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ABSTRACT 
Geotechnical Laboratory Testing for 2-D FEM Analysis of Geomorphic and Planar Sloped 

Caps and Covers for Sustainable Mine Refuse Deposition 

Rogan D. Park 

 

This thesis reports the findings of the application of Geomorphic Landform Design principles to 

the Royal Scot abandoned coarse coal refuse (CCR) pile located in Greenbrier County, West 

Virginia. The Royal Scot facility has many environmental concerns including severe erosion, 

acid-mine/rock drainage, and sediment transport. A cap and cover system is proposed to be 

implemented which incorporates the GLD principles. 

A two-layer cap and cover system will be used to reclaim the site and return it back to a stable 

state and reduce the production of acid-mine drainage. The system is composed of a hydraulic 

barrier composed of compacted CCR, and a compacted 80%/20% mixed growth layer. The 80/20 

layer is composed of 80% CCR and 20% MGroTM material. The MGroTM is a short paper fiber 

material produced by the WestRock® paper mill in Covington, Virginia. This material provides 

the characteristics to allow for the growth of grass on the Royal Scot site. A suite of geotechnical 

laboratory testing was performed including, classification of the coarse coal refuse, compaction, 

permeability, and strength testing. The results showed that the compacted CCR could perform as 

a hydraulic barrier to reduce infiltration into the pile, and the strength for slope stability. The 

permeability of the CCR was in the magnitude of 10-6 to 10-7 cm/s, and the friction angle for 

CCR resulted in 25 degrees. The 80/20 growth layer had a permeability of 10-4 cm/s to allow 

water for growth, while the friction angle ranged from 10 to 16 degrees.  

Finite Element Modeling was performed on a geomorphic and conventional planar slope located 

on the site to analyze the cap and cover system for slope stability. The analysis consisted of 

seepage modeling, coupled with slope stability to get a worst-case scenario factor of safety after 

infiltration from a 100-year storm event had occurred. The geomorphic slope had increased 

infiltration compared to the conventional planar slope. The geomorphic slope produced higher 

factors of safety over 2.0, while the conventional planar slope attained factors of safety close to 

1.5.  
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Introduction/Background  
 

This study investigates the comparative differences between two primary amended soil designs 

for use in covering and capping the Royal Scot site located in Greenbrier County, West Virginia.  

This site is a bond forfeiture abandoned mine refuse site. The research performed consists of a 

geotechnical laboratory investigation on two amended refuse blends, and implement the 

geotechnical data into a two-dimensional (2D) Finite Element Modeling analysis consisting of 

slope stability coupled with seepage analysis. The two amended refuse specimens analyzed 

consisted of coarse coal refuse (CCR), and an 80%/20% CCR/MGroTM blend material. The site 

is composed of an old abandoned coarse coal refuse facility. A map of the location of the Royal 

Scot site can be seen below in Figure 1 along with several other coal refuse facilities. The site 

has been abandoned since 1999 and exhibits many environmental issues (Ward, 2001). Some of 

these environmental issues consist of severe channel erosion and increased acid mine drainage. 

Royal Scot site has little to no vegetation, and uses a passive treatment facility to treat the acid 

mine drainage that leaches from the refuse fill.  

 

 

Figure 1. Location of Royal Scot site and several other coal refuse facilities (Stevens, 2016) 

 

The site reclamation is proposed to be reclaimed by the West Virginia Department of 

Environmental Protection (WVDEP) following the geomorphic landform design (GLD) principle 

approach. GLD attempts to mimic the natural equilibrium of erosive forces found in mature 

Royal Scot Site 
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landforms (Schor and Gray, 2007). As opposed to conventional reclamation techniques, GLD 

requires less maintenance and are more geotechnically stable (Nicolau, 2003). The motivation 

for this study was to use unsaturated 2D finite element modeling to gauge how the 

seepage/stability affects a GLD slope designs compared to conventional planar faced slopes with 

bench cut profiles. 

 

The Royal Scot site has a previous proposed 60/40 CCR/MGroTM cap and cover design (Stevens, 

2016). This system was composed of three layers including a fill material, compacted hydraulic 

barrier, and growth layer. The site also went under a hydraulic regrade design that included 

ditches for drainage of water, and GLD channels to reroute water to its corresponding watershed 

(Lorimer, 2016). The geometry from the hydraulic regrade could be accessed and used in the 

modeling procedure. The system was composed of three layers including a fill material, 

compacted hydraulic barrier, and growth layer. A cross-section of the previous proposed growth 

layer and hydraulic barrier can be seen in Figure 2. All layers are made up of coarse coal refuse 

(CCR). The CCR fill material will be the base of the cover, and then compacted CCR is used as 

the hydraulic barrier. The proposed cap and cover design uses a hydraulic barrier measuring 2 

feet in thickness across the entire site for the GLD slopes, and a 2 to 1-foot taper will be used 

from the crest to the toe of the conventional planar slope (Stevens, 2016). The upper part of the 

cap and cover system is the growth layer. The proposed growth layer is made up of 60% coarse 

coal refuse and 40% MGroTM material and is 1 foot thick across the entire site for this analysis.  

 

 

Figure 2. Cross-section of previous proposed growth layer and hydraulic barrier (Stevens, 

2016) 

 

As mentioned, MGroTM is used in the growth layer for the cap and cover design. MGroTM is a 

byproduct from a paper mill located in Covington, Virginia produced by WestRock®. The 

material is created by solid residuals produced by the treatment of paper mill and carbon plant 

wastewater. Its composition is 85% solids from primary clarification of mill wastewater and 15% 
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microbial biomass from biological wastewater treatment. MGroTM was also evaluated and 

recommended by (Daniels et al. 2013) as a soil amendment. An image of the MGroTM material is 

shown in Figure 3. 

 

 

Figure 3. Image of typical MGroTM sample 

 

Since 2010 West Virginia University’s Department of Civil and Environmental Engineering has 

researched geomorphic landform design (GLD) for application in Central Appalachia. Some of 

the accomplishments include conceptual GLD on a permitted valley fill; geotechnical slope 

stability evaluation of GLDs for steep terrain; evaluation of differences in groundwater seepage 

between conventional planar and geomorphic landform designs; and comparisons of hydrologic 

response (DePriest, 2015). The goal of this projects is to evaluate the use of GLD for 

Appalachian coal field reclamation, and determine if the approach is cost effective for the region. 

If proven successful, the citizens and State of West Virginia will benefit from GLD model 

through reduced environmental impact, improved water quality, and improved flood control.  
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Purpose 
The purpose of this research is to optimize an alternative cap blend ratio mixture for the 

reclamation of a coarse coal refuse pile located in central Appalachia. An 80/20 CCR/MGroTM 

growth blend will be analyzed for economic savings and performance compared to a previous 

proposed 60/40 CCR/MGroTM growth blend. The goal of this research is to reduce construction 

costs and reduce seepage into the refuse pile due to the generation of acid rock drainage/acid 

mine drainage into to nearby streams originating from the Royal Scot refuse site.  

Objective 
The objective of this study is to perform laboratory testing on refuse and MGroTM blend 

specimens, and evaluate that data to perform computer based Finite Element Modeling (FEM). 

Slope stability and seepage modeling will be done to gauge performance criterion. The results 

from the computer modeling can be used to quantify design values to compare with the proposed 

cap and cover design.  

Scope of Work  
The scope of work is separated into three tasks.  

Task 1-Geotechnical Lab Testing 

Geotechnical laboratory testing was performed on two specimen types. The first specimen is 

coarse coal refuse which is found on the Royal Scot site. The second specimen is the 80/20 

CCR/MGroTM, which is proposed as an alternative cap and cover system to the proposed design. 

Laboratory testing was performed on these two specimens to obtain their geotechnical index and 

performance properties for comparative analysis. Table 1 presents the testing procedure 

performed and its corresponding American Society of Testing Materials protocol. 

Table 1. Geotechnical material properties tests 

Test Name ASTM 

Grain Size Distribution 

(GSD) 
D-422 

Compaction D-698 

Hydraulic Conductivity D-5084 

Triaxial Isotropic 

Consolidated  

Undrained Strength (ICU) 

D-4767 

 

Task 2-2D Finite Element Analysis 

Task 2 involves performing 2-D analysis on a conventional planar and geomorphic slope profile. 

After completion of the laboratory testing, the properties are used for Finite Element Modeling. 

The modeling will involve assessment of infiltration/seepage and slope stability to gauge the cap 

and cover system performance. 
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Task 3-Evaluation of Results 

The last task is to evaluation of the Finite Element Analysis. Evaluating the modeling involves 

analysis of saturation/pore water pressure, infiltration into the slope profile, and if the slopes are 

stable under a worst-case scenario storm. This involves comparing/contrasting the modeling to 

the proposed design to determine if acid mine drainage can be reduced. 

Literature Review 
Geomorphic Landform Design 

Geomorphic landform design (GLD) is a new landforming technique that has become prominent 

in mine reclamation. The studies for GLD began in the early 2000’s (Nicolau, 2003). GLD 

differs from conventional landforming in terrain profile, stability, and erosion/water 

management. Conventional landforms typically consist of steep slope profiles with benches to 

alleviate driving forces. GLD profiles implement the principle of geomorphology to create a 

terrain that is similar to its former natural landform (Nicolau, 2003).  

 

Research has also shown that GLD slopes have higher factors of safety in regard to slope 

stability. Russell et al. (2014) performed slope stability analysis on geomorphic and conventional 

slope profiles in Southern West Virginia. The geomorphic profiles proved to have higher factors 

of safety (2.04-3.49) compared to conventional designs (1.25-1.67). Russel et al. (2014) states 

that the reason for increased stability in geomorphic slopes is due to its shallow profiles 

compared to steep profiles that are prevalent in conventional slopes.  

 

Another study on GLD was performed in Southern West Virginia on erosion/water management 

by DePriest et al. (2015). The study was performed on steep terrain that mimic a surface mine 

site. The geomorphic designs showed potential for decreased erosion, and improvement of water 

management/transport on the site according to DePriest et al. (2015). 

 

Short Paper Fiber 

Short paper fiber (SPF) is a by-product from water treatment at paper mills. The material is 

derived from paper making materials such as wood, fiber, clay, and organic matter. The SPF for 

this research is produced by WestRock® and is marketed as MGroTM. Recent studies have shown 

that SPF has the capabilities to be used as a soil amendment. Carpenter and Fernandez (2000) 

mixed paper mill sludge with topsoil. The combination of the sludge and soil were able to 

produce vegetative growth. The WestRock® MGroTM has also been able to serve as a vital soil 

amendment for growth according to Daniels et al. (2003).  

 

SPF blends have been applied in West Virginia for coal refuse reclamation purposes. 

Laubenstein (2004) used a SPF/topsoil cover along the Tygart River. The blended material was 

used as the cover material. Water quality greatly improved with the use of the SPF/topsoil cover, 

and prove to beneficial for coal refuse reclamation purposes (Laubenstein, 2004).  
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Geotechnical Laboratory Testing 

The use of CCR in impoundments/dams dates back to the late 1970’s. The refuse is commonly 

used to construct dams to retain a slurry of fine coal refuse (FCR) and water (Hegazy et al. 

2004). These impoundments can be found throughout West Virginia, Pennsylvania, Ohio, 

Virginia, and Kentucky. Throughout each state the CCR shale varies due to regional geologic 

conditions, and coal mining/preparation processes (D’Appolonia, 2009). A list of geotechnical 

testing for index and strength for CCR can be seen in Table 2.  

 

Table 2. List of Geotechnical testing values for CCR  

Coarse Coal Refuse (CCR) Laboratory Testing Values 

Reference Location 

Grain Size 

Effective Shear 

Strength 

D30 

(mm) 

D50 

 

(mm) 

D60  

(mm) 

Passing 

200  

Sieve (%) φ' (degrees) 

Almes and Butail 

(1976) 

PA, WV, 

 KY, VA 
0.7 2.5 4.5 10 33-39 

McCutcheon (1981) OH 1.9 4.5 7 7 36 

Saxena et al. (1984) WV 12 16 22 2 27-40 

Albuquerque (1994) VA 3.5 7.5 12 1.5 39 

Hegazy et al. (2004) PA 0.35 1.23 2.02 19.8 34 

 

As mentioned CCR varies due to its regional geography and processes it undergoes. Table 2 

shows values for grain size that vary greatly. According to Hegazy et al. (2004), 19.8% passed 

the #200 sieve, which classifies as clays/silts. This is much larger than what was seen in the other 

research as all other CCR testing showed less than 10% passed the #200 sieve. This large 

increase in fines is accredited to advances in coal mining and preparation processes over the last 

15 years, which resulted in a trend toward greater percentages of fines in CCR (D’Appolonia, 

2009). Table 2 also shows effective shear strength friction angle values for different regions. The 

data shows that CCR is variable when it comes to friction angle. In West Virginia, the angle can 

range from 27-40 degrees, which is highly variable. (Saxena et al. 1984). The other regions show 

that the friction angle varies from 33 to 39 degrees. 
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Materials and Methods 
As mentioned in Task 1, geotechnical lab testing was performed on two separate soil specimens. 

Coarse coal refuse (CCR) and MGroTM were the two materials that underwent lab testing. The 

testing was done according to the most recent ASTM standards. Table 1 shows the ASTM 

standards and their corresponding designation. The goal of the geotechnical laboratory testing 

was to gain the two materials geotechnical indexes and performance properties to compare to 

previous studies.  

 

Grain Size Distribution 

The first set of testing was acquiring the grain size distribution (GSD) of the CCR shale material. 

GSD was done according to ASTM D-422. The material that was analyzed was CCR obtained 

from the Royal Scot site. The soil was obtained using a ¾ in. sieve (19 mm opening) in the field. 

The GSD allows gives useful indexes such as the coefficient of uniformity (Cu) and coefficient 

of gradation (Cc). These indexes allow the CCR to be classified into its United Soil Classification 

System (USCS) soil classification. 

 

Compaction Testing 

Compaction testing was the next testing procedure to gain the unit weights of CCR and the 80/20 

blend material. Compaction testing was performed according to ASTM D-698 to find the dry 

unit weight of two materials. The tests were performed at 11% Standard Proctor compaction 

(67.85 kJ/m3 compaction energy). The two test that were performed are as follows: 

1. Coarse Coal Refuse at 11% Proctor Energy (67.85 kJ/m3 (1,425 ft-lb/ft3)) 

2. 80%/20% CCR/MGroTM Blend at 11% Proctor Energy (67.85 kJ/m3 (1,425 ft-lb/ft3)) 

The coarse coal refuse at 11% proctor was completed to find the correct moisture content and dry 

unit weight so the blend material could be compacted. The blend material was completed on a by 

volume basis using a one cup vessel for each test (i.e. 20 cups=16 cups CCR+4 cups MGroTM). 

The blend was then mixed in a blender at 11% CCR proctor moisture content.  

 

Hydraulic Conductivity 

Hydraulic conductivity testing was performed according to ASTM D-5084 (Flexible Wall 

permeability testing) for two specimens: 

1. Coarse Coal Refuse at Standard Proctor Energy (592.5 kJ/m3) 

2. 80%/20% CCR/MGroTM Blend at 11% Proctor Energy (67.85 kJ/m3) 

Flexible wall was chosen over rigid wall testing due to the possibility of particle migration that is 

prevalent in rigid wall permeability.  

The standard Proctor CCR was compacted at a target density of 15.9 kN/m3 and 14.3% moisture 

content, while the growth blend target density was 11.2 kN/m3 and 31.9% moisture. A hydraulic 

gradient of i=15 was used for standard compacted testing. A hydraulic gradient of 15 is not 
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recommended by ASTM, but was needed to accelerate the time of the testing procedure. A 

hydraulic gradient of i=15 was also used to achieve the same accelerated testing for the growth 

blend. Triplicate testing was done for both standard compacted, and 11% compacted samples to 

ensure accuracy. The testing procedure was done until the readings achieved a steady state. 

Steady state means the parameters were constant and allowed to reach a steady flowrate. Once 

each test reached a steady state, the hydraulic conductivity could be determined based on the last 

five measurements that were taken.  

 

Triaxial Strength Testing 

For strength testing, isotropic consolidated undrained (ICU) triaxial testing was performed. The 

specimens that were tested include the standard compacted CCR and 11% compacted 80/20 

MGroTM materials. A GeoTac Sigma 1 triaxial device was used for this testing procedure. Figure 

4 shows the set-up of the triaxial machine with specimen in flex-wall. 

 

In order to account for pore water pressure build-up in the slopes, consolidated undrained (ICU) 

tests were run in accordance with ASTM D-4767. ICU triaxial testing simulates a worst-case 

scenario. This test allows the soil specimen to consolidate under specified stress conditions, and 

then sheared with drainage valves closed to simulate an undrained state. This may not be the case 

for the field site, but CU results will give conservative values for analysis.  
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Figure 4. Display of the ICU triaxial test  

 

Standard Compacted CCR (592.5 kJ/m3) 

Standard Proctor Compacted CCR was tested (592.5 kJ/m3) for shear strength under two 

different confining pressures The CCR gradation was passing a 19 mm (3/4 in.) sieve which was 

the same as GSD. These conditions were chosen as a worst-case scenario. The first confining 

pressure chosen was a middle failure which corresponded to 24.38 m (80.0 feet) into the slope. 

The second confining pressure simulated a deep failure of 36.58 m (120 feet) into the slope 

profile. For the two worst-case conditions, a soil density of 15.71 kN/m3 (100 lb/ft3) was used to 

estimate the stress condition for ICU testing. This density was chosen to simulate the average of 

different compaction efforts that may likely be found at the Royal Scot site.  
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Table 3. Testing conditions for standard compacted CCR (592.5 kJ/m3) 

Testing 

Conditions 

Depth 

Confining 

Pressure 

m (ft) kPa (lb/in2) 

1 

24.38 

(80.0) 

386  

(56) 

2 

36.58 

(120) 

572  

(83) 

 

This sweep of isotropic CU testing will be used in the analysis for the hydraulic barrier. The 

barrier will not be at the specified depths listed in Table 3, but these serve as a conservative 

estimate to the strength of the CCR at depths found within the site and give insight on how the 

barrier will perform at a worst-case scenario.  

 

Before the triaxial testing process, the specimens went through permeability testing, so they were 

near full saturation (61%, 63%, 84%), and no back pressure was done for the CU testing. 

Bypassing the back-pressure procedure, the specimens went straight from seating to the 

consolidation phase at the specified confining pressures listed in Table 3. During consolidation, 

the specimens were under isotropic stress with drainage valves open to allow a change in void 

ratio.  

 

After completion of isotropic consolidation, the specimens could be sheared. Drainage valves 

were closed during shearing in accordance with a CU test, allowing no pore water pressure to 

escape.  A constant rate of shear was used with a strain rate of 2% per hour until it reached 20% 

strain. A pressures sensor was placed on one of the drainage valves to track pore water pressure.  

 

Total Stress Analysis 

To calculate friction angles and discover at what strain rate the specimens failed a total stress 

analysis was used for the standard compacted CCR. For a total stress analysis, stress paths have 

to be analyzed to discover the materials friction angle and at what strain rate the material failed. 

The parameters “p” and “q” are defined in equations 1 and 2 for total stress. Equations 1 and 2 

are taken from the USACE Manual No. 1110-2-1902 (2003). 

 

𝑝 =
𝜎1+𝜎3

2
          (Equation 1) 

 

 

𝑞 =
𝜎1−𝜎3

2
          (Equation 2)  
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Failure Criterion 

Sigma 1 and Sigma 3 are defined as the major and minor principal stresses in a Mohr Coulomb 

plot. Sigma 1 in this testing is the axial stress applied by the piston, and sigma 3 is the confining 

pressure. The p-q plot is a representation of the center and radius of Mohr’s circle and can help 

calculate the internal angle of friction. Since the material is classified as a coarse sand, cohesion 

is assumed to be equal to zero. 

 

11% 80/20 CCR/MGroTM (67.85 kJ/m3) 

The 11% compacted 80/20 blend underwent the same ICU triaxial testing that the standard 

compacted CCR underwent, but with much different confining pressures. The blend material had 

confining pressures of 34.5 and 69 kPa (5 and 10 psi) versus 386 and 572 kPa (56 and 83 psi). 

These stresses were low as the growth/blend layer is only designed to be one foot thick. These 

pressures are overestimates as was the standard compacted CCR for worst-case scenario.  

The four specimens underwent the same permeability testing as the standard compacted CCR to 

reach near or at full saturation (i=15). After completing reaching a steady state hydraulic 

conductivity, the specimens could then be placed on the triaxial machine to undergo seating and 

isotropic consolidation at the 34.5 and 69 kPa confining pressure. The test followed the same 

procedure for shear with the drainage valves closed to not allow any dissipation, and following 

an “undrained” condition. The same strain rate of 2% per hour until reaching 20% strain was 

used for the 80/20 testing.  

Two different methods of analysis were used to determine friction angle and failure for the 80/20 

blends. A total stress analysis was attempted for the 80/20 blends. This was the same method that 

was used for the standard compacted CCR, but some issues arose with the stress paths, and their 

behavior, so a new approach was taken. The other method that was used for analysis was an 

effective stress analysis. The major difference between a total and effective stress analysis is the 

subtraction of the pore water pressure from the major and minor principal stresses. Equations 3 

and 4 show the parameters p´ and q´ which govern an effective stress analysis. The (´) indicates 

that the major and minor principal stresses (Sigma 1 and Sigma 3) subtract out the pore-water 

pressure (u) indicating an “effective” stress analysis. Equations 3 and 4 are taken from the 

USACE Manual No. 1110-2-1902 (2003). 

 

𝑝′ =
𝜎1′+𝜎3′

2
          (Equation 3) 

 

𝑞′ =
𝜎1
′−𝜎3′

2
          (Equation 4) 
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The reason for using an effective stress analysis is the behavior of MGroTM in the 80/20 blends. 

As the piston compresses the sample, it is expected the material would also compress. That is not 

the case with the 80/20 blend. The MGroTM material cause the sample to undergo dilation or it 

causes the sample to extend as the piston is compressed. The effective stress analysis also allows 

the lightly compacted blend material to consolidate. The MGroTM portion of the blend, went 

under isotropic consolidation under a confined pressure. As the sample was confined, water 

would leave the MGroTM material, but did not have any path due, which would lead to the 

sample to undergo dilation.  

Results 

Grain Size Distribution 
Figure 5 shows the Grain Size Distribution for the coarse coal refuse shale material. GSDs 

classify the material on the basis of gravels, sands, silts/clays. The plot lists all particle sizes and 

the following U.S. Standard Sieve Size. The two tests that were performed show consistent 

results for GSD 1 and GSD 2 with only small minor differences in the sand portion.  

 

After performing the GSD, the shale material could then be classified according to the United 

Soil Classification System (USCS)-ASTMD-2487. The two GSD tests performed show that the 

material was on the border of a gravel and sand. Over 50% of the material passes the #4 sieve 

classifying it as a sand. The gradation curve also shows that there are less than 5% fines and 

greater than 15% gravel classifying the material as well graded sand with gravel (SW), but is on 

the verge of being poorly graded due to the coefficient of gradation.  
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Figure 5. Grain Size Distribution for CCR 

Table 4. Critical Indices for Grain Size Distribution 

Results CCR1 CCR2 Average 

D90 (mm) 10.40 10.40 10.40 

D60 (mm) 4.40 4.00 4.20 

D50 (mm) 3.00 2.90 2.95 

D30 (mm) 1.40 1.20 1.30 

D25 (mm) 1.00 0.85 0.93 

D10  (mm) 0.29 0.27 0.28 

Cu-Coefficient of Uniformity 15.17 14.81 14.99 

Cc-Coefficient of Gradation 1.54 1.33 1.43 
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Table 5. USCS Soil Classification 

USCS Soil 

Classification 

Group 

Symbol 

Well graded sand 

with gravel SW 

Compaction Testing 
Table 6 gives a summary of the optimum dry unit weight and corresponding moisture contents. 

A compilation of the compaction curves is given in Figure 6 with zero air void lines and 90% 

saturation lines for each compaction curve.  

 

Table 6. Summary of compaction test results 

Compaction Energy 
Optimum Dry Unit 

 Weight (kN/m3) 

Optimum Moisture  

Content (%) 

CCR 11% Proctor 

(67.85 kJ/m3) 13.07 11.8 

80/20 MGro Blend  

11% Proctor (67.85 

kJ/m3) 11.20 31.9 
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Figure 6. Compilation of compaction test results 

The CCR curve at 11% Proctor shows that at low moisture content the material loses a small 

amount of density until it reaches 8.5%. From that point, it increases its density until reaching an 

optimum density of 13.07 kN/m3 at 11.8 % moisture. The blended material is at a much higher 

moisture content than the CCR. This can be attributed to MGroTM ability absorb large volumes of 

water. The curve starts at 15% moisture and maintains a constant density until 22.5% moisture. 

From that point the density increases gradually as moisture content also increases. The blended 

material reaches an optimum density of 11.2 kN/m3 at 31.9% moisture content.  

 

There is a 1.87 kN/m3 decrease in density from the CCR test to the blended material. This can be 

attributed to the MGroTM material retaining more water, and creating an almost sludge-like 

finished product at much higher moisture content. The CCR is able to take in the water better and 

is much drier at its optimum density as can be seen in Figure 6.  
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Hydraulic Conductivity Testing 
Standard Proctor CCR Tests (592.5 kJ/m3) 

Three tests were prepared at standard Proctor compaction (592.5 kJ/m3). These tests were 

targeted to reach a density of 15.9 kN/m3 and water content of 14.3%. The data and 

corresponding hydraulic conductivity can be seen in Table 7 below. These tests ranged from 10-6 

to 10-7 cm/s that is common for coarse coal refuse. The test also proved to be accurate on the last 

five measurements as they show a coefficient of variation within 10%.   

 

Table 7. Hydraulic Conductivity testing results for standard compacted CCR (592.5 kJ/m3) 

Test 

Water 

Content (%) 

Dry Unit 

Weight 

(kN/m3) 

Degree of  

Saturation 

(S) 

Porosity 

(n) 

Hydraulic 

Conductivity 

Average (Last 5 

Points) (cm/s) 

Coefficient of 

Variation 

 (Last 5 points) 

(cm/s) 

1 14.21 15.7 84% 0.27 3.83 x 10-7 0.0980 

2 15.01 13.9 61% 0.35 1.15 x 10-6 0.0783 

3 15.51 13.9 63% 0.35 7.24 x 10-7 0.0454 

 

The hydraulic conductivity of the specimens is plotted against the pore volume. Pore volume is 

defined as the porosity multiplied by the total specimen volume. The plot can be seen in Figure 

7. A minimum of 1 pore volume was required to go through the specimen to ensure that full 

saturation had occurred, and a stable filter condition was achieved. Test 1 shows a large gap 

between 0 and 0.52 pore volumes. This is because a reading was not taken between 0 and 75 mL 

of water from the test. As can be seen in Figure 7, the test achieved a steady state with little 

variation in the data points. Test 2 had some fluctuations for the first 6 points, but quickly reach a 

steady state as it reached one pore volume. Test 3 had little fluctuation in the data, and quickly 

reached a steady state with almost no change in data points after 0.40 pore volumes. Test 1 

tended to be slightly slower than tests 2 and 3 as can be seen in the plot. This is a direct cause to 

the dry unit wet being on the wetter side of optimum as indicated by the dry unit weight, and 

moisture content in Table 7.  
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Figure 7. Hydraulic conductivity vs. pore volume plot for standard compacted CCR (592.5 

kJ/m3 

11% Proctor 80%/20% CCR/MGroTM Growth Blend (67.85 kJ/m3) 

Three tests were prepared at 11% Proctor for hydraulic conductivity testing. The specimens were 

made up of 80% CCR and 20% MGroTM for growth. The tests were targeted to reach a density of 

11.2 kN/m3 at 31.9% moisture content. The data for the testing can be seen in Table 8 below. 

The hydraulic conductivity was in the magnitude of 10-4 cm/s which is fast, but the blend is 

supposed to allow water to permeate to ensure plant growth. The water contents did not meet the 

specific 31.9% moisture content range. This is due to the MGroTM material which has an ability 

to maintain a large volume of water and leads to large standard deviation of water content for 

each 80/20 blend. Sometimes a large amount of MGroTM could be in a moisture tin, or a small 

amount. Large amounts of MGroTM naturally leads to high moisture contents, while small 

amounts lead to low moisture content. The specimens still reach the target density or within 0.5 

kN/m3.  
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Table 8. Hydraulic Conductivity results for 11% Proctor 80%/20% CCR/MGroTM blend (67.85 

kJ/m3) 

Test 

Water 

Content  

(%) 

Dry Unit 

Weight 

(kN/m3) 

Degree of 

Saturation 

(S) 

Porosity 

(n) 

Hydraulic 

Conductivity 

Average (Last 5 

Points) (cm/s) 

Coefficient of 

Variation 

 (Last 5 points) 

(cm/s) 

1 21.83 11.7 57% 0.40 5.98 x 10-4 0.8913 

2 19.18 11.2 69% 0.43 4.05 x 10-4 0.2938 

3 25.55 11.5 62% 0.41 1.12 x 10-4 1.1830 

 

 

The hydraulic conductivity is plotted against the pore volume for the three tests as well. It was 

maintained that the specimens reach at least one pore volume to reach a stable filter condition. 

The plot can be seen in Figure 8. The plot shows that all tests were run over more than one pore 

volume. This is due to the MGroTM material again. As mentioned, it holds in large volumes of 

water and has an ability to absorb water under a free swell condition, which can lead to large 

fluctuations in the permeability of the specimens. The plot shows more variability than the 

standard compacted tests shown in Figure 7. The coefficient of variation is also much higher as 

compared to the standard compacted specimens. This was expected with a material that takes in 

large amounts of water. The hydraulic conductivity for the three tests all are close in magnitude 

as shown in Table 8, in which all are in the order of 10-4 cm/s. It is believed that the tests reached 

stable filter conditions even with very high coefficient of variation for each test. 
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Figure 8. Hydraulic conductivity vs. pore volumes for 11% compacted 80%/20% CCR/MGroTM 

blend (67.85 kJ/m3) 
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Triaxial Compression Strength Testing 
Standard Compacted CCR (592.5 kJ/m3)-Total Stress Analysis 

To determine when the material failed, the p-q plot must be analyzed according to a total stress 

analysis. The p-q plot can be seen in Figure 9. Failure on a p-q plot occurs when the curve 

changes from left to right at the large bend in each data series. This means when the bow in the 

curve changes from negative to positive. This large bend is the peak in stress difference for each 

curve. This can be specified on each plot by the white and black stars for each curve (CCR 1 

through 4). Using the data from specified points where the stars are located, the strain rate at 

which the material fails can be defined in the stress-strain plot in Figure 10.  

 

 

Figure 9. p-q plot for standard compacted CCR (592.5 kJ/m3) 

Upon inspection of Figure 10, it can be inferred that there is no residual strength in each of the 

data series at different confining stresses. Each curve starts with some linear behavior before 

becoming curvilinear and continuing until around 20% strain. Without having a peak and a large 

reduction in shear stress that is prevalent in most stress-strain plots, the p-q plots were vital to 

determine at what percent strain the material failed at as mentioned in the above paragraph. 



21 

 

Using the corresponding stress where the stars are placed, the strain rate could be found by 

matching it to the stress-strain curve seen in Figure 10. The failure points are marked by white 

and black stars on the stress-strain plot.  

 

 

Figure 10. Stress-Strain plot for standard compacted CCR (592.5 kJ/m3) 

As can be seen in the plot, the four materials failed between 2.22% to 2.97% strain. This shows 

that the materials had similar behavior at the two different confining pressures. To calculate the 

internal angle of friction, the maximum p and q values for each curve were analyzed. Due to 

assuming zero cohesion, equations 5 and 6 can be used to get an individual friction angle for 

each curve. Equations 5 and 6 are taken from the USACE Manual No. 1110-2-1902 (2003). 

 

 

𝛼 = 𝑡𝑎𝑛−1
𝑞𝑚𝑎𝑥

𝑝𝑚𝑎𝑥
         (Equation 5) 
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𝜙 = 𝑠𝑖𝑛−1(𝛼)          (Equation 6) 

 

Table 9. Consolidated Undrained friction angle results for standard compacted CCR (592.5 

kJ/m3) 

Tests 

Internal Angle of Friction 

(degrees) 

CCR1-386 kPa 24.89 

CCR2-386 kPa 25.08 

CCR3-572 kPa 24.78 

CCR4-572 kPa 24.12 

 

Table 10. Summary statistics for friction angle results (standard compacted CCR) (592.5 

kJ/m3) 

Summary Statistics for Standard 

Compacted CCR  

Average 24.72 

Standard 

Deviation 0.417 

Coefficient of  

Variation 0.0169 

 

The results in Tables 9 and 10 shows that the results from the CU were accurate and ranged from 

24.12-25.08 degrees with an average of 24.72 degrees. The coefficient of variation for these 

results are low for a small sample size. The average is close to a 2:1 slope (26.6 degrees), which 

is good in terms of stability.  

11% Compacted 80/20 CCR/MGroTM blend-Total Stress Analysis 

A total stress analysis was also done on the 80/20 replicants to gain friction angle and determine 

where failure occurred. P-q plots were generated for analysis, but the results in Figure 11 do not 

exhibit the curvilinear negative to positive that determined failure for the standard compacted 

CCR. 80/20-1 shows that the path presented horizontal behavior going back and forth. 80/20-2 

had very low values on the q-axis, and had large skewed data fluctuations. 80/20-3 presented 

completely linear behavior from 0-21.2 kPa on the q-axis, and 50.6-90.1 kPa on the p-axis. 

80/20-4 showed some linear behavior before reversing its trend in the opposite direction. The 

reversing means that the material goes into compression or failure. 
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Figure 11. p-q plot for 11% compacted 80/20 CCR/MGroTM blends (67.85 kJ/m3 

The reason for the behavior can be attributed to the very low compaction effort that was applied 

to the specimens, and the way MGroTM behaves naturally. With constant cell-pressure the axial 

piston applies a compressive stress to the specimen. With a light compaction effort, and MGroTM 

making up 20% of the specimen; the specimen went under a compression behavior like a sponge 

due to the large amounts of water present in MGroTM. This could cause the specimens to deform 

rapidly and give data that is present in Figure 11.  

 

To identify when the material failed, a different approach was taken. The p-q plots show a back 

and forth behavior, which means the specimens failed at a very low strain. To see how low of a 

strain, the Mohr-Coulomb stress-strain plot was analyzed, since failure cannot be determined 

from the p-q plots. Referring to Figure 12, the materials show little to no residual strength. This 

is a verification of a constant strain failure. Upon inspection of Figure 12, the failure points can 

be verified. 80/20-1 and 80/20-2 fails at less than 1% strain. Both replications start an increase 

and decreasing trend early in their respective curves. This increase/decrease is indicative of 

failure, and both continue with constant strain to 20% except for 80/20-2 having a 10 kPa 
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decrease in stress.  These blends are also the lower of the two confining pressures. 80/20-3 and 

80/20-4 fails at less than 4% strain at a higher confining pressure. Blend 3 fails early in the test 

by a small decrease in stress, while 80/20-4 has a 1.95 kPa decrease in stress indicating failure. 

80/20-4 continues the decreasing trend before continuing constant strain through 20%. 

 

 

Figure 12. Stress-Strain plot for 11% Compacted 80%/20% CCR/MGroTM blend (67.85 kJ/m3) 

 

Figure 12 indicates that the blends reached peak strength (failed) and continued constant strain 

behavior. The plots have some similarities in behaviors besides the large decreases in stress for 

each confining pressure. These large drops can be attributed to the low compaction effort, and 

MGroTM material as the axial load was applied. The next step was to calculate the internal angle 

of friction for the blend material. Equations 5 and 6 were used to calculate the internal angle of 

friction using the maximum p and q values gained from testing. The assumption of zero cohesion 

was also applied for this sweep of testing similar to the standard compacted CCR.  
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Table 11. Consolidated Undrained friction angle results for 11% Compacted 80%/20% 

CCR/MGroTM blends (67.85 kJ/m3) 

Tests 

Internal Angle of Friction (degrees) 

(degrees) 

Blend1-34.5 kPa 10.60 

Blend2-34.5 kPa 16.67 

Blend3-69.0 kPa 13.37 

Blend4-69.0 kPa 12.30 

 

Table 12. Summary statistics for friction angle results (11% Compacted 80%/20% 

CCR/MGroTM blends) (67.85 kJ/m3) 

Summary Statistics for 11% 

Compacted 80/20 Replications 

Average 13.24 

Standard 

Deviation 2.558 

Coefficient of  

Variation 0.1933 

 

Tables 11 and 12 shows that the friction angles ranged from 10.60-16.67 degrees with an average 

of 13.24. This is wide range for friction angles, but this is expected from a material that has very 

low density. This material will also serve as the top layer (cover) and is only one foot in 

thickness. This very low friction angle can also be explained by MGroTM. MGroTM is highly 

organic, and materials that have a high organic content can produce very low internal angles of 

friction in the range of 0-10 degrees (Koloski et al. 1989). The results for this testing did not fall 

in that range, but can serve as a guideline for the low internal angles of friction. The coefficient 

of variation for the blend testing is also high which is expected with a large range of friction 

angles.  

11% Compacted 80/20 CCR/MGroTM blend-Effective Stress Analysis 

An effective stress analysis was also done on an 80/20 replication to see the differences between 

a total and effective stress path. The confining pressure for this test was at 69 kPa similar to the 

total stress analysis. The major difference in the effective stress analysis is that it takes into the 

consideration the subtraction of pore-water pressure from the major and minor principal stresses. 

Instead a p-q plot, a p´-q´ plot will be used to analyze for failure and friction angle. The p´-q´ 

plot can be seen in Figure 13. 
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Figure 13. p’-q’ plot for 11% compacted 80/20 CCR/MGroTM blend (67.85 kJ/m3) 

The p´-q´ plot shows a much different curve than what was seen in Figure 11. The curve shows 

that as stress increases up to its failure point at (58.95 kPa, 9.54 kPa). After that there is a 1.93 

decrease in stress at the first large drop. A line of best fit was also used to gain the alpha angle 

for this set of data. The test was under the assumption of zero cohesion as the line is drawn 

through the (0,0) axis. The alpha angle was found to 9.18 degrees, and from that point the 

friction angle could be calculated. Equation 7 shows the calculation of the friction angle based 

off the alpha angle of the best fit line and was taken from the USACE Manual No. 1110-2-1902 

(2003). 

𝜙 = arcsin⁡(tan(𝛼))         Equation 7 
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Table 13.  Consolidated Undrained friction angle results for 11% compacted 80/20 blend 

(67.85 kJ/m3) 

Tests 

Internal Angle of Friction 

(degrees) 

80/20 Blend-69.0 kPa 9.30 

 

The friction angle according to the effective stress analysis was 9.30 degrees as seen in Table 13. 

This is lower than the four friction angle results from the total stress analysis. The lowest friction 

angle for the total stress analysis was 10.60 and the highest 16.67. The decrease in friction angle 

from the effective stress analysis is accredited to the pore-water pressure being subtracted from 

major and minor principal stresses in the stress-path plot (Figure 13). A pore-pressure-strain plot 

can be seen in Figure 14 as well. The plot shows that the 80/20 blend went under dilation or an 

extension of the sample. Most samples when the axial piston is applied go under compression. 

The extension of the blend is due to the MGroTM in the sample is water retentive when it is 

compressed. It is also noted that first large decrease in in pore-water pressure is at 3.62% strain, 

which is what was considered failure for the total stress analysis.  
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Figure 14. Pore-water pressure versus axial strain for 11% compacted 80/20 CCR/MGroTM 

blend (67.85 kJ/m3) 

Summary of Geotechnical Laboratory Testing Results 
Table 14 tabulates the results of geotechnical laboratory testing performed for the Royal Scot 

site. The research for this study focused on a larger gradation size for CCR, and 80/20 blend 

testing. A previous researcher did CCR testing and 60/40 blend testing using the same material 

from their respective sites (Stevens, 2016). There are numerous similarities and differences 

between this study and the previous researcher’s studies that will be discussed in detail.  

A full sweep of geotechnical testing was done on the standard compacted CCR (592.5 kJ/m3) and 

11% compacted 80/20 CCR/MGroTM blends. Grain size distribution was performed on CCR 

passing a 19-mm sieve (3/4”), and then compaction, hydraulic conductivity, and triaxial strength 

testing was performed on the standard compacted CCR, and 11% compacted blend materials. 

Research by Stevens (2016) on materials similar to the standard compacted CCR, 11% 

compacted blend material, and used a 60/40 CCR/MGro blend. The CCR and MGroTM materials 

were taken from the same sites. Table 14 summarizes the material properties tested in this 

research and lists the corresponding data from Stevens (2016).  
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Table 14. Parameter summary table for Geotechnical lab testing  

 

* Dashes (-) represent lab testing that is not available. * 

Observations of CCR geotechnical laboratory testing: 

For the GSD testing, there are some differences with the indices listed in Table 14. As mentioned 

a larger gradation was used for this study, and was sieved in the field up to 19 mm. Stevens 

(2016) shows that there are larger diameter particles at the sand portions of D50 and D10. The 

reason for this is that the testing done for this report was already sieved in the field and put 

through the GSD procedure. The testing done by Stevens (2016) used in-situ material, which had 

very large (50.8 mm) material that sat on top of the #4 sieve. That is the reason for the smaller 

values of 1.72 and 0.53 mm for D50 and D10, as opposed to 3.0 and 0.30 mm.  

D10 Sand Portion 

(#4 - #200) (mm)
0.53 0.98 0.3 0.3 0.3

D50 Sand Portion 

(#4 - #200) (mm)
1.72 3.35 1.7 1.6 3.0

% Passing No. 200 sieve 

(clays and silts)
1.23 0.42 2.96 2.75 3.62

Specific Gravity Gs 2.19 1.92 - 2.21 - - -

Plasticity Index, PI 4 - - - -

k sat (cm/s) 3.50E-07 - 4.22E-04 - 8.61E-04 3.34E-04 6.87E-07

φ' (degrees) Direct Shear 41.40 - 43.80 - 30.16 - -

φ'c'=0 (degrees) Direct Shear 43.21 - 44.96 - 35.82 - -

c' (kPa) 16.99 - 25.60 - 1.92 - -

φ'c'=0 (degrees) ICU - - - 9.30-16.77 24.12-25.08

γdmax (kN/m
3
) (200% Proctor) 16 - - - -

γd (lb/ft
3
) (200% Proctor) 101.9 - - - -

ωopt (%) (200% Proctor) 12.3 - - - -

γdmax (kN/m
3
) 

(Standard Proctor)
15.9 - - - -

γd (lb/ft
3
) (Standard Proctor) 88.3 50.9 74.5 - -

ωopt (%) (Standard Proctor) 14.3 - - - -

γ90%  (lb/ft
3
) 87.57 - 74.08 - -

ω90% 12.8 - 27.2 - -

γdmax (kN/m
3
) (34% Proctor) 15.1 - - - -

ωopt (%) (34% Proctor) 17 - - - -

γdmax (kN/m
3
) (11% Proctor) 14.6 - 11.7 11.2 13.07

ωopt (%) (11% Proctor) 17.5 - 28 31.9 11.8

Royal Scot Laboratory Parameter Summary Table

Geotechnical Property
CCR Shale 

(Stevens, 2016)

MGro™ 

(Stevens, 2016)

60/40 CCR-

MGro™ blend 

(Stevens, 2016)

80/20 

CCR/MGro™ 

blend 

CCR Passing 

19 mm
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The combined GSD can be seen in Figure 5. The percent passing a No. 200 sieve for this study 

produces more crushed fines in the silt and clay range particles (fines) as opposed to Stevens as 

well, which is expected with smaller diameter particles (Stevens, 2016). The final comparison for 

the GSD is that the material for this study classifies as a well graded sand with gravels (SW) as 

opposed to Stevens’ poorly graded sand with gravels (SP). This is due to (Stevens, 2016) having 

a large (50.8 mm) shale material that is mentioned above. That large piece of shale changed the 

coefficient of uniformity, which governs the final classification from well to poorly graded. 

 

Compaction testing was performed on two 11% Proctor energies, which consisted of CCR, and 

an 80/20 blend. The 11% compaction (67.85 kJ/m3) was used to approximate the refuse at a 

density approximate to being end-dumped from a loader or similar construction equipment.  In 

comparison, Stevens (2016) had two 11% compaction specimens, which were CCR and a 60/40 

blend. A major difference for the CCR was that for this study, a max 19 mm gradation was used 

and Stevens used a max gradation of 4.76 mm (#4 sieve), which is four times as large. Table 14 

shows that the dry unit weight and moisture content for the larger gradation decreased by 1.53 

kN/m3 and 5.7% respectively. For a shale material, the larger the particle size, the less water it 

can hold in, which is in accordance with the results from the laboratory testing. The 80/20 and 

60/40 blends show that they both performed very similarly. 80/20 blend had a dry unit weight 

and moisture content of 11.20 kN/m3 and 31.90%, while 60/40 had 11.70 kN/m3 and 28.00%. 

Both are very close in density and moisture content, with 60/40 having a 0.5 kN/m3 increase in 

density with a lower moisture content. This can be explained for either material by 

inconsistencies with the MGroTM material. Any moisture content that is taken to be dried during 

compaction testing could have a large amount or small amount of MGroTM. The more MGroTM; 

the higher moisture content, and vice-versa.  

For the hydraulic conductivity testing, standard compacted CCR (592.5 kJ/m3) and 11% 

compacted 80/20 blend (67.85 kJ/m3) testing will be compared to Stevens testing (Stevens, 

2016). Both tested standard compacted CCR, but the research done for this study was done with 

flexible-wall testing as opposed to rigid-wall testing. Flex-wall was chosen because of the 

possibility of particle migration in rigid-wall permeability testing. Under standard compacted 

conditions for CCR, both studies show that the laboratory permeability of two different max 

gradation had velocities in the magnitude of 10-7 cm/s. For this research, it was expected that the 

larger 19 mm gradation, would have a much faster permeability, but that was not the case as both 

performed similar according to Table 14. This study had a hydraulic conductivity of 6.87 x 10-7 

cm/s, which Stevens posted 3.50 x 10-7 cm/s. The 80/20 and 60/40 CCR/MGroTM blends had 

much lower magnitudes but similar conductivities once again. Both blends were in the 

magnitude of 10-4 cm/s. The expectation for the 80/20 blend was that it would be in the order of 

10-3 cm/s with a 50% reduction of MGroTM, but that was not the case. MGroTM takes in large 

amounts of water so it was expected to be able to flow faster through a larger 19 mm max 

gradation than with 50% more MGroTM and a smaller 4.76 mm max gradation.  
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The final testing comparison is for the internal angle of friction for standard compacted CCR, 

and 11% blends that were tested. First, this study used isotropic triaxial compression ICU testing, 

while Stevens (2016) used direct shear testing. Reference to Table 14, presents the friction angles 

under cohesionless conditions show the friction angle results are much higher than the results of 

the ICU testing. The standard Proctor compacted CCR posted friction angles ranging from 

24.12-25.08 degrees, while Stevens (2016) results were 43.21-44.96 degrees. The 80/20 testing 

had a range of 9.30-16.77, while 60/40 was 35.82 degrees. The lower bound (9.30 degrees) was 

analyzed using an effective stress analysis, while the upper bounds were calculated using a total 

stress analysis. This is a very large difference between two similar materials. As mentioned, the 

maximum gradation size for this study was four times as large as the gradation for Stevens, and 

there was a 50% reduction of MGroTM between 60/40 to 80/20. This does not mean that the 

gradation/reduction is the direct cause. The main cause for this result is likely due to the change 

of testing procedure and the behavior of the refuse under the ICU conditions. Typically for direct 

shear, materials with very small particle size are used. The GSD (Figure 5) results for passing a 

#200 sieve in Table 14 show that very little clay/silts were present in the materials (less than 

5%). During the direct shear test, a larger particle could have been at the threshold of the shear 

plane. The particles shape and orientation then could force the material to have higher friction 

angles than expected.   
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Numerical Modeling 
To see the effects of the laboratory testing on the Royal Scot site, Finite Element Modeling 

(FEM) was performed on two separate 2D slopes. The first slope was a conventional planar slope 

that had geometry close to a 2:1 profile. The other slope was a geomorphic channel. These two 

slopes performances will be measured using seepage and slope stability analysis. An image of 

the Royal Scot site with the locations of these slope profiles can be seen in Figure 15. The 

locations are indicated by the black boxes. The conventional planar slope located near Ditch G 

includes one bench that measures 7 feet. The geomorphic slope does not have benches and is less 

steep.  

 

Figure 15. Image of Royal Scot plan including the location of slope profiles that are modeled 

(Adapted from Lorimer, 2016) 

Modeling Methodology 
The modeling for this study was done using SVOfficeTM. Within SVOfficeTM there are two 

programs named SVFluxTM and SVSlope®. SVFluxTM was be used for the seepage analysis 

implementing climate into the two slope profiles. SVSlope® was used for slope stability analysis 

after the seepage analysis has occurred. This allows the slope to be analyzed for stability after the 

soil has become saturated, simulating a worst-case scenario. These two programs allowed the 
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overall performance of the cap and cover system to be evaluated at according to the laboratory 

testing. The models were also analyzed using unsaturated soil mechanics. This means that the all 

soil profiles were modeled as an unsaturated condition, until the a 100-year storm occurred.  

SVFluxTM 

The two slope profiles were run for 25 days within SVFluxTM. The 25 days is to see how a 100-

year 24-hour storm infiltration affects the Royal Scot site. The storm was inserted on the first day 

of the model, and seepage affects were analyzed. The data was gathered from the NOAA Point 

Precipitation Frequency Estimates. Table 15 list all the details of the storm event. 

Table 15. Probabilistic storm data for modeling 

Storm Event Station Volume (m/day) 

100-year 

24-hour 

East Rainelle 3 

NNE 0.135 

 

 The station used was close to the Royal Scot Site and was East Rainelle 3 NNE (46-2638) 

station. The 100-year storm had a volume of 0.135 m/day. This storm should allow the growth 

(cover) layer to completely saturate and see how much water infiltrates into the hydraulic barrier. 

The storm data could be input into the SVFluxTM via climate boundary condition. The other 

boundary condition that was used in SVFluxTM consisted of review boundaries. A review 

boundary is used in SVFluxTM to allow flow into or out of the model depending on differences in 

pressure. These were used on both models to allow the fluxes to flow into or out of the model. 

The last condition that was inserted into the model were flux lines. Flux lines are used to track 

the amount of flux that travels through the line. The flux lines in this model were used to track 

infiltration from the hydraulic barrier into the fill material. The flux line was drawn from the 

bench of the conventional planar slope to the toe under the hydraulic barrier layer. The flux line 

reports infiltration in cubic meters of flow. Since it is a 2-D model, the thickness of the slope is 

1-meter so that cubic meters of infiltration is possible. For the geomorphic slope, the line was 

drawn from lower 66% of the slope to the toe under the hydraulic barrier. Table 16 shows a list 

of boundary conditions and their location on the two slope profiles. 

Table 16. Boundary condition locations 

Boundary Conditions Locations 

Climate Boundary Top of growth layer 

Review Boundary Toe of slopes 

Flux Line 

(Conventional) Bench to toe 

Flux Line 

(Geomorphic) Lower 66% to toe 
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SVSlope® 

SVSlope® is the finite element analysis program used for the analysis of slope stability based on 

the limit equilibrium approach. For this study, the slopes will be analyzed in two dimensions. 

The program includes several material failure modes including Mohr Coulomb, Hoek-Brown, 

and several others; for this analysis Mohr-Coulomb will be used. SVSlope® also has several 

calculation methods for safety factors. Some of these methods include: General Limit 

Equilibrium (GLE), Bishop’s simplified method of slices, Janbu method of slices, and several 

others. For this analysis, the GLE was chosen because it takes into consideration the inter-slice 

shear forces. Another useful tool within SVSlope® is the ability to couple with SVFluxTM for 

transient analysis with saturation and groundwater data. Coupling the two programs allows the 

user to see the effects of pore-water pressure and climate on the slope profiles.  

Unsaturated Soil Mechanics 

The growth layer will be saturated during a storm event, so the cap part of the system will be 

modeled as a saturated condition. This will not be the case for the hydraulic barrier and the fill 

material. The barrier and fill material will be modeled as an unsaturated condition. The barrier is 

designed to saturate over time due to storms, and allow little to no water to seep into the fill 

material.  

 

Therefore, unsaturated hydraulic conductivity calculations were required for these cover systems. 

The unsaturated soil properties were done using the Fredlund and Xing equation for the Soil-

Water Characteristic Curve (SWCC) (Lu and Likos 2004). The equation can be seen below in 

Equation 8. 

𝜃(𝜓) = (1 −
ln(1+

𝜓

𝜓𝑟
)

ln(1+
1000000

𝜓𝑟
)
)𝜃𝑠 (

1

(ln[𝑒+(
𝜓

𝑎
)
𝑛
])
𝑚) (Equation 8) 

 

where, 

𝜃 = ⁡volumetric⁡water⁡content⁡(%) 

𝜓 = matric⁡suction⁡(kPa) 

𝜓𝑟 = matric⁡suction⁡corresponding⁡to⁡residual⁡water⁡content = hr⁡(kPa) 

𝜃𝑠 = saturated⁡volumetric⁡water⁡content⁡(%) 

𝑎: 𝑐urve⁡fitting⁡parameter 

𝑛: 𝑐urve⁡fitting⁡parameter 

𝑚: 𝑐urve⁡fitting⁡parameter 

ℎ𝑟: 𝑐urve⁡fitting⁡parameter 
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There was one issue with the curve fitting parameters: a, n, m, and hr. The parameters are based 

on D10 from the grain size distribution and gave results that were not justifiable. It was then 

discovered the Torres (2011) equation could be used for large coarse materials. The D10 of 0.28 

mm from Table 4 was not able to fit the Torres’ equations so a maximum value of D10 equal to 

0.11 was used for the SWCC. The fitting parameters for the Torres Equation can be seen below. 

 

𝑎𝑓 = −967.21(𝐷10
2 ) + 218.37(𝐷10) − 2.7 (Equation 9) 

 

𝑛 = 10(−0.0075𝑎𝑓
3+0.1133𝑎𝑓

2−0.3577𝑎𝑓+0.3061) (Equation 10) 

 

𝑚 = 0.0058𝑎𝑓
3 − 0.0933𝑎𝑓

2 + 0.4069𝑎𝑓 + 0.3481 (Equation 11) 

 

ℎ𝑟 = 100 (Equation 12) 

 

Table 17. Soil Water Characteristic Curve (SWCC) Parameters 

Soil Water Characteristic Curve Parameter 

af 9.62 

n 4.72 

m 0.79 

hr 100 

 

Modeling Inputs 
For SVFluxTM and SVSlope® to give accurate results, input parameters from geotechnical 

laboratory testing were used. For SVFluxTM properties include hydraulic conductivity, 

volumetric water content, and Soil-Water Characteristic Curve variables are used. SVSlope® 

uses failure mode parameters. Since Mohr-Coulomb is used for this analysis, input parameters 

include: dry unit weight, cohesion, and internal angle of friction.  

SVFluxTM Input Parameters 

The input parameters for SVFluxTM consist of saturated hydraulic conductivity and volumetric 

water content (porosity (n)), and specific gravity (Gs). Aside from these two parameters, the soil-

water characteristic curve includes data that corrects the hydraulic conductivity for an 

unsaturated scenario. The data that was used are the Equations 9 through 12 (Torres, 2011). The 

equations are related to D10 of CCR shale. Figure 5 shows a compilation of the GSD curves. The 

original results for D10 (0.30 mm) of the CCR shale gave undesirable results for the fitting 

parameters. A D10 value of 0.11 mm was used as the maximum for the fitting parameters 

according to the Torres equation. The D10 particle size yielded fitting parameters of af=9.62, 

nf=4.72, mf=0.79, and hr=100. Parameter af governs the approximate air entry value, nf controls 
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the slope of the curve at its inflection point, mf is related to the residual water content, and hr 

correlates to matric suction under residual water conditions (DePriest, 2015). The input 

parameters for SVFluxTM are presented in Table 18. 

Table 18. SVFluxTM input parameters for modeling 

SVFluxTM Input Parameters 

Input Parameters 80/20 Blend Hydraulic 

Barrier 

Fill CCR 

ksat (m/day) 0.289 0.0594 0.3456 

volumetric water 

content (n) 

0.48 0.35 0.45 

Gs 2.00 2.19 2.65 

 

SVSlope® Input Parameters 

As mentioned, dry unit weight, cohesion, and friction angle are the major input parameters for 

SVSlope®. The dry unit weight and cohesion stayed constant on both slope profiles, and were 

not changed. Dry unit weight takes the water content into consideration. For the internal angle of 

friction, a sensitivity analysis was performed according to the Three-Sigma rule for small sample 

sizes to account for uncertainty in the hydraulic barrier and 80/20 growth layer. According to 

Duncan (2000), the Three-Sigma Rule uses the fact that 99.73% of all values of a normally 

distributed parameter fall within three standard deviations of the average. The Three-Sigma rule 

can be used to estimate a value of standard deviation by first obtaining highest and lowest 

conceivable values of the parameter. Equation 13 shows the equation for the estimated standard 

deviation (Duncan, 200) 

𝜎3 =
𝐻𝐶𝑉−𝐿𝐶𝑉

6
          (Equation 13) 

HCV=highest conceivable value 

LCV=lowest conceivable value 

Table 19. 3-Sigma friction angle values 

Hydraulic Barrier LCV Mean HCV 

Friction Angle (degrees) 24.24 24.72 25.20 

Standard Deviation (degrees) 0.16 

80/20 Growth Layer LCV Mean HCV 

Friction Angle (degrees) 10.22 13.22 16.22 

Standard Deviation (degrees) 1.0 
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Three friction angle values for the hydraulic barrier and 80/20 growth layer were chosen for the 

two slope profiles according to the sensitivity analysis. The values are listed in Table 19. The 

highest conceivable (HCV), mean, and lowest conceivable (LCV) values were all run in 

SVSlope® to establish a parametric range of safety factors. The rest of the input parameters are 

presented in Table 20. The commas for the friction angle values is the different angles that were 

chosen based off the Three-Sigma analysis, that were listed in Table 19. All parameters used for 

the slope stability analysis were laboratory tested apart from the inputs that have an asterisk (*) 

next to them. These were recommended to use for the fill material, since laboratory testing had 

not been done on that material (Stevens, 2016). The c’ (cohesion) has very low values due to the 

inherent nature of the refuse. In the laboratory testing, zero-cohesion assumptions were used 

since the material was shale, and produces a small number of fines. The model is not able to run 

with zero inputted for cohesion, so very small values were used for each layer.  

Table 20. SVSlope® input parameters for modeling  

SVSlope® Input Parameters 

Input Parameters 80/20 Blend Hydraulic Barrier Fill CCR 

φ (ᵒ) 10.22, 13.22, 16.22 24.24, 24.72, 25.20 40.54* 

c' (kPa) 1.00 2.00 2.00 

γ (kN/m3) 11.20 15.90 18.02* 

* signifies parameters done by Stevens, 2016 

Modeling Results 
Using the input parameters for SVFluxTM and SVSlope®, the conventional planar slope and 

geomorphic could be analyzed for seepage and stability. Both conventional and geomorphic 

slopes had a 0.6-meter (2 ft) hydraulic barrier and 0.3-meter (1 ft) 80/20 growth layer. The only 

difference was the conventional planar slope had a 0.6-meter barrier through the benched area, 

and was then tapered to 0.3 meters on the downslope toward the toe of the slope. This taper was 

to reduce pore pressure build-up that happens in conventional planar slopes toward the toe due to 

a saturated hydraulic barrier. For the hydrologic output, both slope profiles were analyzed for 

precipitation and infiltration from the hydraulic barrier into fill material. The growth layer is 

designed to experience a large amount of infiltration due to its light compaction effort. This also 

allows excess water to ensure plant growth.  

The models simulated the effects of a 100-year 24-hour storm event (0.135 m/day or 135 mm of 

rainfall). The slopes were modeled to be in a partially saturated state, and the storm event 

occurred on day 1 of 25 successive days. The 25-day duration allows the movement of 

infiltration and saturation of the slope after a 100-year storm has occurred. Slope stability 

calculations were done after the storm event has occurred to get a worst-case scenario on the 

lowest factor of safety for the conventional planar and geomorphic slopes.  
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Conventional Planar Slope (Ditch G) Saturation and Streamlines 

Figures 16 to 19 show the saturation of the conventional planar slope before and after the storm 

event. Table 21 helps to identify the saturation on each corresponding day.  

Table 21. Saturation of growth layer and hydraulic barrier 

Conventional Planar Ditch G 

Day Growth Layer Saturation (%) Hydraulic Barrier Saturation (%) 

3 100 40 to 50 

4 100 50 

15 100 20 to 30 

25 100 15 to 20 

 

 

 

 

Figure 16. Day 3-Conventional Planar Slope (Ditch G) saturation with streamlines 
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Figure 17. Day 4-Conventional Planar Slope (Ditch G) saturation with streamlines 

 

Figure 18. Day 15-Conventional Planar Slope (Ditch G) saturation with streamlines 
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Figure 19. Day 25-Conventional Planar Slope (Ditch G) saturation with streamlines 

On day 3 the growth layer is at 100% saturation, while the growth layer is at 40 to 50 percent 

saturation 48 hours after the storm has occurred. Saturation is starting to build up at the toe of 

slope, which is an indication of pore-pressure build-up. Streamlines are able to form due to 50% 

saturation in the barrier. Day 4 is similar in saturation with the growth layer still completely 

saturated and the streamlines are starting to get larger as the saturation in the barrier increases. 

The streamlines are gaining magnitude at the downslope toward the toe.  On day 20, the growth 

layer is still completely saturated, but the hydraulic barrier has decreased back to S=20 to 30%. 

There is still more saturation at the toe of the slope which is expected since the toe is closer to 

the phreatic surface. The streamlines can only be seen near the toe of the slope and the 

downslope to the bench. On the last day (day 25), the growth layer remains completely saturated, 

but the hydraulic barrier has almost completely desaturated. The desaturating of the barrier as 

time passes causes more water to pass from the barrier into the fill. The saturation in the barrier 

is only 15 to 20% saturation, and the streamlines only exist at the bench and toe of the planar 

slope. The conventional planar slope also has no issues with mesh generation issues within the 

model. 

Geomorphic Slope (GLD-C) Saturation and Streamlines 

Figures 20 to 23 show the saturation of the geomorphic slope before and after the storm event. 

Table 22 shows helps to identify the saturation on each corresponding day. 
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Table 22. Saturation of growth layer and hydraulic barrier 

Geomorphic Channel-C 

Day Growth Layer Saturation (%) Hydraulic Barrier Saturation (%) 

3 100 50 

4 100 60 

15 100 30 to 35 

25 100 20 to 25 

 

 

Figure 20. Day 3-Geomorphic Slope (GLD-C) saturation with streamlines 
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Figure 21. Day 4-Geomorphic Slope (GLD-C) saturation with streamlines 

 

Figure 22. Day 15-Geomorphic Slope (GLD-C) saturation with streamlines 
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Figure 23. Day 25-Geomorphic Slope (GLD-C) saturation with streamlines 

On day 3, 48 hours after the storm occurrence; the growth layer has reach 100% saturation, and 

the hydraulic barrier is at S=50% similar to the conventional planar slope. There is no evidence 

of increased saturation at the toe of the slope. Streamlines are starting to generate with saturation 

at 50% in the barrier.  Day 4 shows that the growth layer remains fully saturated and the 

hydraulic barrier has reached 60% saturation. There is still no change of saturation at the toe of 

the slope indicating a pore-pressure build-up that was evident in the conventional planar slope 

saturation. The day 4 streamlines are more prevalent up the slope than at the toe. As time 

continues to Day 15, the hydraulic barrier has desaturated to 30 to 35% saturation. The growth 

layer remains at 100% saturation. The toe of the slope is starting to have increased saturation, 

which indicates a build-up in pore pressure. The streamlines on Day 15 are also much more 

prevalent as desaturation occurs, which is expected. The last day (Day 25), shows that the growth 

layer remained fully saturated throughout the model. The growth layer staying fully saturated 

throughout 25 days is a sign that growth is capable, and a root matrix can form. Saturation in the 

hydraulic barrier has decreased to 20 to 25%, and the streamlines are only forming on the 

downward 2/3rd’s of the slope profile, meaning the water is draining down the slope and 

ponding is not occurring.  

Seepage/Stability Analysis 

As mentioned previously, after the seepage was simulated, it was then coupled with a slope 

stability analysis according to General Limit Equilibrium (GLE). By doing the seepage coupled 

with stability, a worst-case factor of safety could be attained. A flux line was inserted on both 

conventional planar and geomorphic profiles to track infiltration from the hydraulic barrier into 

the fill material. For the conventional planar slope, the flux line was inserted at the bench (67.4, 

19.2 m) and was ended at the toe of the slope (105.2, 4.4 m). For the geomorphic slope the flux 

was line was inserted at the lower 2/3rd’s of the profile (45.7, 24.5 m) and was also drawn to the 
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toe of the slope (106.7, 5.1 m). The flux lines were inserted at these two points where large 

amounts of seepage occur according to the saturation and streamline figures (Figures 16-23). 

Table 23 and 24 shows the quantitative results for the precipitation/infiltration, and its 

corresponding factor of safety for the conventional planar and geomorphic slopes. The 

infiltration rates are for the cumulative model duration. The tables also show quantitative results 

done by another researcher doing a similar study on the same slope profiles (Stevens, 2016). 

Figures 24 and 25 shows where the critical failure occurs and its corresponding mean factor of 

safety. 

Table 23. Quantitative seepage/stability analysis for conventional planar slope (Ditch G) 

Conventional Planar Slope (Ditch G) 

Growth 

Layer 

Hydraulic Barrier  

Thickness 

Volume  

Precipitation Infiltration 

LCV 

Stability 

Mean 

Stability 

HCV 

Stability 

% by volume meters (feet) m3 m3 FS FS FS 

80/20 0.6 (2) 15.59 2.66 1.53 1.64 1.76 

60/40 0.6 (2) (Stevens, 2016) 18.11 8.25 N/A 1.30 N/A 

  

Table 24. Quantitative seepage/stability analysis for geomorphic slope (GLD-C) 

Geomorphic Slope (GLD-C) 

Growth 

Layer 

Hydraulic Barrier  

Thickness 

Volume  

Precipitation Infiltration 

LCV 

Stability 

Mean 

Stability 

HCV 

Stability 

% by volume meters (feet) m3 m3 FS FS FS 

80/20 0.6 (2) 15.37 5.92 2.08 2.12 2.15 

60/40 0.6 (2) (Stevens, 2016) 15.57 6.92 N/A 1.70 N/A 
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Figure 24. Mean factor of safety/critical area for conventional planar slope (Ditch G) 
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Figure 25. Mean factor of safety/critical area for geomorphic slope (GLD-C) 
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Conventional Planar Slope (Ditch G) Conclusions 

1. Table 23 shows that the model simulated by Stevens (2016) had 2.52 m3 more of 

precipitation than the model simulated for this research. This could be attributed to a 

different boundary condition for the 100-year storm. 

2. A large decrease in infiltration is also noted between Stevens (2016) and the model 

simulated for this research. The model for this research had a 5.59 m3 decrease in 

infiltration. This is due to a 50% reduction of MGroTM in an 80/20 growth layer compared 

to a 60/40 growth layer. The 80/20 layer allows less water to be retained in the MGroTM, 

which could then leach into the barrier and fill material during desaturation. 

3. The large reduction in infiltration also leads to an increased mean factor of safety (1.64). 

The 1.30 factor of safety is due to the large volume (8.25) of infiltration (Stevens. 2016). 

4. The LCV factor of safety shows that even under lesser friction angle values, the slope 

remains stable with a FS=1.53, which greater than FS=1.50, which is recommended by 

Superfesky and Michael (2007). 

5. Figure 24 shows that the critical area of failure for the mean factor of safety occurs 

directly upslope from the bench. The critical area shows that the failure only occurs on 

the 80/20 growth layer and does not reach the hydraulic barrier. The reason the failure 

occurs here is due to sloughing, which is the loss of cohesion due to high saturation. The 

growth layer remains 100% saturated throughout the 25-day model. 

6. Grass may be able to bind the structure together in a root matrix increasing the overall 

stability.  

Geomorphic Slope (GLD-C) Conclusions 

7. Table 24 shows that both studies had similar volumes of precipitation for the 100-year 

storm.  

8. The 80/20 growth layer proved to decrease the infiltration by 1.00 m3 compared to 60/40 

Stevens (2016). The 50% reduction in MGroTM allows less water to reside in the growth 

layer, and increase runoff towards the toe for the entire site. 

9. The geomorphic slope with the 80/20 layer had a much higher factor of safety compared 

to Stevens (2016). A 0.42 increase in factor of safety can be attributed to a more 

competent hydraulic barrier. The hydraulic barrier had a friction angle ranging from 

24.12 to 25.08 degrees compared to Stevens (2016) 43.21 to 44.96 degrees (Table 14). 

The friction angles that range from 43.21 to 44.96 were done according to a direct shear 

test compared to an ICU test. 

10. The geomorphic slope also proved to have a much higher factor of safety compared 

(2.12) to the conventional planar slope (1.64). The reason for a large increase in factor of 

safety is due to the steepness of the conventional planar slope compared to the 

geomorphic slope.  

11. Figure 25 shows that the critical area occurs in the middle of the slope profile. The 

middle of the geomorphic slope is where infiltration is occurring always throughout the 
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25-day model according to the streamlines in Figures 20 to 23. The critical area also 

breaks past the growth layer and into the hydraulic barrier, which is a major concern. The 

reason for failure to occur in the barrier is due to a large concentration of saturation 

greater than 50%.  

12. The terrain profile also plays a role in the failure reaching the hydraulic barrier. There is 

no bench to alleviate driving forces that as there is in the conventional planar profile. 

13. As mentioned in the conventional planar slope, a root matrix will form in the growth 

layer and may increase the overall stability. This may help the geomorphic slope from the 

failure breaking into the hydraulic barrier that is seen in Figure 25. 
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Conclusions and Recommendations 

From the geotechnical investigation to the Finite Element Modeling, the conventional planar and 

geomorphic slope profiles show that the major areas of concern for this proposed cap and cover 

design lie in the overall physical properties of the CCR and 80/20 CCR/MGroTM growth layers. 

The hydraulic barrier shows that it performs as expected in the modeling being able to decrease 

infiltration compared to the 60/40 layers. The CCR material also proves to be more competent in 

the 24.12 to 25.08 degrees area compared to the high 43.21 to 44.96 degrees (Table 14). This 

was shown in the modeling, giving higher factors of safety under a worst-case scenario. Some 

recommendations that can be taken into consideration are as follows: 

1. It is recommended that an isotropic consolidated drained (ICD) test be run on the 80/20 

and 60/40 growth layers as a check to see how much the friction angle would change 

between a ICU, ICD, and direct shear tests.  

2. The geomorphic slope proves to be a more stable slope compared to conventional design. 

It has higher infiltration volumes for this research than the conventional planar slopes, but 

the factor of safety values show that it would be a more stable slope long term. 

3. With higher infiltration values for the geomorphic slope, the failure was able to break 

into the hydraulic barrier. This was the case with the model without grass growing. With 

grass growing, a root matrix can form and bind the structure together making it more 

stable. 

4. Grass growing, and the formation of a root matrix will also promote evapotranspiration 

for the entire site. 

5. The 80/20 growth layer shows the ability to decreases infiltration compared to the 60/40 

layer. The 50% reduction of MGroTM allows a lesser amount of water to reside in the 

growth layer and promote runoff towards the toe of the slope 

6. Throughout the 25-day model of the conventional planar slope, large amounts of 

saturation were prevalent at the toe of the slope. This is expected, but could raise concern 

due to a slope blowout at the toe with increased pore-water pressure.  

7. Implement rock drains at the toes of both slope profiles to reduce saturation/pore-water 

pressure build-up. 

8. Complete more advanced modeling in seepage/infiltration of geomorphic and 

conventional planar slopes to see if there are any diminishing returns with either 

landform. 

9. The 80/20 growth layer proves to be a viable growth layer for the cap and cover design. 

The 50% reduction of MGroTM compared to the 60/40 growth layer could also greatly 

save costs in the construction of the structure. 
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