those who increase this compliance. However, in order to prevent 

the unnecessary control effort, an action that keeps the compliance level within the ranges 

which are acceptable by the standards with less control effort should be rewarded more 

than an action that increases the compliance further but will cause more costs and 

changes on the governor setpoint. Therefore the reward function in this case should 

necessarily be more complex than the one defined in Chapter 4.  
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The same step by step procedure of the previous chapter is followed to design the 

controller, i.e. to start from the definition of the reinforcement learning elements, which 

are state, reward and the actions.  

As explained in the previous case, the definition of the state is dependent on the 

signals that are serving as inputs to the learner. Signals that determine the level of 

compliance with CPS1 and CPS2 are considered as inputs in this case and therefore the 

states are defined based on variations of these signals, but fist they should be defined.   

The first signal that is considered as an input to the RL agent is a measure for 

compliance with CPS1 standard. Since CPS1 is a standard associated with the 

performance of the controller within a 12-month period, therefore, a type of a signal that 

can represent the accumulated average compliance [4] since the start of calculation until 

the current time should be used in order to be able to prevent any possible violations of 

this standard before it is occurred. This signal is defined as follows. 

[ ]10
CFAverageCF ttdaccumulate →=                                                              (5.8) 

where t0 is the start time and t is the current time of the simulations. Also, the same 

approach is used to define the CF over an entire year, where T is the end of a 12-month 

period. 

[ ]10
CFAverageCF Tt →=                                                                                (5.9) 

From these equations it is understood that if the accumulated average is not violating 

the limits it is guaranteed that the controller will comply with CPS1. Therefore, one of 

the tasks of the controller is to constantly monitor variations of this signal and make sure 

that it is not violating the limits defined by the CPS1 standard.  

The second input signal shows the compliance of the each control area with CPS2 and 

is defined directly based on the definition presented in equations (5-5) through (5-7). In 

this case the signal is fed into the reinforcement learner every 10 minutes due to the fact 

that the CPS2 standard is based on the 10-minute averages of the ACE signal. Therefore 

if the controller keeps the 10-minutes averages of the ACE less than the parameter L10 

then is guaranteed that the CPS2 standard is not violated over a month.  

Now that the input signals are defined, the states of the system that the RL learner will 

identify are described. Based on the variations of these two signals different state levels 



Chapter 5: Load Frequency Control Based on NERC Standards 

 49 

can be identified. Table 5.1 summarizes these levels while seven state levels are defined 

for the RL problem. In this Table the possible values of CPS1 and CPS2 compliance 

factors are divided into three main levels of low, medium and high. These levels are 

defined based on the design preferences and also based on the control effort that is 

desired to be devoted for the load frequency control purposes.  

TABLE 5.1 
STATE LEVELS FOR THE REINFORCEMENT LEARNING BASED CONTROLLER 

State Level CPS1 compliance factor CPS2 compliance factor 

1 High - 

2 Medium High 

3 Medium Medium 

4 Medium Low 

5 Low High 

6 Low Medium 

7 Low Very Low 

 

As explained before the role of the RL agent in this case is to change the tuning 

parameter α in order to satisfy the standards and in the mean time reduce the fuel cost and 

the wear and tear of the equipment. Therefore, it is expected that the learner will learn to 

decrease this parameter when the compliance factors of CPS1 and CPS2 are low, which 

means that the control area is in high compliance with the standards. On the contrary, 

when any of the compliance factors are high, which shows a poor compliance, the tuning 

parameter should be increased based on the values of these factors.  

Based on the characteristics of the controller described above, the actions of the 

controller are defined. The RL agent will increase or decrease the tuning parameter a 

certain discrete amount, which is defined by the designer. These increments are important 

as they have a substantial effect on the performance of the controller. Generally one can 

define two sets of increments ∆1 and ∆2 while 21 ∆>∆ . This definition gives the 

freedom of action to the agent and defines four actions for each RL agent: Increase or 

decrease the tuning parameter by ∆1 or ∆2. The difference between these two values 

should be a reasonable amount. For instance a small difference does not justify having 
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more actions as then there would not be a considerable difference between the two 

actions taken. Also, a huge difference can lead to selection of a big PI controller gains 

which in some cases can take the system to a point where the agent will no longer be able 

to learn the correct action as the system has reached the instable region.  

The last important component of this controller that should be defined by the designer 

is the reward function. The ideal reward function should penalize those actions that 

violate the standards and in the mean time reward the actions that keep the control area’s 

performance within CPS1 and CPS2 standards with less control effort and fuel 

consumption. Based on these characteristics different functions could be defined. 

However, these functions are expected to differ in their behavior and the one with the 

best performance should be selected. Next a function that has demonstrated the best 

performance is introduced. 

The selected function is composed of three terms. The first term (r1) is associated with 

the CPS1 standard and equals to -1 if the accumulated average factor is more than one 

(which means the standard is being violated). On the contrary, if the compliance factor is 

within the limits this term will have a value of zero. The value of -1 is in fact a negative 

reward, or a penalty applied to the selected action. The second term (r2) is related to the 

level of compliance with CPS2 and is defined in the same way as the previous case. The 

last term (r3) is perhaps the most important part of this function as it should reduce the 

unnecessary control effort by penalizing these actions. The more the tuning parameter, 

the more the penalty would be. Therefore it would be a linear function of the tuning 

parameter α. These definitions are summarized in the following equations.  

321)( rrrtR ++=                                                                                              (5.10) 
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5.3  Simulation Results 

In this section the two area system described before is tested with the mentioned 

controller and the integral gains of the PI controllers are tuned with this technique. Each 

area is controlled by an RL controller that changes the gains of the P controller. Each area 

is subjected to a relatively large disturbance in the second hour of simulation, while the 

loads of both areas have constant random changes. The simulation results after three 

hours of simulation are presented in the following Figures.  

Figure 5.2 illustrates the behavior of the controllers by presenting the variations of the 

ACE signals and governor setpoints for both areas. Figure 5.3 shows the learned tuning 

parameter for both areas while the areas are subjected to disturbance. In order to be able 

to judge the behavior of the learners in tuning the gains of the PI controllers, the 

variations of the compliance factors are presented in Figure 5.4. 

From the Figures it is observed that the controllers learn to decrease the gains 

whenever control areas are in high compliance with NERC’s standards and they increase 

the gains when these standards are violated. After the major disturbance the gains are 

increased for a while until the time the ACE has reduced its values and is reached more 

close to zero.  

It should be noted that the model is simulated with nonlinearities such as generation 

rate constraint (GRC) of 10%/min and a governor dead-band of 0.01 and therefore, the 

controller is proven to be effective for non linear systems. The proposed method provides 

the conventional PI controllers with an ability to adapt themselves to various operating 

conditions without necessarily knowing the model of the system. Thus this controller can 

be applied to many systems with different parameters and yet can learn the proper 

settings of the gains. However, as mentioned before, the selections of design parameters 

such as the actions and the rewards play an important role in the behavior of the 

controller and the learning procedure.  

Another observation which is carried out from the Figures is that the governor set 

points of both control areas are smoothly changed and therefore the unit maneuvering is 

considerably reduced although the loads are constantly changing.  
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Figure 5.2: (a) Area control error and (b) governor setpoints for two area system taking into 

account NERC’s standards.  
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Figure 5.3: Variations of tuning parameter for both control areas when loads are constantly 

changing. 
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Figure 5.4: (a) CPS1 and (b) CPS2 compliance factors for both areas.
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Chapter 6 

Conclusion 

PI controllers have widely been used in industry for the LFC purposes; however, the 

gains of these controllers are fixed and are tuned once a month by trial and error. To 

compensate this disadvantage, adaptive controllers are designed, but as described in 

literature survey, these controllers are usually complicated and high order which makes 

their application to real systems impractical. This research presents a novel control 

architecture based on a reinforcement learning methods in order to enhance load 

frequency control. RL methods are applied to conventional PI controllers to keep the 

simple structure of the controller and n the mean time provide the controllers with the 

ability to adapt themselves to different operating conditions with less human interaction.  

In Chapter 3 the basic fundamentals of the reinforcement learning methods are 

presented. All the problems in this research are formulated as markov decision processes 

(MDP) which have certain characteristics such as a discrete state and action space. RL 

methods propose different procedures to solve MDP problems by gaining experience 

through interaction with environment. Some of these methods are model based which 

essentially require some information related to the model of the system in order to make 

proper decisions on the actions that should be taken in the next step. In contrary the other 

major groups of RL methods are not based on the system model and directly estimates 

the Q-function by experienced gained. Action-value function or simply Q-function 

indicates the value of an action in a specific state in terms of satisfying the objective. Q-

learning is one of the model free methods that is extensively used in the literature for 

control applications. This thesis also takes advantage of Q-learning mostly because it 

requires no prior knowledge from the system. The proposed controllers learn the proper 

settings of the PI controllers each time there is a disturbance on the system. Two different 

approaches are studied in this text in order to observe the effectiveness of this method.  
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In Chapter 4 a new decentralized, RL based control design was developed for load 

frequency control applications. Each area is equipped with an RL based control that 

changes the proportional and integral gains of the PI controllers according to the 

operating conditions and the disturbances applied to the system. The objective in this case 

was to drive the area control error (ACE) signal back to zero with proper control actions. 

Hence, the reward function was defined in a way that the more an action drives ACE to 

zero the more would be the reward and vice-versa. The disturbances considered for the 

case studies were large changes in demands accompanied by a white noise signal. The 

two-area system, with nonlinearities such as GRC and governor deadband, was studied in 

this chapter while considering two different reward functions. The results determined the 

importance of the definition of the reward function in performance of the RL agent. 

Three-area system was also simulated to illustrate the applicability of the proposed 

decentralized control structure to large systems, while two different disturbance scenarios 

were simulated separately.  

 The most important advantage of this controller is that it has a very simple structure 

and does not need any information from the system and its states to set the gains. Simple 

measurements such as the frequency and tie-line flows serve as the inputs to the RL agent 

in each time step the agent makes the decisions on the proper actions. Additionally, the 

ability of the controllers to learn and adapt themselves to different operating conditions 

and disturbances in the system makes them more appealing in power system applications.  

The North American Electric Reliability Council (NERC) released new control 

performance standards CPS1 and CPS2 in 1977 and each control area is required to 

comply with these new standards. As long as a control area is able to keep the ACE 

variations within the limits defined by these criteria it will not be penalized by the NERC. 

Therefore, the control areas should reach this goal by any control means they can. 

However, a tight control and a control that allows small variations of ACE within the 

limits are both treated the same by NERC but apparently the former will cost more for the 

control area by increasing the fuel consumption and wear of the mechanical equipment. 

Consequently, the ideal controller should comply with NERC’s CPS1 and CPS2 

standards and in the mean time try to decrease the control cost by preventing the 

unnecessary tight control actions.  
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An important characteristic of the RL methods is that depending on the desired 

objective, the agent learns the proper policy towards satisfying the goal. This is achieved 

through the proper definition of the reward function, because usually the actions that 

maximize this function are selected. Therefore in order to change the objective of the 

control, only the reward function should be changed and the main structure of the 

controller would remain the same as before. This feature provides the controller with the 

flexibility to be applied to different applications with just a slight modification in the RL 

definitions. 

Chapter 5 proposed a new method for tuning the gains of the PI controllers based on 

reinforcement learning methods. The main objective of the controller was to keep the 

variations of the ACE signals in the range to comply with the NERC’s standards but, at 

the same time decrease the unnecessary control effort and thus the control costs. Based 

on what explained in the previous paragraph this objective is achieved through modifying 

the reward function. The desired reward function penalizes each action violating CPS1 

and CPS2. Also, this function gives more reward to the action that satisfies the NERC’s 

criteria with less control and unit maneuvering. The simulation results for three hours 

showed that the tuning parameters increase when there is a large increase in the load of 

each area to provide the extra generation by changing the valve opening in order to 

decrease the compliance factor. When these factors are decreased (which means the area 

is in more compliance with standards) the tuning parameters are decreased.  

In conclusion, reinforcement learning methods have shown satisfactory performance 

when applied to power systems. The learning ability of these methods makes them more 

adaptive and applicable to different problems with changing operating conditions. Two 

different approaches were presented in this thesis and the simulation results show that the 

controllers were able to handle both problems with satisfactory performance. Also, due to 

the fact that by modifying the reward function we can apply the same technique to 

different control problems, the RL methods are not confined to PI controllers and they 

can be applied to other, more complex ,such as non-linear, controllers as well. Although 

these methods are expected to be flexible because they are based on learning and 

improving through interaction with the environment, they are not expected to perform 

very fast in the initial stages of learning.    
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Appendix A 

RL: Simulink Block and MDL Files 

In order to simulate the power system and observe the results Simulink is used as the 

main tool for modeling and simulation. However, to use the reinforcement learning 

algorithm and communicate with the system model, MATLAB S-functions are used and 

incorporated in Simulink file. Finally this S-function is used with extra links to the 

outside mdl file and is represented in a form of a Simulink block which is shown in 

Figure A.1. 

 

Figure A.1:  RL block in Simulink 

 

An advantage of having this block is that it can be used in any control application by 

adjusting the number of inputs and outputs and the reward functions defined in the S-

functions. Next different parts of this block are described in detail. 

Figure A.2 represents the main structure of this block. As it is observed, the RL 

controller consists of two major parts. The first block (rl1) determines the greedy action 

and takes the action which will be the ultimate output of the system. This decision 

making is based on the inputs from the second block (rl2) which calculates the state and 

reward gained by taking an action. Also, this block updates the values of Q-function 

which is later used by the first block to find the proper action. Figure A.3 and A.4 present 

the details of these block diagrams.  
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Figure A.2: The main structure of the RL block 

 

Figure A.3: The interior of the rl1 block  
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Figure A.4: The interior of the rl2 block  

The reason the reinforcement learning algorithm is divided into two different blocks is 

that there should be different timing in order to see the effect of a taken action on the 

system and observe the reward. One of the advantages of using S-functions in the 

Simulink block is the freedom of having different timings in the simulation. Therefore, 

by assigning different timings for the mentioned two blocks the Q-functions can be 

updated more effectively. 
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